| 1  |                    |
|----|--------------------|
| 2  |                    |
| 3  |                    |
| 4  | 優先評価化学物質のリスク評価(一次) |
| 5  | 人健康影響に係る評価         |
| 6  | 有害性情報の詳細資料         |
| 7  |                    |
| 8  |                    |
| 9  | エチレンオキシド           |
| 10 |                    |
| 11 | 優先評価化学物質通し番号 19    |
| 12 |                    |
| 13 |                    |
| 14 |                    |
|    |                    |
| 15 |                    |
| 16 |                    |
| 17 |                    |
| 18 |                    |
| 19 | 平成 30 年 3 月        |
| 20 |                    |

厚生労働省

# 2 目 次

| 3          | 1 | 有害性評価(人健康)                                   | 1 |
|------------|---|----------------------------------------------|---|
| 4          |   | はじめに                                         |   |
| 5          |   | 1 - 1 有害性評価値に関する国内外の評価                       | 1 |
| 6          |   | 1 - 1 - 1 一般毒性の既知見                           | 2 |
| 7          |   | 1 - 1 - 2 生殖発生毒性の既知見                         | 2 |
| 8          |   | 1 - 1 - 3 発がん性の既知見                           | 3 |
| 9          |   | 1 - 2 一般毒性                                   | 3 |
| 10         |   | 1 - 2 - 1 経口暴露                               | 3 |
| 11         |   | (1) ヒトへの影響                                   | 4 |
| 12         |   | (2) 動物への影響                                   | 4 |
| 13         |   | 1 - 2 - 2 吸入暴露                               | 4 |
| 14         |   | (1) ヒトへの影響                                   | 5 |
| 15         |   | (2) 動物への影響                                   |   |
| 16         |   | 1 - 2 - 3 有害性評価値の導出                          |   |
| 17         |   | 1 - 3 生殖・発生毒性                                |   |
| 18         |   | 1 - 3 - 1 経口暴露                               |   |
| 19         |   | 1 - 3 - 2 吸入暴露                               |   |
| 20         |   | (1) ヒトへの影響                                   |   |
| 21         |   | (2) 動物への影響                                   |   |
| 22         |   | 1 - 3 - 3 有害性評価値の導出                          |   |
| 23         |   | 1 - 4 変異原性(遺伝毒性)                             |   |
| 24         |   | 1 - 4 - 1 ヒトへの影響                             |   |
| 25         |   | 1 - 4 - 2 変異原性に関する試験                         |   |
| 26         |   | (1) In vitro 試験                              |   |
| 27         |   | (2) In vivo 試験                               |   |
| 28         |   | 1 - 4 - 3 変異原性の評価                            |   |
| 29         |   | 1 - 5 発がん性                                   |   |
| 30         |   | 1 - 5 - 1 経口暴露                               |   |
| 31         |   | (1) ヒトへの影響                                   |   |
| 32         |   | (2)動物への影響                                    |   |
| 33         |   | 1 - 5 - 2 吸入暴露                               |   |
| 34         |   | (1) ヒトへの影響                                   |   |
| 35         |   | (2) 動物への影響                                   |   |
| 36         |   | 1 - 5 - 3 その他                                |   |
| 37         |   | • • • • • • • • • • • • • • • • • • • •      |   |
| 38         |   | 1-5-5 有害性評価値の導出                              |   |
| 39<br>40   |   | 1 - 6 有害性に関するその他の情報<br>1 - 6 - 1 生体内運命(体内動態) |   |
| 40<br>41   |   | (1) 吸収                                       |   |
| 41<br>42   |   | (1)吸収····································    |   |
| <b>T</b> 4 |   | <b>(4) 刀 1 1</b>                             | 4 |

| 1                                                        | (3)代謝                                                                                                                                                                                                                                                   | 25                   |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 2                                                        | (4) 排泄                                                                                                                                                                                                                                                  | 26                   |
| 3                                                        | 1 - 6 - 2 急性毒性                                                                                                                                                                                                                                          | 27                   |
| 4                                                        | (1) ヒトに関する情報                                                                                                                                                                                                                                            | 27                   |
| 5                                                        | (2) 動物に関する情報                                                                                                                                                                                                                                            | 27                   |
| 6                                                        | 1 - 6 - 3 刺激性及び腐食性                                                                                                                                                                                                                                      | 27                   |
| 7                                                        | (1) ヒトへの影響                                                                                                                                                                                                                                              | 27                   |
| 8                                                        | (2) 動物への影響                                                                                                                                                                                                                                              |                      |
| 9                                                        | 1 - 6 - 4 感作性                                                                                                                                                                                                                                           |                      |
| 10                                                       | (1) ヒトへの影響                                                                                                                                                                                                                                              |                      |
| 11                                                       | (2)動物への影響                                                                                                                                                                                                                                               |                      |
| 12                                                       | 1 - 7 有害性評価値のまとめ                                                                                                                                                                                                                                        |                      |
| 13                                                       | 1 - 8 文献                                                                                                                                                                                                                                                |                      |
| 14                                                       | 2 暴露評価と各暴露シナリオでのリスク推計                                                                                                                                                                                                                                   | 45                   |
|                                                          |                                                                                                                                                                                                                                                         |                      |
| 15                                                       | 3 丰とめと結論                                                                                                                                                                                                                                                | 15                   |
| 15<br>16                                                 | 3 まとめと結論<br>3 1 有実性評価                                                                                                                                                                                                                                   | 45<br>45             |
| 16                                                       | 3 - 1 有害性評価                                                                                                                                                                                                                                             | 45                   |
| 16<br>17                                                 | 3 - 1 有害性評価                                                                                                                                                                                                                                             | 45                   |
| 16<br>17<br>18                                           | 3 - 1 有害性評価                                                                                                                                                                                                                                             | 45                   |
| 16<br>17                                                 | 3 - 1 有害性評価                                                                                                                                                                                                                                             | 45                   |
| 16<br>17<br>18                                           | 3-1 有害性評価                                                                                                                                                                                                                                               | 45<br>45<br>45<br>45 |
| 16<br>17<br>18<br>19                                     | 3-1 有害性評価       3-2 暴露評価とリスク推計         3-3 考察とまとめ       3-4 補足事項                                                                                                                                                                                        | 45<br>45<br>45<br>45 |
| 16<br>17<br>18<br>19<br>20                               | 3-1 有害性評価                                                                                                                                                                                                                                               | 45454545             |
| 16<br>17<br>18<br>19<br>20<br>21                         | 3-1 有害性評価                                                                                                                                                                                                                                               | 4545454545           |
| 16<br>17<br>18<br>19<br>20<br>21<br>22                   | 3-1 有害性評価                                                                                                                                                                                                                                               | 454545454545         |
| 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23             | 3-1 有害性評価                                                                                                                                                                                                                                               | 45454545454949       |
| 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24       | 3-1 有害性評価         3-2 暴露評価とリスク推計         3-3 考察とまとめ         3-4 補足事項         4【付属資料】         4-1 ベンチマークドース法による動物試験の用量反応解析         4-2 ヒト疫学データの用量反応解析         4-2-1 本評価における用量反応解析に使用したデータ         4-2-2 van Wijngaarden と Hertz-Picciotto (2004)の方法による解析 | 45454545454949       |
| 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25 | 3-1 有害性評価         3-2 暴露評価とリスク推計         3-3 考察とまとめ         3-4 補足事項         4【付属資料】         4-1 ベンチマークドース法による動物試験の用量反応解析         4-2 ヒト疫学データの用量反応解析         4-2-1 本評価における用量反応解析に使用したデータ         4-2-2 van Wijngaarden と Hertz-Picciotto (2004)の方法による解析 | 45454545454949       |

# 1 1 有害性評価(人健康)

#### 2 はじめに

- 3 エチレンオキシドの人健康に関するリスク評価の優先度を審議するため、スクリーニング評
- 4 価が実施された。スクリーニング評価において、エチレンオキシドの有害性クラスが、一般毒
- 5 性「3」、変異原性「2」、発がん性「1」と選定された結果、人健康影響の観点から優先評価化学
- 6 物質となった。更に有害性評価 I で検討した結果、有害性評価 II を行う必要がある物質である
- 7 と判断された。
- 8 有害性評価 II では有害性情報の追加・精査として、有害性評価 I の情報に加え既存の評価書
- 9 等を調査し有害性情報を追加し、キースタディ選定及び有害性評価値の妥当性もしくは見直し
- 10 の必要性を検討する。
- 11 評価に当たっては、化審法のスクリーニング評価における有害性データ収集対象情報源の優
- 13 な評価書が見つかった場合は、それらの情報も考慮した。また、既存の情報更新の確認につい
- 14 ては、各エンドポイントで確認された最新の評価書公表年の2年前を基点とし、それ以降の情報
- 15 検索を行い、新たな知見が得られた場合個別に精査を行った。

16

- 17 < 対象情報源 >
- 18 NITE初期リスク評価書 (2005年)
- 19 環境省:化学物質の環境リスク初期評価(2003年)
- 20 環境省:発がん性の定量的なリスク評価の結果(2003年)
- 21 日本産業衛生学会 許容濃度提案理由書及び許容濃度等の勧告(1990年、1996年、2013年)
- 22 WHO 国際がん研究機関(IARC)IARC Monographs Programme on the Evaluation of Carcinogenic Risk to humans (IARC Monographs) (1994年、2008年、2012年)
- 米国産業衛生専門家会議 (ACGIH) ACGIH Documentation of the threshold limit values for chemical substances (化学物質許容濃度文書) (2001年)
- 26 米国毒性物質疾病登録局(ATSDR) Toxicological Profile (1990年)
- 27 米国環境保護庁 (EPA) Reregistration Eligibility Decision (2008年)
- 28 米国環境保護庁 (EPA ) Integrated Risk Information System (IRIS ) (20016年)
- 29 WHO CICAD54 (2003年)
- Environmental Health Criteria (EHC) 55 (1985年)

31

- 32 更に、対象情報源以外にも有用な評価書が得られたため、以下の報告書を適宜参照した。
- 33 カナダ環境保護法 (CEPA1999) (2001年)

- 35 1-1 有害性評価値に関する国内外の評価
- 36 エチレンオキシドの国内外の評価を既知見として調査した結果、経口経路による評価値を
- 37 定めている報告は存在しなかった。以下に吸入暴露の評価を紹介する。

# 1-1-1 一般毒性の既知見

ATSDR (1990) は、NTP (1987) のマウスを用いた 14 週間 (5 日/週、6 時間/日) 吸入暴露 実験をキースタディとし、腎尿細管上皮細胞の変性をエンドポイントとした NOAEL 50 ppm を暴露時間で調整した 8.93 ppm を POD とし、不確実係数 100 (種差 10、個体差 10) を適用し、中期的な暴露についての minimal risk level (MRL) を 0.09 ppm と算出している。

NITE (2005) は、マウスの 10 - 11 週吸入試験 (Snellings *et al.*, 1984a) 及びラットの 2 年間吸入試験 (Snellings *et al.*, 1984b) の NOAEL10 ppm をエチレンオキシドの反復投与による最小 NOAEL と判断し、1 日あたりの内部暴露量に補正した結果、マウスは 5.4 mg/kg/day、ラットは 2.4 mg/kg/day となったため、ラットの 2 年間吸入試験をキースタディとした。MOEは 100 (10:種差、10:個体差)としている。

EPA (2008) は、6ヶ月未満の職業暴露に対するリスク評価として、マウスの 10 - 11 週吸入試験 (Snellings *et al.*, 1984a) の神経毒性及び脾臓重量の影響を指標にした NOAEL 50 ppm (暴露状況による補正値 37.5 ppm)を POD とし、MOE を 30 (3:種差(トキシコダイナミクス) 10:個体差)としている。一方、6ヶ月以上の職業暴露に対するリスク評価としては、ラットの2世代試験 (Chun and Neeper-Bradley, 1993)の体重増加の減少を指標にした NOAEL 10 ppm (暴露状況による補正値 7.5 ppm)を POD とし、MOE を 30 (3:種差(トキシコダイナミクス) 10:個体差)としている。

CICAD 54 (WHO, 2003)は、非発がん性影響については発がん性影響が認められる濃度より高い所で発現するとし、評価値の導出は行っていない。

ACGIH は 1984 年に、発がんリスクや肺、肝臓、腎臓、内分泌系、造血機能、中枢神経に対する非発がん影響、染色体損傷、生殖・発生毒性のリスクの低減させるために、労働者の暴露限界閾値 - 時間荷重平均(TLV-TWA)を 10 ppm から 1 ppm (1.8 mg/m³)へ引き下げており(ACGIH, 2001)、現在、日本産業衛生学会、労働安全衛生法の管理濃度も同様の値を採用している(日本産業衛生学会、1990、中央労働災害防止協会、2016)。

また、環境省(2003a)は、環境リスク初期評価において、吸入暴露についてヒトの中枢神経及び末梢神経に対する神経毒性に関するデータから得られた NOAEL  $1.8~mg/m^3$ (ACGIH のTLV-TWA) が信頼性のある最小値であることから同値を採用し、暴露状況で補正した  $0.43~mg/m^3$  をヒトの一般毒性の無毒性量として設定し、一般環境大気中濃度平均( $0.085~\mu g/m^3$ )及び最大量( $0.38~\mu g/m^3$ )と比較し MOE > 100~であることから一般環境大気の吸入暴露による健康リスクについて現時点では作業は必要ないとしている。

1-1-2 生殖発生毒性の既知見

EPA (2008) は、ラットの 2 世代吸入試験の着床後死亡、生児減少、児の体重減少を指標に NOAEL 10 ppm (1日 6 時間週 5 日暴露)を職業暴露 (1日 8 時間、週 5 日暴露)に補正した 7.5 ppm を用い、リスク評価として MOE を 30 (3:種差 (トキシコダイナミクス)、10:個体差)としている。この MOE の設定は EPA が用いている RfC (HEC)の設定に係る方法論に基づいている。

日本産業衛生学会は 2013 年に、エチレンオキシドは疫学調査で流産の増加という報告が 複数存在するとともに、動物実験では生殖細胞変異原性(優性致死)等、明確な影響が認め られることから、生殖毒性第 1 群(ヒトに対して生殖毒性を示すことが知られている物質) に相当すると判断している。しかし、実験動物で影響が認められたとする暴露濃度は、発が ん性を考慮して設定された現行の日本産業衛生学会の許容濃度(1ppm)と比較して高い濃度

#### 1-1-3 発がん性の既知見

エチレンオキシドの発がん性について国内外の機関の分類を表 1-1に示す。

表 1-1 エチレンオキシドの発がん性に関する国内外機関の分類

|          | K I I I I I I I I I I I I I I I I I I I |                            |  |  |  |  |
|----------|-----------------------------------------|----------------------------|--|--|--|--|
| 評価機関     | 評価年                                     | 分類                         |  |  |  |  |
| IARC     | 1994 年                                  | 1:ヒトに対して発がん性がある            |  |  |  |  |
| 米国 NTP   | 1985 年                                  | K:ヒト発がん性があることが知られている       |  |  |  |  |
| EU       | 不明                                      | 1B:ヒトに対して発がん性があるとみなされるべき物質 |  |  |  |  |
| ACGIH    | 1984 年                                  | A2:ヒトに対して発がん性が疑われる物質       |  |  |  |  |
| 日本産業衛生学会 | 1996年                                   | 1:ヒトに対して発がん性がある            |  |  |  |  |

カナダの CEPA( 2001 )及び WHO の CICAD54( WHO, 2003 )の評価では、Snellings ら( 1984b ) の Fischer 344 ラットを用いた吸入暴露実験の結果より、雌の単核球性白血病の発生数と吸入暴露量との関係に多段階モデルを適用し、生涯における発生率の 5% 増加に対応する暴露量 ( $TC_{05}$ )を  $2.2~mg/m^3$  (95%信頼区間の下限値  $1.5~mg/m^3$ ) と算出している。

環境省 ( 2003b ) の発がん性の定量的なリスク評価の結果では、一般環境大気についての暴露量が平均  $0.085~\mu g/m^3$ 、最大  $0.38~\mu g/m^3$  であり、CEPA( 2001 ) で算出された  $TC_{05}$ (  $2.2~m g/m^3$  ) と予測最大暴露量から求めた Exposure/Potency Index ( EPI ) は  $1.7\times10^{-4}$  であることから、一般環境大気の吸入暴露による発がん性のリスクについては情報収集に努める必要があるとしている。

EPA(EPA, 1985)は、Snellings ら(1984b)の Fischer 344 ラットを用いた吸入暴露実験において雌の単核球性白血病と脳の神経膠腫が濃度依存性に発生した結果から、線形多段階モデルを用いて発がんリスクを推定し、エチレンオキシド 1  $\mu$ g/m³ 生涯暴露の発がんリスクを  $1\times10^{-4}$  と評価しているが、この値は暫定的な値で IRIS のレビュー評価によるものではない。また、EPA の農薬再登録の評価(EPA, 2008)では、ヒトの疫学からの UR を算出するまでの 暫定的な値として、マウス(肺がん)及びラット(脳腫瘍)の長期吸入試験から求めた UR (2.67  $\times10^{-3}$ /mg/m³ から  $2.22\times10^{-2}$ /mg/m³ の範囲)を提案している。近年公開された IRIS の評価(EPA, 2016)では、3 動物試験(NTP, 1987、Lynch et al., 1984a、b、Snellings et al., 1984b)に基づく UR を  $2.2\times10^{-5}\sim4.6\times10^{-5}$ / $\mu$ g/m³ と算出している。一方、ヒト疫学研究(Steenland et al., 2003、2004)における乳がんと Lymphoid cancer(非ホジキンリンパ腫、白血病、骨髄腫)の がん罹患に対する UR を  $3.3\times10^{-3}$ / $\mu$ g/m³ と算出している。これらのうち、EPA(2016)はヒトの疫学から算出されたより高値の UR ( $3.3\times10^{-3}$ / $\mu$ g/m³)を採用している。

- 32 1-2 一般毒性
- 33 1-2-1 経口暴露

# 1 (1)ヒトへの影響

調査した範囲で、ヒトの経口経路によるエチレンオキシドの毒性情報は得られなかった。

# (2)動物への影響

一般毒性に対する報告は一つあり、雌の Wistar ラットに 100 mg/kg のエチレンオキシドを 5 日/週、21 日間(計 15 回)経口投与した実験で体重減少、胃刺激及び軽度の肝障害が認められたが、3、10、30 mg/kg/day を 30 日間(5 日/週)経口投与した実験では影響が認められなかった(Hollingsworth et al., 1956)。経口経路の一般毒性についてキースタディを定めている評価機関は存在しなかった。また、EPA(2016)以降の既知見の更新として、2014 年以降の文献検索を行った結果、新たな情報は得られなかった。

# 1-2-2 吸入暴露

# 表 1-2 吸入経路による一般毒性影響の国内外のリスク評価概要

| 評価機関           | キースタディ          | 影響          | 202                        | フェカウ バットゲ   |                          |  |
|----------------|-----------------|-------------|----------------------------|-------------|--------------------------|--|
|                |                 | <b></b>     | POD                        | 不確実係数等      | 評価値                      |  |
| ATSDR          | マウス 14 週        | 腎尿細管上       | NOAEL:50 ppm (補正           | 100 (種差 10、 | MRL: 0.09 ppm            |  |
| (1990)         | 間・吸入試験          | 皮細胞の変       | 值:8.93 ppm)                | 個体差 10)     | $(0.165 \text{mg/m}^3)$  |  |
|                | (NTP, 1987)     | 性           |                            |             |                          |  |
| NITE ( 2005 )  | ラット2年           | 体重増加抑       | NOAEL: 10 ppm (18.3        | MOE=100     | 0.024                    |  |
|                | 間・吸入暴露          | 制           | $mg/m^3$ )                 | (10:種差、     | mg/kg/day*               |  |
|                | ( Snellings et  |             | (補正値 2.4                   | 10:個体差)     | (0.06 mg/m³相             |  |
|                | al., 1984b)     |             | mg/kg/day )                |             | 当)                       |  |
|                |                 |             |                            |             |                          |  |
| EPA (2008)     | マウス 10-11       | 神経毒性        | NOAEL: 50 ppm              | 職業暴露 1 日    | 職業暴露:                    |  |
|                | 週間・吸入試          | (自発運動       | (職業暴露を想定とし                 | から6ヶ月を      | 1.25 ppm*                |  |
|                | 験               | 抑制及び円       | た補正値: 37.5 ppm)            | 想定とした       | $(2.29 \text{ mg/m}^3)$  |  |
|                | ( Snellings et  | 背歩行)及       |                            | MOE=30 (3:  |                          |  |
|                | al., 1984a)     | び雌脾臓重       |                            | 種差(トキシ      |                          |  |
|                |                 | 量低下         |                            | コダイナミク      |                          |  |
|                |                 |             |                            | ス) 10:個体    |                          |  |
|                |                 |             |                            | 差)          |                          |  |
| EPA (2008)     | ラット 2 世代        | 体重増加の       | NOAEL:10 ppm (職業           | 職業暴露 > 6    | 職業暴露:                    |  |
|                | 繁殖・吸入試          | 減少          | 暴露を想定とした補正                 | ヶ月を想定と      | 0.25 ppm*                |  |
|                | 験               |             | 值 7.5 ppm)                 | した MOE=30   | $(0.458 \text{ mg/m}^3)$ |  |
|                | ( Chun and      |             |                            | (3:種差(ト     |                          |  |
|                | Neeper-Bradley, |             |                            | キシコダイナ      |                          |  |
|                | 1993)           |             |                            | ミクス) 10:    |                          |  |
|                |                 |             |                            | 個体差)        |                          |  |
| ACGIH ( 2001 ) | )               | ヒトにおける      | <b>腎臓、内分泌系、</b>            | TLV-TWA = 1 |                          |  |
| 日本産業衛生学        | 日本産業衛生学会(1990)  |             | 造血機能、中枢神経に対する非発がん影響、染色体損傷、 |             |                          |  |
| 労働安全衛生法        | 生 (2016)        | 生殖・発生毒      | 性のリスク                      |             | $mg/m^3$ )               |  |
| 環境省 (2003)     |                 | TLV-TWA = 1 | ppm(1.8 mg/m³)を暴露状況        | 況(1日8時間、    | ヒトの無毒性                   |  |

