1.A.1 エネルギー産業 (Energy Industries) (CO₂)

1. 排出・吸収源の概要

1.1 排出・吸収源の対象及び温室効果ガス排出メカニズム

石炭や石油製品、天然ガス等の化石燃料を燃焼させエネルギーを得る際、化石燃料中に含まれる炭素が空気中の酸素と化学反応することにより CO_2 が発生する。当該排出源では、「1.A.1.a 発電及び熱供給」、「1.A.1.b 石油精製」、「1.A.1.c 固体燃料製造及びその他エネルギー産業」における化石燃料の燃焼に伴う CO_2 の排出を扱う。

「1.A.1.a 発電及び熱供給」は、発電、コージェネレーション、熱供給事業を実施する事業者のエネルギー生産活動における化石燃料の燃焼からの CO_2 排出を対象とする(なお、オンサイトにおけるエネルギーの自家消費分も含む。ただし、製造業等の他業種における自家用発電・自家用蒸気発生に伴う排出は含まない。)。

「1.A.1.b 石油精製」は、石油製品の精製に関連する全ての化石燃料の燃焼活動からの CO₂排出を対象とする(なお、オンサイトにおける自家用発電・自家用蒸気発生に伴う排出も含む。)。

「1.A.1.c 固体燃料製造及びその他エネルギー産業」は、固体燃料からの二次及び三次製品の製造活動からの CO_2 排出を対象とする(なお、オンサイトにおけるエネルギーの自家消費、自家用発電・自家用蒸気発生に伴う排出も含む。)。

なお、バイオマス燃料の燃焼に伴う CO_2 排出は、2006 年 IPCC ガイドラインに従い、我が国の総排出量には含めず、共通報告表(CRT)に参考値として報告している。

1.2 排出・吸収トレンド及びその要因

「1.A.1. エネルギー産業」からの CO₂ 排出量は「1.A.1.a 発電及び熱供給」からの排出量が約9割を占めており、発電電力量や電源構成の変化等に伴い増減する。当該分野からの CO₂ 排出量は、1990年度以降 2007年度まで発電電力量や石炭火力の増加に伴って増加傾向にあったが、2008年に発生した世界的な景気後退の影響による電力需要の減少に伴い、2008年度に減少に転じた。その後、2011年3月に発生した東日本大震災による福島第一原子力発電所の事故により、原子力発電所が運転停止となり、石炭・LNG火力等による発電量が増加したことから、2011年度以降排出量は再度増加傾向に転じた。2013年度以降は、省エネ等によるエネルギー消費量の減少、太陽光発電及び風力発電等の再生可能エネルギーの導入拡大や原子力発電所の再稼働等により、継続して減少傾向にあった。2021年度は、新型コロナウイルス感染症の感染拡大による経済活動停滞からの回復の影響等により8年ぶりに増加に転じたが、2022年度以降は再び減少傾向となっている。2023年度における「1.A.1. エネルギー産業」からの CO₂ 排出量は、1990年度に比べて約11%増加している。

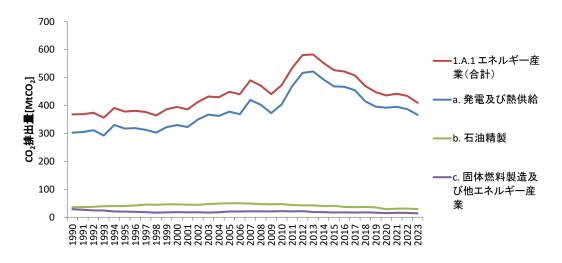


図 1 「1.A.1. エネルギー産業」からの CO₂ 排出量の推移

2. 排出·吸収量算定方法

2.1 排出·吸収量算定式

2.1.1 1.A.1.a 発電及び熱供給

2006 年 IPCC ガイドラインに示されたデシジョンツリー (Vol. 2、page 1.9、Fig. 1.2) に従い、Tier 2 部門別アプローチ (Sectoral Approach) 法を用い、各エネルギー源の消費量に炭素排出係数及び酸化率を乗じて CO_2 排出量の算定を行っている。

$$E = \sum_{ij} [(A_{ij} - N_{ij}) \times GCV_i \times 10^{-3} \times EF_i \times OF_i] \times 44/12 - C_j$$

E : 化石燃料の燃焼に伴う CO_2 排出量 $[t-CO_2]$ A : エネルギー消費量(固有単位 $[t, kl, 10^3 m^3]$) N : 非エネルギー利用量(固有単位 $[t, kl, 10^3 m^3]$)

GCV : 高位発熱量 [MJ/固有単位]

EF : 炭素排出係数 [t-C/TJ]

OF : 酸化率

C : 部門 *j* における CO₂ 回収量 [t-CO₂]

i : エネルギー源

j : 細部門

なお、2006 年 IPCC ガイドラインに従い、「エネルギーとして利用された廃棄物及びエネルギー回収を伴う廃棄物焼却からの排出」に該当するエネルギー消費量及び CO₂ 排出量も本分野に含めて報告している。エネルギー利用された廃棄物及びエネルギー回収を伴う廃棄物焼却からの排出量の算定には、2006 年 IPCC ガイドラインに従い、「5.C.1 廃棄物の焼却」で用いる排出係数や算定方法を適用している。

2.1.2 1.A.1.b 石油精製

「1.A.1.b 石油精製」における CO_2 排出量については、「①自家消費からの排出」と「②エネルギー転換に伴う排出」に分けて排出量を算定している。

$$E = E_1 + E_2$$

E: 化石燃料の燃焼に伴う CO₂排出量 [t-CO₂]

 E_I : 自家消費における化石燃料の燃焼に伴う CO_2 排出量 $[t-CO_2]$

 E_2 : エネルギー転換における化石燃料の燃焼に伴う CO_2 排出量 [t- CO_2]

(1) 自家消費に伴う CO₂ 排出量

化石燃料の自家消費に伴う CO_2 排出量 (E_1) については、「1.A.1.a 発電及び熱供給」と同様、 2006 年 IPCC ガイドラインに示されたデシジョンツリー (Vol. 2、page 1.9、Fig. 1.2) に従い、 Tier 2 部門別アプローチ (Sectoral Approach) 法を用い、各エネルギー源の消費量に炭素排出係 数及び酸化率を乗じて CO_2 排出量の算定を行っている。

$$E = \sum_{ij} [(A_{ij} - N_{ij}) \times GCV_i \times 10^{-3} \times EF_i \times OF_i] \times 44/12 - C_j$$

E : 化石燃料の燃焼に伴う CO_2 排出量 $[t-CO_2]$ A : エネルギー消費量(固有単位 $[t, kl, 10^3 m^3]$) N : 非エネルギー利用量(固有単位 $[t, kl, 10^3 m^3]$)

 GCV
 : 高位発熱量 [MJ/固有単位]

 EF
 : 炭素排出係数 [t-C/TJ]

OF : 酸化率

C: 部門 j における CO_2 回収量 $[t-CO_2]$

i : エネルギー源

i : 細部門

(2) エネルギー転換に伴う CO₂ 排出量

石油精製のエネルギー転換に伴う CO₂ 排出量については、「総合エネルギー統計(資源エネルギー庁)」の「石油精製部門(部門番号#2220000)」におけるエネルギー投入に相当する炭素量から、生産されたエネルギー量に相当する炭素量の差分を当該分野の排出量としている。

石油精製プロセスの流動接触分解装置(FCC: Fluid Catalytic Cracking)では、重油留分の分解 反応に伴って低下した触媒活性を取り戻すため、触媒表面に蓄積した炭素分(FCC コーク)を 燃焼除去する際に CO_2 が排出されるとともに、その際に発生する CO 等を含む燃焼ガスがボイラーで熱回収される際にも CO_2 が排出される。また、石油精製プロセスで発生した CO_2 を回収し、水素製造等に使用されていることが確認されている。石油精製プロセスは閉鎖系の機器内で原油を蒸留・分解処理する工程であるため、石油精製部門におけるエネルギー・炭素収支は、本来であれば非常に小さい値になるものと考えられるが、数%程度の差分が発生する場合は、上述のような、「総合エネルギー統計」では把握されていないエネルギー・炭素のロス分であると考えられる。そこで、石油製品製造プロセスに投入された炭素量と当該プロセスから生産された炭素の差分(炭素収支差)は、触媒再生や水素製造に使用された CO_2 であるとみなし、「1.A.1.b 石油精製」に計上する。

なお、石油精製部門に属する細部門である「常圧残油・減圧蒸留・分解処理部門(部門番号

#2225000)」の炭素量差分は、石油製品生産工程の誤差が集積したものと考えられるため、算定対象外とする。詳細については、「総合エネルギー統計における石油精製部門のエネルギー・炭素収支の改善について(経済産業研究所、戒能一成、2015年)」¹を参照のこと。

なお、石油精製工場で発生した CO_2 は、その一部が回収され、ドライアイスや液化炭酸ガスの製品として直接利用され、その後大気に排出されている。また、 $2004\sim2007$ 年度及び $2016\sim2019$ 年度においては、石油精製プロセスから発生した CO_2 が回収され、苫小牧及び夕張の CO_2 地中貯留施設に貯留されていた。これらの CO_2 の回収量は「1.A.1.b 石油精製」の排出量から控除している。 CO_2 回収量の算定方法については、「2.H.3 炭酸ガスの利用」、及び「 $1.C.CO_2$ の輸送と貯留」の「Information item CO_2 地中貯留に伴う CO_2 回収量(CO_2)」を参照のこと。

$$E = \left(\sum_{ij} \left[A_{input,ij} \times GCV_i \times 10^{-3} \times EF_i \times OF_i \right] \right)$$

$$-\sum_{ij} \left[A_{output,ij} \times GCV_i \times 10^{-3} \times EF_i \times OF_i \right] \times 44/12 - C_j$$

E : 化石燃料の燃焼に伴う CO₂排出量 [t-CO₂]
 A_{input} : エネルギー投入量(固有単位 [t, kl,10³m³])
 A_{output} : エネルギー生産量(固有単位 [t, kl,10³m³])

 GCV
 : 高位発熱量 [MJ/固有単位]

 EF
 : 炭素排出係数 [t-C/TJ]

OF : 酸化率

C: 部門 j における CO_2 回収量 $[t-CO_2]$

i : エネルギー源

j : 細部門

2.1.3 1.A.1.c 固体燃料製造及びその他エネルギー産業

「1.A.1.c 固体燃料製造及びその他エネルギー産業」における CO_2 排出量については、「①自家消費からの排出」と「②エネルギー転換に伴う排出」に分けて排出量を算定している。

$$E = E_1 + E_2$$

E : 化石燃料の燃焼に伴う CO₂排出量 [t-CO₂]

 E_{l} : 自家消費における化石燃料の燃焼に伴う CO_{2} 排出量 $[t-CO_{2}]$

 E_2 : エネルギー転換における化石燃料の燃焼に伴う CO_2 排出量 [t- CO_2]

(1) 自家消費に伴う CO₂ 排出量

化石燃料の自家消費に伴う CO_2 排出量 (E_1) については、「1.A.1.a 発電及び熱供給」と同様、 2006 年 IPCC ガイドラインに示されたデシジョンツリー (Vol.2, page 1.9, Fig.1.2) に従い、Tier 2 部門別アプローチ (Sectoral Approach) 法を用い、各エネルギー源の消費量に炭素排出係数及び酸化率を乗じて CO_2 排出量の算定を行っている。

¹ http://www.rieti.go.jp/jp/publications/dp/15j007.pdf

$$E = \sum_{ij} [(A_{ij} - N_{ij}) \times GCV_i \times 10^{-3} \times EF_i \times OF_i] \times 44/12 - C_j$$

E : 化石燃料の燃焼に伴う CO_2 排出量 $[t-CO_2]$ A : エネルギー消費量(固有単位 $[t, kl, 10^3 m^3]$) N : 非エネルギー利用量(固有単位 $[t, kl, 10^3 m^3]$)

 GCV
 : 高位発熱量 [MJ/固有単位]

 EF
 : 炭素排出係数 [t-C/TJ]

OF : 酸化率

C : 部門 j における CO₂ 回収量 [t-CO₂]

i : エネルギー源

i : 細部門

(2) エネルギー転換に伴う CO₂ 排出量

エネルギー転換に伴う CO₂排出量については、「総合エネルギー統計」の「コークス製造部門 (部門番号#2120000)」におけるエネルギー投入に相当する炭素量から、生産されたエネルギー 量に相当する炭素量の差分を当該分野の排出量としている。

コークス製造プロセスでは、赤熱コークスがコークス炉から押し出されてからコークス乾式消火設備(CDQ)に移行する間に、コークスに含まれる炭素が大気にさらされて酸化され、CO₂として大気中に排出される。そこで、石炭製品製造プロセスに投入された炭素量と当該プロセスから生産された炭素の差分は、この過程において大気中に排出された CO₂に該当するものと想定することが妥当と判断し、「1.A.1.c 固体燃料製造及びその他エネルギー産業」に排出量として計上する。

$$E = \left(\sum_{ij} \left[A_{input,ij} \times GCV_i \times 10^{-3} \times EF_i \times OF_i \right] \right)$$

$$-\sum_{ij} \left[A_{output,ij} \times GCV_i \times 10^{-3} \times EF_i \times OF_i \right] \times 44/12$$

E : 化石燃料の燃焼に伴う CO_2 排出量 $[t-CO_2]$ A_{input} : エネルギー投入量 (固有単位 $[t, kl, 10^3 m^3]$) A_{output} : エネルギー生産量 (固有単位 $[t, kl, 10^3 m^3]$)

 GCV
 : 高位発熱量 [MJ/固有単位]

 EF
 : 炭素排出係数 [t-C/TJ]

OF : 酸化率

i : エネルギー源

i : 細部門

2.2 排出係数

2.2.1 炭素排出係数

エネルギー源別に、総発熱量(高位発熱量)当たりの炭素含有量で表される値を用いており、2006年 IPCC ガイドラインのデフォルト値を採用している一部の燃料種を除き、我が国独自の値である。

炭素排出係数は、(a) 高炉ガス、都市ガス (-般ガス) 以外のエネルギー源、(b) 高炉ガス、(c) 都市ガス (-般ガス) の 3 つに分けて設定している。

エネルギー源別炭素排出係数を表 1 に、その出典を表 2 に示す。

表 1 エネルギー源別炭素排出係数(単位:t-C/TJ、高位発熱量ベース)

エネル	レギー	佰	コート* 1)	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
エイバ			\$0110	1990	1991	1992	1993	1994	1993	1990	1997	1996	1999
	原料局		\$0110	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5
		クス用原料炭		24.5							24.5		
_		用原料炭	\$0112	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5
石炭	輸入一		\$0121	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7
灰		輸入一般炭	\$0122	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7
		用輸入一般炭	\$0123	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7
	国産-		\$0124	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9
	無煙点	7	\$0130	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5
	コーク	7 ス	\$0211	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4
石	コーバ	レタール	\$0212	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9
	練豆烷		\$0213	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4
製	コーク	フス炉ガス	\$0221	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
品	高炉カ	ブス	\$0222	27.2	27.1	27.1	27.1	27.0	26.9	26.9	26.8	26.7	26.7
	転炉カ	ブス	\$0225	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4
	精製月	月原油	\$0310										
	精製	用純原油	\$0311	19.1	19.1	19.0	19.0	19.0	19.0	19.1	19.1	19.1	19.1
	精製	用粗残油	\$0312	21.3	21.4	21.4	21.4	21.4	21.4	21.4	21.4	21.4	21.4
	発電月		\$0320	19.1	19.1	19.1	19.1	19.1	19.1	19.1	19.1	19.1	19.2
原油		質混合物	\$0321	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
		コンデンセート	\$0330										
		用NGLコンデンセート	\$0331	17.4	17.7	17.6	17.6	17.4	18.1	17.8	18.0	17.9	17.9
		用NGLコンデンセート	\$0332	17.5	17.7	17.5	17.6	17.6	17.6	17.9	17.8	17.6	17.6
		化学用NGLコンデンセート	\$0333	15.6	15.7	15.9	16.0	16.2	16.2	16.3	16.5	16.8	16.6
			\$0420	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2
	油料	純ナフサ 改質生成油	\$0421	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3
		ガソリン(原油由来) ²⁾		18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3
		ガソリン (バイオマス考慮) ³⁾	\$0431	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3
		ジェット燃料油	\$0432	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3
		灯油	\$0432	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5
	燃	軽油(原油由来) ²⁾	\$0433	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7
	料	軽油 (バイオマス考慮) ³⁾	\$0434	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7
石	油		\$0.426										
油製		A重油	\$0436	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9
品		B重油	\$0438	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2
		一般用C重油	\$0439	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5
		発電用C重油	\$0440	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5
	他	潤滑油 (4) 毛毛 (5) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	\$0451	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2
	石	他重質石油製品4)	\$0452	20.8	20.8		20.8			20.8	20.8	20.8	20.8
	油	オイルコークス	\$0455	25.4	25.4				25.4	25.4	25.4		
	製	電気炉ガス	\$0456	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4
	品	製油所ガス	\$0457	14.2	14.2		14.2	14.2	14.2	14.2	14.2	14.2	14.2
		液化石油ガス(LPG)	\$0458	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5
		天然ガス (LNG)	\$0510	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9
天然	国産ヲ	天然ガス アスカー・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・	\$0520	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9
ガ	ガス	田・随伴ガス	\$0521	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9
ス	炭鉱	ズガス	\$0522	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5
	原油	溶解ガス	\$0523	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9
ガ都	一般カ		\$0610	14.4	14.4	14.4	14.4	14.4	14.4	14.3	14.3	14.2	14.2
ス市	簡易オ	<u></u>	\$0620	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5
	木材和	·····································	\$N131	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2
バ	廃材和	· · · · · · · · · · · · · · · · · · ·	\$N132	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2	30.2
イ イ 参	バイス	ナエタノール	\$N134	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2
121 m	バイス	ナディーゼル	\$N135	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2
Υ		直接利用	\$N136	26.8	26.8	26.8	26.8	26.8	26.8	26.8	26.8	26.8	26.8
	バイス		\$N137		12.4		12.4	12.4	12.4	12.4	12.4		12.4
45 60 0		・ バー統計(エネルギーバランス表)。											

