優先評価化学物質のリスク評価(一次)

生態影響に係る評価Ⅱ

2,6-ジーtertーブチルー4ーメチルフェノール

優先評価化学物質通し番号 64

平成 27 年 7 月

厚生労働省 経済産業省 環 境 省

目 次

1

3			
4	1	化学物質のプロファイル	1
5		1-1 優先評価化学物質等の情報等	1
6		1-2 評価対象物質の同定情報	2
7	2	評価対象物質の性状	3
8		2-1 物理化学的性状及び濃縮性	3
9		2-2 分解性	<i>6</i>
10	3	排出源情報	g
11		3-1 化審法届出情報	9
12		3-2 PRTR 情報	20
13		3-3 排出等に係るその他の情報	22
14	4	· 有害性評価(生態)	23
15	·	4-1 生態影響に関する毒性値の概要	
16		4-1-1 水生生物	
17		4-1-2 底生生物	
18		4 - 2 予測無影響濃度(PNEC)の導出	
19		4-2-1 水生生物	
20		4-2-2 底生生物	25
21		4-3 有害性評価に関する不確実性解析	26
22		4-4 結果	26
23		4-5 有害性情報の有無状況	
24		4-6 出典	27
25	5	暴露評価と各暴露シナリオでのリスク推計	28
26		5-1 環境媒体中の検出状況	28
27		5-1-1 水質モニタリングデータ	28
28		5-1-2 底質モニタリングデータ	
29		5-2 排出源ごとの暴露シナリオによる暴露評価とリスク推計	31
30		5-2-1 化審法届出情報に基づく評価	32
31		(1) 暴露評価	32
32		① 暴露シナリオ	
33		② 排出量推計結果	
34		③ 環境媒体中濃度の推計結果	
35		(2) リスク推計結果	
36		5-2-2 PRTR 情報に基づく評価	
37		(1) 暴露評価	
38		① 暴露シナリオ	
39		② 排出量の情報	
40		③ 環境媒体中濃度の推計結果	
41		(2) リスク推計結果	37

1	5-2-3 環境モニタリングデータ	40
2	5-3 用途等に応じた暴露シナリオによる暴露評価とリスク推計	. 41
3	(1) 水系の非点源シナリオ	. 41
4	(2) 水系の非点源シナリオに基づく暴露評価とリスク推計結果	. 41
5	5-4 様々な排出源の影響を含めた暴露シナリオにおける暴露評価とリスク推計	. 41
6	5-4-1 広域的・長期的スケールの暴露状況の推計(化審法届出情報と PRTR 情報の	D
7	利用)	41
8	(1) 推計条件	. 42
9	(2) 推計結果	. 43
10	5-4-2 環境中濃度等の空間的分布の推計(PRTR 情報等の利用)	44
11	(1) 推計条件	. 44
12	(2) 環境中濃度の推計結果	. 46
13	① PRTR 全排出量及び化審法届出情報に基づく推計排出量	. 46
14	② PRTR 全排出量	. 48
15	③ 化審法対象範囲の PRTR 排出量	. 50
16	(3) 環境中分配比率等の推計結果	. 52
17	(4) G-CIEMS の推計結果とモニタリングデータとの比較解析	. 52
18	5-4-3 環境モニタリング情報に基づく評価	54
19	(1) 水生生物	. 54
20	(2) 底生生物	. 54
21	5-5 広域的・長期的スケールの数理モデルによる残留性の評価	. 54
22	5-5-1 総括残留性	55
23	5-5-2 定常到達時間の推計	57
24	5-6 暴露評価とリスク推計に関する不確実性解析	. 58
25	5-6-1 不確実性解析の概要	58
26	5-6-2 評価対象物質	62
27	5-6-3 物理化学的性状等	62
28	5-6-4 PRTR 情報等の不確実性	62
29	5-6-5 排出量推計の不確実性	62
30	5-6-6 暴露シナリオの不確実性	62
31	6 まとめと結論	61
32	6-1 有害性評価	
33	6-2 暴露評価とリスク推計	
34	6-2-1 排出源ごとの暴露シナリオによる評価	
35	6-2-2 用途等に応じた暴露シナリオによる評価	
36	6-2-3 様々な排出源の影響を含めた暴露シナリオによる評価	
37	(1) 環境中濃度の空間的分布の推計	
38	(1) 衆第十級及り至時的が制め提出	
39	① 水生生物	
40	② 底生生物	
+0 41	6-3 考察とまとめ	
+1 42	6-4 補足事項	
⊤ ∠	U - ユ	. 00
43	7【付属資料】	68

1	7-1 参照した技術ガイダンス	68
2	7-2 物理化学的性状等一覧	68
3	7-3 Reference chemical の物理化学的性状等の情報源等	69
4	7-4 環境モニタリングデータとモデル推計結果の比較解析	71
5	(1) 地点別のモニタリング濃度と G-CIEMS のモデル推計濃度との比較	71
6	(2) 地点別のモニタリング濃度と PRAS-NITE のモデル推計濃度との比較	73
7	7-5 生態影響に関する有害性評価Ⅱ	74
8	7-5-1 各キースタディの概要	
9	(1) 水生生物	74
10	(2) 底生生物	
11	7-5-2 国内外における生態影響に関する有害性評価の実施状況	76
12	(1) 既存のリスク評価書における有害性評価の結果	76
13	(2) 水生生物保全に関する基準値等の設定状況	77
14	(3) 出典	78
15	7-6 長期使用製品の使用段階における排出シナリオと排出係数	83
16		
17		

1 化学物質のプロファイル

1-1 優先評価化学物質等の情報等

優先評価化学物質「2,6-ジ-tert-ブチル-4-メチルフェノール」(以下「BHT」という。) について、化学物質の審査及び製造等の規制に関する法律(以下、「化審法」という。) に係わる情報を表 <math>1-1 に示す。

表 1-1 化審法に係わる情報

優先評価化学物質官報公示名称	2, 6ージーtertーブチルー4ーメチルフェノール					
優先評価化学物質通し番号	64					
優先評価化学物質指定官報公示日	平成 23 年 4 月 1 日					
官報公示整理番号、既存化学物質名簿官報公示	3-540: トリアルキル(又はアルケニル, C=1~4)フェノール					
名称	9-1805: pークレゾールとイソブチレンの反応生成物					
過去の物質区分	既存化学物質					
週去の物質区ガ	第三種監視化学物質					
既存化学物質安全性点検結果(分解性·蓄積性)	難分解性(変化物なし)・中濃縮性					
既存化学物質安全性点検結果(人健康影響)	未実施					
既存化学物質安全性点検結果(生態影響)	実施(第三種監視化学物質相当)					
優先評価化学物質の製造数量等の届出に含ま	なし					
れるその他の物質 ^(注)						

(注)「化学物質の審査及び製造等の規制に関する法律の運用について」の「2. 新規化学物質の製造又は輸入に係る届出関係」により新規化学物質としては取り扱わないものとしたもののうち、構造の一部に優先評価化学物質を有するもの(例:分子間化合物、ブロック重合物、グラフト重合物等)及び優先評価化学物質の構成部分を有するもの(例:付加塩、オニウム塩等)については、優先評価化学物質を含む混合物として取り扱うこととし、これらの製造等に関しては、優先評価化学物質として製造数量等届出する必要がある。(「化学物質の審査及び製造等の規制に関する法律の運用について」平成23年3月31日薬食発0331第5号、平成23・03・29製局第3号、環保企発第110331007号)

国内におけるその他の関連法規制情報を表 1-2に示す。

表 1-2 国内におけるその他の関係法規制

役 1 2 目 引における この 同の 民							
	国内における関係法規制	対象					
特定化学物	質の環境への排出量の把握等及び管理	2.6ージーターシャリーブチルー4ークレゾール					
の改善の促	進に関する法律(化管法)	2, 6-ジーダージャリーノテルー4-グレノール : 第一種指定化学物質 1-207					
(平成 21 年	10月1日から施行)	:另一性拍皮1C子物頁 I-20/					
(旧)化管法	(平成 21 年 9 月 30 日まで)	-					
毒物及び劇	物取締法	_					
	製造等が禁止される有害物等	_					
	製造の許可を受けるべき有害物	_					
労働安全	名称等を表示すべき危険物及び有害物	_					
衛生法		2, 6ージーターシャリーブチルー4ークレゾール					
	名称等を通知すべき危険物及び有害物	対象となる範囲(重量%)≧0.1					
		政令第18条の2別表第9の262					

	国内における関係法規制	対象
化学物質の有害性の調査		1
化学兵器禁止法		-
オゾン層保護法		-
大気汚染防止法		-
水質汚濁防止法		-
土壌汚染対策法		-
有害物質を	含有する家庭用品の規制に関する法律	_

出典:(独)製品評価技術基盤機構,化学物質総合情報提供システム(CHRIP),

URL: http://www.safe.nite.go.jp/japan/db.html, 平成 27 年 6 月 12 日に CAS 登録番号 128-37-0 で検索

4

5

1

2 3

1-2 評価対象物質の同定情報

評価対象とする BHT の同定情報を表 1-3 に示す。

678

表 1-3 評価対象物質の同定情報

評価対象物質名称	2, 6ージーtertーブチルー4ーメチルフェノール					
構造式	H ₃ C CH ₃ OH CH ₃ CH ₃ CH ₃ CH ₃ CH ₃					
分子式	C ₁₅ H ₂₄ O					
CAS 登録番号	128-37-0					

2 評価対象物質の性状

2 本章では、5 章のモデル推計に用いる物理化学的性状データ、環境中における分解性に 3 係るデータを示す。

2-1 物理化学的性状及び濃縮性

モデル推計に採用した BHT の物理化学的性状及び生物濃縮係数を表 2-1 に示す。なお、表中の下線部は、評価Ⅱにおいて精査した結果、評価Ⅰから変更した値を示している。

6 7 8

5

1

表 2-1 モデル推計に採用した物理化学的性状等データのまとめ 1)

項目	単位	採用値	詳細	評価【で用 いた値(参 考)
分子量	1	220. 36	_	220. 36
融点	°C	69. 8 ²⁾	示差走査熱量測定による測定値	69. 8 ²⁾
沸点	°C	265 ^{2~5)}	101,325 Pa での値(測定値か推 計値か不明)	265 ²⁾
蒸気圧	Pa	1. 1 ²⁾	Directive 84/449/EEC, A.4 に よる20℃での測定値	1. 1 ²⁾
水に対する溶解度	mg/L	<u>0. 76</u> ⁶⁾	EU Method A.6 による GLP 下の 20℃での測定値	1. 1 ²⁾
1-オクタノールと水との間 の分配係数(logPow)	ı	5. 1 ²⁾	GLP 下での HPLC 法による測定値	5. 1 ²⁾
ヘンリー係数	Pa·m³/mol	0. 4187)	HENRYWIN (V. 3.20) ⁷⁾ による推 定値	0. 418 7)
有機炭素補正土壌吸 着係数(Koc)	L/kg	8, 1837)	logPow を 用 い た KOCWIN (V.2.00) ⁷⁾ による推定値	8, 183 ⁷⁾
生物濃縮係数(BCF)	L/kg	1, 299 ⁸⁾	OECD TG 305C での試験	1, 2998)
生物蓄積係数(BMF)	_	1	logPow と BCF から設定 ⁹⁾	1
解離定数 (pKa)		12. 2 ¹⁰⁾	信頼性の定まった情報源からの 測定値(本物質は酸)	_11)

- 1) 平成 26 年度第 1 回優先評価化学物質のリスク評価に用いる物理化学的性状、分解性、蓄積性等のレビュー会議(平成 27 年 1 月 26 日) で了承された値
- 2) OECD (2002)
- 12 3) CRC (2013)
- 13 4) CCD (2007)
- 14 5) MOE (2008)
- 15 6) ECHA
- 16 7) EPI Suite (2012)
- 17 8) MITI (1979)
- 18 9) MHLW, METI, MOE (2014)
 - 10) PhysProp
- 20 11) 評価 [においては解離定数は考慮しない

2223

19

21

9

10

11

上記性状項目について、精査概要を以下に示す。

- 24 ①融点
- 25 評価 I で用いたデータは、信頼性の定まった情報源 1である OECD SIAR (OECD 2002)の

¹「化審法における物理化学的性状・生分解性・生物濃縮性データの信頼性評価等について」の「3.1信頼

- 1 キースタディのデータで、純度 99%以上の被験物質を用いた示差走査熱量測定による値であ
- 2 る。評価Ⅱにおいてもこの値 (69.8℃) を用いる。

- 4 ②沸点
- 5 評価 I で用いたデータは、OECD SIAR (OECD 2002) のキースタディのデータで、標準
- 6 圧力 (101,325 Pa) での値である。さらに、他の信頼性の定まった情報源 (CRC 2013, CCD
- 7 2007, MOE 2008) にも同じ値が記載されている。評価 II においてもこの値 (265 $^{\circ}$ C) を用い
- 8 る。

9

- 10 ③蒸気圧
- 11 評価 I で用いたデータは OECD SIAR (OECD 2002) のキースタディのデータで、
- 12 Directive 84/449/EEC, A.4 "Vapour pressure" (OECD TG104 相当、ダイナミック法) に従
- 13 って測定された 20℃の値である。評価IIにおいてもこの値 (1.1Pa) を用いる。

14

- 15 ④水に対する溶解度
- 16 評価 I で用いたデータは OECD SIAR (OECD 2002) のキースタディのデータで、
- 17 Directive 84/449/EEC, A.6 "Water Solubility" (OECD TG 105 相当) に従って測定された
- 18 20°Cの値である。
- 19 評価Ⅱにおいては、EU Method A.6 (Water Solubility、column elution method) に従っ
- 20 て GLP 下で測定された REACH 届出データの 0.76 mg/L (20°) を用いる。このデータは、
- 21 pH 6.5 で測定されており、非解離体の水に対する溶解度に相当すると考えられる。

22

- 23 ⑤logPow
- 24 評価 I で用いたデータは OECD SIAR (OECD 2002) のキースタディのデータで、GLP下、
- 25 C₁₈逆相カラムを用いた HPLC 法で決定されたデータである。評価Ⅱにおいてもこの値 (5.1)
- 26 を用いる。

- 28 ⑥ヘンリー係数
- 29 評価 I で用いたデータは HENRYWIN (V. 3.20)の Bond Estimation Method で推計した値
- 30 (0.418 Pa·m³/mol)である。
- 31 また、BHTの水に対する溶解度は1mol/Lより小さい (7.6 × 10^{-4} g/L ÷ 220.36 = 3.4 ×
- 32 10⁻⁶ mol/L) ため、蒸気圧と対水溶解度比から算出した値 (319 Pa·m³/mol) も適用できると
- 33 考えられる。しかしながら、HENRYWIN (V. 3.20)による推計値(0.418 Pa·m³/mol)と比較す
- 34 ると、この値は非常に大きな値である。さらに、信頼性の定まった情報源 (Mackay 2006,
- 35 PhysProp) に記載された BHT の類似物質の 25℃前後で測定されたデータ(表 2-2 参照。)
- 36 と比較しても、この値は非常に大きな値である。類似物質については、BHT と基本骨格を同
- 37 じとする物質を選択した。
- 38 これらのデータとの比較の結果、蒸気圧と対水溶解度比から算出した値よりも、
- 39 HENRYWIN (V. 3.20)の推計値が妥当であると考えられる。なお、本物質の分子量 (220.36)
- 40 は HENRYWIN (V. 3.20)の Bond Estimation Method のトレーニングセットの範囲内 (分子
- 41 量:26.04~451.47) にある。
- 42 よって評価 I においても評価 I で用いた値 $(0.418 \text{ Pa·m}^3/\text{mol})$ を用いる。

表 2-2 類似物質のヘンリー係数測定データ

物質名	測定温度[℃]	ヘンリー係数 [Pa·m3/mol]	著者
	20	0.0536	Sheikheldin et al. 2001
	25	< 0. 240	Altschuh et al. 1999
フェノール 1)	25	0. 032	Harrison et al. 2002
	25	0. 157	Feigenbrugel et al. 2004
	27	0. 0718	Abd-El-Bary et al. 1986
p-クレゾール ¹⁾	20	0. 0582	Fairenbrugal at al. 2004
pークレソール·	25	0. 0989	Feigenbrugel et al. 2004
4-tert-ブチルフェノール ²⁾	25	0. 121	Parsons, GH et al. 1972

- 1) Mackay (2006)
- 2) PhysProp

(7)Koc

評価 I で用いたデータは logPow (5.1) を入力値として KOCWIN (v2.00) で推定した値である。信頼性の定まった情報源において測定値はないため、評価 II においても、この logPow から推計した値 (8,183) を用いる。なお、本物質の分子量 (220.36) は KOCWIN のトレーニングセットの範囲内 (分子量: 32.04 \sim 665.02) にある。

®BCF

評価 I で用いたデータは、既存化学物質安全性点検の濃縮度試験 (濃度区:5、50、500 ppb w/v) 結果からの値である。定常状態の値が得られていないため、各濃度区における後半3回の測定値の算術平均の中の最大値 1,299 L/kg (500ppb 区) を採用した。評価 II においてもこの値 (1,299 L/kg) を用いる。

9BMF

評価 I で採用した BMF は、logPow と BCF の値から化審法における優先評価化学物質に関するリスク評価の技術ガイダンス (以下、「技術ガイダンス」) に従って設定した値である。評価 II においても BMF の測定値は得られなかったため、この値 (1) を用いる。

⑩解離定数

本物質は酸である。評価 II では、信頼性の定まった情報源 (PhysProp) に記載された酸解離定数の値 (pKa) 12.2 を用いる。なお、ACD/pKa (ACD Labs) で推算した pKa は、12.8 \pm 0.4 (classic 法)、12.1 \pm 0.4 (GALAS 法) であった。

pKa=12.2 であるため、水中では pH 7.0、pH 8.0、pH 9.0 において 100%が、pH 10.0 において 99%が非解離体であると推定され、環境中では非解離体として存在すると判断された。

2-2 分解性

BHT の環境媒体(大気、水中、土壌、底質)中での分解の半減期を表 2-3 に示す。 評価 II における精査において、機序別の半減期の値が入手できた場合、媒体ごとの質量 分布比を考慮して各機序の 1 次速度定数 (ln(2)÷半減期) から総括分解半減期を算出する。 5 章の暴露評価におけるモデル推計で使用した各環境媒体の半減期は、5 章に記載している。

567

2

3

4

表 2-3 分解に係るデータのまとめ 1)

半減期							
	Į	頁目	(日)	詳細			
	大気におけ	る総括分解半減期	NA				
大気	機序別の	OH ラジカルとの反応	0.9	反応速度定数を $AOPWIN(v1.92)^2)$ から OH ラジカル濃度 5×10^5 molecule/cm 3 として算出			
	焼 序 別 の	オゾンとの反応	NA				
	一 //或 <i>持</i> 7	硝酸ラジカルとの反 応	NA				
	水中におけ	る総括分解半減期	NA				
	機 序 別 の 半減期	生分解	10, 000	難分解性物質 3 として半減期を推定			
水中		酸化	11	14C 標識物質を使用。蒸留水中 0.6 mg/L で試験した結果 4)から半減期を 推定			
		半減期	光分解	7 *	14C 標識物質を使用。蒸留水中 0.6 mg/L で試験した結果 4)から半減期を 推定		
		加水分解	NA				
	土壌における総括分解半減期		11	¹⁴ C 標識物質を使用。土壌中 1 mg/kg で試験した結果 ⁴⁾ から半減期を推定			
土壌	機序別の	生分解	NA				
	半減期	加水分解	NA				
÷ 55	底質におけ	る総括分解半減期	44	土壌における総括分解の半減期から 推定			
底質	機序別の	生分解	NA				
	半減期	加水分解	NA				

- 1) 平成 26 年度第 1 回優先評価化学物質のリスク評価に用いる物理化学的性状、分解性、蓄積性等のレビュー会議(平成 27 年 1 月 26 日)で了承された値
- 2) EPI Suite(2012)
- 3) MITI (1978)
- 4) OECD (2002)
- ※この光分解の値をモデル推計に使用する際は、水中での光透過率や季節や緯度による太陽光の照射エネルギーの変動等を考慮するものとする。
- NA:情報が得られなかったことを示す

151617

10

11 12

13 14

> 上記分解項目について、精査概要を以下に示す。なお、「総括分解半減期」とは、分解の機 序を区別しない環境媒体ごとのトータルの半減期のことを示す。

18 19

20 ①大気

- 21 大気中での総括分解半減期の情報は得られなかった。また、機序別の半減期についても、
- 22 オゾンとの反応と硝酸ラジカルとの反応に関する情報は得られなかった。

- 1 ①-1 OH ラジカルとの反応の半減期
- 2 情報収集の結果、情報が得られなかったため、EPI Suite の AOPWIN (v1.92) で推定され
- 3 た反応速度定数 (1.83×10⁻¹¹ cm³/molecule/s) を半減期算出に採用した。大気中 OH ラジカ
- 4 ル濃度を技術ガイダンスの 5×10^5 molecule/cm³ とした場合、半減期は 0.9 日と算出される。
- 5 この値を大気に適用する。

6 7 ②水中

- 8 水中での総括分解半減期の情報は得られなかったが、酸化反応の機序別の反応に関する情
- 9 報が得られた。
- 10 ②-1 生分解の半減期
- 11 情報収集の結果、半減期に関するデータは得られなかった。
- 12 既存化学物質安全性点検結果によれば、被験物質 50 mg/L、活性汚泥 50 mg/L で 4 週間試
- 13 験した結果、酸素消費量から求めた分解度は 4.5%であり、難分解性である。試験条件が
- 14 OECD TG301C と一致していないが、OECD TG 301C に準拠した試験で分解度が 20%を超
- 15 えることはないと考えられるため、技術ガイダンスに従って生分解による半減期は 10,000
- 16 日と設定する。この値は溶存態および吸着態の両方に適用する。
- 17 ②-2 酸化反応の半減期
- 18 採用したデータは OECD SIAR (OECD 2002) のキースタディの測定データである。この
- 19 試験では、純度 99%以上の ¹⁴C で標識した BHT を用いて暗所で 8 日間後の蒸留水中での分
- 20 解が調べられ、初濃度 0.6 mg/L の蒸留水中には未変化体の BHT が 59.6%、分解生成物とし
- 21 \leftarrow BHT-OOH (2.6%), BHT-OH (8.8%), BHT-CH₂OH (1.1%), BHT-CHO (3.0%), BHT-COOH
- 22 (1.4%)、そして同定できない極性分解物が約 23%存在し、揮発量は 0.2%であった (全回収
- 23 率:99.7%)。BHT が難生分解性で、暗所で分解が見られていること、さらに、BHT は抗酸
- 24 化剤として性質を有することから、この分解は酸化反応によると考えられる。
- 25 8 日間で、59.6%が BHT として残存しているため、1 次反応を仮定して、半減期を 11 日
- 26 と算出した。この値を水中溶存態に適用する。
- 27 ②-3 光分解の半減期
- 28 採用したデータは OECD SIAR (OECD 2002) のキースタディの測定データである。この
- 29 光分解試験では、純度 99%以上の ¹⁴C で標識した BHT (初濃度 0.6 mg/L) を用いて太陽光に
- 30 8時間/日で8日間(5月)光照射し、蒸留水中での光分解が調べられた。8日後の蒸留水中に
- 31 は未変化体の BHT が 25.2%、分解生成物として BHT-OOH (5.7%)、BHT-OH (4.2%)、
- 32 BHT-CH₂OH (7.5%)、BHT-CHO (2.7%)、BHT-COOH (4.7%)、そして同定できない極性分解物
- 33 が約48%生成した(全回収率:98.5%)。
- 34 8 日間で、25.2%が BHT として残存しているため、1 次反応を仮定すると、分解速度定数
- 35 は 0.170 d·1 と算出される。この速度定数から上記②の酸化反応の速度定数 (0.064 d·1) を差
- 36 し引いた 0.106 d·1 が水中光分解に対する速度定数となる。この速度定数から光分解による半
- 37 減期を7日と算出した。この値を水中溶存態に適用する。なお、この値をモデル推計に使用
- 38 する際は、水中での光透過率や季節や緯度による太陽光の照射エネルギーの変動等を考慮す
- 39 る必要がある。

41 ③土壌

- 42 採用したデータは OECD SIAR (OECD 2002) のキースタディの測定データである。この
- 43 試験では、純度 99%以上の ¹⁴C で標識した BHT を使用して、初期濃度 1 mg/kg の BHT を
- 44 含む土壌 (3 種類、滅菌および非滅菌、水分含量:最大容水量の 40%) を 24 日間 25℃でイ

- 1 ンキュベーションした (試験方法は OECD TG 304 A "Inherent biodegradability in soil"に
- 2 相当)。非滅菌土壌では、1 日後に $63\sim82\%$ の BHT が分解され、約 $1\sim2\%$ が CO₂に無機化
- 3 された。また、24 日後には 77~92%が分解され、21~29%が CO₂に無機化された。一方、
- 4 滅菌土壌では、1 日後に $25\sim35\%$ の BHT が分解され、24 日後には $27\sim41\%$ が分解された
- 5 が、無機化は 2%未満であった。また、1 日後に $57\sim68\%$ の BHT が、24 日後には $50\sim61\%$
- 6 の BHT が残存していた。また、滅菌及び非滅菌の両条件下で、BHT-OOH、BHT-OH、
- 7 BHTCH₂OH、BHT-CHO、BHT-COOH が BHT の分解生成物として検出された。
- 8 非滅菌土壌での試験結果には、生分解と非生物分解の両方のプロセスが含まれるため、こ
- 9 の条件の情報を用いて総括分解半減期を推定した。1日後に63%のBHTが分解されたとす
- 10 る情報を基に 1 次反応を仮定して算出される半減期は 0.7 日、24 日後に 77%が分解された
- 11 とする情報を基に1次反応を仮定して算出される半減期は11日となった。この半減期11日
- 12 を土壌中の総括分解半減期に用いる。

④底質

- 15 底質での総括分解半減期に関する情報は得られなかった。また、機序別の半減期に関する
- 16 情報も得られなかった。
- 17 土壌の総括分解に寄与する分解機序は、好気的な生分解と酸化であり、これらは嫌気的条
- 18 件下では寄与しない。このため、土壌の総括分解に対する半減期の 4 倍の値である 44 日を底
- 19 質での総括分解半減期とする。

3 排出源情報

2 3 章では BHT の排出源に関連する情報をまとめた。 3-1 では化審法第 9 条に基づく BHT の製造等の届出数量や用途、その情報に基づき推計した排出量、3-2 では化管法に 基づく排出量情報、3-3 ではその他の排出量に係る情報を示す。

5 3-1 化審法届出情報

BHT は、平成 21 年に旧第三種監視化学物質に、平成 23 年に優先評価化学物質に指定されている。

BHT の平成 22 年度から平成 24 年度までの 3 年間の製造数量、輸入数量を図 3-1 に示す。BHT は、約 2,900 トンから 2,100 トンまでの間で製造されており、約 1,900 トンから約 3,300 トンまでの間で輸入されている。BHT の製造数量と輸入数量の合計は約 5,000 トン前後で推移している。

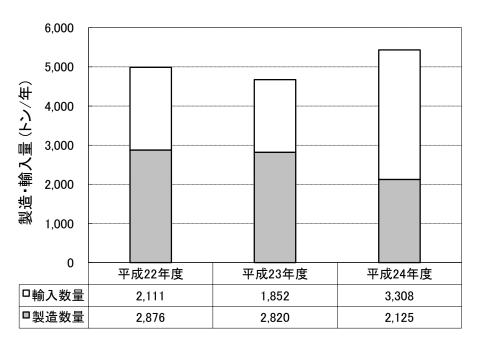


図 3-1 製造・輸入数量の経年変化

優先評価化学物質の届出に変わった平成22年度から平成24年度までの出荷量の用途別内訳を図3-2に示す。平成22年度から平成24年度までの合計で42用途の届出があり、平成22年度から平成24年度で同じ用途で届出(後述する精査等による変更後)があったものは、次のとおり。

『中間物-合成原料、重合原料、前駆重合体』、『化学プロセス調節剤-重合調節(停止)剤、重合禁止剤、安定剤』、『着色剤(染料、顔料、色素、色材)-その他』、『塗料、コーティング剤[プライマーを含む]-安定化剤(酸化防止剤等)』、『印刷インキ、複写用薬剤(トナー等)[筆記用具、レジストインキ用を含む]-安定化剤(酸化防止剤等)』、『殺生物剤1[成形品に含まれ出荷されるもの]-その他』、『芳香剤、消臭剤-香料(洗浄剤用)[#22-b,cを除く]』、『芳香剤、消臭剤-芳香剤』、『接着剤、粘着剤、シーリング材 -安定化剤(老化防止剤等)』、『プラスチック、プラスチック添加剤、プラスチック加工助剤-安定化剤(酸化防止剤等)』、『合成ゴム、ゴム用添加剤、ゴム用加工助剤-安定化剤(老化防止剤等)』、『作動

油、絶縁油、プロセス油、潤滑油剤(エンジン油、軸受油、圧縮機油、グリース等)-作動油添加剤、潤滑油剤添加剤』、『金属加工油(切削油、圧延油、プレス油、熱処理油等)、防錆油-不水溶性金属加工油添加剤、防錆油添加剤』、『電気・電子材料[対象材料等の製造用プロセス材料を含む]-封止材、絶縁材料、シールド材料』、『電池材料(一次電池、二次電池)-電解質材料、電解液材料、絶縁材料、セパレータ材料』、『燃料、燃料添加剤-燃料添加剤(清浄分散剤、酸化防止剤、粘度指数調整剤、摩擦低減剤、防錆剤等)』、『輸出用』の以上 17 用途があった。

1 2

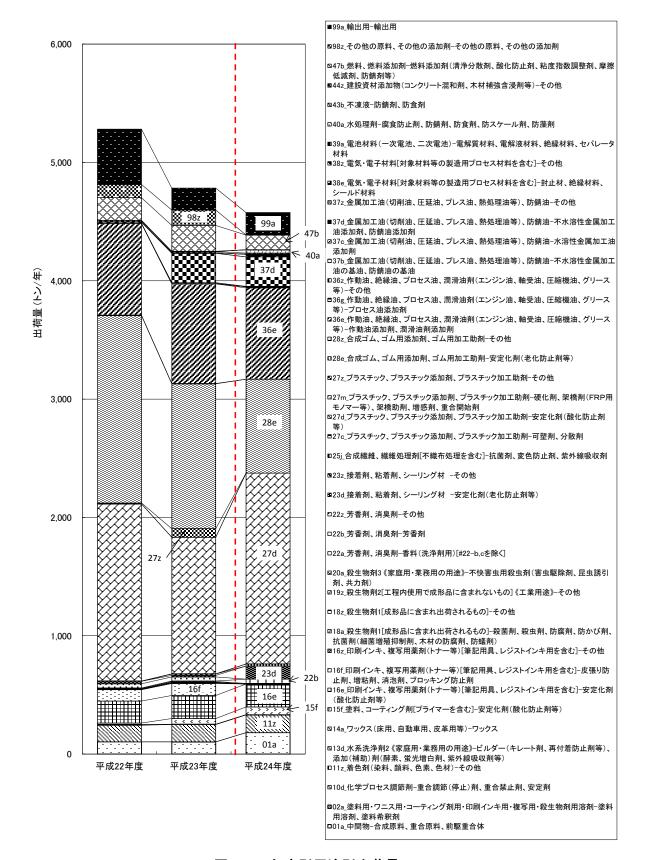


図 3-2 年度別用途別出荷量

注:本評価の際に、平成24年度は用途を精査した

平成 24 年度の化審法届出情報を用いてリスク推計を行うため、BHT の詳細用途別出荷 先都道府県数及び詳細用途別ライフサイクルステージ別の仮想的排出源の数を表 3-1 に、 排出係数を表 3-2 にそれぞれ示す。

表 3-1 製造数量等届出制度の製造箇所、届出用途と出荷先の都道府県数及び推定されるライフサイクルステージ別の仮想的な排出源の数(平成24年度)

及い推定されるライフサイクルステージ別の仮想的な排出源の数(平成 24 年度)							
用途番			出荷先	仮想的な排出源の数 工業 【			
号 -詳細用 途番号	用途分類	詳細用途分類	都道府果数	調合 段階 1	調合 段階 2	上 的 使用 段階	計
01-a	中間物	合成原料、重合原料、前 駆重合体	2	_	-	2	2
10-d	化学プロセス調節 剤	重合調節(停止)剤、重合 禁止剤、安定剤	10	10	-	10	20
11-z	着色剤(染料、顔 料、色素、色材)	その他	1	1	-	1	2
13-d	水系洗浄剤 2《家 庭用・業務用の用 途》	ビルダー(キレート剤、再 付着防止剤等)、添加(補 助)剤(酵素、蛍光増白 剤、紫外線吸収剤等)	1	1	ı	-	1
15-f	塗料、コーティング 剤[プライマーを含 む]	安定化剤(酸化防止剤等)	5	5	1	5	10
16-e	印刷インキ、複写 用薬剤(トナー等) [筆記用具、レジス トインキ用を含む]	安定化剤(酸化防止剤等)	8	8	ı	8	16
18-z	殺生物剤1[成形品 に含まれ出荷され るもの]	その他	1	1	-	1	2
22-a	芳香剤、消臭剤	香料(洗浄剤用)[#22-b,c を除く]	3	3	3	_	6
22-b	芳香剤、消臭剤	芳香剤	4	_	4	-	4
23-d	接着剤、粘着剤、 シーリング材	安定化剤(老化防止剤等)	2	2	-	2	4
25-ј	合成繊維、繊維処 理剤[不織布処理 を含む]	抗菌剤、変色防止剤、紫 外線吸収剤	3	3	-	3	6
27-d	プラスチック、プラ スチック添加剤、プ ラスチック加工助 剤	安定化剤(酸化防止剤等)	19	19	-	19	38
28-е	合成ゴム、ゴム用 添加剤、ゴム用加 工助剤	安定化剤(老化防止剤等)	11	11	ı	11	22
36-е	作動油、絶縁油、 プロセス油、潤滑 油剤(エンジン油、 軸受油、圧縮機 油、グリース等)	作動油添加剤、潤滑油剤 添加剤	19	19	-	19	38
36-g	作動油、絶縁油、 プロセス油、潤滑 油剤(エンジン油、 軸受油、圧縮機 油、グリース等)	プロセス油添加剤	3	3	_	3	6
37-с	金属加工油(切削油、圧延油、プレス油、熱処理油等)、 防錆油	水溶性金属加工油添加剤	1	1	-	1	2
37-d	金属加工油(切削 油、圧延油、プレス 油、熱処理油等)、 防錆油	不水溶性金属加工油添加 剤、防錆油添加剤	10	10	-	10	20

