Guideline n	nain body																											
Chapter	Item		After												Before											Remarks	Version	
I	1.2	-	Table 1. sensing	Num techno	ber of 1 ology <u>(</u>	major Kako	studies et al. 20	on mari 25, draf	ne littei t paper	r mo)	nitorii	ng usin	g remote	9	Table 1. N sensing te	lumber chnolo	r of ma gy.	ajor st	udies on m	narine lit	tter mo	onitori	ng usin	g remo	te	The "Fields" items have been revised to match Table 3.	1.0→2.0	
					D	uta Acquisit	ion Methods (Re	mote Sensing)		ĺ		Image Ana	lysis Methods		1		Г	Data acquisiti	ion methods (Remote se	ensing)			Image and	ilysis methods				
				Stationary	UAV ^{*1}	Balloon	loon Aircraft Satellite Vessel Others		thers	Automatic			Stationary	UAV*1	Balloon	Platform Aircraft Satell	lite Vessel	Others	1	<u> </u>	Automatic							
			Fields	camera			Sensor				Manual	Object			Fields	camera			Sensor			Manual	Object	Samantic				
				RGB	RGB	RGB	Multispectra M 1/Hyperspec 1 tral, LIDAR	Multispectra /Hyperspec tral	RGB, .IDAR		(Visual)	Detection by Bounding Box	Segmentation	Others		RGB	RGB	RGB	multispectra Multisp I/hyperspect I/hypers ral, LIDAR ral	spect I I RGB, LIDAR		(Visual)	detection by bounding box	segmentation	Others			
			Beach	3	22 (7)	2	2				13 (2)	<u>6 (1)</u>	<u>6 (2)</u>	<u>10 (2)</u>	Beach (Dune) ^{*2}	2	<u>13 (6)</u>	2	1			<u>5 (2)</u>	<u>5 (1)</u>	<u>5 (3)</u>	<u>9 (2)</u>			
			Sea Surface		7	1	5	10		1	8	1		14	Sea surface			1	1			1			1			
			Estuary Surface												Sea water column													
			Riverbank/Lake Beach	1	1						1	1		1	Sea floor"3													
			River Surface	2	6					1	4	2	1	4	Estuary Biomhanh Inha	_												
			Land												beach	1	1					1	1		1			
			Others"3							3	3			2	River surface	1	4				1	3			4			
					J.			I		i					River water column	-					2				2			
																River floor"	-						1					
															Land							I						
			Notes: Notes:																									
			The num	ibers a	above a	are the	e numbe	r of pap	ers liste	ed as	s refer	ences ii	1 Kako e	et al.	The numb	ers abo	ove are	e the n	number of p	papers l	isted as	s refer	ences i	n Kako	et al.			
			(<u>2025</u> , d	raft pa	aper) .	The n	umbers	in this t	able are	e sub	oject to	o chang	e after <u>t</u>	he	(<u>2024</u>). T	he nun	nbers i	in this	table are s	subject t	o chan	ge aft	er the r	eview p	<u>paper</u> is			
			paper is	publis	shed.										published.													
			*1 UAV	/: Unc	crewed	Aeria	l Vehicl	le							*1 UAV:	Uncre	wed A	erial	Vehicle									
			*2 In th	e guic	lelines,	, the te	erm "bea	ach" not	t only re	efers	to the	e area o	f the sho	oreline	*2 In the	guideli	ines, tl	he terr	n "beach"	not only	y refers	s to the	e area o	of the sh	oreline			
			covered	with s	sand or	pebb	les, but	also incl	ludes di	unes	and v	egetati	on such	as	covered w	ith san	d or p	ebbles	s, but also i	includes	s dunes	s and v	/egetati	on such	1 as			
			mangrov	ves. Tl	he num	ibers i	in parent	theses a	re the n	umb	per of	literatu	res that o	cover	mangrove	s. The	numbe	ers in	parenthese	es are the	e numt	ber of	literatu	res that	cover			
			dunes in	the n	neasure	ement	area.								dunes in th	he mea	surem	ient ar	ea.									
			*3 "Oth	ers" in	ndicate	s field	ls for wl	nich rese	earch ca	ases	have	not been	n suffici	ently	*3 At the	current	t techn	ical le	evel, feasib	ility of 1	neasur	ring lit	ter on t	he "sea	ı floor"			
			confirme	ed (e. <u>s</u>	g. river	and s	ea watei	r colum	ns / floo	ors).					and "river	floor"	using	remo	te sensing	technolo	ogies is	s limit	ed.					
Ι	1.3	-	(i) Remo	ote ser	nsing										(i) Remote	e sensii	ng										1.0→2.0	
			Remote	sensir	ng tech	nolog	ies are u	sed to g	ather a	nd pi	rocess	inform	nation at	out an	Remote se	ensing	techno	ologies	s are used t	to gather	r and p	rocess	s inforn	nation a	about an			
			object w	vithout	t direct	physi	cal cont	act <u>(AS</u>	PRES						object wit	hout di	irect pl	hysica	al contact (ASPRE	S 2024	<u>)</u> .						
			https://w	ww.a	sprs.or	g/orga	anizatior	1/what-i	s-asprs.	.htm	1 acce	ssed 20	24-6-30	<u>)</u> .														