¹⁾総合エネルギー統計(エネルギーバランス表)のエネルギー源別コード番号

²⁾ レファレンスアプローチで使用。

³⁾ 部門別アプローチで使用。
4) アスファルトを含む。

エネル	レギー	源	コート 1)	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
	原料處		\$0110										
		<u>、</u> -クス用原料炭	\$0111	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5
		上用原料炭	\$0112	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5
		- 般炭	\$0121	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
石炭		輸入一般炭	\$0122	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7
			\$0123	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7	24.7
		記用輸入一般炭 如 出											
		- 般炭	\$0124	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9
	無煙点		\$0130	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5	25.5
	コーク		\$0211	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4
石		レタール	\$0212	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9
炭	練豆店		\$0213	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4
製品		ウス炉ガス	\$0221	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
dia	高炉カ		\$0222	26.7	26.6	26.6	26.6	26.6	26.5	26.4	26.4	26.5	26.5
	転炉フ	ガス	\$0225	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4
	精製月	用原油	\$0310										
	精製	! 用純原油	\$0311	19.0	19.1	19.1	19.1	19.0	19.1	19.1	19.1	19.1	19.0
		· 見用粗残油	\$0312	21.4	21.4	21.4	21.4	21.4	21.4	21.5	21.5	21.5	21.4
		用原油	\$0320	19.2	19.3	19.1	19.2	19.2	19.6	19.3	19.2	19.2	19.3
原油		質混合物	\$0321	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
油		コンデンセート	\$0330										
		見用NGLコンデンセート	\$0331	18.0	18.1	18.1	18.3	18.8	18.3	18.2	18.1	19.4	18.4
		用NGLコンデンセート	\$0332	17.6	17.6	17.6	17.8	18.2	18.2	17.8	17.8	19.0	17.9
		化学用NGLコンデンセート	\$0333	16.8	16.6	17.3	17.1	17.7	17.6	17.7	17.1	18.8	17.9
		•	\$0420	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2
	油料	純ナフサ 改質生成油	\$0420	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3
	41		\$0421		18.3			18.3	18.3		18.3		18.3
		ガソリン(原油由来)2)	\$0431	18.3		18.3	18.3			18.3		18.3	
		ガソリン(バイオマス考慮) ³⁾	00.422	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3
		ジェット燃料油	\$0432	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3	18.3
	燃	灯油	\$0433	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5
	料料	軽油(原油由来)2)	\$0434	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7
石	油	軽油(バイオマス考慮)3)		18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7
油		A重油	\$0436	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9
製		B重油	\$0438	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2
品		一般用C重油	\$0439	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5
		発電用C重油	\$0440	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5
		潤滑油	\$0451	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2	19.2
	他	他重質石油製品 ⁴⁾	\$0452	20.8	20.8	20.8	20.8	20.8	20.8	20.8	20.8	20.8	20.8
	石	オイルコークス	\$0455	25.4	25.4	25.4	25.4	25.4	25.4	25.4	25.4	25.4	25.4
	油製	電気炉ガス	\$0456	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4	38.4
	品	製油所ガス	\$0457	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
	НН	液化石油ガス(LPG)	\$0458	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5
	輸入3	F然ガス (LNG)	\$0510	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	14.0
天		<u> </u>	\$0520	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9
然		<u> </u>	\$0520	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9
ガ		、中・囮什 <i>ルへ</i> 、ガス	\$0522	13.5									
ス					13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5
13 400		溶解ガス	\$0523	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9	13.9
ガ都っち	一般フ		\$0610	14.2	14.2	14.2	14.1	14.1	14.1	14.0	14.0	14.0	14.0
\ \ III	簡易力		\$0620	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5
,,,,	木材和		\$N131	30.2	30.2	30.2	30.2	30.2	30.9	30.9	30.9	30.9	30.9
バイへ	廃材和		\$N132	30.2	30.2	30.2	30.2	30.2	30.9	30.9	30.9	30.9	30.9
ハイオ	バイス	オエタノール	\$N134	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2
マ゛	/ " A	ナディーゼル	\$N135	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2	17.2
ス	黒液區	直接利用	\$N136	26.8	26.8	26.8	26.8	26.8	25.6	25.6	25.6	25.6	25.6
		ナガス アン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	\$N137	12.4	12.4	12.4	12.4	12.4	12.4	12.4	12.4	12.4	12.4
1) 総合	・エネル	レギー統計(エネルギーバランス表)の	フェネルは	ニー酒り	117-	ド釆早							

- 1)総合エネルギー統計(エネルギーバランス表)のエネルギー源別コード番号
- 2) レファレンスアプローチで使用。
- 3) 部門別アプローチで使用。 4) アスファルトを含む。

エネル	レギー	源	コート* 1)	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	原料员		\$0110										
		<u>、</u> -クス用原料炭	\$0111	24.5	24.5	24.5	24.4	24.4	24.4	24.4	24.4	24.5	24.5
		用原料炭	\$0112	24.5	24.5	24.5	25.1	25.1	25.1	25.1	25.1	25.1	25.1
石	輸入一		\$0121	21.3	21.3	21.3	23.1	23.1	23.1	23.1	23.1	23.1	23.1
炭		輸入一般炭	\$0122	24.7	24.7	24.7	24.4	24.4	24.4	24.4	24.4	24.3	24.3
		1 輔八 - 成	\$0123	24.7	24.7	24.7	24.4	24.4	24.4	24.4	24.4	24.3	24.3
				24.7		24.7			23.7				_
		-般炭	\$0124		24.9		23.7	23.7		23.7	23.7	24.2	24.2
	無煙点		\$0130	25.5	25.5	25.5	25.9	25.9	25.9	25.9	25.9	25.9	25.9
	コーク		\$0211	29.4	29.4	29.4	30.2	30.2	30.2	30.2	30.2	29.9	29.9
石		レタール	\$0212	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9
炭	練豆炭		\$0213	29.4	29.4	29.4	25.9	25.9	25.9	25.9	25.9	25.9	25.9
製品		カス炉ガス	\$0221	11.0	11.0	11.0	10.9	10.9	10.9	10.9	10.9	10.9	10.9
ПП	高炉カ		\$0222	26.4	26.3	26.2	26.5	26.6	26.5	26.5	26.5	26.3	26.3
	転炉カ		\$0225	38.4	38.4	38.4	41.7	41.7	41.7	41.7	41.7	42.0	42.0
	精製月		\$0310										
		! 用純原油	\$0311	19.1	19.1	19.1	19.0	19.0	19.0	19.0	19.0	19.0	19.0
		用粗残油	\$0312	21.4	21.5	21.5	19.7	19.6	19.5	19.6	19.4	19.4	19.4
原	発電月	用原油	\$0320	19.2	19.1	19.1	19.2	19.2	19.3	19.3	19.3	19.3	19.2
油		質混合物	\$0321	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
144	NGL •	コンデンセート	\$0330										
	精製	用NGLコンデンセート	\$0331	18.4	17.3	18.4	18.3	18.3	18.3	18.3	18.3	18.2	18.3
	発電	用NGLコンデンセート	\$0332	17.9	17.9	17.9	18.2	18.2	18.2	18.2	18.2	18.2	18.2
	石油	化学用NGLコンデンセート	\$0333	18.0	16.9	18.2	18.3	18.2	18.2	18.3	18.2	18.2	18.2
	、原	純ナフサ	\$0420	18.2	18.2	18.2	18.6	18.6	18.6	18.6	18.6	18.6	18.6
	油料	改質生成油	\$0421	18.3	18.3	18.3	19.3	19.3	19.3	19.3	19.3	19.3	19.3
		ガソリン(原油由来) ²⁾	00.424	18.3	18.3	18.3	18.7	18.7	18.7	18.7	18.7	18.7	18.7
		ガソリン(バイオマス考慮) ³⁾	\$0431	18.2	18.2	18.2	18.6	18.6	18.6	18.5	18.5	18.5	18.5
		ジェット燃料油	\$0432	18.3	18.3	18.3	18.6	18.6	18.6	18.6	18.6	18.6	18.6
		灯油	\$0433	18.5	18.5	18.5	18.7	18.7	18.7	18.7	18.7	18.7	18.7
	燃	軽油(原油由来)2)		18.7	18.7	18.7	18.8	18.8	18.8	18.8	18.8	18.8	18.8
	料	軽油 (バイオマス考慮) 3)	\$0434	18.7	18.7	18.7	18.8	18.8	18.8	18.8	18.8	18.8	18.8
石油	油	A重油	\$0436	18.9	18.9	18.9	19.3	19.3	19.3	19.3	19.3	19.3	19.3
製		B重油	\$0438	19.2	19.2	19.2	20.0	20.0	20.0	20.0	20.0	20.0	20.0
品		一般用C重油	\$0439	19.5	19.5	19.5	20.2	20.0	20.2	20.0	20.2	20.0	20.2
		発電用C重油	\$0439	19.5	19.5	19.5	19.8	19.8	19.8	19.8	19.8	20.2	20.2
			\$0440		19.3		19.8		19.8	19.8			19.9
	他	潤滑油 (4.香絲子 本都 月 4)											
	石	他重質石油製品4)	\$0452	20.8	20.8	20.8	20.4	20.4	20.4	20.4	20.4	20.8	20.8
	油	オイルコークス	\$0455	25.4	25.4	25.4	24.5	24.5	24.5	24.5	24.5	24.5	24.5
	製	電気炉ガス	\$0456	38.4	38.4	38.4	41.7	41.7	41.7	41.7	41.7	42.0	42.0
	品	製油所ガス	\$0457	14.2	14.2	14.2	14.4	14.4	14.4	14.4	14.4	14.4	14.4
	+∧ → −	液化石油ガス(LPG)	\$0458	16.5	16.5	16.5	16.4	16.4	16.4	16.4	16.4	16.4	16.4
天		E然ガス(LNG)	\$0510	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	13.9	13.9
然		モ然ガス	\$0520	13.9	13.9	13.9	14.0	14.0	14.0	14.0	14.0	13.9	13.9
ガ		田・随伴ガス	\$0521	13.9	13.9	13.9	14.0	14.0	14.0	14.0	14.0	13.9	13.9
ス		ズガス	\$0522	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5
		溶解ガス	\$0523	13.9	13.9	13.9	14.0	14.0	14.0	14.0	14.0	13.9	13.9
ガ都	一般プ		\$0610	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0
ス市	簡易オ	ガス	\$0620	16.5	16.5	16.5	16.4	16.4	16.4	16.4	16.4	16.4	16.4
	木材和	刊用	\$N131	30.9	30.9	30.9	29.6	29.6	29.6	29.6	29.6	29.6	29.6
バ	廃材和		\$N132	30.9	30.9	30.9	29.6	29.6	29.6	29.6	29.6	29.6	29.6
		オエタノール	\$N134	17.2	17.2	17.2	17.6	17.6	17.6	17.6	17.6	17.6	17.6
プ考	バイス	ナディーゼル	\$N135	17.2	17.2	17.2	17.6	17.6	17.6	17.6	17.6	17.6	17.6
ス		直接利用	\$N136	25.6	25.6	25.6	24.9	24.9	24.9	24.9	24.9	24.9	24.9
	バイス	ナガス	\$N137	12.4	12.4	12.4	13.5	13.5	13.5	13.5	13.5	13.5	13.5
1) 総人	・エラル	レギー統計(エネルギーバランス表)の)エネルは		117-1	ド釆早							•——

- 1)総合エネルギー統計(エネルギーバランス表)のエネルギー源別コード番号
- 2) レファレンスアプローチで使用。
- 3) 部門別アプローチで使用。 4) アスファルトを含む。

エネバ	レギー	源	コート 1)	2020	2021	2022	2023
	原料质	뷵	\$0110				
	л	-クス用原料炭	\$0111	24.5	24.5	24.5	24.5
	吹込	用原料炭	\$0112	25.1	25.1	25.1	24.8
石	輸入-		\$0121				
炭	汎用	輸入一般炭	\$0122	24.3	24.3	24.3	24.8
	発電	用輸入一般炭	\$0123	24.3	24.3	24.3	24.8
	国産-		\$0124	24.2	24.2	24.2	24.2
	無煙点	芡	\$0130	25.9	25.9	25.9	26.4
	コーク	ウス	\$0211	29.9	29.9	29.9	29.7
石		レタール	\$0212	20.9	20.9	20.9	20.9
炭	練豆店		\$0213	25.9	25.9	25.9	25.9
製		フス炉ガス	\$0221	10.9	10.9	10.9	10.8
品	高炉フ		\$0222	26.4	26.3	26.3	26.1
	転炉フ		\$0225	42.0	42.0	42.0	41.9
	精製月		\$0310				
		押純原油	\$0311	19.0	19.0	19.0	18.9
		見用粗残油	\$0312	19.3	19.3	19.1	19.1
		用原油	\$0320	19.5	19.1	19.1	19.1
原		質混合物	\$0321	20.0	20.0	20.0	20.0
油		コンデンセート	\$0330	20.0	20.0	20.0	20.0
		リ用NGLコンデンセート	\$0331	18.3	18.3	18.5	18.4
		用NGLコンデンセート	\$0332	18.2	18.2	18.2	18.2
		化学用NGLコンデンセート	\$0333	18.2	18.2	18.2	18.2
			\$0420	18.6	18.6	18.6	18.6
	油料	純ナフサ 改質生成油	\$0421	19.3	19.3	19.3	19.2
	- ' '	ガソリン(原油由来) ²⁾	ψ0 1 21	18.7	18.7	18.7	18.7
		ガソリン(原価田米) ガソリン(バイオマス考慮) ³⁾	\$0431	18.5	18.5	18.5	18.5
		ジェット燃料油	\$0432	18.6	18.6	18.6	18.6
			\$0432	18.7	18.7	18.7	18.7
	燃	灯油 軽油(原油由来) ²⁾	\$0433	18.8	18.8	18.8	18.8
	料	軽油(原油田米) ³ 軽油(バイオマス考慮) ³⁾	\$0434	18.8	18.8	18.8	18.8
石油	油		\$0.426				19.2
油製		A重油	\$0436	19.3	19.3	19.3	
品		B重油	\$0438	20.0	20.0	20.0	20.0
		一般用C重油	\$0439	20.2	20.2	20.2	20.0
		発電用C重油	\$0440	20.1	20.0	20.0	20.0
	他	潤滑油	\$0451	19.9	19.9	19.9	19.9
	石	他重質石油製品4)	\$0452	20.8	20.8	20.8	20.8
	油	オイルコークス	\$0455	24.5	24.8	24.8	24.8
	製	電気炉ガス	\$0456	42.0	42.0	42.0	41.9
	品	製油所ガス	\$0457	14.4	14.4	14.4	14.4
		液化石油ガス(LPG)	\$0458	16.3	16.3	16.3	16.3
天		F然ガス (LNG)	\$0510	13.9	13.9	13.9	13.8
然		天然ガス ニーニーニーニー	\$0520	13.9	13.9	13.9	13.9
ガ		田・随伴ガス	\$0521	13.9	13.9	13.9	13.9
ス	炭釖	、ガス	\$0522	13.5	13.5	13.5	13.5
		溶解ガス	\$0523	13.9	13.9	13.9	13.9
ガ都	一般プ		\$0610	14.0	14.0	14.0	14.0
ス市	簡易プ		\$0620	16.3	16.3	16.3	16.3
	木材和		\$N131	29.6	29.6	29.6	29.6
バ	廃材和		\$N132	29.6	29.6	29.6	29.6
イ参する	バイス	ナエタノール	\$N134	17.6	17.6	17.6	17.6
マ考	バイス	ナディーゼル	\$N135	17.6	17.6	17.6	17.6
ス	黒液画	直接利用	\$N136	24.9	24.9	24.9	24.9
	バイス	ナガス	\$N137	13.5	13.5	13.5	13.5
1) 4/4 /	٠. ٠٠.٠	レギー統計(エネルギーバランス表)の	n 11 -1) NE (111 1	V 17. П	

¹⁾総合エネルギー統計(エネルギーバランス表)のエネルギー源別コード番号

²⁾ レファレンスアプローチで使用。 3) 部門別アプローチで使用。 4) アスファルトを含む。

表 2 エネルギー源別炭素排出係数の出典

工	ネルギ	一源	コード	1990-2012年度
		コークス用原料炭	\$0111	戒能(2005)
	石	吹込用原料炭	\$0112	コークス用原料炭と同一
	炭	輸入一般炭	\$0121	環境庁(1992)
固		国産一般炭	\$0124	環境庁(1992)
体		無煙炭	\$0130	戒能(2005)
燃料		コークス	\$0211	環境庁(1992)
1-1	石	コールタール	\$0212	戒能(2005)
	炭	練豆炭	\$0213	環境庁(1992)
	製	コークス炉ガス	\$0221	戒能(2005)
	品	高炉ガス	\$0222	総合エネルギー統計の高炉・転炉における炭素収支に基づき算定
		転炉ガス	\$0225	戒能(2005)
		精製用純原油	\$0311	実測値(石油精製事業者提供)により得られた銘柄別発熱量を基に原油の
		精製用粗残油	\$0312	補間・近似式により推計した銘柄別炭素排出係数を銘柄別輸入量で加重平 均
	原油	発電用原油	\$0320	電力調査統計(資源エネルギー庁)の発熱量を基に原油の補間・近似式により推計した月別の炭素排出係数を各月の受入量で加重平均
	佃	瀝青質混合物	\$0321	戒能(2005)
		精製用NGLコンデンセート	\$0331	めばいの出土排山が来ためばいか、目の進入いったそでに
		発電用NGLコンデンセート 石油化学用NGLコンデンセート	\$0332	銘柄別の炭素排出係数を銘柄別輸入量の構成比で加重平均
		有価化子用NGLコンテンドート	\$0333	
		純ナフサ	\$0420	環境庁(1992)
		改質生成油	\$0421	ガソリンの値
		ガソリン (原油由来)	#0.421	環境庁(1992)
		ガソリン(バイオマス考慮)	\$0431	原油由来・バイオマス由来の炭素排出係数を国内消費量の構成比で加重 平均
液体燃		ジェット燃料油	\$0432	環境庁(1992)
料	石	灯油	\$0433	環境庁(1992)
	油製	軽油 (原油由来)	60424	環境庁(1992)
	品品	軽油(バイオマス考慮)	\$0434	原油由来・バイオマス由来の炭素排出係数を国内消費量の構成比で加重 平均
		A重油	\$0436	環境庁(1992)
		B重油	\$0438	環境庁(1992)
		一般用C重油	\$0439	環境庁(1992)
		発電用C重油	\$0440	環境庁(1992)
		潤滑油		環境庁(1992)
		他重質石油製品		環境庁 (1992)
		オイルコークス	\$0455	環境庁(1992)
		電気炉ガス	\$0456	転炉ガスの値
		製油所ガス	\$0457	環境庁(1992)
		液化石油ガス (LPG)	\$0458	プロパン・ブタン理論値を国内生産・輸入量の構成比で加重平均
		輸入天然ガス(LNG)	\$0510	産地別の炭素排出係数を国別輸入量で加重平均
気	天 然	国産天然ガス	\$0520	戒能(2005)
体	ガス	ガス田・随伴ガス	\$0521	国産天然ガスの値
燃		炭鉱ガス	\$0522	環境庁(1992)
料	-Lote	原油溶解ガス	\$0523	国産天然ガスの値
	都ス市	一般ガス	\$0610	総合エネルギー統計の都市ガス製造における炭素収支に基づき算定
Ш	ガ	簡易ガス		LPGの値
	バ	木材利用	\$N131	実測値(日本製紙連合会提供)
参	イナ	<u>廃材利用</u> バイオエタノール	\$N132 \$N134	マクト すの理訟出来排目が終われるようが終い
考	オマ	バイオディーゼル	\$N135	エタノールの理論炭素排出係数(ノルマル状態)
\smile	ス	黒液直接利用		実測値(日本製紙連合会提供)
Ш		バイオガス	\$N137	メタンの理論炭素排出係数(ノルマル状態)