\*NOAEL/MOE により本評価で算出した値

1 2 3

4

5

6 7

8 9

10

11

12

13

1415

16 17

18

19

20

21

22

2324

# (1) ヒトへの影響

エチレンオキシドを用いた滅菌作業者による慢性吸入暴露の事例報告は数多く存在する (Crystal et al., 1988, Fukushima et al., 1986, Gross et al., 1979, Kuzuhara et al., 1983, Ristow and Cornelius, 1986、Schroder et al., 1985、Zampollo et al., 1984、Brashear et al., 1996)。エチレ ンオキシドの長期暴露は神経毒性影響があり、感覚に対する症状、運動能力に対する症状、 認知機能の障害、痙攣、頭痛などが主な症状として報告されている。最も低用量での事例は 4.2 ppm の暴露で感覚記憶の障害の報告がある (Crystal et al., 1988)。エチレンオキシド暴露 による運動機能や脳に対する影響は可逆的であり、自覚症状も暴露が無くなってから2週間 以内に改善すると報告されている (Gross et al., 1979)。700 ppm (1281 mg/m³) 超を暴露され た作業者の生検では、腓腹神経の髄鞘と軸索の変性、及び筋肉の変性萎縮が認められた (Kuzuhara et al., 1983)。 同様に、500 ppm 程度までの暴露で、軸索断面積の低下を伴う神経 線維のワーラー変性が認められている(Schroder et al., 1985)。エチレンオキシドの暴露群と 非暴露群との比較を行った小規模な疫学調査においても、エチレンオキシド暴露群の神経心 理学的影響が確認されている(Klees et al., 1990、Estrin et al., 1987、1990)。エチレンオキシ ド暴露の血液への影響を調べた報告では、4ヶ月(累積暴露量:0~32 ppm・時間)の暴露で ヘマトクリット値とヘモグロビン量の減少が認められたと報告されている(Schulte et al., 1995 )

ヒトに対する基準値としては、作業環境濃度 TWA の 1 ppm (1.83 mg/m³) という値があり (ACGIH, 2001、日本産業衛生学会, 1990、労働安全衛生法, 2016)、我が国の環境省(2003) はこの値を暴露状況で補正した 0.43 mg/m³をヒトの無毒性量としている。EPA (2016)以降の既知見の更新として、2014 年以降の文献検索を行った結果、新たな情報は得られず、ヒトの一般毒性の評価値としては環境省の値を用い、後述の動物への影響による評価値と比較する事とした。

252627

28

2930

31

32

33

34

35

3637

38 39

40

41

42

#### (2)動物への影響

吸入暴露によるエチレンオキシドの標的の一つとして神経系に対する変化があり、中-長期の反復吸入暴露について古くから、ラット、ウサギ、モルモット、サルを用いた試験で麻痺や筋肉萎縮といった影響が報告されており(Hollingsworth et~al., 1956)、カニクイザルを用いた2年間吸入暴露試験(Lynch et~al., 1984b、Sprinz et~al., 1982; NITE 2005 二次引用)、ラットの13週間吸入試験(Ohnishi et~al., 1985、1986)、17週間吸入試験(森ら, 1990)などでも病理変化を伴う神経毒性影響が報告されている。また、イヌを用いた試験において、赤血球数(RBC)、ヘモグロビン(Hb)、ヘマトクリット値(Ht)の減少といった血液系に対する報告もあり(Jacobson et~al., 1956)、ラットにおける貧血に対する報告もある(Mori et~al., 1990、森ら, 1992)、1980-1990年代には、エチレンオキシド暴露による疫学調査結果などから発がん性に対する懸念が注目され、その他にも、数々の動物実験が実施され(Yager and Benz, 1982、Lynch et~al., 1984a、Popp et~al., 1986)、既存の評価書でキースタディとされる試験もこの年代に実施された試験である。

ATSDR (1990)は、NTP (1987)のマウスの 14 週間吸入試験をキースタディとしている。この試験では、100 ppm (183 mg/m³)のエチレンオキシドに 6 時間/日、5 日/週、14 週間吸入暴露すると尿細管上皮細胞の変性が認められ、600 ppm (1,098 mg/m³)では尿細管上皮細胞

5

6

12 13 14

11

15 16 17

18

19

20 21 22

23 24 25

26 27

28

の壊死が認められた。2 年間暴露では 14 週間暴露で認められた腎病変は認められなかった が、腎臓の微妙な加齢に伴う変化の影響であろうとしている。また、600 ppm のエチレンオ キシド暴露では、再生不良性貧血と胸腺及び脾臓におけるリンパ球壊死を示したとしている。 この試験の NOAEL は 50 ppm であり、暴露時間、日数で 1 日当たりの暴露量に補正した値 (以下、補正値)は8.93 ppm (16.3 mg/m³)であった。

一方、NITE ( 2005 ) がキースタディとした試験は、Snellings ら ( 1984b ) の、Fischer 344 ラ ットを用いた2年間の長期試験で、0、10、33、100 ppm (0、18、60、183 mg/m³) のエチレ ンオキシドに 6 時間/日、5 日/週吸入暴露した結果、100 ppm ( 183 mg/m³ ) で 4 週間後から体 重増加の抑制と死亡率の増加がみられ、雌の 33 ppm (60 mg/m³)群で 10 週間後から体重増 加の抑制がみられた(本試験の発がん影響は後述する)。本試験の NOAEL は 10 ppm で、補 正値は 1.79 ppm (3.30 mg/m³) であった。

EPA (2008) が 6 ヶ月未満暴露のキースタディとした Snellings ら (1984a) の試験は、雌雄 の B6C3F1マウスを 0、10、50、100、250 ppm (0、18.3、87.8、190.3、431.9 mg/m³) のエチ レンオキシドに 6 時間/日、5 日/週、10~11 週間吸入暴露し、50 ppm (91.5 mg/m³) 以上の暴 露群で円背歩行、自発運動抑制等の神経毒性が認められ、NOAEL 50 ppm (補正値 8.93 ppm: 16.3 mg/m<sup>3</sup>) が得られている。

EPA(2008)が6ヶ月以上の長期暴露のキースタディとして選定した、ラットの2世代試 験で1日6時間・交配前は週5日、その後は毎日吸入暴露した結果、33 ppm(46 mg/m³)暴 露でF0及びF1の交配前期間に体重増加の抑制影響が認められている。一般毒性の NOAEL として 10 ppm (18.3 mg/m³:補正値[一律週 5 日暴露だったとして換算]として 3.3 mg/m³) が 得られた ( Chun and Neeper-Bradley, 1993 unpublished study; EPA, 2008 及び CDPR, 1986 二次引 用)。

EPA (2016) 以降の既知見の更新として、2014年以降の文献検索を行った結果、新たな情 報は得られなかった。 したがって、本評価では、上述 4 試験(NTP, 1987、 Snellings et al., 1984a、 b、Chun and Neeper-Bradley, 1993)の評価値を表 1-3に示した通り試算し、最も低い値の得 られた Snellings ら (1984a)を実験動物試験のキースタディとして選定した。

| 事 · | 1 _2 | エチレン  | ソオキシ                                           | にの服り         | 暴露の有害性評価値試質結果                                     |
|-----|------|-------|------------------------------------------------|--------------|---------------------------------------------------|
| 70  |      | 17-17 | <i>,</i> ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, , | 17 (/ ) W/ / | . 37: 98 (/ /78 SET) + 24: 1111 116 ST. (SE 45 SE |

| 試験             | POD                     | 暴露時間補正                 | 内部曝露      | 不確実係数(UF)      | 有害性評価値                 |
|----------------|-------------------------|------------------------|-----------|----------------|------------------------|
|                |                         | (週7日、24時               | 量 1)      |                | の試算値 2)                |
|                |                         | 間/日)                   |           |                |                        |
| マウス 14 週       | 50 ppm                  | 16.3 mg/m <sup>3</sup> | 27.23     | 200            | $0.34 \text{ mg/m}^3$  |
| 間・吸入試験         | $(91.5 \text{ mg/m}^3)$ |                        | mg/kg/day | (種差 10、個体差 10、 |                        |
| (NTP, 1987)    |                         |                        |           | 試験期間 2)        |                        |
| ラット2年          | 10 ppm                  | $3.3 \text{ mg/m}^3$   | 2.43      | 100            | $0.06 \text{ mg/m}^3$  |
| 間・吸入暴露         | $(3.27 \text{ mg/m}^3)$ |                        | mg/kg/day | (種差 10、個体差 10) |                        |
| ( Snellings et |                         |                        |           |                |                        |
| al., 1984b)    |                         |                        |           |                |                        |
| マウス 10-11 週    | 50 ppm                  | $16.3 \text{ mg/m}^3$  | 27.23     | 5000           | $0.013 \text{ mg/m}^3$ |
| 間・吸入試験         | $(91.5 \text{ mg/m}^3)$ |                        | mg/kg/day | (種差 10、個体差 10、 |                        |
| ( Snellings et |                         |                        |           | 影響の重大性( 神経毒    |                        |
| al., 1984a)    |                         |                        |           | 性)10、試験期間5)    |                        |
| ラット2世代繁        | 10 ppm                  | $3.3 \text{ mg/m}^3$   | 2.43      | 200            | $0.03 \text{ mg/m}^3$  |
| 殖・吸入試験         | $(3.27 \text{ mg/m}^3)$ |                        | mg/kg/day | (種差 10、個体差 10、 |                        |

| ( Chun and      |  | 試験期間 2) |  |
|-----------------|--|---------|--|
| Neeper-Bradley, |  |         |  |
| 1993)           |  |         |  |

- 内部暴露量 = 暴露時間補正値 $[mg/m^3]$ ×呼吸量 $[m^3/day]$ ÷体重 [kg]×吸収率(マウス:呼吸量 0.05  $m^3/day$ 、体重 0.03 kg、
- 2 吸収率 1.0; ラット:呼吸量 0.26 m³/day、体重 0.35 kg、吸収率: 1.0 と仮定)
- 3 <sup>2)</sup> 吸入評値 = 内部曝露量 [mg/kg/day] ÷ UF×ヒト体重 [kg] ÷ ヒト呼吸量 [mg/m³]×吸収率(ヒトの呼吸量 20 m³/day、体重 50
- 4 kg、吸収率 1.0 と仮定)

#### 5 1-2-3 有害性評価値の導出

エチレンオキシドは常温常圧において気体であるため、経口経路の一般毒性影響については、キースタディとすべき情報は得られなかった。従って、吸入暴露試験の情報を基に経口経路による定量的評価を行うこととした。吸入経路によるヒトの情報としては、環境リスク初期評価(環境省、2003)より中枢神経に対する非発がん影響としてヒトの無毒性量として設定した  $0.43~\text{mg/m}^3$  が得られている。この値を POD として不確実係数 100 (個体差: 10、影響の重大性(神経毒性): 10) を適用し、 $4.3\times10^{-3}~\text{mg/m}^3$  が得られた。

一方、実験動物の情報としては、Snellings ら (1984a) の  $10 \sim 11$  週間吸入暴露がキースタディとして選定された。本試験は、マウスにおける吸入暴露による神経毒性影響をエンドポイントとして NOAEL:  $16.3 \text{ mg/m}^3$ (補正値)が得られている。この濃度をマウスの呼吸量  $0.05 \text{ m}^3$ /day、体重 0.03 kg、吸収率 1.0 として内部暴露量を算出した結果、 27.2 mg/kg/day が得られた。この値を POD として不確実係数 5000 (種差: 10、個体差: 10、影響の重大性(神経毒性): 10、試験期間: 5) を適用し  $5.45 \times 10^{-3}$  mg/kg/day が得られた。また、この値をヒトの呼吸量  $20 \text{ m}^3$ /day、体重 50 kg と仮定して吸入暴露の濃度に変換し、吸入経路の有害性評価値を  $1.36 \times 10^{-2} \text{ mg/m}^3$  と算出した。

ヒトの影響を基に算出した評価値が実験動物の情報を基に算出した評価値より低かったため、 $\frac{4.3\times10^{-3} \text{ mg/m}^3}{4.3\times10^{-3} \text{ mg/m}^3}$ をエチレンオキシドの一般毒性の評価値とした。この値をヒトの呼吸量  $20 \text{ m}^3/\text{day}$ 、体重 50 kg と仮定すると、 $\frac{1.72\times10^{-3} \text{ mg/kg/day}}{4.3\times10^{-3} \text{ mg/kg/day}}$ と算出された。

24 1-3 生殖・発生毒性

26 1-3-1 経口暴露

27 調査した範囲で経口暴露による情報は得られなかった。

1-3-2 吸入暴露

#### 表 1-4 吸入経路による生殖発生毒性の国内外のリスク評価概要

|      |        |    |     |        | •   |
|------|--------|----|-----|--------|-----|
| 評価機関 | キースタディ | 所見 | POD | 不確実係数等 | 評価値 |

| EPA (2008) | ラット2世代吸入試              | 着床後死亡、生児  | NOAEL=10 ppm | 職業暴露       | 0.25 ppm*                |
|------------|------------------------|-----------|--------------|------------|--------------------------|
|            | 験                      | 減少、児の体重減  | (1日8時間暴露     | MOE=30(3:種 | $(0.458 \text{ mg/m}^3)$ |
|            | ( Chun and Neeper-     | 少         | に補正:7.5      | 差(トキシコ     |                          |
|            | Bradley, 1993; EPA,    |           | ppm)         | ダイナミク      |                          |
|            | 2008 及び CDPR,          |           |              | ス) 10:個体   |                          |
|            | 1986 二次引用)             |           |              | 差)         |                          |
| 産業衛生学      | 第1群(ヒトに対し <sup>*</sup> | て生殖毒性を示すこ | ことが知られている物   | 7質)        |                          |
| 会(2013)    |                        |           |              |            |                          |

\*NOAEL/MOE により本評価で算出した値

#### (1) ヒトへの影響

医療機関での滅菌作業従事者を対象としたいくつかの疫学研究で、エチレンオキシドに暴露された女性に自然流産のリスクが高くなったとの報告があり(Hemminki et al., 1982、1983、Rowland et al., 1996)、近年、暴露による有意な影響(オッズ比 OR = 20.8、95%CI = 2.1-199)が示された(Gresie-Brusin et al., 2007)。また、男性が暴露した場合でも、配偶者での自然流産が増加する(オッズ比 OR=4.7;95%CI=1.2~18.4)との報告もある(Lindbolm et al., 1991)。我が国の産業衛生学会は 2013 年にエチレンオキシドを第1 群(ヒトに対して生殖毒性を示すことが知られている物質)と分類判定している。この報告以降の新知見として 2011年以降の情報を文献検索したが、新知見は得られなかった。また、調査した時点においてヒトの情報を用いて定量的評価を行っている評価は存在しなかった。

#### (2)動物への影響

エチレンオキシドの吸入暴露による生殖に対する影響の 1 つとして精巣毒性の報告がある。 $50\,\mathrm{ppm}$  ( $92\,\mathrm{mg/m^3}$ ) 以上で、カニクイザル(2 年間試験:1 日 6 時間・週 5 日)では精子の数と運動率の低下(Lynch  $et\,al.$ , 1984b)、ラット(13 週間試験:1 日 6 時間・週 5 日)では精子頭部の異常(奇形)の増加が報告されており(Mori  $et\,al.$ , 1991 )、LOAEL  $92\,\mathrm{mg/m^3}$ (補正値: $16.4\,\mathrm{mg/m^3}$ )が得られている。また、マウス(1 日 6 時間 5 日間試験)でも  $200\,\mathrm{ppm}$  ( $366\,\mathrm{mg/m^3}$ ) で異常精子の比率が増加したと報告されている(Ribeiro  $et\,al.$ , 1987a )更に、ラット又はマウスを用いた優性致死試験においても陽性の結果が得られている(Appelgren  $et\,al.$ , 1977、Generoso  $et\,al.$ , 1980、1983、1986、1990、Strekalova  $et\,al.$ , 1975、Embree  $et\,al.$ , 1977; IARC,  $2008\,\mathrm{T}$ 次引用 )。

妊娠期(器官形成期)の投与による発生毒性を調べた試験では、1日7時間、150 ppm((275 mg/m³)の暴露で、ウサギにおいては母体毒性、発生毒性とも認められなかったが、ラットにおいては、母体毒性及び胎児の低体重、低体長、骨化遅延がみられた(Hardin *et al.*, 1983)。また、ラットでは母体毒性のない 800 ppm(1460 mg/m³)(30 分×0 回)(Saillenfait *et al.*, 1996)又は 100 ppm(183 mg/m³)の 1日 6 時間の暴露で、胎児の体重減少が認められたため、LOAEL 183 mg/m³(補正値:46 mg/m³)が得られている(Snellings *et al.*, 1982a)。一方、高濃度短時間吸入暴露の試験では、胚致死、出生後死亡の増加や、水腫、眼球欠損(無眼球症)腹壁欠損、無心症、口蓋裂、尾・肢の欠損などの奇形が認められた(Rutledge *et al.*, 1992、Generoso *et al.*, 1987、Rutledge and Generoso, 1989、Weller *et al.*, 1999。

交配前から妊娠期間にわたる暴露によりラットの生殖・発生毒性影響を調べた試験では、275 mg/m³ で母体毒性及び胎児の発育遅延(発生毒性試験と同様)及び胚吸収が認められた(Hardin et al., 1983)。同様に妊娠前(1 日 6 時間・週 5 日暴露)及び妊娠期(1 日 6 時間・週 7 日暴露)の 183 mg/m³ 暴露で妊娠期間の有意な延長、着床数の減少、胚致死増加、一腹あたりの出生児数減少が認められ、LOAEL は 183 mg/m³(補正値 [一律週 5 日暴露だったとして換算]:33 mg/m³)となっている(Snellings et al., 1982b)。また、交配前のみの短期暴露(4 日又は 10 日)でも、胚吸収の増加、着床数と生存胎児数の減少が認められたとの報告もある(Generoso et al., 1987)。

1 2

このように、エチレンオキシドの生殖発生毒性影響が確認されているなか、EPA(2008)がキースタディとして選定した試験はラットの 2 世代繁殖試験で、1 日 6 時間・交配前は週5 日、その後は毎日吸入暴露した結果、33 ppm(46 mg/m³)暴露で F0 の 1 腹当たりの児の数が減少し(着床後の胚致死が 2 倍に増加)、児の体重増加の抑制作用が認められ、NOAEL 10 ppm(18.3 mg/m³:補正値 [一律週 5 日暴露だったとして換算]:3.3 mg/m³)が得られた(Chun and Neeper-Bradley, 1993 unpublished study; EPA, 2008 及び CDPR, 1986 二次引用)。

本評価では、精巣毒性、発生毒性、生殖発生毒性のエンドポイントで得られた最低のNOAEL/LOAEL について、不確実係数 100(種差・個体差)又は 1000(種差・個体差・LOAEL 使用)を適用し評価値を試算した。その結果、ほぼ同じオーダーの評価値が得られることが確認された。2 世代繁殖試験は、交配前から妊娠期に渡る暴露影響を経世代的に評価できるため、精巣毒性影響及び発生毒性影響を網羅している。また、2 世代繁殖試験では NOAEL が得られており、より不確実性の低い試験であると判断された。従って、本評価では EPA(2008)と同様に 2 世代繁殖試験をキースタディとして選定した。なお、EPA(2016)以降の新知見として 2014 年以降の文献検索を行った結果、新たな情報は得られなかった。

# 1-3-3 有害性評価値の導出

経口経路については、情報は得られなかったため、吸入暴露試験の情報を基に経口経路による定量的評価を行うこととした。我が国の産業衛生学会は 2013 年にエチレンオキシドの生殖影響を第 1 群(ヒトに対して生殖毒性を示すことが知られている物質)と分類判定している。吸入経路によるヒトの生殖毒性の情報は得られたが、有害性評価値の算出に用いられるデータは得られなかったため本評価では実験動物の情報を基に有害性評価を導出することにした。本評価でキースタディとして選定したラット 2 世代繁殖試験(Chun and Neeper-Bradley, 1993 unpublished study; EPA2008 二次引用)では、46 mg/m³ 暴露で F 0 の 1 腹当たりの児の数が減少し(着床後の胚致死が 2 倍に増加)、児の体重増加の抑制作用が認められ、NOAEL(補正値)3.3 mg/m³ が得られている。この濃度をラットの呼吸量 0.26 m³/day、体重 0.35 kg、吸収率 1.0 として内部暴露量を算出した結果、2.45 mg/kg/day³ が得られた。この値を POD とし、不確実係数 100(種差・個体差)を適用した結果、エチレンオキシドの経口経路による評価値は  $2.45 \times 10^{-2}$  mg/kg/day と算出された。また、この値をヒトの呼吸量 20 m³/day、体重 50 kg と仮定して吸入暴露の濃度に変換し、吸入経路の有害性評価値を  $6.13 \times 10^{-2}$  mg/m³ と算出した。

# 1-4 変異原性(遺伝毒性)

# 1-4-1 ヒトへの影響

エチレンオキシドの遺伝毒性については、ヒトの職業暴露者を対象として調査されており、表 1-5 に示すとおり、暴露したヒトの末梢血リンパ球の小核、姉妹染色分体交換、染色体異常誘発性を調査した結果で陽性反応が得られている。

