List of Policies and Measures regarding Japan's Emission Reduction Target toward FY 2030 This document is classified as a related document of the Plan for Global Warming Countermeasures (Cabinet decision on February 18, 2025). It provides table-format information, broken down by sector and category, of individual measures aimed at achieving the targets for FY 2030, including specific goals for each greenhouse gas and other classifications, as well as guidelines for sector-specific emissions of energy-related CO₂. The document includes concrete data as the basis for these targets, such as national evaluation indicators for measures, expected emission reduction and absorption volumes, policies implemented by the national government to promote these measures, and examples of policies that local governments are expected to implement. This table will be reviewed as necessary during the follow-up process conducted by Global Warming Prevention Headquarters, in accordance with Chapter 4, Section 1 of the Plan for Global Warming Countermeasures. ^{*} The figures for fiscal year 2025 serve as benchmarks to assess progress toward the goals for fiscal year 2030. ^{*} The estimated greenhouse gas emission reductions (in CO₂ equivalent) from each measure are calculated by incorporating factors beyond the direct effects of the measures themselves. By clarifying the assumptions used in the calculations, this approach ensures the possibility of subsequent verification. | | | | Examples of | | Measure e | valuation indicato | or, and results of countermeasures | | |---|--|---|---|-------------------------------------|---|--------------------------------------|--|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | Measure
evaluation
indicator | Expected energy saving | Expected emission reduction | Assumptions of expected energy saving and expected emission reduction | | | 01. Steady Implementation, evaluation and verification of Industry's Voluntary Action Plans (Governing agencies: Ministry of Economy, Trade and Industry) | | | | | | | | | | Steady Implementation, evaluation and verification of Industry's Voluntary Action Plan | ● Japan Business Federation, various industries: Contributing to countermeasures against warming by making efforts to reduce emissions, including improving energy intensity, through steady implementation of Industry's Voluntary Action Plans, and through cooperation among actors, international contributions, and technology, including innovative technological development ● Various industries: · Formulation of new plans by industries that have not yet formulated them · Continuous improvements to implementation plans through the plan-do-check-act (PDCA) cycle, and formulation of plans for 2030 | Encouragement of the following through evaluation and verification by the government: • Formulation of new plans by industries that have not yet formulated them • Strict evaluation and verification by the government | - | (Since formulation Action Plans for | ng the Keidanren V
a Low-Carbon Soc
autonomous effort | Voluntary Action I ciety into Carbon | els for each industry Plans in 1997, Keidanren has revised its Industry's Neutrality Action Plan and is promoting the is information will be updated as autonomous targets are | | ## Progress of Steady Implementation, evaluation and verification of Industry's Voluntary Action Plans | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | | | | | |---------------------------|---|--|---------------------------|---------------|----------------------|--| | A. Industry | res by Sector (industrial, of sector (manufacturing etc. of voluntary effort by |) | ntial, transport, etc.) | | | | | OSteady Implem | entation, evaluation and verification | ication of Industry's Volu | ntary Action Plans (Indus | stry sector) | | | | | Industry under Ministry of Finance | | | | | | | | | | Target indicator | Base year/BAU | FY 2030 target level | FY 2013 CO ₂ emissions (10,000 t-CO ₂) | | | Brewers Associate | tion of Japan | CO2 emissions | 2013 (FY) | -46% | 54.6 | | | Japan Tobac | cco Inc. | CO ₂ emissions | 2019 (FY) | -47% | 95.0 | | | Industry under Ministry of Health, | Labour and Welfare | | | • | | | | | | Target indicator | Base year/BAU | FY 2030 target level | FY 2013 CO ₂ emissions (10,000 t-CO ₂) | | | The Federation of Pharmaceutical of Japa | | CO ₂ emissions | 2013 (FY) | -46% | 260.7 | | | Industry under Ministry of Agricul | | | | | 11 | | | | | Target indicator | Base year/BAU | FY 2030 target level | FY 2013 CO ₂ emissions
(10,000 t-CO ₂) | | | Japan Starch & Sweeteners | s Industry Association | CO ₂ emissions | 2013 (FY) | -30.3% | 114.8 | | | Japan Dairy Indust | ry Association | CO ₂ emissions | 2013 (FY) | -38% | 119.5 | | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | | | | | |---------------------------|---|--|-------------------------------------|-----------|--------|-------| | | Japan Soft Drink | Association□ | CO2 emissions intensity | 2012 (FY) | -18% | 122.0 | | | Japan Baking Indu | ustry Association | CO ₂ emissions intensity | 2013 (FY) | -13.0% | 108.5 | | | Japan Canners Association Japan Beet Sugar Association | | Energy intensity | 2009 (FY) | -19% | 75.5 | | | | | Energy intensity | 2010 (FY) | -15% | 63.8 | | | Japan Oilseed Processors Association | | CO ₂ emissions intensity | 2013 (FY) | -6.5% | 61.0 | | | | | CO ₂ emissions | 2013 (FY) | -6.5% | 61.0 | | | All Nippon Kashi Association | | CO ₂ emissions | 2013 (FY) | -17% | 07.4 | | | All Nippon Kas | ni Association | CO ₂ emissions intensity | 2013 (FY) | -17% | 97.4 | | | Japan Sugar Refir | ners' Association | CO ₂ emissions | 2013 (FY) | -22% | 39.0 | | | Japan Frozen Fo | ood Association | Energy intensity | 2013 (FY) | -15.7% | 43.7 | | | Japan Ham & Sausage Process | sors Cooperative Association | Energy intensity | 2011 (FY) | -17% | 56.9 | | | Flour Millers | | CO ₂ emissions intensity | 2013 (FY) | -32.1% | 30.5 | | | All Japan Coffe | | CO ₂ emissions intensity | 2005 (FY) | -25% | 11.8 | | | Japan Soy-sauc | ee Association | CO ₂ emissions | 2013 (FY) | -30% | 19.8 | | | Japan Convenience Food | ds Industry Association | CO ₂ emissions intensity | 2013 (FY) | -10% | 24.7 | | | | . 15 | CO ₂ emissions | 2012 (FY) | -21.7% | 6.2 | | | Japan Association of Ma | yonnaise and Dressings | CO ₂ emissions intensity | 2012 (FY) | -17.9% | 6.2 | | | Japan Rice Mille | ers Association | Energy intensity | 2005 (FY) | -12% | 7.0 | | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | | | | | |---------------------------|--|--|-----------------------------------|---------------|----------------------|---| | | Industry under Ministry of Econo | omy, Trade and Industry | | | | | | | | | Target indicator | Base year/BAU | FY 2030 target level | FY 2013 CO ₂ emissions (10,000 t-CO ₂) | | | The Japan Iron and | d Steel Federation | CO ₂ emissions | 2013 (FY) | -30% | 19,440.8 | | | Japan Chemical Inc | dustry Association | CO ₂ emissions | 2013 (FY) | -32% | 6,365.1 | | | Japan Paper | Association | CO ₂ emissions | 2013 (FY) | -38% | 1,882.8 | | | Japan Cement Association | | Energy intensity | 2013 (FY) | -9.7% | 1.007.5 | | | | | CO ₂ emissions | 2013 (FY) | -15% | 1,806.5 | | | Liaison Group of Japanese Elect
for Global Warn | | Energy intensity improvement rate | 2020 (FY) | -9.56% | 1,296.6 | | | Japan Auto Parts Ind | | CO ₂ emissions | 2013 (FY) | -46% | 770.7 | | | Japan Automobile Manufactur
Body Industrie | - | CO ₂ emissions | 2013 (FY) | -38% | 747.3 | | | Japan Mining Indu | | CO ₂ emissions | 2013 (FY) | -38% | 448.9 | | | Lime Manufactu | ure Association | CO ₂ emissions | 2013 (FY) | -29% | 246.3 | | | The Japan Rubber Man | ufacturers Association | CO ₂ emissions | 2013 (FY) | -46% | 210.3 | | | Japan Textile Finis | shers' Association | CO ₂ emissions | 2013 (FY) | -38% | 116.5 | | | Japan Aluminu: | m Association | CO ₂ emissions | 2013 (FY) | -31% | 146.2 | | | Inner Feloret C | Daintin -
Indontal | CO ₂ emissions | 2010 (FY) | -29.3% | 106.6 | | | Japan Federation of | Printing industries | CO ₂ emissions | 2013 (FY) | -54.2% | 142.0 | | | Flat Glass Manufacturer | rs Association of Japan | CO ₂ emissions | 2013 (FY) | -25.8% | 117.1 | | | Japan Glass Bot | tle Association | CO ₂ emissions | 2013 (FY) | -27.1% | 89.4 | | | The Japanese Electric Wire & | Cable Makers' Association | CO ₂ emissions | 2013 (FY) | -37.4% | 96.1 | | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | | | | | |---------------------------|--|--|---------------------------|------------------------|------|------| | | Japan Bearing Ind | ustry Association | CO ₂ emissions | 2013 (FY) | -38% | 84.6 | | | The Japan Society of Industri | al Machinery Manufacturers | CO ₂ emissions | 2013 (FY) | -38% | 62.1 | | | Japan Copper and Brass Association | | CO ₂ emissions | 2013 (FY) | -33% | 47.6 | | | Japan Construction Equipment Manufacturers Association | | Energy intensity | Average 2020-2022 (FY) | -8% | 51.1 | | | Limestone Association of Japan | | CO ₂ emissions | 2013 (FY) | -38% | 28.4 | | | Japan Sanitary Equipme | nt Industry Association | CO ₂ emissions | 2013 (FY) | -40% | 25.7 | | | Japan Machine Tool E | Builders' Association | CO ₂ emissions | 2013 (FY) | -38% | 36.3 | | | Japan Energy Resources Development Association (Japan Petroleum Development Association) Japan Prefabricated Construction Suppliers & Manufacturers Association | | CO ₂ emissions | 2013 (FY) | -40% | 25.4 | | | | | CO ₂ emissions | 2013 (FY) | -65% | 16.3 | | | Japan Industrial Ve | hicles Association | CO ₂ emissions | 2013 (FY) | -38% | 4.8 | | | Japan Carbon | Association | CO ₂ emissions | 2013 (FY) | -46% | 45.1 | | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | | | | | |---------------------------|--|--|---|---------------|--|---| | | Industry under Ministry of Land, | Infrastructure, Transport and T | ourism | | | | | | | | Target indicator | Base year/BAU | FY 2030 target level | FY 2013 CO ₂ emissions (10,000 t-CO ₂) | | | The Shipbuilders' Association of Japan/The Cooperative Association of Japan Shipbuilders | | CO2 emissions | 2013 (FY) | -28% | 65.0 | | | Japan Ship Machinery and | | Energy intensity | 1990 (FY) | -30% | 8.5 | | | Japan Marine Indu | stry Association | CO ₂ emissions | 2010 (FY) | -14% | 2.6 | | | | | | 1990 (FY) | -35% | | | | Japan Association of Ro | olling Stock Industries | CO2 emissions | 2005 (FY) | -19% | 3.6 | | | Japan Federation of Construction Contractors | | | 2010 (FY) | -3% | | | | | | CO ₂ emissions intensity | 2013 (FY) | -40% | 411.3 | | | Japan Federation of Ho | ousing Organizations | Environmental performance of newly constructed residences | _ | Achieving ZEH on average for newly built homes | 260(22,183) | | me of mitigation action | Countermeasures of each actor | Countermeasures of the national government | |-------------------------|-------------------------------|--| |-------------------------|-------------------------------|--| Countermeasures by Sector (industrial, commercial and residential, transport, etc.) - B. Commercial and others - (a) Promotion of voluntary effort by industry OSteady Implementation, evaluation and verification of Industry's Voluntary Action Plans (Commercial and other sector) | astry under Financial Services Agency | | | | | | | | | |---|-------------------------------------|---|----------------------|--|--|--|--|--| | | Target indicator | Base year/BAU | FY 2030 target level | FY 2013 CO ₂ emissio
(10,000 t-CO ₂) | | | | | | Japanese Bankers Association | CO2 emissions | 2013 (FY) | -51% | 163.3 | | | | | | The Life Insurance Association of Japan | CO ₂ emissions intensity | 2013 (FY) | -51% | 110.7 | | | | | | The General Insurance Association of Japan | CO ₂ emissions intensity | 2013 (FY) | -51% | 27.0 | | | | | | The National Association of Shinkin Banks | CO ₂ emissions | 2013 (FY) | -51% | 32.1 | | | | | | Community Bank Shinyo Kumiai | CO ₂ emissions | 2013 (FY) | -51% | 4.7 | | | | | | Japan Securities Dealers Association | CO ₂ emissions intensity | CO ₂ emissions intensity 2013 (FY) | | 19.4 | | | | | | ry under Ministry of Internal Affairs and Communication | 18 | | | | | | | | | | Target indicator | Base year/BAU | FY 2030 target level | FY 2013 CO ₂ emissi
(10,000 t-CO ₂) | | | | | | Telecommunications Carriers Association | Energy intensity | 2013 (FY) | - 90% | 570.6 | | | | | | Telecom Services Association | Energy intensity | 2013 (FY) | -2% | 102.1 | | | | | | The Japan Commercial Broadcasters Association | CO ₂ emissions intensity | 2012 (FY) | -10% | 24.5 | | | | | | 1 | | | 1 | | | | | | | Japan Broadcasting Corporation | CO ₂ emissions | 2018 (FY) | - | 21.1 | | | | | | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | | | | | |---------------------------|---|--|--|---------------|----------------------|---| | | Japan Satellite Broad | leasting Association | Energy intensity | 2010 (FY) | -15% | 1.0 | | | Japan Internet Prov | riders Association | Energy intensity | 2015 (FY) | -1% | - | | | Industry under Ministry of Educa | tion, Culture, Sports, Science a | nd Technology | | | | | | The Federation of All Japan Private Schools' Associations | | Target indicator | Base year/BAU | FY 2030 target level | FY 2013 CO ₂ emissions (10,000 t-CO ₂) | | | | | CO ₂ emissions intensity | 2012 (FY) | -40% | - | | | Industry under Ministry of Health | n, Labour and Welfare | | | | | | | | | Target indicator | Base year/BAU | FY 2030 target level | FY 2013 CO ₂ emissions (10,000 t-CO ₂) | | | Japan Medical Association | / Council of 4 Hospitals | CO ₂ emissions intensity
per total hospital floor area | 2013 (FY) | -46% | 917.6 | | | Japanese Consumers' | Co-operative Union | CO ₂ emissions | 2013 (FY) | -40% | 102.4 | | | Industry under Ministry of Agric | ulture, Forestry and Fisheries | | | | | | | | | Target indicator | Base year/BAU | FY 2030 target level | FY 2013 CO ₂ emissions (10,000 t-CO ₂) | | | Japan Processed Foods V | Wholesalers Association | Energy intensity | 2011 (FY) | -5% | 29.1 | | | Japan Foodservi | ce Association | Energy intensity | 2013 (FY) | -15.7% | 720.9 | | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | | | | | |---------------------------|--|--|-------------------------------------|---------------|----------------------|---| | | Industry under Ministry of Econo | omy, Trade and Industry | | | | | | | | | Target indicator | Base year/BAU | FY 2030 target level | FY 2013 CO ₂ emissions (10,000 t-CO ₂) | | | Japan Chain Sto | Japan Chain Stores Association | | 2013 (FY) | -5.1% | 540.0 | | | Japan Franchis | e Association | CO ₂ emissions intensity | 2013 (FY) | -46% | 437.9 | | | Japan Council of Shopping Centers | | Energy intensity | 2013 (FY) | -27% | 331.7 | | | Japan Department Stores Association | | Energy intensity | 2013 (FY) | -26.5% | 190.5 | | | Japan Department S | Stores Association | CO ₂ emissions | 2013 (FY) | -50% | 190.3 | | | Ote Kaden Ryutsu Kyouka | | CO2 emissions | 2013 (FY) | -50.0% | 81.1 | | | Japan DIY•H0 | C Association | Energy intensity | 2013 (FY) | -25% | 48.7 | | | Janes Information Technology | Comicos Industry Association | (Office)
Energy intensity | 2020 (FY) | -9.56% | 20.6 | | | Japan Information Technology Services Industry Association | | (Data center)
Energy intensity | 2020 (FY) | -9.56% | 64.3 | | | Japan Association of | Chain Drug Stores | Energy intensity | 2013 (FY) | -34% | 132.5 | | | Japan Foreign Tra | nde Council, Inc. | CO ₂ emissions intensity | 2013 (FY) | -60% | 5.4 | | | Japan LP Gas | Association | CO ₂ emissions | 2013 (FY) | -38% | 3.1 | | | Japan Leasing | Association | Energy intensity | 2013 (FY) | -46% | 0.9 | | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | | | | | |---------------------------|--|--|-------------------------------------|---------------|----------------------|---| | | Industry under Ministry of Land, | Infrastructure, Transport and To | ourism | | | | | | | | Target indicator | Base year/BAU | FY 2030 target level | FY 2013 CO ₂ emissions (10,000 t-CO ₂) | | | The Japan Warehousing Association Inc. | | Energy intensity | 1990 (FY) | -20% | 119.0 | | | Japan Association of Re | frigerated Warehouses | CO ₂ emissions intensity | 2013 (FY) | -51% | 106.4 | | | Japan Hotel | Association | Energy intensity | 2010 (FY) | -15% | 69.6 | | | Japan Ryokan & F | Hotel Association | Energy intensity | 2016
(FY) | -10% | - | | | Japan Automobile Service | e Promotion Association | CO ₂ emissions | 2007 (FY) | -15% | 415.5 | | | The Deed Estate Comme | · | CO ₂ emissions | 2013 (FY) | -51% | | | | The Real Estate Companies Association of Japan | | CO ₂ emissions intensity | 2013 (FY) | -64% | - | | | Japan Building Owners ar | nd Managers Association | CO ₂ emissions intensity | 2013 (FY) | -64% | - | | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | | | | | |---------------------------|--|--|-------------------------------------|---------------|----------------------|---| | | Industry under Ministry of the En | vironment | | | | | | | | | Target indicator | Base year/BAU | FY 2030 target level | FY 2013 CO ₂ emissions (10,000 t-CO ₂) | | | Japan Federation of Industrial Waste Management and Recycling Associations | | CO ₂ emissions | 2010 (FY) | -10% | 447.5 | | | The Japan Newspaper Publis | | Energy intensity | 2013 (FY) | Annual average -1% | 53.7 | | | Zenkoku Pet Kyo | ukai (pet retail) | CO ₂ emissions intensity | 2012 (FY) | 0% | 0.54 | | | Industry under National Police A | gency | | | | | | | | | Target indicator | Base year/BAU | FY 2030 target level | FY 2013 CO ₂ emissions (10,000 t-CO ₂) | | | All Japan Pachin | ko Association | CO ₂ emissions | 2007 (FY) | -22% | 502 | | | Japan Amusement In | dustry Association | CO ₂ emissions | 2012 (FY) | -16.6% | 25.3 | |--|--| Countermeasures by Sector (industrial, commercial and residential, transport, etc.) - D. Transport sector initiatives - (a) Promotion of voluntary effort by industry OSteady Implementation, evaluation and verification of Industry's Voluntary Action Plans (Transport sector) | Industry under Ministry of Land, Infrastructure, Transport and T | ourism | | | | |--|-------------------------------------|---------------|----------------------|---| | | Target indicator | Base year/BAU | FY 2030 target level | FY 2013 CO ₂ emissions (10,000 t-CO ₂) | | The Japanese Shipowners' Association | CO ₂ emissions intensity | 1990 (FY) | -30% | 5,539 | | Japan Trucking Association | CO ₂ emissions intensity | 2005 (FY) | -31% | 4,079 | | The Scheduled Airlines Association of Japan | CO ₂ emissions intensity | 2013 (FY) | -22% | 2,152 | | The Scheduled Affilies Association of Japan | CO2 emissions intensity | 2019 (FY) | -15.4% | 2,132 | | Japan Federation of Coastal Shipping Associations | CO ₂ emissions | 1990 (FY) | -34% | 722.1 | | Japan Passengerboat Association | CO ₂ emissions intensity | 2012 (FY) | - | 361.3 | | Japan Federation of Hire-Taxi Associations | CO ₂ emissions | 2010 (FY) | -25% | 338.3 | | Nihon Bus Association | CO ₂ emissions intensity | 2015 (FY) | -6% | 375.7 | | Japan Private Railway Association | CO ₂ emissions | 2013 (FY) | -46% | 286.0 | | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | | | | | |---------------------------|-------------------------------|--|-------------------------------------|-----------|------|-------| | | East Japan Rail | way Company | CO ₂ emissions | 2013 (FY) | -50% | 215.0 | | | West Japan Rai | lway Company | CO ₂ emissions | 2013 (FY) | -50% | 185.5 | | | Central Japan Ra | ilway Company | CO ₂ emissions | 2013 (FY) | -46% | 119.2 | | | Japan Harbor Transp | ortation Association | CO ₂ emissions intensity | 2005 (FY) | -20% | 39.0 | | | Japan Freight Ra | ilway Company | Energy intensity | 2013 (FY) | -15% | 64.9 | | | Kyushu Railw | ay Company | CO ₂ emissions | 2013 (FY) | -50% | 44.2 | | | Hokkaido Rail | way Company | Energy intensity | 2013 (FY) | -7% | 32.1 | | | All Japan Freight For | warders Association | CO ₂ emissions | 2009 (FY) | -20% | 12.9 | | | Shikoku Railw | vay Company | CO ₂ emissions | 2013 (FY) | -30% | 8.0 | | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | | |---------------------------|-------------------------------|--|--------------------------| | Countermeasure | es by Sector (industrial, | commercial and reside | ential, transport, etc.) | - E. Energy-conversion sector initiatives - (a) Promotion of voluntary effort by industry OSteady Implementation, evaluation and verification of Industry's Voluntary Action Plans (Energy conversion sector) | Industry under Ministry of Economy, Trade and Industry | | | | | |--|-------------------------------------|---------------|-------------------------------|--| | | Target indicator | Base year/BAU | FY 2030 target level | FY 2013 CO ₂ emissions
(10,000 t-CO ₂) | | The Flectuic Device Council for a Levy Corbon Society | CO ₂ emissions | BAU | -11,000,000 t-CO ₂ | 49,300.0 | | The Electric Power Council for a Low Carbon Society | CO ₂ emissions intensity | - | Approx. 0.25kg-CO2/kWh | 49,300.0 | | Petroleum Association of Japan | CO ₂ emissions | 2013 (FY) | -28% | 4,032.6 | | The Japan Gas Association | CO ₂ emissions intensity | 2013 (FY) | -28% | 45.6 | | | | | Examples of | | | M | leasure e | valuation | indicato | r, and results of countermeasures | |---|--|--|---|--------------|----------------|--------------|------------------------|--------------|------------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | evaluation I * | | Expected energy saving | | ected
sion
ction | Assumptions of expected energy saving and expected emission reduction | | industries | | | · | uipm | ent v | with | high | ene | rgy- | saving performance (across | | | | | | APF/ | | (10^4 | 4 kL) | (10^4 1 | i-CO ₂) | · Units sold, efficiency, and operation time of industrial air-
conditioning (electric: air-conditioning packages, chilling
units, turbo chillers; fuel-powered: gas heat pumps, removals
chillers) | | Introduction of high-
efficiency air | · · | · Promotion of the spread
through the Top Runner
Program | Support for introduction of high-efficiency air | 2013
(FY) | 4.8
1.5 | | 1 | 2013
(FY) | 5 | · Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO ₂ /kWh (Source: Calculated based on th Environmental Action Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of Japan] · Average electricity emission factor for all power sources in | | conditioning | Businesses:
Introduction of high-efficiency
air conditioning | · Support for introduction of
high-efficiency air
conditioning | conditioning and public awareness-raising | 2025
(FY) | 6.4
1.8 | 2025
(FY) | 20 | 2025
(FY) | 86 | FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy supply and demand in FY 2030) • Fuel (city gas) emission factor: 2.0 t-CO ₂ /kL | | | | | | 2030
(FY) | 6.4
1.9 | | 29 | 2030
(FY) | 69 | • Energy saving from Introduction of high-efficiency air conditioning represents energy saving from progress on countermeasures since FY 2012, and emission reduction are calculated based on these energy saving values. | | | | | Examples of | | | M | leasure e | valuation | indicato | r, and results of countermeasures | |---------------------------|---|---|---|------------------|------------------------------------|--------------|------------------------|--------------|------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | Measure
evaluation
indicator | | Expected energy saving | | ected
sion
ction | Assumptions of expected energy saving and expected emission reduction | | industries | | | | uipm | ent v | with | high | ene | rgy- | saving performance (across | | | | | | insta
capacit | ulative
alled
y (1000
W) | (10^2 | 1 kL) | (10^4 | t-CO ₂) | Full-time usage rate: 94.5% Secondary energy conversion coefficient: 3.6 MJ/kWh Conversion coefficient to crude oil equivalent: 0.0258 kL/thousand MJ | | Introduction of | · Manufacturers:
Technological development,
production, and cost
reductions for high-efficiency
industrial heat pumps | | Support for introduction of high-efficiency industrial heat | 2013
(FY) | 11 | 2013
(FY) | 0.2 |
2013
(FY) | 0.2 | • Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO ₂ /kWh (Source: Calculated based on the Environmental Action Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of Japan]) | | industrial heat pump | · Businesses: high | Support for introduction of
high-efficiency industrial heat
pumps | pumps and public awareness-
raising | 2025
(FY) | 824 | 2025
(FY) | 43.0 | 2025
(FY) | 66.0 | Average electricity emission factor for all power sources in FY 2030: 0.25 kg-CO₂/kWh (Source: Outlook for energy supply and demand in FY 2030) Fuel (city gas) emission factor: 51.4 t-CO₂/million MJ | | | | | | 2030
(FY) | 1,673 | 2030
(FY) | 87.9 | 2030
(FY) | 161.0 | • Energy saving from Introduction of industrial heat pumps represents energy saving from progress on countermeasures since FY 2012, and emission reduction are calculated based on these energy saving values. | | | | | Examples of | | | M | leasure e | valuation | indicato | r, and results of countermeasures | |---|--|--|---|---|----------------------------|------------------------|-----------|-----------------------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | Mea
evalu
indic | ation | Expected energy saving | | Expected emission reduction | | Assumptions of expected energy saving and expected emission reduction | | 02. Promo | otion of the inti | oduction of fa | cilities and eq | uipm | ent v | with | high | ene | rgy- | saving performance (across | | industries |) | | | _ | | | | | | | | (Governing | agencies: Ministry | of Economy, Tra | de and Industry) | | | | | | | | | | Manufacturers: | | | Cumu
mai
introdu
(100 n
uni | rket
actions
nillion | (10^2 | 4 kL) | (10^4 1 | t-CO ₂) | Energy saving per unit of high-efficiency lightingNumber of units of high-efficiency lighting promoted | | Introduction of | Vendors: | Technical development and
Support for introduction of
high-efficiency lighting | Support for introduction of high-efficiency lighting and | 2013
(FY) | 0.16 | 2013
(FY) | 11 | 2013
(FY) | 67.0 | Average electricity emission factor for all power sources i
FY 2013: 0.57 kg-CO₂/kWh (Source: Calculated based on the
Environmental Action Plan by the Japanese Electric Utility
Industry [Federation of Electric Power Companies of Japan] Average electricity emission factor for all power sources i | | industrial lighting | information about high-
efficiency lighting | iciency lighting standards of Top Runner Program | | 2025
(FY) | 0.80 | 2025
(FY) | 86 | 2025
(FY) | 844.2 | FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy supply and demand in FY 2030) • Energy saving from Introduction of industrial lighting represents energy saving from progress on countermeasures | | Introduction of high-efficiency
lighting | | | | 2030
(FY) | 1.05 | 2030
(FY) | 109 | 2030
(FY) | 293.1 | since FY 2012, and emission reduction are calculated base on these energy saving values. | | | | | Examples of | | | M | leasure e | valuation | indicato | r, and results of countermeasures | |-------------------------------|--|---|---|--------------|--|------------------------|-----------|-----------------------------|---------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | asure
aation
cator | Expected energy saving | | Expected emission reduction | | Assumptions of expected energy saving and expected emission reduction | | industries | | | Î | uipm | nent v | with | high | ene | rgy- | saving performance (across | | | | | | numl | ulative
ber of
ced units
units) | (10^4 | 4 kL) | (10^4 | t-CO ₂) | • Number of units adopted in the future and energy use per unit (electricity and fuel) are estimated based on the results of the FY 2014 Project on Infrastructure Improvement for Rationalization of International Energy Use (fact-finding survey on energy saving technologies in industrial furnaces | | Introduction of low- | Manufacturers: Technological development, production, and cost reductions for low-carbon | •Regulation under the Act on
the Rational Use of Energy | Support for introduction of | 2013
(FY) | 9.4 | 2013
(FY) | 17.0 | 2013
(FY) | 57.5 | etc.). • Numbers of industrial furnaces adopted in the following types: induction heating, metal melting, enhanced insulation, waste heat recovery, raw-material preheating • Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO ₂ /kWh (Source: Calculated based on the | | carbon industrial
furnaces | industrial furnaces Businesses: Introduction of low-carbon industrial furnaces | Support for introduction of
low-carbon industrial furnaces | low-carbon industrial furnaces and public awareness-raising | 2025
(FY) | 16.6 | 2025
(FY) | 281.1 | 2025
(FY) | 692.5 | Environmental Action Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of Japan]) · Average electricity emission factor for all power sources in FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy supply and demand in FY 2030) | | | | | | 2030
(FY) | 19.1 | 2030
(FY) | 374.1 | 2030
(FY) | 806.9 | Fuel (city gas) emission factor: 51.4 t-CO₂/million MJ Energy saving from Introduction of low-carbon industrial furnaces represents energy saving from progress on countermeasures since FY 2012, and emission reduction are calculated based on these energy saving values. | | | | | Examples of | | | M | leasure e | valuation | indicato | r, and results of countermeasures | |---------------------------|---|---|---|-----------------------|------------|-------|------------------------|-----------|-------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | Mea
evalu
indic | | - | expected energy saving | | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction | | industries | | | Î | uipm | ent v | with | high | ene | rgy- | saving performance (across | | | | | | highly effic | d units of | (10^2 | 4 kL) | (10^4 | t-CO ₂) | | | | | | | 2013
(FY) | 1.6 | | | | | | | | | | | 2025
(FY) | 1,723 | 2013 | 5.48 | 2013 | 33.8 | Rate of full-time use of high-efficiency industrial motors: 95.2% Rate of inverter installation (FY 2013): 10% | | Introduction of | - | Promotion of the spread
through the Top Runner
Program | Support for introduction of high-efficiency industrial | 2030
(FY) | 2,756 | (FY) | 3.10 | (FY) | 33.0 | • Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO ₂ /kWh (Source: Calculated based on the Environmental Action Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of Japan]) | | inverters | Businesses:
Introduction of high-efficiency
industrial motors and inverters | Support for introduction of
high-efficiency industrial
motors and inverters | motors and inverters and public awareness-raising | of introdu | erters | 2025 | 176.2 | 2025 | | Average electricity emission factor for all power sources in FY 2030: 0.25 kg-CO₂/kWh (Source: Outlook for energy supply and demand in FY 2030) Energy saving from Introduction of industrial motors | | | | | | 2013
(FY) | 152.1 | (FY) | 170.2 | (FY) | 1,082.0 | represents energy saving from progress on countermeasures since FY 2012, and emission reduction are calculated based on these energy saving values. | | | | | | 2025
(FY) | 2,370 | 2030 | 282.6 | 2030 | 760.8 | | | | | | | 2030
(FY) | 3,811 | (FY) | 202.0 | (FY) | 700.8 | | | | | Examples of | | | М | easure e | valuation | indicato | r, and results of
countermeasures | | |---|---|---|---|--------------|------------------------------------|--------------|------------------------|--------------|-----------------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | Measure
evaluation
indicator | | Expected energy saving | | ected
sion
etion | Assumptions of expected energy saving and expected emission reduction | | industries | | | · | uipm | ent v | with | high | ene | rgy- | saving performance (across | | | Manufacturers: Technological development, | | | | ber of
ced units
units) | (10^4 | ŀkL) | (10^4 1 | t-CO ₂) | Number of boilers adopted Estimated from various statistics and interviews with business enterprises | | Introduction of high- | production, and cost
reductions related to saving
energy of high-performance
boilers | • Regulation under the Act on
the Rational Use of Energy | Support for introduction of high-performance boilers and | 2013
(FY) | 280.0 | 2013
(FY) | 10.8 | 2013
