リモートセンシング技術を用いた海洋ごみモニタリングの手法調和ガイドライン 新旧対照表

ガイドライン	ノ本編																										
チャプター	項目		改訂後											改訂前												備考	Version
I	1.2	-	表1 リモ 関する主 ²	<u>-</u> ート な研?	、セン 究の素	シンク 数 <u>(Kak</u>	グ技術を ko et al.	と用いた <u>2025, d</u>	ニ海洋ご raft pape	みのモ <u>r)</u>	Eニタリ	リングむ	支術に	表1 リー 関する主	モート Eな研究	・セン 究の数	シンク な	が技術	を用い	いた海	洋ごみ	シのモ	ニタリ	ングb	支術に		1.0→2.0
			調定場所 調定 調定場所 調定 調定場所 第 同口無調 第 同口無調 第 第 のの 第 の 第 の 第 の 第 の 第 の 第 の 第 の 第 の 第 の 第 の 1 の	カメノラ・ 1 2 … … 字の。 … 、に いていていたい いていたい いたい いたい	<u> </u>	東西方道	1. (2025, .の数字 V, Uncrst ジャンマーマークトレーク シーレークトレーク シーレークトレーク シーレークトレーク シーレークトレーク シーレークトレーク シーレークトレーク シーレークトレーク シーク シーク シーク シーク シーク シーク シーク シーク シーク シ	<u>************************************</u>	■ ■ ■ ■ ■ ■ ■ ■ ■ ■			²⁹⁴⁰ 100 100 100 100 100 100 100 1	その他 10(2) 14 1 1 2 上げて能 ぶ分だ、 り水柱/	調定場所 調定場所 調定場所 調定 調定 調査 調査 <td>ロボクスジン RGB 2 1</td> <td></td> <td>- 2 R 市 7 12 - 7 12 12 12 12 12 12 12 12 12 12 12 12 12</td> <td>- 10</td> <td><u>****</u> <u>*******************************</u></td> <td>(法) 1 100 ROB. ROB. ROB. ROB. ROB. ROB. ROB. ROB.</td> <td></td> <td>「た」」 「 「た」」 「 「 「た」」 「 「 「 「 「 「 「 「 「 「 「 「 「</td> <td>■</td> <td>the first state s</td> <td>その他 9(2) 1 4 2 前面 前面 前面 前面 前面 前面 第二 二</td> <td>・この表の「ドローン」が空中ドロー ンを指すものであることを明記した (水中ドローンは「その他」に含まれ る)。 ・「測定場所」の項目を表3に合わせ て修正した。</td> <td></td>	ロボクスジン RGB 2 1		- 2 R 市 7 12 - 7 12 12 12 12 12 12 12 12 12 12 12 12 12	- 10	<u>****</u> <u>*******************************</u>	(法) 1 100 ROB. ROB. ROB. ROB. ROB. ROB. ROB. ROB.		「た」」 「 「た」」 「 「 「た」」 「 「 「 「 「 「 「 「 「 「 「 「 「	■	the first state s	その他 9(2) 1 4 2 前面 前面 前面 前面 前面 前面 第二 二	・この表の「ドローン」が空中ドロー ンを指すものであることを明記した (水中ドローンは「その他」に含まれ る)。 ・「測定場所」の項目を表3に合わせ て修正した。	
I	1.3	-	 (i) リモー リモーレッキャンション (i) リモーレット (i) リモーレット (i) レーレキ (i) レート (i) レー	トセし <u>w.オ乗す</u> セ メ 境 。 ン こ セン、タ <u>p つ</u> 身 るン ジート 航 <u>オ</u> と	 シシ処 ms.4b シシ 理 rg、 シシ 理 rg、 シシ 準 カ 機 力 指 1 シ ニ に 空本 を 声 カ ペ イ 1 	ングする <u>v</u> がする <u>v</u> がする <u>v</u> がする <u>v</u> がする <u>v</u> がする な な な な な た な た た た た た た た た た た た た た	友術	 接用 <u>whaを</u> Pourtez ん そ 物され <u>is</u> 行 た し た の で の に の で と 組 、 り は 立	的な技術 - <u>asprs.htt</u> <u>12022</u>) シためは <u>12022</u>) ン 対 したでした レン	虫で <u>nl</u> 生まプす 1時 <u>ち</u> (しる <u>勢ンた</u> ッ後 5系メ(Un	に対象 (<u>ASP</u>) <u>現 2024を</u> ト変 橋 い 三 に 修 の ポ ー に ((<u>ASP</u>) <u>ま</u> ー で (<u>ASP</u>) <u>ま</u> ー で し て の た の の フ の た ー た の フ の た の フ の た の フ の た の た の フ の た の た	物に関 <u>RS</u> - <u>6-30</u>) <u>き</u> - <u>6-30</u>) 支 一 二 の ム 可 定 ー <i>上</i> の ム 可 定 ー <i>「</i> の し っ る の し こ 可 の 上 る の し こ て の し る 可 の 上 る の の と の の と の の の の に の の の の の に の の の の	する する <u>プに物とたも</u> り取 Vehicle	(i) リモー サーレ 本ン - るすこ - 航衛船 - 船舶	ートセン、 「テを メ境の」 、 、 、 、 、 、 、 、 、 、 、 、 、	- ンシシ ひ シシン 理 で と 一 定 Jncrew	ング技行 (************************************	友術	直	理的が れるま 、トファで で 設 置 で の 場 が 、 UAV	ます 接術 一る しで 時 <u>)</u>	なあ を能 り 系 列	こ対象 (<u>ASPR</u> いだ たり の。 い に 個 像	勿に関 S 2024 モート 国定し; データ	する情 4) 。 センシ たりす		1.0→2.0

