
Project on Inventory Development Methodology for a Plastic Leakage into the Environment, Including the Marine Environment (FY 2024)

1-1. Progress of the project on plastic inventory development methodology conducted by the Ministry of the Environment, Government of Japan

- Global/National plastic pollution issue: Project on understanding of the <u>amount of plastic discharged into the ocean in Japan</u> conducted by the Ministry of the Environment, Japan (MOEJ) since 2020
- Overall project objective: Develop and Elaborate the <u>Plastic Discharge Inventory</u> (macro/microplastic) with the <u>estimation and</u> <u>evaluation methodologies</u> in Japan
- One of the component added in 2022: Study on harmonized methodology for development of Plastic Discharge Inventory
- Progress in 2023: Develop the <u>Classification</u> of existing estimation methodologies for Plastic Discharge Inventory Development
- Plan in 2024: Elaborate the Classification of estimation methodology for Plastic Discharge Inventory Development

1. Background and Objectives

- Current status and challenges of global plastic pollution
- INC discussion on plastic inventory, leakage estimation, research, scientific evidence, NAP, and monitoring, etc.
- > Japan's knowledge, experience, and international cooperation

2. What is Plastic Leakage Inventory

- Current status and challenges of inventory, monitoring, and estimation
- Science-based policy decisions and interventions
- 3. Target, Scope, and Scale
 - Policy maker, Practitioner, Researchers, etc.
 - Objectives of leakage estimation, estimation scale, dataset for estimation
 - Definition of terms
- 4. Categorization of Estimation Methods
 - Introduction of Japan's inventory and methods
 - > Categorization of existing plastic leakage estimation methods
 - > Overview of existing plastic leakage estimation methods

5. Development of Estimation Method

- Purpose of estimation, Definition of terms, Confirmation of necessary data, Feasibility of actual surveys, Setting of baseline year, Estimation frequency, and Scientific policy development and interventions
- Concept of "Step" approach / Decision tree / Estimation options (including "Step" approach)

6. Pilot Cases

- Indonesia
- > Thailand
- Vietnam

2-1. Elaboration of the Classification Table for Plastic Leakage Estimation Method (M1: Production and consumption)

		UNITAR, 2024, Statistical Guideline for Measuring Flows of		Nakatani et al., 2020, Revealing the Intersectoral Material Flow	
N	lame	Plastic Throughout the Life Cycle	OECD, 2020, ENV-Linkages Modelling Framework	of Plastic Containers and Packaging in Japan	
Category			M1. Production and Consumption	M1. Production and Consumption	
Scale of			Global, Regional, National	National	
Estimation		_ong-term, Continuous	Long-term (2019–2060), Continuous	Long-term (2000-2015)	
			Economic flows, plastics use by sector, product lifespans, recycling		
			rates, mismanaged waste rates	Resin type, processed forms, sector-specific usage	
Input Data			OECD databases (e.g., GTAP 10), Ryberg et al., 2019、Geyer et	Japan's input-output tables, industrial production and shipment	
(Variables)	Sources		al., 2017, regional economic data	statistics	
F	Plastic Granularity	Plastic Granularity: Polymer- and sector-based	Plastic Granularity: Polymer- and sector-based	Plastic Granularity: Resin-based, sector-based	
	Sector Details	Packaging, transport, construction, electrical, textiles	Packaging, textiles, construction, consumer goods, transportation	Food packaging, industrial packaging, retail	
	Type of Model	Physical Supply and Use Tables (PSUT)	Computable General Equilibrium (CGE) Model	Input-Output Material Flow Analysis (IO-MFA)	
		Tracks plastic flows across production, use, and waste phases	Links sectoral economic projections to plastics use, waste, and	Tracks intersectoral flows of plastic containers and packaging using	
Estimation	-		environmental impacts; incorporates feedback from external models	IO tables	
		• • •	MPW to terrestrial and aquatic environments, emissions from	N/A (focus on waste streams and recycling)	
	-	nandling	lifecycle stages		
			Homogeneity in polymer use, static material composition, fixed	Consistent resin usage across sectors; alignment with IO table	
	Acoumptions		GDP-plastic waste relationships	precision	
		Quantified plastic flows by sector and lifecycle stage	Plastics use (Mt), waste management (recycled, landfilled,	Material flows of 4.8 Mt of containers/packaging; sectoral inflow and	
Output			incinerated, mismanaged), environmental impacts	recycling rates	
(Estimation			Annual	Annual	
Result)		Alignment with SEEA standards, validated through expert reviews	Calibrated using observed data, verified via expert reviews and	Validated against survey data and historical trends	
		and pilot testing	literature benchmarks		
	Name of the model		ENV-Linkages Model	IO-MFA Model	
	Description of the	ntegrates environmental and economic data to man plastic litecvicie	Dynamic CGE model integrating sectoral and regional economic	Estimates plastic flows into demand sectors via product lifecycles	
applied model	model, equation,		activities with plastic flows		
-			Based on GTAP 10 database, historical and regional waste data	Uses historical IO data for accuracy	
			Benchmarked against observed recycling and waste Mgt. trends Enables detailed polymer- and sector-specific analysis	Compared with waste generation and recycling data	
		Supports detailed sector-specific insights Dependent on accessibility to consistent classification (Plastic		Effective for detailed sector analysis, limited to micro-intervention	
Analysis of Practicality			High dependency on regional economic and waste statistics; sensitive to data availability	Dependent on IO table precision and sectoral statistics	
and Versatility		<i>3</i> ,	Supports identification of plastic leakage sources, waste		
	mpact Verification	MINNE TRACKING OT DIASTIC IITOCVICIO MIASTO TIOMIS AND TOCVICIINO RATOS I	management efficiencies, and policy development	Identifies key sources and recycling potentials	
Additional Notes			Comprehensive integration of economic and environmental		
			dimensions; long-term projections	Comprehensive sectoral flow insights; supports policy formulation	
	1		Complexity of calibration, reliance on static assumptions for polymer	Relies on data aggregation: limited granularity for resin-specific	
			distribution	flows	
			No	No 4	

2-2. Elaboration of the Classification Table for Plastic Leakage Estimation Method (M2: Waste Flow)