(FY) | 29.2 | • Boiler performance conditions Boiler steam generation: 2,000 kg/h; annual hours in operation: 3,000 hrs.; steam enthalpy: 666.2 kcal/kg Water-supply enthalpy: 20.4 kcal/kg; heavy oil heat generation: 9,250 kcal/L High-performance boilers: thermal efficiency 95%; traditional | | performance boilers | Providing information on
high-performance boilers to
Introducing businesses | Support for introduction of
high-performance boilers | public awareness-raising | 2025
(FY) | 745.4 | 2025
(FY) | 122.5 | 2025
(FY) | 330.7 | boilers subject to comparison: thermal efficiency 90% • Fuel (heavy oil A) emission factor: 2.7 t-CO ₂ /kL Crude oil equivalent | | Introducing businesses:
Choosing high-performance
boilers in purchasing | | | | 2030
(FY) | 957.0 | 2030
(FY) | 173.3 | 2030
(FY) | 467.9 | • Energy saving from Introduction of high-performance
boilers represents energy saving from progress on
countermeasures since FY 2012, and emission reduction are
calculated based on these energy saving values. | | | | | Examples of | | | M | leasure e | valuation | indicato | r, and results of countermeasures | |--|---|---|---|--|------------------------------------|--------------|------------------------|--------------|-------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected to be implemented by local governments | evalu | Measure
evaluation
indicator | | Expected energy saving | | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction | | 02. Promotion of the introduction of facilities and equipment with high energy- saving performance (across industries) (Governing agencies: Ministry of Economy, Trade and Industry) | | | | | | | | | | | | | | | | Cumu
insta
capacit
gener
(10^4 | alled
y of co- | (10^- | 4 kL) | (10^4 | | Expected energy saving (Expected emission reduction) from electric power and heat generated from cogeneration are calculated by subtracting fuel consumption (CO₂ emissions) from cogeneration from fuel consumption (CO₂ emissions) from grid electricity and boilers. FY 2030 figures are calculated based on estimates in | | | Manufacturers: Technological and product development toward less costly and more efficient cogeneration | Regulation under the Act on
the Rational Use of Energy Support for introduction of | Support for introduction of | 2013
(FY) | 1,004 | 2013
(FY) | 12 | 2013
(FY) | | projections of energy demand and supply for FY 2030. Cogeneration adoption volumes in FY 2020 are calculated through linear approximation from the figures from FY 2013 through FY 2030. emission intensity for grid electricity assume thermoelectric power sources * | | Introduction of cogeneration | Vendors etc.: Providing information for businesses, supporting efficient use of cogeneration Businesses: Proactive introduction and efficient use of cogeneration | Support for efficient use of cogeneration (e.g., promotion of areal use) | cogeneration and public awareness-raising | 2025
(FY) | 1,230 | 2025
(FY) | 146.7 | 2025
(FY) | 694.2 | *FY 2013 average emission factor for thermoelectric power: 0.65 kg-CO ₂ /kWh (Source: Calculated based on the Environmental Action Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of Japan]) FY 2030 average emission factor for thermoelectric power: 0.60 kg-CO ₂ /kWh (Source: Outlook for energy supply and demand in FY 2030) | | | | | | 2030
(FY) | 1,336 | 2030
(FY) | 212.1 | 2030
(FY) | 1,061 | Emission intensity for boilers are based on a weighted average of fuel types used Energy saving from Introduction of cogeneration represents energy saving from progress on countermeasures since FY 2012, and emission reduction are calculated based on these energy saving values. | ^{*1} Because of the difficulty of projecting expected energy mix, CO₂ emission intensity in power sector are estimated based on FY 2013, with the exception of figures for FY 2030, which reflect a preferable energy mix. | | | | Examples of | | | М | leasure ev | aluation | indicato | r, and results of countermeasures | |-----------------------------------|---|---|---|--------------|--------------------------|--------------|------------|-----------------------|--------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | asure
nation
cator | Expected sav | ۱ ت | Expe
emis
reduc | sion | Assumptions of expected energy saving and expected emission reduction | | | | oduction of fa | cilities and equ | uipm | ent v | with | high | enei | gy- | saving performance (iron | | and steel | • / | of Formania Tra | de ou d'Industry | | | | | | | | | (Governing | agencies: Ministry | of Economy, Tra | de and Industry) | ı | | Ι | 1 | | | | | | | | | widesp | te of
read use
%) | (10^4 | 4 kL) | (10^4 t | -CO ₂) | These figures assume electricity savings in FY 2030 of 5% vs. power consumption in FY 2012 for the following three equipment types: oxygen plants, blowers, and compressed-air | | Improvement of efficiency of main | Businesses:
promotion of the spread such
as upgrading to high-efficiency
electricity demand facilities | • Support for technological development related to saving energy in electricity demand facilities | _ | 2013
(FY) | ▲ 4 | 2013
(FY) | ▲0.2 | 2013
(FY) | ▲0.4 | equipment (The Japan Iron and Steel Federation). • Crude oil thermal conversion coefficient: 0.0258 kL/GJ (source: Article 4 of the Act on Rationalizing Energy Use [Act No. 74 of 1979]); electricity conversion coefficient (heat | | electricity demand
facilities | related to saving energy in | Support for introduction of electricity demand facilities with high energy saving performance | | 2025
(FY) | - | 2025
(FY) | - | 2025
(FY) | - | generated during consumption): 3.6 MJ/kWh (source: total energy statistics) • Energy saving from efficiency improvements in main electric-powered equipment represents energy saving through | | | | | | 2030
(FY) | 100 | 2030
(FY) | 5.0 | 2030
(FY) | 10.0 | progress on countermeasures since FY 2012, and volumes of emission reduction are calculated based on these volumes of energy saving. | | | | | Examples of | | | M | leasure e | valuation | indicato | r, and results of countermeasures | |----------------------------------|---
---|---|--------------|-------------------------------------|--------------|-----------------|--------------|-------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | asure
nation
cator | 1 1 | d energy
ing | emis | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction | | and steel | | | • | uipm | ent v | with | high | ene | rgy- | saving performance (iron | | | | | | process | unt of
ed waste
stic
^4 t) | (10^4 | 4 kL) | (10^4 | t-CO ₂) | Waste plastics used in FY 2012: 420,000 t (source: The Japan Iron and Steel Federation) The volume used is expected to increase to 1 million t in FY 2020 and FY 2030 However, this assumes an increase in volumes of plastics | | Expansion of chemical recycle of | of Sorted Collection and
Recycling of Containers and | Support for technological
development related to
chemical recycle of plastic
wastes etc. at steel mills | Increasing volumes of container and packaging plastics collected by local | 2013
(FY) | 40 | 2013
(FY) | ▲ 2 | 2013
(FY) | ▲ 7 | processed in the iron and steel industry through means such as revisions to the current collection system for plastic containers and packaging subject to Act on the Promotion of Sorted Collection and Recycling of Containers and Packaging Evaluation indicators etc. will need to be revised in accordance with the results of joint discussions between the | | waste plastics at steel
mills | Technological development related to chemical recycle of waste plastics etc. at steel | Smooth operation of The
Law for Promotion of Sorted
Collection and Recycling of
Containers and Packaging | governments under The Law
for Promotion of Sorted
Collection and Recycling of
Containers and Packaging | 2025
(FY) | | 2025
(FY) | - | 2025
(FY) | - | Industrial Structure Council and the Central Environment Council. • Crude oil thermal conversion coefficient: 0.0258 kL/GJ (source: Article 4 of the Act on Rationalizing Energy Use) | | | mills | | | 2030
(FY) | 100 | 2030
(FY) | 49 | 2030
(FY) | 212 | Energy saving from expanding chemical recycling of plasti
wastes at steel mills represents energy saving through
progress on countermeasures since FY 2012, and volumes of
emission reduction are calculated based on these volumes of
energy saving. | | | | | Examples of | | | M | leasure e | valuation | indicato | r, and results of countermeasures | |--------------------------------|--|--|---|--------------|--------------------------|--------------|------------|----------------------|---------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | asure
nation
cator | Expected | | Expo
emis
redu | ssion | Assumptions of expected energy saving and expected emission reduction | | 03. Promo | otion of the inti | roduction of fa | cilities and equ | uipm | ent v | with | high | ene | rgy- | saving performance (iron | | and steel i | • / | | | | | | | | | | | (Governing | agencies: Ministry | of Economy, Tra | de and Industry) | | | | | | | | | | | | | | read use | (10^2 | 4 kL) | (10^4 | t-CO ₂) | | | Efficiency improvement of coke | Businesses: Technological development related to coke production | Support for introduction of | _ | 2013
(FY) | 93 | 2013
(FY) | ▲ 4 | 2013
(FY) | ▲ 4 | These figures assume high efficiency through efficiency improvements in coke oven in FY 2030. Energy saving from efficiency improvements in coke oven | | oven | Businesses:
Updating coke oven | energy conserving equipment | | 2025
(FY) | _ | 2025
(FY) | - | 2025
(FY) | - | represents energy saving through progress on countermeasures since FY 2012, and volumes of emission reduction are calculated based on these volumes of energy saving. | | | | | | 2030
(FY) | 100 | 2030
(FY) | 17 | 2030
(FY) | 48 | | | | | | Examples of | | | N | leasure ev | valuation | indicato | r, and results of countermeasures | |--------------------------------|---|---|---|--------------|--|--------------|---|--------------|---|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalı | asure
uation
cator | | d energy
ring | emis | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction | | and steel | | | Î | uipn | nent v | with | high | ene | rgy- | saving performance (iron | | | | | | widesp | te of
read use
%) | (10^- | 4 kL) | (10^4 | t-CO ₂) | These figures assume that efficiency improvements by FY
2030 for private generators and joint thermal power plants | | Improvement of | Businesses: Technological development related to saving energy in power generation facilities | • Support for technological
development related to saving
energy in power generation
facilities | | 2013
(FY) | power generation 17 private power generation 38 | 2013
(FY) | joint thermal
power
generation
5
private power
generation
4 | 2013
(FY) | power
generation | that began operation in FY 1979 or earlier (not including backup equipment and equipment for which decisions have been made on discontinuation of use etc.) • Power generation through FY 2030 is assumed to be | | power generation
efficiency | Businesses:
Promotion of the spread such
as upgrading to power
generation facilities with high-
efficiency energy saving
performance | Support for introduction of
power generation facilities
with high-efficiency energy
saving performance | | 2025
(FY) | | 2025
(FY) | _ | 2025
(FY) | - | Energy saving from improving power-generation efficiency represents energy saving through progress on countermeasures since FY 2012, and volumes of emission | | | | | | 2030
(FY) | power generation 39 private power generation generation 92 | 2030
(FY) | joint thermal
power
generation
14
private power
generation
30 | 2030
(FY) | joint thermal
power
generation
44
private power
generation
70 | reduction are calculated based on these volumes of energy saving. | | | | | Examples of | | | M | leasure e | valuation | indicato | r, and results of countermeasures | |-----------------------------|---|--|---|--------------|--|--------------|-----------------|----------------------|---------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalı | asure
aation
cator | Expected | d energy
ing | Expe
emis
redu | | Assumptions of expected energy saving and expected emission reduction | | and steel | | | Î | uipm | nent v | with | high | ene | rgy- | saving performance (iron | | | | | | widesp | te of
read use
%) | (10^2 | 4 kL) | (10^4 | t-CO ₂) | • It is assumed that pressure recovery power generation at peak blast-furnace pressure (TRT), sensible heat recovery in coke oven (CDQ), equipment for recovery of heat emitted by | | Enhancement of | Businesses:
Technological development
related to enhancement of
energy saving facilities | Supporting introduction of
| | 2013
(FY) | TRT 91 CDQ 86 Steam recovery 83 | 2013
(FY) | I 0.51 | | 0.9 | sintering, and equipment for recovery of heat emitted by converters will achieve FY2005 Top Runner efficiency levels by FY 2030, with the exception of some equipment. Conversion coefficient to crude oil equivalent: 0.0258 kL/GJ (Article 4 of the Act on Rationalizing Energy Use) Secondary conversion coefficient (heat generated during | | energy saving
facilities | Businesses:
Upgrading energy saving
facilities | energy saving facilities | _ | 2025
(FY) | —————————————————————————————————————— | 2025
(FY) | - | 2025
(FY) | - | Secondary conversion coefficient (neat generated during consumption): 3.6 MJ/kWh (source: total energy statistics) Steam thermal conversion coefficient: 3.27 GJ/t (source: total energy statistics) Energy saving from enhancement of energy saving equipment represents energy saving through progress on | | | | | | 2030
(FY) | TRT 100 CDQ 100 Steam recovery 100 | 2030
(FY) | 34.0 | 2030
(FY) | 65.0 | countermeasures since FY 2012, and volumes of emission reduction are calculated based on these volumes of energy saving. | | | | | Examples of | | | M | leasure e | valuation | indicato | or, and results of countermeasures | |---------------------------|--|--|---|--------------|------------------------------|--------------|-----------|-----------------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | asure
nation
cator | Expected sav | ~ | Expe
emis
reduc | ssion | Assumptions of expected energy saving and expected emission reduction | | and steel i | ndustry) | roduction of fa | Î | uipm | ent v | with | high | ene | rgy- | saving performance (iron | | | | | | intro | ber of
duced
s (units) | (10^2 | ł kL) | (10^4 | t-CO ₂) | • Evaluation indicator: energy saving per unit (Crude oil equivalent) = approx. 39,000 kL/unit | | Introduction of | Businesses:
Technological development
related to innovative pig iron
making process | Suppor for technological development related to innovative pig iron making process | _ | 2013
(FY) | 0 | 2013
(FY) | 0 | 2013
(FY) | 0 | * The CO ₂ emission reduction at steelworks from
development of this technology can be realized through
increasing the speed of reduction reactions inside blast
furnaces, lowering temperatures, and lowering the reducing
agent ratio, through use of an innovative coke-alternative | | coke) | Businesses:
Introduction of workflows
using innovative pig iron
making process | Support for introduction of
workflows using innovative
pig iron making process | | 2025
(FY) | - | 2025
(FY) | _ | 2025
(FY) | _ | reducing-agent (ferrocoke). The increase in energy purchas (e.g., electricity) in such a case, since energy recovered also will decrease, is taken into consideration as well. • Energy saving from Introduction of innovative pig-iron | | | | | | 2030
(FY) | 5 | 2030
(FY) | 19 | 2030
(FY) | 82 | processes (ferrocoke) represents energy saving through progress on countermeasures since FY 2012, and volumes emission reduction are calculated based on these volumes energy saving. | | | | | Examples of | | | N | leasure e | valuation | indicato | or, and results of countermeasures | |--|---|--|---|-----------------------------|--------------------------|--------------|-----------------|--------------|-------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | asure
nation
cator | 1 | d energy
ing | emis | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction | | and steel | | | • | uipm | ent v | with | high | ene | rgy- | saving performance (iron | | | | | | Numl
introd
facilitie | | (10^4 | 4 kL) | (10^4 | t-CO ₂) | Energy saving per unit of evaluation indicator = 54,000 kL CO₂ emission reduction per unit of evaluation indicator = 54,000 (kL) / 0.0258 (kL/GJ) / 1,000 (TJ/GJ) × 51.2 (t-CO₂/TJ) = 107,000 t-CO₂ * The target COT-reduction effects at steel mills from this technological development are approximately 10% from | | | - | Support for technological
development related to
environmentally harmonious | | 2013
(FY) | 0 | 2013
(FY) | 0 | 2013
(FY) | 0 | technologies to increase hydrogen included in the high-
temperature gas byproducts produced during production of
coke and processing iron ore using this hydrogen as a
substitute for some coke and approximately 20% from new
CO ₂ separation and recovery technologies using unused waste
heat inside steel mills. * Projected volumes of energy saving are the results of efforts
such as efficiency improvements in process reactions inside | | Introduction of
environmentally
harmonious
ironmaking processes | Businesses:
Introduction of workflows
using environmentally | ironmaking processes • Support for introduction of equipment related to environmentally harmonious ironmaking processes | _ | 2025
(FY) | _ | 2025
(FY) | _ | 2025
(FY) | | blast furnaces through use of hydrogen in iron or processing. Accordingly, the projected volumes of energy saving and projected CO ₂ emission reduction of this technology do not match. * Expected emission reduction for FY 2030 are 1.78 million t-CO ₂ when reductions from sources such as CO ₂ separation and recovery technologies are included. | | | | | | 2030 | 1 | 2030 | | 2030 | 1 1 | Conversion coefficient to crude oil equivalent: 0.0258 kL/GJ (Article 4 of the Act on Rationalizing Energy Use) Fuel (LNG) emission factor: 51.2 t-CO ₂ /TJ (List of carbon emission intensity of total heat by energy source [Agency for Natural Resources and Energy]) Energy saving from Introduction of eco-friendly | | | | | | (FY) | | (FY) | 3 | (FY) | 11 | steelmaking processes represents energy saving through progress on countermeasures since FY 2012, and volumes of emission reduction are calculated based on these volumes of energy saving. | ^{*1} Because of the difficulty of projecting expected energy mix, CO₂ emission intensity in power sector are estimated based on FY 2013, with the exception of figures for FY 2030, which reflect a preferable energy mix. - 28 - | | | | Examples of | | | M | leasure e | valuation | indicato | or, and results of countermeasures | |---------------------------------------|--|--|--|--------------|--------------------------|--------------|-----------------|----------------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | to be implemented by local governments | evalu | asure
nation
cator | Expected | d energy
ing | Expo
emis
redu | sion | Assumptions of expected energy saving and expected emission reduction | | 04. Promo | otion of the inti | roduction of fa | cilities and equ | uipm | ent v | with | high | ene | rgy- | saving performance | | (chemical | • / | | | | | | | | | | | (Governing | agencies: Ministry | of Economy, Tra | de and Industry) | | | | | | | | | | | | | - | _ | (10^4 | 4 kL) | (10^4 | t-CO ₂) | | | Introduction of energy saving process | saving energy through
recovery of an emitted energy
technologies, improved
efficiency of facilities and | Support for introduction of facilities and equipment by | _ | 2013
(FY) | _ | 2013
(FY) | 16.9 | 2013
(FY) | 45.6 | Crude oil emission factor: 2.7 t-CO ₂ /kL Energy saving from Introduction of energy saving technologies in chemicals represents energy saving through | | | equipment and machinery, rationalization of processes, etc. | businesses | | 2025
(FY) | — | 2025
(FY) | _ | 2025
(FY) | _ | progress on countermeasures since FY 2012, and volumes of emission reduction are calculated based on these volumes of energy saving. | | | | | | 2030
(FY) | _ | 2030
(FY) | 144.1 | 2030
(FY) | 389.1 | | | | | |
 amo | duced
ount
^4 t) | (10^4 | 4 kL) | (10^4 | t-CO ₂) | | | carbon dioxide | Businesses: Development and introduction | · Support for development of carbon dioxide utilization technologies | _ | 2013
(FY) | _ | 2013
(FY) | _ | 2013
(FY) | _ | • Energy saving from Introduction of technologies for converting CO ₂ to raw materials represents energy saving through progress on countermeasures since FY 2012, and | | | of energy saving technologies | · Support for introduction of facilities and equipment by businesses | | 2025
(FY) | 0.64 | 2025
(FY) | 0.06 | 2025
(FY) | 0.16 | volumes of emission reduction are calculated based on these | | | | | | 2030
(FY) | 64.0 | 2030
(FY) | 6.4 | 2030
(FY) | 17.3 | | | | | | Examples of | | | М | easure e | valuation | indicato | r, and results of countermeasures | |---------------------------|---|--|---|--------------|------------------------------|--------------|----------|-----------------------|---------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | asure
nation
cator | Expected sav | | Expe
emis
reduc | sion | Assumptions of expected energy saving and expected emission reduction | | (cement a | nd ceramic ind | | · | uipm | ent v | with | high | ene | rgy- | saving performance | | | | | | redu | intensity
ction
t-cem) | (10^4 | kL) | (10^41 | t-CO ₂) | • Evaluation indicator: Reduction in energy intensity | | Conventional energy | Businesses: introduction of facilities and | Support for introduction of | | 2013
(FY) | 2 | 2013
(FY) | 0.2 | 2013
(FY) | 0.5 | energy saving effect per unit of subject equipment (waste-heat
power generation, vertical slag mills, vertical coal mills, high
efficiency coolers) multiplied by the number of units adopted
divided by cement production volume | | saving technology | equipment capable of efficiently utilizing thermal energy and electrical energy | facilities and equipment by businesses | _ | 2025
(FY) | - | 2025
(FY) | - | 2025
(FY) | | • Energy saving from traditional energy saving technologies represents energy saving through progress on countermeasures since FY 2012, and volumes of emission reduction are calculated based on these volumes of energy saving. | | | | | | 2030
(FY) | 14 | 2030
(FY) | 2.4 | 2030
(FY) | 6.4 | | | | | | Examples of | | | M | leasure e | valuation | indicato | r, and results of countermeasures | |---------------------------|-------------------------------|---|---|------------------------|---|--------------|-----------|-----------------------|---------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | asure
nation
cator | Expected sav | ٠. | Expe
emis
reduc | sion | Assumptions of expected energy saving and expected emission reduction | | 05. Promo | otion of the int | roduction of fa | cilities and equ | uipm | ent v | with | high | ene | rgy- | saving performance | | (cement a | nd ceramic ind | lustry) | | | | | | | | | | (Governing a | agencies: Ministry | of Economy, Tra | de and Industry) | | | | | | | | | | | | | alternative
thermal | ing ratio of
re waste to
l energy
%) | (10^2 | 4 kL) | (10^4 | t-CO ₂) | | | Technology to use | | Support for introduction of facilities and equipment by | _ | 2013
(FY) | ▲0.2 | 2013
(FY) | ▲3.1 | 2013
(FY) | ▲8.2 | • Evaluation indicator: Replacement waste cofiring as a share of thermal energy For waste cofiring rates, the growth rate since 2012 as reported in the FY 2021 Ministry of the Environment report "Report on market size, employment, etc. in environmental industries" is used. | | | | businesses | | 2025
(FY) | 1.0 | 2025
(FY) | 4.7 | 2025
(FY) | 12.7 | • Energy saving from technology to use waste as a substitute for thermal energy is calculated by multiplying the difference in Energy intensity from previous methods by annual production volume. | | | | | | 2030
(FY) | 1.5 | 2030
(FY) | 7.2 | 2030
(FY) | 19.2 | | | | | | Examples of | | | M | leasure e | valuation | indicato | r, and results of countermeasures | |---------------------------|--|--|---|-------------------|---|--------------|-----------|-----------------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | asure
nation
cator | Expected | | Expe
emis
reduc | sion | Assumptions of expected energy saving and expected emission reduction | | 05. Promo | otion of the int | roduction of fa | cilities and equ | uipm | ent v | with | high | ene | rgy- | saving performance | | (cement a | nd ceramic inc | lustry) | | | | | | | | | | (Governing | agencies: Ministry | y of Economy, Tra | de and Industry) | ı | | | | | | | | | | | | firing production | nperature
clinker
on volume
%) | (10^2 | 4 kL) | (10^4 1 | t-CO ₂) | | | | Businesses: R&D etc. toward practical application of technologies | · Support for development of
technologies related to low-
temperature firing in cement
production processes | | 2013
(FY) | 0 | 2013
(FY) | 0 | 2013
(FY) | | • Evaluation indicator: Rate of Introduction of this technolog
Projected through combination of results of interviews with
leading businesses capable of using this technology | | • | related to low-temperature
firing in cement production
processes | Support for practical application and introduction of technologies related to low- temperature firing in cement production processes | _ | 2025
(FY) | 28.9 | 2025
(FY) | 4.5 | 2025
(FY) | 12.2 | Energy saving from technologies related to low-temperatur
firing in cement production processes represents energy
saving through progress on countermeasures since FY 2012,
and volumes of emission reduction are calculated based on
these volumes of energy saving. | | | | | | 2030
(FY) | 73.1 | 2030
(FY) | 15.1 | 2030
(FY) | 40.8 | | | | | | Examples of | | | N | leasure e | valuation | indicato | r, and results of countermeasures | |---------------------------|--|---|---|--------------|----------------------------|--------------|-----------|----------------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | asure
lation
cator | | d energy | Expo
emis
redu | sion | Assumptions of expected energy saving and expected emission reduction | | 05. Promo | otion of the int | roduction of fa | cilities and equ | uipm | nent v | with | high | ene | rgy- | saving performance | | (cement a | nd ceramic ind | lustry) | | | | | | | | | | (Governing | agencies: Ministry | of Economy, Tra | de and Industry) | | | ı | | | | | | | | | | introduc | nology
etion rate
%) | (10^4 | 4 kL) | (10^4 | t-CO ₂) | | | Glass melting process | Businesses: R&D etc. toward practical | · Support for development of
glass melting process
technology | | 2013
(FY) | 0 | 2013
(FY) | 0 | 2013
(FY) | 0 | • Evaluation indicator: Rate of Introduction of this technology Projected through combination of results of interviews with leading businesses capable of using this technology | | technology | application of glass melting
process technology | Support for practical
application and introduction of
glass melting process
technology | _ | 2025
(FY) | 1.2 | 2025
(FY) | 1.5 | 2025
(FY) | 4.1 | • Energy saving from glass melting process technologies represents energy saving through progress on countermeasures since FY 2012, and volumes of emission reduction are calculated based on these
volumes of energy saving. | | | | | | 2030
(FY) | 3.7 | 2030
(FY) | 3.0 | 2030
(FY) | 8.1 | | | | Countermeasures of each actor | Countermeasures of the national government | Examples of countermeasures expected to be implemented by local governments | Measure evaluation indicator, and results of countermeasures | | | | | | | |---|--------------------------------|--|---|--|--------------------------|--------------|------|---------------------------|------|--| | Name of mitigation action | | | | evalu | asure
nation
cator | Expected sav | ٠. ا | Expe
emis
reduc | sion | Assumptions of expected energy saving and expected emission reduction | | 06. Promotion of the introduction of facilities and equipment with high energy- saving performance (pulp, | | | | | | | | | | | | paper, and paper product industry) (Governing agencies: Ministry of Economy, Trade and Industry) | | | | | | | | | | | | | Introduction of facilities and | Support for introduction of facilities and equipment by businesses | | Rate of widespread use (%) | | (10^4 kL) | | (10^4 t-CO ₂) | | | | paper pulping process | | | | 2013
(FY) | 12 | 2013
(FY) | 0.2 | 2013
(FY) | 0.5 | Introduction of 35 units is anticipated by FY 2025 (Rate of widespread use = 59 units/172 units = 34%) Introduction of 40 units is anticipated by FY 2030 (Rate of widespread use = 64 units/172 units = 37%) | | | | | - | 2025
(FY) | 34 | 2025
(FY) | 3.4 | 2025
(FY) | 9.2 | Volumes of energy saving represent energy saving through
progress on countermeasures since FY 2012, and volumes of
emission reduction are calculated based on these volumes of
energy saving. | | | | | | 2030
(FY) | 37 | 2030
(FY) | 3.9 | 2030
(FY) | 10.5 | | | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | Examples of | Measure evaluation indicator, and results of countermeasures | | | | | | | | |--|---|--|---|--|--|------------------------|------|-----------------------------|------|---|--| | | | | countermeasures expected to be implemented by local governments | Measur | re evaluation indicator | Expected energy saving | | Expected emission reduction | | Assumptions of expected energy saving and expected emission reduction | | | 07. Promotion of the introduction of facilities and equipment with high energy- saving performance | | | | | | | | | | | | | (construction work and use of special vehicles) | | | | | | | | | | | | | (Governing agencies: Ministry of Economy, Trade and Industry) | | | | | | | | | | | | | Introductn of energy saving construction equipment, etc. | Construction contractors etc.: Striving to utilize construction machinery etc. with high energy saving performance in their construction work | aiming to reduce CO ₂ through promotion of construction machinery that has outstanding fuelconservation performance. Over the long term, introducing, and promoting through establishing a certification program for innovative construction machinery based on thorough review of use of diesel as a fuel (e.g., that using electricity, hydrogen, or biomass), to realize | Through measures, such as promotion of i- Construction, including increasing use of ICT construction by Small and Midsize Enterprises contractors working on construction projects for local governments, promoting measures in areas such as further efficiency improvements | | r of introduced units of construction machinery (10^4 units) | (10^4 kL) | | (10^4 t-CO ₂) | | Expected energy saving is estimated based on energy | | | | | | | 2013
(FY) | Approx. 0.2 | 2013
(FY) | 0.3 | 2013
(FY) | 0.7 | saving per unit and the increase in units since FY 2012 energy saving per unit: 3.65 kL/unit (Crude oil equivalent) | | | | | | | 2025
(FY) | - | 2025
(FY) | - | 2025
(FY) | - | • Expected emission reduction are calculated by multiplying projected energy saving by emission intensity Fuel (diesel) emission factor: 2.7 t-CO ₂ /kL (Source: Based on the list of carbon emission intensity of total heat by energy source [Agency for Natural Resources | | | | | | | 2030
(FY) | Approx. 4.7 | 2030
(FY) | 16.0 | 2030
(FY) | 44.0 | and Energy]) | | | | | | Examples of | | 1 | Measure | evaluatio | n indicat | or, and re | esults of countermeasures | |---------------------------|-------------------------------|--|--|------------|---|--------------|------------------|--------------|-------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures
expected to be
implemented by local
governments | Measu | re evaluation indicator | - | d energy
ving | emis | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction | | 07. Promo | otion of the i | ntroduction of | of facilities a | nd e | quipment w | ith h | nigh | ener | gy- s | saving performance | | (construct | ion work an | d use of spec | cial vehicles) | | | | | | | | | (Governing | agencies: Minis | try of Economy | , Trade and Ind | lustry |) | | | | | | | | | | | constr | * Reference:
of widespread use of
uction machinery that
uel efficiency standards | (10^ | 4 kL) | (10^4 | t-CO ₂) | * Reference: The base year has been set to FY 2017 as a result of revision of evaluation indicators. 1. CO ₂ emissions from construction machinery are estimated at 5.71 million t, based on total energy statistics (①). | | | | | | FY