567

2

3

4

# 表 1-5 ヒトにおける遺伝毒性の情報

| <del> </del>                     | 表 1-5 ヒトに                                                                        | おける返12           | はまける。          | <b>干</b> 文     | T                                                |
|----------------------------------|----------------------------------------------------------------------------------|------------------|----------------|----------------|--------------------------------------------------|
| 暴露期間<br>範囲(平均)                   | 濃度<br>範囲(平均TWA)                                                                  | 染色体<br>異常        | 小核             | 姉妹染色<br>分体交換   | 文献                                               |
| ND                               | 0 - 36 ppm                                                                       | ND               | ND             | +              | Garry et al., 1979                               |
| 1-8年(4年)<br>0.8-3年(1.6年)         | 0.5–1 ppm<br>5–10 ppm                                                            | -+               | ND             | ND             | Pero et al., 1981                                |
| 0.5 - 8年(3.2年)<br>0.5 - 8年(1.7年) | ( <1 ppm )                                                                       | + +              | +1)            | -              | Högstedt <i>et al.</i> , 1983, 1990              |
| ND                               | (13 ppm) <sup>3)</sup> (501 ppm) <sup>3)</sup>                                   | ND<br>ND         | ND<br>ND       | - +            | Yager et al., 1983                               |
| ND                               | <0.07 - 4.3 ppm*                                                                 | ND               | ND             | -              | Hansen et al., 1984                              |
| 0.5-10年(5.7年) 0.5-10年(4.5年)      | [15 - 123 ppm]                                                                   | ND<br>ND         | ND<br>ND       | + +            | Laurent et al., 1984                             |
| 1-4年(3年)                         | 0.2–0.5 ppm* ( 0.35 ppm )<br>0–9.3 ppm* ( 1.84 ppm )<br>3.7–20 ppm* ( 10.7 ppm ) | ( + )<br>ND<br>+ | ND<br>ND<br>ND | + + + +        | Sarto et al., 1984,<br>1987                      |
| (3.2年)<br>(3.1年)<br>(4年)         | 0.5 ppm* 5 - 10 ppm* 5 - 20 ppm*                                                 | -<br>-<br>(+)    | ND<br>ND<br>ND | -<br>(+)<br>+  | Stolley et al., 1984<br>Galloway et al.,<br>1986 |
| 1-14年                            | 0.05 - 8 ppm<br>( 0.01 ppm) <sup>4)</sup>                                        | +                | ND             | ND             | Clare et al., 1985                               |
| 1-10年                            | 1-40 ppm*                                                                        | +                | ND             |                | Richmond et al.,<br>1985                         |
| 1-14年                            | 0.05-8 ppm ( 0.12 ppm )                                                          | -                | ND             | ND             | van Sittert <i>et al.</i> , 1985                 |
| 1 - 8<br>2 - 17<br>1 - 15        | 0–2.6 ppm<br>0–4.5 ppm<br>0–4.8 ppm                                              | + + + +          | ND<br>ND<br>ND | ND<br>ND<br>ND | Karelova et al., 1987                            |
| 0.5-12年(5年)                      | 0.025-0.38 ppm*<br>>0.38 ppm <sup>2</sup> )                                      | ND<br>ND         | -+             | ND<br>ND       | Sarto et al., 1990                               |
| (8年)                             | <0.008-2.4 ppm*<br>( <0.3 ppm )                                                  | -                | -              | +              | Mayer <i>et al.</i> , 1991                       |
| 0.1-4年<br>4-12年(8.6年)            | ( 0.025 ppm )<br><1-4.4 ppm ( 0.38 ppm )                                         | ND               | -              | -+             | Sarto <i>et al.</i> , 1991                       |

| 2-6年(4年)<br>3-27年(12年) | 22 - 72 ppm ( 0.025 ppm ) <sup>5)</sup><br>14 - 400 ppm ( 5 ppm ) <sup>5)</sup> | + +            | -+          | + +         | Tates <i>et al.</i> , 1991   |
|------------------------|---------------------------------------------------------------------------------|----------------|-------------|-------------|------------------------------|
| (3年)                   | 60–69 ppm                                                                       | +              | ND          | +           | Lerda & Rizzi,1992           |
| (5.1年)<br>(9.5年)       | 0-0.3 ppm* ( 0.04 ppm )<br>0.13-0.3 ppm* ( 0.16 ppm )                           | ND<br>ND       | 1 1         | + +         | Schulte et al., 1992         |
| ND                     | ( <1 ppm )                                                                      | -              | ND          | -           | Tomkins <i>et al.</i> , 1993 |
| ND                     | 0.5–208 ppm*<br>0.5–417 ppm*                                                    | ND<br>ND       | ND<br>ND    | -           | Popp et al., 1994            |
| 3-14年(7年)              | 2–5 ppm <sup>4</sup> )                                                          | +              | +           | ND          | Ribeiro et al., 1994         |
| ND                     | 0-0.30 ppm ( 0.08 ppm )<br>0.13 - 0.30 ppm ( 0.17 ppm )                         | ND<br>ND       | -           | + +         | Schulte et al., 1995         |
| 事故<br><5年<br>>15年      | 28–429<br><0.005–0.02<br><0.005–0.01                                            | ND<br>ND<br>ND | -<br>-<br>- | -<br>-<br>- | Tates et al., 1995           |
| (4年)<br>(15年)          | 2.7–10.9 ppm ( 2.7 ppm )<br>2.7–82 ppm ( 5.5 ppm )                              | + +            | +           | ND<br>ND    | Major <i>et al.</i> , 1996   |

IARC, 2008改編

1

2

3

4

5 6

7

8

9 10

1112

13

+:陽性、-:陰性、\*:8時間TWA、ND:情報なし

1) 赤芽球と多染性赤血球に対して陽性、リンパ球に対しては陰性;2) 滅菌時漏出による急性暴露;3) 6か 月間の平均累積暴露量 (mg);4) 直線外挿による計算値;5) ヘモグロビン付加体に基づく40時間TWA

# 1-4-2 変異原性に関する試験

# (1) In vitro 試験

表 1-6 に示した通り、細菌を用いる前進および復帰突然変異試験、哺乳類細胞を用いる 遺伝子突然変異試験、染色体異常試験など主要な *in vitro* 試験でエチレンオキシドによる陽 性の結果が得られている。

表 1-6 エチレンオキシドの in vitro遺伝毒性試験

| 試験                 | 対象                                                            | 結果  | ₹*           | 引用文献                            |
|--------------------|---------------------------------------------------------------|-----|--------------|---------------------------------|
|                    |                                                               | -S9 | + <b>S</b> 9 |                                 |
| 細菌を用いる前            | Bacteriophage                                                 | -   |              | Cookson et al., 1971            |
| 進突然変異試験            | Escherichia coli KMBL 3835                                    | +   |              | Kolman, 1985                    |
| 細菌を用いる復<br>帰突然変異試験 | Salmonella typhimurium TA100,<br>TA1535, TA1537, TA98         | +   |              | Pfeiffer & Dunkelberg<br>, 1980 |
|                    | Salmonella typhimurium TA100,<br>TA1535, TA1537, TA1538, TA98 | +   | +            | De Flora, 1981                  |
|                    | Salmonella typhimurium TA100,                                 | +   |              | Simmon, 1981                    |

|                              | Salmonella typhimurium TA100,                                                       |   |   |                                                                                                                  |
|------------------------------|-------------------------------------------------------------------------------------|---|---|------------------------------------------------------------------------------------------------------------------|
|                              | TA102                                                                               |   | + | Hughes et al, 1987                                                                                               |
|                              | Salmonella typhimurium TA100                                                        | + | + | Victorin & Ståhlberg, 1988                                                                                       |
|                              | Salmonella typhimurium TA100,<br>TA1535, Saccharamyces cerevisiae<br>D7             | + |   | Agurell et al., 1991                                                                                             |
|                              | Escherichia coli WP2 uvrA,<br>Escherichia coli WP2, Escherichia<br>coli WP6 ( polA) | + |   | Kolman & Naslund, 1987                                                                                           |
| 酵母を用いる遺<br>伝子突然変異試<br>験      | Saccharamyces cerevisiae D7                                                         | + |   | Agurell et al., 1991                                                                                             |
| ほ乳類細胞を用<br>いる染色体異常           | チャイニーズハムスター V79 細胞                                                                  | + |   | Zhong et al., 1992                                                                                               |
| 試験                           | ヒト 形質転換羊膜細胞                                                                         | + |   | Poirier & Papadopoulo,<br>1982                                                                                   |
| ほ乳類細胞を用<br>いる遺伝子突然           | チャイニーズハムスター CHO 細胞                                                                  | + |   | Tan et al., 1981<br>Zamora et al., 1983                                                                          |
| 変異試験                         | チャイニーズハムスター V79 細胞                                                                  | + |   | Hatch et al., 1986                                                                                               |
|                              | マウス L5178Y 細胞                                                                       | + |   | Krell et al., 1979                                                                                               |
| ほ乳類細胞を用<br>いる小核試験            | チャイニーズハムスター V79 細胞                                                                  | + |   | Zhong et al., 1992                                                                                               |
| ほ乳類細胞を用<br>いる不定期 DNA<br>合成試験 | ヒト リンパ球                                                                             | + |   | Pero et al., 1981                                                                                                |
| ほ乳類細胞を用<br>いる遺伝子突然<br>変異試験   | ヒト 線維芽細胞                                                                            | + |   | Kolman <i>et al.</i> , 1992<br>Bastlova <i>et al.</i> , 1993                                                     |
| ほ乳類細胞を用                      | ヒト 線維芽細胞                                                                            | + |   | Star, 1980                                                                                                       |
| いる姉妹染色分<br>体交換試験             | ヒト リンパ球                                                                             | + |   | Garry <i>et al.</i> , 1982 Tucker <i>et al.</i> , 1986 Agurell <i>et al.</i> , 1991 Hallier <i>et al.</i> , 1993 |

<sup>\*</sup>気相曝露による結果

3 (2) In vivo 試験

1

2

4 エチレンオキシドの *in vivo* 遺伝毒性試験結果を表 1-7 に示した。*In vitro* 試験と同様に、 5 体細胞で遺伝子突然変異、染色体異常の誘発が認められている他、優性致死試験など生殖細

表 1-7 エチレンオキシドの *in vivo* 遺伝毒性試験

| 試験            | 対象                                 | 暴露経路*       | 結果  | 引用文献                                                                                                        |
|---------------|------------------------------------|-------------|-----|-------------------------------------------------------------------------------------------------------------|
|               | マウス 又はラット脾臓 T<br>リンパ球, <i>Hprt</i> | ip, inh     | +   | Walker & Skopek, 1993<br>Walker <i>et al.</i> , 1997a,b, 2000                                               |
|               | Big Blue マウス肺, <i>LacI</i>         | inh         | +   | Sisk et al., 1997                                                                                           |
| 遺伝子突然変異<br>試験 | ラット脾臓 T リンパ球,<br><i>Hprt</i>       | ip, inh, po | +   | Tates et al., 1999                                                                                          |
| <b>高</b> 式 高央 | ラット脾臓 T リンパ球,<br><i>Hprt</i>       | inh         | +   | van Sittert et al., 2000                                                                                    |
|               | Big Blueマウス骨髄/精巣,<br><i>LacI</i>   | inh         | +/- | Recio et al., 2004                                                                                          |
|               | ウサギ リンパ球                           | inh         | +   | Yager & Benz, 1982<br>Yager, 1987                                                                           |
|               | ラット リンパ球                           | inh         | +   | Kligerman et al., 1983                                                                                      |
| 姉妹染色分体交       | サル リンパ球                            | inh         | +   | Lynch <i>et al.</i> , 1984c<br>Kelsey <i>et al.</i> , 1988                                                  |
| 換試験           | マウス 骨髄細胞                           | ip          | +   | Farooqi et al., 1993                                                                                        |
|               | ラット 骨髄細胞                           | inh         | +   | Ong et al., 1993                                                                                            |
|               | ラット 脾臓                             | inh         | +   | Ong et al., 1993                                                                                            |
|               | - 1 11 > 10° T-10                  | inh         | (+) | van Sittert et al., 2000                                                                                    |
|               | ラット リンパ球                           |             |     | Lorenti Garcia et al., 2001                                                                                 |
| 小核試験          | マウス 骨髄細胞                           | iv, ip, inh | +   | Appelgren et al., 1978 Conan et al., 1979 Jenssen & Ramel, 1980 Farooqi et al., 1993 Vergnes & Pritts, 1994 |
|               | ラット 脾臓 リンパ球                        | inh         | -   | van Sittert <i>et al.</i> , 2000<br>Lorenti Garcia <i>et al.</i> , 2001                                     |
|               | ラット 骨髄細胞                           | iv, inh     | +   | Hochberg et al., 1990<br>Appelgren et al., 1978                                                             |
|               | ラット 骨髄細胞                           | po, inh     | +   | Strekalova, 1971<br>Fomenko & Strekalova, 1973<br>Strekalova <i>et al.</i> , 1975                           |
| 染色体異常試験       | マウス 骨髄細胞                           | ip, inh     | +   | Ribeiro <i>et al.</i> , 1987b<br>Farooqi <i>et al.</i> , 1993                                               |
|               | ラット リンパ球                           | inh         | -   | Kligerman et al., 1983                                                                                      |
|               | サル リンパ球                            | inh         | +   | Lynch et al., 1984c                                                                                         |

|                               | マウス 精母細胞                | inh         | + | Ribeiro et al., 1987b                                                                                          |
|-------------------------------|-------------------------|-------------|---|----------------------------------------------------------------------------------------------------------------|
|                               | ラット リンパ球                | inh         | - | van Sittert <i>et al.</i> , 2000<br>Lorenti Garcia <i>et al.</i> , 2001                                        |
| 優性致死試験                        | マウス                     | iv, ip, inh | + | Appelgren et al., 1977 Generoso et al., 1980 Generoso et al., 1983 Generoso et al., 1986 Generoso et al., 1990 |
|                               | ラット                     | inh +       |   | Strekalova <i>et al.</i> , 1975<br>Embree <i>et al.</i> , 1977                                                 |
| 相互転座試験                        | マウス                     | ip, inh     | + | Generoso et al., 1980<br>Generoso et al., 1990                                                                 |
| ショウジョウバ<br>エを用いる体細<br>胞突然変異試験 | Drosophila melanogaster | inh         | + | Fahmy & Fahmy, 1970                                                                                            |
| ショウジョウバ<br>エを用いる伴性<br>劣性致死試験  | Drosophila melanogaster | inh         | + | Rapoport, 1948 Fahmy & Fahmy, 1956 Bird, 1952 Nakao & Auerbach, 1961 Watson, 1966 Zijlstra & Vogel, 1988       |
| ショウジョウバ<br>エを用いる相互<br>転座試験    | Drosophila melanogaster | inh         | + | Nakao & Auerbach, 1961<br>Watson, 1966                                                                         |

<sup>\*</sup>暴露経路 inh:吸入暴露、ip:腹腔内投与、iv:静脈内投与、po:経口投与

IARC(2012)は、エチレンオキシドは直接作用するアルキル化剤であり、変異原性、染色体異常誘発性物質であると結論している。なお、IARC(2012)以降の新知見として 2010 年以降の情報を個別に検索した結果、新しい情報は得られなかった。

# 1-4-3 変異原性の評価

エチレンオキシドに職業暴露したヒトの末梢血リンパ球を調査した結果、小核、姉妹染色 分体交換、及び染色体異常の誘発が観察されている。また、*in vitro* 及び *in vivo* の変異原性試験において明確な陽性を示していることから、エチレンオキシドは変異原性を有する物質と評価した。

- 1 1-5 発がん性
- 2 1-5-1 経口暴露
- 3 (1) ヒトへの影響
- 4 調査した範囲でヒトの経口暴露による情報は得られなかった。

- 6 (2)動物への影響
- 7 経口経路による発がん性試験の報告は二つあったが (Bar and Griepentrog, 1969; NITE 2005
- 8 二次引用、Dunkelberg 1982)、各国の評価機関でキースタディとされている情報はなかった。

- 10 1-5-2 吸入暴露
- 11 (1)ヒトへの影響

# ,

表 1-8 吸入経路による発がん性の国内外のリスク評価概要

| 評価機関       | キースタディ           | 影響              | 評価値                                            | 10-5 リスク                           |
|------------|------------------|-----------------|------------------------------------------------|------------------------------------|
| EPA (2016) | Steenland et al. | 乳がん             | UR= $3.3\times10^{-3}$ ( $\mu g/m^3$ ) $^{-1}$ | $3.03\times10^{-3} \text{ mg/m}^3$ |
|            | (2003, 2004)     | Lymphoid cancer |                                                | (本評価書における算出)                       |
|            |                  | (非ホジキンリ         |                                                |                                    |
|            |                  | ンパ腫、白血病、        |                                                |                                    |
|            |                  | 骨髄腫)            |                                                |                                    |

表 1-9、表 1-10に示したとおり、エチレンオキシドについては、多くの疫学研究で職業的暴露と発がんとの関連が検討されている。IARC(2012)は、エチレンオキシドの暴露によるヒトの発がん性(リンパ・造血系のがん及び乳がん)について限定的な証拠があり、動物実験では十分な証拠があるとしており、ヒトに対する発がん物質(区分1)であると結論している。

EPA (2016)がキースタディとしているコホート研究(Steenland *et al.*, 2003、2004)では、医療用品の滅菌にエチレンオキシドを使用している米国の 14 の工場の労働者 18,235人を対象とし、コホート全体の平均累積暴露量は 26.9 ppm-years (SD 65.7)、平均暴露期間は 26.8 年 (SD 8.5)であった。Steenlandら(2004)の報告では、がん死亡について累積暴露量でサブグループに分けた解析を行い、累積暴露量の最高四分位群(>13500 ppm-day)の男性においてラグタイム(初回暴露からの経過年数)を 10 年と仮定した非ホジキンリンパ腫の標準化死亡比(SMR)が有意に増加した(SMR=2.37(1.02-4.67))。また、累積暴露量の最高四分位群(>12321 ppm-day)の女性においてラグタイムを 20 年と仮定した乳がんの SMR が有意に増加した(SMR = 2.07(1.10-3.54))。Cox 回帰モデルによるコホート内症例対象研究では、男性におけるラグタイムを 15 年としたリンパ・造血系がん(国際疾病分類 ICD9: 200-208; リンパ組織、造血組織及び関連組織)による死亡のオッズ比について、有意な増加傾向が認められた [1.00、1.23(0.32-4.73)、2.52(0.69-9.22)3.13(0.95-10.37)、3.42(1.09-10.73)]。同コホートの女性(7576人)を対象とした乳がん罹患に関する報告(Steenland *et al.*, 2003)では、累積暴露量の最高五分位群(>14620 ppm-day)のラグタイムを 15 年とした乳がんの標準化罹患比(SIR)に有意な増加は認め

<sup>95%</sup>信頼区間は EPA (2016) 記載の値

られなかったが(SIR=1.27(0.94-1.69))、Cox 回帰モデルによるコホート内症例対象研究によるオッズ比について、有意な増加傾向が認められた [1.00, 1.06(0.66-1.71), 0.99(0.61-1.60), 1.24(0.76-2.00), 1.42(0.88-2.29), 1.87(1.12-3.10)]。

表 1-9 エチレンオキシドのリンパ造血系がんのコホート研究

| <u> रह । -                                 </u>                  | <u> </u>                 | フォイントのリンハ追血系かんのコホート                                                                                                                                     | MIJU                                                                                                    |
|------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 集団                                                               | 人数<br>性別                 | リンパ造血系がん<br>SMR・SIR(95%CI)又はOR(95%CI)                                                                                                                   | 文献                                                                                                      |
| スウェーデン<br>滅菌作業者及び製造工場<br>労働者(3箇所)                                | 709名<br>男女<br>539名<br>男性 | 白血病; SMR=9.21<br>リンパ・造血系; SMR=4.59<br>白血病; SMR=6.11 (1.7-15.7)<br>リンパ・造血系; SMR=3.54 (1.3-7.7)                                                           | Högstedt <i>et al.</i> , 1979<br>Högstedt <i>et al.</i> , 1986<br>Högstedt, 1988                        |
| 英国<br>滅菌作業者(病院8箇所)<br>工場労働者(工場4箇所)                               | 2876名<br>男女              | 白血病; SMR=1.08 (0.35-2.51)<br>非ホジキンリンパ腫; SMR=1.46 (0.59-3.02)                                                                                            | Gardner et al., 1989<br>Coggon et al., 2004                                                             |
| 西ドイツ<br>製造化学工場労働者(8箇<br>所)                                       | 2658名<br>男性              | 白血病; SMR=0.85 (0.10-3.07)<br>リンパ・造血系; SMR=1.00 (0.32-2.34)                                                                                              | Kiesselbach et al.,<br>1990                                                                             |
| 米国<br>工場労働者<br>[Greenberg <i>et al.</i> , 1990のク<br>ロロヒドリン作業者のみ] | 278名<br>男性               | リンパ・造血系;SMR=2.94(1.27-5.80)                                                                                                                             | Greenberg <i>et al.</i> , 1990<br>Benson and Teta, 1993                                                 |
| 米国<br>[Greenberg <i>et al.</i> , 1990から<br>クロロヒドリン作業者を<br>除外]    | 2,063名<br>男性             | 白血病; SMR=0.932 (0.465-1.667)<br>非ホジキンリンパ腫; SMR=1.047 (0.541-1.83)<br>リンパ・造血系; SMR=0.889 (0.586-1.293)<br><i>Cox回帰分析</i><br>有意な所見なし                      | Greenberg <i>et al.</i> , 1990<br>Teta <i>et al.</i> , 1993<br>Swaen <i>et al.</i> , 2009               |
| 米国<br>滅菌作業者(14箇所)                                                | 17530名                   | 非ホジキンリンパ腫; SMR=2.37 (1.02-4.67)  Cox回帰分析 造血系がん(高暴露群男性:15年ラグ); OR = 3.42 (1.09-10.73)  Lymphoid cell line tumours (高暴露群男性:15年ラグ): OR = 3.76 (1.03-13.64) | Steenland et al., 1991<br>Wong & Trent, 1993<br>Stayner et al., 1993,<br>1997<br>Steenland et al., 2004 |
| イタリア<br>化学工場                                                     | 1971名<br>男性              | 白血病; SMR=1.93 (0.23-6.99)<br>リンパ肉腫・細網肉腫; SMR=6.8 (1.9-17)<br>リンパ造血系; SMR=2.5 (0.91-5.45)                                                                | Bisanti et al., 1993                                                                                    |

|                         | 637名<br>男性  | 特定ガス(エチレンオキシドを含む)使用ライセンス保持者<br>白血病; SMR=6.5 (0.79-23.4)<br>リンパ肉腫・細網肉腫; SMR=16.95 (3.49-49.53)<br>リンパ造血系; SMR=7.0 (2.27-16.37) |                                                                                            |
|-------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| スウェーデン<br>医療器具滅菌工場(2箇所) | 2171名       | 白血病; SIR=1.40 (0.45-3.26)<br>非ホジキンリンパ腫; SIR=1.44 (0.66-2.73)<br>リンパ造血系; SIR=1.25 (0.74-1.98)                                  | Hagmar <i>et al.</i> , 1991<br>Hagmar <i>et al.</i> , 1995<br>Mikoczy <i>et al.</i> , 2011 |
| 米国滅菌工場                  | 1132名<br>男女 | 白血病;SIR=1.85                                                                                                                  | Norman et al., 1995                                                                        |
| 米国製造工場(4箇所)             | 1361名       | 白血病; SMR=0.67 (0.08-2.42)<br>リンパ造血系; SMR=1.29 (0.62, 2.38)                                                                    | Olsen et al., 1997.                                                                        |
| ハンガリー<br>滅菌 (病院)        | 299名<br>女性  | がんによる死亡11人中、白血病1人<br>白血病SMR言及なし                                                                                               | Kardos et al., 2003                                                                        |
| 米国<br>製造工場              | 767名<br>男性  | ホジキン病; SMR=5.70 ( 0.64-20.58 )                                                                                                | Morgan et al., 1981                                                                        |

同一コホートで追跡調査が行われている場合は、最新の結果のみを記載した。

SMR:標準化死亡比、SIR:標準化罹患比、OR:オッズ比

1 2

3

5

# 表 1-10 エチレンオキシドと乳がんに関するコホート研究

|                                    |             | レンカーフー これが かに戻するコホー                                                      | WIZE                                                                                       |
|------------------------------------|-------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 集団                                 | 人数<br>性別    | 乳がん<br>SMR・SIR(95%CI)又はOR(95%CI)                                         | 文献                                                                                         |
| 英国<br>滅菌作業者(病院8箇所)<br>工場動労者(工場4箇所) | 1012名<br>女性 | SMR=0.84 ( 0.42-1.50 )                                                   | Coggon et al., 2004                                                                        |
| 米国<br>滅菌作業者(14箇所)                  | 9885名<br>女性 | SMR=2.07 (1.10-3.54)  Cox回帰分析 高暴露群女性: 20年ラグ; 死亡OR=3.13 (1.42-6.92)       | Steenland <i>et al.</i> , 2004<br>EPA, 2016                                                |
| 米国滅菌作業者(14箇所)                      | 7576名<br>女性 | SIR=0.87 (0.77-0.97)全体 <i>Cox回帰分析</i> 高暴露群女性:15年ラグ;罹患OR=1.91 (1.22-2.15) | Steenland et al., 2003                                                                     |
| スウェーデン<br>医療器具滅菌工場<br>(2箇所)        | 2171名<br>男女 | SIR = 0.81 ( 0.58-1.09 )                                                 | Hagmar <i>et al.</i> , 1991<br>Hagmar <i>et al.</i> , 1995<br>Mikoczy <i>et al.</i> , 2011 |

| 米国滅菌工場  | 928名<br>女性 | SIR=1.72 ( 0.99-3.00 ) - 2.40 ( 1.32-4.37 ) | Norman et al., 1995 |
|---------|------------|---------------------------------------------|---------------------|
| ハンガリー   | 299名       | がんによる死亡11人中、乳がん3人                           | Kardos et al., 2003 |
| 滅菌 (病院) | 女性         | 乳がんSMR言及なし                                  |                     |