I	1.3	-	 (ii) 画像処理・解析 - 画像解析 画像処理された画像から、ごみの種類や量、個数などの情報を抽出すること。近年、機械学習やディープラーニングを用いたプラスチックごみ定量化のための画像処理技術が登場している。これらの手法においては、大規模なデータセットを利用して画像の色や形などの複雑な特徴を検出できるモデルが開発され、より柔軟なごみの検出が可能となっている。 (ii) 画像処理・解析 - 画像解析 画像処理された画像から、ごみの種類や量、個数などの情報を抽出すること。近年、機械学習やディープラーニングを用いたプラスチックごみ定量化のための画像処理技術が登場している。これらの手法においては、大規模なデータセットを利用して画像の色や形などの複雑な特徴を検出できるモデルが開発され、より柔軟なごみの検出が可能となっている。 (Kako et al. 2025, draft paper)。 	1.0→2.0
I	1.3	-	表2-1 調査事例:固定カメラ 事例 堕児島大学 "街・海・宇宙からみるプラスチックごみ監視システム研究 講座"ウェブサイトhttps://pmd.oce.kagoshima-u.ac.jp/(参照 2025-1-31)表2-1 調査事例:固定カメラ 事例 車児島大学 "街・海・宇宙からみるプラスチックごみ監視システム研究 講座"ウェブサイトhttps://pmd.oce.kagoshima-u.ac.jp/(参照 2026-1-31)	1.0→2.0
Ι	1.5	1.5.1	(省略) 本ガイドラインで取り扱う海域は、The International Ocean Colour Coordinating Group (IOCCG) など他団体の海洋ごみモニタリングに関す る既存の取組との重複を避けるため、主に沿岸域を対象としている。 また、特に衛星においては様々なセンサーが利用可能であり、衛星に搭 載可能なセンサーの一覧を表4に整理する。 (省略) 本ガイドラインで取り扱う海域は、The International Ocean Colour Coordinating Group (IOCCG) など他団体の海洋ごみモニタリングに関す る既存の取組との重複を避けるため、主に沿岸域を対象としている。	1.0→2.0
Ι	1.5	1.5.1	図2 モニタリングの場所とリモートセンシング技術 図2 モニタリングの場所とリモートセンシング技術 河口表層 河口	1.0→2.0
I	1.5	1.5.1	表3 本ガイドラインで扱うモニタリング手法、データ取得方法、画像 解析手法の範囲 新生業(1) 新生業(1	1.0→2.0
I	1.5	1.5.1	表4 衛星に搭載可能な海洋ごみの検出に使用できるセンサーの例 (追加) (詳細はガイドライン本文を参照) (1.0→2.0

П	1.5	1.5.2	表 <u>5-1</u> ガイドラインの主な利用者として想定される機関	表 <u>4</u> -1 ガイドライ	ンの主な利用	者として想定	される機関			1.0→2.0
П	1.5	1.5.2	表 <u>5-2</u> 表 <u>5-1</u> における機関を主なガイドラインの対象と想定する理由	表 <u>4</u> -2 表 <u>4</u> -1における	る機関を主なフ	ガイドラインの)対象と想定	する理由		1.0→2.0
П	2.2	-	図 3-2 各プラットフォームの一般的な画像例	図 3-2 各プラット	、フォームの-	一般的な画像例	[1.0→2.0
			(省略)	(省略)						
			各プラットフォームの適切な測定の間隔は、Kako et al. (2025, draft paper)	各プラットフォー.	ムの適切な測測	定の間隔は、K	Kako et al. (<u>202</u>	<u>24</u>)を参照。		
			を参照。							
П	2.3	-	表 <u>6</u> 政策課題の例	表 <u>5</u> 政策課題の例	ij					1.0→2.0
Ш	3.1	-	3.1 現在のモニタリング手法の技術的成熟度 (省略) 成熟度の評価に当たっては、近年海洋ごみ関連の研究でも導入が検討さ れ始めている。TRL (Technological Readiness Level,技術成熟度) *という 手法を活用する (Bellou et al. 2021) TRLは9つのレベルに分類され、TRL 1が最も低く、TRL 9が最も高い。本ガイドラインでは、図4の定義に 従って、Kako et al. (2025, draft paper)で参照されている既存の海洋ごみ調 査や研究に基づき、各技術のTRLを評価した。 その結果、比較的高いTRLで評価され、実用性も高いものとして、ド ローンによる海岸モニタリング、固定カメラによる海岸及び河川(表 層)モニタリングが挙げられた。そのため、これらの具体的な手法を附 <u>届書に記載した。</u> 2025年4月時点の各プラットフォームの具体的なTRLの数字を環境省の ウェブサイトに示す (https://www.env.go.jp/water/post 76.html)。 画像解析技術については、現時点で一般的に使用されている用途(タス ク)を表7に整理した。なお、本分野は近年研究が加速しており、各技 術の成熟度も今後変化していく可能性があることに留意が必要である。 * TRL/は、NASA (National Aeronautics and Space Administration)_が開発し	 現在のモニタ (省略) 成熟度の評価に当 れ始めている。TR 手法を活用する(1が最も低く、TRL 従って、Kako et al. 基づき、各技術の1 画像解析技術につい ク)を<u>表6-2</u>に整理 術の成熟度も今後2 * TRLは、NASA が られる指標の一種 	リング手法の たっては、近4 L (Technologi Bellou et al. 200 .9が最も高い。 (2024)で参照 TRLを評価した した。なお、 変化していく ご 開発した、特 であり 様々	技術的成熟度 (に に に に に に 一 般 の に で 一 般 的 に に に し の つ 、 本 ガ イ ド ラ っ さ れ て い る 思 に し 3 の つ 、 本 ガ イ ド ラ っ さ れ て い る 思 し 3 つ 、 本 ガ イ ド ラ っ さ れ て い る 既 て し 3 つ で し 、 本 ガ イ ド ラ っ さ れ て い る 既 で 一 般 的 に い る 既 で 一 般 の の つ 。 さ れ て い る 思 で 一 般 的 の で 。 本 ガ ら 「 う 。 さ れ て い る 既 で 一 般 的 に で 一 般 の に で 一 般 の に で 一 般 の に で 一 般 の に で 一 般 的 に に で 一 の し の こ の た て い る こ こ で の 既 (志 ら -1)) 。 の た の た の 、 の た の に の た の に の た の に の た の に の に の た の に の に の に の に の に の た の い る こ こ う っ い る こ こ う っ た の 氏 の た の 、 の た の た の に の に の た の に の た の の 成 、 の て い う の 、 の て の 、 の 、 の に の 、 の ら に ろ い う の 、 の 、 の 、 の ら 、 の 、 の 、 の に の 、 の 、 の 、 の 、 の ら 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の の の の の の の ろ の の の の の の の の の の の ろ の の の の の の の の の の の の の	海洋ごみモニタリングのためのリモー トセンシング技術については、技術の 進捗めざましい分野であることから、 TRLの評価値は固定された値ではな く、時とともに頻繁にアップデートさ れるものである。 そのため、名ブラットフォームのTRL の評価値については、ガイドライン本 体に掲載するのではなく、ガイドライン を紹介するウェブサイトに参考情報 として別途掲載し、ガイドライン本体 にはそのURLのみ記載することとし た。 これにより、ガイドラインの利用者か らTRLが固定の値であると誤解される 可能性が低くなり、アップデートもよ り容易になる。	1.0→2.0		