2017 | Hydraulic excavators:
6.7%
Wheel loaders: 2.0%
Bulldozers: 5.1%
FCFL: 77 units | 2017
(FY) | 1 | 2017
(FY) | 4 | 2. The average composition of CO ₂ emissions from construction machinery for 2011-2015 was: 46% for hydraulic shovels, 11% for wheel loaders, and 3% for bulldozers (②). 3. CO ₂ emissions will be reduced by 15% in a case of construction machinery that satisfies 2020 fuel-consumption | | | | | | FY | Hydraulic excavators:
49.4%
Wheel loaders: 39.8%
Bulldozers: 33.2%
FCFL: 500 units | 2025
(FY) | 11 | 2025
(FY) | | standards (construction machinery satisfying fuel-consumption standards) (③) Projected CO ₂ emission reduction from these initiatives are estimated by calculating reductions per unit and multiplying them by the projected number of units in use, as follows: CO ₂ reductions (10,000 t-CO ₂) =5.71 million t-CO ₂ (①) × 46% (②) × rate of adoption (hydraulic shovels) % (③) × 15% | | | | | | FY
2030 | Hydraulic excavators:
82.3%
Wheel loaders: 60.7%
Bulldozers: 49.3%
FCFL: 2500 units | 2030
(FY) | 18 | 2030
(FY) | | +5.71 million t-CO ₂ (①) × 11% (②) × rate of adoption (wheel loaders) % (③) × 15% +5.71 million t-CO ₂ (①) × 3% (②) × rate of adoption (bulldozers) % (③) × 15% 4. For FCFL, reductions per unit are 4.70 [t-CO ₂ /unit]. | | | | | Examples of | | | M | easure ev | valuation | indicato | r, and results of countermeasures | |----------------------------------|---|---|---|----------------------------|--|--------------|-----------
--------------|-------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | Mea
evalu | asure
nation
cator | Expected sav | | - | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction | | (greenhou | se horticulture | roduction of fa
e, agricultural r | nachinery, and | l fish | | | | ene | rgy- | saving performance | | (Governing) | agencies. Willistry | of Agriculture, 14 | orestry and risher | Introdu
energy
equip | ction of saving oment units) | (100 | (141) | (10^4 | t (O.) | | | | Manufacturers: Development of equipment, facilities, and materials to contribute to greenhouse gas emission reduction | | | 2013
(FY) | 63 | (10^2 | | (10°4 | I-CO2) | | | | Vendors:
Sale of equipment, facilities,
and materials to contribute to
greenhouse gas emission | · Promoting introduction of
energy saving equipment in
horticulture facilities to
contribute to greenhouse gas
emission reduction, etc. | | 2025
(FY) | 143 | 2013
(FY) | - | 2013
(FY) | - | Scale of Introduction of energy saving equipment/machinery (increase in adoption from FY 2013 to FY 2030) • Number of units of energy saving machinery adopted | | energy saving equipment in | reduction Nationwide private associations: energy saving rating, and | · Promoting and public
awareness-raising of
production management
through energy saving | · Promoting introduction of
energy saving equipment in
horticulture facilities to
contribute to greenhouse gas | 2030
(FY) | 170 | () | | () | | Heat pumps: 26,700 units* Heating equipment using woody biomass: 1,000 units* Multilayer thermostats: 79,000 units* energy saving introduction of equipment sites | | horticulture facilities,
etc. | provision of information to
farmers, concerning
equipment, facilities, and
materials to contribute to
greenhouse gas emission | production-management
manuals in horticulture
facilities and production-
management check sheets in
horticulture facilities | emission reduction, etc. • Public awareness-raising | energy | ction of
saving
lities
sites) | 2025
(FY) | 42.7 | 2025
(FY) | 115 | Circulating fans: 143,000 sites* Curtain installation: 129,000 sites* * Scale of adoption estimated based on subsidy program results etc. Fuel (heavy oil A) emission factor: 2.7 t-CO ₂ /kL (prepared) | | | reduction Growers: Choosing energy saving equipment, facilities, and | · Promoting establishment of
technologies for energy saving
facilities and equipment etc. | | 2013
(FY) | 105 | (11) | | (11) | | based on the list of carbon emission intensity of total heat by energy source [Agency for Natural Resources and Energy]) | | | materials and putting into
practice energy saving
production management
technologies | | | 2025
(FY) | 304 | 2030 | 57.3 | 2030 | 155 | | | | | | | 2030
(FY) | 376 | (FY) | | (FY) | | | | | | | Examples of | | | N | leasure e | valuation | indicato | r, and results of countermeasures | |-------------------------------|------------------------------------|--|---|--|----------------------------------|--------------|-----------|-----------------------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | Mea
evalu
indic | ation | Expecte | | Expected emission reduction | | Assumptions of expected energy saving and expected emission reduction | | | | | - | _ | | | high | ene | rgy- | saving performance | | . • | se horticulture agencies: Ministry | _ | • | | eries | s) | | | | | | (Governing | Manufacturers/vendors: | of Agriculture, Fo | orestry and Fisher | The nur
widely-us
saving ag
mach
(Un | ed energy
ricultural
inery | (10^4 | 4 kL) | (10^4 | t-CO ₂) | Estimation of permeation of energy saving agricultural machinery Estimation of permeation of energy saving agricultural machinery (automated steering equipment, electrically | | Introduction of energy saving | | Promotion of introduction of
energy saving agricultural
machinery | Awareness promotion concerning saving energy in | 2013
(FY) | 0.45 | 2013
(FY) | - | 2013
(FY) | - | powered agricultural machinery) Calculation of reductions in fuel consumption through permeation of energy saving agricultural machinery (using the energy saving rate of each machine) * Automated steering equipment: 13.3%; electrically powered | | agricultural
machinery | Consumers: | Awareness promotion
concerning saving energy in
use of agricultural machinery | use of agricultural machinery | 2025
(FY) | 70 | 2025
(FY) | 0.11 | 2025
(FY) | 0.29 | agricultural machinery: 100% • CO ₂ emission reduction calculated using the conversion coefficient* * Chosen for each type of agricultural machinery, from diesel (2.7 t-CO ₂ /kL) for automated steering equipment, kerosene | | | ways that enable energy saving | | | 2030
(FY) | 190 | 2030
(FY) | 0.29 | 2030
(FY) | 0.79 | (2.7 t-CO ₂ /kL) and diesel (2.7 t-CO ₂ /kL) for electrically powered agricultural machinery, etc. (prepared based on the list of carbon emission intensity of total heat by energy source [Agency for Natural Resources and Energy]) | | | | | | Measure e
indicator
energy
fishing | Shift to
saving
boats | (10^4 | 4 kL) | (10^4 | t-CO ₂) | • Trend in number of fishing boats updated per year: approx. 1.7%/year | | Energy saving on | isning vessels, equipment, | • Promotion of development
and practical application of
energy saving technologies of
fishing vessels | Public awareness-raisin | 2013
(FY) | 12.4 | 2013
(FY) | - | 2013
(FY) | - | Energy saving effects of updating fishing boats: 10% vs. boat replaced Projected improvement in efficiency of fishing boats through Introduction of smart technologies in offshore and | | fishing vessels | Choosing energy saving | • Promotion of the spread
through replacement of energy
saving and power-saving
fishing vessels, etc. | a done awareness-taisin | 2025
(FY) | 32.6 | 2025
(FY) | 4.8 | 2025
(FY) | 13.2 | open-sea fishing: approx. 5% • Manifestation of energy saving effects through smart technologies: increasing by approx. 2%/year • Crude oil emission factor: 2.7 t-CO ₂ /kL (prepared based on | | | | sels maning vessers, etc. | | 2030
(FY) | 41.0 | 2030
(FY) | 7.2 | 2030
(FY) | 19.4 | the list of carbon emission intensity of total heat by energy source [Agency for Natural Resources and Energy]) | | | | | Examples of | | | М | easure e | valuation | indicato | r, and results of countermeasures | |--|---|---|---|-----------------------|-------|--------------|----------|----------------------|----------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | Mea
evalu
indic | | Expected | | Expe
emis
redu | ssion | Assumptions of expected energy saving and expected emission reduction | | | otion of energy
agencies: Ministry | | | ugh | inter | -indu | ıstry | coll | aboı | ation | | | | | | | - | (10^4 | kL) | (10^4 | | • Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO ₂ /kWh (Source: Calculated based on the Environmental Action Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of Japan]) • Average electricity emission factor for all power sources in | | Promotion of energy conservation initiatives through | Businesses: Striving to save energy in cooperation with multiple | Support for energy saving initiatives through cooperation of multiple businesses | Promoting energy saving initiatives through cooperation | 2013
(FY) | - | 2013
(FY) | 0 | 2013
(FY) | | FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy supply and demand in FY 2030) • Fuel (city gas) emission factor: 2.0 t-CO ₂ /kL • Fuel (heavy oil A) emission factor: 2.7 t-CO ₂ /kL | | inter-industry
collaboration | plants and businesses, through
means such as energy
accommodation | initiatives through cooperation
of multiple businesses under
the Act on the Rational Use of
Energy | | 2025
(FY) | - |
2025
(FY) | 21 | 2025
(FY) | 71 | Fuel (imported thermal coal) emission factor: 3.5 t-CO₂/kL For convenience, the average of the emission intensity for coal, heavy oil A, and city gas (2.7t-CO₂/kL) is used in estimating Expected emission reduction from fuel savings. Energy saving from energy conservation initiatives through | | | | | | 2030
(FY) | - | 2030
(FY) | 29 | 2030
(FY) | | inter-industry collaboration represents energy saving through progress on countermeasures since FY 2012, and volumes of emission reduction are calculated based on these volumes of energy saving. | ^{*1} Because of the difficulty of projecting expected energy mix, CO₂ emission intensity in power sector are estimated based on FY 2013, with the exception of figures for FY 2030, which reflect a preferable energy mix. | | | | Examples of | | | M | leasure e | valuation | indicato | r, and results of countermeasures | |---------------------------|---|--|---|--------------|--------------------------|--------------|-----------|-----------------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected to be implemented by local governments | evalu | asure
nation
cator | Expected sav | - | Expe
emis
reduc | ssion | Assumptions of expected energy saving and expected emission reduction | | | ification and fu | | | | | | | | | | | | | | | l | | (10^2 | 4 kL) | (10^4 | t-CO ₂) | | | Promotion of fuel | Manufacturers/vendors: Promoting cost reductions in fuel conversion from coal and heavy oil to natural gas etc., and provision of information | Subsidies for fuel conversion
from coal and heavy oil to
natural gas etc. Provision of information on | | 2013
(FY) | - | 2013
(FY) | - | 2013
(FY) | - | • Fuel conversion results (most recent four years in industry and commercial sectors) 2016-2019 CO ₂ reductions: 500,000 t-CO ₂ (125,000 t-CO ₂ /year) (2016: 160,000; 2017: 29,000; 2018: 133,000; 2019: 177,000 t-CO ₂ /year) | | conversion | Consumers:
Choosing fuel conversion from
coal and heavy oil to natural
gas etc. | outstanding case studies
related to fuel conversion from
coal and heavy oil to natural
gas etc. | | 2025
(FY) | - | 2025
(FY) | - | 2025
(FY) | 151 | (Source: The Japan Gas Association) • Average thermoelectric emission intensity are used for FY 2030 emission intensity for grid electricity: 0.60 kg-CO ₂ /kWh (Source: Outlook for energy supply and demand in FY 2030) | | | | | | 2030
(FY) | - | 2030
(FY) | - | 2030
(FY) | 211 | | ^{*1} Because of the difficulty of projecting expected energy mix, CO₂ emission intensity (in power sector) are estimated based on from FY 2016 to FY 2019, with the exception of figures for FY 2030, which reflect a preferable energy mix. | | | | Examples of | | | М | leasure ev | valuation | indicato | r, and results of countermeasures | |-----------------------------------|--|---|---|--------------|--------------------------|--------------|------------|-----------------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | asure
nation
cator | Expected | ٠. ا | Expe
emis
reduc | sion | Assumptions of expected energy saving and expected emission reduction | | - | mentation of that agencies: Ministry | • | | usin | g FE | MS | | | | | | | | | | FEMS c | coverage (%) | (10^4 | 4 kL) | (10^4 | t-CO ₂) | | | Implementation of thorough energy | Manufacturers/vendors: Development of low-cost, easy-to-use factory energy management systems (FEMSs) and providing information to | Supporting FEMS technological development and | | 2013
(FY) | 5 | 2013
(FY) | 4 | 2013
(FY) | 15 | FEMS coverage, energy saving rate Average electricity emission factor for all power sources in FY 2030: 0.25 kg-CO₂/kWh (Source: Outlook for energy supply and demand in FY 2030) | | management using FEMS | businesses introducing Businesses introducing: Introduction of FEMS | introduction by businesses | | 2025
(FY) | 18 | 2025
(FY) | 62 | 2025
(FY) | 238 | • Energy saving from FEMS installation represents energy saving through progress on countermeasures since FY 2012, and volumes of emission reduction are calculated based on these volumes of energy saving. | | | | | | 2030
(FY) | 24 | 2030
(FY) | 74 | 2030
(FY) | 200 | | ^{*1} Because of the difficulty of projecting expected energy mix, CO₂ emission intensity in power sector are estimated based on FY 2013, with the exception of figures for FY 2030, which reflect a preferable energy mix. | | | | Examples of | | | М | leasure e | valuation | indicato | or, and results of countermeasures | |---|---|--|--|--|---|------------------------------|-----------|------------------------------|------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | asure
nation
cator | Expected sav | | emis | ected
sion
ction | Assumptions of expected energy saving and expected emission reduction | | - | | energy efficier of Land, Infrastru | • | | ourisn | 1) | | | | | | Improvement of the energy efficiency of buildings (new buildings) | Contractors etc.: Building energy saving buildings Owners of buildings etc.: Displaying energy consumption performance of buildings Manufacturers of building materials preventing heat loss etc.: Improving the performance of building materials prevebting heat loss | stages • Support through subsidies to promote supply of buildings with improved energy saving performance, such as zero-emissions buildings (ZEB) • Realizing ZEB in the national government's newly constructed buildings | Smooth operation of the Act on the Improvement of Energy Consumption Performance of Buildings Public awareness-raising related to energy saving buildings Proactive realization of ZEB in public buildings Support for promotion and expansion of ZEB etc. | medium to new built meet the saving per of the ZEI 2013 (FY) 2025 (FY) | entage of large-scale dings that e energy formance* B standard %) | 2013
(FY)
2025
(FY) | ‡ kL) | 2013
(FY)
2025
(FY) | t-CO2) | • FY 2030 energy saving represents energy saving through progress on countermeasures since FY 2013, and volumes of emission reduction are calculated based on these volumes of energy saving. • Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO ₂ /kWh (Source: Environmental Action Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of Japan]) • Average electricity emission factor for all power sources in FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy supply and demand in FY 2030) * Primary energy consumption not including renewable energy reduced as follows by use, from
current energy saving standards. Hotels, hospitals, department stores, restaurants/bars, meeting places, etc.: 30% reduction (BEI=0.7) | | | | • Enhancing the Top Runner
Program for building materials | | 2030
(FY) | 100 | 2030
(FY) | 403 | 2030
(FY) | 1,010 | Offices, schools, factories, etc.: 40% reduction (BEI=0.6) | | | | | Examples of | | | М | leasure e | valuation | indicato | r, and results of countermeasures | |---|---|--|---|-----------------------|----------|--------------|-----------|----------------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | Mea
evalu
indic | ation | Expected | | Expo
emis
redu | ssion | Assumptions of expected energy saving and expected emission reduction | | - | vement of the agencies: Ministry | • | • | | ourisn | n) | | | | | | | | | • Smooth operation of the Act
on the Improvement of Energy
Consumption Performance of | building
meets | tandards | (10^4 | ł kL) | (10^4 | t-CO ₂) | • FY 2030 energy saving represents energy saving through | | Improvement of the energy efficiency of | buildings | Support for promotion of
energy saving renovation and | Buildings • Promotion and awareness raising related to energy saving buildings | 2013
(FY) | 24 | 2013
(FY) | _ | 2013
(FY) | _ | progress on countermeasures since FY 2013, and volumes of emission reduction are calculated based on these volumes of energy saving. • Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO ₂ /kWh | | and reconstruction of existing buildings) | Manufacturers of building materials preventing heat loss etc.: Improving the performance of building materials prevebting heat loss | | Systematic energy saving
renovation and reconstruction
of public buildings | 2025
(FY) | _ | 2025
(FY) | _ | 2025
(FY) | _ | (Source: Environmental Action Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of Japan]) · Average electricity emission factor for all power sources in FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy | | | | | Support for energy saving
renovation and reconstruction
of buildings | 2030
(FY) | 57 | 2030
(FY) | 143 | 2030
(FY) | 355 | supply and demand in FY 2030) | | | | | Examples of | | | M | leasure ev | valuation | indicato | r, and results of countermeasures | |---------------------------|---|---|---|--|--------------------------|------------------------|------------|----------------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected to be implemented by local governments | evalu | sure
ation
cator | Expected energy saving | | Expe
emis
redu | ssion | Assumptions of expected energy saving and expected emission reduction | | | otion of high-etagencies: Ministry | • | • • • | pmer | nt (co | omm | ercia | ıl an | d otł | ner sectors) | | | | | | Cumulativ
of introduc
HP wate
(10^4 | ed units of
r heaters | (10^2 | 4 kL) | (10^4 | t-CO ₂) | | | | | | | 2013
(FY) | 2.9 | | | | ,
 | | | | Manufacturers: Technological development, | | • Promotion of the spread of | 2025
(FY) | 9 | 2013 | 2. | 2013 | 5 | Energy saving per unit of high-efficiency water heaters Units of high-efficiency water heaters adopted Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO₂/kWh (source: Environmental Action | | Installation of energy- | production, and cost
reductions for high-efficiency
water heaters
Vendors: | Supporting introduction of
high-efficiency water heaters Promoting proactive
installation under the Act on | high-efficiency water heaters and provision of information to businesses • Promoting proactive | 2030
(FY) | 14 | (FY) | | (FY) | | Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of Japan]) · Average electricity emission factor for all power sources in FY 2030: 0.25 kg-CO ₂ /kWh (source: Outlook for energy supply and demand in FY 2030) | | water heaters | efficiency water heaters Businesses: | the Promotion of Procurement
of Eco-Friendly Goods and
Services by the State and | installation under the Act on
the Promotion of Procurement
of Eco-Friendly Goods and
Services by the State and
Other Entities | of introduc
latent hea | t recovery
er heater | 2025 | 44 | 2025 | 115 | • Fuel (city gas) emission factor: 2.0 t-CO ₂ /kL (Source: prepared based on the list of carbon emission intensity of total heat [Agency for Natural Resources and Energy]) | | | Introduction of high-efficiency water heaters | | | 2013
(FY) | 15 | (FY) | 7.7 | (FY) | 113 | • Energy saving from introduction of energy-efficient commercial water heaters represents energy saving through progress on countermeasures since FY 2012, and volumes of emission reduction are calculated based on these volumes of energy saving. | | | | | | 2025
(FY) | 100 | 2030 | 66 | 2030 | 141 | | | | | | | 2030
(FY) | 110 | (FY) | 00 | (FY) | 141 | | | | | | Examples of | | | N | leasure e | valuation | indicato | r, and results of countermeasures | |-----------------------------|--|---|---|--------------------|---|--------------|------------------|--------------|-------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | asure
nation
cator | _ | d energy
ring | _ | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction | | | otion of high-eagencies: Ministry | • | | omer | nt (co | omm | ercia | al an | d otł | ner sectors) | | | Manufacturers: Technological development | Supporting technological
development and introduction
of high-efficiency lighting | • Promotion of the spread of | numl
introduc | ulative
ber of
ced units
million
its) | (10^- | 4 kL) | (10^4 | t-CO ₂) | Energy saving per unit of high-efficiency lighting Number of units of high-efficiency lighting promoted | | Introduction of high- | and cost reductions related to high-efficiency lighting Vendors: Providing consumers with | • Promoting technological
development high-efficiency
lighting through expansion of
the standard of the Top | high-efficiency lighting and provision of information to businesses • Promoting proactive | 2013
(FY) | 0.5 | 2013
(FY) | 16 | 2013
(FY) | 98 | · Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO ₂ /kWh (Source: Environmental Action Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of Japan]) · Average electricity emission factor for all power sources in | | efficiency lighting | information about high-
efficiency lighting Businesses: Proactive introduction of high- | Runner Program • Promoting proactive introduction under the Act on Promotion of Procurement of | introduction under the Act on
the Promotion of Procurement
of Eco-Friendly Goods and
Services by the State and
Other Entities | 2025
(FY) | 2.7 | 2025
(FY) | 205 | 2025
(FY) | 1,257 | FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy supply and demand in FY 2030) • Energy saving from introduction of high-efficiency lighting represents energy saving from progress on countermeasures | | | efficiency lighting | Eco-Friendly Goods and
Services by the State and
Other Entities | Other Entities | 2030
(FY) | 3.2 | 2030
(FY) | 250 | 2030
(FY) | 672 | since FY 2012, and emission reduction are calculated based on these energy saving values. | | | | •
Establishment of decision-
making standards related to
matters such as appropriate
management for users of | | use of ap
manag | ology | (10^4 | 4 kL) | (10^4 | t-CO ₂) | • Calculations reflect consideration for the rate of conversion to CFC-free equipment based on a number of 7.5 million units of refrigeration and air-conditioning equipment for business | | Introduction of refrigerant | Businesses: • Firm establishment of appropriate management methods for refrigeration and | refrigeration and air-
conditioning equipment under
Act on Rational Use and
Appropriate Management of
Fluorocarbons | Promotion of the spread of
Act on Rational Use and | 2013
(FY) | 51 | 2013
(FY) | 3.8 | 2013
(FY) | 23.5 | use subject to this measure, based on recent shipments • It is assumed that the leak prevention rate can reach 4.5% through implementing appropriate management • Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO ₂ /kWh (Source: Environmental Action | | management
technology | anagement air-conditioning equipment • Development of technical human resources with appropriate management skills necessary ap simplified in | • Public awareness-raising for firm establishment of the | Appropriate Management of Fluorocarbons and providing information to businesses | 2025
(FY) | 100 | 2025
(FY) | 3.5 | 2025
(FY) | 21.6 | Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of Japan]) · Average electricity emission factor for all power sources in FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy supply and demand in FY 2030) · Energy saving from introduction of refrigerant management | | | | for refrigerant management by
a wide range of businesses,
and training machinery
installation engineers | | 2030
(FY) | 100 | 2030
(FY) | 0.6 | 2030
(FY) | 1.6 | technologies represents energy saving from progress on countermeasures since FY 2012, and emission reduction are calculated based on these energy saving values. | ^{*1} Because of the difficulty of projecting expected energy mix, CO2 emission intensity in power sector are estimated based on FY 2013, with the exception of figures for FY 2030, which reflect a preferable energy mix. | | | | Examples of | | | M | leasure e | valuation | indicato | r, and results of countermeasures | |---------------------------------------|---|--|--|--------------|--------------------------|--------------|-----------------|--------------|-------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalı | asure
nation
cator | 1 1 | d energy
ing | emis | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction | | 14. Impro | vement of ener | gy efficiency | of equipment t | hrou | ıgh T | Top F | Runn | er P | rogra | ams (commercial and other | | sectors) | | | | | | | | | | | | (Governing | agencies: Ministry | of Economy, Tra | de and Industry) | | | | | | | | | | Manufacturers: Development, production, and | | | | - | (10^4 | 4 kL) | (10^4 | t-CO ₂) | Commercial sector Improving the energy-consumption efficiency of machinery Commercial sector floor area Number of units of machinery owned Average years of use of machinery | | Improvement of energy efficiency of | introduction of energy- efficient equipment surpassing standards of the Top Runner Program Vendors: Introduction, sales promotion, and provision of information | • Expanding the ranks of equipment subject to the Top Runner Program and enhancing standards of the Top Runner Program • Proactive introduction of | Public awareness-raising for
businesses and consumers Proactive introduction of
energy-efficient equipment | 2013
(FY) | | 2013
(FY) | 8 | 2013
(FY) | 52 | Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO₂/kWh (Source: Calculated based on the Environmental Action Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of Japan]) Average electricity emission factor for all power sources in FY 2030: 0.25 kg-CO₂/kWh (Source: Outlook for energy supply and demand in FY 2030) | | equipment through Top Runner Programs | to consumers regarding energy-efficient equipment surpassing standards of the Top Runner Program Consumers: | energy-efficient equipment
surpassing standards of the
Top Runner Program under
the Act on the Promotion of
Procurement of Eco-Friendly
Goods and Services by the
State and Other Entities | surpassing standards of the
Top Runner Program under
the Act on the Promotion of
Procurement of Eco-Friendly
Goods and Services by the
State and Other Entities | 2025
(FY) | | 2025
(FY) | 212 | 2025
(FY) | 1,300 | Fuel (city gas) emission factor: 2.0 t-CO₂/kL (Source: prepared based on the list of carbon emission intensity of total heat [Agency for Natural Resources and Energy]) Fuel (kerosene) emission factor: 2.7 t-CO₂/kL * For convenience, the weighted average (2.3 t-CO₂/kL) of the emission intensity for city gas, LPG, and kerosene is used in estimating Expected emission reduction from fuel savings. | | | standards of the Top Runner Program | | | 2030
(FY) | | 2030
(FY) | 342 | 2030
(FY) | 920 | • Energy saving from improving the energy saving performance of machinery through the Top Runner Program etc. represents energy saving through progress on countermeasures since FY 2012, and volumes of emission reduction are calculated based on these volumes of energy saving. | ^{*1} Because of the difficulty of projecting expected energy mix, CO₂ emission intensity in power sector are estimated based on FY 2013, with the exception of figures for FY 2030, which reflect a preferable energy mix. | | | | Examples of | | | N | leasure e | valuation | indicato | r, and results of countermeasures | |---|--|--|---|--------------|--------------------------|--------------|-----------------|--------------|-------------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | asure
nation
cator | I - | d energy
ing | emis | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction | | . . | mentation of th | norough energy | y management | thro | ugh | the u | ise o | f BE | MS, | and Energy Conservation | | diagnosis
(Governing | agencies: Ministry | of Economy, Tra | de and Industry) | | | | | | | | | | | | | widesp | re of
read use
%) | (10^- | 4 kL) | (10^4 | t-CO ₂) | Energy intensity of non-residential buildings FY 2030 business floor area Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO₂/kWh (Source: Environmental Action Plan by the Japanese Electric Utility Industry [Federation of | | thorough energy | Manufacturers/vendors: Development of low-cost, easy-to-use building energy management systems (BEMSs) and providing information to businesses | Support for thorough energy management by businesses | Proactive BEMS adoption | 2013
(FY) | 8 | 2013
(FY) | 13 | 2013
(FY) | 56 | Electric Power Companies of Japan]) · Average electricity emission factor for all power sources in FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy supply and demand in FY 2030) · Fuel (city gas) emission factor: 2.0 t-CO ₂ /kL (Source: prepared based on the list of carbon emission intensity of total heat [Agency for Natural Resources and Energy]) | | the use of BEMS and
Energy Conservation
diagnosis | adopting BEMS systems Businesses: Thorough energy management using BEMS, energy saving diagnostics, etc. | using BEMS, energy saving diagnostics, etc. |
Promotion of the spread of
BEMS , and providing
information to businesses | 2025
(FY) | 37 | 2025
(FY) | 137 | 2025
(FY) | | • Fuel (LPG) emission factor: 2.3 t-CO ₂ /kL (Source: prepared based on the list of carbon emission intensity of total heat [Agency for Natural Resources and Energy]) • Fuel (kerosene) emission factor: 2.7 t-CO ₂ /kL (Source: prepared based on the list of carbon emission intensity of total heat [Agency for Natural Resources and Energy]) * For convenience, the weighted average (2.2 t-CO ₂ /kL) of the emission intensity for city gas, LPG, and kerosene is used in estimating Expected emission reduction from fuel savings. | | | | | | 2030
(FY) | 48 | 2030
(FY) | 239 | 2030
(FY) | | • Energy saving from use of BEMS etc. represents energy saving through progress on countermeasures since FY 2012, and volumes of emission reduction are calculated based on these volumes of energy saving. | ^{*1} Because of the difficulty of projecting expected energy mix, CO₂ emission intensity in power sector are estimated based on FY 2013, with the exception of figures for FY 2030, which reflect a preferable energy mix. | | | | Examples of | | | M | easure e | valuation | indicato | r, and results of countermeasures | |---------------------------|---|---|---|-------------------------------------|--|--------------|----------------------|--------------|---|--| | Name of mitigation action | mitigation Countermeasures of each Countermeasures of the countermeasures expected | | Mea
evalu
indic | ation | Expected sav | · · | Expe
emis
redu | ssion | Assumptions of expected energy saving and expected emission reduction | | | | otion of local pagencies: Ministry | | local consumpted and Industry) | tion a | and a | areal | use | of er | nergy | y | | | Energy suppliers etc.: Proactive development of | | | Numl
regionicro
constr
(Un | ogrids
ructed | (10^4 | 4 kL) | (10^4 | t-CO ₂) | | | | systems for local production
for local consumption of
energy, utilizing distributed
energy resources | Support for development of systems for local production | Support for development of systems for local production | 2013
(FY) | —————————————————————————————————————— | 2013
(FY) | | 2013
(FY) | _ | The evaluation indicator is the number developed (including those under development) of community micro-grids, which are capable of separation from the wide-area grid to independently supply electricity by using renewable energy and other sources in the event of a large-scale power outage. | | areal use of energy | Buyers: Deepening understanding of local production for local consumption of energy, proactive use of local | for local consumption of energy | for local consumption of