同一コホートで追跡調査が行われている場合は、最新の結果のみを記載した。

SMR:標準化死亡比、SIR:標準化罹患比、OR:オッズ比

2 3 4

5

6 7

8

9

1

#### 症例対照研究

ベルギーの複数の工場を対象に、ホジキンリンパ腫に罹患した作業者 10 名と対照 200 名 から様々な溶媒との関連を調べた結果、エチレンオキシド暴露によるオッズ比は8.5(95%信 頼区間 1.4-39.9) と報告されている (Swaen et al., 1996)。

欧州内のリンパ腫罹患者について、症例対照研究を行った結果、エチレンオキシド暴露に よるオッズ比は 1.3 (95%信頼区間 0.7-2.1) であり、特に暴露頻度の中-高群と対照を比較し た結果オッズ比は 4.3 (95% 信頼区間 1.4-13) であった (Kiran et al., 2010)。

10 11 12

13

14

15

16

# <u>メタ解析</u>

Shore ら (1993)は、10の独立した疫学研究についてのメタアナリシスを行い、膵臓、脳、 胃のがん及び白血病、非ホジキンリンパ腫についてエチレンオキシド暴露の程度と頻度、暴 露期間などについて評価を行った。白血病の SMR は 1.06 ( 95% CI = 0.73 ~ 1.48 ) であり、暴 露期間が長くなるとともにリスクは増大する傾向を示した。非ホジキンリンパ腫の SMR は  $1.35 (95\% CI = 0.93 \sim 1.90)$  であった。

17 18 19

20

21

Teta ら (1999)は、5 つの国で実施された独立した 10 の疫学研究についてメタ解析を行っ た。非ホジキンリンパ腫、白血病、膵臓・脳・胃の腫瘍についていずれも SMR の有意な増加 は認められず、暴露期間や暴露量との間にも一定の傾向はみられなかった。しかし、最初の 暴露から発症までの潜伏期間と脳腫瘍については統計的に有意な傾向性を認めた。

22 23 24

25 26

Valdez-Flores ら (2010) は、Steenland ら (2004) 及び Swaen ら (2009) のコホートを再解 析しリンパ造血系・乳がんを含む 12 項目のがんについて SMR を算出した結果、いずれのが んについても有意差は得られなかったとしている。

27 28

29

30

EPA(2016)以降の新知見として2014年以降の文献検索を行った結果、重要な新しい情報 は得られなかった。既知見を調査した結果、本評価では、EPA (2016)が UR 算出に用いた Steeland ら (2003、2004) の疫学研究をキーススタディ候補とし解析と VSD の試算を行うこ とが適切であると考えられた。

31 32

34

#### (2)動物への影響

表 1-11 吸入経路による発がん性の国内外のリスク評価概要

| 評価機関   | キースタディ              | 影響      | 評価値 (                         | URなど)                           | 10 <sup>-5</sup> リスク*                     |
|--------|---------------------|---------|-------------------------------|---------------------------------|-------------------------------------------|
| WHO    | ラット吸入試験             | 雌の単核球性白 | $TC_{05}= 2.2 \text{ mg/m}^3$ | $UR=2.3\times10^{-5}/\mu g/m^3$ | 4.35×10 <sup>-4</sup> mg/m <sup>3</sup> * |
| (2003) | ( Snellings et al., | 血病      |                               |                                 |                                           |
| CEPA   | 1984b, Garman et    |         |                               |                                 |                                           |

| ( 2001 )           | al., 1985, Garman and Snellings,                |                                          |                                                                  |                                                                       |                                                                                              |
|--------------------|-------------------------------------------------|------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| EPA (1985)<br>暫定評価 | ラット吸入試験<br>(Snellings <i>et al.</i> ,<br>1984b) | 単核球性白血<br>病、脳の神経膠<br>腫                   | $UR=1\times10^{-4}/\mu g / m^3$                                  |                                                                       | 1.00×10 <sup>-4</sup> mg/m <sup>3</sup>                                                      |
| EPA (2008)<br>暫定評価 | マウス吸入試験 (引用不明)                                  | 肺腺腫、がん                                   | UR=2.22×10 <sup>-5</sup><br>/μg m <sup>3</sup>                   | URの範囲:<br>2.67×10 <sup>-6</sup> /µg/m³(下<br>限) ~ 2.22×10 <sup>-</sup> | 3.75×10 <sup>-3</sup> mg/m <sup>3</sup> ~<br>4.50×10 <sup>-4</sup> mg/m <sup>3</sup><br>(範囲) |
|                    | ラット吸入試験<br>(引用不明)                               | 脳腫瘍                                      | UR= $2.67 \times 10^{-6}$<br>/µg /m <sup>3</sup>                 | 5/μg/m³ (上限)                                                          | (4011)                                                                                       |
| EPA (2016)         | マウス吸入試験<br>(NTP, 1987)                          | 肺気管がん・腺腫、悪性リンパ腫、子宮腺が<br>ん、乳腺がん           | UR= $3.01\times10^{-5}/\mu g$ . UR= $4.55\times10^{-5}/\mu g$ .  |                                                                       | 3.3×10 <sup>-4</sup> mg/m <sup>3</sup><br>2.2×10 <sup>-4</sup> mg/m <sup>3</sup>             |
|                    | ラット吸入試験<br>(Snellings <i>et al.</i> ,<br>1984b) | 単核球性白血<br>病、脳の神経膠<br>腫、腹膜中皮腫             | UR=2.19×10 <sup>-5</sup> /μg .<br>UR=3.37×10 <sup>-5</sup> /μg . |                                                                       | 4.6×10 <sup>-4</sup> mg/m <sup>3</sup><br>3.0×10 <sup>-4</sup> mg/m <sup>3</sup>             |
|                    | ラット吸入試験<br>(Lynch <i>et al</i> .,<br>1984)      | 単核球性白血<br>病、脳の神経膠<br>腫(混合細胞<br>型 ) 腹膜中皮腫 | $UR=3.66\times10^{-5}/\mu g$                                     | $/m^3$                                                                | 2.7×10 <sup>-4</sup> mg/m <sup>3</sup>                                                       |

EPA (2008) の報告には文献の記載がないため引用が不明であるが、マウス吸入試験は NTP (1987)、ラット吸入試験は Snellings *et al.*, 1984、 Garman *et al.*, 1985、 Garman and Snellings, 1986 又は Lynch, 1984a と推定される\*本評価による算出

既知見を調査した結果、動物を用いた発がん性試験として評価値を検討すべき試験は、マウスで1試験(NTP, 1987)、ラットで2試験(Snellings *et al.*, 1984b、Garman *et al.*, 1985、Garman and Snellings, 1986、Lynch, 1984a)と考えられた。

9 B6C3F1 マウスを用いた試験(NTP, 1987)では、0、50、100 ppm(6 時間/日、5 日/週)で 102 週間吸入暴露した結果、肺胞・細気管支がんが有意に増加した(雄:6/50、10/50、16/50、 雌:0/49、1/48、7/49)。 腺腫とがんをあわせるとその頻度は、雄:11/50、21/50、27/50、雌: 2/49、5/48、24/49であった。また、ハーダー腺の乳頭状嚢胞腺腫の発生頻度(雄:1/43、9/44、 8/42、雌:1/46、6/46、8/47)、悪性リンパ腫(雌:9/49、6/48、22/49)、及び子宮腺がん(0/49、 1/47、5/49)も用量依存性に発現頻度の増加を示した。この試験が EPA(2008)の UR(下限)

算出に用いられたと推定される。

CEPA(2001)及びWHO(2003)がキースタディとしている吸入試験は、Fischer344 ラット(雌雄各120 匹/群)に0、10、33、100 ppm のエチレンオキシドを6時間/日、5 日/週、約2年間吸入暴露を行い、雌では単核球性白血病の頻度が有意に増加し(11/116、11/54、14/48、15/26)雄では精巣鞘膜由来の腹膜中皮腫がみられ(2/97、2/51、4/39、4/30)(Snellings et al., 1984b) 雌雄ともに原発性脳腫瘍(神経膠細胞腫、悪性細網症、顆粒細胞腫)が有意に増加

した(原発性脳腫瘍[神経膠腫]) 雄:1[1]/181、1[0]/92、5[3]/85、7[6]/87;雌:1[0]/188、1[1]/94、 3[2]/92, 4[2]/80) (Garman et al., 1985, Garman et al., 1986),

1 2

3

4

5

6

7 8

9

10 11

12

13 14

15

16

17 18

19 20

21

22

23

24 25

26 27

28

29

30 31

32

33 34

35

36

一方、Lynch ら(1984a)では、Fischer344 ラット(雄、各群 80 匹)に 0、50、100 ppm の エチレンオキシドを 7 時間/日、5 日/週、104 週間暴露を行った。単核球性白血病 (24/77、 38/79 (統計的に有意) 30/76) 脳の神経膠腫 (混合細胞型)(0/76、2/77、5/79) 腹膜中皮 腫、(3/78 例、9/79 例、21/79 例)は、いずれもの発生頻度が用量依存性に増加が観察され、 100 ppm 群では統計的に有意であった。

なお、Adkins(1986)の6ヶ月吸入試験でも、70-200ppm で雌 A/J マウスに肺腺腫の有意 な増加が認められたとの報告もあった。

EPA(2016)以降の新知見として2014年以降の文献検索を行った結果、新たな情報は得ら れなかった。従って、本評価では上述の3試験(NTP, 1987、Snellings et al., 1984b/Garman et al., 1985/Garman et al., 1986、Lynch et al., 1984) で認められた各腫瘍の発生頻度ついて、ベン チマークドース解析を行った。適合モデルの選択等はベンチマークドース法の適用に関する ガイダンスに従った。エチレンオキシド暴露では、多臓器に発がん性が認められる事から、 各腫瘍の発生率に対する BMCL<sub>10</sub> を算出し、それぞれの BMCL<sub>10</sub> を基に算出された UR の和 を、試験間で比較した。その結果、ラット 2 年間吸入試験 (Snellings et al., 1984b/Garman et al., 1985/Garman et al., 1986)の雌(単核球性白血病及び原発性脳腫瘍の UR の和)で最も高 い UR が得られたため、本試験をキースタディに選定した。なお、単核球性白血病は Fischer ラットに高率に自然発生する腫瘍ではあるが、エチレンオキシド暴露による単核球性白血病 の発生は用量に依存して有意に増加しており、また Snellings ら(1984b)と Lynch ら(1984a) の独立した試験で再現性が確認されている。更に、ヒトでもエチレンオキシド暴露による造 血系のがんの影響が示唆されており、ラットで認められた単核球性白血病の増加について、 エチレンオキシド暴露との関連を完全に否定する事は困難であると考えられた。またマウス の試験においては、遺伝毒性発がん物質に特徴的な多臓器の発がん(肺胞・細気管支がん、 ハーダー腺の乳頭状嚢胞腺腫、悪性リンパ腫、子宮腺がん)が認められている。これらを総 合的に判断して、本評価では、Fischer ラットに認められた単核球性白血病の増加をエチレン オキシドの影響と考えることとした。

単核球性白血病及び原発性脳腫瘍のそれぞれの BMCL<sub>10</sub> の範囲は 1.54 ppm (Gamma モデ ル)~20.6 ppm (Logistic モデル)及び 96.5 ppm (LogProbit モデル)~102 ppm (LogProbit モ デル)であった(付属資料参照)。これらの  $BMCL_{10}$  のうち最小値を暴露時間で補正した値は 0.275 ppm (0.503 mg/m³) 及び 17.2 ppm (31.5 mg/m³) となった。呼吸量及び体重をラット 0.26 m³/day 及び 0.35 kg、ヒト 20 m³/day 及び 50 kg と仮定すると、内部暴露量は、それぞれ 0.374 mg/kg/day 、23.4 mg/kg/day となり、これらはヒトの吸入濃度 0.935 mg/m³、58.6 mg/m³ に相当する。これらの吸入濃度を外挿の POD として原点まで直接外挿すると、それぞれの UR は、 $1.07 \times 10^{-4} \,\mu\text{g/m}^3$  、 $1.71 \times 10^{-6} \,\mu\text{g/m}^3$  と算出された。これらの UR の和( $1.09 \times 10^{-4} \,\mu\text{g/m}^3$ ) に対する VSD は、9.20×10<sup>-5</sup> mg/m<sup>3</sup> と算出された。

曝露条件補正值 = 1.54 [ppm]×6 [時間/日]/24 [時間/日] ×5 [日/週] / 7 [日/週] 0.275 [ppm] 曝露条件補正値 = 96.5 [ppm]×6 [時間/日]/24 [時間/日] ×5 [日/週] / 7 [日/週] 17.2 [ppm]

内部曝露量 = 曝露条件補正値 $[mg/m^3] \times 0.26 [m^3/day] \times www = 1.0 / 0.35 [kg]$ 0.374 [mg/kg/day]

内部曝露量 = 曝露条件補正値[mg/m³] ×0.26 [m³/day] ×吸収率 1.0 / 0.35 [kg] 23.4 [mg/kg/day]

ヒト吸入濃度 = 内部曝露量[mg/kg/day] ×50 [kg] / 20 [m<sup>3</sup>/day]  $0.935 \, [mg/m^3]$ 

ヒト吸入濃度 = 内部曝露量[mg/kg/day] ×50 [kg] / 20 [m<sup>3</sup>/day]  $58.6 [mg/m^3]$ 

UR=0.1/ヒト吸入濃度[mg/m<sup>3</sup>]  $1.07 \times 10^{-4} \, [\mu g/m^3]$ UR=0.1/ヒト吸入濃度[mg/m<sup>3</sup>]

 $<sup>1.71 \</sup>times 10^{-6} \left[ \mu g/m^3 \right]$ 

VSD = 0.00001/UR (  $\pi$  ) [ $\mu g/m^3$ ]/ $1000 9.20 \times 10^{-5}$  [ $mg/m^3$ ]

3

4

#### 1-5-3 その他

IARC(2008)によると、エチレンオキシドを用いた細胞形質転換試験で陽性の結果が得られている(Kolman *et al.*,1989b)。

5 6

7

8 9

10

11 12

13

14

1516

17

18 19

20

21

2223

2425

26

27

2829

#### 1-5-4 発がん性のメカニズム

発がん性のメカニズムについては、WHO(2003)及びIARC(2008)より得られた情報を まとめた。エチレンオキシドの発がん性は、実験動物では主に核酸の直接アルキル化により 生じるとみられる。職業暴露したヒトの細胞及び血液を用いた試験では、DNA 鎖切断( Mayer et al., 1991 ) DNA 架橋 (Popp et al., 1992 ) DNA 損傷 (Fuchs et al., 1994 ) タンパク共有結 合が認められている (Calleman et al., 1978、Farmer et al., 1986, Hagmar et al., 1991、Mayer et al., 1991、Sarto et al., 1991、Schulte et al., 1992)。ヒト及び実験動物で、主要な DNA 付加体と して N7-(2-hydroxyethy) guanine (7-HEG) が確認されたため、発がん反応におけるこの付加 体形成の役割が研究されてきた。Walker ら(1992)と Wuら(1999)による報告では、Fischer344 ラットと B6C3F1 マウスに、同系統で行なわれた過去の発がん性バイオアッセイ(Lynch et al., 1984a, b, Snellings et al., 1984b, Garman et al., 1985, Garman & Snellings, 1986, NTP, 1987) と同様の設定濃度で、1 日 6 時間・週 5 日・4 週間の吸入暴露した結果、肺、脾臓、脳、肝 臓における 7-HEG 量はマウスよりラットの方がわずかに高かった。各動物種内では、肺・脾 臓・脳・肝臓での付加体量は同様であった。エチレンオキシドの暴露によりラットで脳腫瘍 発生率が上昇したが、マウスでは上昇せず、肺腫瘍発生率はマウスで上昇したが、ラットで は上昇しなかったことから、著者らは組織内の7-HEGの総量と、観察された種特異的発がん 反応との間に明確な関連性は認められないと結論している。また、Boysen ら (2009) は、7-HEG が変異原性に関与しているという証拠はないとし、Marsden ら (2009) は、[14C]エチレ ンオキシドを用いてエチレンオキシド由来の 7-HEG 量を調べた結果、脾臓、肝臓、胃で自然 に存在する 7-HEG 量と比較して有意差はなかったとしている。 Tomkins ら (2009) は、エ チレンオキシドの変異原性及び発がん性に関与している DNA 付加体はエチレンオキシドの 暴露により少量認められた N3- ( 2-hydroxyethyl ) adenine ( 3-HEA ) 及び O<sup>6</sup>- ( 2-hydroxyethyl ) guanine(O<sup>6</sup>-HEG)である事を示唆しているが、これら付加体がどのように発がん性に寄与し ているか、そのメカニズムについては未だ不明である。

30 31

タバコ煙中のエチレンオキシドに暴露した喫煙者及びエチレンオキシドに職業的に暴露した労働者の研究から、GSTTI 欠損型の方が GSTTI 野生型よりへモグロビン-N-(2-ヒドロキシエチル)バリン付加体が多いことが報告されている(Fennell et al., 2000、Yong et al., 2001)。

3334

35

36

37

38 39

40

41

32

# 1-5-5 有害性評価値の導出

エチレンオキシドは、ヒトの労働環境における発がん性の可能性が報告されると共に、吸入経路でマウス及びラットにおける発がん性が認められている。エチレンオキシドは、in vitro 及び in vivo の遺伝毒性試験で陽性結果が示されているため、閾値のない発がん物質の有害性評価値として実質安全量(ここでは 10<sup>-5</sup> での VSD (mg/m³) を算出することとした。また、経口経路についてはキースタディとなる情報は得られなかったため、吸入暴露試験の情報を基に経口経路の定量的評価を行うこととした。重要な用量反応データが動物試験とヒトで得

られているため、本評価ではそれぞれについて VSD を算出して比較検討を行った。前述の通り、動物試験のキースタディであるラット 2 年間吸入試験 (Snellings *et al.*, 1984b、Garman *et al.*, 1985、Garman *et al.*, 1986) で、単核球性白血病及び原発性脳腫瘍をエンドポイントとして得られた VSD は、 $9.20 \times 10^{-5}$  mg/m³ であった(表 1-12)。

1 2

一方、Steenland ら(2003、2004)によるヒトの疫学研究を基にした VSD の既知の情報としては、EPA(2016)から Lymphoid cancer(非ホジキンリンパ腫、白血病、骨髄腫)及び乳がんの罹患をエンドポイントとした UR が報告されており、この UR は VSD にすると  $3.03\times10^6$   $\mu$ g/m³ である[表  $1-12\cdot$  ヒト ]。EPA(2016)は Steenland らの提供データを元に再解析し、低用量域のオッズ比に対するモデルフィッティングを重視した two-piece spline model で量・影響関係を推定し、UR を算出した。公表データのみを用いて同じ計算を行うことはできなかったが、van Wijngaarden と Hertz-Picciotto(2004)が提唱した方法を用いて低用量域を重視した直線回帰分析を行ったところ[表  $1-12\cdot$  ヒト ]、同エンドポイントに対する VSD は、EPA(2016)の UR から求めた VSD と同じ桁の値( $4.99\times10^{-6}$   $\mu$ g/m³)となることから、EPA が低用量域に限定した用量反応関係を重視していることが確認された(算出に用いた情報及び算出方法は付属資料参照)。

一方、Steenland ら(2004)の疫学研究で死亡率として統計学的に有意な SMR の増加が認められた所見は、高暴露群の非ホジキンリンパ腫(SMR = 2.37; 95%CI = 1.02-4.67)及び乳がん(SMR = 2.07; 95%CI = 1.10-3.54)のみであったことから、ヒトの用量反応関係を全体的に評価する際にはこの有意な影響が認められる高暴露群のデータを用いて評価することも重要であると考えられた。そこで、平均相対リスクモデルを用いて SMR が有意となる暴露群から直線外挿した結果、表 1-12 のヒト の方式で示した通り Lymphoid cancer (非ホジキンリンパ腫、白血病、骨髄腫)の罹患に対する VSD は  $1.20\times10^{-4}$  mg/m³(UR =  $8.33\times10^{-5}$ /µg/m³)と算出された(算出に用いた情報及び算出方法は付属資料参照)。高暴露群の乳がんの罹患に対する SIR は 1.27(95%CI=0.94-1.69)であり、有意な増加ではなかったが(Steenland et al.、2003)、Lymphoid cancer 罹患のリスクに乳がん罹患のリスク(UR= $1.61\times10^{-5}$ /µg/m³)を合わせた時の VSD としては、 $4.09\times10^{-5}$  mg/m³(UR= $2.54\times10^{-4}$ /µg/m³)が得られた [表 1-12・ヒト 」結果的にこれらの値はラットの吸入試験から求められた VSD とほぼ同じ桁であることが確認された。

 $UR = 0.03055 \text{ ( } 3.00\text{-}1\text{ ) } /733.27 \text{ } \mu\text{g/m}^3 = 8.33\times10^{-5}/\mu\text{g/m}^3\text{ ; VSD } [\text{mg/m}^3] = 0.00001/UR \text{ } [\mu\text{g/m}^3]/1000 - 1.20\times10^{-4} \text{ } \text{mg/m}^3 \text{ } ]$ 

 $UR = 0.123 \text{ ( } 1.87\text{-}1\text{ ) } /662.98 \text{ } \mu\text{g/m}^3 = 1.61 \times 10^{\text{-}4} / \mu\text{g/m}^3 \text{ ; VSD } [\text{mg/m}^3] = 0.00001 / \text{UR } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.09 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.000 \times 10^{\text{-}5} \text{mg/m}^3 = 0.00001 / \text{UR} \text{ } [\mu\text{g/m}^3] / 1000 - 4.000 \times 10^{\text{-}5}$ 

Lymphoid cancer の UR と乳がんの UR の和( $8.33\times10^{-5}/\mu g/m^3 + 1.61\times10^{-5}/\mu g/m^3 = 2.54\times10^{-4}/\mu g/m^3$ ); VSD [mg/m³] = 0.00001/UR [ $\mu g/m^3$ ]/1000 4.09×10<sup>-5</sup> mg/m³

