Result of demonstration test for beach litter survey using UAVs

1. Purpose of the demonstration test

The purpose of the demonstration test is to ensure the practicality of Annex Section I. 1 and II of the guidelines with following elements (Table 1).

	Table 1.1 onits to ensure practicality
Concrete-	Make sure the procedures in the guideline are concrete enough.
ness	
Versatility	Note that the contents of the guideline need to be generalized so that it can be
	used as a reference even when the equipment used or the research environment
	is different.
Novelty	Verify whether the guideline can solve the problems of efficiency, accuracy,
	and reproducibility of the existing surveys to be verified.

Table 1. Point	s to	ensure	practicality
----------------	------	--------	--------------

2. Demonstration test outline

Table 2 shows the outline of the demonstration test.

Items	Outline				
Survey period/	23–29th July 2023				
Frequency	Once at each beach				
Survey points	A: Gravel beach in Iyo city, Ehime, Japan (see Figure 1)				
	B: Gravel beach in Uwajima city, Ehime, Japan (see Figure 2)				
Survey area	A: 50 x 17.1 m B: 20 x 4.3 m (Longshore x cross-shore)				
Survey method	I. Drone survey with automatic detection of beach litter by AI				
(See Appendix A	II. Drone survey with manual detection of beach litter from images				
for detailed infor-	III. On-site visual inspection (implemented with reference to the "Index				
mation)	Evaluation Method for Waterside Scattered Debris (Coastal Version)"				
	(Tohoku Regional Development Bureau, Ministry of Land, Infrastruc-				
	ture, Transport and Tourism, etc.))				
	IV. Collection survey (with reference to the "Guidelines for Investigating the				
	Composition of Drifted Debris for Local Governments (June 2020, 2nd				
	edition)")				
	* Methods III and IV can be performed by the general public with				
	the guidance of an experienced person.				
Survey target	I number and volume of beach litter (including driftwood (non-processed))				
	II-III volume of beach litter (including driftwood (non-processed))				
	IV number, volume, and weight of beach litter (including driftwood [non-				
	processed])				
Researcher	Dr. Kako lab, JANUS, Futaba Inc.				
Image Proces-	Image process: Futaba Inc.				
sor/Analyst	Image analysis: Dr. Kako				
Method of Organ-	- Comparisons of the amount of beach litter estimated by each survey method				
izing Results	(size detectable by drone and AI / all litter size)				
	- Verification of human error in visual surveys (reproducibility)				
	- Comparison of time spent on survey				
	- Comparison of survey cost				

Table 2. Demonstration test outline

Figure 2. Location of Hirai beach in Uwajima city, Ehime, Japan (B) (Source: Geospatial Information Authority of Japan (GSI) map)

3. Results of the demonstration test

3.1 Results of comparisons of the amount of beach litter estimated by each survey method

3.1.1 Comparison of survey and estimation results limited to size detectable by drone and AI

Since the resolution of the objects that the image analysis model used in this demonstration can detect is about 30 pixels (5 x 6 cm), the result of the drone and AI method was first compared to the ground truth data of the beach litter volume, the size of which is larger than the approximate detectable size (5 x 6 cm, or 100 cm³).

As shown in Table 3, approximately 66–82% of the man-made object volume could be detected if survey targets were limited to sizes detectable by drones and AI. As shown in Table 4, The same can be said for the number of pieces of the man-made object. The reason why the detection rate at location B is lower than that at location A is that the man-made objects were covered by driftwood washed ashore, making detection at location B more difficult (see Figure 3).

 Table 3. Results of volume comparison between drone and AI estimates and the ground truth for man-made objects larger than detectable size (unit: m³)

Location	Drone and AI	Ground Truth	
A (Iyo)	0.04	0.049	
B (Uwajima)	0.19	0.288	

Note:

1. Values of the ground truth are rounded to the fourth decimal place.

- 2. These results include the uncertainty associated with each estimate, including detection of nonlitter as litter or failure to detect litter.
- 3. The amount of wood (lumber, etc.) from man-made objects was excluded because the item is difficult to distinguish from driftwood (natural objects).
- 4. The estimated volume of man-made objects at location A detected by the drone and AI method was 0.11m³, but a later review revealed that 0.07m³ of driftwood was incorrectly detected as a man-made object, so the estimated value of man-made objects was 0.04m³.
- 5. See IV. Collection survey in Appendix A for the method to investigate the ground truth.

