AOMI Database Workshop: 10/08/2024

Status of microplastic pollution in the Northern Indian Ocean

Prasun GOSWAMI^{1,2}, Nambali Valsalan VINITHKUMAR¹, Gopal DHARANI¹, Keerthi S. GURUGE²

1 National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India

2 National Institute of Animal Health-NARO, Tsukuba, Japan

Indian Ocean Scenario

- Concentration Range: MPs in surface water (0.01–372,000 particles/m³), sediment (36.8–10,600 items/kg), and biota (0.016–10.65 particles/individual).
- Dominant Polymer: Polyethylene (PE) was the most abundant polymer across all matrices, with higher prevalence in sediment.
- MP Shape: Fibers were the most common shape of MPs in all matrices within the Indian Ocean.

Plastics and Plankton

- Zooplankton are the connecting link between producers and consumers
- Filter out algae and other organic materials from water
- Provide energy to fish, whale, and other animals
- Susceptible to microplastics?

Understanding the fate of Microplastic in the northern Indian Ocean

GOALS

- To map the current plastic pollution
- To establish baseline data
- To identify the source and environmental risk

ENVIRONMENTAL MATRICES

- Water
- Sediment
- Zooplankton, finfish, shellfish

SAMPLE COLLECTION

2500

2000 1750 1500

CHARECTERIZATION

Light microscopy

DENSITY SEPERATION

IDENTIFICATION

DIGESTION

Epi-fluorescence microscopy

Plastics in the food web: a case study from Andaman Sea

Identifying microplastic pollution hotspots

- First report on MP pollution in the Arabian-Andaman Seas shelf sediments.
- MP levels were higher in the Arabian Sea sediments than the Andaman Sea.
- Fiber constituted the most common shape of microplastics in both the study areas.
- Acrylic, polyethylene, and nylon were the most common polymer types recorded.

([.] 200-M.p

100-

Arabian Sea

sediment

.⊆

Microplastics i (n/kg d

Identifying microplastic pollution hotspots

Goswami et al., Sci. Total. Env. 2023, 160876.

6

Diurnal variations of MP ingestion

Adopted from Cole et al., Environ. Sci. Technol. 2016, 50, 6, 3239–324

Sources of Microplastics

8

Plastic as an Anthropocene Marker

Accumulation of parent and halogenated PAHs in mMPs

\SigmaCIPAHs: 0.04 to 307 ng/g plastic

\SigmaBrPAHs: <MDL to 111 ng/g plastic

ΣCIPAHs: 0.36 to 21.8 ng/g plastic

ΣBrPAHs: <MDL to 1.59 ng/g plastic

- Out of 75 target congeners, 61
 were detected (24 parent PAH, 25 ClPAH, 12 BrPAH).
- Parent PAHs > ClPAHs > BrPAHs
- PS particle from southern Sri Lanka had highest PAH levels.
- mMPs associated PAH levels from southern Sri Lanka was relatively higher than eastern coastline.

Take Home Message

Energy transfer web

Contaminant transfer web

HPAH exposure to human through contaminated seafoods

Chlorinated and brominated pyrenes could cause additive toxicities with HMW parent PAHs

Thank you

JSPS Grant-in-Aid for Scientific Research (B) (Grant no: 21H03605)

prasun.goswami@gmail.com goswamip229@affrc.go.jp