映込用原料検	エン	ネルギ	一源	コード	2013-2017年度
			コークス用原料炭	\$0111	実測値(日本鉄鋼連盟提供)により得られた炭素排出係数を単純平均
		F	吹込用原料炭	\$0112	実測値(日本鉄鋼連盟提供)により得られた炭素排出係数を単純平均
国産 参談			輸入一般炭	\$0121	実測値(発電事業者提供)から算出した各サンプルの炭素排出係数を受入
無應敗 50130 成能(2014)の輸入一般技の補間・近切太上り指計 2一夕ス 50211 実際値(日本整備連盟機性)により導入力工族業排出係数を単 20213 第2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				\$0124	
コークス	体				
			,,		実測値(日本鉄鋼連盟提供)により得られた炭素排出係数を単純平均
要型の	14	T.		40	
製品					
 転戸ガス 第0225 実測値日本熱調運服機()により資品なた炭素排出係数を整合 対したのでは、		製	コークス炉ガス	\$0221	美測値(日本鉄鋼建盟提供)により鼻出された灰素排出係数を単純平均
持製用組成曲		品	高炉ガス	\$0222	総合エネルギー統計の高炉・転炉における炭素収支に基づき算定
特製用租残油			1		実測値(日本鉄鋼連盟提供)により算出された炭素排出係数を単純平均
「	ı		精製用純原油	\$0311	実測値(石油精製事業者提供)により得られた銘柄別発熱量を基に原油の
原			精製用粗残油	\$0312	
選書資混合物		torci	** = II	00000	電力調査統計(資源エネルギー庁)の発熱量を基に原油の補間・近似式に
横型門外G1コンデンセート 50331 2判価(石油精型事業者提供)により得られた鋭術別発熱量を運用NG1コンデンセート 50332 2判価(石油精型事業者提供)により得られた炭素排出係数を銘柄別輸加 20421 2042 2043 2判価(石油精型事業者提供)により得られた炭素排出係数を 20421 2043 2判価(石油精型事業者提供)により得られた炭素排出係数を 2043 2判型(人不才マス考慮) 2043 2判型(人不才マス考慮) 2043 2判型(人不才マス考慮) 2043 2判型(人不才マス考慮) 2043 2判価(石油精型事業者提供)により得られたプレミアムガソルンの 2043 2			発電用原油	\$0320	より推計した月別の炭素排出係数を各月の受入量で加重平均
全産用NGLコンデンセート 50333 補間・近似式により推計した銘柄別炭素排出係数を銘柄別輸売 で加重平均 20420 減ナフサ 50420 次値生成油 50421 実測値(石油精製事業者提供)により得られた炭素排出係数をたプレギュラーガソンの値 実測値(石油精製事業者提供)により得られた炭素排出係数をたプレギュラーガソンの値 実測値(石油精製事業者提供)により得られた炭素排出係数を 次リソン (バイオマス考慮) 50431 東測値(石油精製事業者提供)により得られた炭素排出係数を国内消費量の構 ア均 がソリン (バイオマス考慮) 50432 実測値(石油精製事業者提供)により得られたガソシン型・灯油出係数を総合エネルギー統計の各最終消費量で加重平均 原油由来・バイオマス由来の炭素排出係数を国内消費量の構 平均 20434 展補 50434 東測値(石油精製事業者提供)により得られた炭素排出係数を 実測値(石油精製事業者提供)により得られた炭素排出係数を 表調 50434 東測 (石油精製事業者提供)により得られた炭素排出係数を 表調 50435 実測値(石油精製事業者提供)により得られた炭素排出係数を 表調 50436 実測値(石油精製事業者提供)により得られた炭素排出係数を 表調 50436 実測値(石油精製事業者提供)により得られた炭素排出係数を 表面油 50436 実測値(石油精製事業者提供)により得られた炭素排出係数を 50451 実測値(石油精製事業者提供)により得られた炭素排出係数を まが 50451 実測 50452 支 50456 全面 10457 東測 50451 東型 50451 東型 50451 東型 50451 東型 50451 東型 50451 東測 50451 東型 5	1	1144			
石油化学用NGLコンデンセート 50420 実測値(石油精製事業者提供)により得られた炭素排出係数をたレキュラーガソリンの値 対ソリン (原油由来)					
続ナフサ					
でできる。				ψουσυ	
次			純ナフサ	\$0420	
カソリン (原油由来) 50431			改質生成油	\$0421	実測値(石油精製事業者提供)により得られた炭素排出係数を単純平均したプレスの値
カソリン (バイオマス考慮) カソリンの炭素排出係数を国内向け出荷量で加重平均 原油由来・バイオマス由来の炭素排出係数を国内消費量の構 平均 アリンの炭素排出係数を国内消費量の構 平均 アリンの炭素排出係数を国内消費量の構 平均 アリンの炭素排出係数を国内消費量の構 平均 アリンの炭素排出係数を国内消費量で加重平均 アリカ 東測値(石油精製事業者提供)により得られた炭素排出係数を 東測値(石油精製事業者提供)により得られた炭素排出係数を 原油由来・バイオマス由来の炭素排出係数を国内消費量の構 平均 平均 平均 平均 平均 平均 平均 平					<u>"</u>
(本 体 体			ガソリン (原油由来)	\$0431	ガソリンの炭素排出係数を国内向け出荷量で加重平均
本			ガソリン(バイオマス考慮)	40.51	原油由来・バイオマス由来の炭素排出係数を国内消費量の構成比で加重 平均
大田 1984	体燃		ジェット燃料油	\$0432	実測値(石油精製事業者提供)により得られたガソリン型・灯油型の炭素排出係数を総合エネルギー統計の各最終消費量で加重平均
整油 (原油由来)	料	石	灯油	\$0433	実測値(石油精製事業者提供)により得られた炭素排出係数を単純平均
日本 日本 日本 日本 日本 日本 日本 日本		油	軽油 (原油由来)	\$0434	実測値(石油精製事業者提供)により得られた炭素排出係数を単純平均
B重油 \$0438 実測値(石油精製事業者提供)により得られた発熱量を基に石一般用C重油 \$0439 実測値(石油精製事業者提供)により得られた発熱量を基に石油製品の 選別書を表して、			軽油(バイオマス考慮)	ψ0 1 21	原油由来・バイオマス由来の炭素排出係数を国内消費量の構成比で加重 平均
一般用C重油			A重油	\$0436	実測値(石油精製事業者提供)により得られた炭素排出係数を単純平均
一般用C重油			B重油	\$0438	実測値(石油精製事業者提供)により得られた発熱量を基に石油製品の補
発電用C重油					
週滑油					
他重質石油製品					
他里質石油製品					常圧残油投入量とC重油生産量のエネルギー収支から算定した発熱量に基
電気炉ガス \$0456 転炉ガスの値 製油所ガス \$0457 実測値(石油精製事業者提供)により算出された炭素排出係数 液化石油ガス (LPG) \$0458 プロパン・ブタンの理論炭素排出係数を各ガスの国内供給量で がス事業便覧(日本ガス協会)から算出した産地別の炭素排出係数をがある。 第4 大久 第5520 実測値(国内の天然ガス生産事業者提供)から算出したガス田出係数をガス田別産出量で加重平均 出係数をガス田別産出量で加重平均 出係数をガス田別産出量で加重平均 第5521 国産天然ガスの値 第0522 実測値(国内の天然ガス生産事業者提供)から算出したガス田原油溶解ガス \$0522 実測値(国内の天然ガス生産事業者提供)から算出したガス田原油溶解ガス \$0523 国産天然ガスの値 第5523 国産天然ガスの値 第6月ガス \$0610 総合エネルギー統計の都市ガス製造における炭素収支に基づか 第5131 実測値(日本製紙連合会提供)により得られた炭素排出係数を スイオ スイオディーゼル \$\text{N131} \text{N131} \text{N131} \text{N131} \text{N131} \text{N131} \text{N131} \text{N131} \text{N134} \text{N134} \text{N134} \text{N135} \text{N135} \text{N136} \text{N137} \text{N136} \text{N137} \text{N137} \text{N137} \text{N137} \text{N136} \text{N137} \text{N137} \text{N137} \text{N137} \text{N136} \text{N137} \text{N137} \text{N134} \text{N134} \text{N134} \text{N134} \text{N134} \text{N134} \text{N135} \text{N135} \text{N136} \text{N136} \text{N136} \text{N137} \text{N136} \text{N137} \text{N136} \text{N137} \text{N137} \text{N137} \text{N136} \text{N137} \text{N137} \text{N137} \text{N137} \text{N136} \text{N137} \text{N136} \text{N137} N			他里質石油製品	\$0452	づき、石油製品の補間・近似式より推計
製油所ガス					実測値(日本化学工業協会提供)により得られた炭素排出係数を単純平均
液化石油ガス (LPG) \$0458 プロパン・ブタンの理論炭素排出係数を各ガスの国内供給量で 輸入天然ガス (LNG) \$0510 輸入量で加重平均 輸入量で加重平均 実測値(国内の天然ガス生産事業者提供)から算出したガス田出係数をガス 田別産出量で加重平均 出係数をガス田別産出量で加重平均 出係数をガス田別産出量で加重平均 出係数をガス田別産出量で加重平均 上の大変を対えの値 「炭鉱ガス \$0521 国産天然ガスの値 「炭鉱ガス \$0522 実測値(国内の天然ガス生産事業者提供)から算出したガス田 原油溶解ガス \$0523 国産天然ガスの値 ※の523 国産天然ガスの値 ※合エネルギー統計の都市ガス製造における炭素収支に基づ 前易ガス \$0610 ※合エネルギー統計の都市ガス製造における炭素収支に基づ がイオエタノール \$N131 実測値(日本製紙連合会提供)により得られた炭素排出係数を メイオディーゼル \$N134 エタノールの理論炭素排出係数(SATP状態)					
新入天然ガス (LNG) \$0510 ガス事業便覧(日本ガス協会)から算出した産地別の炭素排出輸入量で加重平均			製油所ガス	\$0457	実測値(石油精製事業者提供)により算出された炭素排出係数を単純平均
新人大然ガス (LNG) 輸入量で加重平均 国産天然ガス 国産天然ガス 国産天然ガス 国産天然ガス 国産天然ガスの値 炭鉱ガス 炭鉱ガス 原油溶解ガス の610 総合エネルギー統計の都市ガス製造における炭素収支に基づ 簡易ガス の620 により得られた炭素排出係数を 大イオエタノール ボイオエタノール ボイオディーゼル SN131 大イオディーゼル SN134 エタノールの理論炭素排出係数 (SATP状態) SN135 エタノールの理論炭素排出係数 (SATP状態) SN136 エタノールの理論炭素排出係数 (SATP状態) SN137 エタノールの理論炭素排出係数 (SATP状態) SN138 エタノールの理論炭素排出係数 (SATP状態) SN138 エタノールの理論炭素排出係数 (SATP状態) SN138 エタノールの理論炭素排出係数 (SATP状態) SN136 エタノールの理論炭素排出係数 (SATP状態) SN137 エタノールの理論炭素排出係数 (SATP状態) SN138 SN139 SN131 SN131 SN131 SN132 SN134 SN135 SN135 SN136 SN137 SN137 SN138 SN138 SN138 SN139 SN139 SN139 SN131 SN131 SN131 SN132 SN134 SN135 SN135 SN136 SN137 SN137 SN138 SN138 SN139 SN139	Ш		液化石油ガス (LPG)	\$0458	プロパン・ブタンの理論炭素排出係数を各ガスの国内供給量で加重平均
気 大然 煮 素別値(国内の天然ガス生産事業者提供)から算出したガス田出係数をガス田別産出量で加重平均出係数をガス田別産出量で加重平均出係数をガス田別産出量で加重平均に対象をガス田別産出量で加重平均に対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対		_	輸入天然ガス(LNG)	\$0510	ガス事業便覧(日本ガス協会)から算出した産地別の炭素排出係数を国別 輸入量で加重平均
体	E	然	国産天然ガス	\$0520	実測値(国内の天然ガス生産事業者提供)から算出したガス田別の炭素排
燃 炭鉱ガス \$0522 実測値(国内の天然ガス生産事業者提供)から算出したガス田原油溶解ガス 駅油溶解ガス \$0523 国産天然ガスの値 都市が高易ガス \$0610 総合エネルギー統計の都市ガス製造における炭素収支に基づ新の割がある。 がありがる *** 本材利用	水体		ガス田・随伴ガス	\$0521	
料 原油溶解ガス \$0523 国産天然ガスの値 都 ス市 一般ガス \$0610 総合エネルギー統計の都市ガス製造における炭素収支に基づ が 簡易ガス \$0620 LPGの値 木材利用 \$N131 廃材利用 \$N132 バイオエタノール \$N134 ボイオディーゼル \$N135 エタノールの理論炭素排出係数(SATP状態)	燃	ス	炭鉱ガス		実測値(国内の天然ガス生産事業者提供)から算出したガス田別の炭素排
ス市 一般カス 30610 総合エネルキー統計の都市カス製造における炭素収支に基づ 備易ガス \$0620 LPGの値 木材利用 \$N131 廃材利用 \$N132 バイオエタノール \$N134 バイオディーゼル \$N135 エタノールの理論炭素排出係数(SATP状態)			原油溶解ガス	\$0523	国産天然ガスの値
ガ 簡易ガス \$0620 LPGの値 木材利用 \$N131 廃材利用 \$N132 * 大材利用 \$N132 アイオニタノール \$N134 バイオエタノール \$N134 バイオディーゼル \$N135 エタノールの理論炭素排出係数(SATP状態)			一般ガス	\$0610	総合エネルギー統計の都市ガス製造における炭素収支に基づき算定
木材利用			簡易ガス	\$0620	LPGの値
R					
オ					大仭旭、日本教科建日五近世川により行り4元火条併田休数を早代半均
ラ	参				エタノールの理論炭素排出係数(SATP状態)
里 遊直控利田 \$N136 宝测值(日本制紙連合合提供)	5	マ			実測値(日本製紙連合会提供)
ス		ス			

工	ネルギ	一源	コード	2018-2022年度
		コークス用原料炭	\$0111	実測値(日本鉄鋼連盟提供)により得られた炭素排出係数を単純平均
	石	吹込用原料炭	\$0112	実測値(日本鉄鋼連盟提供)により得られた炭素排出係数を単純平均
	炭	輸入一般炭	\$0121	実測値(発電事業者提供)から算出した各サンプルの炭素排出係数を受入
固		国産一般炭	\$0124	量で加重平均 実測値(発電事業者提供)から算出した各サンプルの炭素排出係数を受入
体		無煙炭		天側直(光电事業有提供)が6鼻山じに行りシブルの灰素折山床数を支入 従前値を継続使用
燃料		コークス	\$0211	実測値(日本鉄鋼連盟提供)により得られた炭素排出係数を単純平均
朴	7	コールタール		従前値を継続使用
	石炭	練豆炭		従前値を継続使用
	製	コークス炉ガス	\$0221	実測値(日本鉄鋼連盟提供)により算出された炭素排出係数を単純平均
	品	高炉ガス	\$0222	総合エネルギー統計の高炉・転炉における炭素収支に基づき算定
		転炉ガス	\$0225	実測値(日本鉄鋼連盟提供)により算出された炭素排出係数を単純平均
		精製用純原油	\$0311	実測値(石油精製事業者提供)により得られた銘柄別発熱量を基に原油の
		精製用粗残油	\$0312	補間・近似式により推計した銘柄別炭素排出係数を銘柄別輸入量で加重平均
i	原	発電用原油	\$0320	電力調査統計(資源エネルギー庁)の発熱量を基に原油の補間・近似式に
	油			より推計した月別の炭素排出係数を各月の受入量で加重平均
		瀝青質混合物 (株型用) 101 - 1 - 1	\$0321	<u>従前値を継続使用</u>
		精製用NGLコンデンセート 発電用NGLコンデンセート	\$0331 \$0332	実測値(石油精製事業者提供)により得られた銘柄別発熱量を基に原油の補間・近似式により推計した銘柄別炭素排出係数を銘柄別輸入量・出荷量
		石油化学用NGLコンデンセート	\$0333	
		11111111111111111111111111111111111111	4,000	- W. Z. 1 - W
		純ナフサ	\$0420	従前値を継続使用
		改質生成油	\$0421	従前値を継続使用
		以貝生成個	\$0421	作用 ^他 化
		ガソリン(原油由来)		実測値(石油精製事業者提供)により得られたプレミアムガソリンとレギュラー
	F		\$0431	ガソリンの炭素排出係数を国内向け出荷量で加重平均 原油由来・バイオマス由来の炭素排出係数を国内消費量の構成比で加重
244		ガソリン(バイオマス考慮)		が加田木・ハイス インロボの 放光 外田 市教を国内 信員 重の 特成 九 て 加里 平均
液体燃料		ジェット燃料油	\$0432	実測値(石油精製事業者提供)により得られたガソリン型・灯油型の炭素排出係数を総合エネルギー統計の各最終消費量で加重平均
料	石	灯油	\$0433	従前値を継続使用
	油製	軽油 (原油由来)	\$0434	従前値を継続使用
	品	軽油(バイオマス考慮)	\$0434	原油由来・バイオマス由来の炭素排出係数を国内消費量の構成比で加重 平均
		A重油	\$0436	従前値を継続使用
		 B重油	\$0438	従前値を継続使用
		一般用C重油	\$0439	從前値を継続使用
		発電用C重油	\$0440	電力調査統計(資源エネルギー庁)の発熱量を基に石油製品の補間・近似
		潤滑油	\$0451	従前値を継続使用 常圧残油投入量とC重油生産量のエネルギー収支から算定した発熱量に基
		他重質石油製品	\$0452	づき、石油製品の補間・近似式より推計
		オイルコークス	\$0455	従前値を継続使用
		電気炉ガス	\$0456	転炉ガスの値
		製油所ガス	\$0457	従前値を継続使用
		液化石油ガス (LPG)	\$0458	プロパン・ブタンの理論炭素排出係数を各ガスの国内供給量で加重平均
	_	輸入天然ガス(LNG)	\$0510	実測値(発電事業者、日本ガス協会提供)から算出した産地別の炭素排出 係数を国別輸入量で加重平均
与	天然	国産天然ガス	\$0520	実測値(国内の天然ガス生産事業者提供)から算出したガス田別の炭素排 出係数をガス田別産出量で加重平均
気体	ガ	ガス田・随伴ガス	\$0521	国産天然ガスの値
燃	ス	炭鉱ガス		從前値を継続使用
料		原油溶解ガス	\$0523	国産天然ガスの値
	都ス市	一般ガス	\$0610	総合エネルギー統計の都市ガス製造における炭素収支に基づき算定
	ヘガ	簡易ガス	\$0620	LPGの値
		木材利用	\$N131	
	バイ	廃材利用	\$N132	従前値を継続使用
参	オ	バイオエタノール	\$N134	従前値を継続使用
考	マ	バイオディーゼル 黒液直接利用	\$N135	從前値を継続使用
$\lfloor \cdot \rfloor$	ス	無攸旦佞利用 バイオガス		<u>促則但を継続使用</u> 従前値を継続使用
				12 14 1 1 2 1 1 2 1 1 2 1 1 4 1 1 1 1 1