			Remote	sensir	<u>ng platf</u>	forms	are defin	ned as v	vehicles	(Jaf	arbigl	u and P	ourreza	2022)														
			or other	statio	nary ob	ojects	that can	carry of	r moun	t sen	sing c	levices	to perfo	<u>rm</u>														
			remote r	neasu	rement	t opera	ations.																					
			The guid	lelines	s cover	remo	te sensii	ng meth	ods usi	ng th	ne foll	owing p	platform	s. It	The guide	lines co	over re	emote	sensing m	ethods u	using th	he foll	owing	platfori	ns. It			
			should b	e note	ed that	the m	ethods t	o be cov	vered m	ay c	hange	in the	future.		should be	noted	that th	e metl	hods to be	covered	l may c	change	e in the	future.				
			- Station	ary ca	amera:	It is d	efined a	s a cam	era inst	alled	l in the	e enviro	onment,	e.g.,	- Stationar	y came	era <u>(</u> a	camer	a installed	in the e	nviron	ment,	e.g., in	stalled	on a			
			installed	on a s	snorelii	ne wi	in scarfo	door "	ixed on	a br	idge,	to acqu	ire <u>time</u>	series	shoreline y	with sc	anoid	ing, fi	ixed on a b	mage, to	acqui	re <u>tim</u>	e-series	s image	e data at			
			image d	ata at	me san		auon. <u>It</u>	uoes no	n incluc	ie a (camer	а пхед	on a vel	ncie,	ine same I	ocanor	1 <u>)</u> .											
			such as a	an aire	craft or	a ves	sel.								Committo	ц												
			commit																									

"The Guidelines for Harmonizing Marine Litter Monitoring Methods Using Remote Sensing Technologies" Comparison Table

I	1.3	-	(ii) Image processing and analysis(ii) Image processing and analysis1.0→2- Image analysis- Image analysis- Image analysisMeans extracting litter information from processed images, such as identifying the types, quantities, or numbers of litter items Image analysisIn recent times, machine learning and deep learning-based image processing techniques for plastic litter quantification have emerged. These methodologies utilize large datasets to develop models capable of detecting complex features— such as colors and shapes—in images, allowing for more flexible litter detection (Kako et al. 2025, draft paper).In recent times, machine learning and shapes—in images, allowing for more flexible litter detection (Kako et al. 2025, draft paper).In recent times, machine learning and shapes—in images, allowing for more flexible litter detection (Kako et al. 2025, draft paper).In recent times, machine learning and shapes—in images, allowing for more flexible litter detection (Kako et al. 2024). [Ommition]	2.0
I	1.3	-	Table 2-1. <u>Monitoring example: stationary camera</u> Table 2-1. <u>A monitoring example: stationary camera</u> 1.0→2 Case Case Kagoshima University "Research Chair of Plastic Litter Monitoring System from the City, Sea, and Space" Website. <u>https://pmd.oce.kagoshima-u.ac.jp/</u> (accessed 2025-1-31) Kagoshima University "Research Chair of Plastic Litter Monitoring System from the City, Sea, and Space" Website. <u>https://www.oce.kagoshima-u.ac.jp/</u> -kako/mpl/analysis/test/ (accessed 2024-6-30) 1.0→2	2.0
I	1.5	1.5.1	[Ommition][Ommition]Regarding marine area classification, the guidelines mainly cover coastal areas in order to avoid duplication with existing efforts on marine litter monitoring of other organizations such as The International Ocean Colour Coordinating Group (IOCCG).[Ommition] Regarding marine area classification, the guidelines mainly cover coastal areas in order to avoid duplication with existing efforts on marine litter monitoring of other organizations such as The International Ocean Colour Coordinating Group (IOCCG).1.0-2In addition, a variety of sensors can be used on satellites, and a list of the sensors that can be installed on satellites is shown in Table 4.1.0-2	2.0
Ι	1.5	1.5.1	Figure 2. Diagram of the monitoring fields and the data acquisition methods. Figure 2. Diagram of the monitoring fields and the data acquisition methods. 1.0-2 Etsuary surface Etsuary Etsuary Etsuary	2.0
Ι	1.5	1.5.1	Table 3. The scope of monitoring fields, data acquisition methods, and image malysis methods in the guidelines. Table 3. The scope of monitoring fields, data acquisition methods, and image malysis methods in the guidelines. Table 3. The scope of monitoring fields, data acquisition methods, and image malysis methods in the guidelines. Table 3. The scope of monitoring fields, data acquisition methods, and image malysis methods in the guidelines. Table 3. The scope of monitoring fields, data acquisition methods, and image malysis methods in the guidelines. Table 3. The scope of monitoring fields, data acquisition methods, and image malysis methods in the guidelines. Table 3. The scope of monitoring fields, data acquisition methods, and image malysis methods in the guidelines. Table 3. The scope of monitoring fields, data acquisition methods, and image malysis methods in the guidelines. Table 3. The scope of monitoring fields, data acquisition methods, and image malysis methods in the guidelines. Table 3. The scope of monitoring fields, data acquisition methods, and image malysis methods in the guidelines. Table 3. The scope of monitoring fields, data acquisition methods, and image malysis methods in the guidelines. Table 3. The scope of monitoring fields, data acquisition methods, and image malysis methods in the guidelines. Table 3. The scope of monitoring fields, data acquisition methods, and image malysis methods in the guidelines. Table 3. The scope of monitoring fields, data acquisition methods, and image malysis methods in the guidelines. Table 3. The scope of monitoring fields, data acquisition methods, and image malysis methods in the guidelines. Table 3. The scope of monitoring fields, datacquisition methods, and the table. Table 3. The sc	2.0

Ι	1.5	1.5.1	Table 4 List of sensors that can be mounted on satellites to detect litter. Anomaly, plastic detection, plastic characterization of target object as per Goddijn-Murphy et al. (2024) [Please refer to the main text for details]	[Addition]						1.0→2.0