energy | 2024
(FY) | 10 | 2024
(FY) | _ | 2024
(FY) | — | (The Ministry of Economy, Trade and Industry has provided support for their development since FY 2019.) Since this program is scheduled to be completed by FY 2025 this indicator does not cover years after FY2025. | | | production for local
consumption systems | | | 2030
(FY) | | 2030
(FY) | | 2030
(FY) | — | | | | | | Examples of | | | M | Aeasure e | valuation | indicato | r, and results of countermeasures | |--|----------------------------------|--|---|-----------------------|--------|--------------|-------------------|--------------|-------------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | Mea
evalu
indic | ation | 1 * | ed energy
ving | emis | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction | | 17. Decarl | bonization of t | ırban areas thr | ough the impro | ovem | ent | of th | e the | erma | l env | rironment by heat island | | control | | | | | | | | | | | | (Governing a | agencies: Ministry | of Land, Infrastru | ucture, Transport a | and To | ourisn | n) | | | | | | | | | | Area of | | | | | | | | | | | | gree | uction | (10^4 | 4 kL) | (10^4 | t-CO ₂) | | | | | | | (h | a) | | | | | While there are multiple countermeasures against the hear
sland effect, due to a lack of knowledge on CO ₂ emissions | | | | | | 2013 | | 2013 | | 2013 | | reduction effects for measures other than rooftop planting,
Expected emission reduction have been estimated for | | Decarbonization of urban areas through | Private businesses: Implementing | Promotion of heat island | | (FY) | - | (FY) | | (FY) | _ | promotion of rooftop planting. | | thermal environment | | control such as rooftop planting | - | | | | | | | • Average electricity emission factor for all power sources in FY 2019: 0.444 kg-CO ₂ /kWh (Source: Environmental Action | | by heat island control | emission reduction | | | 2025
(FY) | 245.4 | 2025
(FY) | - | 2025
(FY) | | Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of Japan]) | | | | | | | | <u> </u> | | | | • Average electricity emission factor for all power sources in FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy | | | | | | 2030 | | 2030 | | 2030 | 0.71 ~ | supply and demand in FY 2030) | | | | | | (FY) | 302.1 | (FY) | - | (FY) | 3.32 | | ^{*1} Because of the difficulty of projecting expected energy mix, CO2 emission intensity (in power sector) are estimated based on FY 2019, with the exception of figures for FY 2030, which reflect a preferable energy mix. | | | | Examples of | | | M | leasure e | valuation | indicato | r, and results of countermeasures | |---------------------------|---|---|---|------------------------|--------------------------|--------------|-----------------|-----------------------|---------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | asure
lation
cator | Expected sav | d energy
ing | Expo
emis
redu | | Assumptions of expected energy saving and expected emission reduction □ | | | • | | ewable energy in v | vater | supply | y and | sewa | ge (pr | omot | ion of energy conservation and | | | nergy measures in | | | 1 Т. | | - \ | | | | | | (Governing a | agencies. Willistry | · Implementing subsidized projects toward promoting further introduction of energy saving and renewable energy measures in waterworks · Ascertaining information | leture, Transport a | The am renewab | ount of | | 4 kL)
— | (10^4
2013
(FY) | t-CO ₂) | Conducting surveys on the state of implementation of energy saving and renewable energy measures among waterworks businesses and related parties nationwide Calculating total volumes of energy saving and renewable energy at businesses as a whole Adding the results of support by the the national | | conservation and | Waterworks businesses etc.:
Implementing energy saving
and renewable energy
measures | such as the state of introduction of energy saving and renewable energy measures in waterworks • Provision of information concerning energy saving and renewable energy measures Promoting effective introduction of energy saving and renewable energy measures through means such as use of survey results and | Waterworks businesses etc.:
Implementing energy saving
and renewable energy
measures | energy
compa
FY2 | | 2025
(FY) | 11.6 | 2025
(FY) 32 | | government for Introduction of energy saving and renewable energy measures by waterworks businesses It is anticipated that CO ₂ emissions will reduce through energy saving resulting from more efficient use of energy and through power generation by equipment using renewable energy Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO ₂ /kWh (Source: Environmental Action Plan by the Japanese
Electric Utility Industry [Federation of Electric Power Companies of Japan]) Average electricity emission factor for all power sources in FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy | | | | rolling out of outstanding case studies | | 2025
(FY) | 44,911 | 2030 | 19.3 | 2030 | | supply and demand in FY 2030) | | | | | | 2030
(FY) | 75,054 | (FY) | 17.3 | (FY) | 21.6 | | ^{*1} Because of the difficulty of projecting expected energy mix, CO₂ emission intensity in power sector are estimated based on FY 2013, with the exception of figures for FY 2030, which reflect a preferable energy mix. - 50 - | | | | Francisco of | | | M | leasure e | valuation | indicato | r, and results of countermeasures | |-------------------------------|--|--|---|-----------------------|-----------------------------------|----------|-----------|-----------------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | Examples of countermeasures expected to be implemented by local governments | Mea
evalu
indic | ation | Expected | | Expe
emis
reduc | sion | Assumptions of expected energy saving and expected emission reduction □ | | 19. Introduct | tion of energy con | servation and rene | ewable energy in v | vater | supply | y and | sewa | ge (pr | omot | on of energy conservation and | | | ion measures in se | • • | | | | | | | | | | (Governing | agencies: Ministry | of Land, Infrastru | ucture, Transport a | and To | ourisn | 1) | | | | | | | | | | treated | sions per | (10^4 | 4 kL) | (10^4) | t-CO ₂) | | | | | Support for development and | | 2013
(FY) | 0.28 | | | | | | | | | promotion of technologies for
converting sewage sludge to
energy • Provision of information | Introduction of energy creation technologies at times such as when renovating | 2025
(FY) | 0.22 | 2013 | - | 2013 | - | • The share of energy generation from sewage sludge (calculated by dividing the sewage biomass recycling rate, a target of Priority Plan for Social Infrastructure Development, by green-space and agricultural-land use) will grow to 35% in | | | Private businesses: Development of high- efficiency, low-cost technologies for converting sewage sludge to energy, | such as energy saving facilities
and equipment at final
treatment facilities and other
facilities and water-treatment | Introduction of energy
saving facilities and | 2030
(FY) | 0.09 | (FY) | | (FY) | | 2025 and 37% by 2030. Promoting energy saving initiatives at sewage treatment facilities Continually increasing use of other renewable energy (solar, small-scale hydroelectric, wind power) | | measures in sewage operations | development of energy saving
facilities and equipment,
introduction of sewage heat at
facilities using heat | technologies with low levels of greenhouse gas (GHG) emissions • Promoting use of sewage | facilities and other facilities,
water-treatment technologies
with low levels of GHG
emissions, etc. | energy co | e sludge
onversion
te
%) | 2025 | _ | 2025 | 138 | · Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO ₂ /kWh (Source: Environmental Action Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of Japan]) | | | | Support for maintenance to sewage treatment facilities by local governments | • Introduction of equipment using sewage heat□ | 2013
(FY) | 15 | (FY) | | (FY) | | Average electricity emission factor for all power sources in
FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy
supply and demand in FY 2030) | | | | | | 2025
(FY) | 35 | 2030 | _ | 2030 | 130 | | | | | | | 2030
(FY) | 37 | (FY) | | (FY) | 130 | | ^{*1} Because of the difficulty of projecting expected energy mix, CO₂ emission intensity in power sector are estimated based on FY 2013, with the exception of figures for FY 2030, which reflect a preferable energy mix. | | | | Examples of | | | | Measi | ure evalu | ation inc | dicator, and results of countermeasures | |---------------------------|--|--|--|---|----------------------------------|--------------|-------|--------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures
expected to be
implemented by local
governments | Meas
evalua
indica | ation | Expe | | . I emission | | Assumptions of expected energy saving and expected emission reduction □ | | | ives in waste
agencies: Ministr | | nment) | | | | | | | | | | Consumers:
Cooperating in sorted | | | Sorted col
volume of w
plastic conta
packag
(10^4 | vaste from
ainers and
ging | (10^4 | kL) | (10^4 | t-CO ₂) | Calculation method Projected volumes of sorted collection are estimated from FY 2013 results based on rates of increase in the seventh municipal sorted | | collection and | disposal of plastic
containers and packaging
Manufacturers and business
users of containers and
packaging: | Promoting sorted collection and recycling of plastic | Baling sorted plastic
container and packaging
wastes collected and
improving bale quality Public awareness- | 2013
(FY) | 66 | 2013
(FY) | 1 | 2013
(FY) | - | collection plan Reduction effects are calculated based on recycling rates for plastic container and packaging wastes (FY 2013 values) There is a possibility that results etc. could be revised in future council meetings etc. | | | 1 0 0 | containers and packaging | raising among consumers Cooperation in demonstration projects and other policies | 2025
(FY) | 71 | 2025
(FY) | 1.2 | 2025
(FY) | 4.4 | Notes Although estimates are based on the calculation methods from plans for achievement of Kyoto Protocol targets, they could be revised as a result of future studies. | | | rationalized contribution to local governments | | • | 2030
(FY) | 73 | 2030
(FY) | 1.7 | 2030
(FY) | 6.2 | • The evaluation indicator "Volume of sorted collection of plastic container and packaging wastes" refers to volumes delivered to designated businesses | | | | | Examples of | | | | Measi | ıre evalu | ation inc | licator, and results of countermeasures | |---------------------------|---|--|--|---------------------------------------|------------------------------------|--------------|----------------|----------------------|-----------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected to be implemented by local governments | Mea
evalu
indic | ation | Expo | | Expe
emis
redu | ssion | Assumptions of expected energy saving and expected emission reduction □ | | | ives in waste
agencies: Ministr | | nment) | | | | | | | | | | | · Initiatives to achieve
targets of the Waste
Management Facilities
Improvement Plans (June
30, 2023 Cabinet decision) | | The am electric general unit of dispo | ricity
ted per
waste
osed | (10^4 | 4 kL) | (10^4 | t-CO ₂) | ● Projected energy saving volumes: Calculated by estimating increases in power generation per volume of waste (kWh/t) from business-as-usual (BAU) levels in the fiscal year subject to evaluation and multiplying these by the general-waste incineration volume (thousand t), heat from electric power (9.76 GJ/thousand kWh), and Crude oil conversion intensity (0.0258 kL/GJ) | | Introduction of waste | | Initiatives to achieve | Introduction of high-
efficiency power
generation facilities in
accordance with facility
size when building new
municipal waste | 2013
(FY) | 231 | 2013
(FY) | - | 2013
(FY) | - | assuming that facilities set up 20 years earlier would be subject to fundamental improvements and those set up 35
years earlier to renovation, adopting high-efficiency power generation facilities in accordance with facility size that satisfies the requirements issued for energy-recovery waste-treatment facilities at that time, since the base year (FY 2013) | | municipal waste | new municipal waste
incineration plants or
renovating or implementing
fundamental improvements
at existing ones | waste-treatment sector • Certification program for waste heat recovery facility | incineration plants or
renovating or
implementing
fundamental
improvements at existing | 2025
(FY) | 321
~
382 | 2025
(FY) | 65
~
112 | 2025
(FY) | 147
~ | ● Expected emission reduction: Calculated by multiplying the increase from the BAU case in power generation per volume of waste (kWh/t) in the fiscal year subject to evaluation by the general-waste incineration volume in the fiscal year subject to evaluation and the average electricity emission factor for all power sources (kg-CO₂/kWh) | | | | • Support for improvements to municipal waste incineration plants | | 2030
(FY) | 359
~
445 | 2030
(FY) | 92
~
158 | 2030
(FY) | 91
~
157 | Average electricity emission factor for all power sources in FY 2013 0.57 kg-CO₂/kWh (Source: Environmental Action Plan by the Japanes Electric Utility Industry [Federation of Electric Power Companies of Japan]) Average electricity emission factor for all power sources in FY 2030 0.25 kg-CO₂/kWh (Source: Outlook for energy supply and demand in FY 2030) | | | | | Examples of | | | | Measi | ıre evalu | ation inc | licator, and results of countermeasures | |---|--|---|--|---|----------------------|--------------|-------|-----------------------------|---------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures
expected to be
implemented by local
governments | Mea
evalu
indic | ation | Expe | | Expected emission reduction | | Assumptions of expected energy saving and expected emission reduction □ | | | ives in waste
agencies: Ministr | | nment) | | | | | | | | | | | Measures to support
formulation of business | | The am
power go
from in-
waste (| enerated
dustrial | (10^2 | 4 kL) | (10^4 | t-CO ₂) | Projected energy saving volumes: Projections assume setup of about two facilities of industrial waste incineration plants per year through means including use of the project to promote achievement of multiple benefits through effective use of | | Introduction of waste power generation at | Treatment businesses: Introduction of high- efficiency power generation facilities at industrial waste incineration plants Generator: | plans such as effective use of power from waste power generation • Measures to support energy creation and other | _ | 2013
(FY) | 3,748 | 2013
(FY) | - | 2013
(FY) | - | energy from wastes, in FY 2019 and later. Calculated based on actual power-generation volumes by industrial-waste treatment businesses in FY 2019 (ascertained from businesses chosen for the low-carbon waste-treatment support program), assuming average annual power generated per facility of 7.4 GWh/year and multiplying this by heat from electric power (9.76 GJ/thousand kWh) and Crude oil conversion intensity (0.0258 kL/GJ) | | industrial waste incineration plants | Prioritizing entrustment of
treatment of industrial
wastes to treatment
businesses that have
industrial waste incineration
plants | activities using energy from wastes • Multifaceted support for promotion of the Action Plans for a Low- Carbon | | 2025
(FY) | 4,477 | 2025
(FY) | 18 | 2025
(FY) | 42 | Expected emission reduction: Expected emission reduction are calculated by multiplying the increase from the BAU case (continuation of 2013 values) in power generation by industrial waste treatment businesses since the base year (thousand kWh/year) by the CO₂ emission factor (kg-CO₂/kWh) in the | | | | Society by industrial waste treatment businesses | | 2030
(FY) | 4,551 | 2030
(FY) | 20 | 2030
(FY) | 20 | fiscal year subject to evaluation. • For the CO ₂ emission factor (average for all power sources) in the fiscal year subject to evaluation, the same figures are used as for general wastes. | | | | | Examples of countermeasures | | | | Measi | ıre evalu | ation inc | licator, and results of countermeasures | |--|--|---|---|--------------------------|-------|--------------|-------|--------------|-------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | expected to be
implemented by local
governments | Mea
evalu
indic | ation | Expe | | | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction □ | | | ives in waste | | nment) | | | | | | | | | | Treatment businesses: Use of plastic wastes and other wastes subject to | • Measures to support
formulation of business
plans related to such as
effective use of power from
waste power generation | | RPF pro
volu
(1,00 | ıme | (10^- | 4 kL) | (10^4 | t-CO ₂) | Projected energy saving volumes: | | Promotion of fuel | simple incineration as raw
materials for fuels. Also,
implementing introduction
of environmentally
conscious equipment and
initiatives of saving energy
at waste incineration plants | Measures to support energy creation and other activities using energy from wastes Measures to support introduction of fuel- | | 2013
(FY) | 914 | 2013
(FY) | - | 2013
(FY) | - | Projections assume production of 1.5 million tons of RPF in FY 2030 through means including use of the project to promote achievement of multiple benefits through effective use of energy from wastes. Calculated based on actual RPF production volumes per facility in the base year (from a survey of industrial wastes), multiplied by the RPF solids rate (97.4%) (inventory setting value) heat from RPF (29.3 MJ/kg) (list of carbon emission intensity of total heat by energy source [Agency for Natural Resources and Energy]), and Crude oil conversion | | measures in the waste
management industry | Proactive use of fuels derived from wastes as alternative fuels Waste collection and transport businesses: | efficient waste collection
and transportation vehicles • Measures to support
introduction of low-carbon
waste treatment facilities
and equipment | - | 2025
(FY) | 1,293 | 2025
(FY) | 28 | 2025
(FY) | 70 | intensity (0.0258 kL/GJ) Expected emission reduction: Calculated by multiplying the increase from the BAU case (continuation of 2013 values) in power generation using RPF (t/year) since the base year by the RPF solids rate, heat generation, and CO ₂ emission factor (89.1 kg-CO ₂ /GJ since 2018) (carbon emission intensit [Agency for Natural Resources and Energy]) of fuel replaced by RPF in | | | Introduction of fuel-efficient
waste collection and
transportation vehicles | · Multifaceted support for
promotion of the Action
Plans for a Low- Carbon
Society by industrial-waste
treatment businesses | | 2030
(FY) | 1,500 | 2030
(FY) | 43 | 2030
(FY) | 149 | the fiscal year subject to evaluation. | | | | | Examples of countermeasures | | | | Measi | ıre evalu | ation inc | dicator, and results of countermeasures | | | |--------------------------------|--|---|---|--|---|--------------|-------|--------------|---------------------
---|--|--| | Name of mitigation action | Countermeasures of each actor | expected to be Measure Fynectic | | sion | Assumptions of expected energy saving and expected emission reduction □ | | | | | | | | | | ives in waste
agencies: Ministr | | nment) | | | | | | | | | | | | | | | Numb
introduc
of EV g
collect
vehicles | eed units
garbage
ction | (10^4 | 4 kL) | (10^4 1 | t-CO ₂) | Projected energy saving volumes: Calculated by ascertaining and totaling numbers of electric waste-collection vehicles adopted per fiscal year, through interviews with | | | | Introduction of electric waste | Manufacturers: Technological development | Subsidies for purchase of electric waste collection | CO ₂ emission reduction
from the waste collection
vehicles by replacing the
current internal
combustion engine waste | 2013
(FY) | 0 | 2013
(FY) | - | 2013
(FY) | - | manufacturers, local governments, etc. • emission reduction are estimated by multiplying CO ₂ reduction effects per waste-collection vehicle, calculated from the fuel consumption, electricity consumption of diesel-powered waste-collection vehicles and electric waste-collection vehicles, differences in their maximum loads, | | | | collection vehicles | related to vehicles, loading platform, batteries, etc. | vehicles, electricity supply
systems, etc. | collection vehicles with
EV waste collection
vehicle, which is fully
electric from driving to
loading | 2025
(FY) | 10,200 | 2025
(FY) | - | 2025
(FY) | 1.2 | average distance travelled and days of operation, etc., by the cumulative total number of electric waste-collection vehicles. • Average electricity emission factor for all power sources in FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy supply and demand in FY 2030) | | | | | | | | 2030
(FY) | 26,700 | 2030
(FY) | - | 2030
(FY) | 15 | · Years other than FY 2030: 0.57 kg-CO ₂ /kWh (Source: Environmental Action Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of Japan]) | | | ^{*1} Because of the difficulty of projecting expected energy mix, CO2 emission intensity in power sector are estimated based on FY 2013, with the exception of figures for FY 2030, which reflect a preferable energy mix. | | | | Examples of | | | Mea | sure eval | uation in | dicator, | and results of countermeasures | |-------------------------------------|--|--|---|---|--|--------------|-----------|-----------------------|---------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected to be implemented by local governments | evalu | asure
nation
cator | Expected sav | ٠. ا | Expe
emis
reduc | ssion | Assumptions of expected energy saving and expected emission reduction □ | | - | | nergy efficiency of h
stry of Land, Infrastructur | _ | d Tou | ırism) | | | | | | | | Contractors etc.: Building energy saving housing Sellers, leasers of | • Requiring conformity to energy saving standards under the Act on the Improvement of Energy Consumption Performance of Buildings, strengthening guidance standards, and strengthening | Smooth operation of the | new house
the energ
performan
ZEH st | entage of
es that meet
gy saving
nce* of the
tandard | (10^4 | 1 kL) | (10^4 | t-CO ₂) | • FY 2030 energy saving represents energy saving through progress on countermeasures since FY 2013, and volumes of emission reduction are calculated based | | Improvement of energy efficiency of | Sellers, leasers of residences: Displaying energy consumption performance of housing of Designated owners and | | Act on the Improvement of Energy Consumption Performance of Buildings • Public awareness-raising related to energy | 2013
(FY) | 0 | 2013
(FY) | _ | 2013
(FY) | _ | on these volumes of energy saving. • Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO ₂ /kWh (Source: Environmental Action Plan by the Japanese Electric Utility Industry [Federation of Electric Power | | housing (new
housing) | contractors: Supplying energy- efficient housing Manufacturers of building materials preventing heat | Support through tax programs, subsidies,
and lending to promote supply of
residences with improved energy saving
performance, such as zero-emissions
homes (ZEH) | Promoting ZEH in rental public housing Support for promotion and expansion of ZEH | 2025
(FY) | —————————————————————————————————————— | 2025
(FY) | — | 2025
(FY) | _ | Companies of Japan]) • Average electricity emission factor for all power sources in FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy supply and demand in FY 2030) * Reducing by 20% from current energy saving standard | | | loss etc.: Improving the performance of building materials preventing heat loss • Introduction of labeling systems for residential energy saving performance • Enhancing the Top Runner Program for building materials | | | 2030
(FY) | 100 | 2030
(FY) | 253 | 2030
(FY) | 620 | primary energy consumption not including enhanced envelope thermal performance standards and renewable energy | | | | | Examples of | | | Mea | isure eval | luation in | ndicator, | and results of countermeasures | |---|-------------------------------|---|--|--------------------|--------------------------|--------------|------------|--------------|-------------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected to be implemented by local governments | | asure
lation
cator | Expecte sav | | | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction □ | | | | | • Smooth operation of the
Act on the Improvement
of Energy Consumption | housing s
meets | energy
tandards | (10^4 | 4 kL) | (10^4 | t-CO ₂) | • FY 2030 energy saving represents energy saving through progress on countermeasures since FY 2013, and volumes of emission reduction are calculated based on these volumes of energy saving. | | | | • Support through tax programs, subsidies, and lending to promote energy saving | Performance of Buildings • Promotion and awareness raising related to energy saving housing | 2013
(FY) | 6 | 2013
(FY) | _ | 2013
(FY) | _ | • Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO ₂ /kWh (Source: Environmental Action Plan by the Japanese Electric Utility Industry [Federation of Electric Power | | and reconstruction of existing housing) | loss etc.: Improving the | Development and promotion of building
materials, methods, etc. well suited to
remodeling with superior energy saving
performance | Implementation of
systematic energy saving
remodeling of rental
public housing | 2025
(FY) | _ | 2025
(FY) | - | 2025
(FY) | _ | Companies of Japan]) • Average electricity emission factor for all power sources in FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy supply and demand in FY 2030) | | | | | Support for energy
saving remodeling of
existing housing | 2030
(FY) | 30 | 2030
(FY) | 91
* | 2030
(FY) | 223 | * Some energy saving effects of energy saving renovation not satisfying energy saving standards also are included in the figures. | | | | | Engage C | | N | leasure e | valuation | indicato | r, and results of countermeasures | |--|--|---|---
--|--|------------------|--------------|-------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | Examples of countermeasures expected to be implemented by local governments | Measure
evaluation
indicator | 1 - | d energy
ving | emis | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction □ | | | | ficiency energy
of Economy, Tra | • • • | ment (re | siden | tial s | secto | or) | | | Installation of high-
efficiency water
heaters | Manufacturers: Technological development, production, and cost reductions for high-efficiency water heaters Vendors: Providing information to consumers concerning high- efficiency water heaters Consumers: Proactive introduction of high-efficiency water heaters | Promotion and expansion of use of high-efficiency water heaters through the Top Runner Program Promoting energy saving countermeasures of residential | Promotion and expansion of use of high-efficiency water heaters and provision of information to consumers | Cumulative number of introduced units of heat pump (HP) water heaters (10^4 units) 2013 (FY) 422 2025 (FY) 1,200 (FY) 1,590 Cumulative number of introduced units of latent heat recovery type (10^4 units) 2013 (FY) 2,700 Cumulative number of introduced units of fuel cells (10^4 units) | f (10^4) 2 (2013 (FY)) 3 (FY) 4 (10^4) | 4 kL) | 2013
(FY) | t-CO ₂) | Energy saving per unit of high-efficiency water heaters Units of high-efficiency water heaters adopted Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO₂/kWh (source: Environmental Action Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of Japan]) Average electricity emission factor for all power sources in FY 2030: 0.25 kg-CO₂/kWh (source: Outlook for energy supply and demand in FY 2030) Fuel (city gas) emission factor: 2.0 t-CO₂/kL (Source: prepared based on the list of carbon emission intensity of total heat [Agency for Natural Resources and Energy]) Fuel (LPG) emission factor: 2.3 t-CO₂/kL (Source: prepared based on the list of carbon emission intensity of total heat [Agency for Natural Resources and Energy]) Fuel (kerosene) emission factor: 2.7 t-CO₂/kL (Source: prepared based on the list of carbon emission intensity of total heat [Agency for Natural Resources and Energy]) For convenience, the weighted average (2.2 t-CO₂/kL) of the emission intensity for city gas, LPG, and kerosene is used in estimating Expected emission reduction from fuel savings. Energy saving from Introduction of high-efficiency water heaters represents energy saving through progress on countermeasures since FY 2012, and volumes of emission reduction are calculated based on these volumes of energy | | | | | | 2025 (FY) 2030 (FY) 300 | 2030
(FY) | 332 | 2030
(FY) | 898 | saving. | | | | | Examples of | | | M | easure e | valuation | indicato | or, and results of countermeasures | |---------------------------|--|---|---|------------------|---|--------------|----------|----------------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected to be implemented by local governments | evalu | asure
nation
cator | Expected sav | | Expe
emis
redu | ssion | Assumptions of expected energy saving and expected emission reduction □ | | | sion of high-eff
agencies: Ministry | • | | ment | t (res | siden | tial s | secto | or) | | | | Manufacturers: | | | numl
introduc | ulative
ber of
ced units
million
its) | (10^2 | ∮ kL) | (10^4 | t-CO ₂) | Energy saving per unit of high-efficiency lighting Number of units of high-efficiency lighting promoted | | Introduction of high- | Technological development and cost reductions related high-efficiency lighting Vendors: Providing consumers with | · Promotion and expansion of high-efficiency lighting | high-efficiency lighting and | 2013
(FY) | 0.6 | 2013
(FY) | 12 | 2013
(FY) | 73 | • Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO ₂ /kWh (Source: Environmental Action Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of Japan]) • Average electricity emission factor for all power sources in | | efficiency lighting | information about high- efficiency lighting Consumers: Proactive introduction of high- | through the Top Runner
Program | providing information to consumers | 2025
(FY) | 4.4 | 2025
(FY) | 205 | 2025
(FY) | 1,257 | FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy supply and demand in FY 2030) • Energy saving from Introduction of high-efficiency lighting represents energy saving from progress on countermeasures | | | efficiency lighting | | | 2030
(FY) | 4.6 | 2030
(FY) | 242 | 2030
(FY) | 651 | since FY 2012, and emission reduction are calculated based on these energy saving values. | ^{*1} Because of the difficulty of projecting expected energy mix, CO₂ emission intensity in power sector are estimated based on FY 2013, with the exception of figures for FY 2030, which reflect a preferable energy mix. | | | | Examples of | | | N | leasure ev | valuation | indicato | r, and results of countermeasures | |---|--|--|---|---|------------------------------------|--------------|------------------------|--------------|-------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | Measure
evaluation
indicator | | Expected energy saving | | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction □ | | | sion of high-eff
agencies: Ministry | | • • • | men | ıt (er | ergy | sav: | ing s | septi | c tanks) (residential sector) | | | | | | number
tanks wi
reduction
consul
compared
tanks fo | ociety in 3 (10^4 | (10^- | 4 kL) | (10^4 | t-CO ₂) | • While it is anticipated that septic tank application with power consumption 26% lower than that of current septic tan application will be installed through conversion from night-soil reservoirs and single-treatment septic tank application and from
traditional compound-treatment septic tank application, since it is expected that installation of new compound-treatment septic tank application will involve installation of existing low-carbon septic tank application in the BAU case, this measure assumes replacement of such | | Promotion of energy-
efficient septic tank
application | Manufacturers: Technological development related to energy-efficient septic tank application Local governments/vendors: Provision of information to | • Policy guidance toward
energy-efficient septic tank
application, through means
such as establishment of
power-saving standards on
installation of septic tank | · Support for energy-efficient septic tank application · Provision of information and | 2013