表 1-12 ヒト及びラットの用量反応データを用いて算出した VSD の比較

| 方式   | VSD                   | 影響指標               | 暴露指標       | 用量反応               | VSD 算出方法                       |
|------|-----------------------|--------------------|------------|--------------------|--------------------------------|
|      | $(mg/m^3)$            |                    |            | モデル                |                                |
| ラット  | 9.20×10 <sup>-5</sup> | 雌ラットの単核球性          | 2年間吸入暴     | Gamma 及び           | [BMDL10 方式]                    |
|      |                       | 白血病、原発性脳腫          | 露量 ppm (連  | LogProbit <b>₹</b> | 各腫瘍の BMDL10 から直線               |
|      | 本評価におけ                | 瘍の発生率              | 続暴露に補      | デル (BMD            | 外挿して求めた UR を合算                 |
|      | る評価値に採用               |                    | 正)         | 解析)                | し、この値から VSD を算出。               |
| ヒト   | 3.03×10 <sup>-6</sup> | Lymphoid cancer (非 | 個別の累積暴     | 低用量域重              | [EPA (2016) による解析]             |
| [参考] |                       | ホジキンリンパ腫、          | 露量 ppm-day | 視の two-            | 1%過剰生涯リスクとなる暴                  |
|      |                       | 白血病、骨髄腫)           | の推定値(連     | piece spline       | 露量(EC01)の値をモデル                 |
|      |                       | 及び                 | 続暴露に補      | model              | フィッティング及び生命表                   |
|      |                       | 乳がんの罹患に対す          | 正)1)       |                    | を用いて推定し、EC01の                  |
|      |                       | るオッズ比              |            |                    | 95%信頼区間の下限                     |
|      |                       |                    |            |                    | (LEC <sub>01</sub> )の値から UR    |
|      |                       |                    |            |                    | (UR=0.01/LEC <sub>01</sub> )及び |
|      |                       |                    |            |                    | VSD を算出。                       |
| ヒト   | 4.99×10 <sup>-6</sup> | Lymphoid cancer (非 | 四分位又は五     | 低用量域重              | [van Wijngaarden and Hertz-    |
|      |                       | ホジキンリンパ腫、          | 分位の各群の     | 視の回帰直              | Picciotto (2004)の方法に           |
|      |                       | 白血病、骨髄腫)           | 累積暴露量      | 線モデル               | よる算出]                          |
|      |                       | 及び                 | ppm-day の平 |                    | 最高暴露群を除外した3                    |
|      |                       | 乳がんの罹患に対す          | 均値(連続暴     |                    | 又は4群のオッズ比につい                   |
|      |                       | るオッズ比              | 露に補正)2)    |                    | て、分散で重み付けした直                   |
|      |                       |                    |            |                    | 線回帰を行い、傾きβの平                   |
|      |                       |                    |            |                    | 均値及び標準誤差 SE(β)を                |
|      |                       |                    |            |                    | 算出。                            |
|      |                       |                    |            |                    | この傾き β と背景生涯リ                  |
|      |                       |                    |            |                    | スク R(0)を用いて、背景生                |
|      |                       |                    |            |                    | 涯リスクに対して 1%過剰                  |
|      |                       |                    |            |                    | 生涯リスクとなる Daily                 |
|      |                       |                    |            |                    | dose (in milligram) Ø TD1      |
|      |                       |                    |            |                    | を算出。                           |
|      |                       |                    |            |                    | 傾きβの95%信頼上限値                   |
|      |                       |                    |            |                    | から求めた TD1 下限値から                |
|      |                       |                    |            |                    | UR 上限値と VSD 下限値を               |
|      |                       |                    |            |                    | 算出。                            |

| ヒト | 1.20×10 <sup>-4</sup> | Lymphoid cancer (非 | 四分位又は五     | 高用量の直 | [平均相対リスクモデルによ  |
|----|-----------------------|--------------------|------------|-------|----------------|
|    |                       | ホジキンリンパ腫、          | 分位の各群の     | 線モデル  | る算出]           |
|    |                       | 白血病、骨髄腫)の          | 最高暴露群の     |       | 最高暴露群の平均暴露量 3) |
|    |                       | 罹患に対するオッズ          | 累積暴露量      |       | を用いて直線外挿       |
|    |                       | 比                  | ppm-day の平 |       |                |
|    |                       |                    | 均値(連続暴     |       |                |
|    |                       |                    | 露に補正)2)    |       |                |
| ヒト | 4.09×10 <sup>-5</sup> | Lymphoid cancer (非 | 四分位又は五     | 高用量の直 | [平均相対リスクモデルによ  |
|    |                       | ホジキンリンパ腫、          | 分位の各群の     | 線モデル  | る算出]           |
|    |                       | 白血病、骨髄腫)           | 最高暴露群の     |       | 最高暴露群の平均暴露量 3) |
|    |                       | 及び                 | 累積暴露量      |       | を用いて直線外挿       |
|    |                       | 乳がんの罹患に対す          | ppm-day の平 |       |                |
|    |                       | るオッズ比              | 均値(連続暴     |       |                |
|    |                       |                    | 露に補正)2)    |       |                |

- 1 生涯連続暴露濃度への補正は、累積平均暴露[ppm-d]×(1y/365 d)×(10m³/20m³)×(240d/365d)/65y(15
   2 年のラグタイムを考慮)
- 3 <sup>2)</sup> 生涯連続暴露濃度への補正は、累積平均暴露[ppm-d]×(1y/365 d)×(8h/24h)×(5d/7d)/65y(15 年のラグ タイムを考慮)
- 5 3) Lymphoid cancer の平均暴露量は EPA (2016) に記載の値を用いた。乳がんの平均暴露量は EPA (2016) の グラフからの推定値を用いた。
- 8 1-6 有害性に関するその他の情報
- 9 1-6-1 生体内運命(体内動態)
- 10 体内動態については CICAD54 (WHO, 2003) より得られた知見をまとめた。

12 (1) 吸収

7

11

13

14

15

1617

18 19

21

22

23

24

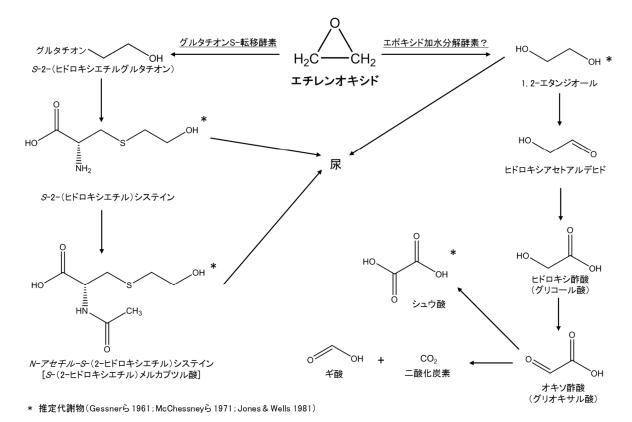
25

2627

エチレンオキシドは血液に対する溶解性が非常に高く、肺胞換気量および吸気濃度にのみ依存する肺からの取込みは速いと見込まれる。ラット、ウサギの試験で、気道を通じて急速に吸収されることが明らかになっている。平均濃度  $2\sim55~\text{mg/m}^3$  のエチレンオキシドを  $1\sim2~\text{H間マウスに暴露すると、吸入量のほぼ 100%が吸収されると推定されている。経口摂取あるいは皮膚暴露した実験動物のエチレンオキシド吸収量に関する情報は確認されていない。$ 

20 (2)分布

エチレンオキシドとその代謝物は身体全体に急速に分布する。マウスに  $2\sim55~mg/m^3$  の [ $^{14}$ C]エチレンオキシドを  $1\sim2~$  時間暴露すると、放射能がもっとも多く検出されたのは肝臓、腎臓、肺で、脾臓、精巣、脳の分布量はそれより少なかった。18.3、183、 $1830~mg/m^3$  の[ $^{14}$ C] エチレンオキシド蒸気にラットを 6 時間暴露すると(推定平均吸収量はそれぞれ 2.7、20.2、106.8~mg/kg 体重 ) 放射能がもっとも多いのは膀胱、肝臓、血中血球、副腎で、もっとも少ないのは脂肪であった。


# (3)代謝

エチレンオキシドには、動物およびヒトとも2系統の異化代謝経路があり、どちらも解毒経路とみられる。1経路はエチレングリコールへの加水分解が関与し、シュウ酸(oxalic acid ) ギ酸(formic acid ) 二酸化炭素へと変換する。もう一方の経路はグルタチオン抱合体が代謝されて S-(2-ヒドロキシエチル)システイン(S-[2-hydroxyethyl]cysteine)と S-(2-カルボキシメチル)システイン(S-[2-carboxymethyl]cysteine)が生成し、次いでそれぞれの N-アセチル化誘導体である(N-アセチル-S-(2-ヒドロキシエチル)システイン(N-acetyl-S-[2-hydroxyethyl]cysteine)と N-アセチル-S-(2-カルボキシメチル)システイン(N-acetyl-S-[2-carboxymethyl]cysteine)が生成する。

入手できるデータに基づくと、ラットやマウスではグルタチオン抱合が関与する経路が優勢で、大型動物種(ウサギ、イヌ)では、エチレンオキシドはおもに加水分解によりエチレングリコール経由で代謝される。エチレンオキシドはエチレンの代謝からも生成する。

エチレンオキシド吸入量の測定に対する生理学的薬物動態(physiologically based pharmacokinetic: PBPK)モデルがラットで開発され、ヘモグロビンと DNA とのエチレンオキシド結合に加え、組織分布、代謝経路(エポキシ加水分解酵素による加水分解およびグルタチオン-S-トランスフェラーゼによる抱合)肝および肝外グルタチオンの枯渇も含まれる。このモデルはさらに改良され、マウスとヒトにも適用された。シミュレーションから、マウス、ラット、ヒトではそれぞれおよそ 80%、60%、20%がグルタチオン抱合経由で代謝されることが示された。

このことは、 $\theta$  クラスのグルタチオン S-トランスフェラーゼ (GSTT1)の酵素活性が、マウス>ラット>ヒトの順で減少することとも一致する。ラットおよびマウスの GSTT1 活性は肝臓で最大で、以下、腎臓、精巣と続く。ラット脳およびマウス肺では他の組織より活性量が少ない(マウス脳の酵素活性は検査していない)。エチレンオキシドはヒト GSTT1 酵素の基質である。



#### 図 1-1 エチレンオキシドの代謝 (WHO 1985 改変)

#### (4)排泄

マウスでは 48 時間以内に吸入量の約 78%が尿に排泄され、最初の 24 時間以内に大半が排泄されたとの報告がある。試験した全暴露濃度で、ラットに吸入された[14C]エチレンオキシドの主要排出経路は尿で(回収放射能平均値 59%) 量は少なくなるが二酸化炭素(12%)やエチレンオキシド(1%)として呼気に排出されたり、糞便(4.5%)に排泄されていた。[14C]エチレンオキシド(プロパンジオール溶液)2 mg/kg をラット腹腔内に単回投与すると、放射能の 43%は 50 時間以内に尿へと排泄され、その大半(約 40%)は投与から 18 時間以内に認められた。9%は S-(2-ヒドロキシエチル)システイン(S-[2-hydroxyethyl]cysteine) (どちらもグルタチオン[glutathione]抱合体)と同定された。さらに、1.5%は二酸化炭素として肺経由で、1%は未代謝のエチレンオキシドとして、いずれも呼気に排出された。

ラットおよびマウスにエチレンオキシドを吸入暴露し、その分布と排出を調べた結果、血液(及びその他の組織)からのエチレンオキシドの消失は、ラットよりマウスのほうが3~4倍程度速かった。各種内で、暴露後の脳、血液、筋のエチレンオキシド濃度は類似していた。しかし、他の組織と比べると、ラットの精巣の濃度は20%、マウスの精巣では50%であった。

#### 1 1-6-2 急性毒性

#### 2 (1) ヒトに関する情報

WHO の CICAD54 (WHO, 2003) によると、エチレンオキシドの中枢神経系への影響は 915
 ~ 1281 mg/m³ の急性暴露後に認められたと報告されている。

5

#### 6 (2)動物に関する情報

- 7 WHO の CICAD54 (WHO, 2003) によると、経口 LD<sub>50</sub> (水溶液) は雄ラット 330 mg/kg、雌
   8 マウス 280 mg/kg、雄マウス 365 mg/kg、雌雄モルモット 270 mg/kg であった。また、ラット、
- 9 マウス、イヌの 4 時間  $LC_{50}$  は、それぞれ 2700、1500、1800  $mg/m^3$  であった。エチレンオキ
- 10 シド吸入暴露の急性毒性影響は、肺(水腫、うっ血、出血)及び神経系(けいれん)であっ
- 11 た。

12

#### 13 1-6-3 刺激性及び腐食性

14 (1) ヒトへの影響

- 15 WHO の CICAD54 (WHO, 2003) によると、水溶液は 1%という低濃度でも接触すると、皮
- 16 膚の軽度の刺激があり、皮膚が傷害されると 1~5 時間後に浮腫および紅斑が生じるのが特
- 17 徴で、その後小水疱が形成される。エチレンオキシドで滅菌された材料および衣服への接触
- 18 でも、皮膚刺激が観察されている。エチレンオキシド蒸気への暴露は、眼及び気道の刺激を
- 19 引き起こすことがある。

2021

# (2)動物への影響

- 22 ATSDR (1990)によると、ウサギやモルモットを用いた試験において、皮膚及び眼の刺激
- 23 性が認められている。

24

- 25 1-6-4 感作性
- 26 (1)ヒトへの影響
- 27 我が国の産業衛生学会は、エチレンオキシドを皮膚感作性の[第2群:ヒトに対しておそ
- 28 らく感作性があると考えられる物質]に指定している(産業衛生学会、2010)。また、WHO
- 29 の CICAD54 (WHO, 2003) によると、暴露後、 型(アナフィラキシー) 及び 型(接触皮
- 30 膚炎)の過敏反応が観察されたとの報告がある。また、喘息反応が単独またはアナフィラキ
- 31 シー反応を伴い生じることがあり、エチレンオキシド暴露に起因する職業性喘息の症例報告
- 32 もある。

33

# 34 (2)動物への影響

35 ATSDR(1990)によると、モルモットを用いた感作性試験で陰性の結果が報告されている。

36

#### 1-7 有害性評価値のまとめ

エチレンオキシドは常温でガスであるため、一般毒性、生殖・発生毒性及び発がん性のいずれの項目についても、経口経路の有害性評価値を算出できず、吸入経路の有害性評価値から換算したものを有害性評価値とした。エチレンオキシドは実験動物で発がん性が明らかであり、ヒトでの発がん性も疫学研究で示唆されている。エチレンオキシドは変異原性試験で明確な陽性結果が得られている事から、発がん性の有害性評価値導出は閾値のない遺伝毒性発がん性物質として実施した。

最も感受性の高い指標は発がん性で、吸入経路については、雌ラットの単核球性白血病及び原発性脳腫瘍に基づく  $9.20\times10^{-5}$  mg/m $^3$  で、経口経路についてはこの評価値を経口換算した  $3.68\times10^{-5}$  mg/kg/day である。体内に吸収された後は肝臓、肺などの組織で代謝活性化が起こると考えられているので、経口及び吸入の暴露経路に依存せずに白血病等の血液リンパ系腫瘍が誘発される可能性が高いと考えられる。

このことから、本評価書での発がん性に係るリスク推計においては、経口暴露推計量に基づくリスク比(経口暴露の発がん性有害性評価値に対する経口暴露推計量の比)と吸入暴露推計量に基づくリスク比(吸入暴露の発がん性有害性評価値に対する吸入暴露推計量の比)を合計した値をもって、当該物質のリスクを推計することが毒性学的に妥当であると考えられる。

表 1-13 エチレンオキシドの有害性評価 のまとめ

| 暴露経路 | 有害性     | 有害性評価値                                                                                     |  |  |
|------|---------|--------------------------------------------------------------------------------------------|--|--|
| 経口   | 一般毒性    | 1.72×10 <sup>-3</sup> mg/kg/day(吸入暴露データからの換算値)                                             |  |  |
|      | 生殖・発生毒性 | 2.45×10 <sup>-2</sup> mg/kg/day(吸入暴露データからの換算値)                                             |  |  |
|      | 発がん性    | <u>3.68×10<sup>-5</sup> mg/kg/day *</u> (吸入暴露データからの換算値)                                    |  |  |
| 吸入   | 一般毒性    | 4.3×10 <sup>-3</sup> mg/m³(1 日摂取量 1.72×10 <sup>-3</sup> mg/kg/day に相当)                     |  |  |
|      | 生殖・発生毒性 | 6.13×10 <sup>-2</sup> mg/m³ ( 1 日摂取量 2.45×10 <sup>-2</sup> mg/kg/day に相当 )                 |  |  |
|      | 発がん性    | <u>9.20×10<sup>-5</sup> mg/m<sup>3</sup> *</u> (1日摂取量 3.68×10 <sup>-5</sup> mg/kg/day に相当) |  |  |

<sup>\*</sup>各暴露経路における最小の有害性評価値

- 1 1-8 文献
- 2 ACGIH (2010) TLVs and BEIs threshold limit values for chemical substances and physical agents &
- 3 biological exposure indices with 7th Edition Documentation (CD-ROM)
- 4 ATSDR (1990) Toxicological profile for ethylene oxide
- 5 Adkins, B., Van Stee, E.W., Simmons, J.E. and Eustis, S.L. (1986) Oncogenic response of strain A/J
- 6 mice to inhaled chemicals. J. Toxicol. Environ. Health, 17,311-312
- 7 Agurell, E., Cederberg, H., Ehrenberg, L., Lindahl-Kiessling, K., Rannug, U. & Törnqvist, M. (1991)
- 8 Genotoxic effects of ethylene oxide and propylene oxide: a comparative study. Mutat. Res.,
- 9 250, 229-237 (IARC, 2008 二次引用)
- 10 Appelgren, L.-E., Eneroth, G. & Grant, C. (1977) Studies on ethylene oxide: whole-body
- autoradiography and dominant lethal test in mice. Proc. Eur. Soc. Toxicol., 18, 315-317 (IARC,
- 12 2008 二次引用)
- 13 Appelgren, L.-E., Eneroth, G., Grant, c., Landström, L.-E. & Tenghagen, K. (1978) Testing of ethylene
- oxide for mutagenicity using the micronucleus test in mice and rats. Acta pharmacol. toxicol.,
- 15 43, 69-71 (IARC, 2008 二次引用)
- Bar, F. and Griepentrog, F. (1969) Long-term diet study in rats with feed fumigated with ethylene oxide.
- 17 Bundesgesundheitsblatt, 11, 106-112. (in German; NITE, 2005 二次引用)
- 18 Bastlová, T, Andersson, B., Lambert, B. & Kolman, A (1993) Molecular analysis of ethylene
- 19 oxideinduced mutations at the HPRT locus in diploid fibroblasts. Mutat. Res., 287, 283-29
- 20 Bastlová, T., Andersson, B., Lambert, B. & Kolman, A. (1993) Molecular analysis of ethylene oxide-
- 21 induced mutations at the HPRT locus in human diploid fibroblasts. Mutat. Res., 287, 283–292
- 22 (IARC, 2008 二次引用)
- 23 Benson, L.O. & Teta, M.J. (1993) Mortality due to pancreatic and lymphopoietic cancers in chlorohydrin
- production workers. Br. J. ind. Med., 50, 710–716
- 25 Bird, M.l. (1952) Chemical production of mutations in Drosophila: comparison of techniques. J
- 26 Genet., 50; 480-485 (IARC, 1994 二次引用)
- 27 Bisanti, L., Maggini, M., Raschetti, R., Spola Alegianti, S., Menniti Ippolito, F., Caffari, B., Segnan, N.
- and Ponti, A. (1993) Cancer mortality in ethylene oxide workers. Br. J. Ind. Med., 50, 317-
- 29 324
- 30 Boysen G, Pachkowski BF, Nakamura J, Swenberg JA (2009). The formation and biological
- 31 significance of N7-guanine adducts Mutat Res Genet Toxicol Environ Mutagen. 678: 76–94
- 32 (IARC, 2012二次引用)

| 1  | Brashear A, Unverzagt FW, Farber MO, Bonnin JM, Garcia JG, Grober E. (1996) Ethylene oxide           |
|----|------------------------------------------------------------------------------------------------------|
| 2  | neurotoxicity: a cluster of 12 nurses with peripheral and central nervous system toxicity            |
| 3  | Neurology. 46 (4):992-8                                                                              |
| 4  | CDPR ( California Department of Pesticide Regulation ) ( 1986 ) SUMMARY OF TOXICOLOGY DATA           |
| 5  | ETHYLENE OXIDE Chemical Code #: 000277, Tolerance #151 SB #: 061 October 3, 1986                     |
| 6  | Revised 10/19/87, 10/11/88, 11/29/89, 5/25/90, 12/3/91, 7/18/95, 10/28/96                            |
| 7  | CEPA( 2001 )Canadian Environmental Protection Act, 1999, Priority Substances List Assessment Report  |
| 8  | Ethylene Oxide                                                                                       |
| 9  | Calleman, C.J., Ehrenberg, L., Jansson, B., Osterman-Golkar, S., Segerbäck, D., Svensson, K. &       |
| 10 | Wachtmeister, C.A (1978) Monitoring and risk assessment by means of alkyl groups in                  |
| 11 | hemoglobin in persons occupationally exposed to ethylene oxide. J environ. Pathol. Toxicol 2         |
| 12 | 427-442 (IARC, 2008 二次引用)                                                                            |
| 13 | Chun, J. and T. Neeper-Bradley. (1993). Two-Generation Reproduction Study of Inhaled Ethylene Oxide  |
| 14 | Vapor in DC Rats: Lab Project Number: 91N0058. Unpublished study prepared by Bushy Run               |
| 15 | Research Center. 572 p. (MRID 42788101)                                                              |
| 16 | Clare, M.G., Dean, B.J., de Jong, G. and van Sittert, N.J. (1985) Chromosome analysis of lymphocytes |
| 17 | from workers at an ethylene oxide plant. Mutat. Res., 156, 109-116 (IARC, 2008 二次引用                  |
| 18 | Coggon D, Harris EC, Poole J, Palmer KT. (2004) Mortality of workers exposed to ethylene oxide       |
| 19 | extended follow up of a British cohort. Occup Environ Med. 2004 Apr;61 (4):358-62                    |
| 20 | Coggon, D., Harris, E.C., Poole, J. & Palmer, K.T. (2004) Mortality of workers exposed to ethylene   |
| 21 | oxide: Extended follow up of a British cohort. Occup. environ. Med., 61, 358-362                     |
| 22 | Conan, L., Foucault, R, Siou, G., Chaigneau, M. & Le Moan, G. (1979) Contribution to the research of |
| 23 | a mutagenic effect of residues of ethylene oxide, ethylene glycol, and 2-chloroethanol on plastic    |
| 24 | material sterilized by ethylene oxide. Ann. Falsij Expert. chim., 72, 141-151 (in French; IARC       |
| 25 | 1994 二次引用)                                                                                           |
| 26 | Cookson, M.J., Sims, P. & Grover, P.L. (1971) Mutagenicity of epoxides of polycylic hydrocarbons     |
| 27 | correlates with carcinogenicity of parent hydrocarbons. Nature, 234, 186-187 ( IARC, 1994 =          |
| 28 | 次引用)                                                                                                 |
| 29 | Crystal, H.A., Achaumburg, H.H., Grober, E., Fuld, P.A. and Lipton, R.B. (1988) Cognitive impairmen  |
| 30 | and sensory loss associated with chronic low-level ethylene oxide exposure. Neurology, 38            |
| 31 | 567-569                                                                                              |
| 32 | De Flora, S. (1981) Study of 106 organic and inorgatiic compounds in the Salmonella/microsome test   |
| 33 | Carcinogenesis, 2, 283-298 (IARC, 1994 二次引用)                                                         |