用途番				仮想的な排出源の数			
一詳細用 途番号	用途分類	詳細用途分類	出荷先 都道府 県数	調合 段階 1	調合 段階 2	工業 的 使用 段階	計
38-е	電気・電子材料[対象材料等の製造用プロセス材料を含む]	封止材、絶縁材料、シー ルド材料	4	4	-	4	8
38-z	電気・電子材料[対 象材料等の製造用 プロセス材料を含 む]	その他	1	1	-	1	2
39-a	電池材料(一次電 池、二次電池)	電解質材料、電解液材料、絶縁材料、セパレータ 材料	2	2	-	2	4
40−a	水処理剤	腐食防止剤、防錆剤、防 食剤、防スケール剤、防 藻剤	2	2	-	2	4
43-b	不凍液	防錆剤、防食剤	1	1	-	1	2
47-b	燃料、燃料添加剤	燃料添加剤(清浄分散 剤、酸化防止剤、粘度指 数調整剤、摩擦低減剤、 防錆剤等)	10	10	10	-	20
			製造事 業所数				
	製造						1
	計						240

3

長期使用製品の使用段階の排出係数は、同じ詳細用途分類でも使用する製品ごとに排出係数が異なると考え、事業者照会の結果や公開情報等を基に、製品の種類ごとの排出メカニズムと排出係数を次のような考え方により設定した。

456

7

・ 製品の種類や割合等については、BHTの届出事業者に照会した結果得られた情報や工業 会が公開している情報等を基に設定した。

8 · 9

想定し、大気、水域、土壌への排出係数を詳細用途ごと製品の種類ごとに設定した。 なお、洗濯される用途は汚水処理場における媒体移行率も考慮している。また、酸化防 止剤として製品中で反応消滅する割合は情報が得られた用途のみ考慮している。

環境中への排出メカニズムとしては、製品からの剥離や摩耗、基材からの浸出や放散を

11 12

10

・ 排出係数の値は基本的に OECD の排出シナリオ文書 (ESD) の値を利用した。ただし、剥離や摩耗した後は全量排出と仮定した。

131415

参考にした情報、製品の種類と割合、排出メカニズムごとの排出係数等の詳細については 付属資料 7-6 に収載している。

17

16

¹ OECD Emission Scenario Document http://www.oecd.org/env/ehs/risk-assessment/emissionscenariodocuments.htm

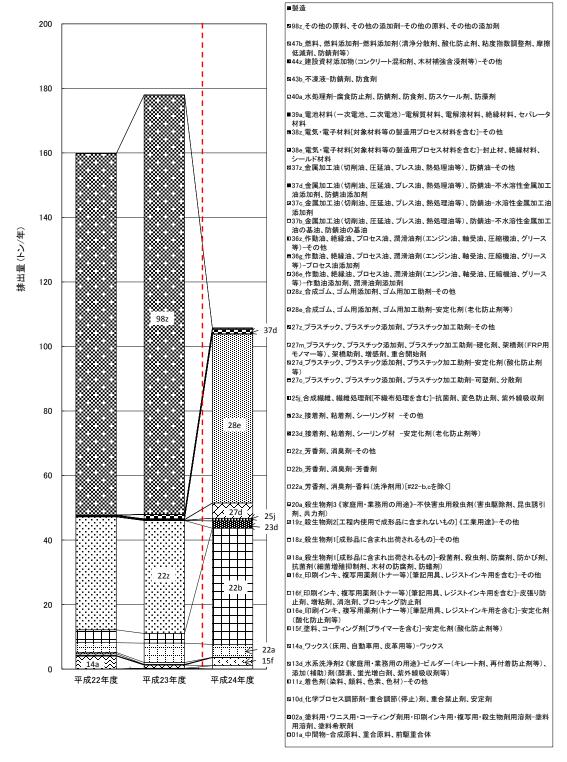
表 3-2 BHT の用途別ライフサイクルステージ別の排出係数

2		表	3-2 BI	HT の用	途別ライ	フサイク	ルステー	ジ別の排	 出係数			
用途番号		調合戶	设階 1	調合	段階 2	工業的個	使用段階		美務用での の こ	長期使	用製品の使用	月段階※
一詳細用途番号	用途分類	大気	水域	大気	水域	大気	水域	大気	水域	大気	水域	土壌
01-a	中間物	_	_	_	_	0.0001	0.00005	_	_	-	-	-
10-d	化学プロセ ス調節剤	0.0001	0.00005	_	_	0.00005	0.00005	_	_	_	_	-
11-z	着色剤(染料、顔料、色素、色材)	0.000025	0.000005	-	-	0.0001	0.00001	_	_	0.00042	0.00014	0.0022
13-d	水系洗浄 剤2《家庭 用・業務用 の用途》	0.00001	0.00005	-	-	_	_	0	1	-	-	-
15-f	参料、コー ティング剤 [プライマー を含む]	0.0001	0.000005	-	-	0.0001	0.0001	_	_	0.0022	0	0.036
16-e	印 れ () () () () () () () () () (0.0001	0.000005	-	-	0.0001	0.00001	_	_	-	-	-
18-z	殺生物剤 1[成形品に 含まれ出荷 されるもの]	0.0001	0.0005	-	-	0.025	0.0015	_	_	0.00042	0.00014	0.0022
22-a	芳香剤、消 臭剤	0.00001	0.0005	0.00001	0.00005	-	_	0	1	-	-	-
	芳香剤、消 臭剤	_	_	0.0001	0.0005	_	_	1	0	-	-	-
22-b	接着剤、粘着剤、シーリング材	0.00025	0.000005	_	_	0.0001	0.00001	_	_	0.00032	0.01	0.01
25-j	合成繊維、 繊維処理 剤[不織布 処理を含む]	0.00005	0.000005	_	_	0.01	0.01	_	_	0.00053	0.025	0.0002
27-d	プラスチック、クラステンク かり プラステム かり アイカー アイカー カース カース カース カース カース カース カース カース カース カ	0.00005	0.000005	-	-	0.0001	0.00001	_	_	0.00042	0.00014	0.0022
28-e	合成ゴム、 ゴム用添加 剤、ゴム用 加工助剤	0.00005	0.000005	_	_	0.000025	0.00001	_	_	0.0038	0.000033	0.062
36-е	作動油、絶 根 ス油 利ン油 受油	0.00001	0.000001	-	-	0.00005	0.000005	-	_	-	-	-
36-g	作動油、絶縁油、プロ	0.00001	0.000001	_	-	0.00025	0.00001	_	_	0.00038	0.000003	0.0062

号		調合與	没階 1	調合具	没階 2	工業的例	使用段階	家庭用·業 使用		長期使用	用製品の使用	月段階※
−詳細 用途 番号	用途分類	大気	水域	大気	水域	大気	水域	大気	水域	大気	水域	土壌
	セス油 (エス油剤(エンラン 油 が) 1 (エンラン は) 1 (エルラン は) 1 (エルラン) 1 (エ											
37-с	金油油油油油油加切圧レ処、、 プ熱・油油 がまい (、 できる) がいまた (できる) がったい (できる) はいい (できる) は	0.00001	0.000005	ı	ı	0.0002	0.005	-	_	ı	ı	-
37-d	金油油油油油油油油が上り、プラックでは、プラックでは、プラックでは、アラッでは、アラッでは アラックでは、アラッでは、アウでは、アラッでは、アラッでは、アラッでは、アラッでは、アラッでは、アウでは、アラッでは、アラッでは、アラッでは、アウでは、アラでは、アウ	0.00001	0.000005	-	-	0.0002	0.005	_	_	-	-	-
38-e	電気・電子 材料 等の 製造材料 とこれ という	0.00005	0.00005	-	-	0.005	0.0005	-	-	0.0005	0	0
38-z	電気・電子 材料 等の 製造 オギ 製造 オギ を かり せん かり せん かり せん かり せん かり かん かり かん かり かん かり かん かり かん かい	0.0001	0.00005	-	-	0.005	0.0005	-	-	0.0005	0	0
39-a	電池 材料 (一次電 池、二次電 池)	0.0001	0.00005	-	-	0.00005	0.000005	-	_	-	-	-
40-a	水処理剤	0.00005	0.00005	-	_	0.00002	0.01	_	_	-	-	-
43-b	不凍液	0.00005	0.00005	_	_	0.0005	0.0001	_	_	-	-	-
47-b	燃料、燃料 添加剤	0.000005	0.000001	0.00000 01	0.000000 5	_	_	0.000001	0	-	-	-
コート゛		製造	段階									

0.000005

0.000001


製造

なお、#98z(その他の原料、その他の添加剤)が1事業者から届出があったが、具体的用途に「動物プランクトン用飼料」と記述があり、事業者に照会すると「飼料の酸化防止剤」とのことであった。養殖池での使用(準閉鎖系)がより実態に近いと考えられたため、準閉鎖系の排出係数が設定されている用途#40aに変更した。

BHT の製造箇所は1箇所、詳細用途別都道府県別出荷先の数は123である。これらの情報から、リスク推計に利用する仮想的な排出源の数は、240箇所と仮定される。

平成 24 年度の詳細用途別届出数量等と表 3-2 に示す排出係数から求めた推計排出量を 図 3-3 及び表 3-3 に示す。参考のため、平成 22 年度及び平成 23 年度の推計排出量も示す。ただし、平成 22 年度及び平成 23 年度の推計排出量には長期使用製品の使用段階からの排出量が含まれていない。平成 24 年度の用途は精査し、当初、納入先の用途を十分に確認できない等の理由により、#98z(その他の原料、その他の添加剤)とされていた用途な

- 1 どを事業者に照会した。照会の結果、適切な用途に変更されたことにより、推計排出量が
- 2 減少している。
- 3 平成24年度の推計排出量の合計は約110トンと推計され、「合成ゴム、ゴム用添加剤、
- 4 ゴム用加工助剤-安定化剤(老化防止剤等)」用途からの排出が最も多かった。また、大気
- 5 への排出は、水域への排出の約4.7倍、土壌への排出の約0.7倍であった。

注: 平成 22~23 年度の推計排出量には、長期使用製品の使用段階からの排出量が含まれていない。 また、本評価の際に、平成 24 年度は用途を精査した。

図 3-3 年度別推計排出量

表 3-3 年度別推計排出量の内訳

用途番		衣 3-3 平及別推計拼出里の1 │		排出量(トン)	/年)
号 -詳細用 途番号	用途分類	詳細用途分類	平成 22 年度	平成 23 年度	平成 24 年度
~~ 田 "		製造	0.017	0.017	0.013
98-z	その他の原料、その他 の添加剤	その他の原料、その他の添加剤	110	130	0
47-b	燃料、燃料添加剤	燃料添加剤(清浄分散剤、酸化 防止剤、粘度指数調整剤、摩擦 低減剤、防錆剤等)	0.0014	0.0017	0.00094
44-z	建設資材添加物(コン クリート混和剤、木材 補強含浸剤等)	その他	0	0.0043	0
43-b	不凍液	防錆剤、防食剤	0	0	0.0007
40−a	水処理剤	腐食防止剤、防錆剤、防食剤、防 スケール剤、防藻剤	0	0	0.27
39-a	電池材料(一次電池、 二次電池)	電解質材料、電解液材料、絶縁 材料、セパレータ材料	0.0022	0.002	0.0016
38-z	電気・電子材料[対象 材料等の製造用プロ セス材料を含む]	その他	0	0	0.025
38-е	電気・電子材料[対象 材料等の製造用プロ セス材料を含む]	封止材、絶縁材料、シールド材料	0.022	0.011	0.12
37-z	金属加工油(切削油、 圧延油、プレス油、熱 処理油等)、防錆油	その他	0	0.016	0
37-d	金属加工油(切削油、 圧延油、プレス油、熱 処理油等)、防錆油	不水溶性金属加工油添加剤、防 錆油添加剤	0.057	1.3	1.3
37-c	金属加工油(切削油、 圧延油、プレス油、熱 処理油等)、防錆油	水溶性金属加工油添加剤	0	0	0.021
37-b	金属加工油(切削油、 圧延油、プレス油、熱 処理油等)、防錆油	不水溶性金属加工油の基油、防 錆油の基油	0	0.037	0
36-z	作動油、絶縁油、プロセス油、潤滑油剤(エンジン油、軸受油、圧縮機油、グリース等)	その他	0	0.00027	0
36-g	作動油、絶縁油、プロセス油、潤滑油剤(エンジン油、軸受油、圧縮機油、グリース等)	プロセス油添加剤	0	0.00054	0.062
36-е	作動油、絶縁油、プロセス油、潤滑油剤(エンジン油、軸受油、圧縮機油、グリース等)	作動油添加剤、潤滑油剤添加剤	0.051	0.056	0.051
28-z	合成ゴム、ゴム用添加 剤、ゴム用加工助剤	その他	0.0044	0.0033	0
28-е	合成ゴム、ゴム用添加 剤、ゴム用加工助剤	安定化剤(老化防止剤等)	0.14	0.11	52
27-z	プラスチック、プラスチ ック添加剤、プラスチッ ク加工助剤	その他	0.008	0.084	0
27-m	プラスチック、プラスチ ック添加剤、プラスチッ ク加工助剤	硬化剤、架橋剤(FRP用モノマー 等)、架橋助剤、増感剤、重合開 始剤	0.00055	0	0
27-d	プラスチック、プラスチ ック添加剤、プラスチッ ク加工助剤	安定化剤(酸化防止剤等)	0.25	0.19	4.7
27-c	プラスチック、プラスチ ック添加剤、プラスチッ ク加工助剤	可塑剤、分散剤	0.0021	0.0021	0

用途番			推計	排出量(トン)	/年)
号 -詳細用 途番号	用途分類	詳細用途分類	平成 22 年度	平成 23 年度	平成 24 年度
25−ј	合成繊維、繊維処理 剤[不織布処理を含む]	抗菌剤、変色防止剤、紫外線吸 収剤	0	0	0.81
23-z	接着剤、粘着剤、シー リング材	その他	0	0.063	0
23-d	接着剤、粘着剤、シー リング材	安定化剤(老化防止剤等)	0.008	0.0047	2.3
22-z	芳香剤、消臭剤	その他	35	35	0
22-b	芳香剤、消臭剤	芳香剤	4	3	36
22−a	芳香剤、消臭剤	香料(洗浄剤用)[#22-b,c を除く]	3	6	4
20-a	殺生物剤3《家庭用・ 業務用の用途》	不快害虫用殺虫剤(害虫駆除 剤、昆虫誘引剤、共力剤)	0.45	0.6	0
19-z	殺生物剤 2[工程内使用で成形品に含まれないもの]《工業用途》	その他	0.51	0	0
18-z	殺生物剤 1[成形品に 含まれ出荷されるも の]	その他	0.027	0.027	0.03
18-a	殺生物剤 1[成形品に 含まれ出荷されるも の]	殺菌剤、殺虫剤、防腐剤、防かび 剤、抗菌剤(細菌増殖抑制剤、木 材の防腐剤、防蟻剤)	0.081	0.081	0
16-z	印刷インキ、複写用薬 剤(トナー等)[筆記用 具、レジストインキ用を 含む]	その他	0	0.00086	0
16-f	印刷インキ、複写用薬 剤(トナー等)[筆記用 具、レジストインキ用を 含む]	皮張り防止剤、増粘剤、消泡剤、 ブロッキング防止剤	0.021	0.022	0
16−e	印刷インキ、複写用薬 剤(トナー等)[筆記用 具、レジストインキ用を 含む]	安定化剤(酸化防止剤等)	0.04	0.042	0.042
15-f	塗料、コーティング剤 [プライマーを含む]	安定化剤(酸化防止剤等)	0.0033	0.014	2.5
14-a	ワックス(床用、自動車 用、皮革用等)	ワックス	4	1	0
13-d	水系洗浄剤 2《家庭 用・業務用の用途》	ビルダー(キレート剤、再付着防 止剤等)、添加(補助)剤(酵素、 蛍光増白剤、紫外線吸収剤等)	0	0	1
11-z	着色剤(染料、顔料、 色素、色材)	その他	0.00039	0.00028	0.0029
10-d	化学プロセス調節剤	重合調節(停止)剤、重合禁止 剤、安定剤	0.035	0.036	0.037
02-a	塗料用・ワニス用・コー ティング剤用・印刷イン キ用・複写用・殺生物 剤用溶剤	塗料用溶剤、塗料希釈剤	0	0.2	0
01-a	中間物	合成原料、重合原料、前駆重合 体	0.016	0.015	0.027
	· 計	-	160	180	110

注: 平成 22~23 年度の推計排出量には、長期使用製品の使用段階からの排出量が含まれていない。

² また、本評価の際に、平成24年度は用途を精査した。

3-2 PRTR 情報

化管法に基づく「平成 24 年度届出排出量及び移動量並びに届出外排出量の集計結果」(以下、「平成 24 年度 PRTR 情報」という。)から、平成 22 年度から平成 24 年度までの BHT の排出量等の経年変化を図 3-4 に、平成 24 年度の排出量等の内訳を図 3-5 に示す (ここでの排出量は自家消費分からの排出を含んでいる)。

BHT は、平成 24 年度の 1 年間に全国合計で届出事業者から大気へ 10 トン、公共用水域へ 0.24 トン、土壌へ 0.001 トン排出され、下水道に 0.001 トン、廃棄物として 54 トン移動している。埋め立てはない。また、届出外排出量としては対象業種の届出外事業者から 1 トン、非対象業種 3 トン、家庭から 1 トンの排出量が推計されている。移動体からの排出量は推計されていない。

PRTR 情報によると、BHT の水域への排出量は平成 22 年度以降減少傾向にある。一方、 大気への排出量は平成 22 年度以降増加もしくは横ばいである。

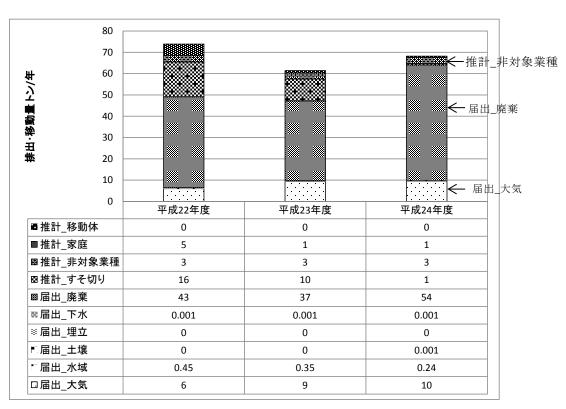


図 3-4 PRTR 制度に基づく排出・移動量の経年変化

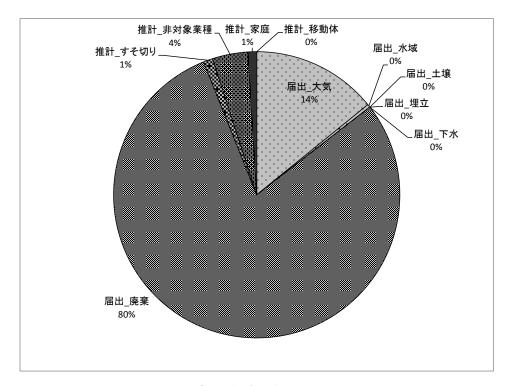


図 3-5 平成 24 年度の排出・移動量の内訳

続いて、平成 24 年度 PRTR 情報に基づき、BHT の対象業種別・媒体別の排出量を図 3-6 に示す。

図 3-6 PRTR 届出排出量の業種別・媒体別内訳(平成 24 年度)

対象業種からのBHTの排出量のうち、ほとんどが化学工業からのものである。

BHTの届出事業所数は202であり、化審法届出情報の仮想的排出源の数240より少ない。 図 3-5に示したように平成24年度のBHTの排出量のうち、届出排出量は届出外排出量の約2倍となっている。平成24年度のBHTの届出外排出量(対象業種、非対象業種、家庭)について、内訳を表3-4に示す。BHTは対象業種の事業者のすそ切り以下の排出量の推計、農薬に係る排出量の推計、殺虫剤に係る排出量の推計、下水処理施設に係る排

出量の推計が行われている。

化審法届出情報を用いた推計排出量(長期使用製品の使用段階からの推計排出量及び家庭用・業務用での使用段階での推計排出量も含む)約 110 トンは、PRTR 排出量(届出排

表 3-4 PRTR 届出外排出量の内訳(平成 24 年度)

			_					• •	••••			•		• •	•••		•						
			年間排出量(トン/年)																				
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
		のすそ切り以下対象業種の事業者	農薬	殺虫剤	接着剤	塗料	漁網防汚剤	洗浄剤・化粧品等	防虫剤・消臭剤	汎用ェンジン	たばこの煙	自動車	二輪車	特殊自動車	船舶	鉄道車両	航空機	水道	オゾン層破壊物質	ダイオキシン類	低含有率物質	下水処理施設	合計
	移動体											0	0	0	0	0	0		0	0			
大	家庭		0	0	0	0		0	0		0							0	0	0			0.68
区分	非対象業種		0	0	0	0	0	0		0								0	0	0			2.7
Ľ	対象業種(すそ切り)	0	0															0	0	0	0	0	0.7
	推計量	0.42	2.7	0.68																		0.31	4.1

3-3 排出等に係るその他の情報

7 BHT のその他の排出源として、調査した範囲内では得られなかった。

4 有害性評価(生態)

- 2 生態影響に関する有害性評価は、技術ガイダンスに従い、当該物質の生態影響に関する
- 3 有害性データを収集し、それらデータの信頼性を確認するとともに、既存の評価書におけ
- 4 る評価や国内外の規制値の根拠となった有害性評価値を参考としつつ、PNEC値に相当す
- 5 る値を導出した。
- 6 なお、スクリーニング評価及びリスク評価(一次)評価Iでは、魚類メダカの急性毒性
- 7 値である 96 時間 LC₅₀ 1.1 mg/L を不確実係数 1,000 で除した 「0.0011 mg/L (1.1 μg/L)」を PNEC
- 8 値として用いていた。

9 4-1 生態影響に関する毒性値の概要

10 4-1-1 水生生物

PNECwater を導出するための毒性値について、専門家による信頼性の評価が行われた 結果、表 4-1 に示す毒性値が PNECwater 導出に利用可能な毒性値とされた。

121314

11

1

表 4-1 PNECwater 導出に利用可能な毒性値

·			20	1 1 11120	water 中田(C/刊/I	1 1111111111111111111111111111111111111	r lie		
兴美 识胜	急	慢	毒性値	生	三物種	エンド	ポイント等	显示如明	
栄養段階 (生物群)	性	性	#1生但 (mg/L)	種名	和名	エンド ポイント	影響内容	暴露期間 (日)	出典
生産者		0	0.237*	Pseudokirchner iella subcapitata	ムレミカヅキモ	NOEC	GRO(RATE)	3	[1] *
(藻類)	0		>0.237*	Pseudokirchner iella subcapitata	ムレミカヅキモ	EC ₅₀	GRO(RATE)	3	[1] *
一次消費者		0	0.069	Daphnia magna	オオミジンコ	NOEC	REP	21	[2]
(又は消費	\circ		0.480	Daphnia magna	オオミジンコ	EC ₅₀	IMM	2	[3]
者) (甲殼類)	0		0.835	Daphnia magna	オオミジンコ	EC ₅₀	IMM	2	[2]
二次消費者		0	0.053	Oryzias latipes	メダカ	NOEC	GRO	42	[4]
(又は捕食 者) (魚類)	0		1.1	Oryzias latipes	メダカ	LC ₅₀	MOR	4	[2]

15 []内数字: 出典番号

16 【エンドポイント】

EC₅₀ (Median Effective Concentration): 半数影響濃度、LC₅₀ (Median Lethal Concentration): 半数致死濃度、

NOEC (No Observed Effect Concentration): 無影響濃度

19 【影響内容】

GRO (Growth):生長(植物)、IMM (Immobilization):遊泳阻害、MOR (Mortality):死亡、

REP (Reproduction): 繁殖、再生産、

生産者 () 内:試験結果の算出法 RATE:生長速度より求める方法(速度法)

23 * 限度試験

2425

17

18

20

21

4-1-2 底生生物

PNECsed を導出するための毒性値について、専門家による信頼性の評価が行われた結果、表 4-2に示す毒性値が PNECsed 導出に利用可能な毒性値とされた。

表 4-2 PNECsed 導出に利用可能な毒性値

生息/ 食餌条	急	慢	毒性値	生	物種		イント等	暴露期間	出典
件 件	性	性	[mg/kg-dry]	種名	和名	エンドポ イント	影響内容	(日)	
1)		0	128		セスジユスリ カ	NOEC	羽化率·変 態速度 (雌)	22	[5]

6 []内数字:出典番号

7 生息/食餌条件: ①内在/堆積物食者

4-2 予測無影響濃度 (PNEC) の導出

評価の結果、採用可能とされた知見のうち、急性毒性及び慢性毒性のそれぞれについて、 栄養段階・生息/食餌条件ごとに最も小さい値を予測無影響濃度(PNEC)導出のために採用 した。そして、情報量に応じて定められた不確実係数積(UFs)を適用し、予測無影響濃 度(PNECwater、PNECsed)を求めた。

4-2-1 水生生物

<慢性毒性値>

生產者(藻類) Pseudokirchneriella subcapitata 生長阻害; 72 時間 NOEC 0.237 mg/L

環境省は OECD TG201 (1992) に準拠し、ムレミカヅキモ (緑藻類) P. subcapitata の生長阻害試験を、東京化成工業(株)製純度 99.9%の被験物質を用いて、止水式で実施した。設定濃度は、対照区、助剤対照区、0.38mg/L (試験液調製可能最高濃度での限度試験) で実施された。助剤として N,N-ジメチルホルムアミド (DMF) を規定範囲内 ($100 \mu L/L$) で用いている。被験物質は液体クロマトグラフィで実測しており、実測値の設定値に対する割合は 62%であった。限度試験で実施された結果、生長阻害は認められなかったため、NOEC 値は 0.237mg/L とした。

一次消費者 (甲殼類) Daphnia magna 繁殖阻害; 21 日間 NOEC 0.069 mg/L

環境省は OECD TG211 (1998) に準拠し、オオミジンコ D. magna の繁殖に対する慢性毒性試験を、東京化成工業(株)製純度 99.9%の被験物質を用いて、半止水式 (24 時間換水)で実施した。設定濃度は、対照区、助剤対照区、0.008、0.025、0.080、0.250、0.800 mg/Lの5濃度区(公比 3.2)で実施された。助剤として、DMF30mg/L、硬化ひまし油 (HCO-60)70mg/Lが規定範囲内で用いられている。被験物質は液体クロマトグラフィで実測しており、実測値の設定値に対する割合は 38~98%であった。実測濃度の時間加重平均値を用いてBartlett の等分散検定、一元配置分散分析、Dunnett の多重比較検定により NOEC 値を算定した結果、毒性値は 0.069mg/L であった。

二次消費者(魚類) Oryzias latipes 成長阻害; 42 日間 NOEC 0.053mg/L

128mg/kg-dry

環境省は OECD TG210 (1992) に準拠し、メダカ O. latipes の初期生活段階試験を、東京 化成工業(株)製純度 99.9%の被験物質を用いて、流水式(約 48L/容器・日、換水率:約 19回/日)で実施した。設定濃度は、対照区、助剤対照区、0.010、0.026、0.067、0.17、 0.45mg/L の 5 濃度区 (公比 2.6) で実施された。助剤として DMF を規定範囲内 (100 μ L/L) で用いている。被験物質は液体クロマトグラフィで実測しており、実測値の設定値に対す る割合は78~82%であった。各影響濃度の算出には実測を用いており、実測濃度の算術平 均値を用いて、Williams 検定により成長に対する NOEC 0.0528mg/L を算出している。

8 9 10

1

2

3

4

5

6

7

<急性毒性値>

3 栄養段階の信頼できる慢性毒性値が得られているため、PNEC 導出に使用しない。

11 12 13

14 15

<PNEC の導出>

3 栄養段階での慢性毒性値が得られており、そのうち、二次消費者の成長阻害に対する 無影響濃度 (NOEC) 0.0528mg/L が最小値となり、これを「10」(室内から野外への外挿係 数)で除し、BHTのPNECwaterは0.0053mg/L(5.3µg/L)となった。

16 17 18

19 20

21

22

主要国において BHT の水生生物保全に係る基準値等は策定されていない(表 7-6参 照)。リスク評価は、環境省(2004)及び OECD (2002)が実施しており、PNEC 値等はそれぞ れ 0.00069mg/L (PNEC 値)、0.0014mg/L (PNEC 値) であった (表 7-5)。本報告の有害 性評価では、信頼できる3生物群の慢性毒性値が得られ、不確実係数積は室内から野外へ の外挿「10」のみとなっているが、環境省(2004)では1生物群での慢性毒性値にアセス メント係数 100、OECD (2002) では 2 生物群での慢性毒性値にアセスメント係数 50 を用 いている。

23 24

25

26

27

4-2-2 底生生物

<慢性毒性値>

内在/堆積物食者 Chironomus yoshimatsui 22 日間 NOEC 羽化率・変態速度(雌)

28 29

30

31

32

33

環境省は化審法試験法 (OECD TG 218) に準拠し、セスジユスリカ C. yoshimatsui の羽化 に対する慢性毒性試験を、東京化成工業(株)製純度 99.8%の被験物質を用いて、GLP 試験 で実施した。試験は止水式で、設定濃度は対照区、助剤対照区、10,22,46,100,220, 460 及び 1,000 mg/kg の 7 濃度区 (公比 2.2) で実施された。助剤としてアセトンが用いら れている。被験物質は液体クロマトグラフィで実測しており、実測値の設定値に対する割 合は50~104%であった。各影響濃度の算出には試験開始時の濃度を採用しており、

34 35

Williams の多重比較検定により有意差を検定した結果、羽化率と変態速度(雌)に対する NOEC は 128mg/kg-dry であった。 36

37 38

39 40

41

<PNEC の導出>

1つの生息・食餌様式の生物群での慢性毒性値が得られており、無影響濃度 (NOEC) 128mg/kg-dry がキースタディとなり、技術ガイダンスに基づき、1 つの慢性毒性値に対す る不確実係数「100」で除し、BHT の PNECsed は 1.3mg/kg-dry(乾重量換算)となった。

4-3 有害性評価に関する不確実性解析

水生生物では、生産者(藻類)、一次消費者(甲殻類)、二次消費者(魚類)の慢性毒性値が得られており、PNECwater 導出のキースタディは、メダカ(O. latipes)の成長阻害に対する42日間NOEC 0.053 mg/L である。これらの毒性情報は、有害性評価 II の PNECwater 導出において室内毒性試験から得られる情報としては試験の信頼性や暴露期間等から判断して十分なものと考えられる。したがって、不確実係数積としては、室内の毒性試験結果から野外の生態系への不確実性を示す「10」のみとなり、この PNECwater 導出における不確実性としては小さい。

一方、底生生物では、内在/堆積物食者の1つの生息・食餌条件の生物群での慢性毒性値(C. yoshimatsui に対する NOEC 128mg/kg dry)が得られており、異なる生息・食餌条件の底生生物との種間差に対する不確実性があることから、PNECsed の算出に用いた不確実係数積は「100」となっている。ただし、化審法では、他の生息・食餌条件の底生生物を対象とした試験法は現在のところ、この生息・食餌条件の底生生物を対象とした試験法のみとなっている。

4-4 結果

有害性評価Ⅱの結果、BHT の水生生物に係る PNECwater は 0.0053mg/L、底生生物に係る PNECsed は 1.3mg/kg-dry を採用する。

表 4-3 有害性情報のまとめ

	水生生物	底生生物
PNEC	0.0053 mg/L	1.3 mg/kg-dry
キースタディの毒性 値	0.053 mg/L	128 mg/kg-dry
不確実性係数積 UFs	10	100
キースタディのエン ドポイント	二次消費者(魚類)の成長阻害 に係る慢性影響に対する無影 響濃度(NOEC)	内在/堆積物食者の羽化率・変態速度(雌)に係る慢性影響に 対する無影響濃度(NOEC)

4-5 有害性情報の有無状況

BHT のリスク評価(一次)の評価 I・評価 II を通じて収集した範囲の有害性情報の有無状況を表 4-4 に整理した。

25 スクリーニング生態毒性試験、有害性調査指示に係る試験、それ以外の試験に分類して整 26 理した。

表 4-4 有害性情報の有無状況

	試験項目	試験方法 ^{注1)}	有無	出典 (情報源)	
スクリーニング 生態毒性試験	水生生物 急性毒性	藻類生長阻害試験	化審法、 OECD TG. 201	0	[6]