Table 4. Results of piece count comparison between drone and AI estimates and the ground truth
for man-made objects larger than detectable size (unit: pieces)

Location	Drone and AI	Ground Truth
A (Iyo)	61	67
B (Uwajima)	517	625

Note:

- 1. The amount of wood (lumber, etc.) from man-made objects was excluded because the item is difficult to distinguish from driftwood (natural objects).
- 2. As for the ground truth data, pieces of item types of which the average volume is more than 100 cm³ were counted. Therefore, pieces of litter that are undetectable by drones and AI are included in the above ground truth.
- 3. The drone and AI method could count multiple objects as one.
- 4. These results include the uncertainty associated with each estimate, including detection of nonlitter as litter or failure to detect litter.

Figure 3 Man-made objects covered by driftwood washed ashore at location B

3.1.2 Comparison of survey and volume estimation results including all litter size

Next, for beach litter larger than 2.5cm, including sizes undetectable by drone and AI, estimates (Table 5, 7) and ground truth data (Table 6, 8) of beach litter volume were compared by each survey location. Estimates including beach litter of undetectable size differed more from the ground truth data than estimates excluding it. This is because smaller litter is more affected by resolution and driftwood cover (see Figure 3). Although this is considered a limitation of the remote sensing technology, future improvements in drone resolution and image analysis technology are expected to improve the drone survey problem.

On a beach with a high density of litter, such as Location B, it was difficult to accurately quantify each of the man-made and natural objects for the reasons mentioned above, but the total amount was estimated to be 1.243 m³ (see Table 8), which is relatively close to the ground truth (1.55 m³ (see Table 7)).

Tuble 3: Results of volume estimates at location 11 (unit: in)					
Objects	Drone and AI	Drone and Man-	On-Site Visual		
		ual	Inspection		
Man-made	0.04	0-0.1	0.058		
Natural	0.66	0.8-6.4	1.875		

Table 5. Results of volume estimates at location A (unit: m³)

Note:

- 1. Values of on-site visual inspection are rounded to the fourth decimal place.
- 2. These results include the uncertainty associated with each estimate, including detection of nonlitter as litter or failure to detect litter.
- 3. The estimated volume of man-made objects at location A detected by the drone and AI method was 0.11m³, and that of natural objects was 0.59m³. However, a later review revealed that 0.07m³ of driftwood was incorrectly detected as a man-made object, so the estimated value of man-made objects was 0.04m³, and that of natural objects was 0.66m³.
- 4. Taking into account the uncertainty of detection by the human eye from aerial images, the estimates for the drone and manual method are estimated using a method that provides a range of estimates (see Table 20).
- 5. On-site visual inspection estimates are the average of the survey results from each of the two surveyors on the same survey area (see Table 10 for detailed results).
- 6. See I-III in Appendix A for the methods to conduct surveys and estimates.

Table 6 Ground truth data of beach litter volume at location A (unit: m³)

Objects	Ground Truth
Man-made	0.115
Natural	3.854

Note:

1. Values are rounded to the fourth decimal place.

2. See IV. Collection survey in Appendix A for the method to investigate the ground truth.

Tuble 7 Results of volume estimates at location D (unit: in)						
Objects	Drone and AI	Drone and Man-	On-Site Visual			
		ual	Inspection			
Man-made	0.19	0.04-0.32	0.223			
Natural	1.36	0.32-2.56	0.795			

Table 7 Results of volume estimates at location B (unit: m³)

Note:

- 1. Values are rounded to the fourth decimal place.
- 2. These results include the uncertainty associated with each estimate, including detection of nonlitter as litter or failure to detect litter.
- 3. Taking into account the uncertainty of detection by the human eye from aerial images, the estimates for the drone and manual method are estimated using a method that provides a range of estimates (see Table 20).
- 4. On-site visual inspection estimates are the average of the survey results from each of the two surveyors on the same survey area (see Table 10 for detailed results).
- 5. See I-III in Appendix A for the methods to conduct surveys and estimates.

Table 8 Ground truth data of beach litter volume at location B (unit: m³)

Objects	Ground Truth	
Man-made	0.469	
Natural	0.774	
NT /		

Note:

1. Values are rounded to the fourth decimal place.

2. See IV. Collection survey in Appendix A for the method to investigate the ground truth.

3.1.3 Comparison of survey and pieces of number estimation results including all litter size

Next, for beach litter larger than 2.5 cm, including sizes undetectable by drone and AI, estimates and ground truth data of the beach litter number were compared with each other by survey location. The gap was even larger when the estimates were compared with ground truth data including beach litter of undetectable size (see Table 9). This is because smaller litter is more affected by resolution and driftwood cover (see Figure 6). In addition, this is because it is considered that the method of image analysis used in drone and AI (semantic segmentation), unlike object detection, is not suitable for counting the number of pieces. In the case of semantic segmentation, the number of pieces of beach litter tends to be underestimated in the high-density area of beach litter, such as the demonstration site. Conversely, the automatic detection method is suitable for cases where the pieces of litter are not close to each other, because the boundary of each piece of litter is clear enough to identify each item.

