1.A.2 製造業及び建設業(Manufacturing Industries and Construction) (CH₄, N₂O)

1. 排出・吸収源の概要

1.1 排出・吸収源の対象及び温室効果ガス排出メカニズム

当該排出源では、「1.A.2.a 鉄鋼業」、「1.A.2.b 非鉄金属製造業」、「1.A.2.c 化学工業」、「1.A.2.d パルプ・紙・紙加工品製造業、印刷・同関連業」、「1.A.2.e 食料飲料製造業」、「1.A.2.f 窯業・土石製品製造業」、「1.A.2.g その他(鉱業他、建設業、他製造業等)」の各製造業及び鉱業・建設業部門の固定発生源におけるエネルギー消費に伴う CH_4 、 N_2O 排出を扱う。また、建設業における移動発生源である特殊自動車等におけるエネルギー消費に伴う CH_4 、 CH_4 CH_4 C

温室効果ガス排出メカニズムについては、「1.A.1. エネルギー産業」と同様である。「1.A.1. エネルギー産業」の「1.1 排出・吸収源の対象及び温室効果ガス排出メカニズム(p.1)」を参照のこと。

1.2 排出・吸収トレンド及びその要因

「1.A.2. 製造業及び建設業」からの CH4 排出量は、1990 年度以降 1996 年度までほぼ横ばい、1997 年度以降は減少傾向であった。2000 年度以降は「1.A.2.a. 鉄鋼業」における石炭消費量の増加、「1.A.2.c. 化学工業」における液化石油ガス (LPG) 及び天然ガス消費量の増加により排出量が増加した。2008 年度、2009 年度は「1.A.2.a 鉄鋼業」における石炭消費量の減少により排出量が減少した。2010 年度は「1.A.2.a. 鉄鋼業」における石炭消費量の増加により排出量は増加したものの、2011 年度は消費量が再び減少に転じて排出量が減少し、2012 年度以降の排出量は 2018 年度まで増加傾向であった。2019~2020 年度以降は減少し、2021 年度は主に「1.A.2.a 鉄鋼業」における石炭消費量の増加により排出量が増加したが、2022 年度以降は 2020 年度とほぼ同程度の排出量となった。

「1.A.2. 製造業及び建設業」からの N₂O 排出量は、1990 年度以降 1997 年度まで増加傾向であったが、1998 年度以降 2007 年度までほぼ横ばいで推移し、2008 年度以降は減少傾向となっている。 1990~1997 年度では、「1.A.2.f 窯業・土石製品製造業」及び「1.A.2.d パルプ・紙」における石炭消費量の増加により排出量が増加した。 1998 年度から 2007 年度の排出量は、「1.A.2.a 鉄鋼業」、「1.A.2.d パルプ・紙」、「1.A.2.e 食品加工・飲料」、「1.A.2.f 窯業土石製品製造業」の石炭消費量が増加傾向、「1.A.2.b. 非鉄金属製造業」、「1.A.2.c. 化学工業」、「1.A.2.g. その他(建設業等)」の石炭消費量が減少傾向となっており、当該排出源全体ではほぼ横ばいの推移であった。 2008 年度以降は、「1.A.2.a. 鉄鋼業」及び「1.A.2.f. 窯業・土石製品製造業」における石炭消費量の減少により排出量が減少している。

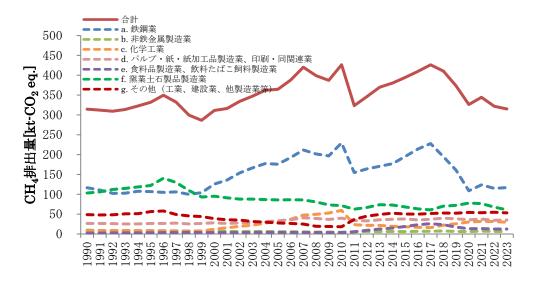


図 1 「1.A.2. 製造業及び建設業」からの CH4 排出量の推移

図 2 「1.A.2. 製造業及び建設業」からの N₂O 排出量の推移

2. 排出 · 吸収量算定方法

2.1 排出·吸収量算定式

(1) 固定発生源(工場、施設等)

「1.A.2. 製造業及び建設業」の固定発生源については、燃料種別、部門別、炉種別の活動量(エネルギー消費量)が利用可能であり、また、我が国独自の排出係数が炉種別に設定可能であることから、2006 年 IPCC ガイドラインのデシジョンツリー に従い、Tier 3 法を用いて排出量を算定している。排出量の算定式を以下に示す。

燃料種別、炉種別の排出係数に、燃料種別、炉種別、部門別の活動量を乗じて排出量を算定している。

$$E_k = \sum_{ij} (EF_{ij} \times A_{ijk})$$

 E_k : 部門 k における化石燃料の燃焼に伴う固定発生源からの CH_4 、 N_2O 排出量

[kg-CH₄, kg-N₂O]

 EF_{ij} : 燃料種i、炉種j における排出係数 [kg-CH4/TJ, kg-N2O/TJ] A_{ijk} : 燃料種i、炉種j、部門k におけるエネルギー消費量 [TJ]

i :燃料種 j :炉種 k :部門

(2)移動発生源(特殊自動車等)

「1.A.2.g 建設業」の移動発生源(特殊自動車等)については、2006 年 IPCC ガイドラインのデシジョンツリー²に従い、Tier 1 法で算定している。排出量の算定式を以下に示す。

燃料種別、特殊自動車等別の排出係数に、燃料種別、特殊自動車等別の活動量を乗じて排出量を 算定している。

$$E = \sum_{ij} \left(EF_{ij} \times A_{ij} \right)$$

E: 化石燃料の燃焼に伴う移動発生源からの CH_4 、 N_2O 排出量 $[kg-CH_4, kg-N_2O]$

 EF_{ij} : 燃料種 i、特殊自動車等 j における排出係数 [kg-CH₄/TJ, kg-N₂O/TJ]

 A_{ij} : 燃料種 i、特殊自動車等 j におけるエネルギー消費量 [TJ]

i :燃料種

i : 特殊自動車等種

2.2 排出係数

(1)固定発生源(工場、施設等)

「1.A.2. 製造業及び建設業」の固定発生源については、「1.A.1. エネルギー産業」で設定した燃料種、炉種別 CH_4 及び N_2O 排出係数を使用している。固定発生源(工場、施設等)の排出係数については、「1.A.1. エネルギー産業」と同様である。「1.A.1. エネルギー産業」の「2.2 排出係数 $(pp.3\sim42)$ 」を参照のこと。

¹ IPCC, "2006 IPCC Guidelines for National Greenhouse Gas Inventories", Vol. 2, Chapter 1, p. 1.9, Fig. 1.2