T	ネルギ	- 順	コード	2023年度以降
		コークス用原料炭	\$0111	実測値(日本鉄鋼連盟提供)により得られた炭素排出係数を受入量で加重 平均
	石	吹込用原料炭	\$0112	実測値(日本鉄鋼連盟提供)により得られた炭素排出係数を受入量で加重 平均
固	炭	輸入一般炭	\$0121	実測値(発電事業者提供)から算出した各サンプルの炭素排出係数を受入量で加重平均
体		国産一般炭	\$0124	従前値を継続使用
燃		無煙炭	\$0130	輸入一般炭の補間・近似式を更新し、推計
料		コークス コールタール	\$0211	<u>実測値(日本鉄鋼連盟提供)により得られた炭素排出係数を受入量で加重</u> 従前値を継続使用
	石	練豆炭	\$0212 \$0213	<u>使則但を継続使用</u> 従前値を継続使用
	炭	コークス炉ガス	\$0221	実測値(日本鉄鋼連盟提供)により算出された炭素排出係数を単純平均
	製品	高炉ガス		総合エネルギー統計の高炉・転炉における炭素収支に基づき算定
		転炉ガス	\$0225	実測値(日本鉄鋼連盟提供)により算出された炭素排出係数を単純平均
		精製用純原油	\$0311	石油輸入調査(資源エネルギー庁)の密度・硫黄分を基に原油の補間・近似
		精製用粗残油	\$0312	石油輸入調査(資源エイルイー) 70名後・航東方を差に原油の補間・近似式により推計した銘柄別炭素排出係数を銘柄別輸入量で加重平均
	原油	発電用原油	\$0320	電力調査統計(資源エネルギー庁)の発熱量を基に原油の補間・近似式により推計した月別の炭素排出係数を各月の受入量で加重平均
		瀝青質混合物 は制 PNOL コンデン・トート	\$0321	従前値を継続使用
		精製用NGLコンデンセート 発電用NGLコンデンセート	\$0331 \$0332	石油輸入調査(資源エネルギー庁)の密度・硫黄分を基に原油の補間・近似
		石油化学用NGLコンデンセート	\$0333	式により推計した銘柄別炭素排出係数を銘柄別輸入量で加重平均
		純ナフサ	\$0420	実測値(石油精製事業者提供)により得られた製油所別のレギュラーガソリンの炭素排出係数をレギュラーガソリンの製油所別生産量で加重平均
		改質生成油	\$0421	実測値(石油精製事業者提供)により得られた製油所別のプレミアムガソリンの炭素排出係数をプレミアムガソリンの製油所別生産量で加重平均
		ガソリン (原油由来)	#0421	実測値(石油精製事業者提供)により得られたプレミアムガソリンとレギュラー ガソリンの炭素排出係数を国内向け出荷量で加重平均
		ガソリン(バイオマス考慮)	\$0431	原油由来・バイオマス由来の炭素排出係数を国内消費量の構成比で加重 平均
液体燃		ジェット燃料油	\$0432	ガソリン型・灯油型の炭素排出係数を総合エネルギー統計の各最終消費量で加重平均。灯油型は実測値(石油精製事業者提供)、ガソリン型は従前値を継続使用。
料	石	灯油	\$0433	実測値(石油精製事業者提供)により得られた製油所別の炭素排出係数を 製油所別生産量で加重平均
	i 油 製	軽油 (原油由来)	\$0434	実測値(石油精製事業者提供)により得られた製油所別の炭素排出係数を 製油所別生産量で加重平均
	品	軽油(バイオマス考慮)	ψ0131	原油由来・バイオマス由来の炭素排出係数を国内消費量の構成比で加重 平均
		A重油	\$0436	実測値(石油精製事業者提供)により得られた製油所別の炭素排出係数を 製油所別生産量で加重平均
		B重油	\$0438	従前値を継続使用
		一般用C重油	\$0439	実測値(石油精製事業者提供)により得られた製油所別の炭素排出係数を製油所別生産量で加重平均
		発電用C重油	\$0440	電力調査統計(資源エネルギー庁)の発熱量を基に石油製品の補間・近似
		潤滑油	\$0451	従前値を継続使用
		他重質石油製品	\$0452	常圧残油投入量とC重油生産量のエネルギー収支から算定した発熱量に基づき、石油製品の補間・近似式より推計
		<u>オイルコークス</u> 電気炉ガス	\$0455	従前値を継続使用 転炉ガスの値
		製油所ガス	\$0456	実測値(石油精製事業者提供)により得られた製油所別の炭素排出係数を
		液化石油ガス(LPG)	\$0458	製油所別生産量で加重平均プロパン・ブタンの理論炭素排出係数を各ガスの国内供給量で加重平均
		輸入天然ガス (LNG)	\$0438	実測値(発電事業者、日本ガス協会提供)から算出した産地別の炭素排出
E	天然	国産天然ガス	\$0520	係数を国別輸入量で加重平均 実測値(国内の天然ガス生産事業者提供)から算出したガス田別の炭素排 出係数なガス円別産出量で加重収換
気体	ガ	ガス田・随伴ガス	\$0521	出係数をガス田別産出量で加重平均 国産天然ガスの値
燃燃	ス	炭鉱ガス	\$0522	従前値を継続使用
料		原油溶解ガス	\$0523	国産天然ガスの値
	都ス市	一般ガス	\$0610	総合エネルギー統計の都市ガス製造における炭素収支に基づき算定
	ガ	簡易ガス	\$0620	LPGの値
	バ	木材利用	\$N131	従前値を継続使用
(¥	1	廃材利用 バイオエタノール	\$N132	present the Company of 1997 19
参考	オ	バイオエタノール バイオディーゼル	\$N134 \$N135	従前値を継続使用
	マ	黒液直接利用		従前値を継続使用
	ス	バイオガス		從前值を継続使用

- ※ 環境庁(1992):環境庁「二酸化炭素排出量調査報告書(1992年5月)」(1992)
- ※ 戒能 (2005): 戒能一成「エネルギー源別炭素排出係数の妥当性の評価と分析」平成 17 年度温室効果ガス排出量 算定方法検討会インベントリワーキンググループ提出資料 (2005)

(1) 高炉ガス、都市ガス (一般ガス) 以外のエネルギー源

高炉ガス、都市ガス(一般ガス)以外のエネルギー源における炭素排出係数については、「二酸化炭素排出量調査報告書(環境庁、1992年)」、「温室効果ガス排出量算定に関する検討結果(環境省、温室効果ガス排出量算定方法検討会)」、「エネルギー源別炭素排出係数の妥当性の評価と分析(経済産業研究所、戒能一成、2005年)」²、「エネルギー源別標準発熱量・炭素排出係数の改訂について-2013年度改訂標準発熱量・炭素排出係数表-(経済産業研究所、戒能一成、2014年)」³及び「エネルギー源別標準発熱量・炭素排出係数(2018年度改訂)の解説(資源エネルギー庁、2020年)」⁴、「エネルギー源別標準発熱量・炭素排出係数(2023年度改訂)の解説(資源エネルギー庁、2024年)」⁵に示された値を用いている。

1) 1990~2012 年度までの炭素排出係数の設定方法

1990~2012 年度における炭素排出係数の設定に当たっては、「エネルギー源別炭素排出係数の 妥当性の評価と分析」において実施された排出係数の評価分析結果を活用した。

2005 年提出インベントリまでの CO_2 排出量算定に使用してきた「二酸化炭素排出量調査報告書」に示されたエネルギー源別排出係数について、

- ① 理論上限値・下限値との比較による評価分析
- ② 1996 年改訂 IPCC ガイドラインに示されたデフォルト値との比較による評価分析
- ③ 「総合エネルギー統計」を用いた炭素収支による群評価分析

によってその妥当性を評価し、妥当性が確認された値についてはその値を使用した。

①~③の評価分析の概要は以下のとおり。

① 理論上限値・下限値との比較による評価分析

炭素排出係数の評価を必要とするエネルギー源の大部分は若干の不純物を含んだ炭化水素であり、純粋な炭化水素の標準総発熱量と炭素排出係数の間には物理化学的な対応関係が存在していることから、水素、メタン、一酸化炭素などの純粋物質の標準生成エンタルピーから理論的に算出される排出係数と評価対象の排出係数を比較することで、係数の妥当性を評価する。

② 1996 年改訂 IPCC ガイドラインに示されたデフォルト値との比較による評価分析

1996 年改訂 IPCC ガイドライン標準値や 2006 年 IPCC ガイドライン試算値 ⁶とその統計的な信頼性 (不確実性)情報を利用して、エネルギー源別の炭素排出係数の妥当性を判断する。ただし、IPCC ガイドラインが想定する平均的なエネルギー源の性状と、我が国が固有に利用するエ

https://www.env.go.jp/earth/ondanka/santei k/17 02/ref02-1.pdf

³ https://www.rieti.go.jp/jp/publications/dp/14j047.pdf

⁴ https://www.enecho.meti.go.jp/statistics/total_energy/pdf/stte_028.pdf

⁵ https://www.enecho.meti.go.jp/statistics/total_energy/pdf/shv2023_cmt.pdf

^{6 「}エネルギー源別炭素排出係数の妥当性の評価と分析」の公表時において、2006 年 IPCC ガイドラインはまだ公表されていなかったため、その値は試算値であり、公表時には若干変更されている。

ネルギー源の性状は必ずしも同一ではないため、数値が乖離している場合があっても当該乖離を説明する正当な根拠が存在する場合、後述する「群評価分析」などの統計的な検討・検証を加えた上で、適切な判断を行う。

③ 総合エネルギー統計を用いた炭素収支による群評価分析

エネルギー源別炭素排出係数のうち、石油製品、石炭製品の係数の群の一部については、「総合エネルギー統計」を用いて石油・石炭製品部門における炭素収支を分析することにより、各炭素排出係数の妥当性を評価する。

妥当性がないと判断されたものに関しては、「温室効果ガス排出量算定に関する検討結果」及び 2006 年 IPCC ガイドラインに示された値を比較検証し、妥当と考えられる値を用いた。

なお、精製用原油や NGL・コンデンセート等一部の燃料種については、2) で設定した 2013 年度以降の炭素排出係数を、各年度の銘柄別輸入構成比で加重平均することにより、炭素排出係数を毎年度計算している。

2) 2013~2017 年度の炭素排出係数の設定方法

2013~2017 年度の炭素排出係数については、2013 年度及び 2014 年度に経済産業省・環境省により実施された標準発熱量・炭素排出係数の設定に関する調査を通じて得られた値を用いている。 設定方法の概要は以下のとおり。

① 調査方法

2013~2014 年度において、経済産業省・環境省により、関係諸団体が有する各種エネルギー源の物性値等の収集と、関係団体より提供された試料の物性値の実測等に関する調査が実施された。本調査により得られた各種エネルギー源に関する物性値を基に、「エネルギー源別標準発熱量・炭素排出係数の改訂案について -2013 年度改訂標準発熱量・炭素排出係数表-」において、2013 年度から適用する標準発熱量・炭素排出係数が提示された。

② 炭素排出係数の基本的算定方法

各エネルギー源別の標準発熱量・炭素排出係数については、各エネルギー源の性質や精度面での優先順位等を踏まえ、「(1) 理論値からの算定」、「(2) 関係諸団体から提供された実測値及び経済産業省・環境省による実測調査結果より算定」、「(3) 他の主要エネルギー源の数値やその加重平均・回帰分析式からの推計により算定」、「(4) 現行値を継続使用」の各方法により設定した。

理論値及び実測値を用いた固体・液体・気体の各燃料における標準発熱量・炭素排出係数の算定方法((1)、(2)の方法に該当)は以下のとおり。

• 気体燃料

気体などのエネルギー源においてガスクロマトグラフィーなどにより成分組成値が実測できる場合には、メタン・プロパンなど各成分組成値に関する純物質の理論発熱量・炭素排出係数を標準生成エンタルピーなど物性値から算定しておき、統計処理した成分組成値でこれを加重平均して標準発熱量・炭素排出係数を算定した。

· 固体 · 液体燃料

固体及び純成分で加重平均できない液体のエネルギー源については、高位発熱量(Gross Calorific Value: GCV)と炭素含有率などの物性値を直接実測し、当該結果を統計処理して標準発

熱量・炭素排出係数を算定した。

(3)の方法については、一般炭・原油・石油製品の実測結果を基に、発熱量・炭素排出係数を密度・ 水分など物性値から推計する補間・近似推計式を作成し、これを用いて対象エネルギー源の標準 発熱量・炭素排出係数を推計した。

③ 精度管理

上記により得られた標準発熱量・炭素排出係数は、現行値及び 2006 年 IPCC ガイドラインの デフォルト値との比較検証を行い、妥当性を確認した上でインベントリに適用している。

④ 実質炭素排出係数について

精製用原油、発電用原油、NGL・コンデンセート、LPG 等一部の燃料種については、エネルギー起源 CO₂ 排出量の算定精度向上の観点から、各種公的統計値における輸入量等を用いた加重平均により、毎年度実質炭素排出係数を算定する。

3) 2018~2022 年度の炭素排出係数の設定方法について

2018~2022 年度の炭素排出係数については、2017~2019 年度にかけて経済産業省・環境省により実施された標準発熱量・炭素排出係数の設定に関する調査を通じて得られた値を用いている。

設定方法の概要は以下のとおり。なお、2018~2022 年度の標準発熱量・炭素排出係数の改訂 に関する詳細については、「エネルギー源別標準発熱量・炭素排出係数(2018 年度改訂)の解説」 7を参照のこと。

① 調査方法

炭素排出係数の2018年度値改訂に関しては、2013年度に発熱量・炭素排出係数の全面的な改訂が行われたこと、5年程度では組成が大きく変動しない燃料種があること、及び実測調査に要するコストや作業負荷と排出量への影響とのバランス等を踏まえ、改訂対象とする燃料種を選別した上で、経済産業省・環境省により、関係諸団体が有する各種エネルギー源の物性値等の収集等に関する調査が実施された。

② 炭素排出係数の基本的算定方法

炭素排出係数は、「(1)業界団体提供データを用いた設定」、「(2)既存統計・文献及び推計式等を用いて設定」又は「(3)従前値を継続使用」の3手法により設定された。このうち(1)及び(2)について、2013年度値設定時の推計手法を踏襲する場合は、「エネルギー源別標準発熱量・炭素排出係数の改訂案について-2013年度改訂標準発熱量・炭素排出係数表-」8を参照した。

③ 精度管理

上記により得られた発熱量・炭素排出係数の妥当性を評価するため、2) において設定した 2013 年度値及び 2006 年 IPCC ガイドラインデフォルト値との比較検証を行った。

⁷ https://www.enecho.meti.go.jp/statistics/total_energy/pdf/stte_028.pdf

⁸ https://www.rieti.go.jp/jp/publications/dp/14j047.pdf

④ 実質炭素排出係数について

精製用原油、発電用原油、NGL・コンデンセート、LPG 等一部の燃料種については、エネルギー起源 CO₂ 排出量の算定精度向上の観点から、各種公的統計値における輸入量等を用いた加重平均により、毎年度実質炭素排出係数を算定する。

4) 2023 年度以降の炭素排出係数の設定方法について

2023 年度以降の炭素排出係数については、2022~2024 年度にかけて経済産業省・環境省により実施された標準発熱量・炭素排出係数の設定に関する調査を通じて得られた値を用いている。 改定対象とする燃料種は、実測調査に要するコストや作業負荷と排出量への影響とのバランス等を踏まえて選別した。炭素排出係数の設定方法は、前回改定時の手法を原則踏襲した。

2023 年度のエネルギー源別標準発熱量・炭素排出係数の改訂に関する詳細については、「エネルギー源別標準発熱量・炭素排出係数(2023 年度改訂)の解説 | 9を参照のこと。

5) ガソリン・軽油の炭素排出係数について

ガソリン及び軽油に関しては、活動量であるガソリン・軽油の国内消費量に、バイオ燃料(バイオエタノール・バイオディーゼル)が含まれている。バイオ燃料に含まれるバイオマス由来の炭素分を排出量から控除するため、ガソリン及び軽油に関しては、国内におけるバイオエタノール及びバイオディーゼルの供給量を用い、バイオマス分を控除したガソリン・軽油の炭素排出係数を別途設定する。

(2) 高炉ガス

鉄鋼製造工程における高炉・転炉においては、投入される吹込用原料炭、コークスのエネルギー量・炭素量と、産出される高炉ガス、転炉ガスのエネルギー量・炭素量の収支は理論上成立していなければならない。この高炉・転炉での炭素収支を成立させるため、高炉ガス組成の不安定性に鑑み、高炉ガスの炭素排出係数については、高炉・転炉に関する炭素収支から毎年度算定している。

具体的には、鉄鋼系ガス部門に示された高炉に投入された炭素量(投入された吹込用原料炭及 びコークスに含まれる炭素量)から、転炉ガスに含まれる可燃炭素を差し引いた炭素量を高炉ガ スの排出量とみなし、当該炭素量を高炉ガスの発生量で除すことで排出係数を算定する。算定式 及び算定過程を以下に示す。

$$EF_{BFG} = \left[\left(A_{coal} \times EF_{coal} + A_{coke} \times EF_{coke} \right) - A_{CFG} \times EF_{CFG} \right] / A_{BFG}$$

EF: 炭素排出係数 [t-C/TJ]A: エネルギー量 [TJ]

 BFG
 : 高炉ガス

 coal
 : 吹込用原料炭

 coke
 : コークス

 CFG
 : 転炉ガス

_

⁹ https://www.enecho.meti.go.jp/statistics/total_energy/pdf/shv2023_cmt.pdf

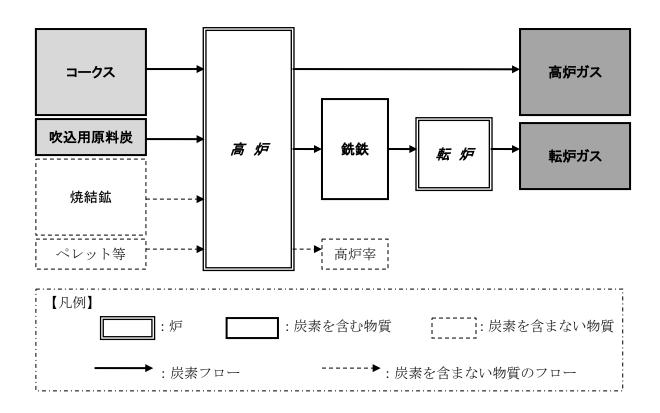


図 2 鉄鋼製造における炭素フローの概略図

表 3 高炉ガスの炭素排出係数の算定過程

鉄鋼系	ミガス		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Input												
	吹込用原料炭	kt-C	1,650	1,937	2,067	2,081	2,490	2,619	2,884	2,982	3,177	3,274
	コークス	kt-C	12,739	12,005	11,203	11,235	11,651	11,400	11,594	11,716	10,782	11,477
	合計	kt-C	14,389	13,942	13,270	13,316	14,141	14,019	14,479	14,698	13,959	14,751
Output												
	転炉ガス	kt-C	2,541	2,397	2,227	2,236	2,354	2,359	2,383	2,408	2,229	2,517
差		kt-C	11,848	11,545	11,043	11,080	11,786	11,660	12,096	12,290	11,730	12,234
Output												
	高炉ガス	TJ	435	425	408	409	437	434	450	458	439	459
EF	高炉ガス	t-C/TJ	27.2	27.1	27.1	27.1	27.0	26.9	26.9	26.8	26.7	26.7

鉄鋼系	ミガス		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Input												
	吹込用原料炭	kt-C	3,351	3,425	3,419	3,396	3,227	3,014	3,126	3,387	2,859	2,576
	コークス	kt-C	12,221	11,874	12,453	12,292	12,570	11,497	11,746	11,935	10,928	10,458
	合計	kt-C	15,572	15,300	15,871	15,689	15,797	14,511	14,872	15,322	13,786	13,034
Output												
	転炉ガス	kt-C	2,726	2,694	2,865	2,840	2,940	2,804	2,999	3,038	2,727	2,589
差		kt-C	12,846	12,605	13,007	12,848	12,857	11,707	11,874	12,284	11,059	10,444
Output												
	高炉ガス	TJ	482	474	489	483	483	441	449	465	418	394
EF	高炉ガス	t-C/TJ	26.7	26.6	26.6	26.6	26.6	26.5	26.4	26.4	26.5	26.5

