海洋生物への CO2 影響に係る文献等の整理結果図表集

(2023年度)

- 1. 図1 生息域別文献数の推移
- 2. 図2 生物分類群別文献数の推移
- 3.表1 海洋生物への CO2 影響に係る文献整理結果
- 4.表2 実海域における海洋酸性化の影響に係る文献整理結果 (2008 年~2021 年)
- 5. 表3 海洋酸性化及び自然界の CO2 湧出域による生物影響に係る文献整理 結果(2022 年)
- 6. 表4 生息域別文献数
- 7. 表5 生物分類群別文献数

図1 生息域別文献数の推移

※生物分類群に分類できない文献は除く。

図2 生物分類群別文献数の推移

表1(1) 海洋生物へのCO2影響に係る文献整理結果

古次の八変	<u>шар н н.</u>		部 左 夜 日	生工力 仍能	4 2 5	pC0 ₂ [μatm]	∆ pC02	温	度	F	ъH	実題	NZ	-	11 //
高次の分類	供與生物	込 駅州间	計価項目	生活史段階	生活史	実験区	対象区	[µatm]	実験区	対象区	実験区	対象区	実験区	対象区	影響	四典
						584. 25	431.55	153	9.6	9.6	7.76	7.89	33.6	33. 5		
						697.97	414. 12	284	13. 4	13. 5	7. 80	7.99	36.8	36.8	なし(pH7.7:p=0.811)	
		101777				879.35	347. 7	532	17. 0	17. 2	7.64	8. 07	35.6	36.8		
		12週間	生存			1711.62	431.55	1, 280	9.6	9.6	7.26	7.89	33.6	33. 5		Martin N. Clusella-Trullas S. & Pobinson TR
	Trochia cingulata			成目	7-8年	1668.86	414. 12	1, 255	13. 6	13. 5	7.47	7.99	36.8	36.8	なし(pH7.5:p=0.106)	(2022) Predicted changes in temperature, more than acidification affect the shell
腹足綱	(レールマキレイシガイ)			(殻高:15-20 mm)	(アッキガイ科)	1969. 27	347. 7	1, 622	17. 3	17. 2	7. 29	8. 07	35. 5	36.8		morphology and survival of the girdled dogwhelk. Trochia cingulata (Linnaeus, 1771).
						584. 25	431.55	153	9.6	9. 6	7. 76	7.89	33. 6	33. 5	Set. (. (0. 004)	Journal of Molluscan Studies, 88(2): eyac011.
		· 6调間	貝殼強度			697. 97	414. 12	284	13. 4	13. 5	7. 80	7. 99	36.8	36. 8	減少(p<0.001)	
		·12週間	殻厚さ			1711.62	431.55	1, 280	9.6	9.6	7. 26	7.89	33.6	33. 5	なし	
			殻の縦横比(spire index)			697.97	414. 12	284	13. 4	13. 5	7.80	7.99	36.8	36.8	なし	
		24hnf				999	478	521	17. 3	17. 5	7. 71	7.99	35. 18	35. 18		
		2 1101				1161	593	568	19.4	19. 3	7.66	7.91	35. 18	35. 18		
		72hpf	孵化率			999	478	521	17.3	17.5	7. 71	7.99	35.18	35.18	なし(p>0.05)	
						1161	593	568	19.4	19.3	7.66	7.91	35.18	35.18		
		96hpf				1161	470 593	568	17.3	19.3	7.71	7.99	35.18	35.18		
						999	478	521	17.3	17.5	7.71	7.99	35. 18	35. 18		1
		24hpt	正常な殻の形成の可能性			1161	593	568	19. 4	19. 3	7.66	7. 91	35. 18	35. 18	低下(p<0.001)	
		72hpf	正常な鼓の形成の可能性			999	478	521	17. 3	17. 5	7. 71	7. 99	35. 18	35. 18	低下(n<0_001)	Kavousi J. Roussel S. Martin S. et al. (2022)
腹足綱	Haliotis tuberculata	, 2np :		幼生	5-20年	1161	593	568	19. 4	19. 3	7.66	7. 91	35. 18	35. 18		Combined effects of ocean warming and acidification on the larval stages of the
	(21377379)	24hpf				999	478	521	17.3	17.5	7.71	7.99	35.18	35.18	測定不可	European abalone Haliotis tuberculata. Marine Pollution Bulletin, 175: 113131.
			設長				593 478	508	19.4	19.3	7.00	7.91	35.18	35.18		-
		72hpf				1161	593	568	19. 4	19. 3	7.66	7. 91	35. 18	35. 18	減少 (p=0.008)	
		0.4hm.f				999	478	521	17. 3	17. 5	7. 71	7. 99	35. 18	35. 18	満小(0,010)	1
		Z4npi	勢の石灰化			1161	593	568	19. 4	19. 3	7.66	7. 91	35. 18	35. 18	減少(p=0.019)	
		72hpf				999	478	521	17. 3	17. 5	7. 71	7. 99	35. 18	35. 18	減少 (p=0.008)	
						1161	593	568	19.4	19.3	7.66	7.91	35. 18	35.18		-
		72hpf	呼吸速度			1161	478 593	521	17.3	17.5	7.71	7.99	35.18	35.18	なし (p=0.440)	
			生方率			1180	302	788	27	27	7.60	8 1	34	33	til (n)0 05)	
						1100	392	700	27	27	7.0	0.1	34	33		
二枚貝綱	Tridacna squamosa (ヒレシャコガイ)	6週間		稚貝 (0.5齡:平均殻長25.93 mm)	2-5年	1180	392	/88	21	21	7.0	ö. 1	34	33	/μ C (p>0.05)	juvenile vulnerability of symbiont-bearing giant clams to ocean acidification. Science of The Total
			石火化速度(殻)			1180	392	/88	27	27	7.6	8.1	34	33	低下 (p<0.05)	Environment, 812, 152265.
			代謝(光合成速度)			1180	392	788	27	27	7.6	8.1	34	33	低下 (p<0.05)	
			成長(殻高)			1729	678.5	1, 051	16.14	16.09	7.415	7.779	35.07	35.07	減少(p<0.01) Mann Whitney U検定	-
						1729	678.5	1,051	16.14	16.09	7.415	7.779	35.07	35.07	減少(p<0.05)L使走 たし(n>0.05)Mann Whitney U検定	-
	Argopecten purpuratus		純石灰化			1729	678.5	1,051	16. 14	16.09	7. 415	7. 779	35. 07	35. 07	減少(p<0.05) Mann Whitney U検定	- Córdova-Rodríguez K. Elve-Sainte-Marie J. Fern
					数年-10年程度	1729	678.5	1, 051	16. 14	16.09	7. 415	7.779	35. 07	35. 07	増加(p<0.05) Mann Whitney U検定	ández E, et al. (2022) Effect of low pH on growth and shell mechanical properties of the
二枚貝綱	(ムラサキヒヨクガイ;ムラサキイ タヤガイ)	28日間	破砕力(左右の殻片)	イモリ	(Argopecten属)	1729	678.5	1, 051	16. 14	16.09	7. 415	7. 779	35.07	35.07	なし(p>0.05) Mann Whitney U検定	Peruvian scallop Argopecten purpuratus (Lamarck, 1819). Marine Environmental
			伸展性(左右の殻片)			1729	678.5	1, 051	16.14	16.09	7. 415	7.779	35.07	35.07	なし(p>0.05) Mann Whitney U検定	Research, 177: 105639.
			殻片(valve)の微小硬度			1729	678. 5	1, 051	16. 14	16.09	7. 415	7. 779	35. 07	35. 07	増加(p<0.05) Mann Whitney U検定	1
			カルサイト含有量%			1729	678.5	1, 051	16.14	16.09	7. 415	7. 779	35.07	35.07	なし(p>0.05)	4
			アラゴナイト含有量%			1729	678.5	1, 051	16.14	16.09	7. 415	7.779	35.07	35.07	なし(p>0.05)	

表1(2) 海洋生物へのCO2影響に係る文献整理結果

古中の八石	/// 3-5 // d/		新江夜日	는 또 는 다.바	* * *	pC0 ₂ [μatm]	∆ pC02	温	度	F	ьH	実	険区	R a	U.#
高次の方類	供與土物	武职刑间	ᄩᆊᄪᄲᆋᄇ	生活实权陌	生活史	実験区	対象区	[µatm]	実験区	対象区	実験区	対象区	実験区	対象区	10 T	
						1307	680	627	13.45	13.37	7.7	7.9	5 36	36	<i>t</i> >1	
			# 7			1660	808	852	10.2	19. 12	7.65	7.9	3 30 3 36	36	4 U	
			±17			1307	680	627	13.45	13.37	7.7	7.9	5 36	36	* > I	
						1449	808	852	10.2	19. 12	7.65	7.9	3 30 3 36	30 36	なし	
						1307	680	627	13.45	13.37	7.7	7.9	5 36	36		
						1449	740 808	852	16.2	16. 2	7.68	7.9	3 36 3 36	36 36	なし	
			成長(<u> </u>			1307	680	627	13.45	13.37	7.7	7.9	5 36	36	なし?	
						1449 1660	740 808	709	16. 2 19. 2	16. 2 19. 12	7.68 7.65	7.9 7.9	3 36 3 36	36 36	なし? 減少(p=0.020)t検定	
				•		1307	680	627	13. 45	13. 37	7.7	7.9	5 36	36		
						1449 1660	740 808	709	16. 2 19. 2	16. 2 19. 12	7.68 7.65	7.9 7.9	3 36 3 36	36 36	增加(p=0.041)	
			成長(乾重量)			1307	680	627	13. 45	13. 37	7.7	7.9	5 36	36	減少(p=0.007)t検定	- Harnev E. Rastrick SP. Artigaud S. et al.
二枚貝綱	Pecten maximus (ヨーロッパホタテガイ)	31日間		稚貝 (後期 :spat)	数年-20年以上 (Pecten属)	1449	740	709	16.2	16.2	7.68	7.9	3 36	36	なし?	(2022) Impacts of ocean acidification and warming on post-larval growth and metabolism
				-		1307	680	627	13. 45	13. 37	7.03	7.9	5 36	36	减少(p=0.033) L快足	(Pecten maximus L.). bioRxiv, 2022-12.
						1449	740	709	16.2	16. 2	7.68	7.9	3 36	36	なし	
			成長(殻重量)			1660	808 680	852 627	19. 2 13. 45	19.12 13.37	7.65	7.9	3 36 5 36	36 36	增加(p=0.043)	
						1449	740	709	16. 2	16. 2	7. 68	7.9	3 36	36	なし?	
				-		1660 1307	808 680	852 627	19.2	19.12 13.37	7.65	7.9 7.9	3 36 5 36	36 36	なし(p=0.056)	-
						1449	740	709	16. 2	16. 2	7. 68	7.9	3 36	36	增加(p=0.001)	
			成長(肥満度)			1660	808	852	19.2	19.12	7.65	7.9	3 36	36		-
						1449	740	709	16. 2	16. 2	7.68	7.9	3 36	36	不明	
						1660	808	852	19.2	19.12	7.65	7.9	3 36	36		-
			(N-241 / TA + 14/ #)			1307	680 808	852	13.45	13. 37	7.65	7.9 7.9	5 36 3 36	36 36	增加(p<0.00001)	
			代謝(酸素消費)			1307	680	627	13. 45	13. 37	7.7	7.9	5 36	36	減少 (p<0.05)	
						1660 808	808 344	852 464	19.2 6.1	19.12 5.9	7.65	7.9 8.0	3 36 4 32.4	36 32.5	なし	
						851	371	480	9. 1	9. 1	7. 71	8.0	5 32. 4	32. 4		
			呼吸速度			2137	401 344	369	11.9 6.3	12 5 9	7.75	8.0 8.0	2 32.3 4 32.5	32.3	減少(有意差あり)	
						1945	371	1, 574	8.5	9. 1	7. 37	8.0	5 32.3	32. 4		
						2129	401	1, 728	12	12	7.34	8.0	2 32.3	32.3		-
						808	344 371	464	9.1	5. 9 9. 1	7.71	8.0	4 32.4 5 32.4	32. 5 32. 4		
		77日間	外套膜外液pH(EPF pH)			770	401	369	11.9	12	7. 75	i 8. 0	2 32.3	32. 3	減少(有意差あり)	
						2137 1945	344 371	1, 793	6.3 8.5	5. 9 9. 1	7.32	8.0 8.0	4 32.5 5 32.3	32.5 32.4		Cameron LP. Grabowski JH. & Ries JB. (2022)
二枚貝綱	Placopecten magellanicus			成貝	最大12年	2129	401	1, 728	12	12	7.34	8.0	2 32.3	32.3		Effects of elevated pCO ₂ and temperature on the calcification rate, survival, extrapallial
- 0000417	(マセランツキヒカイ)			(808	344	464	6.1	5.9	7.73	8.0	4 32.4	32.5		fluid chemistry, and respiration of the Atlantic Sea scallop Placopecten magellanicus. Limnology and Oceanography. 67(8): 1670-1686.
			石匠化清舟			770	401	369	11.9	9. 1	7.75	8. 0	2 32. 4 2 32. 3	32. 4	减小(古辛羊专口)	
			口次化还反			2137	344	1, 793	6. 3	5.9	7. 32	8.0	4 32.5	32. 5	/風少 (有忌左のり)	
						1945 2129	371 401	1, 574 1, 728	8.5	9. 1 12	7.37 7.34	8.0 8.0	5 32.3 2 32.3	32. 4 32. 3		
						808	344	464	6. 1	5. 9	7. 73	8.0	4 32. 4	32. 5		1
						851	371 401	480	9.1 11 0	9. 1 12	7.71	8.0	5 32.4 2 32.3	32.4		
		85日間	生残			2137	344	1, 793	6.3	5.9	7. 32	8.0	4 32.5	32. 5	減少(有意差あり)	
						1945	371	1, 574	8.5	9.1	7. 37	8.0	5 32.3	32.4		
						2129	401	1, 728	12	1 12	. 1.34	δ. 0	د sz. 3	32.3		

表1(3) 海洋生物へのCO2影響に係る文献整理結果

古地の八石	111 4 5 4 4			는 또 는 대한	424	pC0 ₂ [μatm]	∆ pC02	週	度	P	ъΗ	実験	赵	1 /45	.i#
高次の分類	供試生物	試験期间	評個項日	生活史段階	生活史	実験区	対象区	[µatm]	実験区	対象区	実験区	対象区	実験区	対象区	彩書	山央
			石灰化			871	577	294	25. 2	25. 4	7.74	7. 92	33. 5	33. 5	なし(p>0.05)GLLVM	
	Acropora humilis (ツツユビミドリイシ)		成長(体積)			871	577	294	25. 2	25. 4	7. 74	7. 92	33. 5	33. 5	なし(p>0.05)GLLVM	
			成長(表面積)		10年-数十年	871	577	294	25. 2	25. 4	7. 74	7. 92	33. 5	33. 5	なし(p>0.05)GLLVM	
	Acronora millenora		石灰化		(Acropora属)	871	577	294	25. 2	25.4	7.74	7. 92	33. 5	33. 5	なし(p>0.05)GLLVM	
	(ハイマツミドリイシ)		成長(体積)	-		871	577	294	25.2	25.4	7.74	7.92	33.5	33.5	なし (p>0.05) GLLVM	
			成長(表面積)	-		8/1	5//	294	25.2	25.4	1.14	7.92	33.5	33.5	なし(p>0.05)GLLVM	
	Pocillopora damicornis		口灰10			871	577	294	25.2	25.4	7.74	7.92	33.5	33.5	72 C (p>0.05) GLLVM	
	(ハナヤサイサンゴ)		成長(表面積)	-		871	577	294	25.2	25.4	7.74	7.92	33.5	33.5	なし(p>0.05)GLLVM	Martins CP, Arnold AL, Kömpf K, et al. (2022) Growth response of reef-building corals to
花虫綱		3か月間	石灰化	群体		871	577	294	25. 2	25. 4	7.74	7. 92	33.5	33.5	なし(p>0.05)GLLVM	ocean acidification is mediated by interplay of taxon-specific physiological parameters.
	Pocillopora verrucosa (ハナヤサイサンゴ属の1種)		成長(体積)			871	577	294	25. 2	25.4	7.74	7. 92	33. 5	33. 5	なし(p>0.05)GLLVM	Frontiers in Marine Science, 9: 872631.
			成長(表面積)		数十年−数百年	871	577	294	25. 2	25. 4	7. 74	7. 92	33. 5	33. 5	減少 (p<0.05) GLLVM	
	Denites sulindaise		石灰化		(サンゴ類)	871	577	294	25. 2	25. 4	7. 74	7. 92	33. 5	33. 5	なし(p>0.05)GLLVM	
	(ユビエダハマサンゴ)		成長(体積)			871	577	294	25. 2	25. 4	7. 74	7. 92	33. 5	33. 5	減少 (p<0.05) GLLVM	
			成長(表面積)	-		871	577	294	25.2	25.4	7.74	7.92	33.5	33.5	なし (p>0.05) GLLVM	
	Porites lutea		石灰化	-		8/1	5//	294	25.2	25.4	1.14	7.92	33.5	33.5	なし(p>0.05)GLLVM	
	(コブハマサンゴ)		成支(冲預)			871	577	294	25.2	25.4	7.74	7.92	33.5	33.5	減少(p<0.05)GLLVM	
						638	459	179	27	27	7.87	7. 99	34.6	34.6		
花虫綱	Acropora digitifera (コユビミドリイシ)	14日間	石灰化(骨格重量)	初期ポリープ	10年-数十年 (Acropora属)	638	459	179	27. 2	27. 2	7. 87	7.99			減少(p<0.01)GLMmodel	Bell T, Manullang C, Sakai K, et al. (2022) Near-future levels of pCO ₂ impact skeletal weights of coral primary polyps (Acropora digitifera). Galaxea, Journal of Coral Reef Studies, 24(1): 63-68.
	Acropora nasuta (ハナガサミドリイシ)		純石灰化速度		10年-数十年 (Acropora属)	322 324 748 757 990 992 1216 1216	441 444 441 444 441 444 441 444	-119 -120 307 313 549 548 775 772	27. 2 27. 4 27. 4 27. 7 27. 4 27. 4 27. 4 27. 3 27. 3	27. 4 27. 4 27. 4 27. 4 27. 4 27. 4 27. 4 27. 4 27. 4 27. 4	8.11 8.11 7.81 7.80 7.70 7.70 7.62 7.62	8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	34. 5	34. 5	滅少(指数式近似:有意)	
花虫綱	Montipora digitata (エダコモンサンゴ)	44日間	純石灰化速度	群体(小断片)		322 324 748 757 990 992 1216 1216	441 444 441 444 441 444 441 444	-119 -120 307 313 549 548 775 772	27. 2 27. 4 27. 4 27. 7 27. 4 27. 4 27. 3 27. 3	27. 4 27. 4 27. 4 27. 4 27. 4 27. 4 27. 4 27. 4 27. 4	8. 11 8. 11 7. 81 7. 80 7. 70 7. 70 7. 62 7. 62	8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	34. 5	34. 5	減少(指数式近似:有意)	Bell T. Manullang C. Kumagai NH. et al. (2022) Calcification responses of subtropical corals to ocean acidification: a case study from
	Pocillopora damicornis (ハナヤサイサンゴ)		純石灰化速度		数十年−数百年 (サンゴ類)	322 324 748 757 990 992 1216 1216	441 444 441 444 441 444 441 444	-119 -120 307 313 549 548 775 772	27. 2 27. 4 27. 4 27. 7 27. 4 27. 4 27. 4 27. 3 27. 3	27. 4 27. 4 27. 4 27. 4 27. 4 27. 4 27. 4 27. 4 27. 4 27. 4	8.11 8.11 7.81 7.80 7.70 7.70 7.62 7.62	8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	34. 5	34. 5	滅少(線形式近似:有意)	Sesoko Island, Okinawa, Japan. Galaxea, Journal of Coral Reef Studies, 24(1), 51-61.
	Galaxea fascicularis (アザミサンゴ)		純石灰化速度			322 324 748 757 990 992 1216 1216	441 444 441 444 441 444 441 444	-119 -120 307 313 549 548 775 772	27. 2 27. 4 27. 4 27. 7 27. 4 27. 4 27. 4 27. 3 27. 3	27. 4 27. 4 27. 4 27. 4 27. 4 27. 4 27. 4 27. 4 27. 4	8. 11 8. 11 7. 81 7. 80 7. 70 7. 70 7. 62 7. 62	8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00	34. 5	34. 5	滅少(指数式近似:有意)	