	試験項目		試験方法 ^{注1)}	有無	出典 (情報源)
	試験	ミジンコ急性遊泳阻 害試験	化審法、 OECD TG. 202	0	[2]
		魚類急性毒性試験	化審法、 OECD TG. 203	0	[2]
		藻類生長阻害試験	化審法、 OECD TG. 201	0	[1]
第二種特定化学物	水生生物 慢性毒性 試験	ミジンコ繁殖阻害試 験	化審法、 OECD TG. 211	0	[2]
質指定に係る有害 性調査指示に係る 試験		魚類初期生活段階毒 性試験	化審法、 OECD TG. 210	0	[4]
	底生生物 慢性毒性 試験 ^{注 2)}	底質添加によるユス リカ毒性試験	化審法、 OECD TG. 218	0	[5]
その他の試	.験				

注1) 化審法:「新規化学物質等に係る試験の方法について」(平成23年3月31日 薬食発第0331号第7号、平成23・03・29製局第5号、環保企発第110331009号)に記載された試験方法
OECD:「OECD GUIDELINES FOR THE TESTING OF CHEMICALS」に記載された試験方法

注2) その他環境における残留の状況からみて特に必要があると認める生活環境動植物の生息又は生育に 及ぼす影響についての調査(現時点では底生生物への毒性)。

7 4-6 出典

1

2

3

4

5 6

8

9

11

12 13

14

15

- [1] 環境省 (2009): 平成 20 年度 生態影響試験
- [2] 環境庁 (2000): 平成 11 年度 生態影響試験
- 10 [3] 環境省 (2008): 平成 19 年度 化学物質の生態影響試験事業
 - [4] ECHA(2010): Exp Key Short-term toxicity to aquatic invertebrates.001. http://apps.echa.europa.eu/registered/data/dossiers/DISS-9d82f461-e7b6-3a89-e044-00144f67d24 9/AGGR-696afcd4-c3c3-4f6d-b2ca-736b7d3e68ed_DISS-9d82f461-e7b6-3a89-e044-00144f67d2 49.html#AGGR-696afcd4-c3c3-4f6d-b2ca-736b7d3e68ed
 - [5] 環境省 (2011): 平成 23 年度生態影響試験 (ユスリカ)
 - [6] (独)国立環境研究所 (2006): 平成 17 年度化学物質環境リスク評価検討調査報告書

5 暴露評価と各暴露シナリオでのリスク推計

暴露評価Ⅱの基となる 3 つの情報源(化審法情報、PRTR 情報及び環境モニタリング情報)について、対象物質ごとに得られる情報源の組合せは表 5-1 の列に示す 4 通りとなる。得られる情報に応じて、適用可能な手法が分かれる。BHT は化審法情報、PRTR 情報及び環境モニタリング情報が得られるため、太枠で示す暴露評価を行う。

567

1

2

3

4

表 5-1 暴露評価の情報源別の推計ステップの違い

シナ	組合せ	化審法情報	化審法情報 PRTR情報	化審法情報 モニタリング情報	化審法情報 PRTR情報 モニタリング情報
		【 化審法】必ず推計			<i>(</i>
	出源ごとの 露シナリオ		【PRTR】届出情報を用いて推計		【PRTR】届出情報を用いて推計
					【モニタリング】当該シナリオに対応する モニタリング情報が得られれば利用
		【 化審法】必ず推計			
源	々な排出 の影響を 含めた		【PRTR】PRTR情報を用いて推計		「PRTR】PRTR情報を用いて推計
	さめた 厚シナリオ			【モニタリング】一般環境のモニタリング 情報とみなして利用	【モニタリング】メッシュごとの推計値と 対応させて利用
		【化審法】該当する用途があった場	 合に非点源の 寄与分を推計		
	大気系 非点源 シナリオ		【PRTR】該当する用途等に係る推計が 行われていれば推計		【「PRTR】」該当する用途等に係る推計が 行われていれば推計
用途	2704			【モニタリング】一般環境のモニタリン グ情報とみなして利用	【モニタリング】メッシュごとの推計値と 対応させて利用
等に		【化審法】該当する用途があった場・	 おに非点源の寄与分を推計		
応じた	水系 非点源 シナリオ		【PRTR】該当する用途等に係る推計が 行われていれば推計		【PRTR】該当する用途等に係る推計が 行われていれば推計
シナ	2704			【モニタリング】一般環境のモニタリン グ情報とみなして利用	【モニタリング】メッシュごとの推計値と 対応させて利用
リ オ	A11.5	/ 【化審法】該当する用途があった場	 alc推計		
,	船底 漁網防 汚剤		【PRTR】I亥当する用途等に係る推計が 行われていれば推計		【PRTR】該当する用途等に係る推計が 行われていれば推計
	シナリオ			【モニタリング】シナリオに対応するモニ	タリング情報が得られれば利用

8

まず 5-1 で環境モニタリング情報を整理し環境媒体中の検出状況を示す。次に 5-1 以降では BHT に対して環境への排出量を抑制するための指導・助言の必要性、有害性調査指示の必要性の判断の軸となる暴露評価及びリスク推計の結果を暴露シナリオごとに示す。

1213

10

11

暴露評価及びリスク推計では生態への影響(水生生物及び底生生物)を対象とする。

14

15

5-1 環境媒体中の検出状況

16 5-1-1 水質モニタリングデータ

- 17 水質モニタリングの直近年度及び過去約 10 年分 1のモニタリングにおける最大濃度を表
- 18 5-2に示す。また、各モニタリング事業、年度別のモニタリング結果を表 5-3に示す。検
- 19 出濃度範囲については、検出のあった地点の測定濃度(年度内に複数回測定している場合は

 $^{^{1}}$ モニタリングが実施されたのは、平成 16 年度から平成 25 年度のうち、平成 18 年度、平成 19 年度、平成 20 年度であり、その他の年度はモニタリングが実施されていない。

地点別の算術平均濃度)についての全国最大値と全国最小値を示している。

なお、表中の「エコ調査」は環境省(環境庁)の化学物質環境実態調査—化学物質と環境 におけるモニタリング調査を表す。

表 5-3によれば、年度別の最大濃度は、細かい変動はあるものの概ね減少傾向にあり、

5 検出地点数は1割~6割程度を推移しており、年度の推移による傾向は見られない。ただし、

これらの傾向は、年度による測定地点の変更によって左右されるものであり、検出地点数は

検出下限値の改善によって大きく変化するため、傾向を正確に把握できるものではない。

7 8 9

1 2

3

4

6

表 5-2 近年の水質モニタリングにおける最大濃度

期間	モニタリング事業名	最大濃度
		(mg/L)
直近年度(平成 21~25 年度)	_	_
約 10 年分(平成 16~25 年度)	要調査項目(平成 18 年度)	0.00026

10 11

表 5-3 近年の水質モニタリング結果 (平成 16~25 年度)

年度	モニタリング事業名	検出濃度範囲	検出下限値	検出地
		(mg/L)	(mg/L)	点数
平成 20 年度	エコ調査	<0.0000011~0.0000078	0.0000011	9/36
平成 19 年度	要調査項目	<0.00005~0.00016	0.00005	2/45
平成 18 年度	要調査項目	<0.00005~0.00026	0.00005	5/71

網掛けのセルは、近年の水質モニタリング濃度(直近年度及び約10年分)での最大濃度のもの。

1213

14

15

16

17

18

19

20

5-1-2 底質モニタリングデータ

底質モニタリングの直近年度及び過去約 10 年分 1 のモニタリングにおける最大濃度を表 5-4に示す。また、各モニタリング事業、年度別のモニタリング結果を表 5-5に示す。

表 5-5によれば、年度別の最大濃度は、平成 20 年度のエコ調査において検出のあった地点の濃度は 0.15mg/kg-dry である。この地点では、3 検体のうち最大で 0.30 mg/kg-dry の検出があり、各検体値の算術平均により算出した濃度は 0.15 mg/kg-dry となる。また、年度別の最大濃度は、平成 17 年度から平成 20 年度にかけては増加の傾向にあり、また、濃度の比較が可能な 22 地点のうち、18 地点の濃度が増加の傾向にある。

212223

表 5-4 近年の底質モニタリングにおける最大濃度

期間	モニタリング事業名	最大濃度 (mg/kg−dry)	
直近年度(平成 21~25 年度)	_	_	
過去 10 年分(平成 16~25 年)	エコ調査(平成 20 年度)	0.15	

2425

表 5-5 近年の底質モニタリング結果(平成 16~25 年度)

年度	モニタリング事業名	検出濃度範囲 (mg/kg-dry)	検出下限値 (mg/kg-dry)	検出地点数
平成 20 年度	エコ調査	<0.0017~0.15 ^{**1}	0.0017	20/56
平成 17 年度	エコ調査	<0.0006~0.013 ^{**2}	0.0006	23/63

網掛けのセルは、近年の底質モニタリング濃度(直近年度及び約10年分)での最大濃度のもの。

※1 検出のあった3検体の0.070mg/kg-dry、0.084 mg/kg-dry、0.30 mg/kg-dryの平均値とした。

※2 検出のあった3検体の0.0023mg/kg-dry、0.010 mg/kg-dry、0.027 mg/kg-dry の平均値とした。

28 29

26

¹モニタリングの測定がされなかった年度も含まれる。

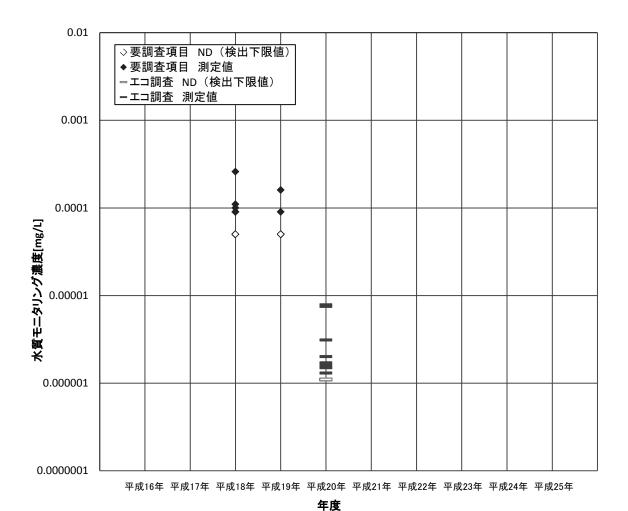


図 5-1 BHT の過去 10 年間の年度別水質モニタリング調査結果のプロット図

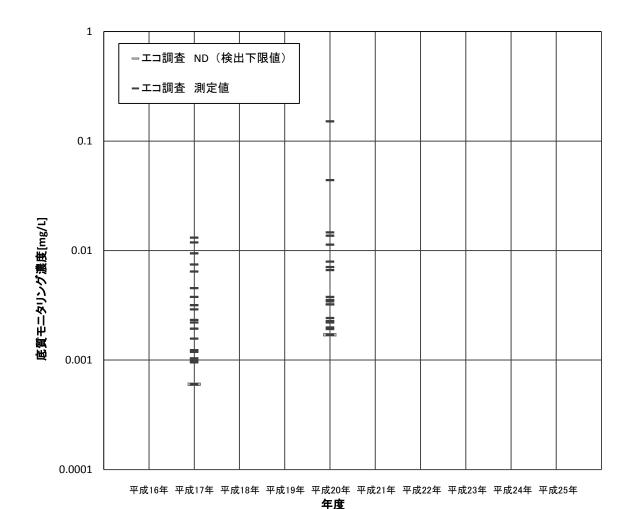


図 5-2 BHT の過去 10 年間の年度別底質環境モニタリング調査結果のプロット図

5-2 排出源ごとの暴露シナリオによる暴露評価とリスク推計

1

2

3

4

5

6

7

8

9

10

11

12

13

1415

16

排出源ごとの暴露シナリオとは、サプライチェーン上~中流の固定排出源(製造または 調合または工業的使用段階の排出源)に着目し¹、それらの排出源の周辺に居住する一般 住民又は生育・生息する生活環境動植物が、排出源から排出される化学物質に、環境媒体 を通じて暴露されるというシナリオである。

生態毒性影響に対するリスク推計は、PRAS-NITE を用いて評価対象生物ごとの PNEC と、 暴露評価の結果である環境中濃度(PEC)(以下、「PEC」という。)とを比較することにより 行う。PEC が PNEC 以上となる排出源は「リスク懸念」と判別する。リスク推計の結果は、 リスク懸念となった排出源の箇所数の地理的分布で表す。

BHT は化審法届出情報だけでなく PRTR 情報も利用できるため、5-2-1 では化審法届出情報に基づく評価結果を、5-2-2 では PRTR 情報に基づく評価結果をそれぞれ示す。 この 5-2 では化審法届出情報と PRTR 情報は平成 24 年度実績のデータを用いている。

1 PRTR 情報において、下水道への移動量が届け出られている場合は、移動先の下水道終末処理施設を固定 排出源として扱っている。

1 5-2-1 化審法届出情報に基づく評価

(1) 暴露評価

2

3 4

5

6 7

8

9

101112

13

14

15

16 17

① 暴露シナリオ

BHT については生活環境動植物として水生生物及び底生生物に対するリスク評価を行う。そのための暴露評価として、評価 I では水生生物のみを対象としたが、評価 II では水生生物と底生生物の両方を評価対象とする。すなわち PEC として水中濃度(排出先は河川と仮定するので河川中濃度)と底質中濃度を推計する。(図 5-3 参照)

河川へ排出した化学物質に水生生物・底生生物が暴露する経路 排出源 環境運命·暴露媒体 暴露集団 排出先媒体 河川 水生生物 製造又は 製造又は 調合又は 調合又は 工業的使用 工業的使用 河川 分配 段階の 段階の 排出源 排出源 周辺の水生生物と (底生生物) 底生生物

図 5-3 排出源ごとの暴露シナリオ(logPow が3以上の物質の場合は底生生物も対象)

② 排出量推計結果

平成 24 年度実績の化審法届出情報に基づき、都道府県別・詳細用途別出荷量から 240 の仮想的な排出源を設定した (3 章参照)。各仮想的排出源からの排出量は、それぞれの製造量又は出荷量に設定した排出係数 (3 章参照) を乗じて算出した。

水域への排出量の多い上位10箇所について整理し、表5-6に示す。

表 5-6 仮想的排出源ごとの排出量推計結果

No.	都道府県	用途分類	詳細用途分類	用途 番号	詳細用途番号	ライフサイクルス テージ	製造数量 [t/year]	出荷数量 [t/year]	大気排出 係数	水域排出 係数	大気排出 量[t/year]	水域排出 量[[t/year]
1	A県	金属加工油(切削油、圧延油、 プレス油、熱処理油等)、防錆油	不水溶性金属加 工油添加剂、防 鲭油添加剂	37	d	工業的使用段階	0	120	0.0002	0.005	ı	0.6
2	B県	金属加工油(切削油、圧延油、 プレス油、熱処理油等)、防錆油	不水溶性金属加 工油添加剂、防 鲭油添加剂	37	d	工業的使用段階	0	92	0.0002	0.005	ı	0.5
3	C県	水処理剤	腐食防止剤、防 錆剤、防食剤、防 スケール剤、防藻 剤	40	a	工業的使用段階	0	22	0.00002	0.01	-	0.2
4	D県	合成繊維、繊維 処理剤[不織布 処理を含む]	抗菌剤、変色防 止剤、紫外線吸 収剤	25	j	工業的使用段階	0	8	0.01	0.01	-	0.1
5	E県	金属加工油(切削油、圧延油、 プレス油、熱処理油等)、防錆油	不水溶性金属加 工油添加剂、防 錆油添加剂	37	d	工業的使用段階	0	15	0.0002	0.005	-	0.1
6	A県	合成繊維、繊維 処理剤[不織布 処理を含む]	抗菌剤、変色防 止剤、紫外線吸 収剤	25	j	工業的使用段階	0	7	0.01	0.01	-	0.1
7	F県	水処理剤	腐食防止剤、防 錆剤、防食剤、防 スケール剤、防藻 剤	40	a	工業的使用段階	0	5	0.00002	0.01	-	0.05
8	G県	金属加工油(切削油、圧延油、 プレス油、熱処理油等)、防錆油	不水溶性金属加 工油添加剂、防 铸油添加剂	37	d	工業的使用段階	0	6	0.0002	0.005	1	0.03
9	H県	合成繊維、繊維 処理剤[不織布 処理を含む]	抗菌剤、変色防 止剤、紫外線吸 収剤	25	j	工業的使用段階	0	3	0.01	0.01	ı	0.03
10	B県	金属加工油(切削油、圧延油、 プレス油、熱処理油等)、防錆油	水溶性金属加工油添加剤	37	С	工業的使用段階	0	4	0.0002	0.005	ı	0.02

注) 化審法の届出情報に基づいた排出量推計の方法は技術ガイダンスⅣ章参照

※No.3 は事業者からの届出用途は 98z(その他の原料、その他の添加剤)であったが、具体的用途に記載の「動物プランクトン用飼料」及び照会結果の「飼料の酸化防止剤」から、養殖池での使用(準閉鎖系)がより実態に近いと考えられるため、用途を 40a に変更している。

③ 環境媒体中濃度の推計結果

暴露シナリオ (図 5-3) に基づき、仮想的排出源ごとの排出量と2章で示したBHTの性状より、仮想的排出源周辺における環境媒体中濃度の推計結果を表 5-7に示す。

表 5-7 仮想的排出源周辺の環境媒体中濃度推計結果

	環境媒体	本中濃度		
	水域排	非出分		
No.	河川水中濃 度[mg/L]	底質中濃度 [mg/kg-dry]		
1	1.4×10^{-3}	1.1		
2	1.0×10^{-3}	8.6×10^{-1}		
3	5.0×10^{-4}	4.1×10^{-1}		
4	1.8×10^{-4}	1.5×10^{-1}		
5	1.7×10^{-4}	1.4×10^{-1}		
6	1.6×10^{-4}	1.3×10^{-1}		
7	1.1×10^{-4}	9.3×10^{-2}		
8	6.8×10^{-5}	5.6×10^{-2}		
9	6.8×10^{-5}	5.6×10^{-2}		
10	4.5×10^{-5}	3.7×10^{-2}		

注1) No に示す番号は、表 5-6 における仮想的排出源と対応している。

注2) 環境媒体中濃度の推計方法は技術ガイダンス V 章参照

(2) リスク推計結果

リスク推計は、4章で導出した PNECwater 0.0053 mg/L, PNECsed 1.3 mg/kg-dry と、化審 法届出情報に基づき用途ごとの仮想的な排出源の推計排出量から推計された河川水中濃度 (PECwater)及び底質中濃度(PECsed)とを比較することにより行う。PEC/PNEC が 1 以上となった仮想的な排出源は「リスク懸念」と判別する。表 5-8 にリスク推計結果を示す。

表 5-8 化審法届出情報に基づく水生生物及び底生生物におけるリスク推計結果(PEC/PNEC)

No.	都道府県	用途分類等	ライフサイクル ステージ	水域への 排出量 [t/年]	河川水中濃度 (PECwater) [mg/L]	底質中濃度 (PECsed) [mg/kg-dry]	水生生物_有 害性評価値 (PNECwater) [mg/L]	水生生物_ PEC/PNEC	底生生物_有 害性評価値 (PNECsed) [mg/kg-dry]	底生生物_ PEC/PNEC
1	A県	金属加工油(切削油、圧延油、プレス油、熱処理油等)、防錆油	工業的使用段階	0.6	1.4×10^{-3}	1.1	0.0053	0.3	1.3	0.9
2	B県	金属加工油(切削油、圧延油、プレス油、熱処理油等)、防錆油	工業的使用段階	0.5	1.0×10^{-3}	8.6 × 10 ⁻¹	0.0053	0.2	1.3	0.7
3	C県	水処理剤	工業的使用段階	0.2	5.0×10^{-4}	4.1×10^{-1}	0.0053	0.1	1.3	0.3
4	D県	合成繊維、繊維処理剤[不織布処理 を含む]	工業的使用段階	0.1	1.8 × 10 ⁻⁴	1.5 × 10 ⁻¹	0.0053	0.03	1.3	0.1
5	E県	金属加工油(切削油、圧延油、プレス油、熱処理油等)、防錆油	工業的使用段階	0.1	1.7 × 10 ⁻⁴	1.4 × 10 ⁻¹	0.0053	0.03	1.3	0.1
6	A県	合成繊維、繊維処理剤[不織布処理 を含む]	工業的使用段階	0.1	1.6 × 10 ⁻⁴	1.3 × 10 ⁻¹	0.0053	0.03	1.3	0.1
7	F県	水処理剤	工業的使用段階	0.05	1.1×10^{-4}	9.3×10^{-2}	0.0053	0.02	1.3	0.1
8	G県	金属加工油(切削油、圧延油、プレス油、熱処理油等)、防錆油	工業的使用段階	0.03	6.8 × 10 ⁻⁵	5.6 × 10 ⁻²	0.0053	0.01	1.3	0.04
9	H県	合成繊維、繊維処理剤[不織布処理 を含む]	工業的使用段階	0.03	6.8×10^{-5}	5.6 × 10 ⁻²	0.0053	0.01	1.3	0.04
10	B県	金属加工油(切削油、圧延油、プレス 油、熱処理油等)、防錆油	工業的使用段階	0.02	4.5×10^{-5}	3.7×10^{-2}	0.0053	0.01	1.3	0.03

240 箇所の仮想的な排出源のうち、表 5-8 に示した媒体中濃度(河川水中濃度及び底質中濃度)上位 10 箇所について、河川水中濃度(PECwater)の高い順に図 5-4 に、また、底質中濃度(PECsed)の高い順に図 5-5 に示した。また、図 5-4 及び図 5-5 には、仮想的排出源ごとの排出量も併せて示した。横軸に化審法の届出情報に基づく排出源(横軸の番号は用途分類番号、「工」は工業的使用段階の各ライフサイクルステージを示す。)、縦軸には排出源ごとの媒体中濃度(河川水中濃度及び底質中濃度)を示した。

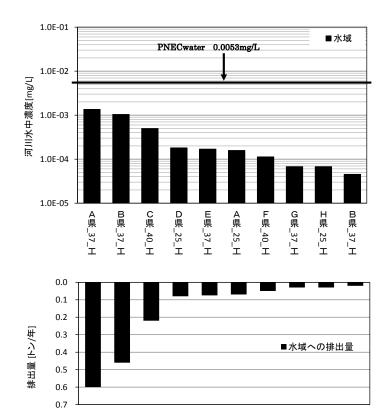
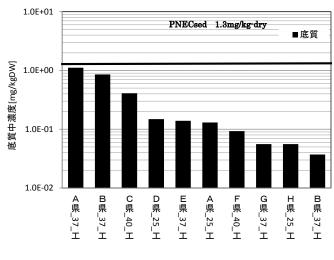
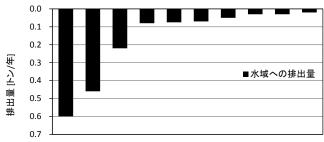




図 5-4 化審法届出情報に基づく仮想的な排出源(水域)の推計排出量に対する河川水中濃度

図 5-5 化審法届出情報に基づく仮想的な排出源(底質)の推計排出量に対する底質中濃度

345

2

続いて、化審法届出情報に基づく水生生物及び底生生物に係るリスク懸念箇所数を表 5-9に示した。

678

表 5-9 化審法届出情報に基づく生態に係るリスク推計結果

	リスク懸念箇所数	排出源の数
水生生物に対するリスク推計結果	0	240
底生生物に対するリスク推計結果	0	240

9 10

リスク懸念となる仮想的排出源の数は、水生生物、底生生物ともに 0 箇所であった。

1112

5-2-2 PRTR 情報に基づく評価

13 14

15

16

17

18

19 20

21

(1) 暴露評価

① 暴露シナリオ

暴露シナリオは化審法届出情報に基づく評価と同じである(図 5-3 参照)。ただし、PRTR 情報に基づく暴露評価においては、公共用水域への排出先が河川か海域かの判断が可能なため、排出先が海域である場合はそれらを考慮して水域濃度を推算した。

PRTR 情報では、届出事業所ごとの下水道への移動量と移動先の下水道終末処理施設の 名称が得られるため、移動先の下水道終末処理施設を排出源として扱った。BHT の下水道 終末処理施設における大気及び水域への移行率は 0.18%及び 15.7% (PRTR 届出外排出量推

② 排出量の情報

平成24年度実績のPRTR届出202事業所及び移動先の下水道終末処理施設2箇所のうち、公共用水域への排出量がゼロでない8箇所について、公共用水域への排出量が多い順に、表 5-10にその排出量を示す。

表 5-10 PRTR 届出事業所ごとの排出量

No.	都道府県	大気排出量 [t/year]	水域排出量 [t/year]	合計排出量 [t/year]	業種名等	排出先水域名称
1	I県	0	0.2	0.2	化学工業	AJII
2	B県	0	0.022	0.022	化学工業	B海域
3	I県	1	0.0089	1.0089	非鉄金属製造業	CIII
4	J県	0	0.006	0.006	医薬品製造業	D海域
5	K県	0	0.0028	0.0028	化学工業	EJII
6	L県	0	0.001	0.001	一般機械器具製造業	FJII
7	M県	0	0.0005	0.0005	化学工業	GJI
8	F県	0.00000216	0.0001884	0.000191	下水道終末処理施設	H海域

※上記8事業所以外は水域への排出量は0 [t/year]であった。

③ 環境媒体中濃度の推計結果

次に、化審法届出情報を用いた暴露評価と同様に、排出源ごとの排出量と2章で示した BHT の性状より、排出源周辺における環境媒体中濃度の推計結果を表 5-11 に示す (No に示す番号は、表 5-10 における排出源と対応している)。

表 5-11 排出源周辺の環境媒体中濃度推計結果

	環境媒体	本中濃度		
	水域技	非出分		
No.	水中	底質		
INO.	[mg/L]	[mg/kgDW]		
1	8.9×10^{-4}	7.3×10^{-1}		
2	2.7×10^{-5}	2.2×10^{-2}		
3	1.1 × 10 ⁻⁴	8.9×10^{-2}		
4	7.3×10^{-6}	6.0×10^{-3}		
5	3.4×10^{-5}	2.8×10^{-2}		
6	1.2×10^{-5}	10×10^{-3}		
7	6.1×10^{-6}	5.0×10^{-3}		
8	2.3×10^{-7}	1.9×10^{-4}		

(2)リスク推計結果

リスク推計は、4章で導出した PNECwater 0.0053 mg/L, PNECsed 1.3 mg/kg-dry と、PRTR 情報に基づく、届出事業所及び移動先の下水道終末処理施設ごとの公共用水域への排出量

推定式は次のとおり。EF=1-(EM+SL)、 $EM=(1-1/(1+5.149H_c^{0.904}))\times 0.8898$ 、 $SL=1-1/(1+4.2162\times 10^{-5}Pow)$ 、EF: 放流水への移行率、EM: 大気への移行率、SL: 汚泥への移行率、 $H_c:$ 無次元化したヘンリー定数、Pow: オクタノール/水分配係数

から推計された河川水中濃度(PECwater)及び底質中濃度 (PECsed)とを比較することにより行う。PEC/PNECが1以上となった排出源は「リスク懸念」と判別する。表 5-12 にリスク推計結果を示す。なお、No.1 の地点については、デフォルト流量を用いるとリスク懸念となるため、技術ガイダンス V 章にしたがって近傍の地点での流量の実測値に置き換えている。

表 5-12 PRTR 情報に基づく水生生物及び底生生物におけるリスク推計結果(PEC/PNEC)

No.	都道府県	業種名等	水域排出量 [t/year]	河川水中濃度 (PECwater) [mg/L]	底質中濃度 (PECsed) [mg/kg-dry]	水生生物_有 害性評価値 (PNECwater) [mg/L]	水生生物_ PEC/PNEC	底生生物_有 害性評価値 (PNECsed) [mg/kg-dry]	底生生物_ PEC/PNEC
1	I県	化学工業	0.2	8.9 × 10-4	7.3 × 10-1	0.0053	0.17	1.3	0.56
2	B県	化学工業	0.022	2.7 × 10-5	2.2 × 10-2	0.0053	0.01	1.3	0.02
3	I県	非鉄金属製造業	0.0089	1.1 × 10-4	8.9 × 10-2	0.0053	0.02	1.3	0.07
4	J県	医薬品製造業	0.006	7.3 × 10-6	6.0 × 10-3	0.0053	0.001	1.3	0.005
5	K県	化学工業	0.0028	3.4 × 10-5	2.8 × 10-2	0.0053	0.01	1.3	0.02
6	L県	一般機械器具製造業	0.001	1.2 × 10−5	10 × 10−3	0.0053	0.002	1.3	0.008
7	M県	化学工業	0.0005	6.1 × 10-6	5.0 × 10-3	0.0053	0.001	1.3	0.004
8	F県	下水道終末処理施設	0.0001884	2.3 × 10-7	1.9 × 10-4	0.0053	0.00004	1.3	0.0001

※No. 1 の推計では近傍の地点で県が実施した測定値のうちの 25% i le 値 ¹である 6.88m³/s を用いた。

また、図 5-6 及び図 5-7 に、表 5-12 に示した排出源ごとの排出量と環境媒体中濃度を示す。

¹ 低水流量は、その定義「1年を通じて 275 日はこれを下らない流量」から 275 / 365 ≒ 0.75 で約 25%ile 値相当となる。

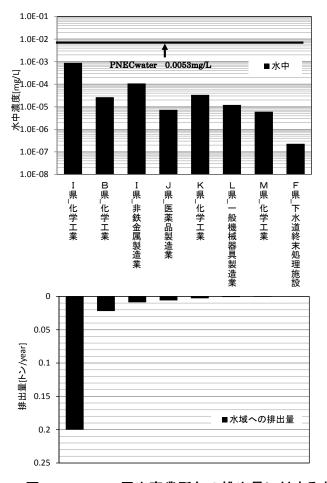


図 5-6 PRTR 届出事業所毎の排出量に対する水中濃度

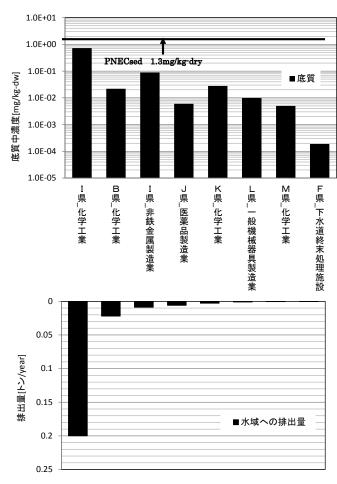


図 5-7 PRTR 届出事業所毎の排出量に対する底質中濃度

続いて、水生生物及び底生生物に係るリスク懸念箇所数を表 5-13 に示した。

表 5-13 PRTR 情報に基づく生態に係るリスク推計結果

	リスク懸念箇所数	排出源の数
水生生物に対するリスク推計結果	0	204
底生生物に対するリスク推計結果	0	204

PRTR 届出 202 事業所及び移動先の下水道終末処理施設 2 箇所全ての排出先の公共用水域でリスク懸念なしであった。

5-2-3 環境モニタリングデータ

排出源ごとの暴露シナリオに対応する環境モニタリングデータがあればリスク懸念の有無等について比較を行う。

平成24年度のPRTR 情報に基づく排出源ごとの暴露シナリオによる暴露評価におけるモデル推計ではリスク懸念箇所はなかった(前述の5-2-2参照)。また、直近年度のモニタリングデータはなかった(前述の5-1参照)。なお、過去10年分まで見れば環境モニタリングデータはあるが、リスク懸念箇所はなかった(後述の5-4-3参照)。

5-3 用途等に応じた暴露シナリオによる暴露評価とリスク推計

サプライチェーン上~中流の固定排出源を対象とした排出源ごとの暴露シナリオのみでは、環境への主要な排出に係る暴露を評価できない用途等に関しては、用途等に応じた暴露シナリオを追加し、必要に応じて推計モデルも追加する。

(1) 水系の非点源シナリオ

本物質は「家庭用・業務用での使用段階」のライフサイクルステージでの使用が想定される用途の化審法の届出があったため (3-1 の表 3-2 参照)、評価 I と同様の手法により、水系の非点源シナリオによる評価を実施した。その際は 5-2-2 と同様に PRTR 届出外排出量推計手法及び評価 II で使用する物理化学的性状に従い、下水処理場での水域移行率として 15.7% を用いた。

(2) 水系の非点源シナリオに基づく暴露評価とリスク推計結果

化審法届出情報を用いた水系の非点源シナリオに基づくリスク推計を PRAS-NITE を用いて行う。リスク推計結果を表 5-14 に示す。下水処理場を経由するシナリオと下水処理場を経由しないシナリオのどちらでもリスク懸念はなかった。

表 5-14 化審法届出情報に基づくリスク推計結果

都道府県	下水処理場	ライフサイクルステージ	水域への全 国排出量 [トン/year]	河川水中濃 度 (PECwater) [mg/L]	底質中濃度 (PECsed) [mg/kg-dry]	害性評価値 (PNECwater)	底生生物_有 害性評価値 (PNECsed) [mg/kg-dry]	水生生物_ PEC/PNEC	底生生物_ PEC/PNEC
全国	経由するシナリオ	家庭用·業務用使用段階	-	7.7×10^{-6}	6.3×10^{-3}	0.0053	1.3	0.0015	0.0049
全国	経由しないシナリオ	家庭用·業務用使用段階	5	3.6 × 10 ⁻⁶	2.9×10^{-3}	0.0053	1.3	0.0007	0.0023

※下水処理場を経由するシナリオの場合は、水域への全国排出量に更に水域移行率を乗じる。

※水系の非点源シナリオに該当する用途で届出があったものは以下のとおり(ただし、水域への排出係数がゼロのものを除く)。詳細は3-1の表 3-2 参照

#13 水系洗浄剤 2 《家庭用・業務用の用途》、#22 芳香剤、消臭剤

5-4 様々な排出源の影響を含めた暴露シナリオにおける暴露評価とリスク推計

本シナリオでは、5-1の排出源ごとの暴露シナリオで対象としたサプライチェーン上~中流の固定排出源の排出量に加え、家庭用・業務用の使用段階、長期使用製品の使用段階といった面的な排出量も加味し、多媒体モデルを用いて、広域的・長期的スケールの暴露状況の推計を行う(5-4-1)。