² IPCC, "2006 IPCC Guidelines for National Greenhouse Gas Inventories", Vol. 2, Chapter 3, p. 3.34, Fig. 3.3.1

(2) 移動発生源(特殊自動車等)

作業用船舶での A 重油の消費に係る排出係数については 2006 年 IPCC ガイドラインに記載の船舶のデフォルト値(Vol.2。page 3.50、Table 3.5.3)に 0.95(Vol.2、page 1.16)を乗じて高位発熱量ベースに換算し用いた。また、ガソリン、軽油、及び船舶用途以外の A 重油については、欧州環境機関(2016)の Table 3-1 の「1.A.2.g.vii」の値を高位発熱量ベースに換算し用いた。

表 1 製造業及び建設業 (1.A.2) における特殊自動車等からの CH4及び N2O 排出係数

燃料種	単位	CH4排出係数 [kg-CH4/TJ]	N ₂ O 排出係数 [kg-N ₂ O/TJ]
ガソリン	g/t	665	59
軽油(船舶用以外 A 重 油を含む)	g/t	83	135
船舶用 A 重油	Kg/TJ(NCV)	7	2

(出典) 欧州環境機関 (2016)、Non-road mobile sources and machinery, Table 3-1 2006 年 IPCC ガイドライン Vol.2, Table 3.5.3

なお、IPCC ガイドラインのデフォルト値は低位発熱量で記載されているため、以下の式で高位発熱量に換算した値を表記している。

NCV (低位発熱量 [TJ]) = GCV (高位発熱量 [TJ]) × 0.95

また、EEA のデフォルト値は単位重量当たりで記載されているため、以下の式で単位発熱量当たりに換算した値を表記している。

 $EF[kg/TJ] = EF[g/t] \times 密度[t/kl] / 単位発熱量[TJ/千kl]$

2.3 活動量

(1)固定発生源(工場、施設等)

「1.A.1. エネルギー産業」と同様、「総合エネルギー統計(資源エネルギー庁)」の各燃料種の部門別(エネルギー転換部門、産業部門、業務他部門)の燃料消費量を「大気汚染物質排出量総合調査(環境省)」等で推計した炉種別の燃料消費量割合で炉種別に按分することにより、部門別燃料種別炉種別の活動量を算定している。固定発生源(工場、施設等)の活動量については、「1.A.1. エネルギー産業」と同様である。「1.A.1. エネルギー産業」の「2.3 活動量(pp. 43~45)」を参照のこと。

ただし、鉄鋼業におけるコークスの消費については、「大気汚染物質排出量総合調査」で把握された消費量のトレンドが極めて不安定なため、「総合エネルギー統計」の鉄鋼業における鉄鋼製品別の燃料消費量から下表のとおり炉種別の活動量を把握している。

表 2 鉄鋼業のコークスの炉種別活動量の把握方法

炉種	活動量					
金属精錬用焼結炉	総合エネルギー統計における鉄鋼業の最終エネ ルギー消費の「焼結鉱」のコークス消費量					
ペレット焼成炉(鉄鋼用)	同「ペレット」のコークス消費量					
その他の工業炉(主として金	同「鍛鋼品」「鋳鋼品」「圧延・鋼管」「他鉄鋼製					
属溶解炉)	品」及び「他鉄鋼製品」のコークス消費量					

(2) 移動発生源(特殊自動車等)

「1.A.2.g 建設業」の移動発生源(特殊自動車等)については、「平成26年度産業部門のうち非製造業における温室効果ガス排出実態調査(環境省)」の調査結果に基づき、「総合エネルギー統計」の建設業におけるA重油と軽油の燃料消費量を全て移動発生源の活動量とみなしている。

表 3 燃料種区分別の活動量(「1.A.2. 製造業及び建設業」におけるエネルギー消費量)の推移

		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
液体燃料	PJ	1,960	1,945	1,950	1,975	2,049	2,114	2,094	2,035	1,941	1,954
固体燃料	PJ	2,130	2,098	2,029	2,015	2,034	2,054	2,093	2,082	1,889	1,912
気体燃料	PJ	227	252	268	289	318	344	365	365	359	385
バイオマス	PJ	202	204	199	190	193	202	203	210	194	202
		2000	2001	2002	2002	2004	2005	2006	2007	2000	2000
		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
液体燃料	PJ	1,909	1,839	1,824	1,720	1,657	1,544	1,455	1,316	1,152	1,090
固体燃料	PJ	2,034	2,018	2,068	2,100	2,104	2,051	2,079	2,146	1,984	1,861
気体燃料	PJ	408	410	445	474	530	599	633	655	611	592
バイオマス	PJ	208	191	202	208	216	232	238	255	237	220
		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
液体燃料	PJ	1,050	1,099	1,043	1,020	963	890	837	817	822	765
固体燃料	PJ	2,043	1,990	2,031	2,087	2,051	2,000	1,887	1,863	1,828	1,802

	液体燃料	PJ	1,050	1,099	1,043	1,020	963	890	837	817	822	765
	固体燃料	PJ	2,043	1,990	2,031	2,087	2,051	2,000	1,887	1,863	1,828	1,802
	気体燃料	PJ	629	654	648	611	594	595	603	601	630	601
	バイオマス	PJ	238	229	223	242	230	230	203	209	215	209
1							1					
			2020	2021	2022	2023						

		2020	2021	2022	2023
液体燃料	PJ	738	785	762	732
固体燃料	PJ	1,560	1,693	1,517	1,464
気体燃料	PJ	578	598	585	580
バイオマス	PJ	184	201	193	198

