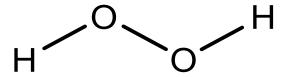
令和3年度第4回薬事・食品衛生審議会薬事分科会化学物質安全対策部会化学物質調査会、令和3年度化学物質審議会第1回安全対策部会、第216回中央環境審議会環境保健部会化学物質審査小委員会

令和3年9月3日

資料2-1 (審議会後確定版)


優先評価化学物質のリスク評価(一次)

生態影響に係る評価II

有害性情報の詳細資料

過酸化水素

優先評価化学物質通し番号 89

令和3年9月

環境省

31		
32	1 有害性評価(生態)	1
33	1-1 生態影響に関する毒性値の概要	1
34	(1) 水生生物	1
35	1-2 予測無影響濃度(PNEC)の導出	2
36	(1) 水生生物	2
37	1-3 有害性評価に関する不確実性解析	4
38	1-4 結果	4
39	1-5 有害性情報の有無状況	4
40	基本情報	6
41	付録 1 各栄養段階のキースタディの信頼性について	27
42	1. 生産者(藻類)	27
43	2. 一次消費者	
44	3. 二次消費者(魚類)	
45	付録 2 生態影響に関する有害性評価II関連情報	30
46	1 各キースタディの概要	
47	(1) 水生生物	
48	2 国内外における生態影響に関する有害性評価の実施状況	30
49	(1) 既存のリスク評価書における有害性評価の結果	30
50	(2) 水生生物保全に関する基準値等の設定状況	31
51 52	出典	33

53 1 有害性評価(生態)

- 54 生態影響に関する有害性評価は、技術ガイダンスに従い、当該物質の生態影響に関する有
- 55 害性データを収集し、それらデータの信頼性を確認するとともに、既存の評価書における評
- 56 価や国内外の規制値の根拠となった有害性評価値を参考としつつ、予測無影響濃度(PNEC
- 57 値)に相当する値を導出した。
- 58 過酸化水素の logPow は-1.51であり、懸濁物質への吸着や底質への移行等の可能性が低いた
- 59 め、底生生物のリスク評価 (一次) 評価Ⅱは実施しない。
- 60 なお、スクリーニング評価及びリスク評価(一次)評価Iでは、藻類(Chlorella vulgaris)の
- 61 慢性毒性値である 72 時間無影響濃度(NOEC) 0.1 mg/L を不確実係数積(UFs) 50 で除した
- 62 「0.002 mg/L ($2 \mu \text{g/L}$)」を PNEC 値として用いていた。
- 63 優先評価化学物質通し番号 89 の対象物質は次のとおりである。

64

65 【化学物質名】

【CAS 登録番号 (CAS RN®)】

66 · 過酸化水素 7722-84-1

67 ・ 炭酸ニナトリウムの過酸化水素との化合物 (2:3)² 15630-89-4

68

- 69 1-1 生態影響に関する毒性値の概要
- 70 (1) 水生生物
- 71 水生生物に対する予測無影響濃度 (PNECwater) を導出するための毒性値について、専門家に
- 72 よる信頼性の評価が行われた結果、表1-1に示す毒性値が PNECwater 導出に利用可能な毒性
- 73 値とされた。

74 表 1-1 PNEC_{water} 導出に利用可能な毒性値

14	ŧ			-	ZI-I PNI	CUwater 特田に	מאורה נערהל	一年江川			
ſ	栄養段階	急	慢	毒性値	生物	7種	エンドオ	パイント等	CAS	暴露	
	(生物 群)	性		$\begin{array}{c} (mg \\ H_2O_2/L) \end{array}$	種名	和名	エンド ポイント	影響内容	RN®	期間	出典
	生産者(海海)		0	0.63	Skeletonema costatum ^{*1}	スケレトネマ 属 (珪藻)	NOEC	GRO (RATE)	7722- 84-1	3 日間	(ECHA 7722- 84-1, 1997b) (Knight et al., 1995)
	(藻類)	0		1.38	Skeletonema costatum ^{*1}	スケレトネマ 属 (珪藻)	EC ₅₀	GRO (RATE)	7722- 84-1	3 日間	(ECHA 7722- 84-1, 1997b) (Knight et al.,

¹ 経済産業省「優先評価化学物質のリスク評価 (一次) 生態影響に係る評価 II 物理化学的性 状等の詳細資料 過酸化水素 優先評価化学物質通し番号 89 (平成 28 年 6 月)」

² 運用通知「化学物質の審査及び製造等の規制に関する法律の運用について」の 3-1 により、優先評価化学物質として取り扱われる物質。

栄養段階	急	慢	毒性值	生物	7種	エンドオ	パイント等	CAS	暴露	
(生物群)	性	性	(mg H ₂ O ₂ /L)	種名	和名	エンド ポイント	影響内容	RN®	期間	出典
										1995)
一次消費 者 (又は消 費者)(甲		0	0.63	Daphnia magna	オオミジンコ	NOEC	REP	7722- 84-1	21 日間	(ECHA 7722- 84-1, 2008) (Meiner tz et al., 2008)
<u></u> 殼類)	0		2.4	Brachionus plicatilis ^{*2}	シオミズツボ ワムシ	EC50	IMM	7722- 84-1	1日間	(Smit et al., 2008)
二次消費 者(又は	0		16.4	Pimephales pro- melas	ファットヘッドミノー	LC50	MOR	7722- 84-1	4日間	(ECHA 7722- 84-1, 1989c) (Shurtle ff, 1989a)
捕食者) (魚類)	0		70.7 ^{**3}	Pimephales pro- melas	ファットヘッドミノー	LC50	MOR	15630- 89-4	4日間	(ECHA 15630- 89-4, 1989b) (Shurtle ff, 1989d)

75[エンドポイント]

76EC50(Median Effective Concentration): 半数影響濃度、LC50(Median Lethal Concentration): 半数致死濃度、

NOEC (No Observed Effect Concentration): 無影響濃度

78 [影響内容]

77

79

81

89

94

GRO (Growth):生長(植物)、IMM (Immobilization):遊泳阻害、MOR (Mortality):死亡、

80 REP (Reproduction):繁殖、再生産

() 内:試験結果の算出法。RATE:生長速度より求める方法(速度法)

- 82 海産珪藻
- Ж2 83 汽水性ワムシ
- 84 過酸化水素濃度の実測値を基に算出

1-2 予測無影響濃度 (PNEC) の導出 85

- 評価の結果、採用可能とされた知見のうち、急性毒性及び慢性毒性のそれぞれについて、栄 86
- 養段階ごとに最も小さい値を PNECwater 導出のために採用した。それぞれの値に、情報量に応じ 87
- て定められた不確実係数積を適用し、PNECwaterを求めた。 88

(1) 水生生物 90

- 91 <慢性毒性値>
- 生産者(藻類) Skeletonema costatum 生長速度に対する阻害;3 日間 NOEC 0.63 mg/L 92
- Knight ら(ECHA7722-84-1, 1997b) (Knight et al., 1995)は、Paris Commission guidelines (1990) に準拠し、製 93 造元不明の純度(含量)35% w/w の物質を用いて、スケレトネマ属(S. costatum)(海産珪藻)
- の慢性毒性試験を実施した。試験は止水式で、設定濃度は対照区、0.625、1.25、2.5、5.0、10 95
- mg/L (公比 2) で実施された。助剤は用いられなかった。被験物質濃度の測定方法は記載され 96
- ていないが、全濃度区について実測が行われた。毒性値の算出には設定濃度が用いられ、分散 97
- 分析と Dunnett's t-test により 72 時間生長阻害に対する無影響濃度(NOEC) 0.63 mg/L が算出 98

- 99 された。過酸化水素は藻類試験培地中での分解が早く、藻類への主な影響は初期の暴露による
- 100 ものと考えられることから、設定濃度による結果は暴露の実態を反映していると判断した。
- 101 一次消費者 (甲殼類) Daphnia magna 繁殖阻害; 21 日間 NOEC 0.63 mg/L
- Meinertz ら(ECHA7722-84-1, 2008; Meinertz et al., 2008)は、ASTM designation E 1193-97: 21-day flow through
- 103 bioassay に準拠し、Akzo Nobel (Columbus, USA) 社製、純度 (含量) 35% w/w 水溶液を用いて、
- 104 オオミジンコ (D. magna) の慢性毒性試験を実施した。試験は流水式で、設定濃度は対照区、
- 105 0.32、0.63、1.25、2.5、5.0 mg/L (公比 2) で実施された。助剤は用いられなかった。被験物質
- 106 濃度の測定方法について記載はないが、毎日、全濃度区で実測が行われた。濃度区ごとの平均
- 107 実測濃度は設定濃度の100-106%と安定していたため、毒性値の算出には設定濃度が用いられ、
- 108 21 日間総産仔数に対する無影響濃度 (NOEC) 0.63 mg/L が算出された。
- 109 <急性毒性値>
- 110 二次消費者(魚類) Pimephales promelas 死亡;4日間 LC50 16.4 mg/L
- Shurtleff(ECHA7722-84-1, 1989c; Shurtleff, 1989a) は、USEPA Toxic Substances Control Act Test Guidelines
- 112 (1985)、Revision of TSCA Guidelines (1987) 等試験法に準拠し、製造元不明、純度(含量) 50%
- 113 w/w 水溶液を用いて、ファットヘッドミノー (P. promelas) の急性毒性試験を実施した。試験は
- 114 半止水式 (24 時間換水) で、設定濃度は対照区、0.5、5、25、50、250、500 mg/L で実施され
- 115 た。助剤は用いられなかった。滴定法により全濃度区で実測が行われた。実測濃度の算術平均
- 116 値を用いて Trimmed Spearman-Karber method により 96 時間半数致死濃度(LC50)16.4 mg/L が
- 117 算出された。

- 119 < PNEC の導出>
- 120 2栄養段階(生産者、一次消費者)に対する慢性毒性値(両生物種とも 0.63 mg/L)が得ら
- 121 れており、これを種間外挿「5」で除し、0.13 mg/L となる。慢性毒性値が得られなかった二
- 122 次消費者については、信頼できる急性毒性値 16.4 mg/L が得られており、この値を ACR (Acute
- 123 chronic ratio: 急性慢性毒性比)「100」で除し、0.164 mg/L となる。両者を比較し、値が小さ
- 124 い 0.13 mg/L をさらに「10」(室内から野外への外挿係数)で除し、過酸化水素の PNECwater
- 125 として 0.013 mg/L が得られた。
- 126 上記で算出した PNECwater について、国内外の規制値等との比較を行い、その妥当性等を検討
- 127 した。
- 128 過酸化水素は、国内外において水生生物保全に係る基準値等は設定されていない。
- 129 国内外のリスク評価では、OECD 初期評価報告書と欧州連合 (EU) リスク評価書 (EU-RAR)
- 130 が、クロレラ属 (*Chlorella vulgaris*) の生長阻害に対する 3 日間 NOEC 0.1 mg/L をアセスメン
- 131 ト係数 10 で除して、0.01 mg/L を PNEC 値としている。
- 132 なお、本物質が優先評価化学物質として判定されたスクリーニング評価及びリスク評価(一
- 133 次)評価Iでは、藻類の慢性毒性値(0.1 mg/L)及び甲殻類の慢性毒性値(0.63 mg/L)を種間外
- 134 挿の不確実係数「5」で除した値と、魚類の急性毒性値(16.4 mg/L)を ACR「100」で除した値
- 135 のうち最小値を、室内から野外への外挿係数「10」で除した値(0.002 mg/L)を PNEC 値とし
- 136 ていた。有害性評価Ⅱでは、技術ガイダンスに基づき有害性情報の収集範囲を広げて評価を行

- 137 った結果、不確実係数積は「50」となった。不確実係数積はスクリーニング評価等と同様であ
- 138 るが、スクリーニング評価等でキースタディとなっていた藻類の慢性毒性値は、統計解析が行
- 139 われていないため定量的な値としては利用できない、との専門家判断により除外された。その
- 140 結果、より大きな毒性値を持つ試験がキースタディとなり、PNEC は評価 I までの値より大き
- 141 くなった。

142 1-3 有害性評価に関する不確実性解析

- 143 水生生物では、生産者(藻類)と一次消費者(甲殻類)の慢性毒性値が得られ、二次消費
- 144 者(魚類)の急性毒性値も得られている。PNECwaterは、生産者と一次消費者の慢性毒性値を
- 145 キースタディの毒性値として、種間外挿「5」と野外への外挿「10」より、不確実係数積「50」
- 146 を当てはめて求めている。二次消費者(魚類)の信頼できる慢性毒性値が得られていない点
- 147 に基本的な不確実性がある。なお、生産者(藻類)と一次消費者(甲殻類)については、濃
- 148 度が測定されているものの、設定濃度で毒性値を算出しているため、実際の影響濃度とは若
- 149 干の差がある可能性がある。

150 1-4 結果

151 有害性評価IIの結果、過酸化水素の水生生物に係る PNECwater は 0.013 mg/L を採用する。

152

153

表1-2 有害性情報のまとめ

	水生生物
PNEC	0.013 mg/L
キースタディの毒性値	0.63 mg/L
不確実係数積(UFs)	50
(キースタディのエン ドポイント)	生産者(藻類)、一次消費者(甲 殻類)に係る慢性影響に対する無 影響濃度(NOEC)