Table 9 Results of piece count comparison between drone and AI estimates and ground truth for man-made objects (unit: pieces)

Location	Drone and AI	Ground Truth
A (Iyo)	61	2,027
B (Uwajima)	517	2,477

Note:

1. The drone and AI method could count multiple objects as one object.

2. These results include the uncertainty associated with each estimate, including detection of nonlitter as litter or failure to detect litter.

3. As for ground truth, litter fragments, including natural objects, were not counted. Only pieces of hard plastic were counted.

Before collecting

After collecting

Figure 4 Pictures of survey area (A)

Before collecting

After collecting

Figure 5 Pictures of survey area (B)

3.2 Results of human error verification for visual inspection

17	Table to Inter-observer variability of on-site visual inspection (method III) results						
Survey	Loca-	Re-	Man-Made Ob-	Man-Made Ob-	Natural Ob-	Natural Objects	
tion		searcher	jects (m ³) Vis-	jects (m ³)	jects (m ³) Vis-	(m ³) Ground	
			ual Inspection	Ground Truth	ual Inspection	Truth	
Α		α	0.05	0.115	1.5	3.854	
50m	long-	β	0.065		2.25		
shore		•					
В		α	0.175	0.469	0.83	0.774	
20m	long-	γ	0.27		0.76		
shore		•					

Table 10 Inter-observer variability of on-site visual inspection (method III) results

Note:

1. Values are rounded to the fourth decimal place.

2. Calibration was conducted at location B.

	Tuble II meet observer variability in arone and manual (method II) results								
Survey	Researcher	Man-Made Ob-	Man-Made Ob-	Natural Objects	Natural Objects				
location		jects (m ³) Visual	jects (m ³)	(m ³) Visual In-	(m ³) Ground				
		Inspection	Ground Truth	spection	Truth				
А	α	0.045	0.115	2.5	3.854				
50m		(0-0.1)		(0.8-6.4)					
long-	β	0.035		6.383					
shore		(0-0.1)		(0.8-6.4)					
В	α	0.265	469	1	0.774				
20m		(0.04-0.32)		(0.32-2.56)					
long-	β	0.231		1.4					
shore		(0.04-0.32)		(0.32-2.56)					

Table 11 Inter-observer variability in drone and manual (method II) results

Note:

1. Values in parentheses indicate estimated quantities using a rank table (see Table 20).

2. Values are rounded to the fourth decimal place.

3.3 Comparison of time spent on survey

	Table 12 Thile spent on survey in location A (190)								
Survey Methods		Data Sampling (Unit: Hour)			Data Processing/Analysis		Total Per-		
					(Unit: Hour)	son-Hour			
		Prepara-	Measure-	Sampling	Processing	Detection,			
		tion	ment	1 0	C C	Classifica-			
						tion, Quanti-			
						fication			
Ι	Drone and	2	1	1	8.2	10	30.2		
	AI	(3 work-	(3 work-	(3 work-	(1 worker)	(1 worker)			
II	Drone and	ers)	ers)	ers)		0.63	20.82		
	manual de-					(1 worker)			
	tection								
III	On-site vis-	0.5	0	0.2	0	0	3.7		
	ual inspec-	(7 work-		(1					
	tion	ers)		worker)					
IV	Collection		0	2.25	0.25	2.66	65.17		
	survey			(13 work-	(2 workers)	(12 workers)			
				ers)					

Table 12 Time spent on survey in location A (Iyo)

Note:

- 1. The quantification effort for the collection survey includes not only volume measurements, but also counts and weights of beach litter.
- 2. Data processing time does not include automatic processing time, only manual processing time.
- 3. Collection survey classified litter into 42 items; other survey methods used 2 types (natural/manmade).
- 4. If each worker performed a different task, describe as 1 worker.
- 5. In Japan, it takes about 20 hours to learn how to operate a drone if you go to drone training school. In one case, it took about two months and 15 people to prepare a beach litter dataset of 3,500 images for semantic segmentation, classifying man-made and natural litter pixel by pixel. Therefore, it is practical to use publicly available existing data.

