

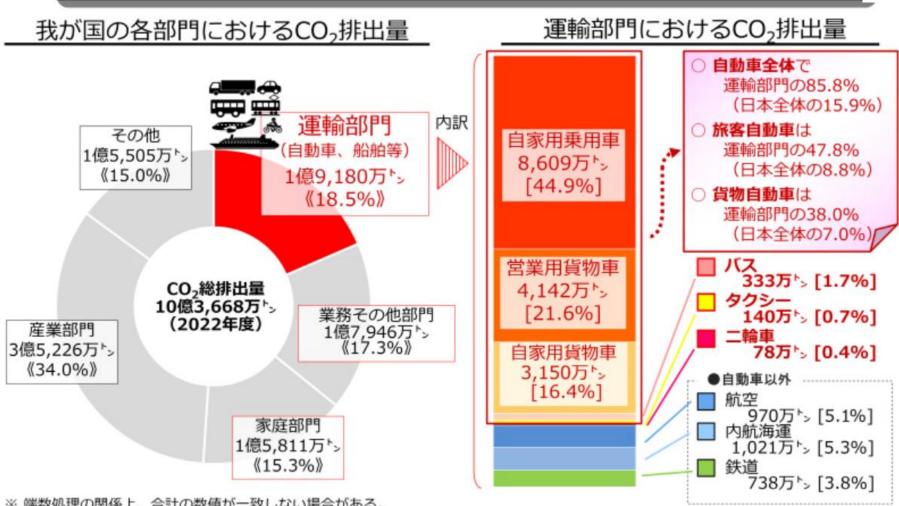
交通におけるエネルギーマネジメントの取組について ~ゼロカーボン・ドライブの推進~

令和6年9月25日 環境省 水大気環境局 モビリティ環境対策課

地球温暖化対策計画概要(R3.10.22 閣議決定)

■ 地球温暖化対策推進法に基づく政府の総合計画

「2050年カーボンニュートラル」宣言、2030年度46%削減目標※等の実現に向け、計画を改定。


※我が国の中期目標として、2030年度において、温室効果ガスを2013年度から46%削減することを目指す。さらに、50%の高みに向け、挑戦を続けていく。

	温室効果ガス排出量		2013排出実績 2030排出量		削減率	従来目標	
•吸収量 (単位 : 億t-CO2)			14.08	7.60	▲ 46%	▲26%	
エネ	ルギー起源CO2		12.35	6.77	▲ 45%	▲25%	
		産業	4.63	2.89	▲38%	▲ 7%	
	₩ 7	業務その他	2.38	1.16	▲51%	▲40%	
	部門別	家庭	2.08	0.70	▲ 66%	▲39%	
	נימ	運輸	2.24	1.46	▲35%	▲27%	
		エネルギー転換	1.06	0.56	▲ 47%	▲27%	
非エネルギー起源CO ₂ 、メタン、N ₂ O HFC等 4 ガス(フロン類) 吸収源		起源CO ₂ 、メタン、N ₂ O	1.34	1.15	▲ 14%	▲8%	
		え(フロン類)	0.39	0.22	▲ 44%	▲25%	
			-	- ▲ 0.48 -		(▲0.37億t-CO ₂)	
二国間クレジット制度(JCM)			官民連携で2030年度まで 吸収量を目指す。我が国と に適切にカウントする。	-			

我が国の運輸部門における二酸化炭素排出量(2022年度)

運輸部門における二酸化炭素排出量

- ※ 端数処理の関係上、合計の数値が一致しない場合がある。
- ※ 電気事業者の発電に伴う排出量、熱供給事業者の熱発生に伴う排出量は、それぞれの消費量に応じて最終需要部門に配分。
- ※ 温室効果ガスインベントリオフィス「日本の温室効果ガス排出量データ (1990~2022年度) 確報値」より国土交通省環境政策課作成。
- ※ 二輪車は2015年度確報値までは「業務その他部門」に含まれていたが、2016年度確報値から独立項目として運輸部門に算定。

ゼロカーボン・ドライブの推進

環境省ゼロカーボン・ドライブHP:

https://www.env.go.jp/air/zero_carbon_drive/

ロゴマークダウンロードサイト: https://www.env.go.jp/air/zero_carbon_drive/dl.html

ゼロカーボン・ドライブとは?