表1(4) 海洋生物へのCO2影響に係る文献整理結果

宮次の公箱	供耐生物	計驗期期	輕価項日	生活中的唯	生任由	pCO ₂	[µatm]	∆ pC02	温	度	P	H	実	贫区	₽. 	此曲
同久の力規	天政工物		ᇑᆒᄻᇧᆸ		工作文	実験区	対象区	[<i>µ</i> atm]	実験区	対象区	実験区	対象区	実験区	対象区	10 T	
	Pocillopora damicornis (ハナヤサイサンゴ)					925	466	459 2 341	27.88	28.29 28.29	7.85	8.11	35.44	34. 87 34. 87	減少(p=0.038)	
-	Seriatopora hystrix	30日間	石灰化流体oH			925	466	459	27.88	28. 29	7. 85	8. 11	35. 44	34. 87	減少(p=0.041)	-
-	(トケサンゴ) Lophelia pertusa					2807	466 451	2, 341 645	28. 17 9. 07	28. 29 8. 86	7. 42 7. 87	8. 11 8. 20	35.75 34.96	34. 87 34. 98		Cameron LP. Revmond CE. Biima J. et al. (20)
花虫綱	(イシサンゴ目チョウジガイ科)				数十年-数百年	2864	451	2, 413	8. 83	8. 86	7. 42	8. 20	35. 01	34. 98	減少 (p=0.026)	Impacts of warming and acidification on cor calcification linked to photosymbiont loss deregulation of calcifying fluid pH down
	Pocillopora damicornis (ハナヤサイサンゴ)				(リンコ規)	925 2807	466 466	459 2, 341	27.88 28.17	28. 29 28. 29	7.85 7.42	8. 11 8. 11	35. 44 35. 75	34. 87 34. 87	增加 (p=0.002)	of Marine Science and Engineering, 10(8) 1106.
ľ	Seriatopora hystrix	30日間	石灰化流体∆[H+]			925	466	459	27.88	28. 29	7.85	8. 11	35.44	34. 87	增加(p=0.013)	
-	Lophelia pertusa					1096	400	645	28. 17 9. 07	28. 29 8. 86	7. 42	8. 11	35.75 34.96	34.87 34.98	10 μ⊓ (n−0, 002)	-
	(イシサンゴ目チョウジガイ科)					2864 964_42	451 442 88	2, 413	8.83 26.32	8.86 26.51	7.42	8.20 8.04	35. 01 37. 84	34. 98 37. 84	×= //µ (p=0.002)	
			死亡率			962. 62	404. 43	558	23. 13	23. 23	7. 76	8. 07	37.84	37.84	なし(p=0.523)LMモデル	
			幼生長さ			964. 42 962. 62	442.88 404.43	522 558	26. 32 23. 13	26. 51 23. 23	7.77 7.76	8.04	37.84 37.84	37. 84 37. 84	なし (p=0.947)	
				-		964. 42	442.88	522	26. 32	26. 51	7.77	8. 04	37.84	37. 84	なし(p=5.56)	-
				-		962. 62 964. 42	404. 43 442. 88	558 522	23. 13 26. 32	23. 23 26. 51	7.76 7.77	8. 07 8. 04	37.84 37.84	37. 84 37. 84		-
花虫綱	Astroides calycularis (キサンゴ組)	9か月	成長(ホリーフ基部の表面積)	プラヌラ幼生:ポリープ	 数十年-数百年 (サンゴ類)	962. 62	404.43	558	23. 13	23. 23	7. 76	8. 07	37.84	37.84	减少(p=0.000024)	Carbonne C, Comeau S, Chan PT, et al. (202 Early life stages of a Mediterranean coral yulnerable to ocean warming and acidificati
			コロニーあたりのポリープの数			964. 42	442.88	522	26. 32 23. 13	26. 51 23. 23	7.76	8. 04	37.84 37.84	37.84 37.84	なし (p=0.582)	Biogeosciences, 19(19): 4767-4777.
			骨格の体積			964. 42	442.88	522	26. 32	26.51	7.77	8.04	37.84	37.84	減少 (p=0.044)	
				-		964. 42	404. 43	522	26. 32	25. 25 26. 51	7.77	8.07	37.84	37.84	減少 (n=0_002)	-
				-		962. 62 964. 42	404.43	558 522	23. 13 26. 32	23. 23 26. 51	7.76 7.77	8.07 8.04	37.84 37.84	37.84 37.84		-
			骨格密度 			962. 62	404. 43	558	23. 13	23. 23	7. 76	8. 07	37.84	37.84	なし (p=0.387)	
						490 460	468	22 11	8.0 7.9	7.9 8.1	7. 989 8. 001	8.007	35.5 35.3	35. 7 35. 3		
						460	459	1	8.0	7.9	7. 985	7. 984	35.4	35.4	なし	
				古なるい、 デ(詳仕)		609 800	423	186 369	8. 0 8. 0	8. 2 8. 0	7. 877 7. 786	8. 022	35.3	35. 2 35. 4		
				日世のサンゴ(群体)		964	492	472	8.1	8.1	7.715	7.979	35.4	35.4		
						1033	409	544	8.1	8	7. 709	7. 979	35.3	35. 3	減少(p=<0.001~0.004)	
						1708	535 494	1, 173 1, 092	8.1 8.2	8.1 8.4	7.525 7.566	7.963	35.4 35.4	35.3 35.4	負の石灰化(溶解)	
			成長(生きたサンゴの石灰化速度)		-	490	468	22	8.0	7.9	7. 989	8.007	35.5	35. 7		-
						460	449	11	7.9 8.0	8. 1 7. 9	8. 001 7. 985	8. 01 7. 984	35.3 35.4	35. 3 35. 4		
						609	423	186	8.0	8. 2	7. 877	8. 022	35.3	35. 2	なし	
				オレンジ色のサンゴ(群体)		964	431	369 472	8.0	8.0	7. 786	8.037	35.3	35. 4 35. 4		
龙中綱	Lophelia pertusa	13 力 日問			数十年−数百年	1085	469	616	8.1	8.2	7.678	7.997	35.3	35.3		Büscher JV, Form AU, Wisshak M, et al. (20 Cold-water coral ecosystems under future or change: Live coral performance vs. framewo
10.22 449	(イシサンゴ目チョウジガイ科)				(サンゴ類)	1708	535	1, 173	8. 1	8.1	7. 525	7.963	35. 3	35. 3	減少(p=<0.001~0.004) 負の石灰化(溶解)	dissolution and bioerosion. Limnology an Oceanography, 67(11): 2497-2515.
					-	1586	494 494	1, 092 544	8.2 8.1	8.4 8.0	7.566	7.99 7.979	35.4	35. 4 35. 3	ぶ少 (n<0_001)	-
			呼吸(生きたサンゴの呼吸速度)	オレンジ色のサンゴ(群体)	_	1708	535	1, 173	8.1	8.1	7. 525	7.963	35.4	35. 3	減少(p<0.001) 減少(p<0.001)	-
						490	468	22 11	8.0 7.9	7.9 8.1	7. 989 8. 001	8.007	35.5 35.3	35. 7 35. 3		
						460	459	1	8.0	7. 9	7. 985	7.984	35.4	35. 4	±	
				ᆆᇷᇭᅭᅕᆞᅾᄼᄥᆍᄮᆞ		609 800	423 431	186 369	8.0 8.0	8. 2 8. 0	7.877 7.786	8. 022 8. 037	35.3 35.3	35. 2 35. 4	なし	
			溶解	日世のサンコ(群体)		964	492	472	8.1	8.1	7. 715	7.979	35.4	35.4		
			(死んだサンゴ骨格の炭酸塩分解)			1085	469 494	544	8. 1 8. 1	8. 2 8. 0	7. 678 7. 709	7. 997	35. 3 35. 3	35.3 35.3		-
						1708	535	1, 173	8.1 g o	8. 1 g /	7. 525	7.963	35.4	35.3	増加(重量減少)(p≦0.002)ANOVA	
られたもの	のは <mark>赤文字</mark> 、正の影響が	 認められた:	 ものは青文字で示す。		-	1038	494	544	o. 2 8. 1	o. 4 8. 0	7. 709	7. 979	35. 3	35. 3		1

表1(5) 海洋生物へのCO2影響に係る文献整理結果

富次の分類	世話生物	討論如問	誕佈項日	生活中段階	生活中	pC0 ₂ [μatm]	∆pC02	温	度	Р	H	実	後区	**	出曲
		BARK WITH	ᇚᄤᇧᆸ	価項目 生活史段階		実験区	対象区	[<i>µ</i> atm]	実験区	対象区	実験区	対象区	実験区	対象区	***	
				オレンジ色のサンゴ(群体)		1708	535	1, 173	8. 1	8. 1	7. 525	7.963	35. 4	35. 3	増加(重量減少)(p≦0.002)ANOVA	
						1586	494	1, 092	8. 2	8. 4	7. 566	7.99	35. 4	35. 4		

表1(6) 海洋生物へのCO2影響に係る文献整理結果

「カイン海	供教生物	····································	報店酒日	大江山砂畦	广 云山	pC0 ₂ [μatm]	∆pC02	1	昷度		рН	実	険区		ப் க்
「スワノス	医肾上的	品為現天分月月	ᇑᆒᄵᅿᆸ	工力文权相	<u><u> </u></u>	実験区	対象区	[<i>µ</i> atm]	実験区	対象区	実験図	☑ 対象区	実験区	対象区	1	ш ж
		4hpf				892. 71	290. 04	603	18. 03	3 17.8	8 7.	51 7.9	4 36.28	36. 25	なし(p=0.618)	
						3122.69	290. 04	2, 833	18.46	6 17.8	8 7.	05 7.9	4 36. 51	36. 25		
条鰭綱	Anguilla anguilla	24hpf	胚の生残率	胚	5-20年	892. 71	290. 04	603	18. 03	3 17.8	8 7.	51 7.9	4 36.28	36. 25	なし	Sganga DE, Dahlke FT, Sørense (2022) CO ₂ induced seawater a
	(ヨーロッハワナキ)				最大23年	3122. 69	290. 04	2, 833	18.46	6 17.8	8 7.	05 7.9	4 36. 51	36. 25	減少 (p<0. 05)	eel embryos. PLoS ONE, 17(4)
		48hpf				892. 71	290. 04	603	18. 03	3 17.8	8 7.	51 7.9	4 36.28	36.25	なし	
						3122. 69	290. 04	2, 833	18.46	6 17.8	8 7.	05 7.9	4 36. 51	36. 25	減少 (p<0.05)	
			生残率			1147	456	691	13. (0 13.	0 7.	75 8.1	2 32.3	32.5	減少(p<0.001)	
			光達时间 額角長			1150	431	698	15. 1	1 15.	0 7.	75 8.1	4 32.3 1 32.2	32. 3	なし 減少(p<0.001)	
赦田綱	Homarus gammarus	28日間	甲長	纳生	15-20年	1157	482	675	15.8	8 15.	9 7.	76 8. 1	1 32. 1	32. 5	なし	Leiva L, Tremblay N, Torres G, European lobster larval dev
¥X 구 에이	(ヨーロッパロブスター)	20 [1]	腹部長	动工	13 204	1139	463	676	17. 3	3 17.	2 7.	78 8.1	2 32.2	32. 4	なし	fitness under a temperature gra acidification. Frontiers in Ph
			全長 			1148	483	665	18.0	0 17. 0 20	9 7. 8 7	79 8.1	1 32.2 2 32.1	32.4	なし	
						1103	450	723	20. 3	0 22.	8 7.	79 8.1	5 32.1	32. 0	なし	
						978	464	514	16. (6 16.	57.	67 7.9	7			
			生存			863	464	399	16.4	4 16.	57.	67 7.9	7		なし	
			• 成長(重景) 附皮個体			751	464	287	16.4	4 16. 6 16	57. 57	67 7.9 67 7.9	7			-
			 ・成長(頭胸甲長)脱皮個体 			863	464	399	16.4	4 16.	5 7.	67 7.9	7		なし	
			 ・成長(重量)未脱皮個体 			751	464	287	16.4	4 16.	57.	67 7.9	7			
			 ・厚さ(全クチクラ)(触角) 			978	464	514	16.0	6 16.	5 7.	67 7.9	7			
			 ・厚さ(全クチクラ)(頭胸甲) 			863	464	399	16.4	4 16. 4 16	57. 57	67 7.9 67 7.9	7		なし	
						978	464	514	16. 0	6 16.	5 7.	67 7.9	7			-
			・厚さ(外クチクラ)(触角) ・厚さ(外クチクラ)(頭胸甲)			863	464	399	16.4	4 16.	57.	67 7.9	7		なし	
						751	464	287	16.4	4 16.	5 7.	67 7.9	7			Lowder KB, deVries MS, Hatti
軟甲綱	Panulirus interruptus	3か月間	・厚さ(内クチクラ)(触角)	稚エビ	数年−十数年	978	464	399	16.4	6 16. 4 16.	5 7. 5 7.	67 7.9 67 7.9	7		なし	(2022) Exoskeletal predato juvenile California spiny lob
171 1 173	(カリフォルニアイセエビ)	0.00 (11)	・厚さ(内クチクラ)(頭胸甲)		(イセエビ類)	751	464	287	16.4	4 16.	5 7.	67 7.9	7			acidification-like condition
						978	464	514	16. (6 16.	57.	67 7.9	7			
			硬度(頭胸甲棘)			863	464	399	16.4	4 16.	5 7.	67 7.9	7		なし	
						978	464	287	16.4	4 16. 6 16.	5 7. 5 7.	67 7.9 67 7.9	7			-
			硬度(額角)			863	464	399	16.4	4 16.	5 7.	67 7.9	7		なし(p=0.050)	-
						751	464	287	16.4	4 16.	5 7.	67 7.9	7		減少 (p≤0.045)	
			 ・剛性(頭胸甲) 			978	464	514	16.0	6 16.	5 7.	67 7.9	7			
			• 剛性(角)			751	404	287	16.4	4 10. 4 16.	5 7. 5 7.	67 7.9	7			
						978	464	514	16.6	6 16.	57.	67 7.9	7			
			・曲け剛性(触角:遠位直) ・曲げ剛性(触角:近位置)			863	464	399	16.4	4 16.	57.	67 7.9	7		なし	
						1014 3	464 410_3	287	28	4 16. 1 28	5 7. 1 7.7	67 7.9 42 8.08	7	35.5		
			幼生の生存率	幼生		1014.0	446. 2	574	30. 6	6 <u>30</u> .	7 7.7	81 8.08	5 35.5	35.3	减少(p=0.0001)	-
			稚ガニ(メガロパル期まで)の	稚ガニ	1	1014.3	410.3	604	28.1	1 28.	1 7.7	42 8.08	0 35.5	35.5	なし(p>0.05)	_
	Maguimithray spinosissimus		生仔举 		-	1020.6	446.2	574	30.6	6 30.	7 7.7	81 8.08	5 35.5	35.3	なし (p>0.05)	Gravinese PM, Perry SA, Spac
軟甲綱	(Maguimithrax属の1種:ワタクズ ガニ科)	48 時間		メガロパ幼生	数年−十数年 (カニ類)	1014. 3	410.3	574	28.	6 30.	7 7.7	42 8.08 81 8.08	0 35.5 5 35.5	35.5	なしなし	juveniles show tolerance acidification and ocean wa
	33 —147		めよの形成期性は時間	秋 - パー 1 世日	-	1014.3	410. 3	604	28.1	1 28.	1 7.7	42 8.08	0 35.5	35. 5	増加=遅れ (p=0.0006)	Biology, 169: 6
			列生の航反朔付杭时间	推刀一一朔	_	1020. 6	446. 2	574	30. 6	6 30.	7 7.7	81 8.08	5 35.5	35. 3	なし	
				稚ガニ2期		1014.3	410.3	604	28.	1 28.	1 7.7	42 8.08	0 35.5	35.5	なし (p=0.27)	-
						588	446.2 197	5/4 391	30.6	o 30. 6 %	/ /.7 6 7	ol 8.08 .8 8	p 35.5 2 34	35.3	なし なし(p>0.05)	
						971	197	774	20	6 2	6 7	. 6 8.	2 34	34	減少 (p<0. 05)	1
			・生存率			1522	197	1, 325	20	6 2	6 7	. 4 8.	2 34	34	減少 (p<0.05)	
						2480	197	2, 283	20	6 2	6 7	. 2 8.	2 34	34	減少(p<0.05) また(x/0.05)	Thangal SH, Muralisankar T, An
軟甲綱	Scylla serrata (アミメノコギリガザミ)	60日間		幼生(1齡)	2-4年	3731	197	3, 534 391	20	0 2 6 9	o / 6 7	. 1 8. . 8 8	2 34 2 34	34	減少(p<0.05) 減少(p<0.05)	(2022) Effect of CO ₂ driven oce on the mud crab Scylla serv
						971	197	774	20	6 2	6 7	. 6 8.	2 34	34	減少 (p<0.05)	Environmental Pollution, 3
			· RE (# 🗧 # m)													

表1(7) 海洋生物へのCO2影響に係る文献整理結果

宮安の公務	卅廿七物	计除销用	報価値日	生活中的哔	在 开由	pC0 ₂ [μatm]	∆pC02	温	度	P	Н	実	険区	E/ #E	цщ
同久の力策	天政王物	544X 791[1]	ᇑᆒᄻᇧᆸ		工冶文	実験区	対象区	[<i>µ</i> atm]	実験区	対象区	実験区	対象区	実験区	対象区	10 H	ш ж
			• 脫及回致			2480	197	2, 283	26	26	7. 2	8. 2	34	34	減少 (p<0.05)	
						3731	197	3, 534	26	26	7.1	8. 2	34	34	減少 (p<0.05)	

表1(8) 海洋生物へのCO2影響に係る文献整理結果

	111 				4- -	pC0 ₂ [μatm]	A pC02	温	度	P	H	実	反	
高次の分類	供試生物	試験期間	評価項目	生活史段階	生活史	実験区	対象区	[μatm]	実験区	対象区	実験区	対象区	実験区	対象区	
						2933	486	2, 447	8. 90	9. 30	7. 24	7. 98	32. 79	32. 79	
						2928	448	2, 480	9.04	9.09	7. 25	8. 01	32. 79	32. 79	
						3045	436	2, 609	9. 11	8. 93	7. 23	8. 02	32. 79	32. 79	
						3177	466	2, 711	8. 99	9. 13	7. 24	8.00	32. 79	32. 79	
		0-24 dpf	死亡率	初期生活史段階 (浮遊幼生から着底後の		3053	452	2, 601	9. 03	8. 91	7. 23	8.00	32. 79	32. 79	
				稚ウニ)		1191	486	705	8.96	9.3	7.62	7. 98	32. 79	32. 79	
						1435	448	987	9.13	9.09	7.55	8. 01	32.79	32. 79	
						1157	436	721	9.01	8.93	7.63	8. 02	32.79	32.79	
						1208	466	/42	9.13	9.13	7.61	8.00	32.79	32. 79	
					-	1318	452	866	9.00	8.91	7.59	8.00	32. 79	32.79	
						2933	480	2, 447	8.90	9.30	7.24	7.98	32.79	32.79	
						2928	448	2,480	9.04	9.09	7.20	8.01	32. 79	32. 79	
						2177	430	2,009	9.11	0.93	7.23	0. 02	32.19	32. 79	
						3053	400	2,711	0.99	9. 13 8. 01	7.24	8.00	32.79	32. 79	
		10-20 dpf	異常率(四腕期)	幼生		1101	432	705	8.96	9 30	7.23	7.98	32.73	32.73	
						1435	400	987	9 13	9.00	7.55	8 01	32 79	32 79	
						1157	436	721	9 01	8.93	7 63	8 02	32 79	32 79	
						1208	466	742	9.13	9, 13	7.61	8.00	32.79	32.79	
						1318	452	866	9.00	8.91	7, 59	8.00	32.79	32.79	
					+	2933	486	2, 447	8, 90	9, 30	7.24	7.98	32, 79	32, 79	
						2928	448	2, 480	9.04	9,09	7. 25	8, 01	32, 79	32.79	
						3045	436	2, 609	9. 11	8. 93	7. 23	8. 02	32. 79	32. 79	
						3177	466	2, 711	8. 99	9. 13	7. 24	8.00	32. 79	32. 79	
	Strongylocentrotus				2-3年	3053	452	2, 601	9. 03	8. 91	7. 23	8.00	32. 79	32. 79	
ウニ綱	droebachiensis (オオバフンウニ属の1種)		成長速度		最大45年	1191	486	705	8.96	9. 30	7.62	7. 98	32. 79	32. 79	
						1435	448	987	9. 13	9.09	7. 55	8. 01	32. 79	32. 79	
						1157	436	721	9.01	8. 93	7.63	8. 02	32. 79	32. 79	
						1208	466	742	9. 13	9.13	7.61	8.00	32. 79	32. 79	
		1-20 dpf		6th./t-		1318	452	866	9.00	8. 91	7.59	8.00	32. 79	32. 79	
		1-29 up1		刻王		2933	486	2, 447	8. 90	9.30	7.24	7.98	32. 79	32. 79	
						2928	448	2, 480	9.04	9.09	7. 25	8. 01	32. 79	32. 79	
						3045	436	2, 609	9. 11	8. 93	7. 23	8. 02	32. 79	32. 79	
						3177	466	2, 711	8.99	9. 13	7.24	8.00	32. 79	32. 79	
			成長速度(原器)			3053	452	2, 601	9. 03	8. 91	7. 23	8.00	32. 79	32. 79	
						1191	486	705	8.96	9. 30	7.62	7. 98	32. 79	32. 79	
						1435	448	987	9.13	9.09	7.55	8. 01	32. 79	32. 79	
						1157	436	721	9.01	8. 93	7.63	8. 02	32.79	32. 79	
						1208	466	742	9.13	9.13	7.61	8.00	32.79	32.79	
					+	1318	452	866	9.00	8.91	7.59	8.00	32.79	32.79	
						2933	486	2, 447	8.90	9.30	7.24	7.98	32.79	32.79	
						2928	448	2, 480	9.04	9.09	7.25	8.01	32.79	32.79	
						3045	436	2,609	9. 11	8.93	7.23	8. 02	32.79	32.79	
			• 死亡率			31/7	466	2, /11	8.99	9.13	7.24	8.00	32.79	32. /9	
		30-40 dpf	· 行	幼生から稚ウニ		3053	452	2,601	9.03	8.91	1.23	8.00	32.79	32.79	-
			・ <u>変</u> 態			1405	486	/05	8.90	9.30	7.02	1.98	32. 19 20 70	32. 19	
						1435	448	98/	9.13	9.09	7.00 7.00	0.UI	32.19	32.19	
						1209	430	749	9.01	0.93	7.03	8.02	32. 19	32. 79	
						1318	400 452	866	9.13	9.13 8.01	7.01	8.00	32.73	32.79	
		I			1	1 1010	452	000	3.00	0.71	7.55	0.00	¥2.75	52.75	