(出典) エネルギー消費量:総合エネルギー統計(資源エネルギー庁) ※エネルギー消費量の区分は、共通報告様式(CRT)における燃料種区分

表 4 カテゴリー区分別の活動量(「1.A.2. 製造業及び建設業」におけるエネルギー消費量)の推移

		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
1.A.2.a 鉄鋼業	PJ	1,629	1,586	1,518	1,517	1,552	1,573	1,598	1,621	1,538	1,582
1.A.2.b 非鉄金属製造 業	РJ	110	108	108	105	102	99	91	94	92	91
1.A.2.c 化学工業	РJ	843	860	866	878	925	952	980	963	841	857
1.A.2.d パルプ・紙・紙 加 工 品 製 造 業、印刷・同関 連業	PJ	557	566	562	564	583	617	619	623	598	612
1.A.2.e 食料飲料製造 業	РJ	116	123	131	139	143	156	154	161	173	181
1.A.2.f 窯業・土石製 品製造業	РJ	543	550	554	561	570	576	573	560	497	490
1.A.2.g その他(鉱業 他、建設業、他 製造業等)	РЈ	721	705	707	706	720	741	741	670	643	639
		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
		_000									1,497
1.A.2.a	PJ	1,662	1,631	1,696	1,715	1,726	1,699	1,724	1,773	1,601	1,49/
1.A.2.a 1.A.2.b	PJ PJ	1,662 87	1,631 88	1,696 89	1,715 88	1,726 87	1,699 81	1,724 82	1,773 73	1,601 69	57
					88		_			69	
1.A.2.b	PJ	87	88	89		87	81	82	73		57
1.A.2.b 1.A.2.c	PJ PJ	87 908	88 880	89 874	88 846	87 857	81 848	82 839	73 845	69 775	57 766
1.A.2.b 1.A.2.c 1.A.2.d	PJ PJ PJ PJ	87 908 628 180 482	88 880 600 187 467	89 874 604 195 465	88 846 603 190 462	87 857 605 199 437	81 848 602 197 424	82 839 579 196 427	73 845 568 182 412	69 775 524 168 390	57 766 483
1.A.2.b 1.A.2.c 1.A.2.d 1.A.2.e	PJ PJ PJ PJ	87 908 628 180	88 880 600 187	89 874 604 195	88 846 603 190	87 857 605 199	81 848 602 197	82 839 579 196	73 845 568 182	69 775 524 168	57 766 483 165
1.A.2.b 1.A.2.c 1.A.2.d 1.A.2.e 1.A.2.f	PJ PJ PJ PJ	87 908 628 180 482	88 880 600 187 467	89 874 604 195 465	88 846 603 190 462	87 857 605 199 437	81 848 602 197 424	82 839 579 196 427	73 845 568 182 412	69 775 524 168 390	57 766 483 165 345
1.A.2.b 1.A.2.c 1.A.2.d 1.A.2.e 1.A.2.f	PJ PJ PJ PJ	87 908 628 180 482 612	88 880 600 187 467 606	89 874 604 195 465 616	88 846 603 190 462 599	87 857 605 199 437 595	81 848 602 197 424 574	82 839 579 196 427 558	73 845 568 182 412 520	69 775 524 168 390 458	57 766 483 165 345 448
1.A.2.b 1.A.2.c 1.A.2.d 1.A.2.e 1.A.2.f 1.A.2.g	PJ PJ PJ PJ PJ PJ	87 908 628 180 482 612	88 880 600 187 467 606	89 874 604 195 465 616	88 846 603 190 462 599	87 857 605 199 437 595	81 848 602 197 424 574	82 839 579 196 427 558	73 845 568 182 412 520	69 775 524 168 390 458	57 766 483 165 345 448
1.A.2.b 1.A.2.c 1.A.2.d 1.A.2.e 1.A.2.f 1.A.2.g	PJ PJ PJ PJ PJ PJ	87 908 628 180 482 612 2010 1,689 56	88 880 600 187 467 606 2011 1,649 54 767	89 874 604 195 465 616 2012 1,675	88 846 603 190 462 599 2013 1,708 53 753	87 857 605 199 437 595 2014 1,675	81 848 602 197 424 574 2015 1,607	82 839 579 196 427 558 2016 1,544	73 845 568 182 412 520 2017 1,511	69 775 524 168 390 458 2018 1,489	57 766 483 165 345 448 2019 1,463
1.A.2.b 1.A.2.c 1.A.2.d 1.A.2.e 1.A.2.f 1.A.2.g	PJ PJ PJ PJ PJ PJ PJ PJ	87 908 628 180 482 612 2010 1,689 56 777 490	88 880 600 187 467 606 2011 1,649 54 767 490	89 874 604 195 465 616 2012 1,675 57 737 486	88 846 603 190 462 599 2013 1,708 53 753 499	87 857 605 199 437 595 2014 1,675 51 722 490	81 848 602 197 424 574 2015 1,607 46 704 492	82 839 579 196 427 558 2016 1,544 51 656 436	73 845 568 182 412 520 2017 1,511 45 665 436	69 775 524 168 390 458 2018 1,489 50 658 440	57 766 483 165 345 448 2019 1,463 42 653 417
1.A.2.b 1.A.2.c 1.A.2.d 1.A.2.e 1.A.2.f 1.A.2.g 1.A.2.a 1.A.2.b 1.A.2.c 1.A.2.c 1.A.2.c	PJ PJ PJ PJ PJ PJ PJ PJ PJ	87 908 628 180 482 612 2010 1,689 56 777 490 166	88 880 600 187 467 606 2011 1,649 54 767 490 182	89 874 604 195 465 616 2012 1,675 57 737 486 178	88 846 603 190 462 599 2013 1,708 53 753 499 166	87 857 605 199 437 595 2014 1,675 51 722 490 159	81 848 602 197 424 574 2015 1,607 46 704 492 144	82 839 579 196 427 558 2016 1,544 51 656 436 145	73 845 568 182 412 520 2017 1,511 45 665 436 137	69 775 524 168 390 458 2018 1,489 50 658 440 154	57 766 483 165 345 448 2019 1,463 42 653 417 138
1.A.2.b 1.A.2.c 1.A.2.d 1.A.2.e 1.A.2.f 1.A.2.g 1.A.2.a 1.A.2.a 1.A.2.b 1.A.2.c 1.A.2.c 1.A.2.d 1.A.2.d	PJ PJ PJ PJ PJ PJ PJ PJ	87 908 628 180 482 612 2010 1,689 56 777 490 166 341	88 880 600 187 467 606 2011 1,649 54 767 490 182 342	89 874 604 195 465 616 2012 1,675 57 737 486 178 344	88 846 603 190 462 599 2013 1,708 53 753 499 166 356	87 857 605 199 437 595 2014 1,675 51 722 490 159 341	81 848 602 197 424 574 2015 1,607 46 704 492 144 330	82 839 579 196 427 558 2016 1,544 51 656 436 145 319	73 845 568 182 412 520 2017 1,511 45 665 436 137 316	69 775 524 168 390 458 2018 1,489 50 658 440 154 318	57 766 483 165 345 448 2019 1,463 42 653 417 138 301
1.A.2.b 1.A.2.c 1.A.2.d 1.A.2.e 1.A.2.f 1.A.2.g 1.A.2.a 1.A.2.b 1.A.2.c 1.A.2.c 1.A.2.c	PJ PJ PJ PJ PJ PJ PJ PJ PJ	87 908 628 180 482 612 2010 1,689 56 777 490 166	88 880 600 187 467 606 2011 1,649 54 767 490 182	89 874 604 195 465 616 2012 1,675 57 737 486 178	88 846 603 190 462 599 2013 1,708 53 753 499 166	87 857 605 199 437 595 2014 1,675 51 722 490 159	81 848 602 197 424 574 2015 1,607 46 704 492 144	82 839 579 196 427 558 2016 1,544 51 656 436 145	73 845 568 182 412 520 2017 1,511 45 665 436 137	69 775 524 168 390 458 2018 1,489 50 658 440 154	57 766 483 165 345 448 2019 1,463 42 653 417 138
1.A.2.b 1.A.2.c 1.A.2.d 1.A.2.e 1.A.2.f 1.A.2.g 1.A.2.a 1.A.2.a 1.A.2.b 1.A.2.c 1.A.2.c 1.A.2.d 1.A.2.d	PJ PJ PJ PJ PJ PJ PJ PJ PJ PJ	87 908 628 180 482 612 2010 1,689 56 777 490 166 341 442	88 880 600 187 467 606 2011 1,649 54 767 490 182 342 490	89 874 604 195 465 616 2012 1,675 57 737 486 178 344 468	88 846 603 190 462 599 2013 1,708 53 753 499 166 356 426	87 857 605 199 437 595 2014 1,675 51 722 490 159 341	81 848 602 197 424 574 2015 1,607 46 704 492 144 330	82 839 579 196 427 558 2016 1,544 51 656 436 145 319	73 845 568 182 412 520 2017 1,511 45 665 436 137 316	69 775 524 168 390 458 2018 1,489 50 658 440 154 318	57 766 483 165 345 448 2019 1,463 42 653 417 138 301
1.A.2.b 1.A.2.c 1.A.2.d 1.A.2.e 1.A.2.f 1.A.2.g 1.A.2.a 1.A.2.a 1.A.2.b 1.A.2.c 1.A.2.c 1.A.2.d 1.A.2.d	PJ PJ PJ PJ PJ PJ PJ PJ PJ PJ	87 908 628 180 482 612 2010 1,689 56 777 490 166 341	88 880 600 187 467 606 2011 1,649 54 767 490 182 342	89 874 604 195 465 616 2012 1,675 57 737 486 178 344	88 846 603 190 462 599 2013 1,708 53 753 499 166 356	87 857 605 199 437 595 2014 1,675 51 722 490 159 341	81 848 602 197 424 574 2015 1,607 46 704 492 144 330	82 839 579 196 427 558 2016 1,544 51 656 436 145 319	73 845 568 182 412 520 2017 1,511 45 665 436 137 316	69 775 524 168 390 458 2018 1,489 50 658 440 154 318	57 766 483 165 345 448 2019 1,463 42 653 417 138 301