ゼロカーボン・ドライブ(略称:ゼロドラ)は、

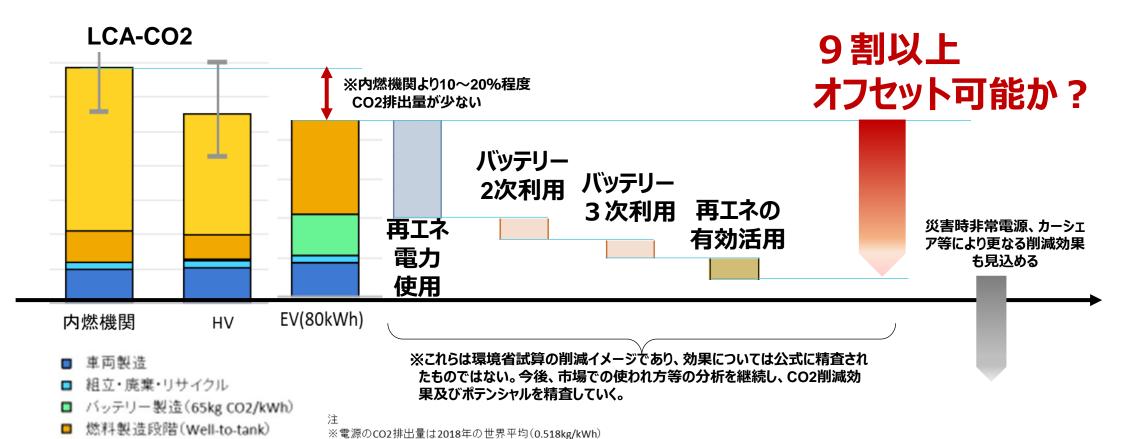

太陽光や風力などの再生可能エネルギーを使って発電した

電力(再エネ電力)と電気自動車(EV)、

プラグインハイブリッド車(PHEV)、燃料電池自動車(FCV)を活用した、

走行時のCO₂排出量がゼロのドライブです。

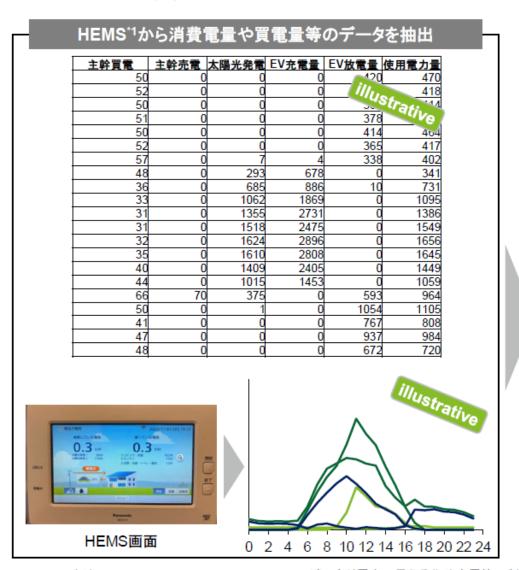
環境省は、家庭・職場・地域における皆さんの取組を応援します。

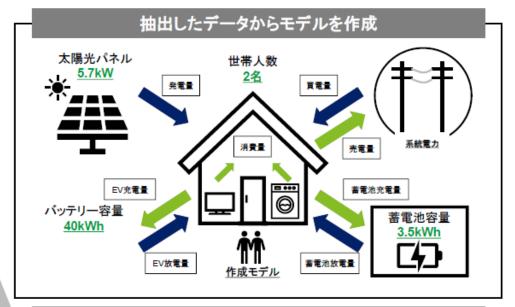


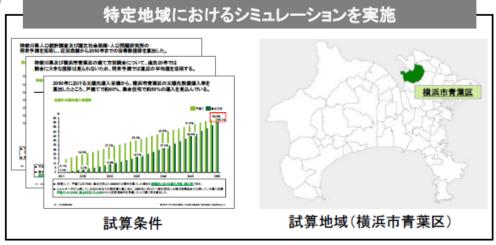
EVのCO2削減効果&ポテンシャル

■ 車の使用段階(Tank to Wheel)

- ➤ EVはLCA-CO2がHVと同等であるといわれているが、再工ネを組み合わせることで、EVの「車の使用段階」のCO2排出をオフセットできる。
- ▶ また、バッテリーのn次利用、家庭や地域での再工ネを最大限利用するためのストレージインフラとしてEVを活用することでさらにCO2削減効果を引き出せる。


※走行距離15万km、車両使用期間10年、燃費はWLTPに基づく。


5


V2H活用による再エネ有効活用&経済性の検証①

シミュレーション概要

^{*1:}HEMSとはHome Energy Management Systemの略であり電力の見える化や家電等の制御が可能

V2H活用による再エネ有効活用&経済性の検証②

V2Hを保有する家庭における1日当たりの電力データ

季節	日照時間	買電量 [kWh]	売電量 [kWh]	太陽光発電量 [kWh]	EV充電量 [kWh]	EV放電量 [kWh]	使用電気量 [kWh]	V2Hによる再エネ 上昇率 (EV放電率)
