第5章 農業分野

5.1. 農業分野の概要

農業分野における温室効果ガス排出量は、3.A.、3.B.、3.C.、3.D.、3.F.、3.G.、3.H.の7つのカテゴリーにおいて算定を行う。「3.A.:消化管内発酵」では牛、水牛、めん羊、山羊、馬、豚の消化管内のメタン発酵により生成された CH_4 の体内からの排出について報告を行う。「3.B.:家畜排せつ物の管理」では牛、水牛、めん羊、山羊、馬、豚、家禽類(採卵鶏とブロイラー)、うさぎ、ミンクが排せつする排せつ物の処理に伴う CH_4 及び N_2O の発生について報告を行う。「3.C.:稲作」では稲を栽培するために耕作された水田(常時湛水田、間断灌漑水田)からの CH_4 の排出について報告を行う。「3.D.:農用地の土壌」では農用地の土壌からの N_2O の直接排出及び間接排出について報告を行う。「3.E.:サバンナの野焼き」については、我が国には発生源が存在しないため「NO」として報告する。「3.F.:農作物残さの野焼き」では農業活動に伴い穀物、豆類、根菜類、さとうきびを焼却した際の CH_4 及び N_2O の排出について報告を行う(CH_4 、 N_2O 以外にも CO、 NO_X が発生する。CO、 NO_X は別添 5 参照)。「3.G.:石灰施用」及び「3.H.:尿素施用」では、それぞれ土壌に石灰(炭酸カルシウム等)、尿素を施用した際に発生する CO_2 について報告を行う。

2022年度における当該分野からの温室効果ガス排出量は33,510 kt- CO_2 換算であり、我が国の温室効果ガス総排出量(LULUCF を除く)の 3.0%を占めている。また、1990年度の排出量と比較すると 14.7%の減少となっている。

農業分野で用いている方法論の Tier は、表 5-1 に示すとおりである。

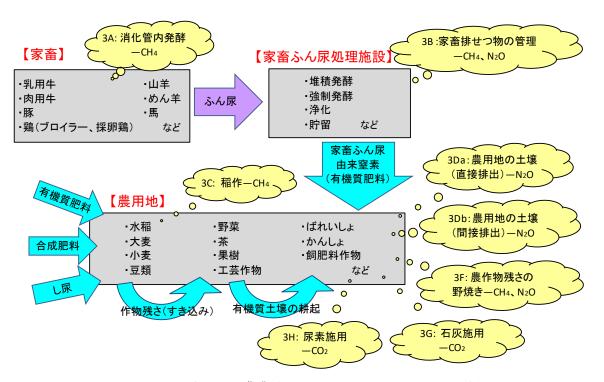


図 5-1 我が国の農業分野におけるカテゴリー間の関係

温室効果ガスの種類	C	$\overline{\mathrm{O_2}}$	Cl	H ₄	N ₂	20
カテゴリー	算定方法	排出係数	算定方法	排出係数	算定方法	排出係数
3.A. 消化管内発酵			CS,T1	CS,D		
3.B. 家畜排せつ物の管理			CS,T1	CS,D	CS,T1	CS,D
3.C. 稲作			Т3	CS		
3.D. 農用地の土壌					CS,T2	CS,D
3.F. 農作物残さの野焼き			T1	D	T1	D
3.G. 石灰施用	T1	D				
3.H. 尿素施用	T1	D				

表 5-1 農業分野で用いている方法論の Tier

(注) D: IPCC デフォルト値、T1: IPCC Tier 1、T2: IPCC Tier 2、T3: IPCC Tier 3、CS: 国独自の方法又は排出係数

5.2. 消化管内発酵 (3.A.)

牛、水牛、めん羊、山羊などの反すう動物は複胃を持っており、第一胃でセルロース等を分解するために嫌気的発酵を行い、その際に CH₄が発生する。馬、豚は反すう動物ではなく単胃であるが、消化管内発酵により CH₄を微量に発生させ、大気中に放出している。消化管内発酵(3.A.) ではこれらの CH₄排出に関する算定、報告を行う。

2022 年度におけるこのカテゴリーからの温室効果ガス排出量は 8,661 kt-CO₂ 換算であり、 我が国の温室効果ガス総排出量(LULUCF を除く)の 0.8%を占めている。また、1990 年度 の排出量と比較すると 17.9%の減少となっている。この 1990 年度からの減少の主な要因は 牛、特に乳用牛の家畜頭数の減少によるものである。乳用牛頭数の主な減少理由は、酪農家 の高齢化や後継者不足により、飼養戸数が減少したことである。なお、近年は生産基盤対策 の実施をしており(農林水産省、2015)、戸数あたりの飼養頭数が増加している。

ガス	家畜種	単位	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	3.A.1 乳用牛		192.1	184.4	171.2	162.9	146.3	139.7	137.0	136.4	133.5	133.5	133.4	134.9	135.5	137.6	135.0
	3.A.1 肉用牛		166.5	172.2	171.7	168.0	166.5	154.8	150.0	150.3	151.1	151.7	150.7	153.0	155.2	157.0	160.2
	3.A.2. めん羊		0.167	0.115	0.097	0.071	0.159	0.138	0.140	0.140	0.143	0.158	0.162	0.170	0.160	0.190	0.190
	3.A.3. 豚	kt-CH ₄	15.9	13.9	13.7	13.5	13.7	13.4	13.2	13.0	13.1	12.9	12.8	12.9	13.0	12.5	12.5
$\mathrm{CH_4}$	3.A.4 水牛		0.011	0.007	0.006	0.005	0.004	0.005	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
	3.A.4 山羊		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	3.A.4 馬		2.1	2.1	1.9	1.6	1.3	1.3	1.2	1.3	1.3	1.4	1.4	1.4	1.3	1.2	1.2
	合計	kt-CH ₄	376.9	372.7	358.7	346.0	328.1	309.5	301.7	301.4	299.2	299.8	298.6	302.5	305.3	308.6	309.3
		kt-CO ₂ 換算	10,554	10,437	10,042	9,689	9,186	8,665	8,449	8,438	8,378	8,393	8,361	8,471	8,547	8,642	8,661

表 5-2 消化管内発酵に伴う CH4排出量 (3.A.)

5.2.1. **牛** (3.A.1.)

a) 排出源カテゴリーの説明

本カテゴリーでは乳用牛 (3.A.1.a.) 及び肉用牛 (3.A.1.b.) の消化管内発酵による CH_4 排出に関する算定、報告を行う。

b)方法論

■ 算定方法

2006年 IPCC ガイドラインのデシジョンツリー (Vol. 4、Page 10.25、Fig.10.2) に従うと、乳用牛及び肉用牛については Tier 2 法を用いて算定を行うこととされている。 Tier 2 法では、家畜の総エネルギー摂取量にメタン変換係数を乗じて排出係数を算定することとされているが、我が国では畜産関係の研究において乾物摂取量を用いた算定を行っており、研究結果を

利用することによってより排出実態に即した算定結果が得られると考えられる。このため、 牛の消化管内発酵に伴う CH4排出量については、Tier 2 法と類似した日本独自の手法を用い、 牛(乳用牛、肉用牛)の飼養頭数に、乾物摂取量に基づき設定した排出係数を乗じて CH4排 出量を求めた。

表 5-3 牛の消化管内発酵に伴う CH4排出の算定区分

		5	家畜	種	排出量算定の前提条件等	区分の補足情報
	搾乳牛	初 2 <u>2</u> 3 <u></u>		Ŀ	飼養頭数に、乳用牛群能力検定成績に記載の産次別 頭数から算出した産児別頭数割合を用いて算出す る。	搾乳している牛。畜産 統計において、2歳以 上の頭数が記載されて いる。
乳用	乾	乳牛			_	現在、搾乳していない 期間の搾乳目的の牛。
牛	育成牛	7 か 月i	龄 3	満、 以上 ~6ヶ月 ヶ月未満	飼養頭数の 6/24 に相当する牛は月齢 6 ヶ月以下と仮定し、2 歳未満の飼養頭数の 18/24 が対象となる。 2 歳未満の飼養頭数の 4/24 に相当する。 2 歳未満の飼養頭数の 2/24 に相当する。CH4排出量算定の対象外。	2歳未満の牛で搾乳目 的の牛。畜産統計にお いて、2歳未満の頭数 が記載されている。
	繁殖雌牛	2 房 7 カ 月 i	龄 3 龄 3	満、 以上 ~6ヶ月 ヶ月未満	一 1歳未満の飼養頭数の 6/12 に相当する牛は月齢 6 ヶ 月以下と仮定し、1歳未満の飼養頭数の 6/12 と 2歳 未満である 1歳の飼養頭数を合算している。 1歳未満の飼養頭数の 4/12 に相当する。 1歳未満の飼養頭数の 2/12 に相当する。CH4排出量 算定の対象外。	繁殖を目的とした雌牛 (乳用牛を除く)。畜 産統計において、1歳 未満、1歳、2歳、3歳 以上の頭数が記載され ている。
		和牛(雄)	1 ii 7 ·	歳以上 歳未満、 ヶ月以上 齢 3~6ヶ月 齢 3ヶ月未	- 1歳未満の飼養頭数の 6/12 に相当する牛は月齢 6 ヶ月以下と仮定し、1歳未満の飼養頭数の 6/12 が対象となる。 1歳未満の飼養頭数の 4/12 に相当する。 CH4排出量算定の対象外。	日本在来種であり、食 肉専用種。畜産統計に おいて、肉用種おすと して、1歳未満、1 歳、2歳以上の頭数が 記載されている。
肉用牛	肥育生	和牛(雌)	1 m 1 m 7 · 月	歳以上 歳未満、 ヶ月以上 齢 3~6ヶ月 齢 3ヶ月未	一 和牛(雄)の同月齢区分と同様 和牛(雄)の同月齢区分と同様 和牛(雄)の同月齢区分と同様 和牛(雄)の同月齢区分と同様。CH4排出量算定の対象外。	日本在来種である食肉 専用種の雌。畜産統計 において、肉用種めす として、1歳未満、1 歳、2歳など(8区分 以上)の頭数が記載さ れている。
	'	満 月齢7ヶ月 以上 乳用種 チ月 月齢3~6 ヶ月 末満		以上 月齢3~6 ヶ月 月齢3ヶ月	飼養頭数の 6/24 に相当する牛は月齢 6 ヶ月以下と仮定し、2 歳未満の飼養頭数の 18/24 が対象となる。 2 歳未満の飼養頭数の 4/24 に相当する。 2 歳未満の飼養頭数の 2/24 に相当する。CH4排出量算定の対象外。	肉用目的の乳用種の牛 (ホルスタインな ど)。
	用種 月齢7ヶ月 以上 交雑 種 ケ月		月齢7ヶ月 以上 月齢3~6 ヶ月	乳用種の月齢 7ヶ月以上の区分と同様 乳用種の月齢 3~6ヶ月以上の区分と同様	乳用種の雌に肉用種の 雄を交配して肉用目的 に生産された F1 牛な	
				月齢3ヶ月 未満	乳用種の月齢3ヶ月未満の区分と同様。CH4排出量 算定の対象外。	ど。

$$E = \sum (EF_i \times A_i)$$

E: 牛の消化管内発酵による CH4排出量 [kg-CH4/年]

 EF_i : 牛の種類 i の消化管内発酵に関する CH_4 排出係数 $[kg-CH_4/頭/年]$

Ai : 牛の種類 *i* の頭数 [頭]

i : 牛の種類

牛は、月齢 3 ヶ月頃から粗飼料を本格的に摂取し始めるため、月齢 3 ヶ月以上の牛を消化管内発酵による CH4 排出の算定対象とする (月齢 3 ヶ月未満の牛は算定対象外)。我が国の実態を反映するために、牛の消化管内発酵に伴う CH4 排出の算定区分を表 5-3 に示すように定義し、種類、年齢ごとに排出量の算定を行った。

■ 排出係数

牛の消化管内発酵に伴う CH₄の排出係数については、我が国における反すう家畜を対象とした呼吸試験の結果(乾物摂取量に対する CH₄排出量の測定データ)に基づいて設定した。測定結果によると、反すう家畜の消化管内発酵に伴う CH₄排出量は、乾物摂取量を説明変数とする次式により算定できることが明らかにされている(柴田他、1993)。

 $EF = Y / L_{CH4} \times Mol_{CH4} \times Day$

 $Y = -17.766 + 42.793 \times DMI - 0.849 \times (DMI)^2$

EF: 牛の消化管内発酵 CH4排出係数 [kg-CH4/頭/年]Y: 1 頭あたり 1 日あたりの CH4 発生量 [1/頭/日]

 LCH4
 : CH4 1mol 体積 [1/mol]

 MolcH4
 : CH4 分子量 [kg/mol]

 Day
 : 年間日数 [日]

 DMI
 : 乾物摂取量 [kg/日]

この算定式に、牛の種類ごとの乾物摂取量を当てはめ、毎年の排出係数をそれぞれ設定した。乾物摂取量は農業・食品産業技術総合研究機構編「日本飼養標準」に記載の牛の種類ごとに設定した算定式に、体重及び増体日量を代入することで算定した。乳用牛では乾物摂取量算定に脂肪補正乳量の値も用いた。なお、乳用牛(搾乳牛及び乾乳牛)は 2006 年に、肉用牛(和牛・雄)は 2008 年に乾物摂取量の算定式が改訂された。

脂肪補正乳量については、農林水産省「牛乳乳製品統計」及び農林水産省「畜産統計」を 基に計算した乳量と、農林水産省「畜産物生産費統計」に記載の乳脂肪率とを使用して算出 し、毎年度データを更新した。

乳用牛の内の搾乳牛と乾乳牛の体重は、(社)家畜改良事業団「乳用牛群能力検定成績」に記載の産次別平均分娩時月齢を「日本飼養標準」に記載の成長曲線に当てはめて産次別体重を求め、各産次別体重の平均値を採用した。ただし、「乳用牛群能力検定成績」に記載の産次別平均分娩時月齢について、初産牛の平均分娩時月齢は毎年掲載されているものの、2産以上の牛の月齢は2014年以前の記載がなく、2014年以前の2産以上の牛の値は、2015年度値で代用した。また、乳用牛の成長曲線を示す回帰式は、1994年、1999年、2006年に改訂されており、当該年以降はそれぞれの改訂された式を用いた。育成牛と肉用牛の体重及び増体日量は、「日本飼養標準」の各巻末にある牛の種類ごとの各月齢における体重の一覧表を用いた。

表 5-4 牛の乾物摂取量 (DMI) の算定式

	家畜種	算定式
乳用牛	搾乳牛	2006年以降: DMI = 1.3922 + 0.05839 × W ^{0.75} + 0.40497 × FCM DMI = 1.9120 + 0.07031 × W ^{0.75} + 0.34923 × FCM (初產牛) FCM = (15 × FAT / 100 + 0.4) × MILK 2005年以前: DMI = 2.98120 + 0.00905 × W + 0.41055 × FCM FCM = (15 × FAT / 100 + 0.4) × MILK
	乾乳牛	$DMI = 0.017 \times W$
	育成牛	$DMI = 0.49137 + 0.01768 \times W + 0.91754 \times DG$
	繁殖雌牛	48 カ月まで: $DMI = [0.1067 \times W^{0.75} + (0.0639 \times W^{0.75} \times DG) / (0.78 \times q + 0.006)] / (q \times 4.4)$ $q = 0.4213 + 0.1491 \times DG$ 49 カ月以降: $DMI = [0.1119 \times W^{0.75} + (0.0639 \times W^{0.75} \times DG) / (0.78 \times q + 0.006)] / 1.81$ 妊娠末期の維持(妊娠末期2カ月に加算): DMI に1.0 kg/日を加算 授乳中の維持(授乳期5カ月に加算): DMI に0.5 kg/日/乳量を加算 ※ 対象の月齢は120カ月まで
肉用牛	和牛(雄)	2008 年以降: $DMI = -3.481 + 2.668 \times DG + 4.548 \times 10^{-2} \times W - 7.207 \times 10^{-5} \times W^2 + 3.867 \times 10^{-8} \times W^3$ 2007 年以前: $DMI = [0.1124 \times W^{0.75} + (0.0546 \times W^{0.75} \times DG) / (0.78 \times q + 0.006)] / \{q \times (1.653 - 0.00123 \times W)\} / (q \times 4.4)$ $q = 0.5304 + 0.0748 \times DG$
	和牛(雌)	$DMI = [0.1108 \times W^{0.75} + (0.0609 \times W^{0.75} \times DG) / (0.78 \times q + 0.006)] / (q \times 4.4)$ $q = 0.5018 + 0.0956 \times DG$
	乳用種 (月齢7ヶ月以上)	$DMI = [0.1291 \times W^{0.75} + (0.0510 \times W^{0.75} \times DG) / (0.78 \times q + 0.006)] / (q \times 4.4)$ $q = (0.933 + 0.00033 \times W) \times (0.498 + 0.0642 \times DG)$
	乳用種 (月齢3~6ヶ月)	$DMI = [0.1291 \times W^{0.75} + \{(1.00 + 0.030 \times W^{0.75}) \times DG\} / (0.78 \times q + 0.006)] / (q \times 4.4)$ $q = (0.859 - 0.00092 \times W) \times (0.790 + 0.0411 \times DG)$
	交雑種	$DMI = [0.1208 \times W^{0.75} + (0.0531 \times W^{0.75} \times DG) / (0.78 \times q + 0.006)] / (q \times 4.4)$ $q = (0.933 + 0.00033 \times W) \times (0.498 + 0.0642 \times DG)$

(注) W: 体重、FCM: 脂肪補正乳量、FAT: 乳脂肪率、MILK: 乳量、DG: 増体日量、q: エネルギー代謝率

(出典)「日本飼養標準」(乳牛及び肉用牛)

表 5-5 牛の乳量 (MILK) 及び乳脂肪率 (FAT)

	項目	単位	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	三産以上	kg/頭/日	21.9	23.6	24.7	26.6	26.9	27.4	28.0	28.6	28.7	28.8	28.8	29.7	30.0	30.5	30.5
乳量	二産	kg/頭/日	21.4	23.1	24.2	26.0	26.4	26.9	27.3	27.9	28.0	28.1	28.1	29.0	29.2	29.7	29.8
_	初産	kg/頭/日	18.5	19.9	20.9	22.4	22.7	23.1	23.5	24.0	24.2	24.5	24.3	25.2	25.2	25.7	25.6
乳	脂肪率	%	3.7	3.8	3.9	4.0	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	4.0	4.0

表 5-6 牛の体重 (W) [kg/頭]