PRTR 情報が得られる場合には、面的な排出源を含めた全国の排出源からの排出量を基に、地図上の区画(メッシュ)ごとに環境中濃度を推計するモデルを用いて、環境中濃度等の空間的分布を全国レベルで推計する(5-4-2)。

5-4-1 広域的・長期的スケールの暴露状況の推計(化審法届出情報と PRTR 情報の利用)

本シナリオでは、5-1の排出源ごとの暴露シナリオでは考慮されなかった排出源からの 排出量も加味して、時間的に長期的スケールにおける化学物質の広域環境中の動態の予測 を行う。具体的には、日本版多媒体モデル MNSEM3-NITE を用いて、日本全域において、 対象物質が長期的には環境媒体のいずれに分配する傾向があるかを推計する。推計手法については技術ガイダンスWI章に準じている。

(1) 推計条件

推計条件

多媒体モデル MNSEM3-NITE に入力する排出量は、化審法届出情報に基づいて推計した 全国排出量及び PRTR 情報に基づく全国排出量を用いた。

平成24年度の化審法届出情報による全国排出量の内訳を表 5-15に示す。

表 5-15 化審法届出情報(平成 24 年度)による全国排出量の内訳

X • 10 ICHMINITE (TX) 10 OCCUPANT								
	大気	水域	土壌					
ライフサイクルステージ	排出量	排出量	排出量	備考				
	[トン]	[トン]	[トン]					
製造段階	0.011	0.0021	0					
				該当する主な用途は、				
				・ 金属加工油(切削油、圧延油、プレス油、熱				
調合·工業的使用段階	0.9	1.8	0	処理油等)、防錆油				
				・ 合成繊維、繊維処理剤[不織布処理を含む]				
				・水処理剤				
				該当する主な用途は、				
 家庭等使用段階	36.0	1.4	0	・芳香剤、消臭剤				
3/12 1 (Z/117Z/H	00.0			・水系洗浄剤 2《家庭用・業務用の用途》				
				該当する主な用途は、				
				・合成ゴム、ゴム用添加剤、ゴム用加工助剤				
長期使用製品使用段階	3.9	1.8	56.3	・プラスチック、プラスチック添加剤、プラスチッ				
				ク加工助剤				
				・塗料、コーティング剤[プライマーを含む]				
廃棄段階	_	_		考慮しない				

注)家庭等使用段階の推計排出量においては、汚水処理場の人口普及率と、PRTR 届出外排出量の推計手法と2章で示したBHT の性状に従った媒体別の移行率を用いて算出している。

図中の数値は、各区分の推計排出量(トン/年)である。長期使用製品の使用段階からの排出量の影響を調べるため、全てのライフサイクルステージから(以下「広域用」という。)の全国総排出量と製造段階、調合段階及び工業的使用段階から(以下「局所用」という。)の全国総排出量のそれぞれを MNSEM3-NITE に入力した。広域用の全国総排出量には、5-1の排出源ごとの暴露シナリオにおける暴露評価で考慮した事業所等の点排出源からの排出に加え、家庭や長期使用製品の使用段階といった非点源からの排出量を考慮した。局所用の全国総排出量は、5-1の排出源ごとの暴露シナリオにおける暴露評価で考慮した事業所等の点排出源からの排出量だけを考慮した。

次に PRTR 情報による全国排出量の内訳を表 5-16 に示す。これは 3 章の図 3-4 から 平成 24 年度分を再掲したものである。届出排出量と届出外排出量の全国合計値となっている。

表 5-16 PRTR 情報による全国排出量の内訳(平成 24 年度)

届出または推計項目	届出	届出_	届出_	届出_	推計_ すそ切り	推計_ 非対象 業種	推計_	推計_ 移動体	合計
全国排出量(トン)	9.7	0.2	0.001	0	0.7	2.731	0.676	-	14.0

注)推計_すそ切り中の下水処理施設に係る排出量においては、PRTR 届出外排出量の推計手法と2章で示したBHTの性状に従った媒体別の移行率を用いて算出している。

推計に用いた BHT の物理化学的性状は 2 章の表 2-1 に示しており、環境中半減期は 2 章の表 2-3 に示した総括分解半減期である(後述の 5-5 の表 5-28 にも再掲している)。

ただし、水中の光分解の半減期に関しては、水中での光透過率等を考慮し、Zepp, R.G. and Cline D.M. $(1977)^1$ に基づいて 33 日と推計した値を用いる。

(2) 推計結果

全国排出量とその排出先媒体比率を用いて、BHTが大気、水域又は土壌のいずれかに定常的に排出されて定常状態に到達した状態での環境中での分配比率(質量比)を多媒体モデル MNSEM3-NITE によって予測した。

これら比率の推計では、化学物質の物理化学的性状、環境中での分解性、生物濃縮性及び大気、水域、土壌の各媒体への排出先媒体比率が結果を左右し、排出量の絶対値には依存しない。しかし、化審法届出情報を用いた場合、排出先媒体比率自体が3章に示した排出係数に基づいた推計値であり、実態と乖離している可能性がある。

化審法届出情報に基づく環境中分配比率等を表 5-17 に示した。PRTR 排出量に基づくと、土壌に残留する割合が多いという結果になった。

表 5-17 環境中の排出先比率と環境中分配比率

		化審法推 推計排出量 (広域用)	PRTR 届出+届 出外排出量	
	大気	40%	32%	72%
排出先比率	水域	5%	68%	4%
山平	土壌	55%	0%	24%
	大気	<1%	<1%	1%
環境中	水域	3%	87%	7%
分配比率	土壌	96%	<1%	91%
	底質	<1%	12%	<1%

URL: http://webbook.nist.gov/cgi/cbook.cgi?ID=128-37-0&Units=SI 2015年6月1日参照

¹ Zepp, R. G., & Cline, D. M. (1977). Rates of direct photolysis in aquatic environment. Environmental Science & Technology, 11(4), 359-366.

また、BHT のモル吸光スペクトルは以下の情報を利用した。

NIST Chemistry WebBook, Butylated Hydroxytoluene, UV/Visible spectrum.

5-4-2 環境中濃度等の空間的分布の推計(PRTR 情報等の利用)

PRTR における届出及び届出外推計の排出量データの分布情報等をもとに、河川や大気での挙動も考慮した多媒体モデルを用いて、本物質の環境中での地理的な分布を予測した。具体的には、GIS 多媒体モデル G-CIEMS を用いて、日本全域において、対象物質の大気中濃度を5km×5kmメッシュ、水域、土壌、底質中の濃度を流域別に推計した。なお、本物質の評価においては、化審法届出情報に基づく長期使用製品の使用段階からの排出量及び家庭用・業務用の用途の使用段階からの排出量も考慮して、推計を行った。

1 2

(1) 推計条件

BHT の G-CIEMS に基づく濃度推計の条件について以下に示す。

推計条件

G-CIEMS に入力する排出量は、PRTR の届出排出量と届出外推計排出量を 3 次メッシュ上に割り当てたデータ(「平成 2 6 年度地域における化学物質の環境リスク低減支援業務報告書」(環境省環境安全課)より引用)をもとに、G-CIEMS 用に 5km×5km メッシュの大気排出量及び流域別の水域、土壌排出量データに配分したものを用いた。なお、排出先が海域として届け出られているデータについても、当該排出先の所在する流域に排出されるものとして推計している。なお、化審法届出情報に基づく推計排出量のうち、長期使用製品の使用段階からの排出量及び家庭用・業務用用途の使用段階からの排出量は、PRTR の排出量に含まれていないと考えられる。その推計排出量は PRTR の排出量と比較して少なくないことから、本評価では、これらの推計排出量を人口に比例して 3 次メッシュに割り当てて PRTR の排出量に加えて G-CIEMS の濃度推計に用いた。また計算に必要なデータについては、2 章の物理化学的性状等又は技術ガイダンスに示すデフォルト値を用いており、一部の物理化学的性状等については G-CIEMS 入力データの単位や基準とする温度(25℃)にあわせて換算し、表 5-1 8 に示す値を用いた。

表 5-18 G-CIEMS の計算に必要なデータのまとめ

衣 5-10 d-olemoの計算に必要な)―そのまとの						
G-CIEMS の入力 パラメータ	項目	単位	採用値	詳細		
HnrysCnstnt	ヘンリー係数	Pa•m³/mol	0.418	25℃の推定値		
Slblty	水溶解度	mol/m³	3.70x10 ⁻³	25℃温度補正値		
VaporPrssr	蒸気圧	Pa	1.55	25℃温度補正値		
Pow	オクタノールと水 との間の分配係 数	-	1.26x10 ⁵	10 ^{logPow}		
DgrdtnRate_Air_gas	大気中分解速度 定数(ガス)	s ⁻¹	8.91x10 ⁻⁵	大気における機序別分解半減期 の総括値 0.9 日の換算値		
DgrdtnRate_Air_prtcl	大気中分解速度 定数(粒子)	s ⁻¹	8.91x10 ⁻⁵	大気における機序別分解半減期 の総括値 0.9 日の換算値		
DgrdtnRate_Water_sol	水中分解速度定 数(溶液)	s ⁻¹	7.30x10 ⁻⁷	水中における機序別分解半減期 の総括値 4.28 日の換算値		
DgrdtnRate_Water_SS	水中分解速度定 数(懸濁粒子)	s ⁻¹	7.30x10 ⁻⁷	水中における機序別分解半減期 の総括値 4.28 日の換算値		
DgrdtnRate_Soil	土壌中分解速度	s ⁻¹	7.29x10 ⁻⁷	土壌中における総括分解半減期		
DgrdtnRate_Soil_0~6	定数			11 日の換算値		
DgrdtnRate_Sdmnt	底質中分解速度 定数	s ⁻¹	1.82x10 ⁻⁷	底質中における総括分解半減期 44 日の換算値		
DgrdtnRate_Canopy	植生中分解速度 定数	s ⁻¹	8.91x10 ⁻⁵	大気における機序別分解半減期 の総括値 0.9 日の換算値		

計算に用いた排出量の概要として、全国の合計排出量を表 5-19に示す。なお、本物質は化審法対象範囲外のPRTR 届出外推計排出量として、農薬からの推計排出量を含む。そこで、農薬からの推計排出量を除外した場合の推計も行った。化審法対象範囲における全国の合計排出量を表 5-20に示す。また、G-CIEMSに入力するPRTR 排出量に加える化審法届出情報に基づく推計排出量を表 5-23に示す。

表 5-19 PRTR 排出量情報(平成 24 年度)の全国排出量の内訳 (PRTR 全排出量)

× • - • - · · · · · · · · · · · · · · · ·	THE
PRTR 排出量データ使用年度	平成 24 年度
	〇届出排出量 : 9,899 kg/年
	G-CIEMS 用大気排出量: 9,657 kg/年
	G-CIEMS 用水域排出量: 241 kg/年
	G-CIEMS 用土壌排出量: 0.5 kg/年
	〇届出外排出量: 4,136 kg/年
排出量	G-CIEMS 用大気排出量: 410 kg/年
	G-CIEMS 用水域排出量: 10 kg/年
	G-CIEMS 用土壌排出量: 3,407 kg/年
	※ただし、一部沿岸域で G-CIEMS の土壌に対応付かない排出が
	198kg ある。また、下水処理施設からの届出外排出量 309kg は計算に
	は含めていない。

表 5-20 PRTR 排出量情報(平成 24 年度)の全国排出量の内訳(化審法対象範囲)

PRTR 排出量データ使用年度	平成 24 年度
	〇届出排出量 : 9,899 kg/年
	G-CIEMS 用大気排出量: 9,657 kg/年
	G-CIEMS 用水域排出量: 241 kg/年
	G-CIEMS 用土壌排出量: 0.5 kg/年
 排出量	〇届出外排出量: 1,377kg/年
併山里 	G-CIEMS 用大気排出量: 410 kg/年
	G-CIEMS 用水域排出量: 10 kg/年
	G-CIEMS 用土壌排出量: 648 kg/年
	※ただし、下水処理施設からの届出外排出量309kgは計算には含めて
	いない。

表 5-21 PRTR 排出量に加えて評価に用いる化審法届出情報に基づく推計排出量

	〇長期使用製品の使用段階の排出量 : 61,983 kg/年
	G-CIEMS 用大気排出量: 3,898 kg/年
	G-CIEMS 用水域排出量: 1,731 kg/年
	G-CIEMS 用土壌排出量: 54,057 kg/年
	※ただし、一部沿岸域で G-CIEMS の水域及び土壌に対応付かない排
₩₩₽	出がそれぞれ、71kg、2,225kg ある。
排出量	〇家庭用・業務用の用途の使用段階からの排出量 : 37,411 kg/年
	G-CIEMS 用大気排出量: 35,986 kg/年
	G-CIEMS 用水域排出量: 1,369 kg/年
	G-CIEMS 用土壌排出量: 0 kg/年
	※ただし、一部沿岸域で G-CIEMS の水域に対応付かない排出が 56kg
	ある。

3

4

(2) 環境中濃度の推計結果

G-CIEMS の計算で得られた全河川流域濃度の中から、水域における環境基準点を含む 3,705 流域での濃度情報を PEC として、4 章で導出した PNECwater 0.0053 mg/L, PNECsed 1.3 mg/kg-dry を用いて、流域別に PEC/PNEC 比を算出した。

567

8

9

10

11

① PRTR 全排出量及び化審法届出情報に基づく推計排出量

評価対象地点 3,705 流域の水質濃度及び底質濃度並びに PECwater/PNECwater 比及び PECsed/PNECsed 比の各パーセンタイル値 1 を表 5-2 3 に、水質濃度分布を図 5-10 に、底質濃度分布を図 5-11 に示す。 PECwater/PNECwater 比 ≥ 1 となる流域はなく、 $0.1 \leq$ PECwater/PNECwater 比< 1 は 74 流域であった。また、PECsed/PNECsed 比 ≥ 1 となる流域はなく、 $0.1 \leq$ PECsed/PNECsed 比< 1 は 20 流域であった。

121314

15

表 5-22 G-CIEMS で計算された評価対象地点の水質濃度及び底質濃度並びに PEC/PNEC 比 (PRTR 全排出量及び化審法届出情報に基づく推計排出量)

			水生生物		底生生物					
パーセン タイル	順位	暴露濃度 [mg/L]	PNECwater [mg/L]	PECwater/ PNECwater 比 [-]	暴露濃度 [mg/kg-dry	PNECsed [mg/kg-dry	PECsed/ PNECsed 比 [-]			
0	1	2.6x10 ⁻¹⁰	0.0053	4.9x10 ⁻⁸	3.4x10 ⁻⁸	1.3	2.7×10 ⁻⁸			
0.1	5	5.8x10 ⁻¹⁰	0.0053	1.1x10 ⁻⁷	5.8×10 ⁻⁸	1.3	4.5×10 ⁻⁸			
1	38	4.6×10 ⁻⁹	0.0053	8.7×10 ⁻⁷	5.7x10 ⁻⁷	1.3	4.4×10 ⁻⁷			
5	186	9.6×10 ⁻⁸	0.0053	1.8x10 ⁻⁵	1.2×10 ⁻⁵	1.3	9.5×10 ⁻⁶			
10	371	3.5x10 ⁻⁷	0.0053	6.5×10 ⁻⁵	4.6×10 ⁻⁵	1.3	3.5×10 ⁻⁵			
25	927	1.5x10 ⁻⁶	0.0053	0.00029	0.00020	1.3	0.00016			
50	1853	6.7x10 ⁻⁶	0.0053	0.0013	0.00090	1.3	0.00069			
75	2779	3.8x10 ⁻⁵	0.0053	0.0071	0.0050	1.3	0.0039			
90	3335	0.00015	0.0053	0.028	0.020	1.3	0.015			
95	3520	0.00028	0.0053	0.053	0.037	1.3	0.029			
99	3668	0.00074	0.0053	0.14	0.10	1.3	0.076			
99.9	3701	0.0024	0.0053	0.45	0.31	1.3	0.24			
99.92	3702	0.0027	0.0053	0.50	0.36	1.3	0.27			
99.95	3703	0.0031	0.0053	0.58	0.41	1.3	0.32			
99.97	3704	0.0033	0.0053	0.62	0.43	1.3	0.33			
100	3705	0.0035	0.0053	0.66	0.46	1.3	0.36			

※PEC/PNEC比の項目中の網掛けのセルは 0.1以上 1未満を表す。

¹ ここでのパーセンタイル値は、「当該パーセンタイル値に最も近い順位」における値を指す。

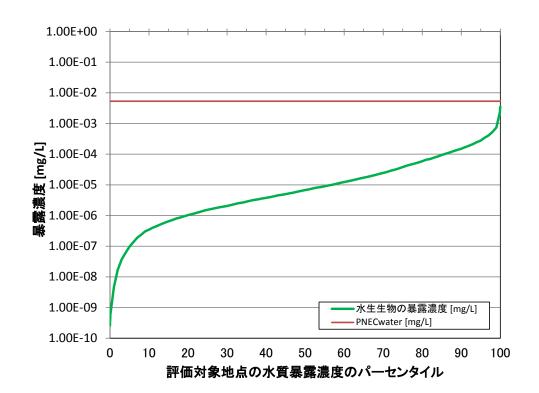


図 5-8 G-CIEMS で計算された評価対象地点における水質濃度分布 (PRTR 全排出量及び 化審届出情報に基づく推計排出量)

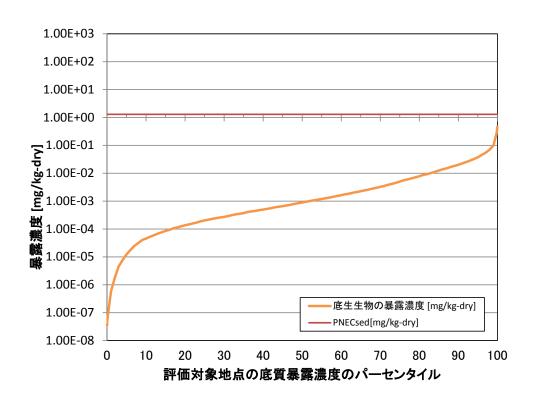


図 5-9 G-CIEMS で計算された評価対象地点における底質濃度分布 (PRTR 全排出量及び 化審届出情報に基づく推計排出量)

② PRTR 全排出量

評価対象地点 3,705 流域の水質濃度及び底質濃度並びに PECwater/PNECwater 比及び PECsed/PNECsed 比の各パーセンタイル値 1 を表 5-2 3 に、水質濃度分布を図 5-10 に、底質濃度分布を図 5-11 に示す。 PECwater/PNECwater 比 ≥ 1 となる流域はなく、 $0.1 \leq$ PECwater/PNECwater 比< 1 は 1 流域であった。また、PECsed/PNECsed 比 ≥ 1 、 $0.1 \leq$ PECsed/PNECsed 比< 1 となる流域はなかった。

表 5-23 G-CIEMS で計算された評価対象地点の水質濃度及び底質濃度並びに PEC/PNEC 比 (PRTR 全排出量)

			水生生物		底生生物		
パーセン タイル	順位	暴露濃度 [mg/L]	PNECwater [mg/L]	PECwater/ PNECwater 比[-]	暴露濃度 [mg/kg-dry]	PNECsed [mg/kg-dry]	PECsed/ PNECsed 比 [-]
0	1	1.5x10 ⁻¹²	0.0053	2.8x10 ⁻¹⁰	1.5x10 ⁻¹⁰	1.3	1.1x10 ⁻¹⁰
0.1	5	2.5x10 ⁻¹²	0.0053	4.8x10 ⁻¹⁰	2.5x10 ⁻¹⁰	1.3	1.9x10 ⁻¹⁰
1	38	2.9x10 ⁻¹¹	0.0053	5.4x10 ⁻⁹	3.4x10 ⁻⁹	1.3	2.6x10 ⁻⁹
5	186	2.5x10 ⁻¹⁰	0.0053	4.7×10 ⁻⁸	3.2×10 ⁻⁸	1.3	2.4x10 ⁻⁸
10	371	7.7x10 ⁻¹⁰	0.0053	1.5x10 ⁻⁷	1.0x10 ⁻⁷	1.3	7.7x10 ⁻⁸
25	927	3.4×10 ⁻⁹	0.0053	6.5×10 ⁻⁷	4.6×10 ⁻⁷	1.3	3.5x10 ⁻⁷
50	1853	2.0x10 ⁻⁸	0.0053	3.7×10 ⁻⁶	2.6×10 ⁻⁶	1.3	2.0x10 ⁻⁶
75	2779	1.2x10 ⁻⁷	0.0053	2.2x10 ⁻⁵	1.5x10 ⁻⁵	1.3	1.2x10 ⁻⁵
90	3335	5.8x10 ⁻⁷	0.0053	0.00011	7.7×10 ⁻⁵	1.3	5.9x10 ⁻⁵
95	3520	1.2x10 ⁻⁶	0.0053	0.00022	0.00015	1.3	0.00012
99	3668	4.4×10 ⁻⁶	0.0053	0.00083	0.00059	1.3	0.00045
99.9	3701	3.1x10 ⁻⁵	0.0053	0.0058	0.0041	1.3	0.0031
99.92	3702	8.2x10 ⁻⁵	0.0053	0.015	0.011	1.3	0.0084
99.95	3703	0.00011	0.0053	0.021	0.015	1.3	0.011
99.97	3704	0.00016	0.0053	0.031	0.022	1.3	0.017
100	3705	0.00068	0.0053	0.13	0.091	1.3	0.070

※PEC/PNEC比の項目中の網掛けのセルは 0.1以上 1未満を表す。

¹ ここでのパーセンタイル値は、「当該パーセンタイル値に最も近い順位」における値を指す。

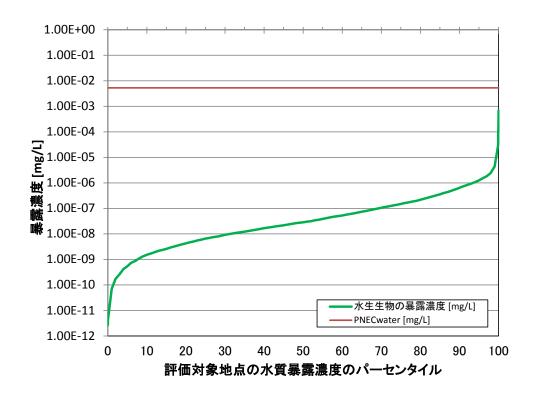


図 5-10 G-CIEMS で計算された評価対象地点における水質濃度分布 (PRTR 全排出量)

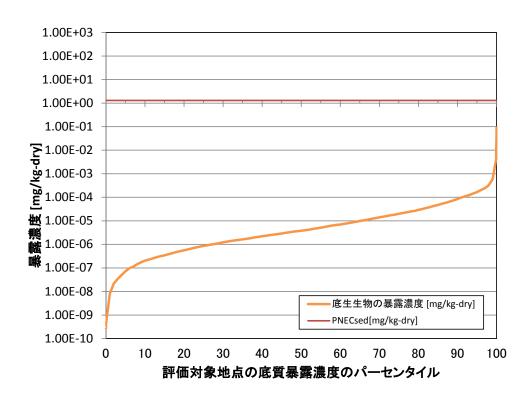


図 5-11 G-CIEMS で計算された評価対象地点における底質濃度分布 (PRTR 全排出量)

3

4

5

③ 化審法対象範囲の PRTR 排出量

評価対象地点 3,705 流域の水質濃度及び底質濃度並びに PECwater/PNECwater 比及び PECsed/PNECsed 比の各パーセンタイル値 1 を表 5-26 に、水質濃度分布を図 5-12 に、底質濃度分布を図 5-13 に示す。 $1 \le$ PECwater/PNECwater 比となる流域はなく、 $0.1 \le$ PECwater/PNECwater 比<1 は 1 流域であった。また、 $1 \le$ PECsed/PNECsed 比<1 となる流域はなかった。

7 8 9

10

表 5-24 G-CIEMS で計算された評価対象地点の水質濃度及び底質濃度並びに PEC/PNEC 比(化審法対象範囲の PRTR 排出量)

水生生物 底生生物									
			水生生物		1=				
パーセン	順位	暴露濃度	PNECwater	PECwater/	暴露濃度	PNECsed	PECsed/		
タイル	顺江			PNECwater	[mg/kg-dry	[mg/kg-dry	PNECsed 比		
		[mg/L]	[mg/L]	比 [-]]]	[-]		
0	1	1.5x10 ⁻¹²	0.0053	2.8x10 ⁻¹⁰	1.5x10 ⁻¹⁰	1.3	1.1x10 ⁻¹⁰		
0.1	5	2.5x10 ⁻¹²	0.0053	4.8x10 ⁻¹⁰	2.5x10 ⁻¹⁰	1.3	1.9x10 ⁻¹⁰		
1	38	2.9x10 ⁻¹¹	0.0053	5.4×10 ⁻⁹	3.4×10 ⁻⁹	1.3	2.6x10 ⁻⁹		
5	186	2.5x10 ⁻¹⁰	0.0053	4.7x10 ⁻⁸	3.2×10 ⁻⁸	1.3	2.4x10 ⁻⁸		
10	371	7.7x10 ⁻¹⁰	0.0053	1.5x10 ⁻⁷	1.0x10 ⁻⁷	1.3	7.7x10 ⁻⁸		
25	927	3.4x10 ⁻⁹	0.0053	6.5×10 ⁻⁷	4.6x10 ⁻⁷	1.3	3.5×10^{-7}		
50	1853	2.0x10 ⁻⁸	0.0053	3.7×10 ⁻⁶	2.6×10 ⁻⁶	1.3	2.0x10 ⁻⁶		
75	2779	1.2x10 ⁻⁷	0.0053	2.2x10 ⁻⁵	1.5x10 ⁻⁵	1.3	1.2x10 ⁻⁵		
90	3335	5.8x10 ⁻⁷	0.0053	0.00011	7.7x10 ⁻⁵	1.3	5.9x10 ⁻⁵		
95	3520	1.2x10 ⁻⁶	0.0053	0.00022	0.00015	1.3	0.00012		
99	3668	4.4x10 ⁻⁶	0.0053	0.00083	0.00059	1.3	0.00045		
99.9	3701	3.1x10 ⁻⁵	0.0053	0.0058	0.0041	1.3	0.0031		
99.92	3702	8.2x10 ⁻⁵	0.0053	0.015	0.011	1.3	0.0084		
99.95	3703	0.00011	0.0053	0.021	0.015	1.3	0.011		
99.97	3704	0.00016	0.0053	0.031	0.022	1.3	0.017		
100	3705	0.00068	0.0053	0.13	0.091	1.3	0.070		

¹ ここでのパーセンタイル値は、「当該パーセンタイル値に最も近い順位」における値を指す。

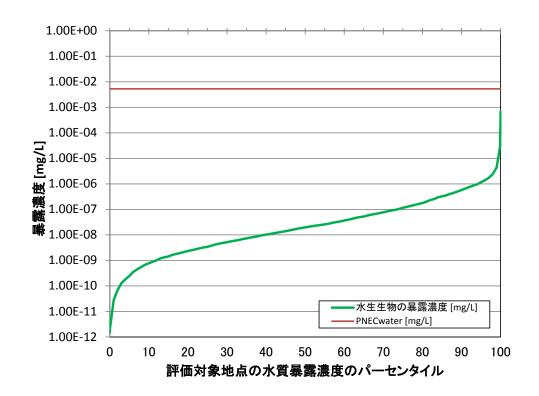


図 5-12 G-CIEMS で計算された評価対象地点における水質濃度分布(化審法対象範囲の PRTR 排出量)

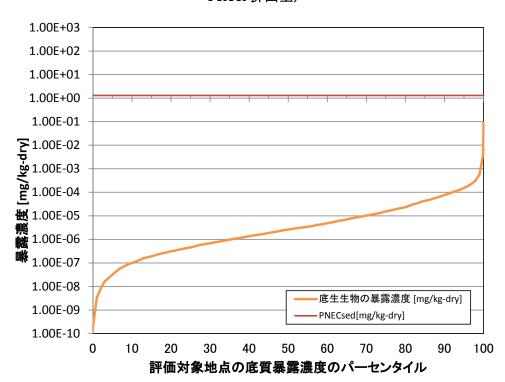


図 5-13 G-CIEMS で計算された評価対象地点における底質濃度分布(化審法対象範囲の PRTR 排出量)

表 5-23と表 5-24を比較すると、全範囲において差違がほとんど見られないことから、本評価ではPRTR 排出量として全排出量を用いる。以降、断わりのない限り、PRTR 排出量とは化審法対象範囲外の排出も含む全排出量を指すものとする。G-CIEMS の濃度推計には、PRTR の全排出量と、PRTR 排出量に加えて評価に用いる化審法届出情報に基づく推計排出量の合計値を用いた結果を用いる。

(3) 環境中分配比率等の推計結果

PRTR 情報による環境中の排出先比率とこれに基づき G-CIEMS で計算された環境中分配比率等の詳細を表 5-25に示す。

表 5-25 環境中の排出先比率と G-CIEMS で計算された環境中分配比率

		PRTR 全排出量
		及び化審法届
		出情報に基づく
		推計排出量の
		合計値
PRTR情報に	大気	45%
よる排出先	水域	3%
比率	土壌	52%
G-CIEMS で	大気	4%
計算された	水域	1%
環境中分配	土壌	93%
比率※	底質	2%

(4) G-CIEMS の推計結果とモニタリングデータとの比較解析

モニタリング濃度と G-CIEMS の推計濃度との整合性を見るため、水質モニタリングの濃度範囲と、水生生物の暴露濃度として用いる G-CIEMS の水質の推計濃度のパーセンタイル値を示した結果を図 5-14 に、底質モニタリングデータの濃度範囲と底生生物の暴露濃度として用いる G-CIEMS の底質の推計濃度のパーセンタイル値を示した結果を図 5-15 に示す。なお、これらの図中では各モニタリングデータにおける濃度範囲のバーに濃度範囲の数値 (<5.0x 10^{-5} ~2.6x 10^{-4} 等)も付記した。モニタリングデータにおいて不検出の結果がある場合には、濃度範囲に不等号付きの検出下限値を用いて示し、濃度範囲のバー表示では検出下限値~最大値を示している。そのため、濃度範囲のバーは、あくまでモニタリングデータで検出結果がある場合または不検出であるときに考え得る最大の濃度である検出下限値の濃度範囲を表している。

これらの図より、モニタリングデータの濃度範囲は、概ね G-CIEMS の推計濃度の高濃度側の範囲に近いものとなっていると言える。

また、G-CIEMS の環境基準点を含む流域での推計結果とモニタリングデータの測定地点別比較を 7-4 節に示す。水質モニタリング濃度と G-CIEMS の水質の推計濃度の比較では、モニタリング濃度の方が G-CIEMS の推計濃度よりも最大 1 桁程度高かった。また、底質モニタリング濃度と G-CIEMS の底質の推計濃度の比較では、比較できた 1 地点において、モニタリング濃度が G-CIEMS の推計濃度よりもわずかに低かった。ただし、G-CIEMS は平成 24

年度のPRTR 排出量データを用いているのに対し、比較しているモニタリング濃度はエコ調査が平成17、20年度、要調査項目が平成18、19年度のものであり、年度が異なるものを比較している点に注意が必要である。

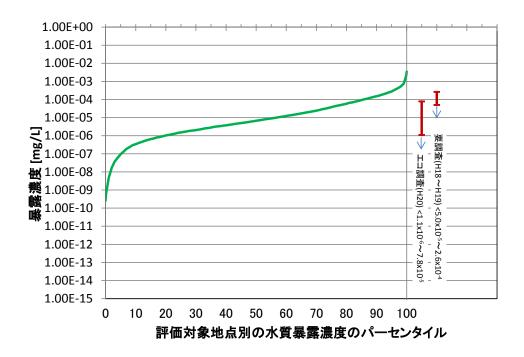


図 5-14 G-CIEMS 推計濃度とモニタリング濃度の範囲の比較(水質)

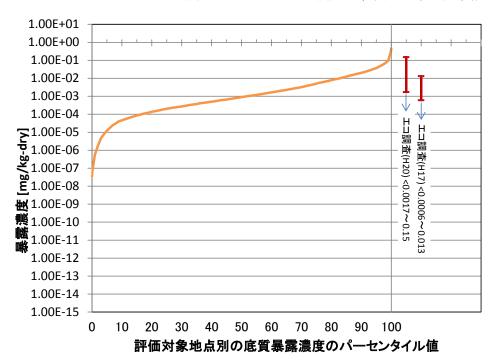


図 5-15 G-CIEMS 推計濃度とモニタリング濃度の範囲の比較(底質)

3

5-4-3 環境モニタリング情報に基づく評価

(1) 水生生物

4 直近 5 年における水質の環境モニタリングデータはなかった。過去 10 年における検出地 5 点の水質濃度の最大値である 0.00026mg/L を水生生物の暴露濃度 PECwater に採用し、

6 PNECwater=0.0053mg/L との比較によりリスク推計を行った。リスク推計の結果、表 5-2

7 6 に示すように、PECwater = 0.00026 mg/L、PNECwater = 0.0053 mg/L より

8 PECwater/PNECwater 比=0.049 であり、PECwater/PNECwater 比が 1 以上となる地点はなかっ

9 た。なお、過去10年の環境モニタリング情報についても、過去の製造輸入数量実績が概ね横

10 ばいであることから、リスク推計に使用可能と判断している。

表 5-26に過去10年に水生生物のモニタリングデータに基づくリスク推計を示す。

111213

表 5-26 水牛牛物のモニタリングデータに基づくリスク推計

* *	
PECwater	0.00026 mg/L (水質モニタリングデータから設定)
PNECwater	0.0053 mg/L
PECwater/PNECwater 比	0.049

14 15

16

17

18 19

(2) 底生生物

直近 5 年における底質の環境モニタリングデータはなかった。過去 10 年における検出地点の底質濃度の最大値である 0.15 mg/kg-dry を底生生物の暴露濃度 PECsed として採用し、PECsed/PNECsed 比を算出してリスク推計を行った。リスク推計の結果、表 5-2 7 に示すように、PECsed=0.15mg/kg-dry、PNECsed=1.3 mg/kg-dry より PECsed/PNECsed 比=0.12 であった。この地点を含め、PECsed/PNECsed 比≥1 となるリスク懸念の地点はなかった。

202122

表 5-27 底生生物のモニタリングデータに基づくリスク推計

PECsed	0.15 mg/kg-dry (底質モニタリングデータから設定)
PNECsed	1.3 mg/kg-dry
PECsed/PNECsed 比	0.12

2324

25

26

27

28

29

30

3132

33

5-5 広域的・長期的スケールの数理モデルによる残留性の評価

ここでは、5-4-1 と同じ日本版多媒体モデル MNSEM3-NITE を用いて、時間的に長期的なスケールにおける評価対象物質の広域環境中での残留性を評価した。5-5-1 では OECD 等で残留性有機汚染物質(POPs)の残留性評価の指標として提唱 ¹されている総括残留性 Pov(overall persistence の略)を求めた。Pov は、多媒体モデルによって求める各媒体の滞留時間を媒体に存在する化学物質量で重み付け平均した数値で、時間の単位をもち、数値が大きいほど環境残留性が高いと考えられ、POPs に類似した残留性を有するかの目安となる。5-5-2 では環境媒体別に定常状態に達するまでの時系列変化等を推計した。この推計結果は、対象物質の排出が始まってからの期間と考え合わせて、現状や将来の環境

OECD (2004) Guidance Document on the Use of Multimedia Models for Estimating Overall Environmental Persistence and Long-Range Transport. OECD Series on Testing and Assessment No. 45.