高次の	######################################	植木		杨庆博日	生活史	++++	pCO ₂	[µatm]	∆ pC0 ₂	F	H	Ω cal	cite	Q ara	agonite	不飽和水	増	纷	温	度		百处	بە بار
分類	供與生物		[四項]	評価項目	段階	以职还名	高CO2区	対照区	[µatm]	高C02区	対照区	高C0 ₂ 区	対照区	高C02区	対照区	制百 [%]	高C0 ₂ 区	対照区	高C02区	対照区	101	도 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가	田典
					0-1mm	中002区	430.63	347.8	83	8.03	8.10	4.60	5.15	3.00	3.36	-	37.0	36.9	20. 1	20. 1	増加 (p>0.05)	・自然状態で高いC02条件を有するサイト	
					0-1mm	高C02区	818.95	347.8	471	7.86	8.10	3.57	5.15	2.33	3.36	-	36.9	36.9	20. 5	20. 1	増加 (p>0.05)	反応と適応性を調査することにより、海	
					1-2mm	中02区	430.63	347.8	83	8.03	8. 10	4.60	5.15	3.00	3.36	-	37.0	36.9	20. 1	20. 1	減少 (p<0.05)		
					1-2mm	高C02区	818.95	347.8	471	7.86	8.10	3. 57	5.15	2.33	3.36	-	36.9	36.9	20.5	20. 1	減少 (p>0.05)	一積物とアゾレス諸島の火山性002湧出域	
					2-3mm	中02区	430.63	347.8	83	8.03	8.10	4.60	5.15	3.00	3.36	-	37.0	36.9	20.1	20.1	減少 (p<0.05)	│で、二枚貝ハマチドリErvilia castanea │を調査した。ここでは、底層水のpHは、	
					2-3mm	高002区	818.95 420.63	347.8	4/1	7.80	8.10	3.57	5.15	2.33	3.30	-	30.9	36.9	20.5	20.1	減少 (p>0.05) 減小 (p<0.05)	□炭酸海水の平均海洋レベル8.2から、勾配 に沿って湧出域の6.81までの範囲であっ	
				個体数	3-4mm	高(02区	818 95	347.8	471	7.86	8 10	4.00	5.15	2 33	3.36	_	36.9	36.9	20.1	20.1	减少 (p<0.05) 减少 (n<0.05)	ーた。二枚貝の個体群造は、湧出域で著し く変化した。海水のC02レベルが上昇する	
					4-5mm	中02区	430. 63	347.8	83	8. 03	8. 10	4. 60	5. 15	3.00	3. 36	-	37.0	36.9	20.1	20.1	不在	- と大型の個体は少なくなり、最も酸性化	
					4-5mm	高C02区	818.95	347.8	471	7.86	8. 10	3. 57	5.15	2. 33	3.36	-	36. 9	36.9	20. 5	20. 1	不在	」したりイトではようたく出現しなかう た。対照的に、小型の個体はCO2湧出域で	
					5-6mm	中002区	430.63	347.8	83	8.03	8. 10	4. 60	5.15	3.00	3.36	-	37.0	36. 9	20. 1	20. 1	不在	一般も多かった。 ・我々は、幼貝は高002レベルの条件下で	
			#>.>#*		5-6mm	高C02区	818.95	347.8	471	7.86	8. 10	3, 57	5.15	2. 33	3.36	-	36. 9	36. 9	20. 5	20. 1	不在	□着底し、最初は豊富に生息できるか、着 」底後の分散および/または死亡率が高いこ	
			リンミクル 島(アゾレス		6-7mm	中002区	430. 63	347.8	83	8. 03	8. 10	4. 60	5.15	3.00	3, 36	-	37.0	36. 9	20. 1	20. 1	不在	とを提案する。Ervilia castaneaはCO2レ ベルの上昇に影響を受けやすく、これら	
			諸島,ボルト ガル)		6-7mm	高002区	818.95	347.8	471	7.86	8. 10	3. 57	5.15	2. 33	3.36	-	36. 9	36. 9	20. 5	20. 1	不在	の影響は一貫して餌料供給の低下と関連	
					2-3mm	中02区	430.63	347.8	83	8.03	8.10	4.60	5.15	3.00	3.36	-	37.0	36.9	20.1	20. 1	減少	とこのためになって、「「」というに、「「」」というに、「」」というに、「」」というに、「」」というに、「」」というに、「」」というに、「」」というに、「」」というに、「」」というに、「」」というに、「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」	
					2-3mm	高02区	818.95	347.8	471	7.86	8.10	3.57	5.15	2.33	3.36	-	36.9	36.9	20.5	20.1	減少		
				乾燥全重 量	3-4mm	中002区	430.63 919.05	347.8	83	8.03	8.10	4.60	5.15	3.00	3.30	-	37.0	36.9	20.1	20.1	減少	_	
					4-5mm	自002区	430 63	347.8	83	8.03	8 10	4 60	5.15	3.00	3.36	-	37.0	36.9	20.3	20.1	増加	_	
					4-5mm	高002区	818.95	347.8	471	7, 86	8, 10	3.57	5.15	2, 33	3, 36	-	36.9	36.9	20. 1	20.1	這少	_	Martins M, Carreiro-Silva M,
					2-3mm	中02区	430.63	347.8	83	8.03	8.10	4.60	5.15	3.00	3.36	-	37.0	36.9	20.1	20.1	減少	-	Martins GM, et al. (2021) Ervilia
					2-3mm	高C02区	818.95	347.8	471	7.86	8.10	3.57	5.15	2. 33	3.36	-	36.9	36.9	20. 5	20. 1	減少	-	castanea (Mollusca
一折日纲	Ervilia castanea	00.通用域		乾燥灰重	3-4mm	中002区	430.63	347.8	83	8.03	8. 10	4.60	5.15	3.00	3.36	-	37.0	36.9	20. 1	20. 1	減少		Bivalvia)
一次只闸	(チドリマスオガイ科)	00 ₂ / у, ш ж		量	3-4mm	高C02区	818.95	347.8	471	7.86	8.10	3. 57	5.15	2. 33	3.36	-	36.9	36.9	20. 5	20. 1	減少		adversely affected
					4-5mm	中002区	430.63	347.8	83	8.03	8.10	4.60	5.15	3.00	3.36	-	37.0	36.9	20. 1	20. 1	減少	_	the North
					4-5mm	高C02区	818.95	347.8	471	7.86	8.10	3.57	5.15	2. 33	3.36	-	36.9	36.9	20. 5	20.1	減少	_	Atlantic. Science of the Total
					0-1mm	中02区	594.01	345.94	248	8.04	8.10	4.99	5.20	3.26	3.39	-	37.6	37.7	19.9	20.1	増加 (p>0.05)	_	Environment, 754, 142044.
					0-1mm	高002区	/44.14	345.94	398	8.02	8.10	4.81	5.20	3.14	3.39	-	37.6	37.7	19.6	20.1	増加 (p>0.05)	_	
					1-2mm	中002区 高002区	744 14	345.94	398	8.02	8.10	4.99	5.20	3.14	3.39		37.0	37.7	19.9	20.1	減少 (p>0.05) 増加 (n>0.05)	_	
					2-3mm	中02区	594, 01	345, 94	248	8, 04	8, 10	4, 99	5, 20	3, 26	3, 39	-	37.6	37.7	19.9	20.1	不在	_	
					2-3mm	高C02区	744. 14	345. 94	398	8. 02	8. 10	4. 81	5. 20	3. 14	3, 39	-	37.6	37.7	19.6	20. 1	不在	-	
					3-4mm	中02区	594. 01	345. 94	248	8.04	8. 10	4.99	5. 20	3. 26	3. 39	-	37.6	37.7	19. 9	20. 1	不在	_	
				個休数	3-4mm	高C02区	744. 14	345. 94	398	8. 02	8. 10	4. 81	5. 20	3. 14	3. 39	-	37.6	37.7	19.6	20. 1	不在		
			ファイアル	iii max	4-5mm	中002区	594. 01	345.94	248	8. 04	8. 10	4. 99	5. 20	3. 26	3, 39	-	37.6	37.7	19. 9	20. 1	不在	_	
			島(アゾレス		4-5mm	高C02区	744. 14	345.94	398	8. 02	8. 10	4. 81	5. 20	3.14	3. 39	-	37.6	37.7	19. 6	20. 1	不在	_	
			諸島, ホルト ガル)		5-6mm	中02区	594.01	345.94	248	8.04	8.10	4. 99	5.20	3. 26	3. 39	-	37.6	37.7	19.9	20.1	不在	_	
					5-6mm	高002区	/44.14	345.94	398	8.02	8.10	4.81	5.20	3.14	3. 39	-	37.6	31.1	19.6	20.1	不在	_	
					6-7mm	中02区	594.01 744 14	345.94	240	8.02	8.10	4.99	5.20	3.20	3, 39	_	37.0	37.7	19.9	20.1	不住	_	
					7-8mm	中02区	594.01	345.94	248	8.04	8, 10	4, 99	5.20	3. 26	3, 39	-	37.6	37.7	19.9	20.1	不在	_	
					7-8mm	高002区	744. 14	345.94	398	8. 02	8.10	4. 81	5. 20	3.14	3. 39	-	37.6	37.7	19.6	20. 1	不在	-	
				乾燥全重	2-3mm	高C02区	744. 14	345.94	398	8.02	8.10	4.81	5. 20	3.14	3.39	-	37.6	37.6	19.6	20. 1	減少	-	
				물	3-4mm	高002区	744. 14	345.94	398	8.02	8. 10	4.81	5.20	3.14	3.39	-	37.6	37.6	19.6	20. 1	減少	_	
				乾燥灰重	2-3mm	高C02区	744. 14	345.94	398	8.02	8.10	4.81	5. 20	3.14	3.39	-	37.6	37.6	19.6	20. 1	減少		
				量	3-4mm	高002区	744.14	345.94	398	8.02	8.10	4.81	5. 20	3.14	3.39	-	37.6	37.6	19.6	20. 1	減少		
						低酸素区(14°C)	399	330	69	8.16	8. 22	3. 6	4. 1	2. 3	2. 6	-	34. 0	34. 0	14. 0	14. 1	増加(1.8倍) (p<0.05)	・沿岸の生物相ば、自然および人為的な プロセスの結果として、継続的な環境変 動に唱されている。石物一な環境条件に	
						酸性化区(14°C)	1276	330	946	7.70	8. 22	1.4	4.1	0.9	2.6	-	34.0	34. 0	14.0	14.1	変化なし(p>0.05)	一動に味られている。小均 な塚境末行に 対応するには、それに対処するための生 一理学的難略の左右が必要でする。通見の	Ramajo L, Ferná
				代謝速度		貧酸素-酸性化区 (14℃)	1027	330	697	7.79	8. 22	1.7	4.1	1.0	2.6	-	34. 0	34. 0	14. 0	14. 1	変化なし(p>0.05)	程子的戦略の存在が必要である。 房子の 影響を受ける生態系は、自然の低温、後	ndez C, Núñez Y, et al. (2019)
				T VIBILATION		低酸素区(18℃)	425	364	61	8.14	8.19	3.8	4.2	2.5	2.8	-	34.0	34.0	17.8	17.7	増加 (p>0.05)	一性、低酸素状態に耐え、世界の主要な温 業を支えている。これは、湧昇生息地に	Physiological responses of
						酸性化区(18°C)	1324	364	960	7.63	8.19	1.6	4.2	1.0	2.8	-	34.0	34.0	17.6	17.7	減少 (p>0.05)	一生息する種が高い環境変動を処理するた 」めの生理学的適応能力を有することを示	juvenile Chilean
二枚目綱	Argopecten purpuratus	涌显域	トンゴイ湾		稚目	貧酸素-酸性化区 (18℃)	1009	364	645	7.80	8.19	1.9	4. 2	1.2	2.8	-	34. 0	34.0	17.6	17.7	増加 (p>0.05)	唆している。 ・ここでは、主要な湧昇の駆動力(温	(Argopecten
- \ <u>\</u>	(ムラサキヒヨク)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(チリ)			低酸素区(14°C)	399	330	69	8.16	8. 22	3.6	4.1	2.3	2.6	-	34.0	34.0	14.0	14. 1	変化なし(p>0.05)	度、pH、酸素)の影響を単独で評価し、 チリのホタテArgopecten purpuratusの生	isolated and
						酸性化区(14°C)	1276	330	946	7.70	8. 22	1.4	4.1	0.9	2.6	-	34.0	34.0	14.0	14. 1	変化なし(p>0.05)	態生理学的反応と組み合わた。A. Durpuratusは成長と石灰化を維持するた	environmental
						貧酸素-酸性化区 (14℃)	1027	330	697	7. 79	8. 22	1.7	4.1	1.0	2. 6	-	34. 0	34. 0	14. 0	14. 1	減少 (p<0.05)	めに代謝能力を高めることにより低酸素	upwelling. ICES
				成長速度		低酸素区(18°C)	425	364	61	8.14	8. 19	3.8	4. 2	2.5	2.8	-	34. 0	34. 0	17.8	17.7	增加 (p<0.05)		Science, 76(6),
1						酸性化区(18°C)	1324	364	960	7.63	8. 19	1.6	4. 2	1.0	2.8	-	34. 0	34.0	17. 6	17. 7	増加 (p<0.05)	一、n. purpuratusの権良は、 湯井栄件ト での成長を犠牲にして石灰化を優先させ	1836-1849.
1						貧酸素-酸性化区	1009	364	645	7.80	8. 19	1.9	4. 2	1.2	2.8	-	34. 0	34. 0	17. 6	17.7	增加 (p<0.05)	に。温度の上昇は、酸素やPHの条件とは 無関係に、A. purpuratusの稚貝の生理的	
L			1	1	1	(10 C)	1	1	I	1	1	1	I	I	1	1	1	1	1			凵バフォーマンスを高めることによって大	L

表2(1)実海域における海洋酸性化の影響に係る文献整理結果(2008年~2021年)

表2(2)実海域における海洋酸性化の影響に係る文献整理結果(2008年~2021年)

7	高次の		御太	**	新年夜日	生活史		pCO ₂	[µatm]	∆ pC0₂		ρH	Ωca	lcite	Ωar	agonite	不飽和水	堆	分	1	度		T 44	ф.
	分類	供試生物	調金	海壤	評価項目	段階	試験送名	高C02区	対照区	[µatm]	高002区	対照区	高C0 ₂ 区	対照区	高C0₂区	対照区	割音 [%]	高00₂区	対照区	高00₂区	対照区	彩音	委約	出典
							低酸素区(14°C)	399	330	69	8.16	8. 22	3.6	4.1	2.3	2. 6	-	34.0	34.0	14.0	14. 1	減少 (p>0.05)	きな影響を与えたが、これはより早く、	
							酸性化区(14°C)	1276	330	946	7. 70	8. 22	1.4	4. 1	0. 9	2. 6	-	34. 0	34. 0	14. 0	14. 1	増加(4倍) (p<0.05)	・ 我々の結果は、A. purpuratusが短期的 な低温、酸性および低酸素状態に慣れ、	
					正味石灰		貧酸素-酸性化区 (14℃)	1027	330	697	7.79	8. 22	1.7	4.1	1.0	2.6	-	34. 0	34. 0	14.0	14. 1	增加(p>0.05)	本種が湧昇の激化の気候的状況に大きく 関連する湧昇の不均一な環境にどのよう	
					化速度		低酸素区(18°C)	425	364	61	8.14	8.19	3.8	4. 2	2.5	2.8	-	34.0	34. 0	17.8	17.7	減少 (p>0.05)	ーに反応するかについての重要な情報を提 供する。	
							酸性化区(18℃) 貧酸素-酸性化区	1324	364	960	7.63	8. 19	1.6	4.2	1.0	2.8	-	34.0	34.0	17.6	17.7	增加 (p>0.05)	-	
						+	(18°C)	1009	364	645	/. 80	8.19	1.9	4.2	1.2	2.8	-	34.0	34.0	1/.6	1/. /	増加 (p>0.05)	-	
							14 0 14 ℃	1276	330	946	7.70	8. 22	1.4	4.1	0.9	2. 6	-	34.0	34.0	14.0	14.1	変化なし(p>0.05) 変化なし(p>0.05)	_	
=	枚貝綱	Argopecten purpuratus (ムラサキヒヨク)	湧昇域	トンゴイ湾 (チリ)		稚貝	貧酸素-酸性化区 (14℃)	1027	330	697	7.79	8. 22	1.7	4.1	1.0	2. 6	-	34. 0	34. 0	14.0	14. 1	変化なし(p>0.05)		上段に記入
							低酸素区(18℃)	425	364	61	8.14	8.19	3.8	4. 2	2.5	2. 8	-	34.0	34.0	17.8	17.7	変化なし(p>0.05)	-	
							酸性化区(18℃)	1324	364	960	7.63	8. 19	1.6	4.2	1.0	2.8	-	34.0	34.0	17.6	17.7	変化なし (p>0.05)	-	
					生存率		(18°C) 対昭区(18°C vs	1009	364	645	7.80	8.19	1.9	4.2	1.2	2.8	-	34.0	34.0	17.6	17.7	変化なし (p>0.05)	-	
							14°C)	364	330	34	8.19	8. 22	4.2	4.1	2.8	2.6	-	34. 0	34.0	17.7	14.1	早期低下	-	
							14°C) 離歴保区(10°C v3.	425	399	26	8.14	8. 16	3.8	3.6	2.5	2.3	-	34. 0	34.0	17.8	14.0	早期低下	-	
							B住化区(10 C VS. 14℃)	1324	1276	48	7.63	7.70	1.6	1.4	1.0	0.9	-	34. 0	34.0	17.6	14. 0	早期低下	=	
							貝酸素 ⁻ 酸注1℃区 (18℃ vs. 14℃)	1009	1027	-18	7.80	7.79	1.9	1.7	1.2	1.0	-	34. 0	34.0	17.6	14. 0	早期低下	海洋融社化(04)け 海洋生能系にとっ	
							フォーガティ・ク リーク	-	-	-	8.00	7.97	-	-	-	-	-	-	-	-	-	2012年: 0.28 mm 2011年: 0.29 mm (p>0.05)	て深刻な課題である。0Aの課題に取り組 む実験室研究は、海洋生物、特に石灰化 」プロセスに依存する生物に広く悪影響を	
							ストロベリーヒル	-	-	-	7.99	8.02	-	-	-	-	-	-	-	-	-	2012年: 0.30 mm 2011年: 0.28 mm (p>0.05)	及ぼすことを示している。研究事例の増 加に伴い、他の環境要因と組み合わさっ た0Aがさらに有害となる可能性も示唆さ	
							バン・ダム州立公園	-	-	-	8.00	7.96	-	-	-	-	-	-	-	-	-	2012年: 0.07 mm 2011年: 0.14 mm	れている。これらの実験室研究を、環境 の不均一性が介在する現場での生態学的 パフォーマンスにスケーリングすること	
							ボデガ海洋保護区	_	_	_	8.00	7. 98	-	-	_	_	-	_	_	_	-	2012年: 0.32 mm 2011年: 0.39 mm	」は、目然群乗に対するUAの影響を埋解す るうえで重要な次のステップである。 カリフォルニア海流に沿った湧昇駆動 のHモザイクを利用して、生態学的に優	
							テラスポイント	_	_	_	8.17	8. 10	_	_		_	_	_	_	_		(p>0.05) 2012年: 0.08 mm 2011年: 0.06 mm	」 占する潮間帯のイガイMytilus californianusの季節的成長、(健康)状 態、殻の厚さに対するpH、海水温、餌料	
							ホプキンス臨海実験	_	_	_	8, 17	_	_	_	_	_	_	_	_	_	_	(p>0.05) 2012年: 0.05 mm	環境(入手の可能性)の相対的な影響を 解析した。2011年と2012年に、オレゴン 州中部と南カリフォルニアの間の8ヵ所の 豊雄性潮閉業で20年した地域個体部とサ	
							₽ħ					0.00										2011年:- 2012年: 0.02 mm	る。 「通(産地)個体群のイガイ成貝の生態学 「めパフォーマンスを測定した。調査サイ トは潮間帯のHセンサーの大規模なネッ	
					殻長の 増加量		ホンホク・フンティ	-	-	-	-	8.06	-	-	-	-	-	-	-	-	-	2011年: 0.03 mm (p>0.05)	トワークと一致し、pHと他の環境要因と の比較を可能にした。 イガイ成貝の成長とサイズは、サイト間	
							アレグリア	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2011年:- Local: 0.265 mm	および経年的に緯度方向で変化し、平均 殻厚指数と殻重量成長は低川で減少し ーた。驚くことに、低川で減少すると予想 された殻長の成長と組織と殻の電量比は	Rose JM, Blanchette CA,
				潮間帯(オレ			フォーカティ・クリーク	-	-	-	7.97	7.97	-	-	-	-	-	-	-	-	-	Comon: 0.330 mm (p<0.05)	増加した。対照的に、予想通り、殻の重 量増加と殻の厚さは両方とも低pHで減少 した。これは、0A曝露が捕食者や波力に	(2020) Biogeography of ocean
=	□枚貝綱	Mytilus californianus (カリフォルニアイガイ)	沿岸域 岩礁性潮間帯	コン州中央 部、カリ フォルニア 北部・南		-	ストロベリーヒル	-	-	-	8.02	8. 02	-	-	-	-	-	-	-	-	-	Comon: 0.385 mm (p>0.05)	対する殻依存の防御を損なう可能性があ るという考えと一致している。また、イ 」ガイ成貝の殻の重量の増加と相対的な組 織電号は、別本動の増加と色の関連があ	acidification: Differential field performance of
				部・中央部 のモント レー湾)			バン・ダム州立公園	-	-	-	7.96	7.96	-	-	-	-	-	-	-	-	-	Comon: 0. 140 mm (p>0. 05)	ることもわかった。 以前に報告された海水温、餌料環境(入 一手の可能性)、大気曝露、および原産地	mussels to upwelling-driven variation in
							ボデガ海洋保護区	-	-	-	7.98	7.98	-	-	-	-	-	-	-	-	-	Local: 0.390 mm Comon: 0.395 mm (p>0.05)	の影響を伴う局所的なpH条件を含める と、観測されたパフォーマンスの違いを 説明するモデルの説得力が増加した。イ ゴズの地域個体群の反応け、共通(産	carbonate chemistry. PloS one, 15(7),
							テラスポイント	-	-	-	8. 10	8. 10	-	-	-	-	-	-	-	-	-	Local: 0.060 mm Comon: 0.060 mm (p>0.05)	地) 個体群の反応とは異なり、イガイの パフォーマンスが遺伝的または持続的な 」表現型の違いに部分的に依存しているこ	e0234075.
							ポンポク・ランディ	-	-	-	8.06	8.06	-	-	-	-	-	-	-	-	-	Local: 0.030 mm Comon: 0.040 mm (p>0.05)	とを示唆している。 イガイ幼貝に対する低pHの有害な影響を 示す以前の研究を参照すると、我々の結 黒t・カルフォルニアイガイ成日にとる。	
							フォーガティ・ク リーク	-	-	-	8.00	7.97	-	-	-	-	-	-	-	-	-	2012年: 0.62 g 2011年: 0.78 g (p>0.05)	海洋酸性化への少なくとも一部のパ フォーマンス指標のより大きな回復力に つながる生活史の移行を示唆している。	
							ストロベリーヒル	-	-	-	7.99	8. 02	-	-	-	-	-	-	-	-	-	2012年: 0.64 g 2011年: 0.81 g (p>0.05)	∃技々のテータはまた、イカイの反応と環境条件の両方で「ホット」(より極端な)スポットと「コールド」(それほど 極端ではない)スポットを示している。	
					殻重量の		バン・ダム州立公園	-	-	-	8.00	7.96	-	-	-	-	-	-	-	-	-	2012年: 0.16 g 2011年: 0.26 g (p>0.05)	これは、将来の気候変動に対応する緩和 手法を可能にするパターンである。	
					增加量		ボデガ海洋保護区	-	-	-	8.00	7. 98	-	-	-	-	-	-	-	-	-	2012年: 0.68 g 2011年: 0.92 g (p>0.05)		
							テラスポイント	-	-	_	8.17	8. 10	-	-	_	-	-	-	-	-	_	2012年: 0.06 g 2011年: 0.07 g (p>0.05)	1	
							ホプキンス臨海実験 所	-	-	-	8.17	-	-	-	-	-	-	-	-	-	_	2012年: 0.01 g 2011年: -	1	