		家畜種	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	搾:	乳牛(三産以上)	653.8	653.5	673.7	673.4	685.6	685.2	684.7	684.7	684.3	683.9	683.9	683.6	683.3	682.8	682.4
L.	搾:	乳牛 (二産)	598.4	601.6	622.6	622.6	623.9	623.9	623.9	623.9	623.4	622.5	623.0	622.0	622.0	621.1	620.1
乳用	搾:	乳牛 (初産)	517.2	528.0	551.1	538.3	523.6	524.6	523.6	523.6	522.6	521.6	520.5	520.5	519.5	518.5	518.5
牛	乾	乳牛	601.0	602.4	625.3	618.5	623.3	620.1	618.7	617.4	616.8	616.9	616.3	614.4	612.7	611.7	611.3
'	育	成牛 (2歳未満、7ヶ月以上)	342.4	349.3	364.9	374.2	376.1	376.1	376.1	376.1	376.1	376.1	376.1	376.1	376.1	376.1	376.1
	育	成牛 (月齢3~6ヶ月)	118.9	119.2	123.0	135.3	137.8	137.8	137.8	137.8	137.8	137.8	137.8	137.8	137.8	137.8	137.8
	繁	2歳以上	471.1	471.1	512.8	512.8	512.8	512.8	512.8	512.8	512.8	512.8	512.8	512.8	512.8	512.8	512.8
	殖雌	2歳未満、7ヶ月以上	314.9	314.9	383.0	383.0	383.0	383.0	383.0	383.0	383.0	383.0	383.0	383.0	383.0	383.0	383.0
	牛	月齢3~6ヶ月	118.4	118.4	127.2	127.2	127.2	127.2	127.2	127.2	127.2	127.2	127.2	127.2	127.2	127.2	127.2
		和牛・雄(1歳以上)	562.8	562.8	562.8	562.8	562.8	562.8	562.8	562.8	562.8	562.8	562.8	562.8	562.8	562.8	562.8
		(1歳未満、7ヶ月以上)	257.0	257.0	257.0	257.0	257.0	257.0	257.0	257.0	257.0	257.0	257.0	257.0	257.0	257.0	257.0
肉		(月齢3~6ヶ月)	120.5	120.5	120.5	120.5	120.5	120.5	120.5	120.5	120.5	120.5	120.5	120.5	120.5	120.5	120.5
用	,,,,	和牛・雌(1歳以上)	382.4	382.4	456.4	456.4	456.4	456.4	456.4	456.4	456.4	456.4	456.4	456.4	456.4	456.4	456.4
牛	肥育	(1歳未満、7ヶ月以上)	219.8	219.8	266.0	266.0	266.0	266.0	266.0	266.0	266.0	266.0	266.0	266.0	266.0	266.0	266.0
	牛	(月齢3~6ヶ月)	118.4	118.4	127.2	127.2	127.2	127.2	127.2	127.2	127.2	127.2	127.2	127.2	127.2	127.2	127.2
	'	乳用種(月齢7ヶ月以上)	479.8	479.8	479.8	479.8	479.8	479.8	479.8	479.8	479.8	479.8	479.8	479.8	479.8	479.8	479.8
		(月齢3~6ヶ月)	160.4	160.4	160.4	160.4	160.4	160.4	160.4	160.4	160.4	160.4	160.4	160.4	160.4	160.4	160.4
		交雑種(月齢7ヶ月以上)	479.8	479.8	479.8	479.8	479.8	479.8	479.8	479.8	479.8	479.8	479.8	479.8	479.8	479.8	479.8
		(月齢3~6ヶ月)	160.4	160.4	160.4	160.4	160.4	160.4	160.4	160.4	160.4	160.4	160.4	160.4	160.4	160.4	160.4

表 5-7 牛の増体日量 (DG) [kg/頭/日]

		家畜種	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Ī.,	搾	乳牛	1	-	_	1	1	_	1	1	1	1	-	-	1	1	_
乳用	乾	乳牛	_	_	_		_	_	-	_	_	_	_	_	_	-	_
牛	育	成牛 (2歳未満、7ヶ月以上)	0.60	0.63	0.65	0.59	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58
	育	成牛 (月齢3~6ヶ月)	0.70	0.71	0.76	0.91	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
	繁	2歳以上	0.02	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	殖 雌	2歳未満、7ヶ月以上	0.50	0.50	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60
	牛	月齢3~6ヶ月	0.74	0.74	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
		和牛・雄(1歳以上)	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62	0.62
		(1歳未満、7ヶ月以上)	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07	1.07
肉		(月齢3~6ヶ月)	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81	0.81
用	nm.	和牛・雌(1歳以上)	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29
牛	肥育	(1歳未満、7ヶ月以上)	0.71	0.71	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
	牛	(月齢3~6ヶ月)	0.74	0.74	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
		乳用種(月齢7ヶ月以上)	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
		乳用種(月齢3~6ヶ月)	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14
		交雑種(月齢7ヶ月以上)	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
		交雑種(月齢3~6ヶ月)	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14	1.14

表 5-8 牛の乾物摂取量 (DMI) [kg/日]

		家畜種	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	搾:	乳牛 (三産以上)	17.5	18.3	19.1	19.9	20.0	20.1	20.3	20.6	20.7	20.7	20.7	21.1	21.2	21.4	21.6
١	搾:	乳牛 (二産)	16.9	17.7	18.4	19.3	19.2	19.4	19.6	19.8	19.8	19.9	19.9	20.3	20.4	20.6	20.7
乳用	搾:	乳牛 (初産)	14.9	15.7	16.4	17.0	17.4	17.6	17.7	17.9	17.9	18.0	18.0	18.3	18.3	18.5	18.5
牛	乾	乳牛	10.2	10.2	10.6	10.5	10.6	10.5	10.5	10.5	10.5	10.5	10.5	10.4	10.4	10.4	10.4
Ι΄	育	成牛 (2歳未満、7ヶ月以上)	7.1	7.2	7.5	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7
	育	成牛 (月齢3~6ヶ月)	3.2	3.2	3.4	3.7	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8
	繁	2歳以上	7.7	7.7	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
	殖雌	2歳未満、7ヶ月以上	6.3	6.3	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4
	牛	月齢3~6ヶ月	3.4	3.4	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7	3.7
		和牛・雄(1歳以上)	8.2	8.2	8.2	8.2	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7
		(1歳未満、7ヶ月以上)	6.5	6.5	6.5	6.5	6.9	6.9	6.9	6.9	6.9	6.9	6.9	6.9	6.9	6.9	6.9
肉		(月齢3~6ヶ月)	3.6	3.6	3.6	3.6	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
用	,,,,	和牛・雌(1歳以上)	5.6	5.6	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3
牛	肥育	(1歳未満、7ヶ月以上)	4.7	4.7	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9
	牛	(月齢3~6ヶ月)	3.0	3.0	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
	'	乳用種(月齢7ヶ月以上)	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5
		(月齢3~6ヶ月)	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4
		交雑種(月齢7ヶ月以上)	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3
		(月齢3~6ヶ月)	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6

		家畜種	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	搾:	乳牛 (三産以上)	122.9	125.9	127.7	129.8	129.9	130.3	130.7	131.6	131.4	131.5	131.5	132.6	132.4	132.8	133.0
l	搾	乳牛 (二産)	120.5	123.8	125.8	128.1	128.0	128.5	128.9	129.9	129.6	129.7	129.7	131.0	130.8	131.3	131.5
乳用	搾	乳牛 (初産)	112.7	116.4	118.9	121.1	122.6	123.0	123.4	124.4	124.3	124.5	124.3	125.7	125.3	125.9	126.0
牛	乾	乳牛	86.3	86.6	89.0	88.2	88.7	88.4	88.2	88.3	88.0	88.0	88.0	88.0	87.6	87.5	87.4
Ι΄.	育	成牛 (2歳未満、7ヶ月以上)	63.4	64.7	66.9	67.8	68.0	68.0	68.0	68.1	68.0	68.0	68.0	68.1	68.0	68.0	68.0
	育	成牛 (月齢3~6ヶ月)	29.1	29.3	30.4	33.8	34.4	34.4	34.4	34.5	34.4	34.4	34.4	34.5	34.4	34.4	34.4
	繁	2歳以上	68.3	68.5	70.7	70.7	70.7	70.7	70.7	70.9	70.7	70.7	70.7	70.9	70.7	70.7	70.7
	殖雌	2歳未満、7ヶ月以上	56.9	57.0	66.0	66.0	66.0	66.0	66.0	66.1	66.0	66.0	66.0	66.1	66.0	66.0	66.0
	牛	月齢3~6ヶ月	30.3	30.3	33.7	33.7	33.7	33.7	33.7	33.8	33.7	33.7	33.7	33.8	33.7	33.7	33.7
		和牛・雄(1歳以上)	72.1	72.3	72.1	72.1	68.5	68.5	68.5	68.7	68.5	68.5	68.5	68.7	68.5	68.5	68.5
		(1歳未満、7ヶ月以上)	58.8	59.0	58.8	58.8	61.7	61.7	61.7	61.8	61.7	61.7	61.7	61.8	61.7	61.7	61.7
肉		(月齢3~6ヶ月)	33.0	33.1	33.0	33.0	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4	29.4
用		和牛・雌(1歳以上)	51.0	51.2	57.2	57.2	57.2	57.2	57.2	57.3	57.2	57.2	57.2	57.3	57.2	57.2	57.2
牛	肥育	(1歳未満、7ヶ月以上)	43.1	43.2	53.7	53.7	53.7	53.7	53.7	53.8	53.7	53.7	53.7	53.8	53.7	53.7	53.7
	牛	(月齢3~6ヶ月)	26.7	26.8	30.9	30.9	30.9	30.9	30.9	31.0	30.9	30.9	30.9	31.0	30.9	30.9	30.9
	'	乳用種(月齢7ヶ月以上)	74.2	74.4	74.2	74.2	74.2	74.2	74.2	74.4	74.2	74.2	74.2	74.4	74.2	74.2	74.2
		(月齢3~6ヶ月)	40.2	40.3	40.2	40.2	40.2	40.2	40.2	40.3	40.2	40.2	40.2	40.3	40.2	40.2	40.2
		交雑種(月齢7ヶ月以上)	73.0	73.2	73.0	73.0	73.0	73.0	73.0	73.2	73.0	73.0	73.0	73.2	73.0	73.0	73.0
		(月齢3~6ヶ月)	42.1	42.2	42.1	42.1	42.1	42.1	42.1	42.2	42.1	42.1	42.1	42.2	42.1	42.1	42.1

表 5-9 牛の消化管内発酵に関する CH4排出係数 [kg-CH4/頭/年]

■ 活動量

当該カテゴリーの活動量については、「畜産統計」に示された、毎年2月1日時点の各種牛の飼養頭数を用いた。

		家畜種	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	搾:	乳牛 (三産以上)	510	467	447	391	374	334	324	317	308	309	309	296	293	293	284
	搾:	乳牛 (二産)	260	250	241	229	196	202	191	194	193	194	190	186	192	200	194
乳	搾:	乳牛 (初産)	313	318	283	280	235	236	235	241	234	228	231	233	241	244	236
用	乾	乳牛	332	299	249	231	195	185	184	185	179	176	171	185	184	188	182
牛	育	成牛 (2歳未満、7ヶ月以上)	491	445	379	379	351	328	328	306	307	316	323	339	334	335	344
		成牛 (月齢3~6ヶ月)	109	99	84	84	78	73	73	68	68	70	72	75	74	75	77
	育	成牛 (月齢3ヶ月未満)	55	49	42	42	39	36	36	34	34	35	36	38	37	37	38
乳	用牛	=合計	2,068	1,927	1,725	1,636	1,467	1,395	1,371	1,345	1,323	1,328	1,332	1,352	1,356	1,371	1,356
	繁	2歳以上	612	591	555	536	575	520	505	511	511	517	528	528	528	528	528
	殖	2歳未満、7ヶ月以上	84	69	68	71	78	62	61	64	69	75	79	79	79	79	79
	雌	月齢3~6ヶ月	12	9	8	9	11	9	9	9	12	12	13	13	13	13	13
	牛	月齢3ヶ月未満	6	4	4	5	5	5	4	5	6	6	6	6	6	6	6
		和牛・雄(1歳以上)	368	412	385	374	409	381	368	371	374	379	380	384	389	403	406
		(1歳未満、7ヶ月以上)	125	133	114	119	127	115	112	109	110	116	120	135	139	126	140
		(月齢3~6ヶ月)	83	89	76	80	85	77	75	72	73	77	80	90	93	84	94
肉		(月齢3ヶ月未満)	42	44	38	40	42	38	37	36	37	39	40	45	46	42	47
用		和牛・雌(1歳以上)	197	265	246	290	336	328	313	293	310	312	310	306	319	343	354
牛	肥	(1歳未満、7ヶ月以上)	102	105	93	89	101	91	89	86	81	84	89	103	109	95	108
	心育	(月齢3~6ヶ月)	68	70	62	59	67	60	59	57	54	56	60	69	72	63	72
	牛	(月齢3ヶ月未満)	34	35	31	30	34	30	30	29	27	28	30	34	36	32	36
		乳用種(月齢7ヶ月以上)	665	541	333	351	309	276	259	249	235	221	206	201	188	185	176
		(月齢3~6ヶ月)	148	120	74	78	69	61	58	55	52	49	46	45	42	41	39
		(月齢3ヶ月未満)	74	60	37	39	34	31	29	28	26	25	23	22	21	21	20
		交雑種(月齢7ヶ月以上)	140	267	511	438	362	363	362	379	391	388	371	372	394	416	427
		(月齢3~6ヶ月)	31	59	114	97	81	81	80	84	87	86	82	83	88	93	95
		(月齢3ヶ月未満)	16	30	57	49	40	40	40	42	43	43	41	41	44	46	47
肉	用4	=合計	2,805	2,901	2,806	2,755	2,763	2,567	2,489	2,479	2,499	2,514	2,503	2,555	2,605	2,614	2,687

表 5-10 牛の飼養頭数 [1000 頭]

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性は算定式の 95%信頼区間から算出した (乳用牛:-26%~+32%、肉用牛:-40%~+49%)。牛の頭数 (活動量) は「畜産統計」における全頭調査の結果であり標準 誤差が示されていないことから、「畜産統計」の豚の数値 (1%) で代用した。その結果、排出量の不確実性は乳用牛で-26%~+32%、肉用牛で-40%~+49%と評価された。

■ 時系列の一貫性

排出係数は上記した方法を使用して、1990年度から一貫した方法で算定している。活動量 は「畜産統計」を使用し、1990年度から一貫した方法を使用している。

d) QA/QCと検証

2006 年 IPCC ガイドラインに従った方法で、一般的なインベントリ QC 手続きを実施して いる。一般的なインベントリ OC には、排出量の算定に用いている活動量、排出係数等パラ メータのチェック、及び出典文献の保存が含まれる。QA/QC活動については、別添4に詳述 している。

また、2016年度に開催された OA 活動(OA ワーキンググループ)の実施により、「乳用牛 なら3か月程度で離乳し、活発にCH4を生成する」との指摘を受けたことから、算定方法検 討会における議論を経て、月齢3~4か月の牛の排出量を算定に含むよう2017年提出インベ ントリで改善が行われた。

加えて、我が国の算定方法と IPCC Tier 2 法による排出量算定結果との比較を行った。その 際、Tier2 法には 2006 年 IPCC ガイドラインで示された式(Vol.4、Chapter 10、EQUATION 10.3~10.16) を用い、上記表 5-3 に示した分類でそれぞれ算定を行った。なお、我が国のデ ータが利用可能なものは利用し(例:上記の表 5-4~表 5-8 の値、「日本飼養標準」に示され た値から計算した DE 値など)、利用可能でないものは 2006 年 IPCC ガイドラインに示された デフォルト値を用いた (例: Y_m 値、 Cf_i 値、 $C_{pregnancy}$ 値など)。その結果、肉用牛と乳用牛の 両方に関して、CH4変換率 (Ym) の誤差範囲を踏まえると (Ym=6.5%±1.0%)、我が国の算 定方法による排出量は IPCC Tier 2 法で算出した排出量が取りうる範囲内にあった。したがっ て、我が国の方法と IPCC Tier 2 法による排出量に重大な差異はないと考えられる。

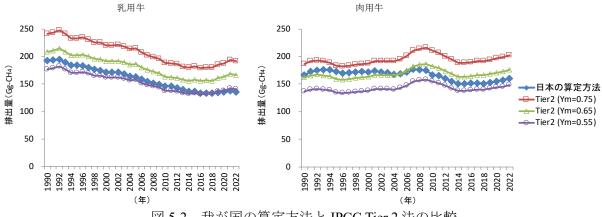


図 5-2 我が国の算定方法と IPCC Tier 2 法の比較

e)再計算

「乳用牛群能力検定成績」における検定牛の産次別頭数が更新されたため、乳用牛の2021 年度の排出量が更新された。再計算の影響の程度については10章参照。

f) 今後の改善計画及び課題

ルーメン内発酵の制御(飼料への脂肪酸カルシウムの添加等)によるメタン発生抑制技術 や混合飼料給与(TMR 給与)による飼料利用効率の向上に伴う排出削減を反映できるよう な算定方法の構築について検討を行う予定である。

5.2.2. めん羊、豚、水牛、山羊、馬(3.A.2., 3.A.3., 3.A.4.-)

a) 排出源カテゴリーの説明

本カテゴリーではめん羊、豚、水牛、山羊、馬の消化管内発酵による CH4排出に関する算定、報告を行う。

b) 方法論

■ 算定方法

 CH_4 排出については、2006 年 IPCC ガイドラインに示されたデシジョンツリーに従い、Tierl 法により算定を行った。

$E = EF \times A$

E: 各家畜の消化管内発酵による CH4排出量 [kg-CH4/年]

EF: 会家畜の消化管内発酵に関する CH4排出係数 [kg-CH4/頭/年]

A: 各家畜の頭数「頭」

■ 排出係数

豚の CH4排出係数については、日本国内の研究成果に基づく値を設定した。

めん羊、山羊、馬、水牛の CH_4 排出係数については、2006 年 IPCC ガイドラインに示されたデフォルト値を用いた。

表 5-11 めん	羊、豚、	水牛、	山羊、	馬の消化管内発酵に関する	CH4排出係数
-----------	------	-----	-----	--------------	---------

家畜種	CH4排出係数 [kg-CH4/頭/年]	参考文献
めん羊	8	2006年 IPCC ガイドライン
豚	1.4	斎藤(1988)をもとに算出
水牛	55.0	
山羊	5	2006年 IPCC ガイドライン
馬	18.0	

■ 活動量

めん羊及び山羊の活動量に関して、2009 年度までは(社)中央畜産会「家畜改良関係資料」、2010 年度からは農林水産省「家畜の飼養に係る衛生管理の状況等」に示されたそれぞれの飼養頭数を用いた。豚の活動量については、「畜産統計」に示された、毎年2月1日時点の豚の飼養頭数を用いた。なお、2004年度、2009年度及び2014年度は値を内挿した。馬の活動量に関して、2009年度までは農林水産省「馬関係資料」、2010年度からは「家畜の飼養に係る衛生管理の状況等」に示された飼養頭数を用いた。水牛の活動量は沖縄県「家畜・家きん等の飼養状況調査結果」に示された飼養頭数を用いた。

表 5-12 めん羊、豚、水牛、山羊、馬の飼養頭数 [1000頭]

家畜種	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
めん羊	21	14	12	9	20	17	17	18	18	20	20	21	20	24	24
山羊	26	19	22	16	19	20	20	17	16	19	20	20	20	22	22
豚	11,335	9,900	9,788	9,620	9,768	9,537	9,424	9,313	9,346	9,189	9,156	9,223	9,290	8,950	8,956
馬	116	118	105	87	75	74	69	74	75	76	78	78	73	68	68
水牛	0.21	0.12	0.10	0.08	0.08	0.10	0.11	0.11	0.12	0.11	0.11	0.12	0.12	0.11	0.11

⁽注) 豚の 2009 年度、2014 年度値は内挿値。

c)不確実性と時系列の一貫性

■ 不確実性

各家畜分類で不確実性の評価を行った。豚の排出係数の不確実性は算定方法検討会で設定 した値を採用した。豚以外の家畜の排出係数の不確実性は 2006 年 IPCC ガイドラインに示さ れた 50%を採用した。活動量については、豚は「畜産統計」に掲載の標準誤差 1%を採用し、 豚以外の家畜の活動量の不確実性は、「畜産統計」に掲載のブロイラーの標準誤差で代替し、 9%とした。その結果、排出量の不確実性は豚が-72~+157%、水牛、めん羊、山羊、馬が 51%と評価された。

■ 時系列の一貫性

排出係数は一定値を使用している。活動量には、「家畜改良関係資料」、「畜産統計」、「馬関係資料」、沖縄県「家畜・家きん等の飼養状況調査結果」、「家畜の飼養に係る衛生管理の 状況等」を用いており、それぞれの家畜で1990年度から一貫した算定方法を用いている。

d) QA/QCと検証

2006 年 IPCC ガイドラインに従った方法で、一般的なインベントリ QC 手続きを実施している。一般的なインベントリ QC には、排出量の算定に用いている活動量、排出係数等パラメータのチェック、及び出典文献の保存が含まれる。QA/QC 活動については、別添4に詳述している。

e) 再計算

めん羊、山羊、馬の飼養頭数が更新されたため、めん羊、山羊、馬の 2021 年度の排出量が更新された。再計算の影響の程度については 10 章参照。

f) 今後の改善計画及び課題

特になし。

5.2.3. その他の家畜(3.A.4.-)

2006 年 IPCC ガイドラインに排出係数のデフォルト値が掲載されていて、上記で報告されていない家畜として、我が国では鹿、アルパカが存在する。しかし、飼育頭数が少なく、いずれも算定方法検討会で定めた算定対象となる 3,000 t-CO₂ 換算という閾値を超える排出量とはならないため、重要でない「NE」として報告した(別添 6 参照)。

5.3. 家畜排せつ物の管理 (3.B.)