	長	0.7	18.1	36.1	8.7	2.1	22.7	9%
春	中	0.1	13.7	28.1	6.3	2.8	19.4	15%
	短	0.7	3.8	13.3	3.8	2.2	14.6	15%
	長	2.6	12.1	32.3	8.7	2.1	26.8	8%
夏	中	1.9	6.9	23.1	6.3	2.8	23.1	12%
	短	2.2	4.6	15.5	3.8	2.2	17.5	13%
	長	2.7	6.4	23.8	8.7	2.1	24.1	9%
秋	中	1.8	6.4	20.4	6.3	2.8	20.6	14%
	短	2.9	0.0	8.2	3.8	2.2	15.0	15%
	長	17.7	0.0	19.1	8.7	2.1	38.8	5%
冬	中	15.5	0.0	15.4	6.3	2.8	33.7	8%
	短	16.1	0.0	7.1	3.8	2.2	25.4	9%

V2H活用により 再エネ活用率は 5~15%程度 上昇

※統計データではなく限られた N数のモデルケース (実測 値) であることに留意

※EVから放電に使用される電力が全て再エネ由来である場合、EV放電率の分だけV2Hによる再エネ率向上が見込まれます。

※EV放電量は収集したデータの都合上、季節による差はないものとして扱います。

投資回収期間表

補助金有無	V2H導入による 年間買電削減量 [kWh]	電気料金単価 [円/kWh] (東京電力従量電 灯B)	年間削減電気料金[円]	V2H価格[円] (ニチコン社、 VCG-663CN3) ※工事費含まず	補助金額 [円]	投資回収期間 [年]
無	840.7	40.5	34,041	548,680	0	16.1
有	840.7	40.5	34,041	548,680	378,475	5.0