Π	2.1		た、特定の技術の成熟度を評価するために用いられる指標の一種であ り、様々な技術分野に一般的に応用されている。 (問題)	==61 タプラット	7+ \ 0 4	海山朝庄 (TD				10-20
ш	5.1	-	※付録資料として環境省HPに掲載。	<u> </u>	73-2012	·m成然度(IK	<u>.L/</u>			1.0→2.0
			■海洋プラスチックごみのモニタリング手法調和とデータ整備		ドローン	固定カメラ	航空機	衛星		
			https://www.env.go.jp/water/post_76.html	海岸/ 河岸/湖岸/ 陸城	8	7	7	TBD (To Be Discussed)		
				海面/河口	6	N/A (Not applicable)	TBD	TBD		
				河川表層	6	7	N/A	TBD		
				備考: TRLの評価は Kako et al. (2024) た。	-)で参照されている既有	字の海洋ごみ調査や研タ	宅、その他確認された	と事例に基づいて行っ		
Ш	3.1	-	表7 タスクと画像解析技術の対応表	表7 タスクと画像解	析技術の対応	表				1.0→2.0
			「備考: *2 人工ごみと自然物の分類は行われているが、現時点ではそれ以上の詳細 な分類はできない(Kako et al. 202 <u>5, draft paper</u>)。	備考: *2 人工ごみと自然 な分類はできない(B	物の分類は行れ Kako et al. 202 <u>4</u>	われているが、ヨ 」)。	現時点ではそ;	れ以上の詳細		

		1					
Ш	3.1	-	3.2.1 リモートセンシング技術のブラットフォーム	3.2.1 リモー	トセンシング技術のブラッ	トフォーム	1.0→2.0
			リモートセンシング技術については、図 3-1に示したとおり、画像解像度と	リモートセン	/シング技術については、図	3-1 に示したとおり、画像解像	
			調査可能や範囲け一般的に反比例するリモートセンジング技術は画像解像度	度レ調査可能	お範囲け一般的に反比例す	ろ リモートセンシング技術け	
			の問題から千動調木のトSに詳細かざりの公知け田識でなるが、千動でけ現実	反こ詞且「前	いる範囲は 取りに及れりす	ななれ 手できるが 両価額価度	
			<u>の回風がり于動調査のように計測なこのの力損な凶難でのるが、于動では先天</u> 的にて可能な伝知眼の法法知道の古法の「抵知過ば可能なとしば上され近上	<u>一 一 明 明 且 こ 月</u>		クロバナしこうが、回家府隊反	
			<u> いたかり能な思知间の理院観測で広域の一活観側がり能なことが入さな利息</u>	か広いため手	- 動調査のように詳細なこみ	の分類は困難である。	
			である。さらに、複数のフラットノオームを組み合わせることで、さまさまな時空間				
			スケールのプラスチックごみを観測できる(Kako et al. 2025, draft paper)。				
			リモートセンシング技術の典型的な技術的課題と、これらを踏まえた将	<u>その他、</u> リモ	÷ートセンシング技術の典型	的な技術的課題と、これらを踏	
			来の展望を表8に示す。	まえた将来の)展望を表7に示す。		
TT							10.00
ш	3.1	-	表8 リモートセンシンク技術の典型的な技術的課題と特米の展望	表 <u>/</u> リモー	トセンシンク技術の典型的な	よ技術的課題と将来の展望	1.0→2.0
			(Kako et al. <u>2025, draft paper</u>)	(Kako et al.	<u>2024</u>)		
ш	3.1	_	血型的な技術的課題 将来の尾望		曲型的な技術的課題	将来の展望	
	5.1	_	固定カメラ 固定カメラは画角が限られてお 固定カメラでは、ごみ量の時間的	固定カメラ	固定カメラは画角が限られてお	固定カメラとドローンを組み合わ	
			り、海岸全体を捉えることができ 変動を得るためのリアルタイム観	HELVE / /	り、海岸全体を捉えることができ	せ、それぞれごみの量の時間的変	
			ない。 <u>また、設置上の制約がある</u> <u>制が可能であり、UAVでは、こ</u> ため、海辺の河辺たと「観測の対」。2章の空間会会を記録するための		かい	化を得るためのリアルタイム観測	
			<u>ため、神道ややからなど、観光の外生の単の生間が中を詰まするための</u> 象となる海域で機器の設置が可能 一定間隔のスナップショットの取	ドローン	ドローンに上ろ測定は 10 000 m ²	と 量の空間分布を記録するため	
			な場所に限定される。 得が可能である。両プラットフォ	1.1.1	オーダーの範囲の海岸でも進備開	の一定問題でのスナップショット	
			ドローン ドローンによる調査には通常、各 ームを組み合わせることで、互い		始から測定完了まで半日程度かか	を撮影することが有効であると考	
			観測にバイロットとアシスタント の欠点を補完し、砂浜全体のよう		り 撮影後のデータ処理にも時間	2642	
			が必要となるため、数日おきなど な情報を得ることができる。		シ、取起後のファンジェにも所用 た更ナス	<u>×04000</u>	
			頻繁な観測の実施は困難である。	A to also 100 Med 173	<u>2369 00</u>		
			航空機、衛星 RGBカメラなどを使った広範囲の 両プラットフォームが広域の一括	航空機、衛星	RGB カメラなどを使った広範囲 <u>な</u>	両ブラットフォームとも広域を一	
			ごみ測定の手法がまだ確立されて <u>観測が可能であることは明らかで</u>		こみ測定の手法がまた確立されて	<u> 枯で測定するには非常に優れてい</u>	
			いない。 <u>あるため、UAVを使用して</u> Converting		いない。	るので、ドローンでより詳細な測	
			集し、航空機や衛星システムで撮			定を行うとともに、航空機や衛星	
			影された画像で確認された、ごみ			を使ってごみが溜まりやすい場所	