154

155 1-5 有害性情報の有無状況

156 過酸化水素のリスク評価(一次)の評価I・評価IIを通じて収集した範囲の有害性情報の有無

157 状況を表1-3に整理した。

158 スクリーニング毒性試験、有害性調査指示に係る試験、それ以外の試験に分類して整理した。

表1-3 有害性情報の有無状況

		試験項目	試験方法注1)	有無	出典 (情報源)
スクリーン	水生生物 急性毒性	藻類生長阻害試験	化審法、 OECD TG.201	0	(ECHA7722- 84-1, 1997b) (Knight et al., 1995)
グ生 態毒		ミジンコ急性遊泳阻害試 験	化審法、 OECD TG.202	×	

		試験項目	試験方法注1)	有無	出典 (情報源)
性試験		魚類急性毒性試験	化審法、 OECD TG.203	0	(Shurtleff, 1989a) (ECHA7722- 84-1, 1989c) (ECHA15630- 89-4, 1989b) (Shurtleff, 1989d)
第二年定化学物	水生生物	藻類生長阻害試験	化審法、 OECD TG.201	0	(ECHA7722- 84-1, 1997b) (Knight et al., 1995)
質指 定に 係る	慢性毒性試験	ミジンコ繁殖阻害試験	化審法、 OECD TG.211	0	(Meinertz et al., 2008) (ECHA7722- 84-1, 2008)
有害 性調		魚類初期生活段階毒性試 験		×	
査指 示にる 試験	底生生物 慢性毒性 試験 ^{注 2)}	_		×	
その 他の 試験	水生生物 急性毒性	ワムシ急性毒性試験	ASTM Guideline E1440-91	0	(Smit et al., 2008)

注1) 化審法:「新規化学物質等に係る試験の方法について」(平成 23 年 3 月 31 日 薬食発第 0331 号第 7 号、平成 23・03・29 製局第 5 号、環保企発第 110331009 号) に記載された試験方法

OECD:「OECD GUIDELINES FOR THE TESTING OF CHEMICALS」に記載された試験方法

注2) その他環境における残留の状況からみて特に必要があると認める生活環境動植物の生息又は生育に 及ぼす影響についての調査(現時点では底生生物への毒性)

基本情報 166

優先評価化学物質	89
通し番号	
物質名称	過酸化水素
CAS 番号	7722-84-1、15630-89-41

167

表1. PNEC 値算出の候補となる毒性データ一覧

168	表1.	PNEC	値算出の値	候補となる?	毒性データ-	一覧								
No			生物種		被験物	· 質		エンドポ	イント等	暴露期 間	毒性値	信頼性	出典	備考
	栄養段階	生物分類	生物種	種名	CAS RN®	純度(%)	急慢	エンドポ イント	影響内容	(日)	(mg/L)	ランク		
1	生産者	藻類	スケレトネ マ属 (珪 藻)	Skeletonema costatum	7722-84-1	35% w/w	慢性	NOEC	GRO(RATE)	3	0.63	2	(ECHA7722- 84-1, 1997b) (Knight et al., 1995)	海産
2	生産者	藻類	スケレトネ マ属 (珪 藻)	Skeletonema costatum	7722-84-1	35% w/w	急性	EC ₅₀	GRO(RATE)	3	1.41	2	(ECHA7722- 84-1, 1997b) (Knight et al., 1995)	海産
3	一次消費者			Daphnia magna	7722-84-1	35% Perox- Aid	慢性	NOEC	REP	21	0.63	2	(ECHA7722- 84-1, 2008) (Meinertz et al., 2008)	
4	一次消費 者	その他	シオミズツ ボワムシ	Brachionus plicatilis	7722-84-1	35% w/w	急 性	EC ₅₀	IMM	1	2.4	2	(Smit et al., 2008)	汽水性
5	二次消費者						慢性							該当データなし
6	二次消費者	魚類	ファットへッドミノー	Pimephales promelas	7722-84-1		急性	LC ₅₀	MOR	4	16.4	2	(ECHA7722- 84-1, 1989c) (Shurtleff, 1989a)	
7	二次消費者	魚類	ファットへッドミノー	Pimephales promelas	15630-89-4	>88%	急性	LC50	MOR	4	70.7	2	(ECHA15630- 89-4, 1989b) (Shurtleff, 1989d)	過酸化水素換算

¹運用通知「化学物質の審査及び製造等の規制に関する法律の運用について」の3-1により、優先評価化学物質として取り扱われる物質。

170 表 2. PNEC 値算出候補とならない毒性データー覧(試験条件等の情報不足、試験法からの明らかな逸脱等)

L7 <u>0</u>		1 4 4	INEC		さならない	ザエノ ブ	見(四)	吹木	一子ツ月	TX TYCE V III	へが欠化した	7 10 V 7 19 1 1	ノルツ	、心心可	
N	lo			生物種		被験物	7質		エンドポイ	ント等	暴露期 間	毒性値	信頼性	出典	備考
		栄養段階	生物分類	生物種	種名	CAS RN®	純度(%)	急慢	エンドポイ ント	影響内容	(目)	(mg/L)	ランク		
	1	生産者	藻類	クロレラ属 (緑藻)	Chlorella vul- garis	7722-84-1	35% w/w	慢性	NOEC	GRO(RATE)	3	0.1	3	1991)	統計処理を実施していない等、定量的に信頼できない。
2	2	生産者	藻類	アナベナ属 (藍藻)	Anabaena flosaquae	7722-84-1		慢性	LOEC	GRO(RATE)	32	0.10	4	(Kavanagh, 1992) (ECHA772 2-84-1, 1992b)	試験情報等の詳細状況が 不足。
3	3	生産者	藻類	ミクロキス チス属 (藍 藻)	Microcystis ae- ruginosa	7722-84-1		_	NOEL	PSYN	0.125	0.15	3	(Drabkova et al., 2007a)	暴露期間が不適。
4	4	生産者	藻類	ミクロキス チス属 (藍 藻)	Microcystis ae- ruginosa	7722-84-1		_	NOEL	PSII	0.125	0.15	3	(Drabkova et al., 2007a)	暴露期間が不適。
:	5	生産者	藻類	ミクロキス チス属 (藍 藻)	Microcystis ae- ruginosa	7722-84-1		急性	EC50	PSII	0.125	0.27	3	(Drabkova et al., 2007a)	暴露期間が不適。
(6	生産者	藻類	ミクロキス チス属 (藍 藻)	Microcystis ae- ruginosa	7722-84-1		_	LOEL	PSII	0.125	0.3	3	(Drabkova et al., 2007a)	暴露期間が不適。
,	7	生産者	藻類	ミクロキス チス属 (藍 藻)	Microcystis ae- ruginosa	7722-84-1			LOEL	PSYN	0.125	0.3	3	(Drabkova et al., 2007a)	暴露期間が不適。
[8	生産者	藻類	ミクロキス チス属 (藍 藻)	Microcystis ae- ruginosa	7722-84-1		急性	EC50	PSII	0.125	0.45	3	(Drabkova et al., 2007a)	暴露期間が不適。
j	9	生産者	藻類	ミクロキス チス属 (藍 藻)	Microcystis ae- ruginosa	7722-84-1		急性	EC50	PSII	0.125	0.56	3	(Drabkova et al., 2007a)	暴露期間が不適。
1	0	生産者	藻類	ミクロキス チス属 (藍	Microcystis pul-	7722-84-1		急 性	EC50	ABND	3	0.71	4	(Drabkova et al.,	試験条件等詳細情報が不 足。100、10、1 および 0.1

No			生物種		被験物	7質		エンドポイ	ント等	暴露期 間	毒性値	信頼性	出典	備考
	栄養段階	生物分 類	生物種	種名	CAS RN®	純度(%)	急慢	エンドポイ ント	影響内容	(日)	(mg/L)	ラン ク		
			藻)	verea ssp. in- certa									2007b)	mg/L
11	生産者	藻類	アナベナ属 (藍藻)	Anabaena sp.	7722-84-1		急性	EC50	ABND	3	0.81	4	et al.,	試験条件等詳細情報が不 足。100、10、1 および 0.1 mg/L
12	生産者	藻類	ミクロキス チス属 (藍 藻)	Microcystis ae- ruginosa	7722-84-1		急性	EC50	PSII	0.125	1.13	3	(Drabkova et al., 2007a)	暴露期間が不適。
13	生産者	藻類	ドゥナリエ ラ属 (緑藻 類)	Dunaliella ter- tiolecta	7722-84-1	35	急性	EC50	CHLA	3	1.2	3	(Smit et al., 2008)	試験情報等の詳細状況が 不足。
14	生産者	藻類	アナベナ属 (藍藻)	Anabaena A4	7722-84-1		急 性	EC ₅₀	GRO	5.83	1.6	3	(Clarke, 1991)	暴露期間が不適。
15	生産者	藻類	セネデスム ス属 (イカ ダモ属)	Scenedesmus acutus var. acutus	7722-84-1		_	LOEL	PSII	0.0417	1.7	3	(影響内容が不適。原著では 50 μmol/L。
16	生産者	藻類	ムレミカヅ キモ (緑 藻)	Pseudokirch- neriella sub- capitata	7722-84-1		_	NOEL	PSYN	0.125	2.5	3	(Drabkova et al., 2007a)	暴露期間が不適。
17	生産者	藻類	ムレミカヅ キモ (緑 藻)	Pseudokirch- neriella sub- capitata	7722-84-1		_	NOEL	PSII	0.125	2.5	3	(Drabkova et al., 2007a)	暴露期間が不適。
18	生産者	藻類	クロレラ属 (緑藻)	Chlorella vul- garis	7722-84-1	35% w/w	急性	EC50	GRO(RATE)	3	2.5	3	(ECHA772 2-84-1, 1991) (Degussa AG, 1991)	試験成立状況を満たしていない。
19	生産者	藻類	ムレミカヅ キモ (緑 藻)	Pseudokirch- neriella sub- capitata	7722-84-1		急性	EC50	PSII	0.125	4.05	3	(Drabkova et al., 2007a)	暴露期間が不適。
20	生産者	藻類	ムレミカヅ キモ (緑 藻)	Pseudokirch- neriella sub- capitata	7722-84-1		急性	EC ₅₀	PSII	0.125	4.15	3	(Drabkova et al., 2007a)	暴露期間が不適。

No			生物種		被験物	質		エンドポイ	ント等	暴露期 間	毒性値	信頼性	出典	備考
	栄養段階	生物分類	生物種	種名	CAS RN®	純度(%)	急慢	エンドポイ ント	影響内容	(目)	(mg/L)	ランク		
21	生産者	藻類	ムレミカヅ キモ (緑 藻)	Pseudokirch- neriella sub- capitata	7722-84-1		_	LOEL	PSYN	0.125	5	3	(Drabkova et al., 2007a)	暴露期間が不適。
22	生産者	藻類	ムレミカヅ キモ (緑 藻)	Pseudokirch- neriella sub- capitata	7722-84-1		_	LOEL	PSII	0.125	5	3	(Drabkova et al., 2007a)	暴露期間が不適。
23	生産者	藻類	アナベナ属 (藍藻)	Anabaena vari- abilis	7722-84-1		急 性	EC ₅₀	GRO	5.83	5	3	(Clarke, 1991)	暴露期間が不適。
24	生産者	藻類	ムレミカヅ キモ (緑 藻)	Pseudokirch- neriella sub- capitata	7722-84-1		急 性	EC ₅₀	GRO(RATE)	4	5.38	3	(Gregor et al., 2008)	試験情報等の詳細状況が 不足。
25	生産者	藻類	ムレミカヅ キモ (緑 藻)	Pseudokirch- neriella sub- capitata	7722-84-1		急 性	EC50	ABND	3	5.74	4	(Drabkova et al., 2007b)	試験情報等の詳細状況が 不足。
26	生産者	藻類	ムレミカヅ キモ (緑 藻)	Pseudokirch- neriella sub- capitata	7722-84-1		急性	EC50	GRO(RATE)	4	5.74	3	(Gregor et al., 2008)	被験物質純度等情報不足。
27	生産者	藻類	デスモデス ムス属(イ カダモ属)	Scenedesmus quadricauda	7722-84-1		急性	EC50	ABND	3	5.81	4	(Drabkova et al., 2007b)	試験情報等の詳細状況が 不足。
28	生産者	藻類	ムレミカヅ キモ (緑 藻)	Pseudokirch- neriella sub- capitata	7722-84-1		急性	EC ₅₀	PSII	0.125	6.09	3	(Drabkova et al., 2007a)	暴露期間が不適。
29	生産者	藻類	ムレミカヅ キモ (緑 藻)	Pseudokirch- neriella sub- capitata	7722-84-1		急 性	EC50	GRO(RATE)	4	6.49	3	(Gregor et al., 2008)	試験情報等の詳細状況が 不足。
30	生産者	藻類	ミクロキス チス属 (藍 藻)	Microcystis ae- ruginosa	7722-84-1		急性	EC50	PSII	0.125	6.63	3	(Drabkova et al., 2007a)	暴露期間が不適。
31	生産者	藻類	アナベナ属 (藍藻)	Anabaena A4	15630-89-4	90	急性	EC50	GRO(RATE)	5.83	8	3	(ECHA156 30-89-4, 1997) (Clarke, 1991)	暴露期間が不適。