Name		Lau et al., 2020, P2O Model	Cottom et al., 2024, SPOT Model	University of Leeds, 2019, ISWA Plastic Pollution Calculator	GIZ, 2020, Waste Flow Diagram
Cate				M2. Waste Management	M2. Waste Management
Scale of	Spatial	Global	Global, sub-national (50,702 municipalities)	Global, regional, city, and district levels	Municipal/City Level
Estimation	Temporal	Long-term (2016-2040)	Temporal: Continuous, focusing on the year 2020	Long-term, with capacity for scenario analysis	Short-term to Long-term (annual estimates)
			Municipal waste generation rates, waste composition,	Waste generation rates, waste composition, collection coverage, socio-economic conditions, littering prevalence	Population, MSW generation rates, waste composition, collection efficiency, leakage influencers
Input Data (Variables)	Sources	World Bank, UNEP, industry reports, scientific literature	Global and national databases, including WaCT, WABI, WaW2.0, and UNSD city data	Local waste management data, literature defaults, expert-reviewed leakage factors	Primary data collection, SDG 11.6.1 assessment, existing waste management studies, local waste authorities
	-			Item-specific analysis: type, shape, size, and material	Macroplastic by material types: plastic film, dense plastic
				MSWM, informal and formal waste collection	MSWM, informal and formal waste collection sectors
1			<u>v</u>	Material Flow Analysis (MFA), GIS tool	Material Flow Analysis (MFA), Decision Trees
	Description		data, employing Monte Carlo simulations to handle	Models plastic movement from waste generation through collection, treatment, and potential leakage pathways	Maps waste flows through the MSWM system, identifies stages where plastic leaks, and estimates quantities using predefined leakage factors
Estimation - Approach	Leakage	Land-based mismanagement, aquatic and terrestrial	Open burning, debris emissions from uncollected	Open burning, on-land dispersion, entry into water	Open burning, on-land dispersion, drains, entry into water systems
			Assumes constant waste generation rates, regional socioeconomic influences, and informal sector impact	Local waste infrastructure influences leakage; uniformity in socio-economic conditions in each district	Simplified linear flows, no tracking between leakage fates, dependent on local conditions and data reliability
Output				Quantifies plastic leakage per item type and ranks pathways for targeted interventions	Quantified plastic leakage amounts, fates of unmanaged plastic (e.g., tons/year)
Output (Estimation	Temporal Scale	Global, split into eight geographic archetypes	Global, with sub-national granularity	District to global	Municipal/City Level
Result)	Accuracy, Validation	sensitivity analysis included	and extensive sensitivity analysis	Higher accuracy with additional data collection; scenarios modeled to reflect interventions	reliability assessed using a traffic light system; higher accuracy with primary data
Analysis of		sources, adapted for regional income levels	various socioeconomic contexts	Allows item-based detail, adaptable to district or city scales for local specificity	Simplified yet effective for rapid assessment; adaptable to data availability and local contexts
Practicality				Can use default values or require on-ground data	Supports using existing data but emphasizes primary
and				collection for higher reliability	data collection for higher accuracy
Versatility			Effective in identifying emission hotspots and assessing		Identifies hotspots and potential interventions; useful for
	Verification			evidence-based solutions	scenario analysis and SDG alignment
Additional		and social variability		planning	User-friendly, aligns with SDG indicators, rapid assessment with low data requirements
	VVD3KNDCCDC	High data uncertainty, limited granularity in informal		Requires investment in data collection for higher	Limited to macroplastic, data-dependent, does not track
					microplastic or inter-stage plastic movement 5
	Tool kit	No	No	No	Yes

2-3. Elaboration of the Classification Table for Plastic Leakage Estimation Method (F: Coastal and other Land Field Measurements)

Name		CSIRO and COBSEA, 2024, Regional Assessment on Marine Litter in the East Asian Seas		
Category		F1. Field Survey (Land), F2. Field Survey (Waterways)		
Scale of Estimation	Spatial	Local (Cambodia coast, inland, and river sites)		
Scale of Estimation	Temporal	Short-term (based on data from two collection periods in 2022 and 2023)		
	Data Types	Site accessibility, cleanliness, population density, infrastructure, distance to roads, rivers, and coastlines		
Input Data (Variables)	Sources	On-site observations, GIS data, socioeconomic datasets		
input Data (Valiables)	Plastic Granularity	Macro-based (whole and fragmented items)		
	Sector Details	Consumer products, specifically single-use items (water bottles, polystyrene foam)		
	Type of Model	General Additive Model (GAM)		
Estimation Approach	Description	GAMs assess debris density relationships with socioeconomic and geographic factors across site types		
Esumation Approach	Leakage Pathways	Land to coast, inland to river, river to ocean		
	Assumptions	Consistent distribution patterns and influence of local socioeconomic variables		
	Results:	Estimated density of 70,000 items per km of coastline, equating to over 80 million items on Cambodian coastlines		
Output (Estimation Result)	Temporal Scale	Spatial Scale: Local (Cambodia)		
	Accuracy, Validation	Site data compared across socioeconomic and geographic parameters, noting influence by nearby infrastructure and river distance		
	Name of the model	General Additive Model (GAM)		
Details of applied model	Description of the model, equation,	Utilizes socioeconomic predictors (population, lighting, distance to coast/river) to determine debris density		
Details of applied model	Calibration	Based on socioeconomic variables		
	Verification	AIC criterion used to verify model accuracy		
	Granularity	Model tracks macroplastics and differentiates whole vs. fragmented items		
Analysis of Practicality and Versatility	Data Collection	Requires in-person site surveys with GIS support, socioeconomic databases		
	Impact Verification	Model provides data on debris distribution and source pathways, aiding hotspot identification		
	Strengths	Robust method providing high-resolution insights into plastic pollution hotspots		
Additional Notes	Weaknesses	Limited applicability beyond local scale; may not account for seasonal variations due to short-term data collection periods		
	Tool kit	Monitoring guides and apps, etc. (Estimation method tools are not explicitly specified.)		

