1.A.3 運輸(Transport)(CO₂)

1. 排出・吸収源の概要

1.1 排出・吸収源の対象及び温室効果ガス排出メカニズム

石炭や石油製品、天然ガス等の化石燃料を燃焼させエネルギーを得る際、化石燃料中に含まれる炭素が空気中の酸素と化学反応することにより CO_2 が発生する。当該排出源では、「1.A.3.a 航空」、「1.A.3.b. 自動車」、「1.A.3.c 鉄道」、「1.A.3.d 船舶」、「1.A.3.e その他輸送」からの CO_2 排出を扱う。

「1.A.3.a 航空」は、国内における航空機の航行における化石燃料の燃焼に伴う CO_2 排出を扱う。ただし、我が国から他国へ又は他国から我が国へ航行する飛行機(国際航空)からの CO_2 排出は含まない。なお、我が国の国内の航空機の飛行に伴う温室効果ガスの排出は、ジェット燃料を使用するものが主である。その他小型軽飛行機、ヘリコプターなどに僅かに利用されている航空ガソリンからの排出が存在する。

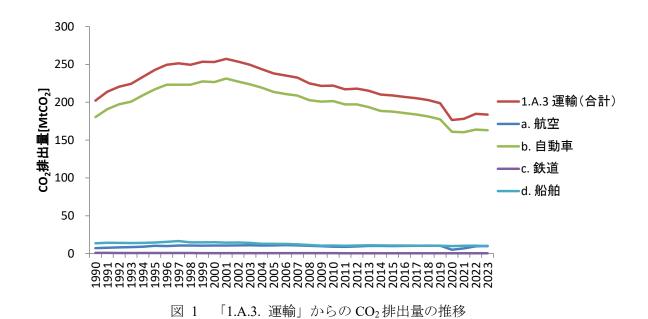
「1.A.3.b. 自動車」は、軽乗用車、軽貨物車、乗用車、バス、小型貨物車、普通貨物車、特種用途車、二輪車における化石燃料の燃焼に伴う CO₂排出を扱う。また、エンジンにて使用される潤滑油が、他の燃料と混合されエンジン中で燃焼する際の CO₂排出を扱う。

「1.A.3.c 鉄道」は、鉄道の走行における化石燃料の燃焼に伴う CO_2 排出を扱う。なお、我が国の鉄道における化石燃料の消費はディーゼル鉄道車両における軽油が主であり、蒸気機関車における石炭の消費が少量存在する。

「1.A.3.d 船舶」は、内航船舶の航行における化石燃料の消費に伴う CO_2 排出を扱う。また、エンジンにて使用される潤滑油が、他の燃料と混合されエンジン中で燃焼する際の CO_2 排出を扱う。

なお、我が国から他国へ又は他国から我が国へ航行する船舶(国際船舶)からの CO_2 排出は含まない。また、漁船における CO_2 排出は、本排出源ではなく、「1.A.4.c 農林水産業」に含まれる。

「1.A.3.e その他輸送」については、該当する排出活動が存在しないため、「NO (活動なし)」と報告している。


なお、バイオマス燃料の燃焼に伴う CO_2 排出は、2006 年 IPCC ガイドラインに従い、我が国の総排出量には含めず、共通報告表(CRT)に参考値として報告している。

1.2 排出・吸収トレンド及びその要因

「1.A.3. 運輸」からの CO_2 排出量は、輸送量や輸送効率等により変動する。当該分野からの CO_2 排出量は、1990 年度以降 2001 年度まで増加傾向にあったが、走行距離の減少や輸送効率の向上等により、2001 年度をピークに減少傾向にある。2023 年度における「1.A.3. 運輸」からの CO_2 排出量は、1990 年度に比べて約 9%の減少となっている。なお、2020 年度は、新型コロナウイルス感染症の感染拡大(コロナ禍)の影響により、旅客輸送、貨物輸送ともに減少したため、排出量が2019 年度比で大きく減少している。その後はコロナ禍で落ち込んだ経済活動の回復に伴い、排出量は微増傾向にあったが、2023 年度は前年度比で減少に転じた。

部門別内訳については、全ての年度において、「1.A.3.b. 自動車」からの排出が全体の約90%と

そのほとんどを占めている。2023 年度においては、次いで「1.A.3.a 航空」が 5.6%、「1.A.3.d 船舶」が 5.4%と続いており、「1.A.3.c 鉄道」は 0.2%と相対的に小さい 1 。なお、「1.A.3.d 船舶」と「1.A.3.a 航空」からの CO_2 排出量は、2000 年代後半以降、双方とも約 5%程度を占め、ほぼ同程度であったが、新型コロナウイルス感染症の感染拡大の影響により、2020 年度及び 2021 年度においては「1.A.3.a 航空」からの排出が一時的に急減した。

2. 排出 • 吸収量算定方法

2.1 排出 · 吸収量算定式

2.1.1 ガソリン・軽油等の燃料

2006 年 IPCC ガイドラインに示されたデシジョンツリー (Vol. 2、page 1.9、Fig. 1.2) に従い、Tier 2 部門別アプローチ (Sectoral Approach) 法を用い、各エネルギー源の消費量に炭素排出係数及び酸化率を乗じて CO_2 排出量の算定を行っている。

$$E = \sum_{ij} \left[(A_{ij} - N_{ij}) \times GCV_i \times 10^{-3} \times EF_i \times OF_i \right] \times 44/12$$

E : 化石燃料の燃焼に伴う CO₂排出量 [t-CO₂]
 A : エネルギー消費量(固有単位 [t, kl,10³m³])
 N : 非エネルギー利用量(固有単位 [t, kl,10³m³])

 GCV
 : 高位発熱量 [MJ/固有単位]

 EF
 : 炭素排出係数 [t-C/TJ]

OF : 酸化率

i : エネルギー源

j : 部門

¹ 鉄道におけるエネルギー消費は電力が主であるが、発電に伴う排出量は「1.A.1.a 発電及び熱供給」に計上するため、鉄道由来の排出量が小さくなっている。

2.1.2 潤滑油

エンジン内の潤滑油が使用中に酸化されることにより CO_2 が排出される。2006 年 IPCC ガイドライン (Vol. 3、page 5.6) によれば、潤滑油と他の燃料とが混焼される 2 ストローク (2 サイクル) エンジンにおいては、潤滑油からの CO_2 排出量をエネルギー分野で計上することとされている。 我が国では自動車用エンジン油の 2 サイクルエンジン油及び船舶エンジン油の船舶用シリンダー油が該当する。この排出量を次式で算定し、2 サイクルエンジン油の燃焼に伴う CO_2 排出を「1.A.3.b. 自動車」に、船舶用シリンダー油の燃焼に伴う CO_2 排出を「1.A.3.d. 船舶」に計上する。

$$E = \sum_{i} \left(LC_i * CC_i * ODU_i * 44/12 \right)$$

E: 潤滑油の使用中の酸化に伴う排出量 [kt-CO₂]

LC_i : 潤滑油消費量「TJ]

CCi : 潤滑油の炭素含有量 [kt-C/TJ]
ODUi : ODU (Oxidized During Use) 係数

i : 潤滑油の油種(自動車用エンジン油の2サイクルエンジン油、船舶エン

ジン油の船舶用シリンダー油)

なお、エンジンにて使用される潤滑油やグリースが、使用中に酸化されることにより排出される CO_2 については、「2.D.1 潤滑油の使用」部門にて報告する。

2.2 排出係数

2.2.1 炭素排出係数

エネルギー源別に、総発熱量(高位発熱量)当たりの炭素含有量で表される値を用いており、 2006 年 IPCC ガイドラインのデフォルト値を採用している一部の燃料種を除き、我が国独自の値である。

炭素排出係数は、(a) 高炉ガス、都市ガス(一般ガス)以外のエネルギー源、(b) 高炉ガス、(c) 都市ガス(一般ガス)の3つに分けて設定している。

エネルギー源別炭素排出係数を表 1 に、その出典を表 2 に示す。

表 1 エネルギー源別炭素排出係数(単位:t-C/TJ、高位発熱量ベース)

\	. 10	Ner*	v 2 1)	1000	1001	1000	1002	1004	1005	1006	1005	1000	1000
エネル	レギー		コート゛1)	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
	原料质	·	\$0110										
		-クス用原料炭	\$0111	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5
	吹込	用原料炭	\$0112	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5
石	輸入-	一般炭	\$0121										
炭	汎圧	目輸入一般炭	\$0122	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7
	発電	記用輸入一般炭	\$0123	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7
	国産-	一般炭	\$0124	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9
	無煙点	븃	\$0130	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5
	コーク	ウス	\$0211	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4
石	コーバ	レタール	\$0212	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9
	練豆炭		\$0213	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4
製	コーク	カス炉ガス	\$0221	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
品	高炉カ		\$0222	27.2	27.1	27.1	27.1	27.0	26.9	26.9	26.8	26.7	26.7
	転炉プ		\$0225	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4
	精製月		\$0310										
		!用純原油	\$0310	19.1	19.1	19.0	19.0	19.0	19.0	19.1	19.1	19.1	19.1
		!用粗残油	\$0312	21.3	21.4	21.4	21.4	21.4	21.4	21.4	21.4	21.4	21.4
	発電月		\$0312	19.1	19.1	19.1	19.1	19.1	19.1	19.1	19.1	19.1	19.2
原		可尿血 質混合物	\$0320	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
		低合物	\$0321	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
		リコンテンセート !用NGLコンデンセート	\$0331	17.4	17.7	17.6	17.6	17.4	18.1	17.8	18.0	17.9	17.9
		に用NGLコンテンセート に用NGLコンデンセート			17.7								
			\$0332	17.5		17.5	17.6	17.6	17.6	17.9	17.8	17.6	17.6
	40 件	化学用NGLコンデンセート	\$0333	15.6	15.7	15.9	16.0	16.2	16.2	16.3	16.5	16.8	16.6
	油炉	純ナフサ 改質生成油	\$0420	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2
	什		\$0421	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3
		ガソリン(原油由来)2)	\$0431	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3
		ガソリン(バイオマス考慮) ³⁾		18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3
		ジェット燃料油	\$0432	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3
	LHS	灯油	\$0433	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5
	料料	軽油(原油由来)2)	\$0434	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7
石	油	軽油(バイオマス考慮)3)	40.0	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7
油		A重油	\$0436	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9
製		B重油	\$0438	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2
品		一般用C重油	\$0439	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5
		発電用C重油	\$0440	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5
		潤滑油	\$0451	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2
	他	他重質石油製品4)	\$0452	20.8	20.8	20.8	20.8	20.8	20.8	20.8	20.8	20.8	20.8
	石油	オイルコークス	\$0455	25.4	25.4	25.4	25.4	25.4	25.4	25.4	25.4	25.4	25.4
	油製	電気炉ガス	\$0456	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4
	品	製油所ガス	\$0457	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
		液化石油ガス (LPG)	\$0458	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5
	輸入す	天然ガス(LNG)	\$0510	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9
天		天然ガス	\$0520	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9
然		、田・随伴ガス	\$0521	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9
ガス		、田 - 岡 - ハ - ハ	\$0522	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5
		<u>、</u> 溶解ガス	\$0523	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9
ガ都	一般プ		\$0610	14.4	14.4	14.4	14.4	14.4	14.4	14.3	14.3	14.2	14.2
	簡易オ		\$0620	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5
.,,-	木材和		\$N131	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2
バ	廃材和		\$N131	30.2	30.2		30.2	30.2	30.2	30.2	30.2	30.2	30.2
	疣物作	^{刊用} ナエタノール				30.2						-	
A ±∠			\$N134	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2
		オディーゼル	\$N135	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2
ス		直接利用 おいこ	\$N136	26.8	26.8	26.8	26.8	26.8	26.8	26.8	26.8	26.8	26.8
		ナガス レギー統計(エネルギーバランス表)	\$N137				12.4	12.4	12.4	12.4	12.4	12.4	12.4

¹⁾総合エネルギー統計(エネルギーバランス表)のエネルギー源別コード番号

²⁾ レファレンスアプローチで使用。

³⁾ 部門別アプローチで使用。
4) アスファルトを含む。

エネバ	レギー	·····································	コート* 1)	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
	原料。		\$0110	2000	2001	2002	2002	200.	2000	2000	2007	2000	2007
		<u>、</u> -クス用原料炭	\$0111	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5
		用原料炭	\$0112	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5
石	輸入-		\$0121	2	20	20	20	2	20	20	20	20	2
炭		輸入一般炭	\$0122	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7
		清明》、	\$0123	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7
		- 般炭	\$0124	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9
	無煙		\$0130	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5
	コーク		\$0211	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4
_		レタール	\$0212	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9
石炭	練豆店		\$0213	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4
製		、 フス炉ガス	\$0221	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
品	高炉ス	**	\$0222	26.7	26.6	26.6	26.6	26.6	26.5	26.4	26.4	26.5	26.5
	転炉ク		\$0225	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4
	精製月		\$0310	50	20	20	50	2011	2011	20	50	50	50
		!用純原油	\$0311	19.0	19.1	19.1	19.1	19.0	19.1	19.1	19.1	19.1	19.0
		!用粗残油	\$0312	21.4	21.4	21.4	21.4	21.4	21.4	21.5	21.5	21.5	21.4
	発電月		\$0320	19.2	19.3	19.1	19.2	19.2	19.6	19.3	19.2	19.2	19.3
原		質混合物	\$0321	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
油		コンデンセート	\$0330	20.0	20.0	23.0	20.0	23.0	25.0	23.0			
		!用NGLコンデンセート	\$0331	18.0	18.1	18.1	18.3	18.8	18.3	18.2	18.1	19.4	18.4
		用NGLコンデンセート	\$0332	17.6	17.6	17.6	17.8	18.2	18.2	17.8	17.8	19.0	17.9
		ルート 化学用NGLコンデンセート	\$0333	16.8	16.6	17.3	17.1	17.7	17.6	17.7	17.1	18.8	17.9
			\$0420	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2
	油料	純ナフサ 改質生成油	\$0421	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3
		ガソリン(原油由来) ²⁾		18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3
		ガソリン(バイオマス考慮) ³⁾	\$0431	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3
		ジェット燃料油	\$0432	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3
		灯油	\$0433	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5
	燃	軽油(原油由来) ²⁾		18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7
石	料油	軽油(バイオマス考慮)3)	\$0434	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7
油	佃	A重油	\$0436	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9
製		B重油	\$0438	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2
品		一般用C重油	\$0439	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5
		発電用C重油	\$0440	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5
		潤滑油	\$0451	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2
	他	他重質石油製品 ⁴⁾	\$0452	20.8	20.8	20.8	20.8	20.8	20.8	20.8	20.8	20.8	20.8
	石油	オイルコークス	\$0455	25.4	25.4	25.4	25.4	25.4	25.4	25.4	25.4	25.4	25.4
	油製	電気炉ガス	\$0456	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4
	品品	製油所ガス	\$0457	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
	<u></u>	液化石油ガス (LPG)	\$0458	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5
	輸入を	- F然ガス(LNG)	\$0510	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	14.0
天	国産ラ	天然ガス	\$0520	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9
然ガ	ガス	、田・随伴ガス	\$0521	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9
カス	炭鉱	ズガス	\$0522	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5
	原油	溶解ガス	\$0523	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9
ガ都	一般カ		\$0610	14.2	14.2	14.2	14.1	14.1	14.1	14.0	14.0	14.0	14.0
ス市	簡易カ	ガス	\$0620	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5
	木材和		\$N131	30.2	30.2	30.2	30.2	30.2	30.9	30.9	30.9	30.9	30.9
バ	廃材和		\$N132	30.2	30.2	30.2	30.2	30.2	30.9	30.9	30.9	30.9	30.9
イ参れ		ナエタノール	\$N134	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2
マ考	バイス	ナディーゼル	\$N135	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2
ス	黒液區	直接利用	\$N136	26.8	26.8	26.8	26.8	26.8	25.6	25.6	25.6	25.6	25.6
		ナガス	\$N137	12.4	12.4	12.4	12.4	12.4	12.4	12.4	12.4	12.4	12.4
11 4/4 /	\> ·1	レギー統計(エネルギーバランス表)の	アーチョコ	्र अस्त	111 1	∨ дБ. □	_	_	_	_	_	_	_

- 1)総合エネルギー統計(エネルギーバランス表)のエネルギー源別コード番号
- 2) レファレンスアプローチで使用。
- 3) 部門別アプローチで使用。 4) アスファルトを含む。