家畜の排せつ物の管理過程において、排せつ物中に含まれる有機物がメタン発酵によって分解される際に CH_4 が生成される。さらに、排せつ物中に消化管内発酵由来の CH_4 が溶けていてそれが通気や攪拌により大気中へ放出される。また、家畜の排せつ物の管理過程において、主に微生物の作用による硝化・脱窒過程で N_2O が発生する。

2022 年度におけるこのカテゴリーからの温室効果ガス排出量は CH_4 が 2,709 kt- CO_2 換算、 N_2O が 3,419 kt- CO_2 換算であり、我が国の温室効果ガス総排出量(LULUCF を除く)のそれ ぞれ 0.2%、 0.3%を占めている。また、1990 年度の排出量と比較すると CH_4 は 28.5%の減少、 N_2O は 11.5%の減少となっている。この 1990 年度からの CH_4 排出量減少の主な要因は乳用牛の家畜頭数の減少によるものであり、 N_2O 排出量減少の主な要因は家畜頭数の減少に伴い大気沈降による間接 N_2O 排出量が減少したことによるものである。

豚の排せつ物中窒素量に関して、1990年以降減少している傾向がみられるが、これは飼料中の大豆油かすの使用割合が減少するなど、飼料中に含まれる粗蛋白質量の減少が影響していると思われる。

ガス	家畜種	単位	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	3.B.1 乳用牛		107.0	103.1	96.5	94.5	86.8	82.7	81.1	81.0	79.3	79.4	79.4	80.7	81.1	82.6	81.2
	3.B.1 肉用牛		3.7	3.8	3.9	4.3	4.9	5.2	5.3	5.5	5.8	6.1	6.2	6.3	6.3	6.4	6.5
	3.B.2. めん羊		0.006	0.004	0.003	0.002	0.006	0.005	0.005	0.005	0.005	0.006	0.006	0.006	0.006	0.007	0.007
	3.B.3. 豚		22.2	19.3	17.7	12.5	8.7	8.0	7.8	7.6	7.4	7.5	7.3	6.8	6.8	6.5	6.5
	3.B.4 水牛	kt-CH4	0.0004	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
CH ₄	3.B.4 山羊	кі-СП4	0.005	0.004	0.004	0.003	0.004	0.004	0.004	0.003	0.003	0.004	0.004	0.004	0.004	0.004	0.004
C11 ₄	3.B.4 馬		0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
	3.B.4 家禽類		2.0	1.9	1.9	2.1	2.4	2.5	2.4	2.4	2.4	2.5	2.5	2.5	2.5	2.5	2.4
	3.B.4 うさぎ		0.001	0.001	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
	3.B.4 ミンク		0.1053	0.0073	0.0038	0.0004	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005
	수함	kt-CH ₄	135.2	128.4	120.2	113.6	102.9	98.5	96.8	96.7	95.1	95.7	95.7	96.4	96.8	98.2	96.7
	G #1	kt-CO ₂ 換算	3,786	3,595	3,365	3,180	2,881	2,759	2,711	2,707	2,664	2,679	2,680	2,701	2,711	2,750	2,709
	3.B.1 乳用牛		2.1	2.1	2.1	2.3	2.4	2.3	2.2	2.2	2.1	2.1	2.1	2.1	2.1	2.1	2.1
	3.B.1 肉用牛		2.4	2.5	2.5	2.6	2.7	2.4	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.4
	3.B.2. めん羊		ΙE	IE													
	3.B.3. 豚		3.7	3.2	3.2	3.8	4.5	4.3	4.2	4.1	4.1	4.2	4.2	4.2	4.2	4.1	4.0
	3.B.4 水牛		0.0001	0.0001	0.0001	0.0000	0.0000	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
	3.B.4 山羊	kt-N ₂ O	IE	ΙE	ΙE			IE	ΙE	IE	IE	ΙE	ΙE	IE	IE	ΙE	IE
N_2O	3.B.4 馬		IE	ΙE	ΙE	IE	IE	IE	ΙE	IE	IE	ΙE	ΙE	IE	IE	ΙE	IE
	3.B.4 家禽類		1.1	1.1	1.1	1.1	1.2	1.0	1.0	1.0	1.0	1.0	0.9	0.9	0.9	0.9	0.8
	3.B.4 うさぎ		0.004	0.004	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
	3.B.4 ミンク		0.0223	0.0016	0.0008	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
	3.B.5. 間接排出		5.2	4.8	4.5	4.1	3.9	3.7	3.6	3.6	3.6	3.7	3.7	3.7	3.7	3.7	3.5
	수함	kt-N ₂ O	14.6	13.7	13.3	14.0	14.7	13.6	13.3	13.2	13.1	13.3	13.1	13.2	13.2	13.1	12.9
	ПН	kt-CO ₂ 換算	3,865	3,638	3,529	3,702	3,890	3,617	3,525	3,494	3,472	3,516	3,474	3,486	3,497	3,472	3,419
全7	ガス合計	kt-CO ₂ 換算	7,651	7,234	6,894	6,882	6,771	6,376	6,236	6,201	6,136	6,194	6,154	6,187	6,208	6,222	6,128

表 5-13 家畜排せつ物管理に伴う CH4及び N2O 排出量(3.B.)

5.3.1. 牛、豚、家禽類(採卵鶏、ブロイラー)(3.B.1., 3.B.3., 3.B.4.-)

a) 排出源カテゴリーの説明

本カテゴリーでは、牛(乳用牛、肉用牛)、豚、家禽類(採卵鶏、ブロイラー)の家畜排せつ物の管理による CH_4 、 N_2O 排出に関する算定、報告を行う。

なお、放牧家畜の CH_4 に関してはこのカテゴリーで報告し、 N_2O に関しては「3.D.1.c. 放牧家畜の排せつ物」で報告する。

b) 方法論

■ 算定方法

排せつ物の管理に伴う CH4排出については、家畜種ごとの排せつ物中に含まれる有機物量に、排せつ物管理区分ごとの排出係数を乗じて算定を行った。

$$E_{CH4} = \sum (EF_{CH4-n} \times A_{CH4-n})$$

 E_{CH4} : 牛、豚、家禽の排せつ物管理に伴う CH_4 排出量 $[kt-CH_4/年]$

EFCH4-n : 排せつ物管理区分 *n* の排出係数 [kg-CH₄/kg-有機物]

ACH4-n: 排せつ物管理区分nの排せつ物に含まれる有機物量 [kt-有機物/年]

n:排せつ物管理区分

 N_2O 排出については、家畜種ごとの排せつ物中に含まれる窒素量に、排せつ物管理区分ごとの排出係数を乗じて算定を行った。

$$E_{N2O} \, = \, \sum (\, EF_{N2O-n} \, \times \, A_{N2O-n} \,) \times 44/28$$

 E_{N2O} : 牛、豚、家禽の排せつ物管理に伴う N_2O 排出量 $[kt-N_2O/年]$

EF_{N2O-n} : 排せつ物管理区分 *n* の排出係数 [g-N₂O-N/g-N]

 A_{N2O-n} : 排せつ物管理区分nの排せつ物に含まれる窒素量 [kt-N/年]

n:排せつ物管理区分

■ 排出係数

家畜排せつ物の管理に伴う、各排せつ物管理区分の CH_4 及び N_2O の排出係数については、 我が国における実測の研究成果を踏まえ、図 5-3 のデシジョンツリーに従い妥当性を検討し、 家畜種別、我が国の処理方法別に設定し、表 5-16 及び表 5-17 に示した。

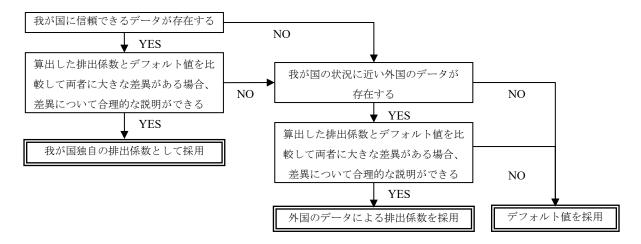


図 5-3 排出係数決定のためのデシジョンツリー

表 5-16 及び表 5-17 において、「D(デフォルト値)」と示されている排出係数は 2006 年 IPCC ガイドラインの 2019 年改良(以下、2019 年改良 IPCC ガイドライン)に示された値を基にしている。この内、 CH_4 排出係数は Other Regions – High productivity systems の Bo(最大 CH_4 発生ポテンシャル)(乳用牛: 0.24、肉用牛: 0.18、豚: 0.45、採卵鶏: 0.39、ブロイラー: 0.36)及び MCF(メタン発生係数、表 5-14)を用いて、以下の式で示すように計算した。なお、2019 年改良 IPCC ガイドラインにおいて、強制発酵及び貯留の MCF は気候区分別に掲載されているため、地域別平均気温から設定した MCF 値を地域別家畜頭数で加重平均して算出した。MCF 値の設定に使用した地域別の平均気温は表 5-15 のとおり。各家畜が主に飼養されている市町村の平均気温から設定した。

また、我が国独自の排出係数については、実測結果から直接排出係数を算出しているため、 MCFの値は設定していない。

$EF_{CH4-n} = Bo \times 0.67 \times MCF$

EF CH4-n: 排せつ物管理区分 n の排出係数 [kg-CH4/kg-有機物]Bo: 最大 CH4 発生ポテンシャル [m³-CH4/kg-有機物]0.67: 体積から重量への換算係数 [kg-CH4/m³-CH4]

MCF : メタン発生係数 [%]

処理方法	MCF	2019 年改良 IPCC ガイドラインの分類
開放型強制発酵 (乳用牛)	0.7 %	Composting – Intensive windrow をもとに算出
開放型強制発酵 (肉用牛)	0.9 %	Composting – Intensive windrow をもとに算出
開放型強制発酵(豚、鶏)	1.0 %	Composting – Intensive windrow をもとに算出
開放型強制発酵 (尿)	0.0 %	Aerobic treatment をもとに算出
密閉型強制発酵	0.5 %	Composting – In-Vessel をもとに算出
貯留 (肉用牛)	28.6 %	Liquid/ Slurry and Pit storage をもとに算出
貯留(肉用牛)(1ヶ月以内)	11.6%	Liquid/ Slurry and Pit storage – 1 Month をもとに算出
貯留(肉用牛)(1ヶ月超)	32.9%	Liquid/ Slurry and Pit storage – 3, 4, 6, 12 Month をもとに算出
貯留 (豚)	30.6 %	Liquid/ Slurry and Pit storage をもとに算出
貯留(豚)(1ヶ月以内)	12.5%	Liquid/ Slurry and Pit storage – 1 Month をもとに算出
貯留(豚)(1ヶ月超)	35.1%	Liquid/ Slurry and Pit storage – 3, 4, 6, 12 Month をもとに算出

表 5-14 デフォルトの排出係数の計算に用いた MCF (メタン発生係数)

(注)上記以外の区分には国独自の排出係数等を用いているため、MCFの値は設定していない。 (出典) 2019 年改良 IPCC ガイドライン Vol.4、Table 10.17

		1947C. 194714			
地域	乳用牛	肉用牛	豚	採卵鶏	ブロイラー
北海道	6.2	6.2	7.4	8.2	8.2
東北	9.9	11.0	10.1	10.9	10.8
関東	13.0	12.1	14.4	15.6	16.4
北陸	15.1	14.0	12.7	13.3	13.3
東海	17.1	14.3	15.0	16.0	15.5
近畿	16.9	16.0	13.5	15.5	16.5
中国	15.3	15.0	14.4	13.9	15.0
四国	16.5	16.1	15.5	16.6	16.1
九州沖縄	16.7	16.5	16.3	17.3	16.5

表 5-15 MCF 値の設定に使用した地域別の平均気温 [℃]

乳用牛、肉用牛、豚の「天日乾燥」の CH4排出係数については、石橋他(2003) を用いた。 採卵鶏・ブロイラーの「天日乾燥」の排出係数については、鶏糞乾燥処理施設(トンネル 換気型でベルトコンベアを用いて鶏糞を移動・撹拌しながら乾燥させる施設) で発生する温 室効果ガスの排出量を実測した値をもとに設定した(土屋他 2014)。

「火力乾燥」の CH_4 排出については、原理的に排出は起こらないとの仮定により、0% とした。

牛と豚の「炭化処理」については、適用されないことから設定していない。鶏の「炭化処理」については、 CH_4 排出については「火力乾燥」の値を適用し、 N_2O 排出については、Canatoy et al. (2022) を参照した。

豚の「密閉型強制発酵・ふん」及び「密閉型強制発酵・ふん尿混合」は「平成 20 年度環境バイオマス総合対策推進事業のうち農林水産分野における地球温暖化対策調査事業報告書 (全国調査事業)」(以下、「平成 20 年度地球温暖化対策調査事業報告書」)を参照した。

処理方法別家畜種別の排出係数は、家畜種による違いよりも処理方法による違いが大きいため、採卵鶏・ブロイラーの「密閉型強制発酵・ふん」の排出係数については、専門家判断により、排せつ物の含水率等の性状が似通っている豚の同じ処理方法の排出係数を適用した。我が国で最も一般的に行われている家畜排せつ物処理方法である「堆積発酵」に関して、Osada et al. (2005) は堆肥盤を覆うチャンバーを用いて CH4と N2O 排出を実測した。この値をもとに我が国の乳用牛、肉用牛、豚の排出係数を設定した。採卵鶏・ブロイラーの「堆積発酵」の排出係数については、国内 3 地域の堆肥化処理施設において、堆積物をチャンバーで覆って温室効果ガスの排出量を実測し、その値をもとに設定した。詳細な方法は、農林水産省「平成 25 年度農林水産分野における地球環境対策推進手法開発事業のうち農林水産業

由来温室効果ガス排出量精緻化検討・調査事業 報告書」(2014)(以下、平成 25 年度 調査

事業 報告書) に記載されている。

「焼却」に関する係数は(社)畜産技術協会「畜産における温室効果ガスの発生制御総集編」(2002)に記述されている。

牛の「浄化」について、白石他 (2017) は、乳用牛の尿及びふん尿から発生する CH_4 と N_2O 排出を浄化処理施設において実測した。この結果を基に設定された排出係数を、乳用牛及び肉用牛の尿及びふん尿の「浄化」に適用した。

豚の「浄化」は農林水産省「平成 24 年度農林水産分野における地球環境対策推進手法開発事業のうち農林水産業由来温室効果ガス排出量精緻化検討・調査事業 報告書」(2013) (以下、平成 24 年度 調査事業 報告書)の結果を参照した。

乳用牛の「貯留」及び「メタン発酵」の CH4の排出係数について、フロートチャンバー法などを用いて貯留システム及びメタン発酵システムにおいて実測した値から気温を変数として全国9地域別の排出係数が構築されており(農林水産省「平成23年度農林水産分野における地球環境対策推進手法の開発事業のうち農林水産業由来温室効果ガス排出量精緻化検討・調査事業 報告書」(2012)(以下、平成23年度調査事業 報告書)、地域別の飼養頭数(「畜産統計」に記載)で加重平均した排出係数(表5-18)を用いた。排出係数が1990年に比べて最新年で小さくなっているのは、気温が低く、排出係数の小さい北海道地域の飼養割合が徐々に増加しているためである(1990年度:42%、2021年度:62%)。

乳用牛及び肉用牛の「放牧」の排出係数は、採取したふん尿を放牧地のチャンバー内に設置し、実測した値をもとに設定した(Mori and Hojito、2015)。

「産業廃棄物処理」については、「貯留」の値を適用した。「その他」については、同処理 区分(ふん、尿、ふん尿)内の最大値に基づき設定した。

処理方法	乳月	月牛	肉用	月牛	月	<u> </u>	採卵	鶏	ブロイ	ラー
天日乾燥	0.20 %	$J^{2)}$	0.20 %	$J^{2)}$	0.20 %	$J^{2)}$		0.14 %	,)	J ¹⁰⁾
火力乾燥					0 %		•			$Z^{3)}$
炭化処理			_	_				0 %		TD
開放型強制発酵(ふん)	0.113 %	$\mathbf{D}^{1)}$	0.109 %	$\mathbf{D}^{1)}$	0.302 %	$\mathbf{D}^{1)}$	0.261 %	$\mathbf{D}^{1)}$	0.241%	$D^{1)}$
開放型強制発酵(尿)	0.000%	$\mathbf{D}^{1)}$	0.000 %	$D^{1)}$	0.000 %	$\mathbf{D}^{1)}$		_	_	
開放型強制発酵(ふん尿混合)	0.113%	$\mathbf{D}^{1)}$	0.109%	$\mathbf{D}^{1)}$	0.302 %	$\mathbf{D}^{1)}$		_	_	
密閉型強制発酵(ふん)					0.08 %	$J^{7)}$	(0.08 %	,)	Sw
密閉型強制発酵(尿)	0.08 %	$\mathbf{D}^{1)}$	0.06 %	$\mathbf{D}^{1)}$	0.151 %	$\mathbf{D}^{1)}$		_	_	
密閉型強制発酵(ふん尿混合)					0.08 %	$J^{7)}$		_	_	
堆積発酵	3.8 %	$J^{4)}$	0.13 %	$J^{4)}$	0.16 %	$J^{4)}$	0.13 %	$J^{12)}$	0.02 %	$J^{12)}$
焼却					0.4 %					$O^{3)}$
浄化		0.3 %		$J^{13)}$	0.91 %	$J^{11)}$		_	_	
貯留			3.4 %		9.2 %					
貯留(1ヶ月以内)	表 5-18	$JR^{8)}$	1.4 %	$\mathbf{D}^{1)}$	3.8 %	$\mathbf{D}^{1)}$	0.13 %	PΙ	0.02 %	PΙ
貯留(1ヶ月超)			4.0 %		10.6 %					
メタン発酵(ふん)	3.8%	P1	0.13 %	P1	0.16 %	P1	0.13 %	P1	0.02 %	Pl
メタン発酵 (尿・ふん尿混合)	表 5-18	JR ⁸⁾	3.5 %	JR ⁸⁾	3.6 %	JR ⁸⁾		_	_	
産業廃棄物処理	表 5-18	$JR^{8)}$	3.4 %	PS	9.2%	PS	0.13 %	PS	0.02 %	PS
放牧		0.076%		$J^{9)}$		_	(0.14 %	,)	SD
その他(ふん)	3.8 %	M	0.4 %	M	0.4 %	M		0.4 %		M
その他(尿・ふん尿混合)	3.8 %	M	4.0 %	M	10.6 %	M		_		