鉄鋼系	系ガス		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Input												
	吹込用原料炭	kt-C	3,444	3,669	4,019	4,401	4,283	4,180	4,206	4,250	4,094	4,043
	コークス	kt-C	11,194	10,137	10,187	10,870	10,917	10,270	10,196	9,739	9,586	9,273
	合計	kt-C	14,637	13,806	14,206	15,271	15,200	14,449	14,402	13,989	13,680	13,316
Output	:											
	転炉ガス	kt-C	2,798	2,502	2,612	2,955	2,941	2,778	2,770	2,589	2,552	2,478
差		kt-C	11,839	11,304	11,594	12,316	12,260	11,671	11,632	11,400	11,127	10,838
Output												
	高炉ガス	TJ	449	430	443	465	462	440	439	430	423	412
	_	-		-				-	-	-		
EF	高炉ガス	t-C/TJ	26.4	26.3	26.2	26.5	26.6	26.5	26.5	26.5	26.3	26.3

鉄鋼系	ミガス		2020	2021	2022	2023
Input						
	吹込用原料炭	kt-C	2,965	4,035	3,491	3,528
	コークス	kt-C	7,833	8,757	7,899	7,497
	合計	kt-C	10,799	12,792	11,390	11,024
Output						
	転炉ガス	kt-C	2,066	2,309	2,113	1,899
差		kt-C	8,733	10,483	9,277	9,126
Output						
	高炉ガス	TJ	331	399	353	349
			•		•	
EF	高炉ガス	t-C/TJ	26.4	26.3	26.3	26.1

(3)都市ガス(一般ガス)

都市ガスは、一般ガス事業者が供給する一般ガスと、簡易ガス事業者が供給する簡易ガスに分けられる。

簡易ガスの炭素排出係数は、その大部分が LPG 直接供給によるプロパンガスであることから、LPG と同一の値を採用する。

一般ガスの炭素排出係数については、一般ガスはその大部分が原材料を混合・空気希釈して製造されたものであることから、一般ガス製造における炭素収支から毎年度設定する。具体的には、一般ガスの原料として消費された炭素量(コークス炉ガス、灯油、製油所ガス、LPG、LNG、国産天然ガスに含まれる炭素量)を、一般ガスの生産量で除すことで排出係数を設定する。算定式及び算定過程を以下に示す。

$$EF_{CG} = \sum_{i} (A_i \times EF_i)/P_{CG}$$

EF: 炭素排出係数 [t-C/TJ]A: エネルギー量 [TJ]

P : 生產量 [TJ]

CG : 都市ガス (一般ガス)

i : 都市ガス原料 (コークス炉ガス、灯油、製油所ガス、LPG、LNG、国

産天然ガス、バイオガス)

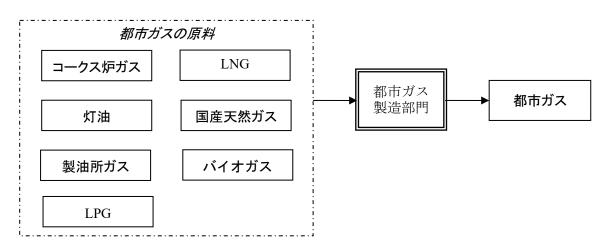


図 3 都市ガスの製造フロー

表 4 一般ガスの炭素排出係数の算定過程

一般ガス製造		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Input											
コーク	ス炉ガス kt-C	211	177	169	166	133	134	131	106	101	107
灯油	kt-C	200	236	227	256	209	275	238	169	103	98
製油所	ガス kt-C	186	193	192	193	197	199	193	192	191	189
LPG	kt-C	1,957	2,044	2,095	2,138	2,028	2,129	2,000	1,890	1,818	1,870
LNG	kt-C	6,473	7,163	7,694	8,431	8,701	9,429	9,988	10,525	10,814	11,483
国産天気	然ガス kt-C	551	581	608	635	627	661	689	724	752	798
合計	kt-C	9,577	10,394	10,985	11,819	11,896	12,827	13,239	13,606	13,779	14,544
Output											
一般ガ	z TJ	665	721	763	821	829	892	924	953	968	1,022
EF 一般ガニ	ス t-C/TJ	14.4	14.4	14.4	14.4	14.4	14.4	14.3	14.3	14.2	14.2

一般カ	ブス製造		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Input												
	コークス炉ガス	kt-C	105	85	87	63	30	22	0	0	0	0
	灯油	kt-C	69	55	46	30	16	6	0	0	0	0
	製油所ガス	kt-C	186	194	194	200	157	145	101	95	88	94
	LPG	kt-C	1,809	1,633	1,567	1,288	1,244	1,092	748	743	694	706
	LNG	kt-C	12,051	12,443	13,693	14,511	15,647	17,146	19,253	20,477	20,065	19,865
	国産天然ガス	kt-C	848	862	942	1,013	1,065	1,190	1,534	1,845	1,822	1,768
	合計	kt-C	15,068	15,273	16,528	17,106	18,159	19,601	21,635	23,161	22,670	22,433
Output												
	一般ガス	TJ	1,061	1,078	1,167	1,210	1,288	1,392	1,545	1,653	1,618	1,601
EF	一般ガス	t-C/TJ	14.2	14.2	14.2	14.1	14.1	14.1	14.0	14.0	14.0	14.0

一般カ	ガス製造		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Input												
	コークス炉ガス	kt-C	0	0	0	0	0	0	0	0	0	0
	灯油	kt-C	0	0	0	0	0	0	0	0	0	0
	製油所ガス	kt-C	89	83	82	67	56	37	48	43	46	77
	LPG	kt-C	786	869	891	930	992	818	837	947	965	942
	LNG	kt-C	21,357	21,957	22,216	21,709	21,863	21,868	22,907	23,252	22,682	21,960
	国産天然ガス	kt-C	1,603	1,635	1,557	1,498	1,479	1,435	1,415	1,347	1,187	1,048
	合計	kt-C	23,834	24,544	24,746	24,205	24,390	24,159	25,205	25,589	24,879	24,028
Output												
	一般ガス	TJ	1,700	1,750	1,764	1,724	1,737	1,722	1,797	1,823	1,782	1,721
,												
EF	一般ガス	t-C/TJ	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0	14.0

一般は	ブス製造		2020	2021	2022	2023
Input						
	コークス炉ガス	kt-C	0	0	0	0
	灯油	kt-C	0	0	0	0
	製油所ガス	kt-C	81	83	87	74
	LPG	kt-C	932	1,108	1,350	1,269
	LNG	kt-C	21,239	22,085	21,241	20,374
	国産天然ガス	kt-C	991	950	854	842
	合計	kt-C	23,243	24,226	23,531	22,558
Output						
	一般ガス	TJ	1,665	1,733	1,678	1,613
						·
EF	一般ガス	t-C/TJ	14.0	14.0	14.0	14.0

2.2.2 酸化率

燃料種ごとに、燃料の燃焼に伴う未燃炭素の実態について、関係業界団体、関連メーカー、専門 家等への調査を行い、燃焼の実態を考慮した我が国固有の酸化率を設定している。

(1) 気体燃料

気体燃料の燃焼については、発電用ボイラーにおける 2004 年度のガス燃焼時の煤塵濃度測定結果 (電気事業連合会) がいずれも 0 であるため、定量的に完全燃焼であることを示すことができる。ヒアリングの結果においても、いずれも 100%燃焼しているとの回答が得られているため、酸化率を 1.0 と設定した。

(2)液体燃料

液体燃料については、ほぼ全量が燃焼していると想定できるものの、燃焼状況によっては 0.5% 程度の未燃損失が生じる可能性がある。ただし、いずれも具体的な定量データを示すのは困難であり、我が国ではきめ細かな燃焼管理、煤煙処理を実施していることを勘案し、酸化率を 1.0 と設定した。

(3) 固体燃料

1) 石炭の燃焼状況

石炭燃焼は、ガス燃料、石油燃料に比べ燃焼速度が遅く、石炭燃焼に伴い発生する灰分(石炭灰)中に未燃焼炭素分が含まれる。石炭灰の発生量は石炭の性状により大きく異なるが、その範囲はおよそ 5~30%である。ボイラーで発生した石炭灰は集塵器、節炭器、空気予熱器、炉底より回収され、石炭燃焼に伴う未燃炭素分が石炭灰中に含まれた状態で炉外へ出る。

2) 未燃焼炭素分の推定方法

石炭の燃焼については、燃焼条件、炉種、炭質により燃焼の状況が異なることもあり、具体的にどれだけの未燃炭素が生じているかを示す直接的な定量データの提供は困難な状況である。一方、炉で発生する未燃炭素については、ほぼ全量が石炭灰中に含まれるものと考えられることから、石炭灰の発生量と石炭灰中に含まれる未燃炭素分より石炭の燃焼において発生した未燃炭素分の推定を行った。

①石炭灰中に含まれる未燃炭素分

石炭灰の未燃分は、ボイラーの燃焼条件と使用する石炭の性状に大きく左右され、数%程度から 10%を越える場合もある。未燃炭素分は石炭灰の強熱減量の値を用いて推計を行った 10。石炭灰は廃棄物の処理及び清掃に関する法律によって産業廃棄物に指定されているため、成分分析を行うこととなっているが、その情報は統計的な情報としては把握できない。したがって、「石炭灰ハンドブック(日本フライアッシュ協会)」に掲載されている「第 10 回石炭利用技術研究会発表会講演集(石炭技術研究所編)」の石炭灰の物理的性状統計値における、フライアッシュの強熱減量の平均値を用い、石炭灰中の未燃炭素分を 5.4%と設定する。

試料 平均値 試料数 範囲 標準偏差 調査 (個) 5.4 1.4~11.3 「第 10 回石炭利用技術 フライアッシュ 2.4 78 (%)(%)研究会発表会講演集」 5.3 1.4~11.1 「電力土木」(1986.9) 石炭灰 2.6 38 (%)(%)

表 5 石炭灰の強熱減量

出典: 石炭灰ハンドブック (日本フライアッシュ協会)

② 石炭灰発生量

石炭灰発生量は、「石炭灰全国実態調査(石炭エネルギーセンター)」による石炭灰発生量を用いた。当該調査結果は、出力 1,000 kW 以上の自家用発電設備の所有者に対してアンケート調査を行い回答が得られたもの(回収率は 9 割程度)と、電気事業用火力発電所からの発生量(フライアッシュ協会集計)の集計による。なお、1991 年及び 1992 年は調査が行われていないため内挿値を用いた。

表 6 石炭灰の発生量

¹⁰ 厳密には強熱減量は全量未燃炭素量を示す指標ではないが、未燃炭素含有率の直接測定結果を強熱減量の代替として用いても良くなったのは 1999 年 JIS 改正以降でもあり、ここでは強熱減量の数値をそのまま未燃炭素量としてみなすこととする。

			1990	1991	1992	1993	1994	1995	1996
石炭使用量		kt	37,419	39,672	41,926	44,179	49,656	52,695	53,644
石炭灰発生量	電気事業	kt	3,913	4,088	4,263	4,438	4,725	5,149	5,288
	一般産業	kt	1,725	1,805	1,884	1,964	1,801	1,974	1,920
	合計	kt	5,638	5,893	6,147	6,402	6,526	7,123	7,208
			1997	1998	1999	2000	2001	2002	2003
石炭使用量		kt	56,007	56,042	62,640	69,714	74,299	82,971	88,671
石炭灰発生量	電気事業	kt	5,408	5,029		6,322	6,785	6,920	7,475
	一般産業	kt	1,890	1,760	1,843	2,097	2,025	2,316	2,391
	合計	kt	7,298	6,789	7,600	8,429	8,810	9,236	9,866

出典:石炭灰全国実態調査

3) 石炭灰中の未燃焼炭素の大気放出

石炭灰は有効利用又は埋立処理が行われており、廃棄物の資源化及び灰処分場確保の問題より 有効利用される石炭灰の割合は経年的に増加している。主な有効利用用途は、セメント製造、道 路材、人工骨材、肥料、土壌改良材等である。

有効利用が行われる石炭灰のうち、セメント原料に利用されたもののように、製造過程において焼成工程を経るものについては、焼成過程で石炭灰中に含まれる未燃炭素が酸化され CO₂ として大気中に放出される。一方、セメント混和剤のようにそのまま利用されるものや埋立処理においては、未燃炭素が酸化されることのないまま固定されると考えられる。なお、これらの炭素については埋立後に酸化され CO₂ として排出もされないと解釈されている。

以上を踏まえ、未燃炭素が酸化されて CO₂ として大気中に放出される石炭灰の利用用途の割合を、利用用途別石炭灰使用量より推計を行った(表 8)。

利用分野 利用用途 焼成工程 未燃炭素の酸化 セメント原材料 有 \bigcirc セメント分野 セメント混合材 無 コンクリート混和材 無 地盤改良材 無 土木工事用 無 電力工事用 無 土木分野 道路路盤材 無 アスファルト・フィーラー材 炭坑充填材 \bigcirc 建材ボード 有(一部) 建築分野 人工軽量骨材 有 (一部) \bigcirc コンクリート2次製品 肥料 珪酸カリ肥料 有 \bigcirc

その他

土壌改良材

下水汚水処理剤

製鉄用

その他

無

無

有

無とする

(含、融

埋立

雪剤)

農業·水産分野

その他

表 7 石炭灰の利用分野と未燃炭素分の酸化の有無について

資料:石炭灰ハンドブックより作成

 \bigcirc

算定式

$R = Au \ out / Au$

R:未燃炭素が酸化される利用用途の割合

Au: 石炭灰有効利用量

Au out: 焼成工程を経る用途に用いられる石炭灰利用量

表 8 未燃炭素分が酸化される石炭灰の利用用途割合の推定結果

利用用途		1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
セメント原材料	%	52.19%	55.19%	58.09%	56.66%	62.67%	61.01%	63.12%	68.52%	73.72%	70.12%
建材ボード	%	5.81%	4.58%	5.34%	6.27%	4.60%	4.06%	4.43%	4.31%	4.49%	4.50%
人工軽量骨材	%	1.28%	0.96%	0.77%	0.42%	0.75%	0.28%	0.40%	0.33%	0.05%	0.00%
珪酸カリ肥料	%	0.37%	0.33%	0.32%	0.32%	0.30%	0.25%	0.23%	0.23%	0.19%	0.19%
製鉄用	%	0.78%	0.13%	0.73%	0.08%	0.08%	0.05%	0.04%	0.03%	0.17%	0.25%
計	%	60.44%	61.19%	65.24%	63.75%	68.39%	65.64%	68.22%	73.42%	78.62%	75.06%

※ 石炭灰全国調査 各年の石炭灰の有効利用分野内訳の数値を利用

※ 珪酸カリ肥料の利用量は石炭灰ハンドブック及びメーカーヒアリングより推定

※ 調査実施は1994年以降

資料:石炭灰全国調査結果、石炭灰ハンドブックより作成

4)酸化率の推定

石炭燃焼においては石炭灰中に含まれたまま固定される炭素分を控除することで、下流側で排出される CO₂ も含めた酸化率を推定した。推計は「石炭灰全国実態調査」による石炭使用量及び石炭灰の有効利用量、並びに「第 10 回石炭利用技術研究会発表会講演集」における強熱減量の値を用いて行った。

$$OF = 1 - (A - Au * R) * L / W$$

OF:酸化率(下流での排出分込み)

A:石炭灰発生量

Au: 石炭灰有効利用量

R:未燃炭素が酸化される利用用途の割合

L: 強熱減量 W: 石炭使用量

なお、炉内での燃焼状況に限った酸化率は以下のように計算される。

OF' = 1 - A*L/W

OF': 酸化率 (燃焼分)

A:石炭灰発生量

L:強熱減量

W:石炭使用量

表 9 石炭燃焼における酸化率の推定

		1990	1991	1992	1993	1994	1995	1996
石炭使用量	kt	37,419	39,672	41,926	44,179	49,656	52,695	53,644
石炭灰発生量	kt	5,638	5,893	6,147	6,402	6,526	7,123	7,208
石炭灰有効利用量	kt	2,884	3,241	3,598	3,955	4,215	4,782	5,058
未燃炭素酸化分	%	60.4%	60.4%	60.4%	60.4%	60.4%	61.2%	65.2%
強熱減量	%	5.4%	5.4%	5.4%	5.4%	5.4%	5.4%	5.4%
酸化係数(燃焼分)		0.9919	0.9920	0.9921	0.9922	0.9929	0.9927	0.9927
酸化係数(下流込み)		0.9944	0.9946	0.9949	0.9951	0.9957	0.9957	0.9961
		1997	1998	1999	2000	2001	2002	2003
石炭使用量	kt	56,007	56,042	62,640	69,714	74,299	82,971	88,671
石炭灰発生量	kt	7,298	6,789	7,600	8,429	8,810	9,236	9,866
石炭灰有効利用量	kt	4,958	5,090	6,135	6,931	7,173	7,724	8,380
未燃炭素酸化分	%	63.8%	68.4%	65.6%	68.2%	73.4%	78.6%	75.1%
強熱減量	%	5.4%	5.4%	5.4%	5.4%	5.4%	5.4%	5.4%
酸化係数(燃焼分)		0.9930	0.9935	0.9934	0.9935	0.9936	0.9940	0.9940
酸化係数(下流込み)		0.9960	0.9968	0.9969	0.9971	0.9974	0.9979	0.9978

1991,1992年の石炭使用量、石炭灰発生量、石炭灰有効利用量は内挿にて計算

1990-1993年の未燃炭素酸化分は1994年の数値を利用

以上より石炭燃焼における酸化率は 1990~2003 年の平均値は有効数字 3 桁で 0.996 となる。 我が国のインベントリに用いるデータの精度を考慮すると、有効数字 2 桁の設定が妥当であるため、3 桁目の四捨五入を行い、我が国の石炭燃焼に係る酸化率は 1.0 と設定した。

5) 検証

上記、「石炭灰全国実態調査」の結果を用いた算定は悉皆調査ではないため、「石炭灰全国実態調査」における石炭使用量と、「コールノート(石炭エネルギーセンター)」における一般炭需要量の比較を行い、調査対象としてカバーした石炭の量は全体の約87%であることを確認した。

表 10 石炭灰全国調査のカバー率評価

			1990	1991	1992	1993	1994	1995
石炭使用量	一般炭需要量(コールノート)	万t	4,514	5,082	5,060	5,300	5,876	6,242
石炭使用量	石炭灰全国調査	万t	3,742	3,967	4,193	4,418	4,966	5,270
カバー率			0.83	0.78	0.83	0.83	0.85	0.84
			1996	1997	1998	1999	2000	2001
					1//0	1///	_000	
石炭使用量	一般炭需要量(コールノート)	万t	6,289	6,785	6,459	7,115	8,189	8,741
石炭使用量 石炭使用量	一般炭需要量(コールノート) 石炭灰全国調査	万t 万t	6,289 5,601		6,459			
			,	6,785	6,459	7,115	8,189	8,741