Ι	1.5	1.5.2	Table 5-1. Targeted audiences of the guidelines.	Table 4-1. Targeted au	diences of	the guidelines.				1.0→2.0
Ι	1.5	1.5.2	Table $5-2$. The reasons why each technology targets the specific organizations mentioned in Table $5-1$.	Table $\underline{4}$ -2. The reasons mentioned in Table $\underline{4}$ -	s why each 1.	technology targe	ts the specific o	rganizations		1.0→2.0
П	2.2	-	Figure 3-2. Examples of common images produced by each platform. (For the suitable observation time interval of each platform: see Kako et al. (<u>2025, draft paper</u>).	Figure 3-2. Examples of (For the suitable obser (2024).	of common vation time	images produce interval of each		1.0→2.0		
П	2.3	-	Table 6. Examples of policy-related issues and output image.	Table 5. The examples	of policy-1	elated issues and	l output image.			1.0→2.0
m	3.1	-	There are nine technological readiness levels. TRL 1 is the lowest and TRL 9 is the highest. In the guidelines, the definition of TRLs for remote sensing methods for litter monitoring was set as shown in Figure 4. TRLs of the technologies were assessed based on the existing marine litter surveys and researches referred to in Kako et al. (2025, draft paper) and other confirmed cases, under the definition in Figure 4. As a result, the following technologies were evaluated as relatively high TRL and being highly practical: beach litter monitoring using UAVs, and beach and river surface litter monitoring using stationary cameras. These monitoring methods are described in detail in the Annex. The specific TRL figures for each platform as of April 2025 are shown on the Ministry of the Environment website (https://www.env.go.jp/page_00929.html). For image analysis technology, <u>Table 7</u> summarizes the applications (tasks) that are commonly used at this time. It should be noted that research in this field has been accelerating in recent years, and the maturity of the methods may change in the future. * TRL is a type of indicator developed by NASA (<u>National Aeronautics and Space</u> <u>Administration</u>) to assess the maturity of technologies and is commonly applied to various technical fields.	There are nine technol the highest. In the guid for litter monitoring w assessed based on the Kako et al. (2024) and (see Table 6-1). For image analysis tech are commonly used at been accelerating in re the future. * TRL is a type of indi technologies and is con	ogical read lelines, the as set as sh existing ma other conf hnology, <u>Ti</u> this time. I cent years, cator devel mmonly ap	iness levels. TRL definition of TRI own in Figure 4. rrine litter survey irmed cases, und able 6-2 summari t should be noted and the maturity oped by NASA t plied to various t	 1 is the lowest Ls for remote so TRLs of the tec s and researche er the definition izes the applicaal that research in of the methods o assess the ma echnical fields. 	and TRL 9 is ensing methods chnologies were s referred to in n in Figure 4 tions (tasks) that n this field has may change in turity of	As remote sensing technology for monitoring marine litter is a field in which rapid technological progress is being made, the TRL values are not fixed, but are updated frequently over time. For this reason, rather than including the TRL evaluation values for each platform in the main body of the guidelines, we have decided to include them separately as reference information on the website introducing the guidelines, and to include only its URLs in the main body of the guidelines. It can prevent users of the guidelines from misunderstanding the TRL as fixed values, and will also make it easier to update TRL values.	1.0→2.0
III	3.1	-	[Delete]	Table 6-1. TRL of dat	a acquisitic	on methods.				1.0→2.0
			*Published as supplementary material on the Ministry of the Environment	Tasks	UAV	Stationary camera	Aircraft	Satellite		
			WEDSIE.	Beach, Riverbank/Lake beach/Land	8	7	7	TBD (To Be Discussed)		
			Harmonized monitoring and data compilation of marine plastic litter https://www.env.go.jp/page_00929.html	Sea surface/Estuary	6	N/A (Not applicable)	TBD	TBD		
				River surface	6	7	N/A	TBD		
				Notes: TRLs were assessed based on the ex in the references.	isting marine litte	r surveys and research in K	ako et al. (2024) and oth	er confirmed cases listed		
III	3.1	-	Table 7. Correspondence table between tasks and image analysis technologies. Notes: *2 The classification of man-made and natural objects is accomplished, but no further detailed classification has not yet been achieved at this time (Kako et al. 2025, draft paper).	Table 7. Correspondence table between tasks and image analysis technologies. 1.0 Notes: *2 The classification of man-made and natural objects is accomplished, but no further detailed classification has not yet been achieved at this time (Kako et al. 2024). 1.0						1.0→2.0

m	3.2	3.2.1	3.2.1 Remote s As described ir spatial coverag advantage of re short periods an feasible manual manual surveys different platfo spatiotemporal of remote sensi	ensing platforms a Figure 3-1, the image resolution e of a survey area are generally in smote sensing is its ability to enab nd batch observation over wide ar lly, although it is difficult to classi s due to the issue of image resolut rms offers advantages in observin scales (Kako et al. 2025, draft pag ng methods and future steps are s	obtained by surveys and the versely proportional. <u>The major</u> <u>le continuous observation over</u> eas, which is not practically <u>fy litter in as much detail as</u> <u>ion. In addition, combining</u> <u>g plastic litter across varying</u> <u>per). Typical technical difficulties</u> hown in Table <u>8</u> .	3.2.1 Remote As described spatial covera sensing techn surveys. How detail as manu technical diffi these difficult	sensing platforms in Figure 3-1, the image resolu- ge of a survey area are genera ologies can cover larger areas ever, remote sensing technolo tal surveys due to the issue of culties of remote sensing metlies are shown in Table <u>7</u> .	ution obtained by surveys and lly inversely proportional. <u>Ren</u> in less time compared to manu gies cannot classify litter in as image resolution. Other typic hods and future applications ba	the note <u>tal</u> <u>much</u> al ased on	1	1.0→2.0