表 5-16 牛、豚、家禽の処理方法別 CH4排出係数 [%: kg-CH4/kg-有機物]

⁽注)表 5-17の注釈と、出典を参照。

表 5-17	牛、	豚、	家禽の処理方法別 N ₂ C) 排出係数	$[\% : kg-N_2O-N/kg-N]$
1 1		11.7.7		/ J/I EH / I' 2/	

処理方法	乳用		肉用		豚		採卵		ブロイ	ラー
天日乾燥			2.0 %			D ¹⁾		0.33 %	<u>′</u>	J ¹⁰⁾
火力乾燥					2.0 %					D ¹⁾
炭化処理			_	_				0.0219	6	O ³⁾
開放型強制発酵(ふん)			0.5 %					0.5 %)	Sw
開放型強制発酵(尿)			1.0 %			$D^{1)}$				
開放型強制発酵(ふん尿混合)			0.5 %							
密閉型強制発酵(ふん)		0.25 %		J ⁵⁾	0.16 %	$J^{7)}$		0.16 %	o	Sw
密閉型強制発酵(尿)			0.6%			D ¹⁾			—	
密閉型強制発酵(ふん尿混合)		0.25 %		J ⁵⁾	0.16 %	$J^{7)}$			_	
堆積発酵	2.4 %	J ⁴⁾	1.6 %	J ⁴⁾	2.5 %	J ⁴⁾	0.54 %	$J^{12)}$	0.08 %	J ¹²⁾
焼却					0.1 %					O ³⁾
浄化		2.88 %		$J^{13)}$	2.87 %	J ¹¹⁾			_	
貯留	0.02 %	J ⁸⁾		0 %		D ¹⁾	0.54 %	PI	0.08 %	PI
メタン発酵(ふん)	2.4 %	Pl	1.6 %	P1	2.5 %	Pl	0.54 %	Pl	0.08 %	Pl
メタン発酵(尿・ふん尿混合)	0.15 %	J ⁸⁾		0.15 %	, D	Dc				
産業廃棄物処理	0.02%	PS		0 %		PS	0.54 %	PS	0.08 %	PS
放牧	(0.684 %		J ⁹⁾				0.33 %	<u> </u>	SD
その他(ふん)	2.4 %	M	2.0 %	M	2.5 %	M		2.0 %)	M
その他 (尿・ふん尿混合)	2.88 %	M	2.88 %	M	2.87 %	M				

- (注) 1) 採卵鶏・ブロイラーについては、ふんに近いふん尿混合状態であるため、ふんとして扱う。
 - 2) 開放型と密閉型に分割されていない 2018 年以前の強制発酵の排出係数については、開放型・密閉型の管理区分割合を用いた加重平均値を使用する。
- D: ガイドラインのデフォルト値を利用
- J: 我が国の観測データより設定
- JR: 我が国の乳用牛の地域別排出係数及び各家畜種の地域別飼養頭数をもとに設定
- O: 他国のデータより設定
- Z: 原理的に排出は起こらないとの仮定により設定
- Pl: 堆積発酵の値を適用
- SD: 天日乾燥の値を適用
- TD: 火力乾燥の値を適用
- PS: 貯留の値を適用
- Sw: 豚の排出係数を適用
- Dc: 乳用牛の排出係数を適用
- M: 「ふん」又は「ふん尿混合」に対する処理区分の最大値を適用
- (出典) 1) 2019年改良 IPCC ガイドライン (2019)
 - 2) 石橋他 (2003)
 - 3) (社) 畜産技術協会 (2002)
 - 4) Osada et al. (2005)
 - 5) Osada et al. (2000)
 - 6) Osada (2003)
 - 7) 平成 20 年度 地球温暖化対策調査事業報告書 (2009)
 - 8) 平成 23 年度 調査事業 報告書 (2012)
 - 9) Mori and Hojito (2015)
 - 10) 土屋他 (2014)
 - 11) 平成 24 年度 調査事業 報告書 (2013)
 - 12) 平成 25 年度 調査事業 報告書 (2014)
 - 13) 白石他 (2017)
 - 14) Canatoy et al. (2022)

表 5-18 乳用牛の「貯留」及び「メタン発酵」の各年の CH4排出係数[% : kg-CH4/kg-有機物]

項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
貯留	2.47%	2.44%	2.42%	2.40%	2.37%	2.37%	2.37%	2.36%	2.36%	2.36%	2.35%	2.35%	2.34%	2.34%	2.34%
メタン発酵	3.22%	3.17%	3.14%	3.11%	3.06%	3.06%	3.05%	3.05%	3.04%	3.03%	3.03%	3.02%	3.02%	3.01%	3.01%

(注) 平成 23 年度 調査事業 報告書に記載の乳用牛の地域別排出係数をもとに、各年の地域別の飼養頭数で加重平均している。

■ 活動量

活動量については、年間に排せつ物管理区分ごとに各家畜種からの排せつ物に含まれる有機物量及び窒素量の推計値をそれぞれ用いた。

 $A_{CH4-n} = P \times Ex \times Day \times Org \times Mix_n \times MS_n / 1000$

 $A_{N20-n} = P \times Nex \times Day \times Mix_n \times MS_n / 1000$

 A_{CH4-n} :排せつ物管理区分nに各家畜種からの排せつ物に含まれる有機物量 [kt-有機物/年]

 A_{N20-n} : 排せつ物管理区分n に各家畜種からの排せつ物に含まれる窒素量 [kt-N/年]

P : 各家畜の飼養頭数「千頭]

Ex : 各家畜種 1 頭あたり 1 日あたりの排せつ物量 [kg/頭/日]

Org : 各家畜種の排せつ物中の有機物含有率 [%]

Nex : 各家畜種 1 頭あたり 1 日あたりの 排せつ物中窒素量 [kg-N/頭/日]

Day :年間日数「日]

Mix_n: 各家畜種の排せつ物分離・混合処理の割合 [%]

MSn : 排せつ物管理区分 *n* の割合 [%]

n :排せつ物管理区分

各家畜種から排せつされる有機物量は、家畜種ごとの飼養頭数に一頭当たりの排せつ物量と有機物含有率を乗じることによって総量を算定し、窒素量は、家畜種ごとの飼養頭数に一頭当たりの排せつ物中窒素量を乗じることによって総量を算定した(表 5-19、表 5-20、表 5-21、表 5-22、表 5-23)。その総量に、排せつ物分離・混合処理割合及び各排せつ物管理区分割合(表 5-32、表 5-33、表 5-34)を乗じ、各排せつ物管理区分に有機物量及び窒素量を割り振った。

表 5-19 乳用牛の排せつ物量 (Ex) 及び排せつ物中窒素量 (Nex)

			項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
П			搾乳牛 (三産以上)	41.5	43.1	44.5	46.0	46.1	46.4	46.8	47.3	47.4	47.5	47.5	48.2	48.4	48.8	49.1
			搾乳牛 (二産)	40.3	41.8	43.3	44.8	44.7	45.0	45.3	45.8	45.9	46.0	46.0	46.7	46.8	47.3	47.5
	_	ふ量	搾乳牛 (初産)	36.7	38.2	39.5	40.6	41.4	41.6	41.8	42.2	42.3	42.5	42.4	42.9	42.9	43.3	43.4
	[kg/頭/日	Š	乾乳牛・未経産牛	27.9	27.9	28.7	28.5	28.6	28.5	28.5	28.4	28.4	28.4	28.4	28.3	28.3	28.2	28.2
	3/建		育成牛(7-24ヵ月)	22.1	22.4	22.9	23.1	23.2	23.2	23.2	23.2	23.2	23.2	23.2	23.2	23.2	23.2	23.2
			育成牛 (3-6ヵ月)	14.9	14.9	15.1	15.8	15.9	15.9	15.9	15.9	15.9	15.9	15.9	15.9	15.9	15.9	15.9
	つ物量		搾乳牛 (三産以上)	16.9	16.9	17.0	17.0	17.0	17.0	16.9	16.9	16.9	16.9	16.9	16.9	16.9	17.0	17.0
	Š		搾乳牛 (二産)	17.1	17.1	17.2	17.2	17.2	17.1	17.1	17.1	17.1	17.1	17.1	17.1	17.1	17.1	17.2
	禁冲	尿量	搾乳牛 (初産)	18.8	18.8	18.9	18.9	18.8	18.8	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.7	18.8
	1423	账	乾乳牛・未経産牛	15.2	15.2	15.4	15.3	15.4	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3	15.3
1.1			育成牛(7-24ヵ月)	12.3	12.3	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5
乳用牛			育成牛 (3-6ヵ月)	4.4	4.4	4.8	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1
<u>84</u>			搾乳牛(三産以上)	155.7	164.4	172.7	181.7	182.1	184.0	186.0	189.1	189.6	190.1	190.4	194.7	195.5	198.2	199.6
	_	素量	搾乳牛 (二産)	148.5	157.4	165.5	174.3	173.9	175.7	177.6	180.5	180.8	181.3	181.3	185.5	186.3	188.9	190.2
		器	搾乳牛 (初産)	128.6	136.7	144.1	150.2	154.7	156.1	157.4	159.5	160.1	160.9	160.3	163.6	163.7	165.8	166.1
	N/頭/日	ψ~	乾乳牛・未経産牛	82.7	83.0	86.8	85.6	86.4	85.9	85.7	85.5	85.4	85.4	85.3	85.0	84.7	84.5	84.4
,	Pe Pe	Š	育成牛(7-24ヵ月)	53.3	54.5	57.2	58.3	58.5	58.5	58.5	58.5	58.5	58.5	58.5	58.5	58.5	58.5	58.5
	岫		育成牛 (3-6ヵ月)	20.6	20.7	21.6	24.3	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9	24.9
1 1	紫		搾乳牛 (三産以上)	76.1	81.0	83.2	87.9	89.5	90.8	92.1	93.5	93.9	94.2	94.2	96.4	96.9	98.0	98.2
	つ物中窒素量	鲥	搾乳牛 (二産)	85.8	90.2	92.2	96.6	98.4	99.6	100.7	102.1	102.3	102.6	102.5	104.5	105.0	106.1	106.3
1 1	Ç. ₩.	窒素量	搾乳牛 (初産)	88.8	92.5	94.4	98.7	92.8	94.2	95.5	97.2	97.9	98.8	98.4	101.0	101.3	103.0	102.7
	ħ	-	乾乳牛・未経産牛	98.6	98.8	103.1	101.9	102.8	102.2	101.9	101.7	101.5	101.6	101.5	101.1	100.8	100.6	100.5
	#	账	育成牛(7-24ヵ月)	65.1	66.6	69.7	70.9	71.1	71.1	71.1	71.1	71.1	71.1	71.1	71.1	71.1	71.1	71.1
			育成牛 (3-6ヵ月)	27.4	27.6	37.4	43.1	44.2	44.2	44.2	44.2	44.2	44.2	44.2	44.2	44.2	44.2	44.2

表 5-20 肉用牛の排せつ物量 (Ex) 及び排せつ物中窒素量 (Nex)

		項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	Т		17.4	17.4	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2
		繁殖雌牛(2歳以上) (7ヵ月~2歳未満)	12.6	12.6	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
		***********************		*******	*********	******	*******		***********	*********	*******	********	**********	*********	********		***********
		(3ヵ月~6ヵ月)	5.9	5.9	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7	5.7
		肥育牛・雄(1歳以上)	12.3	12.3	12.3	12.3	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8	10.8
		(7ヵ月~1歳未満)	8.4	8.4	8.4	8.4	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3
	唺	(3ヵ月~6ヵ月)	5.0	5.0	5.0	5.0	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1
	3.4	肥育牛・雌 (1歳以上)	10.0	10.0	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2
	ľ	(7ヵ月~1歳未満)	7.2	7.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2
		(3ヵ月~6ヵ月)	4.5	4.5	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7
Ξ		乳用種(7ヵ月以上)	14.6	14.6	14.6	14.6	14.6	14.6	14.6	14.6	14.6	14.6	14.6	14.6	14.6	14.6	14.6
通		(3ヵ月~6ヵ月)	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2
kg/j	,	交雑種(7ヵ月以上)	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.4
Ž	┖	(3ヵ月~6ヵ月)	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7	9.7
岫		繁殖雌牛(2歳以上)	7.1	7.1	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4
る		(7ヵ月~2歳未満)	5.8	5.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8
±∪		(3ヵ月~6ヵ月)	3.1	3.1	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4
#		肥育牛・雄(1歳以上)	7.6	7.6	7.6	7.6	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1
		(7ヵ月~1歳未満)	6.0	6.0	6.0	6.0	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3
	سد	(3ヵ月~6ヵ月)	3.3	3.3	3.3	3.3	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
		肥育牛・雌 (1歳以上)	5.2	5.2	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8
	_	(7ヵ月~1歳未満)	4.3	4.3	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4
		(3ヵ月~6ヵ月)	2.7	2.7	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1
		乳用種(7ヵ月以上)	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8
		(3ヵ月~6ヵ月)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
		交雑種 (7ヵ月以上)	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7	7.7
#		(3ヵ月~6ヵ月)	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2
		繁殖雌牛 (2歳以上)	58.9	58.9	61.8	61.8	61.8	61.8	61.8	61.8	61.8	61.8	61.8	61.8	61.8	61.8	61.8
_		(7ヵ月~2歳未満)	46.1	46.1	56.2	56.2	56.2	56.2	56.2	56.2	56.2	56.2	56.2	56.2	56.2	56.2	56.2
		(3ヵ月~6ヵ月)	21.5	21.5	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3	24.3
		肥育牛・雄 (1歳以上)	63.5	63.5	63.5	63.5	59.1	59.1	59.1	59.1	59.1	59.1	59.1	59.1	59.1	59.1	59.1
		(7ヵ月~1歳未満)	48.1	48.1	48.1	48.1	51.3	51.3	51.3	51.3	51.3	51.3	51.3	51.3	51.3	51.3	51.3
	素量	(3ヵ月~6ヵ月)	23.7	23.7	23.7	23.7	20.7	20.7	20.7	20.7	20.7	20.7	20.7	20.7	20.7	20.7	20.7
	字	肥育牛・雌 (1歳以上)	40.1	40.1	46.4	46.4	46.4	46.4	46.4	46.4	46.4	46.4	46.4	46.4	46.4	46.4	46.4
	か中	(7ヵ月~1歳未満)	32.5	32.5	42.7	42.7	42.7	42.7	42.7	42.7	42.7	42.7	42.7	42.7	42.7	42.7	42.7
	3.2	(3ヵ月~6ヵ月)	18.7	18.7	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0
Ξ		乳用種(7ヵ月以上)	61.3	61.3	61.3	61.3	61.3	61.3	61.3	61.3	61.3	61.3	61.3	61.3	61.3	61.3	61.3
運		(3ヵ月~6ヵ月)	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8
/N-8]		交雑種(7ヵ月以上)	60.2	60.2	60.2	60.2	60.2	60.2	60.2	60.2	60.2	60.2	60.2	60.2	60.2	60.2	60.2
3		(3ヵ月~6ヵ月)	33.2	33.2	33.2	33.2	33.2	33.2	33.2	33.2	33.2	33.2	33.2	33.2	33.2	33.2	33.2
**	Н	繁殖雌牛(2歳以上)	73.9	73.9	76.7	76.7	74.9	74.9	74.9	74.9	74.9	74.9	74.9	74.9	74.9	74.9	74.9
部		素殖唯千 (2歳以上) (7ヵ月~2歳未満)	57.5	57.5	69.4	69.4	70.6	70.6	70.6	70.6	70.6	70.6	70.6	70.6	70.6	70.6	70.6
つ物中		(3ヵ月~6ヵ月)	35.5	35.5	43.6	43.6	54.3	54.3	54.3	54.3	54.3	54.3	54.3	54.3	54.3	54.3	54.3
₹ 2		肥育牛・雄 (1歳以上)					71.9	71.9		71.9	71.9					71.9	
排化			76.9	76.9	76.9	76.9			71.9			71.9	71.9	71.9	71.9		71.9
	岫	(7ヵ月~1歳未満)	65.1	65.1	65.1	65.1	71.6	71.6	71.6	71.6	71.6	71.6	71.6	71.6	71.6	71.6	71.6
	**	(3ヵ月~6ヵ月) 肥育牛・雌 (1歳以上)	41.0	41.0	41.0	41.0	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2
	田級		49.8	49.8	57.2	57.2	57.2	57.2	57.2	57.2	57.2	57.2	57.2	57.2	57.2	57.2	57.2
	账	(7ヵ月~1歳未満)	44.8	44.8	57.5	57.5	60.4	60.4	60.4	60.4	60.4	60.4	60.4	60.4	60.4	60.4	60.4
		(3ヵ月~6ヵ月)	33.9	33.9	42.3	42.3	51.6	51.6	51.6	51.6	51.6	51.6	51.6	51.6	51.6	51.6	51.6
		乳用種(7ヵ月以上)	84.2	84.2	84.2	84.2	85.5	85.5	85.5	85.5	85.5	85.5	85.5	85.5	85.5	85.5	85.5
		(3ヵ月~6ヵ月)	57.2	57.2	57.2	57.2	61.8	61.8	61.8	61.8	61.8	61.8	61.8	61.8	61.8	61.8	61.8
		交雑種(7ヵ月以上)	82.0	82.0	82.0	82.0	83.0	83.0	83.0	83.0	83.0	83.0	83.0	83.0	83.0	83.0	83.0
1 1		(3ヵ月~6ヵ月)	57.0	57.0	57.0	57.0	65.8	65.8	65.8	65.8	65.8	65.8	65.8	65.8	65.8	65.8	65.8

表 5-21 豚の排せつ物量 (Ex) 及び排せつ物中窒素量 (Nex)

			項目	単位	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	排	ş	肥育豚	kg/頭/日	1.7	1.7	1.7	1.7	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.9	1.9	1.9	1.9
	せつ	h	繁殖豚	kg/頭/日	2.2	2.2	2.3	2.3	2.3	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
	th/m	尿	肥育豚	kg/頭/日	4.3	4.2	4.1	4.0	3.9	3.8	3.7	3.7	3.7	3.9	3.9	3.9	3.9	3.9	3.8
豚	量	DK.	繁殖豚	kg/頭/日	5.5	5.5	5.5	5.2	5.1	4.9	4.8	4.8	4.8	4.8	4.8	4.7	4.7	4.7	4.6
TV-S-	1	ş	肥育豚	g-N/頭/日	14.0	14.0	13.3	13.3	13.6	13.7	13.7	13.6	13.5	14.1	14.1	14.3	14.2	14.3	14.2
	窒素	λ	繁殖豚	g-N/頭/日	20.2	20.2	20.2	19.4	19.7	19.8	19.8	19.7	19.7	19.7	19.7	19.8	19.7	19.7	19.7
	量	尿	肥育豚	g-N/頭/日	27.9	27.6	26.8	25.9	25.3	24.5	24.1	24.0	23.9	25.3	25.2	25.3	25.2	25.3	24.8
		水	繁殖豚	g-N/頭/目	36.0	35.6	35.7	33.8	33.0	31.8	31.3	31.1	31.1	31.1	30.9	30.7	30.7	30.7	30.1