6

2-4. Elaboration of the Classification Table for Plastic Leakage Estimation Method (F: Aquatic (mainly Riverine) Field Measurements (1/2))

		Colomidt et al. 2017	Lebraten et el. 2047		
	Name	Schmidt et al., 2017	Lebreton et al., 2017	Mellink et al., 2022, The plastic pathfinder	
	- 1	Export of plastic debris by rivers into the sea	River plastic emissions to the world's oceans	M2 Maste Management 51 Field Currier (Land)	
			M2. Waste Management, F2. Field Survey (Waterways):	M2. Waste Management, F1. Field Survey (Land)	
Scale of			Global, with focus on large river basins	Regional to Local (terrestrial environments and river basins)	
Estimation			Continuous, with emphasis on seasonal variability	Daily with potential for annual projections	
			Population density, waste generation rates, mismanaged plastic	Wind speed, surface runoff, land use, terrain slope, MPW	
Input Data			waste, river discharge, catchment characteristics	generation	
		Statistics, remote sensing data, river network, HydroSHEDS, GPWv3		Global databases (e.g., HydroSHEDS, ESA CCI)	
(vanabico)		Microplastic (<5mm) and Macroplastic (>5mm)	Macro- and microplastic	Macroplastic (>0.5 cm)	
		N.A.	N.A.	N.A.	
	Type of Model		Empirical model with MPW data, hydrology, and population density	Numerical, spatiotemporal model	
	Description	Used MPW data as a predictor for estimating plastic loads	Estimates plastic emissions by correlating MPW and runoff data to	Calculates plastic transport based on wind and runoff overcoming	
Estimation	-		observed riverine plastic concentrations	terrain friction thresholds	
Approach	Leakage Pathways	MPW transported from land to rivers, then to oceans	Plastic moves from inland areas to rivers and then to oceans	Plastic moves overland toward river basins based on topography	
	Assumptions	High uncertainties due to limited and heterogeneous observational	Artificial barriers (e.g., dams) act as sinks for plastic, influencing	Uniform thresholds for macroplastic mobilization; assumptions	
	-		transport	about runoff based on rainfall coefficients	
	Results:	Estimated global plastic debris inputs to the sea range between 0.41	Global riverine plastic input to oceans estimated at 1.15 to 2.41	Generates potential plastic routing maps and accumulation	
Output	Results:	to 4 million tons per year	million tonnes per year, with over 80% from Asia	hotspots; shows MPW distribution over time	
(Estimation	Temporal Scale	Global	Global, with local and regional inputs	Local river basins, adaptable to regional	
Result)	Accuracy,	High uncertainties acknowledged, with validation through comparison	Model calibrated with field data from selected global rivers, but high	Requires empirical validation; calibration based on topography and	
	Validation	to other studies such as Lebreton et al. ,2017	uncertainties remain	expert inputs	
	Name of the model	Power-law model	Empirical regression model	Plastic Pathfinder	
Details of	Description of the	Log-log linear regression between mismanaged plastic waste (MPW)	Regression model based on MPW and runoff data for prediction	Simulates plastic movement based on wind, runoff, and terrain	
Details of	model, equation,	and plastic load		friction thresholds	
applied	Calibration	Performed using 5000 bootstrap samples to account for uncertainties	Calibrated with 30 records from 13 rivers globally	Designed to calibrate based on land cover and terrain slope data	
model	Verification	Through comparisons with independent estimates from other	(alidated against shoon and data from a lasted viver systems	Requires empirical studies; threshold values based on expert	
	Verification	research (e.g., Lebreton et al.)	Validated against observed data from selected river systems	assumptions	
	Cronularity	Micro/macro-plastic; affect by transport efficiency, with microplastics	Addresses both misrs, and magraphatic transport in these	Magraphatia approximation for physical transport influence of the target	
Analysis of	Granularity	showing higher transport efficiency in rivers with high MPW	Addresses both micro- and macroplastic transport in rivers	Macroplastic, accounting for physical transport influenced by terrain	
Practicality	Data Collection	Limited availability and accessibility of required data for plastic	Limited data for plastic concentrations in specific rivers; uses	Requires accessible land use and topographic data; some	
and	Data Collection	concentrations in rivers	available field data for calibration	limitations in high-resolution terrain mapping	
Versatility	Impact Verification	Ability to verify high-load rivers' contribution to ocean plastic pollution	Model effectively identifies high-leakage rivers, aiding targeted	Aims to identify hotspots for plastic accumulation and entry points	
	impact vertication	enables targeted mitigation efforts	intervention	to rivers	
	Ctron other	Major rivers contributing significantly to ocean, targeted interventions;	Major rivers contributing significantly to marine plastic pollution;	First terrestrial plastic transport model to include detailed threshold-	
A ddittion of			seasonal variability provides insights for intervention timing	based mobilization approach	
Additional		High uncertainties due to limited temporal and spatial data, limited			
Notes		applicability in regions with sparse data coverage, reliance on MPW	High uncertainties in estimations due to limited data, especially in	Lacks empirical calibration for all terrain types and specific plastic	
		data without considering other potential sources	under-monitored regions	types; currently generalized thresholds for various terrains 7	
	Y				

2-4. Elaboration of the Classification Table for Plastic Leakage Estimation Method (F: Aquatic (mainly Riverine) Field Measurements (2/2))