			が堆積しやすい複数の場所で精度			の精度を評価することも有効であ	
			<u>を評価するアフローナが提案され</u> ている			<u>ると考えられる。</u>	
			参考: Kako et al. 2025				
ш	2.2	2 2 1	コラム 海見に上る海洋ゴムエータリングの羽骨と極本の屋切	(追加)			$1.0 \rightarrow 2.0$
ш	3.2	3.2.1	(詳細はばくじこく)、十支たわ四)	()旦/)日/			1.0 /2.0
			(詳細は以イトフィン本文を変現)				
Ш	3.2	3.2.2	3.2.2 画像解析	3.2.2 画像角	释析		1.0→2.0
			機械学習とディープラーニングに基づく画像処理技術については、大規模な	機械学習とう	「ィープラーニングに基づく	画像処理技術については、 大規	
			データセットを活用」て 両悔の角や形たどの複雑な特徴を検出できるモデル	横たデータも	マットを活田して 画像の色	や形かどの複雑な性徴を検出で	
			が関発され 上的矛動かざなの絵中が可能したっている 両角解析の古法な上げ	キスエデルカ	・リーと10月じて、四体のし 、間恐々わートの矛動かデカ	の絵中が可能となっている	
			が開光され、より未料なこのの使用が可能とようている。 <u>回家時間の方伝わよい</u>	2011/100	「開光でれ、より未転なこの	の便山が可能となりている。 <u>し</u>	
			<u> プータ公用に関する 計細は、 本ルイトフィンの 附属書 セクション Ⅱに 記載し</u>	<u>かしなから、</u>	子習り一クの作成には高い	<u>コストかかかるため、ノノット</u>	
			<u>ている。</u>	ノオームを同	<u>うわう、これらのデータセッ</u>	トを共有することか不可欠でめ	
			<u>手作業による方法ではあらゆる大きさの対象物を識別できるのに対し、</u>	<u>る。また、</u> +	=作業による方法では、あら	ゆる大きさの対象物を識別でき	
			画像処理による方法では、ごみの大きさが比較的小さい場合や、障害物	るが、画像処	<u>し理による方法では、ごみの</u>	大きさが比較的小さい場合や、	
			がある場合(ごみが他の物体に隠れるなど)は解析するのが困難である	障害物がある	<u>5場合(ごみが他の物体に隠</u>	<u>れるなど) は解析するのが困難</u>	
			ことが課題であろ (Kako et al 2025 draft naner)	である(Kak	o et al. 2024)		
			ディープラーニングに其べく両伸艇振技術の関発には 直明的わ知識及				
			/ イ ノノ ニンノに塗りて回家府街以前の囲光には、寺门的な知識及				
			<u>いモアル子宮に用いるアークを準備し、そのアークに毎年こみの位置や</u> い舞ればの唐相キ(15)キス作業(アフニーン、ン作業) ボル亜エキス				
			分類などの情報を付与する作業(アノアーション作業)が必要である。				
1		1	現状の画像解析手法においては、収集されたデータ全てに対し手動での	1			
1			<u>確認及びアノテーションを行う必要があり、学習データの作成には多大</u>	1			
1			な時間と費用を要する。そのため、リモートセンシング技術のプラット	1			
1			フォームを問わずこれらのデータセットを共有することが不可欠である	1			
1			(Kako et al. 2025, draft paper)				
1			(Tunto et al 2020, di di pupor)	1			
1				1			

	3.2	3.2.2	アータビットの共有に関して、海洋生態子の研究分野では、ブノアーションの ラウドコンビューティング(インターネット経由で作業やデータを共有する技術)を 活用する例がある。例えば表9に示すようなウェブアブリケーションが専門家に 対し一部無料で提供されている。 また、アップロードされた面像の中から対象物を自動検出し、イメージセグメン テーションにより、ピクセル単位で分類するブログラムを搭載するサービスもあ る。サービスの利用者は、取得した画像をウェブアブリケーション上にアップロー ドし、自動検出された対象物に対してアノテーションを行い、オンライン上で共有 することができる。共有されたラベルデータは、その分類を変更することができ、 データ分類の一貫性を担保することが可能である。このようなアブリケーション は、海洋ごみ分野でも活用されている。具体的には、表9に示すBIIGLEは、海 底に蓄積したごみの空間的、時間的変動を解析する研究に使用されており、海 洋ごみのラベルデータの共有が進めば、AIによる画像解析とごみの自動検出 に必要なデータの収集及び蓄積がアブリケーションを通じて行われる。また、収 集されたラベルデータの分類を変更できるため、リモートセンシング技術の異な るブラットフォーム間でデータ統合が容易になる。アブリケーションを通じて蓄積 されたデータは、リモートセンシング技術で収集した画像又は動画中のごみを自 動で検出、分類するAIの構築や発展に利用可能である。		1.0→2.0
Ш	3.2	3.2.3	3.2.3 スマートフォンのアプリケーションを活用した継続的な学習データ の収集 (詳細はガイドライン本文を参照)	(追加)	1.0→2.0
Ш	3.2	3.2.4	3.2.4 リモートセンシング技術による総合的なモニタリング	3.2. <u>3</u> リモートセンシング技術による総合的なモニタリング	1.0→2.0
Ш	3.3	-	3.3 ガイドラインの改訂 本ガイドラインはリモートセンシング技術の発展に伴って、随時更新していく予定 である。附属書に関しても、表3に示したとおり、ドローン及び固定カメラ以外の 技術的な内容を適宜追加する予定である。	3.3 ガイドラインの改訂 本ガイドラインはリモートセンシング技術の発展に伴って、随時更新していく予定 である。附属書に関しては、表3 <u>及び表6-1</u> に示したとおり、 <u>固定カメラ、航空</u> 機、衛星について今後追加していく予定である。	1.0→2.0

附属書					
セクション	項目		改訂後	改訂前	備考 Version
Ι	1.1	1.1.2	1.1.2 調査の実施 (7)海岸ごみの考察にあたり有用なデータ (詳細はガイドライン本文を参照)	(追加)	1.2、1.3の項目に揃え、海岸ごみの考察に 1.0→2.0 あたり有用なデータについて項目を追加し た。
Ι	1.1	-	図 <u>1.1.1</u> 表 <u>1.1.1</u>	図1 表1	附属書の追加に伴い、図表番号の付け方 1.0→2.0 を変更した。
Ι	1.2	-	1.2 固定カメラを活用した海岸漂着ごみ調査手法 (詳細はガイドライン本文を参照)	(追加)	1.0→2.0
Ι	1.3	-	1.3 固定カメラを活用した河川流下ごみ調査手法 (詳細はガイドライン本文を参照)	(追加)	1.0→2.0