			項目	単位	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	排せ	採卵	成鶏	kg/羽/目	0.086	0.087	0.088	0.088	0.087	0.095	0.094	0.091	0.092	0.094	0.092	0.090	0.087	0.087	0.086
	つ		雛	kg/羽/日	0.041	0.041	0.039	0.040	0.040	0.042	0.042	0.041	0.041	0.042	0.042	0.041	0.040	0.040	0.039
家	物量	ブ	ロイラー	kg/羽/日	0.097	0.098	0.098	0.096	0.101	0.094	0.092	0.089	0.088	0.087	0.085	0.084	0.083	0.083	0.082
禽	窒	採卵	成鶏	g-N/羽/日	2.18	2.16	2.06	1.93	1.86	1.82	1.79	1.78	1.79	1.80	1.77	1.73	1.71	1.71	1.69
	素	朔鶏	雛	g-N/羽/日	1.04	1.03	0.97	0.98	1.01	0.99	0.99	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
	量		ブロイラー	g-N/羽/目	2.06	2.04	1.95	1.75	1.86	1.56	1.54	1.53	1.52	1.54	1.47	1.45	1.45	1.47	1.44

表 5-22 採卵鶏とブロイラーの排せつ物量(Ex)及び排せつ物中窒素量(Nex)

表 5-23 家畜種ごとの排せつ物中の有機物含有率(湿ベース)(Org) 1)

家畜種	有機物	2含有率
◇田田	ふん	尿
乳用牛	16%	0.5%
肉用牛	18%	$2.0\%^{2)}$
豚	20%	1.4%3)
採卵鶏	15%	_
ブロイラー	15%	_

- (出典) 1) 畜産技術協会「畜産における温室効果ガスの発生制御 総集編」(2002)
 - 2) 専門家判断
 - 3) 畜産環境整備機構「家畜ふん量処理・利用の手引き」(1998) に基づく推計値

乳用牛、肉用牛、豚の飼養頭数は「3.A.消化管内発酵」と同じ出典のものを使用している。 採卵鶏は「畜産統計」に示された羽数を用いた(表 5-24 参照)。ただし、調査のなかった 2004年度、2009年度、2014年度、2019年度の値は内挿値である。

ブロイラーに関して、1990 年度から 2008 年度までは「畜産物流通統計」の飼養羽数を用いた。2009 年度以降はその統計で飼養羽数が把握されなくなったことから、「畜産物流通統計」の出荷羽数を用いて飼養羽数を推計している(表 5-25 参照)。具体的にはブロイラーの飼養羽数/出荷羽数の 2004~2008 年度の 5 か年平均値 (0.170) を毎年度の出荷羽数に乗じ、さらに過去より出荷日齢が短くなっていることから、現在(農林水産省「鶏の改良増殖目標」、2015)と過去(畜産技術協会「ブロイラー飼養実態アンケート調査」、2008)の出荷日齢の比 0.919 (=49 日/53.3 日)を乗じて飼養羽数を算出した。

表 5-24 採卵鶏の羽数「1000羽]

家畜種	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
採卵鶏	188,786	190,634	186,202	180,697	178,546	174,806	175,270	175,733	178,900	184,350	184,917	184,145	183,373	182,661	172,265

(注)調査のなかった 2009 年度、2014年度、2019年度の値は内挿値。

(出典)「畜産統計」

表 5-25 ブロイラーの羽数 [1000 羽]

項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
「畜産物流通統計」の ブロイラー 飼養羽数	142,740	118,123	106,311	103,687											
ブロイラー 出荷羽数				606,898	633,799	653,999	661,030	669,899	680,392	688,314	703,814	715,656	728,009	735,530	737,217
インベントリで用いた ブロイラー 飼養羽数	142,740	118,123	106,311	103,687	98,913	102,066	103,163	104,547	106,185	107,421	109,840	111,688	113,616	114,790	115,053

(注) 2008 年度までは統計上の飼養羽数を使用。2009 年度以降の飼養羽数は出荷羽数を用いて推計。 (出典)「畜産物流通統計」

乳用牛の1頭あたり1日あたりの排せつ物量の内、ふん量は「日本飼養標準乳牛」に記載の DMI と中性デタージェント繊維割合(%)(NDFom)を説明変数とした重回帰式より算出し、尿量は大谷他(2010)に記載の窒素摂取量(NI)、カリウム摂取量(KI)、乳量を説明変数とした重回帰式より算出した。乾物摂取量、乳量は3.A.1 牛の消化管内発酵と同じものを用いた。中性デタージェント繊維割合(%)(NDFom)は、「日本飼養標準乳牛」を参考に35%と設定した。窒素摂取量(NI)は粗タンパク質量(CP)を6.25で割って算出した。粗

タンパク質量 (CP) は、乳量、体重、乳脂肪率、増体日量に 3.A.1 牛の消化管内発酵と同じ値を用いて、「日本飼養標準」の算出式を使用して算出した (表 5-28)。「日本飼養標準」では、ルーメン内での飼料の消化と微生物による発酵を高めるために、飼料乾物中の望ましい CP含量は12%以上としている。その指針に沿って、算出式から算出された CPが DMI の 12%を下回る場合は、CPを 12%に補正した。カリウム摂取量 (KI) は、Kume et al. (2010)を参考に設定した (表 5-26)。

また、乳用牛の1頭あたり1日あたりの排せつ物中窒素量は、ふん、尿とも長命他(2006)に示された回帰式を使用して算出した(表 5-26)。窒素量の計算に使う DMI と CP はふん、尿共通で使用する。

	算定式
ふん量 ¹⁾	$F = -8.4753 + 1.8657 \times DMI + 0.4948 \times NDFom (NDFom : 35 \%)$
尿量 ²⁾	$U = -2.2870 + 0.0231 \times NI + 0.0581 \times KI - 0.3350 \times MILK (NI = CP / 6.25)$
カリウム摂取量 ³⁾	KI : 380g/日 (初産搾乳牛) : 350g/日 (2 産以上) : 250g/日 (乾乳牛) : 220g/日 (育成牛 7~24 ヵ月) : 100g/日 (育成牛 3~6 ヵ月)
ふん中窒素量4)	$N_f = 5.01 \times DMI^{1.2}$ (搾乳牛) $N_f = 4.97 \times DMI^{1.21}$ (乾乳牛・育成牛)
尿中窒素量 ⁴⁾	$Nu = 16.57 \times (CP / 1000 / DMI) \times 100 - 138.6$ (搾乳牛) $Nu = 0.24 \times (CP / 6.25)^{1.14}$ (乾乳牛・育成牛)

表 5-26 乳用牛の排せつ物量と排せつ物中窒素量の算定式

(注)表 5-28の注釈と、出典を参照

肉用牛の1頭あたり1日あたりの排せつ物量については、2006年 IPCC ガイドライン(Vol. 4、page 10.42)の排せつ物中有機物量を求める算定式(Equation10.24)を基に、GE と DE%の代わりに「日本飼養標準」で用いられている DMI と TDN%を変数に用いて、ふん量と尿量のそれぞれを別々に算出した(表 5-27)。 DMI が重量単位であるので、2006年 IPCC ガイドラインに記載されている熱量から重量への換算係数(1/18.45)は使用していない。なお、TDN%は日本で最も利用されている飼料エネルギー評価値であり、以下により 2006年 IPCC ガイドラインの DE に相当する値に換算できる。

TDN 1kg = 4.41 Mcal DE (「日本飼養標準 肉用牛」より)

令和 2 年度算定方法検討会における専門家判断でふん中含水率は、和牛 雄、和牛 雌、繁殖雌牛は80%、乳用種、交雑種は85%とし、尿中有機物含有率は2.0%とした。

肉用牛の1頭あたり1日あたり排せつ物中窒素量は、ふん、尿ともに長命他(2006)に示された回帰式を使用して算出した(表 5-27)。ふん中窒素量は DMI を変数とする式より算出し、尿中窒素量は CP を変数とする式より算出した。 DMI は、既出の表 5-8 の値を用いた。 CP は表 5-28 に記載の式で計算した。また、乳用牛と同様に算出式から算出された CP が DMI の 12%を下回る場合は、CP を 12%に補正した。

	Arte pts_Lis
	算定式
>) E	$F = F_{dry} / (1 - MC)$
ふん量	$F_{dry} = DMI \times (1 - TDN\%)$
	MC: 80%(和牛雄、和牛雌、繁殖雌牛) ⁵⁾ 、85%(乳用種、交雑種) ⁵⁾
尿量	U = VSU / OC
冰 里	$VSU = DMI \times UE \times (1 - ASH)$ $OC = 2.0\%^5$, $UE = 2.0\%^5$, $ASH = 8.0\%^6$
ふん中窒素量 4)	$N_f = 7.22 \times DMI^{1.00}$ (乳用種)
かん甲至糸里"	$N_f = 4.97 \times DMI^{1.21}$ (乳用種+黒毛和牛)
	N _u =-14.96+0.60×NI(乳用種)
尿中窒素量4)	$N_u + N_m = 0.24NI^{1.14}$ (乳用種+黒毛和牛)
	ただし N_m =0として計算、 $NI=CP/6.25$

表 5-27 肉用牛の排せつ物量と排せつ物中窒素量の算定式

(注)表 5-28の注釈と、出典を参照

表 5-28 粗タンパク質量 (CP) の算定式 1)

		表 5-28 粗タンパク質量 (CP) の算定式 ¹⁾
		算定式
	搾乳牛	$CP = (CP1 + CP2) \times CFA$ $CP1 = 2.71 \times W^{0.75} / 0.6 \times$ 産次補正値(初産:1.3、二産:1.15、三産以上:1) $CP2 = (26.6 + 5.3 \times FAT) \times MILK / 0.65$ $CFA = 1 + MILK / 15 \times 0.04$
乳用	乾乳牛	$CP = 2.71 \times W^{0.75} / 0.6$
7年	育成牛	CP = NP / EP $NP = FN \times 6.25 + UN \times 6.25 + SP + RP$ $FN = 30 \times DMI / 6.25$ $UN = 2.75 \times W^{0.5} / 6.25$ $SP = 0.2 \times W^{0.6}$ $RP = 10 \times DG \times 23.5505 \times W^{-0.0645}$ $EP: 0.51$ (体重 120kg 以上) $: 0.63$ (体重 $67 \sim 119$ kg)
	2007 年度まで	アードル × 6.25 + UN × 6.25 + SP + RP FN = 4.80 × DMI UN = 0.44 × W ^{0.5} SP = 0.2 × W ^{0.6} RP = DG × (235 - 0.195 × W) (乳用種) RP = DG × (235 - 0.293 × W) (肥育牛雌、繁殖雌牛 48 カ月まで) RP = DG × (235 - 0.293 × W) (肥育牛雌、繁殖雌牛 48 カ月まで) RP = 0 (成雌牛の維持 49 カ月以上) EP: 0.51 (体重 150kg 以上) : 0.56 (体重 101~149kg) : 0.66 (体重 51~100kg) (繁殖雌牛 妊娠末期維持加算用 CP) CP = DCPR/0.75 DCPR = TP / 38.5 × 30.0 / 63 / 0.6 × 1000 + FN × 6.25 TP = TP(t) - TP(t-63) TP(t) = (1.486 × 10 ⁻⁴ × t ³ -4.247 × 10 ⁻² × t ² + 3.173 × t -0.328) × (-0.323 × 10 ⁻⁶ × t ³ + 3.000 × 10 ⁻⁴ × t ² - 9.430 × 10 ⁻² × t +11.263) × 6.25 FN = 4.80 × 3.21 / 2.7 (繁殖雌牛 授乳中維持加算用 CP) CP = DCPR / 0.65 DCPR = 53 × MILK
肉用牛	2008 年度以降	(P = (MCP / 0.85 + MPu / 0.80) / 1.15 MCP = 100 × TDN (繁殖雌牛以外) MCP = 130 × TDN (繁殖雌牛) MPu = MPR - MPd MPu = MPm + MPg MPd = 0.8 × 0.8 × MCP MPm = (FN × 6.25 + UN × 6.25 + SP) / 0.67 FN = 4.80 × DMI - Adj UN = 0.44 × W ^{0.5} SP = 0.2 × W ^{0.6} MPg = RP/0.492 RP = DG × (235 - 0.195 × W) (乳用種) RP = DG × (235 - 0.234 × W) (交雑種、肥育牛雄) RP = DG × (235 - 0.293 × W) (肥育牛雌、繁殖雌牛 48 カ月まで) RP = 0 (成雌牛の維持 (49 カ月以上)) Adj = (100 × TDN × 0.64 × 0.25 × 0.5) / 6.25 (繁殖雌牛以外) Adj = (130 × TDN × 0.64 × 0.25 × 0.5) / 6.25 (繁殖雌牛) (体重 200kg 未満の乳用種) CP = NP / EP NP = FN × 6.25 + UN × 6.25 + SP + RP FN = 4.80 × DMI UN = 0.44 × W ^{0.5} SP = 0.2 × W ^{0.6} RP = DG × (235 - 0.234 × W) EP: 0.51 (繁殖雌牛 妊娠末期維持加算用) MPc = PP(t) / 0.65 PP(t) = BW / 40 × TP(t) × 34.37e ^{-0.00262t} TP(t) = 10 3.70 ^{-5.698e^{-0.0022t} (繁殖雌牛 授乳中維持加算用) MPℓ = (38 × MILK) / 0.65}

(注)表 5-26、表 5-27、表 5-28に共通

F: ふん量(湿重)(kg/日) DMI: 乾物摂取量(kg/日)

U: 尿量 (kg/日) NI: 窒素摂取量(kg/日)

MILK: 乳量 (kg/日) Nf: ふん中窒素量

CP: 粗タンパク質 (g) F_{dry}: ふん量(乾重)(kg/日)

TDN%:可消化養分総量割合(%) VSU: 尿中有機物量(kg/日)

UE: 尿割合 (%) ASH: 灰分 (%) W: 体重 (kg) FAT: 乳脂肪率 (%)

EP: 成長時の粗蛋白質を正味蛋白質 FN:離乳後の育成牛(体重 66kg 以

上) の代謝性ふん中窒素 (g/日) にする変換効率

RP: 増体に伴う蛋白質蓄積量(g/ DG: 増体日量(kg/日) SP: 脱落表皮蛋白質 (g/日)

DCPR: 可消化粗蛋白質の要求量 (g/ 日) 白質総蓄積量 (g)

MCP: 微生物蛋白質(g/日)

給量 (g/日)

MPR:代謝蛋白質要求量(g/日) MPd: 微生物によって供給される代 MPm: 維持における代謝蛋白質の要

謝蛋白質供給量(g/日)

MPg:成長における代謝エネルギー *Adj*: 補正値

要求量 (g/日)

PP(t): 妊娠(t)日目における妊娠子宮 *BW*: 生時体重 (kg)

の蛋白質蓄積量 (g/日)

(出典) 1)「日本飼養標準」(乳牛及び肉用牛)

2) 大谷他 (2010)

- 3) Kume et al. (2010)
- 4) 長命他 (2006)
- 5) 専門家判断
- 6) 2006年 IPCC ガイドライン Vol.4

NDFom: 中性デタージェント繊維割

合 (%)

KI: カリウム摂取量(kg/日)

Nu: 尿中窒素量

MC: ふん中含水率 (%)

OC: 尿中有機物含有率 (%)

CFA: 補正係数

NP:成長時の維持・増体に要する正

味の蛋白質量

UN: 内因性尿中窒素 (g/日)

TP(t): 妊娠(t)日までの妊娠子宮の蛋 t: 妊娠期間日数(日)

MPu:飼料からの非分解性蛋白質供 TDN:可消化養分総量(kg/日)

求量 (g/日)

MPc:妊娠に要する代謝蛋白質量

(g/目)

MPℓ: 泌乳に要する代謝蛋白質量

(g/日)

豚の排せつ物量のうち、ふん量は 2006 年 IPCC ガイドラインの計算式 10.24 を基に、GE と DE%の代わりに DMI と飼料消化率(%)(DR)を用いて算定した。尿量は、以下で求める1 頭あたり 1 日あたりの排せつ物中窒素量を基に算定した。算定区分は、「肥育豚」及び「繁 殖豚」の2種類とした。

豚の 1 頭あたりの排せつ物中窒素量は、「日本飼養標準 豚」に示された体重区分ごとに、 摂取した窒素量から体内に蓄積された窒素量を控除して求めた。求めた各体重区分の 1 頭あ たりの排せつ物中窒素量を飼養日数((社)日本養豚協会「養豚農業実態調査報告書(全国 集計結果)」をもとに算出)の合計値で除することで 1 日当たりの排せつ物中窒素量とした。 摂取した窒素量は摂取する飼料の CP 含有率と摂取量から算定した。 摂取飼料中の CP 含有率 は、各飼料原料の CP 含有率及び各飼料原料の配合割合(農林水産省「飼料月報」をもとに 算出)から求めた配合飼料中平均 CP 含有率を用いた(表 5-30)。得られた1日当たりの排せ つ物中窒素量にふん・尿の配分割合を乗じて、1 日当たりのふん中窒素量及び尿中窒素量を 算出した (表 5-29)。ふんの配分割合は、荻野他 (2020) をもとにして、飼料中未消化 CP 量、 内因性 CP排出量と脱落皮膚・体毛による CP消失量の合計値を窒素量に換算し、排せつ物中 窒素量で除して算出した。残りは全て尿に配分されると仮定し、尿配分割合を求めた。授乳 豚の乳中 CP 含有率および乳量は、丹羽(1994)を使用した。

表 5-29 豚の排せつ物量と排せつ物中窒素量の算定式

	算定式
ふん量	$F = F_{dry} / (1 - MC) MC : 72\%^{1}$ $F_{dry} = DMI \times (1 - DR\%)$
尿量	$U = N_u / (OC \times 0.469)$ $OC = 1.4\%^{1}$
ふん中窒素量 ²⁾	$N_f = N_{out} \times f$ $f = (UDCP + ECP + CP_{loss})/6.25 / N_{out}$ $UDCP = UD \times F_{intake}$ $UD = 1 - \sum n(CPFS - n \times DCP - n)$ $ECP = 14.05 \times \sum i DMIi$ $CP_{loss} = \sum i 104.7 \times Day \times AVW^{0.75}$ $AVW^{0.75}$
尿中窒素量	$N_u = N_{out} \times u$ $u = (1 - f)$
排せつ物中窒素量	$N_{out} = N_{in} - N_{PR}$ $N_{out} = N_{in} - N_{M}$ (授乳豚) $N_{in} = (CP \times F_{intake}) / 6.25$ $F_{intake} = F_{demand} \times Day$ $N_{PR} = (149.2 \times W^{-0.0154} \times WG) / 6.25$ (肥育豚 2004年まで) 3 $N_{PR} = (-0.121 \times W + 119.2 \times WG + 25.5) / 6.25$ (肥育豚 2005年以降) 3 $N_{PR} = ((5.78 \times NWG + 103.87) / 5.56) / 6.25$ (妊娠豚) 3 $N_{M} = \Sigma$ ($CP_{M} \times MILK$) / 6.25 (授乳豚) 3

(注)

F:ふん量(湿重)(kg/日) *F_{dry}*: ふん量(乾重)(kg/日) DMI: 乾物摂取量(kg/日) DR%: 飼料消化率 (%) Nu: 尿中窒素量(kg/day) OC: 尿中有機物含有率 (%) Nout: 排せつ物中窒素量 (g) f: ふん分配割合 CPloss: 脱落皮膚・体毛による CP UD: 未消化割合 (%) ECP: 内因性 CP 排出量 (g) 消失量 (g) Fintake: 飼料摂取量(kg) n: 飼料種類