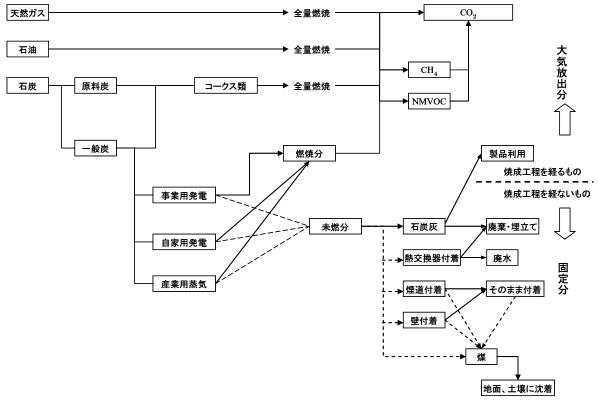


図 4 炭素フロー概略図

(4) 炭素の意図的な二重計上について

上記のとおり、我が国のインベントリにおける化石燃料の燃焼に伴う CO_2 排出量の算定では、全ての燃料種において酸化率を 1.0 と設定している。これはすなわち、化石燃料に含まれる炭素が完全燃焼され、全量 CO_2 となることを想定しているが、実際には一部不完全燃焼により、 CH_4 、CO、NMVOC 等のガスとして大気中に排出される炭素も存在する。燃料の燃焼に伴うこれらのガスの排出量は別途算定しており、両者を報告すると炭素分の二重計上となるが、 CO_2 以外のガスに含まれる炭素量を CO_2 排出量から控除はしていない。

2.3 活動量

2.3.1 エネルギー消費量 (固有単位)

当該分野の活動量については、「総合エネルギー統計」に示された部門別エネルギー源別のエネルギー消費量を用いている。

「総合エネルギー統計」は、日本国内に供給された石炭・石油・天然ガスなどのエネルギー源が、どのような形態に転換され、日本国内においてどの部門によりどのような形で消費されたのかを捉え、国内のエネルギー需給の状況を表した統計(エネルギーバランス表)である。この統計の目的は、我が国のエネルギー需給の概要を示し、エネルギー・環境政策の企画立案やその効果の実測・評価などに貢献するとともに、エネルギー需要に対する定量的な理解や情勢判断を支援するために策定するものである。

「総合エネルギー統計」は、各種エネルギー源を「列」、エネルギー供給・転換・消費部門を「行」

として、国内のエネルギー需給を行列形式で表現している。具体的には、各種エネルギー源「列」においては、11の大項目区分(石炭、石炭製品、原油、石油製品、天然ガス、都市ガス、再生可能・未活用エネルギー、事業用水力発電、原子力発電、電力、熱)と必要な中項目以下の区分で構成されている。そして需給部門「行」の構成については、一次エネルギー供給(一次供給)、エネルギー転換(転換)、最終エネルギー消費(最終消費)の3つの大部門と必要な中部門以下の部門で構成されている。

「総合エネルギー統計」におけるエネルギー需給量の算定では、ガソリン・電力などの各エネルギー源が一律に固有単位当たりの総発熱量(GCV)[MJ/kg, MJ/l, MJ/m³]で均質とし、それぞれのエネルギー源が供給・転換・消費されていると仮定している。そして各種の公的統計で把握されている固有単位での供給・転換・消費の数値に、固有単位当たりの総発熱量(GCV)を乗じてエネルギー需給量を算定している。総合エネルギー統計の算定作業は以下の手順で行われている。

- (1) 発熱量・炭素排出係数の設定
- (2) 各種公的統計からエネルギー需給モジュールの構築
- (3) 固有単位表の作成(各種公的統計からモジュールを通して、詳細表、本表及び簡易表を作成)(t, kl, 10³×m³などの単位で表記)
- (4) エネルギー単位表の作成(ジュール単位で表記)
- (5) エネルギー起源炭素表の作成(炭素含有量で表記)

「総合エネルギー統計(エネルギーバランス表)」は以下の資源エネルギー庁のウェブサイトで 1990 年度から入手可能である。

http://www.enecho.meti.go.jp/statistics/total energy/>

エネルギー産業の活動量については、総合エネルギー統計に示された、「石炭製品製造 (#210000)」、「石油製品製造 (#220000)」、「ガス製造 (#230000)」、「電気事業者が行う発電に伴う エネルギー消費量を計上している事業用発電 (#240000)」、「熱供給事業者が行う温熱・冷熱の発生 に伴う消費量を計上している地域熱供給 (#270000)」及び「各エネルギー産業における自家消費 (石炭製品製造 #301100)」、「石油製品製造 (#301200)」、「ガス製造 (#301300)」、「事業用電力 (#301400)」、「地域熱供給 (#301500)」の各部門の値を用いている。

上記に加え、1990~2015 年度については、「電気業 (#255330)」における自家用発電のエネルギー消費量も活動量に含めている。これは、2006 年 IPCC ガイドラインでは、発電を主たる業とする事業者は「1.A.1.a. 発電及び熱供給」に含めることとされているところ、「総合エネルギー統計」における 2015 年度までの「電気業 (#255330)」には、主に発電を主たる業とする独立系発電事業者 (IPP) が含まれているためである。なお、電力小売全面自由化を定めた改正電気事業法が 2016 年 4 月に施行されたことに伴い電気事業者の定義が変更されたため、2016 年度以降は IPP 等の発電を主たる業とする事業者は「電気業 (#255330)」ではなく「事業用発電 (#240000)」に含まれている。

総合エネルギー統計の部門と CRT の部門対応を表 11 に示す。

表 11 総合エネルギー統計とインベントリ (CRT) の部門対応 (1.A.1.)

CRT	総合エネルギー統計							
1A1 Energy industries								
	事業用発電	#240000						
	自家消費 事業用電力	#301400						
1A1a Public electricity and heat production	地域熱供給	#270000						
	自家消費 地域熱供給	#301500						
	自家用発電 電気業(2015年度まで)	#255330						
	石油製品製造	#220000						
	自家消費 石油製品製造	#301200						
1A1b Petroleum refining	自家用発電 石油製品	#253171						
TATO Fed Oledin Terming	自家用蒸気発生 石油製品	#263171						
	最終エネルギー消費 石油製品製造業(除石油製品)	#626510						
	▲非エネルギー利用(石油製品)	#951540						
	石炭製品製造	#210000						
	自家消費 石炭製品製造	#301100						
Manufacture of solid fuels and other energy	自家用発電 石炭製品他	#253175						
1A1c industries	自家用蒸気発生 石炭製品他	#263175						
industries	最終エネルギー消費 石炭製品製造業他(除 石炭製品)	#626550						
	ガス製造	#230000						
	自家消費 ガス製造	#301300						

(注) ▲非エネルギー利用:原料用として用いられた分を控除している。

2.3.2 発熱量

エネルギー源別の発熱量は、「総合エネルギー統計」で用いられている GCV を使用する。エネルギー源ごとの GCV の推移を表 12 に示す。

「総合エネルギー統計」では、各エネルギー源の固有単位当たりの発熱量が毎年度再計算可能なエネルギーについては、毎年度公的統計から再計算を行って算定した「実質発熱量」を用いている。また、毎年度再計算することができないエネルギー源や、物理的性状が安定しているエネルギー源については、直近の実測データや各種公的文献・資料などから推計された「標準発熱量」の値を用いている。

なお、標準発熱量は、おおむね 5 年に一度改訂されており、これまで、2000 年度値、2005 年度値、2013 年度値、2018 年度値、2023 年度値に対して改訂が実施されている。

固体燃料の GCV のトレンドは、1990 年以降減少傾向にあるが、これはコークス用原料炭と一般炭の比率の変化に起因する。1970~1990 年においては、コークスの原料として、コークス用原料炭が使用されていたが、コークス用原料炭の不足と価格上昇のため、コークスの代わりに前処理(調湿と増粘)をした一般炭を使う新しいコークス技術が開発された。同様に、PCI(吹込用原料炭)が、コークス用原料炭や一般炭の混合から、前処理(微粉化)をした一般炭に変更された。これは、我が国の鉄鋼製造が、経済的な理由で安い石炭から高品質のコークスを製造してきたためである。従来のコークス用原料炭は、一般炭に比べて高い炭素含有量と発熱量を有するため、新技術が徐々に導入された結果、近年の見かけの GCV が減少傾向にある。

なお、我が国のインベントリで用いている発熱量は、上述のとおり、燃焼により生成した水蒸気が全て凝縮した際に得られる潜熱を含めた GCV であるが、2006 年 IPCC ガイドラインで示されているエネルギー源別発熱量は、水分の潜熱を含まない低位発熱量(Net Calorific Value: NCV)であることに留意が必要である。

表 12 エネルギー源ごとの GCV の推移

エネル	ノギー》	原	コード	単位	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
	原料员	Ķ	\$0110	MJ/kg										
	コー	-クス用原料炭	\$0111	MJ/kg	31.8	31.7	31.3	31.2	30.8	30.5	30.3	30.2	30.0	29.2
		用原料炭	\$0112	MJ/kg	31.8	31.7	31.3	31.2	30.8	30.5	30.1	29.6	29.1	28.7
石	輸入-		\$0121	MJ/kg										
炭]輸入一般炭	\$0122	MJ/kg	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0
		注用輸入一般炭	\$0123	MJ/kg	24.9	25.5	25.6	25.7	26.1	26.1	26.2	26.2	26.2	26.2
		一般炭	\$0124	MJ/kg	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3
	無煙炭		\$0130	MJ/kg	27.2	27.2	27.2	27.2	27.2	27.2	27.2	27.2	27.2	27.2
	コーク	7 ス	\$0211	MJ/kg	30.1	30.1	30.1	30.1	30.1	30.1	30.1	30.1	30.1	30.1
_	コール	レタール	\$0212	MJ/kg	37.3	37.3	37.3	37.3	37.3	37.3	37.3	37.3	37.3	37.3
石炭	練豆炭		\$0213	MJ/kg	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9
製		フス炉ガス	\$0221	MJ/m ³	21.5	21.5	21.6	21.6	21.6	21.6	21.6	21.4	21.4	21.4
品	高炉オ	ガス	\$0222	MJ/m ³	3.5	3.5	3.5	3.5	3.7	3.6	3.6	3.6	3.7	3.7
	転炉カ	ガス	\$0225	MJ/m ³	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4
	精製月	月原油	\$0310	MJ/l										
	精製	· !用純原油	\$0311	MJ/l	38.3	38.3	38.3	38.3	38.3	38.3	38.3	38.3	38.2	38.3
		用粗残油	\$0312	MJ/l	38.3	38.3	38.3	38.3	38.3	38.3	38.3	38.3	38.2	38.3
	発電月		\$0320	MJ/l	39.1	39.1	39.1	39.2	39.1	39.2	39.3	39.4	39.5	39.5
原油	瀝青質	質混合物	\$0321	MJ/kg	30.1	30.1	30.1	30.1	30.1	30.3	30.0	29.8	30.0	30.0
油		コンデンセート	\$0330	MJ/l	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		用NGLコンデンセート	\$0331	MJ/l	35.7	35.3	35.6	35.5	35.5	35.5	35.4	35.3	35.4	35.4
	発電	用NGLコンデンセート	\$0332	MJ/l	35.7	35.3	35.6	35.5	35.5	35.5	35.4	35.3	35.4	35.4
	石油	化学用NGLコンデンセート	\$0333	MJ/l	35.7	35.3	35.6	35.5	35.5	35.5	35.4	35.3	35.4	35.4
	metical NI	純ナフサ	\$0420	MJ/l	33.6	33.6	33.6	33.6	33.6	33.6	33.6	33.6	33.6	33.6
	原料油	改質生成油	\$0421	MJ/l	35.1	35.1	35.1	35.1	35.1	35.1	35.1	35.1	35.1	35.1
		ガソリン(原油由来) ¹⁾		MJ/l	34.6	34.6	34.6	34.6	34.6	34.6	34.6	34.6	34.6	34.6
		ガソリン(バイオマス考慮) ²⁾	\$0431	MJ/l	34.6	34.6	34.6	34.6	34.6	34.6	34.6	34.6	34.6	34.6
		ジェット燃料油	\$0432	MJ/l	36.4	36.4	36.4	36.4	36.4	36.4	36.4	36.4	36.4	36.4
		灯油	\$0433	MJ/l	36.8	36.8	36.8	36.8	36.8	36.8	36.8	36.8	36.8	36.8
	燃	軽油(原油由来)1)	60424	MJ/l	38.1	38.1	38.1	38.1	38.1	38.1	38.1	38.2	38.1	38.1
石	料油	軽油(バイオマス考慮)2)	\$0434	MJ/l	38.1	38.1	38.1	38.1	38.1	38.1	38.1	38.2	38.1	38.1
油	1,5-4	A重油	\$0436	MJ/l	39.7	39.8	39.7	39.7	39.6	39.6	39.4	39.4	39.5	39.4
製		B重油	\$0438	MJ/l	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2
品		一般用C重油	\$0439	MJ/l	40.2	40.3	40.2	40.3	40.3	40.3	40.4	40.4	40.3	40.3
		発電用C重油	\$0440	MJ/l	41.1	40.9	41.0	41.1	41.0	41.1	41.2	41.1	41.3	41.3
		潤滑油	\$0451	MJ/l	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2
	他	他重質石油製品	\$0452	MJ/kg	39.2	39.4	39.2	39.3	39.4	39.3	39.4	39.4	39.4	39.4
	石油	オイルコークス	\$0455	MJ/kg	35.6	35.6	35.6	35.6	35.6	35.6	35.6	35.6	35.6	35.6
	製	電気炉ガス	\$0456	MJ/m ³	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4
		製油所ガス	\$0457	MJ/m ³	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3	39.3
		液化石油ガス (LPG)	\$0458	MJ/kg	50.5	50.5	50.6	50.6	50.6	50.6	50.6	50.7	50.7	50.7
	輸入尹	E然ガス (LNG)	\$0510	MJ/kg	54.5	54.5	54.5	54.5	54.5	54.5	54.5	54.5	54.5	54.5
天	国産ヲ	F 然ガス	\$0520	MJ/m ³	42.1	42.2	42.2	42.3	42.2	42.4	42.6	42.8	42.8	42.6
然ガ	ガス	田・随伴ガス	\$0521	MJ/m ³	42.1	42.2	42.2	42.3	42.2	42.4	42.6	42.8	42.8	42.6
ス	炭鉱	ズガス	\$0522	MJ/m ³	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0	36.0
	原油	溶解ガス	\$0523	MJ/m ³	42.1	42.2	42.2	42.3	42.2	42.4	42.6	42.8	42.8	42.6
ガ都	一般カ	ガス	\$0610	MJ/m ³	41.9	41.9	41.9	41.9	41.9	41.9	41.9	41.9	41.9	41.9
ス市	簡易ス	ガス	\$0620	MJ/m ³	105.4	105.0	104.8	104.3	104.3	103.6	103.5	103.1	102.7	102.5
	木材系	刊用	\$N131	MJ/kg	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4	15.4
バ	廃材和		\$N132	MJ/kg	16.7	16.7	16.7	16.7	16.7	16.7	16.7	16.7	16.7	16.7
イ オ		ナエタノール	\$N134	MJ/l	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9
マ	バイス	ナディーゼル	\$N135	MJ/l	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9
ス	黒液直	直接利用	\$N136	MJ/kg	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6
	バイス		\$N137	MJ/m ³	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4	23.4
1) レフ	ァレンス	マアプローチで使用。 マアプローチで使用。												

¹⁾ レファレンスアプローチで使用。

²⁾ 部門別アプローチで使用。

^{3) 2012}年度迄は 気体は原則全て 0℃, 1気圧(ハマル状態)、液体は常温、固体は全て「有水有灰」状態での数値を示す。 2013年度以降は 気体・液体は原則全て 25℃, 1 bar (標準環境状態 SATP)、固体は全て「有水・有灰」状態での数値を示す。