Π	2.1	2.1.1	2.1.1 画像からのごみの検	出	2.1.1 画像からの <u>海岸漂着</u>	言ごみの検出	Version 1.0では附属書のセクションIの	1.0→2.0
			(1) 手動検出		(1) 手動検出		内容がドローンによる海岸のごみのモ	
			手動による画像からの海岸 性な更しない手法である。	:漂着こみの検出は、目動検出と比較して技術や専門 ・わまでの研究専例(Daidum at al 2018: Andriala at	手動による画像からの <u>海岸</u>	<u>:漂着</u> ごみの検出は、目動検出と比較して技術や専門 - わまでの研究更例(Daidyn at al 2018: Andriala at	ニタリンクのみであったのに対し、 Version 20でけ固定カメラに上ろ海岸	
			住を安しない十伝でのる。、 al 2020a: Essa har Sánaha	_40年(1937年),Default et al. 2018; Andriolo et al. 2021; Taddia et al. 2021	性を安しない 于伝 このる。 al 2020a: Essa har Sánaha	_40\$ CO研先事例(Deldun et al. 2018; Andriolo et al. 2021); Taddia at al. 2021)	及び河川の内容が追加された。これに	
			でけ モニター面面に映さ	hた 画像を扩大] 例 c げ 左 から 右 ト から 下 という	al. 2020a, Esco-bal-Salicile. でけ チニター画面に映さ	z et al. 2021, Andriolo et al. 2021, Tadula et al. 2021) れた画像を扩大1。例えば左から右 トから下という	伴い、セクションIIの画像解析につい	
			規則性を持って目視で海岸	岸漂着ごみの個数や位置、分類を記録する。また、河	規則性を持って目視で海岸	岸漂着ごみの個数や位置、分類を記録する。	ても、「ドローンによる海岸漂着物の	
			川にて固定カメラで撮影し	た動画の場合には、動画から画像を切り出して、各画			モニタリング」に限定せず、広くリ	
			像についてごみの個数やこ	ごみのピクセル数、分類を記録する。動画から画像の			モートセンシング技術によるこみのモ	
			<u>切り出しは、専用のアプリク</u> 隹ソフト 年を用いて 手動で	「ーンヨンソフトを用いる方法のはか、動画や画像の編 回り出すことも可能であるが、後考の方法は効率が悪			ークリンク主服を扱うこととした。	
			く、作業負担が大きいため、	現実的には推奨されない。			また、河川固定カメラで撮影した動画	
			この他にも、画像中でごみ	が占めている範囲からごみの占める範囲やごみの個			から画像を切り出して解析する方法	
			数を手動で計測するにあた	り、アノテーションツールを用いることが有効である。			や、画像からこみの個数を日視で検出	
			<u>アノテーションツールとは、</u>	機械学習のための教師データを作成するアプリケー			する际に活用できる力伝を迫託した。	
			ンヨンの <u>ことにか、画像上の</u> ろため 毛動検出にも活用	<u>?物体を手動で囲つにりタク付けしにりすることができ</u> することができる アノテーションツールにけ無償で少				
			開されているものが複数あ	り、アノテーションツールによりごみの占める範囲を				
			囲った出力データからは、	プログラミングを用いてピクセル数を求めることが可能				
			でな場合がある。実証試験	$(Appendix 23)$ \overrightarrow{ct} , $\overrightarrow{r} \overrightarrow{r} \overrightarrow{-\nu} \overrightarrow{s} \overrightarrow{-\nu} \overrightarrow{-\nu} Labelme$				
			(Wada, 2016GitHub, Inc.)	によりこみの範囲を囲い、その出力テータ(拡張子:				
			json)からPythonによりこみ た出力データから Buthon	のビクセル級を求めた。Labelmeを用いてこみを囲つ				
			<u> た山力) ニッから、Pyllioll</u> イトを参照されたい (Beach)	<u>CこみのLクビル数を水めるユートは泉境有ウエクサ</u> LitterCounter				
			https://www.env.go.jp/wate	r/post 76.html)				
			なお、これまでの研究で様	々な要素(表 13参照)によって <u>+動検出の</u> 検出率に かっている	これまでの研究で様々な要	そ素(表 13参照)によって検出率にはらつきが <u>あら</u> こと		
			はり フさか <u> モレフタ</u> ーとかれ		1147/1-2 CV 120			
П	2.1	2.1.1	表 13 検出率に関連する	要素	表13 検出率に関連する	要素		1.0→2.0
			検出率に関連する要素	/# = = /	検出率に関連する要素	/#6-64		
			(Andriolo et al. 2020a; Escobar-S'anchez et al 2021)	備考	(Andriolo et al. 2020a; Escobar-S'anchez et al 2021)	備考		
			画像解像度(GSD)	プラスチックごみをマッピングするには 200 pix/m(GSD=	画像解像度(GSD)	プラスチックごみをマッピングするには 200 pix/m(GSD=		
				0.5 cm) が良い解像度である(Taddia et al. 2021)。できる		0.5 cm) が良い解像度である(Taddia et al. 2021)。できる		
				限り解像度の高い RGB カメラにより GSD の値を下けるこ とができる		限り解像度の高い RGB カメラにより GSD の値を下けるこ トができる		
			作業者の経験	<u>のえば、</u> ドローンを使ったマッピングの信頼性を高めるた	作業者の経験	ドローンを使ったマッピングの信頼性を高めるためには、		
				めには、作業者の訓練が必要である(Taddia et al. 2021)。		作業者の訓練が必要である(Taddia et al. 2021)。		
			画像の背景 ゴルの住場	一 砂、植生、足跡等(Andriolo et al. 2020a) 「 二 空 ー 立 一 如 囲 み 一 使わ て い え ご 玉 同 し が 家 接 1	画像の背景 海島漂差デュの状況	砂、植生、足跡等(Andriolo et al. 2020a) 字々に目える ――		
			C 0740217476	て漂着等 (Andriolo et al. 2020a; Escobar-S'anchez et al. 2021)	10月十八家道」この10月八月八	て漂着等 (Andriolo et al. 2020a; Escobar-S'anchez et al. 2021)		