エネバ	レギー	順	コート 1)	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	原料炭		\$0110	2010	2011	2012	2015	2011	2010	2010	2017	2010	2017
		<u>、</u> ·クス用原料炭	\$0111	24.5	24.5	24.5	24.4	24.4	24.4	24.4	24.4	24.5	24.5
			\$0111	24.5	24.5	24.5	25.1	25.1	25.1	25.1	25.1	25.1	25.1
				24.3	24.3	24.3	23.1	23.1	23.1	23.1	23.1	23.1	23.1
石炭	輸入一		\$0121	24.7	24.7	24.7	24.4	24.4	24.4	24.4	24.4	24.2	24.2
1995		輸入一般炭	\$0122	24.7	24.7	24.7	24.4	24.4	24.4	24.4	24.4	24.3	24.3
		用輸入一般炭	\$0123	24.7	24.7	24.7	24.4	24.4	24.4	24.4	24.4	24.3	24.3
	国産-		\$0124	24.9	24.9	24.9	23.7	23.7	23.7	23.7	23.7	24.2	24.2
	無煙炭		\$0130	25.5	25.5	25.5	25.9	25.9	25.9	25.9	25.9	25.9	25.9
	コーク		\$0211	29.4	29.4	29.4	30.2	30.2	30.2	30.2	30.2	29.9	29.9
石		レタール	\$0212	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9
炭	練豆炭		\$0213	29.4	29.4	29.4	25.9	25.9	25.9	25.9	25.9	25.9	25.9
製	コーク	フス炉ガス	\$0221	11.0	11.0	11.0	10.9	10.9	10.9	10.9	10.9	10.9	10.9
品	高炉カ	ガス	\$0222	26.4	26.3	26.2	26.5	26.6	26.5	26.5	26.5	26.3	26.3
	転炉カ	ガス	\$0225	38.4	38.4	38.4	41.7	41.7	41.7	41.7	41.7	42.0	42.0
	精製月	月原油	\$0310										
	精製	用純原油	\$0311	19.1	19.1	19.1	19.0	19.0	19.0	19.0	19.0	19.0	19.0
	精製	用粗残油	\$0312	21.4	21.5	21.5	19.7	19.6	19.5	19.6	19.4	19.4	19.4
	発電月	月原油	\$0320	19.2	19.1	19.1	19.2	19.2	19.3	19.3	19.3	19.3	19.2
原油		質混合物	\$0321	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
一曲		コンデンセート	\$0330										
		用NGLコンデンセート	\$0331	18.4	17.3	18.4	18.3	18.3	18.3	18.3	18.3	18.2	18.3
		用NGLコンデンセート	\$0332	17.9	17.9	17.9	18.2	18.2	18.2	18.2	18.2	18.2	18.2
	石油	化学用NGLコンデンセート	\$0333	18.0	16.9	18.2	18.3	18.2	18.2	18.3	18.2	18.2	18.2
			\$0420	18.2	18.2	18.2	18.6	18.6	18.6	18.6	18.6	18.6	18.6
	油料	純ナフサ 改質生成油	\$0421	18.3	18.3	18.3	19.3	19.3	19.3	19.3	19.3	19.3	19.3
		ガソリン(原油由来) ²⁾		18.3	18.3	18.3	18.7	18.7	18.7	18.7	18.7	18.7	18.7
		ガソリン (バイオマス考慮) ³⁾	\$0431	18.2	18.2	18.2	18.6	18.6	18.6	18.5	18.5	18.5	18.5
		ジェット燃料油	\$0432	18.3	18.3	18.3	18.6	18.6	18.6	18.6	18.6	18.6	18.6
		灯油	\$0433	18.5	18.5	18.5	18.7	18.7	18.7	18.7	18.7	18.7	18.7
	燃	軽油(原油由来)2)	\$0 1 33	18.7	18.7	18.7	18.8	18.8	18.8	18.8	18.8	18.8	18.8
	料	軽油 (バイオマス考慮) ³⁾	\$0434	18.7	18.7	18.7	18.8	18.8	18.8	18.8	18.8	18.8	18.8
石油	油	軽油(ハイオマス考慮)。 A重油	\$0426										
油製		B重油	\$0436	18.9	18.9	18.9	19.3	19.3	19.3	19.3	19.3	19.3	19.3
品			\$0438	19.2	19.2	19.2	20.0	20.0	20.0	20.0	20.0	20.0	20.0
"		一般用C重油	\$0439	19.5	19.5	19.5	20.2	20.2	20.2	20.2	20.2	20.2	20.2
		発電用C重油	\$0440	19.5	19.5	19.5	19.8	19.8	19.8	19.8	19.8	20.1	20.1
	/µh	潤滑油	\$0451							19.9	19.9		19.9
	他 石	他重質石油製品4)	\$0452	20.8	20.8	20.8	20.4	20.4	20.4	20.4	20.4	20.8	20.8
	油	オイルコークス	\$0455	25.4	25.4	25.4	24.5	24.5	24.5	24.5	24.5	24.5	24.5
	製	電気炉ガス	\$0456	38.4	38.4	38.4	41.7	41.7	41.7	41.7	41.7	42.0	42.0
	品	製油所ガス	\$0457	14.2	14.2	14.2	14.4	14.4	14.4	14.4	14.4	14.4	14.4
	<u> </u>	液化石油ガス (LPG)	\$0458	16.5	16.5	16.5	16.4	16.4	16.4	16.4	16.4	16.4	16.4
	輸入ヲ	E然ガス(LNG)	\$0510	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	13.9	13.9
天然	国産ヲ	モ然ガス	\$0520	13.9	13.9	13.9	14.0	14.0	14.0	14.0	14.0	13.9	13.9
がガ	ガス	田・随伴ガス	\$0521	13.9	13.9	13.9	14.0	14.0	14.0	14.0	14.0	13.9	13.9
ス	炭鉱	ズガス	\$0522	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5
	原油	溶解ガス	\$0523	13.9	13.9	13.9	14.0	14.0	14.0	14.0	14.0	13.9	13.9
ガ都	一般カ		\$0610	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0
	簡易プ		\$0620	16.5	16.5	16.5	16.4	16.4	16.4	16.4	16.4	16.4	16.4
	木材系		\$N131	30.9	30.9	30.9	29.6	29.6	29.6	29.6	29.6	29.6	29.6
バ	廃材和		\$N132	30.9	30.9	30.9	29.6	29.6	29.6	29.6	29.6	29.6	29.6
イ 参		ナエタノール	\$N134	17.2	17.2	17.2	17.6	17.6	17.6	17.6	17.6	17.6	17.6
		ナディーゼル	\$N135	17.2	17.2	17.2	17.6	17.6	17.6	17.6	17.6	17.6	17.6
スン		直接利用	\$N136	25.6	25.6	25.6	24.9	24.9	24.9	24.9	24.9	24.9	24.9
<u> ^`</u>			\$N137	12.4	12.4	12.4	13.5	13.5	13.5	13.5	13.5	13.5	13.5
1 44 /	バイオガス 総合エネルギー統計(エネルギーバランス表)の						10.0	13.3	10.0	10.0	13.3	13.3	15.5

¹⁾総合エネルギー統計(エネルギーバランス表)のエネルギー源別コード番号

²⁾ レファレンスアプローチで使用。

³⁾ 部門別アプローチで使用。
4) アスファルトを含む。

エネノ	レギー		コート・1)	2020	2021	2022	2023
	原料质	芡	\$0110				
	コー	- クス用原料炭	\$0111	24.5	24.5	24.5	24.5
	吹込	用原料炭	\$0112	25.1	25.1	25.1	24.8
石	輸入-	- 般炭	\$0121				
炭	汎用	輸入一般炭	\$0122	24.3	24.3	24.3	24.8
		[用輸入一般炭	\$0123	24.3	24.3	24.3	24.8
	国産-		\$0124	24.2	24.2	24.2	24.2
	無煙處		\$0130	25.9	25.9	25.9	26.4
	コーク	フ ス	\$0211	29.9	29.9	29.9	29.7
石	コーバ	レタール	\$0212	20.9	20.9	20.9	20.9
炭	練豆店	븃	\$0213	25.9	25.9	25.9	25.9
製	コーク	フス炉ガス	\$0221	10.9	10.9	10.9	10.8
品	高炉カ	ガス	\$0222	26.4	26.3	26.3	26.1
	転炉カ	ガス	\$0225	42.0	42.0	42.0	41.9
	精製月	用原油	\$0310				
	精製	 用純原油	\$0311	19.0	19.0	19.0	18.9
	精製	見用粗残油	\$0312	19.3	19.3	19.1	19.1
-	発電月	用原油	\$0320	19.5	19.1	19.1	19.1
原油	瀝青質	質混合物	\$0321	20.0	20.0	20.0	20.0
一個	NGL •	コンデンセート	\$0330				
	精製	用NGLコンデンセート	\$0331	18.3	18.3	18.5	18.4
	発電	用NGLコンデンセート	\$0332	18.2	18.2	18.2	18.2
		化学用NGLコンデンセート	\$0333	18.2	18.2	18.2	18.2
	原	純ナフサ 改質生成油	\$0420	18.6	18.6	18.6	18.6
	一料	改質生成油	\$0421	19.3	19.3	19.3	19.2
		ガソリン(原油由来)2)	\$0.421	18.7	18.7	18.7	18.7
		ガソリン(バイオマス考慮) ³⁾	\$0431	18.5	18.5	18.5	18.5
		ジェット燃料油	\$0432	18.6	18.6	18.6	18.6
	LAIN	灯油	\$0433	18.7	18.7	18.7	18.7
	燃料	軽油(原油由来)2)	\$0434	18.8	18.8	18.8	18.8
石	料油	軽油(バイオマス考慮)3)	\$0 4 54	18.8	18.8	18.8	18.8
油	,,,	A重油	\$0436	19.3	19.3	19.3	19.2
製		B重油	\$0438	20.0	20.0	20.0	20.0
品		一般用C重油	\$0439	20.2	20.2	20.2	20.0
		発電用C重油	\$0440	20.1	20.0	20.0	20.0
		潤滑油	\$0451	19.9	19.9	19.9	19.9
	他	他重質石油製品 ⁴⁾	\$0452	20.8	20.8	20.8	20.8
	石油	オイルコークス	\$0455	24.5	24.8	24.8	24.8
	製	電気炉ガス	\$0456	42.0	42.0	42.0	41.9
	品	製油所ガス	\$0457	14.4	14.4	14.4	14.4
		液化石油ガス(LPG)	\$0458	16.3	16.3	16.3	16.3
	輸入す	F然ガス(LNG)	\$0510	13.9	13.9	13.9	13.8
天然	国産ラ	F.然ガス	\$0520	13.9	13.9	13.9	13.9
ガガ	ガス	田・随伴ガス	\$0521	13.9	13.9	13.9	13.9
ス	炭鉱	ズガス	\$0522	13.5	13.5	13.5	13.5
	原油	溶解ガス	\$0523	13.9	13.9	13.9	13.9
ガ都	一般カ	ガス	\$0610	14.0	14.0	14.0	14.0
ス市	簡易ス		\$0620	16.3	16.3	16.3	16.3
	木材和		\$N131	29.6	29.6	29.6	29.6
バイ	廃材和		\$N132	29.6	29.6	29.6	29.6
イ参数		ナエタノール	\$N134	17.6	17.6	17.6	17.6
マち	バイス	ナディーゼル	\$N135	17.6	17.6	17.6	17.6
ス	黒液區	重接利用	\$N136	24.9	24.9	24.9	24.9
L		ナガス (ボー統計(エネルギーバランス書)(\$N137	13.5	13.5	13.5	13.5

¹⁾総合エネルギー統計(エネルギーバランス表)のエネルギー源別コード番号

²⁾ レファレンスアプローチで使用。 3) 部門別アプローチで使用。 4) アスファルトを含む。

表 2 エネルギー源別炭素排出係数の出典

エン	ネルギ	一源	コード	1990-2012年度
		コークス用原料炭	\$0111	戒能(2005)
		吹込用原料炭	\$0112	コークス用原料炭と同一
	石 炭			環境庁(1992)
固		輸入一般炭		
体		国産一般炭 無煙炭	\$0124 \$0130	環境庁(1992) 戒能(2005)
燃		コークス	\$0130	環境庁(1992)
料	_	コールタール	\$0212	戒能(2005)
	石炭	練豆炭		環境庁(1992)
	製	コークス炉ガス	\$0221	戒能(2005)
	品	高炉ガス	\$0222	総合エネルギー統計の高炉・転炉における炭素収支に基づき算定
		転炉ガス		戒能(2005)
		精製用純原油	\$0311	実測値(石油精製事業者提供)により得られた銘柄別発熱量を基に原油の
		精製用粗残油	\$0312	補間・近似式により推計した銘柄別炭素排出係数を銘柄別輸入量で加重平均
	原油	発電用原油	\$0320	電力調査統計(資源エネルギー庁)の発熱量を基に原油の補間・近似式により推計した月別の炭素排出係数を各月の受入量で加重平均
	和	瀝青質混合物	\$0321	戒能(2005)
		精製用NGLコンデンセート	\$0331	Marina 발코바비(4) 4 Marinto 1 및 a # 4 U ~ In 4 Th
		発電用NGLコンデンセート 石油化学用NGLコンデンセート	\$0332 \$0333	銘柄別の炭素排出係数を銘柄別輸入量の構成比で加重平均
•		純ナフサ		環境庁(1992)
		改質生成油	\$0421	ガソリンの値
		ガソリン (原油由来)	¢0.421	環境庁(1992)
		ガソリン (バイオマス考慮)	\$0431	原油由来・バイオマス由来の炭素排出係数を国内消費量の構成比で加重 平均
液体燃		ジェット燃料油	\$0432	環境庁(1992)
料	石	灯油	\$0433	環境庁(1992)
	油製	軽油 (原油由来)	#0.42.4	環境庁(1992)
	品	軽油(バイオマス考慮)	\$0434	原油由来・バイオマス由来の炭素排出係数を国内消費量の構成比で加重 平均
		A重油	\$0436	環境庁(1992)
		B重油	\$0438	環境庁(1992)
		一般用C重油	\$0439	環境庁(1992)
		発電用C重油	\$0440	環境庁(1992)
		潤滑油	\$0451	環境庁(1992)
		他重質石油製品	\$0452	環境庁(1992)
		オイルコークス	\$0455	環境庁(1992)
		電気炉ガス	\$0456	1103-110
		製油所ガス	\$0457	環境庁(1992)
		液化石油ガス (LPG)	\$0458	プロパン・ブタン理論値を国内生産・輸入量の構成比で加重平均
	=	輸入天然ガス(LNG)	\$0510	産地別の炭素排出係数を国別輸入量で加重平均
気	天 然 ガ	国産天然ガス	\$0520	戒能(2005)
体	ルス	ガス田・随伴ガス	\$0521	国産天然ガスの値
燃料		炭鉱ガス	\$0522	環境庁(1992) 国来工鉄ガスのは
科	都っち	原油溶解ガス 一般ガス	\$0523 \$0610	国産天然ガスの値 総合エネルギー統計の都市ガス製造における炭素収支に基づき算定
	ス市ガ	簡易ガス		LPGの値
\vdash		間易刀ス 木材利用	\$0620 \$N131	*
$\overline{}$	バイ	廃材利用	\$N132	実測値(日本製紙連合会提供)
参	イオ	バイオエタノール	\$N134	エタノールの理論炭素排出係数(ノルマル状態)
考	マ	バイオディーゼル 単海直接利田	\$N135	
	ス	黒液直接利用 バイオガス		実測値(日本製紙連合会提供) メタンの理論炭素排出係数(ノルマル状態)
ш		1 24 24 2 ,	<i> U</i> 1111μ	/ / * */*エIIII //\7\7\7 F I-I I/\9A \/ / /* \/* (八)を (八)を (八)を (八)を (八)を (八)を (八)を (八)を