Nar	ne	Van Emmerik et al., 2018, A Methodology to Characterize Riverine Macroplastic Emission Into the Ocean	Van Emmerik et al., 2019, Seasonality of Riverine Macroplastic Transport	Strokal et al., 2023, River Export of Macro- and Microplastics to Seas by Sources Worldwide	Schreyers et al., 2024, River Plastic Transport and Storage Budget	
Category		M2. WM, F2. Field Survey (Waterways)	M2. WM, F2. Field Survey (Waterways)	M2. WM, F2. Field Survey (Waterways)	M2. WM, F1/2. Field Survey (Land/Waterways)	
Scale of			Spatial: Local (Saigon River, Vietnam)	Global	Regional (focused on the Rhine River sections)	
Estimation			Continuous monthly, seasonally, and annually	Annual	Long-term	
			Plastic item count, plastic mass, hydrological data	Population density, MPW, sewage system data	Plastic transport, storage/river compartment, flow velocity	
Input Data		Field observations, visual counting, static bridge-mounted			Field measurements, literature (e.g., van Emmerik et al.,	
	Sources 1	• •	records	for retention rates in rivers	2022a)	
(Variables)	Diactio		Primarily macroplastic (>5 cm) with polymer-specific			
(Fullabloo)	Granularity		observations (e.g., PS-E, POsoft)	Macro/Micro	Macroplastics (>2.5 cm)	
F	Sector Details		N.A.	Waste management, sewage treatment	N.A.	
			Empirical field observation model	Statistical Model, Process-based Modeling	Conceptual model based on transport and storage budge	
F			Combines visual and trawl data to estimate seasonal flux		Quantifies plastic storage and transport in river	
			and spatial distribution of plastic	export, Integrate macro/micro pathways/pollution source	compartments including surface, suspended, floodplain	
Estimation	Leakane					
Approach	Pathways	Plastic emissions estimated from rivers to ocean	Plastic emissions from river transport to coastal waters	Diffuse (mismanaged waste), point (sewage systems)	From land to river, floodplain to river	
F			Consistent tidal impacts on plastic distribution, seasonal	Assumptions: Differing regional treatment rates and river	Steady-state, simplified storage across compartments	
	Assumptions		variance and organic content effects	retention parameters		
			Estimated plastic outflow of 1.1×10^3 to 1.6×10^3 tons	Approx. 0.5 million tons of plastic exported to seas	Quantifies plastic mass storage in floodplains (98%) and	
Output		, , , ,		annually	transport across river sections	
(Estimation			Local (Saigon River)	Global with regional details	Regional, annual average	
Result)		High variability due to tidal influences and limited temporal		Compared with other models (Lebreton, Jambeck) and	Comparison with observed plastic transport in field	
Result	• ·		Variability of tidal patterns & organic accumulation	validated against individual river measurements	studies	
	Name of the	coverage	variability of tidal patterns & organic accumulation	MARINA-Plastics Model (Over 10,000 sub-basins	studies	
	model	Empirical macroplastic emission model	Empirical macroplastic transport model	worldwide including SE Asia)	Conceptual River Plastic Budget Model	
F		Estimates plastic flux by observed cross-sectional plastic	Derives plastic flux using item counts and mass,	Accounts for both diffuse and point sources of plastic	Assesses plastic flux and retention using input	
Details of				pollution.	parameters from field measurements	
		Calibrated with daily plastic counts and discharge				
applied model	i alinration i	estimates	Calibrated based on visual counts and trawl samples	Based on field data from specific rivers	Based on observational data for the Rhine	
F			Comparisons with existing estimates for similar river	Comparison with existing models for macro- and	Compared with literature values for riverine plastic	
			systems	microplastic pollution	dynamics	
			Includes size and polymer-specific granularity; variability		Focused on macroplastics, adaptable for other size	
			in plastic transport by MSW patterns	Differentiates between macro- and microplastics	classes	
Analysis of			Visual counts and trawling are practical but sensitive to	Extensive use of available global data, assumptions for	Based on field observations, challenges include lack of	
Practicality	ISTS I AUGOTIANI	•	river dynamics	regions lacking direct data	consistent floodplain measurements	
and Versatility						
			Seasonal insights aid in identifying peak transport periods	diffuse and point sources	Limited by assumptions on retention and exchange rates	
			for targeted interventions Seasonal variability; provides detailed composition and		Retention estimates for floodplain plastics, importance of	
Additional	-		distribution of riverine plastic	diffuse sources	floodplains in plastic storage	
Notes	Weaknesses			Model uncertainties due to variability in data sources and		
-				assumptions across regions	floodplain exchange & transport to downstream boundary	
	Tool kit	No	No	No	No 8	

3. Elaborated Classification of Existing Estimation Methods

Main Input Data							Data Source, Model, National Statistic, Leakage	Stakeholder / Measure		
				Existing method	PC	W	EC	D rate	Stakeholder	Indicator
		Production & Consum sector, polymer)	ption (total plastic,	 Nakatani et al., 2020 UNITAR, 2023 (Toolkit for the Product-Lifespan Method) OECD, 2020 (ENV-Linkages Modelling Framework) 				ENVI/CGE, Input-Output Table, Physical Supply and Use Tables		Reduction, Substitution, SUP reduction/phase-out, green procurement, etc.
			МасР	MOEJ, 2024 (Lost fishing gear estimation)				National Statistic, Discharge rate, etc.	-Ministry of Industry,	
1		Production & Consumption (item)	Macr	MOEJ, 2024 (PET bottle estimation)				National Statistic, Discharge rate, etc.	etc.	
			MicP	 ECHA, 2020 ICF&Eunomia, 2018 UNEP, 2018 MOEJ, 2024 (Buildup estimation by sources and items) 				National Statistic, Discharge rate, etc.		
				• GIZ, 2020 (Waste Flow Diagram (WFD))				National Statistic, etc.		3Rs, improved waste collection, EPR, various recycling schemes, introduction of WtE, improved landfill sites, etc.
2	M2	Waste Management	Management Waste Flow	 Basel Convention, 2022 (Toolkit for Material Flow Analysis Method) University of Leeds, 2019 (ISWA Plastic Pollution Calculator (PPP)) 				National Statistic, Discharge rate, etc.	Ministry of Interior (MOI), Local	
				 GPAP, 2022 (National Analysis and Modelling (NAM) Tool) Cottom et al., 2024 (SPOT Model) 				Global, National Statistic, Statistic model, etc.	Government (LGs), etc.	
			Coastal and other Land Field	CSIRO and COBSEA, 2024 (Regional Assessment on Marine Litter in the East Asian Seas)				Survey, Statistic model	-MOE, LGs	
			Measurements	MOEJ, 2024 (Beach litter survey) S-19 (Environment Research and Technology Development Fund)				Survey, extrapolation		Mitigation measures (Collection,
3	E I	Field survey and Monitoring	Aquatic (mainly	• Nihei et al., 2020 • Schmidt et al., 2017 • S-19 • van Emmerik et al., 2019 • Lebreton et al., 2017				Survey, Statistic model	-MOE, Water & Marine	Awareness-raising, etc.), Impact
		Riverine) Field Measurements	 Meijer et al., 2021 World Bank et al., 2021 Mellink et al., 2022 MOEJ,2024 (Pumping station survey) 				Survey, Discharge rate, Statistic model	related departments, LGs	mitigation measures	

(**Reference:** The estimation methods used by OECD (ENV-Linkages model + UOL + DTU) and UNEP (National Guidance on Plastic Pollution Hotspotting and Shaping Action) integrate data from both M1 and M2.)

* Blue: Data Input, Yellow: Output, P: Production、C: Consumption、W: Waste Generation/Management、E: Leakage to the environment、O: Leakage to the ocean

4. Consideration of the Algorithm for Selecting Practical Estimation Method

Three steps for selecting practical estimation method based on the elaborated classification table (previous page)

- > Identify the applicable estimation method and corresponding existing methods (yellow & red boxes in the figure) based on the intended purpose
- Classify the selected estimation method according to the number of steps involved in the leakage pathway to calculate the target output.
- The concept of this document (illustrated on the next page) is to classify the level (1) (3) based on the number of steps required to calculate the output data. (e.g. IPCC GHG inventory guidelines adapt the "Tier" approach to classify methods based on the level of accuracy, reflecting the extent to which country-specific data and national circumstances are incorporated.

Examples of Policy & Interventions

> Production and Consumption Measure

Reduction in plastic use, Alternatives, Reduction or phase-out of SUPs, Green procurement policies, Measures for lost and abandoned fishing gear, etc.

