

Enabling Transboundary CCS in the Asia Pacific

Presentation for "CCS International Symposium" hosted by Japan's Ministry of Environment

25th March 2025

Content

 \odot Why transboundary CO₂ storage in Australia?

• Why deepC Store?

• What challenges do we address together?

Why transboundary CO₂ storage in Australia?

- Australia has ~870 years* worth of storage.
- CO₂ storage acreages accessible, with abundant technical information.
- Australia is a party to the London Protocol, with well established CCS legislation and regulation.

Total 434 Billion Tonnes

* Australia's 2020 net emissions was ~500 million tonnes CO₂-e as per "Australia's NDC Communication 2022" (Commonwealth of Australia)

Why deepC Store ("dCS")?

• dCS is a CCS developer business.

 dCS offtakes CO₂ from industrial emitters in Australia & APAC region, obtains CO₂ storage acreages and deploys ~ 3 MTPA commercial scale floating CCS hub, "CStore1"

dCS's Australian offshore CO₂ storage acreages

G-13-AP (former GHG23-1): Challis & Cassini

• dCS awarded 2 CO ₂ storage acreages that
cater to multiple CStore1s.

 ○ dCS, with Azuli and J-Power, aim to achieve "FID ready" status by 2027 & commence operations by 2030.

Acreage	G-14-AP	G-13-AP
Acreage Size	~ 9,500 km²	~ 1,500 km²
CO ₂ Storage Capacity	> 1 billion tonnes	~ 80 million tonnes
Data	Good well control, extensive 2D and some 3D seismic coverage	Good well control, extensive 2D and 3D seismic coverage
Storage targets	Saline aquifers	Depleted fields and underlying saline aquifer

G-14-AP (former GHG23-2): Carbine & Leveque

CStore1 Development Status

What challenges do we address together?

\odot Harmonisation of regulation across transboundary CCS value chain*

- National Action List (CO₂ specification)
- Physical point(s) to subtract CO₂ emissions ("Transfer Point")
- Attribution of carbon credits
- Methodology to calculate quantity of CO₂ emissions reduced
- Data sharing for CO₂ emissions reduction & carbon credits
- o CO₂ MRV

Improved social acceptance of transboundary CCS

\odot R&D for CCS unit cost reduction

Example of Ship-transportation CCS "Transfer Point"

* Courtesy to CCUS Network Australia for highlighting key matters to address in bilateral agreements / arrangement and to aim harmonizing in APAC.

o deep(C)slore

What challenges do we address together?

- Lab-scale R&D to store & handle LP LCO₂ completed in Feb 2025.
- Feedback throughout R&D provided by ENEOS Xplora, Low Emissions Technology Australia, Mitsui O.S.K. Lines & Osaka Gas.
- No technical showstoppers caused by LP LCO₂ were identified. Valuable knowledge gained to inform design and operation of LP LCO₂ ships and CCUS projects.
- FEnEx CRC publicly released a summary report: https://www.fenex.org.au/resources/reports/

Site visit by Consulate General of Japan in Perth

R&D Showcase to Korean CCUS Industry in Seoul

Project Summary Report [Public Version]

Fuyu Jiao	The University of Western Australia		
Idoko Job John	The University of Western Australia		
Vincent Jusko	The University of Western Australia		
Saif Al Ghafri	The University of Western Australia - Fut	are Energy Exports CRC	
Eric F. May	The University of Western Australia - Fut	are Energy Exports CRC	
Woojin Go	Seoul National University		
Geonwoo Jeong	Seoul National University		
Junyup Park	Seoul National University		
Yutaek Seo	Seoul National University		
Luke P. McElroy	Future Energy Exports CRC		
Daein Cha	deepC Store		
	XOX	FUTURE ENERGY	daga Cistaria

deep()store

Summary

- \odot Australia is an attractive jurisdiction for CO₂ storage.
- dCS is developing large-scale CO₂ storages in Australia for enabling transboundary CCS in APAC
- Challenges to collaboratively address are:
 - harmonisation of regulation;
 - o improved social acceptance; and
 - R&D for CCS unit cost reduction

Thank you

deepC Store Pty Ltd ACN: 653 059 164 Address: Level 8, 167 St Georges Terrace, Perth WA 6000, Australiaa deepcstore.com