エン	ネルギ	·一源	コード	2013-2017年度
		コークス用原料炭	\$0111	実測値(日本鉄鋼連盟提供)により得られた炭素排出係数を単純平均
	石	吹込用原料炭	\$0112	実測値(日本鉄鋼連盟提供)により得られた炭素排出係数を単純平均
	炭	輸入一般炭	\$0121	実測値(発電事業者提供)から算出した各サンプルの炭素排出係数を受入量で加重平均
固		国産一般炭	\$0124	軍で加里平均 実測値(発電事業者提供)から算出した各サンプルの炭素排出係数を受入
体		無煙炭		戒能(2014)の輸入一般炭の補間・近似式より推計
燃 料		コークス	\$0211	実測値(日本鉄鋼連盟提供)により得られた炭素排出係数を単純平均
41.1	石	コールタール	\$0212	<u>従前値を継続使用</u>
	炭	練豆炭 コークス炉ガス	\$0213 \$0221	輸入無煙炭の値 実測値(日本鉄鋼連盟提供)により算出された炭素排出係数を単純平均
	製品	高炉ガス		総合エネルギー統計の高炉・転炉における炭素収支に基づき算定
		転炉ガス	\$0225	 実測値(日本鉄鋼連盟提供)により算出された炭素排出係数を単純平均
		精製用純原油	\$0311	実測値(石油精製事業者提供)により得られた銘柄別発熱量を基に原油の
		精製用粗残油	\$0312	補間・近似式により推計した銘柄別炭素排出係数を銘柄別輸入量で加重平
		163C/171II/XIII	****	均 電力調査統計(資源エネルギー庁)の発熱量を基に原油の補間・近似式に
	原油	発電用原油	\$0320	より推計した月別の炭素排出係数を各月の受入量で加重平均
		瀝青質混合物 精製用NGLコンデンセート	\$0321 \$0331	従前値を継続使用 実測値(石油精製事業者提供)により得られた銘柄別発熱量を基に原油の
		発電用NGLコンデンセート	\$0331	美側値(石油精製事業有提供)により待られた鉛州別発熱量を基に原油の 補間・近似式により推計した銘柄別炭素排出係数を銘柄別輸入量・出荷量
		石油化学用NGLコンデンセート	\$0333	で加重平均
		純ナフサ	\$0420	実測値(石油精製事業者提供)により得られた炭素排出係数を単純平均したレギュラーガソリンの値
		改質生成油	\$0421	実測値(石油精製事業者提供)により得られた炭素排出係数を単純平均したプレミアムガソリンの値
		ガソリン(原油由来)		実測値(石油精製事業者提供)により得られたプレミアムガソリンとレギュラー ガソリンの炭素排出係数を国内向け出荷量で加重平均
		おいりい (ジノユュュ本書)	\$0431	原油由来・バイオマス由来の炭素排出係数を国内消費量の構成比で加重
液	- - -	ガソリン(バイオマス考慮)		平均
体燃		ジェット燃料油	\$0432	実測値(石油精製事業者提供)により得られたガソリン型・灯油型の炭素排出係数を総合エネルギー統計の各最終消費量で加重平均
料	石	灯油	\$0433	実測値(石油精製事業者提供)により得られた炭素排出係数を単純平均
	油製	軽油 (原油由来)	\$0434	実測値(石油精製事業者提供)により得られた炭素排出係数を単純平均
	品品	軽油(バイオマス考慮)	50434	原油由来・バイオマス由来の炭素排出係数を国内消費量の構成比で加重 平均
		A重油	\$0436	実測値(石油精製事業者提供)により得られた炭素排出係数を単純平均
		B重油	\$0438	実測値(石油精製事業者提供)により得られた発熱量を基に石油製品の補
		一般用C重油	\$0439	実測値(石油精製事業者提供)により得られた炭素排出係数を単純平均
		発電用C重油		電力調査統計(資源エネルギー庁)の発熱量を基に石油製品の補間・近似
		潤滑油	\$0451	実測値(石油精製事業者提供)により得られた発熱量を基に石油製品の補
		他重質石油製品	\$0452	常圧残油投入量とC重油生産量のエネルギー収支から算定した発熱量に基
		オイルコークス	\$0455	づき、石油製品の補間・近似式より推計 実測値(日本化学工業協会提供)により得られた炭素排出係数を単純平均
		電気炉ガス		安側値(日本化子工来励云旋供)により待りれた灰条併山保数を単純平均 転炉ガスの値
		製油所ガス	\$0457	実測値(石油精製事業者提供)により算出された炭素排出係数を単純平均
		液化石油ガス(LPG)	\$0458	プロパン・ブタンの理論炭素排出係数を各ガスの国内供給量で加重平均
	_	輸入天然ガス(LNG)	\$0510	ガス事業便覧(日本ガス協会)から算出した産地別の炭素排出係数を国別 輸入量で加重平均
気	天然	国産天然ガス	\$0520	実測値(国内の天然ガス生産事業者提供)から算出したガス田別の炭素排出係数をガス田別産出量で加重平均
体	ガス	ガス田・随伴ガス	\$0521	国産天然ガスの値
燃	^	炭鉱ガス	\$0522	実測値(国内の天然ガス生産事業者提供)から算出したガス田別の炭素排
料	4417	原油溶解ガス	\$0523	国産天然ガスの値
	都ス市	一般ガス	\$0610	総合エネルギー統計の都市ガス製造における炭素収支に基づき算定
Ш	ガ	簡易ガス	\$0620	LPGの値
	バ	木材利用	\$N131	実測値(日本製紙連合会提供)により得られた炭素排出係数を単純平均
参	1	廃材利用 バイオエタノール	\$N132 \$N134	
考	オー	バイオディーゼル	\$N135	エタノールの理論炭素排出係数(SATP状態)
	マス	黒液直接利用	\$N136	実測値(日本製紙連合会提供)
Ш		バイオガス	\$N137	メタンの理論炭素排出係数(SATP状態)

工	ネルギ	一源	コード	2018-2022年度
		コークス用原料炭	\$0111	実測値(日本鉄鋼連盟提供)により得られた炭素排出係数を単純平均
	石	吹込用原料炭	\$0112	実測値(日本鉄鋼連盟提供)により得られた炭素排出係数を単純平均
	炭	輸入一般炭	\$0121	実測値(発電事業者提供)から算出した各サンプルの炭素排出係数を受入 量で加重平均
固体		国産一般炭	\$0124	実測値(発電事業者提供)から算出した各サンプルの炭素排出係数を受入
燃燃		無煙炭		従前値を継続使用
料		コークス コールタール	\$0211	実測値(日本鉄鋼連盟提供)により得られた炭素排出係数を単純平均 従前値を継続使用
	石	練豆炭		<u> 従前値を継続使用</u>
	炭製	コークス炉ガス		実測値(日本鉄鋼連盟提供)により算出された炭素排出係数を単純平均
	品	高炉ガス	\$0222	総合エネルギー統計の高炉・転炉における炭素収支に基づき算定
		転炉ガス	\$0225	実測値(日本鉄鋼連盟提供)により算出された炭素排出係数を単純平均
		精製用純原油	\$0311	実測値(石油精製事業者提供)により得られた銘柄別発熱量を基に原油の補間・近似式により推計した銘柄別炭素排出係数を銘柄別輸入量で加重平
		精製用粗残油	\$0312	均
	原油	発電用原油	\$0320	電力調査統計(資源エネルギー庁)の発熱量を基に原油の補間・近似式により推計した月別の炭素排出係数を各月の受入量で加重平均
		瀝青質混合物 精製用NGLコンデンセート	\$0321 \$0331	従前値を継続使用 実測値(石油精製事業者提供)により得られた銘柄別発熱量を基に原油の
		発電用NGLコンデンセート	\$0332	補間・近似式により推計した銘柄別炭素排出係数を銘柄別輸入量・出荷量
		石油化学用NGLコンデンセート	\$0333	で加重平均
		純ナフサ	\$0420	従前値を継続使用
		改質生成油	\$0421	従前値を継続使用
		ガソリン (原油由来)	#0421	実測値(石油精製事業者提供)により得られたプレミアムガソリンとレギュラー ガソリンの炭素排出係数を国内向け出荷量で加重平均
		ガソリン (バイオマス考慮)	\$0431	原油由来・バイオマス由来の炭素排出係数を国内消費量の構成比で加重 平均
液体燃		ジェット燃料油	\$0432	実測値(石油精製事業者提供)により得られたガソリン型・灯油型の炭素排出係数を総合エネルギー統計の各最終消費量で加重平均
料	石	灯油	\$0433	従前値を継続使用
	油製	軽油 (原油由来)	\$0434	従前値を継続使用
	品	軽油(バイオマス考慮)	\$U 1 34	原油由来・バイオマス由来の炭素排出係数を国内消費量の構成比で加重 平均
		A重油	\$0436	從前値を継続使用
		B重油	\$0438	・
		一般用C重油	\$0439	従前値を継続使用
		発電用C重油	\$0440	■ 電力調査統計(資源エネルギー庁)の発熱量を基に石油製品の補間・近似
		潤滑油	\$0451	従前値を継続使用
		他重質石油製品	\$0452	常圧残油投入量とC重油生産量のエネルギー収支から算定した発熱量に基づき、石油製品の補間・近似式より推計
		オイルコークス	\$0455	従前値を継続使用
		電気炉ガス 製油所ガス	\$0456 \$0457	転炉ガスの値 従前値を継続使用
		液化石油ガス (LPG)	\$0458	プロパン・ブタンの理論炭素排出係数を各ガスの国内供給量で加重平均
		輸入天然ガス(LNG)	\$0510	実測値(発電事業者、日本ガス協会提供)から算出した産地別の炭素排出 係数を国別輸入量で加重平均
気	天然	国産天然ガス	\$0520	実測値(国内の天然ガス生産事業者提供)から算出したガス田別の炭素排出係数をガス田別産出量で加重平均
体	ガス	ガス田・随伴ガス	\$0521	国産天然ガスの値
燃		炭鉱ガス	\$0522	従前値を継続使用
料	都	原油溶解ガス	\$0523	国産天然ガスの値
	ス市	一般ガス	\$0610	総合エネルギー統計の都市ガス製造における炭素収支に基づき算定
Щ	ガ	簡易ガス	\$0620	LPGの値
	バ	木材利用 廃材利用	\$N131 \$N132	従前値を継続使用
参	イオ	バイオエタノール	\$N134	(従前値を継続使用
考	A マ	バイオディーゼル \$N13		
	ス	黒液直接利用 バイオガス		<u>從前値を継続使用</u> 從前値を継続使用
ш		1 44 /4 4 ,	Ψ11131	Many E C/WER/LLX/11

T	ネルギ	- 順	コード	2023年度以降
		コークス用原料炭	\$0111	実測値(日本鉄鋼連盟提供)により得られた炭素排出係数を受入量で加重 平均
	石	吹込用原料炭	\$0112	実測値(日本鉄鋼連盟提供)により得られた炭素排出係数を受入量で加重 平均
固	炭	輸入一般炭	\$0121	実測値(発電事業者提供)から算出した各サンプルの炭素排出係数を受入量で加重平均
体		国産一般炭	\$0124	従前値を継続使用
燃		無煙炭	\$0130	輸入一般炭の補間・近似式を更新し、推計
料		コークス コールタール	\$0211	<u>実測値(日本鉄鋼連盟提供)により得られた炭素排出係数を受入量で加重</u> 従前値を継続使用
	石	練豆炭	\$0212 \$0213	<u>使則但を継続使用</u> 従前値を継続使用
	炭	コークス炉ガス	\$0221	実測値(日本鉄鋼連盟提供)により算出された炭素排出係数を単純平均
	製品	高炉ガス		総合エネルギー統計の高炉・転炉における炭素収支に基づき算定
		転炉ガス	\$0225	実測値(日本鉄鋼連盟提供)により算出された炭素排出係数を単純平均
		精製用純原油	\$0311	石油輸入調査(資源エネルギー庁)の密度・硫黄分を基に原油の補間・近似
		精製用粗残油	\$0312	石油輸入調査(資源エイルイー) 70名後・航東方を差に原油の補間・近似式により推計した銘柄別炭素排出係数を銘柄別輸入量で加重平均
	原油	発電用原油	\$0320	電力調査統計(資源エネルギー庁)の発熱量を基に原油の補間・近似式により推計した月別の炭素排出係数を各月の受入量で加重平均
		瀝青質混合物 は制 PNOL コンデン・トート	\$0321	従前値を継続使用
		精製用NGLコンデンセート 発電用NGLコンデンセート	\$0331 \$0332	石油輸入調査(資源エネルギー庁)の密度・硫黄分を基に原油の補間・近似
		石油化学用NGLコンデンセート	\$0333	式により推計した銘柄別炭素排出係数を銘柄別輸入量で加重平均
		純ナフサ	\$0420	実測値(石油精製事業者提供)により得られた製油所別のレギュラーガソリンの炭素排出係数をレギュラーガソリンの製油所別生産量で加重平均
		改質生成油	\$0421	実測値(石油精製事業者提供)により得られた製油所別のプレミアムガソリンの炭素排出係数をプレミアムガソリンの製油所別生産量で加重平均
		ガソリン (原油由来)	#0421	実測値(石油精製事業者提供)により得られたプレミアムガソリンとレギュラー ガソリンの炭素排出係数を国内向け出荷量で加重平均
		ガソリン(バイオマス考慮)	\$0431	原油由来・バイオマス由来の炭素排出係数を国内消費量の構成比で加重 平均
液体燃	-	ジェット燃料油	\$0432	ガソリン型・灯油型の炭素排出係数を総合エネルギー統計の各最終消費量で加重平均。灯油型は実測値(石油精製事業者提供)、ガソリン型は従前値を継続使用。
料	石	灯油	\$0433	実測値(石油精製事業者提供)により得られた製油所別の炭素排出係数を 製油所別生産量で加重平均
	i 油 製	軽油 (原油由来)	\$0434	実測値(石油精製事業者提供)により得られた製油所別の炭素排出係数を 製油所別生産量で加重平均
	品	軽油(バイオマス考慮)	ψ0131	原油由来・バイオマス由来の炭素排出係数を国内消費量の構成比で加重 平均
		A重油	\$0436	実測値(石油精製事業者提供)により得られた製油所別の炭素排出係数を 製油所別生産量で加重平均
		B重油	\$0438	従前値を継続使用
		一般用C重油	\$0439	実測値(石油精製事業者提供)により得られた製油所別の炭素排出係数を 製油所別生産量で加重平均
		発電用C重油	\$0440	電力調査統計(資源エネルギー庁)の発熱量を基に石油製品の補間・近似
		潤滑油	\$0451	従前値を継続使用
		他重質石油製品	\$0452	常圧残油投入量とC重油生産量のエネルギー収支から算定した発熱量に基づき、石油製品の補間・近似式より推計
		<u>オイルコークス</u> 電気炉ガス	\$0455	従前値を継続使用 転炉ガスの値
		製油所ガス	\$0456	実測値(石油精製事業者提供)により得られた製油所別の炭素排出係数を
		液化石油ガス(LPG)	\$0458	製油所別生産量で加重平均プロパン・ブタンの理論炭素排出係数を各ガスの国内供給量で加重平均
		輸入天然ガス (LNG)	\$0438	実測値(発電事業者、日本ガス協会提供)から算出した産地別の炭素排出
E	天然	国産天然ガス	\$0520	係数を国別輸入量で加重平均 実測値(国内の天然ガス生産事業者提供)から算出したガス田別の炭素排 出係数なガス円別産出量で加重収換
気体	ガ	ガス田・随伴ガス	\$0521	出係数をガス田別産出量で加重平均 国産天然ガスの値
燃燃	ス	炭鉱ガス	\$0522	従前値を継続使用
料		原油溶解ガス	\$0523	国産天然ガスの値
	都ス市	一般ガス	\$0610	総合エネルギー統計の都市ガス製造における炭素収支に基づき算定
	ガ	簡易ガス	\$0620	LPGの値
	バ	木材利用	\$N131	従前値を継続使用
(¥	1	廃材利用 バイオエタノール	\$N132	present the Company of 1997 19
参考	オ	バイオエタノール バイオディーゼル	\$N134 \$N135	従前値を継続使用
	マ	黒液直接利用		従前値を継続使用
	ス	バイオガス		從前值を継続使用

※ 環境庁(1992):環境庁「二酸化炭素排出量調査報告書(1992年5月)」(1992)

※ 戒能 (2005): 戒能一成「エネルギー源別炭素排出係数の妥当性の評価と分析」平成 17 年度温室効果ガス 排出量算定方法検討会インベントリワーキンググループ提出資料 (2005)

(1) 高炉ガス、都市ガス (一般ガス) 以外のエネルギー源

高炉ガス、都市ガス(一般ガス)以外のエネルギー源における炭素排出係数については、「二酸化炭素排出量調査報告書(環境庁、1992年)」、「温室効果ガス排出量算定に関する検討結果(環境省、温室効果ガス排出量算定方法検討会)」、「エネルギー源別炭素排出係数の妥当性の評価と分析(経済産業研究所、戒能一成、2005年)」²、「エネルギー源別標準発熱量・炭素排出係数の改訂について-2013年度改訂標準発熱量・炭素排出係数表-(経済産業研究所、戒能一成、2014年)」³及び「エネルギー源別標準発熱量・炭素排出係数(2018年度改訂)の解説(資源エネルギー庁、2020年)」⁴、「エネルギー源別標準発熱量・炭素排出係数(2023年度改訂)の解説(資源エネルギー庁、2024年)」⁵に示された値を用いている。

1) 1990~2012 年度までの炭素排出係数の設定方法

1990~2012 年度における炭素排出係数の設定に当たっては、「エネルギー源別炭素排出係数の 妥当性の評価と分析」において実施された排出係数の評価分析結果を活用した。

2005 年提出インベントリまでの CO_2 排出量算定に使用してきた「二酸化炭素排出量調査報告書」に示されたエネルギー源別排出係数について、

- ① 理論上限値・下限値との比較による評価分析
- ② 1996年改訂 IPCC ガイドラインに示されたデフォルト値との比較による評価分析
- ③ 「総合エネルギー統計」を用いた炭素収支による群評価分析

によってその妥当性を評価し、妥当性が確認された値についてはその値を使用した。

①~③の評価分析の概要は以下のとおり。

① 理論上限値・下限値との比較による評価分析

炭素排出係数の評価を必要とするエネルギー源の大部分は若干の不純物を含んだ炭化水素であり、純粋な炭化水素の標準総発熱量と炭素排出係数の間には物理化学的な対応関係が存在していることから、水素、メタン、一酸化炭素などの純粋物質の標準生成エンタルピーから理論的に算出される排出係数と評価対象の排出係数を比較することで、係数の妥当性を評価する。

② 1996 年改訂 IPCC ガイドラインに示されたデフォルト値との比較による評価分析

1996 年改訂 IPCC ガイドライン標準値や 2006 年 IPCC ガイドライン試算値 ⁶とその統計的な信頼性 (不確実性)情報を利用して、エネルギー源別の炭素排出係数の妥当性を判断する。ただし、IPCC ガイドラインが想定する平均的なエネルギー源の性状と、我が国が固有に利用するエ

https://www.env.go.jp/earth/ondanka/santei k/17 02/ref02-1.pdf

³ https://www.rieti.go.jp/jp/publications/dp/14j047.pdf

⁴ https://www.enecho.meti.go.jp/statistics/total_energy/pdf/stte_028.pdf

⁵ https://www.enecho.meti.go.jp/statistics/total_energy/pdf/shv2023_cmt.pdf

^{6 「}エネルギー源別炭素排出係数の妥当性の評価と分析」の公表時において、2006 年 IPCC ガイドラインはまだ公表されていなかったため、その値は試算値であり、公表時には若干変更されている。