		2020	2021	2022	2023
1.A.2.a	PJ	1,234	1,371	1,254	1,244
1.A.2.b	PJ	39	45	42	41
1.A.2.c	PJ	614	665	634	614
1.A.2.d	PJ	374	389	356	353
1.A.2.e	PJ	141	144	136	129
1.A.2.f	PJ	293	290	259	237
1.A.2.g	PJ	365	373	375	355

(出典) エネルギー消費量:総合エネルギー統計(資源エネルギー庁) ※エネルギー消費量の区分は、CRTにおけるカテゴリー区分

3. 算定方法の時系列変更・改善経緯

表 5 初期割当量報告書(2006年提出)以降の算定方法等の改訂経緯概要

	2010 年提出	2011 年提出	2013 年提出
排出・吸収量 算定式	_	_	-
排出係数	_	「バイオマス直接利用」、「黒 液直接利用」、「廃材直接利用」 の排出係数を新たに設定。	_
活動量	施設保有事業者から常圧流動 床炉の活動量(燃料消費量)を 直接把握する方法に変更。	_	業種別炉種別燃料消費量の配 分比の設定方法の変更。

	2015 年提出	2017 年提出	2019 年提出
排出・吸収量 算定式	_	-	_
排出係数	・「バイオマス発電」「バイオマス直接利用」「廃材直接利用」「廃材直接利用」の排出係数の変更 (2006年 IPCC ガイドラインの適用)。 ・建設部門における移動発生源の排出係数の変更。	_	「バイオマス発電」、「バイオマス直接利用」及び「廃材直接利用」の排出係数の変更(我が国独自の排出係数の適用)。
活動量	_	移動発生源 (特殊自動車等) に よる燃料消費割合の妥当性の 確認。	-

(1) 初期割当量報告書における算定方法

1) 排出・吸収量算定式

燃料種別、炉種別の排出係数に、燃料種別、部門別、炉種別の活動量を乗じて排出量を算定していた。

$$E_k = \sum\nolimits_{ij} \bigl(EF_{ij} \times A_{ijk} \bigr)$$

 E_k : 部門 k における化石燃料の燃焼に伴う固定発生源からの CH_4 、 N_2O 排出量 $[kg-CH_4, kg-N_2O]$

 EF_{ij} : 燃料種 i、炉種 j における排出係数 [kg-CH4/TJ, kg-N2O/TJ] A_{ijk} : 燃料種 i、炉種 j、部門 k におけるエネルギー消費量 [TJ]

i :燃料種j :炉種k :部門

2) 排出係数

我が国の各種固定発生源における CH_4 及び N_2O 排出濃度実測調査結果を基に、燃料種別、炉種別の CH_4 及び N_2O 排出係数を設定していた。

表 6 燃料種別、炉種別 CH4排出係数一覧 [kg-CH4/TJ]