Survey Meth-		Data Sampling (Unit: Hour)			Data Processing/	Total Per-	
0us		Prepara- tion	Meas- urement	Sam- pling	Processing	Detection Classification Quantifica- tion	Son Hour
Ι	Drone and	2	1.5	0.33	8.21	14.5	34.19
	AI	(3 work-	(3 work-	(3 work-	(1 worker)	(1 worker)	
II	Drone and	ers)	ers)	ers)		0.48	20.16
	manual					(1 worker)	
	detection						
III	On-site	1.05	0	0.23	0	0	3.61
	visual in-	(3 work-		(2 work-			
	spection	ers)		ers)			
IV	Collec-	0.5	0	3.25	0.25	4.5	46
	tion sur-	(2 work-		(4 work-	(2 workers)	(7 workers)	
	vey	ers)		ers)			

Table 13 Time spent on survey in location B (Uwajima)

Note:

1. The quantification effort for the collection survey includes not only volume measurements, but also counts and weights of beach litter.

2. Data processing time does not include automatic processing time, only manual processing time.

3. Collection survey classified litter into 42 items, other survey methods used 2 types (natural/manmade).

4. If each worker performed a different task, describe as 1 worker.

5. In Japan, it takes about 20 hours to learn how to operate a drone if you go to drone training school. In one case, it took about two months and 15 people to prepare a beach litter dataset of 3,500 images for semantic segmentation, classifying man-made and natural litter pixel by pixel. Therefore, it is practical to use existing publicly available data.

3.4 Comparison of survey cost

 $(unit \cdot USD)$

									(-	
Sur	vey Method	Initial Cost	Initial Cost			Operating Cost				
		Equipment	Software	License,	Equipment	Travel	Maintenance	Labor Cost	Waste	
		Including		Registration	Transporta-	Expenses	Cost		Disposal	
		Rental		of Drone,	tion	-			-	
				Training						
Ι	Drone and AI	469	6,738	1,424	482	982	1,205	1,154	0	12,454
		~1,675		~2,134			~2,623			~15,788
II	Drone and man-		3,546				709	795		8,407
	ual detection						~2,127			~11,741
III	On-site visual in-	391	0	0	0		0	141	0	1,514
	spection									
IV	Collection survey	1,488	0	0	114		95	2,490	469	5,638
Note:										

1. 1 USD = 140.97 yen (To convert yen to USD, we used the table of exchange rates for yen (TTM) on July 31, 2023. Decimal values resulting from the conversion were rounded off.)

2. Drone prices are listed for a one-week rental. Costs vary by model and rental company. If the drone is purchased, the cost ranges from approximately 7,094 to 21,281 USD.

3. Drone with RTK capabilities was used, and the cost of related equipment (e.g., RTK base station) is included in "Equipment including rental".

4. Operating cost excludes daily allowance and accommodation costs.

5. The demonstration test included two software costs because image processing and image analysis were performed by different parties, but the actual costs are expected to be lower.

6. Only travel expenses within Ehime Prefecture are included.

7. Insurance costs for the drone, which are included in maintenance costs, reflect amounts for plans with 200 million yen for bodily injury and 500 million yen for property damage.

8. Maintenance costs include the cost of consumables.

9. The labor cost was calculated based on the unit cost of a survey engineer applied by the Japanese Ministry of Land, Infrastructure, Transport and Tourism in 2023. The labor cost per hour is approximately 38 USD. This labor cost does not include overhead costs.

Table 15 Survey cost of location	ı B	(Uwajima)
----------------------------------	-----	-----------

(unit · LISD)

									(012	m · · · · · · · · · · · · · · · · · · ·
Survey Method Initial Cost			Operating Cost							
		Equipment	Software	License,	Equipment	Travel	Maintenance	Labor Cost	Waste	
		Including		Registration	Transporta-	Expenses	Cost		Disposal	
		Rental		of Drone,	tion					
				Training						
Ι	Drone and AI	469	6,738	1,424	482	1,123	1,205	1,306	0	12,747
		~1,675		~2,134			~2,623			~16,081
II	Drone and man-		3,546				709	770		8,523
	ual detection						~2,127			~11,857
III	On-site visual in-	432	0	0	0		0	137	9	1,701
	spection									
IV	Collection survey	1,408	0	0	114		151	1,757	51	4,604

Note:

1. 1 USD = 140.97 yen (To convert yen to USD, we used the table of exchange rates for yen (TTM) on July 31, 2023. Decimal values resulting from the conversion were rounded off.)

2. Drone prices are listed for a one-week rental. Costs vary by model and rental company. If the drone is purchased, the cost ranges from approximately 7,094 to 21,281 USD.