ネルギー源の性状は必ずしも同一ではないため、数値が乖離している場合があっても当該乖離を説明する正当な根拠が存在する場合、後述する「群評価分析」などの統計的な検討・検証を加えた上で、適切な判断を行う。

③ 総合エネルギー統計を用いた炭素収支による群評価分析

エネルギー源別炭素排出係数のうち、石油製品、石炭製品の係数の群の一部については、「総合エネルギー統計」を用いて石油・石炭製品部門における炭素収支を分析することにより、各炭素排出係数の妥当性を評価する。

妥当性がないと判断されたものに関しては、「温室効果ガス排出量算定に関する検討結果」及び 2006 年 IPCC ガイドラインに示された値を比較検証し、妥当と考えられる値を用いた。

なお、精製用原油や NGL・コンデンセート等一部の燃料種については、2) で設定した 2013 年度以降の炭素排出係数を、各年度の銘柄別輸入構成比で加重平均することにより、炭素排出係数を毎年度計算している。

2) 2013~2017 年度の炭素排出係数の設定方法

2013~2017 年度の炭素排出係数については、2013 年度及び 2014 年度に経済産業省・環境省により実施された標準発熱量・炭素排出係数の設定に関する調査を通じて得られた値を用いている。 設定方法の概要は以下のとおり。

① 調査方法

2013~2014 年度において、経済産業省・環境省により、関係諸団体が有する各種エネルギー源の物性値等の収集と、関係団体より提供された試料の物性値の実測等に関する調査が実施された。本調査により得られた各種エネルギー源に関する物性値を基に、「エネルギー源別標準発熱量・炭素排出係数の改訂案について -2013 年度改訂標準発熱量・炭素排出係数表-」において、2013 年度から適用する標準発熱量・炭素排出係数が提示された。

② 炭素排出係数の基本的算定方法

各エネルギー源別の標準発熱量・炭素排出係数については、各エネルギー源の性質や精度面での優先順位等を踏まえ、「(1) 理論値からの算定」、「(2) 関係諸団体から提供された実測値及び経済産業省・環境省による実測調査結果より算定」、「(3) 他の主要エネルギー源の数値やその加重平均・回帰分析式からの推計により算定」、「(4) 現行値を継続使用」の各方法により設定した。

理論値及び実測値を用いた固体・液体・気体の各燃料における標準発熱量・炭素排出係数の算定方法((1)、(2)の方法に該当)は以下のとおり。

• 気体燃料

気体などのエネルギー源においてガスクロマトグラフィーなどにより成分組成値が実測できる場合には、メタン・プロパンなど各成分組成値に関する純物質の理論発熱量・炭素排出係数を標準生成エンタルピーなど物性値から算定しておき、統計処理した成分組成値でこれを加重平均して標準発熱量・炭素排出係数を算定した。

· 固体 · 液体燃料

固体及び純成分で加重平均できない液体のエネルギー源については、高位発熱量(Gross Calorific Value: GCV)と炭素含有率などの物性値を直接実測し、当該結果を統計処理して標準発

熱量・炭素排出係数を算定した。

(3)の方法については、一般炭・原油・石油製品の実測結果を基に、発熱量・炭素排出係数を密度・水分など物性値から推計する補間・近似推計式を作成し、これを用いて対象エネルギー源の標準発熱量・炭素排出係数を推計した。

③ 精度管理

上記により得られた標準発熱量・炭素排出係数は、現行値及び 2006 年 IPCC ガイドラインの デフォルト値との比較検証を行い、妥当性を確認した上でインベントリに適用している。

④ 実質炭素排出係数について

精製用原油、発電用原油、NGL・コンデンセート、LPG 等一部の燃料種については、エネルギー起源 CO₂ 排出量の算定精度向上の観点から、各種公的統計値における輸入量等を用いた加重平均により、毎年度実質炭素排出係数を算定する。

3) 2018~2022 年度の炭素排出係数の設定方法について

2018~2022 年度の炭素排出係数については、2017~2019 年度にかけて経済産業省・環境省により実施された標準発熱量・炭素排出係数の設定に関する調査を通じて得られた値を用いている。

設定方法の概要は以下のとおり。なお、2018~2022 年度の標準発熱量・炭素排出係数の改訂 に関する詳細については、「エネルギー源別標準発熱量・炭素排出係数(2018 年度改訂)の解説」 7を参照のこと。

① 調査方法

炭素排出係数の2018年度値改訂に関しては、2013年度に発熱量・炭素排出係数の全面的な改訂が行われたこと、5年程度では組成が大きく変動しない燃料種があること、及び実測調査に要するコストや作業負荷と排出量への影響とのバランス等を踏まえ、改訂対象とする燃料種を選別した上で、経済産業省・環境省により、関係諸団体が有する各種エネルギー源の物性値等の収集等に関する調査が実施された。

② 炭素排出係数の基本的算定方法

炭素排出係数は、「(1)業界団体提供データを用いた設定」、「(2)既存統計・文献及び推計式等を用いて設定」又は「(3)従前値を継続使用」の3手法により設定された。このうち(1)及び(2)について、2013年度値設定時の推計手法を踏襲する場合は、「エネルギー源別標準発熱量・炭素排出係数の改訂案について-2013年度改訂標準発熱量・炭素排出係数表-」8を参照した。

③ 精度管理

上記により得られた発熱量・炭素排出係数の妥当性を評価するため、2) において設定した 2013 年度値及び 2006 年 IPCC ガイドラインデフォルト値との比較検証を行った。

https://www.enecho.meti.go.jp/statistics/total_energy/pdf/stte_028.pdf

⁸ https://www.rieti.go.jp/jp/publications/dp/14j047.pdf

④ 実質炭素排出係数について

精製用原油、発電用原油、NGL・コンデンセート、LPG 等一部の燃料種については、エネルギー起源 CO₂ 排出量の算定精度向上の観点から、各種公的統計値における輸入量等を用いた加重平均により、毎年度実質炭素排出係数を算定する。

4) 2023 年度以降の炭素排出係数の設定方法について

2023 年度以降の炭素排出係数については、2022~2024 年度にかけて経済産業省・環境省により実施された標準発熱量・炭素排出係数の設定に関する調査を通じて得られた値を用いている。 改定対象とする燃料種は、実測調査に要するコストや作業負荷と排出量への影響とのバランス等を踏まえて選別した。炭素排出係数の設定方法は、前回改定時の手法を原則踏襲した。

2023 年度のエネルギー源別標準発熱量・炭素排出係数の改訂に関する詳細については、「エネルギー源別標準発熱量・炭素排出係数(2023 年度改訂)の解説」9を参照のこと。

5) ガソリン・軽油の炭素排出係数について

ガソリン及び軽油に関しては、活動量であるガソリン・軽油の国内消費量に、バイオ燃料(バイオエタノール・バイオディーゼル)が含まれている。バイオ燃料に含まれるバイオマス由来の炭素分を排出量から控除するため、ガソリン及び軽油に関しては、国内におけるバイオエタノール及びバイオディーゼルの供給量を用い、バイオマス分を控除したガソリン・軽油の炭素排出係数を別途設定する。

(2) 高炉ガス

「1.A.3. 運輸」において高炉ガスは使用されていない。

なお、高炉ガスの炭素排出係数の設定方法については、「1.A.1. エネルギー産業」を参照のこと。

(3) 都市ガス

都市ガスは、一般ガス事業者が供給する一般ガスと、簡易ガス事業者が供給する簡易ガスに分けられる。

簡易ガスの炭素排出係数は、その大部分が LPG 直接供給によるプロパンガスであることから、LPG と同一の値を採用する。

一般ガスの炭素排出係数については、一般ガスはその大部分が原材料を混合・空気希釈して製造されたものであることから、一般ガス製造における炭素収支から毎年度設定する。具体的には、一般ガスの原料として消費された炭素量(コークス炉ガス、灯油、製油所ガス、LPG、LNG、国産天然ガスに含まれる炭素量)を、一般ガスの生産量で除すことで排出係数を設定する。算定式及び算定過程を以下に示す。

⁹ https://www.enecho.meti.go.jp/statistics/total_energy/pdf/shv2023_cmt.pdf

$$EF_{CG} = \sum_{i} (A_i \times EF_i)/P_{CG}$$

EF : 炭素排出係数 [t-C/TJ]A : エネルギー量 [TJ]

P : 生產量 [TJ]

CG: 都市ガス (一般ガス)

i : 都市ガス原料(コークス炉ガス、灯油、製油所ガス、LPG、LNG、国産天然ガ

ス、バイオガス)

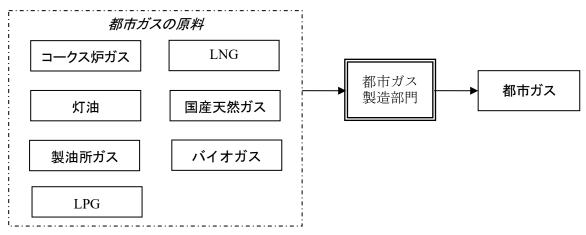


図 2 都市ガスの製造フロー

表 3 一般ガスの炭素排出係数の算定過程

鉄鋼系	ミガス		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Input												
	吹込用原料炭	kt-C	1,650	1,937	2,067	2,081	2,490	2,619	2,884	2,982	3,177	3,274
	コークス	kt-C	12,739	12,005	11,203	11,235	11,651	11,400	11,594	11,716	10,782	11,477
	合計	kt-C	14,389	13,942	13,270	13,316	14,141	14,019	14,479	14,698	13,959	14,751
Output												
	転炉ガス	kt-C	2,541	2,397	2,227	2,236	2,354	2,359	2,383	2,408	2,229	2,517
差		kt-C	11,848	11,545	11,043	11,080	11,786	11,660	12,096	12,290	11,730	12,234
Output												
	高炉ガス	TJ	435	425	408	409	437	434	450	458	439	459
			•	•	•					•	•	
EF	高炉ガス	t-C/TJ	27.2	27.1	27.1	27.1	27.0	26.9	26.9	26.8	26.7	26.7

鉄鋼系	ミガス		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Input												
	吹込用原料炭	kt-C	3,351	3,425	3,419	3,396	3,227	3,014	3,126	3,387	2,859	2,576
	コークス	kt-C	12,221	11,874	12,453	12,292	12,570	11,497	11,746	11,935	10,928	10,458
	合計	kt-C	15,572	15,300	15,871	15,689	15,797	14,511	14,872	15,322	13,786	13,034
Output												
	転炉ガス	kt-C	2,726	2,694	2,865	2,840	2,940	2,804	2,999	3,038	2,727	2,589
差		kt-C	12,846	12,605	13,007	12,848	12,857	11,707	11,874	12,284	11,059	10,444
Output												
	高炉ガス	TJ	482	474	489	483	483	441	449	465	418	394
EF	高炉ガス	t-C/TJ	26.7	26.6	26.6	26.6	26.6	26.5	26.4	26.4	26.5	26.5

鉄鋼系	ミガス		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Input												
	吹込用原料炭	kt-C	3,444	3,669	4,019	4,401	4,283	4,180	4,206	4,250	4,094	4,043
	コークス	kt-C	11,194	10,137	10,187	10,870	10,917	10,270	10,196	9,739	9,586	9,273
	合計	kt-C	14,637	13,806	14,206	15,271	15,200	14,449	14,402	13,989	13,680	13,316
Output												
	転炉ガス	kt-C	2,798	2,502	2,612	2,955	2,941	2,778	2,770	2,589	2,552	2,478
差		kt-C	11,839	11,304	11,594	12,316	12,260	11,671	11,632	11,400	11,127	10,838
Output												
	高炉ガス	TJ	449	430	443	465	462	440	439	430	423	412
	·											
EF	高炉ガス	t-C/TJ	26.4	26.3	26.2	26.5	26.6	26.5	26.5	26.5	26.3	26.3

鉄鋼系	ミガス		2020	2021	2022	2023
Input						
	吹込用原料炭	kt-C	2,965	4,035	3,491	3,528
	コークス	kt-C	7,833	8,757	7,899	7,497
	合計	kt-C	10,799	12,792	11,390	11,024
Output						
	転炉ガス	kt-C	2,066	2,309	2,113	1,899
差		kt-C	8,733	10,483	9,277	9,126
Output						
	高炉ガス	TJ	331	399	353	349
				•	•	
EF	高炉ガス	t-C/TJ	26.4	26.3	26.3	26.1

2.2.2 酸化率

燃料種ごとに、燃料の燃焼に伴う未燃炭素の実態について、関係業界団体、関連メーカー、専門 家等への調査を行い、燃焼の実態を考慮した我が国固有の酸化率を設定している。

(1) 気体燃料

気体燃料の燃焼については、発電用ボイラーにおける 2004 年度のガス燃焼時の煤塵濃度測定結果 (電気事業連合会) がいずれも 0 であるため、定量的に完全燃焼であることを示すことができる。ヒアリングの結果においても、いずれも 100%燃焼しているとの回答が得られているため、酸化率を 1.0 と設定した。

(2)液体燃料

液体燃料については、ほぼ全量が燃焼していると想定できるものの、燃焼状況によっては 0.5% 程度の未燃損失が生じる可能性がある。ただし、いずれも具体的な定量データを示すのは困難であり、我が国ではきめ細かな燃焼管理、煤煙処理を実施していることを勘案し、酸化率を 1.0 と設定した。

(3) 固体燃料

1) 石炭の燃焼状況

石炭燃焼は、ガス燃料、石油燃料に比べ燃焼速度が遅く、石炭燃焼に伴い発生する灰分(石炭灰)中に未燃焼炭素分が含まれる。石炭灰の発生量は石炭の性状により大きく異なるが、その範

囲はおよそ 5~30%である。ボイラーで発生した石炭灰は集塵器、節炭器、空気予熱器、炉底より回収され、石炭燃焼に伴う未燃炭素分が石炭灰中に含まれた状態で炉外へ出る。

2) 未燃焼炭素分の推定方法

石炭の燃焼については、燃焼条件、炉種、炭質により燃焼の状況が異なることもあり、具体的にどれだけの未燃炭素が生じているかを示す直接的な定量データの提供は困難な状況である。一方、炉で発生する未燃炭素については、ほぼ全量が石炭灰中に含まれるものと考えられることから、石炭灰の発生量と石炭灰中に含まれる未燃炭素分より石炭の燃焼において発生した未燃炭素分の推定を行った。

① 石炭灰中に含まれる未燃炭素分

石炭灰の未燃分は、ボイラーの燃焼条件と使用する石炭の性状に大きく左右され、数%程度から 10%を越える場合もある。未燃炭素分は石炭灰の強熱減量の値を用いて推計を行った ¹⁰。石炭灰は廃棄物の処理及び清掃に関する法律によって産業廃棄物に指定されているため、成分分析を行うこととなっているが、その情報は統計的な情報としては把握できない。したがって、「石炭灰ハンドブック(日本フライアッシュ協会)」に掲載されている「第 10 回石炭利用技術研究会発表会講演集(石炭技術研究所編)」の石炭灰の物理的性状統計値における、フライアッシュの強熱減量の平均値を用い、石炭灰中の未燃炭素分を 5.4%と設定する。

試料 平均值 範囲 標準偏差 試料数 調査 (個) 1.4~11.3 「第 10 回石炭利用技術 5.4 フライアッシュ 2.4 78 (%)(%) 研究会発表会講演集」 1.4~11.1 5.3 「電力土木」(1986.9) 38 石炭灰 2.6 (%)(%)

表 4 石炭灰の強熱減量

出典:石炭灰ハンドブック(日本フライアッシュ協会)

② 石炭灰発生量

石炭灰発生量は、「石炭灰全国実態調査(石炭エネルギーセンター)」による石炭灰発生量を用いた。当該調査結果は、出力 1,000 kW 以上の自家用発電設備の所有者に対してアンケート調査を行い回答が得られたもの(回収率は 9 割程度)と、電気事業用火力発電所からの発生量(フライアッシュ協会集計)の集計による。なお、1991 年、1992 年は調査が行われていないため内挿値を用いた。

¹⁰ 厳密には強熱減量は全量未燃炭素量を示す指標ではないが、未燃炭素含有率の直接測定結果を強熱減量の代替として用いても良くなったのは 1999 年 JIS 改正以降でもあり、ここでは強熱減量の数値をそのまま未燃炭素量としてみなすこととする。

表 5 石炭灰の発生量

			1990	1991	1992	1993	1994	1995	1996
石炭使用量		kt	37,419	39,672	41,926	44,179	49,656		53,644
石炭灰発生量	電気事業	kt	3,913	4,088	4,263	4,438	4,725	5,149	5,288
	一般産業	kt	1,725	1,805	1,884	1,964	1,801	1,974	1,920
	合計	kt	5,638	5,893	6,147	6,402	6,526	7,123	7,208
			1997	1998	1999	2000	2001	2002	2003
石炭使用量		kt	56,007	56,042	62,640	69,714	74,299	82,971	88,671
石炭灰発生量	電気事業	kt	5,408	5,029	5,757	6,322	6,785	6,920	7,475
	一般産業	kt	1,890	1,760	1,843	2,097	2,025	2,316	2,391
	合計	kt	7,298	6,789	7,600	8,429	8,810	9,236	9,866