		エネルギー源分類								炉種分類	į					
									工業炉						内燃機関	
		名称	コード	ホ ゙イラー	金銅及鉛三 解 の の の の の の の の の の の り の り り り り り り	^゚レット焼 成炉 (鉄鋼 用・金 用)	金延炉属理金造厂熱炉属炉	石油加 熱炉、 ガス加熱 炉	触媒再 生塔	227成陶焼、畑成 が炉磁成その炉 焼、器成その炉	骨燥が乾炉が乾炉型材炉原燥が料が、原燥が料が、原焼が割が、原燥が料の	洗剤乾 燥炉、他 その乾燥 炉	その他 の工業 炉	カ [*] ス ターヒ [*] ン	ディーセ・ル機関	カ [゙] ス機 関、カ [゙] ソ リン機関
	原料员		\$0110	0.13	31	1.7	13	13	NA	1.5	29	6.6	13	NA	NA	NA
石炭	一般员		\$0120	0.13	31	1.7	13	13	NA	1.5	29	6.6	13	NA	NA	NA
	無煙炭	₹	\$0130	0.13	31	1.7	13	13	NA	1.5	29	6.6	13	NA	NA	NA
	コークス		\$0211	0.13	31	1.7	13	13	0.054	1.5	29	6.6	13	NA	NA	NA
	コールター		\$0212	0.13	31	1.7	13	13	0.054	1.5	29	6.6	13	NA	NA	NA
石炭	練豆炭		\$0213	0.13	31	1.7	13	13	0.054	1.5	29	6.6	13	NA	NA	NA
製品	コークス炸		\$0221	0.23	31	1.7	0.43	0.16	NA	1.5	29	6.6	2.3	0.81	0.70	54
	高炉加		\$0222	0.23	31	1.7	0.43	0.16	NA	1.5	29	6.6	2.3	0.81	0.70	54
	転炉加		\$0225	0.23	31	1.7	0.43	0.16	NA	1.5	29	6.6	2.3	0.81	0.70	54
原	精製用	•	\$0310	0.10	31	1.7	0.43	0.16	NA	1.5	29	6.6	0.83	0.81	0.70	54
油	発電用		\$0320	0.10	31	1.7	0.43	0.16	NA	1.5	29	6.6	0.83	0.81	0.70	54
		コンテ゛ンセート	\$0330	0.10	31	1.7	0.43	0.16	NA	1.5	29	6.6	0.83	0.81	0.70	54
	224411	純ナフサ	\$0420	0.26	31	1.7	0.43	0.16	NA	1.5	29	6.6	0.83	0.81	0.70	54
	油	改質生成油	\$0421	0.26	31	1.7	0.43	0.16	NA	1.5	29	6.6	0.83	0.81	0.70	54
		カ゛ソリン	\$0431	0.26	31	1.7	0.43	0.16	NA	1.5	29	6.6	0.83	0.81	0.70	54
		ジェット燃料油	\$0432	0.26	31	1.7	0.43	0.16	NA	1.5	29	6.6	0.83	0.81	0.70	54
		灯 油	\$0433	0.26	31	1.7	0.43	0.16	NA	1.5	29	6.6	0.83	0.81	0.70	54
	燃料	軽油	\$0434	0.26	31	1.7	0.43	0.16	NA	1.5	29	6.6	0.83	0.81	0.70	54
	油	A重油	\$0436	0.26	31	1.7	0.43	0.16	NA	1.5	29	6.6	0.83	0.81	0.70	54
石油		B重油	\$0438	0.10	31	1.7	0.43	0.16	NA	1.5	29	6.6	0.83	0.81	0.70	54
製品		一般用C重油	\$0439	0.10	31	1.7	0.43	0.16	NA	1.5	29	6.6	0.83	0.81	0.70	54
		発電用C重油	\$0440	0.10	31	1.7	0.43	0.16	NA	1.5	29	6.6	0.83	0.81	0.70	54
		潤滑油	\$0451	0.26	31	1.7	0.43	0.16	NA	1.5	29	6.6	0.83	0.81	0.70	54
	lik	他重質石油製品	\$0452	0.13	31	1.7	13	13	0.054	1.5	29	6.6	13	NA	NA	NA
	他 石油	オイルコークス	\$0455	0.13	31	1.7	13	13	0.054	1.5	29	6.6	13	NA	NA	NA
	製品	電気炉ガス	\$0456	0.23	31	1.7	0.43	0.16	NA	1.5	29	6.6	2.3	0.81	0.70	54
		製油所ガス	\$0457	0.23	31	1.7	0.43	0.16	NA	1.5	29	6.6	2.3	0.81	0.70	54
		LPG	\$0458	0.23	31	1.7	0.43	0.16	NA	1.5	29	6.6	2.3	0.81	0.70	54
天然		E然ガス (LNG)	\$0510	0.23	31	1.7	0.43	0.16	NA	1.5	29	6.6	2.3	0.81	0.70	54
ガス		: 然ガス	\$0520	0.23	31	1.7	0.43	0.16	NA	1.5	29	6.6	2.3	0.81	0.70	54
都市	一般ス		\$0610	0.23	31	1.7	0.43	0.16	NA	1.5	29	6.6	2.3	0.81	0.70	54
ガス	簡易ス		\$0620	0.23	31	1.7	0.43	0.16	NA	1.5	29	6.6	2.3	0.81	0.70	54
	木材禾	発電施設	\$N131	0.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	× 1 + 153 41.	烈利用 施設	911191	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
バ <i>イ</i> オマ	廃材禾	発電施設 用	\$N132	0.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
スエネル	75 PJ T	熱利用施設	ψ1132	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
キ"ー	黒液直	[接利用	\$N136	4.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	バイオ	ガス	\$N137	0.90	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	バイオ	マスその他	\$N138	16	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
×1 ·	田完祭	生源におけるCHJ排出	灣市宝洞	川調本社	里た 並に	せい 国体 出	1の機約は	重則 相美	重別のCH	排出核粉	た設定			-		

^{※1:}固定発生源におけるCH4排出濃度実測調査結果を基に我が国独自の燃料種別、炉種別のCH4排出係数を設定

^{**2:2006}年IPCCガイドラインのデフォルトのCH₄排出係数を設定

^{※「}NA」とは「Not Applicable: 炉の活動は存在するが、燃料としての使用実態はなく、ガスの排出・吸収が原理的に起こらない」ということ

表 7 燃料種別、炉種別 N₂O 排出係数一覧 [kg-N₂O/TJ]