3. Although the total station was used for the measurements, the cost of related equipment is not included because it is not realistic to purchase a total station, which costs approximately \$10,640, for a single survey.

4. The demonstration test included two software costs because image processing and image analysis were performed by different parties, but the actual costs are expected to be lower.

5. Operating cost excludes daily allowance and accommodation costs.

6. Only travel expenses within Ehime Prefecture are included.

7. Insurance costs for the drone, which are included in maintenance costs, reflect amounts for plans with 200 million yen for bodily injury and 500 million yen for property damage.

8. Maintenance costs include the cost of consumables.

9. The labor cost was calculated based on the unit cost of a survey engineer applied by the Japanese Ministry of Land, Infrastructure, Transport and Tourism in 2023. The labor cost per hour is approximately 38 USD. This labor cost does not include overhead costs.

4. Inter-lab demonstration

Dr. Topouzelis' beach litter detection method (object detection by bounding box) can also work well with images taken according to international guidelines (Annex).

Figure 6 Object detection from the images taken in the demonstration test Source: Coastal Marine Litter Observatory (CMLO) https://cmlo.aegean.gr/: Case study in Japan (August 2023, Konstantinos Topouzelis and Shin'ichiro Kako)

5. Conclusion

We demonstrated that data sampling of beach litter using drones according to the guidelines worked well (see Table 16). These findings have been added to Section II of Annex.

The results of the survey cost comparison show that the drone-based methods are more expensive than the manual methods due to the high initial cost, but considering that the cost gap between the dronebased methods and the manual methods diminishes as the survey coverage increases, the drone survey can survey a larger area, and the workload and cost of a drone and AI survey is expected to decrease more than that of a manual survey and analysis over a larger survey coverage.

In addition to Table 16, several items were identified that should be added to Annex of the guidelines as the survey was planned, prepared, and conducted (see Table 17).

Table 16 Matters that drone and AI can achieve for beach litter survey

What Drone and AI Can Do for Beach Litter Survey	Current Technology Limitations
Quantification* of detectable size man-made objects	There is a minimum size of litter that can
*Semantic segmentation is more suitable for volume	be detected by drones and AI. In this
estimation on beaches with high litter density. Object	demonstration test, the lower limit of detec-
detection by bounding box is more suitable for detect-	tion was about 5x6 cm. This depends on the
ing individual pieces of litter on beaches with low lit-	resolution of the camera and the AI. It is as-
ter density.	sumed that beach litter higher than 2–3 cm
Identification of the distribution of beach litter on a	was generally detectable given the range of
per-item basis automatically using object detection by	height error in the demonstration test area
bounding box (see Figure 7)	(see Table 19).
	In addition, it is difficult for drones to de-
	tect beach litter if the litter is not visible be-
	cause it is piled on top of each other.
Quantification of beach litter volume automatically	If smaller beach litter is deposited at low
using semantic segmentation	height and low density, the error will be
	greater. On the other hand, when litter is
	densely drifted ashore, it is difficult to sep-
	arate and quantify the different types of lit-
	ter for the reasons described above.

Figure 7 Identification of the distribution of beach litter on a per-item Source: Coastal Marine Litter Observatory (CMLO): Case study in Japan (August 2023, Konstantinos Topouzelis and Shin'ichiro Kako)

Table 17 Several items were identified that should be added to ANNEX of the guidelines

Table	17 Several tems were identified that should be added to MititLAX of the guidelines					
1.	Selection of Survey Points					
	- The beach within the survey area must be free of third-party use at the time of the survey					
	(security must be ensured by restricting access to the survey area, etc.).					
	- If there is a cliff behind the beach, it is not a suitable location because radio waves may be					
	blocked. Also, for safety reasons, fly 10 to 20 meters away from the cliffs.					
	- If there is vegetation directly above the target, it may not be possible to photograph the target					
	from the sky.					
2.	Flight Plan					
	- Since a 3D model is made to estimate the volume of beach litter, it is necessary to take					
	oblique shots (-70° angle) as well as -90°					
	obique shots (70 ungle) us wen us 70.					
	A state of the sta					
	Einen 9 Obligge shots defte continue dige strong of showing					
	Figure 8 Oblique snots (left: vertical direction of snoreline,					
	right: horizontal direction of shoreline)					
	- If the number of photos is too small for the flight route, there is little information about the					
	position of the camera, which reduces the accuracy of the position correction. Also, if there					
	is little overlap, there will be blank areas in the orthoimage. It is better to combine flights					
	parallel and vertical to the shoreline to increase the number of photos.					
	+0M++58M					
	+ 136 M + 143 M + 143 M					
	Figure 9 Flight routes (left: before change, right: after change)					