			ごみのサイズ	大きいほど(2.5 cm 以上)見つけやすい(Escobar-S´anchez	<u>海岸漂着</u> ごみのサイズ	大きいほど(2.5 cm 以上)見つけやすい(Escobar-S´anchez		
			ブルの名	et al. 2021)。 例うげ、伝告/へをいてけ、白田茨、送明/+給山/ べた	「海島漂差デュの名	et al. 2021)。 白 里 茶 添明け検出しべらい一方で 海岸において不		
			こののE	<u>い一方で、不自然な色(黄、青、桃、橙、赤、鮮やかな緑)</u>	四日のの日	自然な色(黄、青、桃、橙、赤、鮮やかな緑)は検出しや		
				は検出しやすい(Escobar-S'anchez et al. 2021)。		すい (Escobar-S'anchez et al. 2021)。		
			ごみの形状	ローブ・ひも、緑形や方形は検出しづらい(Escobar-S´anchez at al. 2021)	<u>海岸漂着</u> こみの形状	ローフ・ひも、緑形や万形は硬出しづらい (Escobar-S anchez et al 2021)		
			環境条件	海岸後背地の植生、天候等	環境条件	海岸後背地の植生、天候等		
					 ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰			
ш	2.1	2.1.1	また、ごみ検出のため、他の	の情報(マルチスペクトルデータ(近赤外(NIR)や正	また、 <u>海岸漂着</u> ごみ検出の (NID) ぬ正担ル抽出地***)ため、他の情報(マルナスペクトルテータ(近赤外 (NDVI))を汗田」 ている研究車例がもる		1.0→2.0
1			現化植生指数(NDVI))を	は用している 研究事例がある。	(NIK)や止炭化他生指数((省略)	(NDVI))を宿用している研究事例がめる。		
1	1	1	(1目10日)					1

Π	2.1	2.1.1	(2) 自動検出 撮影データが動画の場合には、動画から静止画像を切り出してから検出を行う。 画像からごみを検出する自動データ解析手法には、画像内の目的の物体を検 出してバウンディングボックスと呼ばれる矩形で囲む物体検出と、画像のピクセ ル単位で物体を分類するイメージセグメンテーションの大きく2つがある。	(2) 自動検出 - 画像から <u>海岸漂着</u> ごみを検出する自動データ解析手法には、画像内の目的の 物体を検出してバウンディングボックスと呼ばれる矩形で囲む物体検出と、画像 のピクセル単位で物体を分類するイメージセグメンテーションの大きく2つがあ る。		1.0→2.0
Π	2.1	2.1.1	それぞれの手法の特徴を考慮し、ごみの状況に応じてデータ解析方法を選択 する必要がある。物体検出は、個々のごみを検出することで、ごみの総数を推定 することができる。ごみ同士が重なっておらず、境界が明確である場合に適して いる。 イメージセグメンテーションの一種であるセマンティックセグメンテーションは、ピ クセルレベルでごみを検出できるため、オルソ補正されたドローンの空撮画像を 用いることで、その面積と体積を推定することができる。この方法は、ごみが集積 し、個々のごみの識別が困難な場合に適している。同じくイメージセグメンテー ションの一種であるインスタンスセグメンテーションは、物体検出のようにごみの 個数をカウントすることと、セマンティックセグメンテーションのようにピクセルレベ ルでごみを検出し面積と体積を推定することの両方が可能である。 (省略)	それぞれの手法の特徴を考慮し、 <u>海岸漂着</u> ごみの状況に応じてデータ解析方 法を選択する必要がある。物体検出は、個々のごみを検出することで、 <u>海岸漂</u> 着ごみの総数を推定することができる。ごみ同士が重なっておらず、境界が明確 である場合に適している。 イメージセグメンテーションの一種であるセマンティックセグメンテーションは、ピ クセルレベルでごみを検出できるため、オルソ補正されたドローンの空振画像を 用いることで、その面積と体積を推定することができる。この方法は、 <u>海岸漂着</u> みが集積し、個々のごみの識別が困難な場合に適している。同じくイメージセグ メンテーションの一種であるインスタンスセグメンテーションは、物体検出のように <u>海岸漂着</u> ごみの個数をカウントすること、セマンティックセグメンテーションのよ うにビクセルレベルでごみを検出し面積と体積を推定することの両方が可能であ る。 (省略)		1.0→2.0
			Beach Litter Datasetの他にも、地上撮影した海岸の画像からプラスチックごみを 抽出したBeach Plastic Litter Dataset (Hidaka et al. 2023) や海岸漂着ごみを抽出 して空き缶やビニール袋など28カテゴリーに分類したTACO Dataset (Proença and Simões 2020) が公開されている。上記のデータセットは地上で撮影された写 真から作成されているが、 <u>リモートセンシング技術によって得られた</u> 画像にも適 用可能である。 (省略)	Beach Litter Datasetの他にも、地上撮影した海岸の画像からプラスチックごみを 抽出したBeach Plastic Litter Dataset (Hidaka et al. 2023) や海岸漂着ごみを抽出 して空き缶やビニール袋など28カテゴリーに分類したTACO Dataset (Proença and Simões 2020) が公開されている。上記のデータセットは地上で撮影された写 真から作成されているが、ドローンで撮影された空撮画像にも適用可能である。 (省略)		
Π	2.1	2.1.1	海洋研究開発機構 (JAMSTEC)では、Hidaka et al (2022)で開発されたセマン ティックセグメンテーションモデルを用いたウェブアプリケーションを開発した (BeachLISA:https://beach-ai.jamstec.go.jp/)。事前に学習されたモデルを用い るため、学習データやモデルのコーディングや学習が不要であり、ウェブブラウ ザ上でドラッグ&ドロップ操作で画像を読み込むだけで画像中のごみを検出で さるため、ディーブラーニングモデルの専門知識がなくても画像解析が可能であ る。このようなアプリケーションは、目視による画像解析 (画像からごみを手作業 で検出する作業)に比べ、作業コストを大幅に削減できる可能性がある。 <u>リモートセンシング技術により得られた</u> 画像からディーブラーニングモデルが検 出できる対象物の解像度は、目視で検出する場合とは異なる(<u>別添1, 2, 3参</u> <u>感</u>)。また、モデルの学習に使用する学習データにも依存し、例えばHidaka et al (2022)で開発されたセマンティックセグメンテーションモデルでは、ドローンで撮 影した画像のGSDが約1 cmの場合、解像度は約30 pix (5 x 6 cm)となる。