		エネルギー源分類							炉種分類	į				
					ボイラー				工業炉				内燃機関	
		r ar		ホ゛ イラー	常圧流	加圧流	溶鉱炉	石油加			その他			ガス機
		名称	コード	(流動 床以	動床ボ	動床ボ	(熱風	熱炉、ガス加	触媒再 生塔	コーク ス炉	の工業	カ゛ス ターヒ゛ン	ディーゼ ル機関	関、ガ
				外)	イラー	イラー	炉)	熱炉	工冶	7 KF	炉	7 6 7	// (及民	関
	原料员	-	\$0110	0.85	54	0.85	NA	1.1	NA	NA	1.1	NA	NA	NA
石炭	一般员	_	\$0120	0.85	54	5.2	NA	1.1	NA	NA	1.1	NA	NA	NA
	無煙炭	Ŕ	\$0130	0.85	54	0.85	NA	1.1	NA	NA	1.1	NA	NA	NA
	コークス		\$0211	0.85	54	0.85	NA	1.1	7.3	NA	1.1	NA	NA	NA
	コールター		\$0212	0.85	54	0.85	NA	1.1	7.3	NA	1.1	NA	NA	NA
石炭	練豆炭		\$0213	0.85	54	0.85	NA	1.1	7.3	NA	1.1	NA	NA	NA
製品	コークス灯		\$0221	0.17	0.17	0.17	0.047	0.21	NA	0.14	1.2	0.58	2.2	0.85
	高炉加		\$0222	0.17	0.17	0.17	0.047	0.21	NA	0.14	1.2	0.58	2.2	0.85
	転炉加		\$0225	0.17	0.17	0.17	NA	0.21	NA	0.14	1.2	0.58	2.2	0.85
原	精製用		\$0310	0.22	0.22	0.22	NA	0.21	NA	NA	1.8	0.58	2.2	0.85
油	発電用		\$0320	0.22	0.22	0.22	NA	0.21	NA	NA	1.8	0.58	2.2	0.85
,,,,,	NGL ·	コンテ゛ンセート	\$0330	0.22	0.22	0.22	NA	0.21	NA	NA	1.8	0.58	2.2	0.85
	224411		\$0420	0.19	0.19	0.19	NA	0.21	NA	NA	1.8	0.58	2.2	0.85
	油	改質生成油	\$0421	0.19	0.19	0.19	NA	0.21	NA	NA	1.8	0.58	2.2	0.85
		カ゛ソリン	\$0431	0.19	0.19	0.19	NA	0.21	NA	NA	1.8	0.58	2.2	0.85
		ジェット燃料油	\$0432	0.19	0.19	0.19	NA	0.21	NA	NA	1.8	0.58	2.2	0.85
		灯 油	\$0433	0.19	0.19	0.19	NA	0.21	NA	NA	1.8	0.58	2.2	0.85
	燃料	軽 油	\$0434	0.19	0.19	0.19	NA	0.21	NA	NA	1.8	0.58	2.2	0.85
	油	A重油	\$0436	0.19	0.19	0.19	NA	0.21	NA	NA	1.8	0.58	2.2	0.85
石油		B重油	\$0438	0.22	0.22	0.22	NA	0.21	NA	NA	1.8	0.58	2.2	0.85
製品		一般用C重油	\$0439	0.22	0.22	0.22	NA	0.21	NA	NA	1.8	0.58	2.2	0.85
		発電用C重油	\$0440	0.22	0.22	0.22	NA	0.21	NA	NA	1.8	0.58	2.2	0.85
		潤滑油	\$0451	0.19	0.19	0.19	NA	0.21	NA	NA	1.8	0.58	2.2	0.85
	like	他重質石油製品	\$0452	0.85	54	0.85	NA	1.1	7.3	NA	1.15	NA	NA	NA
	他 石油	オイルコークス	\$0455	0.85	54	0.85	NA	1.1	7.3	NA	1.15	NA	NA	NA
	製品	電気炉ガス	\$0456	0.17	0.17	0.17	NA	0.21	NA	0.14	1.2	0.58	2.2	0.85
		製油所ガス	\$0457	0.17	0.17	0.17	NA	0.21	NA	0.14	1.2	0.58	2.2	0.85
		LPG	\$0458	0.17	0.17	0.17	NA	0.21	NA	NA	1.2	0.58	2.2	0.85
天然		F然ガス (LNG)	\$0510	0.17	0.17	0.17	NA	0.21	NA	NA	1.2	0.58	2.2	0.85
ガス			\$0520	0.17	0.17	0.17	NA	0.21	NA	0.14	1.2	0.58	2.2	0.85
都市	一般ス		\$0610	0.17	0.17	0.17	NA	0.21	NA	0.14	1.2	0.58	2.2	0.85
ガス	簡易さ		\$0620	0.17	0.17	0.17	NA	0.21	NA	0.14	1.2	0.58	2.2	0.85
	木材系	発電施設 田	\$N131	0.87	0.87	0.87	NA	NA	NA	NA	NA	NA	NA	NA
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	熱利用施設	ψ11131	1.60	1.60	1.60	NA	NA	NA	NA	NA	NA	NA	NA
バイオマ	廃材禾	発電施設	\$N132	0.87	0.87	0.87	NA	NA	NA	NA	NA	NA	NA	NA
スエネル	/光学/ 个	熱利用施設	φ1N132	1.60	1.60	1.60	NA	NA	NA	NA	NA	NA	NA	NA
キ゛ー	黒液直	直接利用	\$N136	0.17	0.17	0.17	NA	NA	NA	NA	NA	NA	NA	NA
	バイオ	ガス	\$N137	0.09	0.09	0.09	NA	NA	NA	NA	NA	NA	NA	NA
	バイオ	マスその他	\$N138	1.60	1.60	1.60	NA	NA	NA	NA	NA	NA	NA	NA
\.		上海におけるN O排出	Nath roles and a Maria	1d =1mt -1- /-1-	m + ++	4b 10 11 1	-t 16b d	ol est pul	行種別の		65 141 2 50			

※1:固定発生源におけるN2O排出濃度実測調査結果を基に我が国独自の燃料種別、炉種別のN2O排出係数を設定

**2:2006年IPCCガイドラインのデフォルトの N_2 O排出係数を設定

※「NA」とは「Not Applicable: 炉の活動は存在するが、燃料としての使用実態はなく、ガスの排出・吸収が原理的に起こらない」ということ

3) 活動量

「総合エネルギー統計」の各燃料種の部門別の燃料消費量を、炉種別に分割することにより活動量を算定していた。

固体燃料ボイラーからの N_2O 排出については、流動床ボイラーとそれ以外のボイラーとで N_2O 排出量が大きく異なることから、 N_2O 排出係数は、常圧流動床ボイラー、加圧流動床ボイラー、それ以外のボイラーに分けて設定しており、ボイラーの種類別に活動量を把握する必要があるが、「大気汚染物質排出量総合調査」のデータは、流動床ボイラーとそれ以外のボイラーを区別できないため、これら流動床ボイラーにおける燃料消費量は別途把握していた。流動床炉以外の固体燃料ボイラーの活動量は、「大気汚染物質排出量総合調査」及び「総合エネルギー統計」から把握した全体の活動量から、別途把握した流動床ボイラーの活動量を差し引くことにより算定していた。

活動量の算定の具体的な手順は、以下のとおりである。

【固体燃料ボイラー以外】

$$A_{ijk} = A_{EB_{ik}} \times w_{ijk}$$

$$w_{ijk} = A_{MAP_{ijk}} \div \sum_{i} A_{MAP_{ijk}}$$

 A_{ijk} : 燃料種i、炉種j、部門kにおけるエネルギー消費量 [TJ]

 A_{EBik} : 総合エネルギー統計における燃料種 i、部門 k のエネルギー消費量 [TJ] w_{ijk} : 燃料種 i、部門 k における炉種 j のエネルギー消費量の占める割合

i : 燃料種j : 炉種k : 部門

 $A_{\text{MAP}ijk}$: 大気汚染物質排出量調査における燃料種 i、部門 k における炉種 j のエネルギー消費量

[TJ]