1 中の残留量の増加傾向の有無等を推し量る指標となる。

推計手法については技術ガイダンスVII章に準じた。

2

4 5

6 7

8

9

10

11

12

1314

5-5-1 総括残留性

位置付け

BHT の環境中での残留性を評価するため、総括残留性の指標 Pov を求めた。ここでは、 残留性有機汚染物質 POPs の残留性評価のために OECD 等において提唱されている計算式 ¹を、本評価で用いているモデル MNSEM3-NITE に当てはめて求めた(詳細は技術ガイダ ンスVII章参照)。

Pov は、POPs と POPs ではない物質 (non-POPs) といった比較対象となる複数の Reference chemical (対照物質) の数値と、対象物質の数値とを相対比較することにより評価した。ここでは、Reference chemical (対照物質) は、代表例として第一種特定化学物質であり POPs である PCB (ここでは PCB126 とした)、アルドリン、ディルドリン、non-POPs として第二種特定化学物質であるトリクロロエチレンと四塩化炭素、良分解性物質であるベンゼン、ビフェニルの合計 7 物質とした。

151617

18

19

2021

推計条件

モデルに入力する排出量は、5-4-1(1)で用いた BHT の数値(化審法推計排出量及び PRTR 排出量)を Reference chemical も共通で用いた。

BHT と Reference chemical の物理化学的性状と環境媒体別半減期を表 5-28 及び表 5-29 に示した。なお、BHT の水中の光分解の半減期は、5-4-1(1)と同じく水中での光 透過率等を考慮した 33 日を用いた。

¹ 上記資料の 4.1.1 Persistence.

表 5-28 BHTとReference chemical (POPs)の物理化学的性状等のデータ

	項目	単位	ВНТ	PCB126	アルト゛リン	ディルドリン
			220. 36	326. 4	364. 9	380. 9
	融点	[°C]	69. 8	106	104	176
蒸	§気圧 (20°C)	[Pa]	1. 1	3. 19 × 10 ⁻⁴	1. 60 × 10 ⁻²	4. 13 × 10 ⁻⁴
水	溶解度 (20℃)	[mg/L]	0. 76	2. 10 × 10 ⁻³	1. 70 × 10 ⁻²	1. 70 × 10 ⁻¹
	ナクタノール/水 記係数(対数値)	_	5. 1	7. 1	6. 5	6. 2
	ヘンリー係数	[Pa·m³/mol]	0. 418	7. 6	4. 46	1.01
有	機炭素補正土壌 吸着係数	[L/kg]	8183	1.51×10 ⁶	4. 90 × 10 ⁴	5. 62×10 ⁴
	生物濃縮係数	[L/kg]	1299	17800	20000	14500
214	大気	[day]	0. 9	120	0. 4	2
半減	水域	[day]	8. 6	60	332	1080
期	土壌	[day]	11	120	3650	3285
747	底質	[day]	44	540	1620	1620

※Reference chemical のデータの出典については、付属資料に示した。

表 5-29 Reference chemical (non-POPs)の物理化学的性状等のデータ

	項目	単位	トリクロロエチレン	四塩化炭素	ベンゼン	ビフェニル
	分子量	_	131. 19	153. 82	78. 11	154. 2
	融点	[°C]	-84. 8	-23	5. 5	69
蒸	蒸気圧 (20℃)	[Pa]	7. 80×10^3	1. 20×10^4	1.01×10 ⁴	1. 19
水	溶解度(20℃)	[mg/L]	9.07×10^{2}	8.00×10^{2}	1. 48×10^3	7. 48
	ナクタノール/水 記係数(対数値)	_	2. 42	2. 83	2. 13	3. 76
^	ンリー則定数	[Pa·m³/mol]	9.98×10^{2}	2.80×10^{3}	5.62×10^{2}	3. 12 × 10
有	機炭素補正土壌 吸着係数	[L/kg]	6.8×10	4. 9×10	7. 90 × 10	1.86×10³
	生物濃縮係数	[L/kg]	39	52	4. 3	313
214	大気	[day]	42	6660	33	5
半減	水域	[day]	360	360	160	15
期	土壌	[day]	360	407	76	30
州	底質	[day]	338	540	338	135

%Reference chemical のデータの出典については、付属資料に示した。

推計結果

BHT と Reference chemical の Pov の推計結果を表 5-30 に示す。BHT の Pov は化審法届 出情報の場合で 9.0 日、PRTR 情報の場合で 4.2 日であった。このことから、BHT の残留性 は non-POPs と同程度であり、POPs より残留性はないという結果となった。

表 5-30 BHTとReference chemical の総括残留性 Pov

物質の属性			物質名	総括残留性 Pov [day]		
			初其石	化審法届出情報	PRTR 情報	
評価対象	象物質	優先評価 化学物質	ВНТ	9. 0	4. 2	
	P0Ps	第一種特定化学物質	PCB126	103. 8	51. 5	
			アルドリン	2502. 6	1132. 0	
Reference			ディルドリン	2351. 2	1063. 1	
Chemical	non-P0Ps	第二種特定	トリクロロエチレン	1.0	0.6	
GHEIIITGAT		化学物質	四塩化炭素	0. 4	0.3	
		良分解物質	ベンゼン	1.8	1. 0	
			ビフェニル	22. 3	10. 1	

※ Pov の値は POPs 条約の POPs スクリーニング基準とは必ずしも整合するわけではない。POPs 条約では POPs かどうかの判断は総合的な判断に基づいている。

3

5 6

7

8

9

2

1

5-5-2 定常到達時間の推計

位置付け

5-5-1では物質間比較をするために、環境中の残留性を一つの指標として推計した。ここではさらに、残留性を環境媒体別に推計する。環境媒体別にみると、対象物質の流入速度、移流速度、半減期等がそれぞれ異なるため、定常状態に達するまでの時間や排出がなくなってから環境中から消失するまでの時間は、媒体別に異なる。

101112

13

14

15

16

推計条件

BHT の化審法届出情報に基づく推計排出量またはPRTR 排出量を用いて定常到達時間を求めた。なお、ここでは定常状態の物質存在量の99%に達する時間を定常到達時間と定義した。

ここでも、モデルに入力する排出量と排出先媒体比率は、5-4-1(1)で用いたものと同様であり、物理化学的性状と環境媒体別半減期は表 5-28と表 5-29に示したものである。

171819

20

21

22

23

24

25

推計結果

化審法届出情報に基づく推計排出量を用いた場合は、局所用、広域用のいずれにおいて も、排出が始まると大気では短期間で定常濃度に達し、水域で1ヶ月以内、土壌で3ヶ月 以内に定常濃度に達する。一方、底質は定常到達までに10ヵ月程度の時間を要する。

PRTR 排出量を用いた場合、排出が始まると大気では短期間で定常濃度に達し、水域で1ヶ月以内、土壌で3ヶ月以内に定常濃度に達する。一方、底質は定常到達までに10ヵ月程度の時間を要する。

推計結果はモデルによる概算であることに注意を要する。

5-6 暴露評価とリスク推計に関する不確実性解析

2 5-6-1 不確実性解析の概要

本章では、5章の暴露評価とリスク推計の結果が「第二種特定化学物質の指定、有害性調査指示等の化審法上の判断の根拠に足る信頼性があるか」という観点から不確実性解析を行う。不確実性解析は図 5-16 のフローに沿い以下のi) \sim v)の5 つの項目を対象とした。

678

9

11

3

4

5

- i) 評価対象物質の不確実性
- ii) リスク推計に用いた物理化学的性状等の不確実性
- 10 iii) PRTR 情報等の不確実性
 - iv) 排出量推計に係る不確実性
 - v) 暴露シナリオに係る不確実性

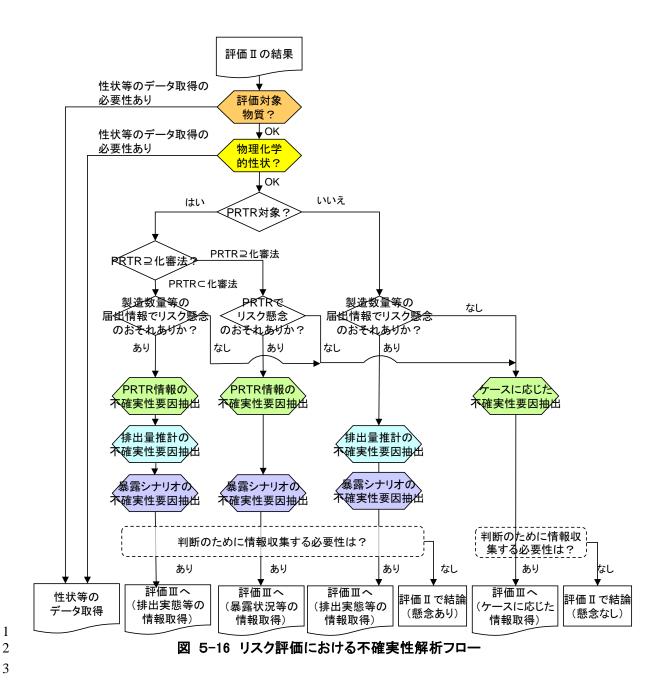
12 13 14

15

16 17

- i)及びii)では、リスク評価に用いた性状等データの根源的な適切さを問う。これらが不適切で、特に過小評価の可能性がある場合は、本評価のリスク推計結果に意味は見出せず、性状等のデータの取得後に再評価を行う必要がある。
- iii)~v)については、用いた PRTR 情報、暴露評価において設定した排出シナリオ及び 暴露シナリオ 1 についてより実態に即した情報に置き換える必要について検討した。

18 19 20


21

22

図 5-16 に示すとおり、i)~v)のいずれかで、情報の精査や更なる情報収集が必要となれば、情報収集と再評価を順次繰り返す。そのようにして、リスク評価の不確実性が低減された後に得られた評価結果は、化審法上の判断の根拠に供することができるようになる。

_

¹ 本評価の化審法の製造数量等の届出情報を用いた暴露評価はワーストケースを想定しているため、リスク 懸念が十分に余裕をもってなければそれ以上の解析は要さないが、「リスク懸念」であれば排出・暴露の 実態に関する情報を収集し、デフォルト設定部分を実態が反映されたデータに置き換え、再評価する必要 があるため。

BHT について、不確実性解析結果の概要を表 5-31 に、詳細については以下順に示す。

表 5-31 BHT の不確実性解析結果の概要

表 5−31 BHTの不確実性解析結果の概要								
項目	不確実性の要因	調査の 必要性	再評価に 有用な情 報	理由				
i) 評価対 象物質	・評価対象物質と性 状等試験データ被 験物質との不一致 等	なし	_	・評価対象物質と性状等の被験物質は一致しているため。				
ii) 物理化 学的性 状等	・推計値しかない場合等のリスク推計 結果への影響等	低	_	・ヘンリー係数及び Koc の値がリスク推計結果 に及ぼす影響は大きくないと考えられるため。また、水中、底質における分解の半減期 は推計値を用いてはいないため不確実性が 低いと考えられる。				
iii) PRTR 情 報	・化審法対象物質と PRTR 対象 不一致 ・化審法届出情報と PRTR 届出情報との 不一致	低	_	・化審法における届出対象物質と化管法における PRTR 対象物質が一致している。 ・PRTR 情報には、PRTR 届出外推計排出量の対象には化審法の適用除外用途の農薬が含まれていること、化審法届出情報における長期使用製品の使用段階からの推計排出量及び家庭用・業務用の使用段階での推計排出量は含まれていないと考えられるため、PRTR 情報だけでは非点源の排出に関して不確実性がある。そのため、今回、それらの排出量もがある。そのため、今回、それらの排出量もがある。そのため、は計を行った。 ・なお、下水処理施設から大気及び水域への移行率は、物理化学的性状を基にした推算値を使用していることから、排出量の推計に不確実性がある。また、本物質の移行率には酸化分解による寄与が考慮されておらず、この点においては推計排出量が安全側となっている。結果として下水処理施設で PEC/PNEC≧1となる地点はなかった。				
iv) 排出量 推計	・化審法届出情報に基づく排出量推計の排出シナリオと実態との乖離等	低	_	・iii)から、点源に関しては、個別具体的な情報を有している PRTR 情報を用いた結果を優先してよいと考えられる。 ・化審法届出情報に基づく長期使用製品の使用段階からの排出量が不確実性を有する可能性がある。 ・一方で、BHT は酸化防止剤として製品中で反応消滅すると考えられるが、一部の設定となって消滅すると考えられるが、安全側の設定となっている。その上で長期使用製品の使用段階の排出量を加味したリスク推計結果がリスク懸念なしなので、追加調査の必要性は低いと考えられる。				
▼) 暴露 シナリ オ	・暴露シナリオと実態との乖離等	▶ 排出》 低	原ごとの暴露 <u></u>	シナリオ ・ 本暴露シナリオでは水域への排出量のみが 考慮されているため、本暴露シナリオには不 確実性がある。 ・ 一方で PRTR 情報を用いた評価結果(点源の 評価で PRTR 情報を優先してよい理由はiv) を参照)では、PEC/PNEC 比が最大の排出源で 大気排出量はなく、その他は PEC/PNEC 比が 1 から十分に小さい値であるため調査の必要 性は低いと考えられる。なお、G-CIEMS によ				

項目	不確実性の要因	調査の 必要性	再評価に 有用な情	理由
			数	る分配比率の推計結果によれば大気への排 出はほとんどが土壌に分配されている。
			等に応じた暴露 系の非点源シラ	
		(//\>	ポリ非点源ン。	・本暴露シナリオでは水域への排出量のみが
		低	-	考慮されているため、本暴露シナリオには不確実性がある。 ・一方で PEC/PNEC 比が 1 から十分に小さい値であるため調査の必要性は低いと考えられる。
				響を含めた暴露シナリオ
		(環境	竟中濃度等の3 □	空間的分布の推計) 「、エニカリングデーカト G_CIEMS エデルに甘づ」
		中	_	・ CIEMS G-CIEMS の水にはでいたのでは、 のでは、のでは、 のでは、 のでは、 のでは、 のででなでも、 でなでも、 のでは、 のでは、 のでは、 のでは、 のでは、 のでは、 のでは、 のでは、 のででなでも、 のでも、 のでは、 のでは、 のでは、 のでは、 のでは、 のでは、 のでは、 のでは、 のでは、 のでは、 のでは、 のでは、 のでは、 のでは、 のでは、 のでは、 のでは、 のでは、 のでは、 のででは、 のでが、 のでは、 のでは、 のでは、 のでは、 のが、 のでは、 のが、 のでは、 のが、 のでは、 のが、 のが、 のが、 のが、 のが、 のが、 のが、 のが
		▶ 環境=	<u>∟</u> モニタリング忙	
		高		・水質及び底質の環境モニタリングを実施している測定地点数は数十箇所であるが、G-CIEMSにおける高濃度範囲の評価対象地点での環境モニタリング情報はなく、当該データの代表性についての不確実性があると考えられる。

5-6-2 評価対象物質

評価対象物質について、以下の点を検討する。

・ リスク評価対象物質と、リスク評価に用いた情報(物理化学的性状や有害性試験データの被験物質など)は一致しているか。

評価対象物質(BHT)の性状データ等の被験物質は、BHTであり、評価対象物質と一致している。

5-6-3 物理化学的性状等

ヘンリー係数及び Koc については推計値であった(2 章参照)ため、感度解析を行った。技術ガイダンス(I 章)における実測値の感度解析の方法に従い、排出源ごとの暴露シナリオにおける PEC/PNEC を計算したが、変化がなかった。また、分解の半減期については、水中、底質における半減期データに推計値を用いていないため、不確実性は低いと考えられる。以上より、リスク推計結果に及ぼす不確実性は低いと考えられるため、更なる調査の必要性は低いと判断した。

5-6-4 PRTR 情報等の不確実性

BHT は、化審法における届出対象物質と化管法における PRTR 対象物質が一致している。しかし、PRTR 情報には、化審法の適用除外用途である農薬の排出が含まれていること、化審法届出情報における長期使用製品の使用段階からの推計排出量及び家庭用・業務用の使用段階での推計排出量は含まれていないと考えられるため、PRTR 情報だけでは非点源の排出に関して不確実性がある。そのため、今回、それらの排出量も加味した G-CIEMS に基づく推計を行った。なお、下水処理施設から大気及び水域への移行率は、物理化学的性状を基にした推算値を使用していることから、排出量の推計に不確実性がある。また、本物質の移行率には酸化分解による寄与が考慮されておらず、この点においては推計排出量が安全側となっている。結果として下水処理施設で PEC/PNEC ≥ 1 となる地点はなかった。

5-6-5 排出量推計の不確実性

BHT は、化審法対象物質と PRTR 対象物質が一致しており、個別具体的な排出源の情報を有しているため、点源に関しては PRTR 情報を用いた評価結果を優先してよいと考えられる(ただし、PRTR 情報には化審法の適用除外用途である農薬が含まれているため、その分は安全側の評価となる)。化審法届出情報に基づく長期使用製品の使用段階からの推計排出量が不確実性を有する可能性がある。一方で、BHT は酸化防止剤として製品中で反応消滅すると考えられるが、一部の用途を除き考慮しなかった点が安全側の設定となっている。その上で長期使用製品の使用段階の排出量を加味したリスク推計結果がリスク懸念なしとなったため、追加調査の必要性は低いと考えられる。

5-6-6 暴露シナリオの不確実性

排出源ごとの暴露シナリオについては、水域への排出量のみが考慮されているため、本 暴露シナリオには不確実性がある。一方でPRTR情報を用いた評価結果(点源の評価でPRTR 情報を優先してよい理由は5-6-5を参照)では、PEC/PNEC 比が最大の排出源で大気排出量はなく(表 5-10)、その他の排出源は PEC/PNEC 比が1 から十分に小さい値であるため (表 5-12)、調査の必要性は低いと考えられる。なお、G-CIEMS による分配比率の推計結果によれば大気への排出はほとんどが土壌に分配されている。

1 2

用途に応じた暴露シナリオ(水系の非点源シナリオ)については、水域への排出量のみが考慮されているため、本暴露シナリオには不確実性がある。一方で PEC/PNEC 比が 1 から十分に小さい値であるため調査の必要性は低いと考えられる。

様々な排出源の影響を含めた暴露シナリオ(環境中濃度等の空間的分布の推計)については、モニタリングデータと G-CIEMS モデルに基づく水質濃度は、比較可能な地点においては概ね近い濃度であったが、G-CIEMS の推計で高濃度となる地点のモニタリングデータが十分でないことから整合性については言及できない。一方、底質濃度については、整合性を確認できるほどの環境モニタリングデータの情報量はなく、得られている環境モニタリングデータの代表性について不確実性があると考えられる。

G-CIEMS モデルに基づく濃度推計に用いた PRTR 排出量には、化審法届出情報に基づく長期使用製品の使用段階からの排出及び家庭用・業務用用途での使用段階での排出に当たる推計排出量分は含まれていないため、本評価では PRTR 排出量に加え化審法届出情報に基づく推計排出量も評価に用いている。本評価では、その化審法推計排出量が人口に比例して排出されるものとして G-CIEMS に基づく推計を行った。この排出量の空間分布を作成するにあたり、排出量に不確実性があること、また、その算出に用いた下水処理施設から大気及び水域への移行率は、物理化学的性状を基にした推算値を使用していること、人口に比例して排出されるという仮定のもとに排出量を按分していることから、排出量の設定に不確実性がある。

なお、水中の光分解半減期は実験における値であり、日本の平均的な環境における半減期とは異なると考えられることから、G-CIEMSに基づく濃度推計では水中の光分解半減期を考慮しない安全側の想定でリスク推計を行っている点に注意が必要である。

環境モニタリング情報については、直近の 5 年以内のデータが得られていないが、水質モニタリング及び底質モニタリング情報はともに過去約 10 年間の範囲のデータであり、製造輸入数量実績が概ね横ばいであることから採用可能であるとした。測定地点数は水質及び底質の環境モニタリング情報とも数十箇所であるが、G-CIEMS における高濃度範囲の評価対象地点の環境モニタリング情報はなく、当該データの代表性についての不確実性があると考えられる。

6 まとめと結論

2 BHTについて、生態に対するリスク評価を行った結果とまとめを示す。

3 6-1 有害性評価

- 4 BHT のリスク推計に用いた有害性情報 (有害性評価値) を表 6-1 に再掲する。BHT の水
- 5 生生物に係る PNECwater は 0.0053 mg/L、底生生物に係る PNECsed は 1.3 mg/kg-dry であった。
- 6 有害性情報の不確実性については、PNECwater は3種の慢性毒性値が得られたが、PNECsed
- 7 については、得られた慢性毒性値が1種のみであった。ただし、化審法では、他の生息・食
- 8 餌条件の底生生物を対象とした試験法は現在のところ、この生息・食餌条件の底生生物を対
- 9 象とした試験法のみとなっている。

10 11

1

表 6-1 有害性情報のまとめ (表 4-3の再掲)

	水生生物	底生生物
PNEC	0.0053 mg/L	1.3 mg/kg-dry
キースタディの毒性 値	0.053 mg/L	128 mg/kg-dry
不確実性係数積 UFs	10	100
キースタディのエン ドポイント	二次消費者(魚類)の成長阻害 に係る慢性影響に対する無影 響濃度(NOEC)	内在/堆積物食者の羽化率・変態速度(雌)に係る慢性影響に 対する無影響濃度(NOEC)

12

13

15

16

17

18

6-2 暴露評価とリスク推計

14 6-2-1 排出源ごとの暴露シナリオによる評価

BHT について化審法届出情報及びPRTR 情報を用いて暴露評価及びリスク推計を行った。 このうち、点源の評価に関しては、PRTR 情報に基づく評価結果の方がより実態に即して いると考えられ(5-6-4参照)、結果を表 6-2に示した。

生態影響に係るリスク推計では、水生生物について 204 の排出源のうち「リスク懸念」と推計されたのは 0 個所、底生生物についても 0 個所であった。

192021

表 6-2 生態影響に関する PRTR 情報に基づくリスク推計結果(表 5-13 の再掲)

	リスク懸念箇所数	排出源の数
水生生物に対するリスク推計結果	0	204
底生生物に対するリスク推計結果	0	204

22

23

24

25

6-2-2 用途等に応じた暴露シナリオによる評価

化審法届出情報を用いた用途等に応じた暴露シナリオ(水系の非点源シナリオ)に基づくリスク推計結果を**表 6-3**に示す。下水処理場を経由するシナリオと下水処理場を経由しないシナリオのどちらでもリスク懸念はなかった。

2627

表 6-3 化審法届出情報に基づくリスク推計結果(表 5-14 再掲)

都道府県	下水処理場	ライフサイクルステージ	水域への全 国排出量 [トン/year]	河川水中濃 度 (PECwater) [mg/L]	底質中濃度 (PECsed) [mg/kg-dry]	害性評価値 (PNECwater)	底生生物_有 害性評価値 (PNECsed) [mg/kg-dry]	水生生物_ PEC/PNEC	底生生物_ PEC/PNEC
全国	経由するシナリオ	家庭用·業務用使用段階	-	7.7×10^{-6}	6.3×10^{-3}	0.0053	1.3	0.0015	0.0049
全国	経由しないシナリオ	家庭用・業務用使用段階	3	3.6 × 10 ⁻⁶	2.9 × 10 ⁻³	0.0053	1.3	0.0007	0.0023

2 3 4

5

6

7

8

9

1

6-2-3 様々な排出源の影響を含めた暴露シナリオによる評価

(1) 環境中濃度の空間的分布の推計

PRTR 情報を用いて G-CIEMS による濃度推計結果を用いた暴露評価及びリスク推計を行っ た結果を表 6-4に示す。水生生物及び底生生物について、水質濃度の推計の中から環境基準 点を含む3,705流域を対象として評価した結果、「リスク懸念」と推計された流域はなかった。 水生生物については最大の PECwater/PNECwater 比は 0.66、底生生物については最大の PECsed/PNECsed 比は 0.36 であった。

10 11 12

13

表 6-4 水生生物及び底生生物の G-CIEMS 濃度推計に基づくリスク推計結果 (表 5-23再掲)

底生生物

パーセン 順位 タイル 0 0.1 5 38 1 186 5 10 371

水生生物 PECsed/ PECwater/ 暴露濃度 **PNECsed** 暴露濃度 **PNECwater PNECwater** PNECsed 比 [mg/kg-dry [mg/kg-dry [mg/L] [mg/L] 比 [-]] [-] 2.6x10⁻¹⁰ 0.0053 4.9×10^{-8} $3.4x10^{-8}$ 1.3 $2.7x10^{-8}$ 5.8×10^{-10} 0.0053 1.1×10^{-7} 5.8×10^{-8} 1.3 4.5×10^{-8} 4.6x10⁻⁹ 8.7×10^{-7} 5.7x10⁻⁷ 4.4x10⁻⁷ 0.0053 1.3 1.2×10^{-5} 9.6x10⁻⁸ 1.8x10⁻⁵ 9.5×10^{-6} 0.0053 1.3 3.5×10^{-7} 0.0053 6.5×10^{-5} 4.6×10^{-5} 1.3 3.5×10^{-5} 1.5×10^{-6} 0.00029 0.00020 25 927 0.0053 1.3 0.00016 6.7×10^{-6} 0.00090 1.3 0.00069 50 1853 0.0053 0.0013 3.8×10^{-5} 75 2779 0.0050 1.3 0.0039 0.0053 0.0071 90 3335 0.00015 0.0053 0.028 0.020 1.3 0.015 0.00028 0.053 0.037 95 3520 0.0053 1.3 0.029 99 3668 0.00074 0.0053 0.14 0.10 1.3 0.076 3701 0.0024 0.45 0.24 99.9 0.0053 0.31 1.3 3702 0.50 1.3 99.92 0.0027 0.0053 0.36 0.27 99.95 3703 0.0031 0.0053 0.58 0.41 1.3 0.32 99.97 3704 0.0033 0.0053 0.62 0.43 1.3 0.33 100 3705 0.0053 0.0035 0.66 0.46 1.3 0.36

14 15

16 17

18

(2) 環境モニタリング情報に基づく評価

モニタリングデータに基づくリスク推計を行った結果を以下に示す。水生生物については、 直近5年のモニタリングデータではリスク懸念がなく、過去10年のモニタリングデータでは 最大の PECwater/PNECwater 比は 0.049、底生生物については最大の PECsed/PNECsed 比が 0.12 であった。

19 20 21

① 水生生物

過去 10 年における最大の水質濃度 0.00026mg/L を水生生物の暴露濃度 PECwater とし、 PECwater/PNECwater 比を算出してリスク推計を行った。リスク推計の結果を表 6-5に示す。

23 24

表 6-5 水生生物のモニタリングデータに基づくリスク推計(表 5-26再掲)

PECwater	0.00026 mg/L (水質モニタリングデータから設定)
PNECwater	0.0053 mg/L
PECwater/PNECwater 比	0. 049

2 3

1

② 底生生物

過去 10 年における最大の底質濃度 0.15 mg/kg-dry を底生生物の暴露濃度 PECsed とし、 PECsed/PNECsed 比を算出してリスク推計を行った。リスク推計の結果を表 6-6に示す。

5 6 7

4

表 6-6 底生生物のモニタリングデータに基づくリスク推計(表 5-27再掲)

PECsed	0.15 mg/kg-dry(底質モニタリングデータから設定)
PNECsed	1.3 mg/kg-dry
PECsed/PNECsed 比	0. 12

8 9

10

11

また、G-CIEMS の環境基準点を含む流域での全国の濃度分布においては、5-4-2(4)の G-CIEMS 推計濃度とモニタリング濃度との比較結果から、水質モニタリングデータに基づく

暴露評価とモデルに基づく暴露評価は比較可能な地点においてはやや乖離がある可能性があ

るが、G-CIEMS の推計で高濃度となる地点のモニタリングデータが十分でないことから不確

12 実性があり、整合性については言及はできない。また、底質モニタリングデータについては、 13

整合性を確認できるほどの環境モニタリングデータの情報量はなく、得られている環境モニ 14

15 タリングデータの代表性について不確実性がある。

なお、G-CIEMS は平成 24 年度の PRTR 排出量データを用いているのに対し、比較してい 16

るモニタリング濃度は、エコ調査が平成17、20年度、要調査項目が平成18、19年度のもの 17

であり、年度が異なるものを比較している点に注意が必要である。

18 19

20

24

26

27

28

6-3 考察とまとめ

以下に各評価結果を順に示し、まとめて結論を導く。 21

生態影響の観点での有害性評価を実施した結果、水生生物に対する PNEC 値は、3 つの栄 22 養段階での慢性毒性値から得られた値で不確実性は低くなっている。また、底生生物に対す 23

る PNEC 値はユスリカの慢性毒性試験から得られた値である。化審法では、現在のところ、

25 この試験法のみとなっている。

> 平成 24 年度実績の PRTR 届出情報を用いた排出源ごとの暴露シナリオに基づく水生生物・ 底生生物に対するリスク推計の結果、全国の排出源204のうちリスク懸念はどちらも0箇所

であった。また、平成24年度実績の化審法届出情報を用いた排出源ごとの暴露シナリオに基

づくリスク推計の結果は、全国 240 箇所の仮想的排出源のうちリスク懸念は水生生物・底生 29

生物ともに 0 箇所であった。どちらも同じ結果ではあるが、化管法における PRTR 対象物質 30

は化審法における評価対象物質と一致しており、PRTR 情報の方が個別具体的な排出源の情 31

報を有しているため、点源の評価に関しては、PRTR 情報を用いた評価結果の方が化審法届 32

33 出情報を用いた評価結果より実態を反映しているものと判断した。

34 平成 24 年度実績の化審法届出情報には「家庭用・業務用での使用段階」のライフサイクル

ステージでの使用が想定される用途の届出があったため、用途等に応じた暴露シナリオ(水 35

系の非点源シナリオ)に基づいて濃度推計した。その結果、水生生物・底生生物に対してリ 36

37 スク懸念はなかった。 1 環境モニタリング調査結果に基づき、直近5年及び過去10年の間で水質・底質データを用

2 いて水生生物・底生生物に対するリスク推計を行った結果、リスクが懸念される箇所はなか

3 った。ただし、底質のモニタリング結果については、平成17年から平成20年にかけて環境

- 4 中濃度が増加している地点が複数見られた。
- 5 平成 24 年度実績の PRTR 情報及び PRTR 情報に加える化審法届出情報に基づく推計排出量
- 6 を用いた様々な排出源の影響を含めた暴露シナリオに基づく G-CIEMS モデルの解析結果か
- 7 らは、水生生物に対するリスク懸念流域は評価対象 3.705 流域中 0 流域で、
- 8 PECwater/PNECwater 比は最大で 0.66 となった。底生生物に対するリスク懸念流域は、水生
- 9 生物へのリスク懸念流域と同様 0 流域で、PECsed/PNECsed 比は最大で 0.36 となった。また、
- 10 G-CIEMS 推計濃度とモニタリング濃度との比較結果については、環境モニタリングデータの
- 11 情報量が十分でないことから整合性について言及できない。しかし、計算された PEC には誤
- 12 差が生じる可能性があるため、1 桁程度の差違があるものと考慮し PEC/PNEC 比が 0.1~1 と
- 13 なる場合をリスク懸念の可能性が考えられる範囲とみなした場合、水生生物では、0.1≦
- 14 PECwater/PNECwater 比<1 となる流域が 74 流域あり、また、底生生物では、0.1≦
- 15 PECsed/PNECsed 比<1 となる流域が 20 流域であった。
- 16 なお、G-CIEMSの解析結果とモニタリング結果とは比較可能な地点においてやや乖離が見
- 17 られるが、環境モニタリングデータの情報量が十分でないことから不確実性があり、整合性
- 18 については言及できない。また、水中の光分解半減期は実験における値であり、日本の平均
- 19 的な環境における半減期とは異なると考えられることから、G-CIEMS に基づく濃度推計では
- 20 水中の光分解半減期を考慮しない安全側の想定でリスク推計を行っている点、化審法の適用
- 21 除外用途である農薬からの排出も加味している点に注意が必要である。ただし、農薬からの
- 22 排出は水質濃度や底質濃度にあまり寄与していないと考えられる(表 5-23及び表 5-2
- 23 4).
- 24 G-CIEMS モデルの予測では、大気及び土壌への排出が多く、環境中分配比率でも大気及び
- 25 土壌への分配が多くなっており、水生生物及び底生生物に対するリスク懸念箇所はない推計
- 26 結果となっている。
- 27 以上を総合して、現在得られる情報・知見の範囲では現状レベルの排出が継続しても近く
- 28 リスクが懸念される地域が拡大していく状況は見込まれないと判断される。
- 29 他方、G-CIEMS モデルに基づく濃度推計に用いた PRTR 排出量には、化審法届出情報に基
- 30 づく長期使用製品の使用段階からの排出及び家庭用・業務用用途での使用段階での排出に当
- 31 たる推計排出量分は含まれていないため、本評価では PRTR 排出量に加え化審法届出情報に
- 32 基づく推計排出量も評価に用いている。本評価では、その化審法推計排出量が人口に比例し
- 33 て排出されるものとして G-CIEMS に基づく推計を行ったが、PRTR 排出量に含まれていない
- 34 分を含めた評価の方法は今後検討すべき課題であり、排出量の空間的分布の設定方法に不確
- 35 実性がある。
- 36
- 37 PRTR 届出情報による BHT の水域への排出量は平成 22 年度から平成 24 年度にかけて減少
- 38 しているが、大気への排出量は平成 22 年度以降増加傾向にある。当該物質は大気への排出
- 39 が多いが、物理化学的性状及び G-CIEMS で計算された環境中分配比率(表 5-2 5)から水域
- 40 への分配は多くない。水中の半減期は4.3日、底質中での半減期は44日であり長く環境中に
- 41 留まる可能性は低いと考えられるが、底質中濃度は平成17年度から平成20年度にかけて増
- 42 加している地点が複数見られたため、追加モニタリング等で推移を把握する必要がある

6-4 補足事項

2 特になし。

3

1

4 7 【付属資料】

7-1 参照した技術ガイダンス

この評価書を作成するにあたって参照した「化審法における優先評価化学物質に関するリスク評価の技術ガイダンス」のバージョン一覧を表 7-1 に示す。

7 8

5

6

9

表 7-1 参照した技術ガイダンスのバージョン一覧

章	タイトル	バージョン
-	導入編	1.0
I	評価の準備	1.0
П	人健康影響の有害性評価	1.0
Ш	生態影響の有害性評価	1.0
IV	排出量推計	1.1
V	暴露評価~排出源ごとの暴露シナリオ~	1.0
VI	暴露評価~用途等に応じた暴露シナリオ~	1.0
VII	暴露評価~様々な排出源の影響を含めた暴露シナリオ~	1.0
VIII	環境モニタリング情報を用いた暴露評価	1.0
IX	リスク推計・優先順位付け・とりまとめ	1.0

10

7-2 物理化学的性状等一覧

12 収集した物理化学的性状等は別添資料を参照。

13

- 14 出典)
- 15 CCD(2007): Richard J. Lewis Sr., Gessner Goodrich Hawley. Hawley's Condensed Chemical
- 16 Dictionary. 15th ed., 2007.
- 17 CRC(2013): Haynes, W. M., ed. CRC Handbook of Chemistry and Physics. 94th ed.,
- 18 CRC Press, 2013-2014.
- 19 ECHA: ECHA. Information on Chemicals Registered substances.
- 20 http://echa.europa.eu/web/guest/information-on-chemicals/registered-substances, (2014-07-01 閲
- 21 覧).
- EPI Suite(2012): US EPA. Estimation Programs Interface Suite. Ver. 4.11, 2012.
- 23 MHLW, METI, MOE(2014): 化審法における優先評価化学物質に関するリスク評価の技術
- 24 ガイダンス, V. 暴露評価~排出源ごとの暴露シナリオ~. Ver. 1.0, 2014.