Improvement of Waste Management

3Rs (Reduce, Reuse, Recycle) Enhance waste collection system, EPR, Various recycling schemes, Waste-to-Energy, Landfill O&M, etc.

Impact on Terrestrial, Riverine, and Marine Areas Cleanup, Awareness-raising, Countermeasure development for plastic leakage, Impact assessment after the implementation of policies/interventions, etc. Step 2: Output (Targeted Indicator)

- Waste Management
- Leakage to
- Environment • Leakage to Ocean

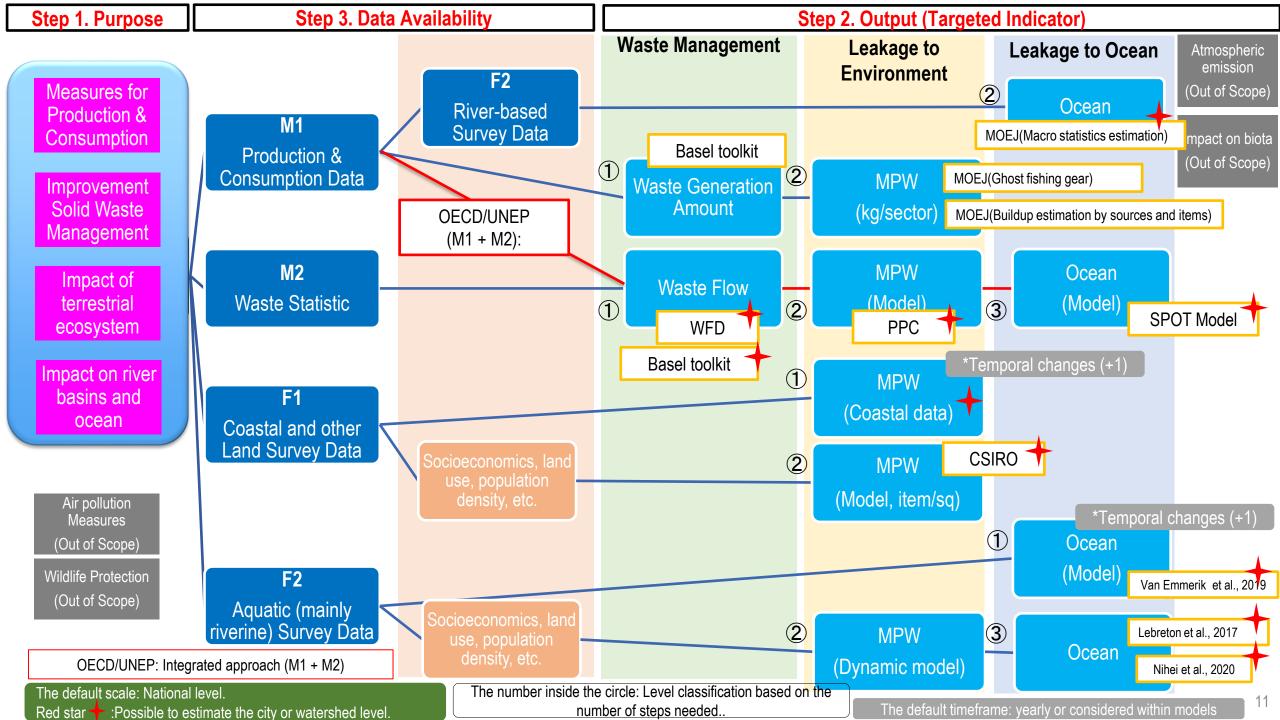
Examples of Targeted Indicator

- Waste Management
 - ✓ Waste Generation Amount
 - ✓ Waste Flow
- > Leakage to Environment
 - ✓ Mismanaged Plastic Waste Amount/Density
- Leakage to Ocean
 - Plastic leakage into the ocean via rivers and coastal areas

Step 3: Data Availability

- Production & Consumption Data
- Waste Statistic
- Terrestrial Data
- Watershed & Aquatic
 Data

Examples of Data Types


- M1: Production & Consumption Data Production, import, and conusmption amounts, Trade statistics, etc.
- M2: Waste Statistic

Waste amount, Self-managed waste amount, Waste collection rate, Recycling rate Landfill conditions Government statistics, Global data, etc.

F: Coastal and other Land Data

Illegal dump, Waste found in riverbanks and coastal areas, Population density, Land use, etc.

F: Aquatic (mainly riverine) Data
 Measured data from river basins, Model analysis, etc.

5-1. In-Depth Hearings in the in the Southeast Asian Region (Indonesia)

Criteria	Summary					
Estimation of	The National Coordinating Team for Marine Debris Management (TKN PSL) estimates "Land-based" and Estimated Indonesian Marine Debris					
Leakage Amount	"Sea-based" sources by reviewing the National Action Plan (NAP), defining the total of these estimates as					
and Monitoring-	"Marine Debris Leakage".					
Related Activities						
	Impact of plastic regulations (such as EPR and bans on single-use plastics)					
Methodologies	Estimation method for sea-based leakage: Fisheries waste (vessel numbers, operating day), Passenger					
and Tools Used	vessel waste (passenger capacity, operational hours, etc.), Illegal marine dump (Self-reported, monitoring data)					
	Upstream data (production and consumption) is not included in the estimation.					
	TKN PSL: collecting data from relevant ministries and conducts estimations.					
Challenges in	Progress toward the 70% reduction target (by 2025): 42% achieved as 01 2025.					
Data Collection,	Data Gaps: Lack of digital integration (No real-time plastic leakage monitoring system), Difficulty in short-term					
Analysis, and	variation analysis (Seasonal fluctuations and short-term trend), Insufficient data (Offshore industries, ports, and aquaculture sectors). Limited onsite measurements (Heavy reliance on statistical data, Less measurement).					
Management	aquaculture sectors), Limited onsite measurements (Heavy reliance on statistical data, Less measurement). Policy Sustainability Challenges: Uncertainty (Under the new administration), Post-2025 revision of the NAP					
	TKN PSL's Role: Stipulated by Presidential Regulation No. 83/2018, Funds from UNDP					
Required	Data Management & Integration: Enhance real-time monitoring systems, Improve the national data platform (Integrating data from LGs and the private sector).					
Support and	Technology Development: Establish Al-based data analysis infrastructure, Introduce new measurement technologies (Drones, sensors, etc.).					
Resources	Policy & Funding: Maintain a long-term policy framework, Promote private sector participation, Expand international funding and technical cooperation.					
Existing Policies,	National Action Plan (NAP): Presidential Regulation No. 83/2018, Target: 70% reduction by 2025, 5 strategies and 59 activities by 22 ministries and agencies.					
Programs, and	Key Measure: Extended Producer Responsibility, Ban on Single-Use Plastics, (Regulatory strengthening contributes to leakage reduction).					
Guidelines	Infrastructure Development: 850 waste management facilities in 200 cities by Ministry of Public Works					
	Reduction in Plastic Leakage: Reduced from 615,000 tons in 2018 to 359,000 tons in 2023 (a 41% decrease)					
Key Outcomes	Improvement in Data Collection & Reporting Systems: Establish a national reporting platform enables real-time progress tracking across ministries					
	Advancements in Policy & Legal Framework: Introduce plastic reduction policies, including EPR and bans on SUPs					
	Ministry of Environment (MOE): SIPSN (266 verified < 441 registered < among 514 cities), SIMBA					
	Ministry of Industry (MOI): National database on plastic production (Based on voluntary reporting by businesses and surveys)					
Stakeholders	Ministry of Public Works (MPW): SI-INSAN (Infrastructure database)					
	Ministry of Health (MOH): Household sanitation survey (Conducted every 5 years nationwide in Indonesia)					
	Ministry of Home Affairs (MOHA): SIPD (Statistical data from local governments)					