Ш	3.2	3.2.1	Table <u>8</u> . Typica (Kako et al. <u>20</u>) Stationary camera UAV Aircraft, Satellite	al technical difficulties and future 25. draft paper). Typical Technical Difficulties Stationary camera has a limited angle of view and cannot capture an entire beach. Also, installation constraints of the stationary camera restrict observations to locations where instrument installation is feasible on the observation region of interest, such as beach and river. UAV surveys typically require at least two operators—a pilot and an assistant—for each observation. These constraints considerably limit the feasibility of conducting frequent observations, such as every few days. No guidelines have yet been established for using RGB cameras or ofther instruments in an extensive aircraft or satellite system to observe plastic litter.	Steps of remote sensing methods Future Steps The stationary camera offers a real- time observation to obtain the temporal variation of litter abundance, while UAV can be used for obtaining snapshots at specific intervals to record the spatial distributions of litter abundance. Combining both platforms complements each other's shortcomings and provides new insights into spatiotemporal variations over large areas, such as entire beaches. Since both platforms clearly offer bulk observations over broad areas, the proposed approach involves using UAV to collect ground truth data, to evaluate accuracy at multiple locations where litter tends to accumulate, as identified in images captured by aircraft and satellite systems. Reference: Kake et al. 2025, draft paper	Table 7. Typic (Kako et al. 2) Stationary camera, UAV	cal technical difficulties and fu 024). Typical technical difficulties Stationary camera has a limited angle of view and cannot capture an entire beach. UAV observations take about half a. day from the start of preparation to. the completion of UAV observation. even on a beach of the order of. 10.000 m ² , and that time is also. required for data processing after the images are taken. Extensive systems using RGB. cameras and the others for litter. observation have not yet been. developed to establish guidelines.	Future steps of remote sensing n A combination of stationary cameras. and UAVs is suggested, respectively. for a real-time observation to obtain the temporal variation of litter. abundance, and for snapshots at. specific intervals to record the spatial distributions of the abundance. Since both platforms are very good. for bulk observations over wide areas, it may be effective to consider wavs. of using UAV to carry out more. detailed observations and evaluate the accuracy of the locations where litter. tends to accumulate using the aircraft and satellite systems.	nethods] _ _		1.0→2.0
III	3.2	3.2.1	Column: Curre Satellites [Please refer to	nt Status and Future Prospects of the main text for details]	Marine Litter Monitoring Using	[Addition]				1	1.0→2.0
	3.2	3.2.2	Machine learni developed, whi colors and shap on image analy of these guided While manual 1 methods strugg 2025, draft pap The developme specialized kno assignment of i to that data (an verification and cost associated regardless of th	ng and deep learning-based image ch utilizes large datasets and can ses—in images, allowing for more sis methods and data disclosure a methods can identify objects of al le to predict relatively small or ob- er). ent of image analysis technology b weldge and the preparation of dat nformation such as the location at notation work). Since current ima 1 annotation of all collected data a with creating training data, it is e se remote sensing platform (Kako	e processing model was detect complex features—such as flexible litter detection. <u>Details</u> re provided in Annex Section II Lsize ranges, image processing structed objects (Kako et al. ased on deep learning requires a to be used for training, and the nd classification of marine litter ge analysis requires manual nd given the significant time and ssential to share these datasets et al. 2025, draft paper).	Machine learn developed, wl colors and sha <u>However, giv</u> to share these identify objec predict relativ	ning and deep learning-based in hich utilizes large datasets and spes—in images, allowing for en the high cost associated wird datasets regardless of the plat cts of all size ranges, whereas ely small or obstructed object	image processing model was an detect complex features— more flexible litter detection. th creating training data, it is of form. In addition, manual met image processing methods stru- ts (Kako et al. 2024).	-such as essential hods can iggle to		1.0→2.0

			Decording the sharing of detects there are symplex of the use of sloud	[Addition]		
			Regarding the sharing of datasets, there are examples of the use of cloud	[Addition]		
			computing (a technology for sharing work and data via the internet) for annotation			
			in the field of marine ecology. For example, the web applications shown in Table			
			9 are provided to experts partly free of charge.			
			Some services are equipped with programs that automatically detect objects in			
			uploaded images and classify them by pixel unit through image segmentation.			