高さ方 向については、実証試験の調査範囲における検証点の誤差を考慮すると2-3 cm以上であれば概ね検出が可能であると考えられる(別添1参照)。解像度に関 係なく、ごみが積み重なって見えない場合は、 <u>リモートセンシング技術で</u> ごみを 検出することは困難である。	海洋研究開発機構 (JAMSTEC)では、Hidaka et al (2022)で開発されたセマン ティックセグメンテーションモデルを用いたウェブアプリケーションの開発を進め <u>ている(2024年一般公開予定</u>)。事前に学習されたモデルを用いるため、学習 データやモデルのコーディングや学習が不要であり、ウェブブラウザ上でドラッグ &ドロップ操作で画像を読み込むだけで画像中のごみを検出できるため、 ディープラーニングモデルの専門知識がなくても画像解析が可能である。このよ うなアプリケーションは、目視による画像解析(画像から海岸漂着ごみを手作業 で検出する作業)に比べ、作業コストを大幅に削減できる可能性がある。 <u>ドローンで撮影した</u> 画像からディープラーニングモデルが検出できる対象物の 解像度は、目視で検出する場合とは異なる。また、モデルの学習に使用する学 習データにも依存し、例えばHidaka et al (2022)で開発されたセマンティックセグ メンテーションモデルでは、ドローンで撮影した画像のCSDが約1 cmの場合、解 { 像度は約30 pix (5 x 6 cm)となる。高さ方向については、実証試験の調査範囲 における検証点の誤差を考慮すると2-3 cm以上であれば概ね検出が可能であ ると考えられる(別添1参照)。解像度に関係なく、ごみが積み重なって見えない 場合は、 <u>ドローンで海岸漂着</u> ごみを検出することは困難である。		1.0→2.0
Π	2.1	2.1.2	 2.1.2 ごみの定量化 (1) ドローンによる海岸漂着ごみ画像からの定量化	 2.1.2 <u>海岸漂着</u>ごみの定量化 (省略) 	(2) 及び(3)に固定カメラによるごみの画像 の定量化についての内容を追加した。これ に伴い、ガイドラインVersion 1.0で記載し ていたドローンからのごみの画像の定量化 についての内容に(1)としてタイトルを追記 した。	1.0→2.0

Π	2.1	2.1.2	図 2.1.3 <u>ドローンによる</u> 画像撮影と測量から海岸漂着ごみ定量化までの 作業フロー	図 11 画像撮影と測量から海岸漂着ごみ定量化までの作業フロー		1.0→2.0
Π	2.1	2.1.2	(2) 固定カメラによる海岸漂着ごみ画像からの定量化 (詳細はガイドライン本文を参照)	(追加)		1.0→2.0
Ш	2.1	2.1.2	(3) 固定カメラによる河川流下ごみ動画からの定量化 (詳細はガイドライン本文を参照)	(追加)		1.0→2.0
Π	2.2	2.2.1	 2.2.1 データの公開における単位 ドローンのデータの単位に関するアンケート調査の結果は表 15のとおりである。これによると、良く使用されている単位は、ごみの個数(調査単位)、ごみの被覆 面積、個数密度であった(図 12参照)。ごみの個数密度はごみの個数と調査面 積から求めることができる。被覆面積はイメージセグメンテーションにより得られた ごみの被覆面積や矩形で検出した物体のピクセルを教えることにより求めること ができる。また、ごみの体積も実証試験により推定できることが確認された(別添 1参照)。 固定カメラを用いた海岸漂着ごみ調査で出いては、画像中のごみのピクセル数 及び被覆面積が過去の調査で用いられた(Kako et al. 2010)。また、実証試験 においては、手動検出により海岸漂着ごみのビクセル数、個数、体積を、自動検 出により海岸漂着ごみのビクセル数、被覆面積を算出した(別添2参照)。 固定カメラを用いた河川流下ごみ調査の過去の事例においては、ごみの個数や 被覆面積が撮影動画から求められている(Kataoka et al.2020, Lieshout et al.2020)。さらに、これらを撮影範囲の幅及び動画の撮影時間で除することで、 個数や被覆面積を単位としたごみのフラックス([個/m/min][m²/m/min])を求め ることができる(Kataoka et al.2020)。また、あらかじめごみの種類ごとの重量を現 地で計測することで、重量フラックス[g/m/min]についても推定することが可能で ある(Kataoka et al.2020, 別添3) 3次元情報を正確に得ることができるのはドローンのみであり、プラスチックごみ の流出フローを把握するためには、様々な場所から得られた情報をリンクさせる ためのアプローチとしては、ごみの被覆面積とごみの個数密度(単位面積当た り、あるいは単位時間当たり(フラックス))の単位を選択することが考えられる (Deidun et al.2018)。 また、今後の技術発展によりほかの単位も選択可能になることを考慮すると、将 来的な再解析が可能となるようオルソ画像のような生データを保管していくことも 	 2.2.1 データの単位 データの単位に関するアンケート調査の結果は表 15のとおりである。これによると、良く使用されている単位は、ごみの個数(調査単位)、ごみの被覆面積、個数 密度であった(図 12参照)。ごみの個数密度はごみの個数と調査面積から求めることができる。被覆面積はイメージセグメンテーションにより得られたごみの被 覆面積や矩形で検出した物体のビクセルを数えることにより求めることができる。また、ごみの体積も実証試験により推定できることが確認された(別添1参照)。 <u>固定カメラを用いた海岸漂着ごみ調査においては、画像中のごみのビクセル数</u>及び被覆面積が過去の調査で用いられた(Kako et al. 2010)。また、実証試験においては、手動検出により海岸漂着ごみのビクセル数、個数、体積を、自動検出により海岸漂着ごみのビクセル数、被覆面積を算出した(別添2参照)。 <u>固定カメラを用いた河川流下ごみ調査の過去の事例においては、ごみの個数や</u>被覆面積が撮影動画から求められている(Kataoka et al. 2020). さらに、これらを撮影範囲の幅及び動画の撮影時間で除することで、個数や被覆面積を単位としたごみのフラックス([個 /m/min])を求めることができる(Kataoka et al. 2020)。また、あらかじめごみの種類ごとの重量を現地で計測することで、重量フラックス[g/m/min]についても推定することが可能である(Kataoka et al. 2020, 別添3) しかし、3次元情報を正確に得ることができるのはドローンのみであり、プラスチックごみの流出フローを把握するためには、様々な場所から得られた情報をリンクさせるためのアプローチとしては、ごみの被覆面積とごみの個数密度(単位面積当たり)の単位を選択することが考えられる(Deidun et al. 2018)。また、今後の技術発展によりほかの単位も選択可能になることを考慮すると、将来的な再解析が可能となるようオルソ画像のような生データを保管していくことも重要である。 	固定カメラを用いた海岸漂着ごみ調査及 び河川流下ごみ調査における、データの 単位についての記述を追加した。	1.0→2.0