映込用原料機	8.2 28.2 5.7 25.7 25.7 25.5 25.3 2.5 22.5 6.9 26.9 9.4 29.4 7.3 37.3 3.9 23.9 1.3 21.2 8.4 3.4 8.4 8.4 8.1 38.2 8.1 38.2	28.2 25.7 25.3 22.5 26.9 29.4 37.3 23.9 21.2 3.4 8.4 38.2 38.2	299 288 255 225 266 299 377 233 211 3.8.8
映込用原料炭	8.2 28.2 5.7 5.7 25.7 25.3 2.5 22.5 6.9 26.9 9.4 29.4 7.3 37.3 3.9 23.9 1.3 21.2 3.4 8.4 8.4 8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	28.2 25.7 25.3 22.5 26.9 29.4 37.3 23.9 21.2 3.4 8.4 38.2 38.2	28 25 25 26 29 37 23 21 3. 8.
横入一般炭 S0121 MJ/kg 26.6 26.6 26.6 26.6 25.7 25.7 25.7 25.6 2 2 2 2 2 2 2 2 2	5.7 25.7 5.5 25.3 2.5 22.5 6.9 26.9 9.4 29.4 7.3 37.3 3.9 23.9 1.3 21.2 3.4 3.4 3.4 8.4 8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	25.7 25.3 22.5 26.9 29.4 37.3 23.9 21.2 3.4 8.4 38.2 38.2	255 225 226 229 377 233 211 3.
説用輸入一般膜	5.5 25.3 2.5 22.5 6.9 26.9 9.4 29.4 7.3 37.3 3.9 23.9 1.3 21.2 3.4 3.4 8.4 8.1 38.2 8.1 38.2 8.1 38.2 2.4 22.4 22.4	25.3 22.5 26.9 29.4 37.3 23.9 21.2 3.4 8.4 38.2 38.2	25 22 26 29 37 23 21 3. 8.
説用輸入一般炭 S0122 MJ/kg 26.6 26.6 26.6 26.6 25.7 25.7 25.7 25.8 25.6 26.8	5.5 25.3 2.5 22.5 6.9 26.9 9.4 29.4 7.3 37.3 3.9 23.9 1.3 21.2 3.4 3.4 8.4 8.1 38.2 8.1 38.2 8.1 38.2 2.4 22.4 22.4	25.3 22.5 26.9 29.4 37.3 23.9 21.2 3.4 8.4 38.2 38.2	25 22 26 29 37 23 21 3. 8.
無理	2.5 22.5 6.9 26.9 9.4 29.4 7.3 37.3 3.9 23.9 1.3 21.2 3.4 3.4 8.4 8.4 8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	22.5 26.9 29.4 37.3 23.9 21.2 3.4 8.4 38.2 38.2	22 26 29 37 23 21 3. 8.
国産一般炭 S0124 MJ/kg 22.5 22	6.9 26.9 9.4 29.4 7.3 37.3 3.9 23.9 1.3 21.2 3.4 3.4 8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	26.9 29.4 37.3 23.9 21.2 3.4 8.4 38.2 38.2	26 29 37 23 21 3. 8.
無煙炭	9.4 29.4 7.3 37.3 3.9 23.9 1.3 21.2 3.4 3.4 3.4 8.4 8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	29.4 37.3 23.9 21.2 3.4 8.4 38.2 38.2	29 37 23 21 3. 8.
コールタール S0212 MJ/kg 37.3 3	7.3 37.3 3.9 23.9 1.3 21.2 3.4 3.4 8.4 8.4 8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	37.3 23.9 21.2 3.4 8.4 38.2 38.2	37 23 21 3. 8.
繰回炭 S0213 MJ/kg 23.9	3.9 23.9 1.3 21.2 3.4 3.4 8.4 8.4 8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	23.9 21.2 3.4 8.4 38.2 38.2	23 21 3. 8.
膜型	1.3 21.2 3.4 3.4 3.4 8.4 8.4 8.4 8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	21.2 3.4 8.4 38.2 38.2	21 3. 8.
マークス炉ガス SO221 MJ/m³ 21.3 21.3 21.2 21.4	8.4 3.4 8.4 8.4 8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	3.4 8.4 38.2 38.2	3. 8.
高炉ガス	8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	38.2 38.2	8.
精製用原油	8.1 38.2 8.1 38.2 9.5 39.5 2.4 22.4	38.2 38.2	
精製用原油	8.1 38.2 9.5 39.5 2.4 22.4	38.2	38
精製用粗残油 \$0312 MJ/1 38.2 38.2 38.2 38.1 38.1 38.1 38.1 38.1 38.1 差電用原油 \$0320 MJ/1 39.6 39.7 39.6 39.5 39.6 38.5 39.3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8.1 38.2 9.5 39.5 2.4 22.4	38.2	38
精製用組残油 \$0312 MJ/l 38.2 38.2 38.2 38.1 38.1 38.1 38.1 38.1 38.1 差電用原油 \$0320 MJ/l 39.6 39.7 39.6 39.5 39.6 38.5 39.3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	9.5 39.5 2.4 22.4		
腰背質混合物	2.4 22.4		38
腰 青質混合物		39.5	39
NGL・コンデンセート S0330 MJ/I 0.0	0.0	22.4	22
R電用NGLコンデンセート 80332 MJ/l 35.4 35.5 35.5 35.3 34.3 35.0 35.0 3 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 3 5 3 3 4 3 3 5 3 5 3 5 3 3 5 3 5 3 3 5 3 5 3 5 3 3 5 3 5 3 5 5 3 5 3 5 5 3		0.0	0.
R電用NGLコンデンセート 80332 MJ/l 35.4 35.5 35.5 35.3 34.3 35.0 35.0 3 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 35.0 35.0 3 3 4 3 3 5 3 3 4 3 3 5 3 5 3 5 3 3 5 3 5 3 3 5 3 5 3 5 3 3 5 3 5 3 5 5 3 5 3 5 5 3	5.5 32.9	32.9	34
原料油 純ナフサ 改質生成油	5.5 32.9	32.9	34
原料油 改質生成油	5.5 32.9	32.9	34
機構 改質生成油	3.5 33.5	33.5	33
	5.1 35.1	35.1	35
横り	4.6 34.6	34.6	34
大きな	4.6 34.6	34.6	34
燃料油 軽油 (原油由来) ¹⁾	6.7 36.7	36.7	36
Range South So	6.7 36.7	36.7	36
経油 (バイオマス考慮) ²⁾ MJ/l 38.2 38.2 38.0 38.0 37.8 37.8 37.9 3	8.0 37.9	37.9	37
A重油	8.0 37.9	37.9	37
製品 B重油	0.0 39.9	39.9	39
一般用C重油	0.4 40.4	40.4	40
潤滑油 \$0451 MJ/l 40.2 40.2 40.2 40.2 40.2 40.2 40.2 40.2	0.2 40.3	40.3	40
他 世 世 世 世 五 油 製 他 重 気 が が 大 イ ル コ し も 製 他 重 気 が ガ ス の は し 、 の は し 、 の は の は の は の の は の る の は る の は の は の は る の は る の は る る は る る る る る る る る る る る る る	1.2 41.2	41.2	41
Ta コークス \$0455 MJ/kg 35.6 35.6 35.6 35.6 29.9 29.9 2 電気炉ガス \$0456 MJ/m³ 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	0.2 40.2	40.2	40
油 製 電気炉ガス \$0456 MJ/m ³ 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	9.3 39.3	39.3	39
製 電気炉ガス \$0456 MJ/m² 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	9.9 29.9	29.9	29
	8.4 8.4	8.4	8.
品 製油所ガス \$0457 MJ/m³ 44.9 44.9 44.9 44.9 44.9 44.9 44.9 44.9 4	4.9 44.9	44.9	44
	0.7 50.7	50.7	50
輸入天然ガス (LNG) \$0510 MJ/kg 54.5 54.5 54.5 54.5 54.5 54.5 54.5 54.	4.5 54.5	54.5	54
天 国産天然ガス \$0520 MJ/m³ 42.6 42.9 42.5 42.9 42.4 42.9 43.6 4	4.6 44.7	44.7	44
然 ガス田・随伴ガス \$0521 MJ/m³ 42.6 42.9 42.5 42.9 42.4 42.9 43.6 4	4.6 44.7	44.7	44
	6.7 16.7	16.7	16
原油溶解ガス \$0523 MJ/m³ 42.6 42.9 42.5 42.9 42.4 42.9 43.6 4	4.6 44.7	44.7	44
ガ都 一般ガス \$0610 MJ/m³ 41.1 41.1 41.1 41.1 44.8 44.8 4	4.8 44.8	44.8	44
	01.9 101.9	101.9	102
木材利用 \$N131 MJ/kg 15.4 15.4 15.4 15.0 19.9 19.8 1	7.7 18.5	18.5	18
	(2) 1(2)	16.3	16
イ バイオエタノール \$N134 MJ/l 23.9 23.9 23.9 23.9 23.9 23.9 23.9 23.9	6.3 16.3	23.9	23
		23.9	23
	3.9 23.9	13.2	13
バイオガス \$N137 MJ/m³ 23.4 23.4 23.4 23.4 23.4 23.4 23.4 2 23.4 2 23.4 2 23.4 2 23.4 2 23.4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3.9 23.9 3.9 23.9	23.4	23

¹⁾ レファレンスアプローチで使用。 2) 部門別アプローチで使用。

^{3) 2012}年度迄は 気体は原則全て 0℃, 1気圧(ノハマル状態)、液体は常温、固体は全て「有水有灰」状態での数値を示す。 2013年度以降は 気体・液体は原則全て 25℃, 1 bar (標準環境状態 SATP)、固体は全て「有水・有灰」状態での数値を示す。

エネル	ネルギー源		コード	単位	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	原料炭		\$0110	MJ/kg										
	コー		\$0111	MJ/kg	29.1	29.1	29.1	28.9	28.9	28.9	28.9	28.9	28.9	28.9
		用原料炭	\$0112	MJ/kg	28.2	28.2	28.2	28.0	28.0	28.0	28.0	28.0	28.3	28.3
石	輸入-		\$0121	MJ/kg										
炭	汎用	輸入一般炭	\$0122	MJ/kg	25.7	25.7	25.7	26.0	26.0	26.0	26.0	26.0	26.1	26.1
		工用輸入一般炭	\$0123	MJ/kg	25.3	25.3	25.3	26.0	25.5	25.3	25.1	25.0	24.8	24.5
		一般炭	\$0124	MJ/kg	22.5	22.5	22.5	25.3	25.3	25.3	25.3	25.3	24.2	24.2
	無煙炭	Ř	\$0130	MJ/kg	26.9	26.9	26.9	27.8	27.8	27.8	27.8	27.8	27.8	27.8
	コーク	フス	\$0211	MJ/kg	29.4	29.4	29.4	29.2	29.2	29.2	29.2	29.2	29.0	29.0
7		レタール	\$0212	MJ/kg	37.3	37.3	37.3	37.3	37.3	37.3	37.3	37.3	37.3	37.3
石炭	練豆炭	Ę	\$0213	MJ/kg	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9	23.9
製	コーク	フス炉ガス	\$0221	MJ/m ³	21.3	21.1	20.7	18.9	18.9	18.9	18.9	18.9	18.4	18.4
品	高炉オ	ガス	\$0222	MJ/m ³	3.4	3.4	3.4	3.2	3.2	3.2	3.2	3.2	3.2	3.2
	転炉カ	ガス	\$0225	MJ/m ³	8.4	8.4	8.4	7.5	7.5	7.5	7.5	7.5	7.5	7.5
	精製月	月原油	\$0310	MJ/l										
	精製	用純原油	\$0311	MJ/l	38.2	38.2	38.1	38.2	38.2	38.2	38.2	38.2	38.2	38.1
	精製	用粗残油	\$0312	MJ/l	38.2	38.2	38.1	41.3	40.9	40.6	40.8	40.3	40.2	40.1
	発電月		\$0320	MJ/l	39.7	39.4	39.3	39.3	39.4	39.8	40.0	39.5	39.8	40.1
原	瀝青質		\$0321	MJ/kg	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4	22.4
油	NGL •	コンデンセート	\$0330	MJ/l	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	精製	!用NGLコンデンセート	\$0331	MJ/l	34.8	36.9	34.8	34.8	34.7	34.7	34.8	34.6	34.5	34.7
	発電	用NGLコンデンセート	\$0332	MJ/l	34.8	36.9	34.8	34.2	34.2	34.2	34.2	34.2	34.2	34.2
	石油	化学用NGLコンデンセート	\$0333	MJ/l	34.8	36.9	34.8	34.6	34.5	34.4	34.7	34.4	34.3	34.3
		純ナフサ	\$0420	MJ/l	33.5	33.5	33.5	33.3	33.3	33.3	33.3	33.3	33.3	33.3
	原料油	改質生成油	\$0421	MJ/l	35.1	35.1	35.1	33.7	33.7	33.7	33.7	33.7	33.7	33.7
		ガソリン(原油由来) ¹⁾		MJ/l	34.6	34.6	34.6	33.4	33.4	33.4	33.4	33.4	33.4	33.4
		ガソリン(バイオマス考慮) ²⁾	\$0431	MJ/l	34.5	34.5	34.5	33.3	33.3	33.2	33.2	33.2	33.2	33.2
		ジェット燃料油	\$0432	MJ/l	36.7	36.7	36.7	36.3	36.3	36.2	36.3	36.4	36.4	36.3
		灯油	\$0433	MJ/l	36.7	36.7	36.7	36.5	36.5	36.5	36.5	36.5	36.5	36.5
	燃	軽油(原油由来)1)	00.42.4	MJ/l	38.1	38.0	37.9	38.0	38.0	38.0	38.0	38.0	38.0	38.0
7	料油	軽油(バイオマス考慮) ²⁾	\$0434	MJ/l	38.1	38.0	37.9	38.0	38.0	38.0	38.0	38.0	38.0	38.0
石油	1144	A重油	\$0436	MJ/l	39.9	39.8	39.8	38.9	38.9	38.9	38.9	38.9	38.9	38.9
製		B重油	\$0438	MJ/l	40.4	40.4	40.4	40.4	40.4	40.4	40.4	40.4	40.4	40.4
品		一般用C重油	\$0439	MJ/l	40.4	40.0	40.6	41.2	40.9	41.4	41.0	41.0	41.1	41.0
		発電用C重油	\$0440	MJ/l	41.3	41.2	41.2	41.2	41.4	41.0	41.5	41.6	41.6	41.7
		潤滑油	\$0451	MJ/l	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2	40.2
	他	他重質石油製品	\$0452	MJ/kg	39.4	39.0	39.6	40.2	39.9	40.4	40.0	40.0	40.1	40.0
	石	オイルコークス	\$0455	MJ/kg	29.9	29.9	29.9	33.3	33.3	33.3	33.3	33.3	33.3	33.3
	油製	電気炉ガス	\$0456	MJ/m ³	8.4	8.4	8.4	7.5	7.5	7.5	7.5	7.5	7.5	7.5
	品	製油所ガス	\$0457	MJ/m ³	44.9	44.9	44.9	46.1	46.1	46.1	46.1	46.1	46.1	46.1
		液化石油ガス (LPG)	\$0458	MJ/kg	50.8	50.8	50.8	50.1	50.1	50.1	50.1	50.1	50.1	50.1
	輸入ヲ	F然ガス (LNG)	\$0510	MJ/kg	54.5	54.5	54.5	54.5	54.5	54.5	54.5	54.5	54.7	54.7
天	国産ヲ	モ然ガス	\$0520	MJ/m ³	44.7	44.7	44.8	39.6	39.6	39.6	39.6	39.6	38.4	38.4
然ガ	ガス	. 田 · 随伴ガス	\$0521	MJ/m ³	44.7	44.7	44.8	39.6	39.6	39.6	39.6	39.6	38.4	38.4
カス	炭鉱	ガス	\$0522	MJ/m ³	16.7	16.7	16.7	15.1	15.1	15.1	15.1	15.1	15.1	15.1
	原油	溶解ガス	\$0523	MJ/m ³	44.7	44.7	44.8	39.6	39.6	39.6	39.6	39.6	38.4	38.4
ガ都	一般カ	ガス	\$0610	MJ/m ³	44.8	44.8	44.8	40.8	40.8	40.7	40.7	40.8	40.0	40.0
ス市	簡易オ	ザス	\$0620	MJ/m ³	101.1	101.2	101.0	96.0	95.7	95.3	95.3	95.0	94.8	94.9
	木材系	刊用	\$N131	MJ/kg	17.4	17.7	17.9	17.6	17.2	17.0	13.1	12.9	13.6	14.8
バ	廃材和	刊用	\$N132	MJ/kg	16.3	16.3	16.3	17.1	17.1	17.1	17.1	17.1	17.1	17.1
イナ	バイス	ナエタノール	\$N134	MJ/l	23.9	23.9	23.9	23.4	23.4	23.4	23.4	23.4	23.4	23.4
オマ	バイス	ナディーゼル	\$N135	MJ/l	23.9	23.9	23.9	23.4	23.4	23.4	23.4	23.4	23.4	23.4
ス	黒液直	直接利用	\$N136	MJ/kg	13.2	13.2	13.2	13.6	13.6	13.6	13.6	13.6	13.6	13.6
	バイス	ナガス	\$N137	MJ/m ³	23.4	23.4	23.4	21.2	21.2	21.2	21.2	21.2	21.2	21.2
1) 1.7												•	•	•

¹⁾ レファレンスアプローチで使用。 2) 部門別アプローチで使用。

^{3) 2012}年度迄は 気体は原則全て 0℃, 1気圧(ノハマル状態)、液体は常温、固体は全て「有水有灰」状態での数値を示す。 2013年度以降は 気体・液体は原則全て 25℃, 1 bar (標準環境状態 SATP)、固体は全て「有水・有灰」状態での数値を示す。

エネル	レギー》	原	コード	単位	2020	2021	2022	2023
	原料局		\$0110	MJ/kg	2020	2021	2022	2025
		<u>、</u> ·クス用原料炭	\$0111	MJ/kg	28.9	28.9	28.9	28.8
		用原料炭	\$0112	MJ/kg	28.3	28.3	28.3	29.1
石	輸入-		\$0121	MJ/kg				
炭		輸入一般炭	\$0122	MJ/kg	26.1	26.1	26.1	25.9
		用輸入一般炭	\$0123	MJ/kg	24.4	24.8	24.7	24.9
	国産-		\$0124	MJ/kg	24.2	24.2	24.2	24.2
	無煙炭		\$0130	MJ/kg	27.8	27.8	27.8	26.6
	コーク		\$0211	MJ/kg	29.0	29.0	29.0	29.4
		レタール	\$0212	MJ/kg	37.3	37.3	37.3	37.3
石炭	練豆炭		\$0213	MJ/kg	23.9	23.9	23.9	23.9
製		<u>、</u> 7ス炉ガス	\$0221	MJ/m ³	18.4	18.4	18.4	18.2
品	高炉オ		\$0222	MJ/m ³	3.2	3.2	3.2	3.2
	転炉カ		\$0225	MJ/m ³	7.5	7.5	7.5	7.5
	精製用		\$0310	MJ/l	,	,	,,,,	,
		用純原油	\$0311	MJ/l	38.1	38.1	38.1	38.0
		用粗残油	\$0312	MJ/l	39.9	39.8	39.0	39.0
	発電用		\$0320	MJ/l	40.4	40.5	39.3	39.1
原		 質混合物	\$0321	MJ/kg	22.4	22.4	22.4	22.4
油		コンデンセート	\$0330	MJ/l	0.0	0.0	0.0	0.0
	-	用NGLコンデンセート	\$0331	MJ/l	34.6	34.6	35.9	35.3
		:用NGLコンデンセート	\$0332	MJ/l	34.2	34.5	34.5	34.5
		化学用NGLコンデンセート	\$0333	MJ/l	34.3	34.5	34.5	34.5
		純ナフサ	\$0420	MJ/l	33.3	33.3	33.3	33.3
	原料油	改質生成油	\$0421	MJ/l	33.7	33.7	33.7	33.7
		ガソリン(原油由来) ¹⁾		MJ/l	33.4	33.4	33.4	33.4
		ガソリン(バイオマス考慮) ²⁾	\$0431	MJ/l	33.1	33.2	33.2	33.1
		ジェット燃料油	\$0432	MJ/l	36.3	36.3	36.5	36.4
		灯油	\$0433	MJ/l	36.5	36.5	36.5	36.6
	燃	軽油(原油由来)1)	00.40.4	MJ/l	38.0	38.0	38.0	37.9
7	料油	軽油(バイオマス考慮)2)	\$0434	MJ/l	38.0	38.0	38.0	37.9
石油	1144	A重油	\$0436	MJ/l	38.9	38.9	38.9	38.8
製		B重油	\$0438	MJ/l	40.4	40.4	40.4	40.4
品		一般用C重油	\$0439	MJ/l	41.1	41.0	41.0	41.0
		発電用C重油	\$0440	MJ/l	41.6	41.5	41.5	41.5
		潤滑油	\$0451	MJ/l	40.2	40.2	40.2	40.2
	他	他重質石油製品	\$0452	MJ/kg	40.1	40.0	40.0	40.0
	石油	オイルコークス	\$0455	MJ/kg	33.3	34.1	34.1	34.1
	油製	電気炉ガス	\$0456	MJ/m ³	7.5	7.5	7.5	7.5
	品	製油所ガス	\$0457	MJ/m ³	46.1	46.1	46.1	42.4
L_		液化石油ガス(LPG)	\$0458	MJ/kg	50.1	50.1	50.1	50.1
	輸入ヲ	天然ガス (LNG)	\$0510	MJ/kg	54.7	54.7	54.7	54.7
天	国産尹	天然ガス	\$0520	MJ/m ³	38.4	38.4	38.4	38.4
然ガ	ガス	田・随伴ガス	\$0521	MJ/m ³	38.4	38.4	38.4	38.4
ス	炭鉱	ガス	\$0522	MJ/m ³	15.1	15.1	15.1	15.1
	原油	溶解ガス	\$0523	MJ/m ³	38.4	38.4	38.4	38.4
ガ都	一般カ	ブス	\$0610	MJ/m ³	39.9	40.0	40.4	40.0
ス市			\$0620	MJ/m ³	94.3	94.1	94.2	94.3
	木材和	· · · · · · · · · · · · · · · · · · ·	\$N131	MJ/kg	14.5	14.8	14.1	14.4
バ	廃材和	· 川用	\$N132	MJ/kg	17.1	17.1	17.1	18.4
イオ	バイス	ナエタノール	\$N134	MJ/l	23.4	23.4	23.4	23.4
ママ	バイス	ナディーゼル	\$N135	MJ/l	23.4	35.6	35.6	35.6
ス	黒液直	直接利用	\$N136	MJ/kg	13.6	13.6	13.6	13.5
	バイス	ナガス	\$N137	MJ/m ³	21.2	21.2	21.2	21.2