1 Dunkelberg, H. (1982) Carcinogenicity of ethylene oxide and 1,2-propylene oxide upon intragastric 2 administration to rats. Br. J. Cancer, 46, 924-933 EPA (2008) Reregistration Eligibility decision for ethylene oxide 3 4 EPA (2016) Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide (CASRN 75-21-8), In 5 Support of Summary Information on the Integrated Risk Information System(IRIS), December 2016 6 7 Embree, L.W, Lyon, I.P. & Hine, c.H. (1977) The mutagenic potential of ethylene oxide using the 8 dominant-Iethal assay in rats. Toxicol. appl. Pharmacol., 40, 261-267(IARC, 2008 二次引用) 9 Epidemiological Data for Workers Exposed to Ethylene Oxide. Regulatory Toxicology and Pharmacology, (56:312-320.) . doi:10.1016/j.yrtph.2009.10.001" 10 11 Estrin, W.J., Bosler, R.M., Lash, A. and Becker, C.E. (1990) Neurotoxicological evaluation of hospital sterilizer workers exposed to ethylene oxide. Clin. Toxicol., 28 1-20 12 13 Estrin, W.J., Cavalieri, S.A., Wald, P., Becker, C.E., Jones, J.R. and Cone, J.E. (1987) Evidence of neurologic dysfunction related to long-term ethylene oxide exposure. Arch. Neurol., 44, 49, 14 15 1283-1286 16 Fahmy, O.G. & Fahmy, M.J. (1956) Cytogenetic analysis of the action of carcinogens and tumour 17 inhibitors in Drosophila melanogaster. V Differential genetic response to the alkylating 18 mutagens and X-radiation. J Genet., 54, 146-164 (IARC, 1994 二次引用) 19 Fahmy, O.G. & Fahmy, M.J. (1970) Gene elimination in carcinogenesis: reinterpretation of the somatic 20 mutation theory. Cancer Res., 30, 195-205 (IARC, 1994 二次引用) Farmer, P.B., Bailey, E., Gorf, S.M., Törnqvist, M., Osterman-Golkar, S., Kautiainen, A. & Lewis-21 22 Enright, D.P. (1986) Monitoring human exposure to ethylene oxide by the determination of 23 haemoglobin adducts using gas chromatography-mass spectrometry. Carcinogenesis, 7, 637-24 640 (IARC, 2008二次引用) 25 Farooqi, Z., Törnqvist, M., Ehrenberg, L. & Natarajan, AT (1993) Genotoxic effects of ethylene oxide 26 and propylene oxide in mouse bone marrow cells. Mutat. Res., 288, 223-228 (IARC, 2008 = 次引用) 27 28 Fennell TR, MacNeela JP, Morris RW, Watson M, Thompson CL, Bell DA (2000) Hemoglobin 29 adducts from acrylonitrile and ethylene oxide in cigarette smokers: effects of glutathione S-30 transferase T1- null and M1-null genotypes. Cancer Epidemiology, Biomarkers & 31 Prevention, 9:705-712 (WHO, 2003二次引用) 32 Fomenko, VN. & Strekalova, E.Y. (1973) Mutagenic action of sorne industrial poisons as a function of 33 concentration and exposure time. Toksikol. nov. Promo khim. Veshchestv., 13,51-57 ( in

- 1 Russian; IARC, 1994 二次引用)
- 2 Fuchs, J., Wulenweber, U., Hengstler, J.G., Bienfait, H.G., Hiltl, G. and Oesch, F. (1994) Genotoxic risk
- for humans due to workplace exposure to ethylene oxide: remarkable individual differences in
- 4 susceptibility. Arch. Toxicol., 68, 343-348 (IARC, 2008 二次引用)
- 5 Fukushima T, Abe K, Nakagawa A, Osaki Y, Yoshida N, Yamane Y. (1986) Chronic ethylene oxide
- 6 poisoning in a factory manufacturing medical appliances. J Soc Occup Med. 36 (4):118-23.
- 7 Galloway, S.M., Berry, P.K., Nichols, W.W., Wolman, S.R., Soper, K.A., Stolley, P.D. and Archer, P.(1986)
- 8 Chromosome abberations in individuals occupationally exposed to ethylene oxide, and in a
- 9 large control population. Mutat. Res., 170, 55-74 (IARC, 2008 二次引用)
- Gardner, M.J., Coggon, D., Pannett, B. and Harris, E.C. (1989) Workers exposed to ethylene oxide: a
- 11 follow up study. Br. J. Ind. Med., 46, 860-865
- 12 Garman, R.H. and Snelling, W.M. (1986) Frequency, size and location of brain tumours in F-344 rats
- chronically exposed to ethylene oxide. Food Chem. Toxicol., 24, 145-153
- Garman, R.H., Snellings, W.M. and Maronpot, R.R. (1985) Brain tumors in F344 rats associated with
- chronic inhalation exposure to ethylene oxide. Neurotoxicology, 6 117-138
- Garry, V.F., Hozier, J., Jacobs, D., Eade, R.L. and Gray, D.G. (1979) Ethylene oxide: Evidence of
- 17 chromosomal effects. Environ. Mutagen., 1, 375-382 (IARC, 2008 二次引用)
- Garry, VE, Opp, e.W, Wiencke, J.K & Lakatua, D. (1982) Ethylene oxide induced sister chromatid
- 19 exchange in lymphocytes using a membrane dosimetry system. Pharmacology, 25, 214-221
- 20 (IARC, 2008 二次引用)
- 21 Generoso, W.M., Cain, K., Hughes, L. et al. (1986) Ethylene oxide dose and dose-rate effects in the
- 22 mouse dominant-lethal test. Environ. Mutagen., 8, 1-8 (IARC, 2008 二次引用)
- Generoso, W.M., Cain. K.T., Cornett, C.V., Cacheiro, N.L.A. and Hughes, L.A. (1990) Concentration-
- 24 response curves for ethylene-oxide-induced heritable translocations and dominant lethal
- 25 mutations. Environ. Mol. Mutagen., 16, 126-131 (IARC, 2008 二次引用)
- Generoso, W.M., Rutledge, J.C., Cain, K.T., Hughes, L.A. and Braden, P.W. (1987) Exposure of female
- 27 mice to ethylene oxide within hours after mating leads to fetal malformation and death. Mutat.
- 28 Res., 176, 269-274
- 29 Generoso, WM., Cain, KT., Krishna, M., Sheu, e.W & Gryder, RM. (1980) Heritable translocation. and
- dominant-Iethal mutation induction with ethylene oxide in mice. Mutat. Res., 73, 133-142
- 31 (IARC, 2008 二次引用)
- 32 Generoso, WM., Cumming, RB., Bandy, J.A. & Cain, KT. (1983) Increased dominant-lethal effects due

| 1 2      | to prolonged exposure of mice to inhaled ethylene oxide. Mutat. Res., 119, 377-379 (IARC, 2008 二次引用)                                                       |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3        | Greenberg, H.L., Ott, M.G. and Shore, R.E. (1990) Men assigned to ethylene oxide production or other                                                       |
| 4<br>5   | ethylene oxide related chemical manufacturing: : a mortality study. Br. J. Ind. Med., 47, 221-230                                                          |
| 6        | Gresie-Brusin DF, Kielkowski D, Baker A, et al. (2007) Occupational exposure to ethylene oxide during                                                      |
| 7<br>8   | pregnancy and association with adverse reproductive outcomes. Int Arch Occup Environ Health 80: 559-65                                                     |
| 9<br>10  | Gross JA, Haas ML, Swift TR. (1979) Ethylene oxide neurotoxicity: report of four cases and review of the literature. Neurology. 29 (7):978-83              |
| 11<br>12 | Hagmar, L., Mikoczy, Z. and Welinder, H. (1995) Cancer incidence in Swedish sterilant workers exposed to ethylene oxide. Occup. Environ. Med., 52, 154-156 |
| 13       | Hagmar, L., Welinder, H., Lindén, K., Attewell, R., Osterman-Golkar, S. & Törnqvist, M. (1991) An                                                          |
| 14       | epidemiological study of cancer risk among workers exposed to ethylene oxide using                                                                         |
| 15       | hemoglobin adducts to validate environmental exposure assessments. Int. Arch. occup. environ.                                                              |
| 16       | Health, 63, 271-277 (IARC, 2008 二次引用)                                                                                                                      |
| 17       | Hallier, E., Langhof, T, Dannappel, D., Leutbecher, M., Schröder, K., Goergens, H. W, Müller, A. & Bolt,                                                   |
| 18       | H.M. (1993) Polymorphism of glutathione conjugation of methyl bromide, ethylene oxide and                                                                  |
| 19       | dichloromethane in blood: influence on the induction of sister chromatid exchanges ( SCE ) in                                                              |
| 20       | lymphocytes. Arch. Toxicol., 67, 173-178 (IARC, 2008 二次引用)                                                                                                 |
| 21       | Hansen, J.P., Allen, J., Brock, K., Faconer, J., Helms, M.J., Shaver, G.C. and Strohm, B. (1984) Normal                                                    |
| 22       | sister chromatid exchange levels in hospital sterilization employees exposed to ethylene oxide.                                                            |
| 23       | J. Occup. Med., 26, 29-32 (IARC, 2008 二次引用)                                                                                                                |
| 24       | Hardin, B.D., Niemeier, R.W., Sikov, M.R. and Hackett, P.L. (1983) Reproductive-toxicologic assessment                                                     |
| 25       | of the epoxides ethylene oxide, propylene oxide, butylenes oxide, and styrene oxide. Scnd. J.                                                              |
| 26       | Environ. Health 9, 94-102                                                                                                                                  |
| 27       | Hatch, G.G., Conklin, P.M., Christensen, C.C., Anderson, TM., Langenbach, R & Nesnow, S. (1986)                                                            |
| 28       | Mutation and enhanced virus transformation of cultured hamster cells by exposure to gaseous                                                                |
| 29       | ethylene oxide. Environ. Mutag., 8, 67-76 (IARC, 1994 二次引用)                                                                                                |
| 30       | Hemminki, K., Mutanen, P. and Niemi, ML. (1983) Spontaneous abortions in hospital sterilising staff                                                        |
| 31       | [letter to the editor]. Br. Med. J., 286, 1976-1977                                                                                                        |
| 32       | Hemminki, K., Mutanen, P., Saloniemi, I., Niemi, ML. and Vainio, H. (1982) Spontaneous abortions                                                           |
| 33       | in hospital staff engaged in sterilising instruments with chemical agents. Br. Med. J., 285, 1461-                                                         |
| 34       | 1463                                                                                                                                                       |

- $1\qquad \text{Hochberg, V, Shi, X-c., Moorman, W \& Ong, T (1990) Induction of micronuclei in rat bone marrow and}\\$
- spleen cells byvaried dose-rate of ethylene oxide (Abstract No. 91). Environ. moL. Mutag.,
- 3 15, 26 (IARC, 2008 二次引用)
- 4 Hollingsworth, R.L., Rowe, V.K., Oyen, F., NcCollister, D.D. and Spencer, H.C. (1956) Toxicity of
- 5 ethylene oxide determined on experimental animals. Arch. Ind. Health, 13, 217-227
- 6 Hughes, 'IJ., Simmons, D.M., Monteith, L.G. & Claxon, L.D. (1987) Vaporization technique to measure
- 7 mutagenic activity of volatile organic chemicals in the Ames/Salmonella assay. Environ. Mutag.,
- 8 9,421-441 (IARC,1994 二次引用)
- 9 Högstedt, B., Bergmark, E., Törnqvist, M. & Osterman-Golkar, S. (1990) Chromosomal aberrations and
- micronuclei in lymphocytes in relation to alkylation of hemoglobin in workers exposed to
- ethylene oxide and propylene oxide. Hereditas, 113, 133-1383 (IARC, 2008 二次引用)
- Högstedt, B., Gullberg, B., Hedner, K., Dolnig, A., Mitelman, F., Skerfving, S. and Widegren, B. (1983)
- 13 Chromosome aberrations and micronuclei in bone marrow cells and peripheral blood
- 14 lymphocytes in humans exposed to ethylene oxide. Hereditas, 98, 105-113 (IARC, 2008 二次
- 15 引用)
- Högstedt, C., Aringer, L. & Gustavsson, A. (1986) Epidemiologic support for ethylene oxide as a cancer-
- 17 causing agent. J. Am. med. Assoc., 255, 1575–15783
- Högstedt, C., Rohlén, O., Berndtsson, B.S., Axelson, O. & Ehrenberg, L. (1979) A cohort study of
- mortality and cancer incidence in ethylene oxide production workers. Br. J. ind. Med., 36, 276–
- 20 280
- Högstedt, L.C. (1988) Epidemiological studies on ethylene oxide and cancer: an updating. In: Bartsch, H.,
- Hemminki, K. and O'Neill, eds, Methods for detecting DNA damaging agents in humans:
- 23 Applications in cancer epidemiology and prevention. International Agency for Research on
- 24 Cancer, Lyon. pp. 265-2703
- 25 IARC (1994) Monographs on the evaluation of carcinogenic risks to humans vol. 60
- 26 IARC (2008) Monographs on the evaluation of carcinogenic risks to humans vol. 97
- 27 IARC (2012) Monographs on the evaluation of carcinogenic risks to humans vol. 100F
- 28 Jacobson, K.H., Hackley, E.B. and Feinsilver, L. (1956) The toxicity of inhaled ethylene oxide and
- 29 propylene oxide vapors. Am. Med. Assoc. Arch. Ind. Health, 13, 237-244
- 30 Jenssen, D. & RameL, C. (1980) The micronucleus test as part of a short-term mutagenicity test program
- for the prediction of carcinogenicity evaluated by 143 agents tested. Mutat. Res., 75, 191-202
- 32 (IARC, 2008 二次引用)

- 1 Kardos, L., Széles, G., Gombkötö, G., Szeremi, M., Tompa, A. & Ádány, R. (2003) Cancer deaths among
- 2 hospital staff potentially exposed to ethylene oxide: An epidemiological analysis. Environ. mol.
- 3 Mutag., 42, 59–60
- 4 Karelova, J., Jablonicka, A. and Vargova, M. (1987) Results of cytogenetic testing of workers exposed
- 5 to ethylene oxide. J. Hyg. Epidemiol. Microbiol. Immunol., 31, 119-126 (IARC, 2008 二次引
- 6 用)
- 7 Kelsey, K, Wiencke, J.K, Eisen, E.A, Lynch, D.W, Lewis, R. & Little, J.B (1988)
- 8 Kiesselbach, N., Ulm, K., Lange, H.-J. and Korallus, U. (1990) A multicentre mortality study of workers
- 9 exposed to ethylene oxide. Br. J. Ind. Med., 47, 182-188
- 10 Klees JE, Lash A, Bowler RM, Shore M, Becker CE. (1990) Neuropsychologic "impairment" in a cohort
- of hospital workers chronically exposed to ethylene oxide. J Toxicol Clin Toxicol. 28 (1):21-
- 12 8
- 13 Kligerman, AD., Erexson, G.L., Phelps, M.E. & Wilmer, J.L. (1983) Sister-chromatid exchange induction
- in peripheral blood lymphocytes of rats exposed to ethylene oxide by inhalation. Mutat. Res.,
- 15 120, 37-44 (IARC, 2008 二次引用)
- Kolman, A & Näslund, M. (1983) Lack of additive effect in mutagenesis of E. coli by UV-light and
- 17 ethylene oxide. Mol. gen. Genet., 189,222-225 (IARC, 1994 二次引用)
- 18 Kolman, A & Näslund, M. (1987) Mutagenicity testing of ethylene oxide in Escherichia coli strains with
- 19 different repair capacities. Environ. mol. Mutag., 10, 311-315 (IARC, 1994 二次引用)
- 20 Kolman, A. (1985) Effect of deficiency in excision repair and umuC function on the mutagenicity with
- ethylene oxide in the lael gene of E. coli. Mutat. Res., 146,43-46 (IARC, 1994 二次引用)
- Kolman, A., Bohušová, T., Lambert, B. & Simons, J.W.I.M. (1992) Induction of 6-thioguanineresistant
- mutants in human diploid fibroblasts in vitro with ethylene oxide. Environ. mol. Mutag., 19,
- 24 93-97 (IARC, 2008 二次引用)
- Kolman, A., Näslund, M., Osterman-Golkar, S., Scalia-Tomba, G.-P. & Meyer, A. (1989b) Comparative
- studies of in vitro transformation by ethylene oxide and gamma-radiation of C3H/10T1/2 cells.
- 27 Mutagenesis, **4**, 58-61 (IARC, 2008二次引用)
- 28 Krell, K., lacobson, E.D. & Selby, K. (1979) Mutagenic effect on L5178Y mouse lymphoma cells by
- 29 growth in ethylene oxide-sterilized polycarbonate flasks. ln Vitro, 15,326-328 (IARC, 1994  $\equiv$
- 30 次引用)
- 31 Kuzuhara, S., Kanazawa, I., Nakanishi, T. and Egash, T. (1983) Ethylene oxide polyneuropathy.
- 32 Neurology, 33, 377-380

- 1 Kölmark, G. & Westergaard, M. (1953) Further studies on chemically induced reversions at the adenine
- 2 locus of Neurospora. Hereditas, 39, 209-224 (IARC, 1994 二次引用)
- 3 Laurent, C., Frederic, J. and Leonard, A. (1984) Sister chromatid exchange frequency in workers exposed
- 4 to high levels of ethylene oxide, in a hospital sterilization service. Int. Arch. Occup. Environ.
- 5 Health, 54, 33-43 (IARC, 2008 二次引用)
- 6 Lerda, D. and Rizzi, R. (1992) Cytogenetic study of persons occupationally exposed to ethylene oxide.
- 7 Mutat. Res., 281, 31-37 (IARC, 2008 二次引用)
- 8 Lindbolm, M.-L., Hemminiki, K., Bonhomme, M.G., Antilla, A., Rantala, K., Heikkila, P and Rosenberg,
- 9 M.J. (1991) Effects of paternal occupational exposure on spontaneous abortions. Am. J. Public
- 10 Health, 81, 1029-1033
- 11 Lorenti Garcia, C., Darroudi, F., Tates, A.D. & Natarajan, A.T. (2001) Induction and persistence of
- micronuclei, sister-chromatid exchanges and chromosomal aberrations in splenocytes and bone-
- marrow cells of rats exposed to ethylene oxide. Mutat. Res., **492**, 59–67 (IARC, 2008二次引
- 14 用)
- Lynch, D.W, Lewis, T.R, Moorman, WJ., Burg, I.R, Gulati, D.K., Kaur, P. & Sabharwal, P.S. (1984c)
- Sister-chromatid exchanges and chromosome aberrations in lymphocytes from monkeys
- exposed to ethylene oxide and propylene oxide by inhalation. Toxicol. appl. Pharmacol., 76,
- 18 85-95 (IARC, 2008 二次引用)
- 19 Lynch, D.W., Lewis, T.R., Moorman, W.J., Burg, J.R., Groth, D.H., Khan, A., Ackerman, J. and Cockrell,
- B.Y. (1984a) Carcinogenic and toxicologic effects of inhaled ethylene oxide and propylene
- oxide in F344 rats. Toxicol. Appl. Pharmacol., 76, 69-84
- Lynch, D.W., Lewis, T.R., Moorman, W.J., Burg, J.R., Lal, J.B., Setzer, J.V., Groth, D.H., Gulati, D.K.,
- Zavos, P.M., Sabharwal, P.S., Ackerman, L.J., Cockrell, B.Y. and Sprinz, H. (1984b) Effects
- on monkeys and rats of long-term inhalation exposure to ethylene oxide: Major findings of the
- NIOSH study. In: Inhospital ethylene oxide sterilization Current issues in ethylene oxide
- toxicity and occupational exposure. pp. 7-10 ( AAMI Technology Assessment Report No. 8-84 )
- 27 Major, J., Jakab, M. and Tompa, A. (1996) Genotoxicological investigation of hospital nurses
- occupationally exposed to ethylene oxide: I. Chromosome aberrations, sister-chromatid
- 29 exchanges, cell cycle kinetics, and UV-induced DNA synthesis in peripheral blood lymphocytes.
- 30 Environ. Mol. Mutagen., 27, 84-92 (IARC, 2008 二次引用)
- 31 Marsden DA, Jones DJ, Britton RG, Ognibene T, Ubick E, Johnson GE et al (2009) .Dose-response
- 32 relationships for N7- (2-hydroxyethyl) guanine induced by low-dose [14C]ethylene oxide:
- evidence for a novel mechanism of endogenous adduct formation. Cancer Res 69: 3052–9
- 34 (IARC, 2012二次引用)
- Mayer, J., Warburton, D., Jeffrey, A.M., Pero, R., Walles, S., Andrews, L., Toor, M., Latriano, L., Wazneh,

| 1 2    | L., Tang, D., Tsai, WY., Kuroda, M. and Perera, F. (1991) Biologic markers in ethylene oxide-exposed workers and controls. Mutat. Res., 248, 163-176 (IARC, 2008 二次引用) |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3      | Mikoczy Z, Tinnerberg H, Björk J, Albin M. (2011) Cancer incidence and mortality in Swedish sterilant                                                                  |
| 4      | workers exposed to ethylene oxide: updated cohort study findings 1972-2006. Int J Environ Res                                                                          |
| 5      | Public Health. 2011 Jun;8 (6):2009-19                                                                                                                                  |
| 6<br>7 | Morgan, R.W., Claxton, K.W., Divine, B.J., Kaplan, S.D. and Harris, V.B. (1981) Mortality among                                                                        |
| /      | ethylene oxide workers. J. Occup. Med., 23, 767-770                                                                                                                    |
| 8      | Mori, K., Inoue, N., Fujishiro, K., Kikuchi, M. and Chiba, S. (1990) Biochemical changes in rat                                                                        |
| 9      | erythrocytes caused by ethylene oxide exposure. Fundam. Appl. Toxicol., 15, 441-447                                                                                    |
| 10     | Mori, K., Kaido, M., Fujishiro, K., Inoue, N., Koide, O., Hori, H. and Tanaka, I. (1991) Dose dependent                                                                |
| 11     | effects of inhaled ethylene oxide on spermatogenesis in rats. Br. J. Ind. Med., 48, 270-274                                                                            |
| 12     | NITE (2015) 化学物質の初期リスク評価書 Ver. 1.0 No.36 エチレンオキシド Ethylene oxide, 化                                                                                                    |
| 13     | 学物質排出把握管理促進法政令号番号:1-42 CAS 登録番号:75-21-8,2005 年9 月                                                                                                                      |
| 14     | NTP, US National Toxicology Program. (1987) Toxicology and carcinogenesis studies of ethylene oxide                                                                    |
| 15     | (CAS No. 75-21-8) in B6C3F1 mice(inhalation studies). National Institutes of Health, Public                                                                            |
| 16     | Health Service, U.S. Department of Health and human Services, Research Triangle Park, North                                                                            |
| 17     | Carolina (NTP Technical Report No. 326; NIH Publication No. 88-2582)                                                                                                   |
| 18     | Nakao, Y. & Auerbach, C. (1961) Test of a possible correlation between cross-linking and chromosome                                                                    |
| 19     | breaking abilities of chemical mutagens. Z. Vererbungsl., 92,457-461(IARC, 1994 二次引用)                                                                                  |
| 20     | Norman, S.A., Berlin, J.A., Soper, K.A., Middendorf, B.F. and Stolley, P.D. (1995) Cancer incidence in                                                                 |
| 21     | a group of workers potentially exposed to ethylene oxide. Int. J. Epidemiol., 24 ) , 276-284                                                                           |
| 22     | Ohnishi, A., Inoue, N., Yamamoto, T., Murai, Y., Hori, H., Tanaka, I., Koga, M. and Akiyama, T. (1986)                                                                 |
| 23     | Ethylene oxide neuropathy in rats. Exposure to 250 ppm. J. Neurol. Sci., 74, 215-221                                                                                   |
| 24     | Ohnishi, A., Inoue, N., Yamamoto, T., Murai, Y., Hori, H., Koga, M., Tanaka, I. and Akiyama T. (1985)                                                                  |
| 25     | Ethylene oxide induces central-peripheral distal axonal degeneration of the lumbar primary                                                                             |
| 26     | neurons in rats. Br. J. Ind. Med., 42, 373-379                                                                                                                         |
| 27     | Olsen, G.W., Lacy, S.E., Bodner, K.M., Chau, M., Arceneaux, T.G., Cartmill, J.B., Ramlow, J.M. and                                                                     |
| 28     | Boswell, J.M. (1997) Mortality from pancreatic and lymphopoietic cancer among workers in                                                                               |
| 29     | ethylene and propylene chlorohydrin production. Occup. Environ. Med., 54, 592-598                                                                                      |
| 30     | Ong, T., Bi, HK., Xing, S., Stewart, J. & Moorman, W. (1993) Induction of sister chromatid exchange                                                                    |
| 31     | in spleen and bone marrow cells of rats exposed by inhalation to different dose rates of ethylene                                                                      |
| 32     | oxide. Environ. mol. Mutag., <b>22</b> , 147–151 (IARC, 2008二次引用)                                                                                                      |