5-2. In-Depth Hearings in the Southeast Asian Region (Vietnam)

- Challenges in Addressing Plastic Pollution
 and Marine Debris
 - ✓ Lack of dedicated policies on plastic pollution and marine debris
 - Poor coordination among relevant agencies (e.g. PCD: land, rivers, and waterways, VASI/VEMSI: estuaries, coastal areas, and the ocean, and no harmonized approach)
 - Disproportionate funding allocation (Majority to VASI, rather than PCD)
- Key Reports & Data Collection Efforts
 - ✓ UNDP/GEF's initial plastic pollution data collection (including production and consumption)
 - ✓ 2022 Status Report on Plastic Waste
- Monitoring & Budgetary Constraints
 No official monitoring activities in place
 Rely heavily on donor funding (No budget)
 No national standards or methodologies
- Planned Actions & Data Limitations:
 - ✓ VEA Plan: Plan to formulate a plastic leakage inventory and estimation method
 - ✓ Data limitations: Primarily SWM data, limited production and consumption data collection (VPA is the main source of information)

Criteria	Summary
Estimation of Leakage	 VASI's Marine Pollution Report (WWF State Report, 2023, MCD's Waste
Amount and	Composition Survey by communities and interceptors (The Ocean Cleanup
Monitoring-Related	classification).VNU's State Report (Macroplastic, waste flow analysis) and
Activities	microplastic research, UNDP/GEF's baseline survey (initiated from 2025)
	 Macroplastic Monitoring (Field surveys, interceptor systems, GIS-based hotspot
Methodologies and	mapping, Waste management data), Microplastic Analysis (using FTIR microscopy,
Tools Used	USEPA sampling protocols), Data Sources (Local government reports, Customs
	data, Private sector contributions)
Challenges in Data	 Data Gaps (Lack of baseline data and polymer-specific data), Coordination
Collection, Analysis,	Challenges (Insufficient collaboration among relevant agencies), Infrastructure
and Management	Barriers (Limited availability of advanced tools, Inconsistent monitoring protocols)
	 Capacity Development (Training programs for government officials and local
Required Support and	communities), Policy & Guidelines (National standards for plastic and microplastic
Resources	monitoring), Financial & Technical Support (Funding for large-scale surveys and
TCSOULCES	advanced monitoring tools), International Cooperation (Sharing best practices and
	collaborative initiatives)
Existing Policies,	 NAP for Marine Plastic Waste Management 2019–2025 (Focuses on integration
Programs, and	across sectors), Environmental Protection Law 2022 (Includes waste management
Guidelines	regulations but does not specifically address plastic leakage/pollution)
	 Research on Baseline Data for Plastic Waste Sources (Deficiencies in waste
Key Outcomes	collection systems, Identification of data gaps and the need for standardization),
	Scalable Model (MCD's initiative in Ha Long Bay as a potential expansion model)
	 Government/NGO Collaboration (Joint initiative by VASI, PCD, and WWF like State
Stakeholders	Report), Academic Institutions (research collaboration with int. organizations),
	Community Engagement (Waste monitoring activities by local communities) ¹³

Classification of methods based on the level of accuracy in the input data (harmonization between macro and field data)

Input	Output				
Tier 1 (Basic Form)	Waste Generation Amount	Leakage (Terrestrial)	Leakage (Aquatic)		
M1 Production & Consumption	 Nakatani et al., 2020 UNITAR Toolkit 	(M1 x Leakage rate)	M1 x Leakage rate (MOEJ Macro Statistics estimation)		
M2 Waste Management	• Base • V • SPO	 Lebreton et al., 2017 Meijer et al., 2021 World Bank et al., 2021 Mellink et al., 2022 (based MPW) 			
F1 Field Data (land)		Accumulation of Field Data, Extrapolation	Leakage rate, Model, Simulation		
F2 Field survey (waterways)	_	_	Accumulation of Field Data, Extrapolation (MOEJ Pumping station survey)		
Input		Output			
Tier 2 (Applied Form)	Waste Generation Amount	Leakage (Terrestrial)	Leakage (Aquatic)		
M1 -> M2 (Harmonized)	 UNEP National Guidance 	• • OECD (ENV-Linkages Modelling F	Framework + UOL + DTU)		
F1 -> F2 (Harmonized)	_	X	X		
M2 <-> F1 (Verification)	X	X	X		
M2 <-> F2 (Verification)	Х	Х	X		
Input	Output				
Tier 3 (Advanced Form)	Production, Consumption & WM	Leakage (Terrestrial)	Leakage (Aquatic)		
M1 -> M2 -> F1 -> F2	Х	X	X		

A C U r a C y

14

Results of a Survey on the Feasibility of Implementing Estimation Methods Using Macro Statistical Data Overseas (FY 2024)

Estimation by using macro-statistical data

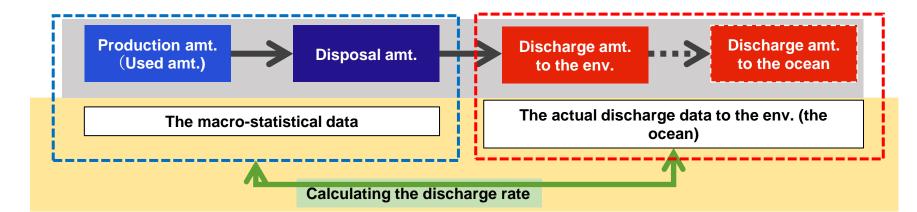
In theory, there are two methods using macro statistical data:

1.Estimating the outflow volume by subtracting macro statistical data such as disposal amounts from macro statistical data such as usage amounts. 2.Estimating the outflow volume by multiplying macro statistical data such as usage amounts by parameter/coefficients (e.g., outflow rates). Method (1) is calculating by using macro statistical data obtained for different purposes (which may contain errors), raising concerns about high uncertainty. Therefore, Method (2) was chosen for consideration.