			Users of such a service can upload images onto a web application, annotate them			
			with the automatically detected objects, and share them online. Shared label data			
			can be reclassified to ensure consistency in data classification. The above			
			applications are also used in the marine litter. Specifically, BIIGLE, shown in			
			Table 9, has been used in research to analyze the spatial and temporal variability			
			of litter accumulated on the sea floor, and marine litter label data has been shared			
			(Tekman et al. 2017).			
			Once marine litter label data is shared, the collection and accumulation of data			
			necessary for image analysis and automatic object detection of litter by AI will			
			take place through the application. It would facilitate data integration across			
			different remote sensing platforms, as the collected label data could be			
			reclassified. The data accumulated through the application can be used to create			
			and develop AI that automatically detects and classifies litter in images or videos			
			collected by remote sensing.			
			Table 9 Examples of cloud computing services for annotation			
			[Please refer to the main text for details]			
ш	2.2	2 2 2	2.2.2 Continuous collection of training data using smartphone applications	[Addition]		10.00
	5.2	5.2.5	S.2.5 Continuous conection of training data using smartphone applications			1.0→2.0
TT	2.2	2.2.4	2.2.4 Overall manifest for details			
111	3.2	3.2.4	3.2.4 Overall monitoring using remote sensing technologies	3.2. <u>3</u> Overall monitoring using remote sensing technologies		1.0→2.0
Ш	3.3	-	3.3 Future revision of the guidelines	3.3 Future revision of the guidelines		1.0→2.0
			The guidelines will be updated periodically in line with the development of remote	The guidelines will be updated periodically in line with the development of remote		
			sensing technologies. As shown in Table 3, the technical details on platforms	sensing technologies. As shown in Table 3 and Table 6-1, we plan to add Annex		
			other than UAVs and stationary cameras will be added to the Annex as necessary.	for stationary camera, aircraft, and satellite in the future.		
1		1			1	1

Annex						
Section	Item		After	Before	Remarks	Version
I	1.1	1.1.2	1.1.2 Survey implementation(7) Data needed for quantification of beach litter Record[Please refer to the main text for details]	[Addition]	The items in 1.2 and 1.3 have been aligned, and items have been added to provide useful data for considering beach litter.	1.0→2.0
I	1.1	-	Figure <u>1.1.1</u> Table <u>1.1.1</u> [Same modifications are applied for other chart numbers]	Figure <u>1</u> Table <u>1</u>	The numbering of figures and tables has been changed to reflect the addition of the annex.	1.0→2.0
Ι	1.2	-	1.2 Beach litter monitoring survey using stationary camrera [Please refer to the main text for details]	[Addition]		1.0→2.0
Ι	1.3	-	1.3 River litter monitoring survey using stationary camrera [Please refer to the main text for details]	[Addition]		1.0→2.0

II	2.1	2.1.1	2.1.1 Detection of litter from	m images	2.1.1 Detection of beach litte	er from images	Whereas Annex Section I was limited to	1.0→2.0
			(1) Manual detection		Manual detection		monitoring of beach litter by UAVs in	
			Manual detection of litter fr	rom images requires less expertise and skill than	Manual detection of beach li	tter from images requires less expertise and skill than	Version 1.0 of the guidelines, Version 2.0	
			automated detection. In pre-	evious studies (Deidun et al. 2018; Andriolo et al. 2020;	automated detec-tion. In prev	vious studies (Deidun et al. 2018; Andriolo et al.	added content on monitoring of beach and	
			Escobar-Sánchez et al. 202	21; Andriolo et al. 2021; Taddia et al. 2021), the images	2020; Escobar-Sánchez et al	. 2021; Andriolo et al. 2021; Taddia et al. 2021), the	river litter by stationary cameras.	
			displayed on the monitor so	creen were zoomed in and beach litter was visually	images displayed on the mor	nitor screen were zoomed in and beach litter was	In line with this, the contents of Section II	
			counted, such as left-to-right	ht and top-to-bottom, marking and adding litter classi-	visually counted, such as left	t-to-right and top-to-bottom, marking and adding litter	was also expanded to cover a wider range	
			fication information.		classification information.		of remote sensing technology-based	
			In the case of videos taken	with a stationary camera on a river, the images are cut			monitoring of litter rather than being	
			out from the video and the	number of pieces of litter the number of pixels of			limited to monitoring of beach litter by	
			litter, and the classification	are recorded for each image. In addition to using			UAVs.	
			dedicated application softw	vare, it is also possible to cut out images from videos				
			manually using video or im	nage editing software, etc., but the latter method is			In addition, methods for cut out images	
			inefficient and the workloa	d is large, so it is not recommended in practice.			from videos and analysing them, as well as	
			In addition, the use of anno	potation tools is also effective for manually measuring			a mtethod that can be used for manual	
			the litter covered area by lit	tter and the number of items of litter in an image			detection of litter from images	
			Annotation tools are applic	eations that create training data for machine learning			detection of inter nom images.	
			but they can also be used for	or manual detection because they allow you to manually				
			surround and tag objects in	an image. There are several annotation tools that are				
			available for free and it is	possible to use programming to calculate the number of				
			nivels from the output date	that has been used to mark out the area covered by				
			litter using on engetation to	and in the demonstration experiment (Appendix 2) the				
			litter using an annotation to	bol. In the demonstration experiment (Appendix 2), the				
			2016) and the number of r	rivels uses calculated from the output data (automain)				
			2010), and the humber of p	Dixels was calculated from the output data (extension:				
			ison) using python. For the	code to count the number of litter pixels in the output				
			data surrounded by Labelm	ne, please refer to the Ministry of the Environment				
			Note that previous research	has shown that the detection rate for manual detection	According to the previous str	udies, detection rates are valuable for several factors		
			can vary depending on vari	ious factors (see Table 13).	(see Table 13).			