DCP: 飼料原料中 CP 消化率(%) i:肥育豚の体重区分 AVW: 平均体重(kg) u: 尿分配割合 N_M:乳中窒素量 (g) NPR:体内蓄積窒素量(g) Fdemand: 1 日当たりの飼料摂取量 W:体重 (kg) (kg/day)

NWG: 妊娠期間中における受胎産 CP_M: 乳中 CP 含有率 (%)

物を含まない母豚のみの増体量

(kg)

(出典) 1)「家畜ふん尿処理・利用の手引き」

2) 荻野他 (2020) 3)「日本飼養標準 豚」

4) NRC (2012)

MC: ふん中含水率 (%) U: 尿量 (kg/日)

Nf: ふん中窒素量 (kg/day) UDCP: 飼料中未消化 CP 量 (g)

CPFS: 飼料原料中 CP 含有率 (%)

Day: 飼養日数(日) Nin: 摂取飼料中窒素量 (g) CP: 摂取飼料中 CP 含有率 (%) WG: 增体日量(kg/日)

MILK: 乳量 (g)

		A	1)	配合割合 ²⁾								
	CP ₁	含有率 (%	6)1)		豚			採卵鶏			ブロイラー	
飼料原料名	1995	2001	2009	1995	2001	2009	1995	2001	2009	1995	2001	2009
とうもろこし	8.8	8.0	7.6	0.471	0.503	0.541	0.589	0.606	0.581	0.485	0.444	0.427
こうりゃん (マイロ)	9.0	8.8	8.8	0.161	0.136	0.104	0.059	0.034	0.046	0.151	0.189	0.183
小麦	12.1	12.1	12.1	0.005	0.005	0.011	0.000	0.000	0.000	0.000	0.000	0.000
大裸麦	10.5	10.5	10.5	0.006	0.006	0.013	0.000	0.000	-	0.000	0.000	0.000
米	7.9	7.9	7.5	0.011	0.008	0.010	0.010	0.006	0.010	0.017	0.013	0.026
小麦粉	15.5	15.5	15.5	0.010	0.008	0.008	0.000	0.000	0.001	0.001	0.001	0.003
ライ麦	10.9	10.4	10.0	0.029	0.024	0.004	0.000	0.000	-	0.000	0.000	0.000
エン麦	9.8	9.8	9.8	0.000	0.000	0.000	-	-	-	-	-	-
その他の穀類	10.1	10.1	10.1	0.008	0.010	0.012	0.001	0.001	0.001	0.001	0.001	0.002
大豆, きなこ	36.7	36.7	36.7	-	0.004	0.004	-	0.001	0.001	-	0.001	0.001
その他の豆類	25.7	25.7	25.7	-	0.000	0.000	-	0.000	-	-	0.000	-
ふすま	15.4	15.7	15.7	0.012	0.009	0.009	0.008	0.006	0.005	0.001	0.001	0.000
米ぬか	14.8	14.8	14.8	0.004	0.003	0.001	0.009	0.006	0.004	0.002	0.001	0.001
米ぬか油かす	17.7	17.5	18.6	0.006	0.007	0.007	0.009	0.008	0.008	0.001	0.001	0.001
グルティンフィード	19.8	19.8	20.9	0.009	0.008	0.008	0.017	0.019	0.015	0.001	0.001	0.001
グルティンミール	51.5	51.5	51.3	0.000	0.000	0.000	0.035	0.033	0.031	0.004	0.002	0.003
ホミニーフィード	9.6	9.6	9.0	0.000	0.000	-	0.000	0.000	-	0.000	0.000	-
スクリーニングペレット	12.3	12.3	12.3	0.000	0.000	-	0.000	0.000	-	-	-	-
ビートパルプ	10.9	10.9	8.5	0.000	0.000	0.000	-	0.000	-	-	-	0.000
DDGS	30.8	30.8	30.8	-	-	-	-	-	-	-	-	-
その他の糟糠類	12.2	12.2	12.2	0.002	0.002	0.009	0.005	0.004	0.020	0.001	0.001	0.007
アルファルファミール・ペレット・キューブ	16.7	16.7	16.2	0.004	0.003	0.003	0.003	0.003	0.001	0.000	0.000	0.000
大豆油かす	46.1	46.1	45.0	0.143	0.148	0.142	0.127	0.162	0.162	0.199	0.231	0.221
菜種油かす	37.1	37.1	37.3	0.032	0.035	0.041	0.035	0.039	0.050	0.023	0.025	0.027
綿実油かす	35.4	35.4	35.4	0.000	0.000	0.000	0.000	-	0.000	0.000	-	-
その他の植物油かす	32.7	32.7	32.7	0.004	0.006	0.005	0.008	0.011	0.011	0.002	0.002	0.002
魚かす・魚粉	59.8	59.8	59.6	0.014	0.010	0.008	0.023	0.014	0.010	0.021	0.011	0.009
フィシュソリュブル吸着飼料	56.1	56.1	56.1	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000
脱脂粉乳	35.8	35.8	34.6	0.005	0.004	0.002	0.000	-	-	0.000	0.000	0.000
ホエイパウダー	12.0	12.0	12.0	0.003	0.004	0.004	0.000	0.000	0.000	-	-	0.000
肉粉•肉骨粉	60.8	60.8	59.6	0.015	0.005	0.001	0.035	0.015	0.007	0.034	0.018	0.016
フェザーミール	84.5	84.5	83.1	0.000	0.000	0.000	0.002	0.001	0.000	0.004	0.002	0.004
その他の動物性飼料	43.5	43.5	43.3	0.001	0.000	0.001	0.001	0.001	0.002	0.004	0.004	0.008
油脂及び油脂吸着飼料(動物性)	0.0	0.0	0.0	0.013	0.013	0.011	0.018	0.024	0.027	0.042	0.046	0.048
油脂及び油脂吸着飼料(その他)	0.0	0.0	0.0	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000	0.001
糖みつ及び糖みつ吸着飼料	9.4	9.4	9.4	0.005	0.004	0.004	0.000	0.000	0.000	0.000	0.000	0.000
飼料添加物	0.0	0.0	0.0	0.004	0.004	0.005	0.003	0.003	0.004	0.004	0.004	0.006
特殊飼料	0.0	0.0	0.0	0.016	0.019	0.018	-	-	-	-	-	-
その他の飼料	13.1	13.1	13.0	0.005	0.009	0.013	0.001	0.002	0.004	0.001	0.001	0.003
アミノ酸	100.0	100.0	100.0	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.003
合計				1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

表 5-30 飼料原料の CP 含有率 [%] と配合割合

- (注) 日本標準飼料成分表発行年である 1995年、2001年、2009年の値を抜粋して掲載。
- (出典) 1) 農業・食品産業技術総合研究機構編「日本標準飼料成分表」(社) 中央畜産会をもとに算出。
 - 2) 農林水産省「飼料月報」をもとに算出。

家禽の排せつ物量は、2006年 IPCC ガイドラインの計算式 10.24 を参考に、1 羽あたり 1 日 あたりの飼料摂取量から求めた。雛は成長のステージごとに摂取する飼料の量が異なるため、成長ステージごとの排せつ物量を羽数割合で加重平均して雛全体の排せつ物量を算定した (表 5-31)。

家禽の1羽あたり1日あたりの排せつ物中窒素量は、Ogino et al. (2017) における窒素排せつ量の算定方法をベースとし、摂取窒素量から産み出す鶏卵中の窒素量と増体中の窒素量を引き、残りの窒素量が排せつされるとした。摂取した窒素量は、豚と同様、摂取する飼料の CP 含有率と摂取量から算定した(表 5-30)。採卵鶏の雛及びブロイラーは産卵しないため、摂取窒素量から増体中の窒素量を引き、残りの窒素量が排せつされるとした。採卵鶏の雛は成長のステージごとに摂取する飼料の量や成分が異なるため、成長ステージごとの排せつ物中窒素量を羽数割合で加重平均して雛全体の排せつ物中窒素量を算定した。飼料摂取量、増体日量、増体の粗タンパク含有率、および体重はコマーシャル鶏飼養管理ガイド(ゲンコーポレーション)を使用した。

表 5-31 家禽の排せつ物量と排せつ物中窒素量の算定式

	算定式 ¹⁾
ふん量	$F_{dry} = Intake \times Dry \times (1-DR\%)$ Dry: $87\%^2$ $F_{wet} = F_{dry} / (1-MC)$ MC: 採卵鶏 78% 、プロイラー 80% 3
排せつ物中窒素量	$N_{out} = N_{in} - N_{egg} - N_{wg}$ (成第) $N_{in} = F_{intake} \times W_{egg} \times CP_{feed} / 6.25$ $N_{egg} = W_{egg} \times CP_{egg} / 6.25 \qquad \text{CP}_{egg} : 12\%^{2}$ $N_{wg} = WG \times CP_{wg} / 6.25 \qquad \text{CP}_{wg} : 19.2\%$ $N_{out} = N_{in} - N_{wg} \text{(難)}$ $N_{in} = Intake \times CP_{feed} / 6.25$ $N_{wg} = WG \times CP_{wg} / 6.25 \qquad \text{CP}_{wg} : 19.2\%$ $N_{out} = N_{in} - N_{pr} \text{(プロイラー)}$ $N_{in} = F_{intake} \times WG \times CP_{feed} / 6.25$ $N_{pr} = WG \times CP_{chiken} / 6.25 \qquad \text{CP}_{chicken} : 19.2\%$ $WG = W / 47$

(注)

 Fdry: ふん量(乾重)(kg/日)
 Intake: 飼料摂取量(g/日)
 Dry: 風乾飼料乾物率(%)

 DR%: 飼料消化率(%)
 Fwet: ふん量(湿重)(kg/日)
 MC: 含水率(%)

 N_{out} : 排せつ物中窒素量(gN/日) N_{in} : 摂取飼料中窒素量(gN/B) N_{egg} : 鶏卵中窒素量(gN/B)

 N_{wg} : 增体中 N 量 (gN/日) F_{intake} : 飼料要求率 (採卵鶏:g/卵重量 g/ W_{egg} : 日産卵量 (g/日)

日、ブロイラー:g/47日齢時体重g)

CP_{feed}: 摂取飼料中 CP 含有率 (%)CP_{egg}: 鶏卵の粗タンパク含有率 (%)WG: 増体日量 (kg/日)CP_{wg}: 増体の粗タンパク含有率 (%)N_{PR}: 体内蓄積窒素量 (g)W: 体重 (47 日齢時) (g)

CPchicken: 鶏肉中の粗タンパク含有率 (%)

(出典) 1) Ogino et al. (2017)

2)「日本飼料標準家禽」

3) 築城・原田(1997)

さらに、排せつ物分離処理割合及び各排せつ物管理区分割合は、畜産技術協会「畜産における温室効果ガスの発生制御 総集編」(2002)と「畜産における温室効果ガス発生制御 第四集」(1999)の分離混合処理割合及び処理方法の割合の 1997年値と、農林水産省「家畜排せつ物処理状況調査結果」(2011)と「家畜排せつ物処理状況等調査結果」(2021)の分離混合処理割合及び処理方法の割合を用いて設定した。1997年の調査は「家畜排せつ物法」(1999年施行、不適切な排せつ物管理を禁止する法律で、排せつ物管理区分割合が変わる契機となった)施行以前のデータである。そのため、1997年の調査結果を 1999年以前に適用し、2009年度は 2009年の調査結果を用い、2019年度以降は 2019年の調査結果を用いた。(表5-32、表 5-33、表 5-34)。2000~2008年度と、2010~2018年度は、1997年、2009年と 2019年の調査結果を利用した内挿法を用いて値を算出した。

表 5-32 家畜種ごとの排せつ物分離・混合処理割合 (Mix,)

家畜種		ふん尿分離		ふん尿混合				
次田庄	~1999	2009	2019	~1999	2009	2019		
乳用牛	60.0 %	45.5 %	30.9 %	40.0 %	54.5 %	69.1 %		
肉用牛	7.0 %	4.8 %	2.5 %	93.0 %	95.2 %	97.5 %		
豚	70.0 %	73.9 %	76.3 %	30.0 %	26.1 %	23.7 %		
採卵鶏	100.0 %	100.0 %	100.0 %		_	_		
ブロイラー	100.0 %	100.0 %	100.0 %		_	_		

(注) 採卵鶏・ブロイラーについて 2019 年の調査結果では、割合がふん尿混合に記載されているが、インベントリの一貫性を保つため、NIDではふん尿分離割合で報告している。

(出典) 1999 年以前:「畜産における温室効果ガスの発生制御 総集編」

2009年:「家畜排せつ物処理状況調査結果(平成21年12月1日現在)」2019年:「家畜排せつ物処理状況等調査結果(平成31年4月1日現在)」

表 5-33 家畜種ごとの排せつ物管理区分割合(乳用牛、肉用牛、豚)(MSn)

بک		プララ 永田怪こと	V , –	乳用牛	2,>,, 1,	(12)	肉用牛	37.13 . (脉)(MSN) 豚		
	状況	処理方法	~1999	2009	2019~	~1999	2009	2019~	~1999	2009	2019~
20132		天日乾燥	2.8%	2.0%	2.7%	1.5%	0.9%	2.1%	7.0%	0.7%	0.8%
		火力乾燥	0%	0%	$0.0\%^{3)}$	0%	0%	0.0%	0.7%	0.1%	0.0%
		炭化処理			<u> </u>			<u>—</u>			<u> </u>
		強制発酵	9.0%	6.6%	9.0%	11.0%	8.1%	4.7%	62.0%	48.2%	57.9%
		開放型強制発酵			7.9%			4.5%			26.3%
		密閉型強制発酵			1.0%			0.2%			31.6%
		堆積発酵等	88.0%	90.1%	87.3%	87.0%	89.8%	92.9%	29.6%	49.3%	39.9%
	\$	貯留(1ヶ月以内)			0.5%			0.1%			0.1%
	\ \hat{\kappa}	貯留(1ヶ月超)			0.0%			0.1%			
		焼却	0.2%	0%	0.1%	0.5%	<u> </u>	<u> </u>	0.7%	0.6%	0.9%
		メタン発酵	0.270	2)	0.3%	0.070			01770	0.1%	0.1%
		公共下水道		0%	0.0%					— U.170	U.170
ځ		産業廃棄物処理		070	0.0%			0.0%			0.1%
		放牧		0%	0.070			0.070			0.170
				1.3%			1.2%			1.0%	0.01%
離		天日乾燥		0%			0%			0%	0.0170
ん尿分離処理		強制発酵	1.5%	1.7%	8.6%	9.0%	1.2%	19.3%	10.0%	5.4%	7.9%
生		開放型強制発酵	1.570	1.//0	6.2%	7.070	1.2/0	17.8%	10.070	3.470	7.1%
		密閉型強制発酵			2.5%			1.5%			0.9%
		净化	2.5%	5.1%	5.4%	2.0%	4.4%	7.8%	45.0%	76.3%	84.3%
		浄化	2.3/0	J.1 /0	3.2%	2.070	4.470	7.2%	43.070	70.370	71.1%
		浄化一農業利用			2.1%			0.5%			13.2%
	尿	ディスト - 一般来が用 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	96.0%	89.6%	82.1%	89.0%	91.4%	68.2%	45.0%	15.3%	6.0%
		貯留(1ヶ月以内)	70.070	67.070	12.4%	67.070	J1. T /0	10.3%	73.070	13.370	2.0%
		貯留 (1ヶ月超)			69.7%			58.0%			4.0%
		メタン発酵		1.9%	2.7%		0%	4.5%		0.5%	1.0%
					1.1%			0.2%			0.6%
		公共下水道		0.8%	0.0%		0.6%	0.2%		0.4%	0.0%
		産業廃棄物処理		0.9%	0.0%		2.4%	0.0%		2.1%	0.0%
		その他	4.4%1)	1.1%	1.9%	3.4%1)	0.7%	1.3%	6.0%	0.2%	0.0%
		天日乾燥						1.370			0.270
		火力乾燥	0%	0%	0.0%	0%	0%	0.00/	0%	0%	
		炭化処理	10.70/1)	22.00/	12.00/	21 00/1)	10.00/	0.0%	20.00/	21 20/	22.20/
		強制発酵	18.7%1)	22.9%	12.0%	21.8%1)	10.8%	14.5%	29.0%	21.3%	23.2%
		開放型強制発酵			11.2%			13.6%			13.7% 9.5%
		密閉型強制発酵	12 10/1)	50.00/	0.7%	72 20/1)	05.70/	0.9%	20.00/	51 40/	
Š		堆積発酵	13.1% ¹⁾	50.8%	45.1%	73.2%1)	85.7%	77.4%	20.0%	51.4%	52.1%
ん		净化 ************************************	0.3%1)	0.2%	0.2%	0%	0%	0.0%	22.0%	18.5%	12.9%
水		浄化一放流			0.0%			0.0%			11.7%
尿混合処理		浄化-農業利用	57.0%1)	15 /10/	0.2%	0.6%1)	0.10/	5 40/	22 00/	4.00/	1.1%
処理		貯留 (1 2 日)(内)	3/.0%01/	15.4%	32.2% 6.5%	0.0%1	0.1%	5.4% 1.8%	23.0%	4.0%	5.9% 3.2%
		貯留(1ヶ月以内) 貯留(1ヶ月超)			25.7%			3.6%			2.8%
		貯留(1ヶ月超) 焼却		0.1%	0.0%		0%	0.0%		0%	0.1%
		 メタン発酵		1.7%	5.9%		0%	0.076		2.0%	4.4%
		公共下水道		0.1%	0.0%		0%	0.176		0.7%	0.8%
		産業廃棄物処理		V.1/U	0.076		0/0	0.076		3.770	0.4%
		放牧	6.5%1)	6.5%	2.5%	1.1%1)	1.1%	1.2%		0%	0.0%
		その他	2.270	1.2%	0.0%	1.170	1.6%	0.0%		1.9%	0.0%
	111.44.\	1999年以前・「畜産に	よいよ フ 泗			 	<u>1.070</u> 第四集	(1999)	l	1.770	0.070

(出典) 1999年以前:「畜産における温室効果ガスの発生制御 第四集」(1999)

2009年:「家畜排せつ物処理状況調査結果(平成21年12月1日現在)」2019年:「家畜排せつ物処理状況等調査結果(平成31年4月1日現在)」

(注)

- 1) 乳用牛、肉用牛に関して、畜産技術協会(1999)では放牧の区分割合は記載されていなかったが、2009年の調査の結果(「家畜排せつ物処理状況調査結果」(2011))では放牧の区分割合が記載されている。算定方法の一貫性を示すため、2008年以前についても2009年と同じ割合を適用し、排せつ物処理方法の割合の合計が100%になるよう、調整を行った。
- 2) 事実のないものについては、「一」と表記。
- 3) 単位に満たないものについては、「0.0%」と表記。
- 4) 調査項目になかったものは空欄。

表 5-34 家畜種ごとの排せつ物管理区分割合(採卵鶏、ブロイラー)(MS_n)