高次の					生活史		pCO ₂	[µatm]	∆ pC0 ₂	P	н	Ωcal	cite	Ωara	agonite	不飽和水	堆	分	2	度		-	
分類	供試生物	調金	海壤	評価項目	段階	武康凶名	高CO2区	対照区	[µatm]	高C02区	対照区	高C02区	対照区	高C0₂区	対照区	割台 [%]	高002区	対照区	高C02区	対照区	***	委約	出典
						ポンポク・ランディ	-	-	-	-	8.06	-	-	-	-	-	-	-	-	-	2012年: 0.06 g 2011年: -		
						アレグリア	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2012年: 0.25 g 2011年: -		
						フォーガティ・ク リーク	-	-	-	7.97	7.97	-	-	-	-	-	-	-	-	-	Local: 0.78 g Comon: 0.96 g (p>0.05)		
				殻重量の 増加量		ストロベリーヒル	-	-	-	8.02	8. 02	-	-	-	-	-	-	-	-	-	Local: 0.59 g Comon: 0.98 g (p>0.05)		
						バン・ダム州立公園	-	-	-	7.96	7.96	-	-	-	-	-	-	-	-	-	Local: 0.34 g Comon: 0.21 g (p>0.05)		
						ボデガ海洋保護区	-	-	-	7.98	7. 98	-	-	-	-	-	-	-	-	-	Local: 1.08 g Comon: 0.72 g (p>0.05)		
						テラスポイント	-	-	-	8. 10	8. 10	-	-	-	-	-	-	-	-	-	Local: 0.04 g Comon: 0.10 g (p>0.05)		
						フォーガティ・ク リーク	-	-	-	8.00	7.97	-	-	-	-	-	-	-	-	-	2012年: 0.088 2011年: 0.082 (p>0.05)		
						ストロベリーヒル	-	-	-	7.99	8. 02	-	-	-	-	-	-	-	-	-	2012年: 0.127 2011年: 0.109 (p<0.05)		
						バン・ダム州立公園	-	-	-	8.00	7.96	-	-	-	-	-	-	-	-	-	2012年: 0.058 2011年: 0.090 (p<0.05)		
						ボデガ海洋保護区	-	-	-	8.00	7.98	-	-	-	-	-	-	-	-	-	2012年: 0.068 2011年: 0.168 (p<0.05)		
						テラスポイント	-	-	-	8. 17	8. 10	-	-	-	-	-	-	-	-	-	2012年: 0.056 2011年: 0.048 (p<0.05)		
				勘の壮能		ホプキンス臨海実験 所	-	-	-	8.17	-	-	-	-	-	-	-	-	-	-	2012年: 0.045 2011年: -		
			潮間帯(オレ ゴン州中央	12000000000000000000000000000000000000		ポンポク・ランディ	-	-	-	-	8.06	-	-	-	-	-	-	-	-	-	2012年: 0.052 2011年: 0.044 (p>0.05)		
二枚貝綱	Mytilus californianus (カリフォルニアイガイ)	沿岸域	部、 フォルニア 北部・南 部・中央部	燥質量当 たりの乾 燥組織質 量)	-	アレグリア	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2012年: 0.053 2011年: -	上段に記入	上段に記入
			のモント レー湾)			フォーガティ・ク リーク	-	-	-	7.97	7.97	-	-	-	-	-	-	-	-	-	Local: 0.085 Comon: 0.080 (p>0.05)		
						ストロベリーヒル	-	-	-	8.02	8. 02	-	-	-	-	-	-	-	-	-	Local: 0.105 Comon: 0.110 (p>0.05)		
						バン・ダム州立公園	-	-	-	7.96	7.96	-	-	-	-	-	-	-	-	-	Local: 0.098 Comon: 0.083 (p<0.05)		
						ボデガ海洋保護区	-	-	-	7.98	7.98	-	-	-	-	-	-	-	-	-	Local: 0.174 Comon: 0.153 (p<0.05)		
						テラスポイント	-	-	-	8. 10	8. 10	-	-	-	-	-	-	-	-	-	Local: 0.051 Comon: 0.042 (p<0.05)		
					-	ポンポク・ランディ	-	-	-	8.06	8.06	-	-	-	-	-	-	-	-	-	Local: 0.046 Comon: 0.040 (p>0.05)		
						フォーガティ・ク リーク	-	-	-	8.00	7.97	-	-	-	-	-	-	-	-	-	2012年: 3.12 mg/mm ² 2011年: 3.00 mg/mm ² (p>0.05)		
						ストロベリーヒル	-	-	-	7.99	8. 02	-	-	-	-	-	-	-	-	-	2012年: 3.22 mg/mm ² 2011年: 3.25 mg/mm ² (p>0.05)		
						バン・ダム州立公園	-	-	-	8.00	7.96	-	-	-	-	-	-	-	-	-	2012年: 2.50 mg/mm ² 2011年: 2.75 mg/mm ² (p<0.05)		
				平均殻厚 指数 (殻表面		ボデガ海洋保護区	-	-	-	8.00	7.98	-	-	-	-	-	-	-	-	-	2012年: 2.85 mg/mm ² 2011年: 2.85 mg/mm ² (p>0.05)		
				の乾燥殻 質量)		テラスポイント	-	-	-	8. 17	8. 10	-	-	-	-	-	-	-	-	-	2012年: 3.02 mg/mm ² 2011年: 2.90 mg/mm ² (p < 0.05)		
						ホプキンス臨海実験 所	-	-	-	8. 17	-	-	-	-	-	-	-	-	-	-	2012年: 2.90 mg/mm ² 2011年: -		
						ポンポク・ランディ	-	-	-	-	8.06	-	-	-	-	-	-	-	-	-	2012年: 2.60 mg/mm ² 2011年: 3.05 mg/mm ² (p<0.05)		
						アレグリア	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2012年: 2.80 mg/mm ² 2011年: -		

表2(3)実海域における海洋酸性化の影響に係る文献整理結果(2008年~2021年)

高次の					生活中		pC0 ₂	[µatm]	A pC0 ₂		H	Ωcal	cite	Ωar	agonite	不飽和水	塩	分	温	度			
分類	供試生物	副査	海域	評価項目	段階	試験区名	高CO2区	対照区	[µatm]	高C02区	対照区	高CO2区	対照区	高C02区	対照区	割合 [%]	高C0 ₂ 区	対照区	高CO2区	対照区	- 187	長約	出典
						フォーガティ・ク リーク	-	-	-	7.97	7.97	-	-	-	-	-	-	-	-	-	Local: 2.98 mg/mm ² Comon: 3.05 mg/mm ²		
						ストロベリーヒル	-	-	-	8. 02	8. 02	-	-	-	-	-	-	-	-	-	Local: 3.23 mg/mm ² Comon: 3.25 mg/mm ²	-	
			潮間帯(オレ ゴン州中央 部、カリ	指数		バン・ダム州立公園	_	_	_	7.96	7.96	-	-	_	_	-	_	_	_	_	(p>0.05) Local: 2.55 mg/mm ² Comon: 2.90 mg/mm ²		
二枚貝	鋼 Mytilus californianus (カリフォルニアイガイ)	沿岸域	フォルニア 北部・南 部・中央部 のモント	(版衣面 積あたり の乾燥殻 質量)	-	ボデガ海洋保護区	-	-	_	7. 98	7. 98	-	-		_	-	_	-	-	-	(p<0.05) Local: 2.75 mg/mm ² Comon: 2.90 mg/mm ²	- 上段に記入	上段に記入
			レー湾)			テラスポイント	-	-	_	8. 10	8. 10	-	-	_	-	-	-	-	-	-	Local: 2.80 mg/mm ² Comon: 2.95 mg/mm ² (n>0.05)	-	
						ポンポク・ランディ	-	-	-	8.06	8.06	-	-	-	-	-	-	-	-	-	Local: 3.00 mg/mm ² Comon: 3.20 mg/mm ² (p>0.05)		
						高pH	633	468	165	8.03	8. 15	-	-	2.90	3.44	-	37.5	37.6	21.4	21.4	增加 (p>0.05)	・軟体動物Vermetidは、亜熱帯および温 帯の海域に礁を形成し、海岸を侵食から 保護し、堆積物の輸送と蓄積を調節し、	
				個体数		中間pH	1385	468	917	7. 73	8. 15	-	-	1. 89	3. 44	-	37. 2	37.6	21. 4	21.4	大幅に減少 (p<0.05)	□灰素吸収源として機能し、他の種の生息 地を提供する。これらの礁を形成する腹 足類は、カプセル化された幼生を繁殖さ せる。分散能力が非常に限られているた	
						低pH	3923	468	3, 455	7.31	8. 15	-	-	0. 91	3. 44	-	37. 4	37.6	21.5	21.4	大幅に減少 (p<0.05)	め、急速な環境変化に脅かされている。 自然CO2勾配に沿った移植実験を使用し て、礁を形成する腹足類 Dendropoma petraeum に対する海洋酸性化の影響を評	Milazzo M,
	Dendropoma petraeum	00ヶベント		止 右壶	孵化12か月	中間pH	1385	633	752	7.73	8. 03	-	-	1.89	2.90	-	37. 2	37. 5	21.4	21.4	変化なし(p>0.05)	価した。D. petraeumは上昇したCO2レベ ルで再生産、繁殖することができたが、 加入の成功は悪影響を受けたことがわ かった。2100 年以降に予測される酸性条	Rodolfo-Metalpa R, Chan VBS, et al. (2014) Ocean acidification
腹足希	(ムカデガイ科)	(移植実験)	シチリア沖	生任牛	後	低pH	3923	633	3, 290	7. 31	8. 03	-	-	0. 91	2. 90	-	37. 4	37. 5	21.5	21.4	減少 (p<0.05)	件への長期暴露は、殻の溶解と殻のMg含 有量の大幅な増加を引き起こした。 ・CO2排出量を削減し、保護対策を講じな	impairs vermetid reef recruitment. Scientific Peperte 4(1) 1
						高pH	633	468	165	8.03	8. 15	-	-	2.90	3. 44	-	37. 5	37.6	21.4	21.4	溶解なし	い限り、これらの礁は今世紀中に絶滅の 危機に瀕しており、沿岸システムに重大 な生態学的および社会経済的影響が及ぶ ことを、我々の結果は示唆している。	7.
				溶解		中間pH	1385	468	917	7. 73	8. 15	-	-	1.89	3. 44	-	37. 2	37.6	21.4	21.4	わずかな溶解あり		
						低pH	3923	468	3, 455	7. 31	8. 15	-	-	0. 91	3. 44	-	37. 4	37.6	21.5	21.4	溶解あり。殻表面の模 様失われる		
				殼長		高C02地点	769	309	459	7. 81	8. 14	2. 71	5. 09	1. 76	3. 30	-	34. 1	34. 5	19.5	19. 7	減少 (p<0.001)	 海洋の酸性化は、保護的な殻や骨格を 構築する能力を損ない、溶解と侵食を引 き起こすことにより、多くの石灰化する 海洋生物に悪影響を与えると予想され 	
				殻厚	-	高C02地点	769	309	459	7. 81	8. 14	2. 71	5. 09	1. 76	3. 30	_	34. 1	34. 5	19.5	19. 7	2倍以上薄い (p<0.001)	る。 ・ここでは、式根島(日本)沖のC02湧出 付近の酸性化した状態で、大型の捕食性 の「トリトン シェル」腹足類Charonia	
				殻密度(全 ての殻領 域)	-	高C02地点	769	309	459	7. 81	8. 14	2. 71	5. 09	1. 76	3. 30	_	34. 1	34. 5	19. 5	19. 7	<mark>著しい減少</mark> (p<0.001)	1 (002)運出の影響を除く)の隣検する湾の (002)運出の影響を除く)の隣検する湾の 個体と比較した。コンピューター断層撮 影を使用して、酸性化が殻の厚さ、密 度、および殻構造に悪影響を及ぼし、殻	
				- 殻密度(古 い殻領域)		高C02地点	769	309	459	7. 81	8. 14	2. 71	5. 09	1. 76	3. 30	_	34. 1	34. 5	19.5	19. 7	2倍以上減少 (p<0.05)	の表面に目に見える劣化を引き起こすことを示している。アラゴナイトの不飽和 期間は、殻の頂点部の損失と体組織の露 出を引き起こした。全体的な石灰化率は 2003年144のご答で這いした可能性がまえ	Harvey BP, Agostini S, Wada S, et al. (2018) Dissolution: the
腹足絲	Charonia lampas (フジツガイ科)	C0₂湧出域	式根島	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一		高C02地点	769	309	459	7.81	8. 14	2. 71	5. 09	1. 76	3. 30	_	34. 1	34. 5	19.5	19. 7	やや減少(p>0.05)	3. 酸性化の腐食効果は殻の最も古い部 分の周りではるかに顕著であった。その 結果、C. lampasが海洋酸性化の条件下 で殻を維持する能力は、石灰化プロセス	Achilles' heel of the triton shell in an acidifying ocean. Frontiers in Marine Science
				殻密度(新 しい成長	-	高002地点	769	309	459	7.81	8. 14	2. 71	5. 09	1.76	3. 30	-	34. 1	34. 5	19.5	19.7	変化なし(p>0.05)	の生物学的制御下ではなく、非生物的な 溶解と侵食によって強く促進される可能 性がある。 ・海洋石灰化生物の反応とせたのの保 ・海洋石灰化生物のためとなどせたてがまた	371.
																					業件技施がたノ邦件内	護殿と宵格を構築およい維持する能力を 理解することは、将来の海洋生態系を理 解するために重要である。	
				殻特性		高C02地点	769	309	-	7.81	8. 14	2. 71	5. 09	1. 76	3.30	-	34. 1	34. 5	19. 5	19. 7	月11日 日本 日本 日本 日本 日本 日本 日本 日本 日本 日		
						低pH地点	1536	532	1, 004	7.65	8. 00	2. 50	4. 80	1. 63	3. 12	-	38. 2	38. 2	19.5	19. 5	溶解、サイズ減少	 海洋酸性化は、多くの海洋生物と生態 学的ブロセスに有害な影響を与えるとす。 潮されている。特定の種への直接的な影響の証拠が増えているにもかかわらず、 海洋酸性化が個体に与える影響(エネル)と個 ギー収支や資源分配への影響など)と個 	Harvey BP, McKeown NJ, Rastrick SP, et al. (2016)
腹足緒	Hexaplex trunculus (ツロツブリ)	C0₂ペント	レバンテ湾 (シチリ ア、ヴル カーノ島)	設溶解と サイズ	成体	参照地点	407	532	-125	8. 07	8.00	5. 16	4.8	3. 36	3. 12		38. 1	38. 2	19. 5	19.5	変化なし	体群レベルの人口統計学的とつもえる。同 時に考慮した研究はほとんどない。 ・ここでは、海洋の酸性化が酸足類への エネルギー需要を増加させ、その結果、 エネルギー部分が変化することを示して いる。すなわち、酸のサイズは小さくな るが、体重は増加する。個体群レベル暴露 は個体群の人の批計を変化せての風暴露 は個体群の人の批計を変化させ、個体間の	Individual and population-level responses to ocean acidification. Scientific reports, 6(1), 1- 7.

表2(4) 実海域における海洋酸性化の影響に係る文献整理結果(2008年~2021年)

高次の				新年春日	生活史		pCO ₂	[µatm]	∆ pC0₂	P	ь H	Ω cal	cite	Ω ara	gonite	不飽和水	4	分	7	度	R. III	T 44	u #
分類	供與生物		[海域	肝個項目	段階	风暖区石	高C02区	対照区	[µatm]	高C0 ₂ 区	対照区	高CO2区	対照区	高C0 ₂ 区	対照区	취급 [%]	高CO2区	対照区	高C02区	対照区	**	受利	田央
晦兄綱	Hexaplex trunculus	መፈንኮ	レバンテ湾 (シチリ	軟体部乾	成体	低时地点	1536	532	1, 004	7.65	8. 00	2. 50	4. 80	1.63	3. 12	_	38. 2	38. 2	19.5	19.5	雄雌ともに増加	生殖成功の分散の増加の遺伝的特徴の証 拠が示された。このような分散の増加 は、適応を阻害すると予測される短期的 な遺伝的ドリフトのレベルを高める。 ・我々の研究は、高い遺伝子流動を背景 にしても、海洋の酸性化が、生態系の進 化の軌跡に影響を与える個体レベルおよ び個体群レベルの変化を引き起こしてい	⊢εΩ;/=#⊐ λ
	(שפשט)		ア、ウル カーノ島)	燥重量	200 FF	参照地点	407	532	-125	8. 07	8. 00	5. 16	4. 8	3. 36	3. 12	-	38. 1	38. 2	19. 5	19. 5	雄雌ともに変化なし	ることを示している。	
						Su3	-	-	-	-	-	-	-	1.6	-	-	-	-	-	-	影響なし:90 % レベルI:10 %	・海洋表層の炭酸塩の化学的性質は、人間活動の結果である海洋の酸性化に伴い	
						Su4	-	-	-	-	-	-	-	1.1	-	-	-	-	-	-	影響なし:90 % レベルI:10 %	□ 急速に変化している。南大洋の上層では、急速な溶解速度を持つ炭酸カルシウムの進空で形態であるマミゴナイトは	
						Su5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	影響なし:90 % レベルI:10 %	2050年までに不飽和になる可能性がある。アラゴナイトの不飽和度は、アラゴ	
						Su7	-	-	-	-	-	-	-	1.0	-	-	-	-	-	-	影響なし:90 % レベルI:10 %	ナイトの殻を持つ生物に影響を与える可 能性が高く、極地の表層水群集を支配す	
						Su8	-	-	-	-	-	-	-	1.1	-	-	-	-	-	-	影響なし:90 % レベルI:10 %	■る可能性かめる。 ・ここでは、2008 年初頭に南極海から生 」きた状態で採取された翼足類 Limacina	
						Su9	571	-	-	7.88	-	-	-	1.01	-	-	34. 6	-	1. 72	-	レベルI:70 % レベルII:30 % レベルIII:≦1 %	helicina antarctica の標本の分析を示 す。 湧昇した深層水が人為起源のCO2を含 む表層水と混合しているため、アラゴナ イト钩和レベルが約1であった水柱の表	Rodnarček N
						Su9 vs. 他の地点 (レベルI)	571	-	-	7.88	-	-	-	1.01	-	-	34.6	-	1.72	-	高い (p<0.001)	一層 200 mから採集した。走査型電子顕微 鏡下で殻構造を他の場所のアラゴナイト	Tarling GA, Bakker DCE, et al. (2012)
腹足綱	Limacina helicina antarctica (ミジンウキマイマイ属)	湧昇域	南大洋のス コシア海	殻溶解タ イプの割 合	幼生	過飽和(14日間)	375	-	-	-	-	-	-	≧1.1	-	-	-	-	4. 0	-	影響なし:30 % レベルI:50 % レベルII:10 %	過飽和領域のサンブルと比較すると、不 飽和領域だけで深刻なレベルの殻溶解が 確認された。さまざまなアラゴナイト飽 和レベルでの無傷試料の実験室での飼育 にとった。 1200字を1200円	Extensive dissolution of live pteropods in the Southern
						移行飽和度(8日間)	675	-	-	-	-	-	-	0.94~1.12	-	-	-	-	4.0	-	影響なし:5% レベルI:80% レベルII:15% レベルIII:≤1%	 1.2007/01/01/01/01/01/01/01/01/01/01/01/01/01/	Ocean. Nature Geoscience, 5(12), 881-885.
						不飽和(4日間)	750	-	-	-	-	-	-	0. 75~0. 95	-	-	_	_	4. 0	-	影響なし:15 % レベルI:55 % レベルII:25 % レベルIII:5 %	」が高いため、アラコナイト数生物が溶解 の影響を受ける上層海洋領域が拡大する 可能性が高いと結論付けている。	
						不飽和(14日間)	750	-	-	-	-	-	-	0. 75~0. 95	-	-	-	-	4.0	-	影響なし:15 % レベルI:30 % レベルII:25 % レベルIII:30 %		
						不飽和(14日間) vs. 他の全ての地占、実	750	375~750	-	-	-	-	-	0.75~0.95	-	-	-	-	4.0	4.0	高い (p<0.001)	-	
						St. 6	-	-	-	-	-	-	-	-	-	83.0	-	-	-	-	19 ind/m ²	・これまでのところ、自然環境で現在見 られる条件下での海洋酸性化(OA)の広	
						St. 13	-	-	-	-	-	-	-	-	-	40.0	-	-	-	_	86 ind/m ²		
					幼生、亜成	St. 15 St. 21	-	-	-	-				-	-	83.3	-				102 ind/m ² 104 ind/m ²	・2011年8月にリシントン州、オレコン 州、カリフォルニア州の海岸沿いで実施	
					体	St. 28	-	-	-	-	-	-	-	-	-	82.9	-	-	-	-	77 ind/m ²	→された海水の物理・化学特性と生物サン プリングを組み合わせた調査から、大陸 一切の海水の土部分が自然環境の変足動物	
						St. 29 St. 31	-	-	_	-	-	-	-	-	-	40.1	-	-	-	-	122 ind/m ² 252 ind/m ²	ーに対して腐食性であることがわかった。 アラゴナイトに閉して 重度の熱淡解損	
				個体数		St. 37	-	-	-	-	-	-	-	-	-	31.0	-	-	-	-	134 ind/m ²	傷を受けた翼足類個体の割合と、上層100 mの不飽和水の割合との間に強い正の相関	
					幼生	St. 61	-	-	-	-	-	-	-	-	-	12.0	-	-	-	-	445 ind/m ²	関係を示している。沿岸 (onshore) 個体 の平均で53%、沖合 (offshore) 個体の平	
						St. 65	-	-	-	-	-	-	-	-	-	52.6	-	-	-	-	14267 ind/m ²	」均で24%が深刻な溶解被害を受けている ことがわかった。産業革命以前のCO2濃度	Bednaršek N, Feely
					划生、 型成 体	St. 09	-	-	-	-	-	-	-	-	-	0.0	-	-	-	-	6 ind/m ²	- と比較して、カリフォルニア海流生態系 (CCE)に沿って、水柱の上層 100mにあ	al. (2014)
					幼生	St. 75	-	-	-	-	-	-	-	-	-	30.0	-	-	-	-	15 ind/m ²	る不飽和水の範囲が6倍以上増加した。人 ちま源の0Aによる重度の翼足類の殻の滚	shell dissolution
			カリフォル ニア海流生		幼生、亜成	St. 87	-	-	-	-	-	-	-	-	-	0.0	-	-	-	-	1 ind/m²	一解の発生率は、この地域の産業革命以前 の発生率は、この地域の産業革命以前	declining habitat
腹足綱	Limacina helicina	湧昇域	態系のワシ ントン-オレ		体	St. 95	-	-	-	-	-	-	-	-	-	0.0	-	-	-	-	15 ind/m ²	り、2050年までに3倍になる見込みであ	to ocean
	(=>>)+++++)		ゴン-カリ フォルニア			St. 6	-	-	-	-	-	-	-	-	-	77.6	-	-	-	-	60 %	→。 ー・これらの結果は、沿岸CCE における翼 足類の生息地の適合性が低下しているこ	the California
			沿岸沿い			St. 14	-	-	-	-	-	-	-	-	-	40.0	-	-	-	-	67 %	とを示している。観察された影響は、よ	Proceedings of the
					幼生 西成	St. 15 St. 21	-	-	-	-	-	-	-	-	-	83.3	-	-	-	-	100 %	ーの観察のベースラインを表している。	Biological
					体	St. 28	-	-	-	-	-	-	-	-	-	82.9	-	-	-	-	75 %	-	Sciences, 281 (1785),
						St. 29	-	-	-	-	-	-	-	-	-	65.1	-	-	-	-	75 %	_	20140123.
				深刻な殻		St. 37	-	-	-	-	-	-	-	-	-	31.0	-	-	-	-	20 % 33 %	-	
				合門の利	L	St. 57	-	-	-	-	-	-	-	-	-	15.2	-	-	-	-	29 %	_	
					幼生	St. 61 St. 65			-				-	-	-	52.6					33 %	-	
					幼生、亜成	St. 69	-	-	-	-	-	-	-	-	-	13.0	-	-	-	-	25 %	-	
					1本	St. 73 St. 75			-				-			0.0					0 %	-	
					幼生	St. 87	-	-	-	-	-	-	-	-	-	0.0	-	-	-	-	0 %	-	
					幼生、亜成 体	St. 95	-	-	-	-	-	-	-	-	-	0.0	-	-	-	-	0 %		

表2(5)実海域における海洋酸性化の影響に係る文献整理結果(2008年~2021年)

表2(6) 実海域における海洋酸性化の影響に係る文献整理結果(2008年~2021年)