(FY) | 3.5 | 2013
(FY) | - | 2013
(FY) | | septic tank application with septic tank application having 26% lower power consumption, and GHG reductions are estimated based on the difference between the two. • For representative types of septic tank application, five-, seven-, and 10-person tanks, which have accounted for the majority of units shipped in recent years, have been chosen a targets under this measure. • A target also has been set regarding replacement of existin medium-sized and large septic tank application, which have low levels of energy efficiency. | | energy-emeient
existing medium-and
large-sized septic
tanks) | consumers regarding energy- efficient septic tank application Consumers: Choosing energy-efficient septic tank application at time of purchase | application • Research on energy-efficient septic tank application and public awareness-raising among manufacturers, local governments, vendors, etc. | public awareness-raising
among vendors, consumers,
etc. regarding energy-efficient
septic tank application | 2025
(FY) | 63 | 2025
(FY) | 1.0 | 2025
(FY) | 6.1 | project implementation guidelines [2006, Ministry of the Environment]) • Simple average of power consumption per unit among products in the market as of 1990 for medium-sized and largestic tank application | | | | | | 2030
(FY) | 93 | 2030
(FY) | 1.5 | 2030
(FY) | 4.9 | 51-100-person tank: 1.125 kW; 101-300-person tank: 2.293 kW; 300-person tank or larger: 6.779 kW • FY 2013: 0.57 kg-CO ₂ /kWh (Source: Environmental Action Plan by the Japanese Electr Utility Industry [Federation of Electric Power Companies o Japan]) • FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy supply and demand in FY 2030) | | | | | | | | N | leasure e | valuation | indicato | r, and results of countermeasures | |---|--|--|---|--|------------------------------------|--------------|------------------------|--------------|-------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | Examples of countermeasures expected to be implemented by local governments | evalu | Measure
evaluation
indicator | | Expected energy saving | | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction □ | | | ion of high-eff
agencies: Ministry | • | • • • | men | ıt (er | ergy | sav | ing s | septi | c tanks) (residential sector) | | | | | | Cumu
numb
energy
mediu
large-
septic
(10^4 | saving
m-and
-scale
tanks | (10^- | 4 kL) | (10^4 | t-CO ₂) | • While it is anticipated that septic tank application with power consumption 26% lower than that of current septic tank application will be installed through conversion from night-soil reservoirs and single-treatment septic tank application and from traditional compound-treatment septic tank application, since it is expected that installation of new compound-treatment septic tank application will involve installation of existing low-carbon septic tank application in the BAU case, this measure assumes replacement of such | | Promotion of energy-
efficient septic tank | Manufacturers: Technological development related to energy-efficient septic tank application Local governments/vendors: Provision of information to | • Policy guidance toward
energy-efficient septic tank
application, through means
such as establishment of
power-saving standards on
installation of septic tank | Support for energy-efficient
septic tank application Provision of information and | 2013
(FY) | 0.1 | 2013
(FY) | - | 2013
(FY) | - | septic tank application with septic tank application having 26% lower power consumption, and GHG reductions are estimated based on the difference between the two. • For representative types of septic tank application, five-, seven-, and 10-person tanks, which have accounted for the majority of units shipped in recent years, have been chosen as targets under this measure. • A target also has been set regarding replacement of existing medium-sized and large septic tank application, which have low levels of energy efficiency. | | tanks) | consumers regarding energy- efficient septic tank application Consumers: Choosing energy-efficient septic tank application at time of purchase | application • Research on energy-efficient septic tank application and public awareness-raising among manufacturers, local governments, vendors, etc. | public awareness-raising
among vendors, consumers,
etc. regarding energy-efficient
septic tank application | 2025
(FY) | 2.2 | 2025
(FY) | 1.5 | 2025
(FY) | 9.2 | Power-consumption base values of FY 2013 low-carbon septic tank application, by number of users (per unit): Five-person tank: 0.052 kW; seven-person tank: 0.074 kW; 10-person tank: 0.101 kW (Source: Handling of the water-purification tank improvement project implementation guidelines [2006, Ministry of the Environment]) Simple average of power consumption per unit among products in the market as of 1990 for medium-sized and large septic tank application | | | | | | 2030
(FY) | 3.4 | 2030
(FY) | 2.3 | 2030
(FY) | 7.4 | 51-100-person tank: 1.125 kW; 101-300-person tank: 2.293 kW; 300-person tank or larger: 6.779 kW • FY 2013: 0.57 kg-CO ₂ /kWh (Source: Environmental Action Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of Japan]) • FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy supply and demand in FY 2030) | ^{*1} Because of the difficulty of projecting expected energy mix, CO₂ emission intensity in power sector are estimated based on FY 2013, with the exception of figures for FY 2030, which reflect a preferable energy mix. | | | | Examples of | | | N | leasure e | valuation | indicato | r, and results of countermeasures | |---|---|--|--|--------------|--------------------------|--------------|--------------------------|--------------|-------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | asure
nation
cator | _ | xpected energy
saving | | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction □ | | _ | vement of ener
agencies: Ministry | • | • • | throu | ıgh T | Гор Б | Runn | er P | rogra | ams (residential sector) | | | Manufacturers: Development, production, and | | | | - | (10^- | 4 kL) | (10^4 | t-CO ₂) | Residential sector Energy-consumption efficiency etc. of equipment Number of households Number of units of equipment owned Average years of use of equipment | | Improvement of energy efficiency of equipment through | introduction of energy- efficient equipment surpassing standards of the Top Runner Program Vendors: Introduction, sales promotion, and provision of
information | • Expanding the ranks of equipment subject to the Top Runner Program and enhancing standards of the Top Runner Program • Proactive introduction of | Public awareness-raising among businesses and consumers Proactive introduction of energy-efficient equipment | 2013
(FY) | _ | 2013
(FY) | 3.9 | 2013
(FY) | 24.3 | Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO₂/kWh (Source: Environmental Action Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of Japan]) Average electricity emission factor for all power sources in FY 2030: 0.25 kg-CO₂/kWh (Source: Outlook for energy supply and demand in FY 2030) | | Top Runner Programs | to consumers regarding energy-efficient equipment surpassing standards of the Top Runner Program Consumers: Introduction of energy- efficient equipment surpassing | energy-efficient equipment
surpassing standards of the
Top Runner Program under
the Act on the Promotion of
Procurement of Eco-Friendly
Goods and Services by the
State and Other Entities | surpassing standards of the
Top Runner Program under
the Act on the Promotion of
Procurement of Eco-Friendly
Goods and Services by the
State and Other Entities | 2025
(FY) | | 2025
(FY) | 128 | 2025
(FY) | 713.4 | Fuel (city gas) emission factor: 2.0 t-CO₂/kL (Source: prepared based on the list of carbon emission intensity of total heat [Agency for Natural Resources and Energy]) Fuel (kerosene) emission factor: 2.7 t-CO₂/kL * For convenience, the weighted average (2.3 t-CO₂/kL) of the emission intensity for city gas, LPG, and kerosene is used in estimating Expected emission reduction from fuel savings. | | | standards of the Top Runner
Program | | | 2030
(FY) | - | 2030
(FY) | 180 | 2030
(FY) | 475.7 | • Energy saving from improving the energy saving performance of equipment through the Top Runner Program etc. represents energy saving through progress on countermeasures since FY 2012, and volumes of emission reduction are calculated based on these volumes of energy saving. | ^{*1} Because of the difficulty of projecting expected energy mix, CO2 emission intensity in power sector are estimated based on FY 2013, with the exception of figures for FY 2030, which reflect a preferable energy mix. | | | | Examples of | | | N | leasure e | valuation | indicato | r, and results of countermeasures | | |--|---|--|---|----------------------------------|------------------|-------|-----------------------------|-----------|----------|---|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | | | Expected emission reduction | | emission | | Assumptions of expected energy saving and expected emission reduction □ | | - | _ | | nent through the u | ise of | HEM | S, sm | art m | eters, | and s | mart home devices and the | | | * | energy-saving inf | ormation of Economy, Tra | de and Industry) | | | | | | | | | | (Governing a | agencies. Ministry | or Economy, 11a | de and muustry) | Ι. | | | | | | | | | | | | | Number of
used I
(10^4 hor | HEMS | (10^- | 4 kL) | (10^4 | t-CO2) | | | | | | | | 2013
(FY) | 21 | (10 |) | (10) | | | | | | Manufacturers/vendors: Development of low-cost, easy-to-use home energy management systems | Promoting introduction of | | 2025
(FY) | 1,689 | 2013 | 0.4 | 2013 | 2.4 | Rate of energy saving using HEMSs Anticipated number of households in 2030 Annual average power consumption per household Rate of energy saving through provision of information Energy consumption in the residential sector | | | Implementation of thorough energy management through | consumers | HEMS through support for introduction of ZEH • Promoting design of standards and architectures by industrial organizations | • Promotion of HEMSs and smart home devices, and | 2030
(FY) | 4,941 | (FY) | | (FY) | | • Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO ₂ /kWh (Source: Environmental Action Plan by the Japanese Electric Utility Industry [Federation of | | | the use of HEMS and | Provision of information on saving energy to consumers Consumers: Proactive introduction of | • Promoting provision of information on saving energy to consumers based on the energy saving guidelines by | provision of information to consumers | implemen | saving
nation | 2025 | 87.4 | 2025 | 365.8 | Electric Power Companies of Japan]) • Average electricity emission factor for all power sources in FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy supply and demand in FY 2030) | | | | HEMS and smart devices, and practicing energy saving activities | | | 2013
(FY) | 21 | (FY) | | (FY) | | Energy saving from HEMS energy management represents
energy saving through progress on countermeasures since FY
2012, and volumes of emission reduction are calculated based
on these volumes of energy saving. | | | | | | | 2025
(FY) | 44 | 2030 | 216 | 2030 | 569.1 | | | | | | | | 2030
(FY) | 80 | (FY) | 210 | (FY) | 303.1 | | | ^{*1} Because of the difficulty of projecting expected energy mix, CO₂ emission intensity in power sector are estimated based on FY 2013, with the exception of figures for FY 2030, which reflect a preferable energy mix. | | | | Examples of | | | M | leasure e | valuation | indicato | or, and results of countermeasures | |---------------------------|--|--|--|------------------------------|------------------------------------|--------------|-------------|--------------|-------------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalı | asure
uation
cator | Expected sav | | emis | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction □ | | | _ | neration vehicly of Economy, Tra | _ | | | el eff | icien | icy, | etc. | | | | | Proactive introduction of
next-generation vehicles, and
supporting their adoption Support for introduction of
fuel-efficient diesel trucks etc. | | next-ge
vehicle | atio of eneration s to new eles(%) | (10^2 | 4 kL) | (10^4 | t-CO ₂) | | | | Manufacturers, importers, etc.:
Development, production,
sale, and import of fuel-
efficient vehicles | Support for infrastructure development Preferential tax treatment Improving fuel efficiency through standards of Top Runner Program | Promotion and awareness raising Proactive introduction of | 2025
(FY)
2030
(FY) | -
50~70 | 2013
(FY) | 19.9 | 2013
(FY) | 53.3 | • Evaluation indicator (next-generation vehicles as a percentage of new-vehicle sales): FY 2030 figures are based on the Japan Revitalization Strategy (2015): Investing in the future/productivity reforms (June 30, 2015 Cabinet decision). | | efficiency | Vendors: Proactive sale of fuel-efficient vehicles Consumers: Purchase of fuel-efficient vehicles | · Provision information on
fuel efficiency to consumers,
through evaluation and
publication systems
concerning vehicles' fuel
efficiency and vehicle labeling
· Supporting technological | next-generation vehicles, and supporting their adoption • Infrastructure development | Avera | ge fuel
mption
n/L) | 2025
(FY) | - | 2025
(FY) | - | Energy saving is calculated as the difference between average energy consumption of vehicles owned if measures were implemented and if they were not. Energy saving from measures of diffusion of next-generation vehicles and improvement of fuel efficiency represent energy saving through progress on countermeasures since FY 2012, and volumes of emission reduction are | | | | development and practical application of performance improvements in next-generation vehicles | | 2013
(FY) | 14.7 | | | | | calculated based on these volumes of energy saving. | | | | · Preferential treatment under financial, investment, and lending programs | | 2025
(FY) | - | 2030 | 990 | 2030 | 2,674 | | | | | · Support for introduction of electric commercial vehicles | | 2030
(FY) | 24.8 | (FY) | <i>93</i> 0 | (FY) | 2,074 |
 ^{*1} Because of the difficulty of projecting expected energy mix, CO₂ emission intensity in power sector are estimated based on FY 2013, with the exception of figures for FY 2030, which reflect a preferable energy mix. | | | | Examples of | | | M | leasure ev | valuation | indicato | r, and results of countermeasures | |-----------------------------------|--------------------------------|--|---|--------------|----------------------------|--------------|---------------|----------------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalı | asure
uation
cator | Expected | ٠. ا | Expo
emis
redu | ssion | Assumptions of expected energy saving and expected emission reduction □ | | | traffic flow me | ~ | | | | | asure | es) | | | | | | | | highwa | ntage of
ny usage
%) | (10^2 | 4 kL) | (10^4 | t-CO ₂) | Percentage of roads using these measures and total vehicle- | | Implementation of | Road managers: Promotion of | Promotion of measures for | Promotion of measures for | 2013
(FY) | Approx. | 2013
(FY) | - | 2013
(FY) | - | kilometers driven, by road type (expressway, trunk road, neighborhood streets) (FY 2013 figures are based on the 2010 road traffic census and annual report on road transport statistics) | | measures for road
traffic flow | measures for road traffic flow | road traffic flow | road traffic flow | 2025
(FY) | | 2025
(FY) | - | 2020
(FY) | - | CO₂ emission intensity by speed CO₂ emissions per unit (gasoline, diesel): 2.7 t-CO₂/Crude oil equivalent kL (calculated based on the list of carbon emission intensity of total heat by energy source [Agency for Natural Resources and Energy]) | | | | | | 2030
(FY) | Approx. | 2030
(FY) | Approx.
74 | 2030
(FY) | Approx.
200 | Z. Carrier P. Carrier and Energy 17 | | | | | Examples of | | | M | easure ev | aluation | indicator | , and results of countermeasures | |--------------------------------------|--|---|---|------------------------------------|--|--------------|-------------------------|---|---------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected to be implemented by local governments | I Measure I | | emis | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction □ | | | | | nd traffic flow measures (promotion of the maintenance of LED road lighting agencies: Ministry of Land, Infrastructure, Transport and Tourism) | | | | | | | | ting) | | | | | | | road lig
national r
the dire | or of LED
hts on the
roads under
ct control
4 units) | (10^- | 4 kL) | (10^4 | t-CO ₂) | Hours illuminated of street lights in illuminated areas: 12 hours | | Promotion of the installation of LED | Manufacturers:
Technological development | Promoting installation of
LED road lights | · Promoting installation of | 2013
(FY) | Approx. | 2013
(FY) | - | 2013
(FY) | _ | • Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO ₂ /kWh (Source: Environmental Action Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of Japan]) | | road lighting | related to saving energy in road lights | Further saving energy and
advancement in road lighting | LED road lights | 2025
(FY) | Approx. | 2025
(FY) | Approx.
0.9 | 2025
(FY) | Approx. | • Average electricity emission factor for all power sources in FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy supply and demand in FY 2030) | | | | | | 2030
(FY) | Approx. | 2030
(FY) | Approx.
1.4 | 2030
(FY) | Approx.
13 | | ^{*1} Because of the difficulty of projecting expected energy mix, CO2 emission intensity in power sector are estimated based on FY 2013, with the exception of figures for FY 2030, which reflect a preferable energy mix. | | | | Examples of | | Measure e | valuation indicato | r, and results of countermeasures | |---------------------------|-------------------------------|--|--|------------------------------------|------------------------|-----------------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | to be implemented by local governments | Measure
evaluation
indicator | Expected energy saving | Expected emission reduction | Assumptions of expected energy saving and expected emission reduction □ | | 29. Road t | traffic flow me | asures (promo | tion of Intellig | ent Tran | sport Sys | tems (IT | S) (centralized control of | | traffic ligh | nts)) | | | | | | | | (Governing : | agencies: National | Police Agency) | | | | | | (Governing agencies: National Police Agency) | - | Č | | 8 37 | | | | | | | | | |---|---|---|-------------------|--------------------------------|--------------|-------------------------------|--------------|---|--------------|-----|---| | | | | | | control o | ralized of traffic nals nits) | (10^4 | | (10^4) | Ź | | | | Promotion of intelligent transport system (ITS) | _ | _ | Centralized control of traffic | 2013
(FY) | 48,800 | 2013
(FY) | _ | 2013
(FY) | 133 | CO ₂ improvements per unit of traffic lights under centralized control (FY 2022 standard) Evaluation indicator: Planned units of lights installed | | | (centralized control of traffic lights) | | of traffic lights | lights | 2025
(FY) | 52,700 | 2025
(FY) | _ | 2025
(FY) | 144 | Emission reduction are calculated based on the effects of the cumulative number installed under these measures. | | | | | | | 2030
(FY) | | 2030
(FY) | _ | 2030
(FY) | 150 | | ^{*1} Figures for FY 2013-2019 are actual results. | | | | Examples of | | | М | leasure e | valuation | indicato | r, and results of countermeasures | |---|-------------------------------|---|---|---------------------------|--------------------------|--------------|-----------|-----------------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | asure
nation
cator | Expected sav | | Expe
emis
reduc | sion | Assumptions of expected energy saving and expected emission reduction □ | | of traffic l | | ` | enance of traffi | c saf | fety 1 | facili | ties | (imp | rove | ement and profile (hybrid) | | | | | | Improve
traffic
(un | | (10^2 | 4 kL) | (10^4 | t-CO ₂) | | | Installation of traffic safety facilities (improvement of | | Promoting networking, responsivity, and other | Networking, responsivity, and other measures of traffic | 2013
(FY) | 42,000 | 2013
(FY) | _ | 2013
(FY) | 47 | CO₂ improvements per traffic lights subject to improvement etc. (FY 2022 standard) Evaluation indicator: Planned units of lights improved | | traffic lights and
profiling [hybrid]) | | measures of traffic lights | lights | 2025
(FY) | 49,600 | 2025
(FY) | _ | 2025
(FY) | 52 | • Emission reduction are calculated based on the effects of | | | | | | 2030
(FY) | <u> </u> | 2030
(FY) | _ | 2030
(FY) | 56 | | ^{*1} Figures for FY 2013-2019 are actual results. | | | | Examples of | | | M | leasure e | valuation | indicato | r, and results of countermeasures | |---|-------------------------------|--|---|--------------|--------------------------|--------------|-----------|-----------------------|---------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by
local
governments | Mea
evalu | asure
uation
cator | Expected | | Expe
emis
reduc | sion | Assumptions of expected energy saving and expected emission reduction □ | | 31. Road t | traffic flow me | easures (mainte | enance of traffi | ic sa | fety 1 | facili | ties | (pro | moti | on of the use of LED lights | | in signal 1 | ~ // | | | | | | | | | | | (Governing a | agencies: National | l Police Agency) | | _ | | | | | | | | | | | | lig | signal
ghts
ghts) | (10^4 | 4 kL) | (10^4 1 | t-CO ₂) | | | Installation of traffic safety facilities | | promotion of the installation of | Switching to LED traffic | 2013
(FY) | 346,800 | 2013
(FY) | _ | 2013
(FY) | 6.5 | CO₂ emission reduction per LED traffic-signal light Planned units of lights improved Average electricity emission factor for all power sources in | | (promotion of the
installation of LED
traffic lights) | _ | LED traffic lights | lights | 2025
(FY) | 806,500 | 2025
(FY) | _ | 2025
(FY) | 13 | FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy supply and demand in FY 2030) • Emission reduction are calculated based on the effects of the cumulative number adopted under these measures. | | | | | | 2030
(FY) | 970,100 | 2030
(FY) | _ | 2030
(FY) | 11.9 | | ^{*1} Figures for FY 2013-2019 are actual results. | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | Examples of countermeasures expected to be implemented by local governments | Measure evaluation indicator, and results of countermeasures | | | | | | | |--------------------------------|---|---|---|--|------------------------|--------------|------|---------------------------|-------|--| | | | | | l | sure
ation
cator | Expected sav | | Expe
emis
redu | sion | Assumptions of expected energy saving and expected emission reduction □ | | | traffic flow me agencies: Ministry | ~ | | | | ving) |) | | | | | Promotion of automated driving | Manufacturers: Development, production, and sale of automated driving vehicles Citizens: Use of adaptive cruise control (ACC) | Technological development Business environmental improvements | _ | Rate of
widespread use
of ACC/CACC
(%) | | (10^4 kL) | | (10^4 t-CO ₂) | | Assumption: Use of ACC/cooperative adaptive cruise control (CACC) on expressways | | | | | | 2013
(FY) | 1.3 | 2013
(FY) | 2.1 | 2013
(FY) | 5.6 | Share of driving on expressways, for small and large vehicles (Source: Ministry of Land, Infrastructure, Transportand Tourism Road Traffic Census) CO ₂ emission intensity by fuel | | | | | | 2025
(FY) | 89 | 2025
(FY) | 58.5 | 2025
(FY) | 158.0 | | | | | | | 2030
(FY) | 100 | 2030
(FY) | 73.2 | 2030
(FY) | | | | | | | Examples of | | | M | leasure ev | valuation | indicato | r, and results of countermeasures | |--|--|---|-----------------------------|---|--|--------------|-----------------------|--------------|---|---| | Name of mitigation action | Countermeasures of each actor | countermeasures expected
to be implemented by local
governments | evalu | Measure evaluation indicator Expected en saving | | ٠. ا | Expe
emis
reduc | ssion | Assumptions of expected energy saving and expected emission reduction □ | | | 33. Green | ing of the vehi | cle transportat | ion business b | y pro | omot | ing t | he us | se of | env | ironmentally friendly | | vehicles e | tc. | | | | | | | | | | | (Governing a | agencies: Ministry | of Land, Infrastru | ucture, Transport | and To | ourisn | n) | | | | | | | | | | widely-u
driving | ber of
used eco-
g-related
ent (1,000
its) | (10^2 | 4 kL) | (10^4 | t-CO ₂) | | | Greening of vehicle
transportation
business by | Transportation companies | | Public awareness-raising of | 2013
(FY) | 518 | 2013
(FY) | - | 2013
(FY) | - | CO₂ emissions reduction effect per vehicle equipped with machinery related to eco-driving: approx. 10% Fuel-efficiency improvement: approx. 1%/year | | environmentally friendly vehicles etc. | Introduction of machinery related to eco-driving, undergoing training on eco-driving, and practicing eco-driving | implementing eco-driving promotion programs | eco-driving | 2025
(FY) | 761 | 2025
(FY) | - | 2025
(FY) | 75 | Projected figures for 2020 and beyond will be revised in light of trends in recent years | | | | | | 2030
(FY) | 860 | 2030
(FY) | - | 2030
(FY) | 101 | | | Name of mitigation | Countermeasures of each | Countermeasures of the | Examples of countermeasures expected | | | N | leasure e | valuation | indicato | r, and results of countermeasures | |--------------------------------|---|---|--|-----------------------|--|------------------------|-----------|-----------------------------|----------|---| | action | actor | national government | to be implemented by local governments | evalı | asure
aation
cator | Expected energy saving | | Expected emission reduction | | Assumptions of expected energy saving and expected emission reduction □ | | | | e of public tran | sportation and | bicy | cles | (pro | moti | ion o | of the | e use of public | | transporta | | | | | | | | | | | | (Governing | agencies: Ministry | of Land, Infrastru | ucture, Transport a | and To | ourisn | n) | | | | | | | Transportation companies: Development of public transportation and improving services and convenience | Promoting formulation of regional public transportation plans Promotion of Mobility as a Service (Maas) Promoting development of Light-Rail Transit (LRT) and | · Formulation of regional public transportation plans | from priv
(10^8 p | r volume
vate traffic
assenger-
neters) | (10^2 | | (10^4 | | Passenger-kilometers (Source: 2012 transport economic statistics overview [Institute for Transport Policy Studies]) | | Promotion of the use of public | | Bus Rapid Transit (BRT) • Promoting barrier-free railway stations etc. | · Promoting use of public
transportation through
development of public
transportation and improving | (FY) | 38 | (FY) | _ | (FY) | _ | • Rate of change in population (Source: Population statistics [January 2012 estimates] [National Institute of Population and Social Security Research]) | | transportation | Encouraging employees,
customers, and others to use
public transportation | Promoting introduction of transit IC card systems and bus location systems Promotion of eco- | services and convenience through provision of MaaS etc. • promotion of the spread of eco-commuting | 2025
(FY) | 135 | 2025
(FY) | _ | 2025
(FY) | 131 | • CO ₂ emissions intensity (Source: "CO ₂ emissions in the transport sector," CO ₂ emissions per transport volume [passengers] [Ministry of Land, Infrastructure, Transport and Tourism, FY 2018]) | | | 8 t 40.11 | Enhancement of modal connections, through bus terminal development | | 2030
(FY) | 163 | 2030
(FY) | _ | 2030
(FY) | 162 | | | Name of mitigation | | Countermeasures of the | Examples of countermeasures expected | | | M | leasure e | valuation | indicato | r, and results of countermeasures | |-------------------------------------|---|--|---|------------------------|---|--------------|-----------------|--------------|-------------------------|---| | action | actor | national government | to be implemented by local governments | evalu | sure
ation
cator | _ | d energy
ing | | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction □ | | | | | | implement
for
impro | oving the
ace of local
asportation
piled | (10^- | 4 kL) | (10^4 | ŕ | Projected number of implementation plans to make regional
public transport more convenient authorized per year, and
average length of routes made more efficient per authorization | | Improving route efficiency through | Transportation companies: Improving route efficiency Local governments: Formulation plans, | · Support through know-how related to formulation of implementation plans of | · Formulation of implementation plans of regional public transportation | 2013
(FY) | _ | 2013
(FY) | _ | 2013
(FY) | _ | (estimated by the Ministry of Land, Infrastructure, Transport and Tourism from existing plans) • Average number of services (estimated as follows: 1 service/hour × 12 hours × 1 roundtrip) | | convenience
improvement projects | coordination with businesses Citizens: Using public transportation | regional public transportation convenience improvement | convenience improvement | 2025
(FY) | 72 | 2025
(FY) | _ | 2025
(FY) | 1.61 | Average passenger density (Source: "The bus business in Japan" [FY 2018, Nihon Bus Association]) CO₂ emissions intensity (Source: "CO₂ emissions in the transport sector," CO₂ emissions per transport volume | | | | | | 2030
(FY) | 102 | 2030
(FY) | _ | 2030
(FY) | 2.29 | [passengers] [Ministry of Land, Infrastructure, Transport and Tourism, FY 2018]) | | | | | Examples of | | | M | leasure e | valuation | indicato | or, and results of countermeasures | |---------------------------|--|--|---|--------------|------------------------------------|--------------|-----------------|----------------------|---------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | usure
nation
cator | * | d energy
ing | Expo
emis
redu | ssion | Assumptions of expected energy saving and expected emission reduction □ | | | otion of the use
agencies: Ministry | • | • | | | `- | moti | on c | of the | e use of bicycles) | | | | Promoting systematic | Promoting systematic | for com | sharing
nmuting
poses
(6) | (10^- | 4 kL) | (10^4 | t-CO ₂) | • Aiming for conversion to about 30% use of bicycles for commutes of less than 5 km over the next 10 years | | Promotion of the use | Businesses: Encouraging employees to use | development of spaces for transportation by bicycle • Promoting bicycle sharing | development of spaces for transportation by bicycle • Promoting bicycle sharing | 2013
(FY) | — | 2013
(FY) | _ | 2013
(FY) | _ | • Annual CO ₂ emissions were calculated by multiplying drive
kilometer-trip intensity (2015 national urban transport survey
when commuting by car for 5 km or less nationwide by the
following indicators and reducing these by 30%
(i) Future population in the target year (2017 estimates from | | of bicycles | Citizens:
Using bicycles | Promoting commuting by | public awareness-raising of
health improvements through
bicycle use Promoting commuting by | 2025
(FY) | 18.2 | 2025
(FY) | 5 | 2025
(FY) | 14 | the National Institute of Population and Social Security
Research)
(ii) Round trips (×2)
(iii) Number of weekdays (243 days in 2019, after deducting
weekends and holidays) | | | | bicycle | bicycle | 2030
(FY) | 20.0 | 2030
(FY) | 10 | 2030
(FY) | 28 | (iv) emission intensity, derived by dividing CO ₂ emissions by
vehicle-kilometers driven (April 22, 2020, Ministry of Land,
Infrastructure, Transport and Tourism) | | | | | Examples of | | | М | easure e | valuation | indicato | r, and results of countermeasures | |---------------------------------|---|---|---|---------------------------------------|---|--------------|----------|-----------------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalı | asure
nation
cator | Expected | | Expe
emis
reduc | ssion | Assumptions of expected energy saving and expected emission reduction □ | | | bonization of t
agencies: Ministry | • | ucture, Transport a | and To | ourisn | 1) | | | | | | | Railway companies: • Voluntary action plans | • Support for introduction of | | improve
ene
consum
intensity | te of
ement in
ergy
mption
(FY2013