- 1 MITI(1979): MITI. 2,6-ジ-tert-ブチル-P-クレゾール (試料 No.K-80) の濃縮度試験報告
- 2 書. 既存化学物質点検, 1979.
- 3 MITI(1978): MITI. 2.6-ジ-tert-ブチル-P-クレゾール (試料 No.K-80) の分解度試験成績
- 4 報告書. 既存化学物質点検, 1978.
- 5 MOE(2008): MOE. 化学物質の環境リスク評価 第 6 巻, 2,6-ジ-*t*ブチル-4-メチルフェノ
- 6 ール、2008、
- 7 OECD(2002): OECD. SIDS Initial Assessment Report, 2,6-di-tert-butyl-p-cresol (BHT). 2002.
- 8 PhysProp: Syracuse Research Corporation. SRC PhysProp Database. (2014-07-01 閲
- 9 覧).

10

11

12

7-3 Reference chemical の物理化学的性状等の情報源等

5-5-1 で総括残留性の計算に用いた Reference chemical の物理化学的性状の情報源等を表 7-2 に示す。採用値は5-5-1 の表 5-28 及び表 5-29 を参照。

13 14 15

表 7-2 Reference chemical の物理化学的性状の情報源等

項目	PCB126	アルト゛リン	ディルド リン	トリクロロエ チレン	四塩化 炭素	ベンゼン	ピ、フェニル
分子量				_		_	
融点	% 1	※ 2	% 2	※ 3	% 3	※ 3	※ 4
蒸気圧 (20℃)	※ 1	※ 4	 2	※ 3	※ 3	※ 3	※ 2
水溶解度 (20°C)	※ 1	※ 4	 2	※ 3	※ 3	※ 3	※ 4
1-オクタノール/水 分配係数(対数値)	% 1	 *4	※ 2	% 3	% 3	% 3	% 3
ヘンリー係数	※ 1	※ 2	 %2	※ 3	※ 3	※ 3	※ 4
有機炭素補正土壌 吸着係数	% 1	※ 5	% 6	* 3	* 3	* 3	※ 5
生物濃縮係数	※ 7	% 8	% 8	※ 3	※ 3	※ 3	※ 6

情報源等:

- ※1 Handbooks of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, 2nd
 Edition, CRC-Press, 1997
- 19 ※2(独)製品評価技術基盤機構、「化学物質の初期リスク評価書」
- 20 ※3(独)製品評価技術基盤機構, 化学物質総合情報提供システム(CHRIP), 平成 21 年 9 月に検索
- 21 ¾4 SRC PhysProp Database, Syracuse Research Corporation, 2009
- 22 ※5 Estimation Program Interface (EPI) Suite 内に収載されている実測値
- 23 ※6 回帰式により logPow から計算
- 24 ※7 NEDO 技術開発機構/産総研リスク管理研究センター,「詳細リスク評価書」
- 25 ※8 厚生労働省/経済産業省及び環境省、化審法データベース (J-CHECK)

26

16

17

18

27 5-5-1 で総括残留性の計算に用いた Reference chemical の各媒体における最長半減期と 18 情報源等を表 7-3 に示す。各媒体において分解の機序別の半減期の環境分配比を考慮し

4

1

表 7-3 Reference chemical の最長半減期と情報源等

		項目	PCB126	アルト゛リン	ディルドリ 、	トリクロロエチ	四塩化炭	ベンゼン	L゛フェニル
					ン	レン	素	_	_
	機	OHラジカル反応	120 ^{**3}	0. 379 ^{**3}	1. 74 ^{**1}	20 ^{※6}	6660 ^{**3}	21 ^{**5}	4. 6 ^{**5}
	序 別	硝酸反応	-	1	-	119 ^{**2}	-	1114 ^{**2}	-
大気	機序別半減期	オゾン反応	1	-	320 ^{※6}	2238 ^{※6}	-	170000**	-
	総括分解	半減期	_	_	-	42*3	_	33*3	_
	機	生分解	60 ^{**7}	591 ^{**3}	1080 ^{**3}	360 ^{**3}	360 ^{**3}	37. 5 ^{**7}	15 ^{**7}
水域	機序別半減	加水分解	-	760 ^{**3}	1460*1 320*		2555000* 4	-	-
- 24	減	光分解	-	-	120**4	642 ^{**4}	-	1346 ^{**3}	-
	総括分解	半減期	_	-	1080 ^{**3}	360 ^{**5}	-	160 ^{**3}	_
	半 機 減 別 別	生分解	120 ^{**7}	3650 ^{**3}	2555 ^{**4}	75 ^{**7}	360 ^{**5}	75 ^{**7}	30 ^{**7}
土壌	期別	加水分解	-	-	-	-	-	-	-
	総括分解	半減期	-	-	3285 ^{**3}	360 ^{**3}	-	10*3	-
	半機源別	生分解	540 ^{**7}	1620 ^{**7}	1620 ^{**7}	337. 5 ^{**7}	540 ^{※7}	337. 5 ^{**7}	135 ^{**7}
底質	期別	加水分解	_	_	_	_	_	-	-
	総括分解	半減期	_	- 629 ^{**3}		43*3	_	_	_

情報源等:

5

6

7

8

- %1 Hazardous Substances Data Bank (HSDB)
- X2 SRC PhysProp Database, Syracuse Research Corporation, 2009
- X3 Handbooks of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, 2nd Edition, CRC-Press, 1997

- 12 ※6 Estimation Program Interface (EPI) Suite 内の AOPWIN による推定値
- 13 ※7 Estimation Program Interface (EPI) Suite 内の BIOWIN3 の格付けから換算

7-4 環境モニタリングデータとモデル推計結果の比較解析

2

6 7

8

11

12

13

(1) 地点別のモニタリング濃度と G-CIEMS のモデル推計濃度との比較

4 モニタリングデータと、その測定地点と対応付けられる G-CIEMS の環境基準点を含む流 域の推計濃度の比較結果を下図に示す。

G-CIEMS 推計水質濃度/水質モニタリング濃度は、エコ調査(平成 20 年度)の水質モニタリングデータについては 15 倍程度であった。要調査項目(平成 18 \sim 19 年度)の水質モニタリングデータでは $0.81\sim$ 3.7 倍程度の差であった。

9 また、G-CIEMS 推計底質濃度/底質モニタリング濃度は、エコ調査(平成 20 年度)では 1.2 10 倍程度の差であった。

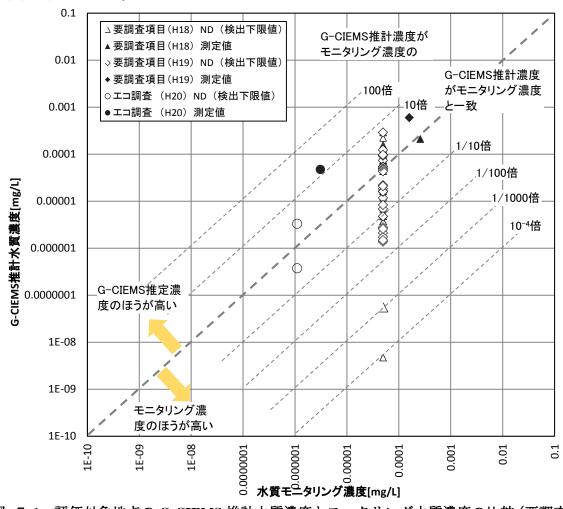


図 7-1 評価対象地点の G-CIEMS 推計水質濃度とモニタリング水質濃度の比較 (要調査項目(平成 18~19 年度)、エコ調査(平成 20 年度))

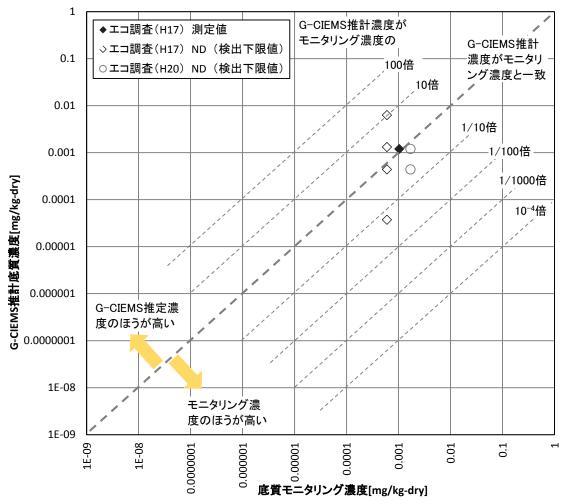


図 7-2 評価対象地点の G-CIEMS 推計底質濃度とモニタリング底質濃度の比較 (エコ調査 (平成 17~20 年度))

1 2

3

5

6 7

8

(2) 地点別のモニタリング濃度とPRAS-NITE のモデル推計濃度との比較

モニタリングデータと、その測定地点と対応付けられる PRAS-NITE の評価対象地点の推 計濃度の比較結果を下図に示す。

ただし、PRAS-NITE は平成 24 年度の PRTR 排出量データを用いているのに対し、比較しているモニタリングデータは平成 18 年度のものであり、年度が異なるものを比較している点に注意が必要である。

また、この水質モニタリングデータは不検出であったため、PRAS-NITE 推計水質濃度/水質モニタリング濃度の比は算出できなかった。

9 10

11

12

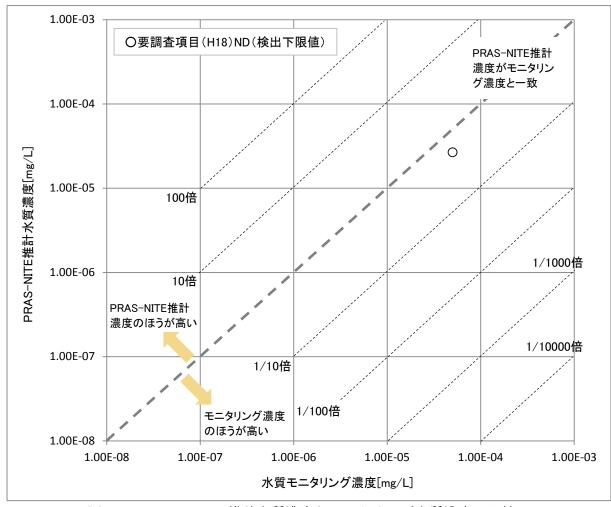


図 1-3 PRAS-NITE 推計水質濃度とモニタリング水質濃度の比較 (要調査項目(平成 18 年度))

7-5 生態影響に関する有害性評価Ⅱ

- 2 7-5-1 各キースタディの概要
- 3 (1) 水生生物

- 4 <生産者(藻類)>
- 5 【キースタディ】
- 6 Pseudokirchneriella subcapitata 生長阻害; 72 時間 NOEC 0.237 mg/L
- 7 環境省 [1] は OECD TG201 (1992) に準拠し、ムレミカヅキモ (緑藻類) P. subcapitata
- 8 の生長阻害試験を、東京化成工業(株)製純度 99.9%の被験物質を用いて、止水式で実施し
- 9 た。設定濃度は、対照区、助剤対照区、0.38mg/L(試験液調製可能最高濃度での限度試験)
- 10 で実施された。助剤として N,N-ジメチルホルムアミドを規定範囲内 $(100 \, \mu \, L/L)$ で用いて
- 11 いる。被験物質は液体クロマトグラフィで実測しており、実測値の設定値に対する割合は
- 12 62%であった。限度試験で実施された結果、生長阻害は認められなかったため、EC50値は
- 13 >0.237mg/L、NOEC 値は 0.237mg/L とした。
- 14
- 15 <一次消費者(又は消費者)(甲殻類)>
- 16 【キースタディ】
- 17 Daphnia magna 繁殖阻害;21 日間 NOEC 0.069 mg/L
- 18 環境省 [2] は OECD TG211 (1998) に準拠し、オオミジンコ D. magna の繁殖に対する慢
- 19 性毒性試験を、東京化成工業(株)製純度 99.9%の被験物質を用いて、半止水式(24 時間換
- 20 水)で実施した。設定濃度は、対照区、助剤対照区、0.008、0.025、0.080、0.250、0.800 mg/L
- 21 の 5 濃度区(公比 3.2)で実施された。助剤として、ジメチルホルムアミド (DMF) 30mg/L、
- 22 硬化ひまし油 (HCO-60) 70mg/L が規定範囲内で用いられている。被験物質は液体クロマ
- 23 トグラフィで実測しており、実測値の設定値に対する割合は38~98%であった。実測濃度
- 24 の時間加重平均値を用いて Bartlett の等分散検定、一元配置分散分析、Dunnett の多重比較
- 25 検定により NOEC 値を算定した結果、毒性値は 0.069mg/L であった。
- 26
- 27 <二次消費者(又は捕食者)(魚類)>
- 28 【キースタディ】
- 29 Oryzias latipes 成長阻害; 42 日間 NOEC 0.053mg/L
- 30
- 31 環境省 [^{3]} は OECD TG210 (1992) に準拠し、メダカ O. latipes の初期生活段階試験を、
- 32 東京化成工業(株)製純度 99.9%の被験物質を用いて、流水式(約 48L/容器・日, 換水率:
- 33 約19回/日)で実施した。設定濃度は、対照区、助剤対照区、0.010、0.026、0.067、0.17、
- 34 0.45mg/L の 5 濃度区 (公比 2.6) で実施された。助剤として N,N-ジメチルホルムアミドを
- 35 規定範囲内(100 μ L/L)で用いている。被験物質は液体クロマトグラフィで実測しており、
- 36 実測値の設定値に対する割合は78~82%であった。各影響濃度の算出には実測を用いてお
- 37 り、実測濃度の算術平均値を用いて Williams 検定を用いて成長に対する NOEC

1 0.0528μg/L を算出している。 2 3 (2) 底生生物 4 <内在/堆積物食者> 【キースタディ】 5 6 Chironomus yoshimatsui 22 日間 NOEC 羽化率·変態速度(雌) 128mg/kg-dry 7 環境省^[4] は化審法試験法(OECD TG 218) に準拠し、セスジユスリカ C.yoshimatsui の 8 羽化に対する慢性毒性試験を、東京化成工業(株)製純度 99.8%の被験物質を用いて、GLP 9 試験で実施した。試験は止水式で、設定濃度が対照区、助剤対照区、助剤対照区,10,22, 10 11 46, 100, 220, 460 及び 1,000 mg/kg の 7 濃度区(公比 2.2) で実施された。助剤はアセト ンが用いられている。被験物質は液体クロマトグラフィで実測しており、実測値の設定値 12 に対する割合は50~104%であった。各影響濃度の算出には試験開始時の濃度を採用して 13 おり、Williams の多重比較検定により有意差を検定した結果、羽化率と変態速度(雌)に 14 15 対する NOEC は 128mg/kg-dry であった。 16 17 出典) 18 [1] 環境省 (2009): 平成 20 年度 生態影響試験 [2] 環境庁 (2000): 平成 11 年度 生態影響試験 19 [3] 環境省 (2008): 平成 19年度 化学物質の生態影響試験事業 20 [4] 環境省(2011): 平成23年度生態影響試験(ユスリカ) 21 22

1 7-5-2 国内外における生態影響に関する有害性評価の実施状況

2 (1) 既存のリスク評価書における有害性評価の結果

3 当該物質のリスク評価に関する各種情報の有無を表 7-4に、また、評価書等で導出された予測無影響濃度(PNEC)等を表 7-5にそれぞれ示した。

表 7-4 BHT のリスク評価等に関する情報

•
羊

凡例)○:情報有り、×情報無し []内数字:出典番号

7

6

5

表 7-5 リスク評価書での予測無影響濃度 (PNEC) 等

			· · · · · · · · · · · · · · · · · · ·		
			_	根拠	
リスク評価書 等	リスク評価に用 いている値	生物群	種名	毒性値	アセスメ ント係数 等
化学物質と 環境リスク 評価[1]	0.00069mg/L (PNEC)	甲殼類	Daphnia magna	21 日間繁殖阻害に対 する NOEC 0.069mg/L	100
OECD 初期 リスク評価書 【4】	0.0014mg/L (PNEC)	甲殼類	Daphnia magna	21 日間繁殖阻害に対 する NOEC 0.07mg/L	50

[]内数字:出典番号

10 11

(2) 水生生物保全に関する基準値等の設定状況

水生生物保全に係る基準値等として、米国、英国、カナダ、ドイツ、オランダでの策定 状況を表 7-6に示した。BHTの水質目標値は、これらの国では策定されていない。

4

5

6

1

2

3

表 7-6 水生生物保全関連の基準値等

(BHT)

		(BH		
対象国	担当機関	水	質目標値名	水質目標値 (μg/L)
米国[12]	米国環境保護庁	Aquatic life criteria	淡水 CMC*1/CCC*2	設定されていな い
			海(塩)水 CMC*1/CCC*2	設定されていな い
英国[13]	環境庁	UK Standard	Salmonid and cyprinid	設定されていな
		Protection of	waters:	V
		Fisheries		
		UK Standard	Inland surface	設定されていな
		Surface Water	waters (90th percentile)	V)
			transitional and coastal	設定されていな
			waters (Annual mean)	<i>V</i> \
カナダ[14]	環境カナダ	Water Quality	Freshwater	設定されていな
		Guidelines for the		V
		Protection of	Marine	設定されていな
		Aquatic Life		<i>V</i>)
ドイツ[15]	連邦環境庁	Water Framework		設定されていな
		Annual average E0 (Watercourses and		V)
		Water Framework		設定されていな
		Annual average E		設定されている
		(Transtional and c		
オランダ	国立健康環	Maximum Permiss		設定されていな
[16]	境研究所	Concentration(M	PC)*3	V
		Target value*3		設定されていな
				V
		海域		設定されていな い

7

[]内数字:出典番号

8 9

*1 : CMC (Criterion Maximum Concentration): 最大許容濃度

10

*2 : CCC (Criterion Continuous Concentration):連続許容濃度

11 12 *3: 法制度には規定されていないが環境影響評価等に用いられている目標値で、MPC(最大許容濃度: Maximum permissible concentration)は人の健康や生物に影響を及ぼさない予測濃度、target

13

value (目標値) は環境に影響を及ぼさない濃度を示す。[17]

1 (3) 出典

- 2 [1] 環境省(2004): 化学物質の環境リスク評価(第6巻)
- 3 (http://www.env.go.jp/chemi/report/h19-03/pdf/chpt1/1-2-2-11.pdf)
- 4 [2] 財団法人化学物質評価研究機構,独立行政法人製品評価技術基盤機構:化学物質の初期リス 5 ク評価書.(独立行政法人新エネルギー・産業技術総合開発機構 委託事業)
- 6 [3] 独立行政法人産業技術総合研究所: 詳細リスク評価書
- 7 [4] OECD (2002): SIDS Initial Assessment Repor For SIAM 14 2,6-di-tert-butyl-p-cresol (BHT) 8 (http://www.inchem.org/documents/sids/sids/128370.pdf)
- 9 [5] European Union: European Union Risk Assessment Report.
- 10 [6] International REPramme on Chemical Safety: Environmental Health Criteria
- 11 [7] 世界保健機関 (WHO) /国際化学物質安全性計画 (IPCS) 国際簡潔評価文書 「CICAD」 (Concise International Chemical Assessment Document)
- 13 [8] Environmental Canada Health Canada : Canadian Environmental Protection Act Priority Substances List Assessment Report(カナダ環境保護法優先物質評価書)
- 15 [9] Australia NICNAS Priority Existing Chemical Assessment Reports
- 16 [10] BUA Report
- 17 [11] Japan チャレンジプログラム
- [12] United States Environmental Protection Agency Office of Water Office of Science and Technology
 (2009):National Recommended Water Quality Criteria
- 20 \(\lambda http://www.epa.gov/waterscience/criteria/wqctable/index.html \rangle \)
- 21 [13] Environment Agency: Chemical Standards
- 22 \(\lambda\ttp:\/\evidence.environment-agency.gov.uk/chemicalstandards/\rangle
- 23 [14] Canadian Council of Ministers of the Environment(2011): Canadian Environmental Quality
 24 Guidelines Summary Table \(\hat{http://st-ts.ccme.ca/}\)
- [15] Federal Ministry for the Environment, Nature Conservation and Nuclear Safety(2010): Water
 Resources Management in Germany Part 2– Water quality –
- [16] Crommentuijn, T., D.F. Kalf, M.D. Polder, R. Posthumus, and E.J. van de Plassche. 1997. Maximum
 Permissible Concentrations and Negligible Concentrations for Pesticides. Report No. 601501002.
 National Institute of Public Health and Environmental Protection. Bilthoven, The Netherlands.
- [17] National Institute of Public Health and the Environment(1999):Environmental Risk Limits in
 Netherlands, Setting Integrated Environmental Quality Standards for Substances in the Netherlands,
 Environmental quality standards for soil, water & air.

優先評価化学物質通し番号	64
物質名称	2, 6-ジーtert-ブチルー4-メチルフェノール
CAS 番号	128-37-0

2

3 【生態毒性(水生生物)】

			生物種		被験	エンド	ポイント等	暴露				
番号	栄養段階	生物分類	生物種	種名	物質 純度 (%)	エンド ポイン ト	影響内容	期間 (日)	毒性値 (µg/L)	信頼性ランク	出典	備考)
1	生産者	藻類	ムレミカヅキモ(緑藻)	Pseudokirchneriella subcapitata	99.9	NOEC	GRO(RATE)	3	237	1	[1]	限度試験であり、溶解限度で生 長阻害は確認されなかった。
2	生産者	藻類	ムレミカヅキモ(緑藻)	Pseudokirchneriella subcapitata	99.9	EC ₅₀	GRO(RATE)	3	>237	1	[1]	同上。
3	生産者	藻類	デスモデスムス属 (イカ ダモ属)	(イカ Desmodesmus subspicatus 99.8 EC ₅₀ GRO(RATE)		3 >400		>400 4		事業者データで、詳細は開示さ れていない。		
4	生産者	藻類	デスモデスムス属 (イカ ダモ属)	Desmodesmus subspicatus	99.8	NOEC(E C ₈)	GRO(RATE)	3	400	4	[2]	事業者データで、詳細は開示さ れていない。
5	生産者	藻類	ムレミカヅキモ(緑藻)	Pseudokirchneriella subcapitata	99.9	NOEC	GRO(RATE)	3	1730	3	[3]	水溶解度を超えている。
6	生産者	藻類	ムレミカヅキモ(緑藻)	Pseudokirchneriella subcapitata	-	EC ₅₀	cell multiplicatio n	-	>6600	4	[4]	詳細データが入手できない。
7	生産者	藻類	ムレミカヅキモ(緑藻)	Pseudokirchneriella subcapitata	99.9	EC ₅₀	GRO(RATE)	3	>7010	3	[3]	水溶解度を超えている。
8	一次消費者	甲殼類	オオミジンコ	Daphnia magna	99.9	NOEC	REP	21	69	2	[3]	
9	一次消費者	甲殼類	オオミジンコ	Daphnia magna	99.8	NOEC	REP	21	70	-4	[5]	事業者データで、詳細は開示さ れていない。
10	一次消費者	甲殼類	オオミジンコ	Daphnia magna	99.8	NOEC	IMM	2	150	3	[6]	エンドポイントと影響内容が不適。
11	一次消費者	甲殼類	オオミジンコ	Daphnia magna	99.8	EC ₀	不明	2	>=170	3	[7]	エンドポイントが不適。事業者 データで、詳細は開示されてい ない。
12	一次消費者	甲殼類	オオミジンコ	Daphnia magna	なし	L NOEC IMM		2	230	3	[6]	エンドポイントと影響内容が不 適。
13	一次消費者	甲殼類	オオミジンコ	Daphnia magna	99.8	EC ₀ 不明		2	>=310	3	[8]	エンドポイントが不適。試験条件等の詳細情報が不足。

		生物種			被験	エンド	ポイント等	見承				
番号	栄養段階	生物分類	生物種	種名	物質 純度 (%)	エンド ポイン ト	影響内容	· 暴露 期間 (日)	毒性値 (µg/L)	信頼性ランク	出典	備考)
14	一次消費者	甲殼類	オオミジンコ	Daphnia magna	99.8	NOEC	REP	21	316	3	[9]	3 濃度区で実施。試験条件等の 詳細情報が不足。
15	一次消費者	甲殼類	オオミジンコ	Daphnia magna	99.8	EC ₅₀	REP	21	390	3	[9]	エンドポイントが不適。試験条 件等の詳細情報が不足
16	一次消費者	甲殼類	オオミジンコ	Daphnia magna	99.8	EC ₅₀	IMM	21	>390	3	[9]	暴露期間が不適。試験条件等の 詳細情報が不足。
17	一次消費者	甲殼類	オオミジンコ	Daphnia magna	なし	EC ₅₀	IMM	2	480	2	[6]	
18	一次消費者	甲殼類	オオミジンコ	Daphnia magna	_	NOEC	60% reduction of reproduction rate	21	500	4	[10]	事業者データで、詳細は開示さ れていない。
19	一次消費者	甲殼類	オオミジンコ	Daphnia magna	99.9	EC_{50}	IMM	2	835	2	[3]	
20	一次消費者	甲殼類	オオミジンコ	Daphnia magna	99.8	EC_0	不明	2	>=1000	3	[8]	エンドポイントが不適。
21	一次消費者	甲殼類	ミジンコ	Daphnia pulex	>96	EC ₅₀	IMM	2	1440	3	[11]	濃度区等試験条件が不明。
22	二次消費者	魚類	メダカ	Oryzias latipes	99.9	NOEC	GRO	42	53	1	[12]	
23	二次消費者	魚類	ゼブラフィッシュ	Danio rerio	99.8	LC ₀	MOR	4	570	3	[13]	エンドポイントが不適。事業者 データで、詳細は開示されてい ない。
24	二次消費者	魚類	ニジマス	Oncorhynchus mykiss	なし	LC ₅₀	MOR	2	1000	3	[14]	暴露期間が不適。
25	二次消費者	魚類	メダカ	Oryzias latipes	99.9	LC ₅₀	MOR	4	1100	2	[3]	スクリーニング評価、評価 I で のキースタディ。
26	二次消費者	魚類	アメリカナマズ	Ictalurus punctatus	なし	LC_{50}	MOR	2	1500	3	[14]	暴露期間が不適。
27	二次消費者	魚類	ブルーギル	Lepomis macrochirus	なし	LC ₅₀	MOR	2	4800	3	[14]	暴露期間が不適。水溶解度を超 えている。
28	二次消費者	魚類	メダカ	Oryzias latipes	なし	LC ₅₀	MOR	2	5000	3	[15]	暴露期間が不適。水溶解度を超 えている。
29	二次消費者	魚類	ニジマス	Oncorhynchus mykiss	>99	LC ₅₀	MOR	4	>5000	3	[16]	水溶解度を超えている。実測し ていない。
30	二次消費者	魚類	メダカ	Oryzias latipes	なし	LC ₅₀	MOR	1	5300	3	[17]	暴露期間が不適。水溶解度を超 えている。
31	二次消費者	魚類	メダカ	Oryzias latipes	なし	LC ₅₀	MOR	2	5300	3	[17]	暴露期間が不適。水溶解度を超 えている。
32	二次消費者	魚類	メダカ	Oryzias latipes	なし	LC ₅₀	MOR	1	13500	3	[17]	暴露期間が不適。水溶解度を超 えている。
33	二次消費者	魚類	メダカ	Oryzias latipes	なし	LC ₅₀	MOR	2	13500	3	[17]	暴露期間が不適。水溶解度を超 えている。
34	二次消費者	魚類	メダカ	Oryzias latipes	なし	LC ₅₀	MOR	1	17500	3	[17]	暴露期間が不適。水溶解度を超 えている。

			生物種		被験	エンド	ポイント等	暴露				
番号	栄養段階	生物分類	生物種	種名	物質 純度 (%)	エンド ポイン ト	影響内容	期間 (日)	毒性値 (µg/L)	信頼性ランク	出典	備考)
35	二次消費者	魚類	メダカ	Oryzias latipes	なし	LC ₅₀	MOR	2	17500	3	[17]	暴露期間が不適。水溶解度を超 えている。
36	二次消費者	魚類	ゼブラフィッシュ	Danio rerio	なし	NOEC	MOR	4	>100000	3	[18]	水溶解度を超えている。
37	二次消費者	その他	カワホトトギスガイ	Dreissena polymorpha	なし	EC ₅₀	BEH	2	1300	3	[14]	暴露期間が不適。

- 【エンドポイント】ECxx(xx% Effective Concentration): xx%影響濃度、EC₅₀(Median Effective Concentration): 半数影響濃度、LCxx(xx% Lethal Concentration): xx%致死濃度、LC₅₀(Median Lethal Concentration): 半数致死濃度、NOEC(No Observed Effect Concentration): 無影響濃度
- 3 【影響内容】GRO (Growth): 生長 (植物)、成長 (動物)、BEH(Behavior): 行動、IMM (Immobilization): 遊泳阻害、MOR (Mortality): 死亡、REP (Reproduction):
- 4 繁殖、再生産
- 5 () 内:試験結果の算出法 RATE:生長速度より求める方法(速度法)
- 6 【信頼性】
 - 信頼性ランク 1:信頼性あり(制限なし)、2:信頼性あり(制限あり)、3:信頼性なし、4:評価不能
- 9 出典)

2

7

8

22

23

24

25

- 10 [1] 環境庁(2009): 平成 21 年度 生態影響試験
- [2] OECD SIDS (2002): 2,6-DI-TERT-BUTYL-P-CRESOL (BHT) (Bayer A (1994): Acute toxicity of BHT to the alga Scenedesmus subspicatus, test report 466A/94)
- 12 [3] 環境庁(2000): 平成 11 年度 生態影響試験
- 13 [4] BUA Report (1991): 219 Supplementary Reports IV
- 14 [5] OECD SIDS (2002): 2,6-DI-TERT-BUTYL-P-CRESOL (BHT) (Bayer AG (1994): Internal Study, Chronic toxicity of BHT to Daphnia magna; test report 466A/94)
- 15 [6] ECHA (2010): Exp Key Short-term toxicity to aquatic invertebrates.001.