高次の	111 m.h. el.				生活史		pC0 ₂	[µatm]	∆ pC0 ₂	9	5 H	Ω cal	cite	Ω ara	agonite	不飽和水	塩:	}	温	度		=4	
分類	供試生物	開金	:海壤	評価項目	段階	試験送名	高C0₂区	対照区	[µatm]	高C0 ₂ 区	対照区	高C02区	対照区	高C0 ₂ 区	対照区	割台 [%]	高002区	対照区	高C02区	対照区	**	委約	出典
						Cycle3(沿岸) 地点6 (<100m)	-	-	-	7.73~8.04	-	-	-	1.0~2.4	-	-	33.6 ~ 33.8	-	9.4~15.5	-	0.3~1.2 ind/m ³	 カリフォルニア海流系南部の渦関連前 線に関連する空間勾配に対する、 	
						Cycle3(沿岸) 地点6 (>100m)	-	-	-	7.54~7.73	-	-	-	0.6~1.0	-	-	33. 8 ~ 34. 1	-	6.1 ~ 9.4	-	≤0.1 ind/m ³	thecosome 翼脚類の鉛直分布と殻溶解パ ターンの感度を試験した。アラゴナイト 約和層(Oarag = 1.0) は 前線を構	
						Cycle3(沿岸) 地点8 (<100m)	-	-	-	7.73 ~ 8.04	-	-	-	1.0~2.4	-	-	33. 6 ~ 33. 8	-	9.4~15.5	-	0.1~0.5 ind/m ³	100 1 は、前線を換 切って深度 >200 m から <75 mまで浅く なっている。thecosome翼足類の鉛直分布	
				個体数		Cycle3(沿岸) 地点8 (>100m)	-	-	-	7.54~7.73	-	-	-	0.6~1.0	-	-	33. 8 ~ 34. 1	-	6.1 ~ 9.4	-	≤0.1 ind/m ³	はこれらの変化に追従し、アラゴナイト に関して海水の飽和度が低い 100m 未満	
				回仲奴		Cycle4(沖合) 地点10 (<200m)	-	-	-	7.73~8.05	-	-	-	1.0~2.5	-	-	33. 0 ~ 33. 8	-	8.5~17.0	-	0.2~0.9 ind/m ³)の深さでは、5種すべての出現か減少し た。個体数で優占するthecosome Limacina helicina の殻の溶解パターン	
						Cycle4(沖合) 地点10 (>200m)	-	-	-	7.56~7.77	-	-	-	0.6~1.0	-	-	33.8~34.0	-	6.3 ~ 8.5	-	0.1~1.4 ind/m ³	は、Ωarag飽和度のクロスフロント変化 に対応していた。深刻な殻の溶解(ここ	
						Cycle4(沖合) 地点12 (<200m)	-	-	-	7.73 ~ 8.05	-	-	-	1.0~2.5	-	-	33. 0~33. 8	-	8.5~17.0	-	0.1~0.2 ind/m ³	ではタイフ II とタイフ III に分類) は、Ωarag > 1.4 の表層水付近の海水で け低く	
	Limacina helicina				-	Cycle4(沖合) 地点12 (>200m)	-	-	-	7.56~7.77	-	-	-	0.6~1.0	-	-	33. 8~34. 0	-	6.3~8.5	-	$\leq 0.1 \text{ ind/m}^3$	1.4 の深さで発生した。生息地の鉛直方 向の圧縮と貝殻の溶解の増加は、アラゴ	
	(=>>)+++++)					Cycle3(沿岸) (<100m)	-	-	-	7.73 ~ 8.04	-	-	-	1.0~2.4	-	-	33.6~33.8	-	9.4~15.5	-	0.6~1.0 mm	↓ナイトに対して飽和度が低い水域の将来 の浅瀬化に伴うと予想される。	
				殻長		Cycle3(沿岸) (>100m)	-	-	-	7.54~7.73	-	-	-	0.6~1.0	-	-	33. 8~34. 1	-	6.1~9.4	-	0.9~1.6 mm		
						Cycle4(冲合) (<200m)	-	-	-	7.73~8.05	-	-	-	1.0~2.5	-	-	33. 0~33. 8	-	8.5~17.0	-	0.5~1.0 mm		
					-	Cycle4(冲合) (>200m)	-	-	-	7.56~7.77	-	-	-	0.6~1.0	-	-	33. 8~34. 0	-	6.3~8.5	-	1.3~1.7 mm		
						(<100m) (vol.c2(以岸)	-	-	-	7. 73~8. 04	-	-	-	1.0~2.4	-	-	33.6~33.8	-	9.4~15.5	-	TypeIII: 10~30 %	-	
				殻溶解タ イプの割		(>100m) (>100m)	-	-	-	7.54~7.73	-	-	-	0.6~1.0	-	-	33. 8~34. 1	-	6.1~9.4	-	TypeIII: 15~20 %	-	
				台		(<200m) Cvcle4(沖合)	-	-	-	7.73~8.05	-	-	-	1.0~2.5	-	-	33.0~33.8	-	8.5~17.0	-	TypeIII: 0~15 %	-	
						(>200m) Cvcle3(沿岸)	-	-	-	7.56~7.77	-	-	-	0.6~1.0	-	-	33.8~34.0	-	6.3~8.5	-	TypeIII: 15~40 %		
						地点6 (<100m) Cvcle3(沿岸)	-	-	-	7. 73~8. 04	-	-	-	1.0~2.4	-	-	33. 6~33. 8	-	9.4~15.5	-	0.01~0.02 ind/m ³		
						地点6 (>100m) Cvcle3(沿岸)	-	-	-	7.54~7.73	-	-	-	0.6~1.0	-	-	33.8~34.1	-	6. 1~9. 4	-	≦0.04 ind/m ³		
						地点8 (<100m) Cycle3(沿岸)	-	-	-	7. 73~8. 04	-	-	-	1.0~2.4	-	-	33.6~33.8	-	9.4~15.5	-	≦0.03 ind/m ³	-	
	<i>Clio pyramidata</i> (ウキビシガイ属)				-	地点8 (>100m) Cycle4(沖合)	-	_	-	7. 72 - 19. 05	-	-	-	1.02.5	-	-	33. 8~34. 1	-	0. 1~9. 4	_	≤ 0.03 ind/m ²		Bednaršek N, & Ohman MD. (2015)
						地点10 (<200m) Cycle4(沖合)	_	_		7. 73~0.00	_	_	_	0.6~1.0			33.8~34.0		6.3~8.5		≥ 0.08 Ind/m		Changes in pteropod
腹足綱		涌昇域	南カリフォ			地点10 (>200m) Cycle4(沖合)	_	-	_	7 73~8 05		_	-	1 0~2 5		_	33 0~33 8	_	8.5~17.0	_	<0.03 ind/m ³		shell dissolution across a frontal
			ルーア海流			地点12 (<200m) Cycle4(沖合)	_	_	_	7.56~7.77	_	-	-	0.6~1.0	_	_	33, 8~34, 0		6, 3~8, 5	-	≤ 0.02 ind/m ³		system in the California Current
						地点12 (>200m) Cycle3(沿岸)	-	-	_	7.73~8.04	_	_	-	1.0~2.4	-	-	33. 6~33. 8	_	9.4~15.5	-	≤ 0.01 ind/m ³		System. Marine Ecology Progress Series 523 93-
						地点6 (<100m) Cycle3(沿岸)	-	-	-	7.54~7.73	_	_	-	0.6~1.0	_	-	33.8~34.1	-	6.1~9.4	_	≦0.01 ind/m ³		103.
						Cycle3(沿岸) 地占8 (<100m)	-	-	-	7.73~8.04	-	-	-	1.0~2.4	-	-	33.6~33.8	-	9.4~15.5	-	0.01~0.08 ind/m ³		
	limacina hulimoides					Cycle3(沿岸) 地占8()100m)	-	-	-	7.54~7.73	-	-	-	0.6~1.0	-	-	33.8~34.1	-	6.1~9.4	-	≦0.01 ind/m ³		
	(セイタカウキマイマイ)				-	Cycle4(沖合) 地占10 (<200m)	-	-	-	7.73~8.05	-	-	-	1.0~2.5	-	-	33. 0~33. 8	-	8.5~17.0	-	≦0.03 ind/m ³	-	
						Cycle4(沖合) 地点10 (>200m)	-	-	-	7.56~7.77	-	-	-	0.6~1.0	-	-	33. 8 ~ 34. 0	-	6.3~8.5	-	$\leq 0.02 \text{ ind/m}^3$		
				個体数		Cycle4(沖合) 地点12 (<200m)	-	-	-	7.73 ~ 8.05	-	-	-	1.0~2.5	-	-	33. 0 ~ 33. 8	-	8.5 ~ 17.0	-	\leq 0.05 ind/m ³		
						Cycle4(沖合) 地点12 (>200m)	-	-	-	7.56~7.77	-	-	-	0.6~1.0	-	-	33.8 ~ 34.0	-	6.3~8.5	-	\leq 0.01 ind/m ³		
						Cycle3(沿岸) 地点6 (<100m)	-	-	-	7.73 ~ 8.04	-	-	-	1.0~2.4	-	-	33. 6 ~ 33. 8	-	9.4 ~ 15.5	-	\leq 0.09 ind/m ³		
						Cycle3(沿岸) 地点6 (>100m)	-	-	-	7.54~7.73	-	-	-	0.6~1.0	-	-	33. 8 ~ 34. 1	-	6.1 ~ 9.4	-	\leq 0.01 ind/m ³		
						Cycle3(沿岸) 地点8 (<100m)	-	-	-	7.73 ~ 8.04	-	-	-	1.0~2.4	-	-	33. 6 ~ 33. 8	-	9.4~15.5	-	0.04~0.06 ind/m ³		
	Limacina trochiformis				_	Cycle3(沿岸) 地点8 (>100m)	-	-	-	7.54~7.73	-	-	-	0.6~1.0	-	-	33. 8 ~ 34. 1	-	6.1 ~ 9.4	-	\leq 0.01 ind/m ³	_	
	(コマガタウキマイマイ)					Cycle4(沖合) 地点10 (<200m)	-	-	-	7.73 ~ 8.05	-	-	-	1.0~2.5	-	-	33. 0~33. 8	-	8.5~17.0	-	\leq 0.05 ind/m ³		
						Cycle4(沖合) 地点10 (>200m)	-	-	-	7.56~7.77	-	-	-	0.6~1.0	-	-	33.8~34.0	-	6.3~8.5	-	$\leq 0.01 \text{ ind/m}^3$		
						Cycle4(沖合) 地点12 (<200m)	-	-	-	7.73~8.05	-	-	-	1.0~2.5	-	-	33. 0~33. 8	-	8.5~17.0	-	$\leq 0.01 \text{ ind/m}^3$		
						Cycle4(沖合) 地点12 (>200m)	-	-	-	7.56~7.77	-	-	-	0.6~1.0	-	-	33.8~34.0	-	6.3~8.5	-	$\leq 0.01 \text{ ind/m}^3$		
						Uycle3(沿岸) 地点6 (<100m)	-	-	-	7.73~8.04	-	-	-	1.0~2.4	-	-	33.6~33.8	-	9.4~15.5	-	$\leq 0.01 \text{ ind/m}^3$		
	Peracle hisningsa					bycle3(沿岸) 地点6 (>100m)	-	-	-	7.54~7.73	-	-	-	0.6~1.0	-	-	33. 8 ~ 34. 1	-	6.1~9.4	-	$\leq 0.01 \text{ ind/m}^3$		
	(アミメウキマイマイ属)				-	bycle3(沿岸) 地点8 (<100m)	-	-	-	7.73~8.04	-	-	-	1.0~2.4	-	-	33. 6~33. 8	-	9.4~15.5	-	≦0.01 ind/m ³		
						byole3(冶库) 地点8(〉100m)	-	-	-	7.54~7.73	-	-	-	0.6~1.0	-	-	33. 8~34. 1	-	6.1~9.4	-	≦0.01 ind/m ³		
						ugole4(冲合) 地点10 (<200m)	-	-	-	7.73~8.05	-	-	-	1.0~2.5	-		33. 0~33. 8	-	8.5~17.0	-	$\leq 0.02 \text{ ind/m}^3$		

表2(7)実海域における海洋酸性化の影響に係る文献整理結果(2008年~2021年)

高次の		-		18 A 18 A	生活史		pC0 ₂ [µatm]	∆ pC0₂	1	рH	Ωca	lcite	Ω ara	agonite	不飽和水	堆	分	温	度			
分類	供與生物	10 PQ	12) 海域	肝個項目	段階	以职还有	高C02区	対照区	[µatm]	高002区	対照区	高C0 ₂ 区	対照区	高C0 ₂ 区	対照区	베급 [%]	高00₂区	対照区	高C02区	対照区	18 ¹ 1	受利	四典
						Cycle4(沖合) 地点10 (>200m)	-	-	-	7.56~7.77	-	-	-	0.6~1.0	-	-	33.8~34.0	-	6.3~8.5	-	≤0.01 ind/m ³		
腹足綱	Peracle bispinosa (アミメウキマイマイ属)	湧昇域	南カリフォ ルニア海流	個体数	-	Cycle4(沖合) 地点12 (<200m)	-	-	-	7.73~8.05	-	-	-	1.0~2.5	-	-	33. 0 ~ 33. 8	-	8.5 ~ 17.0	-	\leq 0.02 ind/m ³	上段に記入	上段に記入
						Cycle4(沖合) 地点12 (>200m)	-	-	-	7.56~7.77	-	-	-	0.6~1.0	-	-	33. 8 ~ 34. 0	-	6.3~8.5	-	≦0.01 ind/m ³		
						CAR34Z#10(79日間)	-	-	-	7.89	-	-	-	2. 39	-	-	36.7	-	20. 7	-	1.70 mm	■ 翼足類は、海洋の化学環境の変化で最初 に影響を受ける生物と予測されているこ ■ トカミー 海洋融鉄化に開まる「岩鉄のカ	
						CAR35Z#04 (170日間)	-	-	-	7.89~7.95	-	-	-	2.39~2.93	-	-	36.7~36.9	-	20.7~22.6	-	1.02 mm	とから、海洋酸性化に関する「灰鉱のカ ナリア」と呼ばれている。これは、翼足 類が壊れやすいアラゴナイトの殻をも	
						CAR35Z#07 (212日間)	-	-	-	7.89~7.96	-	-	-	2.39~2.97	-	-	36.7~36.9	-	20. 7 ~ 22. 8	-	0.87 mm	ち、海洋酸性化の影響が最も顕著な極域や亜極域で豊富に出現するためである。	
				殻長の増		CAR35Z#11 (268日間)	-	-	-	7.89~8.03	-	-	-	2.39~3.59	-	-	36.7~36.9	-	20. 7~24. 8	-	0.87 mm	■異定類を海洋酸性化の取も効果的な指標 とするうえでは、現在の海洋における翼 ■ 足類の殻の形成と溶解に影響を与える生	
				加重	_	CAR35Z#13 (296日間)	-	-	-	7.89~8.03	-	-	-	2.39~3.59	-	-	36.7~36.9	-	20.7~24.8	-	1.05 mm	物・非生物的要因を定量化して理解する — 必要がある。	
					_	CAR362#03 (341日間)	-	-	-	7.89~8.03	-	-	-	2.39~3.59	-	-	36.7~36.9	-	20. 7~24. 8	-	1.01 mm	ペネスエラのカリアコ海盆に設置したセ ジメント・トラップで11か月間にわたっ て採集された贸足類Heliconoides	
					-	GAR362#06 (383日間)	-	-	-	7.88~8.03	-	-	-	2.34~3.59	-	-	36. 7~36. 9	-	20. 6~24. 8	-	0.96 mm	inflatusの約50標本について、殻の状態 (つまり、殻が溶解する程度)、サイ	
					-	GAR362#08 (411日間)	-	-	-	7.87~8.03	-	-	-	2. 28~3. 59	-	-	36. 7~36. 9	-	20.6~24.8	-	1.04 mm	ズ、渦巻きの数、殻の厚さ、および殻の 一容量(つまり、殻の材料の量)等の殻の	
					-	CAR342#10 (79日間)	-	-	-	7.89	-	-	-	2. 39	-	-	36.7	-	20. 7	-	0. 104 mm ³	□ 特性を測定した。 □ セジメント・トラップで採集した翼足類 □ の殻の状態は、3段階で変化する可能性が	
					-	(170日間) (AP357#07	-	-	-	7.89~7.95	-	-	-	2. 39~2. 93	-	-	36. 7~36. 9	-	20. 7~22. 6	-	0. 028 mm ³	ある: (1) 生物が海洋酸性化状態の水柱 ーに生息しでいる場合、(2) 生物が水柱で	
					-	(212日間) CAR357#11	-	-	-	7.89~7.96	-	-	-	2.39~2.97	-	-	36.7~36.9	-	20.7~22.8	-	0.013 mm ³	外亡し、有機物の微生物分解および/また 」は海洋酸性化に伴う非生物的溶解を受け 」 る場合 および(3) 生物が閉鎖されたセ	
				殻物質の 増加量	-	(268日間) CAR357#13	-	-	-	7.89~8.03	-	-	-	2.39~3.59	-	-	36. 7~36. 9	-	20. 7~24. 8	-	0.013 mm ³	ジメント・トラップカップに存在する間 に保存液による非生物的変化を受ける場	
					-	(296日間) CAR367#03	-	-	-	7.89~8.03	-	-	-	2.39~3.59	-	-	36. 7~36. 9	-	20. 7~24. 8	-	0.022 mm ³	合である。殻の状態は2つの方法で評価さ ーれた:Limacina溶解指数(LDX)と不透明 - 年はである、LDXは溶解による部のかれた	
					-	(341日間) CAR367#06	-	-	-	7.89~8.03	-	-	-	2.39~3.59	-	-	36. /~36. 9	-	20. /~24. 8	-	0.025 mm ³	度法でのる。LDAは各所による級の変化を 」広い範囲で記録するが、不透明度法は殻 の溶解の初期段階の変化のみを捉えるこ	
					-	(383日間) CAR36Z#08	-	-	-	7.88~8.03	-	-	-	2.34~3.59	-	-	36. /~36. 9	-	20. 6~24. 8	-	0.024 mm ³	とがわかった。カリアコ海盆の水塊はア ラゴナイトに関して周年過飽和状態であ	
					-	(411日間) CAR34Z#10	-	-	-	7. 8/~8. 03	-	-	-	2. 28~3. 59	-	-	36. /~36. 9	-	20. 6~24. 8	-	0.027 mm ^o	るため、生存期間中に殻の溶解は起きな かったと想定した。また、セジメント・ トラップ内での保存期間中に殻の状態が	
					-	(79日間) CAR35Z#04	_	-	-	7 90 - 7 05	-	-	-	2.39	-	-	30.7	-	20.7	_	0.010 mm	悪化したという証拠はなかった。光学顕 微鏡および走査型電子顕微鏡(SEM)の画	
					-	(170日間) CAR35Z#07	_	-	-	7.89~7.95	-	_	-	2.39~2.93	-	-	30. 7~30. 9	-	20. 7~22. 0	_	0.000 mm	│像は、死亡した翼足類の変化の大部分は │水柱内における有機物分解の間に起きた	Oakes RL and Sessa JA. (2020)
					=	(212日間) CAR35Z#11	_	_	_	7 89~8 03	_	_	_	2 30~3 50	_	_	36 7~36 0	_	20. 7~24.8	_	0.009 mm		Determining how biotic and abiotic variables affect
	Heliconoides inflatus	从洋博	カリアコ海	殻厚の増 加量	-	(268日間) CAR35Z#13	_	-	-	7 89~8 03	_	_	_	2 39~3 59	_	_	36 7~36 9	_	20.7~24.8	_	0.009 mm	物量が低下した9月と10月の採集試料で認 められた。カリアコ海盆の物理・化学的	the shell condition and
腹足綱	(ヒラウキマイマイ)	7174-74	盆 (ベネズエ ラ北部)		-	(296日間) CAR36Z#03	_	-	-	7.89~8.03	_	-	-	2.39~3.59	_	-	36. 7~36. 9	_	20. 7~24. 8	_	0.012 mm	●特性は、熱帯収集帯(IIGZ)の移動によ ●り季節ごとに変化する。H. inflatusの殻 のサイズ、渦巻きの数、および殻の厚さ	parameters of Heliconoides
					-	(341日間) CAR36Z#06 (393日間)	_	-	-	7.88~8.03	_	-	-	2. 34~3. 59	-	-	36. 7~36. 9	-	20. 6~24. 8	_	0.011 mm	」は年間を通じて変化した。渦巻きの数と 殻の直径の間に強い相関関係はなく、殻	from a sediment trap in the
					-	CAR36Z#08	-	-	-	7.87~8.03	-	-	-	2. 28~3. 59	-	-	36. 7~36. 9	-	20. 6~24. 8	_	0.012 mm	の成長は可塑的であることが示唆され た。H. inflatusは湧昇で栄養塩が高く餌 料が豊富なときに、40%厚く直径が20%	Cariaco Basin. Biogeosciences,
					=	(411日间) CAR34Z#10(79日間)	-	-	-	7.89	-	-	-	2.39	-	-	36.7	-	20. 7	-	1.5~2.5	大きい殻を生成した。これは、アラゴナ イト過飽和のカリアコ海盆における殻の	17, 1975-1990.
					=	CAR35Z#04 (170日間)	-	-	-	7.89~7.95	-	-	-	2.39~2.93	-	-	36. 7~36. 9	-	20. 7~22. 6	-	0.0~2.5	」成長が餌料環境(利用可用性)で制御されていることを示している。	
				殻状態(リ	-	CAR35Z#07 (212日間)	-	-	-	7.89~7.96	-	-	-	2. 39~2. 97	-	-	36. 7~36. 9	-	20. 7~22. 8	_	2.0~2.5	H. inflatusの殻特性の変動性のベースラ インデータセットを作成し、セジメン	
				マシナ溶 解指数)	-	CAR35Z#11 (268日間)	-	-	-	7.89~8.03	-	-	-	2.39~3.59	-	-	36.7~36.9	-	20. 7~24. 8	-	2.0~4.0	ト・トラップで採集された標本の変化に 関する制御を報告する。殻パラメータを 証価するために振覧された支法論は一世	
				(0(原殻) から5(高 度に突解		CAR35Z#13 (296日間)	-	-	-	7.89~8.03	-	-	-	2.39~3.59	-	-	36.7~36.9	-	20. 7~24. 8	-	0.5~4.0		
				した殻))		CAR36Z#03 (341日間)	-	-	-	7.89~8.03	-	-	-	2.39~3.59	-	-	36.7 ~ 36.9	-	20. 7~24. 8	-	0.5~2.0	を確立する。	
						CAR36Z#06 (383日間)	-	-	-	7.88~8.03	-	-	-	2.34~3.59	-	-	36.7~36.9	-	20.6~24.8	-	2.0~3.0		
						CAR36Z#08 (411日間)	-	-	-	7.87~8.03	-	-	-	2. 28~3. 59	-	-	36.7~36.9	-	20.6~24.8	-	1.5~2.0		
						CAR34Z#10(79日間)	-	-	-	7.89	-	-	-	2.39	-	-	36.7	-	20. 7	-	0.31~0.43		
				殻状態(不		CAR35Z#04 (170日間)	-	-	-	7.89~7.95	-	-	-	2.39~2.93	-	-	36. 7~36. 9	-	20.7 ~ 22.6	-	0. 17~0. 40		
				透明度) (原殻は 低い不诱		CAR35Z#07 (212日間)	-	-	-	7.89~7.96	-	-	-	2.39~2.97	-	-	36.7~36.9	-	20. 7 ~ 22. 8	-	0. 33~0. 74		
				明度(0~ 0.25)、		CAR35Z#11 (268日間)	-	-	-	7.89~8.03	-	-	-	2.39~3.59	-	-	36.7 ~ 36.9	-	20.7~24.8	-	0. 40~0. 48		
				 局度に変 化した殻 は高い不 		CAR35Z#13 (296日間)	-	-	-	7.89~8.03	-	-	-	2.39~3.59	-	-	36.7~36.9	-	20.7~24.8	-	0.19~0.64		
				透明度 (0.5~		CAR36Z#03 (341日間)	-	-	-	7.89~8.03	-	-	-	2.39~3.59	-	-	36.7 ~ 36.9	-	20. 7~24. 8	-	0.35~0.50	_	
				0.7))	-	CAR36Z#06 (383日間)	-	-	-	7.88~8.03	-	-	-	2.34~3.59	-	-	36.7~36.9	-	20.6~24.8	-	0.46~0.50		
					-	CAR36Z#08 (411日間)	-	-	-	7.87~8.03	-	-	-	2. 28~3. 59	-	-	36.7 ~ 36.9	-	20.6~24.8	-	0. 44~0. 57	_	
				輪数		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	湧昇時: 2.6 非湧昇時: 2.7 (p=0.0891)		