No					被験物	質		エンドポイ	ント等	暴露期 間	毒性値	信頼性	出典	備考
	栄養段階	生物分 類	生物種	種名	CAS RN®	純度(%)	急 慢	エンドポイ ント	影響内容	(日)	(mg/L)	ラン ク		
32	生産者	藻類	アナベナ属 (藍藻)	Anabaena A4	15630-89-4	90	急性	EC ₅₀	GRO	5.83	8	3	(Clarke, 1991)	暴露期間が不適。
33	生産者	藻類	セネデスム ス属(イカ ダモ属)	Scenedesmus acutus var. acutus	7722-84-1			LOEL	ABND	15	8.5	3	(影響内容が不適。原著では 250 μmol/L。
34	生産者	藻類	セネデスム ス属(イカ ダモ属)	Scenedesmus acutus var. acutus	7722-84-1		ı	LOEL	PSII	0.0417	8.5	3		影響内容が不適。原著では 250 μmol/L。
35	生産者	藻類	ムレミカヅ キモ (緑 藻)	Pseudokirch- neriella sub- capitata	7722-84-1		急性	EC ₅₀	PSII	0.125	9.8	3	(Drabkova et al., 2007a)	暴露期間が不適。
36	生産者	藻類	クロレラ属 (緑藻)	Chlorella emer- sonii	15630-89-4		慢性	LOEC	GRO(RAT E)	10	10	3	(Clarke, 1991) (ECHA156 30-89-4, 1991a)	暴露期間が不適。
37	生産者	藻類	クロレラ属 (緑藻)	Chlorella emer- sonii	7722-84-1		慢 性	LOEC	GRO	10	10	3	(Clarke, 1991)	暴露期間が不適。
38	生産者	藻類	クロレラ属 (緑藻)	Chlorella emer- sonii	15630-89-4		慢 性	LOEC	GRO	10	10	3	(Clarke, 1991)	暴露期間が不適。
39	生産者	藻類	シネココッ クス属 (藍 藻)	Synechococcus leopoliensis	7722-84-1		慢性	LOEC	GRO	5.83	10	3	(Clarke, 1991)	暴露期間が不適。
40	生産者	藻類	シネココッ クス属 (藍 藻)	Synechococcus leopoliensis	15630-89-4		慢性	LOEC	GRO	6.67	10	3	(Clarke, 1991)	暴露期間が不適。
41	生産者	藻類	シネココッ クス属 (藍 藻)	Synechococcus leopoliensis	15630-89-4		慢性	LOEC	GRO(RATE)	6.67	10	3	(Clarke, 1991) (ECHA156 30-89-4, 1991c)	暴露期間が不適。
42	生産者	藻類	フナガタケ イソウ属 (珪藻)	Navicula semi- nulum	7722-84-1		急 性	EC ₅₀	PSII	0.125	12.19	3	(Drabkova et al., 2007a)	暴露期間が不適。

No			生物種		被験物	質		エンドポイ	ント等	暴露期 間	毒性値	信頼性	出典	備考
	栄養段階	生物分類	生物種	種名	CAS RN®	純度(%)	急慢	エンドポイ ント	影響内容	(目)	(mg/L)	ラン ク		
43	生産者	藻類	フナガタケ イソウ属 (珪藻)	Navicula semi- nulum	7722-84-1		急性	EC ₅₀	PSII	0.125	12.84	3	(Drabkova et al., 2007a)	暴露期間が不適。
44	生産者	藻類	フナガタケ イソウ属 (珪藻)	Navicula semi- nulum	7722-84-1		急性	EC50	PSII	0.125	15.78	3	(Drabkova et al., 2007a)	暴露期間が不適。
45	生産者	藻類	アナベナ属 (藍藻)	Anabaena vari- abilis	15630-89-4	90	急性	EC ₅₀	GRO	5.83	19	3	(Clarke, 1991)	暴露期間が不適。
46	生産者	藻類	フナガタケ イソウ属 (珪藻)	Navicula semi- nulum	7722-84-1		急性	EC ₅₀	PSII	0.125	19.69	3	(Drabkova et al., 2007a)	暴露期間が不適。
47	生産者	藻類	デスモデス ムス属(イ カダモ属)	Desmodesmus quadricauda	7722-84-1		慢性	LOEC	GRO	10	20	3	(Clarke, 1991)	暴露期間が不適。
48	生産者	藻類	ムレミカヅ キモ (緑 藻)	Pseudokirch- neriella sub- capitata	7722-84-1		急性	EC50	PSII	0.125	21.26	3	(Drabkova et al., 2007a)	暴露期間が不適。
49	生産者	藻類	ムレミカヅ キモ (緑 藻)	Pseudokirch- neriella sub- capitata	7722-84-1		ı	NOEC	PGRT	0.0139	34	3		暴露期間が不適。原著では 1.0E-3 mol/dm³。
50	生産者	藻類	ムレミカヅ キモ (緑 藻)	Pseudokirch- neriella sub- capitata	15630-89-4	77	_	LOEC	ABND	5	34	4		エンドポイント不適。原著 では 1000 μM。
51	生産者	藻類	ムレミカヅ キモ(緑 藻)	Pseudokirch- neriella sub- capitata	15630-89-4	77	急性	IC ₅₀	ABND	4	68	3		用量反応関係あり。実測し ていない。
52	生産者	藻類	クロレラ属 (緑藻)	Chlorella emer- sonii	15630-89-4		急性	EC50	GRO(RATE)	10	70	3	(Clarke, 1991) (ECHA156 30-89-4, 1991a)	暴露期間不適。
53	生産者	藻類	フナガタケ イソウ属	Navicula semi- nulum	7722-84-1		急 性	EC50	PSII	0.125	71.26	3	(Drabkova et al.,	暴露期間が不適。

No			生物種		被験物	質		エンドポイ	ント等	暴露期 間	毒性値	信頼性	出典	備考
	栄養段階	生物分類	生物種	種名	CAS RN®	純度(%)	急慢	エンドポイ ント	影響内容	(日)	(mg/L)	ラン ク		
			(珪藻)										2007a)	
54	生産者	藻類	ドゥナリエ ラ属(緑藻 類)	Dunaliella ter- tiolecta	7722-84-1		_	LOEL	MOR	0.0035	100	3	(Gavand et al., 2007)	暴露期間が不適。
55	生産者	藻類	デスモデス ムス属(イ カダモ属)	Desmodesmus quadricauda	15630-89-4		慢性	LOEC	GRO(RATE)	10	100	3	(Clarke, 1991) (ECHA156 30-89-4, 1991b)	暴露期間が不適。
56	生産者	藻類	デスモデス ムス属(イ カダモ属)	Desmodesmus quadricauda	15630-89-4	90	慢性	LOEC	GRO	10	100	3	(Clarke, 1991)	暴露期間が不適。
57	生産者	藻類	シネココッ クス属 (藍 藻)	Synechococcus leopoliensis	15630-89-4	90	慢性	LOEC	GRO	6.67	100	3	(Clarke, 1991)	暴露期間が不適。
58	生産者	藻類	デスモデス ムス属(イ カダモ属)	Desmodesmus quadricauda	15630-89-4		急性	EC50	GRO(RATE)	10	150	3	(Clarke, 1991) (ECHA156 30-89-4, 1991b)	暴露期間が不適。
59	生産者	その他	イボウキク サ	Lemna gibba	7722-84-1		急性	EC ₅₀	NCHG	7	237	4	(Thomas, 1998)	試験情報等の詳細状況が 不足。文献では 6.96 mM。
60	生産者	藻類	クロレラ属 (緑藻)	Chlorella emer- sonii	7722-84-1		慢 性	LOEC	GRO	10	<=10	3	(Clarke, 1991)	暴露時間が不適
61	生産者	藻類	シネココッ クス属 (藍 藻)	Synechococcus leopoliensis	7722-84-1		慢性	LOEC	GRO	5.83	<=10	3	(Clarke, 1991)	暴露時間が不適
62	生産者	藻類	デスモデス ムス属(イ カダモ属)	Desmodesmus quadricauda	7722-84-1		慢性	LOEC	GRO(RATE)	10	<=20	3	(Clarke, 1991)	暴露時間が不適
63	生産者	藻類	ミクロキス チス属 (藍 藻)	Microcystis ae- ruginosa	7722-84-1		急性	EC ₅₀	PSII	0.125	<5	3	(Drabkova et al., 2007a)	暴露期間が不適。

No			生物種		被験物]質		エンドポイ	ント等	暴露期 間	毒性値	信頼性	出典	備考
	栄養段階	生物分類	生物種	種名	CAS RN®	純度(%)	急慢	エンドポイ ント	影響内容	(目)	(mg/L)	ランク		
64	生産者	藻類	ミクロキス チス属 (藍 藻)	Microcystis ae- ruginosa	7722-84-1		急性	EC ₅₀	PSII	0.125	<5	3	(Drabkova et al., 2007a)	暴露期間が不適。
65	生産者	藻類	ムレミカヅ キモ(緑 藻)	Pseudokirch- neriella sub- capitata	7722-84-1		急性	EC50	PSII	0.125	<5	3	(Drabkova et al., 2007a)	暴露期間が不適。
66	生産者	藻類	ムレミカヅ キモ (緑 藻)	Pseudokirch- neriella sub- capitata	7722-84-1		急性	EC50	PSII	0.125	<5	3	(Drabkova et al., 2007a)	暴露期間が不適。
67	生産者	藻類	ムレミカヅ キモ (緑 藻)	Pseudokirch- neriella sub- capitata	7722-84-1		急性	EC50	PSII	0.125	<5	3	(Drabkova et al., 2007a)	暴露期間が不適。
68	生産者	藻類	フナガタケ イソウ属 (珪藻)	Navicula semi- nulum	7722-84-1		急性	EC ₅₀	PSII	0.125	>20-<25	3	(Drabkova et al., 2007a)	暴露期間が不適。
69	生産者	藻類	ムレミカヅ キモ (緑 藻)	Pseudokirch- neriella sub- capitata	7722-84-1		急性	EC50	PSII	0.125	>5<10	3	(Drabkova et al., 2007a)	暴露期間が不適。
70	生産者	藻類	フナガタケ イソウ属 (珪藻)	Navicula semi- nulum	7722-84-1		急性	EC50	PSII	0.125	~20	3	(Drabkova et al., 2007a)	暴露期間が不適。
71	生産者	藻類	クロレラ属 (緑藻)	Chlorella emer- sonii	15630-89-4	90	_	EC ₅₀	GRO	10	100-200	3	(Clarke, 1991)	暴露期間が不適。
72	生産者	藻類	デスモデス ムス属(イ カダモ属)	Desmodesmus quadricauda	7722-84-1		急性	EC50	GRO(RATE)	10	27.5-43	3	(Clarke, 1991)	暴露期間が不適。
73	生産者	藻類	クロレラ属 (緑藻)	Chlorella emer- sonii	7722-84-1		急性	EC ₅₀	GRO(RATE)	10	17	3	(Clarke, 1991)	暴露期間が不適。
74	生産者	その他	アオウキク サ属	Lemna di- sperma	7722-84-1		急 性	EC50	ABND	7	<102	4	(Abdul et al., 2012)	暴露期間が不適。原著では <3 mM。
75	生産者	藻類	デスモデス ムス属(イ カダモ属)	Desmodesmus quadricauda	15630-89-4	90	_	LOEC	GRO	10	150	3	(Clarke, 1991)	暴露期間が不適。

No			生物種		被験物	質		エンドポイ	ント等	暴露期 間	毒性値	信頼性	出典	備考
	栄養段階	生物分 類	生物種	種名	CAS RN®	純度(%)	急 慢	エンドポイ ント	影響内容	(日)	(mg/L)	ラン ク		
76	生産者	藻類	シネココッ クス属 (藍 藻)	Synechococcus leopoliensis	15630-89-4	90	_	EC ₅₀	GRO	6.67	160	3	(Clarke, 1991)	暴露期間が不適。
77	一次消費者	甲殼類	テナガエビ 科	Palaemonetes pugio	7722-84-1	3	_	LOEL	НАТСН	-	0.299	3	(Hook and Lee, 2004)	暴露期間が不適。原著では 8.8 μM。
78	一次消費者	甲殼類	テナガエビ 科	Palaemonetes pugio	7722-84-1	3	_	NOEL	НАТСН	-	0.602	3	(Hook and Lee, 2004)	暴露期間が不適。原著では 17.7 μM。
79	一次消費 者	甲殼類	ミジンコ	Daphnia pulex	7722-84-1		_	NOEC	MOR	2	1.0	3	(U.S. EPA, 2007)	エンドポイントが不適。
80	一次消費 者	甲殼類	ミジンコ	Daphnia pulex	7722-84-1		_	NOEC	MOR	2	1.0	3	(ECHA772 2-84-1, 1989a)	エンドポイントが不適。
81	一次消費 者	甲殼類	オオミジンコ	Daphnia magna	7722-84-1	30	_	LOEL	CEL	1	1.2	3	(Watanabe et al., 2007)	エンドポイントが不適。
82	一次消費者	甲殼類	オオミジンコ	Daphnia magna	7722-84-1	35.4	_	NOEL	TDTH	21	1.27	_	\	繁殖に対する影響がある ため、用いない。
83	一次消費 者	甲殼類	テナガエビ 科	Palaemonetes pugio	7722-84-1	3	_	LOEL	НАТСН	-	1.50	3	Lee, 2004)	暴露期間が不適。原著では 44.2 μM。
84	一次消費 者	甲殼類	ミジンコ	Daphnia pulex	15630-89-4	>88	_	NOEC	MOR	2	2	3	(ECHA156 30-89-4, 1989a)	エンドポイントが不適。
85	一次消費者	甲殼類	オオミジンコ	Daphnia magna	7722-84-1		急性	EC50	IMM	1	2.3	4	(Bringmann and Kuhn, 1982)	被験物質情報等が不足。暴 露期間が短い。
86	一次消費者	甲殼類	オオミジンコ	Daphnia magna	7722-84-1	30	急性	EC ₅₀	IMM	2	2.32	4	(Watanabe et al., 2007)	ミジンコ DNA マイクロアレイによる試験。遊泳阻害試験に関する情報は不足。
87	一次消費者	甲殼類	ミジンコ	Daphnia pulex	7722-84-1	50	急性	LC50	MOR	2	2.4	4	(Shurtleff, 1989b) (ECHA772 2-84-1, 1989a)	試験情報等の詳細状況が 不足。
88	一次消費 者	甲殼類	ミジンコ	Daphnia pulex	7722-84-1		急 性	EC ₅₀	_	2	2.4	4	(U.S. EPA, 2007)	試験情報等の詳細状況が 不足。