【固体燃料ボイラー(流動床ボイラー以外)】

 $A_{ijk} = A_{EB_{ik}} \times w_{ij1k} - A_{EB_{ik}} \times w_{ij2k}$

i : 炉種(固体燃料ボイラーのうち、流動床ボイラー以外のボイラー)

j1 : 炉種 (固体燃料ボイラー)

j 2 : 炉種 (固体燃料ボイラーのうち、流動床ボイラー)

【常圧流動床ボイラー】

常圧流動床ボイラーの活動量は、「コール・ノート(資源エネルギー庁資源・燃料部監修)」及び「ボイラー年鑑(日本ボイラ協会)」に記載されていた日本国内に設置されている各流動床ボイラーの蒸発量データから、ボイラー効率 85%、年間稼働時間 8,000 時間と仮定して、次式により算定していた。

$A = \sum V_i \times T \times \Delta H_{H2O} \div MW_{H2O} \div \alpha$

A: 常圧流動床ボイラーの活動量 [GJ]

V_i : 施設 i の蒸発量 [t/h]

T : 年間稼働時間 = 8,000 [h] (仮定)

 ΔH_{H2O} : 水の蒸発熱 (蒸発エンタルピー) (定数) = 40.66 [kJ/mol]

 MW_{H20} : 水の分子量(定数) = 18 [g/mol] α : ボイラー効率 = 0.85 (仮定)

【加圧流動床炉ボイラー】

加圧流動床ボイラーについては、電気事業連合会から燃料消費量データの提供を受けることにより活動量を把握していた。

(2) 2010 年提出インベントリにおける算定方法

1) 排出·吸収量算定式

初期割当量報告書における算定式と同様。

2) 排出係数

初期割当量報告書における排出係数と同様。

3)活動量

常圧流動床炉の活動量(固体燃料使用量)は、炉の蒸発量から、ボイラー効率85%、年間稼働時間を8,000時間と仮定して算定していたが、より我が国の実態を反映した算定方法とするため、1990年度以降に稼働実績のある常圧流動床炉を保有する事業者から提供された燃料消費量データを基に直接把握する方法に変更が行われた(現行の活動量と同様。)。

(3)2011年提出インベントリにおける算定方法

1) 排出·吸収量算定式

初期割当量報告書における算定式と同様。

2) 排出係数

エネルギー分野の「バイオマス直接利用」、「黒液直接利用」、「廃材直接利用」に伴う CH_4 及び N_2O 排出量が未推計であったため、新たに排出量の算定を行うこととなった。「黒液直接利用」 に伴う CH_4 及び N_2O 排出係数については、我が国独自の「ボイラー(廃パルプ)」の排出係数(4.3 kg- CH_4 /TJ,0.17 kg- N_2O /TJ)を使用することとなった。「バイオマス直接利用」及び「廃材直接利用」に伴う CH_4 及び N_2O 排出係数については、我が国独自の排出係数を設定するための研究調査事例が存在しないことから、1996 年改訂 IPCC ガイドラインのデフォルト値 3を高位発熱量ベースに換算して使用することとなった。

表 8 バイオマス及び廃材の燃料利用に伴う CH4及び N2O 排出係数

	CH4排出係数	N ₂ O 排出係数
	Ĺkg-CH4/TJ∫	Ĺkg-N2O/TJ∫
バイオマス及び廃材	28.5	3.8

(出典) 1996 年改訂 IPCC ガイドライン Vol. 3, p. 1.35, Table 1-7, 1-8 なお、IPCC ガイドラインのデフォルト値は低位発熱量で記載されているため、以下の式で高位発熱量に換算した値を表記している。NCV (低位発熱量 [TJ]) = GCV (高位発熱量 [TJ]) × 0.95

³ IPCC, "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories", Vol. 3, Chapter 1, p. 1.35, table 1-7,1-8

3) 活動量

2010年提出インベントリと同様。

(4) 2013 年提出インベントリにおける算定方法

1) 排出 · 吸収量算定式

初期割当量報告書における算定式と同様。

2) 排出係数

2011年提出インベントリと同様。

3)活動量

各種炉シェアの設定に利用している「大気汚染物質排出量総合調査」が、統計法の改正(2007年)により統計調査の目的以外での利用が困難となったため、2000年度以降の配分比の設定には1999年度実績のデータを代用している状況であった。「大気汚染物質排出量総合調査(環境省)」の調査目的にインベントリでのデータ利用が追加されたことにより利用可能となった2008年度実績データでは、燃料消費量のデータ精度の問題等で炉種別シェアの設定が困難であったことから、同年度の各燃料消費統計(「電力調査統計(資源エネルギー庁)」、「ガス事業生産動態統計(資源エネルギー庁)」、「特定業種石油等消費統計(経済産業省)」、「エネルギー消費統計(資源エネルギー庁)」)の個票データを用いて、2008年度の業種別炉種別燃料消費量の配分比の設定が行われた(現行の活動量と同様。)。

2000~2007 年度の配分比については、1999 年度実績の配分比から 2008 年度実績の配分比へ直線的にシフトしたと仮定し、燃料種類別、業種別、施設種類別の配分比ごとに線形補間して設定することとし、2008 年度以降の配分比については、2008 年度の配分比を使用することとなった(現行の活動量と同様。)。

(5) 2015 年提出インベントリにおける算定方法

1) 排出・吸収量算定式

初期割当量報告書における算定式と同様。

2) 排出係数

2015 年に提出するインベントリについては、2013 年末の COP19 で採択された改訂 UNFCCC インベントリ報告ガイドライン 4 に基づき、2006 年 IPCC ガイドラインを適用し、排出量の算定 カテゴリーや算定方法等の全面的な更新を行う必要があることから、これまで 1996 年改訂 IPCC ガイドラインの排出係数のデフォルト値を設定していたバイオマスエネルギーの CH4 及び N₂O 排出係数が、2006 年 IPCC ガイドラインにおけるデフォルト値へ変更された。また、改訂された「2013 年度版改訂総合エネルギー統計」では、直接バイオマス(黒液、廃材を除く。)が、固体バイオマス、液体バイオマス、気体バイオマスに分けて把握されたことから、エネルギー源分類

⁴ Decision 19/CP.24, Annex I "Guidelines for the preparation of national communications by Parties included in Annex I to the Convention, Part I: UNFCCC reporting guidelines on annual greenhouse gas inventories"