表2(8) 実海域における海洋酸性化の影響に係る文献整理結果(2008年~2021年)

高次の) ##+##		k Xar Hall	预度接口	生活史	·	pC0 ₂	[µatm]	∆ pC0 ₂		ьH	Ωcal	cite	Ω arag	gonite	不飽和水	塩	分	温	度		3 44	ية بن
分類	供供生物	C P6	L/박색	計画項目	段階	风积达石	高CO2区	対照区	[µatm]	高C02区	対照区	高CO2区	対照区	高C0 ₂ 区	対照区	[%]	高C0 ₂ 区	対照区	高C02区	対照区		安利	<u>а</u>
				殼径		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	湧昇時: 0.94 mm 非湧昇時: 1.23 mm (p=0.0080)		
腹足維	Heliconoides inflatus (ヒラウキマイマイ)	外洋域	カリアコ海 盆(ベネズエ ラ北部)	殻物質量	-		_	-	_	-	-	_	-	-	_	_	-	_	-	_		上段に記入	上段に記入
				殻厚	-		_	_	_	-	_	_	-	-	-	-	-	-	-	_	(p=0.0052) 湧昇時: 0.009 mm 非湧昇時: 0.014 mm (p=0.0004)		
	メロプランクトン性 腹足類				幼生		-	-	-	7.88~8.18	_	-	-	1.3~2.7	-	-	33. 3~35. 0	-	4. 37~16. 23	-	(p=0.0004) 1標本あたり50 %~ 100 %で秋~冬に高い _{場侮}	海洋酸性化 (OA) は、人為的二酸化炭素 に起因する海水の炭酸塩化学の変化であ り、プランクトンの石灰化に大きな影響	
						_	-	-	-	7.88~8.18	-	-	-	1.3~2.7	_	-	33. 3~35. 0	_	4.37~16.23		10 % 軽度な損傷: 10 %	を与える。0Aに関するブランクトン研究 の多くは、沿岸海域における観測が乏し く、沖合海域に焦点をあてた「1回限り	
	ミジンギリギリツツ科				-	-	-	-	-	7.88~8.18	-	-	-	1. 3~2. 7	-	-	33. 3~35. 0	-	4. 37~16. 23	-	重度な損傷: 70 % (Rissoa属: 8.5 %) (p<0.05)	の」加油にあったです。 本研究では、スコットランド東海岸の Stonehavenにあるスコットランド沿岸観 測モニタリングサイトに、8世の日達地性的	
	アサガオガイ属	-			_	-	-	-	-	7.88~8.18	-	-	-	1.3~2.7	-	-	33. 3 ~ 35. 0	-	4. 37~16. 23	-	軽度な損傷: 10 %	定領(終生ノラングトンの裏定領と他の 底生種の浮遊幼生)の殻の完全性に関す る最初の解析を紹介する。 2011年から2013年にかけてアーカイブさ	
						-	-	-	-	7.88~8.18	-	-	-	1.3~2.7	-	-	33. 3 ~ 35. 0	-	4. 37~16. 23	-	重度な損傷: 37 %	れた浮遊性腹足類の標本の殻の完全性に ついて走査型電子顕微鏡を使用して調	León P, Bednaršek
	タマガイ科				_	-	-	-	-	7.88~8.18	-	-	-	1.3~2.7	-	-	33. 3 ~ 35. 0	-	4.37 ~ 16.23	-	軽度な損傷: 10 %	ベ、OA(pHおよびアラゴナイト飽和度Ω arg)とその他の環境パラメータとの関係 を調査した。海水がアラゴナイトに関し	al. (2020) Relationship
		-	Stonehaven			-	-	-	-	7.88~8.18	-	-	-	1.3~2.7	-	-	33. 3~35. 0	-	4. 37~16. 23	-	重度な損傷: 35 %	て過飽和の場合でも分析したすべての分 類群で殻溶解の証拠を検出した。殻の状 離はOargの経時変化トー教 Oargの	integrity of pelagic gastropods
腹足維	リソツボ科	外洋域 (海盆)	モニダリン グサイト (スコットラ	殻溶解の 割合	_	-	-	-	-	7.88~8.18	-	-	-	1.3~2.7	-	-	33. 3 ~ 35. 0	-	4.37 ~ 16.23	-	軽度な損傷:3%	認はΩargの程時変化と一致し、ωargの 減少に伴い溶解の割合が高くなり、炭酸 塩化学の季節性成分が浮遊性腹足類の殻 の完全性に影響を与える可能性を示除し	and carbonate chemistry parameters at a
		-	ント北東部)			-	-	-	-	7.88~8.18	-	-	-	1.3~2.7	-	-	33. 3~35. 0	-	4. 37~16. 23	-	重度な損傷: 8.5 %	の光生住に影響を与える可能住を小陵している。 殻溶解の割合は、 翼足類の幼生 期と成体期の間で有意に異なり、初期生	Scottish Coastal Observatory
	翼足類の幼生vs成体	-			-	-	-	-	-	7.88~8.18	-	-	-	1.3~2.7	-	-	33. 3~35. 0	-	4.37~16.23	-	86%が幼生 (p<0.05)	活史段階はOAで誘発される変化に対して より脆弱であるという仮説を支持した。 我々のデータはまた、OAに対する感度が	ICES Journal of Marine Science,
	Limacina retroversa				成体	-	-	-	-	7.88~8.18	-	-	-	1.3~2.7	-	-	33. 3~35. 0	-	4. 37~16. 23	-	軽度な損傷:0%	密接に関連する分類群間でも異なる場合 があることを示唆している。年ごとの殻	//(1), 436-450.
	(ミジンウキマイマイ属)	-				-	-	-	-	7.88~8.18	-	-	-	1.3~2.7	-	-	33. 3~35. 0	-	4.37 ~ 16.23	-	重度な損傷:15 %	の溶解とΩargで明らかになった強い経年 変動は、現場でのOAに対するプランクト ンの応答と時系列研究の価値を評価する	
	Limacina helicina (ミジンウキマイマイ)				成体	-	-	-	-	7.88~8.18	-	-	-	1.3~2.7	-	-	33. 3~35. 0	-	4.37~16.23	-	軽度な損傷:15 %	ことが困難であることを示している。	
		-				-	-	-	-	7.88~8.18	-	-	-	1.3~2.7	-	-	33. 3~35. 0	-	4. 37~16. 23	-	重度な損傷:0%		
	留足類の幼生				幼生	-	-	-	-	7.88~8.18	-	-	-	1.3~2.7	-	-	33. 3~35. 0	-	4. 37~16. 23	-	軽度な損傷:5%		
	#C.WOV-91-				***	-	-	-	-	7.88~8.18	-	-	-	1.3~2.7	-	-	33. 3~35. 0	-	4.37~16.23	-	重度な損傷: 40 %	- 海洋融鉄ル (04) のくいパクトゥの昭	
						164	-	-	-	-	-	-	-	1.83	-	-	-	-	6.5	-	Type I: 73 % intact: 27 %	・海洋酸性℃(0A)のインバクトへの曝露は、高緯度の生産力の高い生息地で増加している。経済的に重要な魚類の餌料	
						167	-	-	-	-	-	-	-	1. 73	-	-	-	-	6	-	Type I : 53 % intact: 47 %	の主要構成要素である石灰化浮遊性巻貝(翼足類)は、これらの海域で非常に豊富に出現する。翼足類は薄い殻を有し、	
						170	-	-	-	-	-	-	-	1.68	-	-	-	-	5.6	-	Type II: 70 % intact: 30 %	アラゴナイト飽和度(Ωar)が低いと容易に溶解し、OAの影響を受けやすくな	
						174	-	-	-	-	-	-	-	1.48	-	-	-	-	6.7	-	Type II: 92 % intact: 8 %	る。 ・本稿では、東太平洋の亜寒帯環流、ア ラスカ湾(GoA)、ベーリング海、アムン	
						178	-	-	-	-	-	-	-	1.69	-	-	-	-	6.2	-	Type II: 60 % Type III: 40 %	ゼン湾の翼足類について、最初の統合リ スク評価を実施した。0A曝露、生物学的	
				殻溶解タ イプの割		182	-	-	-	-	-	-	-	1. 62	-	-	-	-	6.4	-	Type I: 80 % Type II: 20 %	感受性、および回復力の測定値を統合す ることにより、翼足類群集のリスクを決 定した。曝露は、物理化学的海況観測と	Bednaršek N, Naish
				合		187	-	-	-	-	-	-	-	1.51	-	-	-	-	5.6	-	Type I: 70 % Type II: 30 %	地域の生物地球化学モデルの出力結果に 基づいており、炭酸塩化学条件の季節変 化と数十年の変化を描写している 生物	KA, Feely RA, et al. (2021) Integrated
	Limacina helicina					191	-	-	-	-	-	-	-	1.46	-	-	-	-	5.9	-	Type II: 100 %	学的感受性は、翼足類の形態計測と、殻 の溶解、密度、厚さなどの殻の構築プロ わっに基づいていた。回復れた感にあっ	Assessment of Ocean
腹足綱	(ミジンウキマイマイ (ミジンウキマイマイ 属),,,,	高緯度	北太平洋亜 極域とアラ		_	194	-	-	-	-	-	-	-	1.57	-	-	-	-	7.2	-	Type II: 83 % intact: 17 %	セスに基づいていた。回復力と適応力 は、粒子追跡モデリングから導出された 種の多様性と空間的接続性に基づいてい	Risks to Pteropods in the Northern
12721	・ Limacina helicina pacifica (ミジンウキマイマイ	(北極圏)	スカ湾			198	-	-	-	-	-	-	-	1.83	-	-	-	-	8.2	-	Type I: 55 %、 intact: 45 %	た。 亜寒帯塚流の甲央部と西部、ペーリ ング海の一部、アムンゼン湾で広範囲の 目熱の淡解が確認された helicina	Regional Comparison of
	(ミンン)+++++ 属)					201	-	-	-	-	-	-	-	1. 78	-	-	-	-	8. 1	-	Type I: 67 % intact: 33 %	kelicinaとL. helicin apacificaの2種の について、それぞれ、大きく尖塔した殻	Exposure, Sensitivity and
						204	-	-	-	-	-	-	-	1.68	-	-	-	-	0.7	-	Type I: 36 % intact: 64 %	定した。異なる形態が存在するにもかかわらず、ミトコンドリアのハプロタイプ	Frontiers in Marine Science.
						164	-	-	-	-	-	-	-	1.83	-	-	-	-	6.5	-	100 ind/m ²	に基づく遺伝子分析は、形態タイプを区 別せず、広範な空間的接続性の証拠と一	1282.
						170	-	-	-	-	-	-	-	1. 68	-	-	-	-	5.6	-	42 ind/m ²	致する単一種として同定した。殻の形態 計測の特性はオメガ飽和度(Ωar)に依	
						174		-					-	1.48			-	-	6.7 6.2		91 ind/m ²	存することがわかった。Ωar低下の条件 下で、翼足類はより平坦でより厚い殻を	
				個体数		182	-	-	-	-	-	-	-	1.62	-	-	-	-	6.4	-	123 ind/m ²	構築する。これは表現型の可塑性の特定のレベルを示している。	
				- 11:30		187							-	1.51 1.46	-	-		-	5.6 5.9		307 ind/m ² 332 ind/m ²	・複数のアフローナに基つく統合リスク 評価では、北太平洋東部の高緯度地域に	
						194	-	-	-	-	-	-	-	1.57	-	-	-	-	7.2	-	423 ind/m ²	のののの1000000000000000000000000000000000	
						201	-	-	-	-	-	-	-	1.83	-	-		-	8.2		149 ind/m ² 88 ind/m ²	が限られているため、翼足類の個体数が 持続するリスクは高いと想定している	
						204	-	-	-	-	-	-	-	1.68	-	-	-	-	0.7	-	87 ind/m ²	このような包括的な理解により、効果的	

高次の		植士	***	** F ** 0	生活史		pCO ₂	[µatm]	∆ pC0₂	5	ын	Ωcal	lcite	Ω ara	agonite	不飽和水	ij	纷	7	度		T 41	
分類	供與生物		[海渠	評個項目	段階	試験込石	高C02区	対照区	[µatm]	高002区	対照区	高C0 ₂ 区	対照区	高C0 ₂ 区	対照区	割百 [%]	高C0 ₂ 区	対照区	高C02区	対照区	K .	受利	四典
						24	-	-	-	-	-	-	-	1. 27	-	-	-	-	3. 2	-	Type II: 40 % Type III: 60 %	□な水産資源管理に関連する生態糸の変化 □の予測が改善されるだけでなく、生態系 □の健全性を監視し、高緯度の生息地にお	
				±0.555.477 &		45	-	-	-	-	-	-	-	1. 48	-	-	-	-	3. 9	-	intact: 45 % Type I: 55 %	けるOAの影響を調査するための基盤がよ り強固なものになる。	
			ベーリング 海	一般溶解タ イプの割 合		50	-	-	-	-	-	-	-	1.82	-	-	-	-	4. 2	-	intact: 65 % Type I: 35 %		
	Limacina helicina helicina					53	-	-	-	-	-	-	-	1.11	-	-	-	-	4.6	-	Intact: 100 %		
腹足綱	(ミジンウキマイマイ 属) Limacing helicing	高緯度 (北極團)				56	-	-	-	-	-	-	-	1.45	-	-	-	-	-	-	intact: 55 % Type I: 45 %	_	上段に記入
	pacifica (ミジンウキマイマイ 属)	(101212)				MTI 06	-	-	-	-	-	-	-	1. 30	-	-	-	-	-	-	Type I: 14 % Type II: 16 % Type III: 70 %		
	/ I I/		アムンゼン 湾 (カナダ・	殻溶解タ イプの割		MTI 04	-	-	-	-	-	-	-	1.30	-	-	-	-	-	-	Type I: 14 % Type II: 16 % Type III: 70 %		
			ビュー フォート 海)	合		DUS 04	-	-	-	-	-	-	-	1.61	-	-	-	-	-	-	Type I: 16 % Type II: 21 % Type III: 63 %		
						CPB03	-	-	-	-	-	-	-	1. 10	-	-	-	-	-	-	Type II: 7 % Type III: 93 %	-	
						St.22 (July 2014)	-	-	-	-	-	-	-	1.1	-	-	31.5	-	10.4	-	タイプI:0% タイプII:100%	 河口域は、極端な季節と酸性化状態の 長期化により、沿岸の海洋酸性化に対し て長ま晩祝たち自地の1つとして認識され 	
						St. 22 (Sept 2014)	_	_	_	_	_	_	-	1.1	_		31.5	_	10. 4	_	タイプ11:0% タイプ1:36% タイプ11:52%	ている。これは、気温の上昇や溶存酸素 の低下など、同時に発生する環境スト レッサーと組み合わさっている。しか	
			セイリッ シュ海			St. 22	-	_	_	_	_	_	-	1.1	_	_	31.5	_	10. 4	_	タイプIII: 12 % タイプI: 58 % タイプII: 37 %	し、河口域の生息地における海洋酸性化 の生物学的影響の証拠はほとんどない。 ・本研究は、関連する季節から年々の時	
			(米国ワシントン州)			St 22 (July 2015)	_	_	_	_	_	_	_	11	_	_	31.5	_	10.4	_	タイプIII:5% タイプI:53% タイプII:35%	間スケールにわたる物理的、生物地球化 学的、および生物学的な時系列観測を組 み合わせることにより、河口域の酸性化	
			 			St. 22								1.1			21.5		10.4		タイプIII: 12 % タイプI: 31 %	に対する翼足類 Limacina helicina の生 物学的反応の空間的および時間的変化を 他のストレッサーとともに説明した最初	
			峡			(April 2016)								1.1			31.5		10.4		タイプIII: 40 % タイプIII: 23 % タイプI: 73 %	の研究である。クラスタリングと主成分 」分析を使用して、サンプリングサイト は、空間と時間にわたる物理的および生	
						St. 22 (July 2010)	_	_	-	-	-	-	-	1.1	-	-	31.5	-	10.4	-	タイプ11:20% タイプ111:7% タイプ1:92%	 初地球化学的変数の分布に従ってクルー プ化された。これにより、3シーズンと3 年間で最も深刻な生物学的悪影響に対応 オム 毎4 唱電されたよ自地と時間問題 	
				_		St. 22 (Sept 2016)	-	-	-	-	-	-	-	1.1	-	-	31.5	-	10.4	-	タイプII: 8 % タイプIII: 0 % タイプI: 50 %	9 3、80 時端路 2 1 / 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 1 1 2 1 1 2 1 1 2 1	
						St. 8 (July 2014)	-	-	-	-	-	-	-	1.2	-	-	30. 1	-	11.7	-	タイプII: 50 % タイプIII: 0 % タイプI: 30 %	は、2014年から2016年の調査期間中、低 アラゴナイト飽和度の深刻さと曝露期間 の組み合わせが全体的な累積応力に寄与	
						St. 8 (Sept 2014)	-	-	-	-	-	-	-	1.2	-	-	30. 1	-	11.7	-	タイプII: 70 % タイプIII: 0 % タイプI: 16 %	し、深刻な殻の溶解をもたらしたことを 示している。サリッシュ海(ワシントン 州、米国)などの季節変動する河口域	
						St.8 (April 2015)	-	-	-	-	-	-	-	1.2	-	-	30. 1	-	11.7	-	タイプII: 47 % タイプIII: 37 %	は、敏感な生物を沿岸および外洋の生息 地よりも厳しい酸性条件に曝露しやすく するが、敏感な生物は存続する。	Bednaršek N,
						St.8 (July 2015)	-	-	-	-	-	-	-	1.2	-	-	30. 1	-	11.7	-	タイプII: 33.3 % タイプII: 33.3 % タイプIII: 33.3 %	・我々は、浮遊系の石灰化生物が不利な 生息地に生息し、関連するストレッサー 」を部分的に相殺することを可能にする潜	Newton JA, Beck MW, et al. (2021) Severe biological
腹足綱	Limacina helicina	河口域		殻溶解タ イプの割	_	St.8 (April 2016)	-	-	-	-	-	-	-	1.2	-	-	30. 1	-	11.7	-	タイプ1:11 % タイプ11:56 % タイプ111:33 %	41的な環境要因と代債メカースムを示唆 する。例えば、餌料供給、気温の上昇、 生活史の適応などである。ここで開発さ ちを思考ストレスの新しい測定措達は	effects under present-day estuarine
	(=>>)++1+1)			合		St.8 (July 2016)	-	-	-	-	-	-	-	1.2	-	-	30. 1	-	11.7	-	タイプI: 6 % タイプII: 76 % タイプIII: 18 %	にたまでない。 同様の物理的および化学的ダイナミクス を持つ他の河口域環境に適用でき、地球 目期炉の変化の加速からの圧力下で河口域	the seasonally variable Salish
						St.8 (Sept 2016)	-	-	-	-	-	-	-	1.2	-	-	30. 1	-	11.7	-	タイプI: 64.3 % タイプII: 14.3 % タイプIII: 21.4 %	の生物学的応答を監視するための新しい ツールを提供する。	The Total Environment, 765, 142689.
			セイリッ シュ海 (米国ワシ			St.28 (Sept 2014)	-	-	-	-	-	-	-	1.1	-	-	30. 2	-	11.9	-	タイプI: 84 % タイプII: 16 % タイプIII: 0 %		
			ントン州)			St.28 (April 2015)	-	-	-	-	-	-	-	1.1	-	-	30. 2	-	11.9	-	タイプI: 76 % タイプII: 19 % タイプIII: 5 %		
			域: メイン盆地 と南湾			St. 28 (July 2015)	-	-	-	-	-	-	-	1.1	-	-	30. 2	-	11.9	-	タイプI: 80 % タイプII: 17.5 % タイプIII: 2.5 %	-	
						St. 28 (Sept 2015)	_	-	_	-	_	_	-	1.1	-	-	30. 2	-	11.9	-	タイプI: 39 % タイプII: 50 %	-	
						St.28 (April 2016)	-	-	-	-	-	_	-	1.1	-	-	30. 2	-	11.9	-	タイプI: 23 % タイプI: 31 %	-	
						St.28 (July 2016)	-	-	-	-	-	_	-	1.1	-	-	30. 2	-	11.9	-	タイプI: 71 % タイプI: 29 %	-	
						St. 28 (Sept 2016)		-		-	-	-	-	1.1	-	-	30. 2	-	11.9	-	タイプI: 17 % タイプI: 50 %	-	
						St. 38 (July 2014)		_		_	_	_	-	1.1	-		29. 7	_	12. 8	_	タイプI: 8 % タイプI: 8 % タイプII: 77 %	-	
						St. 38 (April 2015)		_	_	_	-	_	-	1.1	-	-	29. 7	_	12. 8	_	タイフ111:15 % タイプ1:26 % タイプ11:26 %	-	
						St. 38 (July 2015)		-		-	-	-	-	1.1	-	-	29. 7	-	12. 8	-	タイノ111:48 % タイプI:33 % タイプI1:67 %	-	

表2(9) 実海域における海洋酸性化の影響に係る文献整理結果(2008年~2021年)