ふん	ル尿	処理方法		採卵鶏		7	ブロイラー	-
分離	状況	是怪力仏	~1999	2009	2019~	~1999	2009	2019~
		天日乾燥	30.0%	8.2%	4.1%	15.0%	2.5%	0.8%
		火力乾燥	3.0%	2.2%	0.9%	0.0%	1.1%	0.3%
		炭化処理			0.2%			0.9%
		強制発酵	42.0%	49.6%	52.0%	5.1%	19.3%	10.8%
		開放型強制発酵			29.0%			9.4%
ふん		密閉型強制発酵			23.0%			1.4%
ん尿分離処理		堆積発酵等	23.0%	36.8%	35.3%	66.9%	36.6%	27.3%
分	ふん	貯留(1ヶ月以内)			1.1%			2.3%
	70	貯留(1ヶ月超)			1.1%			1.3%
理		焼却	2.0%	1.6%	2.9%	13.0%	30.4%	46.8%
		メタン発酵		—	0.1%		0.1%	0.3%
		公共下水道		—	—		—	—
		産業廃棄物処理			2.0%			5.8%
		放牧		0%	0.0%		0.1%	—
		その他		1.6%	0.2%		9.9%	3.5%

(出典) 上記表 5-33 参照

■ 我が国の家畜排せつ物管理の背景情報

欧州においてはスラリー散布(液状処理)が一般的な家畜排せつ物管理である。一方、我が国においては堆肥化(強制発酵、堆積発酵)が一般的な家畜排せつ物管理となっている。堆積発酵の排出係数を実測調査した Osada et al. (2005) は、「単位面積あたりの家畜密度が特に高い地域において、家畜ふん尿からの栄養塩の適切なリサイクルはその地域における循環のみによって完結することはできない。それゆえ、家畜排せつ物は堆肥化プロセスによってより管理しやすくすることができ、その結果得られる生産物を広い範囲に分散させることができる。」と記述している。我が国で堆肥化処理が多く行われている理由としては、①我が国の畜産農家の場合、発生する排せつ物の還元に必要な面積を所有していない場合が多く、経営体外での利用向けに排せつ物を仕向ける必要性が高いため、堆肥化による運搬性、取扱い性の改善が不可欠であること、②我が国は降雨量が多く施肥の流失が生じやすく、水質保全、悪臭防止、衛生管理といった観点からの要請も強いため、様々な作物生産への施肥において、スラリーや液状物に比べ、堆肥に対する需要がはるかに大きいことなどがあげられる。

■ 共通報告表 (CRT) での報告方法について

CRT では、窒素排せつ物管理区分(MMS)ごと(嫌気性ラグーン(Anaerobic lagoons)、汚水処理(Liquid systems)、逐次散布(Daily spread)、固形貯留及び乾燥(Solid storage and dry lot)、放牧(Pasture, range and paddock)、堆肥化(Composting)、消化(Digesers)、燃料及び廃棄物としての焼却(Burned for fuel or as waste)、その他(Other))に当該区分の割合と窒素排せつ物量を報告することとされている。

牛、豚、家禽類については、我が国独自の家畜種ごとの排せつ物処理方法、及び排せつ物処理方法の実施割合を設定している。表 5-35 にその詳細と CRT における排せつ物管理区分 (MMS) との対応を示した。

家畜ふん尿を貯留して散布するだけの農地を有する畜産家がほとんど存在せず、農地への 散布を行う場合でも、事前に攪拌を行ってから散布しており「嫌気的 (anaerobic)」な処理 方法は存在しないといえるため、「嫌気性ラグーン」については、「NO」として報告した。

表 5-35 我が国の排せつ物処理方法の区分と CRT における報告区分 (MMS)

	我 つ物 状況		CRT における報 告区分(MMS)	排せつ物処理方法の概要							
		天日乾燥	Dry lot	天日により乾燥し、ふんの取扱性(貯蔵施用、臭気等)を改善する。							
		火力乾燥	Other	火力により乾燥し、ふんの取扱性を改善する。							
		炭化処理	Other	無酸素あるいは酸素が不足した状況下で、高温で有機物を熱分解することにより炭化物を生産する。							
		強制発酵	Composting	堆肥化方法の一つ。開閉式又は密閉式の強制通気攪拌発酵槽で数 日〜数週間発酵させる。							
		開放型強制発酵	Composting	スクープ式堆肥化施設など、開放型で強制通気や攪拌を行い数日 〜数週間で発酵させる。							
		密閉型強制発酵	Composting	密閉縦型施設など、密閉型で強制通気や攪拌を行い数日~数週間 で発酵させる。							
		堆積発酵	Composting	堆肥化方法の一つ。堆肥盤、堆肥舎等に高さ 1.5-2m 程度で堆積 し、時々切り返しながら数ヶ月かけて発酵させる。							
	ふん	貯留 (1ヶ月以内)	Liquid system	貯留槽 (スラリーストア等) での貯留期間が1ヶ月以内で、その後、ほ場に散布するなどして農業利用する。							
		貯留 (1ヶ月超)	Liquid system	貯留槽 (スラリーストア等) での貯留期間が1ヶ月を超え、その後、ほ場に散布するなどして農業利用する。							
		焼却	Burned for fuel or as waste	ふんの容積減少や廃棄、及びエネルギー利用 (鶏ふんボイラー) のため行う。							
Š		メタン発酵	Digesters	スラリー状の家畜排せつ物を嫌気的条件下で発酵させる。発生したメタンガスはエネルギー利用する。							
ん尿分離		公共下水道	_	浄化処理や曝気処理等を行わず、公共下水道へ放流する。排出量 は廃棄物分野で計上。							
離		産業廃棄物処理	Other	産業廃棄物として処理。							
処理		放牧	Pasture range and paddock	採食のための植生を有する土地で家畜を飼養する。N ₂ O は「放牧 家畜の排せつ物 (3.D.1.c.)」で計上。							
		その他	Other system	上記以外の処理を行っている。							
		強制発酵	Composting	貯留槽において曝気処理する。							
		開放型強制発酵 (曝気処理)	Composting	開放型施設で曝気処理を行っている。							
		密閉型強制発酵 (曝気処理)	Composting	密閉型施設で曝気処理を行っている。							
		浄化	Other	活性汚泥など、好気性微生物によって、汚濁成分を分離する。							
		浄化-放流	Other	活性汚泥中の微生物によって、水質汚濁の原因物質を除去したのち、放流する。							
		浄化-農業利用	Other	活性汚泥中の微生物によって、水質汚濁の原因物質を除去したの ち、ほ場に散布するなどして農業利用する。							
	尿	貯留	Liquid system	貯留槽に貯留する。							
		(1ヶ月以内)	Liquid system	上記ふんの貯留(1ヶ月以内)に同じ。							
		(1ヶ月超)	Liquid system	上記ふんの貯留(1ヶ月超)に同じ。							
		メタン発酵	Digesters	上記ふんのメタン発酵に同じ。							
		公共下水道	_	上記ふんの公共下水道に同じ。							
		産業廃棄物処理	Other	上記ふんの産業廃棄物処理に同じ。							
		その他	Other	上記以外の処理を行っている。							

我	が国の区分	OPTにおけて却生は八								
排せつ物	排せつ物	CRT における報告区分 (MMS)	排せつ物管理区分の概要							
分離状況	管理区分	(IVIIVIS)								
	天日乾燥	Dry lot	天日により乾燥し、ふんの取扱性を改善する。							
	火力乾燥	Other	上記火力乾燥に同じ。							
	炭化処理	Other	上記炭化処理に同じ。							
	強制発酵	Composting	貯留槽において曝気処理する。							
	開放型強制発酵	Composting	上記ふんの開放型強制発酵に同じ。							
	密閉型強制発酵	Composting	上記ふんの密閉型強制発酵に同じ。							
	堆積発酵	Composting	上記堆積発酵に同じ。							
ځ	浄化	Other	上記浄化に同じ。							
ž	浄化-放流	Other	上記浄化-放流に同じ。							
尿	浄化-農業利用	Other	上記浄化-農業利用に同じ。							
合	貯留	Liquid system	貯留槽(スラリーストア等)に貯留する。							
ふん尿混合処理	貯留 (1ヶ月以内)	Liquid system	上記貯留(1ヶ月以内)に同じ。							
	貯留 (1ヶ月超)	Liquid system	上記貯留(1ヶ月超)に同じ。							
	メタン発酵	Digesters	上記メタン発酵に同じ。							
	公共下水道		上記公共下水道に同じ。							
	産業廃棄物処理	Other	上記産業廃棄物処理に同じ。							
	放牧	Pasture range and paddock	上記放牧に同じ。							
	その他	Other	上記以外の処理を行っている。							

表 5-35 我が国の排せつ物管理区分と CRT における報告区分(続き)

c)不確実性と時系列の一貫性

■ 不確実性

 CH_4 排出係数の不確実性は 2006 年 IPCC ガイドラインの Tier2 の値(20%)を採用した。 N_2O 排出係数の不確実性は 2006 年 IPCC ガイドラインの各パラメータの不確実性のデフォルト値を使用し、それらを合成して算出した。

活動量の家畜頭数の不確実性は、豚は「畜産統計」掲載の標準誤差 1%を採用し、鶏は「畜産統計」掲載のブロイラーの標準誤差 9%を採用した。牛は「消化管内発酵 牛」と同様に 1%を採用した。各家畜種 1 頭あたり 1 日あたりの排せつ物中窒素量の不確実性は、算定方法検討会試算値から 50%とし、排せつ物分離・混合処理の割合、排せつ物管理区分割合の不確実性は、家畜排せつ物処理状況等調査から 1%とした。

その結果、排出量の不確実性は、乳用牛、肉用牛及び豚の CH_4 、 N_2O でそれぞれ-20%~+20%、-87%~+123%、鶏の CH_4 、 N_2O でそれぞれ-22%~+22%、-87%~+123%と評価された。

■ 時系列の一貫性

排出係数は 1990 年度値から一貫した方法で算定している。活動量は「畜産統計」をもとに、1990 年度値から一貫した方法を使用している。

d) QA/QCと検証

2006 年 IPCC ガイドラインに従った方法で、一般的なインベントリ QC 手続きを実施している。一般的なインベントリ QC には、排出量の算定に用いている活動量、排出係数等パラメータのチェック、及び出典文献の保存が含まれる。QA/QC 活動については、別添4に詳述している。

放牧牛の CH_4 、 N_2O の排出係数に国独自の排出係数を用いており、これらの値は 2006 年 IPCC ガイドラインに掲載されているデフォルト値から計算した値よりも小さい。我が国の

放牧地の土壌は排水性のよい黒ボク土・褐色森林土が大半を占めており、そのため我が国の CH_4 、 N_2O の排出係数は小さくなっているのではないかと推測される。

乳用牛の貯留の CH_4 、 N_2O の排出係数に国独自の排出係数を用いており、この値は2006年 IPCC ガイドラインに掲載されているデフォルト値から計算した値よりも小さい。 CH_4 については、我が国におけるスラリー貯留期間は比較的短期であり、スラリーからの CH_4 発生が盛んになる前に農地や採草地に散布されているためと考えられる。 N_2O の排出係数が小さいことについても同様で、長期貯留を行わないため、 N_2O 排出源と推定されるスカムが貯留槽を覆うまでに至っていないことが理由として考えられる。

インベントリ審査において、乳用牛の見かけの CH4排出係数が他の附属書 I 国と比べてかなり高いと指摘を受けた。これは、我が国において堆積発酵が一般的なふん尿管理方法であり、その堆積発酵の排出係数が大きいためである。なお、乳用牛のふんは含水率が高く嫌気性環境になりやすいことから、ふんの堆積発酵における CH4排出係数が大きな数値になっていると考えられる。

鶏の堆積発酵の排出係数に関して、採卵鶏の排出係数がブロイラーよりも大きくなっている。 CH_4 については採卵鶏のふんの含水率が高いことが理由として考えられる。また、 N_2O の国独自の排出係数がデフォルト値よりも小さいのは、デフォルト値が鶏だけのものではない(牛や豚も含まれている)ことが理由として考えられる(牛、豚より鶏のふんの方が、硝化作用が起きにくい)。

鶏の天日乾燥の国独自の N_2O 排出係数がデフォルト値より小さい。これは鶏の堆積発酵の排出係数と同様、デフォルト値の対象が鶏だけではないことが理由として考えられる。

e) 再計算

2021 年度の「乳用牛群能力検定成績」における検定牛の産次別頭数、「養豚農業実態調査」における出荷日齢平均、及び採卵鶏における日産卵量と飼料要求量の値が更新されたため、乳用牛、豚、採卵鶏それぞれの 2021 年度の排出量が更新された。2015 年以降のブロイラーの処理羽数が修正され、鶏の炭化処理、強制発酵の排出係数に国独自の値及び 2019 年改良 IPCC ガイドラインのデフォルト値を使用したため、全年にわたり排出量が更新された。再計算の影響の程度については 10 章参照。

f) 今後の改善計画及び課題

排出実態に関する研究や排出削減対策の情報収集が関係機関により継続して実施されているため、新たな成果が得られた場合には、排出係数及び各種パラメータの見直しを検討する。

5.3.2. めん羊、水牛、山羊、馬、うさぎ、ミンク (3.B.2., 3.B.4.-)

a) 排出源カテゴリーの説明

本カテゴリーでは、めん羊、水牛、山羊、馬、うさぎ、ミンクの家畜排せつ物の管理による CH_4 、 N_2O 排出に関する算定、報告を行う。

b) 方法論

■ 算定方法

 CH_4 、 N_2O 排出量については、2006 年 IPCC ガイドラインのデシジョンツリー(Vol. 4、Page 10.36、Fig.10.3 及び Page 10.55、Fig.10.4)に従い Tier 1 法を用いて算定を行った。

 $E_{CH4} = EF_{CH4} \times P$

$E_{N_2O} = \Sigma (EF_{N_2O-n} \times P \times Nex \times MS_n)$

 E_{CH_4} : 家畜排せつ物管理に伴う CH_4 排出量 $[kg-CH_4/年]$ E_{N_2O} : 家畜排せつ物管理に伴う N_2O 排出量 $[kg-N_2O/年]$

EFCH4 : CH4排出係数 [kg-CH4/頭/年]

EF_{N2O-n} : 排せつ物管理区分 n の N₂O 排出係数 [kg-N₂O /kg-N]

P : 家畜の飼養頭数 [頭]

Nex :1 頭あたりの排せつ物中窒素量 [kg-N/頭/年]

*MS*_n:排せつ物管理区分割合[%]

■ 排出係数

CH4排出係数については、2006 年 IPCC ガイドラインに示された先進国の温帯のデフォルト値を使用した。水牛については「Asia」温帯のデフォルト値を採用した(表 5-36)。

 N_2O 排出係数については、2006 年 IPCC ガイドラインと 2019 年改良 IPCC ガイドラインに示されたデフォルト値を使用した(表 5-37)。

家畜種	CH4排出係数 [kg-CH4/頭/年]	出典						
めん羊	0.28							
山羊	0.20	2006年 IPCC ガイドライン Vol.4、p10.40、Table10.15						
馬	2.34							
水牛	2	2006年 IPCC ガイドライン Vol.4、p10.39、Table10.14						
うさぎ	0.08	2006年 IDCC ガイドライン Vol.4 10.41 Table 10.16						
ミンク	0.68	2006年 IPCC ガイドライン Vol.4、p10.41、Table10.16						

表 5-36 めん羊、水牛、山羊、馬、うさぎ、ミンクの CH4 排出係数

表 5-37 めん羊、水牛、山羊、馬、うさぎ、ミンクの N_2O 排出係数

排せつ物管理区分	N ₂ O 排出係数 [% : kg-N ₂ O-N/kg-N]	
Dry lot	乾燥	2.0 %
Pasture/Range/Paddock (水牛)	放牧地/牧野/牧区	0.6 %
Pasture/Range/Paddock(めん羊、山羊、馬)	放牧地/牧野/牧区	0.3 %
Daily spread	逐次散布	0 %
Burned for fuel	燃料利用	0 %

(出典) Dry lot, Daily spread: 2006年 IPCC ガイドライン Vol.4、page 10.62、Table 10.21 Pasture/Range/Paddock: 2019年改良 IPCC ガイドライン Vol.4、page 11.11、Table 11.1

■ 活動量

めん羊、山羊、馬、水牛の家畜頭数は「3.A.消化管内発酵」と同じデータを使用した(表 5-12 参照)。うさぎ、ミンクに関しては、農林水産省「小動物及び実験動物等の飼養状況」に示された飼養頭数を用いた(表 5-38 参照)。

 N_2O に関して、各家畜の飼養頭数に家畜 1 頭あたりの排せつ物中窒素量(又は体重に体重あたりの排せつ物窒素量を掛け合わせて算出した値)を乗じて総窒素量を算出し、その総窒素量に排せつ物管理区分ごとの割合を掛け合わせ、排せつ物管理区分ごとの窒素量を算出した(表 5-39)。水牛の排せつ物管理区分割合は 2006 年 IPCC ガイドラインのデフォルト値を使用した(排せつ物管理区分割合は「Asia」のデフォルト値)(表 5-40)。

2006 年 IPCC ガイドラインでデフォルト値が示されていないうさぎ、ミンクの排せつ物管理割合に関しては専門家判断により、100%乾燥処理されるとした。2006 年 IPCC ガイドラインでデフォルト値が示されていないめん羊、山羊、馬の排せつ物管理割合については「その他の家畜カテゴリーからのふん尿は概して放牧地で管理される」(2006 年 IPCC ガイドラインVol.4、p10.61)と記述されていることから、これら家畜の排せつ物は放牧により処理される

とみなした。

表 5-38 うさぎ、ミンクの飼養頭数 [1000 頭]

家畜種	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
うさぎ	15	16	21	19	18	18	18	18	18	18	18	18	18	18	18
ミンク	155	11	6	1	1	1	1	1	1	1	1	1	1	1	1

(出典)「小動物及び実験動物等の飼養状況」

表 5-39 めん羊、水牛、山羊、馬、うさぎ、ミンクの体重及び排せつ物中窒素量(Nex)

家畜種	体重 [kg]	体重あたりの排せつ物中窒素量 [kg-N/1000kg-家畜体重/日]	家畜排せつ物中窒素量 [kg-N/頭/年]
めん羊	48.5	1.17	(20.7)
水牛	380	0.32	(44.4)
山羊	38.5	1.37	(19.3)
馬	377	0.46	(63.3)
うさぎ	_	_	8.10
ミンク	_	_	4.59

- (注) 括弧内の数値は、体重と体重あたりの値から計算した値。
- (出典) 2006年 IPCC ガイドライン Vol.4、page 10.79、Table 10A-6、page 10.82、Table 10A-9、page 10.59、Table 10.19

表 5-40 水牛の排せつ物管理区分割合 (MSn)

		, , , , , , , , , , , , , , , , , , , ,				
排せつ物質	管理区分	管理区分割合				
Lagoons	嫌気性ラグーン	0 %				
Liquid /Slurry	汚水処理	0 %				
Solid storage	固形貯留	0 %				
Dry lot	乾燥	41 %				
Pasture/Range/Paddock	放牧地/牧野/牧区	50 %				
Daily spread	逐次散布	4 %				
Digester	消化処理	0 %				
Burned for fuel	燃料利用	5 %				
Other	その他	0 %				

(出典) 2006年 IPCC ガイドライン Vol. 4、page 10.79、Table 10A-6

c) 不確実性と時系列の一貫性

■ 不確実性

家畜ごとに不確実性の評価を行った。 CH_4 排出係数の不確実性は、2006 年 IPCC ガイドラインの Tier1 の値(30%)を採用した。 N_2O 排出係数の不確実性は 2006 年 IPCC ガイドラインの各パラメータの不確実性のデフォルト値を使用し、それらを合成して算出した。活動量の不確実性は、畜産統計のブロイラーの値で代替し、9%とした。その結果、各家畜の CH_4 、 N_2O の不確実性は、それぞれ、 $-31\%\sim+31\%$ 、 $-72\%\sim+112\%$ と評価された。

■ 時系列の一貫性

排出係数はすべての年で一定値を使用している。活動量については、「家畜改良関係資料」、「馬関係資料」、「家畜・家きん等の使用状況調査結果」、「家畜の飼養に係る衛生管理の状況等」を用い、それぞれ 1990 年度値から一貫した方法を使用して、算定している。

d) QA/QCと検証

2006 年 IPCC ガイドラインに従った方法で、一般的なインベントリ QC 手続きを実施している。一般的なインベントリ QC には、排出量の算定に用いている活動量、排出係数等パラメータのチェック、及び出典文献の保存が含まれる。QA/QC 活動については、別添4に詳述している。

e) 再計算

めん羊、山羊、馬の飼養頭数が更新されたため、めん羊、山羊、馬の 2021 年度の排出量が再計算された。再計算の影響の程度については 10 章参照。

f) 今後の改善計画及び課題

特になし。

5.3.3. その他の家畜(3.B.4.-)

上述した家畜以外に、農林水産省「小動物及び実験動物等の飼養状況」においては、鹿、トナカイ、銀ぎつね、その他の家禽類(あひる・あいがも、七面鳥など)が掲載されているが、飼育頭数が少なく、いずれも算定方法検討会で定めた算定対象となる 3,000t-CO₂ 換算という閾値を超える排出量とはならないため、排出量を報告していない(別添6参照)。

5.3.4. 間接 N₂O 排出量(3.B.5.)