П	2.1	2.1.1	Table 13. Several factors re	elated to detection rates	Table 13. Several factors rela	ated to detection rates		1.0→2.0
			Factor *1,2	Note	Factor *1,2	Note		
			Image resolution (GSD)	200 pix/m (GSD = 0.5 cm) is a good solution to map plastic litter *3 PGB cameras with the highest possible resolution can	Image resolution (GSD)	200 pix/m (GSD = 0.5 cm) is a good solution to map plastic debris ^{*3} RGB cameras with the highest possible resolution can		
				make the GSD smaller.		make the GSD smaller.		
			Experience of the operator	For example, operator training should be required in order to	Experience of the operator	Operator training should be required in order to improve their		
			Image background	Improve their confidence with UAV-based mapping. 3	Image background	Sand vegetation footprints etc. *1		
			Conditions of litter	Fully visible, partially buried, broken, placed close to each other	Conditions of beach litter	Fully visible, partially buried, broken, placed close to each other		
			• •	etc. *1.2	D 11'0 1	etc. *1,2		
			Litter size	Larger items (2.5 cm <) are easier to find. ~	Beach litter color	Larger items (2.5 cm <) are easier to find White black brown and transparent are harder to find while		
			Ditter color	find, while unnatural colors on the beach such as yellow, blue,		unnatural colors on the beach such as yellow, blue, pink, orange,		
				pink, orange, red, and bright green are easier to find. *2		red, and bright green are easier to find. *2		
			Litter shape	String/cord, lines, and squares are harder to find. ²²	Beach litter shape	String/cord, lines, and squares are harder to find. ²		
TT.	2.1			Coastar mineriand vegetation, weather etc.		Coastar mineriala vegetation, weather etc.		
11	2.1	2.1.1	Some studies used other in	formation to assist with litter detection.	Some studies used other info	ormation to assist with beach litter detection.		1.0→2.0
T	0.1	0.1.1						
11	2.1	2.1.1	(2) Automated detection	n ter state a state of a	(2) Automated detection			1.0→2.0
			If the shooting data is a vid	leo, it is necessary to extract a still image from the				
			video and then perform aut	tomated detection.				
			There are two main automa	ated data analysis methods for detecting litter from	There are two main automate	ed data analysis methods for detecting beach litter		
			images: Object detection by	y bounding box (hereafter, shortened as object	from images: Object detection	on by bounding box (hereafter, shortened as object		
			detection), which detects an	nd classifies objects by bounding box, and image	detection), which detects and	d classifies objects by bounding box, and image		
			segmentation, which classi	fies objects by pixel unit of the image.	segmentation, which classified	es objects by pixel unit of the image.		
					l			

Π	2.1	2.1.1	Considering the characteristics of each method, the data analysis method should be selected based on the status of litter washed ashore. Object detection can estimate the total number of <u>litter pieces</u> by detecting each individual piece of litter. It is suitable for cases where the pieces of litter are not close to each other, because the boundary of each piece of litter is clear enough to iden-tify each individual piece. Since semantic segmentation, a type of image segmentation can detect litter at the pixel level, its area [m ²] and volume [m ³] can be estimated by combining it with aerial images taken by UAVs and orthorectified. This method is suitable for cases where litter is accumulated, and it is difficult to identify individual items (see Appendix 1). Instance segmentation, which is also a type of image segmentation, can estimate the total number of <u>litter pieces</u> like object detection and can detect litter at the pixel level, its area [m ²] and volume [m ³] can be estimated by using orthoimages like semantic segmentation. [Ommition]	Considering the characteristics of each method, the data analysis method should be selected based on the status of litter <u>washed ashore</u> . Object detection can estimate the total number of <u>pieces of beach litter</u> by detecting each individual piece of litter. It is suitable for cases where the pieces of litter are not close to each other, because the boundary of each piece of litter is clear enough to iden-tify each individual piece. Since semantic segmentation, a type of image segmentation can detect <u>beach</u> litter at the pixel level, its area [m ²] and volume [m ³] can be estimated by combining it with aerial images taken by UAVs and orthorectified. This method is suitable for cases where <u>beach</u> litter is accumulated, and it is diffi-cult to identify individual items (see Appendix 1). Instance segmentation, which is also a type of image segmentation, can estimate the total number of <u>pieces of beach litter</u> like object detection and can detect <u>beach</u> litter at the pixel level, its area [m ²] and volume [m ³] can be estimated by using orthoimages like semantic segmentation. [Ommition]	1.0→2.0
Π	2.1	2.1.1	Although the datasets de-scribed above are developed from photos taken from the ground, they can also be applied to <u>images taken by remote sensing technologies</u> . Considering the workload, it is practical to use these existing public data as training data. However, the datasets might exhibit biases based on the region and/or substrate conditions of the litter images. Given the nearly infinite range of purposes for utilizing litter prediction models, custom datasets tailored to specific tasks are also essential. The source code for the image analysis model is available for free and open source (see Table 14).	Although the datasets de-scribed above are developed from photos taken from the ground, they can also be applied to <u>aerial images taken by UAVs</u> . Considering the workload, it is practical to use these existing public data as training data. However, the datasets might exhibit biases based on the region and/or substrate conditions of the litter images. Given the nearly infinite range of purposes for utilizing litter prediction models, custom datasets tailored to specific tasks are also essential. The source code for the image analysis model is available for free and open source (see Table 14).	1.0→2.0