高次の	供留出物	體本	海博	雙痛作日	生活史	计验疗点	pC0 ₂	[µatm]	∆ pC0₂	I	рH	Ω ca	lcite	Ω ara	agonite	不飽和水	塩	分 	温	度		百约	曲山
分類	铁旗生物	64 JE	/#4 4	計画項目	段階	风铁运行	高C02区	対照区	[µatm]	高C02区	対照区	高C02区	対照区	高CO2区	対照区	[%]	高C02区	対照区	高002区	対照区		5 A)	四典
						St.38 (Sept 2015)	-	-	-	-	-	-	-	1.1	-	-	29. 7	-	12.8	-	タイプI: 44.5 % タイプII: 33.3 %		
			セイリッ シュ海 (米国ワシ			St. 38	_	_	_	_	_	_	_	11	_	_	29.7	_	12.8	_	タイブ111:22.2 % タイプ1:0 % タイプ11:90 %	-	
			ントン州) 中程度暴露			(April 2016)											20.7		12.0		タイプIII: 10 % タイプI: 0 %	-	
			域: メイン盆地 と南湾			St. 38 (July 2016)	-	-	-	-	-	-	-	1.1	-	-	29.7	-	12.8	-	タイプII: 80 % タイプIII: 20 % タイプI: 47 %	-	
			Cline			St.38 (Sept 2016)	-	-	-	-	-	-	-	1.1	-	-	29. 7	-	12.8	-	タイプII: 24 % タイプIII: 29 %	_	
						St.4 (July 2014)	-	-	-	-	-	-	-	0. 9	-	-	27. 9	-	11.6	-	タイプI: 64.3 % タイプII: 21.4 % タイプIII: 14.3 %		
						St. 4 (Sept 2014)	-	-	-	-	-	-	-	0. 9	-	-	27. 9	-	11.6	-	タイプ1:57 % タイプ11:43 % タイプ111:0 %		
						St.4 (April 2015)	-	_	-	-	-	_	-	0. 9	-	-	27.9	_	11.6	-	タイプ1:67 % タイプ11:0 %	-	
						St.4 (July 2015)	_	_	_	_	_	_	_	0. 9	_	_	27. 9		11.6	_	タイプI: 73.7% タイプI: 15.8%	-	
						St. 4 (Sept 2015)	-	-	-	-	_	_	-	0.9	-	-	27.9	-	11.6	-	タイフIII: 10.5% タイプI: 0% タイプII: 57%	-	
						St. 4 (April 2016)		_		_			_	0.9	_	_	27.9		11.6		タイプIII: 43% タイプI: 0 % タイプII: 46 %	-	
						St 4 (July 2016)	_		_	_			_	0.9	_		27.0		11.6	_	タイプIII: 54 % タイプI: 20 %	-	
						31.4 (001y 2010)								0.9			21.9		11.0		タイプIII: 27 % タイプII: 22.2 %	-	
						St. 4 (Sept 2016)	-	-	-	-	-	-	-	0.9	-	-	27.9	-	11.6	-	タイブ11:44.5 % タイプ111:33.3 % タイプ1:33 %	-	
腹足綱	Limacina helicina (ミジンウキマイマイ)	河口域		殻溶解タ イプの割	-	St. 12 (July 2014)	-	-	-	-	-	-	-	0. 9	-	-	29. 1	-	11.5	-	タイプII: 28 % タイプIII: 9 %	- 上段に記入	上段に記入
			セイリッ シュ海	台		St. 12 (Sept 2014)	-	-	-	-	-	-	-	0. 9	-	-	29. 1	-	11.5	-	タイプII: 26 % タイプII: 26 % タイプIII: 48 %	-	
			(米国ワシ ントン州)			St.12 (July 2015)	-	-	-	-	-	-	-	0. 9	-	-	29. 1	-	11.5	-	タイフ1: 18 % タイプ11: 27 % タイプ111: 55 %		
			 里皮泰路 域: ウィドビー 分地とフット 			St.12 (Sept 2015)	-	-	-	-	-	-	-	0. 9	-	-	29. 1	-	11.5	-	タイプ1:0% タイプ11:38% タイプ111:63%		
			ド運河			St.12 (April 2016)	-	-	-	-	-	-	-	0. 9	-	-	29. 1	-	11.5	-	タイプI:0% タイプII:21.4% タイプIII:79%		
						St.12 (July 2016)	-	-	-	-	-	-	-	0.9	-	-	29. 1	-	11.5	-	タイプ1:33 % タイプ11:20 % タイプ111:46.7 %		
						St. 12 (Sept 2016)	-	-	-	-	-	-	-	0. 9	-	-	29. 1	-	11.5	-	タイプI: 67 % タイプII: 33 % タイプIII: 0 %		
						St.402 (July 2014)	-	-	-	-	-	-	-	0. 9	-	-	28. 6	-	11.9	-	タイプ1:50 % タイプ11:25 % タイプ111:25 %	-	
						St. 402 (Sept 2014)	-	-	-	-	-	-	-	0. 9	-	-	28.6	-	11.9	-	タイプ1:7% タイプ1:56%	-	
						St.402 (April 2015)	-	_	-	-	-	-	-	0. 9	-	-	28.6	-	11.9	_	タイプI: 100 % タイプII: 0 %	-	
						St. 402 (July 2015)	-	-	-	-	-	-	-	0.9	-	-	28.6	-	11.9	-	タイプI: 17 % タイプII: 17 %	-	
						St. 402	-	-	-	-	_	_	-	0.9	-	-	28.6	-	11.9	-	タイフ111: 66 % タイプ1: 24 % タイプ11: 29 %	-	
						St. 402		_		_			_	0.9	_	_	28.6		11.9		タイプIII: 47 % タイプI: 8 % タイプII: 25 %	-	
						(July 2016) St. 402								0.0			20.0		11.0		タイプIII: 67 % タイプI: 0 %	-	
						(Sept 2016)	-	-	-	-	-	-	-	0.9	-	-	28. 0	-	11.9	-	タイ ノII: 100 % タイプIII: 0 %	- 十年中の000 低水泪 呵吗 淡水の本	
						2012年(0-25m) 2012年(25-50m)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	44 %	→ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	
						2012年(50-100m) 2012年(100-200m)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	28 %	おける海洋酸性化(人為起源および/また)は自然起源)の生態系への影響は非常に	Ni conti A - De do conxiste
						2012年(100 200m) 2012年(>200m)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.2 %	不明確である。カナダのビューフォート 海における酸性水の存在と潜在的な影響	N, Michel C, et
						2013年(0-25m) 2013年(25-50m)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	98 %	の生物指標である浮遊性巻貝類Limacina helicinaを調査するために、2012年から	Biological impact
	Limaaina haliaina	古绘曲	ビュー			2013年(50-100m)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0 %	2014年の8月と2017年8月に動物プランク トンのサンプルと海洋データを収集し	acidification in
腹足綱	Limacina neiicina (ミジンウキマイマイ)	高程度 (北極圏)	フォート棚 とアムンゼ	生存率	-	2013年(100-200m)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0 %	た。2012年から2014年の間に、L. helicinaの出現量は<1~1942 Ind m-2の	Arctic: widespread
			ン湾			2013年(>200m) 2014年(0-25m)	-	-	-	-	-	-	-	-	-	-	26.0~34.5	-	-2.0~8.0°C	-	50 %	範囲で、2012年にカナダのビューフォー ト大陸棚の測占で最も多く出現した 個	severe pteropod shell dissolution
						2014年 (25-50m)	-	-	-	-	-	-	-	-	-	-	26. 0~34. 5	-	-2.0~8.0°C	-	47 %	ム、八座100000円点で取も多く田現した。 体数の多く(66%)は、太平洋起源の上層	in Amundsen Gulf. Frontiers in
						2014年(50-100m)	-	-	-	-	-	-	-	-	-	-	26.0~34.5	-	-2.0~8.0°C	-	1.4 %	温分確増水に対応する水深25~100 mの間 −で出現した。2014年と2017年の両方で、	Marine Science, 8,
						2014年(100-200m) 2014年(>200~)	-	-	-	-	-	-	-	-	-	-	26.0~34.5 26.0~34.5	-	-2.0~8.0°C	-	0%	アムンゼン湾地域で評価されたL. helicinaの85%以上(n = 134) が殻の滚	LLL.
						2017年(50-100m)	-	-	-	-	-	-	-	-	-	-	<u>26.</u> 0~34. 5	-	-2.0~8.5°C		52 %	解を示し、すべての測点で高度なレベルの変解が発生した。変配の素に度け、	
L						2017年(100-200m)	-	-	-	-	-	-	-	-	-	-	26.0~34.5	-	-2.0~8.5°C	-	32 %	解しにくいより大きな個体の存在、およ	
			棚水域			2012年		-			-	-	-				- 26 0~34 F	-	- 2 0~8 0°C	-	最大 1942 ind/m2 < 5 ind/m2	した2014年にいくつかの生埋利益を提供で きる、より高い餌料が入手可能であった	
						2017年 /0 50 \							-	0.05.0.40			20.0-34.0		2.0.0.000		= 0 THU/IIIZ	- にもかかわらず、2014年と2017年の間で 有意差はなかった。2017 年のサンプリン	
			ハサースト 岬、ミント 湾. ドル	個体数		2017年(U-50m)	-	-	-	-	-	-	-	0.95~3.43	-	-	20.0~34.5	-	-2. U~8. 5°C	-		グの時点では、腐食性の水条件はアムン ゼン湾に広がっておらず、アラゴナイト	
			フィン海峡、ユニオ			2017年(50-200m)	-	-	-	-	-	-	-	0. 69~2. 15	-	-	26.0~34.5	-	-2.0~8.5℃	-	0∼625 ind/m2	100 ⁻ 100	
			ノ海峡			2017年(>200m)	-		-	-	-	-	-	0. 72~1. 40	-	-	26.0~34.5	-	-2. 0∼8. 5°C	-		る5月または6月初旬の幼生の成長段階で 」損傷が始まったことを強く示唆してい	

表2(10)実海域における海洋酸性化の影響に係る文献整理結果(2008年~2021年)

					1	-							-								1		
高次の 分類	供試生物	調査	を海域	評価項目	生活史 段階	試験区名	pCO ₂ 高CO ₂ 区	[µatm] 対照区	⊿ pCO₂ [µatm]	 高C0₂区	oH 対照区	Ω cal 高C0₂区	cite 対照区	Ωara 高C0₂区	agonite 対照区	不飽和水 割合 [%]	塩 高C0₂区	分 	温 高C0₂区	皮対照区	- F	要約	出典
						2014年	-	-	-	-	-	-	-	-	-	-	26. 0~34. 5	-	-2.0~8.0°C	-	タイプI: 17 % タイプII: 13 %	る。貝殻の改変の証拠は2014年に存在 し、2017年と比較して2014年の豊富な餌	
			アムンゼン 湾	, 		2017年 (0-50m) 2017年 (50-200m)		-	-		-	-	-	0.95~3.43 0.69~2.15	-		26. 0~34. 5 26. 0~34. 5	-	-2.0~8.5°C -2.0~8.5°C	-	タイプII: 10.5 % タイプII: 18.5 %	□科人手の可能性によって文持されている と考えられる。沿岸の湾内や沖合の測点 から収集された損傷したL. helicinaの割 合は、他の北極および温暖な場所よりも、	9
			湧昇域	 一 殻溶解タ イプ(I~ III)の割 		2017年(>200m) 2014年、2017年の合 質	-	-	-	-	-	-	-	0.72~1.40	-	-	26. 0~34. 5 26. 0~34. 5	-	-2. 0~8. 5°C	-	タイプI: 10 % タイプI: 19 %	多く、腐食性の水が空間的に広く分布しているアムンゼン湾地域での曝露を示し、曝露期間は個体数の大多数に影響を	
			湾岸域			2014年、2017年の合 算	_	_	_	_	-	_	-	_	-	_	26. 0 ~ 34. 5	_	-2.0~8.5℃		タイフIII: // % タイプI: 21 % タイプII: 16 %	_ う えるうえでエガでめる。 	
腹足綱	Limacina helicina (ミジンウキマイマイ)	高緯度 (北極圏)	海峡		-	2014年、2017年の合 算	_	_	_	_	_	_	-	_	-	-	26. 0~34. 5	-	-2. 0∼8. 5°C	_	タイプII: 03 % タイプI: 13 % タイプII: 14 %	-	上段に記入
		1	ワオーカー	-	-	2014年	-	-	-	-	-	-	-	-	-	-	26.0~34.5	-	-2.0~8.0°C	-	93 %	-	
		1				2014年	-	-	-	-	-	-	-	-	-	-	26.0~34.5	-	-2.0~8.0°C	-	80 %	-	
		1	ミント入江	E		2017年(0-50m)	-	-	-	-	-	-	-	0.95~3.43	-	-	26.0~34.5	-	-2.0~8.5°C	-	70 %		
		1				2017年(50-200m) 2017年(>200m)	-	-	-	-	-	-	-	0. 69~2. 15	-	-	26.0~34.5 26.0~34.5	-	-2.0~8.5°C	-	/0 %		
		1		殻溶解タ		2014年	-	-	-	-	-	-	-	-	-	-	26.0~34.5	-	-2.0~8.0°C	-	83 %	_	
		1	ドルフィン・ユニオ	イプ(III) の割合		2017年(0-50m)	-	-	-	-	-	-	-	0.95~3.43	-	-	26.0~34.5	-	-2.0∼8.5°C	-			
		1	ン海峡	の割合		2017年(50-200m)	-	-	-	-	-	-	-	0.69~2.15	-	-	26.0~34.5	-	-2.0~8.5°C	-	63 %		
		1	パリー岬	-		2017年(>200m) 2014年	-	-	-	-	-	-	-	0. 72~1.40	-	-	26.0~34.5 26.0~34.5	-	-2.0~8.5°C	-	40 %	_	
		1		-		2017年(0-50m)	-	-	-	-	-	-	-	0.95~3.43	-	-	26.0~34.5	-	-2.0~8.5°C	-		_	
		1	パサースト 岬	•		2017年(50-200m)	-	-	-	-	-	-	-	0.69~2.15			26.0~34.5	-	-2.0~8.5°C	-	93 %		
		1			1	2017年(>200m)	-	-	-	-	-	-	-	0.72~1.40			26.0~34.5	-	-2.0~8.5°C	-		_	
		1	マルンボン			2014年 2017年 (0-50m)	-	-	-	-	-	-	-	-	-	-	26.0~34.5	-	-2.0~8.0°C	-	932.2 µm	_	
		1	アムノセン 湾			2017年(50-200m)	-	-	-	-	-	-	-	0. 69~2. 15			26. 0~34. 5	-	-2.0~8.5°C	-	732.1 µm		
						2017年(>200m)	-	-	-	-	-	-	-	0.72~1.40	-	-	26.0~34.5	-	-2.0~8.5℃	-			
						0-50m	-	-	-	-	-	-	-	2. 2~2. 4	-	-	35. 0	-	4. 5~6. 9	-	2.22 µm	・フランクトン契網とバレンツ海北部の 素層堆積物からの浮遊石灰化生物、有孔 虫種Neorotalita quinqueloba、および Turborotalita quinqueloba、および thecosome累足類 Limacina helicinaを調 査し、生息深度さと個体発生過程によっ て殻密度がどのように変化するかを評価 した。X線マイクロコンピューター断層 撮影法 (XMCT) スキャンを使用して殻を 測定し、カルサイトとアラゴナイトの殻を 測定し、カルサイトとアラゴナイトの殻を	
						50-100m	-	-	-	-	-	-	-	1. 7~2. 2	-	_	35.0	-	3. 7~4. 5	-	2.56 µm	む水柱の物理的および化学的特性と比較 した。生きているL helicinaとN. pachydermalとちらも、海表面から水深 300mまで殻密度が増加した。 Turborotalita quinguelobalt、殻密度が 水深150~200mで増加した。150 m以深で は、T. quinguelobalt、おそらく配偶子 形成に関連する内部溶解のために密度が 低下した。表層埋積物サンブルからの浮 逆体有れ电の最近着度した(死亡) 裸本	s Ofstad, S., Zamelczyk, K., Kimoto, K., Chierici, M., Fransson A.&
腹足綱	Limacina helicina (ミジンウキマイマイ)	高緯度 (北極圏)	ブィリー ナ・クレー ター海域 (/ レンツ海、 北極海)	- 、 殻厚	-	100-150m	-	-	-	-	-	-	-	1.7	-	-	35. 0	-	3. 5~3. 7	-	2.81 µm	の殻密度を生きている動物と比較したと ころ、広範囲の溶解状態を示した。この 溶解は、特にT.quinuelobaよりも厚く て密度が高い傾向があるN.pachydermalに ついて、殻表面のテクスチャからは明ら かではなく、殻の厚さはそのままで、溶 解により殻密度が低下した。Limacina helicinalはまた、水深とともに殻のサイ イベアチマくなり、成長とともに殻の頂点	Rasmussen, T. L. (2021). Shell density of planktonic foraminifera and pteropod species Limacina helicina in the Barents Sea: Relation to
						150-200m	-	-	-	-	-	-	-	1.6~1.7	-	-	35. 0	-	3. 2~3. 5	-	2.48 µm	を厚くする。 ・ 本研究は、パレンツ海のこの特定の地 域の生きている動物相が溶解の影響を受 けていないことを示している。死後、海 底に沈着した後に溶解が起きた。本研究 はまた、生物モニタリングが、石灰化す る動物ブランクトンの殻密度の自然 を理解するために重要であることを示し ている。	ontogeny and water chemistry. PloS one, 16(4), e0249178.
						200-300 m	-	-	-	-	-	-	-	1.5~1.6	-	-	35. 0	-	2. 7~3. 2	-	2.82 µm	- - - - - - - - - - - - - -	
		Í				90	-	-	-	-	-	2. 6	-	-	-	-	-	-	-	-	75 %	は、世界の海洋で観測されているよりも 急速に進行している。これは特に、生態	
軟甲綱	Metacarcinus magister (アメリカイチョウガ	沿岸域	米国西海岸	≜ 外部溶解	-	99	-	-	-	-	-	3.4	-	-	-	-	-	_	-	-	91 %	学的・経済的に有用な生物種に重要な生息地を提供している沿岸域(200m未満)	下段に記入
	=)	ĺ	い百年)	刮百							-		-									」で顕在化し、海域の緩衝能力が低下して いる。	
1		Í				100	-	-	-	-	-	2.6	-	-	-	-	-	-	-	-	60 %	室内実験によるOAの影響に関する文献は 膨大であるが、現在のOAが海洋生物に取	
	++		1			100							-								00 F	」 減入でのるか、現在UDUAか海洋生物に及 ぼす現場での影響についてはほとんど理	
1		í.				109	-	-	-	-	-	0.4	-	-	-	-	-	-	-	-	39 %	」 群されていない。タンシネスクラフ(ア メリカイチョウガニ:Metacarcinus	
1		í.				114	-	-	_	-	-	1.8	-	-	-	-	_	_	-	_	41 %	magister)は、漁業および遊漁の中で最も価値のある水産有用種の一つである	
1		í.		外部溶解								1.0									41.70	本研究では、た査型電子顕微鏡、エネル	
1		í.		割合		115	-	-	-	-	-	3.3	-	-	-	-	-	-	-	-	82 %	イーカ RX 全A 様分 元法、 元素 マッヒンク、 X線回折などの様々な手法を組み合わせ	
						130	-	_	_	-	-	0.5	-	-	_	-	-	_	-	-	35 %	一て、甲殻類幼生の甲羅の外部および内部の甲羅溶解に対する0A関連の脆弱性を鉱物学的および元素学的に明らかにすることのです。	
					-	99	490	_	_	-	_	_	-	-	-	-	-	_	-	_	50 %	」とに焦点を当てた。本研究では、化学的 観測結果と生物地球化学モデルの予測結 果を統合することにより、水柱内で最も	
1		ĺ	米国西海岸 (沿岸)	<u> </u>									-									□ 記 図 な Ω カルサイト 勾配 (ΔΩ cal, 60) に 関連した外部甲羅面溶解の発生を明らか	Bednaršek N. Fooly
						100	375	-	-	-	-	-	-	-	-	-	-	-	-	-	25 %	にした。 溶解の特徴は、甲羅全体、脚部、および 機械受容器官の神経管を取り囲む石灰化	RA, Beck MW, et al. (2020)
1		Í		内部溶解		109	910	-	-	-	-	-	-	-	-	-	-	-	-	-	50 %	した領域の周辺で観察された。沿岸域の 生息地では、モデルのヒンドキャストを	dissolution with
「おお田細	Metacarcinus magister (アメリカイチョウガ	沿岸域		割合	_	114	475	-	-	-	-	-	-	-	-	-	-	-	-	-	0 %	用いて実証されたように、甲羅の溶解は 長期(1ヶ月)の曝露下で最も広範囲に見 られた。このような溶解は、04感受性の	damage in larval Dungeness crab

表2(11)実海域における海洋酸性化の影響に係る文献整理結果(2008年~2021年)