No			生物種		被験物	7質		エンドポイ	ント等	暴露期 間	毒性値	信頼性	出典	備考
	栄養段階	生物分 類	生物種	種名	CAS RN®	純度(%)	急慢	エンドポイ ント	影響内容	(目)	(mg/L)	ランク		
89	一次消費 者	甲殼類	オオミジンコ	Daphnia magna	7722-84-1	35.4	慢性	NOEL	TFPG	21	2.61	3	(Meinertz et al., 2008)	影響内容が不適。
90	一次消費 者	甲殼類	オオミジンコ	Daphnia magna	7722-84-1	35.4	慢性	NOEL	SEXR	21	2.61	3	(Meinertz et al., 2008)	影響内容が不適。
91	一次消費 者	甲殼類	オオミジンコ	Daphnia magna	7722-84-1	35.4	慢性		MOR	21	2.61	3	(Meinertz et al., 2008)	エンドポイントが不明。
92	一次消費 者	その他	マガキ	Crassostrea gi- gas	7722-84-1		_	NOEC	DVP	2	2.8	4	2-84-1,	海産 試験情報等の詳細状況が 不足。
93	一次消費者	その他	マガキ	Crassostrea gi- gas	7722-84-1		急性	EC50	DVP	2	3.2	4	(海産 試験情報等の詳細状況が 不足。
94	一次消費 者	甲殼類	ヨコエビ属	Gammarus sp.	7722-84-1		急 性	LC ₅₀	MOR	4	4.4	4	()	試験情報等の詳細状況が 不足。
95	一次消費 者	甲殼類	ミジンコ	Daphnia pulex	15630-89-4	>88	急性	EC ₅₀	MOR	2	4.9	4	(ECHA156 30-89-4, 1989a)	毒性値近辺の公比が大きく信頼性が低い。
96	一次消費 者	甲殼類	ミジンコ	Daphnia pulex	7722-84-1		急 性	EC50	-	2	4.9	4	2007)	試験情報等の詳細状況が 不足。
97	一次消費 者	甲殼類	ミジンコ	Daphnia pulex	15630-89-4		急 性	EC ₅₀	1	2	4.9	4	(Shurtleff, 1989c)	試験情報等の詳細状況が 不足。
98	一次消費 者	甲殼類	ミジンコ属	Daphnia cari- nata	7722-84-1		急性	LC50	MOR	2	5.6	4	(ECHA772 2-84-1, 2012)	試験情報等の詳細状況が 不足。
99	一次消費 者	甲殼類	オオミジンコ	Daphnia magna	7722-84-1		急 性	EC50	IMM	1	7.7	4	(Bringmann and Kuhn, 1982)	試験情報等の詳細状況が 不足。
100	一次消費 者	甲殼類	オオミジンコ	Daphnia magna	7722-84-1	35	_	NOEL	IMM	2	10	_	(U.S. EPA, 1992)	入手不可
101	一次消費 者	その他	サカマキガ イ属	Physa sp.	7722-84-1		急 性	LC50	MOR	4	17.7	4	(Kay et al., 1982)	試験情報等の詳細状況が 不足。
102	一次消費 者	甲殼類	オオミジンコ	Daphnia magna	7722-84-1	35	急 性	EC50	IMM	2	24	_	(U.S. EPA, 1992)	入手不可

No			生物種		被験物	I質		エンドポイ	ント等	暴露期 間	毒性値	信頼性	出典	備考
	栄養段階	生物分類	生物種	種名	CAS RN®	純度(%)	急慢	エンドポイ ント	影響内容	(目)	(mg/L)	ランク		
103	一次消費 者	甲殼類	ミジンコ属	Daphnia cari- nata	7722-84-1	30	急性	ET50	IMM	0.0611	50	3	(Parkinson et al., 2001)	暴露期間が不適。
104	一次消費 者	甲殼類	ドロクダム シ属	Corophium volutator	7722-84-1	35	急性	EC50	IMM	1	611	4	(Smit et al., 2008)	海産 試験情報等の詳細状況が 不足。
105	一次消費 者	甲殼類	オオミジンコ	Daphnia magna	7722-84-1	100	急性	EC50	_	1	2-2.6	4	(Bringmann and Kuhn, 1982; ECHA7722 -84-1, 1989b)	
106	二次消費 者	魚類	ゼブラフィ ッシュ	Danio rerio	7722-84-1			LOEC	CEL	0.04166	0.05	3		原著単位:%のまま。1 時間 暴露後の胚から分離した 細胞を使用。エンドポイン ト不適。
107	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1			LOEL	CEL	0.01375	3.4	3		精子によるコメットアッセイ (50000 倍希釈)。原著では 0.1 mM。エンドポイントが不適。
108	二次消費 者	魚類	ファットへ ッドミノー	Pimephales promelas	7722-84-1		_	NOEC	ВЕН	4	5	3	(ECHA772 2-84-1, 1989c)	エンドポイントが不適。
109	二次消費 者	魚類	ゼブラフィ ッシュ	Danio rerio	7722-84-1		急性	LC50	MOR	1	18.29	3	2006)	暴露期間が不適。原著では 537.9 μM。
110	二次消費 者	魚類	ゼブラフィ ッシュ	Danio rerio	7722-84-1		急性	LC50	MOR	4	18.29	3	(Chan et al., 2006)	胚を用いた遺伝子発現観察。成長段階不適。原著では 537.9 µM。
111	二次消費 者	魚類	ゼブラフィ ッシュ	Danio rerio	7722-84-1		_	NOEC	CEL	1	18.29	3	2000)	エンドポイント、暴露期間 が不適。原著では 537.9 μM。
112	二次消費 者	魚類	ゼブラフィ ッシュ	Danio rerio	7722-84-1		_	LOEC	BDFW	2	34	4	al., 2010)	試験情報等の詳細状況が 不足。原著では1mM。
113	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		_	LOEL	CEL	0.01375	34	3		精子によるコメットアッ セイ。原著では 1 mM。エ

No			生物種		被験物	7質		エンドポイ	ント等	暴露期 間	毒性値	信頼性	出典	備考
	栄養段階	生物分類	生物種	種名	CAS RN®	純度(%)	急慢	エンドポイ ント	影響内容	(目)	(mg/L)	ラン ク		
														ンドポイントが不適。
114	二次消費者	魚類	コイ科(ウ グイの仲 間)	Leuciscus idus	7722-84-1		急 性	LC ₅₀	MOR	3	35	4	(Degussa AG, 1977)	試験情報等の詳細状況が 不足
115	二次消費 者	魚類	アメリカナ マズ	Ictalurus punc- tatus	7722-84-1		急 性	LC50	MOR	4	37.4	4	(Kay et al., 1982)	試験情報等の詳細状況が 不足。
116	二次消費者	魚類	コイ属	Cyprinus sp.	7722-84-1	30	急性	LC ₅₀	MOR	0.0021	42	3	(ECHA772 2-84-1, 1990)	48 時間 LC ₅₀ であるが、暴 露期間が不適 (3 分間)。
117	二次消費 者	魚類	フナ属	Carassius sp.	7722-84-1		急性	LC50	MOR	2	42	_	(Miyazaki et al., 1990)	す。
118	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		急 性	LC50	MOR	1	45.1	3	(Rach et al., 1997)	暴露期間が不適。原著では 31.3 AI μL/L。比重 1.442 で 換算。
119	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		急 性	LC50	MOR	1	49.0	3	(Rach et al., 1997)	暴露期間が不適。原著では 34 AI μL/L。比重 1.442 で換 算。
120	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	35	_	NOEL	MOR	4	56	_	(U.S. EPA, 1992)	入手不可
121	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		急性	LC ₅₀	MOR	1	60.6	3	(Rach et al., 1997)	暴露期間が不適。原著では 42 AI μL/L。比重 1.442 で換 算。
122	二次消費 者	魚類	ゼブラフィッシュ	Danio rerio	7722-84-1		_	LOEL	CEL	0.04166	72.4	3	(Kosmehl et al., 2006)	胚による遺伝毒性試験。エンドポイントが不適。原著2.13 mM。
123	二次消費 者	魚類	アメリカナマズ	Ictalurus punc- tatus	7722-84-1		急性	LC50	MOR	1	80.0	3	(Rach et al., 1997)	暴露期間が不適。原著では 55.5 AI μL/L。比重 1.442 で 換算。
124	二次消費 者	魚類	アメリカナ マズ	Ictalurus punc- tatus	7722-84-1		急 性	LC50	MOR	1	82.8	3	/	暴露期間が不適。原著では 57.4 AI μL/L。比重 1.442 で

No			生物種		被験物	質		エンドポイ	ント等	暴露期 間	毒性値	信頼性	出典	備考
	栄養段階	生物分 類	生物種	種名	CAS RN®	純度(%)	急 慢	エンドポイ ント	影響内容	(目)	(mg/L)	ランク		
														換算。
125	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	35	急 性	LC ₅₀	MOR	4	93	_	(U.S. EPA, 1992)	入手不可
126	二次消費 者	魚類	ブルーギル	Lepomis macro- chirus	7722-84-1	35	_	NOEL	MOR	4	100	_	(U.S. EPA, 1992)	入手不可
127	二次消費者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		急 性	LC50	MOR	1	100	3	(Rach et al., 1997)	暴露期間が不適。原著では $69.4~\mathrm{AI}~\mu\mathrm{L/L}$ 。比重 $1.442~\mathrm{C}$ 換算。
128	二次消費者	魚類	ブルーギル	Lepomis macro- chirus	7722-84-1		急性	LC ₅₀	MOR	1	103	3	(Rach et al., 1997)	暴露期間が不適。原著では 71.5 AI μL/L。比重 1.442 で 換算。
129	二次消費者	魚類	アメリカナ マズ	Ictalurus punc- tatus	7722-84-1		急性	LC50	MOR	1	110	3	(Rach et al., 1997)	暴露期間が不適。原著では $76.6\mathrm{AI}\mu\mathrm{L/L}$ 。比重 1.442 で 換算。
130	二次消費者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		急性	LC50	MOR	0.125	147	3	(Rach et al., 1997)	暴露期間が不適。原著では 102 AI μL/L。比重 1.442 で 換算。
131	二次消費 者	魚類	ブルーギル	Lepomis macro- chirus	7722-84-1	35	急性	LC ₅₀	MOR	4	150	_	(U.S. EPA, 1992)	入手不可
132	二次消費者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		_	NOEL	MOTL	0.0139	170	3		暴露期間が不適。原著では 5 mM
133	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		急 性	LC ₅₀	MOR	0.125	172	3	(Rach et al., 1997)	暴露期間が不適。原著では $119~AI~\mu L/L$ 。比重 $1.442~$ で 換算。
134	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	35	急性	LC50	MOR	0.0833	189	3	(Arndt and Wagner, 1997)	暴露期間が不適。
135	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	10	急 性	LC50	MOR	4	196	3	(Taylor and Glenn, 2008)	暴露は1時間、経過観察が 120h。暴露期間が不適。
136	二次消費 者	魚類	サケ属	Oncorhynchus clarkii	7722-84-1	35	急性	LC50	MOR	0.0417	197	3	(Arndt and Wagner, 1997)	暴露期間が不適。
137	二次消費	魚類	ニジマス	Oncorhynchus	7722-84-1	6	_	_	PHY	13	200	3	(Speare and	エンドポイント、暴露期間

No			生物種		被験物	7質		エンドポイ	ント等	暴露期 間	毒性値	信頼性	出典	備考
	栄養段階	生物分類	生物種	種名	CAS RN®	純度(%)	急慢	エンドポイ ント	影響内容	(目)	(mg/L)	ランク		
	者			mykiss									Arsenault, 1997)	が不適。暴露は1時間週2 回。
138	二次消費者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	6	_	_	CEL	49	200	3	(Speare and Arsenault, 1997)	エンドポイント、暴露期間が不適。
139	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	6	_	ı	MOR	49	200	3	(Speare and Arsenault, 1997)	成長段階が不適。暴露は 1 時間週 2回。
140	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	6	_	_	GRO	49	200	3	(Speare and Arsenault, 1997)	成長段階が不適。暴露は 1 時間週 2 回。
141	二次消費者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	6	_	1	ВЕН	49	200	3	(Speare and Arsenault, 1997)	成長段階が不適。暴露は 1 時間週 2回。
142	二次消費者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	35	急 性	LC ₅₀	MOR	0.0833	207	3	(Arndt and Wagner, 1997)	暴露期間が不適。
143	二次消費者	魚類	ブルーギル	Lepomis macro- chirus	7722-84-1		急 性	LC50	MOR	1	219	3	(Rach et al., 1997)	暴露期間が不適。原著では 152 AI μL/L。比重 1.442 で 換算。
144	二次消費者	魚類	ブルーギル	Lepomis macro- chirus	7722-84-1		急 性	LC ₅₀	MOR	1	238	3	(Rach et al., 1997)	暴露期間が不適。原著では 165 AI μL/L。比重 1.442 で 換算。
145	二次消費者	魚類	アメリカナマズ	Ictalurus punc- tatus	7722-84-1	Perox-Aid 35%	_	NOEC	НАТСН	7	264.3	3	(Mitchell et al., 2010)	Saprolegnia spp.の影響を緩和する手法としての過酸化水素の効果に関する知見であり、通常の毒性試験と異なる。
146	二次消費者	魚類	サケ属	Oncorhynchus clarkii	7722-84-1	35	急 性	LC50	MOR	0.0833	280	3	(Arndt and Wagner, 1997)	暴露期間が不適。
147	二次消費者	魚類	アメリカナ マズ	Ictalurus punc- tatus	7722-84-1		急 性	LC ₅₀	MOR	0.125	303	3	(Rach et al., 1997)	暴露期間が不適。原著では 210 AI μL/L。比重 1.442 で 換算。
148	二次消費	魚類	ニジマス	Oncorhynchus	7722-84-1		急	LC50	MOR	0.0417	314	3	(Rach et al.,	暴露期間が不適。原著では