dard) | (10^4 | ŀkL) | (10^4 | t-CO ₂) | | | Promotion of decarbonization of | • Formulation and implementation of medium and long-term plans based on | Support for introduction of new rolling stock Support for introduction of energy saving equipment at railway-related facilities | _ | 2013
(FY) | 100.000 | 2013
(FY) | _ | 2013
(FY) | _ | Introduction of energy saving rolling stock | | the railways | • Introduction of energy saving rolling stock | Application of the Act on the
Rational Use of Energy to
railway companies | | 2025
(FY) | 88.638 | 2025
(FY) | 52.5 | 2025
(FY) | 183.5 | Introduction of energy saving equipment at railway facilities | | | | | | 2030
(FY) | 84.294 | 2030
(FY) | 74.5 | 2030
(FY) | 260.0 | | | | | | Examples of | | | M | leasure e | valuation | indicato | or, and results of countermeasures | |----------------------------|---|---|---|--|--|------------------------|-----------|-----------------------------------|---------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | Mea
evalu
indic | ation | Expected energy saving | | Expected
emission
reduction | | Assumptions of expected energy saving and expected emission reduction □ | | | | he shipping sec
of Land, Infrastru | | and To | ourisn | 1) | | | | | | | | Support for the development
and introduction of innovative | | Numb
widely
ships
contrib
ene
conser
(Sh | y-used
that
oute to
rgy
vation | (10^4 | 4 kL) | (10^4 | t-CO ₂) | Assumptions of estimates Annual fuel consumption per vessel: 2,650 kL (heavy oil C) (interviews with operators) Fuel (heavy oil C) emission factor: 3.09 t-CO₂/kL (calculated based on the list of carbon emission intensity of total heat by energy source [Agency for Natural Resources and Energy]) | | Promotion of energy | Ship operators: Introduction of energy-saving ships and zero-emission ships through alternative construction, introduction of energy-saving equipment through modifications, improvement of operation | energy-saving and CO ₂ - reducing technologies • Visualization of the effects of energy-saving and CO ₂ - reducing technologies (promotion of obtaining energy-saving ratings for coastal ships) | | 2013
(FY) | ı | 2013
(FY) | - | 2013
(FY) | - | Energy saving rate of energy saving vessels: 16% Energy saving rate of intermodal energy saving vessels: 18% (adopted beginning in FY 2023) Number of energy saving vessels/intermodal energy saving vessels adopted: 70 vessels/year Grounds and detailed description (e.g., breakdown) of calculation of projected energy saving and Expected emission reduction: | | emission-saving
vessels | establishment of a supply
system for zero-emission
ships, etc. | • Support through tax and interest rate incentives • Creating an environment for the use of biofuels on ships • Support for the development and expansion of production facilities required for the | _ | 2025
(FY) | 730 | 2025
(FY) | 40 | 2025
(FY) | 118 | = 275,000 t-CO ₂ reduction (vs. FY 2019) (iii) <construction domestic="" energy="" existing="" of="" replace="" saving="" to="" vessels=""> 2,650 kL × 18% × 70 vessels × 8 years
× 3.09 t-CO₂/kL</construction> | | | | construction of zero-emission ships, etc. | | 2030
(FY) | 1,080 | 2030
(FY) | 62 | 2030
(FY) | | = 825,000 t-CO ₂ reduction (vs. FY 2019) (iv) <operating improvements=""> Improvements in vessel operating efficiency to realize approx. 3% reduction in CO₂ emissions: 250,000 t-CO₂ reduction (vs. FY 2019) > (i)+(ii)+(iii)+(iv) = 1,810,000 t-CO₂ reduction (vs. FY 2013)</operating> | ^{*1} It must be noted in evaluation that CO2 emissions from the modal shift to marine transport contribute to CO2 emission reduction of transport sector as a whole. | | | | Examples of | | | M | leasure e | valuation | indicato | r, and results of countermeasures | |---------------------------------|-----------------------------------|--|---|------------------------|---|--------------|------------------------|--------------|-------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected to be implemented by local governments | evalı | Measure
evaluation
indicator | | Expected energy saving | | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction □ | | | bonization of tagencies: Ministry | | | and To | ourisn | n) | | | | | | | | Promote the introduction of sustainable aviation fuel | | un
transpo
(kg-C | ssions per
it of
ortation
CO ₂ /ton
meter) | (10^2 | 4 kL) | (10^4 1 | t-CO ₂) | | | Promotion of decarbonization of | _ | (SAF), improve flight operation through further sophisticated air traffic control, introduce new technologies into aircraft and | _ | 2013
(FY) | 1.3977 | 2013
(FY) | - | 2013
(FY) | - | Actual results for the evaluation indicator are calculated based on actual shipment figures for each fiscal year, using the following formula: Evaluation indicator (actual results) = CO ₂ emissions / t-km | | aviation | | equipment, promote energy
conservation in airport
facilities and airport vehicles,
and turn airports into
renewable energy hubs, and | | 2025
(FY) | 1.2323 | 2025
(FY) | - | 2025
(FY) | | charged (Source: Annual Report on Air Transport Statistics [published each fiscal year]) | | | | promote public-private partnerships. | | 2030
(FY) | 1.1693 | 2030
(FY) | - | 2030
(FY) | 202.4 | | | | | | Examples of | | M | easure eva | luation in | dicator, a | nd results of countermeasures | |---------------------------|--|--|---|--|--------------------------------|-------------------|--------------|-------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | Measure
evaluation
indicator | 1 * | ed energy
ving | emis | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction □ | | and delive | ery (improvem | ciency of truck
ent of efficiency
of Land, Infrastru | cy of truck tran | nsportat | ion) | on of | joint | tran | sportation | | | | Promoting use of larger trucks and trailers Application of the Act on the | | Number of vehicles a gross vehicle weig more than 24 tons less than 25 tons ov (units) 2013 | with the of and med | ^4 kL) | (10^4 | t-CO ₂) | | | Efficiency | Transportation companies:
Promoting use of larger trucks,
trailers, and streamliningt
trucking, and formulation and | Rational Use of Energy to shippers, trucking companies, etc. • Promotion of initiatives through the Green Logistics Partnership Conference Conference • Implementing projects to | Promoting the spread of adoption | 2030 (FY) 352. Number of trailers owner (units) 2013 (FY) 98, | d 2013
(FY) | | 2013
(FY) | _ | Fuel savings from Introduction of 25 t trucks: approx. 9,000 L/truck Fuel savings from Introduction of trailers: approx. 24,000 L/trailer Commercial truck vs. In-house truck intensity: approx. | | transportation | implementing plans based on
the Act on the Rational Use of
Energy | support businesses streamlining energy use • Promotion of the spread double-articulated trucks • Promotion initiatives of using electric trucks such as the electrification of intra- regional transportation and delivery and the development | Road improvements to
accommodate larger trucks | 2025 (FY) 160, (FY) 189, (FY) Percentage of business/privates (%) | 371 2025
(FY) | | 2025
(FY) | 858 | Fuel (diesel) emission factor: 2.7 t-CO₂/kL (Source: Prepared based on the list of carbon emission intensity of total heat by energy source [Agency for Natural Resources and Energy]) Indicator values were revised for FY 2020 and later, in light of trends in recent years and new measures. | | | | and dissemination of fuel cell
trucks for long-distance
transportation | 7 | 2025
(FY) | 6.3
7.2 2030
(FY)
7.2 | | 2030
(FY) | 1,180 | | | | | | Examples of | | | M | leasure e | valuation | indicato | r, and results of countermeasures | |--------------------------------------|---|---|---|---|---|--------------|-----------|-----------------------|---------------------|--| | Jame of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | Mea
evalu
indic | ation | Expected sav | | Expe
emis
reduc | sion | Assumptions of expected energy saving and expect emission reduction □ | | and delive | vement of efficery (promotion agencies: Ministry | of joint transp | ortation and d | elive | ry) | | on o | f joir | nt tra | nsportation | | | | | | Rate of in
the number
transport
delivery i | er of joint
ation and
nitiatives | (10^2 | 4 kL) | (10^4 | t-CO2) | Evaluation indicator: Rate of increase in number of join shipping initiatives (vs. 2013) Truck CO₂ emissions intensity (FY 2013): approx. 217 CO₂/t-km | | | | | | 2013
(FY) | _ | 2013
(FY) | _ | 2013
(FY) | _ | Truck CO₂ emissions intensity (FY 2018): approx. 233 CO₂/t-km (Reference) CO₂ emission reduction in FY 2025 FY 2013 intensity: 18,000 t-CO₂ | | | Promotion of joint | Advancement of initiatives
through the Green Logistics
Partnership Conference | | 2025
(FY) | 276 | 2025
(FY) | _ | 2025
(FY) | 2.7 | • FY 2018 intensity: 27,000 t-CO ₂ • Difference: 27,000-18,000=9000 t-CO ₂ increase in Expected emission reduction CO ₂ emission reduction in FY 2030 | | Promotion of joint ransportation and | transportation and delivery
through cooperation with
shippers, other logistics
companies, etc. | Promoting cooperation in
shipping at logistics facilities
under the Act on
Advancement of Integration
and Streamlining of | Public awareness-raising | 2030
(FY) | 346 | 2030
(FY) | _ | 2030
(FY) | 3.3 | • FY 2013 intensity: 21,000 t-CO ₂ • FY 2018 intensity: 33,000 t-CO ₂ • Difference: 33,000-21,000=12,000 t-CO ₂ increase in Expected emission reduction | | | Promotion of joint transportation and delivery | Distribution Business • Promoting reductions in parcel redeliveries through joint transportation and | | Result of
delivery r
survey on
situation of
of the cour | ate of the
the actual
re-delivery | (10^4 | ł kL) | (10^4 | t-CO ₂) | | etc. others delivery by businesses and (%) 2013 (FY) 2025 (FY) 2030 (FY) 6.0% 6.0% 2013 (FY) 2025 (FY) 2030 (FY) 5.6 5.6 • Evaluation indicator: Redelivery rate results from parcel CO₂ emissions intensity of compact commercial vehicles redelivery survey (FY 2002): approx. 808 g-CO₂/t-km 2013 (FY) 2025 (FY) 2030 (FY) ^{*1} Figures for FY 2030 on the lower level assume continued achievement of target redelivery rates for FY 2025 | | | |
Examples of | | Measure e | valuation indicato | r, and results of countermeasures | |---------------------------|-------------------------------|--|--|------------------------------------|------------------------|-----------------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | to be implemented by local governments | Measure
evaluation
indicator | Expected energy saving | Expected emission reduction | Assumptions of expected energy saving and expected emission reduction □ | ## 40. Improvement of efficiency of truck transportation and promotion of joint transportation and delivery (promotion of joint transportation and delivery) (Governing agencies: Ministry of Land, Infrastructure, Transport and Tourism) | | Logistics companies: Promoting initiatives toward | | | impleme
by le | ocal
iments | (10^4 | 4 kL) | (10^4 | t-CO ₂) | • Since the FY 2020 "Implementation project for logistics | |--|---|--|------------------------------------|------------------|----------------|--------------|-------|--------------|---------------------|---| | Social implementation of drone logistics | social implementation of drone logistics as an alternative means of delivery instead of using trucks or ships Local governments: | Support for
countermeasures, such as
introduction of machinery
toward practical application of | Measures to support operation etc. | 2013
(FY) | — | 2013
(FY) | — | 2013
(FY) | _ | using unmanned aircraft in remove areas etc." projected CO ₂ reductions from replacement of trucks etc. of 16 t per project, a figure of 16 t/case is used here. • In some cases multiple projects are implemented in a single region, and these are included under "multiple projects included in a single region," using as units "projects (cases)." | | | Promotion of environmental improvements to enable people to continue to reside in rural communities while solving local issues (e.g., | drone logistics | | 2025
(FY) | 174 | 2025
(FY) | — | 2025
(FY) | 0.5 | • It is assumed that the number of cases participating will increase based on the market growth rate through 2030 and the number of new drone distribution projects adopted (FY units) through practical application projects. | | | support for shopping) | | | 2030
(FY) | 1,496 | 2030
(FY) | _ | 2030
(FY) | 6.5 | | | | | | Examples of | | | M | leasure e | valuation | indicato | r, and results of countermeasures | |--------------------------------------|--|--|--------------------------|---------------------------|--|--------------|------------------------|--------------|-------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government countermeasures expected to be implemented by local governments | | evalu | Measure
evaluation
indicator | | Expected energy saving | | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction □ | | 41. Promo | otion of a moda | al shift to mari | ne and rail frei | ght t | rans | porta | ition | | | | | <u> </u> | | hift to marine t | | | | ` | | | | | | (Governing | agencies: Ministry | of Land, Infrastru | acture, Transport a | and To | ourisn | n) | | | | | | | | Promoting building of | | transpo
vol
(billio | e cargo
ortation
ume
on ton
neter) | (10^4 | 4 kL) | (10^4 | t-CO ₂) | Evaluation indicator: Freight transportation in navigation (t-km) FY 2020 figures are based on the "Basic Plan on Transportation Policy" (February 13, 2015 Cabinet decision). FY 2030 figures are based on rough drafts of Japan's | | Promotion of a modal shift to marine | Marine shipping companies:
Cooperating with shippers to
use marine shipping
proactively | energy-efficient domestic vessel, using the shared- shipbuilding program • Supporting promotion of a modal shift to marine transportation under the Act on Advancement of Integration | Dublic avvanon on minima | 2013
(FY) | 330.0 | 2013
(FY) | _ | 2013
(FY) | _ | commitments. Output CO₂ emissions intensity (FY 2013): Truck CO₂ emissions intensity: approx. 217 g-CO₂/t-km Ship CO₂ emissions intensity: approx. 39 g-CO₂/t-km CO₂ emissions intensity (FY 2018): Truck CO₂ emissions intensity: approx. 233 g-CO₂/t-km Ship CO₂ emissions intensity: approx. 39 g-CO₂/t-km | | transportation | Shippers: Cooperating with marine shipping companies to use coastal shipping proactively | and Streamlining of Distribution Business and other laws and regulations, promotion of Eco-Ship Mark • Promotion of initiatives through the Green Logistics | Public awareness-raising | 2025
(FY) | 388.9 | 2025
(FY) | _ | 2025
(FY) | 136.9 | (Reference) CO ₂ emission reduction in FY 2025 • FY 2013 intensity: 1,256,000 t-CO ₂ • FY 2018 intensity: 1,369,000 t-CO ₂ • Difference: 1,369,000-1,256,000=113,000 t-CO ₂ increase in Expected emission reduction | | | | Partnership Conference | | 2030
(FY) | 410.4 | 2030
(FY) | — | 2030
(FY) | 187.9 | CO ₂ emission reduction in FY 2030 • FY 2013 intensity: 1,724,000 t-CO ₂ • FY 2018 intensity: 1,879,000 t-CO ₂ • Difference: 1,879,000-1,724,000=155,000 t-CO ₂ increase in Expected emission reduction | | | | | Examples of | | | M | leasure e | valuation | indicato | r, and results of countermeasures | |---|--|---|--|---------------------------|--|---|-----------|--------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | ent expected to be implemented by evaluation Expected energy emissions | | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction □ | | | | | | | | odal shift to marine and | • | | spor | tation | 1 | | | | | _ | | l shift to rail freight tra
histry of Land, Infrastructur | _ | | ourisn | 1) | | | | | | | Railway companies:
Promoting a modal
shift to rail freight
transportation | Promotion of initiatives through the Green
Logistics Partnership Conference Support for introduction of new high-
performance rolling stock to contribute to | | transpo
vol
(Billio | freight
ortation
ume
on ton
meter) | (10^4 | 4 kL) | (10^4 | t-CO ₂) | Evaluation indicator: Freight transportation by rail (t-km) FY 2020 figures are based on the Basic Plan on Transportation Policy. FY 2030 figures are based on rough drafts of Japan's INDC. CO₂ emissions intensity (FY 2013): | | Promotion of a modal | through coordination
with
shippers,transportation
companies used, etc.
Transportation | enhancement of transport capacity Supporting promotion of a modal shift to rail freight under the Act on Advancement of Integration and Streamlining of Distribution Business and other laws and regulations. | Public awareness- | 2013
(FY) | 193.4 | 2013
(FY) | _ | 2013
(FY) | <u>—</u> | Truck CO₂ emissions intensity: approx. 217 g-CO₂/t-km Rail CO₂ emissions intensity: approx. 25 g-CO₂/t-km CO₂ emissions intensity (FY 2018): Truck CO₂ emissions intensity: approx. 233 g-CO₂/t-km Rail CO₂ emissions intensity: approx. 22 g-CO₂/t-km | | shift to rail freight
transportation | companies used: Promoting use of rail through enhancement of use of transport equipment such as large-scale containers | reight transportation
(publicity and promotion of Eco Rail Mark, etc.) Support for development of models of a modal shift to rail freight using passenger | raising | 2025
(FY) | 208.9 | 2025
(FY) | - | 2025
(FY) | 42.4 | (Reference) CO ₂ emission reduction in FY 2025 • FY 2013 intensity: 386,000 t-CO ₂ • FY 2018 intensity: 424,000 t-CO ₂ • Difference: 424,000-386,000=38,000 t-CO ₂ increase in Expected emission reduction | | | Shippers:
Proactively using eco-
friendly rail freight
transportation | railways • Support for new transport services (e.g., block trains, temperature-controlled freight trains) | | 2030
(FY) | 256.4 | 2030
(FY) | _ | 2030
(FY) | 146.6 | CO ₂ emission reduction in FY 2030 • FY 2013 intensity: 1,334,000 t-CO ₂ • FY 2018 intensity: 1,466,000 t-CO ₂ • Difference: 1,466,000-1,334,000=132,000 t-CO ₂ increase in Expected emission reduction | | | | | Examples of | | | | Measur | e evaluat | ion indic | ator, and results of countermeasures | |---------------------------------|--|---|---|-------------------------------------|----------------------|--------------|--------|----------------------|---------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected to be implemented by local governments | Mea
evalu
indic | ation | Expected | | Expe
emis
redu | ssion | Assumptions of expected energy saving and expected emission reduction □ | | | | onization of lo | _ | | ourisn | 1) | | | | | | | | | | Numl
decarb
logistics
(Fac | onized
facilities | (10^4 | kWh) | (10^4 | t-CO ₂) | | | Promotion of decarbonization of | logistics companies:
Introduction of machinery to
contribute to decarbonization, | Promotion of adoption and public awareness-raising of equipment using renewable | Public awareness-raising | 2013
(FY) | - | 2013
(FY) | - | 2013
(FY) | - | Evaluation indicator: Number of decarbonized logistics facilities Evaluation indicator: Number of decarbonized logistics facilities (FY 2020 and later*) * Since related subsidy programs began in FY 2020 | | logistics facilities | such as equipment using
renewable energy and energy
saving machinery | energy and energy saving machinery | ruone awareness-raising | 2024
(FY) | 35 | 2024
(FY) | 3.7 | 2024
(FY) | | Estimated reduction per decarbonized warehouse: 538 t-CO₂ For FY 2020 and later, CO₂ emission reduction per facility are estimated based on data on projects accepted for related subsidy programs in FY 2020-2021 (including projections). | | | | | | 2030
(FY) | 200 | 2030
(FY) | 44.0 | 2030
(FY) | 11.0 | | ^{*1} CO₂ emission intensity in power sector are estimated based on FY 2018 emission intensity for FY 2024 and based on FY 2030 average emission intensity for all power sources for FY 2030. ^{*2} Figures for FY 2024 are estimates for confirming progress toward FY 2030. | | | | Examples of | | | М | easure ev | valuation | indicato | r, and results of countermeasures | | |--|---|---|--------------------------------------|-----------------------|--|---|-----------|--------------|---------------------|--|--| | Name of mitigation action | Countermeasures of each actor | sures of each tor Countermeasures of the national government to be implemented by local governments governments countermeasures expected to be implemented by local governments indicator (100) | | Expe
emis
reduc | sion | Assumptions of expected energy saving and expected emission reduction □ | | | | | | | 44. Efforts | s at ports and h | t ports and harbors (reduction of the distance of land transportation | | | | | | | | | | | • | • | l selection of p | | * | | | | | | | | | (Governing a | agencies: Ministry | of Land, Infrastru | icture, Transport a | | | n) | | | | | | | | | | | reduction
transpor | Billion ton | (10^4 | 4 kL) | (10^4 | t-CO ₂) | | | | Reduction of the distance of land transportation of | _ | | · Improving logistics terminals etc. | 2013
(FY) | —————————————————————————————————————— | 2013
(FY) | _ | 2013
(FY) | _ | CO ₂ -reduction intensity: 271 g-CO ₂ /t-km (calculated by the Ministry of Land, Infrastructure, Transport and Tourism Ports | | | cargo through
optimal selection of
ports and harbors | stance of land ansportation of argo through mal selection of - Improving logistics terminals - Improving logistics terminals etc Improving harbor roads - Improving harbor roads - Improving harbor roads | | | | 35 | 2025
(FY) | - | 2025
(FY) | 96 | and Harbors Bureau from data on actual results) | | | | | | | 2030
(FY) | 35 | 2030
(FY) | _ | 2030
(FY) | 96 | | | | | | | Examples of | | | M | easure e | valuation | indicato | r, and results of countermeasures | |---|-------------------------------|---|---------------------------------------|---|---|---|----------|--------------|----------------------------------|--| | Name of mitigation action | Countermeasures of each actor | | | emis | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction □ | | | | | | | _ | · | ehensive decar
acture, Transport a | | | | f por | ts ar | nd ha | arbors) | | | | | | introduce
energy
cargo h
machine | ber of
ed units of
saving
nandling
eries, etc.
nits) | (10,00 | 0 kL) | (10,000 |) t-CO ₂) | Promotion of introduction of energy-efficient cargo
handling machinery etc. Calculations for FY 2020 and later assume progress in | | Comprehensive
decarbonization of
ports and harbors
[promotion of | | Supporting introduction of energy-efficient cargo | | 2013
(FY) | —————————————————————————————————————— | 2013
(FY) | _ | 2013
(FY) | _ | introduction of 19 units/year, based on past results Cargo handling machinery is assumed to be in operation for 3000 hours/year (from interviews with businesses) Fuel use used in calculations: 21.7 L/unit-hour (from interviews with businesses) Emission factor used in calculations (diesel): 2.7 kg-CO ₂ /kg | | | related to energy_etticient | handling machinery etc. | _ | 2025
(FY) | 225
*Refere
nce
(255) | 2025
(FY) | _ | 2025
(FY) | | (Based on the list of carbon emission intensity of total heat tenergy source [Agency for Natural Resources and Energy]) • Fuel savings rate used in calculations: 0.378 (from interviews with businesses) * Reference: more ambitous case | | | | | | 2030
(FY) | 320
*Refere
nce
(375) | 2030
(FY) | _ | 2030
(FY) | 2.65
*Refere
nce
(3.01) | Calculations for FY 2020 and later assume progress in | | | | | Examples of | | | M | leasure ev | valuation | indicato | r, and results of countermeasures | |----------------------------|---|--|---|-----------------------------------|--------------|--------------|------------|--------------|-------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | Meas
evalua
indica | tion | | ted energy | | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction □ | | | m of regulation agencies: Ministry | | | ning | cou | nterr | neas | ures | | | | | (Case of structural-reform special zones) | | (Case of structural-reform | Number of spe
regular
(Case | cial
tory | (10^2 | 4 kL)
| (10^4 | t-CO ₂) | | | | Local governments: Proposals related to special exception measures, applying for approval of special zone | Recruiting continuously | special zones) Opportunities will be provided for discussions with related agencies and other parties in preparation for project development using | 2013
(FY) | 1 | 2013
(FY) | - | 2013
(FY) | 5.3 | • The estimated amount of emission reductions will be calculated by taking advantage of structural-reform special zones to provide special regulatory measures, and compiling the estimates for the "Special Project for the Use of Pipeline | | warming
countermeasures | Private businesses etc.:
Making proposals related to
special exception measures, | Application for approval of
special zone plans:
Applications to be accepted
roughly in May, September,
and January of each fiscal year | special exception measures Developing an environment for informing local residents for project development using special exception measures | 2025
(FY) | 1 | 2025
(FY) | - | 2025
(FY) | 5.3 | for the Transportation of Specially Controlled Industrial Waste," which was rolled out nationwide in FY2023, and using the total estimated amount of reductions from each measure. | | | business development using special exception measures | | and other matters | 2030
(FY) | 1 | 2030
(FY) | - | 2030
(FY) | 5.3 | | | | | | Examples of | | Mea | asure evalu | ation in | ndicator, | and resul | lts of countermeasures | |-----------------------------|---|---|---|--|--------|--------------|----------|-----------------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | expected to be implemented by local governments | Meas
evalua
indic | ation | Expected e | ٠. | Expe
emis
reduc | ssion | Assumptions of expected energy saving and expected emission reduction □ | | | | mission intensity in power se
of Economy, Trade and Industry) | ctors | | | | | | | | | | Autonomous framework of the electric power industry: • Projecting the maximum potential emission reduction | | | CO ₂ rec
by utilizing
(10^4 t | ng BAT | (10^4 k | sL) | (10^4 1 | t-CO ₂) | | | Improving efficiency | through means that include the use of the best available technology (BAT) that is economically feasible, in light of the size of the power plant, when establishing a new | •Demanding the following from power generators through
the Act on the Rational Use of Energy:
• For newly installed generating equipment: satisfaction of | | 2013
(FY) | _ | 2013
(FY) | _ | 2013
(FY) | | Maximum reduction potential indicating results of comparison of | | of thermal power generation | thermal power plant • Striving toward efficiency improvements in thermal power generation, etc., and | generating efficiency standards per unit of generating equipment • For existing generating equipment: satisfaction of efficiency standards in generation results, per power generators | | 2025
(FY) | _ | 2025
(FY) | | 2025
(FY) | | introduction of BAT in main power
development since FY 2013 with use
of previous technologies | | | running through the plan-do-
check-act (PDCA), including
plans of initiatives of
individual companies, to
ensure efficacy | | | 2030
(FY) | 1,100 | 2030
(FY) | <u>—</u> | 2030
(FY) | 1,100 | | | | | | Examples of | | Me | asure eva | luation in | ndicator, | and resul | its of countermeasures | |--|--|--|---|--|-----------------------|--------------|-----------------|----------------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | expected to be
implemented by
local governments | Measu
evaluat
indica | tion | Expected | d energy
ing | Expe
emis
redu | ssion | Assumptions of expected energy saving and expected emission reduction □ | | | | Regarding the autonomous framework of the electric power
industry, promoting initiatives toward achievement of targets through
measures under the Act on the Rational Use of Energy, the Act on the | | CO ₂ emi
factor o
electric p
indust
(kg-CO ₂ / | f the
bower
try | (10^4 | 4 kL) | (10^4 | t-CO ₂) | | | Improving efficiency
of thermal power
generation, utilization
of nuclear power
generation on the | efficiency improvements in | Promotion of the Use of Non-fossil Energy Sources and the Effective Use of Fossil Energy Raw Materials by Energy Suppliers, and other laws and regulations, and securing both efficacy and transparency. Also, through the Act on the Promotion of the Use of Non-fossil Energy Sources and the Effective Use of Fossil Energy Raw Materials by Energy Suppliers, demanding the following from retail electric utilities: | | 2013
(FY) | 0.57 | 2013
(FY) | _ | 2013
(FY) | — | Energy-derived CO ₂ emission
reduction from electricity, calculated
for Outlook for energy supply and
demand in FY 2030 | | major assumption of
ensuring safety,
maximum
introduction of
renewable energy | thermal power generation, etc.,
and running through the plan-
do-check-act (PDCA),
including plans of initiatives
of individual companies, to
ensure efficacy | Identifying the description of CO₂-adjusted emission intensity in guidelines on retail sale of electricity as a desirable practice. Based on the enforcement ordinance and enforcement regulations to the Act on Promotion of Global Warming Countermeasures, asking all retail electric utilities to report their actual CO₂ emission intensity for the greenhouse gas emissions calculation, reporting, and | | 2025
(FY) | _ | 2025
(FY) | | 2025
(FY) | _ | • FY 2013 emissions: 572 million t-
CO ₂
• FY 2030 emissions: 219 million t-
CO ₂ | | | | publication system, and publishing these. • Evaluating the progress of the above initiatives every fiscal year, to make sure that their efficacy is improving continuously | | 2030
(FY) | 0.25 | 2030
(FY) | | 2030
(FY) | 35,300 | | ^{*1} Because of the difficulty of projecting expected energy mix, CO₂ emission intensity in power sector are estimated based on FY 2013, with the exception of figures for FY 2030, which reflect a preferable energy mix. CO₂ emission intensity in electric power industry of FY 2030 represent CO₂ emission intensity consistent with the national energy mix and greenhouse gas reduction targets. | | | | Examples of | | | | Mea | asure eva | luation in | ndicator, and results of countermeasures | |---------------------------|---|---|---|--------------------------------|--------------------------------|--------------|------|--------------|----------------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | expected to be
implemented by
local governments | Mea
evalu
indic | | Expected sav | ٠. | - | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction □ | | | | tion of renew
ry of Economy, | _ | | 7) | | | | | | | | Power generators etc.:
Long-term, stable operation
of renewable-energy power
generation facilities | · Appropriate operation and revision of the feed-in-tariff program | | Amore electronic gene (Billion | ricity | (10^4 | ⊦kL) | (10^4 | t-CO ₂) | | | Expansion of use of | Retail electric utilities etc.:
Carrying out procurement
based on the Act on Special
Measures Concerning
Procurement of Electricity
from Renewable Energy
Sources by
Electricity
Utilities | Technological development toward goals, such as improving efficiency and cutting costs of power generation equipment and more advanced grid operation | • Support for introduction of renewable energy by businesses and other users in their | 2013
(FY) | 1,179 | 2013
(FY) | - | 2013
(FY) | 7,662 | Renewable energy (electricity): Solar, wind, geothermal, hydroelectric, biomass Average thermoelectric electricity emission factor in FY 2013: 0.65 kg-CC/kWh (Source: Environmental Action Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of Japan]) | | renewable electricity | General electricity
transmission and
distribution utilities:
Stable power grid operation
Local governments etc.:
Proactive introduction of | Improvements to power grids and grid operation rules Streamlining of regulations as necessary Coordination among | Proactive adoption in public facilities and other facilities of local governments | 2025
(FY) | * | 2025
(FY) | - | 2025
(FY) | * | Average thermoelectric electricity emission factor in FY 2030: 0.60 kg-Co/kWh (Source: Outlook for energy supply and demand in FY 2030) * Promoting maximum expansion of Introduction of renewable energy with consideration for the energy mix identified in The 6th Strategic Energy Plar and other considerations | | | renewable-energy power generation equipment Consumers: Proactive use of electricity from renewable energy | related government agencies through the council of ministers on renewable energy etc. | | 2030
(FY) | 3,360
-
Approx.
3,530 | 2030
(FY) | - | 2030
(FY) | 20,160
-
Approx.