- 1 Pero, R.W., Widegren, B., Hogstedt, B. and Mitelman, F. (1981) In vivo and in vitro ethylene oxide
- 2 exposure of lymphocytes assessed by chemical stimulation of unscheduled DNA synthesis.
- 3 Mutat. Res., 83, 271-289 (IARC,1994 二次引用)
- 4 Persistently elevated sister chromatid exchanges in ethylene oxide-exposed primates: the role of a
- 5 subpopulation of high frequency cells. Cancer Res., 48, 5045-5050 (IARC, 2008二次引用)
- 6 Pfeiffer, E.H. & Dunkelberg, H. (1980) Mutagenicity of ethylene oxide and propylene oxide and of the
- 7 glycols and halohydrins formed from them during the fumigation of foodstuffs. Food Cosmet.
- 8 Toxicol., 18, 115-118 (IARC, 1994 二次引用)
- 9 Poirier, v: & Papadopoulo, D. (1982) Chromosomal aberrations induced by ethylene oxide in a amniotic cell line in vitro. Mutat. Res., 104, 255-26 (IARC, 2008 二次引用)
- Popp, D. M., Popp, R.A., Lock, S., Mann, R.C. and Hand, Jr. R.E. (1986) Use of multiparameter analysis
- to quantitate hematological damage from exposure to a chemical (ethylene oxide). J. Toxicol.
- 13 Environ. Health, 18, 543-565
- Popp, W, Vahrenholz, c., Goch, S., Müller, e., Müller, G., Schmieding, W & Norpoth, K. (1992)
- Experiences with alkaline filter elution in measuring DNA damage by genotoxic substances.
- 16 Zbl. Hyg., 193, 140-149 (in German; IARC, 2008 二次引用)
- 17 Popp, W., Vahrenholz, C., Przygoda, H., Brauksiepe, A., Goch, S., Muller, G., Schell, C. and Norpoth, K.
- 18 (1994) DNA-protein cross-links and sister chromatid exchange frequencies in lymphocytes
- and hydroxyethyl mercapturic acid in urine of ethylene oxide-exposed hospital workers. Int.
- 20 Arch. Occup. Environ. Health, 66, 325-332
- 21 Rapoport, I.A (1948) Effect of ethylene oxide, glycide and glycols on gene mutations. Dokl. Akad. Nauk
- 22 SSSR, 60, 469-472 (in Russian; IARC, 1994 二次引用)
- Recio, L., Donner, M., Abernethy, D., Pluta, L., Steen, A.-M., Wong, B.A., James, A. & Preston, R.J.
- 24 (2004) In vivo mutagenicity and mutation spectrum in the bone marrow and testes of B6C3F1
- lacI transgenic mice following inhalation exposure to ethylene oxide. Mutagenesis, 19, 215–
- 26 222 (IARC, 2008二次引用)
- 27 Ribeiro, L.R, Rabello-Gay, M.N., Salvadori, D.M.F., Pereira, C.AB. & Beçak, W (1987a) Cytogenetic
- 28 effects of inhaled ethylene oxide in somatic and germ cells of mice. Arch. Toxicol., 59, 332-
- 29 335 (IARC, 2008 二次引用)
- 30 Ribeiro, L.R., D.M.F. Salvadori, C.A.B. Pereira and W. Beçak (1987b) Activity of ethylene oxide in the
- mouse sperm morphology test. Arch. Toxicol., 60, 331–333 (IARC, 2008 二次引用)
- Ribeiro, L.R., Salvadori, D.M.F., Rios, A.C.C., Costa, S.L., Tates, A.D., Tornqvist, M. and Natarajan, A.T.
- 33 (1994) Biological monitoring of workers occupationally exposed to ethylene oxide. Mutat.,
- 34 Res., 313, 81-87 (IARC, 2008 二次引用)

- 1 Richmond, G.W., Abrahams, R.H., Nemenzo, J.H. and Hine, C.H. (1985) An evaluation of the possible
- 2 effects on health following exposure to ethylene oxide. Arch. Environ. Health, 40, 20-25 (IARC,
- 3 2008 二次引用)
- 4 Ristow, G.E. and Cornelius, D. (1986) The neurological manifestations of chronic ethylene oxide
- 5 exposure. Ann. Neurol., 20, 136
- 6 Rowland, A.S., Baird, D.D., Shore, D.L., Darden, B. and Wilcox, A.J. (1996) Ethylene oxide exposure
- 7 may increase the risk of spontaneous abortion, preterm birth, and postterm birth. Epidemiology,
- 8 7, 363-368
- $9 \qquad \text{Rutledge, J.C. and Generoso, W.M. (1989) Fetal pathology produced by ethylene oxide treatment of the} \\$
- murine zygote. Teratology, 39, 563-572
- Rutledge, J.C., Generoso, W.M., Shourbaji, A., Cain, K.T., Gans, M. and Oliva, J. (1992) Developmental
- anomalies derived from exposure of zygotes and first-cleavage embryos to mutagens. Mutat.
- 13 Res. 296, 167-177
- Saillenfait, A.M., Gallissot, F., Bonnet, P. and Protois, J.C. (1996) Developmental toxicity of inhaled
- ethylene oxide in rats following short-duration exposure. Fundam. Appl. Toxicol., 34, 223-227
- Sarto, F., Clonfero, E., Bartolucci, G.B., Franceschi, C., Chiricolo, M. and Levis, A.G. (1987) Sister
- 17 chromatid exchanges and DNA repair capability in sanitary workers exposed to ethylene oxide:
- evaluation of the dose-effect relationship. Am. J. Ind. Med., 12, 625-637 (IARC, 2008 二次引
- 19 用)
- Sarto, F., Cominato, I., Pinton, A.M., Brovedani, P.G., Faccioli, C.M., Bianchi, V. and Levis, A.G. (1984)
- 21 Cytogenetic damage in workers exposed to ethylene oxide. Mutat. Res., 138, 185-195 (IARC,
- 22 2008 二次引用)
- 23 Sarto, F., Tomanin, R., Giacomelli, L., Iannini, G. and Cupiraggi, A.R. (1990) The micronucleus assay
- in exfoliated cells of the nose and mouth: application to occupational exposure to chromic acid
- 25 and ethylene oxide. Mutat. Res., 244, 345-351 (IARC, 2008 二次引用)
- Sarto, F., Tornqvist, M.A., Tomanin, R., Bartolucci, G.B., Osterman-Golkar, S.M. and Ehrenberg, L.
- 27 (1991) Studies of biological and chemical monitoring of low-level exposure to ethylene oxide.
- 28 Scand. J. Work Environ. Health, 17, 60-64 (IARC, 2008 二次引用)
- 29 Schroder, J.M., Hoheneck, M., Weis, J. and Dies, H. (1985) Ethylene oxide polyneuropathy: clinical
- follow-up study with morphometric and electron microscopic findings in a sural nerve biopsy.
- 31 J. Neurol., 232, 83-90
- 32 Schulte, P.A., Boeniger, M., Walker, J.T., Schober, S.E., Pereira, M.A., Gulati, D.K., Wojciechowski, J.P.,
- Garza, A., Froelich, R., Strauss, G., Halperin, W.E., Herrick, R. and Griffith, J. (1992) Biologic
- markers in hospital workers exposed to low levels of ethylene oxide. Mutat. Res., 278, 237-251

#### (IARC, 2008 二次引用)

- 2 Schulte, P.A., Walker, J.A., Boeniger, M.F., Tsuchiya, Y. and Halperin, W.E. (1995) Molecular,
- 3 cytogenetic, and hematologic effects of ethylene oxide on female hospital workers. J. Occup.
- 4 Environ. Med., **37** 313-320

- 5 Schulte, P.A., Walker, J.T., Boeniger, M.F., Tsuchiya, Y. & Halperin, W.E. (1995) Molecular,
- 6 cytogenetic, and hematologic effects of ethylene oxide on female hospital workers. J.
- 7 occup.med. Health, **37**, 313–320 (IARC, 2008二次引用)
- 8 Sega, G.A, Generoso, E.E. & Brimer, P.A. (1988) Inhalation exposure-rate of ethylene oxide affects the
- 9 level of DNA breakage and unscheduled DNA synthesis in spermiogenic stages of the mouse.
- 10 Mutat. Res., 209, 177-180 (IARC, 2008 二次引用)
- 11 Sega, GA. & Generoso, E.E. (1988) Measurement of DNA breakage in spermiogenic germ-cell stages
- of mice exposed to ethylene oxide, using an alkaline elution procedure. Mutat. Res., 197,93-99
- 13 (IARC, 2008 二次引用)
- 14 Shore, R.E., Gardner, M.J. and Pannett, B. (1993) Ethylene oxide: an assessment of the epidemiological
- evidence on carcinogenicity. Br. J. Ind. Med., 50, 971-997
- Simmon, VF. (1981) Applications of the Salmonella/microsome assay. ln: Stich, H.P. & San, RH.C., eds,
- 17 Short-tenn Tests for Chemical Carcinogens, New York, Springer-Verlag, pp. 120-126 (IARC,
- 18 1994 二次引用)
- 19 Sisk, S.C., Pluta, L.J., Meyer, K.G., Wong, B.C. & Recio, L. (1997) Assessment of the in vivo
- 20 mutagenicity of ethylene oxide in the tissues of B6C3F1 lacI transgenic mice following
- 21 inhalation exposure. Mutat. Res., **391**, 153–164 (IARC, 2008二次引用)
- Snellings, W.M., Maronpot, R.R., Zelenak, J.P. and Laffoon, C.P. (1982a) Teratology study in Fischer
- 23 344 rats exposed to ethylene oxide by inhalation. Toxicol. Appl. Pharmacol., 64, 476-481
- Snellings, W.M., Weil, C.S. and Maronpot, R.R. (1984a) A subchronic inhalation study on the toxicologic
- potential of ethylene oxide in B6C3F1 mice. Toxicol. Appl. Pharmacol., 76, 510-518
- Snellings, W.M., Weil, C.S. and Maronpot, R.R. (1984b) A two-year inhalation study of the carcinogenic
- potential of ethylene oxide in Fischer 344 rats. Toxicol. Appl. Pharmacol., 75, 105-117
- Snellings, W.M., Zelenak, J.P. and Weil, C.S. (1982b) Effects on reproduction in Fischer 344 rats exposed
- 29 to ethylene oxide by inhalation for one generation. Toxicol. Appl. Pharmacol., 63, 382-388
- 30 Sprinz, H., Matzke, H. and Carter, J. (1982) Neuropathological evaluation of monkeys exposed to
- 31 ethylene and propylene oxide. Final report. Prepared for National Institute for Occupational
- 32 Safety and Health, Cincinnati, Ohio. Midwest Research Institute, Kansas City, Missouri
- 33 (NIOSH Contact No. 210-81-6004; MRI Project No. 7222-B; February 8,1982; NITE 2005

| 1  | 二次引用)                                                                                                                                                          |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Star, E.G. (1980) Mutagenic and cytotoxic effect of ethylene oxide on cell cultures. Zbl. Bakt. Hyg. I. Abt. Orig. B, 170,548-556 (in German; IARC, 2008 二次引用) |
| 3  | Aut. Olig. B, 170,348-330 ( III German, IARC, 2008 — 🗡 3 / H )                                                                                                 |
| 4  | Stayner L, R Smith, J Bailer, S Gilbert, K Steenland, J Dement, D Brown, and R Lemen (1997) Exposure-                                                          |
| 5  | response analysis of risk of respiratory disease associated with occupational exposure to                                                                      |
| 6  | chrysotile asbestos. Occup Environ Med. 1997 Sep; 54 (9): 646-652                                                                                              |
| 7  | Stayner, L., Steenland, K., Greife, A., Hornung, R., Hayes, R.B., Morawetz, J., Ringenburg, V., Elliot, L.                                                     |
| 8  | and Halperin, W. (1993) Exposure-response analysis of cancer mortality in a cohort of workers                                                                  |
| 9  | exposed to ethylene oxide. Am. J. Epidemiol., 138, 787-798                                                                                                     |
| 10 | Steenland K, Stayner L, Deddens J (2004). Mortality analyses in a cohort of 18 235 ethylene oxide                                                              |
| 11 | exposed workers: follow up extended from 1987 to 1998. Occup Environ Med, 61: 2-7.                                                                             |
| 12 | PMID:14691266"                                                                                                                                                 |
| 13 | Steenland K, Whelan E, Deddens J et al. (2003). Ethylene oxide and breast cancer incidence in a cohort                                                         |
| 14 | study of 7576 women (United States) . Cancer Causes & Control, 14: 531–539                                                                                     |
| 15 | Steenland, K., Stayner, L., Greife, A., Halperin, W., Hayes, R., Hornung, R. and Nowlin, S. (1991)                                                             |
| 16 | Mortality among workers exposed to ethylene oxide. N. Engl. J.Med., 324, 1402-1407                                                                             |
| 17 | Stolley, P.D., Soper, K.A., Galloway, S.M., Nichols, W.W., Norman, S.A. and Wolman, S.R. (1984)                                                                |
| 18 | Sister-chromatid exchanges in association with occupational exposure to ethylene oxide. Mutat.                                                                 |
| 19 | Res., 129, 89-102 (IARC, 2008 二次引用)                                                                                                                            |
| 20 | Strekalova, E.Y (1971) Mutagenic action of ethylene oxide on mammals. Toksikol. nov. Promo khim.                                                               |
| 21 | Veshchestv., 12,72-78 (in Russian; IARC, 1994 二次引用)                                                                                                            |
| 22 | Strekalova, E.Y, Chirkova, YM. & Golubovich, Y.Y. (1975) Mutagenic action of ethylene oxide on the                                                             |
| 23 | reproductive and somatic cells of male white rats. Toksikol. nov. Promo khim. Veshchestv., 14,                                                                 |
| 24 | 11-16 (in Russian; IARC, 1994 二次引用 )                                                                                                                           |
| 25 | Swaen GM, Burns C, Teta JM et al. (2009). Mortality study update of ethylene oxide workers in chemical                                                         |
| 26 | manufacturing: a 15 year update. J Occup Environ Med, 51: 714-723                                                                                              |
| 27 | Swaen, G.M.H., Slangen, J.M.M., Ott, M.G., Kusters, E., Van Den Langenbergh, G., Arends, J.W. and                                                              |
| 28 | Zober, A., (1996) Investigation of a cluster of ten cases of Hodgkin's disease in an occupational                                                              |
| 29 | setting. Int. Arch. Occup. Environ. Health, 68, 224-228                                                                                                        |
| 30 | Tan, EL., Cumming, RB. & Hsie, AW (1981) Mutagenicity and cytotoxicity of ethylene oxide in the                                                                |
| 31 | CHO/HGPRT system. Environ. Mutag., 3,683-686 (IARC, 1994 二次引用)                                                                                                 |

Tates, A.D., Boogaard, P.J., Darroudi, F., Natarajan, A.T., Caubo, M.E. and van Sittert, N.J. (1995)

| 1 2 | Biological effect monitoring in industrial workers following incidental exposure to high concentrations of ethylene oxide. Mutat. Res., 329, 63-77 (IARC, 2008 二次引用) |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3   | Tates, A.D., Grunnt, T., Tornqvist, M., Farmer, P.B., van Dam, F.J., van Mossel, H., Schoemaker, H.M.,                                                               |
| 4   | Osterman-Golkar, S., Uebel, C., Zwinderman, A.H., Natarajan, A.T. and Ehrenberg, L. (1991)                                                                           |
| 5   | Biological chemical monitoring of occupational exposure to ethylene oxide. Mutat. Res., 250,                                                                         |
| 6   | 483-497                                                                                                                                                              |
| 7   | Tates, A.D., van Dam, F.J., Natarajan, A.T., van Teylingen, C.M.M., de Zwart, F.A., Zwinderman, A.H.,                                                                |
| 8   | van Sittert, N.J., Nilsen, A., Nilsern, O.G., Zahlsen, K., Magnusson, AL. & Törnqvist, M.                                                                            |
| 9   | (1999) Measurement of HPRT mutations in splenic lymphocytes and haemoglobin adducts                                                                                  |
| 10  | in erythrocytes of Lewis rats exposed to ethylene oxide. Mutat. Res., 431, 397-415 (IARC,                                                                            |
| 11  | 2008二次引用)                                                                                                                                                            |
| 12  | Teta MJ, Sielken RL Jr, Valdez-Flores C (1999). Ethylene oxide cancer risk assessment based on                                                                       |
| 13  | epidemiological data: application of revised regulatory guidelines. Risk Anal, 19: 1135–1155                                                                         |
| 14  | Teta, M.J., Benson, L.O. and Vitale, J.N. (1993) Mortality study of ethylene oxide workers in chemical                                                               |
| 15  | manufacturing: a 10 year update. Br. J. Ind. Med., 50, 704-709                                                                                                       |
| 16  | Tomkins, D.J., Haines, T., Lawrence, M. & Rosa, N. (1993) A study of sister chromatid exchange and                                                                   |
| 17  | somatic cell mutation in hospital workers exposed to ethylene oxide. Environ. Health                                                                                 |
| 18  | Perspectives, 101 (Suppl. 3), 159-164 (IARC, 2008 二次引用)                                                                                                              |
| 19  | Tompkins EM, McLuckie KIE, Jones DJL et al. (2009) . Mutagenicity of DNA adducts derived from                                                                        |
| 20  | ethylene oxide exposure in the pSP189 shuttle vector replicated in human Ad293 cells Mutat                                                                           |
| 21  | Res Genet Toxicol Environ Mutagen, 678: 129-37 (IARC, 2012二次引用)                                                                                                      |
| 22  | Tucker, J.O., Xu, J., Stewart, J., Baciu, Pc. & Ong, T-M. (1986) Detection of sister chromatid exchanges                                                             |
| 23  | induced by volatile genotoxicants. Teratog. Carcinog. Mutag., 6, 15-21 (IARC, 2008 二次引                                                                               |
| 24  | 用)                                                                                                                                                                   |
| 25  | Valdez-Flores C, Sielken RL Jr, Teta MJ ( 2010 ) . Quantitative cancer risk assessment based on NIOSH                                                                |
| 26  | and UCC epidemiological data for workers exposed. Regul Toxicol Pharmacol. 56 ( 3 ):312-                                                                             |
| 27  | 20                                                                                                                                                                   |
| 28  | Van Wijngaarden E., Heltz-Picciotto I ( 2004 ) . A simple approach to performing quantitative cancer risk                                                            |
| 29  | assessment using published results from occupational epidemiology studies. Science of the                                                                            |
| 30  | Total Environment. 332: 81-87                                                                                                                                        |
| 31  | Vergnes, J.S. & Pritts, I.M. (1994) Effects of ethylene on micronucleus formation in the bone marrow                                                                 |
| 32  | of rats and mice following four week of inhalation exposure. Mutat. Res., 324, 87-91 (IARC,                                                                          |
| 33  | 2008 二次引用)                                                                                                                                                           |
| 34  | Victorin, K & Ståhlberg, M. (1988) A method for studying the mutagenicity of sorne gaseous compounds                                                                 |