 16 http://apps.echa.europa.eu/registered/data/dossiers/DISS-9d82f461-e7b6-3a89-e044-00144f67d249/AGGR-696afcd4-c3c3-4f6d-b2ca-736b7d3e68ed DISS-9d82f461-e7b6-3a89-e044-00144f67d249.html#AGGR-696afcd4-c3c3-4f6d-b2ca-736b7d3e68ed
- 18 [7] OECD SIDS (2002): 2,6-DI-TERT-BUTYL-P-CRESOL (BHT) (Bayer AG (1994): Internal Study, Acute toxicity of BHT to Daphnia magna, test report 466A/94)
- 19 [8] ECHA (1994): Exp Key Short-term toxicity to aquatic invertebrates.002.
 20 http://apps.echa.europa.eu/registered/data/dossiers/DISS-9da51b03-2649-633b-e044-00144f67d249/AGGR-367d05b8-096e-4f9f-80be-4508110fec5c DISS-9da51b03-2649-633b
 21 e-044-00144f67d249.html#AGGR-367d05b8-096e-4f9f-80be-4508110fec5c
 - [9] ECHA (1994): Exp Key Long-term toxicity to aquatic invertebrates.001.

 http://apps.echa.europa.eu/registered/data/dossiers/DISS-9da51b03-2649-633b-e044-00144f67d249/AGGR-fd5e5f16-df0e-46c6-8957-47f5d9c25663_DISS-9da51b03-2649-633b-e044-00144f67d249.html#AGGR-fd5e5f16-df0e-46c6-8957-47f5d9c25663
 - [10] OECD SIDS (2002): 2,6-DI-TERT-BUTYL-P-CRESOL (BHT) (Bayer AG (1986): Internal Study, Chronic toxicity of 2,6-Bis(1,1-dimethylethyl)-4-methylphenol in the daphnia reproduction test. Test report from 05.02.1986.)
- [11] Passino, D. R. M., and S.B. Smith (1987): Acute Bioassays and Hazard Evaluation of Representative Contaminants Detected in Great Lakes Fish Environ. Toxicol. Chem.6(11): 901-907.

- 1 [12] 環境省(2008): 平成 19 年度環境省化学物質の生態影響試験事業
- 2 [13] OECD SIDS (2002): 2,6-DI-TERT-BUTYL-P-CRESOL (BHT) (Bayer AG 1994, Internal Study, Test on acute toxicity to fish, test report 466 A/94)
- 3 [14] Cope, W. G., M. R. Bartsch, and L. L. Marking (1997): Efficacy of Candidate Chemicals for Preventing Attachment of Zebra Mussels (Dreissena polymorpha) Environ. Toxicol. Chem. 16(9): 1930-1934.
 - [15] 経産省:濃縮度試験報告書
- 6 [16] OECD SIDS (2002): 2,6-DI-TERT-BUTYL-P-CRESOL (BHT) (Shell Research Limited (1982): Butylated hydroxy toluene: Acute toxicity to Salmo gairdneri, Daphnia magna, and Selenastrum capricornutum; Document Number: SBGR.82.157.)
 - [17] Tsuji, S., Y. Tonogai, Y. Ito, and S. Kanoh (1986): The Influence of Rearing Temperatures on the Toxicity of Various Environmental Pollutants for Killifish (*Oryzias latipes*) Eisei Kagaku32(1): 46-53.
- 10 [18] OECD SIDS (2002): 2,6-DI-TERT-BUTYL-P-CRESOL (BHT) (Bayer AG (1984): Internal Study, Bestimmung der letalen Wirkung beim Zebrabärbling *Brachydanio rerio*, Verfahrensvorschlag des UBA, Stand 1.6.1982)

12 13

9

5

14 【生態毒性(底生生物)】

15 収集データ

		生物種		被験	エンド	ポイント等	暴露	毒性値			
番号	生息/食餌様式	生物種	物 ¹ 種名 純 ₁ (%		エンド ポイン ト	影響内容	期間 (日)	無性 (mg/kg- dry)	信頼性ランク	出典	備考)
1	内在/堆積物食者	セスジユスリカ	Chironomus yoshimatsui	99.8	NOEC	羽化率/変態 速度(雌)	22	128	1	[19]	

- 【エンドポイント】NOEC(No Observed Effect Concentration): 無影響濃度
- 17 【信頼性】
 - 信頼性ランク 1:信頼性あり(制限なし)、2:信頼性あり(制限あり)、3:信頼性なし、4:評価不能

18 19

16

- 20 出典)
- 21 [19] 環境省 (2011): 平成 23 年度生態影響試験 (ユスリカ)

7-6 長期使用製品の使用段階における排出シナリオと排出係数

3-1の表 3-2 で記載した BHT の長期使用製品の使用段階における排出係数について、参考にした情報、製品の種類と割合、排出メカニズムごとの排出係数を次に示す。

表 7-7 BHT の長期使用製品の使用段階における排出シナリオと排出係数の詳細(1/2)

			No. 101														
					製品の種類と	副合					扫	‡出シナリオ					
												排出メ	カニズム		⑥排出シナ	⑦制具の割	長期使用製
用途 番号	用途 分類	詳細 用途 番号	詳細 用途 分類	No	製品の種類	具体的な製品例	①詳細用途分類内 の製品の割合	使用 期間 (年) ※6	先	滅※7	製品から の剥離/ 摩耗		の浸出/溶出/放散	普及率と媒体別 移行率を考慮し た排出係数※9	リオを考慮し 排出係数 (②×③× ④×⑤)	合を考慮し	品の使用段階の排出係数
									ļ.,,	(2)値(率)	③値(率)	4)値(率)	参考資料	⑤値(率)			
	着色剤(染料、顔料、 色素、色材)		その他		※プラスチックに使用される着色 #27プラスチックと		定し、 		大気 水域 土壌				#27_プラスチックの	値を準用			0.00042 0.00014 0.0022
	塗料、コーティング剤	f	安定化剤(酸化防	1	塗膜の一部分が劣化・剥離メカニズムで環境中		1	5	大気	-		0.059		-	0.0018	0.0018	大気
	[プライマーを含む]		止剤等)		に全量排出され、残りの部分は浸出メカニズム	塗膜の剥離される部分			水域	-		0	ESD#3 antioxidants※8	-	0	C	0.0022
					により排出される。 ※1 塗膜の剥離率は、3%とした。(剥離されな				土壌	_		0.941	_antioxidants%6	_	0.028	0.028	水域
					水 坐膜の剥離率は、3%とした。(剥離されなしい部分は「1-(剥離率)=97%」。これに詳細用	塗膜の剥離されない部			大気	-	0.03	0.0005		-	0.000485	0.00049	0
					途分類内の製品の割合100%をかけた97%	分			水域	-	1	0	ESD#3	_	0	C	土壌
					が製品の割合)				土壌	_	1	0.008	_antioxidants	_	0.00776	0.0078	0.036
18	殺生物剤1[成形品に含	z	その他		・ ※殺生物剤に使用される酸化防止剤だた	・ ・	セフ し相中!		大気				•				0.00042
	まれ出荷されるもの]				次枚生物剤に使用される酸化防止剤に #27プラスチックと		めると思定し、		水域 #27_プラスチックの値を準用							0.00014	
									土壌								0.0022
	接着剤、粘着剤、シーリング材	d	安定化剤(老化防 止剤等)	1	環境排出面が大きい製品に使用される接着剤	合板 包装材	0.47 ※3	20	大気			0.0005 0.016			0.0005 0.016	0.00024 0.0075	
	リング科		止削寺)			己装材	*3		水域 +壌			0.016			0.016	0.0075	
				2	環境排出面が大と小の中間の製品に使用され	建築資材	0.35	20	土塚- 大気			0.00025			0.00025	0.00078	
						木工製品	% 3		水域	_	-	0.008	ESD#3	-	0.008	0.0028	
				L				L	土壌		-	0.008	_antioxidants	_	0.008	0.0028	0.01
				3		輸送機	0.18	20	大気	_	_	0		_	0	C	
						電気製品	% 3		水域			0		_	0	0	
25	合成繊維、繊維処理剤		抗菌剤、変色防止	- 1	 家庭用:洗濯される繊維製品。	- 1. 华万	0.01	4 - 5	土壌	-	-	0		0.00153	0.00063	0.00013	1 1 / -
25	「不織布処理を含む」	J	机图用、发巴防止 剤、紫外線吸収剤			衣類 電目	0.21 ※4	1~5	/ 人.ス.			0.41	ESD#7	0.00153	0.00063	0.00013	
	「小戦和を達を占む」		月1、米7下4水火4人月1		される製品。	使共			土壌	_	_	0.41	LOD#7	- 0.28314	0.12	0.023	水域
				2	家庭用:洗濯されない繊維製品。	ベッド(マットレス)	0.37	10	大気	-	-	0.0005		-	0.0005	0.00019	0.025
					洗濯されない物は、室内用を想定。大気への排	カーペット	※ 4		水域	-	-	0.00025		_	0.00025	0.000093	土壌
					出以外については、水域及び土壌で案分。			ļ <u>.</u>	土壌			0.00025			0.00025	0.000093	0.0002
						自動車内装材		5~20				0.0005	_antioxidants	_	0.0005	0.00021	
					洗濯されない物は、室内用を想定。大気への排	電気資材	※ 4		水域	_		0.00025		_	0.00025	0.00011	
					出以外については、水域及び土壌で案分。				土壌	-	-	0.00025		-	0.00025	0.00011	

1

2

表 7-8 BHT の長期使用製品の使用段階における排出シナリオと排出係数の詳細(2/2)

					製品の種類と					- 排	排出シナリオ							
					WORK OF TEXAS								カニズム		⑥排出シナ	(7) thii (1) (1) (1)	E #0 /# CD #11	
用途番号	用途 分類	詳細 用途 番号	詳細 用途 分類	No	製品の種類	具体的な製品例	①詳細用途分類内 の製品の割合	使用 期間 (年) ※6	先		製品から の剥離/ 摩耗 ③値(率)	基材から(④値(率)	D浸出/溶出/放散 参考資料	汚水処理場の 普及率と媒体別 移行率を考慮し た排出係数※9 ⑤値(率)	リオを考慮し 排出係数 (②×③× ④×⑤)	合を考慮し	長期使用製 品の使用段 階の排出係 数	
27	プラスチック、プラスチッ	d	安定化剤(酸化防	1-1	屋内で使用されるプラスチック製品。	日用品	0.28	5	大気	-	-	0.0005		_	0.0005	0.00014	大気	
	ク添加剤、プラスチック 加工助剤		止剤等)		プラスチックから浸出メカニズムにより大気と水域へ排出。		% 5		水域 土壌	- -	- -	0.0005 0		_ 	0.0005 0		0.00042 水域	
					屋外で使用されるプラスチック製品。	日用品	0.28	5	大気	-		0.0005			0.0005	0.00014	0.00014	
				座外	プラスチックから浸出メカニズムにより大気と土 壌へ排出。		※ 5		<u>水域</u> 土壌			0.008	ESD#3		0.008	0.0022	土壌 0.0022	
				2	電気・電子部品等、限られた用途に使用される プラスチック製品。	電気·電子·通信部品	0.27	10		-	-	0.0005	_antioxidants	-	0.0005	0.00014	0.0022	
					プラスチックから浸出されるメカニズム。水に触れる事が考えにくく、土壌にも直接触れないた	自動車用部品	% 5		水域	-	-	0		-	0	0		
					め大気への排出のみ。				土壌	-		0	<u> </u>		0	0		
				3	製品になった後、輸出されるプラスチック製品。 国内では、長期使用製品からの排出が無いた	輸出製品	0.17 ※5	0	大気 水域	ł		ድሠ <i>ጥቲ</i> -አ	排出係数「Oı		0	0		
					国内では、長期使用製品からの排出が無いため、排出係数は「O」		%;o		土壌	1	7	初山ひがこなり、	「排山宗教」り」		0	0	***************************************	
	合成ゴム、ゴム用添加剤、ゴム用加工助剤	е	安定化剤(老化防止剤等)	1	車両用のタイヤ。 タイヤ(tread部分)の一部が摩耗し全量環境中に	5 (b) (m) (o =	0.34	5	大気	_		0.059		_	0.011	0.0036	大気	
	///////		22/11/47		排出され、残りの部分は浸出メカニズムにより	タイヤ(tread部分のう ち、摩耗される部分)	% 5		水域	-		0	ESD#3 antioxidants※8	-	0	0	0.0038	
					排出されるメカニズム。 ※2 タイヤの摩耗率は、タイヤの全重量に対し	うい手作と行いるログリ			土壌	-	0.18	0.941	_andoxidants X O	-	0.17	0.058	水域	
					18%とした。(タイヤ全量に対し摩耗されない分	タイヤ(tread部分のう			大気	-		0.0005		-	0.0005	0.00014	0.000033	
					内の製品の割合34%をかけた27.88%が摩	ちの摩耗されない部分 とsidewall部分)			水域	-		0		-	0		土壌	
					耗されない部分の製品の割合)				土壌	-		0.008	ESD#3	-	0.008	0.0022	0.062	
						自動車用ゴム部品	0.135	10		-	-	0.0005	antioxidants		0.0005	0.000068		
				屋外	ゴムに溶解していて、浸出メカニズムにより大気 と土壌へ排出される。	日用品	※ 5	5	水域 土壌			0.016	_arraoxidarrao		0.016	0.0022		
				2-2		日用品	0.065	5	大気	-	-	0.0005		_	0.0005	0.00022		
					ゴムに溶解していて、浸出メカニズムにより大気		% 5	-	水域	-	-	0.0005		-	0.0005	0.000033		
		l		L <u>-</u>	と水域へ排出される。	±6.11.611.0		<u>-</u>	土壌	=	l 	0	l	-	0	0		
		l		3	製品になった後、輸出されるゴム製品。 国内では、長期使用製品からの排出が無いた	輸出製品	0.46 ※5	0	大気 水域	ł		命出のため	排出係数「O」		0	0		
1		l			め、排出係数は「O」		% :5		土壌	1	*	" ш •//_«/,	137 EL 187 387 . O.]		0	0	***************************************	
36	作動油、絶縁油、プロ	g	プロセス油添加剤						大気								0.00038	
1	セス油、潤滑油剤(エン	l		※ゴムに使用されるプロセス油の酸化防止剤と考えられるので、					水域	0.1			#28 ゴム	の値を準用			0.0000033	
	ジン油、軸受油、圧縮 機油、グリース等)	l		排出係数は#28ゴムの値を準用する。					土壌	0.1							0.0062	
38	電気·電子材料[対象	е	封止材、絶縁材	1	電気・電子製品の封止剤。		1	20	大気	-	-	0.0005		-	0.0005	0.0005	0.0005	
1	材料等の製造用プロセ		料、シールド材料		封止剤樹脂に含まれ排出のメカニズムは浸出。			0	水域	_	_	0.0300	ESD#3	_	0.0000	0.0000	0.0000	
1	ス材料を含む]	l			使用中に水や土壌に触れる可能性がほとんど 無いと考え、大気のみへの排出。				土壌		_	0	_antioxidants		0	0	0	
38	電気・電子材料[対象	 -	その他	1	無いと考え、大気のみへの排出。 同上		1	20	_	_		0.0005		_	0.0005	0.0005	0.0005	
	材料等の製造用プロセ	_	COLIE	'	IH1 4			20	水域	-	_	0.0003	ESD#3 antioxidants	-	0.0005	0.0000	0.0003	
	ス材料を含む〕								土壌	-	-	0	_ariuoxidants	-	0	0	0	

^{※1:}塗膜の剥離率については、「OECD ESD No.22 (Coating Industry (Paints, Lacquers and Varnishes))」の「PART III: APPLICATION AND DISPOSAL OF COATINGS 4. DECORATIVE PAINTS」の値を参考とした。

^{※2:}タイヤの摩耗率については、「タイヤのLCCO2算定ガイドラインVer.2.0」(一般社団法人 日本自動車タイヤ協会、2012)を参考に、タイヤ全量に対し18%を採用した。

^{※3:}接着剤工業会の出荷データを参考とした。

^{※4:}平成13年度繊維産業活性化対策調査(アジア繊維産業戦略連携推進事業(消費流通実態調査分))報告書(株式会社 三菱総合研究所、平成14年3月)を参考とした。

^{※5:}BHT届出事業者からの情報を参考とした。(企業情報のため事業者名等は非開示)

^{※6:}使用期間(年)については、OECD ESD、国立環境研究所「製品使用年数データベースLiVES」(2011年調べ)及び工業会等の公開情報を参考とした。使用期間に幅ある場合は、安全側をとって大きい値を排出係数に考慮した。

^{※7:}BHTは酸化防止剤として含有されているため、製品に含有され表面に浸出する間に反応消滅するメカニズムが全用途で考えられるが、今回は情報の得られた#36作動油のみに該当することとした。

^{※8:} 媒体別の排出係数合計が100%となるように大気と土壌に案分。

^{※9:(}水域)汚水処理場の人口普及率(84.8%)×BHTの汚水処理場での水域への移行率(15.7%)+汚水処理場の人口未普及率(15.2%)

⁽大気)大気への排出係数+汚水処理場の人口普及率(84.8%)×BHTの汚水処理場での大気への移行率(0.18%)

なお、汚水処理場での媒体別移行率のうち「大気への移行率」については、処理場への流入量(前段で基材からの水に溶出され、水域へ排出された量)に対してのものである。

<参考>排出係数の設定方法(表の見方)

3	<排	出係数一覧	表	(抜粋版)	>	(1)				(2)	(3)	(4)		(5)	(6)	(7)	(8)	(9)
Λ						製品の種類と記	哈					T B	光シナリオ					
5	用途 番号	用途 分類	詳細 用途 番号	詳細 用途 分類	No	製品の種類	具体的な製品例	①詳細用途分類内 の製品の割合	使用 期間 (年) ※6	先	-4	の剥離/ 摩耗	基材からの	カニズム の浸出/溶出/放散	汚水処理場の 普及率と媒体別 移行率を考慮し た排出係数※9	⑥排出シナ リオを考慮し 排出係数 (②×③× ④×⑤)	合を考慮し	長期使用製品の使用段 階の排出係 数
7		合成ゴム、ゴム用添加	e	安定化剤(老化防	1	車両用のタイヤ。		0.34	5	大気	(2)恒(率)	③値(率)	0.059	参考資料	⑤値(率)	0.011	0.0036	大気
,		剤、ゴム用加工助剤		止剤等)		タイヤ(tread部分)の一部が摩耗し全量環境中に 排出され、残りの部分は浸出メカニズムにより	タイヤ(tread部分のう	*5	lľ	水域	-		0.000	ESD#3	-	0.011	0.0000	0.0038
8						抹缶されるとルーヘム。	ち、摩耗される部分)			土壤	-		0.941	_antioxidants※8	-	0.17	0.058	
9						※2 タイヤの摩耗率は、タイヤの全重量に対し 18%とした。(タイヤ全量に対し摩耗されない分				大気	_	0.18	0.0005		-	0.0005		0.0000000000000000000000000000000000000
10						は「1-(摩耗率)=82%」。これに詳細用途分類	タイヤ(tread部分のう ちの摩耗されない部分			水域	-		0			0		土壌
10							とsidewall部分)			土塊	_		0.008			0.008	0.0022	2000000
11					2-1	屋外で使用されるゴム製品。	自動車用ゴム部品	0.135	10	大気		-	0.0005	ESD#3		0.0005		1000000
12					屋外	ゴムに溶解していて、浸出メカニズムにより大気 と土壌へ排出される。	日用品	 #5	5	水域 土壌	- 5	-	0	_antioxidants	- 7	0	0	
					2-2		日用品	0.065	5				0.016			0.016 0.0005	0.0022	
13						ゴムに溶解していて、浸出メカニズムにより大気		* 5		大気水域			0.0005		(#)	0.0005	0.000033	
14				'	3		輸出製品	0.46	0	土壤 大気 水域			0		5 7 1	0	0	
15						国内では、長期使用製品からの排出が無いた め、排出係数は「O」		* 5		水域 土壌			出のため、	排出係数「O」		0	0	

- (1):詳細用途ごとに、事業者に照会した結果や工業会が公表している情報を基に製品を分類及びその割合を設定した。
- 17 (2):(1)を排出先媒体(「大気」「水域」「土壌」)ごとに排出係数を設定した。
- 18 (3): BHT は酸化防止剤の用途で、製品中で反応消滅する。今回は反応消滅率(値)として情報の得られた#36作動油等のみに適用した。
- 19 (4): タイヤは強制的に、塗膜は劣化等により製品の一部が摩耗/剥離する。そのため、#28合成ゴムのうちのタイヤ製品と#15塗料は、摩耗 20 /剥離による排出メカニズムを適用した。摩耗/剥離率は OECD ESD 等の文献から引用した。
- 21 (5): 長期使用製品からの排出は基本的に浸出/溶出/放散により環境中に排出されるとした。排出される割合はそれぞれ該当する OECD ESD の値 22 を採用した。なお、本表では、OECD ESD から得られた値に使用期間(年)を考慮した値を設定した。(4)で剥離/摩耗された剥離/摩耗粉の 23 合計表面積は製品の表面積と比較し大きくなり、より排出されやすくなることが考えられた。そのため、剥離/摩耗された後当該メカニズム 24 により全量排出されるとした。
- 25 (6): 繊維製品に使用されている BHT は、家庭等で洗濯により汚水処理場を経由し水域へ排出される。そのため、#25繊維処理剤のうち、洗 26 濯する製品類については汚水処理場の普及率と媒体別移行率を考慮した。
- 27 (7):製品分類ごとの排出係数。
- 28 (8): (7)に製品分類の割合を乗じた値。
- 29 (9): (8)を排出先媒体別に合計した値が詳細用途分類別の排出係数となる。

情報源略称	詳細等
Aldrich	Sigma-Aldrich試薬カタログ
ATSDR	ATSDR(米国毒性物質疾病登録局):「Toxicological Profile」
CCD	Hawley's Condensed Chemical Dictionary, 15th, John Wiley & Sons, 2007
CICAD	WHO/IPCS:「国際簡潔評価文書(CICAD)」
CRC	CRC Handbook of Chemistry and Physics on DVD, Version 2013, CRC-Press
EHC	WHO/IPCS:「環境保健クライテリア(EHC)」
EPI Suite	U.S.EPA EPI Suite
EURAR	EU ECB(European Chemicals Bureau): 「リスク評価書(EU Risk Assessment Report)」
HSDB	Hazardous Substances Data Bank (HSDB)
IUPAC	The IUPAC Solubility Data Series
JCP	Japanチャレンジプログラム
Lange	Lange's Handbook of Chemistry, McGraw-Hill, 2005
Mackay	Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, Second Edition
Merck	The Merck Index, 14th Ed, Merck & Co, 2006
MOE初期評価	環境省環境リスク評価室:「化学物質の環境リスク評価」
NITE初期リスク評価書	(独)製品評価技術基盤機構:「化学物質の初期リスク評価書」
NITE有害性評価書	(財)化学物質評価研究機構・(独)製品評価技術基盤機構:「化学物質有害性評価書」
PhysProp	SRC PhysProp Database, Syracuse Research Corporation, 2009
SIDS	OECD: SIDSレポート
SPARC	SPARC Performs Automated Reasoning in Chemistry
USHPV	US/HPVチャレンジプログラム
既存点検事業	化審法既存点検事業の試験結果

優先通し番号	64000
物質名称 2	2, 6ージーtertーブチルー4ーメチルフェノール
CAS番号	128-37-0

融点

	収集データ													
	情報源名	項目	値	試験方法等	GLP	reliability	情報源における キースタディの 該非		値の種類の詳細	信頼性ランク	評価Ⅱにお けるキースタ ディー	備考	文献	ページ番号等
		融点	69~73 °C							2B	×			p.901
2	CCD	凝固点	70 °C	-	-	-	-	-		2B	×	-	-	2,6-di-tert-butyl-p- cresol
3	CRC	融点	70.1 ° C[70.1(0.8)]	-	-	-	-	-		2B	×	-	Frenkel, M., Chirico, R. D., Diky, V. V., Kazakov, A., and Muzny, C.D., ThermoData Engine, NIST Standard Reference Database 103b, Version 5.0 (Pure Compounds, Binary Mixtures, and Chemical Reactions, TDE-SOURCE Version 5.1), National Institute of Standard	Physical Constants of Organic Compounds (Section 3)
	EPI Suite	融点		MPBPWIN				(Q)SAR		2C	×			
5	HSDB	融点	70 °C							2B	×		その他	CHEMICAL/PHYSIC AL PROPERTIES: > MELTING POINT:
6		融点	70 °C							4A	×		その他	p.14
7	Merck	融点	70 °C	-	-	-	-	-		2B	×	-	-	Monograph Number: 0001548
8	MOE初期評 価	融点	70 °C	-	-	-	-	-		2B	×	-	Budavari, S. ed. (1989) The Merck Index - Encyclopedia of Chemicals, Drugs and Biologicals. Rahway, NJ: Merck and Co., Inc., pp. 238.	p.1
9		融点	71 °C	-	-	-	-	-		2B	×	-	Lide, D.R. ed. (2006): CRC Handbook of Chemistry and Physics, 86th Edition (CD- ROM Version 2006), Boca Raton, Taylor and Francis. (CD-ROM).	p.1
10		融点	70 °C	-	-	-	-	-		2B	×	-	O'Neil, M.J. ed. (2001): The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. 13th Edition, Whitehouse Station, NJ: Merck and Co., Inc. (CD- ROM).	
11		融点	69.8 °C	-	-	-	-	-		2B	×	-	Verschueren, K. ed. (2001): Handbook of Environmental Data on Organic Chemicals, 4th ed., New York, Chichester, Weinheim, Brisbane,Singapore, Toronto, John Wiley & Sons, Inc. (CD-ROM).	p.1
12	PhysProp	融点	71 °C	_	-	-	-	-		2B	×	-	-	p.1
13	REACH登録 情報		70 °C		no	2: reliable with restrictions	weight of evidence	experimental result		4A	×		その他	Exp WoE Melting point/freezing point.001

優先通し番号	64000
物質名称	2, 6ージーtertーブチルー4ーメチルフェノール
CAS番号	128-37-0

融点

	収集データ													
	情報源名	項目	値	試験方法等	GLP	reliability	情報源における キースタディの 該非	値の種類	値の種類の詳細	信頼性ランク	評価Ⅱにお けるキースタ ディー	備考	文献	ページ番号等
14		融点	83.01 °C	MPBPWIN	no	2: reliable with restrictions	weight of evidence	estimated by calculation		4C	×		その他	Calc WoE Melting point/freezing point.001
15		融点	71 °C		no data	2: reliable with restrictions		experimental result		4A	×		その他	Exp Supporting Melting point/freezing point.002
16		融点	70 °C		no data	2: reliable with restrictions	weight of evidence	experimental result		4A	×		その他	Exp WoE Melting point/freezing point.003
17		融点	70~71 °C		no data	2: reliable with restrictions		experimental result		4A	×		その他	Exp WoE Melting point/freezing point.004
18		融点	69.8 °C		no data	2: reliable with restrictions	weight of evidence	experimental result		4A	×		その他	Exp WoE Melting point/freezing point.006
19		融点	69.8 °C		no data	2: reliable with restrictions	, ,	experimental result		4A	×		その他	Exp Key Melting point/freezing point.001
20	SIDS	融点		その 他,differential scanning calorimetry			key study			2A	0		その他	p.6, Dossier p.40
21		融点	70 °C				key study			2A	×		その他	p.6, Dossier p.40
	既存点検事 業	融点	70 °C		-	-	-	-		4A	×	-	-	K0080

優先評価化学物質通し番号	64000
物質名称	2, 6ージーtertーブチルー4ーメチルフェノール
CAS番号	128-37-0

沸点

収集データ 情報源名	沸点	測定条件 圧力	試験方法等	GLP	reliability	情報源における キースタディの 該非	値の種類	値の種類の詳細	信頼性ランク	評価 I にお けるキースタ ディー	備考	文献	ページ番号等
Aldrich	265 °C								4A	×			p.901
CCD	265 °C	760 mmHg	-	-	-	-	-		2B	0	-	-	2,6-di-tert-butyl-p-cresol
CRC	265 °C	760 mmHg	-	-	-	-	-		2B	0	-	-	Physical Constants of Organic Compounds (Section 3)
	265 °C		-	-	-	-	-		4A	×	-	-	Flammability of Chemical Substances (Section 16)
EPI Suite	296.49 °C		MPBPWIN				(Q)SAR		2C	×			
HSDB	265 °C								4A	×		その他	CHEMICAL/PHYSICAL PROPERTIES: > BOILING POINT:
	136 °C	10 mmHg							2B	×		その他	CHEMICAL/PHYSICAL PROPERTIES: > OTHER CHEMICAL/PHYSICAL PROPERTIES:
IUCLID	265 °C	1013 hPa							4A	×		その他	p.14
Merck	265 °C	10101111 0	-	-	-	-	-		4A	×	-	-	Monograph Number: 0001548
MOE初期評 価	265 °C		-	-	-	-	-		4A	×	-	Budavari, S. ed. (1989) The Merck Index- Encyclopedia of Chemicals, Drugs and Biologicals. Rahway, NJ: Merck and Co., Inc., pp. 238.	p.1
	265 °C	760 mmHg	-	-	-	-	-		2B	0		Lide, D.R. ed. (2006): CRC Handbook of Chemistry and Physics, 86th Edition (CD- ROM Version 2006), Boca Raton, Taylor and Francis. (CD-ROM).	p.1
	265 °C		-	-	-	-	-		4A	×	-	O'Neil, M.J. ed. (2001): The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. 13th Edition, Whitehouse Station, NJ: Merck and Co., Inc. (CD- ROM).	p.1
PhysProp	265 °C		-	-	-	-	_		4A	×	-	-	p.1
REACH登録 情報	265 °C			no data	2: reliable with restrictions	weight of evidence	experimental result		4A	×		その他	Exp WoE Boiling point.001
	265 °C		MPBPWIN	no	2: reliable with restrictions	weight of evidence	(Q)SAR		4C	×		その他	QSAR WoE Boiling point.002
	296.49 °C		MPBPWIN	no	2: reliable with restrictions	weight of evidence	estimated by calculation		4C	×		その他	Calc WoE Boiling point.001

ı	優先評価化学物質通し番号	64000
	物質名称	2, 6ージーtertーブチルー4ーメチルフェノール
	CAS番号	128-37-0

沸点

Ц	又集データ													
	情報源名	沸点	測定条件 圧力	試験方法等	GLP	reliability	情報源における キースタディの 該非		値の種類の詳細	信頼性ランク	評価Ⅱにお けるキースタ ディー	備考	文献	ページ番号等
17		265 °C			no data	2: reliable	supporting	experimental					その他	Exp Supporting Boiling
						with	study	result		4A	×			point.002
						restrictions								
18		266 °C	101.3 kPa		no data	2: reliable	weight of	experimental		4A	×		その他	Exp WoE Boiling
						with restrictions	evidence	result		4A	*			point.004
19		265 °C			no data	2: reliable	weight of	experimental			-		その他	
		200 0			no data	with	evidence	result		4A	×		C 37 IE	
						restrictions								
20		265 °C	1013 hPa		no data	2: reliable	weight of						その他	Exp WoE Boiling
						with	evidence			4A	×			point.001
21		266 °C	1013 hPa		no data	restrictions 2: reliable	weight of	experimental			+		その他	Exp WoE Boiling
21		200 C	1013 IIFa		110 uata	with	evidence	result		4A	×		-C 071E	point.002
						restrictions	eviderice	resuit		-17 (^			politicooz
22		265 °C	1013 hPa		no data	2: reliable	weight of	experimental					その他	Exp WoE Boiling
						with	evidence	result		4A	×			point.003
00 6	ND C	005.00	101015			restrictions				0.0			7 0 10	
23 5		265 °C	1013 hPa							2B	0		その他	Dossier p.40
24 日		265 °C		-	-	-	-	-		4A	×	•	提示資料	K0080
25	~	265 °C		-	-	_	_	_			-		_	K0080
										4A	×			
26		265 °C		-	-	-	-	-		4A	×	•	提示資料	K0080
										7/1	^			
27		265 °C		-	-	[-	-	-		4A	×	•	提示資料	K0080
28		265 °C												K0080
20		200 C		-		[[4A	×	•		10000
		ı									L			

優先評価化学物質通し番号	64000
物質名称	2, 6ージーtertーブチルー4ーメチルフェノール
CAS番号	128-37-0

蒸気圧

情報源名	蒸気圧	測定条件 温度	試験方法等	GLP	reliability	情報源における キースタディの 該非		値の種類の詳細	信頼性ランク	評価Ⅱにお けるキースタ ディー		文献	ページ番号等
1 Aldrich	0.01 mmHg	20 °C							2B	×			p.901
2 EPI Suite	0.242 Pa[2B以上 の値を用い て推定 (2C)]	25 °C	MPBPWIN				(Q)SAR		2C	×			
3 IUCLID	0.013 hPa	20 °C							4A	×		その他	p.14
4 MOE初期評 価	0.00177 mmHg[0.0 0177 mmHg (25°C、計 算值)]	25 °C	-	-	-		estimated by calculation	-	4B	×	-	U.S.EPA, MPBPWIN ver. 1.41.	p.1
5	1.1 Pa[8.3 ×10-3 mmHg (=1.1 Pa) (20°C)]	20 °C	-	-	-	-	-		2B	×	-	OECD High Production Volume Chemicals Program (2005): SIDS (Screening Information Data Set) Initial Assessment Report.	p.1
5	0.688 Pa[5.16× 10-3 mmHg (=0.688 Pa) (25°C、 外挿値)]	25 °C	-	-	-		外挿 (補 外)	-	2B	×	-	Howard, P.H., and Meylan, W.M. ed. (1997): Handbook of Physical Properties of Organic Chemicals, Boca Raton, New York, London, Tokyo, CRC Lewis Publishers: 255.	p.1
7 PhysProp	0.00516 mmHg	25 °C	-	-	-		外)	Extrapolated data is based upon experimental measurement outside the temperature range of the reported value	2B	×	-	PERRY,RH & GREEN,D (1984)	p.1
B REACH登録 情報	0.236 Pa	25 °C	MPBPWIN			weight of evidence		MPBPWIN (v.1.43)	4C	×	other company data, 2009	その他 (2009)	QSAR WoE Vapour pressure.001

優先評価化学物質通し番号	64000
物質名称	2, 6ージーtertーブチルー4ーメチルフェノール
CAS番号	128-37-0

蒸気圧

<u>ЧХ :</u>	果アーダ													
1	情報源名	蒸気圧	測定条件 温度	試験方法等	GLP	reliability	情報源における キースタディの 該非	値の種類	値の種類の詳細	信頼性ラ ンク	評価Ⅱにお けるキースタ ディー	備考	文献	ページ番号等
9		0.39 N/m2	298 K	その他,gas	yes	1: reliable	key study	experiment					その他 (1988)(1988-08-14)	Exp Key Vapour
				saturation		without		al result		3	×			pressure.002
				method		restriction								
0		0.011 hPa	20 °C	EU Method	no data	2: reliable	key study	experiment					その他 (1986)	Exp Key Vapour
				A.4,EU		with		al result						pressure.001
				Method A.4		restrictions								
				(Vapour										
				Pressure)						4A	×			
				Cited as										
				Directive										
				84/449/EEC,										
				A.4										
1 SIE	OS	0.011 hPa	20 °C	EU Method			key study	experiment					その他	p.6, Dossier p.41
				A.4,Directive				al result						
				84/449/EEC,										
				A.4 "Vapour										
				pressure" The										
				vapour										
				pressure was						2A	0			
				determined							· ·			
				with a vapour										
				pressure										
				balance and										
				by a dynamic										
				procedure.										