- Regarding the placement of ground control points (GCPs), the placement should not be too
Imeal. Impa pane Impa pane
3. Drone Setting
 The altitude of the drone is set from the take-off point, so if the height of the beach is dif- ferent from the take-off point, the altitude of the drone should be set to consider the differ- ence in height.
- The drone's camera settings are basically optimized automatically, but if the operator notices that the image is too dark to clearly see the target litter while shooting, the operator may want to temporarily stop shooting and change the camera settings manually.
4. Safety Check
 Check the safety of the flight route. Visually check the flight route for the presence of third parties and obstacles (tree branches, etc.) along the route.
 Check the propeller of the drone for damage. Also, turn the propeller by hand to check if there are any abnormalities in the joints, or if there is any abnormal noise from the motor, etc.
5. Flight Conducting
 Takeoff site should be selected where sand roll-up is unlikely to occur (ideally on paved ground) to prevent breakdowns. Also, the sky above the site should be well visible. When the battery reaches approximately 25%, end the flight as a safety precaution.
6. Others
 Drone air transport may not be possible for high-capacity batteries, so they must be transported by land, which takes time to arrive, so it is necessary to schedule transportation well in advance.

Appendix A

Detailed information regarding each survey method

I (and II). Drone survey

Figure 11 Pictures of drone survey at location A

Figure 12 Pictures of drone survey at location B

Survey plan	Survey timing (flight date)	A: 8 a.m., 24th July 2023
and preparation		The weather is sunny.
		(Low tide time: 6 a.m.)
		B: 9 a.m., 27th July 2023
		(Low tide time: 7 a.m.)
		The weather is sunny.
	Survey target	Man-made objects over 2.5 cm (including
		small pipe for oyster culture [1.5 cm in
		length] and cigarette butt [filter] under
		2.5cm) and driftwood
	Flight regulations and legisla-	- registration of drone number
	tion	- prohibited from flight when third party
		exists in survey area
		- submit flight plan to coastal administrator
	Roles of researcher	Drone operator: 1 person
	Roles of researcher	Monitor observer: 1 person
		Drone observer: 1 person
	Flight route	
		+ 136 M + 143 M + 136 M + 143 M
Drone setting	Flight altitude	Appx. 40 m (A: 39.4 m B: 41 m)
8	Size per pixel (Ground Sam-	A: 4.99 mm/pix
	pling Distance)	B: 5.13 mm/pix
	Number of pixels per image	8,192 x 5,460 pix
	Gimbal angle	-90° (and -75° for volume estimation)
	Overlap ratio	Front overlap ratio : 80 %
	1	(20% for Dr. Topouzelis method)
		Side overlap ratio : 60 %
		(20 % for Dr. Topouzelis method)
	How to take pictures	Pause when taking a nicture
	now to take pictures	Talvas mietures et agual sacand intervals
		Takes pictures at equal-second intervals
	Here to get up the sources	
	How to set up the camera	$\square \text{ Auto setting}$
	Camera settings	ZenmuseP1 (35mm)
		- Shutter speed : 1/1000
		- F-value : 5.6
		- ISO : 100-800
Survey imple-	Installation of survey equip-	Deployment of Ground Control Points
mentation	ment (grand control point,	(GCPs) and validation points is described
	RTK equipment)	in Figure 13. Root Mean Square Error
		(RMSE) of GCPs and validation points is
		described in Table 19. RTK was used for
		measurement in A; total station was used
		tor measurement in B.
1	Number of pictures	A: 560 B: 319

Table 18 Metadata of drone survey

	Photographing area	A: 5,180 m ² B: 706 m ²
Image pro-	Software	Agisoft Metashape Professional
cessing	Software version	1.8.4 build 14856
_	OS	Windows 64 bit
	RAM	127.92 GB
	CPU	Intel(R) Xeon(R) CPU E5-2699 v4 @
		2.20GHz
	GPU	Quadro P6000
Image analysis	I. AI detection	AI developed by Dr. Kako was used for the
		beach litter detection. Terra Mapper (the
		software for creating 3D data from or-
		thoimages) was used as the software for
		beach litter volume estimation (see Figure
		14).
	II. Manual detection	Since volume estimation using or-
		thoimages is challenging, the estimation
		was conducted using a "rank table", which
		corresponds to the amount of litter in terms
		of number of bags. The simplified rank ta-
		ble from the original version was used con-
		sidering the difficulties described above,
		which refers to the previous study of the
		Ehime prefectural government (see Table
		20).