出典:石炭灰全国実態調査

3) 石炭灰中の未燃焼炭素の大気放出

石炭灰は有効利用又は埋立処理が行われており、廃棄物の資源化、及び灰処分場確保の問題より有効利用される石炭灰の割合は経年的に増加している。主な有効利用用途は、セメント製造、道路材、人工骨材、肥料、土壌改良材等である。

有効利用が行われる石炭灰のうち、セメント原料に利用されたもののように、製造過程において焼成工程を経るものについては、焼成過程で石炭灰中に含まれる未燃炭素が酸化され CO₂ として大気中に放出される。一方、セメント混和剤のようにそのまま利用されるものや埋立処理においては、未燃炭素が酸化されることのないまま固定されると考えられる。なお、これらの炭素については埋立後に酸化され CO₂ として排出もされないと解釈されている。

以上を踏まえ、未燃炭素が酸化されて CO₂ として大気中に放出される石炭灰の利用用途の割合を利用用途別石炭灰使用量より推計を行った(表 7)。

表 6 石炭灰の利用分野と未燃炭素分の酸化の有無について

	H D CD C 12 1	別用力封こ水が次来人) ·	
利用分野		利用用途	焼成工程	未燃炭素の酸化
	セノ	メント原材料	有	0
セメント分野	セノ	イント混合材	無	
	コンク	フリート混和材	無	
	坩	也盤改良材	無	
	=	上木工事用	無	
土木分野	1	宣力工事用	無	
上小刀到	ij		無	
	アスファル	レト・フィーラー材	無	
	b	^最 坑充填材	無	
	趸	基材ボード	有 (一部)	0
建築分野	人	工軽量骨材	有 (一部)	0
	コンク	リート2次製品	無	
	肥料	珪酸カリ肥料	有	0
農業・水産分野	(含、融 雪剤)	その他	無	
	=	上壤改良材	無	
	下力	水汚水処理剤	無	
その他		製鉄用	有	0
		その他	無とする	
	埋立		無	

資料:石炭灰ハンドブックより作成

算定式

$R = Au_out/Au$

R:未燃炭素が酸化される利用用途の割合

Au: 石炭灰有効利用量

Au out: 焼成工程を経る用途に用いられる石炭灰利用量

表 7 未燃炭素分が酸化される石炭灰の利用用途割合の推定結果

利用用途		1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
セメント原材料	%	52.19%	55.19%	58.09%	56.66%	62.67%	61.01%	63.12%	68.52%	73.72%	70.12%
建材ボード	%	5.81%	4.58%	5.34%	6.27%	4.60%	4.06%	4.43%	4.31%	4.49%	4.50%
人工軽量骨材	%	1.28%	0.96%	0.77%	0.42%	0.75%	0.28%	0.40%	0.33%	0.05%	0.00%
珪酸カリ肥料	%	0.37%	0.33%	0.32%	0.32%	0.30%	0.25%	0.23%	0.23%	0.19%	0.19%
製鉄用	%	0.78%	0.13%	0.73%	0.08%	0.08%	0.05%	0.04%	0.03%	0.17%	0.25%
計	%	60.44%	61.19%	65.24%	63.75%	68.39%	65.64%	68.22%	73.42%	78.62%	75.06%

※ 石炭灰全国調査 各年の石炭灰の有効利用分野内訳の数値を利用

※ 珪酸カリ肥料の利用量は石炭灰ハンドブック及びメーカーヒアリングより推定

※ 調査実施は1994年以降

資料:石炭灰全国実態調査結果、石炭灰ハンドブックより作成

4)酸化率の推定

石炭燃焼においては石炭灰中に含まれたまま固定される炭素分を控除することで、下流側で排出される CO₂ も含めた酸化率を推定した。推計は、「石炭灰全国実態調査」による石炭使用量及び石炭灰の有効利用量、並びに「第 10 回石炭利用技術研究会発表会講演集」における強熱減量の値を用いて行った。

$$OF = 1 - (A - Au*R)*L / W$$

OF:酸化率(下流での排出分込み)

A:石炭灰発生量

Au: 石炭灰有効利用量

R: 未燃炭素が酸化される利用用途の割合

L: 強熱減量 W: 石炭使用量

なお、炉内での燃焼状況に限った酸化率は以下のように計算される。

OF' = 1 - A*L/W

OF': 酸化率 (燃焼分)

A:石炭灰発生量

L:強熱減量

W:石炭使用量

表 8 石炭燃焼における酸化率の推定

		1990	1991	1992	1993	1994	1995	1996
石炭使用量	kt	37,419	39,672	41,926	44,179	49,656	52,695	53,644
石炭灰発生量	kt	5,638	5,893	6,147	6,402	6,526	7,123	7,208
石炭灰有効利用量	kt	2,884	3,241	3,598	3,955	4,215	4,782	5,058
未燃炭素酸化分	%	60.4%	60.4%	60.4%	60.4%	60.4%	61.2%	65.2%
強熱減量	%	5.4%	5.4%	5.4%	5.4%	5.4%	5.4%	5.4%
酸化係数(燃焼分)		0.9919	0.9920	0.9921	0.9922	0.9929	0.9927	0.9927
酸化係数(下流込み)		0.9944	0.9946	0.9949	0.9951	0.9957	0.9957	0.9961
		1997	1998	1999	2000	2001	2002	2003
石炭使用量	kt	56,007	56,042	62,640	69,714	74,299	82,971	88,671
石炭灰発生量	kt	7,298	6,789	7,600	8,429	8,810	9,236	9,866
石炭灰有効利用量	kt	4,958	5,090	6,135	6,931	7,173	7,724	8,380
未燃炭素酸化分	%	63.8%	68.4%	65.6%	68.2%	73.4%	78.6%	75.1%
強熱減量	%	5.4%	5.4%	5.4%	5.4%	5.4%	5.4%	5.4%
酸化係数(燃燒分)		0.9930	0.9935	0.9934	0.9935	0.9936	0.9940	0.9940
酸化係数(下流込み)		0.9960	0.9968	0.9969	0.9971	0.9974	0.9979	0.9978

1991,1992年の石炭使用量、石炭灰発生量、石炭灰有効利用量は内挿にて計算

1990-1993年の未燃炭素酸化分は1994年の数値を利用

以上より石炭燃焼における酸化率は1990~2003年の平均値から有効数字3桁で0.996となる。 我が国のインベントリに用いるデータの精度を考慮すると、有効数字2桁の設定が妥当であるため、3桁目の四捨五入を行い、我が国の石炭燃焼に係る酸化率は1.0と設定した。

5) 検証

上記、「石炭灰全国実態調査」の結果を用いた算定は悉皆調査ではないため、「石炭灰全国実態調査」における石炭使用量と、「コールノート(石炭エネルギーセンター)」における一般炭需要量の比較を行い、調査対象としてカバーした石炭の量は全体の約87%であることを確認した。

表 9 石炭灰全国実態調査のカバー率評価

			1990	1991	1992	1993	1994	1995
石炭使用量	一般炭需要量(コールノート)	万t	4,514	5,082	5,060	5,300	5,876	6,242
石炭使用量	石炭灰全国調査	万t	3,742	3,967	4,193	4,418	4,966	5,270
カバー率			0.83	0.78	0.83	0.83	0.85	0.84
			1996	1997	1998	1999	2000	2001
石炭使用量	一般炭需要量(コールノート)	万t	6,289	6,785	6,459	7,115	8,189	8,741
石炭使用量	石炭灰全国調査	万t	5,601	5,604	6,264	6,971	7,430	8,297
カバー率			0.89	0.83	0.97	0.98	0.91	0.95
平均	0.87				•		•	

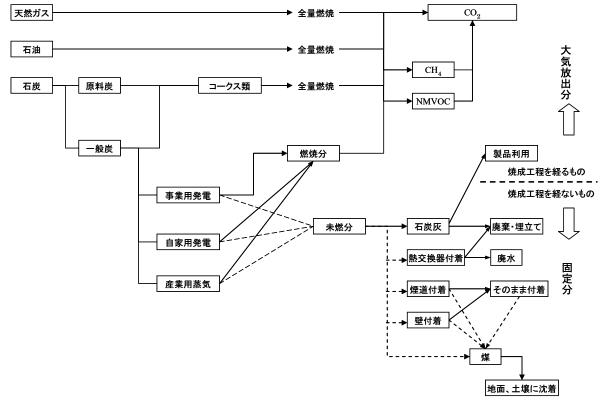


図 3 炭素フロー概略図

(4) 炭素の意図的な二重計上について

上記のとおり、我が国のインベントリにおける化石燃料の燃焼に伴う CO_2 排出量の算定では、全ての燃料種において酸化率を 1.0 と設定している。これはすなわち、化石燃料に含まれる炭素が完全燃焼され、全量 CO_2 となることを想定しているが、実際には一部不完全燃焼により、 CH_4 、CO、NMVOC 等のガスとして大気中に排出される炭素も存在する。燃料の燃焼に伴うこれらのガスの排出量は別途算定しており、両者を報告すると炭素分の二重計上となるが、 CO_2 以外のガスに含まれる炭素量を CO_2 排出量から控除はしていない。

2.2.3 ODU 係数

潤滑油の燃焼に伴う CO_2 排出量を算定する際の ODU 係数(2.1.2参照)については、全量が燃焼すると想定し、1.0 を用いている。

2.3 活動量

2.3.1 エネルギー消費量(固有単位)

(1) ガソリン・軽油等の燃料

当該分野の活動量については、「総合エネルギー統計」に示された部門別エネルギー源別のエネルギー消費量を用いている。

「総合エネルギー統計」は、日本国内に供給された石炭・石油・天然ガスなどのエネルギー源

が、どのような形態に転換され、日本国内においてどの部門によりどのような形で消費されたのかを捉え、国内のエネルギー需給の状況を表した統計(エネルギーバランス表)である。この統計の目的は、我が国のエネルギー需給の概要を示し、エネルギー・環境政策の企画立案やその効果の実測・評価などに貢献するとともに、エネルギー需要に対する定量的な理解や情勢判断を支援するために策定するものである。

「総合エネルギー統計」は、各種エネルギー源を「列」、エネルギー供給・転換・消費部門を「行」として、国内のエネルギー需給を行列形式で表現している。具体的には、各種エネルギー源「列」においては、11の大項目区分(石炭、石炭製品、原油、石油製品、天然ガス、都市ガス、再生可能・未活用エネルギー、事業用水力発電、原子力発電、電力、熱)と必要な中項目以下の区分で構成されている。そして需給部門「行」の構成については、一次エネルギー供給(一次供給)、エネルギー転換(転換)、最終エネルギー消費(最終消費)の3つの大部門と必要な中部門以下の部門で構成されている。

「総合エネルギー統計」におけるエネルギー需給量の算定では、ガソリン・電力などの各エネルギー源が一律に固有単位当たりの総発熱量(高位発熱量)[MJ/kg, MJ/l, MJ/m³] で均質とし、それぞれのエネルギー源が供給・転換・消費されていると仮定している。そして各種の公的統計で把握されている固有単位での供給・転換・消費の数値に、固有単位当たりの総発熱量(GCV)を乗じてエネルギー需給量を算定している。「総合エネルギー統計」の算定作業は以下の手順で行われている。

- (1) 発熱量・炭素排出係数の設定
- (2) 各種公的統計からエネルギー需給モジュールの構築
- (3) 固有単位表の作成(各種公的統計からモジュールを通して、詳細表、本表及び簡易表を作成) $(t, kl, 10^3 \times m^3$ などの単位で表記)
- (4) エネルギー単位表の作成(ジュール単位で表記)
- (5) エネルギー起源炭素表の作成(炭素含有量で表記)

「総合エネルギー統計(エネルギーバランス表)」は、以下の資源エネルギー庁のウェブサイトで 1990 年度から入手可能である。

http://www.enecho.meti.go.jp/statistics/total-energy/

「総合エネルギー統計」に示された、「航空 (#815000) (#854000)」、「自動車 (#811000) (#851000) (#811500) (#812000)」、「鉄道 (#812000) (#852000)」、「船舶 (#814000) (#853000)」のエネルギー消費量から、「非エネルギー利用 (#953000)」に計上されているエネルギー消費量を除いた量を用いる。非エネルギー利用 (#953000) に計上されているエネルギー消費量は、燃料以外の用途に用いられており CO₂ を排出していないものと考えられるため、この分を控除する。

「総合エネルギー統計」の部門と CRT の部門対応を表 10 に示す。

表 10 総合エネルギー統計とインベントリ (CRT) の部門対応 (1.A.3.)

CRT			総合エネルギー統計	
A3 Transport				
		最終エネルギー消費	旅客 航空	#815000
1A3a Domestic aviation		最終エネルギー消費	貨物 航空	#854000
		▲非エネルギー利用	運輸(航空)	#953000
1A3b Road transportation				
i Cars		最終エネルギー消費	旅客 乗用車	#811000
1 Cars		▲非エネルギー利用	運輸(乗用車)	#953000
ii Light duty trucks		IE (1A3biii)		-
		最終エネルギー消費	旅客 バス	#811500
iii Heavy duty truc	s and buses	最終エネルギー消費	貨物 貨物自動車/トラック	#851000
		▲非エネルギー利用	運輸(バス、貨物自動車/トラック)	#953000
iv Motorcycles		最終エネルギー消費		#812000
IV Motorcycles		▲非エネルギー利用	運輸(二輪車)	#953000
v Other		IE (1A3biii)		-
·		最終エネルギー消費	旅客 鉄道	#813000
1A3c Railways		最終エネルギー消費	貨物 鉄道	#852000
		▲非エネルギー利用	運輸(鉄道)	#953000
	-	最終エネルギー消費	旅客 船舶	#814000
1A3d Domestic navigation		最終エネルギー消費	貨物 船舶	#853000
		▲非エネルギー利用	運輸(船舶)	#953000

(注) ▲非エネルギー利用:原料用として用いられた分を控除している。

(2) 潤滑油

我が国で使用されている潤滑油のうち、使用中の酸化を伴うのは自動車用・船用のエンジン油がほとんどであり、そのうち本分野で排出量を計上すべき全損型(エンジン中で他の燃料と混合され燃焼する潤滑油)としては、2 サイクルエンジン油、船用シリンダー油があるものと考えられる。

そこで、全潤滑油の販売量から自動車用・船舶用のエンジン油の販売量を推計した上で、推計された各エンジン油の販売量を基に全損型のエンジン油消費量を推計した。

自動車用エンジン油(ガソリンエンジン油及びディーゼルエンジン油)及び船舶エンジン油の販売量(体積ベース)は、「資源・エネルギー統計年報(経済産業省)」及び「エネルギー生産・需給統計年報(経済産業省)」に示された全潤滑油の国内向販売量 DS に、同年報から推計した潤滑油の消費者(・販売業者)向販売量に占める各エンジン油の割合 R_i を乗じて求めた。これに、各エンジン油に占める全損型の割合 R_{TLi} を乗じて、全損型のエンジン油消費量を推計した。

 R_{TLi} は、「平成 24 年度潤滑油環境対策補助事業報告書(潤滑油協会)」に示された 2011 年度の 2 サイクルエンジン油、船舶用シリンダー油の製造・輸入量を、上記によって求めた 2011 年度の自動車用エンジン油、船舶エンジン油の国内向販売量でそれぞれ除して設定した(自動車用エンジン油については 0.92%、船舶エンジン油については 83%)。

上記で求めた体積ベースの消費量を「総合エネルギー統計」に示された潤滑油の発熱量を用いて熱量換算し、活動量とした。

$LC_i = DS * R_i * R_{TLi} * GCV$

LCi : 各エンジン油の消費量 [TJ]

DS: 全潤滑油の国内向販売量 (1,000 kl)

Ri : 潤滑油の消費者・販売業者向販売量に占める各エンジン油の割合

RTLi: 各エンジン油に占める全損型の割合i: 自動車用エンジン油、船舶エンジン油

GCV : 潤滑油の高位発熱量 [GJ/kl]

表 11 全損型のエンジン油消費量

項目		単位	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
自動車用2サイクルエンジン油消費量	LC_1	TJ	207	207	210	207	222	215	228	221	217	209
船舶用シリンダー油消費量	LC_2	TJ	5,318	5,701	6,225	6,021	5,773	5,503	6,241	7,532	7,807	7,804
全潤滑油の国内向販売量	DS	1000 kl	3,439	3,401	3,310	3,180	3,351	3,292	3,428	3,395	3,262	3,175
自動車用エンジン油販売量の割合	R_1	-	23%	23%	24%	25%	25%	25%	26%	25%	25%	25%
船舶用エンジン油販売量の割合	R_2	-	6.5%	7.1%	7.9%	8.0%	7.3%	7.1%	7.7%	9.4%	10.1%	10.4%
自動車用エンジン油に占める全損型の割合	R_{TLI}	-	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%
船舶用エンジン油に占める全損型の割合	R_{TL2}	-	83%	83%	83%	83%	83%	83%	83%	83%	83%	83%
潤滑油の総発熱量	GCV	GJ/kl	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2