優先評価化学物質通し番号	64000
物質名称	2, 6ージーtertーブチルー4ーメチルフェノール
CAS番号	128-37-0

水溶解度

情報源名	水溶解度	測定条件 温度	Hq	試験方法等	GLP	reliability	情報源におけるキースタディの該非	値の種類	値の種類の詳細	信頼性ランク	評価Ⅱにお けるキースタ ディー	備考	文献	ページ番号等
CCD	[insoluble]			-	-	-	-	-		3	×	-	-	2,6-di-tert-butyl-p-creso
CRC	[insoluble]			-	-	-	-	-		3	×	i H_2 O	-	Physical Constants of Organic Compounds (Section 3)etc
	9.911 mg/L[2B以上 の値を用いて 推定(2C)]	25 °C		WSKOWWIN				(Q)SAR		2C	×			
	0.4 mg/L	20 °C								2B	×		その他	CHEMICAL/PHYSICAL PROPERTIES: > SOLUBILITIES:
	[INSOL IN WATER]									3	×		その他	CHEMICAL/PHYSICAL PROPERTIES: > SOLUBILITIES:
IUCLID	0.6 mg/L	25 °C								4A	×		その他	p.15
	[Insol in water]			-	-	-	-	-		3	×	-	-	Monograph Number: 0001548
MOE初期評 価	0.4 mg/L	20 °C		-	-	-	-	-		2B	×	-	Verschueren, K. (1983): Handbook of Environmental Data of Organic Chemicals. 2nd ed. New York, NY: Van Nostrand Reinhold Co., pp. 467.	p.1
	0.6 mg/L	25 °C		-	-	-	-	-		2B	×	-	Howard, P.H., and Meylan, W.M. ed. (1997): Handbook of Physical Properties of Organic Chemicals, Boca Raton, New York, London, Tokyo, CRC Lewis Publishers: 255.	p.1
	0.6~1.1 mg/L	20 °C		-	-	-	-	-		2B	×	-	OECD High Production Volume Chemicals Program (2005): SIDS (Screening Information Data Set) Initial Assessment Report.	p.1
PhysProp	0.6 mg/L	25 °C		-	-	-	-	experimenta I result	-	2B	×	-	PERRY,RH & GREEN,D (1984)	p.1
REACH登録 情報	0.4 mg/L	20 °C		その 他,Handbook data		2: reliable with restrictions	weight of evidence	experimenta I result		4A	×		その他、Verschueren, K.(1983),Handbook of Environmental Data of Organic Chemicals.,2nd ed. New York	Exp WoE Water solubility.001

優先評価化学物質通し番号	64000
物質名称	2, 6ージーtertーブチルー4ーメチルフェノール
CAS番号	128-37-0

水溶解度

情報	源名 水溶	容解度	測定条件 温度	рН	試験方法等	GLP	reliability	情報源におけるキースタディ の該非	値の種類	値の種類の詳細	信頼性ランク	評価Ⅱにお けるキースタ ディー	備考	文献	ページ番号等
3	0.000 g/100		25 °C		その 他,Handbook data	no data	2: reliable with restrictions	weight of evidence	experimenta I result		4A	×		その他, International Programme on Chemical Safety (IPCS)(2001),ICSC: 0841 BUTYLATED HYDROXYTOLUENE, Prepared in the context of cooperation between the International Programme on Chemical Safety and the Commission of the European Communities IPCS, CEC 2001	Exp WoE Water solubility.002
	5.748	3 mg/L	25 °C		WSKOWWIN		2: reliable with restrictions	weight of evidence	estimated by calculation	WSKOW v1.41	4C	×		その他 (2009)	Calc WoE Water solubility.001
5	0.4 m	ng/L	20 °C		no data	no data	2: reliable with restrictions	weight of evidence	experimenta I result		4A	×		その他 (1983)	Exp WoE Water solubility.002
5	0.4 m	ng/L	20 °C		no data	no data	2: reliable with restrictions	weight of evidence	experimenta I result		4A	×		その他, Verschueren K(1983), Handbook of Environmental Data of Organic Chemicals, 2nd ed. New York, NY: Van Nostrand Reinhold Co., p. 467	Exp WoE Water solubility.005
	1.5 m	ng/L	30 °C		その 他,radioactive 14C-labeled BHT and by liquid scintillation counting measurements.	no data	2: reliable with restrictions	weight of evidence	外挿 (補 外)		4C	×		その他 (1985)	Other WoE Water solubility.006
	0.76 r	mg/L	20 °C	6.5	OECD TG 105	yes (incl. certificat e)	1: reliable without restriction	key study	experimenta I result		1A	0			Exp Key Water solubility.001
	1.01^ mg/L	-	20 °C		EU Method A.6,EU Method A.6 (Water Solubility) Cited as Directive 84/449/EEC, A.6		2: reliable with restrictions	key study	experimenta I result		4A	×		その他(1986)(1986.11.11)	Exp Key Water solubility.002
SIDS	0.6 m	ng/L	25 °C		no data			key study	1		2A	×		その他	p.6, Dossier p.43-44

	優先評価化学物質通し番号	64000
ſ	物質名称	2, 6ージーtertーブチルー4ーメチルフェノール
ſ	CAS番号	128-37-0

水溶解度

	情報源名	水溶解度	測定条件 温度	рН	試験方法等	GLP	reliability	情報源におけるキースタディ の該非	値の種類	値の種類の詳細	信頼性ランク	評価Ⅱにお けるキースタ ディー	備考	文献	ページ番号等
21		1.1 mg/L	20 °C		EU Method A.6,Directive 84/449/EEC, A.6				その他 (測定値)		2A	×		その他	p.6, Dossier p.42-43
22		1.01~1.04 mg/L	20 °C		EU Method A.6,Directive 84/449/EEC, A.6			key study	その他(測定値)		2A	×		その他	p.6, Dossier p.43
23		1.5 mg/L	30 °C		その他			key study	外挿 (補 外)		4C	×		その他	p.6, Dossier p.43
24 既業		[不溶]			-	-	-	-	-		3	×	提示資料	-	K0080
25		[不溶]			-	-	-	-	-		3	×	-	-	K0080
26		[不溶]			-	-	-	-	-		3	×	-	提示資料	K0080
27		[不溶]			-	-	-	-	-		3	×	-	提示資料	K0080
28		[不溶]			-	-	-	-	-		3	×	-	-	K0080

優先評価化学物質通し番号	64000
物質名称	2, 6-ジーtertーブチルー4ーメチルフェノール
CAS番号	128-37-0

logPow

情報源名	値	測定条件 温度	рН	試験方法等	GLP	reliability	情報源におけるキースタディの該非	値の種類	値の種類の詳細	信頼性ランク	評価Ⅱにお けるキースタ ディー	備考	文献	ページ番号等
EPI Suite	5.03			KOWWIN				(Q)SAR		2C	×			
IUCLID	4.17							experimental result		4A	×		その他	p.14
	5.1			no data				experimental result		4A	×		その他	p.14
	5.6			その他,Leo, A., CLOGP- 3.63 (1991) Daylight Chemical Information Systems, Inc. Irvine, CA USA				estimated by calculation	Leo, A., CLOGP– 3.63 (1991) Daylight Chemical Information Systems, Inc. Irvine, CA USA	4C	×		その他	p.14
	6.2							その他(推定値)		4C	×		その他	p.14
MOE初期評 価	5.03			-	-	-	-	estimated by calculation	-	4C	×	-	U.S.EPA, KOWWINTM ver. 1.67.	p.1
_	5.1			-	-	-	-	-		2B	×		Howard, P.H., and Meylan, W.M. ed. (1997): Handbook of Physical Properties of Organic Chemicals, Boca Raton, New York, London, Tokyo, CRC Lewis Publishers: 255.	p.1
	4.17	37 °C		-	-	-	-	-		2B	×		Freese,E. et al (1979): Correlation between the Growth Inhibitory Effects, Partition Coefficients and Teratogenic Effects of Lipophilic Acids, Teratology, 20: 413-440.	p.1
PhysProp	5.1			-	-	-	-	experimental result	-	2B	×		TSCATS	p.1
REACH登録 情報	5			KOWWIN	no	2: reliable with restriction	evidence	(Q)SAR		4C	×			QSAR WoE Partition coefficient.001
	5.03			KOWWIN	no	2: reliable with restriction	evidence	estimated by calculation		4C	×		その他	Calc WoE Partition coefficient.001
	5.1				no data	2: reliable with restriction	studv	experimental result		4A	×		その他	Exp Supporting Partition coefficient.002

優先評価化学物質通し番号	64000
物質名称	2, 6ージーtertーブチルー4ーメチルフェノール
CAS番号	128-37-0

logPow

	1人未 / / / / / / / / / / / / / / / / / / /														
	情報源名	値	測定条件 温度	рН	試験方法等	GLP		情報源におけるキースタディ の該非	値の種類	値の種類の詳細	信頼性ランク	評価Ⅱにお けるキースタ ディー	備考	文献	ページ番号等
13		5.1				ľ	2: reliable with restriction	, ,	experimental result		4A	×		その他	
14		5.03			KOWWIN		s 2: reliable with restriction	, ,	(Q)SAR		4C	×		その他	
15	SIDS	5.1			その他,HPLC method	yes	S	1 1	experimental result		2A	0		その他	p.6, Dossier p.41-42

優先評価化学物質通し番号	64000
物質名称	2, 6ージーtertーブチルー4ーメチルフェノール
CAS番号	128-37-0

Koc

情報源名	項目	値	測定条件 温度	рН	土壌条件	試験方法等	GLP	reliability	情報源におけるキースタディ の該非	値の種類	値の種類の詳細	信頼性ランク	評価Ⅱにお けるキースタ ディー	備考	文献	ページ番号等
EPI Suite	Koc	8183 L/kg[2B 以上の値を用 いて推定 (2C) 1				KOCWIN				(Q)SAR		2C	0			
MOE初期評価	Koc	23000			-	その 他,PCKOCWI N	-	-	-	estimated by calculation	-	4C	×	-	U.S. Environmental Protection Agency, PCKOCWIN™ v.l.66.	p.2
REACH登録情 報	Koc	14750 L/kg[estimated from MCI]				KOCWIN	no	2: reliable with restrictions	weight of evidence	(Q)SAR		4C	×			QSAR WoE Adsorption / desorption.001
	Koc	8183 L/kg[estimated from logKow]				KOCWIN	no	2: reliable with restrictions	weight of evidence	(Q)SAR		4C	×			QSAR WoE Adsorption / desorption.001
	Koc	23030				KOCWIN	no	2: reliable with restrictions	key study	estimated by calculation		4C	×			Calc Key Adsorption / desorption.001
	Koc	8183 L/kg[log Kow based estimation]				KOCWIN	no		key study	estimated by calculation		4C	×			Calc Key Adsorption / desorption.001
	Koc	14750 L/kg[MCI based estimation]				KOCWIN	no	2: reliable with restrictions		estimated by calculation		4C	×			Calc Key Adsorption / desorption.001

優先評価化学物質通し番号	64000
物質名称	2, 6ージーtertーブチルー4ーメチルフェノール
CAS番号	128-37-0

ヘンリー係数

収集データ 情報源名	ヘンリー 係数	測定条件 温度	рН	reliability	情報源におけるキースタディの該非	値の種類	値の種類の詳細		評価Ⅱにお けるキースタ ディー	備考	文献	ページ番号等
EPI Suite	0.288 Pa·m^3/mol					(Q)SAR		2C	Ö			
IUCLID	60 Pa·m^3/mol					estimated by calculation	NEELY 100-day model	4C	×		その他	p.18
PhysProp	0.00000412 atm · m^3/mol			-	-	estimated by calculation	-	4C	×		MEYLAN,WM & HOWARD,PH (1991)	p.1
REACH登録情 報	3.38E-6 atm·m^3/mol			2: reliable with restrictions	weight of evidence	(Q)SAR		4C	×		その他	QSAR WoE Henry's Law constant.001
	4.12E-006 atm· m^3/mol[Bond Method]				key study	estimated by calculation		4C	×		その他	Calc Key Henry's Law constant.001
	3.38E-006 atm· m^3/mol[Group Method]			2: reliable with restrictions	key study	estimated by calculation		4C	×		その他	Calc Key Henry's Law constant.001
	8.928E-005 atm· m^3/mol[Henrys LC [VP/WSol estimate using EPI values]]			2: reliable with restrictions	key study	estimated by calculation		4C	×		その他	Calc Key Henry's Law constant.001
	0.342 Pa· m^3/mol[Group Method]			2: reliable with restrictions	weight of evidence	estimated by calculation		4C	×		その他	Calc WoE Henry's Law constant.001
	0.418 Pa· m^3/mol[Bond Method]			2: reliable with restrictions	weight of evidence	estimated by calculation		4C	0		その他	Calc WoE Henry's Law constant.001
SIDS	220 Pa·m^3/mol			2: reliable with restrictions		estimated by calculation	HENRYWIN v3.10	4C	×		その他	p.9, Dossier p.50
	404 Pa·m^3/mol			2: reliable with restrictions		estimated by calculation	HENRYWIN v3.10	4C	×		その他	p.9, Dossier p.50

優先評価化学物質通し番号	64000
物質名称	2, 6ージーtertーブチルー4ーメチルフェノール
CAS番号	128-37-0

解離定数

₩集データ

情報源名	項目	値	測定条件 温度	рН	試験方法等	GLP	reliability	情報源における キースタディの 該非	値の種類	値の種類の詳細	評価 II における キースタディー	備考	文献	ページ番号等
MOE初期評 価	рКа	12.07			-	-	-	-	-		×		Freese,E. et al (1979): Correlation between the Growth Inhibitory Effects, Partition Coefficients and Teratogenic Effects of Lipophilic Acids, Teratology, 20: 413-440.	p.1
:	рКа	12.23			-	-	-	-	-		×		Howard, P.H., and Meylan, W.M. ed. (1997): Handbook of Physical Properties of Organic Chemicals, Boca Raton, New York, London, Tokyo, CRC Lewis Publishers: 255.	p.1
PhysProp	рКа	12.2			-	-	-		experimental result	-	0	-	SERJEANT,EP & DEMPSEY,B (1979)	p.1
SPARC	рКа	12.38		7	SPARC	-	-	key study	(Q)SAR	SPARC v4.6 October 2011 release w4.6.1691- s4.6.1687	×	-	-	-

優先評価化学物質通し番号	64000
物質名称	2, 6ージーtertーブチルー4ーメチルフェノール
CAS番号	128-37-0

分解性

情報源名	分解性	分解度	算出方法	分解生成物	試験方法等	GLP	reliability	情報源におけるキースタディの該非	値の種類	値の種類の詳細	備考	文献	ページ番号等
IUCLID		10%			OECD TG 301D	no			experimental result		Emulgator W used as emulsifier (CAS-No. 68130-72-3)	その他	p.18
		4.50%			OECD TG 301C	no data			experimental result			その他	p.19
REACH登録情 報			O_2 consumption		OECD TG 301C	no data	3: not reliable	weight of evidence	experimental result			その他	Exp WoE Biodegradation in water: screening tests.001
	その他	4.50%	O_2 consumption			no data	2: reliable with restrictions	key study	experimental result			その他	Exp Key Biodegradation in water: screening tests.001
SIDS		4.50%	O_2 consumption		OECD TG 301C	no data	2: reliable with restrictions	key study				その他	p.5, Dossier p.52-53
既存点検事業		0.80%	Test mat. analysis		化審法TG	-	-	-	experimental result		-	-	K0080
•		4.50%	その他,酸素消費量		化審法TG	-	-	-	experimental result		-	-	K0080
3		[飼料の残留 量が水系、汚 泥系共に低い 値を示したた め分解度は算 出しなかっ た。]	Test mat. analysis		化審法TG	-	-	-	experimental result		-	-	K0080
9		1.90%	その他,酸素消費量		化審法TG	-	-	-	experimental result		-	-	K0080
		[飼料の残留 量が水系、汚 泥系共に低い 値を示したた め分解度は 出しなかっ た。]	TOC removal		化審法TG	-	-	-	experimental result		-	-	K0080
		[飼料の残留量が水系、汚泥系共に低い値を示したため分解度は算出しなかった。]	Test mat. analysis		化審法TG	-	-	-	experimental result		-	-	K0080
		[飼料の残留量が水系、汚泥系共に低い値を示したため分解度は 出しなかった。]	TOC removal		化審法TG	-	-	-	experimental result		-	-	K0080

優先評価化学物質通し番号	64000
物質名称	2, 6ージーtertーブチルー4ーメチルフェノール
CAS番号	128-37-0

分解性

	情報源名	分解性	分解度	算出方法	分解生成物	試験方法等	GLP	reliability	情報源におけるキースタディ の該非	値の種類	値の種類の詳細	備考	文献	ページ番号等
13			67.9 %[GC分析において分解度に差があったため別々に求めた。]	Test mat. analysis		化審法TG	-	-	-	experimental result		-		K0080
14			27.60%	その他,酸素消費量		化審法TG	-	-	-	experimental result		-	-	K0080
15			47.2 %[GC分析において分解度に差があったため別々に求めた。]	Test mat. analysis		化審法TG	-	-	-	experimental result		-	-	K0080
16			の仕込量が違うため分解度 は別々に求めた。]	Test mat. analysis		化審法TG	-	-	-	experimental result		-	-	K0080
17			め分解度は 別々に求め た。]	その他,酸素消費量		化審法TG	-	-	-	experimental result		-	-	K0080
18			0%[試料の仕 込量が違うた め分解度は 別々に求め た。]	その他,酸素消費量		化審法TG	-	-	-	experimental result		-	-	K0080
19			0 %[試料の仕 込量が違うた め分解度は 別々に求め た。]	その他,酸素消費量		化審法TG	-	-	-	experimental result		-	-	K0080
20			10.9 %[試料 の仕込量が違 うため分解度 は別々に求め た。]	Test mat. analysis		化審法TG	-	-	-	experimental result		-	-	K0080
21			13 %[試料の 仕込量が違う ため分解度は 別々に求め た。]	Test mat. analysis		化審法TG	-	-	-	experimental result		-	-	K0080
22			20%	その他,吸光光度計		化審法TG	-	-	-	experimental result		-	-	K0080

優先評価化学物質通し番号	64000
物質名称 2	2, 6ージーtertーブチルー4ーメチルフェノール
CAS番号	128-37-0

分解性

	収未ナーツ													
	情報源名	分解性	分解度	算出方法	分解生成物	試験方法等	GLP	reliability	情報源におけるキースタディ の該非		値の種類の詳細	備考	文献	ページ番号等
23			0%	その他,酸素消費量		化審法TG	-	-	-	experimental		-	-	K0080
										result				
24			15.80%	Test mat. analysis		化審法TG	-	-	-	experimental		-	-	K0080
										result				

優先評価化学物質通し番号	64000
物質名称	2, 6ージーtertーブチルー4ーメチルフェノール
CAS番号	128-37-0

蓄積性

											情報源におけ				評価Ⅱにお			
情報源名	判定	濃度区 番号	被験物質 設定濃度	暴露期間	項目	項目の種類	値	試験方法等	GLP	reliability	るキースタディの該非	値の種類	値の種類の詳細	信頼性ラ ンク	評価Ⅱにお けるキースタ ディー	備考	文献	ページ番号等
EPI Suite		1			BCF		645.6 L/kg	BCFBAFWIN			りかえず	(Q)SAR			/1			
							(wet)[2B以											
							上の値を用							2C	×			
							いて推定 (2C)]											
							(20/]											
UCLID		1	5 μg/L		BCF		330~1800	OECD TG 305C				experimental		1B	×		その他	p.20
			F0=/I		DOE		220 - 2500	OFCD TO 20FC		1		result					7. (A) (II)	- 20
		1	50 μg/L		BCF		230~2500	OECD TG 305C				experimental result		1B	×		その他	p.20
REACH登録情		1	0.005 mg/L		BCF		330~1800	OECD TG 305C	no data	2: reliable	key study	experimental	İ				その他	Exp Key
報			_							with		result		1B	×			Bioaccumulation:
								0505 50 0050		restrictions							7.00	aquatic / sediment.
		1	0.05 mg/L		BCF		230~2500	OECD TG 305C	no data	4: not assignable	weight of evidence	experimental result		1B	×		その他	Exp WoE Bioaccumulation:
										assignable	eviderice	resuit		ТВ	^			aguatic / sediment.
ŀ		1	0.05 mg/L		BCF		230~2500	OECD TG 305C	no data	2: reliable	key study	experimental					その他	Exp Key
										with	.,,	result		1B	×		1	Bioaccumulation:
										restrictions								aquatic / sediment.
SIDS		1	0.005 mg/L		BCF		330~1800	OECD TG 305C	no data	2: reliable	key study	experimental		40			その他	p.5, Dossier p.54
										with restrictions		result		1B	×			
ŀ		2	0.05 mg/L		BCF		230~2500	OECD TG 305C	no data	2: reliable	key study	experimental					その他	p.5, Dossier p.54
		_	g							with	,,	result		1B	×			p.c., _ cos.c. p.c .
										restrictions								
死存点検事業	-	1	0.05 ppm	1週	Rawデータ	-	2100	化審法TG	-	-	-	experimental	-	1B	×	-	-	K0080
		-1	0.0E.nnm	1週	Rawデータ		2200	化審法TG		+		result experimental	-					K0080
	Ī	1	0.05 ppm	1 389	Raw) — y	-	2200	心番本16	Ī	Ī	-	result	Ī	1B	×	-	-	K0000
ŀ	-	1	0.05 ppm	2 週	Rawデータ	-	2400	化審法TG	-	-	-	experimental	-	40			-	K0080
												result		1B	×			
	-	1	0.05 ppm	2 週	Rawデータ	-	3100	化審法TG	-	-	-	experimental	-	1B	×	-	-	K0080
		1	0.05 ppm	4週	Rawデータ		1500	化審法TG		+		result experimental	-					K0080
	Ī	'	0.05 ppm	4 10	Raw) — y	-	1300	心番本16	Ī	Ī	-	result	Ī	1B	×	-	-	K0060
ŀ	-	1	0.05 ppm	4 週	Rawデータ	-	1600	化審法TG	-	-	-	experimental	-	40			-	K0080
												result		1B	×			
	- 1	1	0.05 ppm	6 週	Rawデータ	-	2700	化審法TG	-	-	-	experimental	-	1B	×	-	-	K0080
		-	0.05	c 'III	Da= A		2400	ル南汁エ				result						140000
	Ī	1	0.05 ppm	6 週	Rawデータ	-	3100	化審法TG	-	Ī		experimental result	Ī	1B	×	-	=	K0080
ŀ		1	0.05 ppm	8 週	Rawデータ	-	1000	化審法TG	-	1_	-	experimental	_			-	<u> </u>	K0080
												result		1B	×			
Ţ	-	1	0.05 ppm	8週	Rawデータ	-	1000	化審法TG	-	-	-	experimental	-	1B	×	=	-	K0080
				4 MB			0.100	11 mut = 0				result		10				1/0000
	-	2	0.5 ppm	1週	Rawデータ	-	3100	化審法TG	-	Ī	=	experimental result	-	1B	×	=	-	K0080
ŀ		2	0.5 ppm	1週	Rawデータ	_	2400	化審法TG	_	1_	_	experimental	_			-	-	K0080
		-	о.о рр	. ~_	,		2.00	10 m m . 0				result		1B	×			110000
	-	2	0.5 ppm	2 週	Rawデータ	-	600	化審法TG	-	-	-	experimental	-	1B	×		=	K0080
J										1		result		10	^			
J	- 	2	0.5 ppm	2 週	Rawデータ	-	4600	化審法TG	l-	1	Ī	experimental	<u> </u> -	1B	×	-	-	K0080
}		2	0.5 ppm	4週	Rawデータ	<u> </u>	3200	化審法TG		+	L	result experimental	Ł .			_	+	K0080
J		-	о.о ррпп	→ <u>204</u>	I COW / J		3200	ID EMA TO				result		1B	×			10000
ļ	-	2	0.5 ppm	4週	Rawデータ	-	2600	化審法TG	-	-	-	experimental	-	1B	v	-	-	K0080
J										1		result		IB	×			
ſ	-	2	0.5 ppm	6 週	Rawデータ	-	500	化審法TG	-		-	experimental	-	1B	×	- <u> </u>	-	K0080
	-	2	0.5 ppm	6週	Rawデータ	-	E00	化審法TG	 	+	1	result experimental	 				+	K0080
														1B	×			

優先評価化学物質通し番号	64000
物質名称	2, 6ージーtertーブチルー4ーメチルフェノール
CAS番号	128-37-0

蓄積性

収集データ																			
情幸	最源名	判定	濃度区 番号	被験物質 設定濃度	暴露期間	項目	項目の種類	値	試験方法等	GLP	reliability	情報源におけるキースタディ の該非	値の種類	値の種類の詳細	信頼性ラ ンク	評価Ⅱにお けるキースタ ディー	備考	文献	ページ番号等
27	-		2	0.5 ppm	8週	Rawデータ	-	5000	化審法TG		-	-	experimental result	-	1B	×	-	-	K0080
28	-		2	0.5 ppm	8週	Rawデータ	-	1800	化審法TG	-	-	-	experimental result	-	1B	×	-	-	K0080
29	-		3	5 ppb w/v	2週	Rawデータ	-	520	化審法TG	-	-	-	experimental result	-	1B	×	-	-	K0080
30	-		3	5 ppb w/v	2 週	Rawデータ	-	780	化審法TG	=	=	-	experimental result	=	1B	×	-	-	K0080
31	-		3	5 ppb w/v	2 週	Rawデータ	-	1100	化審法TG	=	=	-	experimental	-	1B	×	-	-	K0080
32	-		3	5 ppb w/v	4週	Rawデータ	-	1800	化審法TG	-	-	-	result experimental	-	1B	×	-	=	K0080
33	-		3	5 ppb w/v	4週	Rawデータ	-	620	化審法TG	-	-	-	result experimental	-	1B	×	-	=	K0080
34	-		3	5 ppb w/v	4 週	Rawデータ	-	330	化審法TG	-	-	-	result experimental	-	1B	×	-	-	K0080
35	-		3	5 ppb w/v	6 週	Rawデータ	-	420	化審法TG	=	-	-	result experimental	=	1B	×	-	-	K0080
36	-		3	5 ppb w/v	6 週	Rawデータ	-	440	化審法TG	=	-	-	result experimental	=	1B	×	-	-	K0080
37	-		3	5 ppb w/v	6週	Rawデータ	-	700	化審法TG	=	=	-	result experimental	-	1B	×	-	-	K0080
38	-		3	5 ppb w/v	8 週	Rawデータ	-	1500	化審法TG	-	-	-	result experimental	-	1B	×	=	-	K0080
39	-		3	5 ppb w/v	8 週	Rawデータ	-	1100	化審法TG	-	-	-	result experimental	-	1B	×	=	-	K0080
40	-		3	5 ppb w/v	8 週	Rawデータ	-	760	化審法TG	-	-	-	result experimental	-	1B	×	=	-	K0080
41	-		2	50 ppb w/v	2 週	Rawデータ	-	380	化審法TG	-	-	-	result experimental	-	1B	×	=	-	K0080
42	-		2	50 ppb w/v	2 週	Rawデータ	-	780	化審法TG	-	-	-	result experimental	-	1B	×	=	-	K0080
43	-		2	50 ppb w/v	2 週	Rawデータ	-	710	化審法TG	-	-	-	result experimental	-	1B	×	=	=	K0080
44	-		2	50 ppb w/v	4週	Rawデータ	-	290	化審法TG	=	-	-	result experimental	-	1B	×	-	-	K0080
45	-		2	50 ppb w/v	4週	Rawデータ	-	1000	化審法TG	-	-	-	result experimental	-	1B	×	=	=	K0080
46	-		2	50 ppb w/v	4週	Rawデータ	-	840	化審法TG	=	-	-	result experimental	-	1B	×	_	-	K0080
47	-		2	50 ppb w/v	6週	Rawデータ	-	380	化審法TG	=	-	-	result experimental	=	1B	×	-	-	K0080
48	-		2	50 ppb w/v	6 週	Rawデータ	-	300	化審法TG	-	-	-	result experimental	-	1B	×	-	-	K0080
49	-		2	50 ppb w/v	6週	Rawデータ	-	860	化審法TG		-	-	result experimental	-			=	-	K0080
50	-				8 週	Rawデータ	-	230	化審法TG		-	-	result experimental	-	1B	×	=	-	K0080
51	-			50 ppb w/v	8週	Rawデータ	-		化審法TG	_	-	-	result experimental	-	1B	×	=	=	K0080
52	<u> </u>				8週	Rawデータ	-		化審法TG	_	-	-	result experimental	-	1B	×	=	-	K0080
53			1	500 ppb w/v		Rawデータ			化審法TG			-	result experimental	-	1B	×	<u> </u>	-	K0080
54			1	500 ppb w/v		Rawデータ			化審法TG	_	_		result experimental	-	1B	0			K0080
55			1	500 ppb w/v		Rawデータ			化審法TG				result experimental	_	1B	0			K0080
56	L		1	500 ppb w/v		Rawデータ			化審法TG				result experimental		1B	0			K0080
50				200 ppp W/V	2 10	Naw / — y		2300	に留法10				result		1B	0			10000

優先評価化学物質通し番号	64000
物質名称	2, 6ージーtertーブチルー4ーメチルフェノール
CAS番号	128-37-0

蓄積性

	情報源名	判定	濃度区 番号	被験物質 設定濃度	暴露期間	項目	項目の種類	値	試験方法等	GLP	reliability	情報源におけるキースタディ の該非	値の種類	値の種類の詳細	信頼性ラ ンク	評価Ⅱにお けるキースタ ディー	備考	文献	ページ番号等
57		-	1	500 ppb w/v	2 週	Rawデータ	-	980	化審法TG	-	-	-	experimental result	-	1B	0	-	-	K0080
58		-	1	500 ppb w/v	4週	Rawデータ	-	660	化審法TG	-	-	-	experimental result	-	1B	0	-	-	K0080
59		=	1	500 ppb w/v	4週	Rawデータ	-	220	化審法TG	-	-	-	experimental result	-	1B	0	-	-	K0080
60		-	1	500 ppb w/v	4週	Rawデータ	-	2500	化審法TG	-	-	-	experimental result	-	1B	0	-	-	K0080
61		-	1	500 ppb w/v	4週	Rawデータ	-	1700	化審法TG	-	-		experimental result	-	1B	0	-	-	K0080
62		=	1	500 ppb w/v	4週	Rawデータ	-	1400	化審法TG	-	-		experimental result	-	1B	0	-	-	K0080
63		=	1	500 ppb w/v	6週	Rawデータ	-	410	化審法TG	-	-	-	experimental result	-	1B	0	-	-	K0080
64		=	1	500 ppb w/v	6週	Rawデータ	-	710	化審法TG	-	-	-	experimental result	-	1B	0	-	-	K0080
65		-	1	500 ppb w/v	6週	Rawデータ	-	1500	化審法TG	-	-		experimental result	-	1B	0	-	-	K0080
66		=	1	500 ppb w/v	6週	Rawデータ	-	740	化審法TG	-	-	-	experimental result	-	1B	0	-	-	K0080
37		-	1	500 ppb w/v	6週	Rawデータ	-	1400	化審法TG	-	-	-	experimental result	-	1B	0	-	-	K0080