No			生物種		被験物]質		エンドポイ	ント等	暴露期 間	毒性値	信頼性	出典	備考
	栄養段階	生物分類	生物種	種名	CAS RN®	純度(%)	急慢	エンドポイ ント	影響内容	(目)	(mg/L)	ランク		
	者			mykiss			性						1997)	218 AI μL/L。比重 1.442 で 換算。
149	二次消費者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	35	急性	LC50	MOR	0.0417	322	3	(Arndt and Wagner, 1997)	暴露期間が不適。
150	二次消費者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	35	急性	LC50	MOR	0.0417	329	3	(Arndt and Wagner, 1997)	暴露期間が不適。
151	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	10	急性	LC50	MOR	4	373	3	(Taylor and Glenn, 2008)	暴露 1 時間。暴露期間が不 適。
152	二次消費 者	魚類	サケ属	Oncorhynchus clarkii	7722-84-1	35	急性	LC50	MOR	0.0417	377	3	(Arndt and Wagner, 1997)	暴露期間が不適。
153	二次消費 者	魚類	ブルーギル	Lepomis macro- chirus	7722-84-1		急性	LC ₅₀	MOR	1	418	3	(Rach et al., 1997)	暴露期間が不適。原著では 290 AI μL/L。比重 1.442 で 換算。
154	二次消費者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		急性	LC ₅₀	MOR	0.0417	448	3	(Rach et al., 1997)	暴露期間が不適。原著では 311 AI μL/L。比重 1.442 で 換算。
155	二次消費者	魚類	アメリカナ マズ	Ictalurus punc- tatus	7722-84-1		急性	LC50	MOR	0.125	479	3	(Rach et al., 1997)	暴露期間が不適。原著では 332 AI μL/L。比重 1.442 で 換算。
156	二次消費者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	35	-	NOEL	MOR	14	502	3	(Schreier et al., 1996)	暴露期間が不適。暴露 15 分、一日おきふ化するま で。
157	二次消費者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	35	_	NOEL	РНҮ	14	502	3	(Schreier et al., 1996)	エンドポイント、暴露期間 が不適。暴露 15 分、一日お きふ化するまで。
158	二次消費者	魚類	サケ属	Oncorhynchus clarkii	7722-84-1	35	急性	LC50	MOR	0.0417	506	3	(Arndt and Wagner, 1997)	暴露期間が不適。
159	二次消費 者	魚類	サケ属	Oncorhynchus clarkii	7722-84-1	35	急性	LC50	MOR	0.0208	514	3	(Arndt and Wagner, 1997)	暴露期間が不適。体サイズ 0.26 g。

No			生物種		被験物	質		エンドポイ	ント等	暴露期 間	毒性値	信頼性	出典	備考
	栄養段階	生物分 類	生物種	種名	CAS RN®	純度(%)	急慢	エンドポイント	影響内容	(目)	(mg/L)	ランク		
160	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	35	急性	LC50	MOR	0.0208	514	3	(Arndt and Wagner, 1997)	暴露期間が不適。体サイズ 7.5 g。
161	二次消費者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		急性	LC ₅₀	MOR	0.125	523	3	(Rach et al., 1997)	暴露期間が不適。原著では 363 AI μL/L。比重 1.442 で 換算。
162	二次消費 者	魚類	アメリカナマズ	Ictalurus punc- tatus	7722-84-1		急性	LC ₅₀	MOR	1	532	3	(Rach et al., 1997)	暴露期間が不適。原著では 369 AI μL/L。比重 1.442 で 換算。
163	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	35	_	NOEL	PHY	14	543	3	(Schreier et al., 1996)	エンドポイント、暴露期間 が不適。暴露 15 分、一日お きふ化するまで。
164	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	35	_	NOEL	MOR	14	543	3	(Schreier et al., 1996)	暴露期間が不適。暴露 15 分、一日おきふ化するま で。
165	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		急性	LC50	MOR	0.0208	567	3	(Rach et al., 1997)	暴露期間が不適。原著では 393 AI μL/L。比重 1.442 で 換算。
166	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	35	急 性	LC50	MOR	0.0208	574	3	(Arndt and Wagner, 1997)	暴露期間が不適。
167	二次消費 者	魚類	ブルーギル	Lepomis macro- chirus	7722-84-1		急性	LC ₅₀	MOR	0.125	585	3	(Rach et al., 1997)	暴露期間が不適。原著では 406 AI μL/L。比重 1.442 で 換算。
168	二次消費 者	魚類	サケ属	Oncorhynchus clarkii	7722-84-1	35	急性	LC50	MOR	0.0208	636	3	(Arndt and Wagner, 1997)	暴露期間が不適。
169	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		_	LOEL	MOTL	0.0139	680	3		暴露期間が不適。原著では 20 mM
170	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		急性	LC50	MOR	0.125	730	3	(Rach et al., 1997)	暴露期間が不適。原著では 506 AI μL/L。比重 1.442 で 換算。
171	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		急 性	LC50	MOR	0.0208	750	3		暴露期間が不適。原著では 520 AI μL/L。比重 1.442 で

No			生物種		被験物	7質		エンドポイ	ント等	暴露期 間	毒性値	信頼性	出典	備考
	栄養段階	生物分類	生物種	種名	CAS RN®	純度(%)	急慢	エンドポイ ント	影響内容	(目)	(mg/L)	ラン ク		
														換算。
172	二次消費 者	魚類	ブルーギル	Lepomis macro- chirus	7722-84-1		急 性	LC50	MOR	0.125	985	3	(Rach et al., 1997)	暴露期間が不適。原著では 683 AI μL/L。比重 1.442 で 換算。
173	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		_	LOEL	SPGR	0.0139	1000	3	(Speare et al., 1999)	暴露期間が不適。
174	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	35	_	NOEL	MOR	14	1112	3	(Schreier et al., 1996)	暴露期間が不適。暴露 15 分、一日おきふ化するま で。
175	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	35	_	NOEL	PHY	14	1122	3	(Schreier et al., 1996)	エンドポイント、暴露期間 が不適。暴露 15 分、一日お きふ化するまで。
176	二次消費 者	魚類	タイセイヨ ウサケ	Salmo salar	7722-84-1	30	_	NOEL	DAMG	1	1370	3	(Kiemer and Black, 1997)	海産 暴露期間が不適。
177	二次消費 者	魚類	タイセイヨ ウサケ	Salmo salar	7722-84-1	30	_	LOEL	DAMG	1	1460	3	(Kiemer and Black, 1997)	海産 暴露期間が不適。
178	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	30	_	_	MOR	0.0417	1500	3	(Powell and Perry, 1997)	暴露期間が不適。
179	二次消費 者	魚類	タイセイヨ ウサケ	Salmo salar	7722-84-1	30	_	LOEL	DAMG	1	1720	3	(Kiemer and Black, 1997)	海産 暴露期間が不適。
180	二次消費 者	魚類	ブルーギル	Lepomis macro- chirus	7722-84-1		急 性	LC50	MOR	0.125	1790	3	(Rach et al., 1997)	暴露期間が不適。原著では 1240 AI μL/L。比重 1.442 で 換算。
181	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		急 性	LC ₅₀	MOR	0.0417	1820	3	(Rach et al., 1997)	暴露期間が不適。原著では 1260 AI μL/L。比重 1.442 で 換算。
182	二次消費 者	魚類	ブルーギル	Lepomis macro- chirus	7722-84-1		急性	LC50	MOR	0.0417	2110	3	(Rach et al., 1997)	暴露期間が不適。原著では 1460 AI μL/L。比重 1.442 で 換算。
183	二次消費 者	魚類	アメリカナ マズ	Ictalurus punc- tatus	7722-84-1		急 性	LC ₅₀	MOR	0.125	2190	3	(Rach et al., 1997)	暴露期間が不適。原著では 1520 AI µL/L。比重 1.442 で

No			生物種		被験物	可質		エンドポイ	ント等	暴露期間	毒性値	信頼性	出典	備考
	栄養段階	生物分類	生物種	種名	CAS RN®	純度(%)	急慢	エンドポイ ント	影響内容	(目)	(mg/L)	ラン ク		
														換算。
184	二次消費 者	魚類	ブルーギル	Lepomis macro- chirus	7722-84-1		急性	LC50	MOR	0.125	2340	3	(Rach et al., 1997)	暴露期間が不適。原著では 1620 AI μL/L。比重 1.442 で 換算。
185	二次消費 者	魚類	タイセイヨ ウサケ	Salmo salar	7722-84-1	30	_	LOEL	DAMG	1	2580	3	(Kiemer and Black, 1997)	海産 暴露期間が不適。
186	二次消費 者	魚類	タイセイヨ ウサケ	Salmo salar	7722-84-1	30	_	_	MOR	1	2580	3	(Kiemer and Black, 1997)	海産 暴露期間が不適。
187	二次消費 者	魚類	アメリカナ マズ	Ictalurus punc- tatus	7722-84-1		急 性	LC50	MOR	0.0417	2900	3	(Rach et al., 1997)	暴露期間が不適。原著では 2010 AI μL/L。比重 1.442 で 換算。
188	二次消費 者	魚類	ブルーギル	Lepomis macro- chirus	7722-84-1		急性	LC50	MOR	0.0208	2900	3	(Rach et al., 1997)	暴露期間が不適。原著では 2010 AI µL/L。比重 1.442 で 換算。
189	二次消費 者	魚類	ブルーギル	Lepomis macro- chirus	7722-84-1		急性	LC ₅₀	MOR	0.0417	3140	3	(Rach et al., 1997)	暴露期間が不適。原著では 2180 AI µL/L。比重 1.442 で 換算。
190	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		急性	LC50	MOR	0.0417	3430	3	(Rach et al., 1997)	暴露期間が不適。原著では 2380 AI μL/L。比重 1.442 で 換算。
191	二次消費 者	魚類	ブルーギル	Lepomis macro- chirus	7722-84-1		急性	LC50	MOR	0.0417	3690	3	(Rach et al., 1997)	暴露期間が不適。原著では 2560 AI μL/L。比重 1.442 で 換算。
192	二次消費 者	魚類	アメリカナマズ	Ictalurus punc- tatus	7722-84-1		急性	LC50	MOR	0.0417	4120	3	(Rach et al., 1997)	暴露期間が不適。原著では 2860 AI µL/L。比重 1.442 で 換算。
193	二次消費者	魚類	条鰭亜綱	Esox lucius	7722-84-1		_	NOEL	НАТСН	-	4330	3	(Rach et al., 1998)	暴露期間が不適。原著では 3000 AI µL/L。比重 1.442 で 換算。
194	二次消費 者	魚類	ブルーギル	Lepomis macro- chirus	7722-84-1		急性	LC50	MOR	0.0417	4600	3	(Rach et al., 1997)	暴露期間が不適。原著では 3190 AI μL/L。比重 1.442 で 換算。

No			生物種		被験物	7質		エンドポイ	ント等	暴露期 間	毒性値	信頼性	出典	備考
	栄養段階	生物分類	生物種	種名	CAS RN®	純度(%)	急慢	エンドポイント	影響内容	(目)	(mg/L)	ランク		
195	二次消費 者	魚類	タイセイヨ ウサケ	Salmo salar	7722-84-1	30	_	_	MOR	0.0139	4760	3	(Bruno and Raynard, 1994)	海産 暴露期間が不適。
196	二次消費 者	魚類	ブルーギル	Lepomis macro- chirus	7722-84-1		急 性	LC ₅₀	MOR	0.0208	5100	3	(Rach et al., 1997)	暴露期間が不適。原著では 3540 AI µL/L。比重 1.442 で 換算。水温 11.99±0.2℃。
197	二次消費 者	魚類	ブルーギル	Lepomis macro- chirus	7722-84-1		急 性	LC ₅₀	MOR	0.0208	5100	3	(Rach et al., 1997)	暴露期間が不適。原著では 3540 AI µL/L。比重 1.442 で 換算。水温 17.2±0.5℃。
198	二次消費 者	魚類	コイ	Cyprinus carpio	7722-84-1		_	NOEL	НАТСН	-	8650	3	(Rach et al., 1998)	暴露期間が不適。原著では 6000 AI μL/L。比重 1.442 で 換算。
199	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		急 性	LC50	MOR	0.0208	12500	3	(Rach et al., 1997)	暴露期間が不適。原著では 8660 AI μL/L。比重 1.442 で 換算。
200	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		_	ВСМ	-	8ヶ月	-	3	(ECHA772 2-84-1, 1992a)	暴露方法(混餌)が不適。
201	二次消費 者	魚類	ブラウント ラウト	Salmo trutta	7722-84-1	35% AI	_	NOEC	MOR	0.0313	>361	3		分、一日おき 4 回連続。 ECHA では>500 ppm とされるが、原著では>250 AI μL/L。比重 1.442 で換算。
202	二次消費 者	魚類	アメリカナ マズ	Ictalurus punc- tatus	7722-84-1		急 性	LC50	MOR	0.0208	>7210	3	(Rach et al., 1997)	暴露期間が不適。原著では >5000 AI μL/L。比重 1.442 で換算。水温 11.99℃。
203	二次消費 者	魚類	ブルーギル	Lepomis macro- chirus	7722-84-1		急性	LC ₅₀	MOR	0.0208	>7210	3	(Rach et al., 1997)	暴露期間が不適。原著では >5000 AI μL/L。比重 1.442 で換算。
204	二次消費 者	魚類	アメリカナ マズ	Ictalurus punc- tatus	7722-84-1		急性	LC50	MOR	0.0417	>7210	3	(Rach et al., 1997)	暴露期間が不適。原著では >5000 AI μL/L。比重 1.442 で換算。水温 7.35℃。
205	二次消費 者	魚類	アメリカナ マズ	Ictalurus punc- tatus	7722-84-1		急 性	LC ₅₀	MOR	0.0208	>7210	3	(Rach et al., 1997)	暴露期間が不適。原著では >5000 AI μL/L。比重 1.442