Figure 13 GCPs and validation points of each site (left location A, right: location B)

Location	Number of	X Error	Y Error	Z Error	XY Error	Total
	GCPs/Vali-	(mm)	(mm)	(mm)	(mm)	(mm)
	dation					
	Points					
А	2 validation	0.0189119	0.13978	0.387375	0.141053	0.412257
	points					
В	6 GCPs	1.95466	8.76064	22.631	8.97606	24.3461
	2 validation	3.2263	7.24915	12.4205	7.93469	14.7387
	points					

Table 19 RMSE of GCPs and validation points

Note: X - East longitude, Y - North latitude, Z - Altitude.

Table 20 Rank table for method II

Rank for Volume Estimation	Number	of	20L	Garbage	Estimated Volume (m ³ /10m)
	Bags				
0				0	0
1				0~1	0~0.02
2				1~8	0.02~0.16
3				8~64	0.16~1.28
4				64~	1.28~ (*)

* Based on the same report, the maximum volume was set at 2.2 m³.

Source: Beach litter spatial distribution survey report (2023, Ehime prefectural government and JANUS)

Figure 14 Images of AI-based litter detection and quantification

Source: Dr. Kako

III. On-site visual inspection

(1) Calibration

A person experienced in cleanup activity conducts on-site visual inspection. If an inexperienced person conducts the on-site visual inspection, conduct a test litter evaluation under the instruction of an experienced person for calibration. As for location B, the researcher γ conducted the calibration.

Survey	Re-	Man-Made Ob-	Man-Made Ob-	Natural Objects	Natural Objects
Loca-	searcher	jects (L) On-Site	jects (L) Ground	(L) On-Site Vis-	(L) Ground
tion		Visual Inspec-	Truth	ual Inspection	Truth
		tion			
B (5 m	α	81	50	338	258
long-	γ	20		35	
shore)	(inexperi-				
	enced)				

Table 21 Result of calibration

Figure 15 Collected beach litter for the calibration

(2) Evaluation methods

We evaluated the volume of beach litter as "the number of 45L bags filled with litter within (A site) 50m of the shoreline at 10m intervals and (B site) 20m of the shoreline at 5m intervals". To verify the above human bias (see 3-2), the volume of beach litter was estimated without the rank table.

Figure 16 On-site visual inspection

IV. Collection survey

(1) Surrounding survey area by rope

(2) Collecting beach litter

Collect man-made objects over 2.5 cm (including small pipe for oyster culture [1.5 cm in length] and cigarette butt [filter] under 2.5 cm) and driftwood manually. In the case where such a large marine litter that cannot be collected by human power is found in the investigation area, measure the dimensions of the marine litter to estimate the volume.

(3) Classification of beach litter

Classify beach litter based on item list (see Table 22).

(4) Measurement for quantification Measure the number, volume, and weight of each item (See Table 23, Table 24).

(5) Record the survey result

Take pictures of each item. And the number, volume, and weight of each item are recorded in the data sheet with meta data (e.g., survey date, matrix of shore, survey point coordinates).

material	item type			material	item type		
plastic	bottle cap and lid			foamed plastic	float/buoy made of foamed polystyrene		
	plastic bottle	for drink			pieces of foamed polystyrene		
		other			other foamed polystyrene		
	straw				shoe incl. flip-flops, shoe sole		
	cutlery			rubber	pieces of rubber		
	food containers incl. fast food cup etc.				other rubber		
	plastic bag			daga aaramia	pieces of glass/ceramic		
	lighter			glass, ceramic	other glass/ceramic		
	tape incl. package band				can		
	pieces of sheet/bag			metal	pieces of metal		
	pieces of hard plastic				other metal		
	sponge				paper containers incl. paper pack for drink		
	buoy (fishing gear)			paper, cardboard	pieces of paper		
	rope, string (fishing gear)				other paper		
	conger tube (lid, cylinder)			fabric fabric			
	small pipe for oyster culture (1.5cm in length)			wood wood (lumber etc.)			
	pipe for oyster culture (10 to 20cm in length)			driftwood	driftwood (not processed)		
	fishing net			other	other		
	other fishing gear			large marine litter that cannot be collected by man power	coordinates item type ()		
	fishing tackle (for recreation)		_				
	cigarette butt/filter						
	household goods incl. tooth brush						
	seedling pot						
	other plastic						