11	2.1	2.1.1	The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) <u>has</u> <u>developed</u> a web application (<u>BeachLISA</u> : <u>https://beach-ai.jamstec.go.jp/</u>) using the semantic segmentation model developed by Hidaka et al. 2022. Since it uses a pretrained model, it does not require coding and training of training data and models, and can detect litter in images simply by loading images using drag-and- drop operations on a web browser, making it possible to analyze images without expertise in deep learning models. Such an application has the potential to significantly reduce labor costs compared to visual image analysis (manual detection of litter from images). The resolution of objects that a deep learning model can detect from images taken by a <u>remote sensing technology</u> is different from that of a visual inspection (see Appendix 1, <u>2</u> , <u>3</u>). It also depends on the training data used to train the model. For example, in the case of the semantic segmen-tation model of Hidaka et al. 2022, the resolution is about 30 pixels (5 cm x 6 cm) when the GSD of the image taken by a UAV is about 1 cm (see Appendix 1). It is assumed that beach litter higher than 2-3 cm was generally detectable given the range of height error in the demonstration test cases (see Appendix 1). <u>2</u> , <u>3</u>). Regardless of the resolution, it is difficult for <u>remote sensing technologies</u> to detect beach litter if the litter is not visible because it is piled on top of each other.	The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) <u>is</u> <u>developing</u> a web application (<u>will open to the public in 2024</u>) using the semantic segmentation model developed by Hidaka et al. 2022. Since it uses a pretrained model, it does not require coding and training of training data and models, and can detect litter in images simply by loading images using drag-and-drop operations on a web browser, making it possible to analyze images without expertise in deep learning models. Such an application has the potential to significantly reduce labor costs compared to visual image analysis (manual detection of <u>beach</u> litter from images). The resolution of objects that a deep learning model can detect from images taken by <u>a UAV</u> is different from that of a visual inspection (see Appendix 1). It also depends on the training data used to train the model. For example, in the case of the semantic segmentation model of Hidaka et al. 2022, the resolution is about 30 pixels (5 cm x 6 cm) when the GSD of the image taken by a UAV is about 1 cm (see Appendix 1). It is assumed that beach litter higher than 2-3 cm was generally detectable given the range of height error in the demonstration test cases (see Appendix 1). Regardless of the resolution, it is difficult for <u>UAVs</u> to detect beach litter if the litter is not visible because it is piled on top of each other.	1.0→2.0

П	2.1	2.1.2	2.1.2 Quantification of litter (1) Quantification of beach litter from images taken by a UAV [Ommition]	2.1.2 Quantification of <u>beach</u> litter [Ommition]	The contents for the quantification of images of litter using stationary cameras were added in (2) and (3). In line with the addition, the title has been added for the contents of the quantification of beach litter from images taken by a UAV, which was described in the Guidelines version 1.0.	1.0→2.0
п	2.1	2.1.2	Figure 11. Flowchart of the process from image capture <u>by UAVs</u> and surveying to detection and quantification of beach litter	Figure 11. Flowchart of the process from image capture and surveying to detection and quantification of beach litter		1.0→2.0
п	2.1	2.1.2	(2) Quantification of beach litter from images taken by a stationary camera [Please refer to the main text for details]	[Addition]		1.0→2.0
п	2.1	2.1.2	(2) Quantification of river litter from images taken by a stationary camera [Please refer to the main text for details]	[Addition]		1.0→2.0
Π	2.2	2.2.1	 2.2.1 Unit of data publication According to the inquiry results <u>about UAVs</u>, Table 15 shows the units of data used in the survey results and the reasons for selecting these units. The most common response was "the quantity of litter," followed by "Litter covered area" and "Number density of litter (see Figure 1). Using the quantity of litter per survey and survey area, a density of litter by number can be estimated. The area covered by litter is obtained by image segmentation or counting pixels of the detected litter in the bounding box. Litter volume can be estimated as the demonstration test (see Appendix 1). In the case of the survey of beach litter using a stationary camera, the number of pixels and the area covered by the litter in the images were used in previous surveys (Kako et al. 2010). In the demonstration experiment, the number of pixels, the number of items, and the volume of beach litter were calculated by manual detection, and the number of pixels and the area covered were calculated from the video footage (Kataoka et al. 2020, Lieshout et al. 2020). Furthermore, by dividing these by the width of the shooting range and the shooting time of the video, it is possible to obtain the flux of litter in units of number or area ([N m/min][m 2 m/min]) (Kataoka et al. 2020). It is also possible to estimate the weight flux [g/m/min] by measuring the weight of each type of litter in the field beforehand (Kataoka et al. 2020). It is also possible to estimate the weight flux [g/m/min] by Considering the purpose of estimating the flow of waste plastic, 3D information can only be obtained accurately from UAVs, a potential approach for linking the area only be obtained accurately from UAVs, a potential approach for linking the 	2.2.1 Data unit According to the inquiry results, Table 15 shows the units of data used in the survey results and the reasons for selecting these units. The most common response was "the quantity of litter," followed by "Litter covered area" and "Number density of litter (see Figure 1). Using the quantity of litter per survey and survey area, a density of litter by number can be estimated. The area covered by litter is obtained by image segmentation or counting pixels of the detected litter in the bounding box. Litter volume can be estimated as the demonstration test (see Appendix 1).	Descriptions of the units of data used in the surveys of beach litter and river litter using stationary cameras have been added.	1.0→2.0
			method that can estimate the area covered by beach litter and the number of items per unit area or per unit time (flux) in the target area (Deidun et al. 2018). It is important to save raw data such as orthoimages for reanalysis, as future technological developments may make it possible to estimate the amount of litter in other units.	photography method that can estimate the area covered by beach litter and the number of items per unit area in the target area. It is important to save raw data such as orthoimages for reanalysis, as future technological developments may make it possible to estimate the amount of litter in other units.		