• The calculation of the discharge amount using the macro-statistical data is done by multiplication, not subtraction.

A (Macro-statistical data) \times B (Discharge rate) = C (Discharge amount to the env./ocean

• For "Calculation of discharge rate" and "Consideration of estimation methods by (the macro-statistical data × discharge rate)", item (product) whose "macro-statistical data" and "data of the actual discharge amount to the environment" are considered relatively easy to obtain should be selected


• Trial using Japanese data in FY2023, and other developing countries data in F'2024

(Example of Japan's case in FY2023)

[Item (product) example] PET bottles

[Candidates for obtaining the macro-statistical data] Data from the Council for PET Bottle Recycling, results of input-output analysis

[Actual data on the amount discharged to the environment] Results of a survey of the amount of waste collected at a pump station (using results from a separate operation).

List of results of estimation methods using macro statistical data in foreign countries.

(3) is calculated by dividing (2), which was calculated using research papers from various countries, by statistical data (1).

(5) is calculated by multiplying (3) by statistical data (4), which was obtained separately.

The following are the results of applying the estimation method using macro-statistical data to other countries, and are "Marine leakage rate of

PET bottles [%]", "Marine leakage volume of PET bottles [t/y]", and "Estimated marine leakage volume of plastic products [t/y]".

country	(1) PET Bottles Sales volume [t/y]	(2)Marine leakage volume of PET bottles [t/y]	(3)=(2)/(1) Marine leakage rate of PET bottles [%]	(4) Plastic Products Amount used [t/y]	(5)=(3) × (4) Estimated marine leakage volume of plastic products[t/y]	Amount of plastic leaked into the ocean as reported by countries[t/y]	(Reference) Jambeck (2015). Marine Leakage [t/y]	(Reference) Meijer (2021). Marine Leakage [t/y]
	298,113	2,004~4,008	0.67~1.34	4,206,000	28,000~56,000 (28,180 ~ 56,360)	359,061	480,000~1,290,000	56,000
Indonesia	203,774	3,755~6,259	1.84~3.07	2,930,000	54,000~90,000 (53,912 ~ 89,951)	-	280,000~730,000	28,000
Vietnam	184,906	5,560	3.01	6,070,000	183,000 (182,707)	-	150,000~410,000	23,000
Thailand *	147,170	2,414	1.64	2,150,000	35,000 (35,260)	-	280,000 ~ 750,000	360,000
Philippines	583,000	629	0.108	4,558,433~8,950,000	4,900∼9,700 (4,923 ~ 9,666)	11,000~27,000	21,000~57,000	1,835

	Bibliography related to (1)	Bibliography related to (2)	Bibliography related to (4)	Reference material on the amount of plastic waste leaking into the sea reported by each country.	Differences from estimates in Japan	Points to note		
Indonesia		Hariyadi et al. 2022 Plastic debris in citarum river	Direktorat Industri Kimia Hilir dan Farmasi (2025)	TKN PSL(2025).The Indonesia National Action Plan for Marine Debris Management "Secretariat of The National Coordinating Team for Marine Debris Management	 Normal data. Targeting of PET bottles flowing on the surface. Measured by wet weight (converted to dry weight by a factor). 	 Using 2021 data. When a river branches, it is necessary to pay attention to the population of the catchment area. The boundaries of the river basins may not correspond to the actual situation. 		
Vietnam	GA Circular, 2019, Full Circle: Accelerating the Circular Economy	Nguyen et al., 2024 Assessment and sustainable management strategies for plastic waste in Can Tho City, Vietnam: A circular economy approach	WWF, 2023 Report on plastic waste generation in 2022	-	 PET bottles stagnating under the bridge are targeted. 	 Using data from 2021 data. The collection period is not specified, so we assume it is one day. Difficult to identify detailed catchment area due to Mekong Delta region. 		
Thailand	for Post- Consumer PET Bottoles in Southeast Asia	UNEP, IUCN and Life Cycle Initiative, 2020 National guidance for plastic pollution hotspotting and shaping action	Ministry of Natural Resources and Environment, 2021 Action plan on plastic waste management phase I (2020 - 2022)	-	(No observation information)	 Calculated based on 2019 data. Amount of leakage into the environment, not the ocean. 		
Philippine s		Requiron and Bacosa, 2022 Macroplastic transport and deposition in the environs of pulauan river, Dapitan City, Philippines	WWF-Philippines, 2020 EPR scheme assessment for plastic packaging waste in the Philippines	-	 Normal data. Targeting of PET bottles flowing on the surface. Measured by wet weight (converted to dry weight by a factor). 	 Using 2021 data. When a river branches, it is necessary to pay attention to the population of the catchment area. The boundaries of the river basins may not correspond to the actual situation. 		
Japan	Ministry of the Environment "FY2023 Study Results: Estimation of the Amount of Marine Plastic Litter in Japan"							

Evaluate availability of data in other countries and the direction of future surveys.

- As an evaluation of the data utilized in this study, in terms of statistical data, in the case of PET bottles, there is no established system or mechanism to collect individual information as in Japan, and the availability is generally low. In the case of plastic products, information is often published by government agencies (especially for Indonesia, there is detailed information by product and polymer in cooperation with industry associations). Surveyed data is literature-based information only, and leakage rates may be underestimated/ overestimated depending on the setting of watershed boundaries, consideration of high water, and the scope of data acquisition.
- In the future, with Indonesia and Vietnam in mind, where detailed statistical data may be available, we will consider conducting field surveys at locations where watershed boundaries can be established and where surveys can be conducted under normal conditions and during high water, and obtaining our own measured data (leakage rates) (we aim to calculate leakage rates for plastic products rather than PET bottles in combination with statistical data).