Table 22 Classification list for demonstration test

material	item type		number	volume (L)	weight (kg)
plastic	bottle cap and lid		94	1.9	0.23
		for drink	44	36	1.6
	plastic bottle	other	2	1.5	0.32
	straw		11	0.05	0.008
	cutlery		0	0	0
	food containers incl. fast	food cup etc.	11	0.75	0.075
	plastic bag		30	1.8	0.043
	lighter		6	0.2	0.064
	tape incl. package band		0	0	0
	pieces of sheet/bag		128	10	0.118
	pieces of hard plastic		277	4	0.57
	sponge		5	2.5	0.098
	buoy (fishing gear)		2	0.15	0.032
	rope, string (fishing gear)		21	1.5	0.036
	conger tube (lid, cylinder)		0	0	0
	small pipe for oyster cult	ure (1.5cm in length)	956	4	0.683
	pipe for oyster culture (1	0 to 20cm in length)	183	10.5	1.245
	fishing net		0	0	0
	other fishing gear		67	0.2	0.058
	fishing tackle (for recreat	ion)	2	0.02	0.015
	cigarette butt/filter		1	0.01	0.002
	household goods incl. too	th brush	28	1.8	0.172
	seedling pot		1	1	0.011
	other plastic		26	0.5	0.024
foamed plastic	float/buoy made of foam	d polystyrene		0.0	0.024
	nieces of foamed polysty	a polyskyrono	•	21	0.212
	other formed polystyrons		07	21	0.040
	other loamed polystyrene		97	/	0.049
	snoe inci. tiip-tiops, snoe	sole		0.8	0.091
rubber	pieces of rubber			0.02	0.003
	other rubber		0	0	0
glass, ceramic	pieces of glass/ceramic			0.072	0.063
	other glass/ceramic		4	3	0.676
	can		10	4	0.25
metal	pieces of metal			0.02	0.011
	other metal		2	0.05	0.009
	paper containers incl. pap	er pack for drink	0	0	0
paper, cardboard	pieces of paper			0	0
	other paper		0	0	0
fabric	fabric		1	0.01	0.002
wood	wood (lumber etc.)		1	0.1	0.027
driftwood	driftwood (not processed)			3594.05	253.635
other	other		15	0.3	0.087
that cannot be collected by man power	item type ()	1	260	96.2

Table 23 Result of collection survey in A

material	item type		number	volume (L)	weight (kg)
plastic	bottle cap and lid		150	2.6	0.41
		for drink	32	40	1.2
	plastic bottle	other	22	25	0.65
	straw		40	0.4	0.018
	cutlery		12	0.15	0.022
	food containers incl. fast f	ood cup etc.	40	1.45	0.284
	plastic bag		72	7	0.088
	lighter		7	0.21	0.07
	tape incl. package band		32	1.6	0.024
	pieces of sheet/bag		183	9	0.136
	pieces of hard plastic		612	30	3.03
	sponge		28	5	0.042
	buoy (fishing gear)		20	100	8.7
	rope, string (fishing gear)		107	11	1.014
	conger tube (lid, cylinder)		1	1	0.056
	small pipe for oyster cultur	re (1.5cm in length)	302	1.3	0.21
	pipe for oyster culture (10	to 20cm in length)	190	11	1.402
	fishing net		3	0.1	0.006
	other fishing gear		47	0.6	0.079
	fishing tackle (for recreation	on)	9	0.3	0.051
	cigarette butt/filter		0	0	0
	household goods incl. tooth brush		34	0.61	0.192
	seedling pot		5	0.8	0.016
	other plastic		251	24	1.315
foamed plastic	float/buoy made of foamed	polystyrene	7	52	0.78
	pieces of foamed polystyre	ne		40	0.55
	other foamed polystyrene		53	7	0.072
	shoe incl flin-flops shoe a	ole	6	1	0.191
rubber	pieces of rubber			0	0
	other rubber		5	6.8	0.51
	nieces of glass/ceramic			0.05	0.075
glass, ceramic	other glass/ceramic		5	1.5	0.691
	can		7	1.0	0.001
motal	ninces of metal		/	4	0.166
	other metal	pieces of metal		0.0	0.100
oaper, cardboard		n analı fan deinle	1	0.15	0.021
	paper containers incl. paper pack for drink			0.03	0.002
	pieces of paper		_	0.002	0
fab.i.	Guier paper		0	0	0 100
Tabric			3	2	0.106
wood	wood (lumber etc.)		94	/0	11.9
driftwood	driftwood (not processed)			750	88.89
other	other coordinates		95	5.25	0.906
collected by man power	item type ()	2	29.4	9.138

Table 24 Result of collection survey in B