No			生物種		被験物	D質		エンドポイ	ント等	暴露期 間	毒性値	信頼性	出典	備考
	栄養段階	生物分類	生物種	種名	CAS RN®	純度(%)	急慢	エンドポイ ント	影響内容	(目)	(mg/L)	ラン ク		
														で換算。水温 17.2℃。
206	二次消費 者	魚類	アメリカナ マズ	Ictalurus punc- tatus	7722-84-1		急 性	LC50	MOR	0.0417	>7210	3	(Rach et al., 1997)	暴露期間が不適。原著では >5000 AI μL/L。比重 1.442 で換算。水温 11.99℃。
207	二次消費者	魚類	アメリカナ マズ	Ictalurus punc- tatus	7722-84-1		急性	LC ₅₀	MOR	0.0208	>7210	3	(Rach et al., 1997)	暴露期間が不適。原著では >5000 AI μL/L。比重 1.442 で換算。水温 7.35℃。
208	二次消費者	魚類	アメリカナ マズ	Ictalurus punc- tatus	7722-84-1		急 性	LC50	MOR	0.0208	>7210	3	(Rach et al., 1997)	暴露期間が不適。原著では >5000 AI μL/L。比重 1.442 で換算。水温 21.5℃。
209	二次消費者	魚類	アメリカナ マズ	Ictalurus punc- tatus	7722-84-1		急 性	LC50	MOR	0.125	>7210	3	(Rach et al., 1997)	暴露期間が不適。原著では >5000 AI μL/L。比重 1.442 で換算。
210	二次消費者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		急 性	LC50	MOR	0.0208	>7210	3	(Rach et al., 1997)	暴露期間が不適。原著では >5000 AI μL/L。比重 1.442 で換算。
211	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	30% (v/v)	ı	_	BCM	0.01375	100-500	3	(Powell and Perry, 1997)	エンドポイント、暴露期間 が不適。
212	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1	30% (v/v)	ı	_	PHY	0.01375	100-500	3	Perry, 1997)	-
213	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		1	_	PHY	14	500-1000	3		エンドポイント、暴露期間 が不適。
214	二次消費 者	魚類	ニジマス	Oncorhynchus mykiss	7722-84-1		_	_	MOR	14	500-1000	3	(Marking et al., 1994)	暴露期間が不適。

171 注)「化審法における優先評価化学物質に関するリスク評価の技術ガイダンス III. 生態影響に関する有害性評価」での収集範囲に含まれる有害性情報を整理した。 172 略語

【被験物質純度(%)】A: Analytical grade、R: Reagent grade

【影響内容】ABND(Abundance):個体数、密度、BCM(Biochemical):生化学的変化、BDFW(Blood flow):血流、BEH(BEH):行動、CEL(Cellular Effect):細胞レベルの影響、CHLA(Chlorophyll a Concentration):クロロフィル a 濃度、DAMG(Damage):ダメージ、DVP(Development):発生、GRO(Growth):生長・成

180	長、HATCH(Hatchability): ふ化、IMM(Immobilization): 遊泳阻害、MOR(Mortality): 死亡、MOTL(Motility): 運動性、NCHG(Population Change (Change in
181	N/Change in Time)):個体群変化、PGRT(Population growth rate):個体群成長、PHY(physiology):生理学的変化、PSII(Photosystem II):光合成光化学反応 II、
182	PSYN (Photosynthesis): 光合成、REP (Reproduction): 繁殖、再生産、SEXR (Sex Ratio): 性比、SPGR (Specific Growth Rate): 比增殖速度、TDTH (Time to Death):
183	死亡時間、TFPG(Time to first progeny):初回産仔時、YLD:Yield(生産量)法(藻類生長阻害試験)
184	()内:試験結果の算出法 RATE:生長速度より求める方法(速度法)
185	【毒性值】AI(Active Ingredient):有効成分

186 付録1 各栄養段階のキースタディの信頼性について

187 1. 生産者(藻類)

- 188 出典: ECHA7722-84-1. (1997b): Toxicity to aquatic algae and cyanobacteria 001 Key | Experi-
- mental result. https://echa.europa.eu/registration-dossier/-/registered-dos-
- 190 sier/15701/6/2/6/?documentUUID=bd5b1f35-c53b-4675-ad36-1697537bd4f8
- 191 (2021.5.21 時点).
- 192 Knight B., Boyle J., McHenery J. (1995): Hydrogen Peroxide as Paramove, Marine Alga,
- 193 Growth Inhibition Test (72 h, EC₅₀). Inveresk Research International Report no. 10913
- 194 (IRI Project No 384369) (EU, Final Risk Assessment Report Volume 38: 7722-84-1
- 195 Hydrogen Peroxide (2003) から引用).
- 196 被験物質:製造元不明、純度(含量)35% w/w 過酸化水素水溶液
- 197 生物種: Skeletonema costatum
- 198 試験法: Paris Commission guidelines (1990)
- 199 GLP 基準: 遵守している
- 200 <試験条件>
- 201 培地: Guillard's Medium (希釈水:ろ過海水)
- 202 培養方式: 止水式
- 203 試験濃度: 設定濃度 対照区、0.625、1.25、2.5、5、10 mg/L (公比 2)
- 204 実測は行われているが、方法については不明。過酸化水素に特異的な手法で
- 205 ないため、初期実測濃度のみ信頼できる値とされる。
- 206 助剤: 用いていない
- 207 <試験結果>
- 208 3 日間生長速度 NOEC=0.63 mg/L (設定濃度に基づく)
- 209 【専門家会合でのコメント】
- 210 高濃度区の毒性影響が 48、72 時間で軽減する傾向が見られ、0-72 時間の NOEC は、0-24 時
- 211 間、0-48 時間の NOEC と比べ一濃度区高い。(ECHA7722-84-1, 1997b)では 0-24 時間、0-48 時
- 212 間の NOEC を試験全体(72 時間)の NOEC として扱っている。実測は過酸化水素に特異的な
- 213 手法によらないため、初期実測濃度のみ信頼できる値とされる。試験培地中では被験物質が
- 214 長時間安定ではないため、設定濃度に基づいた 0-24 時間、0-48 時間の NOEC は、暴露初期の
- 215 被験物質の毒性影響を反映していると考えられる。GLP 基準を遵守した試験であり、PNEC 値
- 216 算出のための生産者のキースタディとして妥当と判断した。
- 217 2. 一次消費者
- 218 出典: ECHA7722-84-1. (2008): Long-term toxicity to aquatic invertebrates 001 Key | Experi-

219220221	mental result. https://echa.europa.eu/registration-dossier/-/registered-dossier/15701/6/2/5/?documentUUID=e751df95-1d32-4264-a491-2379c5292249 (2021.5.21 時点).
222 223 224 225 226 227	Meinertz J.R., Greseth S.L., Gaikowski M.P., Schmidt L.J. (2008): Chronic Toxicity of Hydrogen Peroxide to <i>Daphnia magna</i> in a Continuous Exposure, Flow-through Test System. Sci Total Environ 392:225-232. DOI: 10.1016/j.scitotenv.2007.12.015 (ECOTOX no. 107484). 被験物質: Akzo Nobel(Columbus, USA)社製 Perox-Aid®、純度(含量)35% w/w 過酸化水素水溶液
228	生物種: Daphnia magna
229	試験法: ASTM designation E 1193-97: 21-day flow through bioassay
230	GLP 基準: 遵守している
231	<試験条件>
232	試験方式: 流水式 (5.0 mL/min、1 日約 35 回転)
233	試験濃度: 設定濃度 対照区、0.32、0.63、1.25、2.5、5.0 mg/L(公比2)
234	実測濃度 0.02 (対照区)、0.34、0.63、1.27、2.61、5.0 mg/L
235	(設定濃度の 100-106%)
236	助剤: 用いていない
237	<試験結果>
238	21 日間繁殖阻害 NOEC 0.63 mg/L (設定濃度に基づく)
239	【専門家会合でのコメント】
240241242	流水式試験により、暴露濃度は設定濃度の 100-106%と良好に維持されている。GLP 基準を 遵守した試験であり、PNEC 値算出のための一次消費者のキースタディとして妥当と判断し た。
243	3. 二次消費者(魚類)
244245246	出典: ECHA7722-84-1. (1989c): Short-term toxicity to fish 001 Key Experimental result. https://echa.europa.eu/registration-dossier/-/registered-dossier/15701/6/2/2/?documentUUID=7115e1cd-4be3-4c6a-8ad0-434ce22270ca (2021.5.21 時点).
247248249250	Shurtleff L.E. (1989a): Interox America Sodium Percarbonate and Hydrogen Peroxide - Acute Toxicity to the Freshwater Fish <i>Pimephales promelas</i> , Burlington Research, INC., Burlington, North Carolina, USA (EU, Final Risk Assessment Report Volume 38:7722-84-1 Hydrogen Peroxide (2003) から引用).
251	被験物質: 製造元不明、純度(含量)50% w/w 過酸化水素水溶液
252	生物種: Pimephales promelas
253	試験法: USEPA Toxic Substances Control Act Test Guidelines (1985)

254	Revision of TSCA Guidelines (1987)
255 256	USEPA Methods of Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms (1984)
257	GLP 基準: GLP 試験でない
258	<試験条件>
259	試験方式: 半止水式(24時間換水)
260	試験濃度: 設定濃度 対照区、0.5、5、25、50、250、500 mg/L (公比 2-10)
261 262	実測濃度 対照区(記載なし)、0.5、4.3、18.5、33.0、162.4、413.7 mg/L (換水前後の各 4 回の算術平均値)
263	助剤: 用いていない
264	<試験結果>
265	4 日間半数致死濃度 LC ₅₀ =16.4 mg/L(実測濃度に基づく)
266	【専門家会合でのコメント】
267 268 269 270 271	公比が 2-10 と一定でなく、毒性値が推定された前後の濃度比は 5 とやや大きい。設定濃度 5 mg/L 区で死亡が認められず、その上の濃度区 25 mg/L および 50 mg/L では 100%あるいはそれ以下の死亡率が観察されたものと考えられる。実測濃度は毒性値前後で設定濃度の 74-86% に維持されており、被験物質への暴露は適切に行われていたと考えられる。PNEC 値算出のための二次消費者のキースタディとして妥当と判断した。

- 272 付録 2 生態影響に関する有害性評価Ⅱ関連情報
- 273 1 各キースタディの概要
- 274 (1) 水生生物
- 275 <生産者(藻類)>
- 276 Skeletonema costatum 生長速度に対する阻害;3 日間 NOEC 0.63 mg/L (ECHA7722-84-
- 277 1, 1997b) (Knight et al., 1995)
- 278 <一次消費者(又は消費者)(甲殻類)>
- 279 Daphnia magna 繁殖阻害; 21 日間 NOEC 0.63 mg/L (ECHA7722-84-1, 2008) (Meinertz
- 280 et al., 2008)
- 281 <二次消費者(又は捕食者)(魚類)>
- 282 Pimephales promelas 死亡; 4 日間 LC50 16.4 mg/L (ECHA7722-84-1, 1989c) (Shurtleff,
- 283 1989a)

284

- 285 2 国内外における生態影響に関する有害性評価の実施状況
- 286 (1) 既存のリスク評価書における有害性評価の結果
- 287 当該物質のリスク評価に関する各種情報の有無を表1に、また、評価書等で導出された予測
- 288 無影響濃度 (PNEC) 等を表 2 にそれぞれ示した。

289

290

表1 過酸化水素のリスク評価等に関する情報

次1 過酸山がポックパク町両寺に内	אד הו ער
リスク評価書(文献名)等	
化学物質の環境リスク評価 (環境省)	×
化学物質の初期リスク評価書(CERI, NITE)	×
詳細リスク評価書((独)産業技術総合研究所)	×
初期評価報告書 (SIAR : SIDS* Initial Assessment Report) *Screening Information Data Set (OECD, 2005)	○ (15630-89-4 のみ 7722-84-1 は EU-RAR とし て公表)
欧州連合 (EU) リスク評価書 (EU-RAR) (European Union, 2003)	○ (7722-84-1 のみ)
世界保健機関(WHO)環境保健クライテリア (EHC)	×
世界保健機関(WHO)/国際化学物質安全性計画(IPCS)国際簡潔評価文書「CICAD」(Concise International Chemical Assessment Document)	×
カナダ環境保護法優先物質評価書(Canadian Environmental Protection Act Priority Substances List Assessment Report)	×
Australia NICNAS Priority Existing Chemical Assessment Reports	×
BUA Report	×
Japan チャレンジプログラム (Japan チャレンジプログラム HP)	×