項目		単位	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
自動車用2サイクルエンジン油消費量	LC_1	TJ	210	203	202	201	195	194	199	190	179	183
船舶用シリンダー油消費量	LC_2	TJ	7,144	7,262	6,861	6,342	6,154	6,250	6,006	5,735	5,248	4,972
全潤滑油の国内向販売量	DS	1000 kl	3,090	2,945	2,974	2,932	2,883	2,886	2,897	2,733	2,467	2,370
自動車用エンジン油販売量の割合	R_1	-	26%	26%	26%	26%	26%	26%	26%	27%	28%	30%
船舶用エンジン油販売量の割合	R_2	-	9.8%	10.4%	9.7%	9.1%	9.0%	9.1%	8.7%	8.9%	9.0%	8.9%
自動車用エンジン油に占める全損型の割合	R_{TLI}	-	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%
船舶用エンジン油に占める全損型の割合	R_{TL2}	-	83%	83%	83%	83%	83%	83%	83%	83%	83%	83%
潤滑油の総発熱量	GCV	GJ/kl	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2

項目		単位	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
自動車用2サイクルエンジン油消費量	LC_1	TJ	183	172	157	158	154	142	135	137	149	149
船舶用シリンダー油消費量	LC_2	TJ	4,627	4,016	3,638	3,502	3,301	3,124	2,843	2,766	3,095	3,036
全潤滑油の国内向販売量	DS	1000 kl	2,485	2,390	2,169	2,159	2,130	2,058	1,994	2,021	2,241	2,182
自動車用エンジン油販売量の割合	R_1	1	28%	28%	28%	28%	28%	26%	26%	26%	26%	26%
船舶用エンジン油販売量の割合	R_2	1	7.9%	7.1%	7.1%	6.8%	6.5%	6.4%	6.0%	5.8%	5.8%	5.9%
自動車用エンジン油に占める全損型の割合	R_{TLI}	1	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%
船舶用エンジン油に占める全損型の割合	R_{TL2}	1	83%	83%	83%	83%	83%	83%	83%	83%	83%	83%
潤滑油の総発熱量	GCV	GJ/kl	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2

項目		単位	2020	2021	2022	2023
自動車用2サイクルエンジン油消費量	LC_1	TJ	144	142	133	125
船舶用シリンダー油消費量	LC_2	TJ	2,831	2,602	2,318	2,271
全潤滑油の国内向販売量	DS	1000 kl	2,017	2,036	1,885	1,835
自動車用エンジン油販売量の割合	R_1	ı	27%	27%	27%	26%
船舶用エンジン油販売量の割合	R_2	-	5.9%	5.4%	5.2%	5.2%
自動車用エンジン油に占める全損型の割合	R_{TL1}	ı	0.9%	0.9%	0.9%	0.9%
船舶用エンジン油に占める全損型の割合	R_{TL2}	-	83%	83%	83%	83%
潤滑油の総発熱量	GCV	GJ/kl	40.2	40.2	40.2	40.2

2.3.2 発熱量

エネルギー源別のGCVは、「総合エネルギー統計」で用いられている値を使用した。エネルギー源ごとのGCVの推移を表 12に示す。

「総合エネルギー統計」では、各エネルギー源の固有単位当たりの発熱量が毎年度再計算可能なエネルギーについては、毎年度公的統計から再計算を行って算定した「実質発熱量」を用いてい

る。また、毎年度再計算することができないエネルギー源や、物理的性状が安定しているエネルギー源については、直近の実測データや各種公的文献・資料などから推計された「標準発熱量」の値を用いている。

なお、標準発熱量は、おおむね 5 年に一度改訂されており、これまで、2000 年度値、2005 年度値、2013 年度値、2018 年度値、2023 年度値に対して改訂が実施されている。

固体燃料の GCV のトレンドは、1990 年以降減少傾向にあるが、これはコークス用原料炭と一般炭の比率の変化に起因する。1970~1990 年においては、コークスの原料として、コークス用原料炭が使用されていたが、コークス用原料炭の不足と価格上昇のため、コークスの代わりに前処理 (調湿と増粘)をした一般炭を使う新しいコークス技術が開発された。同様に、PCI (吹込用原料炭)が、コークス用原料炭や一般炭の混合から、前処理 (微粉化)をした一般炭に変更された。これは、我が国の鉄鋼製造が、経済的な理由で安い石炭から高品質のコークスを製造してきたためである。従来のコークス用原料炭は、一般炭に比べて高い炭素含有量と発熱量を有するため、新技術が徐々に導入された結果、近年の見かけの GCV が減少傾向にある。

なお、我が国のインベントリで用いている発熱量は、上述のとおり、燃焼により生成した水蒸気が全て凝縮した際に得られる潜熱を含めた GCV であるが、2006 年 IPCC ガイドラインで示されているエネルギー源別発熱量は、水分の潜熱を含まない低位発熱量(Net Calorific Value: NCV)であることに留意が必要である。

表 12 エネルギー源ごとの GCV の推移

- 4 -	. 4	百	- le	出仕	1000	1001	1002	1002	1004	1005	1006	1997	1000	1000
エネル			コード	単位	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
	原料质		\$0110	MJ/kg										
		- クス用原料炭	\$0111	MJ/kg	31.8	31.7	31.3	31.2	30.8	30.5	30.3	30.2	30.0	29.2
	吹込	用原料炭	\$0112	MJ/kg	31.8	31.7	31.3	31.2	30.8	30.5	30.1	29.6	29.1	28.7
石		一般炭	\$0121	MJ/kg										
炭		輸入一般炭	\$0122	MJ/kg	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0
	発電	[用輸入一般炭	\$0123	MJ/kg	24.9	25.5	25.6	25.7	26.1	26.1	26.2	26.2	26.2	26.2
	国産-	一般炭	\$0124	MJ/kg	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3
	無煙点	분	\$0130	MJ/kg	27.2	27.2	27.2	27.2	27.2	27.2	27.2	27.2	27.2	27.2
	コーク	^フ ス	\$0211	MJ/kg	30.1	30.1	30.1	30.1	30.1	30.1	30.1	30.1	30.1	30.1
石	コーノ	レタール	\$0212	MJ/kg	37.3	37.3	37.3	37.3	37.3	37.3	37.3	37.3	37.3	37.3
炭	練豆店	눉	\$0213	MJ/kg	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9
製	コーク	フス炉ガス	\$0221	MJ/m ³	21.5	21.5	21.6	21.6	21.6	21.6	21.6	21.4	21.4	21.4
品	高炉ブ	ガス	\$0222	MJ/m ³	3.5	3.5	3.5	3.5	3.7	3.6	3.6	3.6	3.7	3.7
	転炉カ	ガス	\$0225	MJ/m ³	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4
	精製月	月原油	\$0310	MJ/l										
	精製	用純原油	\$0311	MJ/l	38.3	38.3	38.3	38.3	38.3	38.3	38.3	38.3	38.2	38.3
		· · · · · · · · · · · · · · · · · · ·	\$0312	MJ/l	38.3	38.3	38.3	38.3	38.3	38.3	38.3	38.3	38.2	38.3
		月原油	\$0320	MJ/l	39.1	39.1	39.1	39.2	39.1	39.2	39.3	39.4	39.5	39.5
原油		質混合物	\$0321	MJ/kg	30.1	30.1	30.1	30.1	30.1	30.3	30.0	29.8	30.0	30.0
油		コンデンセート	\$0330	MJ/l	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		用NGLコンデンセート	\$0331	MJ/l	35.7	35.3	35.6	35.5	35.5	35.5	35.4	35.3	35.4	35.4
		用NGLコンデンセート	\$0332	MJ/l	35.7	35.3	35.6	35.5	35.5	35.5	35.4	35.3	35.4	35.4
		化学用NGLコンデンセート	\$0333	MJ/l	35.7	35.3	35.6	35.5	35.5	35.5	35.4	35.3	35.4	35.4
	нін	純ナフサ	\$0420	MJ/l	33.6	33.6	33.6	33.6	33.6	33.6	33.6	33.6	33.6	33.6
	原料油	改質生成油	\$0421	MJ/l	35.1	35.1	35.1	35.1	35.1	35.1	35.1	35.1	35.1	35.1
			\$0421	MJ/l	34.6	34.6	34.6	34.6	34.6	34.6	34.6	34.6	34.6	34.6
		ガソリン(原油由来)1)	\$0431						34.6					
		ガソリン(バイオマス考慮)2)	£0.422	MJ/l	34.6	34.6	34.6	34.6		34.6	34.6	34.6	34.6	34.6 36.4
		ジェット燃料油	\$0432	MJ/l	36.4	36.4	36.4	36.4	36.4	36.4	36.4	36.4		
	燃	灯油	\$0433	MJ/l	36.8	36.8	36.8	36.8	36.8	36.8	36.8	36.8	36.8	36.8
	料	軽油(原油由来)1)	\$0434	MJ/l	38.1	38.1	38.1	38.1	38.1	38.1	38.1	38.2	38.1	38.1
石	油	軽油(バイオマス考慮)2)	****	MJ/l	38.1	38.1	38.1	38.1	38.1	38.1	38.1	38.2	38.1	38.1
油製		A重油	\$0436	MJ/l	39.7	39.8	39.7	39.7	39.6	39.6	39.4	39.4	39.5	39.4
品		B重油	\$0438	MJ/l	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2
		一般用C重油	\$0439	MJ/l	40.2	40.3	40.2	40.3	40.3	40.3	40.4	40.4	40.3	40.3
		発電用C重油	\$0440	MJ/l	41.1	40.9	41.0	41.1	41.0	41.1	41.2	41.1	41.3	41.3
		潤滑油	\$0451	MJ/l	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2
		他重質石油製品	\$0452	MJ/kg	39.2	39.4	39.2	39.3	39.4	39.3	39.4	39.4	39.4	39.4
	石油	オイルコークス	\$0455	MJ/kg	35.6	35.6	35.6	35.6	35.6	35.6	35.6	35.6	35.6	35.6
	製	電気炉ガス	\$0456	MJ/m ³	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4
	品	製油所ガス	\$0457	MJ/m ³	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3
		液化石油ガス(LPG)	\$0458	MJ/kg	50.5	50.5	50.6	50.6	50.6	50.6	50.6	50.7	50.7	50.7
	輸入す	F然ガス (LNG)	\$0510	MJ/kg	54.5	54.5	54.5	54.5	54.5	54.5	54.5	54.5	54.5	54.5
天	国産ラ	F 然ガス	\$0520	MJ/m ³	42.1	42.2	42.2	42.3	42.2	42.4	42.6	42.8	42.8	42.6
然ガ	ガス	田・随伴ガス	\$0521	MJ/m ³	42.1	42.2	42.2	42.3	42.2	42.4	42.6	42.8	42.8	42.6
ス	炭鉱	ズガス	\$0522	MJ/m ³	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0
	原油	溶解ガス	\$0523	MJ/m ³	42.1	42.2	42.2	42.3	42.2	42.4	42.6	42.8	42.8	42.6
ガ都	一般カ	ガス	\$0610	MJ/m ³	41.9	41.9	41.9	41.9	41.9	41.9	41.9	41.9	41.9	41.9
ス市	簡易オ	ガス	\$0620	MJ/m ³	105.4	105.0	104.8	104.3	104.3	103.6	103.5	103.1	102.7	102.5
	木材和		\$N131	MJ/kg	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4
バ	廃材和	可用	\$N132	MJ/kg	16.7	16.7	16.7	16.7	16.7	16.7	16.7	16.7	16.7	16.7
イ	バイス	ナエタノール	\$N134	MJ/l	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9
オマ		ナディーゼル	\$N135	MJ/l	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9
マス		直接利用	\$N136	MJ/kg	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6
		ナガス	\$N137	MJ/m ³	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4
1) 1,7		マアプローチで使用。	ψ1113/	1713/111	23.7	23.7	23.7	2⊤	23.7	23.7	23.7	23.7	23.7	23.7

²⁾ 部門別アプローチで使用。

^{3) 2012}年度迄は 気体は原則全て 0℃, 1気圧(ノハマハ状態)、液体は常温、固体は全て「有水有灰」状態での数値を示す。 2013年度以降は 気体・液体は原則全て 25℃, 1 bar (標準環境状態 SATP)、固体は全て「有水・有灰」状態での数値を示す。

映込用原料機	8.2 28.2 5.7 25.7 25.7 25.5 25.3 2.5 22.5 6.9 26.9 9.4 29.4 7.3 37.3 3.9 23.9 1.3 21.2 8.4 3.4 8.4 8.4 8.1 38.2 8.1 38.2	28.2 25.7 25.3 22.5 26.9 29.4 37.3 23.9 21.2 3.4 8.4 38.2 38.2	299 288 255 225 266 299 377 233 211 3.8.8
映込用原料炭	8.2 28.2 5.7 5.7 25.7 25.3 2.5 22.5 6.9 26.9 9.4 29.4 7.3 37.3 3.9 23.9 1.3 21.2 3.4 8.4 8.4 8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	28.2 25.7 25.3 22.5 26.9 29.4 37.3 23.9 21.2 3.4 8.4 38.2 38.2	28 25 25 26 29 37 23 21 3. 8.
横入一般炭 S0121 MJ/kg 26.6 26.6 26.6 26.6 25.7 25.7 25.7 25.6 2 2 2 2 2 2 2 2 2	5.7 25.7 5.5 25.3 2.5 22.5 6.9 26.9 9.4 29.4 7.3 37.3 3.9 23.9 1.3 21.2 3.4 3.4 3.4 8.4 8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	25.7 25.3 22.5 26.9 29.4 37.3 23.9 21.2 3.4 8.4 38.2 38.2	255 255 226 266 299 377 233 211 3.8.8
説用輸入一般膜	5.5 25.3 2.5 22.5 6.9 26.9 9.4 29.4 7.3 37.3 3.9 23.9 1.3 21.2 3.4 3.4 8.4 8.1 38.2 8.1 38.2 8.1 38.2 2.4 22.4 22.4	25.3 22.5 26.9 29.4 37.3 23.9 21.2 3.4 8.4 38.2 38.2	25 22 26 29 37 23 21 3. 8.
説用輸入一般炭 S0122 MJ/kg 26.6 26.6 26.6 26.6 25.7 25.7 25.7 25.8 25.6 26.8	5.5 25.3 2.5 22.5 6.9 26.9 9.4 29.4 7.3 37.3 3.9 23.9 1.3 21.2 3.4 3.4 8.4 8.1 38.2 8.1 38.2 8.1 38.2 2.4 22.4 22.4	25.3 22.5 26.9 29.4 37.3 23.9 21.2 3.4 8.4 38.2 38.2	25 22 26 29 37 23 21 3. 8.
無理	2.5 22.5 6.9 26.9 9.4 29.4 7.3 37.3 3.9 23.9 1.3 21.2 3.4 3.4 8.4 8.4 8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	22.5 26.9 29.4 37.3 23.9 21.2 3.4 8.4 38.2 38.2	22 26 29 37 23 21 3. 8.
国産一般炭 S0124 MJ/kg 22.5 22	6.9 26.9 9.4 29.4 7.3 37.3 3.9 23.9 1.3 21.2 3.4 3.4 8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	26.9 29.4 37.3 23.9 21.2 3.4 8.4 38.2 38.2	26 29 37 23 21 3. 8.
無煙炭	9.4 29.4 7.3 37.3 3.9 23.9 1.3 21.2 3.4 3.4 3.4 8.4 8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	29.4 37.3 23.9 21.2 3.4 8.4 38.2 38.2	29 37 23 21 3. 8.
コールタール S0212 MJ/kg 37.3 3	7.3 37.3 3.9 23.9 1.3 21.2 3.4 3.4 8.4 8.4 8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	37.3 23.9 21.2 3.4 8.4 38.2 38.2	37 23 21 3. 8.
繰回炭 S0213 MJ/kg 23.9	3.9 23.9 1.3 21.2 3.4 3.4 8.4 8.4 8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	23.9 21.2 3.4 8.4 38.2 38.2	23 21 3. 8.
膜型	1.3 21.2 3.4 3.4 3.4 8.4 8.4 8.4 8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	21.2 3.4 8.4 38.2 38.2	21 3. 8.
マークス炉ガス SO221 MJ/m³ 21.3 21.3 21.2 21.4	8.4 3.4 8.4 8.4 8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	3.4 8.4 38.2 38.2	3. 8.
高炉ガス	8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	38.2 38.2	8.
精製用原油	8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	38.2 38.2	
精製用原油	8.1 38.2 9.5 39.5 2.4 22.4	38.2	38
精製用粗残油 \$0312 MJ/1 38.2 38.2 38.2 38.1 38.1 38.1 38.1 38.1 38.1 差電用原油 \$0320 MJ/1 39.6 39.7 39.6 39.5 39.6 38.5 39.3 3 3	8.1 38.2 9.5 39.5 2.4 22.4	38.2	38
精製用組残油 \$0312 MJ/l 38.2 38.2 38.2 38.1 38.1 38.1 38.1 38.1 38.1 差電用原油 \$0320 MJ/l 39.6 39.7 39.6 39.5 39.6 38.5 39.3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	9.5 39.5 2.4 22.4		
腰背質混合物	2.4 22.4		38
腰 青質混合物		39.5	39
NGL・コンデンセート S0330 MJ/I 0.0	0.0	22.4	22
R電用NGLコンデンセート 80332 MJ/l 35.4 35.5 35.5 35.3 34.3 35.0 35.0 3 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 3 5 3 3 4 3 3 5 0 3 5 0 3 3 4 3 3 5 0 3 5 0 3 3 4 3 3 5 0 3 5 0 3 3 4 3 3 5 0 3 5 0 3 5 0 3 3 4 3 5 0		0.0	0.
R電用NGLコンデンセート 80332 MJ/l 35.4 35.5 35.5 35.3 34.3 35.0 35.0 3 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 3 5 3 3 4 3 3 5 0 3 5 0 3 3 4 3 3 5 0 3 5 0 3 3 4 3 3 5 0 3 5 0 3 3 4 3 3 5 0 3 5 0 3 5 0 3 3 4 3 5 0	5.5 32.9	32.9	34
原料油 純ナフサ 改質生成油	5.5 32.9	32.9	34
原料油 改質生成油	5.5 32.9	32.9	34
機構 改質生成油	3.5 33.5	33.5	33
	5.1 35.1	35.1	35
横り	4.6 34.6	34.6	34
大きな	4.6 34.6	34.6	34
燃料油 軽油 (原油由来) ¹⁾	6.7 36.7	36.7	36
Range South So	6.7 36.7	36.7	36
経油 (バイオマス考慮) ²⁾ MJ/l 38.2 38.2 38.0 38.0 37.8 37.8 37.9 3	8.0 37.9	37.9	37
A重油	8.0 37.9	37.9	37
製品 B重油	0.0 39.9	39.9	39
一般用C重油	0.4 40.4	40.4	40
潤滑油 \$0451 MJ/l 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2	0.2 40.3	40.3	40
他 世 世 世 世 五 油 製 他 重 気 が が 大 イ ル コ し も 製 他 重 気 が ガ ス の は し 、 の は し 、 の は の は の は の の は る の る の は る の は の は る は る は る は る る る は る る る る る る る は る る る る る る る る る る る る る	1.2 41.2	41.2	41
Ta コークス \$0455 MJ/kg 35.6 35.6 35.6 35.6 29.9 29.9 2 電気炉ガス \$0456 MJ/m³ 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	0.2 40.2	40.2	40
油 製 電気炉ガス \$0456 MJ/m ³ 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	9.3 39.3	39.3	39
製 電気炉ガス \$0456 MJ/m² 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	9.9 29.9	29.9	29
	8.4 8.4	8.4	8.
品 製油所ガス \$0457 MJ/m³ 44.9 44.9 44.9 44.9 44.9 44.9 44.9 44.9 4	4.9 44.9	44.9	44
	0.7 50.7	50.7	50
輸入天然ガス (LNG) \$0510 MJ/kg 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.	4.5 54.5	54.5	54
天 国産天然ガス \$0520 MJ/m³ 42.6 42.9 42.5 42.9 42.4 42.9 43.6 4	4.6 44.7	44.7	44
然 ガス田・随伴ガス \$0521 MJ/m³ 42.6 42.9 42.5 42.9 42.4 42.9 43.6 4	4.6 44.7	44.7	44
	6.7 16.7	16.7	16
原油溶解ガス \$0523 MJ/m³ 42.6 42.9 42.5 42.9 42.4 42.9 43.6 4	4.6 44.7	44.7	44
ガ都 一般ガス \$0610 MJ/m³ 41.1 41.1 41.1 41.1 44.8 44.8 4	4.8 44.8	44.8	44
	01.9 101.9	101.9	102
木材利用 \$N131 MJ/kg 15.4 15.4 15.4 15.0 19.9 19.8 1	7.7 18.5	18.5	18
	(2) 1(2)	16.3	16
イ バイオエタノール \$N134 MJ/l 23.9 23.9 23.9 23.9 23.9 23.9 23.9 23.9	6.3 16.3	23.9	23
		23.9	23
	3.9 23.9	13.2	13
バイオガス \$N137 MJ/m³ 23.4 23.4 23.4 23.4 23.4 23.4 23.4 2 23.4 2 23.4 2 23.4 2 23.4 2 23.4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.9 23.9 3.9 23.9	23.4	23