※電気料金は、一般的に300kWh以上利用するとの前提から、「従量電灯B」の300kWh以上利用時の単価を入力しております。

その他単価は「投資回収期間バックデータ」シートを参照ください。

※その他の代表的なV2Hの価格は「投資回収期間バックデータ」シートを参照ください。

※V2H本体価格のみを検討対象としていますが、実際の設置には工事費が必要となります。

※投資回収期間5年はCEV補助金額(R2年度)の公募要項(P.106)に記載されている法定耐用年数から引用しております。

公募要項URL: https://www.cev-pc.or.jp/hojo/pdf/r02/v2h youryou full.pdf

※V2Hの法定耐用年数は、補助を行う自治体や省庁によって異なるため、設定には留意が必要です。

補助金なしの場合、投資回収に16年を要するため、

- ·V2H本体価格の低減
- ・新築の際の予め設定 等の進展が必要

※統計データではなく限られたN数のモデルケース(実 測値)であることに留意


電動スクールバス(太陽光発電と組合わせたエネマネ)実証事業

【事業概要】

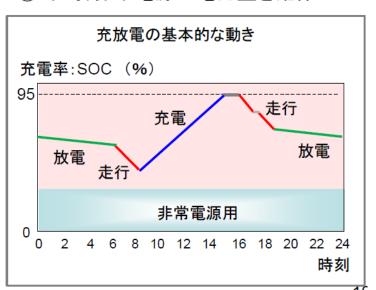
- 1. 事業名 環境省「中山間地域における電動マイクロバスの評価検証委託事業」
- 2. 事業期間 R3年度~R5年度(R4年1月開始)
- 3. 受託事業者 /実施責任者 熊本大学 /大学院先端科学研究部 松田俊郎
- 4. 共同実施者 熊本県 球磨村

【社会実装の構成】

実証試験車

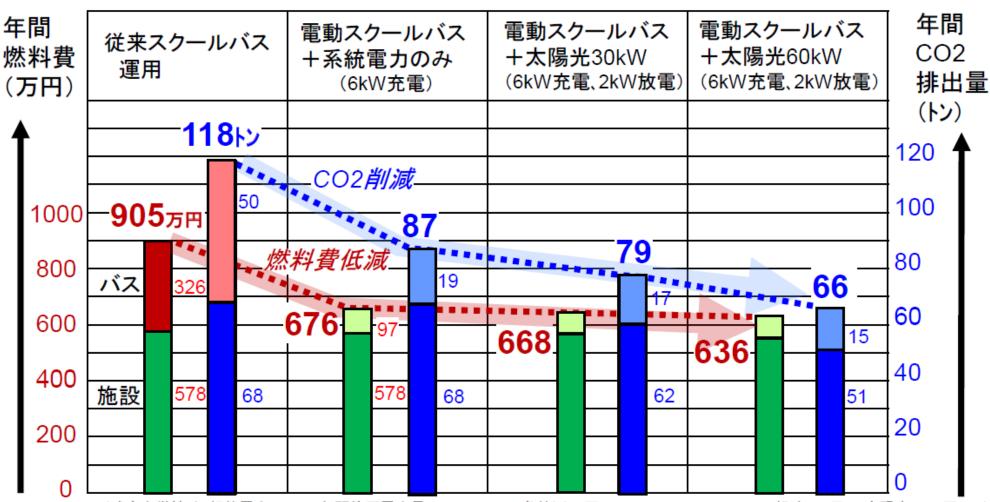
実証試験路線

神瀬線(24~30km)を1日3回運行


EVモーターズ・ジャパン製 / F8 siries4-Mini Bus バッテリ容量 114 kWh モータ出力 135 kW 車両重量 5,670kg 乗車定員 17名 系統連系 15 kW 外部給電 1.5 kW

<充放電のコンセプト>

- ① 太陽光発電が多い日中に充電 (契約電力を超えないよう充電電力を制御)
- ② 夜間に施設(地域)に放電
- ③ 常時、非常電源の電力量を確保



エネマネ活用効果(CO2排出量及び燃料費削減)

- ・スクールバスの電動化で、CO2排出量と燃料費が大きく低減
- ・太陽光発電の導入により、さらなるCO2削減が可能

球磨中学校とスクールバス9台の年間の燃料費とCO2排出量(2022年度データに基づく)