表 9 変更前後の CH4 排出係数

ーラルゼ 近八拓	変更前			変更後	
エネルギー源分類	kg-CH ₄ /TJ	出典		kg-CH ₄ /TJ	出典
バイオマス発電	28.5	Revised 1996 IPPC GL, Energy Industries, Wood/Wood Waste		28.5	2006 IPPC GL, Energy Industries, Wood/Wood Waste
バイオマス 直接利用	28.5	Revised 1996 IPPC GL, Manufacturing Industries and Construction, Other Biomass and Wastes	1		
エネルギー 固 産業、 体 製造業等 バ			7	28.5	2006 IPPC GL, Manufacturing Industries and Construction, Other Primary Solid Biomass
イ オ 業務、マ 家庭、ス 農林水産業	Ē,		285	2006 IPPC GL, Commercial/Institutional 及び Residential and Agriculture etc., Other Primary Solid Biomass	
液 エネルギー 産業、 製造業等				2.85	2006 IPPC GL, Manufacturing Industries and Construction, Other Liquid Biofuels
イ オ 業務、 マ 家庭、 ス 農林水産業				9.5	2006 IPPC GL, Commercial/Institutional 及び Residential and Agriculture etc., Other Liquid Biofuels
気 エネルギー 体 産業、 バ 製造業等				0.90	2006 IPPC GL, Manufacturing Industries and Construction, Other Biogas
イ オ 業務、 マ 家庭、 ス 農林水産業				4.5	2006 IPPC GL, Commercial/Institutional 及び Residential and Agriculture etc., Other Biogas
廃材直接利用	28.5	Revised 1996 IPPC GL, Manufacturing Industries and Construction, Wood/Wood Waste		28.5	2006 IPPC GL, Manufacturing Industries and Construction, Wood/Wood Waste

[※]なお、IPCC ガイドラインのデフォルト値は低位発熱量で記載されているため、以下の式で高位発熱量に換算した値を表記している。

石炭・石油製品等(固体、液体): NCV (低位発熱量 [TJ])= GCV (高位発熱量 [TJ])×0.95天然ガス等(気体): NCV (低位発熱量 [TJ])= GCV (高位発熱量 [TJ])×0.90

表 10 変更前後の N₂O 排出係数

エネルギー源分		見直し前			見直し後		
類		kg-N ₂ O/TJ	出典		kg-N ₂ O/TJ	出典	
バイオマス発電 3.8		3.8	Revised 1996 IPPC GL, Energy Industries, Wood/Wood Waste		3.8	2006 IPPC GL, Energy Industries, Wood/Wood Waste	
バイオマス 直接利用		3.8	Revised 1996 IPPC GL, Manufacturing Industries and Construction, Other Biomass and Wastes				
固体ス	バイオマ			7	3.8	2006 IPPC GL, Manufacturing Industries and Construction, Other Primary Solid Biomass	
液体ス	バイオマ				0.57	2006 IPPC GL, Manufacturing Industries and Construction, Other Liquid Biofuels	
気体ス	バイオマ				0.09	2006 IPPC GL, Manufacturing Industries and Construction, Other Biogas	
廃材直持	接利用	3.8	Revised 1996 IPPC GL, Manufacturing Industries and Construction, Wood/Wood Waste		3.8	2006 IPPC GL, Manufacturing Industries and Construction, Wood/Wood Waste	

[※]なお、IPCC ガイドラインのデフォルト値は低位発熱量で記載されているため、以下の式で高位発熱量に換算した値を表記している。

: NCV(低位発熱量 [TJ]) = GCV(高位発熱量 [TJ]) ×

 石炭・石油製品等(固体、液体)
 0.95

 : NCV (低位発熱量 [TJ]) = GCV (高位発熱量 [TJ]) ×

天然ガス等 (気体) 0.90

加えて、特殊自動車等からの CH_4 、 N_2O 排出量算定に、それまでは移動発生源(off-road mobile sources and machinery)ではなく固定発生源の排出係数が使用されていたが、より我が国の実態を反映した算定方法とするため、「平成 26 年度産業部門のうち非製造業における温室効果ガス排出実態調査」の調査結果に基づき、建設部門における移動発生源による燃料消費量を推計し、2006年 IPCC ガイドライン等のデフォルト値を使用して排出量を算定することとなった(現行の排出係数と同様。)。

3) 活動量

2013年提出インベントリと同様。

(6) 2017 年提出インベントリにおける算定方法

1) 排出·吸収量算定式

2015年提出インベントリと同様。

2) 排出係数

2015年提出インベントリと同様。

3) 活動量

燃料消費量を固定発生源と移動発生源に分割する際に用いている移動発生源(特殊自動車等)による燃料消費割合が過去全年度にわたり固定値となっている点の妥当性について、精査・検討を行った結果、過去の移動発生源(特殊自動車等)における燃料消費実態については、定量的な調査結果が存在せず、各業種における移動・固定発生源別燃料消費割合の変化に関する情報も確認できなかったこと、また、仮に燃焼消費割合に比較的大きな変動を想定したとしても排出量変化は1万トン程度(「1.A. 燃料からの燃焼」の約0.001%程度)であり、排出量の推計精度に与える影響は軽微であると考えられることから、引き続き、燃料消費割合を前年度固定で使用することとなった(2015年提出インベントリと同様。)。

(7) 2019 年提出インベントリにおける算定方法

1) 排出・吸収量算定式

初期割当量報告書における算定式と同様。

2) 排出係数

2019 年に提出するインベントリについては、これまで 2006 年 IPCC ガイドラインのデフォルト排出係数を利用していた、木材、廃材、バイオマスその他の排出係数について、「平成 29 年度バイオマスボイラーからの温室効果ガス排出量の実態把握に関する調査 (環境省)」及び「平成 26 年度木材利用推進・省エネ省 CO₂ 実証事業 (林野庁)」の実測結果を基に、現状の木質バイオマスの利用状況を踏まえ、我が国独自の排出係数を設定し、変更された。

表 11 木材、廃材、バイオマスその他の燃料利用に伴う CH4及び N₂O 排出係数

エネルギー源分類		CH4排出係数 [kg-CH4/TJ]	N ₂ O 排出係数 [kg-N ₂ O/TJ]	
木材利用	発電施設	0.2	0.87	
	熱利用施設	16	1.60	
廃材利用	発電施設	0.2	0.87	
	熱利用施設	16	1.60	
バイオマスその他		16	1.60	

(排出係数の設定に用いた実測データの出典)

平成29年度バイオマスボイラーからの温室効果ガス排出量の実態把握に関する調査(環境省)、平成26年度木材利用推進・省エネ省CO₂実証事業(林野庁)

3)活動量

2017年提出インベントリと同様。