1 in Salmonella typhimurium. Environ. moL. Mutag., 1 L, 65-77 (IARC, 1994 二次引用) 2 WHO (2003) Concise International Chemical Assessment Document (CICAD) 54 Ethylen oxide 3 Walker VE, Fennell TR, Upton PB, Skopek TR, Prevost V, Shuker DEG, Swenberg JA (1992) Molecular 4 dosimetry of ethylene oxide: formation and persistence of 7-(2-hydroxyethyl)-guanine in 5 DNA following repeated exposures of rats and mice. Cancer Research, 52: 4328–4334 (WHO, 2003 二次引用) 6 7 Walker, V.E., Meng, Q. & Clement, N.L. (1997b) Spectra of mutations in hprt exon 3 of T-cells from 8 F344 rats and lacI transgenic and nontransgenic B6C3F1 mice exposed by inhalation to ethylene 9 oxide. Environ. mol. Mutag., 29 (Suppl. 28), 54 (IARC, 2008 二次引用) 10 Walker, V.E., Sisk, S.C., Upton, P.B., Wong, B.A. & Recio, L. (1997a) In vivo mutagenicity of ethylene 11 oxide at the hprt locus in T-lymphocytes of B6C3F1 lacI transgenic mice following inhalation exposure. Mutat. Res., **392**, 211-222 (IARC, 2008二次引用) 12 13 Walker, VE., Fennell, IR, Upton, P.B., MacNeela, J.P. & Swenberg, J.A (1993) Molecular dosimetry of 14 DNA and hemoglobin adducts in mice and rats exposed to ethylene oxide. Environ. Realth 15 Perspectives, 99, 11-17 (IARC, 2008 二次引用) 16 Watson, W,A.F. (1966) Further evidence of an essential difference between the genetical effects of mono-17 and bifunctional alkylating agents. Mutat. Res., 3, 455-457 (IARC, 1994 二次引用) 18 Weller E, Long N, Smith A, Williams P, Ravi S, Gill J, Henessey R, Skornik W, Brain J, Kimmel C, 19 Kimmel G, Holmes L, Ryan L (1999) Dose-rate effects of ethylene oxide exposure on 20 developmental toxicity. Toxicological Sciences, 50 (2): 259–270 21 Wong O and Trent LS (1993) An epidemiological study of workers potentially exposed to ethylene oxide. Br. J. Ind. Med. 50: 308-316 22 23 Wu K-Y, Scheller N, Ranasinghe A, Upton PB, Walker VE, Swenberg JA (1999b) Molecular dosimetry 24 of endogenous and ethylene oxide-induced N7-(2-hydroxyethyl)guanine for mation in tissues of rodents. Carcinogenesis, 20: 1787-1792 (WHO, 2003 二次引用) 25 26 Yager, J.W. and Benz, R.D. (1982) Sister chromatid exchanges induced in rabbit lymphocytes by ethylene oxide after inhalation exposure. Environ. Mutagen., 4, 121-0134 (IARC, 2008 二次引用) 27 28 Yager, J.W., Hines, C.L. and Spear, R.C. (1983) Exposure to ethylene oxide at work increases sister 29 chromatid exchanges in peripheral lymphocytes. Science, 219, 1221-1223 (IARC, 2008 二次 30 引用) Yager, J.w' (1987) Effect of concentration-time parameters on sister-chromatid exchanges induced in 31 32 rabbit lymphocytes by ethylene oxide inhalation. Mutat. Res., 182, 343-352 (IARC, 2008

次引用)

1 Yong LC, Schulte PA, Wiencke JK, Boeniger MF, Connally LB, Walker JT, Whelan EA, Ward EM 2 ( 2001 ) Hemoglobin adducts and sister chromatid exchanges in hospital workers exposed to 3 ethylene oxide: effects of glutathione S-transferase T1 and M1 genotypes. Cancer Epidemiology, Biomarkers & Prevention, 10:539-550 (WHO, 2003二次引用) 4 5 Zamora, P.O., Benson, J.M., Li, A.P. & Brooks, A.L. (1983) Evaluation of an exposure system using 6 cells grown on collagen gels for detecting highly volatile mutagens in the CHO/HGPRT 7 mutation assay. Environ. Mutag., 5, 795-801 (IARC, 1994 二次引用) 8 Zampollo, A., Zacchetti, O. and Pisati, G. (1984) On ethylene oxide neurotoxicity: report of two cases 9 of peripheral neuropathy. Ital. J. Neurol. Sci., 5, 59-62 Zhong, B.-Z., Gu, Z.-W, Whong, W-Z., Wallace, WE. & Ong, T.-M. (1992) Comparative study of 10 micronucleus assay and chromosomal aberration analysis in V79 cells exposed to ethylene 11 12 oxide. Teratog. Carcinog. Mutag., IL, 227-233 (IARC, 2008 二次引用) Zijlstra, J.A. & Vogel, E.W (1988) The ratio of induced recessive lethals to ring-X loss has prognostic 13 14 value in terms of functionality of chemical mutagens in Drosophila mefanogaster. Mutat. Res., 15 201, 27-38 (IARC, 1994 二次引用) 16 van Sittert, N.J., de Jong, G., Clare, M.G., Davies, R, Dean, B.J., Wren, LJ. & Wright, AS. (1985) 17 Cytogenetic, immunological, and haematological effects in workers in an ethylene oxide 18 manufacturing plant. Br. J ind. Med., 42, 19-26 (IARC, 2008 二次引用) 19 環境省(2003)化学物質の環境リスク評価 第2巻(平成15年3月) 20 森晃爾, 大西晃生, 藤代一也, 井上尚英 (1990) 酸化エチレン慢性毒性の性差 1. 末梢神経障 21 害. 産業医科大学雑誌,12(1):61-66 森晃爾、藤代一也、井上尚英(1992)酸化エチレン慢性曝露による貧血および赤血球グルタチ 22 オン代謝変化の回復性実験 産業医学 34:264-267 23 24 中央労働災害防止協会 ( 2016 ) 労 働 安 全 衛 生 法 第 65 条 の 2 第 2 項 別 表 、 管理濃度 25 http://www.jaish.gr.jp/horei/hor1-18/hor1-18-2-1-2.html (2016年7月アクセス) 日本産業衛生学会(1990)許容濃度提案理由書及び許容濃度等の勧告、産業医学 32 巻 406 26 27 日本産業衛生学会(1996)許容濃度提案理由書及び許容濃度等の勧告、産業医学 38 巻 195 日本産業衛生学会(2013)許容濃度提案理由書及び許容濃度等の勧告、産業医学 55 巻 252 28

## 2 暴露評価と各暴露シナリオでのリスク推計

### 2 3 まとめと結論

3 エチレンオキシドについて、人健康に対するリスク評価を行った結果とまとめを示す。

4

5

7

8

9

10

1

#### 3 - 1 有害性評価

6 リスク推計に用いた有害性情報(有害性評価値)を表 3-1 に整理する。

エチレンオキシドの有害性評価値は、経口経路の一般毒性で  $1.72\times10^{-3}$  mg/kg/day、吸入経路の一般毒性で  $4.3\times10^{-3}$  mg/m³、経口経路の生殖発生毒性で  $2.45\times10^{-2}$  mg/kg/day、吸入経路の生殖発生毒性で  $6.13\times10^{-2}$  mg/m³、経口経路の発がん性で  $3.68\times10^{-5}$  mg/kg/day(実質安全量)吸入経路の発がん性で  $9.20\times10^{-5}$  mg/m³(実質安全量)であった。リスク推計については、経口と吸入の経路別に行った。

111213

表 3-1 有害性情報のまとめ

| れ りょう日に同報ののこの                     |                                            |                                                       |                                            |                                                                     |                                            |                                                             |
|-----------------------------------|--------------------------------------------|-------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------|
| <b>+</b> =#                       | 人健康                                        |                                                       |                                            |                                                                     |                                            |                                                             |
| 有害性                               | 一般毒性                                       |                                                       | 生列                                         | 直発生毒性                                                               | 発がん性                                       |                                                             |
| 評価項目                              | 経口経路                                       | 吸入経路                                                  | 経口経路                                       | 吸入経路                                                                | 経口経路                                       | 吸入経路                                                        |
| NOEL 等、<br>ユニットリスク、ス<br>ロープ ファクター | -                                          | LOAEC<br>0.43 mg/m <sup>3 (注 1)</sup>                 | -                                          | NOAEC<br>3.3 mg/m <sup>3 (注1)</sup>                                 | -                                          | 1.09×10 <sup>-4</sup><br>(μg/m <sup>3</sup> ) <sup>-1</sup> |
| 不 確 実 係<br>数積(UFs)                |                                            | 100                                                   |                                            | 100                                                                 | -                                          | -                                                           |
| 有害性<br>評価値                        | 1.72×10 <sup>-3</sup><br>mg/kg/day<br>(注2) | 4.3×10 <sup>-3</sup><br>mg/m <sup>3</sup>             | 2.45×10 <sup>-2</sup><br>mg/kg/day<br>(注2) | 6.13×10 <sup>-2</sup><br>mg/m <sup>3</sup>                          | 3.68×10 <sup>-5</sup><br>mg/kg/day<br>(注2) | 9.20×10 <sup>-5</sup><br>mg/m <sup>3</sup>                  |
| NOEL 等の<br>根拠                     | -                                          | 作業環境濃度<br>TWA: 1 ppm<br>(1.83 mg/m³)、<br>ヒト神経毒性<br>影響 | -                                          | ラット二世代繁殖吸<br>入試験(1日6時間・交配前は週5<br>日、その後は毎日入着床後死亡、<br>生児減少、児の体<br>重減少 | -                                          | ラット 2 年間吸入<br>試験、雌単核球<br>性白血病、原発<br>性脳腫瘍                    |

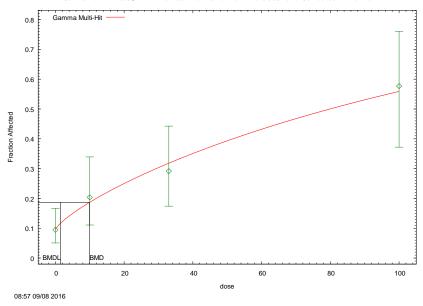
- 14 注1:1日24時間、週7日の吸入暴露に補正した濃度
- 15 注2:吸入の評価値からの換算値

16

- 17 3-2 暴露評価とリスク推計
- 18 3-3 考察とまとめ
- 19 3-4 補足事項

# 20 4 【付属資料】

21 4-1 ベンチマークドース法による動物試験の用量反応解析


# Snellings et al., 1984b; Garman et al., 1985; Garman and Snellings, 1986 の雌ラット単核球性白血病

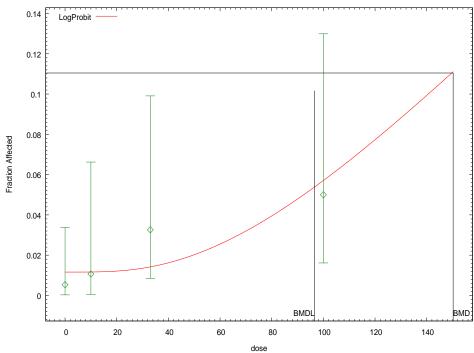
| Dose ( ppm ) | No. of animal | Incidence |
|--------------|---------------|-----------|
|              | examined      |           |
| 0            | 116           | 11        |
| 10           | 54            | 11        |
| 33           | 48            | 14        |
| 100          | 26            | 15        |

1 2

3

| Model Name  | <b>Option File Name</b>   | BMC <sub>10</sub> | BMCL <sub>10</sub> | BMC <sub>10</sub> /BMCL <sub>10</sub> | P-value | AIC     |
|-------------|---------------------------|-------------------|--------------------|---------------------------------------|---------|---------|
| Gamma       | Gam-BMR10-Restrict.opt    | 13.601            | 9.448              | 1.440                                 | 0.750   | 225.271 |
| Logistic    | Log-BMR10.opt             | 26.157            | 20.550             | 1.273                                 | 0.249   | 227.507 |
| LogLogistic | Lnl-BMR10-Restrict.opt    | 10.928            | 6.946              | 1.573                                 | 0.780   | 225.211 |
| LogProbit   | Lnp-BMR10-Restrict.opt    | 23.102            | 16.352             | 1.413                                 | 0.210   | 227.681 |
| Multistage  | Mst2-BMR10-Restrict.opt   | 13.601            | 9.448              | 1.440                                 | 0.750   | 225.271 |
| Multistage  | Mst3-BMR10-Restrict.opt   | 13.601            | 9.448              | 1.440                                 | 0.750   | 225.271 |
| Probit      | Pro-BMR10.opt             | 24.464            | 19.322             | 1.266                                 | 0.293   | 227.163 |
| Weibull     | Wei-BMR10-Restrict.opt    | 13.601            | 9.448              | 1.440                                 | 0.750   | 225.271 |
| Quantal-    | Qln-BMR10.opt             | 13.601            | 9.448              | 1.440                                 | 0.750   | 225.271 |
| Linear      |                           |                   |                    |                                       |         |         |
| Gamma       | Gam-BMR10-Unrestrict.opt  | 9.932             | 1.539              | 6.454                                 | 0.591   | 227.006 |
| LogLogistic | Lnl-BMR10-Unrestrict.opt  | 10.671            | 2.107              | 5.064                                 | 0.483   | 227.209 |
| LogProbit   | Lnp-BMR10-Unrestrict.opt  | 10.674            | 2.334              | 4.572                                 | 0.418   | 227.375 |
| Multistage  | Mst2-BMR10-Unrestrict.opt | 12.226            | 6.678              | 1.831                                 | 0.483   | 227.197 |
| Multistage  | Mst3-BMR10-Unrestrict.opt | 7.822             | 3.050              | 2.565                                 | NA      | 228.716 |
| Weibull     | Wei-BMR10-Unrestrict.opt  | 10.229            | 1.868              | 5.477                                 | 0.571   | 227.037 |




Snellings et al., 1984b; Garman et al., 1985; Garman and Snellings, 1986 の雌ラット原発性脳腫瘍

| Dose (ppm) | No. of animal | Incidence |
|------------|---------------|-----------|
|            | examined      |           |
| 0          | 188           | 1         |
| 10         | 94            | 1         |
| 33         | 92            | 3         |
| 100        | 80            | 4         |

| Model Name     | Option File Name         | BMC <sub>10</sub> | BMCL <sub>10</sub> | BMC <sub>10</sub> /BMCL <sub>10</sub> | P-value | AIC    |
|----------------|--------------------------|-------------------|--------------------|---------------------------------------|---------|--------|
| Gamma          | Gam-BMR10-Restrict.opt   | 195.061           |                    |                                       | 0.800   | 86.163 |
| Logistic       | Log-BMR10.opt            | 140.894           | 100.196            | 1.406                                 | 0.435   | 87.245 |
| LogLogistic    | Lnl-BMR10-Restrict.opt   | 200.328           | 99.676             | 2.010                                 | 0.810   | 86.141 |
| LogProbit      | Lnp-BMR10-Restrict.opt   | 150.221           | 96.529             | 1.556                                 | 0.227   | 88.280 |
| Multistage     | Mst2-BMR10-Restrict.opt  | 195.061           | 99.659             | 1.957                                 | 0.800   | 86.163 |
| Multistage     | Mst3-BMR10-Restrict.opt  | 195.061           | 99.659             | 1.957                                 | 0.800   | 86.163 |
| Probit         | Pro-BMR10.opt            | 145.885           | 99.507             | 1.466                                 | 0.467   | 87.116 |
| Weibull        | Wei-BMR10-Restrict.opt   | 195.061           | 99.495             | 1.961                                 | 0.800   | 86.163 |
| Quantal-Linear | Qln-BMR10.opt            | 195.063           | 101.318            | 1.925                                 | 0.800   | 86.163 |
| Gamma          | Gam-BMR10-Unrestrict.opt | 276.806           | 101.364            | 2.731                                 | 0.634   | 87.973 |
| LogLogistic    | Lnl-BMR10-Unrestrict.opt | 287.226           | 101.443            | 2.831                                 | 0.639   | 87.967 |
| LogProbit      | Lnp-BMR10-Unrestrict.opt | 333.444           | 102.201            | 3.263                                 | 0.671   | 87.926 |

| Multistage | Mst2-BMR10-              | computation failed. BMD is larger than |         | 0.764 | 87.840 |        |
|------------|--------------------------|----------------------------------------|---------|-------|--------|--------|
|            | Unrestrict.opt           | three times maximum input doses.       |         |       |        |        |
| Multistage | Mst3-BMR10-              | computation failed. BMD is larger than |         | NA    | 89.746 |        |
|            | Unrestrict.opt           | three times maximum input doses.       |         |       |        |        |
| Weibull    | Wei-BMR10-Unrestrict.opt | 280.917                                | 101.382 | 2.771 | 0.636  | 87.971 |

 $Log Probit\ Model,\ with\ BMR\ of\ 10\%\ Extra\ Risk\ for\ the\ BMD\ and\ 0.95\ Lower\ Confidence\ Limit\ for\ the\ BMDL$ 



2

- Ⅰ 4-2 ヒト疫学データの用量反応解析
- 2 4-2-1 本評価における用量反応解析に使用したデータ

3

4 1-5-5の表 1-12に示したヒト 、ヒト 、ヒト 方式の解析に下記データを使用した。

5 6

ラグタイム 15 年における Lymphoid cancer ( 非ホジキンリンパ腫、白血病、骨髄腫 ) 死亡に関するデータ

| 累積曝露 ppm-  | 平均值      | 人数   | オッズ比(男女)                     |
|------------|----------|------|------------------------------|
| days       | ppm-days | (男女) | (significant positive trend) |
| 0          | 0        | 9    | 1                            |
| > 0-1200   | 446      | 10   | 1.75 ( 0.59-5.25 )           |
| 1201-3680  | 2143     | 11   | 3.15 ( 1.04-9.49 )           |
| 3681-13500 | 7335     | 10   | 2.44 ( 0.80-7.50 )           |
| >13500     | 39927    | 13   | 3.00 ( 1.02-8.45 )           |

- 7 EPA (2016) の Table D-26、D-28、D-54 より
- 8 罹患背景頻度 = 0.03055 (EPA, 2016 の TableE-1 より)

9

10 ラグタイム 15 年における乳がん罹患に関するデータ

| 累 積 曝 露    | 平均值      | 人数  | オッズ比 (女)                     |  |
|------------|----------|-----|------------------------------|--|
| ppm-days   | ppm-days | (女) | (significant positive trend) |  |
| 0          | 0        | 81  | 1                            |  |
| > 0-647    | 280      | 45  | 1.06 ( 0.66-1.71 )           |  |
| 647-2026   | 1250     | 46  | 0.99 ( 0.61-1.60 )           |  |
| 2026-4919  | 3300     | 46  | 1.24 ( 0.76-2.00 )           |  |
| 4919-14620 | 8300     | 45  | 1.42 ( 0.88-2.29 )           |  |
| >14620     | 36100    | 48  | 1.87 ( 1.12-3.10 )           |  |

- 11 EPA (2016) の Table 4-12、D-54、Figure 4-6、Steenland ら (2003) の Table 3、5 より
- 12 平均曝露量は EPA (2016) の図 (Figure 4-6) から読み取った値を用いた
- 13 罹患背景頻度 = 0.123 (EPA, 2016 の P. 4-56 の本文より)

1415

16 4-2-2 van Wijngaarden と Hertz-Picciotto (2004) の方法による解析

17

18 van Wijngaarden と Hertz-Picciotto (2004)の論文では、下記に示す計算方法による UR 算出が提 19 唱されている。

2021

- コホート又は症例対象研究のリスク比又は率比(RR)は次式で定義される。
- RR=1+bx
- 23 (RR:リスク比又は率比、b:発がん性ポテンシャルの傾き、X:暴露濃度)

- 25 リスク比又は率比(本評価書ではオッズ比)の回帰直線の傾き βの平均値及び標準誤差 SE は、
- 26 次式で与えられる。

$$\hat{\beta} = \frac{\sum w_j x_j RR_j - \sum w_j x_j}{\sum w_j x_j^2}$$

( .

2 (β:回帰直線の傾き、Wj:分散による重み(1/分散)、Xj:暴露濃度)

3

1

$$\hat{S}E(\hat{\beta}) = \sqrt{\frac{1}{\sum w_j x_j^2}}$$
 (B)

5 (SE:標準誤差、Wi:分散による重み(1/分散)、Xi:暴露濃度)

6

4

7 また、オッズ比の分散は次式で示される。

$$var[ln(RR_j)] = \left[\frac{ln(upperCI_j) - ln(RR_j)}{1.96}\right]^2$$
 (D)

(RRj:オッズ比、upperCIj:95%信頼区間の上限)

9 10

8

11 回帰直線の傾きの 95%信頼区間の上限値は、(A)式(B)式で得られた  $\beta$  及び SE を用い次式 12 で示される。

13

$$\beta_{\text{(upperCL)}} = \beta + \text{SE} \times 1.96 \quad (C)$$

15

16 背景生涯リスクに対する 1%過剰生涯リスク RR<sub>TD1</sub> は次式で示される。

(RR<sub>TDI</sub>: 1%過剰生涯リスク、R(0): 背景生涯リスク)

$$RR_{\text{TD1}} = 0.99 + \frac{0.01}{R(0)}$$

 $R(0) \qquad (E)$ 

18 19

20

21

1%過剰生涯リスクとなる濃度 TD1 は次式で示される。

$$TD1 = \frac{RR_{TD1} - 1}{\beta}$$
 (F)

22 (TD1:1%過剰生涯リスクとなる暴露濃度、RR<sub>TDI</sub>:1%過剰生涯リスク、β:回帰直線の傾

23 き)

24

25 1%過剰生涯リスクとなる濃度(TD1)の 95%信頼区間の下限値(LCL)は、(C)式で得られた

 $\beta$  の 95%上限値を (F) 式の  $\beta$  に代入することによって得られる。

2627

28 ある暴露濃度 Xp における過剰生涯リスク (ELR: excess lifetime risk) は次式で示される

$$ELR = \beta \times x_p \times R(0) \tag{G}$$

30 (ELR:過剰生涯リスク、β:回帰直線の傾き、R(0):背景生涯リスク)

31

32 ユニットリスク UR は、1%過剰生涯リスクとなる濃度(TD1)の 95%信頼区間の下限値(LCL)

```
1
    の直線外挿により次式で示される。
        UR=0.01/LCL (H)
2
3
4
    上記の式を用いた計算結果を以下に示す。
5
6
    ・Lymphoid cancer (非ホジキンリンパ腫、白血病、骨髄腫)
7
8
       傾き β = 24.64 ppm
9
       傾き β の 95%上限値 = 60.78 ppm
10
       TD1 下限値 (LCL) = 0.0052 ppm
       UR = 0.00105/\mu g/m^3
11
12
    ・乳がん
13
14
       傾き β = 5.22 ppm
15
       傾き β の 95%上限値 = 12.49 ppm
16
       TD1 下限値 (LCL) = 0.0057 ppm
17
18
       UR = 0.000957/\mu g/m^3
19
20
       UR の和 (0.002/\mu g/m^3) に対する VSD = 4.99 \times 10^{-6} \, mg/m^3
21
22
23
    4-2-3 平均相対リスクモデルによる算出方法
    1-5-5の表 1-12 におけるヒト 、ヒト 方式のユニットリスク算出方法を以下に示す。
24
25
    次式の平均相対リスクモデルによりユニットリスク(UR)を算出した。
26
    UR = P_0(RR-1)/X
27
    P<sub>0</sub>:背景頻度
28
    RR:相対リスク(本評価ではオッズ比を用いた)
29
    X:平均生涯曝露濃度
30
    平均生涯曝露濃度 = 累積平均暴露[ppm-d]×(1y/365 d)×(8h/24h)×(5d/7d)/65y(15 年のラグ
31
    タイムを考慮)
```

32