П	2.2	2.2.1	Table 15. The inquiry results_Data unit about UAV surveys.	Table 15. The inquiry results_Data unit.		1.0→2.0
П	2.2	2.2.1	Figure <u>14</u> . The inquiry results_Data unit <u>about UAV surveys</u> .	Figure 12. The inquiry results_Data unit.		1.0→2.0

П	2.2	2.2.2	2.2.2 Content of the data to be published	2.2.2 Data publication	Descriptions of the units of data used in the	1.0→2.0
			[Ommition]	[Ommition]	surveys of beach litter and river litter using	
			When publishing survey data, it is useful to visualize the data so that it can be	When publishing survey data, it is useful to visualize the data so that it can be	stationary cameras have been added.	
			easily compared with data from other locations and easily understood by non-	easily compared with data from other locations and easily understood by non-		
			experts. In the case of Gonçalves et al. (2022), the density of litter by number, and	experts. In the case of Gonçalves et al. (2022), the density of litter by number, and		
			litter coverage area are visualized using grid maps (see Figure 13). For publishing	litter coverage area are visualized using grid maps (see Figure 13). For publishing		
			the grid map, web GIS services (e.g., INSPIRE (https://inspire-	the grid map, web GIS services (e.g., INSPIRE (https://inspire-		
			geoportal.ec.europa.eu/), Coastal Marine Litter Observatory (CMLO,	geoportal.ec.europa.eu/), Coastal Marine Litter Observatory (CMLO,		
			https://cmlo.aegean.gr/)) can be useful. In terms of unifying the units for	https://cmlo.aegean.gr/)) can be useful. In terms of unifying the units for		
			evaluating global quantities, it will be important to con-struct a system that allows	evaluating global quantities, it will be important to con-struct a system that allows		
			data sharing so that such analysis can be performed in image analysis (Kako et al.	data sharing so that such analysis can be performed in image analysis (Kako et al.		
			2024). There are various grid sizes (5 m x 5 m, 10 m x 10 m, etc.), but any size is	2024). There are various grid sizes (5 m x 5 m, 10 m x 10 m, etc.), but any size is		
			considered acceptable as long as the data is compatible with other grid survey data	considered acceptable as long as the data is compatible with other grid survey data		
			by rescaling.	by rescaling.		
			In the case of stationary camera surveys of rivers, there are examples where the			
			results are shown as the number of pieces of litter, and the flux of litter based on			
			the number of pieces, coverage area, and weight $(N/m/min)$ $[m^2/m/min]$			
			$[\alpha/m/min]$ (Kataoka et al. 2020. Lieshout et al. 2020. Appendix 3). Furthermore			
			there are also examples of calculating and showing the number of items of litter			
			washed down the river in the survey target river per year based on river flow and			
			examples of calcu-lating and showing the amount of litter washed down from the			
			entire wide area such as regional administrative divisions (Ministry of the			
			Environment Manual for the Survey of the Actual Situation of Plastic Litter			
			Flowing into the Seto Inland Sea 2024) For information on the method of			
			calculating the number of items washed down per year etc. please refer to			
			Appendix 3.			
			For the data publication, it is also recommended to provide information necessary	For the data publication, it is also recommended to provide information necessary		
			for data compari-son (e.g. lower detection limit of litter, etc.).	for data compari-son (e.g. lower detection limit of litter, etc.).		
п	2.2	2.2.2	Figure <u>15</u> . Example of drone-based litter survey outcomes based on grid map	Figure 13. Example of drone-based litter survey outcomes based on grid map		1.0→2.0
			production.	production.		
П	2.2	2.2.2	Figure 16. Example of the results of a time-series survey of litter washed up on the	[Addition]		1.0→2.0
			beach using a stationary camera			
			Time series of the area of beach litter on the Ohgushi Coast. Background values			
			are 30% or more. See the top left for the meaning of each curve. Missing values			
			are interpolated with a straight line (Kako et al. 2010).			

Appendix	vendix											
Appendix	Item		After	Before	Remarks	Version						
2	-	-	Appendix 2 Result of demonstration test for beach litter survey using stationary	[Addition]		1.0→2.0						
			camrera									
			[Please refer to the main text for details]									
3	-	-	Appendix 3 Result of demonstration test for river litter survey using stationary	[Addition]		1.0→2.0						
			camrera									
			[Please refer to the main text for details]									