21,180 | | | | | | Examples of | | | | Me | asure eva | luation i | ndicator, and results of countermeasures | |---------------------------|--|--|---|---------------------------------------|---------------------|--------------|-----|----------------------|---------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures
expected to be
implemented by
local governments | Mea
evalu
indic | ation | Expected sav | | Expe
emis
redu | sion | Assumptions of expected energy saving and expected emission reduction □ | | | num introduc
agencies: Minist | | _ | | 7) | | | | | | | | | | | Amount
supply (o
equiv
(10^4 | crude oil
alent) | (10^4 | kL) | (10^4 | t-CO ₂) | | | Expansion of use of | Private businesses, local governments, etc.: Proactive introduction of | of equipment for supplying renewable heat | • Support for introduction of renewable energy by businesses and other users in their districts | 2013
(FY) | 1,104 | 2013
(FY) | - | 2013
(FY) | 2,980 | Renewable energy (heat): Solar heat, biomass, unused heat, etc. Crude oil emission factor: 2.7 t-CO₂/kL Figures for FY 2030 are based on Outlook for energy supply and demand in FY 2030 | | renewable heat | equipment using renewable heat | etc. of models for effective
use of various thermal
energies in the region | Proactive adoption
in public facilities
and other facilities of
local governments | 2025
(FY) | * | 2025
(FY) | - | 2025
(FY) | * | * Progress will be made on expanding Introduction of heat from renewable energy while taking into consideration matters such as biofuel supply targets under the Advancement Act of Non-fossil Energy Sources and the Effective Use of Fossil Energy Raw Materials by Energy Suppliers | | | | | | 2030
(FY) | 1,341 | 2030
(FY) | - | 2030
(FY) | 3,618 | | ^{*1} Because of the difficulty of projecting expected energy mix, CO₂ emission intensity in power sector are estimated based on FY 2013, with the exception of figures for FY 2030, which reflect a preferable energy mix. | | | | Examples of | | | N | leasure e | valuation | indicato | r, and results of countermeasures | |---|--|---|---|--------------|---|--------------|-----------|-----------------------------------|---------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | Measure evaluation indicator Expected energy saving | | | Expected
emission
reduction | | Assumptions of expected energy saving and expected emission reduction □ | | | | | * | uipm | lent v | with | high | ene | rgy- | saving performance | | `- | - | ufacturing sect
of Economy, Tra | | | | | | | | | | (Governing a | ageneies. Willistry | or Leonomy, 11a | de and modstry) | | | | | | | | | | | | | introduc | pect of
etion and
read use
%) | (10^- | 4 kL) | (10^4 | t-CO ₂) | • Petroleum Industry's Action Plans for a Low-Carbon Society: Through energy saving measures since FY 2010, striving to achieve energy saving equivalent to 1 million kL when converted to Crude oil equivalent vs. BAU (the absence of additional measures) in FY 2030 | | Effective use of heat,
introduction of
advanced control and | | | | 2013
(FY) | 29.9 | 2013
(FY) | 2.9 | 2013
(FY) | 7.7 | • Industry-wide energy saving: Ascertaining and totaling industry-wide the energy saving vs. BAU from the individual conservation measures adopted by the oil-refining industry at its refineries and plants since FY 2010, for each fiscal year • Evaluation indicator: | | high-efficiency equipment, | Businesses: | Promoting steady realization | | | | | | | | Rate of achievement of FY 2030 target energy saving (Crude oil equivalent kL) (Crude oil equivalent million kL) | | nower system | carbon society in the petroleum industry | of a low-carbon society in the petroleum industry | _ | 2025
(FY) | 76.5 | 2025
(FY) | 59.7 | 2025
(FY) | 161.2 | • Expected energy saving, Expected emission reduction: Expected energy saving are the industry-wide energy saving vs. BAU from the individual conservation measures adopted by the oil-refining industry at its refineries and plants since FY 2010, ascertained and totaled for each fiscal year. Expected emission reduction are the projected energy saving (Crude oil equivalent) multiplied by the carbon emission factor (2.7 t-CO ₂ /Crude oil equivalent kL). | | | | | | 2030
(FY) | 100.0 | 2030
(FY) | 76.0 | 2030
(FY) | 208.0 | • Other matters Reconsideration of targets will be considered in the event of major changes to the industry situation, such as a reduction in the number of refineries due to falling domestic demand and other factors or large-scale changes in production processes. Target levels will be evaluated roughly every five years after 2015. | | | | | Evernles of courts | | N | leasure e | valuatior | indicator, and results of countermeasures | |---------------------------|--|--|--|---|------------------------------------|--------------|---------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | Examples of countermeasures expected to be implemented by local governments | evalu | Measure
evaluation
indicator | | d energy
ing | Assumptions of expected energy saving and expected emission reduction | | - | | of blended cemen
of Economy, Trade an | | | | | | | | | | · Promotion of use under the Act on | | Mixed
producti
cem
produ
(% | ion/total
nent
action | (10^4 | t-CO ₂) | ● Evaluation indicator: Blended cement production as a percentage of total cement production (%) Blended cement production = Blast-furnace cement production volume + fly-ash cement production volume under the Cement Handbook Total cement production =
Cement production volume | | Expansion of the use | The national government, local governments, businesses, etc.: Proactive use of blended | the Promotion of Procurement of Eco-
Friendly Goods and Services by the
State and Other Entities, by the the
national government and others
(In the part that blended cement is
specified as a material which should be
promoted to use in public-works
projects.) • Promotion of use under the Low | Expanding use of blended cement through means such as recycled-product certification systems Incorporation of blended cement into | 2013
(FY) | 22.1 | 2013
(FY) | - | + clinker exports under the Cement Handbook ■ Expected emission reduction Expected emission reduction = (CO₂ emissions in the absence of any measures)-(CO₂ emissions with measures taken) in the subject fiscal year CO₂ emissions = Portland cement production volume × CO₂ emission factor from Portland cement limestone decarboxylation + blended cement production volume × CO₂ emission factor | | of blended cement | cement in various
opportunities, public
awareness-raising, playing
active roles, etc. | Carbon City Act (Act No. 84 of 2012) (Use of blended cement or fly-ash cement is specified as one selection criterion in the certification standards for low-carbon buildings.) Addition to the J-Credit methodology Implementing studies on policies for promotion and expansion of blended | systems such as those for evaluation of
the environmental performance of
buildings
And other infrastructure improvements
to help promote and expand use of
blended cement | 2025
(FY) | - | 2025
(FY) | - | from blended cement Absence of any measures: Blended cement production volume as a percentage of total cement production volume remains unchanged from the base year FY 2013 With measures: Blended cement production volume as a percentage of total cement production volume trends as projected under the evaluation indicator | | | | cement | | 2030
(FY) | 25.7 | 2030
(FY) | 38.8 | Projected production volumes: Figures from the Cement industry's Action Plans for a Low-Carbon Society and Outlook for energy supply and demand in FY 2030 are cited. | | | | | | | N | leasure e | valuation | n indicator, and results of countermeasures | |---------------------------|---|--|--|--------------------------|------------------------------------|--------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | Examples of countermeasures expected to be implemented by local governments | evalu | Measure
evaluation
indicator | | d energy
ring | Assumptions of expected energy saving and expected emission reduction | | | sion of biomass | s plastics of the Environment) | | | | | | | | (Governing) | ugeneies. winnstry | of the Environment, | | | | | | | | | Private businesses:
Adopting biomass plastics in | | | Domeshipmes biomass (10^ | ents of
plastics | (10^4 | t-CO ₂) | | | Diffusion of biomass | Consumers: Choosing products (certified | Studying countermeasures to promote introduction of biomass plastics for plastic products that need to be | · Promoting policies to advance biomass plastics in their regions | 2013
(FY) | 7 | 2013
(FY) | - | Evaluation indicator: Domestic shipments of biomass plastics by raw-material res | | plastics | plastics preferentially at the | incinerated, due to reasons such as
difficulties in material recycling, and
promoting and supporting their
adoption | · Also, choosing products using
biomass plastics preferentially at the
time of procuring products themselves | 2025
(FY) | 138 | 2025
(FY) | 141 | and by use, for each fiscal year, are ascertained from sources
such as the National Inventory Survey (Japan Organics
Recycling Association) | | | biomass plastics in their regions | | | 2030
(FY) | 197 | 2030
(FY) | 209 | | | | | | Examples of acustamassumes | | N | leasure e | valuation | indicator, and results of countermeasures | |--|---|---|---|--|-------------------|---|---------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | Examples of countermeasures expected to be implemented by local governments | Mea
evalu
indic | ation | Expected energy saving | | Assumptions of expected energy saving and expected emission reduction | | | ction of waste i
agencies: Ministry | ncineration of the Environment) | | | | | | | | | | Initiatives toward achievement of the targets established in the Waste Management Facilities Improvement Plans Promoting three-R initiatives toward achievement of the targets established in | | Amor
plastic
incinera
base) (| waste
ted (dry | (10^4 | t-CO ₂) | Based on Resource Circulation Strategy for Plastic and othe measures, reductions are projected in incineration volumes plastic resources in general waste under the following assumptions Reductions are projected of 140,000 t/year based on resul of charging fees for shopping bags, and the difference of | | Promotion of | Private businesses: Reducing volumes of incinerated waste through promoting reductions in use of plastic containers and packaging and recycling of plastic wastes | reducing GHG emissions in the waste sector • Supporting improvements to municipal waste incineration plants • Promoting charging fees for municipal | Reducing volumes of incinerated
wastes through controlling emissions
of plastic waste and other wastes and
promoting recycling and reuse
through means such as sorted
collection and recycling of plastic
containers and packaging based on | 2013
(FY) | 515 | 2013
(FY) | 0 | 4.4%, or 78,000 t, between current levels of wastes and reduction rates and the levels projected for PET bottles and other plastic container wastes based on the reduction target 22% by FY 2025 identified in the 3R Promotion Council's 2025 Voluntary Action Plan for Three R's for Containers an Packaging (vs. 17.6% in FY 2019)*, is used as projected reductions. * From Document 2 of the Ministry of Economy, Trade and Industry's 26th Industrial Structure Council Industrial Technology Environmental Subcommittee Wastes and | | | Local governments: Reducing volumes of incinerated wastes through controlling their emission and promoting their recycling and reuse | collection and other matters at municipalities and others • Proactive introduction of products etc. to contribute to reducing waste generation based on the Act on the Promotion of Procurement of Eco-Friendly Goods and | the The Law for Promotion of Sorted Collection and Recycling of Containers and Packaging • Implementation of measures based on the Act on the Promotion of Resource Circulation related to Plastics | 2025
(FY) | 331 | 2025
(FY) | 498 | Recycling Group • It is expected that the volume of plastic resources recove per person will rise to 9.64 kg/year with expansion of segregated collection efforts for plastic resources by municipalities and others and implementation of segregate collection in all municipalities For plastic resources from industrial wastes, it is anticipate that chemical recycling will be conducted for 1.5 million t 1.27 million t from FY 2018) by 2030, based on the Japan Chemical Industry Association's The Chemical Industry's | | Support for introduction of recycling equipment by waste processors Implementation of measures based on the Act on the Promotion of Resource Circulation related to Plastics | | 2030
(FY) | 278 | 2030
(FY) | 640 | Future Vision on the Chemical Recycling of Plastic Waste The volume of incinerated waste is projected to decrease b 490,000 t based
on the portion of this figure treated in FY 2019. These figures are multiplied by the CO ₂ emission factor during incineration of plastics (2.71 t-CO ₂ /t) in calculation | | | | | | | | | N | leasure e | valuation | indicator, and results of countermeasures | |---------------------------|--|--|---|------------------|---|------------------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | Examples of countermeasures expected to be implemented by local governments | | asure
nation
cator | Expected energy saving | | Assumptions of expected energy saving and expected emission reduction | | | ction of waste i | | | | | | | | | (Governing | agencies. Willistry | of the Environment) | | | | | | | | | | | | material
from | unt of
recycled
waste
nts (kt) | (10^4 | t-CO ₂) | | | Promotion of | Businesses using oil and emitting waste oil: Sorted emission of waste oil and using recycled oil | · Supporting promotion of recycling of | | 2013
(FY) | 490 | 2013
(FY) | 0 | It is anticipated that material recycling of solvents will advance in FY 2021 and later, through means including projects to promote waste-oil recycling, resulting in 2030 in | | recycling of waste oil | Waste-oil recyclers:
Reducing incineration
volumes through promoting
recycling | waste oil | - | 2025
(FY) | 619 | 2025
(FY) | 40 | material recycling of 30% of solvents previously incinerated. This is multiplied by the average yield-to-weight ratio of CO ₂ emissions from incineration to organic solvents (3.1) in calculations. | | | | | | 2030
(FY) | 716 | 2030
(FY) | 70 | | | | | | | | Measi | ure evaluation | re evaluation indicator, and results of countermeasures | | | | |---------------------------------------|---|---|--|--------------------|---|---|---|--|--|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | Examples of countermeasures expected to be implemented by local governments | | re evaluation
dicator | Expected ene saving | Assumptions of expected energy saving and expected emission reduction | | | | | (reduction | of methane en | greenhouse gas em
missions in paddy f
of Agriculture, Forestr | fields) | gricu | ltural so | oil | | | | | | | | | | fields
prolongi | tio of paddy
conducted
ng midseason
nage (%) | (10^4 t-CO ₂
* Total emission
in FY 2013
(actual figures
BAU | ns - • Nationwide methane emissions from paddy fields were | | | | | Measure to reduce
GHG emissions in | Implementing prolonging mid- | methane generated from rice cultivation | Prefectures: • Promoting countermeasures contributing to emission reduction of methane generated from rice | 2013
(FY) | - | 2013
(FY) | estimated for each fiscal year using the DNDC-Rice Model developed by the National Agriculture and Food Research Organization. The difference from FY 2013 emissions is use as the reduction volume. | | | | | [CH ₄ emission wat | season drainage period as
water management for rice
cultivation | Verification of the effectiveness of
new technologies for methane
reduction | Verification of the effectiveness of new technologies for methane reduction | 2025
(FY) | - | 2025
(FY) | These measures are based on the concept of deployment of
agricultural management to reduce greenhouse gas emissions
while improving the soil in agricultural production activities.
In addition, projected volumes of emission reduction assume
achievement of projections of land area under paddy rice
cultivation and other figures identified in the Basic Plan for | | | | | | | | | 2030
(FY) | 30% | 2030
(FY) | Food, Agriculture and Rural Areas. | | | | | | | | | | N | leasure e | valuatior | n indicator, and results of countermeasures | |---------------------------|--|--|---|---|---------------------------------|------------------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | Examples of countermeasures expected to be implemented by local governments | Measure
evaluation
indicator | | Expected energy saving | | Assumptions of expected energy saving and expected emission reduction | | | ction of final wagencies: Ministry | raste disposal of the Environment) | | | | | | | | | | • Initiatives toward achievement of the targets established in Waste Management Facilities Improvement Plans | | Final di
amount o
municipa
(based
weight) (| f organic
al waste
on dry | (10^4 | t-CO ₂) | | | Reduction of final | Local governments: Promoting reductions in | Promoting three-R initiatives toward achievement of the targets established in basic policies based on the Act on Waste Management and Public Cleaning Implementing measures based on | Promoting reductions in volumes of | 2013
(FY) | 325 | 2013
(FY) | _ | Expected emission reduction are calculated by multiplying the difference from the BAU case in waste decomposition volume in the fiscal year under evaluation and calculated based on the final disposal volume of organic general waste by the methanology. | | waste disposal | volumes of organic waste
directly placed in landfills | individual recycling laws Supporting improvements to municipal waste incineration plants Promoting charging fees municipal waste incineration and guidelines on sorted collection and other matters at municipalities and others | organic waste directly placed in landfills | 2025
(FY) | 20 | 2025
(FY) | 39 | emission factor of each type of waste and the various parameters identified in inventories, assuming that progress has been made on reducing the final disposal volume of | | | | Multifaceted support for promotion of
Action Plans for a Low- Carbon Society
by industrial-waste treatment operators | | 2030
(FY) | 10 | 2030
(FY) | 52 | | | | | | Examples of countermeasures | | N | leasure e | valuatior | n indicator, and results of countermeasures | |---|--|---|---|--|---|--|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | expected to be implemented by local governments | evalı | asure
nation
cator | Expected energy saving | | Assumptions of expected energy saving and expected emission reduction | | _ | | robic landfill structof of the Environment) | tures in final waste | e dis | posa | l site | es | | | | | | | quasi-
landfill
vol | atage of
aerobic
disposal
ume | (10^4 | t-CO ₂) | | | Adoption of semi-
aerobic landfill | from biodegradation of organic
general waste in
comparison to
anaerobic landfills, through | Promoting use of semi-aerobic landfills
through thorough facility installation
and maintenance based on technical
standards related to final disposal | biodegradation of organic general waste in comparison to anaerobic (FY) 60 (FY) - waste decomposition volume in the fi evaluation for each type of final disposition. | (FY) 60 (FY) - (FY) 10 10 10 10 10 10 10 10 10 10 10 10 10 | Expected emission reduction are calculated by multiplying waste decomposition volume in the fiscal year under evaluation for each type of final disposal structure and calculated based on the final disposal volume of organic | | | | | municipal waste
disposal sites | use of semi-aerobic landfill
structures when setting up new
landfills as well as managing
collection and drain pipe
terminals in an open state | locations for general waste (which
cover collection and drainage facilities
for water load etc. and ventilation
equipment) | landfill structures when setting up new
landfills as well as managing collection
and drain pipe terminals in an open
state | | 3.9 | eneral waste by the methane emission factor of each type of the raste and the various parameters identified in inventories, assuming that progress has been made on installation of semerobic landfill structures since the base year (FY 2013). | | | | | | | | | 77 | 2030
(FY) | 5.4 | | | | | · Promoting use of semi-aerobic | | aerobic land
volume
industri
dispos | e of quasi- dfill disposal at final ial waste sal sites | (10^4 | t-CO ₂) | | | Adoption of semi-
aerobic landfill | from biodegradation of organic industrial waste in comparison | landfills through thorough facility
installation and maintenance based on
technical standards related to final
disposal locations for industrial waste
(which cover collection and drainage
facilities for water load etc. and | Providing appropriate guidance to businesses to enable maintenance of | 2013
(FY) | 70 | 2013
(FY) | - | Figures from Japan's Greenhouse Gas Inventory Report (Apri 2015, National Institute for Environmental Studies) are used | | structures in use industrial waste disposal sites fina as r | structures when setting up new
final disposal locations as well
as managing collection and
drain pipe terminals in an open | ventilation equipment) • Multifaceted support for promotion of Action Plans for a Low- Carbon | semi-aerobic properties at the managed final disposal locations they set up | 2025
(FY) | 74 | 2025
(FY) | 2 | as FY 2013 figures for the evaluation indicator of the share of disposal in semi-aerobic landfills. | | | sate | Society by industrial-waste treatment operators | | 2030
(FY) | 76 | 2030
(FY) | 3 | | იი | | | | | | Ν | Measure evaluation indicator, and results of countermeasures | | | | |--------------------------------------|---|--|--|-------------------------------------|----------------|--|-----------------------|---|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | Examples of countermeasures expected to be implemented by local governments | Mea
evalu
indic | ation | Expected sav | d energy
ing | Assumptions of expected energy saving and expected emission reduction | | | (reduction | of nitrous oxi | greenhouse gas em
de associated with
of Agriculture, Foresti | fertilization) | gricı | ıltur | al so | oil | | | | | | | | Demai
chen
fertil
(1,000 t | nical
izers | (10^4 * Total e (actual fi | missions
igures) = | | | | N_2O emission reduction associated | Reducing fertilizer volumes,
through means such as
reviewing fertilizer designs | Promoting proper fertilizing based on
soil diagnostics | Promoting proper fertilizing based on
soil diagnostics | 2013
(FY) | 410 | 2013
(FY) | - | • The demand for chemical fertilizers in 2030 is calculated by multiplying the amount of chemical fertilizer used in 2030 (720,000 tons) in the Green Food System Strategy by the proportion of N components. Demand for 2025 is calculated | | | with fertilizer
application | Practicing environmentally
friendly agriculture | Promoting environmentally friendly agriculture | Promoting environmentally friendly agriculture | 2025
(FY) | 366 | 2025
(FY) | 18 | based on the assumption that usage will decrease at a constant rate from the most recent actual amount (2022) until 2030. Actual figures are calculated based on production volume reports from fertilizer manufacturers, etc | | | | | | | 2030
(FY) | 349 | 2030
(FY) | 24 | | | | | | | | | M | leasure e | valuation | indicator, and results of countermeasures | | |--------------------------------|--|---|---|---|------------------------------------|------------------------|-----------|--|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | Examples of countermeasures expected to be implemented by local governments | Mea
evalu
indic | ation | Expected energy saving | | Assumptions of expected energy saving and expected emission reduction | | | | 7. Advancement of incineration at sewage sludge incineration facilities Governing agencies: Ministry of Land, Infrastructure, Transport and Tourism) | | | | | | | | | | | | | | Hi
tempe
incinerat | rature
tion rate | (10^4 | t-CO2) | | | | | | | | 2013
(FY) | 63% | | | | | | | | | | 2025
(FY) | 90% | 2013 | _ | | | | Advancement of incineration at | Development of high-
efficiency, low-cost high- | • Support for development, promotion,
and deployment of high-temperature
incineration technologies and
technologies for sewage sludge solid
fuel conversion | Use of higher temperatures in sludge incineration Introduction of technologies such as high-temperature incineration | 2030
(FY) | 100% | (FY) | | • 100% high-temperature incineration rate in 2030 | | | incineration facilities | technologies and technologies
for sewage sludge solid fuel
conversion | | technologies and technologies for
sewage sludge solid fuel conversion
when renovating sludge incineration
facilities | Number of
furnaces
fuel con
furnaces
(Units | and solid
iversion
installed | 2025 | 63 | Perspective of adopting facilities for sewage sludge solid
fuel conversion and turbo furnaces | | | | | | | 2013
(FY) | - | (FY) | 03 | | | | | | | | 2025
(FY) | 2 | 2030 | 78 | | | | | | | | 2030
(FY) | 2 | (FY) | 70 | | | | | | | | | N | leasure e | valuation | n indicator, and results of countermeasures | |---|--|---|--|--------------|--|-----------------|------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | Examples of countermeasures expected to be implemented by local governments | evalu | evaluation 1 * | | d energy
ring | Assumptions of expected energy saving and expected emission reduction | | | | es for Fluorinated (y of the Environment, M | | | | · · · · · · · · | | | | | | | | | value of the
roduct system
number of
ategories) | (10^4 | t-CO2) | | | | | | | 2013
(FY) | 7 | | , | It is assumed that conversion of each coolant will be achieved by the target fiscal year identified under the designated-product system, while reflecting the reduction effects of the Kigali Amendment | | | I Promoting introduction of designated | · To promote introduction of CECfree | | 2025
(FY) | 95 | 2013 | i - | | | Reduction of production and import volumes of | | and low-GWP technologies in
products using CFCs, setting targets
for greenhouse gas emission
reduction for manufacturers and | Promoting introduction of designated CFC-free and low-GWP products | 2030
(FY) | 100 | (FY) | | | | HFCs, conversion of | | | Cumulative
number of natura
refrigerant
devices installed
(10,000 units) | | 2025 | 891 | | | | | products when purchasing | | | 2013
(FY) | _ | (FY) | | The cumulative number of natural refrigerant equipment installed will be 200,000 units in 2025 and 330,000 units in | | | | | | 2025
(FY) | 20
| 2030 | 1,463 | 2030 | | | | | | 2030
(FY) | 33 | (FY) | 1,703 | | | | | | | | N | leasure e | valuation | n indicator, and results of countermeasures | |-----------------------------------|--------------------------------|---|---|--|---------------------------------------|------------------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national expected to be in | Examples of countermeasures expected to be implemented by local governments | Mea
evalu
indic | ation | Expected energy saving | | Assumptions of expected energy saving and expected emission reduction | | 58 Polici | es and measure | es for Fluorinated (| Gases: (HFCs_PFC | | F6 1 | VF3) | | | | | | of the Environment, M | | | | | | | | | <u> </u> | , | | I | | • | | | | | | | | Achievemovoluntary active (based on a organiz (% | on plan goals
number of
ations) | (10^41 | t-CO ₂) | | | Reduction of fluorinated gases at | emissions of alternative | • Report on the progress of voluntary
action plans formulated by relevant
industry groups to the Working Group
on Fluorocarbons and Other Substances | | 2013
(FY) | 100 | 2013
(FY) | - | The emission reductions for the four gases will be accumulated based on the assumption that all industries will | | time of product
manufacture | implement initiatives based on | Policy, Subcommittee on Chemical
Substances Policy, Manufacturing
Industry Division, Industrial Structure
Council | _ | 2025
(FY) | 100 | 2025
(FY) | 88 | achieve their annual targets for the voluntary action plans created by each industry. | | | | | | 2030
(FY) | 100 | 2030
(FY) | 122 | | | | | | | | N | leasure e | valuation | indicator, and results of countermeasures | | |---------------------------|--|---|---|---|---|------------------------|---------------------|--|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | Examples of countermeasures expected to be implemented by local governments | Mea
evalu
indic | ation | Expected energy saving | | Assumptions of expected energy saving and expected emission reduction | | | | 58. Policies and measures for Fluorinated Gases: (HFCs, PFCs, SF6, NF3) (Governing agencies: Ministry of the Environment, Ministry of Economy, Trade and Industry) | | | | | | | | | | | | | | monitoring syste
new commercial
and com
refrigeration/free
(4 majo | ms when selling
air conditioners
mercial
ezing equipment
r items) | (10^4 | t-CO ₂) | | | | | | | | 2013
(FY) | - | | | Regarding the four main items with high leakage during use (package air conditioners for stores, buildings, and facilities, and condensing units for separate showcases), the adoption | | | | | •Effective operation of the reporting and disclosure system for calculated | | Regarding the four main items with high leakage dur (package air conditioners for stores, buildings, and fa and condensing units for separate showcases), the adrate of continuous monitoring systems at the time of will be set at 5% by 2025 and 10% by 2030. Total amount of HFCs reported by businesses that leaked 1,000 tons or more per year (Co, equivalent) (10,000 tons) | | | | rate of continuous monitoring systems at the time of new sales | | | | Manager of commercial refrigeration and air conditioning equipment: Compliance with the | leakage amounts of fluorocarbons based on the Fluorocarbons Emissions and Proper Management Act • Appropriate implementation and | •Instruction and supervision of
managers by prefectures based on the
Fluorocarbons Emissions and Proper | 1 : | 10 | | | | | | of product use | Fluorocarbons Emissions
Reduction Act (conducting
inspections, etc.) | operation of the law (support for guidance and supervision by prefectures, public awareness, etc.) • Support for the introduction and dissemination of IoT remote monitoring | Management Act • Public awareness raising | reported by be
leaked 1,000
per year (CO | usinesses that
tons or more
2 equivalent) | | | | | | | | systems, etc. | | 1 : | - | 1 | 1 220 | The total amount of HFCs leaked (CO_2 equivalent) reported by businesses leaking 1,000 tons or more per year will be | | | | | | | 1 | 220 | | | increased to 2.2 million tons in fiscal 2025 and 2 million tons | | | | | | | 2030
(FY) | 200 | | | | | | | | | | | N | leasure e | valuation | n indicator, and results of countermeasures | |--|---|--|---|--|---|--------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | Examples of countermeasures expected to be implemented by local governments | evalu | Measure
evaluation
indicator | | d energy
ving | Assumptions of expected energy saving and expected emission reduction | | | | | Gases: (HFCs, PFC
Inistry of Economy, Ta | - | - | | | | | | | | | HFCs recover
disposing of
air conditions
common
refrigeration
equipment | commercial
oners and
ercial
on/freezing
(unit basis) | (10^4 | t-CO ₂) | | | | Disposers of commercial refrigeration and air conditioning equipment: Obligation to request proper | | | 2013
(FY) | - | 2013 | _ | Achieve a recovery rate of HFCs (unit basis) when commercial air conditioners and commercial refrigeration an | | | collection at the time of disposal, obligation to provide and preserve documents Building demolition | | | 2025
(FY) | 70 | (FY) | | freezing equipment are disposed of at 70% by 2025 and 85% by 2030 | | | equipment is installed in the
building to be demolished,
obligation to explain to the | *Appropriate enforcement and
operation of the law (support for
guidance and supervision by
prefectures, public awareness, etc.) | *Instruction and supervision by
prefectures to waste disposal operators,
specific demolition contractors,
collection operators, refill and recovery
operators, etc., based on the | 2030
(FY) | 85 | 2025
(FY) | 1,350 | | | | Waste and recycling companies that take back equipment: Prohibition on taking back | • Identifying and demonstrating issues
to improve the refrigerant recovery rate
per device | Fluorocarbons Emissions and Proper Management Act • Publicity and awareness raising | HFC recove
commercial air
commercial re
freezing equipm
of (based on ref | conditioners and
frigeration and
ent are disposed
rigerant volume) | | | | | Reduction of volume of HFC releases at | equipment that has not had fluorocarbons removed | | | 2013
(FY) | 31 | 2030 | | Raise the HFC recovery rate (based on refrigerant volume) from commercial refrigeration and air conditioning equipment the time of disposal, etc., based on the Fluorocarbons | | time of product
disposal | collection, obligation to
provide and preserve
documents | | | 2025
(FY) | 60 | (FY) | , | Emissions Control Act from approximately 31% in 2013 to 60% in 2025 and 75% in 2030. | | | | | | 2030
(FY) | 75 | | | | | | | | | | N | leasure e | valuatio | n indicator, and results of countermeasures | |--------------------------|---|--|---|---|---------------------------------------|--------------
--|---| | ame of mitigation action | Countermeasures of each actor | Countermeasures of the national government | vernment expected to be implemented by Measure Expect | | Expected sav | | Assumptions of expected energy saving and expected emission reduction | | | | | | Gases: (HFCs, PFC
Inistry of Economy, Ta | • | • | | | | | | Disposer: When disposing of a household air conditioner, | | | Reduction in t
discarded
conditioners
properly di
(10,000 | home air
that are not
sposed of | (10^4 1 | t-CO ₂) | By disposing of 3.12 million discarded household air conditioners that were collected by scrap dealers and yard operators in 2019 and are assumed not to have been properly | | | | • Implement measures to improve the collection rate of discarded household air • Steady enforcement of crackdowns on illegal collectors based on the Waste Management and Cleansing Law | 2019
(FY) | 0 | 2019
(FY) | 0 | disposed of through proper routes, the number of discarded household air conditioners that are not properly disposed o will be reduced by 1.56 million in 2030. *Please note that measures, policies, countermeasure evaluation indicators, and expected emission reduction | | | | manufacturers, etc. at a designated collection point. Manufacturers, etc.: | implementation and operation of the Home Appliance Recycling Law and public awareness raising. *Establishment of collection routes non-mandatory items *Publication and awareness-raising the Home Appliance Recycling Law and public awareness raising. | | 2025
(FY) | 84 | 2025
(FY) | 62 | amounts may be further reviewed based on discussions at t joint meeting of the Industrial Structure Council's Industria Technology Environment Subcommittee, Waste and Recycling Subcommittee, Electrical and Electronic Equipment Recycling Working Group, Central Environment | | | Collect used air conditioners at a designated collection point and re-manufacture them. | | | 2030 | 156 | 2030 | | Council's Recycling Society Division, and the Home Appliance Recycling System Evaluation and Review Subcommittee. | | | | | Examples of | Measure evaluation indicator, and results of countermeasures | | | | | |---|--|--|--|--|-------|--------------|---|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures
expected to be
implemented by
local governments | Mea
evalu
indic | ation | | ected
ovals | Assumptions of expected removals | | | | neasures for forest car
Ministry of Agriculture, Fo | | sheri | es) | | | | | | | | Area of forest management practices (10^4 ha) | | | | Forests included in calculation of removals through forest removals Planted forests: Forests subject to forestation (e.g., renewal [e.g., land clearance, surface improvements, planting], | | | Policies and
measures for
forest carbon
sink | • To achieve 38 million t-CO ₂ of removals through forest sinks (corresponding to 2.7% of total emissions in FY 2013) in FY 2030, as a contribution by the forestry sector to achievement of greenhouse gas reduction targets, promoting policies and measures for forest carbon sinks, such as sound forest management through appropriate thinning and planting, appropriate management and conservation of protected forests and other sites, efforts to develop efficient and stable forest management system, People's Participation in Forest Management, and use of wood and woody biomass. • To achieve removals through forest removals, it will be necessary to implement forest management for 700,000 ha on average per year during FY 2021-2030, in accordance with the Basic Plan for Forests and Forestry (June 15, 2021 Cabinet decision). | | | 2013
(FY) | 83 | 2013
(FY) | 5,172 | preservation [shrub cutting and weeding], thinning, final cutting) since 1990 to maintain appropriate forest condition Natural forests: Forests subject to protection and conservation measures, such as thinning and restriction on reuse, under laws, regulations, etc. O FY 2030 Expected removals by forest removals if the necessary funding is secured and forest removals measures, including forest management, are conducted in accordance with targets: 31.2 million t-CO ₂ Projected effects from harvested wood products (HWP) if the necessary funding is secured and efforts are made to | | | | | | 2025
(FY) | · · · | 2025