¹⁾ レファレンスアプローチで使用。 2) 部門別アプローチで使用。

^{3) 2012}年度迄は 気体は原則全て 0℃, 1気圧(ノハマル状態)、液体は常温、固体は全て「有水有灰」状態での数値を示す。 2013年度以降は 気体・液体は原則全て 25℃, 1 bar (標準環境状態 SATP)、固体は全て「有水・有灰」状態での数値を示す。

エネル	ノギー	原	コード	単位	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	原料员	 첫	\$0110	MJ/kg										
	コー	- クス用原料炭	\$0111	MJ/kg	29.1	29.1	29.1	28.9	28.9	28.9	28.9	28.9	28.9	28.9
		.用原料炭	\$0112	MJ/kg	28.2	28.2	28.2	28.0	28.0	28.0	28.0	28.0	28.3	28.3
石	輸入-		\$0121	MJ/kg										
炭		輸入一般炭	\$0122	MJ/kg	25.7	25.7	25.7	26.0	26.0	26.0	26.0	26.0	26.1	26.1
		1用輸入一般炭	\$0123	MJ/kg	25.3	25.3	25.3	26.0	25.5	25.3	25.1	25.0	24.8	24.5
		一般炭	\$0124	MJ/kg	22.5	22.5	22.5	25.3	25.3	25.3	25.3	25.3	24.2	24.2
	無煙鳥		\$0130	MJ/kg	26.9	26.9	26.9	27.8	27.8	27.8	27.8	27.8	27.8	27.8
	コーク	 ウス	\$0211	MJ/kg	29.4	29.4	29.4	29.2	29.2	29.2	29.2	29.2	29.0	29.0
7	コーバ	レタール	\$0212	MJ/kg	37.3	37.3	37.3	37.3	37.3	37.3	37.3	37.3	37.3	37.3
石炭	練豆炭		\$0213	MJ/kg	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9
製		フス炉ガス	\$0221	MJ/m ³	21.3	21.1	20.7	18.9	18.9	18.9	18.9	18.9	18.4	18.4
品	高炉カ	ガス	\$0222	MJ/m ³	3.4	3.4	3.4	3.2	3.2	3.2	3.2	3.2	3.2	3.2
	転炉カ		\$0225	MJ/m ³	8.4	8.4	8.4	7.5	7.5	7.5	7.5	7.5	7.5	7.5
	精製月	用原油	\$0310	MJ/l										
		!用純原油	\$0311	MJ/l	38.2	38.2	38.1	38.2	38.2	38.2	38.2	38.2	38.2	38.1
		!用粗残油	\$0312	MJ/l	38.2	38.2	38.1	41.3	40.9	40.6	40.8	40.3	40.2	40.1
	発電月		\$0320	MJ/l	39.7	39.4	39.3	39.3	39.4	39.8	40.0	39.5	39.8	40.1
原		質混合物	\$0321	MJ/kg	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4
油		コンデンセート	\$0330	MJ/l	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		!用NGLコンデンセート	\$0331	MJ/l	34.8	36.9	34.8	34.8	34.7	34.7	34.8	34.6	34.5	34.7
		用NGLコンデンセート	\$0332	MJ/l	34.8	36.9	34.8	34.2	34.2	34.2	34.2	34.2	34.2	34.2
		化学用NGLコンデンセート	\$0333	MJ/l	34.8	36.9	34.8	34.6	34.5	34.4	34.7	34.4	34.3	34.3
		紬ナフサ	\$0420	MJ/l	33.5	33.5	33.5	33.3	33.3	33.3	33.3	33.3	33.3	33.3
	原料油	改質生成油	\$0421	MJ/l	35.1	35.1	35.1	33.7	33.7	33.7	33.7	33.7	33.7	33.7
		ガソリン(原油由来)1)	QU.21	MJ/l	34.6	34.6	34.6	33.4	33.4	33.4	33.4	33.4	33.4	33.4
		ガソリン(バイオマス考慮) ²⁾	\$0431	MJ/l	34.5	34.5	34.5	33.3	33.3	33.2	33.2	33.2	33.2	33.2
		ジェット燃料油	\$0432	MJ/l	36.7	36.7	36.7	36.3	36.3	36.2	36.3	36.4	36.4	36.3
		灯油	\$0433	MJ/l	36.7	36.7	36.7	36.5	36.5	36.5	36.5	36.5	36.5	36.5
	燃	軽油(原油由来)1)		MJ/l	38.1	38.0	37.9	38.0	38.0	38.0	38.0	38.0	38.0	38.0
	料	軽油(バイオマス考慮)2)	\$0434	MJ/l	38.1	38.0	37.9	38.0	38.0	38.0	38.0	38.0	38.0	38.0
石油	油	A重油	\$0436	MJ/l	39.9	39.8	39.8	38.9	38.9	38.9	38.9	38.9	38.9	38.9
製		B重油	\$0438	MJ/l	40.4	40.4	40.4	40.4	40.4	40.4	40.4	40.4	40.4	40.4
品		一般用C重油	\$0439	MJ/l	40.4	40.0	40.6	41.2	40.9	41.4	41.0	41.0	41.1	41.0
		発電用C重油	\$0440	MJ/l	41.3	41.2	41.2	41.2	41.4	41.0	41.5	41.6	41.6	41.7
		潤滑油	\$0451	MJ/l	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2
	他	他重質石油製品	\$0452	MJ/kg	39.4	39.0	39.6	40.2	39.9	40.4	40.0	40.0	40.1	40.0
	石	オイルコークス	\$0455	MJ/kg	29.9	29.9	29.9	33.3	33.3	33.3	33.3	33.3	33.3	33.3
	油製	電気炉ガス	\$0456	MJ/m ³	8.4	8.4	8.4	7.5	7.5	7.5	7.5	7.5	7.5	7.5
		製油所ガス	\$0457	MJ/m ³	44.9	44.9	44.9	46.1	46.1	46.1	46.1	46.1	46.1	46.1
		液化石油ガス(LPG)	\$0458	MJ/kg	50.8	50.8	50.8	50.1	50.1	50.1	50.1	50.1	50.1	50.1
	輸入ヲ	F然ガス (LNG)	\$0510	MJ/kg	54.5	54.5	54.5	54.5	54.5	54.5	54.5	54.5	54.7	54.7
天		天然ガス (Eive)	\$0520	MJ/m ³	44.7	44.7	44.8	39.6	39.6	39.6	39.6	39.6	38.4	38.4
然		、田・随伴ガス	\$0520	MJ/m ³	44.7	44.7	44.8	39.6	39.6	39.6	39.6	39.6	38.4	38.4
ガス		ガス	\$0522	MJ/m ³	16.7	16.7	16.7	15.1	15.1	15.1	15.1	15.1	15.1	15.1
^`		<u>、2.7.</u> 3.溶解ガス	\$0523	MJ/m ³	44.7	44.7	44.8	39.6	39.6	39.6	39.6	39.6	38.4	38.4
ガ都	一般カ		\$0610	MJ/m ³	44.8	44.8	44.8	40.8	40.8	40.7	40.7	40.8	40.0	40.0
ス市	簡易プ		\$0620	MJ/m ³	101.1	101.2	101.0	96.0	95.7	95.3	95.3	95.0	94.8	94.9
<u> </u>	市勿力		\$N131	MJ/kg	17.4	17.7	17.9	17.6	17.2	17.0	13.1	12.9	13.6	14.8
バ	廃材和		\$N132	MJ/kg	16.3	16.3	16.3	17.1	17.1	17.1	17.1	17.1	17.1	17.1
イ		プローニーニーニーエタノール	\$N134	MJ/l	23.9	23.9	23.9	23.4	23.4	23.4	23.4	23.4	23.4	23.4
才		ナディーゼル	\$N135	MJ/l	23.9	23.9	23.9	23.4	23.4	23.4	23.4	23.4	23.4	23.4
マス		・/ イー と/・ 直接利用	\$N136	MJ/kg	13.2	13.2	13.2	13.6	13.6	13.6	13.6	13.6	13.6	13.6
^`		<u> </u>	\$N137	MJ/m ³	23.4	23.4	23.4	21.2	21.2	21.2	21.2	21.2	21.2	21.2
		1 ルス スアプローチで使用。	φ1Ν13/	IVIJ/m	4.4	4.4	4.4	41.4	41.4	41.4	21.2	∠1.∠	21.2	41.4

¹⁾ レファレンスアプローチで使用。 2) 部門別アプローチで使用。

^{3) 2012}年度迄は 気体は原則全て 0℃, 1気圧(ノハマル状態)、液体は常温、固体は全て「有水有灰」状態での数値を示す。 2013年度以降は 気体・液体は原則全て 25℃, 1 bar (標準環境状態 SATP)、固体は全て「有水・有灰」状態での数値を示す。

エネル	レギール		コード	単位	2020	2021	2022	2023
	原料员		\$0110	MJ/kg				
		· ·クス用原料炭	\$0111	MJ/kg	28.9	28.9	28.9	28.8
		用原料炭	\$0112	MJ/kg	28.3	28.3	28.3	29.1
石	輸入-		\$0121	MJ/kg				
炭		輸入一般炭	\$0122	MJ/kg	26.1	26.1	26.1	25.9
	-	用輸入一般炭	\$0123	MJ/kg	24.4	24.8	24.7	24.9
	国産ー		\$0124	MJ/kg	24.2	24.2	24.2	24.2
	無煙炭		\$0130	MJ/kg	27.8	27.8	27.8	26.6
	コーク		\$0211	MJ/kg	29.0	29.0	29.0	29.4
		レタール	\$0212	MJ/kg	37.3	37.3	37.3	37.3
石炭	練豆炭		\$0213	MJ/kg	23.9	23.9	23.9	23.9
製		<u>、</u> 7ス炉ガス	\$0221	MJ/m ³	18.4	18.4	18.4	18.2
品	高炉オ		\$0222	MJ/m ³	3.2	3.2	3.2	3.2
	転炉ス		\$0225	MJ/m ³	7.5	7.5	7.5	7.5
	精製用		\$0310	MJ/l	7.5	7.5	7.5	7.5
		用純原油	\$0311	MJ/l	38.1	38.1	38.1	38.0
		用粗残油	\$0312	MJ/l	39.9	39.8	39.0	39.0
	発電月		\$0320	MJ/l	40.4	40.5	39.3	39.1
原		T混合物	\$0321	MJ/kg	22.4	22.4	22.4	22.4
油		コンデンセート	\$0330	MJ/l	0.0	0.0	0.0	0.0
		用NGLコンデンセート	\$0331	MJ/l	34.6	34.6	35.9	35.3
		:用NGLコンデンセート	\$0332	MJ/l	34.2	34.5	34.5	34.5
		化学用NGLコンデンセート	\$0333	MJ/l	34.3	34.5	34.5	34.5
	7H 1Ш	純ナフサ	\$0420	MJ/l	33.3	33.3	33.3	33.3
	原料油	改質生成油	\$0420	MJ/l	33.7	33.7	33.7	33.7
		成員生成価 ガソリン(原油由来) ¹⁾	\$0421	MJ/l	33.4	33.4	33.4	33.4
			\$0431	MJ/l	33.1	33.4	33.4	33.1
		ガソリン(バイオマス考慮) ²⁾ ジェット燃料油	\$0432	MJ/l			36.5	36.4
		灯油	\$0432	MJ/l	36.3 36.5	36.3	36.5	36.6
	燃	軽油(原油由来)1)	\$0433	MJ/l	38.0	38.0	38.0	37.9
	料	軽油(ぶ石田米) 軽油(バイオマス考慮) ²⁾	\$0434	MJ/l	38.0	38.0	38.0	37.9
石	油	軽価(ハイオマス考慮)・ A重油	\$0436	MJ/l	38.9	38.9	38.9	38.8
油製		B重油	\$0438	MJ/l	40.4	40.4	40.4	40.4
品		一般用C重油	\$0438	MJ/l	41.1	41.0	41.0	41.0
					41.6	41.5		
		発電用C重油	\$0440	MJ/l			41.5	41.5
	他	潤滑油 他重質石油製品	\$0451 \$0452	MJ/l MI/kg	40.2	40.2	40.2	40.2
	石		\$0432 \$0455	MJ/kg MJ/kg	33.3	34.1		34.1
	油	オイルコークス 電気炉ガス		MJ/m ³			34.1	
	製品		\$0456 \$0457		7.5	7.5	7.5	7.5
		製油所ガス 液化石油ガス (LPG)		MJ/m ³	46.1 50.1	46.1	46.1	42.4 50.1
	献 スコ		\$0458	MJ/kg	50.1	50.1	50.1	
天		天然ガス(LNG)	\$0510	MJ/kg	54.7	54.7	54.7	54.7
然		天然ガス 四・随伴ガラ	\$0520 \$0521	MJ/m ³	38.4	38.4	38.4	38.4
ガ		田・随伴ガス	\$0521	MJ/m ³	38.4	38.4	38.4	38.4
ス		ガス	\$0522	MJ/m ³	15.1	15.1	15.1	15.1
, y Q , Laire		溶解ガス i z	\$0523	MJ/m ³	38.4	38.4	38.4	38.4
ガ都ス市	一般力		\$0610	MJ/m ³	39.9	40.0	40.4	40.0
> 111	簡易オ		\$0620	MJ/m³	94.3	94.1	94.2	94.3
	木材和		\$N131	MJ/kg	14.5	14.8	14.1	14.4
バイ	廃材和		\$N132	MJ/kg	17.1	17.1	17.1	18.4
オ	_	ナエタノール	\$N134	MJ/l	23.4	23.4	23.4	23.4
マ		ナディーゼル	\$N135	MJ/l	23.4	35.6	35.6	35.6
ス		直接利用 おおっとして	\$N136	MJ/kg	13.6	13.6	13.6	13.5
1) 1, 7	バイス	アプローチでは田	\$N137	MJ/m ³	21.2	21.2	21.2	21.2