高次の	11. 2. 1. 11.	a +	هرجر		生活史		pC0 ₂	[µatm]	∆ pC0₂		рH	Ωcal	cite	Ωara	agonite	不飽和水	塩	分	3	腹		T 44	
分類	供試生物	調金	海壤	評価項目	段階	武 康送名	高C02区	対照区	[µatm]	高00₂区	対照区	高C02区	対照区	高002区	対照区	割台 [%]	高C02区	対照区	高C0 ₂ 区	対照区	18°17	委約	出典
7 7 T 49	=)	加汗极				115	610	-	-	-	-	-	-	-	-	-	-	-	-	-	25 %	経路である重要な感覚・行動機能を持つ 機械受容器官を不安定化させる可能性が あると考えられた。また、甲羅の溶解は	severity of present-day ocean
						130	470	_	_	_	_	-	_	-	_	-	_	-	-	_	12.5 %	カニの幼生幅と負の関係にあり、エネル ギー的なトレードオフの基礎があること	acidification vertical gradients Science
					-	94	_	_	_	_	_	1.5	_	_	_	_	_		_	_	42 %	 を示した。 回帰モデルによる遡及的な予測を用いて、過去20年間に甲羅溶解が8.3%増加し 	of The Total Environment, 716,
				外部溶解																	-12 N	たと推定し、0A関連の亜致死的経路を特定し、今後のダンゲネスクラブのリスク	136610.
				割合		106	-	-	-	-	-	1.8	-	-	-	-	-	-	-	-	50 %		
			米国西海岸			128	-	-	-	-	-	1.0	-	-	-	-	-	-	-	-	46 %		
			()+1)			94	350	-	-	-	-	-	-	-	-	-	-	-	-	-	0 %		
				内部溶解 割合		106	430	-	-	-	-	-	-	-	-	-	-	-	-	-	25 %		
						128	350	-	-	-	-	-	-	-	-	-	-	-	-	-	13 %		
				被覆率	##	-	444~953	296~494	148~495	7.73~8.00	7.97~8.14	. –	-	2. 20~3. 53	3. 24~4. 31	-	33. 3~34. 7	33. 3~34. 7	27.6~28.6	27.7 ~ 29.0	6 %増加 (p>0.05)	 実験では、大気中の二酸化炭素濃度の 上昇による海洋の酸性化が、多くの海洋 	
	いードコーラル			個体数	- 成1本	-	444~953	296~494	148~495	7. 73~8. 00	7. 97~8. 14	_	-	2. 20~3. 53	3. 24~4. 31	-	33. 3 ~ 34. 7	33. 3~34. 7	27.6~28.6	27. 7 ~ 29. 0	39 % 減少 (p<0.05)	生物のパフォーマンスに悪影響を与える ことを示している。しかし、海洋酸性化 が海洋生能系に与える長期的な影響に対	
	N-FJ-71			密度	% 1/ ±	-	444~953	296~494	148~495	7.73~8.00	7.97~8.14	-	-	2. 20~3. 53	3. 24~4. 31	-	33. 3 ~ 34. 7	33. 3 ~ 34. 7	27. 6~28. 6	27. 7~29. 0	66 %減少 (p<0.05)		
				個体数	4 9 1144	-	444~953	296~494	148~495	7. 73~8. 00	7.97~8.14		-	2. 20~3. 53	3. 24~4. 31	-	33. 3 ~ 34. 7	33. 3 ~ 34. 7	27. 6~28. 6	27. 7~29. 0	51 %減少 (p<0.05)	 ・ここでは、pHが8.1から7.8に低下する に伴い(大気中の二酸化炭素濃度が 390 	
	構造的に複雑なサンゴ			被覆率	成体	-	444~953	296~494	148~495	7. 73~8. 00	7.97 ~ 8.14		-	2. 20~3. 53	3. 24~4. 31	-	33. 3 ~ 34. 7	33. 3 ~ 34. 7	27. 6~28. 6	27. 7~29. 0	67 %減少 (p<0.05)	から /50ppmに増加した場合に予想される 変化であり、今世紀末のいくつかのシナ リオと一致)、一部の生物は利益を得る	
			パプア - ユーギー	被覆率	成体	-	444~953	296~494	148~495	7.73~8.00	7.97~8.14		-	2. 20~3. 53	3. 24~4. 31	-	33. 3 ~ 34. 7	33. 3 ~ 34. 7	27. 6~28. 6	27. 7~29. 0	130 %増加 (p<0.05)	が、多くの生物は利益を失うことを示し ている。パプアニューギニアの3か所の冷	
			ー_ ア、ミルン ベイ州のデ	密度	幼体	-	444~953	296~494	148~495	7.73 ~ 8.00	7.97 ~ 8.14	. –	-	2. 20~3. 53	3. 24~4. 31	-	33. 3 ~ 34. 7	33. 3 ~ 34. 7	27. 6~28. 6	27. 7~29. 0	77 %減少 (p<0.05)	たく浅い火山性二酸化炭素の湧出域で、 低pHに順応するサンゴ礁、海草、および ── # # 種物を調査した。低別では、サンゴの	
			ントレカス トー島群、	延伸率		-	444~953	296~494	148~495	7.73~8.00	7.97 ~ 8.14		-	2. 20~3. 53	3. 24~4. 31	-	33. 3 ~ 34. 7	33. 3 ~ 34. 7	27.6 ~ 28.6	27.7~29.0	10 %増加 (p>0.05)	国境初を調査した。低加では、サンゴの 多様性、構造的に複雑なフレームワーク ――ビルダーの新規加入と出現量の減少、お	
	巨大なコロニーを形成す		シナ礁	骨格密度		-	444~953	296~494	148~495	7.73~8.00	7.97 ~ 8.14		-	2.20~3.53	3. 24~4. 31	-	33. 3 ~ 34. 7	33. 3 ~ 34. 7	27.6 ~ 28.6	27.7~29.0	5 %減少 (p>0.05)	よび分類群間の競合的相互作用の変化が 観察された。しかし、石灰化率が低いに	
	るサンゴ		ビー島北西 部)、エサ	石灰化率	成休	-	444~953	296~494	148~495	7.73 ~ 8.00	7.97~8.14	-	-	2.20~3.53	3. 24~4. 31	-	33. 3 ~ 34. 7	33. 3 ~ 34. 7	27.6 ~ 28.6	27.7 ~ 29.0	6 %増加 (p>0.05)	もかかわらず、大規模な Porites サンコ が構造サンゴよりも優勢であるため、サ ンゴ被覆はpH8 1 から約 7 8 の間で一定	
			アラ礁 (ノーマン ビー島北南	組織厚	7% FT	-	444~953	296~494	148~495	7.73~8.00	7.97~8.14	-	-	2. 20~3. 53	3. 24~4. 31	-	33. 3 ~ 34. 7	33. 3 ~ 34. 7	27.6 ~ 28.6	27.7~29.0	4 %増加 (p>0.05)	であった。サンゴ礁の発達は、pH7.7未満 で停止した。このユニークなフィールド	Fabricius KE,
			部)	色素沈着		-	444~953	296~494	148~495	7.73 ~ 8.00	7.97~8.14		-	2. 20~3. 53	3. 24~4. 31	-	33. 3 ~ 34. 7	33. 3 ∼ 34. 7	27.6 ~ 28.6	27.7~29.0	18 %減少 (p<0.05)	設定からの経験的データは、海洋酸性化 が温度ストレスとともに、おそらく今世	S, et al. (2011)
花虫綱		CO₂運出域		生物浸食 者密度		-	444~953	296~494	148~495	7.73 ~ 8.00	7.97~8.14	-	-	2. 20~3. 53	3. 24~4. 31	-	33. 3 ~ 34. 7	33. 3 ∼ 34. 7	27.6 ~ 28.6	27.7 ~ 29.0	93 %増加 (p<0.05)	紀屮にイント太平洋サンコ礁の多様性、 構造の複雑さ、および回復力を大幅に低 ──」下させるというモデル予測を確認する。	in coral reefs acclimatized to
				被覆率	成体	-	444~953	296~494	148~495	7.73 ~ 8.00	7.97~8.14	-	-	2. 20~3. 53	3. 24~4. 31	-	33. 3 ~ 34. 7	33. 3 ∼ 34. 7	27.6 ~ 28.6	27.7 ~ 29.0	85 %減少 (p<0.05)		elevated carbon dioxide
	ソフトコーラル			個体数		-	444~954	296~495	148~496	7. 73 ~ 8. 01	7.97 ~ 8.15	-	-	2. 20~3. 53	3. 24 ~4 . 31	-	33. 3 ~ 34. 7	33. 3 ∼ 34. 7	27.6~28.6	27. 7~29. 0	87 %減少 (p<0.05)		Nature Climate Change, 1(3), 165-
				密度	幼体	-	444~953	296~494	148~495	7.73 ~ 8.00	7.97~8.14		-	2. 20~3. 53	3. 24~4. 31	-	33. 3 ~ 34. 7	33. 3 ∼ 34. 7	27.6 ~ 28.6	27.7 ~ 29.0	94 %減少 (p<0.05)		169.
				個体数	-27.11.	-	444~953	296~494	148~495	7.73 ~ 8.00	7.97 ~ 8.14	-	-	2. 20~3. 53	3. 24 ~4 . 31	-	33. 3 ~ 34. 7	33. 3 ∼ 34. 7	27.6~28.6	27. 7~29. 0	92 %減少 (p<0.05)		
				被覆率	成体	-	-	-	-	7.7	8. 1	-	-	-	-	-	-	-	-	-	65 %増加 (p<0.05)		
	ハードコーラル			個体数	幼体	-	-	-	-	7.7	8. 1	-	-	-	-	-	-	-	-	-	50 %減少 (p<0.05)		
				密度		-	-	-	-	7.7	8. 1	-	-	-	-	-	-	-	-	-	65 %減少 (p < 0.05)		
	コロニーのないハード コーラル		ウパ・ウパ シナ確	被覆率	成体	-	-	-	-	7.7	8. 1	-	-	-	-	-	-	-	-	-	62 %減少 (p < 0.05)		
	構造的に複雑なサンゴ	-	レンティーマン ビー島北西	被覆率	成体	-	-	-	-	7.7	8. 1	-	-	-	-	-	-	-	-	-	74 %減少 (p < 0.05)		
	巨大なコロニーを形成す		部)	被覆率	成体	-	-	-	-	7.7	8.1	-	-	-	-	-	-	-	-	-	378 %増加 (p < 0.05)		
	るサンゴ			密度	幼体	-	-	-	-	7.7	8.1	-	-	-	-	-	-	-	-	-	72 %減少 (p < 0.05)		
	ソフトコーラル			密度	幼体	-	-	-	-	7.7	8.1	-	-	-	-	-	-	-	-	-	85 %減少 (p < 0.05)		
				個体数		-	-	-	-	7.7	8. 1	-	-	-	-	-	-	-	-	-	87 %減少 p < 0.05)		

表2(12)実海域における海洋酸性化の影響に係る文献整理結果(2008年~2021年)

No	生物分類群	生息域	タイトル (革文)	タイトル (和訳)	出曲
1	<u>エゼガガ與4</u> メイオファスナ; マクロファウナ (生物多様性)	土心域 CO ₂ ベント	Effects of Local Acidification on Benthic Communities at Shallow Hydrothermal Vents of the Aeolian Islands (Southern Tyrrhenian, Mediterranean Sea)	エオリア諸島(地中海 南部、ティレニア諸 島)の浅い熱水噴出孔 における底生生物群集 に対する局所酸性化の 影響	Fanelli E, Di Giacomo S, Gambi C, et al. (2022). Biology, 11(2), 321.
2	海草類 Posidonia oceanica(ヒルム シロ科)	CO2ベント	Potential Resilience to Ocean Acidification of Benthic Foraminifers Living in <i>Posidonia</i> <i>oceanica</i> Meadows: The Case of the Shallow Venting Site of Panarea	Posidonia oceanicaの 海草群落に生息する底 生有孔虫の海洋酸性化 に対する潜在的な回復 力:パナレアの浅海噴 出サイトの事例	Di Bella L, Conte AM, Conti A, et al. (2022). Geosciences, 12(5), 184.
3	海藻類 Cystoseira brachycarpa(ホ ンダワラ科)	CO2ベント	Structural and Functional Analyses of Motile Fauna Associated with <i>Cystoseira brachycarpa</i> along a Gradient of Ocean Acidification in a CO ₂ -Vent System off Panarea (Aeolian Islands, Italy)	パナレーア島(エオリ ア諸島、イタリア)沖 のCO ₂ ベントシステム における海洋酸性化の 勾配に沿った Cystoseira brachycarpaに関連す る運動性動物相の構造 的および機能的分析	Esposito V, Auriemma R, De Vittor, C, et al. (2022). Journal of Marine Science and Engineering, 10(4), 451.
4	海草類 Posidonia oceanica(ヒルム シロ科)	$\operatorname{CO}_2 \checkmark \succ$ ト	Resilient consumers accelerate the plant decomposition in a naturally acidified seagrass ecosystem	回復力のある消費者 は、自然に酸性化され た海草生態系で植物の 分解を加速する	Lee J, Gambi MC, Kroeker KJ, et al. (2022). Global Change Biology, 28(15), 4558-4576.
5	海草類 Posidonia oceanica(ヒルム シロ科)・葉上付 着藻類	$\operatorname{CO}_2 \checkmark \succ$ ト	The role of epiphytes in seagrass productivity under ocean acidification	海洋酸性化下の海草生 産性における付着藻類 の役割	Berlinghof J, Peiffer F, Marzocchi U, et al. (2022). Scientific Reports, 12(1), 1-9.
6	海藻類 Sargassum vulgare(ホンダワ ラ)	CO2ベント	Molecular response of Sargassum vulgare to acidification at volcanic CO ₂ vents: Insights from proteomic and metabolite analyses	 火山の CO₂ベントでの 酸性化に対するホンダ ワラ Sargassum vulgare の分子応答: プロテオミクスおよび 代謝物分析からの洞察 	Kumar A, Nonnis S, Castellano I, et al. (2022). Molecular Ecology, 31(14), 3844-3858.
7	魚類 Gobius incognitus(ハゼ 科アネモネ ハゼ)	CO ₂ 湧出域	Gobies inhabiting natural CO ₂ seeps reveal acclimation strategies to long-term acidification	自然の CO₂湧出域に 生息するハゼは、長期 的な酸性化への順応戦 略を明らかにする	Suresh S, Mirasole A, Ravasi T, et al. (2022). bioRxiv, 2022-09.
8	魚類 Gobius incognitus(ハゼ 科アネモネ ハゼ)	CO ₂ ベント (移植実験)	Limited behavioural effects of ocean acidification on a Mediterranean anemone goby (<i>Gobius</i> <i>incognitus</i>) chronically exposed to elevated CO ₂ levels	CO ₂ レベルの上昇に慢 性的に暴露されている 地中海アネモネ ハゼ (Gobius incognitus) に対する海洋酸性化の 限られた行動的影響	Spatafora D, Cattano C, Aglieri G, et al. (2022). Marine Environmental Research, 181, 105758.
9	微生物バイオフ イルム	CO2ベント	Microbial biofilms along a geochemical gradient at the shallow-water hydrothermal system of Vulcano island, Mediterranean Sea	地中海、ブルカーノ島 の浅海熱水系における 地球化学的勾配に沿っ た微生物バイオフィル ム	Sciutteri V, Smedile F, Vizzini S, et al. (2022). Frontiers in Microbiology, 273.
10	浅海熱水生態系	$CO_2ベント$	Characterization of undocumented CO ₂ hydrothermal vent's	文書化されていない地中海の CO₂ 熱水噴出孔システムの特徴付け:	D'Alessandro M, Gambi MC, Caruso C, et al. (2022). bioRxiv, 2022-10.

表3 海洋酸性化及び自然界の CO₂ 湧出域による生物影響に係る文献整理結果(2022 年文献)

No.	生物分類群	生息域	タイトル (英文)	タイトル(和訳)	出典
			system in the	海洋酸性化予測への影	
			Mediterranean Sea	響	
			acidification forecasting		
11	海洋無脊椎動物	CO ₂ 湧出域	Decreased diversity and	暖温帯の日本における	Hall-Spencer JM, Belfiore
	(多様性と出現重)		invertebrates at CO ₂	CO2の) の 第日による 海洋 無 各 推動物の 多 様 性 と	(2022). Zoological science.
			seeps in warm-	出現量の減少	39(1), 41-51.
19		CO. 通出体	temperate Japan	今浦わ准ルけ 海洋融	Kang I Nagalkankan I
12	^{無類} Acanthochromis	002 (劳山域	transcriptional	他化への転写可塑性を	Rummer JL, et al. (2022).
	$polyacanthus(\nearrow$		plasticity to ocean	促進する	Global Change Biology,
	ズメダイ類スパ		acidification		28(9), 3007-3022.
	イニークロミス) (遺伝子発現)				
13	サンゴ類	CO ₂ 湧出域	pH variability at	火山性 CO₂湧出での	Comeau S, Cornwall CE,
			volcanic CO ₂ seeps	pH 変動は、サンゴの	Shlesinger T, et al.
			calcifying fluid	石灰化流体の化学的性 質を調節する	Biology, 28(8), 2751-2763.
		00.171114	chemistry		
14	烈帯サンコ礁メ イオベントス群	CO ₂)) 出域	Impact of shallow- water hydrothermal	熱帯サンゴ礁における 底生生物地球化学的循	Lichtschlag A, Braeckman U, Guilini K
	集		seepage on benthic	環、栄養利用可能性、	et al. (2022). Limnology
			biogeochemical cycling,	およびメイオベントス	and Oceanography, 67(3),
			and meiobenthic	群集に対する浅海熱水 通出の影響	507 504.
			communities in a	历山。少心音	
15	海綿類	CO ₂ 湧出域	Phototrophic sponge	高 CO₂の世界では、光	Bell JJ, Shaffer M, Luter
	Lamellodysidea		productivity may not be	栄養の海綿類の生産性	HM, et al. (2022). Global
	herbacea		enhanced in a high CO ₂ world	が向上しない可能性が	Change Biology, 28(16), 4900-4911
16	翼足類	沿岸域(カリ	Pelagic calcifiers face	 漂泳(浮遊)石灰化生	Bednaršek N, Carter BR,
	Limacina	フォルニア	increased mortality and	物は、温暖化と海洋酸	McCabe RM, et al. (2022).
	helicina(ミジン ウキマイマイ)	海流)	habitat loss with warming and ocean	性化に伴う死亡率と生	Ecological Applications 32(7)
	23.31.31)		acidification	高している している	e2674.
17	ケルプ林の草食	湧昇域(カリ	Coupled changes in pH,	pH、温度、溶存酸素	Donham EM, Strope LT,
	動物:ウニ類 Moscontrotus	フォルニア 海海)	temperature, and	の変化が相まって、ケ	Hamilton SL, et al. (2022) Global Change
	franciscanus(7	(毋()11)	impact the physiology	理学と生態に影響を与	Biology, 28(9), 3023-3039.
	メリカオオムラ		and ecology of	える	
	サキウニ)、腹足 酒 <i>D</i> ream ant units		grazers		
	pulligo		-		
18	食物網:ヒトデ	潮間帯(岩礁	Low-pH seawater alters	低pHの海水は、磯の	Jellison BM, Elsmore KE,
	頬 Pisaster ochraceus(マド	性海岸の潮 溜)	rocky-shore tidepools	潮溜まりでの間接的な 相互作用を変化させる	Ecology and Evolution.
	トデ科)、巻貝類	1四/	,	н-чтроски сед	12(2), e8607.
	Tegula				
	funebralis(ハナ マキクボガイ)				
	大型藻類(オオウ				
10	キモ)	法改立	A 11.0		
19	<u></u> K 生 f 扎 虫 類 Archaias) (submarine	Acidification impacts and acclimation	有れ出の酸性化の影響 と順応の可能性	François D, Paytan A., de Araújo OMO, et al.
	angulatus	spring)	potential of	C //x//0172 10 DD DD	(2022). Biogeosciences
20	翼足類	高緯度	foraminifera Vertical distribution of	秋季の太平洋側北極海	Discussions, 2022, 1-25. 佐藤直 徳弘航季 松野孝
20	Limacina	(北極圈)	Limacina helicina	における Limacina	平. (2022). 日本プランク
	helicina(ミジン		larvae in the Pacic	helicina 幼生の鉛直分	トン学会報, 69(1), 11-17.
	ワキマイマイ)		Ocean during autumn	布	

No.	生物分類群	生息域	タイトル (英文)	タイトル (和訳)	出典
21	腹足類 Acanthina monodon(ヒトハ レイシ)	湧昇域	Morphological, physiological and behavioral responses of an intertidal snail, <i>Acanthina monodon</i> (Pallas), to projected ocean acidification and cooling water conditions in upwelling ecosystems	湧昇生態系における予 測される海洋酸性化お よび冷却水条件に対す る潮間帯ヒトハレイシ Acanthina monodon (Pallas)の形態学的、 生理学的および行動的 応答	Duarte C, Jahnsen- Guzmán N, Quijón PA, et al. (2022). Environmental Pollution, 293, 118481.
22	腹足類 Scurria araucana(ユキノ カサガイ科)	湧昇域	Heterogeneous environmental seascape across a biogeographic break influences the thermal physiology and tolerances to ocean acidification in an ecosystem engineer	生物地理学的な変化に わたる不均一な環境の 海景は、生態系エンジ ニアの熱生理学と海洋 酸性化への耐性に影響 を与える	Rodríguez-Romero A, Gaitán-Espitía JD, Opitz T, Lardies MA. (2022). Diversity and Distributions, 28(8), 1542-1553.
23	サンゴ類 (光合成と呼吸速 度)	サンゴ礁域 (室内実験)	Long-term exposure to an extreme environment induces species-specific responses in corals' photosynthesis and respiration rates	極端な環境に長期間曝 露されると、サンゴの 光合成と呼吸速度に種 固有の反応が誘発され る	Jacquemont J, Houlbrèque F, Tanvet C, et al. (2022). Marine Biology, 169(6), 82.
24	サンゴ類・石灰 藻類	サンゴ礁域 (野外実験)	High coral recruitment despite coralline algal loss under extreme environmental conditions	極端な環境条件下での 石灰藻類の損失にもか かわらず、サンゴの高 い加入	Tanvet C, Benzoni F, Peignon C, et al. (2022). Frontiers in Marine Science, 2296-7745.
25	サンゴ類: Montipora capitata(イシサ ンゴ目ミドリイ シ科コモンサン ゴ属)、Porites compressa、 Porites lobata(イ シサンゴ目ハマ サンゴ科ハマサ ンゴ属)	サンゴ礁域 (メソコスム 実験)	Physiological acclimatization in Hawaiian corals following a 22-month shift in baseline seawater temperature and pH	ベースラインの海水温 度と pH の 22 か月の シフト後のハワイのサ ンゴの生理学的順化	McLachlan RH, Price JT, Muñoz-Garcia A, et al. (2022). Scientific Reports, 12(1), 3712.
26	有孔虫類 Neogloboquadri na pachyderma	表層堆積物	Calcification of planktonic foraminifer <i>Neogloboquadrina</i> <i>pachyderma</i> (sinistral) controlled by seawater temperature rather than ocean acidification in the Antarctic Zone of modern Sothern Ocean	現代の南極海の南極帯 における海洋酸性化で はなく、海水温度によ って制御される浮遊性 有孔虫 <i>Neogloboquadrina</i> <i>pachyderma</i> (sinistral)の石灰化	Song Q, Qin B, Tang Z, et al. (2022). Science China Earth Sciences, 65(9), 1824-1836.
27	緑藻類 Caulerpa cylindracea (イ ワヅタ科)	CO ₂ ベント (移植実験)	A look to the future acidified ocean through the eyes of the alien and invasive alga <i>Caulerpa cylindracea</i> (Chlorophyta, Ulyophyceae)	外来種で侵略的な藻類 である <i>Caulerpa</i> <i>cylindracea</i> (緑藻類、 アオカビ科)の目を通 して、酸性化した未来 の海洋を観察する	Santin A, Moschin E, Lorenti M, et al. (2022). Phycologia, 61(6), 628- 640.

区分	2008	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	合計
CO₂ベント/CO₂湧出域	2	3	2	2	4	4	9	15	4	7	3	9	12	16	92
CO₂ベント/CO₂湧出域(移植実験)					1	1				1	1		2	2	8
サンゴ礁域						1	1	1			1		3	2	9
サンゴ礁域(移植実験)													2	2	4
沿岸域								1		1		3	6	1	12
潮間帯					1									1	2
河口域													1		1
通昇域		1		1		2	1	1		1	2	1	1	3	14
外洋域(海山)												2			2
外洋域(海盆)							1					1			2
高緯度域(北極)					1			1					4	1	7
高緯度域(南極)										1					1
フィヨルド													2		2
その他					1			2		1	2			3	9
	2	4	2	3	8	8	12	21	4	12	9	16	33	31	165

表4 生息域別文献数

門	綱	生物分類群名	2008	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	合計
有孔虫門	有孔虫綱	有孔虫綱(底生性)										2				1	3
		有孔虫綱(浮遊性)													2	1	3
海綿動物門	-	海綿動物門												1		1	2
刺胞動物門	ヒドロ虫綱	ヒドロ虫綱													1		1
	花虫綱	イシサンゴ目		1					1	1		1	1		4	4	13
		イソギンチャク目				1							1				2
		冷水サンゴ												1	1		2
軟体動物門	腹足綱	腹足綱(底生性)						1	1	1		1			2	4	10
		腹足綱(浮遊性)				1		1	1	1			1	1	5	2	13
	二枚貝綱	イガイ、ザルガイ、ホタテガイ								2			1	1	5		9
環形動物門	多毛綱	多毛鋼					1	1	2	2							6
節足動物門	顎脚綱	フジツボ科、カイアシ亜鋼					1			2			2		1		6
	軟甲綱	等脚目、十脚目								1				1			2
外肛動物門	-	コケムシ目		2													2
棘皮動物門	ヒトデ綱	ヒトデ目													1	1	2
	ウニ綱	ウニ目	1				2			3				1	4	1	12
	-	棘皮動物門												1			1
オクロ植物門	珪藻綱	珪藻綱											1		1		2
ハプト植物門	ハプト藻綱	円石藻目						1									1
脊椎動物門	条鰭綱	条鰭綱								3				3	5	3	14

表5(1) 生物分類群別文献数

※生物分類群に分類できない論文は除く

表5(2) 生物群集別文献数

生物群集	2008	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	合計
微生物群集							2	1			1		1	1	6
海草群落		1	1			1		1	1			1	2	3	11
海藻群落		1		1	1	1					3		2	4	13
紅藻綱(サンゴモ類)	1				1		2	1					1		6
サンゴ礁群集			1		1	2	2	1		2	1		2	4	16
微細藻類群集(付着植物)					1									1	2
石灰質海草付着生物	1													1	2
潮間帯・潮下帯群集										1					1
底生生物群集		2					1	1		4			3	2	13
無脊椎動物		1	1			1			2				1	1	7

※生物群集に分類できない論文は除く。