(FY) | · · · · · · · | | 2021- 2030 (FY) 2030 (FY) Averag e: 70 2030 (FY) the necessary funding is secured and efforts are made to expand supply and use of forestry products: 6.8 million t-CO₂ ● 31.2 million + 6.8 million = 38 million t-CO₂ 3,800 2, 3 (1) is applied is 90 million t-CO₂. Appr * The Expected removals of CO₂ removal in FY2030 when OX. the new calculation method described in Chapter 3, Section | *Appropriate operation of regulations under the protection forest system, planned designation of netected ordered orde | Forestry Basic Act) | |--|---------------------|
--|---------------------| | • Securing long-term sustainable forestry management by clarifying forest ownership and boundaries, consolidating forest operations, promoting long-term outsourcing of operations, establishing management rights under the private forest management entrustment system, promotion forest management projects by forest owners' cooperatives, and formulation of forest management plans • Promotion of "new forestry" initiatives through treduction of silviculture cost as well as the labor saving and lightening of forestry work through the development and diffusion of remotely and automatically operated machinery • Development of forest resource information usin laser scanning surveys, sharing and advanced use of overstrelated information, including those on forest owners, and streamlining of timber production, distribution, and management using ICT • Introduction and efficient use of operation system that properly combines forest road network development and high-performance forestry machinery, and implementation of initiatives based on the Forestry Innovation Program for On-site Implementation (formulated by the Ministry of Agriculture, Forestry and Fisheries in December 2019, amended in 2022) • Promotion of initiatives to train and secure forest workers | Plan for Forests and Forestry based on the Forestry Basic Act), the Act on Promotion of Global Warming Countermeasures, and other laws and regulations, promoting measures in accordance with the natural, economic, and social conditions of their districts, through appropriate division of responsibilities with the national | |---|---| |---|---| | • Cultivation of public awareness of the fact that people's lives are supported by the rich forests, countryside, rivers, and oceans distribution fact government in forests and forestry | |--| |--| | | | | Ι | - 1 | I | 1 | I | コ | |--|--
---|--|-----|---|---|---|---| | [Promoting wood and w biomass] The national government government businesses, nonprofits, Promoting increasing to supply and | g use of forwood related to the second secon | buildings as well as the development and dissemination of products and technologies, such as cross-laminated timber (CLT) and fire-resistant wood materials under the Wood Use Promotion Act. Promotion of new technologies for forest product, utilization as well as, materials derived from woody biomass such as cellulose manofibers and modified lignin, research, development and practical application of new wood-based materials. that can replace plastics in Establishment of a stable supply system for domestic wood to meet demand, including the development of efficient wood processing and distribution facilities. Promotion of power generation and heat attilization through the establishment of efficient | Forestry Basic Act),
the Act on
Promotion of
Global Warming
Countermeasures,
and other laws and
regulations,
promoting measures
in accordance with
the natural, | | | | | | | | | * | | I | | | | 1 | | | | ` / | • | l | l | | | | | | | | | | | | | | | | [Duamatin a | | | the Forest and | | | | | | | - | - 11 | from woody biomass such as cellulose | Forestry Basic Act), | | | | | | | | wood r | | | | | | | | | | , d | development and practical application of new | Promotion of | l | | | | | | | V | wood-based materials. that can replace plastics | Global Warming | | | | | | | | it, local | | _ | I | | l | | | | | · | | | l | | | | | | · · · · · · · · · · · · · · · · · · · | , | _ | | l | | | | | | | etc.: | • | • | l | | | | | | _ | 1. | | | | | | | | | | o secure | | | l | | | | | | | use of | | economic, and | l | | | | | | forestry pro | adulata I | • | social conditions of | | | | | | | | | , | their districts, | l | | | | | | | | - | through appropriate | | | | | | | | | | division of | l | | | | | | | | • | responsibilities with | | | | | | | | | 0 0 | the national | I | | | | | | | | • | government in | | | | | | | | | · · · · · · · · · · · · · · · · · · · | forests and forestry | l | | | | | | | | , 1 | iorests and forestry | | | | | | | | | such as networking among companies, in order | | l | | | | | | | | o foster public understanding of wood use and | | l | | l | | | | | | also lead to ESG investment in companies that | | l | | | | | | | υ | use wood sustainably | | l | | | | | | 1 | | | | 1 | | | | 1 | | | | | | | N | indicator, and results of countermeasures | | | | |---|-------------------------------|---|---|---|-----|---|-----|---|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | Examples of countermeasures expected to be implemented by local governments | Measure
evaluation
indicator | | Expected removals | | Assumptions of expected removals | | | 60. Policies and measures to increase carbon removals in agricultural soils (Governing agencies: Ministry of Agriculture, Forestry and Fisheries) | | | | | | | | | | | | | Promoting the continuous application of organic matter such as compost and green manure to the soil as part of soil preparation Promoting the application of biochar, etc. | Prefectures | Soil carbon
storage amou
(mineral soil
(10^4 t-CO ₂ | | rage amount inneral soil) (10^4 t-CO ₂) | | Using the calculation model (improved Roth-C model)
developed by the National Agriculture and Food Research
Organization, the change per year in soil carbon of mineral | | | Policies and measures to increase | through means such as | | | 2013
(FY) | 700 | 2013
(FY) | 700 | soil included in cropland and grassland nationwide (stock change) and the stock change that would occur if no organic matter was applied in the same year is estimated. The latter is used as the base value, and the difference was calculated to estimate soil carbon storage (absorption). | | | carbon removals in agricultural soils | | | | 2025
(FY) | - | 2025
(FY) | _ | These countermeasures are based on the concept that
activities such as soil preparation through agricultural
production activities contribute to greenhouse gas emission
reduction. Projected removal volumes assume achievement of targets
such as the projected land under cultivation under the Basic
Plan on Food, Agriculture and Rural Areas. They also assume | | | | | | | 2030
(FY) | 850 | 2030
(FY) | 850 | establishment of necessary cultivation systems, technologies, etc. and implementation of financial assistance and other countermeasures. | | | | | | | | Measure evaluation indicator, and results of countermeasures | | | | | | | |---|--|---|---|-----------------------------------|--|----------------------------------|-----|---|--|--|--| | Name of mitigation action | Countermeasures of each actor | expected to be implemented by Measure | | on Expected removals | | Assumptions of expected removals | | | | | | | | otion of urban gagencies: Ministry | • | e, Transport and Touris | m) | | | | | | | | | | governments, etc.: | ports and narbors, sewage treatment facilities, public rental housing, facilities of public agencies, etc., and creation of new green spaces in sites such as on rooftops, based on the Green Basic Policy formulated by the national government and other plans. Close examination and study of methods of calculating sink effects of revegetation of urban communities etc., and development of reporting and verification systems | Promoting development of urban
parks, revegetation along roads, rivers
(including erosion control structures),
ports and harbors, sewage treatment
facilities, public rental housing, | Maintenance
area
(1,000 ha) | | a (10^4 t-CO ₂) | | | | | | | Promoting revegetation of public facilities, public awareness-raising of revegetation, and promoting revegetation by a wide range of parties Citizens, businesses, nonprofits, etc.: Active participation in revegetation and other | public facilities, public
awareness-raising of
revegetation, and promoting
revegetation by a wide range | | Green Regional Plans formulated by the prefectures, the Green Basic Plans formulated by the municipalities and other plans Calculating removals effects of | 2013
(FY) | 77 | 2013
(FY) | 115 | CO ₂ sink effects are calculated and totaled for each carbon
pool (biomass [trees], litter [fallen leaves], soil, etc.) by
collecting statistical data on land area subject to developme
of urban parks, and land areas subject to revegetation along
roads,
rivers (including erosion control structures), ports an
harbors, sewage treatment facilities, public rental housing, | | | | | | Citizens, businesses, nonprofits, etc.: Active participation in | | | 2025
(FY) | 83 | 2025
(FY) | 122 | facilities of public agencies, etc., which are subject to reporting under the United Nations Framework Convention on Climate Change, etc, and using calculation formulas, coefficients, etc., indicated in international guidelines on removal calculation methods. | | | | | | activities across a wide range of land, facilities, etc. | Promoting adoption and public
awareness-raising of revegetation, and
promoting revegetation by a wide
range or parties including members of
the public, businesses, and nonprofits | Promoting adoption and public awareness-raising of revegetation, and promoting revegetation by a wide range of parties including members of the public, businesses, and nonprofits | 2030
(FY) | 85 | 2030
(FY) | 124 | | | | | the public, businesses, and nonprofits | | | | | Measure evaluation indicator, and results of countermeasures | | | | | | |---------------------------|---|---|---|--|-------|---------------------------|-------|----------------------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | Examples of countermeasures expected to be implemented by local governments | Measure
evaluation
indicator | | Expected removals | | Assumptions of expected removals | | | | | Credit Scheme of the Environment) | | | | | | | | | | private businesses etc. (creators of credits): Implementation of greenhouse gas emission reduction and sink measures and recovery of funds through sale of credits private businesses etc. (users of credits): Implementation of measures, such as adjustment of emissions and emission intensity and carbon offsetting, using the credits | Operation and management of the J-Credit Scheme | Implementation of greenhouse gas emission reduction and removals measures by creators of credits Implementation of the greenhouse gas emission reduction and removals measures of creators of credits through use of credits Operation and management of local J- Credit Scheme | J-Credit certified
amount
(10^4 t-CO ₂) | | (10^4 t-CO ₂) | | | | | Revitalization of the | | | | 2013
(FY) | 3 | 2013
(FY) | 3 | | | | J-Credit Scheme | | | | 2025
(FY) | 1,100 | 2025
(FY) | 1,100 | - | | | | | | | 2030
(FY) | 1,500 | 2030
(FY) | 1,500 | | | | | | | Examples of | | M | leasure evalua | ation indicato | er, and results of countermeasures | | | |---|---|---|---|---|--|--|---------------------|--|--|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | y local Measure evaluation emission re | | Cumulative Expected emission reduction by 2030 | | Assumptions of expected energy saving and expected emission reduction | | | | 3. Contributions to reducing global greenhouse gas emissions Governing agencies: Ministry of the Environment) | | | | | | | | | | | | | Partner countries: Holding joint committee meetings to approve methodologies and discuss | | | Estimated emissions re absorption the financial super et (10^4) | ductions and
hrough JCM
port projects,
c. | (10^4 | t-CO ₂) | | | | | Promotion of the Joint Crediting | allocation of credits and other matters with the Japanese government, and calculating volumes of emission reduction (credits) on of the | Support through means such as subsidies for up to one-half of the costs of initial investment, field testing, etc. Holding joint committee meetings with partner countries to approve methodologies and discuss allocation of credits and other. | | 2013
(FY) | 1.5 | 2013
(FY) | 1.5 | • Estimating cumulative emission reduction by FY 2030, based on results such as the number of 184 projects using the JCM funding support program in the past (as of April 7, 2021) | | | | Mechanism (JCM) | Accelerating measures to promote outstanding decarbonization technologies, products, systems, services, and infrastructure as well as the implementation of countermeasure activities | | | 2025
(FY) | - | 2025
(FY) | - | Deciding on allocation of credits through discussions wit
partner countries | | | | | Partner-country firms:
Adoption, management, and
monitoring at local facilities | | | 2030
(FY) | 10,000 | 2030
(FY) | 10,000 | | | | | | | | Examples of | | | M | leasure e | valuation | indicat | or, and results of countermeasures | |---|--|---|--|-------------------------|---|--------------|-----------------------------|--------------|---|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | easure luation licator Expected energy saving | | Expected emission reduction | | Assumptions of expected energy saving and expected emission reduction □ | | | 64. Decarbonization initiatives in national parks (Governing agencies: Ministry of the Environment) | | | | | | | | | | | | | Formulization of plans and visions related to carbon-zero parks, and efforts toward their realization Hotel industry, tourism | | | areas
Zero (
Park | Carbon
s are
tered | (10^2 | 4 kL) | (10^4 | t-CO ₂) | | | Promotion of decarbonization efforts in national | decarbonization heat in facilities for lodging | Cooperation with regional environmental offices to develop plans and visions related to carbon-zero parks Decarbonization of visitor centers and other facilities | regional environmental offices of the Ministry of the Environment • introduction of equipment | 2013
(FY) | _ | 2013
(FY) | _ | 2013
(FY) | _ | After launching the carbon-zero parks program in March 2020, aiming to achieve 10 registered sites by 2025 and 20 | | | | Support for introduction of equipment using renewable energy, such as equipment using hot-spring heat, and energy saving equipment | | 2025
(FY) | 10 | 2025
(FY) | _ | 2025
(FY) | _ | sites by 2030 | | | Consumers: Choosing decarbonized tours, lodging facilities, and other facilities | | | 2030
(FY) | 20 | 2030
(FY) | 1 | 2030
(FY) | _ | | ^{*1} Because of the difficulty of projecting expected energy mix, CO2 emission intensity in power sector are estimated based on FY 2013, with the exception of figures for FY 2030, which reflect a preferable energy mix. | | | | Examples of | Measure evaluation indicator, and results of countermeasures | | | | | | | | | |--|-------------------------------|--|---|--|----|------------------------|---|-----------------------------|-------|---|--|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures
expected
to be implemented by local
governments | Mea
evalu
indic | | Expected energy saving | | Expected emission reduction | | Assumptions of expected energy saving and expected emission reduction □ | | | | 65. Proactive actions by the national government (Governing agencies: Ministry of the Environment) | | | | | | | | | | | | | | | | | | Emissions reduction rate (%) | | (10^4 kL) | | (10^4 t-CO ₂) | | Greenhouse gas reduction targets for 2030 under National Government Action Plan (October 22, 2021 Cabinet decision) (50% reduction vs. FY 2013) FY 2013 emissions: 2.393 million t-CO₂ (total greenhouse | | | | Proactive actions by the national government | - | Implementation and inspection of government action plans Implementation and inspection of action plans of individual related agencies | _ | 2013
(FY) | - | 2013
(FY) | - | 2013
(FY) | 239.3 | gas emissions from government administration and operations in FY 2013: 3.009 million t-CO ₂ [the figure fromNational Government Action Plan under the Act on Promotion of Global Warming Countermeasures in FY 2019 {March 2021, Global Warming Prevention Headquarters Executive Committee} minus emissions from use of government sea and | | | | | | | | 2030
(FY) | 50 | 2030
(FY) | - | 2030
(FY) | 119.7 | air craft and emissions from government incineration of waste
related to the Great East Japan Earthquake in Fukushima
Prefecture])
* Base-year emissions may change in the future due to close
examination of measures in the subject scope | | | | | | | Examples of countermeasures expected to be implemented by local governments | Measure evaluation indicator, and results of countermeasures | | | | | | | | | |---|---|---|---|---|--|--------------|------------------------|--------------|---------------------|--|------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | | evalu | asure
uation
cator | 1 * | Expected energy saving | | emission | | sion | Assumptions of expected energy saving and expected emission reduction □ | | 66. Proactive actions by local governments and promotion by the national government (Governing agencies: Ministry of the Environment) | | | | | | | | | | | | | | | | | | action pla
governm
formulation
etc. of whic
out by pref
munici | rmulation of
ans of local
ments, the
n and review,
th are carried
fectures and
ipalities
%) | (10^- | 4 kL) | (10^4 | t-CO ₂) | | | | | Initiatives led by local governments and promotion by the national government Formulation and review of local government's action plans for operations, and promoting initiatives to carry out measures based on the etc. to staff of local governments, the such as develop manuals on form local government. | Formulation and review of local government's action plans for operations, and | provision of technical advice of etc. to staff of local governments action lans for operations, and romoting initiatives to carry at measures based on the ction plans for these provision of technical advice of etc. to staff of local governments, through means such as development of manuals on formulation of local government's action plans for operations | Establishing measures for reducing the amount of greenhouse gas emissions and maintaining and intensifying the absorption of greenhouse gas sinks in connection with their own operations in local government's action plans for operations | 2013
(FY) | | 2013
(FY) | - | 2013
(FY) | - | Aiming to increase the percentage of prefectures and municipalities that have formulated action plans of local government, through formulation, review, etc., to 95% by FY | | | | | out measures based on the | | | 2025
(FY) | 95 | 2025
(FY) | - | 2025
(FY) | - | 2025 and 100% by FY 2030 | | | | | | | 2030
(FY) | 100 | 2030
(FY) | - | 2030
(FY) | - | | | | | | | | | Examples of | | | M | Measure evaluation indicator, and results of countermeasures | | | | | | |---|--|---|---|--------------|--|--------------|--|--------------|------------------------|---|--|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected
to be implemented by local
governments | evalu | asure
nation
cator | | expected energy saving | | ected
sion
etion | Assumptions of expected energy saving and expected emission reduction □ | | | | | | ves based on the of the Environment | _ | nmen | nt's a | ction | plaı | n for | enti | re municipal jurisdictions | | | | | | | | of action | ate of formulation of action plans of local overnments *2(%) (10^4 kL) | | (10 ⁴ kL) (10 ⁴ t-CO ₂) ² | | ·CO2)*2 | | | | | Promotion of efforts local government's | Local governments ^{*1} : Formulation of local government's action plans for entire municipal jurisdictions, | Provision of technical advice
etc. to staff of local
governments, through means
such as development of | Local governments*1: Establishing measures for purposes, such as reducing greenhouse gas emissions in local government's action | 2013
(FY) | | 2013
(FY) | _ | 2013
(FY) | _ | _ | | | | municipal | and promoting initiatives to
carry out measures based on
these | manuals on formulation of
local government's action
plans for entire municipal
jurisdictions | plans for entire municipal
jurisdictions in accordance
with natural and social
conditions in their districts | 2025
(FY) | 100 | 2025
(FY) | _ | 2025
(FY) | _ | | | | | | | | | 2030
(FY) | 100 | 2030
(FY) | 1 | 2030
(FY) | _ | | | | ^{*1} Prefectures, ordinance-designated major cities, and central cities obligated to formulate these plans by law (including those subject to special exceptions on the timing of implementation) ^{*2} This countermeasure provide backing support for all of other coutermeasures shown on the Annex. | | | | Examples of | | | | Measu | re evalua | ntion indi | cator, and results of countermeasures | |---|---|---|--|--|--------------|------------------------|--------------|---------------------------|--|---| | Name of mitigation action | actor national government expected to be implemented by local | | evalu | Measure
evaluation
indicator | | Expected energy saving | | ected
ssion
ction | Assumptions of expected energy saving and expected emission reduction □ | | | 68. Promotion of "Decokatsu" (a national campaign for a new, enriched decarbonized way of lifesty (Governing agencies: Ministry of the Environment) | | | | | | | | | | carbonized way of lifestyles) | | | | · Promoting a sense of | | implemer
Cool | | (10^2 | 4 kL) | (10^4 | t-CO ₂) | O Evaluation indicators • Cool Biz/Warm Biz
implementation rate • Actual figures (FY 2013): Cool Biz (28° C) or Warm Biz (20° C) implementation rate from annual surveys | | | | urgency regarding climate
change, adoption and
awareness raising of
global-warming
countermeasures, and | | 2013
(FY) | 71.3 | 2013
(FY) | ▲0.5 | 2013
(FY) | ▲2.9 | Projected future implementation rates: Assuming linear growth from current trends toward 100% implementation rates in FY 2030 | | | · Fostering which busin proactive all | Fostering a mood under which businesses proactive about global warming countermeasures | Promoting an understanding of the | 2025
(FY) | 91.6 | 2025
(FY) | 2.2 | 2025
(FY) | 13.2 | Commercial sector Cool Biz Reduction from increasing temperature setting by 2° C: 2.9% Warm Biz Reduction from decreasing temperature setting by 3° C: 4.0% Residential sector | | Promotion of thorough | Businesses, ordinary
households, individuals:
Promoting Cool Biz and Warm
Biz seasonal lifestyles to | are recognized in society
and supported by
consumers and others | | 2030
(FY) | 100 | 2030
(FY) | 3.2 | 2030
(FY) | 8.7 | Cool Biz Reduction from increasing temperature setting by 1° C: 7.0% Warm Biz Reduction from decreasing temperature setting by 1° C: 8.0% (airconditioning) | | Cool Biz and Warm
Biz | tition of enable comfortable living at indoor temperatures of 28° C (target) when using airconditioning and 20° C (target) when using heating | awareness-raising activities in cooperation with local governments • Enhancing cooperation | in, in accordance with
community and
individual lifestyles, to
raise awareness among
residents and lead to | Rate of implementation of Cool Biz (household) (%) | | (10^4 kL) | | (10^4 t-CO ₂) | | Reduction from decreasing temperature setting by 1° C: 5.6% (oil and gas fan heaters) • Average electricity emission factor for all power sources in FY 2013: 0.57 kg-CO ₂ /kWh (Source: Environmental Action Plan by the Japanese Electric Utility Industry [Federation of Electric Power Companies of | | for C
Action
Centro
Chann
global
preve
advis
coun
warn | among the Japan Center
for Climate Change
Actions, Prefectural
Centers for Climate
Change Actions, the | growth of autonomous
initiatives and to their
taking root | 2013
(FY) | 77.0 | 2013
(FY) | ▲0.3 | 2013
(FY) | ▲ 1.8 | Japan]) • Average electricity emission factor for all power sources in FY 2030: 0.25 kg-CO ₂ /kWh (Source: Outlook for energy supply and demand in FY 2030) • Average thermoelectric electricity emission factor in FY 2030: 0.60 kg-CO ₂ /kWh (Source: Outlook for energy supply and demand in FY 2030) | | | | global warming prevention activities advisors, regional councils for global warming | | 2025
(FY) | 93.2 | 2025
(FY) | 1.4 | 2025
(FY) | 8.9 | • Fuel emission factor: 2.26 t-CO ₂ /kL (Prepared based on the list of carbon emission intensity of total heat by energy source [Agency for Natural Resources and Energy]) | | | | | countermeasures, and others promoting action | | 2030
(FY) | 100 | 2030
(FY) | 2.2 | .2 2030
(FY) | 5.8 | • Energy saving from thorough implementation of Cool Biz and "Warm Biz" seasonal lifestyles represents energy saving through progress on countermeasures since FY 2012, and volumes of emission reduction are calculated based on these volumes of energy saving. | | | | | Examples of | | | | Measu | re evalua | ntion indi | eator, and results of countermeasures | |---------------------------|--|--|---|--------------------------------------|---------------------|--------------|------------------|-----------------------------|---------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected to be implemented by local governments | Mea
evalu
indic | ation | _ | d energy
ring | Expected emission reduction | | Assumptions of expected energy saving and expected emission reduction □ | | | 8. Promotion of "Decokatsu" (a national campaign for a new, enriched decar
Soverning agencies: Ministry of the Environment) | | | | | | | | | carbonized way of lifestyles) | | | | | | Rate
implemen
Warn
(commen | ntation of | (107) | 4 kL) | (10^4 | t-CO ₂) | | | | | | | 2013
(FY) | 71.0 | 2013
(FY) | 0.1 | 2013
(FY) | 0.3 | | | | | | | 2025
(FY) | 91.5 | 2025
(FY) | 1.3 | 2025
(FY) | 7.9 | | | | | | | 2030
(FY) | 100 | 2030
(FY) | 1.8 | 2030
(FY) | 4.9 | | | | | | | Rate
implemen
Warn
(househo | ntation of
n Biz | (10^- | 4 kL) | (10^4 | t-CO ₂) | | | | | | | 2013
(FY) | 81.2 | 2013
(FY) | 0.2 | 2013
(FY) | 0.7 | | | | | | | 2025
(FY) | 94.5 | 2025
(FY) | 10.2 | 2025
(FY) | 44.2 | | | | | | | 2030
(FY) | 100 | 2030
(FY) | 14.4 | 2030
(FY) | 35.9 | | | | | | Examples of | | | | Measu | re evalua | tion indi | cator, and results of countermeasures | |---------------------------|---|--|--|--------------------------|-----------------|--------------|-----------------|---|---------------------|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected to be implemented by local governments | Mea
evalu
indic | ation | Expected sav | d energy
ing | Expe
emis
reduc | sion | Assumptions of expected energy saving and expected emission reduction □ | | | 68. Promotion of "Decokatsu" (a national campaign for a new, enriched deca
(Governing agencies: Ministry of the Environment) | | | | | | | | | carbonized way of lifestyles) | | | | | | numb
house | cholds ed (1000 | (10^2 | 4 kL) | (10^4 | t-CO ₂) | | | | | | | 2013
(FY) | 31 | | | | | Evaluation indicators Cumulative number of households for which diagnostics were conducted (source: results of the household eco-diagnostics program | | | | | Promoting an understanding of the urgency of global | 2025
(FY) | 830 | 2013 | 0 | 2013 | 0.1 | [Ministry of the Environment]) and implementation rate (cumulative number of households for which diagnostics were conducted/total households) • Actual figures (FY 2013):
The cumulative number of households for which diagnostics were conducted was 31,000 households, for an implementation rate of 0.1% • Projected future number of household eco-diagnostics: Expected to be implemented for 1.555 million households in FY 2030 (for an implementation rate of 2.9% [1.555 million households/53.48 million households]) • Reductions in electricity consumption through this measure: Resulting reductions in electricity consumption are considered to overlap with HEMS figures, and for other fuels consumption is assumed to decrease by 5% after various energy saving measures. 2.6 • Fuel emission factor: 2.26 t-CO ₂ /kL (Prepared based on the list of carbon emission intensity of total heat by energy source [Agency for Natural Resources and Energy]) • Energy saving from household eco-diagnostics represents energy | | Home Eco-Diagnosis | Ordinary households and individuals: Switching to energy saving products, using related services, and choosing | and other services of the | warming and its negative
impact on society, and
advancing effective
initiatives that are easy
for people to participate | 2030
(FY) | 1555 | (FY) | - | (FY) | | | | | decarbonized lifestyles
through the household eco-
diagnostics program, which
provides energy saving
diagnostics for households | household eco-diagnostics program | community and
individual lifestyles, to
raise awareness among
residents and lead to | Impleme
rate | | 2025 | 1.1 | 2025 | | | | | | ļ | growth of autonomous
initiatives and to their
taking root | 2013
(FY) | 0.1 | (FY) | 1.1 | (FY) | 2.0 | | | | | | | 2025
(FY) 1.5
2030 | 2.2 | 2030 | 4.9 | saving through progress on countermeasures since FY 2012, and volumes of emission reduction are calculated based on these volumes of energy saving. | | | | | | | in the state of th | 2030
(FY)
- 12 | 2.9
3 - | (FY) | 2.2 | (FY) | 4.9 | | | | | | Examples of | | | | Measu | re evalua | tion indi | cator, and results of countermeasures | |---|---|--|--|--|----------------------|--------------|-----------------|----------------------------------|-------------------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected to be implemented by local governments | Mea
evalu
indic | ation | _ | d energy
ing | ergy Expected emission reduction | | Assumptions of expected energy saving and expected emission reduction □ | | 68. Promotion of "Decokatsu" (a national campaign for a new, enriched decarbonized way of lifestyle (Governing agencies: Ministry of the Environment) | | | | | | | | | carbonized way of lifestyles) | | | | | | | Implementation rate of eco-drive (passenger care (%) | | (10^4 kL) | | (10^4 1 | t-CO2) | | | | | | | 2013
(FY) | 6% | | - <i>,</i> | | / | | | | Drivers of ordinary vehicles: | Public awareness-raising of global warming | Advancing effective | 2025
(FY) | 60% | 2013 | 10.6 | 2013 | | Evaluation indicators Eco-driving implementation rates Actual figures (FY 2013): Assumed to be 6% for passenger vehicles and 9% for personal trucks | | | Implementing "eco-driving" to | countermeasures among
drivers of passenger
vehicles and personal | initiatives that are easy
for people to participate
in, in accordance with
community and
individual lifestyles, to | 2030
(FY) | 67% | (FY) | | (FY) | | Future projected implementation rates: Implementation rates are assumed to be 67% for passenger vehicles and 60% for personal trucks in FY 2030 ● energy saving effects of eco-driving: 10% reduction emission factor of gasoline etc. for passenger vehicles: 2.65 t-CO₂/kL emission factor of gasoline etc. for personal trucks: 2.66 t-CO₂/kL (Prepared based on the list of carbon emission intensity of total heat by energy source [Agency for Natural Resources and Energy]) | | | not idling the engine while the
vehicle is parked and driving
safety at lower speeds in | using the latest ICT
technologies, to promote
and raise awareness of | raise awareness among
residents and lead to
growth of autonomous
initiatives and to their
taking root | Impleme
rate of ec
(private
cars) | o-driving
freight | 2025 | 219 | 2025 | | | | | | behavior | Č | 2013
(FY) | 9% | (FY) | 217 | (FY) | | | | | | | | 2025
(FY) | 53% | 2030
(FY) | 249 | 2030 | 659 | | | | | | | 2030
(FY) | 60%
1 - | | | (FY) | 007 | | | | | | Examples of | | | | Measu | ire evalua | tion indi | cator, and results of countermeasures | |---|--|---|--|--------------|------------------------------------|--------------|------------------------|--------------|--|--| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected to be implemented by local governments | evalu | Measure
evaluation
indicator | | Expected energy saving | | ected
ssion
etion | Assumptions of expected energy saving and expected emission reduction □ | | 68. Promotion of "Decokatsu" (a national campai (Governing agencies: Ministry of the Environment) | | | | | | new | , enr | iche | d dec | carbonized way of lifestyles) | | | | | | rate o | entation
of car
ng (%) | (10^- | 4 kL) | (10^4 | | Evaluation indicators Car sharing implementation rate Actual figures (FY 2013): Assumed to be 0.23% for both light vehicles and ordinary passenger vehicles, based on Car sharing members as a percentage of the population (source for number of members: Foundation for Promoting Personal Mobility and Ecological | | | sharing | | Advancing effective initiatives that are easy for people to participate in, in accordance with community and | 2013
(FY) | 0.23% | 2013
(FY) | 2.8 | 2013
(FY) | | Transportation, "Trends in Car sharing vehicle numbers and membership in Japan") • Future projected implementation rate: The implementation rate for FY 2030 is estimated based on linear approximation from Car sharing implementation results in FY 2013-2020 (estimated at 3.42%) (Source: Estimated based on Foundation for Promoting Personal Mobility and Ecological Transportation, "Trends in Car sharing vehic numbers and membership in Japan," June 2020) | | Car sharing | individuals, and businesses: Accelerated Introduction of electric vehicles that contribute to promotion of car sharing, and growing the Car sharing market | vehicles and personal
trucks, public awareness-
raising of car sharing,
promoting changes in
behavior, etc. | individual lifestyles, to
raise awareness among
residents and lead to
growth of autonomous
initiatives and to their
taking root | 2025
(FY) | 2.46% | 2025
(FY) | 51 | 2025
(FY) | 117 | Average electricity emission factor for all power sources in FY 201 0.57 kg-CO₂/kWh (Source: Environmental Action Plan by the Japane Electric Utility Industry [Federation of Electric Power Companies of Japan]) Average electricity emission factor for all power sources in FY 203 0.25 kg-CO₂/kWh (Source: Outlook for energy supply and demand in FY 2030) emission factor of gasoline etc. for passenger vehicles: 2.65 t-CO₂/k | | | | | 2030
(FY) | 3.42% | 2030
(FY) | 73 | 2030
(FY) | 192 | (Prepared based on the list of carbon emission intensity of total heat be energy source [Agency for Natural Resources and Energy]) • Energy saving from Car sharing represents energy saving through progress on
countermeasures since FY 2012, and volumes of emission reduction are calculated based on these volumes of energy saving. | | | | | | Examples of | | | | Measu | re evalua | tion indi | cator, and results of countermeasures | |---|--|--|---|--------------------------------------|-----------------------------|--------------|------------------------|--------------|-------------------------------|---| | Name of mitigation action | Countermeasures of each actor | Countermeasures of the national government | countermeasures expected to be implemented by local governments | Mea
evalu
indic | ation | _ | Expected energy saving | | ected
sion
etion | Assumptions of expected energy saving and expected emission reduction □ | | 68. Promotion of "Decokatsu" (a national campaign for a new, enriched decarbonized way of l (Governing agencies: Ministry of the Environment) | | | | | | | | | carbonized way of lifestyles) | | | | | | Promoting an | Amount loss and generate house (10^4 | d waste
ed from
holds | (10^- | 4 kL) | (10^4 | t-CO ₂) | Evaluation indicator Food loss and waste from household Measured based on Ministry of the Environment, "Status of wasted food etc." Actual figure (FY 2013): 3.02 million t (Source: "Status of wasted food etc." [FY 2013 estimate]) | | Reduction of food loss and waste in | General households: Implementing measures to counter food loss and waste, such as checking the content household helps to global | that reducing food loss
and waste in the
household helps to global | understanding of the urgency of global warming and its negative impact on society, and advancing effective initiatives that are easy for people to participate | 2013
(FY) | 302 | 2013
(FY) | 0 | 2013
(FY) | 0 | Projected future food loss and waste: Assumed to be 2.16 million t in FY 2030 (Based on the target of halving household food loss and waste by FY 2030 vs. the FY 2000 level in the Basic Policy on Promotion of Food Loss and Waste Reduction [March 2020 Cabinet decision] and the 4th Fundamental Plan for Establishing a Sound Material-Cycle Society [June 2018 Cabinet decision]) Food loss and waste in FY 2025 is estimated based on the target | | households | of the refrigerator before going
shopping to avoid buying too
much and preparing suitable
volume meals that eating up | warming countermeasures, encouraging changes in behavior, etc. | in, in accordance with
community and
individual lifestyles, to
raise awareness among
residents and lead to
growth of autonomous
initiatives and to their
taking root | 2025
(FY) | 241 | 2025
(FY) | 10.6 | 2025
(FY) | 28.1 | halved level of food loss and waste in FY 2030 (2.16 million t) and the actual figure in FY 2018 (2.76 million t). • CO ₂ emissions intensity related to food loss: 0.46 t-CO ₂ /t (CO ₂ emissions intensity of procurement and production of 1 t of food raw materials for each food category, multiplied by the food self-sufficiency rate, as a weighted average for the share of food loss form households) | | | | | | 2030
(FY) | 216 | 2030
(FY) | 14.9 | 2030
(FY) | 39.6 | Energy saving from addressing food loss and waste represents energ
saving through progress on countermeasures since FY 2013, and
volumes of emission reduction are calculated based on these volumes
of energy saving. | ^{*1} Because of the difficulty of projecting expected energy mix, CO₂ emission intensity in power sector are estimated based on FY 2013, with the exception of figures for FY 2030, which reflect a preferable energy mix.