- 1) レファレンスアプローチで使用。 2) 部門別アプローチで使用。
- 3) 2012年度迄は 気体は原則全て 0℃, 1気圧(ノハマル状態)、液体は常温、固体は全て「有水有灰」状態での数値を示す。 2013年度以降は 気体・液体は原則全て 25℃, 1 bar (標準環境状態 SATP)、固体は全て「有水・有灰」状態での数値を示す。

表 13 燃料種区分別の活動量(「1.A.3. 運輸」におけるエネルギー消費量)の推移

エネルギー源		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
液体燃料	PJ	2,982	3,156	3,254	3,309	3,443	3,581	3,680	3,706	3,680	3,741
固体燃料	PJ	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.04
気体燃料	PJ	0.003	0.01	0.02	0.04	0.07	0.14	0.23	0.34	1	1
その他化石燃料	PJ	NO									
泥炭	PJ	NO									
バイオマス	PJ	107	116	124	129	136	153	150	160	160	157
合計	PJ	2,983	3,156	3,254	3,309	3,444	3,581	3,680	3,707	3,681	3,742

エネルギー源		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
液体燃料	PJ	1,909	1,839	1,824	1,720	1,657	1,544	1,455	1,316	1,152	1,090
固体燃料	PJ	2,034	2,018	2,068	2,100	2,104	2,051	2,079	2,146	1,984	1,861
気体燃料	PJ	408	410	445	474	530	599	633	655	611	592
その他化石燃料	PJ	110	109	117	138	151	170	177	192	191	194
泥炭	PJ	ΙE									
バイオマス	PJ	240	213	226	245	255	273	282	302	294	279
合計	РJ	4,700	4,591	4,680	4,678	4,698	4,637	4,626	4,611	4,232	4,015

エネルギー源		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
液体燃料	PJ	3,286	3,215	3,228	3,135	3,065	3,049	3,024	3,000	2,964	2,904
固体燃料	PJ	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
気体燃料	PJ	5	5	4	4	4	3	3	2	2	2
その他化石燃料	PJ	NO									
泥炭	PJ	9	9	9	10.0	12	15	18	19	20	19
バイオマス	PJ	137	134	142	149	149	148	149	152	154	154
合計	PJ	3,299	3,228	3,241	3,149	3,081	3,067	3,045	3,022	2,986	2,924

エネルギー源		2020	2021	2022	2023
液体燃料	PJ	2,581	2,601	2,698	2,686
固体燃料	PJ	0.02	0.01	0.02	0.02
気体燃料	PJ	1	1	1	1
その他化石燃料	PJ	NO	NO	NO	NO
泥炭	PJ	20	20	20	20
バイオマス	PJ	77	100	142	149
合計	PJ	2,602	2,622	2,718	2,707

(出典) エネルギー消費量:総合エネルギー統計(資源エネルギー庁) ※エネルギー消費量の区分は、CRTにおける燃料種区分

表 14 カテゴリー区分別の活動量(「1.A.3. 運輸」におけるエネルギー消費量)の推移

部門		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
1.A.3.a. 航空	PJ	107	116	124	129	136	153	150	160	160	157
1.A.3.b. 自動車	PJ	2,669	2,825	2,918	2,970	3,094	3,208	3,298	3,299	3,299	3,365
i. 乗用車	PJ	1,225	1,328	1,417	1,465	1,536	1,626	1,709	1,753	1,787	1,861
ii. 軽貨物車	PJ	IE,NO									
iii.トラック・バス	PJ	1,423	1,478	1,482	1,489	1,543	1,568	1,575	1,534	1,500	1,492
iv. 二輪車	PJ	20	19	19	16	16	14	14	13	12	12
v.その他	PJ	IE,NO									
1.A.3.c. 鉄道	PJ	14	13	13	12	12	12	12	11	11	11
1.A.3.d. 船舶	PJ	194	202	199	197	201	207	220	236	210	209
合計	PJ	2,983	3,156	3,254	3,309	3,444	3,581	3,680	3,707	3,681	3,742

部門		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
1.A.3.a. 航空	PJ	159	160	163	165	159	161	166	162	153	146
1.A.3.b. 自動車	PJ	3,355	3,423	3,366	3,312	3,247	3,164	3,123	3,094	3,003	2,977
i. 乗用車	PJ	1,867	1,939	1,932	1,898	1,830	1,759	1,710	1,704	1,651	1,684
ii. 軽貨物車	PJ	IE,NO									
iii.トラック・バス	PJ	1,475	1,471	1,422	1,401	1,404	1,392	1,399	1,377	1,339	1,279
iv. 二輪車	PJ	12	12	12	13	13	13	13	13	13	13
v.その他	PJ	IE,NO									
1.A.3.c. 鉄道	РJ	10	10	10	9	9	9	9	9	9	9
1.A.3.d. 船舶	РJ	212	206	208	201	184	184	180	172	160	148
合計	PJ	3,736	3,798	3,746	3,687	3,599	3,518	3,478	3,437	3,325	3,278

部門		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
1.A.3.a. 航空	PJ	137	134	142	149	149	148	149	152	154	154
1.A.3.b. 自動車	PJ	3,002	2,939	2,940	2,842	2,774	2,766	2,742	2,717	2,680	2,621
i. 乗用車	PJ	1,695	1,676	1,681	1,595	1,527	1,526	1,523	1,512	1,487	1,447
ii. 軽貨物車	PJ	IE,NO									
iii.トラック・バス	PJ	1,295	1,250	1,246	1,235	1,234	1,227	1,206	1,194	1,182	1,163
iv. 二輪車	PJ	13	13	13	12	12	13	13	12	12	11
v.その他	PJ	IE,NO									
1.A.3.c. 鉄道	PJ	8	8	8	8	8	8	7	8	7	7
1.A.3.d. 船舶	PJ	152	147	152	151	150	146	146	144	145	143
合計	PJ	3,299	3,228	3,241	3,149	3,081	3,067	3,045	3,022	2,986	2,924

部門		2020	2021	2022	2023
1.A.3.a. 航空	РJ	77	100	142	149
1.A.3.b. 自動車	PJ	2,382	2,373	2,424	2,414
i. 乗用車	PJ	1,285	1,248	1,303	1,287
ii. 軽貨物車	PJ	IE,NO	IE,NO	IE,NO	IE,NO
iii.トラック・バス	PJ	1,086	1,114	1,110	1,115
iv. 二輪車	РJ	11	11	11	11
v.その他	PJ	IE,NO	IE,NO	IE,NO	IE,NO
1.A.3.c. 鉄道	PJ	7	7	7	7
1.A.3.d. 船舶	РJ	137	143	145	137
合計	PJ	2,602	2,622	2,718	2,707

注:「1.A.3.b.ii 軽貨物車」及び「1.A.3.b.v その他」は、「1.A.3.b.iii バス・トラック」に含む。 (出典) エネルギー消費量:総合エネルギー統計(資源エネルギー庁) ※エネルギー消費量の区分は、CRT におけるカテゴリー区分

3. 算定方法の時系列変更・改善経緯

2010 年提出 2014 年提出 2015 年提出 天然ガス自動車及び蒸気機関 車の燃料消費量が「総合エネ ルギー統計 において 1990年 排出 • 吸収量 度まで遡って推計されるよう | 潤滑油の燃焼に伴う CO₂ 排出 になったため、「1.A.3.b. 自動 量を新たに計上。 算定式 車」における気体燃料及び 「1.A.3.c 鉄道」における固体 燃料の排出量を新たに計上。 2013 年度改訂炭素排出係数を 排出係数 LPG の炭素排出係数を改訂。 適用。 ・2013 年度改訂版総合エネ ルギー統計を適用。 活動量 LPG の発熱量を改訂。 · 2013 年度改訂標準発熱量 を適用。

表 15 初期割当量報告書(2006年提出)以降の算定方法等の改訂経緯概要

	2018 年提出	2020 年提出	2025 年提出
排出・吸収量 算定式	_	_	-
排出係数	バイオマス分を控除したガソ リン及び軽油の排出係数を適 用。	2018 年度改訂炭素排出係数 を適用。	2023 年度改訂炭素排出係数 を適用。
活動量	_	2018 年度改訂標準発熱量を 適用。	2023 年度改訂標準発熱量を 適用。

(1) 初期割当量報告書における算定方法

1) 排出・吸収量算定式

Good Practice Guidance (2000) に示されたデシジョンツリー (page 2.10、Fig. 2.1) に従い、Tier 1 部門別アプローチ (Sectoral Approach) 法を用い、各エネルギー源の消費量に炭素排出係数及び酸化率を乗じて CO_2 排出量の算定を行っていた(現行の算定方法と同様。)。

なお、潤滑油の燃焼に伴う CO2排出量は計上していなかった。

$$E = \sum_{ij} \left[(A_{ij} - N_{ij}) \times GCV_i \times 10^{-3} \times EF_i \times OF_i \right] \times 44/12$$

E : 化石燃料の燃焼に伴う CO_2 排出量 $[t-CO_2]$ A : エネルギー消費量(固有単位 $[t, kl, 10^3 m^3]$) N : 非エネルギー利用量(固有単位 $[t, kl, 10^3 m^3]$)

 GCV
 : 高位発熱量 [MJ/固有単位]

 EF
 : 炭素排出係数 [t-C/TJ]

OF : 酸化率

i : エネルギー源

j : 部門

2) 排出係数

毎年度炭素排出係数の算定を行うエネルギー源(2.2.1(1)2)④ 参照)を除き、現行イン

ベントリと同様。

3) 活動量

活動量の出典として、「旧総合エネルギー統計(資源エネルギー庁)」を使用していた(「総合エネルギー統計」は2015年度に改訂。)。

(2) 2010 年提出インベントリにおける算定方法

1) 排出·吸収量算定式

初期割当量報告書における算定式と同様。

2) 排出係数

炭素排出係数については、「二酸化炭素排出量調査報告書」に示された排出係数 (0.6833 t-C/10⁷ kcal ≒ 16.3 t-C/TJ) が継続して使用されていたが、標準発熱量の改訂に伴い、炭素排出係数についても変更が可能である旨の指摘があったため、以下の算定式により LPG の炭素排出係数を算定し、2005 年度以降の排出量に適用した。

- 1. プロパン・ブタンの 1t 当たり CO₂排出量
- $\mathcal{J}\Box\mathcal{N}\mathcal{V}: C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O; 3 \times 44 (CO_2) / 44 (C_3H_8) = 3.0 \text{ t-CO}_2/\text{t-}\mathcal{J}\Box\mathcal{N}\mathcal{V}$
- ・ ブタン: $C_4H_{10} + 6.5O_2 \rightarrow 4CO_2 + 5H_2O$; 4×44 $(CO_2)/58$ $(C_4H_{10}) = 3.0$ t- CO_2 /t-ブタン (プロパン及びブタンが主成分である LPG についても、3.0 t- CO_2 /t とみなせる。)

2. LPG の炭素排出係数

 $3.0 \text{ (t-CO}_2/\text{t)} / 50.8 \text{ (MJ/kg)} \times 12/44 \times 10^3 = 16.1 \text{ t-C/TJ}$

なお、LPG の炭素排出係数の改訂に伴い、LPG の炭素排出係数を適用している簡易ガス(簡易ガス事業者の供給するガス。大部分が LPG の直接供給)の排出係数も同様に改訂された。

 $(16.3 \text{ t-C/TJ} \Rightarrow 16.1 \text{ t-C/TJ})_{\circ}$

また、炭素収支を基に毎年度炭素排出係数を算定している都市ガス(一般ガス)の排出係数も、都市ガスの原料である LPG の炭素排出係数の改訂により僅かながら変化した。

3)活動量

2005 年度のエネルギー源別標準発熱量の改訂において、LPG は、純粋性状でのプロパン・ブタンの理論総発熱量と、2005 年度におけるプロパン・ブタンの輸入重量比(7:3)を用いた推計により、2000 年度値の「50.2 MJ/kg」から「50.8 MJ/kg」に改訂された。

その他は初期割当量報告書における活動量と同様。

(3) 2014 年提出インベントリにおける算定方法

1) 排出・吸収量算定式

これまで、「1.A.3.b. 自動車」における気体燃料(天然ガス自動車)、及び「1.A.3.c 鉄道」における固体燃料(蒸気機関車)からの排出量については、「総合エネルギー統計」に燃料消費量が計

上されておらず、「1.A.4. その他部門」で計上している CO_2 排出量の内数であるとして、「IE」として報告していた。

しかし、天然ガス自動車及び蒸気機関車の燃料消費量が「総合エネルギー統計」において 1990 年度まで遡って推計されるようになったため、2014 年提出インベントリから、「1.A.3.b. 自動車」 における気体燃料及び「1.A.3.c 鉄道」における固体燃料の排出量を計上することとした。

2) 排出係数

2010年提出インベントリにおける排出係数と同様。

3)活動量

2010年提出インベントリにおける活動量と同様。

(4) 2015 年提出インベントリにおける算定方法

1) 排出 · 吸収量算定式

潤滑油の燃焼に伴う CO₂排出量を新たに計上した。

2) 排出係数

2013~2014 年度において、経済産業省・環境省により実施された各種エネルギー源の発熱量・ 炭素排出係数の実測等に関する調査を基に、「エネルギー源別標準発熱量・炭素排出係数の改訂 案について -2013 年度改訂標準発熱量・炭素排出係数表-」が取りまとめられ、改善案が提示さ れた。そこで、2013 年度の排出量より、当該改訂炭素排出係数を適用した。

3)活動量

従来の「総合エネルギー統計」においては、電力需給における異常値の発生や、第三次産業等における調整消費項目(残差計上)の存在といった問題点があった。そこで、「総合エネルギー統計」の一次統計として使用されている「石油等消費動態統計(資源エネルギー庁)」の対象外業種及び中小事業所、並びに非製造業、商業・サービス業におけるエネルギー消費量を対象とした「エネルギー消費統計(資源エネルギー庁)」の使用等による「総合エネルギー統計」の抜本的な改訂が実施された。そこで 2015 年提出インベントリより、「1.A. 燃料の燃焼」の活動量として「2013 年度改訂版総合エネルギー統計」を適用した。

また、炭素排出係数と同様に、「エネルギー源別標準発熱量・炭素排出係数の改訂案について-2013 年度改訂標準発熱量・炭素排出係数表-」における改善案に基づき、2013 年度の排出量より、当該改訂発熱量を適用した。

(5) 2018 年提出インベントリにおける算定方法

1) 排出・吸収量算定式

活動量の出典である「総合エネルギー統計」が改訂され、新たに「二輪車」部門が自動車部門から分割・追加されたため、二輪車部門からの CO_2 排出量を「1.A.3.iv 二輪車」に計上した(現行の方法と同様。)。

2) 排出係数

ガソリン及び軽油由来の CO₂ 排出量からバイオマス由来分を控除するため、ガソリン及び軽油の排出係数について、バイオマス分を控除した値に変更した。

3) 活動量

2015年提出インベントリと同様。ただし、活動量の出典である「総合エネルギー統計」が改訂されたため、各部門におけるエネルギー消費量が変更となった。

(6) 2020 年提出インベントリにおける算定方法

1) 排出・吸収量算定式

2018年提出インベントリと同様(現行の算定式と同様。)。

2) 排出係数

2017~2019 年度にかけて、経済産業省・環境省により炭素排出係数の改訂に関する調査が実施され、改訂が必要とされた燃料種について、炭素排出係数の2018 年度値が設定された。そこで、2018 年度の排出量より、当該改訂炭素排出係数を適用した。

3)活動量

2017~2019 年度にかけて、経済産業省・環境省により標準発熱量の改訂に関する調査が実施され、改訂が必要とされた燃料種について、標準・実質発熱量の2018 年度値が設定された。そこで、2018 年度の排出量より、当該改訂発熱量を適用した。

(7) 2025 年提出インベントリにおける算定方法

1) 排出・吸収量算定式

2018年提出インベントリと同様(現行の算定式と同様。)。

2) 排出係数

2022 年度から 2024 年度にかけて、経済産業省・環境省により炭素排出係数の改訂に関する調査が実施され、改訂が必要とされた燃料種について、標準・実質炭素排出係数の 2023 年度値が設定された。そこで、2023 年度の排出量より、当該改訂炭素排出係数を適用した(現行の排出係数と同様。)。

3) 活動量

2022 年度から 2024 年度にかけて、経済産業省・環境省により標準発熱量の改訂に関する調査が実施され、改訂が必要とされた燃料種について、標準・実質発熱量の 2023 年度値が設定された。そこで、2023 年度の排出量より、当該改訂発熱量を適用した(現行の活動量と同様。)。