П	2.2	2.2.1	表 <u>2.2.1</u> アンケート調査結果における <u>ドローン調査における</u> データの単位	表 <u>15</u> アンケート調査結果におけるデータの単位		1.0→2.0
Π	2.2	2.2.1	図 <u>2.2.1</u> ドローン調査において使用されたデータ単位のアンケート結果	図 12 使用されたデータ単位のアンケート結果		1.0→2.0

Π	2.2	2.2.2	2.2.2 公開するデータの内容	2.2.2 <u>データの公開</u> 調素されていまといえは知られ、デスの見、デスの構成し、デスの見のハ	固定カメラを用いた海岸漂着ごみ調査及	1.0→2.0
			<u>トローン調査の</u> 結果として公表される情報には、こみの重、こみの構成比、こみの量の分布図 ごみの種類の分布図(別添1参昭) DSM(数値表層モデル)た	<u>調査</u> 結果として公表される情報には、こみの重、こみの構成比、こみの重の分 布図 ごみの種類の分布図(別添1参昭) DSM(数値表属モデル)かどが会主	単位についての記述を追加した。	
			どが含まれる(表 16)。これらの情報の重要性については一概に優劣をつけるの	れる(表 16)。これらの情報の重要性については一概に優劣をつけるのではな		
			ではなく、目的に応じて情報を適切に数値化することが重要である(表 17参	く、目的に応じて情報を適切に数値化することが重要である(表 17参照)。		
			照)。	データの公開に当たっては、他地域とのデータ比較や一般の人々による理解の		
			データの公開に当たっては、他地域とのデータ比較や一般の人々による理解の	しやすさ等の観点から、調査結果を視覚化することが望ましい。Gonçalves et		
			しやすさ等の観点から、調査結果を視覚化することが望ましい。Gonçalves et	al.(2022)の事例では、グリッドマップを用いてごみの個数密度やごみの被覆面		
			al.(2022)の事例では、グリッドマップを用いてごみの個数密度やごみの被覆面	積が視覚化されている(図 13参照)。グリッドマップの公開に当たっては、ウェブ		
			積が視覚化されている(図 13参照)。グリッドマップの公開に当たっては、ウェブ	GISサービス(例:INSPIRE(https://inspire-geoportal.ec.europa.eu/)、Coastal		
			GISサービス(例:INSPIRE(https://inspire-geoportal.ec.europa.eu/)、Coastal	Marine Litter Observatory (CMLO, https://cmlo.aegean.gr/))が便利である。グ		
			Marine Litter Observatory (CMLO, https://cmlo.aegean.gr/))が便利である。グ	ローバルな量を評価するために単位を統一するという観点では、そのような画像		
			ローバルな量を評価するために単位を統一するという観点では、そのような画像	解析ができるように、データを共有するシステムを構築することが重要であると思		
			解析ができるように、データを共有するシステムを構築することが重要であると思	われる。クリッドサイスについては、5 x 5 m, 10 x 10 m等の様々なサイスか確認		
			われる。クリッドサイスについては、5 x 5 m, 10 x 10 m等の様々なサイスか確認	されているか、縮尺の変更により比較可能である限りは、どのようなサイスを選択		
			されているか、縮尺の変更により比較可能である限りは、どのようなサイスを選択	しても問題はないものと考えられる。		
			しても问題はないものと考えられる。			
			海岸における国常カメラ調査においては、継続的に長期間のデータを取得する	()迫力n)		
			ことが多いことから、時系列変動のデータを公表する場合がある。Kako et al			
			(2010の事例では、ごみの被覆面積の時系列変動が示されている(図14参照)。			
			また、画像の中でごみが占めるピクセル数の時系列変動を結果として示す場合			
			もある(別添2参照)。			
			河川における固定カメラ調査においては、ごみの個数や、個数・被覆面積・重量			
			によるごみのフラックス([個 /m/min]、[m ² /m/min]、[g/m/min])を結果として			
			示した事例がある(Kataoka et al. 2020, Lieshout et al. 2020, 別添3)。さらに、河			
			川流量を基に、調査対象の河川における年間のごみ流下個数を算出して示し			
			た例や、地域行政区分など広域な地域全体からのごみの流下量を算出して示し			
			た事例も存在する(環境省 瀬戸内海へのプラスチックごみ流入実態調査マ			
			ニュアル、2024)。年間流下個数の算出の手法等については、別添3を参照。			
			ブ カのハ間に火た マロ ブ カルボに次ナスは知(デスの検川工門は炊)	ゴー カのハ明に火た マは ゴークル故に次ナス持知(デスの検川工四は炊)		
			アータの公開に当たつしは、アーダ比較に貸する情報(こみの使用下限恒等) を付け加えることが推得される	アータの公開に当たつしは、アーダ比較に貸する情報(こみの検出下版個等) を付け加えることが推得される		
Π	2.2	222	図 15 グリッドマップに其づくドローンにトスゴム調査成単の例	図 13 ガリッドマップに其づくドローンに上ろごな調査成単の例		$1.0 \rightarrow 2.0$
П	2.2	2.2.2	図 2 2 3 固定力メラによろ海岸湾着ごみの時系列変動調査成果の例			$1.0 \rightarrow 2.0$
	<i></i>	2.2.2	大串海岸において、領域内の海岸漂着ごみが占める面積の時系列 背唇値が	(XE/VH)		1.0 2.0
			30%以上のもの。各曲線の意味については左上を参照。欠損値は直線補間。			
			(Kako et al. 2010より翻訳、加工)			
	1					

附属書別添資	1属書別添資料											
附属書別添	項目		改訂後	改訂前	備考	Version						
2	-	-	附属書別添2:固定カメラを活用した海岸漂着ごみ調査の実証試験結果 (詳細はガイドライン本文を参照)	(追加)		1.0→2.0						
3	-	-	附属書別添3:固定カメラを活用した河川流下ごみ調査の実証試験結果 (詳細はガイドライン本文を参照)	(追加)		1.0→2.0						