凡例)○:情報有り、×情報無し ()内:出典

291292

295

表2 リスク評価書での予測無影響濃度 (PNEC) 等 (水質)

文献名	リスク評価に用	根拠						
文 献 石	いている値	生物群	種名	毒性値	アセスメント係数等			
初期評価報告書 (SIAR: SIDS* Initial Assess- ment Report) (OECD, 2005)	10 μg/L	藻類	Chlorella vulgaris	NOEC 0.1 mg/L	10 薬類以外には無脊椎動物で慢性 毒性試験結果が得られている。 魚類慢性毒性試験結果が得られ ないことから、本来であればア セスメント係数には50を採用す るが、自然由来のバックグラウ ンド濃度が <1~30 μg/L であ ることを考慮し係数を10とし た。			
欧州連合 (EU) リスク 評価書(EU- RAR) (European Union, 2003)	10 μg/L	藻類	Chlorella vulgaris	NOEC 0.1 mg/L	10 藻類以外には無脊椎動物で慢性 毒性試験結果が得られている。 魚類慢性毒性試験結果が得られ ないことから、本来であればア セスメント係数には50を採用す るが、自然由来のバックグラウ ンド濃度や魚類に対する慢性毒 性が藻類に対する慢性毒性より も低いと推測されることを考慮 した。			

296297

()内:出典

298 (2) 水生生物保全に関する基準値等の設定状況

299 水生生物保全に係る基準値等として、米国、英国、カナダ、ドイツ、オランダでの策定状況 300 を表3に示した。過酸化水素は、いずれの国でも水生生物保全に係る基準値等が策定されてい 301 ない。

302

303 304

表3 水生生物保全関連の基準値等

(過酸化水素)

対象国	担当機関	水	質目標値名	水質目標値 (μg/L)
米国 (United States	環境保護庁	Aquatic life criteria	淡水 CMC*1/CCC*2	設定されていない
Environmental Protection Agency Office of Water Office of Science and Technology, 2009)			海(塩)水 CMC* ¹ /CCC* ²	設定されていない
英国 (Environment Agency)	環境庁	UK Standard Protection of Fisheries	Salmonid and cyprinid waters:	設定されていない
8))		UK Standard Surface Water	Inland surface waters (90th percentile)	設定されていない
			Transitional and coastal waters (Annual mean)	設定されていない

対象国	担当機関	水	質目標値名	水質目標値 (μg/L)
カナダ (Canadian	環境省	Water Quality Guidelines	Freshwater (Long Term)	設定されていない
Council of Ministers of the Environment)		for the Protection of Aquatic Life	Marine	設定されていない
ドイツ	連邦環境庁	EQS for watercours	設定されていない	
(Federal		EQS for transitional		
Ministry for				
the				設定されていない
Environment, 2014)				
オランダ	国立健康環境	Maximum Permissil	ble Concentration (MPC)*4	設定されていない
(National Institute of	研究所	Target value*4		
Public Health and the Environment, 1999)				設定されていない

305 () 内:出典

*1 : CMC (Criterion Maximum Concentration): 最大許容濃度

*2 : CCC (Criterion Continuous Concentration): 連続許容濃度

*3 : Environmental quality standards for specific pollutants under the OgewV-E to determine ecological status : 生態 ステータスを決定するための表流水保全に係るドイツ連邦規則草稿(OgewV-E : Draft Ordinance on the Protection of Surface Waters)下での特定汚染物質に対する環境基準。年平均値として示される。

*4: 法制度には規定されていないが環境影響評価等に用いられている目標値で、MPC(最大許容濃度: Maximum permissible concentration)は人の健康や生物に影響を及ぼさない予測濃度、target value(目標値)は環境に影響を及ぼさない濃度を示す(Crommentuijn et al., 1997)。

- 314 出典
- 315 Abdul J.M., Colville A., Lim R., Vigneswaran S., Kandasamy J. (2012): Use of Duckweed (*Lemna*
- 316 disperma) to Assess the Phytotoxicity of the Products of Fenton Oxidation of Metsulfuron
- 317 Methyl. Ecotoxicol Environ Saf 83:89-95. DOI: 10.1016/j.ecoenv.2012.06.014 (ECOTOX no. 164122).
- Andreozzi R., Lo Casale M.S., Marotta R., Pinto G., Pollio A. (2000): N-methyl-p-aminophenol (metol) Ozonation in Aqueous Solution: Kinetics, Mechanism and Toxicological
- 321 Characterization of Ozonized Samples. Water Res 34:4419-4429. DOI: 10.1016/S0043-322 1354(00)00220-7 (ECOTOX no. 86256).
- Arndt R.E., Wagner E.J. (1997): The Toxicity of Hydrogen Peroxide to Rainbow Trout

 Oncorhynchus mykiss and Cutthroat Trout Oncorhynchus clarki Fry and Fingerlings. J

 World Aquacult Soc 28:150-157. DOI: 10.1111/j.1749-7345.1997.tb00850.x (ECOTOX no. 20165).
- Braunbeck T., Bottcher M., Hollert H., Kosmehl T., Lammer E., Leist E., Rudolf M., Seitz N.

 (2005): Towards an Alternative for the Acute Fish LC₅₀ Test in Chemical Assessment; The
 Fish Embryo Toxicity Test Goes Multi-species an Update. Altex-Alternativen Zu

 Tierexperimenten 22:87-102 (ECOTOX no. 169240).
- Bringmann G., Kuhn R. (1982): Results of Toxic Action of Water Pollutants on *Daphnia magna*Straus Tested by an Improved Standardized Procedure. Z.Wasser-Abwasser-Forsch. 15:1-6

 (ECOTOX no. 707).
- Bruno D.W., Raynard R.S. (1994): Studies on the Use of Hydrogen Peroxide as a Method for the Control of Sea Lice on Atlantic Salmon. Aquacult Int 2:10-18 (ECOTOX no. 16404).
- Canadian Council of Ministers of the Environment. : Canadian Environmental Quality Guidelines.

 https://ccme.ca/en/current-activities/canadian-environmental-quality-guidelines (2021.5.23 時点).
- Chan K.M., Ku L.L., Chan P.C.Y., Cheuk W.K. (2006): Metallothionein Gene Expression in Zebrafish Embryo-larvae and ZFL Cell-line Exposed to Heavy Metal Ions. Mar Environ Res 62:S83-S87. DOI: 10.1016/j.marenvres.2006.04.012 (ECOTOX no. 94046).
- Clarke C.A. (1991): The Anti-Algal Activity of Peroxygen Compounds, PhD thesis University of Bath (IUCLID (2000) 7722-84-1. Degassa AG#141.) (IUCLID(2000) 15630-89-4.

 Solvay#6.) (EU RAR (2003) Final Risk Assessment Report Volume 38: Hydrogen
- Peroxide 7722-84-1.) (OECD (2005) SIDS Initial Assessment Report : Sodium percarbonate 15630-89-4.).
- Crommentuijn T., Kalf D.F., Polder M.D., Posthumus R., Plassche E.J.v.d. (1997): Maximum
 Permissible Concentrations and Negligible Concentrations for Pesticides. Report No.
 601501002, National Institute of Public Health and Environmental Protection, Bilthoven,
 The Netherlands.
- Degussa AG. (1977): Vorversuche zum Fischtest Ermittlung der kritischen Konzentration an H₂O₂
 in Wasser, ISEGA Industrie Studien- und Entwicklungs Goselischaft mbH
 Aschaffenburg.
- Degussa AG. (1991): Algenwachstumshemmtest mit Wasserstoffperoxid 35% G. Geschäftsbereich Industrie-und Feinchemikalien, Frankfurt am Main.
- Dietrich G.J., Szpyrka A., Wojtczak M., Dobosz S., Goryczko K., Zakowski L., Ciereszko A. (2005): Effects of UV Irradiation and Hydrogen Peroxide on DNA Fragmentation, Motility

358 and Fertilizing Ability of Rainbow Trout (Oncorhynchus mykiss) Spermatozoa. 359 Theriogenology 64:1809-1822. DOI: 10.1016/j.theriogenology.2005.04.010 (ECOTOX no. 107843). 360 Drabkova M., Admiraal W., Marsalek B. (2007a): Combined Exposure to Hydrogen Peroxide and 361 362 Light - Selective Effects on Cyanobacteria, Green Algae, and Diatoms. Environ Sci Technol 41:309-314. DOI: 10.1021/es060746i (ECOTOX no. 107481). 363 Drabkova M., Marsalek B., Admiraal W. (2007b): Photodynamic Therapy against Cyanobacteria. 364 365 Environ Toxicol 22:112-115. DOI: 10.1002/tox.20240 (ECOTOX no. 107845). 366 ECHA7722-84-1. (1989a): Short-term toxicity to aquatic invertebrates 001 Key | Experimental 367 result. https://echa.europa.eu/registration-dossier/-/registered-368 dossier/15701/6/2/4/?documentUUID=b91f4f6a-97f7-4034-b926-5adaa3f6b06e (2021.5.22 369 時点). ECHA7722-84-1. (1989b): Short-term toxicity to aquatic invertebrates 009 Supporting | No 370 371 specified result type. https://echa.europa.eu/registration-dossier/-/registered-372 dossier/15701/6/2/4/?documentUUID=fa9016b5-7e72-4f35-91b3-c39e2345ae4c 373 (2021.5.22 時点). 374 ECHA7722-84-1. (1989c): Short-term toxicity to fish 001 Key | Experimental result. https://echa.europa.eu/registration-dossier/-/registered-375 dossier/15701/6/2/2/?documentUUID=7115e1cd-4be3-4c6a-8ad0-434ce22270ca 376 377 (2021.5.21 時点). 378 ECHA7722-84-1. (1990): Short-term toxicity to fish 005 Supporting | No specified result type. 379 https://echa.europa.eu/registration-dossier/-/registered-380 dossier/15701/6/2/2/?documentUUID=8aff2ac6-9fe3-412e-9d25-4b1dafb6ddc6 (2021.5.23 時点). 381 382ECHA7722-84-1. (1991): Toxicity to aquatic algae and cyanobacteria 002 Supporting 383 Experimental result. https://echa.europa.eu/registration-dossier/-/registered-384 dossier/15701/6/2/6/?documentUUID=f82d6770-b8c6-42c7-9b70-a17dcb081e59 385 (2021.5.22 時点). ECHA7722-84-1. (1992a): Long-term toxicity to fish 001 Supporting | Experimental result. 386 387 https://echa.europa.eu/registration-dossier/-/registereddossier/15701/6/2/3/?documentUUID=80669d2e-34c8-451a-b0d9-4c6ea6b30b23 388 389 (2021.5.22 時点). 390 ECHA7722-84-1. (1992b): Toxicity to aquatic algae and cyanobacteria 010 Supporting | No 391 specified result type. https://echa.europa.eu/registration-dossier/-/registered-392 dossier/15701/6/2/6/?documentUUID=6c4b854f-eb7b-4ca7-9a40-7977d56c6bcf 393 (2020.5.22 時点). 394 ECHA7722-84-1. (1997a): Short-term toxicity to fish 017 Supporting | No specified result type. 395 https://echa.europa.eu/registration-dossier/-/registered-396 dossier/15701/6/2/2/?documentUUID=717fdd7f-1599-4aec-9ee1-f35d00b4ae7f (2021.5.22 397 時点). 398 ECHA7722-84-1. (1997b): Toxicity to aquatic algae and cyanobacteria 001 Key | Experimental 399 result. https://echa.europa.eu/registration-dossier/-/registered-400 dossier/15701/6/2/6/?documentUUID=bd5b1f35-c53b-4675-ad36-1697537bd4f8 401 (2021.5.21 時点). 402ECHA7722-84-1. (2006): Short-term toxicity to aquatic invertebrates 002 Supporting