¹⁾ レファレンスアプローチで使用。 2) 部門別アプローチで使用。

^{3) 2012}年度迄は 気体は原則全て 0℃, 1気圧(ノハマル状態)、液体は常温、固体は全て「有水有灰」状態での数値を示す。 2013年度以降は 気体・液体は原則全て 25℃, 1 bar (標準環境状態 SATP)、固体は全て「有水・有灰」状態での数値を示す。

表 13 燃料種区分別の活動量(「1.A.1. エネルギー産業」におけるエネルギー消費量)の推移

エネルギー源		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
液体燃料	PJ	2,596	2,485	2,535	2,183	2,504	2,198	2,113	1,916	1,744	1,745
固体燃料	PJ	1,235	1,277	1,292	1,373	1,450	1,542	1,593	1,662	1,618	1,785
気体燃料	PJ	1,564	1,667	1,655	1,658	1,760	1,786	1,868	1,937	1,994	2,117
その他化石燃料	PJ	IE,NO	0.003	0.01	0.005						
泥炭	PJ	ΙE									
バイオマス	PJ	0.04	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
合計	PJ	5,395	5,428	5,482	5,214	5,714	5,526	5,574	5,515	5,357	5,647

エネルギー源		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
液体燃料	PJ	1,618	1,348	1,539	1,603	1,532	1,669	1,485	1,872	1,660	1,256
固体燃料	PJ	1,951	2,077	2,215	2,340	2,416	2,586	2,531	2,651	2,605	2,569
気体燃料	PJ	2,167	2,154	2,168	2,237	2,147	2,021	2,212	2,442	2,429	2,451
その他化石燃料	PJ	0.3	2	3	4	4	5	5	4	4	5
泥炭	PJ	ΙE									
バイオマス	PJ	0.1	0.1	0.1	0.2	0.1	26	25	27	26	23
合計	PJ	5,737	5,580	5,925	6,184	6,099	6,308	6,257	6,996	6,724	6,304

エネルギー源		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
液体燃料	PJ	1,352	1,885	2,166	1,866	1,465	1,312	1,154	1,021	880	777
固体燃料	PJ	2,757	2,655	2,835	3,121	3,056	3,038	3,047	3,103	2,917	2,857
気体燃料	PJ	2,624	3,266	3,475	3,488	3,552	3,300	3,394	3,218	3,033	2,846
その他化石燃料	PJ	5	5	5	0.1	1	1	1	1	1	1
泥炭	PJ	ΙE									
バイオマス	PJ	28	28	28	31	32	32	48	84	92	140
合計	PJ	6,766	7,838	8,510	8,506	8,106	7,683	7,644	7,429	6,923	6,620

エネルギー源		2020	2021	2022	2023
液体燃料	PJ	674	780	785	661
固体燃料	PJ	2,752	2,899	2,878	2,699
気体燃料	PJ	2,925	2,642	2,500	2,429
その他化石燃料	РJ	1	1	1	2
泥炭	PJ	ΙE	ΙE	IE	ΙE
バイオマス	РJ	156	186	202	230
合計	PJ	6,509	6,508	6,366	6,022

(出典) エネルギー消費量:総合エネルギー統計(資源エネルギー庁) ※エネルギー消費量の区分は、CRTにおける燃料種区分

表 14 カテゴリー区分別の活動量(「1.A.1. エネルギー産業」におけるエネルギー消費量)の推移

部門		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
1.A.1.a.発電及び熱供給	РJ	4,474	4,516	4,591	4,294	4,829	4,634	4,663	4,564	4,449	4,711
1.A.1.b.石油精製	РJ	572	582	590	622	625	638	667	715	694	712
1.A.1.c.固体燃料製造及び他エ ネルギー産業	PJ	349	330	301	297	260	255	244	236	214	225
合計	PJ	5,395	5,428	5,482	5,214	5,714	5,526	5,574	5,515	5,357	5,647
部門		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
1.A.1.a.発電及び熱供給	PJ	4,791	4,654	5,000	5,232	5,110	5,270	5,221	5,959	5,724	5,316
1.A.1.b.石油精製	РJ	715	696	691	725	752	773	774	756	721	711
1.A.1.c.固体燃料製造及び他エ ネルギー産業	РJ	231	230	233	226	237	265	262	281	279	277
合計	PJ	5,737	5,580	5,925	6,184	6,099	6,308	6,257	6,996	6,724	6,304
部門		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
1.A.1.a.発電及び熱供給	PJ	5,756	6,880	7,553	7,582	7,211	6,795	6,814	6,630	6,105	5,846
1.A.1.b.石油精製	PJ	722	673	658	669	643	654	584	572	586	564
1.A.1.c.固体燃料製造及び他エ ネルギー産業	PJ	289	285	300	256	252	234	246	227	232	210
合計	PJ	6,766	7,838	8,510	8,506	8,106	7,683	7,644	7,429	6,923	6,620
部門		2020	2021	2022	2023						
1.A.1.a.発電及び熱供給	РJ	5,861	5,819	5,680	5,379						
1.A.1.b.石油精製	PJ	456	482	487	461						
1.A.1.c.固体燃料製造及び他エ ネルギー産業	РЈ	193	206	199	182						

6,509 6,508 6,366 6,022

(出典) エネルギー消費量:総合エネルギー統計(資源エネルギー庁) ※エネルギー消費量の区分は、CRT におけるカテゴリー区分

РJ

ネルギー産業

3. 算定方法の時系列変更・改善経緯

表 15 初期割当量報告書(2006年提出)以降の算定方法等の改訂経緯概要

	2009 年提出	2010 年提出	2015 年提出
排出・吸収量 算定式	廃棄物分野で計上されていた、エネルギー利用された廃 棄物及びエネルギー回収を伴 う廃棄物焼却からの排出量を 計上。	_	・石油製品製造プロセスにおける炭素収支差を「1.A.1.b 石油精製」に計上。 ・石油精製プロセスから発生し、CCS サイトに貯留された CO2の回収量を「1.A.1.b 石油精製」の排出量から控除。
排出係数	_	LPG の炭素排出係数を改訂。	2013 年度改訂炭素排出係数 を適用。
活動量	_	LPG の発熱量を改訂。	・2013 年度改訂版総合エネルギー統計を適用。・2013 年度改訂標準発熱量を適用。

	2018 年提出	2019 年提出	2020 年提出
排出・吸収量 算定式		・「1.A.4.a 業務」に含めていた総合エネルギー統計の自家用発電部門における電気業の排出量を、1990~2015年度について「1.A.1.a 発電及び熱供給」に含めて報告。・これまで「1.A.1.a 発電及び熱供給」で報告していたエネルギー利用・回収を伴う廃棄物の焼却からの排出量を「1.A.4.a 業務」で報告。	
排出係数	バイオマス分を控除したガ ソリン及び軽油の排出係数 を適用。	_	2018 年度改訂炭素排出係数を 適用。
活動量	_	_	2018 年度改訂標準発熱量を適 用。

	2024 年提出	2025 年提出
排出•吸収量 算定式	ドライアイスや液化炭酸ガスの製品等として直接利用するために石油精製プロセスから回収された CO2を「1.A.1.b 石油精製」の排出量から控除し、当該 CO2 が利用されたカテゴリー (2.B.10.b 化学産業 (その他)、2.C.1.f 鉄鋼製造 (その他)、2.H.2 食品・飲料製造、2.H.3 炭酸ガスの利用)で計上。	
排出係数	_	2023 年度改訂炭素排出係数を 適用。
活動量	-	2023 年度改訂標準発熱量を適 用。

(1) 初期割当量報告書における算定方法

1) 排出·吸収量算定式

Good Practice Guidance (2000) に示されたデシジョンツリー (page 2.10、Fig.2.1) に従い、Tier 1 部門別アプローチ (Sectoral Approach) 法を用い、各エネルギー源の消費量に炭素排出係数及び酸化率を乗じて CO₂ 排出量の算定を行っていた。

なお、「エネルギーとして利用された廃棄物及びエネルギー回収を伴う廃棄物焼却からの排出」に該当するエネルギー消費量及び CO_2 排出量は、エネルギー分野ではなく廃棄物分野で報告していた。

また、 $\lceil 1.A.1.b$ 石油精製」におけるエネルギー転換に伴う CO_2 排出 (炭素収支差から算定)、及び CO_2 回収量は控除していなかった。

$$E = \sum_{ij} \left[(A_{ij} - N_{ij}) \times GCV_i \times 10^{-3} \times EF_i \times OF_i \right] \times 44/12$$

E : 化石燃料の燃焼に伴う CO₂排出量 [t-CO₂]
 A : エネルギー消費量(固有単位 [t, kl,10³m³])
 N : 非エネルギー利用量(固有単位 [t, kl,10³m³])

 GCV
 : 高位発熱量 [MJ/固有単位]

 EF
 : 炭素排出係数 [t-C/TJ]

OF : 酸化率

i : エネルギー源

j : 部門

2) 排出係数

毎年度炭素排出係数の算定を行うエネルギー源(2.2.1(1)2)④ 参照)を除き、現行インベントリと同様。

3) 活動量

活動量の出典として、「旧総合エネルギー統計(資源エネルギー庁)」を使用していた(総合エネルギー統計は2015年度に改訂)。

(2) 2009 年提出インベントリにおける算定方法

1) 排出・吸収量算定式

我が国の廃棄物処理の実態を踏まえ、エネルギー利用・回収の有無に関わらず、廃棄物の焼却に伴う排出量を全て廃棄物分野で報告していたが、2009 年提出インベントリより、専門家審査チームの指摘及び IPCC ガイドラインにおける要求事項に対応するため、廃棄物分野において報告していたエネルギー利用された廃棄物及びエネルギー回収を伴う廃棄物焼却からの排出量を、全量エネルギー分野のその他燃料 (Other Fuels) で報告するよう変更した。

2) 排出係数

初期割当量報告書における排出係数と同様。

3) 活動量

初期割当量報告書における活動量と同様。

(3) 2010 年提出インベントリにおける算定方法

1) 排出 · 吸収量算定式

2009年提出インベントリと同様。

2) 排出係数

炭素排出係数については、「二酸化炭素排出量調査報告書」に示された排出係数 (0.6833 t-C/10⁷ kcal ≒ 16.3 t-C/TJ) が継続して使用されていたが、標準発熱量の改訂に伴い、炭素排出係数についても変更が可能である旨の指摘があったため、以下の算定式により LPG の炭素排出係数を算定し、2005 年度以降の排出量に適用した。

- 1. プロパン・ブタンの 1t 当たり CO₂ 排出量
- $\mathcal{J} \square \mathring{\wedge} \mathcal{V} : C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O; \quad 3 \times 44 (CO_2) / 44 (C_3H_8) = 3.0 \text{ t-CO}_2/\text{t-} \mathcal{J} \square \mathring{\wedge} \mathcal{V}$
- ・ ブタン: $C_4H_{10} + 6.5O_2 \rightarrow 4CO_2 + 5H_2O$; $4 \times 44 (CO_2) / 58 (C_4H_{10}) = 3.0 \text{ t-CO}_2/\text{t-ブタン}$ (プロパン及びブタンが主成分である LPG についても、 $3.0 \text{ t-CO}_2/\text{t}$ とみなせる。)

2. LPG の炭素排出係数

 $3.0 \text{ (t-CO}_2/\text{t)} / 50.8 \text{ (MJ/kg)} \times 12/44 \times 10^3 = 16.1 \text{ t-C/TJ}$

なお、LPGの炭素排出係数の改訂に伴い、LPGの炭素排出係数を適用している簡易ガス(簡易ガス事業者の供給するガス。大部分がLPGの直接供給)の排出係数も同様に改訂された。

 $(16.3 \text{ t-C/TJ} \Rightarrow 16.1 \text{ t-C/TJ})_{\circ}$

また、炭素収支を基に毎年度炭素排出係数を算定している都市ガス(一般ガス)の排出係数も、都市ガスの原料である LPG の炭素排出係数の改訂により僅かながら変化した。

3)活動量

2005 年度のエネルギー源別標準発熱量の改訂において、LPG は、純粋性状でのプロパン・ブタンの理論総発熱量と、2005 年度におけるプロパン・ブタンの輸入重量比 (7:3) を用いた推計により、2000 年度値の「50.2 MJ/kg」から「50.8 MJ/kg」に改訂された。

その他は2009年提出インベントリと同様。

(4) 2015 年提出インベントリにおける算定方法

1) 排出・吸収量算定式

「1.A.1.b 石油精製」におけるエネルギー転換に伴う CO_2 排出について、石油製品製造プロセスに投入された炭素量と当該プロセスから生産された炭素の差分 (炭素収支差) は、触媒再生や水素製造に使用された CO_2 であるとみなし、「1.A.1.b 石油精製」に計上した。

また、石油精製プロセスから発生した CO_2 の回収・貯留が実施された年度において、当該 CO_2

の回収量を「1.A.1.b 石油精製」の排出量から控除した。 算定式は2009年提出インベントリと同様。

2) 排出係数

2013~2014年度において、経済産業省・環境省により実施された各種エネルギー源の発熱量・ 炭素排出係数の実測等に関する調査を基に、「エネルギー源別標準発熱量・炭素排出係数の改訂 案について -2013年度改訂標準発熱量・炭素排出係数表-」が取りまとめられ、改善案が提示さ れた。そこで、2013年度の排出量より、当該改訂炭素排出係数を適用した。

3) 活動量

従来の「総合エネルギー統計」においては、電力需給における異常値の発生や、第三次産業等における調整消費項目(残差計上)の存在といった問題点があった。そこで、「総合エネルギー統計」の一次統計として使用されている「石油等消費動態統計(資源エネルギー庁)」の対象外業種及び中小事業所、並びに非製造業、商業・サービス業におけるエネルギー消費量を対象とした「エネルギー消費統計(資源エネルギー庁)」の使用等による「総合エネルギー統計」の抜本的な改訂が実施された。そこで 2015 年提出インベントリより、「1.A. 燃料の燃焼」の活動量として「2013 年度改訂版総合エネルギー統計」を適用した。

また、炭素排出係数と同様に、「エネルギー源別標準発熱量・炭素排出係数の改訂案について-2013 年度改訂標準発熱量・炭素排出係数表-」における改善案に基づき、2013 年度の排出量より、当該改訂発熱量を適用した。

(5) 2018 年提出インベントリにおける算定方法

1) 排出・吸収量算定式

2015年提出インベントリと同様。

2) 排出係数

ガソリン及び軽油由来の CO₂ 排出量からバイオマス由来分を控除するため、ガソリン及び軽油 の排出係数について、バイオマス分を控除した値に変更した。

3) 活動量

2015年提出インベントリと同様。

(6) 2019 年提出インベントリにおける算定方法

1) 排出・吸収量算定式

排出量の算定式に変更はないが、時系列の一貫性及び比較可能性を担保するため、これまで業務部門(1.A.4.a)に含めていた「総合エネルギー統計」の自家用発電部門における「電気業(#255330)」の排出量を、1990~2015年度については、「1.A.1.a 発電及び熱供給」に含めて報告することとした。

2016年4月の第2弾改正電気事業法の施行による電力の小売全面自由化に伴い、低圧区分(家

庭や商店等)への電力供給に関する規制が撤廃され、従来独占的に家庭や商店等へ電力を供給していた一般電気事業者以外の事業者も家庭や商店等へ直接電力を供給することが可能となった。その結果、旧独立系発電事業者 (IPP) や一部自家用発電施設を保有し売電を行っていた事業者も新たに電気事業者に位置付けられ、「総合エネルギー統計」の一次統計である「電力調査統計(資源エネルギー庁)」において、2016年4月以降、報告対象となる事業者の範囲が拡大された。これにより、総合エネルギー統計においても、2016年度以降、IPP等これまで「自家用発電」に計上されていた事業者の燃料消費量の一部が、「事業用発電」の項目へ計上されることとなった。

この変更に伴い、IPP 等の発電に伴う排出は、1990~2015 年度までは自家用発電部門に、2016 年度以降は事業用発電部門に計上されるため、時系列上の不連続が生じる。そこで、2015 年度以前において発電事業のみを行っている IPP 事業者が最も多く存在する業務部門(1.A.4.a)に属する「電気業(除 事業用発電分)」の自家発に伴う排出量を、「1.A.1.a 発電及び熱供給」に計上することとした。

また、これまで「1.A.1.a 発電及び熱供給」で報告していたエネルギー利用・回収を伴う廃棄物の焼却からの排出量について、廃棄物発電を行っている事業者の主たる業は発電ではなく廃棄物処理であるため、2006年 IPCC ガイドラインに従い、当該排出量は全て業務部門(1.A.4.a)で報告することとした。

2) 排出係数

2018年提出インベントリと同様。

3) 活動量

2018年提出インベントリと同様。

(7)2020 年提出インベントリにおける算定方法

1) 排出・吸収量算定式

2019年提出インベントリと同様(現行の算定式と同様。)。

2) 排出係数

2017 年度から 2019 年度にかけて、経済産業省・環境省により炭素排出係数の改訂に関する調査が実施され、改訂が必要とされた燃料種について、標準・実質炭素排出係数の 2018 年度値が設定された。そこで、2018 年度の排出量より、当該改訂炭素排出係数を適用した。

3)活動量

2017 年度から 2019 年度にかけて、経済産業省・環境省により標準発熱量の改訂に関する調査が実施され、改訂が必要とされた燃料種について、標準・実質発熱量の 2018 年度値が設定された。そこで、2018 年度の排出量より、当該改訂発熱量を適用した。

(8) 2024 年提出インベントリにおける算定方法

1) 排出·吸収量算定式

ドライアイスや液化炭酸ガスの製品等として直接利用するために石油精製プロセスから回収された CO_2 を、「1.A.1.b 石油精製」の排出量から控除した(当該 CO_2 は、ドライアイスや液化炭酸ガス製品等として使用され、大気中に放出されるため、 CO_2 が利用されたカテゴリー (2.B.10.b 化学産業 (\mathcal{E} (\mathcal{E} (\mathcal{E}))、 \mathcal{E} (\mathcal{E})、 \mathcal{E} (\mathcal{E})、 \mathcal{E}) において排出量を計上)。

算定式は2020年提出インベントリと同様(現行の算定式と同様)。

2) 排出係数

2020年提出インベントリと同様。

3) 活動量

2020年提出インベントリと同様。

(9) 2025 年提出インベントリにおける算定方法

1) 排出•吸収量算定式

2024年提出インベントリと同様(現行の算定式と同様。)。

2) 排出係数

2022 年度から 2024 年度にかけて、経済産業省・環境省により炭素排出係数の改訂に関する調査が実施され、改訂が必要とされた燃料種について、標準・実質炭素排出係数の 2023 年度値が設定された。そこで、2023 年度の排出量より、当該改訂炭素排出係数を適用した(現行の排出係数と同様。)。

3) 活動量

2022 年度から 2024 年度にかけて、経済産業省・環境省により標準発熱量の改訂に関する調査が実施され、改訂が必要とされた燃料種について、標準・実質発熱量の 2023 年度値が設定された。そこで、2023 年度の排出量より、当該改訂発熱量を適用した(現行の活動量と同様。)。