		Indonesia	Vietnam	Thailand	Philippines
	PET bottle	• There is information that it is unlikely that	Availability firm was the information on sales volumes indi industry groups in Vietnam and Indonesia are established system or mechanism for collectin	icated in the literature. compiling and updating data on the produc	ction, sales and consumption of PET
statistics		Availability [High]	Availability [Medium]	Availability [High]	Availability [Medium]
data	Plastic Products	 Government agencies work with industry groups to release information. Detailed information available by product and polymer. 	 Information is available in a report from a government-affiliated research institute. There is a possibility that the industry group may have information, and we are currently investigating. 	Government agencies release information.	 International organizations publish information.
actual measure ments data	PET bottle Leakage rate	 Problems related to watersheds are small. Adopted survey results for normal conditions only. Sampling at river surface (leakage rates may be underestimated). The number of samplers used is unknown (one or two). 	 It is difficult to set the boundaries of the watershed around the Mekong Delta (there is a possibility of underestimation). Data on the garbage collected under the bridge (there is a possibility that it is overestimated because it may include garbage from outside the survey period). 	 The source of information on which it is based is not the amount of leakage into the river, but the amount of leakage into the environment (the leakage rate may be overestimated). No observation information. 	 It may be difficult to set up a watershed. Adopted survey results from normal and high water conditions. Visual observation at river surface (leakage rate may be underestimated).

The amount of plastic bottles littered in each country is an estimate based primarily on the results of academic studies.

- ✓ The sampling methods and conditions for each country's data are as follows. **Terms vary by country.**
- \checkmark It is important to note that, unlike in Japan, data is obtained from the surface.
- For Indonesia and the Philippines, where wet weight is used, we selected appropriate wet/dry conversion factors to convert to dry weight, considering whether it would be possible to estimate the weight of PET bottles. The wet and dry conversion factors are taken from the "FY2023 Survey on the Current State of Plastic Waste in Rivers, Lakes and Marshes Ending up in the Ocean" by MOEJ in Japan.

country	Normal/ High water	Sampling method	Data acquisition range (Transverse direction)	Data acquisition range (Vertical direction)	Wet/ Dry weight ^{%2}	Estimation Method
Indonesia	Normal	Catching in a net	2m or 4m	Surface	Wet ^{**3}	Days converted into
Vietnam	Normal	Collection of retained garbage under the bridge	3m or 5m	Surface	Dry	Days converted into
Thailand*1			-			
Philippines	Normal and High water	Visual observation	Whole area	Surface	Wet ^{%4}	Days converted into
Japan	Normal and High water	Collected at the river mouth weir and drainage pump station	Whole area	Whole layer	Dry	Days, rainfall conversion

%1 : Organized as the quantity for the entire country of Thailand, with no observational information to serve as a basis.

*2 : The wet weight is converted to the dry weight by multiplying by a coefficient. The coefficient is based on the results of the "FY2023 Survey on the Current State of Plastic Waste in Rivers, Lakes, and Marshes Endangering the Ocean" (The weight of the samples before drying was measured when they were brought back, and then the weight after drying was measured after drying in a dryer (50°C to 100°C).)

*3 : It was not possible to estimate the weight of PET bottles in relation to the total weight of plastic. Therefore, the total wet weight of the plastic was multiplied by the plastic conversion factor of 0.67, and the resulting figure was multiplied by the proportion of PET bottles to estimate the PET bottle leakage rate.

*4 : The amount of PET bottles leaked was estimated by estimating the wet weight of PET bottles from the total weight of the plastic surveyed, and then multiplying by the wet/dry conversion factor of 0.86.

country	elevation	Reference Watershed Boundaries	Rivers used as reference	catchment population
Indonesia Philippines Vietnam	Approx. 30m DEM NASA Earthdata	HydroBASINS HydroSHEDS	HydroRIVERS HydroSHEDS Google map Google	Approx. 5 km × 5km grid SEDAC
Japan	5~10m DEM basic mapping information	Watershed Mesh National land data, river development plans, etc.	river line National Land Numerical Data	3rd to 5th order (250m to 1km) grid e-Stat

Issues and proposed responses for next year's survey.

(1) Consideration of monitoring methods that can be compared.

In the survey, the amount of plastic product leakage was estimated by calculating the amount of PET bottle leakage in each country from existing literature. As mentioned above, data can vary between countries due to data collection methods, such as whether it's collected during normal or high water, and whether it's visually observed or sampled with a net.

Visual sampling is considered to be the most suitable method for conducting simple cross-country comparisons during next year's field survey. On the other hand, in the case of visual sampling, there is a possibility of errors being made by the observer, so if possible, it is preferable to conduct monitoring surveys using equipment such as cameras. In addition, since the visual sampling only targets the surface layer, there is a possibility that the results of the estimated leakage volume will be underestimated. In order to accurately determine the leakage volume of each country, it is desirable to conduct parallel surveys using "trash removal devices" and "interceptors" that have functions similar to those of Japanese drainage pumping stations.

(2) Investigation of estimation methods.

In this trial calculation, the amount of PET bottle leakage per person in the target catchment area was calculated and multiplied by the total population to estimate the amount of leakage nationwide. This method may lead to a large error when estimating the entire country from the point of view of representativeness of the target sites and other land uses such as agricultural land.

In addition to this calculation method, it is desirable to compare and consider other estimation methods, such as estimating from the area using water balance analysis and estimating by taking into account land use, with reference to Japanese calculation methods. It is also important to check the data that has been organized in each country.

(3) Survey of typical plastic waste that is desirable as a target for tracking in Southeast Asia.

In calculating the leakage rate by product in this year's survey, PET bottles were selected as the tracking target for the following reasons.

- As in Japan, statistical data is considered to be well developed.
- Even if it leaks into the environment, there is little chance that it will be mistaken for another substance, and it is a typical classification item.

On the other hand, this year's field survey confirmed that it is not appropriate to calculate the leakage coefficient using PET bottles in Southeast Asian countries due to the following problems.

- Statistical data on production and sales volumes, etc., are not available.
- PET bottles have a market value after use and are considered to be collected by the informal sector, so they are not representative as an item for estimating leakage rates due to their high recycling rate compared to other plastic products.

In preparation for next year's survey, it is necessary to select polymers and products that are suitable for verification, such as polyethylene. Factors to be considered include the availability of statistical data (production volume, sales volume, etc.), the ease of identifying the target substance in the event of a leak, and the representativeness of the product (for example, the fact that the recovery rate is not as high as for other plastic products such as PET bottles).

20

item

proposed