403	Experimental result. https://echa.europa.eu/registration-dossier/-/registered-
404	dossier/15701/6/2/4/?documentUUID=46cc8f05-ff6e-4734-bbd1-c89c60b1af3a (2021.5.22
405	時点).
406	ECHA7722-84-1. (2008): Long-term toxicity to aquatic invertebrates 001 Key Experimental
407	result. https://echa.europa.eu/registration-dossier/-/registered-
408	dossier/15701/6/2/5/?documentUUID=e751df95-1d32-4264-a491-2379c5292249
409	(2021.5.21 時点).
410	ECHA7722-84-1. (2012): Short-term toxicity to aquatic invertebrates 003 Supporting
411	Experimental result. https://echa.europa.eu/registration-dossier/-/registered-
412	dossier/15701/6/2/4/?documentUUID=c5a78a50-c99f-4b0d-acb6-09f18ec88f73 (2021.5.22
413	時点).
414	ECHA15630-89-4. (1989a): Short-term toxicity to aquatic invertebrates 001 Key Experimental
415	result. https://echa.europa.eu/registration-dossier/-/registered-
416	dossier/15960/6/2/4/?documentUUID=eb1c2514-51bc-4d58-994b-e13fa973b2c1
417	(2021.5.22 時点).
418	ECHA15630-89-4. (1989b): Short-term toxicity to fish 001 Key Experimental result.
419	https://echa.europa.eu/registration-dossier/-/registered-
420	dossier/15960/6/2/2/?documentUUID=7f5190c1-43ee-4340-a9d8-0573e4d55a31
421	(2021.5.22 時点).
422	ECHA15630-89-4. (1991a): Toxicity to aquatic algae and cyanobacteria 002 Supporting
423	Experimental result. https://echa.europa.eu/registration-dossier/-/registered-
424	dossier/15960/6/2/6/?documentUUID=3b903707-9a43-4ed1-9e64-262575c24928
425	(2021.5.22 時点).
426	ECHA15630-89-4. (1991b): Toxicity to aquatic algae and cyanobacteria 003 Supporting
427	Experimental result. https://echa.europa.eu/registration-dossier/-/registered-
428	dossier/15960/6/2/6/?documentUUID=315b0c47-8b6e-4c05-ae8e-833a00c4e0b1
429	(2021.5.22 時点).
430	ECHA15630-89-4. (1991c): Toxicity to aquatic algae and cyanobacteria 006 Supporting
431	Experimental result. https://echa.europa.eu/registration-dossier/-/registered-
432	dossier/15960/6/2/6/?documentUUID=7c2d973b-80f6-4a80-9601-eee9f8600dc4
433	(2021.5.23 時点).
434	ECHA15630-89-4. (1997): Toxicity to aquatic algae and cyanobacteria 005 Supporting
435	Experimental result. https://echa.europa.eu/registration-dossier/-/registered-
436	dossier/15960/6/2/6/?documentUUID=c851e980-9c63-4f56-b3c9-f16ff83c90e4 (2021.5.22
437	時点).
438	Environment Agency. : Chemical Standards
439	https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_da
440	ta/file/307788/river-basin-planning-standards.pdf (2021.5.23 時点).
441	European Union. (2003): European Union Risk Assessment Report; Hydrogen peroxide.
442	https://echa.europa.eu/documents/10162/a6f76a0e-fe32-4121-9d9d-b06d9d5f6852
443	(2021.5.23 時点).
444	Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. (2014): Water
445	Resources Management in Germany Part 2 -Water quality
446	Gavand M.R., McClintock J.B., Amsler C.D., Peters R.W., Angus R.A. (2007): Effects of
447	Sonication and Advanced Chemical Oxidants on the Unicellular Green Alga Dunaliella

- 448 tertiolecta and Cysts, Larvae and Adults of the Brine Shrimp Artemia salina: A Prospective
- Treatment to Eradicate Invasive Organisms from Ballast water. Mar Pollut Bull 54:1777-
- 450 1788. DOI: 10.1016/j.marpolbul.2007.07.012 (ECOTOX no. 107605).
- Gregor J., Jancula D., Marsalek B. (2008): Growth Assays with Mixed Cultures of Cyanobacteria and Algae Assessed by *In vivo* Fluorescence: One Step Closer to Real Ecosystems?
- 453 Chemosphere 70:1873-1878. DOI: 10.1016/j.chemosphere.2007.07.073 (ECOTOX no.
- 454 107622).
- Hook S.E., Lee R.F. (2004): Genotoxicant Induced DNA Damage and Repair in Early and Late
- Developmental Stages of the Grass Shrimp *Paleomonetes pugio* Embryo as Measured by
- 457 the Comet Assay. Aquat Toxicol 66:1-14. DOI: 10.1016/j.aquatox.2003.06.002 (ECOTOX
- 458 no. 107608).
- 459 Japan チャレンジプログラム HP.
- 460 https://www.nite.go.jp/chem/jcheck/list4.action?request_locale=ja (2021.5.23 時点).
- 461 Kavanagh N.A. (1992): Hydrogen Peroxide As A Growth Inhibitor For Blue-Algae, Solvay Interox
- 462 (EU, Final Risk Assessment Report Volume 38:7722-84-1 Hydrogen Peroxide (2003) から引用).
- $\label{eq:Kay S.H., Quimby P.C. Jr., Ouzts J.D. (1982): Hydrogen Peroxide (H_2O_2): A Potential Algicide for H_2O_2 and H_2O_2 are supported by H_2O_2 and H_2O_2 are supported by H_2O_2 and H_2O_2 are supported by H_2O_2 are supported by H_2O_2 are supported by H_2O_2 and H_2O_2 are supported by $H_2O_2$$
- Aquaculture, Proc. South. Weed. Sci. Soc./ISS New Perspect. Weed Sci 35. pp. 275-289 (ECOTOX no. 11897).
- Kiemer M.C.B., Black K.D. (1997): The Effects of Hydrogen Peroxide on the Gill Tissues of
 Atlantic Salmon, Salmo salar L. Aquaculture 153:181-189. DOI: 10.1016/S0044-
- 469 8486(97)00037-9 (ECOTOX no. 107129).
- Knight B., Boyle J., McHenery J. (1995): Hydrogen Peroxide as Paramove, Marine Alga, Growth
- Inhibition Test (72 h, EC₅₀). Inveresk Research International Report no. 10913 (IRI Project
- No 384369) (EU, Final Risk Assessment Report Volume 38 : 7722-84-1 Hydrogen
- 473 Peroxide (2003) から引用).
- Kosmehl T., Hallare A.V., Reifferscheid G., Manz W., Braunbeck T., Hollert H. (2006): A Novel
- 475 Contact Assay for Testing Genotoxicity of Chemicals and Whole Sediments in Zebrafish
- Embryos. Environ Toxicol Chem 25:2097-2106. DOI: 10.1897/05-460r.1 (ECOTOX no.
- 477 107128).
- 478 Mallick N., Mohn F.H., Soeder C.J., Grobbelaar J.U. (2002): Ameliorative Role of Nitric Oxide on
- H₂O₂ Toxicity to a Chlorophycean Alga Scenedesmus obliquus. J Gen Appl Microbiol 48:1-
- 480 7. DOI: 10.2323/jgam.48.1 (ECOTOX no. 72993).
- 481 Marking L.L., Rach J.J., Schreier T.M. (1994): Evaluation of Antifungal Agents for Fish Culture.
- 482 Prog Fish-Cult 56:225-231. DOI: 10.1577/1548-8640(1994)056<0225:Afseoa>2.3.Co;2
- 483 (ECOTOX no. 16533).
- 484 McLeish J.A., Chico T.J.A., Taylor H.B., Tucker C., Donaldson K., Brown S.B. (2010): Skin
- 485 Exposure to Micro- and Nano-Particles Can Cause Haemostasis in Zebrafish Larvae.
- 486 Thrombosis and Haemostasis 103:797-807. DOI: 10.1160/Th09-06-0413 (ECOTOX no.
- 487 163082).
- 488 Meinertz J.R., Greseth S.L., Gaikowski M.P., Schmidt L.J. (2008): Chronic Toxicity of Hydrogen
- Peroxide to *Daphnia magna* in a Continuous Exposure, Flow-through Test System. Sci
- 490 Total Environ 392:225-232. DOI: 10.1016/j.scitotenv.2007.12.015 (ECOTOX no. 107484).
- 491 Mitchell A.J., Straus D.L., Farmer B., Carter R. (2010): Comparison of Percent Hatch and Fungal
- 492 Infestation in Channel Catfish Eggs After Copper Sulfate, Diquat Bromide, Formalin, and

- Hydrogen Peroxide Treatment. N Am J Aquacult 72:201-206.
- Miyazaki T., Kurata K., Miyazaki T., Adachi R. (1990): Toxic Effects of Hydrogen Peroxide on *Gymnodinium nagasakiense* and Fishes. Bulletin of the Faculty of Bioresources Mie
- 496 University 4:165-173 (ECB IUCLID Dataset(2000) 7722-84-1 Degussa AG#133.).
- National Institute of Public Health and the Environment. (1999): Environmental Risk Limits in Netherlands, Setting Integrated Environmental Quality Standards for Substances in the Netherlands, Environmental quality standards for soil, water & air.
- OECD. (2005): SIDS Initial Assessment Report; Sodium Percarbonate.

 https://hpvchemicals.oecd.org/UI/handler.axd?id=5681c280-6686-4260-b629
 2f23a6db2319 (2021.5.23 時点).
- Parkinson A., Barry M.J., Roddick F.A., Hobday M.D. (2001): Preliminary Toxicity Assessment of Water After Treatment with UV-irradiation and UVC/H₂O₂. Water Res 35:3656-3664. DOI: 10.1016/S0043-1354(01)00096-3 (ECOTOX no. 61956).
- Powell M.D., Perry S.F. (1997): Respiratory and Acid-base Pathophysiology of Hydrogen Peroxide in Rainbow Trout (*Oncorhynchus mykiss* Walbaum). Aquat Toxicol 37:99-112. DOI: 10.1016/S0166-445x(96)00826-0 (ECOTOX no. 17814).
- Rach J.J., Gaikowski M.P., Howe G.E., Schreier T.M. (1998): Evaluation of the Toxicity and Efficacy of Hydrogen Peroxide Treatments on Eggs of Warm- and Cool Water Fishes.

 Aquaculture 165:11-25. DOI: 10.1016/S0044-8486(98)00248-8 (ECOTOX no. 53372).
- Rach J.J., Schreier T.M., Howe G.E., Redman S.D. (1997): Effect of Species, Life Stage, and Water Temperature on the Toxicity of Hydrogen Peroxide to Fish. Prog Fish-Cult 59:41-46. DOI: 10.1577/1548-8640(1997)059<0041:Eoslsa>2.3.Co;2 (ECOTOX no. 20433).
- Schrader K.K., De Regt M.Q., Tidwell P.D., Tucker C.S., Duke S.O. (1998): Compounds with
 Selective Toxicity Towards the Off-Flavor Metabolite-Producing Cyanobacterium
 Oscillatoria cf. chalybea. Aquaculture 163:85-99. DOI: 10.1016/S0044-8486(98)00223-3
 (ECOTOX no. 69879).
- Schreier T.M., Rach J.J., Howe G.E. (1996): Efficacy of Formalin, Hydrogen Peroxide, and
 Sodium Chloride on Fungal-Infected Rainbow Trout Eggs. Aquaculture 140:323-331. DOI:
 10.1016/0044-8486(95)01182-X (ECOTOX no. 103811).
- Shurtleff L.E. (1989a): Interox America Sodium Percarbonate and Hydrogen Peroxide Acute
 Toxicity to the Freshwater Fish *Pimephales promelas*, Burlington Research, INC.,
 Burlington, North Carolina, USA (EU, Final Risk Assessment Report Volume 38:7722-841 Hydrogen Peroxide (2003) から引用).
- Shurtleff L.E. (1989b): Intertox America Sodium Percarbonate and Hydrogen Peroxide—Acute
 Toxicity to the Freshwater Invertebrate *Daphnia pulex*, Burlington Research Inc.,
 Burlington, North Carolina, USA.
- 529 Shurtleff L.E. (1989c): Solvay Interox Report Burlington Research Inc., August 25, Burlington 530 Research. pp. 1-40 (ECB IUCLID Dataset (2000) 15630-89-4 Solvay#2.).
- 531 Shurtleff L.E. (1989d): Solvay Interox Report Burlington Research Inc., November 4, Burlington 532 Research. pp. 1-40 (ECB IUCLID Dataset (2000) 15630-89-4 Solvay#3.) (OECD (2005) 533 SIDS Initial Assessment Report : Sodium percarbonate 15630-89-4.).
- 534 Smit M.G.D., Ebbens E., Jak R.G., Huijbregts M.A.J. (2008): Time and Concentration Dependency 535 in The Potentially Affected Fraction of Species: The Case of Hydrogen Peroxide Treatment 536 of Ballast Water. Environ Toxicol Chem 27:746-753. DOI: 10.1897/07-343.1 (ECOTOX 537 no. 107485).

538 Speare D.J., Arsenault G.J. (1997): Effects of Intermittent Hydrogen Peroxide Exposure on Growth 539 and Columnaris Disease Prevention of Juvenile Rainbow Trout (Oncorhynchus mykiss). Can J Fish Aquat Sci 54:2653-2658. DOI: 10.1139/cjfas-54-11-2653 (ECOTOX no. 54018681). 541 542Speare D.J., Carvajal V., Horney B.S. (1999): Growth Suppression and Branchitis in Trout Exposed to Hydrogen Peroxide. Journal of Comparative Pathology 120:391-402. DOI: 543 10.1053/jcpa.1998.0285 (ECOTOX no. 107125). 544 545Taylor P.W., Glenn R.A. (2008): Toxicity of Five Therapeutic Compounds on Juvenile Salmonids. 546 N Am J Aquacult 70:175-183. DOI: 10.1577/A06-058.1 (ECOTOX no. 107284). 547Thomas D.A. (1998): Physiological Effects of Ethylene Glycol-Induced Cribriform Frond Structure 548 in Lemna gibba, Ph. D. Thesis, Tulane Univ., New Orleans, LA. pp. 124 (ECOTOX no. 549 111201). U.S. EPA. (1992): Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database 550(EEDB)), Environmental Fate and Effects Division, U.S.EPA, Washington, D.C. (ECOTOX 551 552no. 344). U.S. EPA. (2007): OPP Pesticide Ecotoxicity Database. 553 United States Environmental Protection Agency Office of Water Office of Science and Technology. 554(2009): National Recommended Water Quality Criteria https://www.epa.gov/wqc/national-555556 recommended-water-quality-criteria-aquatic-life-criteria-table (2021.5.23 時点). 557Watanabe H., Takahashi E., Nakamura Y., Oda S., Tatarazako N., Iguchi T. (2007): Development of 558 a Daphnia magna DNA Microarray for Evaluating the Toxicity of Environmental 559 Chemicals. Environ Toxicol Chem 26:669-676. DOI: 10.1897/06-075r.1 (ECOTOX no. 560 108066).