5.3.4.1. 大気沈降(3.B.5.-)

a) 排出源カテゴリーの説明

本カテゴリーでは、家畜排せつ物処理過程で NH_3 、 NO_x や N_2 として揮発した窒素化合物の大気沈降に伴い発生した N_2O の排出量の算定、報告を行う。

b) 方法論

■ 算定方法

2019 年改良 IPCC ガイドラインのデシジョンツリー (Vol.4、Page 10.79、Fig.10.4) に従い、Tier2 法で N_2O 排出量の算定を行った。

$E = N_{Volatilization-MMS} \times EF \times 44/28$

E: 大気沈降による N₂O 排出量(家畜排せつ物処理過程)[kg-N₂O /年]

: 家畜排せつ物処理過程で NH3 や NOx として揮発した窒素量 [kg (NH3-N+NOx-N) / NVolatilization-MMS

Volatilization-MMS 年

EF: 排出係数 [kg-N₂O-N/kg (NH₃-N+NO_X-N)]

■ 排出係数

0.014 [kg-N₂O-N/kg-NH₃-N & NO_X-N deposited] (2019 年改良 IPCC ガイドライン Vol.4、Page11.26、Table11.3、Wet climate の値)

■ 活動量

牛、豚、鶏(採卵鶏、ブロイラー)に関して、活動量は以下の式で示したように、家畜の ふん尿管理から NH_3 や NOx として揮発した窒素量($N_{Volatilization-MMS}$)は、上記 5.3.1.で算出した各処理方式の家畜排せつ物中の窒素量(A_{N2O-i})と各処理方式の畜舎における家畜排せつ物からの揮散割合($Frac_{GASM1i}$)と各処理方式の処理時における家畜排せつ物からの揮散割合($Frac_{GASM2i}$)から算出した。各処理方式の揮散割合は寳示戸他(2003)に示されたデータから設定した(表 5-41)。浄化に関しては処理時に揮散しないと設定した。なお、放牧家畜のふん尿から NH_3 や NO_x として揮発した窒素からの間接 N_2O 排出量は 3.D.2.a.で報告している。

$N_{Volatilization-MMS} = \sum \left\{ A_{N20-i} \times Frac_{GASM1i} + (A_{N20-i} - A_{N20-i} \times Frac_{GASM1i}) \times Frac_{GASM2i} \right\}$

NVolatilization-MMS : 家畜排せつ物処理過程で NH3 や NOx として揮発した窒素量 [kg (NH3-N+NOx-N) /

年]

 A_{N20-i} : 処理方式 i における家畜排せつ物中の窒素量 [kg-N/年]

FracGASMIi : 処理方式 i の畜舎における家畜排せつ物から NH3 や NOx として揮発する割合 [(kg-

 $NH_3-N + NO_X-N)/kg-N$

FracGASM2i : 処理方式 i の処理時に家畜排せつ物から NH3 や NOx として揮発する割合 [(kg-NH3-N

 $+ NO_X-N)/kg-N$

表 5-41 家畜排せつ物からの揮散割合(畜舎・処理時)

家畜種		処理方法	畜舎からの 揮散割合 (<i>Frac_{GASMI}</i>)	処理時揮散割合 (Frac _{GASM2})
	ふん	強制発酵以外	10.3%	13.7%
	ふん	強制発酵	10.3%	1.9%
	尿	浄化以外	10.3%	11.0%
乳用牛	水	浄化	10.3%	0%
	≿ / 艮	浄化・貯留・メタン発酵以外	4.5%	13.7%
	ふん尿	浄化	10.3%	0%
	混合	貯留・メタン発酵	10.3%	10.8%
	ふん	強制発酵以外	6.38%	13.7%
	ふん	強制発酵	6.38%	1.9%
	尿	浄化以外	6.38%	11%
肉用牛	<i>次</i>	浄化	6.38%	0%
	> > ₽	浄化・貯留・メタン発酵以外	6.38%	13.7%
	ふん尿	浄化	6.38%	0%
	混合	貯留・メタン発酵	6.38%	10.8%
	ふん	すべての処理	14.7%	19.7%
	II.	浄化以外	14.7%	27.0%
liz:	尿	浄化	14.7%	0%
豚	> > E	浄化・貯留・メタン発酵以外	15.8%	24.2%
	ふん尿	浄化	14.7%	0%
	混合	貯留・メタン発酵	14.7%	25.0%
採卵鶏・ブロイラー	ふん	すべての処理	8.4%	51.5%

(出典) 寶示戸他 (2003)

水牛、うさぎ、ミンクに関しては、ふん尿全量に 2006 年 IPCC ガイドラインで示されたデフォルトの揮散割合 (Vol.4、Page 10.65、Table 10.22、Other-Solid storage: 12%) を掛けることにより、 NH_3 や NO_X として揮発する量を算出した。

$N_{Volatilization-MMS} = (P \times N_{ex} \times MS_n) \times Frac_{GASM}$

NVolatilization-MMS : 家畜排せつ物処理過程で NH3 や NOx として揮発した窒素量 [kg (NH3-N+NOx-N) /

年]

P: 家畜の飼養頭数 [頭]

Nex : 1 頭あたりの排せつ物中窒素量 [kg-N/頭/年]

MSn: 排せつ物管理区分割合[%]

Frac_{GASM}: 家畜排せつ物処理時に家畜排せつ物から NH₃や NO_X として揮発する割合 [%]

表 5-42 家畜排せつ物処理過程で NH₃や NO_Xとして揮発した窒素量 [kt-(NH₃-N+NO_X-N)]

家畜種	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
乳用牛	26.6	26.1	24.6	23.4	20.5	19.7	19.5	19.6	19.2	19.3	19.3	19.7	19.8	20.3	19.9
肉用牛	22.3	23.0	23.0	22.5	22.5	20.8	20.2	20.2	20.3	20.4	20.2	20.5	20.8	21.0	21.5
豚	53.1	46.1	43.5	39.2	37.3	35.6	34.8	34.1	33.9	34.6	34.4	34.8	34.8	33.6	33.2
鶏 (採卵鶏、ブロイラー)	134.0	124.4	111.5	99.7	98.1	90.4	89.4	89.8	91.2	93.7	92.7	91.5	91.2	91.0	86.5
その他の家畜 (水牛、ミンク、うさぎ)	0.10	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
合計	236.1	219.5	202.7	184.8	178.4	166.5	163.8	163.7	164.5	168.0	166.6	166.5	166.6	166.0	161.2

c)不確実性と時系列の一貫性

■ 不確実性

後述の「農用地の土壌(大気沈降)」の節で算出した不確実性(-106%~+447%)を用いた。

■ 時系列の一貫性

排出係数はすべての年で一定値(デフォルト値)を使用している。活動量に関して、揮発割合はすべての年で一定値を使用し、家畜排せつ物量は 5.3.1.で算出した値を用いており、1990年度値から一貫した方法を使用して、算定している。

d) QA/QCと検証

家畜排せつ物からの NH_3 揮散割合の 2006 年 IPCC ガイドラインのデフォルト値($Frac_{GasMS}$)は、家畜排せつ物の処理時と散布時の NH_3 等の排出を含んでいるが、日本の設定値(資示戸他、2003)は農地での NH_3 発生(3.D.b.1.)とのダブルカウントを避けるため、散布時の排出を含んでいない。そのため、散布時の排出を含んだデフォルト値とはバウンダリーが異なっている可能性があり、それが我が国の数値とデフォルト値の差異になっている可能性が考えられる。さらに、乳用牛・肉用牛において排せつ物の処理量が多い「混合処理・堆肥化」区分は、副資材を混ぜて含水率を低く調整するため、処理時に NH_3 が発生しにくい。特にふんの含水率が低い肉用牛では、 NH_3 揮散割合がさらにデフォルト値よりも低くなる傾向にある。したがって、これらの日本の設定値は妥当性が高いと考えられる。

2006 年 IPCC ガイドラインに従った方法で、一般的なインベントリ QC 手続きを実施している。一般的なインベントリ QC には、排出量の算定に用いている活動量、排出係数等パラメータのチェック、及び出典文献の保存が含まれる。QA/QC 活動については、別添4に詳述している。

e)再計算

2021 年度の「乳用牛群能力検定成績」における検定牛の産次別頭数、「養豚農業実態調査」における出荷日齢平均、及び採卵鶏における日産卵量と飼料要求量の値が更新され、乳用牛、豚、採卵鶏それぞれの排せつ物中窒素量が見直されたため、2021 年度の排出量が再計算された。2015 年以降のブロイラーの処理羽数が修正されたため、2015 年度以降の排出量が再計算された。再計算の影響の程度については 10 章参照。

f) 今後の改善計画及び課題

「5.3.1. 牛、豚、家禽類(採卵鶏、ブロイラー)(3.B.1., 3.B.3., 3.B.4.-)」に同じ。

5.3.4.2. 窒素溶脱·流出(3.B.5.-)

「家畜排せつ物法」が制定されており、家畜排せつ物管理の際に施設から汚水が流出しない処置を施すこと(床をコンクリート張りにしたり、防水シートを敷くなど)が義務付けられていることから、家畜排せつ物処理時に地下水等に窒素が溶脱・流出する可能性について

は極めて低い。そのため、この排出源については「NO」として報告する。

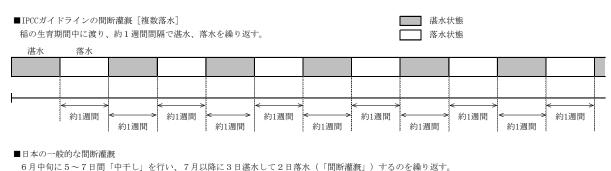
5.4. 稲作(3.C.)

CH₄ は嫌気性条件で微生物の働きによって生成されるため、水田は CH₄ 生成に好適な条件が整っていると言える。我が国ではすべての水田が灌漑されており、間断灌漑水田(中干しされる水田)と常時湛水田に分かれ、これらが算定の対象となる。我が国では主に、間断灌漑水田で稲作が営まれている。

2022 年度におけるこのカテゴリーからの温室効果ガス排出量は 13,068 kt- CO_2 換算であり、 我が国の温室効果ガス総排出量(LULUCF を除く)の 1.2% を占めている。また、1990 年度の排出量と比較すると 3.8%の減少となっている。

					111	11 1	'' /		v 1 — 1 –	(-	/						
ガス	区分	単位	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	3.C.1 常時湛水田	kt-CH ₁	68.5	74.9	69.1	67.6	68.3	67.6	67.8	67.0	67.6	67.0	66.3	65.4	65.5	65.3	63.8
CH ₄	3.C.1 間断灌漑水田	kt-CH ₄	416.6	448.8	418.0	421.1	419.1	415.5	416.3	410.6	417.6	416.0	413.7	411.1	412.1	411.7	402.9
	合計	kt-CH ₄	485.2	523.7	487.0	488.6	487.4	483.1	484.1	477.6	485.1	483.0	480.0	476.5	477.6	477.0	466.7
		kt-CO ₂ 換算	13,585	14,663	13,636	13,682	13,649	13,527	13,554	13,374	13,584	13,523	13,440	13,343	13,373	13,356	13,068

表 5-43 稲作に伴う CH4排出量 (3.C.)


5.4.1. 灌漑水田 (常時湛水田、間断灌漑水田 (中干し)) (3.C.1.)

a) 排出源カテゴリーの説明

本カテゴリーでは、灌漑水田(間断灌漑水田、常時湛水田)からの CH4排出の算定、報告を行う。

■ 我が国の水田における水管理について

我が国の一般的な水田農家の間断灌漑(中干し)水田は、2006 年 IPCC ガイドラインの間断灌漑水田(複数落水)とは性質が異なるため、CRT 上では「Intermittently flooded (Single aeration)」で報告する(概要は図 5-4 を参照)。また、メタン削減効果のある中干し延長を実施している水田についても、同項目に含めて報告する。

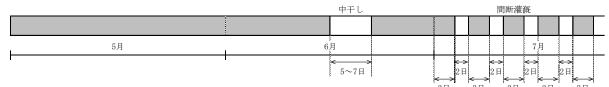


図 5-4 2006 年 IPCC ガイドラインの間断灌漑(複数落水)水田と 我が国の一般的な間断灌漑(中干し)水田

b) 方法論

■ 算定方法

2006 年 IPCC ガイドラインの算定方法をもとに、水田の有機物施用方法や水管理によるメタン発生量の変化を推定する数理モデルである DeNitrification-DeComposition-Rice モデル (DNDC-Rice モデル (麓他、2010)) を基に設定した算定方法(下記式)と、そのモデルから推定された CH_4 排出フラックスの回帰式から算出した排出係数を用いて算定をおこなった。なお、DNDC-Rice モデルは DNDC モデルをベースに我が国における水田からの CH_4 排出量を推定できるよう我が国で改良を加えたモデルである。図 5-5 は DNDC-Rice モデルの概念図である。

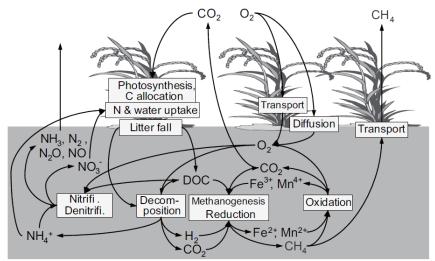


図 5-5 DNDC-Rice モデルの概念図

(出典) 麓他 (2010)

排出係数の算出には Tier3 法(DNDC-Rice モデル)を用い、排出量の算定には Tier2 法を変形した方法を用いている。中干し期間の延長を実施している水田を特定し、中干し延長実施によるメタン削減率(30%)を排出係数に使用した。なお、ここで用いられている算定方法については Katayanagi et al. (2016)、Katayanagi et al. (2017)及び関連文献に記述されているものをもとに算定方法検討会において検討し、構築している。

$E = \sum_{i,j,k,l,m} \{ (A_{i,m} \times f_{Di,j} \times f_{Wi,k} \times f_{Ol}) \times EF_{i,j,k,l,m} \} \times 16/12$

EF = aX + b

E: 水田からの CH4の排出量 [kg-CH4/年]

i : 地域(全国7地域)

i : 排水性(排水不良、日排除、4時間排除)

k : 水管理(間断灌漑、常時湛水)

1 : 施用有機物(稲わら、堆肥、無施用)

m: 中干し期間の延長(有、無)A: 地方別水稲作付面積[ha]

fD:排水性割合

fw : 水管理割合

fo: 施用有機物割合

EF: 地方別・排水性別・水管理別・施用有機物別・中干し延長有無別排出係数 [kg-CH4-C/ha/年]

X : 有機物施用量 [t-C/ha/年]

a: 傾き(有機物施用量と DNDC-Rice モデルによって算出された CH4排出量の回帰式より)

h : 切片(有機物施用量と DNDC-Rice モデルによって算出された CH4排出量の回帰式より)

■ 排出係数

排出係数の算出には DNDC-Rice モデルを用いている。

今回使用した排出係数は全国 986 地点の水田の情報を基に構築している。入力データには、土壌(土壌有機態炭素量、pH、粘土含量、乾燥密度など)、圃場の排水性(最大排水速度)、気象データ(気温、降水量)、圃場管理情報(移植日、収穫日、耕起日、耕起法、施肥日、施肥量、有機物施用日、有機物施用量、有機物 C/N 比、湛水日、落水日)を用いている。入力データの出典と概要は以下のとおりである。

- ・ 土壌理化学性:農林水産省「土壌環境基礎調査」の1、2巡目のデータのうち、DNDC-Riceモデルで入力する必要がある全てのデータが記載されている986地点のデータ。
- ・ 圃場の排水性:農林水産省「第 4 次土地利用基盤整備基本調査」(2006)の「湛水状況」の記載(4 時間排除、日排除、排水不良)に基づき、調査地点の最大排水速度を 15 mm day-1、7 に 5 mm day-1 と設定した。
- ・ 気象データ:調査地点の最寄りの AMeDAS 地点の日最低気温、日最高気温、降水量を 用いた。
- ・ 圃場管理情報:日本全体を気象庁の一次細分区域に従って 136 に区分し、各地の JA 等 が公表している栽培歴に基づき作成したデータセット (Hayano et al.、2013) を用いた。
- ・ 有機物施用量: Yagasaki and Shirato (2014) の方法により、県別に 1981~2019 年の稲わらすき込み量及び堆肥の施用量を推定した。すなわち、稲わらすき込み量は、水稲の平年収量から推定した稲わら発生量とそのうち土壌にすき込まれた割合をかけあわせたのち、水稲作付面積でその量を除して算出した。堆肥施用量は、農業経営統計調査のうち米生産費の原単位量 [10a 当たり] に記載の値を使用した。

DNDC-Rice モデルと上記の入力値を用いて、986 地点の 1981~2010 年(30 年間)のメタン排出フラックスを、水管理 2 シナリオ(間断灌漑及び常時湛水)、有機物施用 4 シナリオ(わらと堆肥 1 、わらのみ、堆肥のみ、施用なし)の計 8 シナリオで推定した。その結果から統計の有意差を考慮し、メタン排出フラックス推定値を 7 地域、排水性(3 段階)及び水管理と有機物施用シナリオで区分し、年別の平均値を求めた。さらに、有機物施用量(区分毎の各年の平均値)から CH_4 排出フラックスを予測する回帰式(1 次関数)を導出した。なお、回帰式の切片(b)は、有機物施用なしで推定した平均メタン排出フラックスに固定した。

地域別の有機物施用総量は Yagasaki and Shirato (2014) の方法で求めた県別の施用量からまとめた。さらに、インベントリの算定には、有機物管理方法別の施用量(有機物施用量) (X) が必要となるため、その総量と有機物管理方法の割合(表 5-49) から求めた。有機物管理方法の割合は「土壌環境基礎調査」、「土壌由来温室効果ガス・土壌炭素調査事業」、農林水産省「農地土壌温室効果ガス排出量算定基礎調査事業」と「農地土壌炭素貯留等基礎調査事業」の調査結果を基にした。地域別の各投入区分における有機物施用量及びそれらから算出された各区分の排出係数はそれぞれ以下の表 5-44、表 5-45 に示したとおりである。

また、中干し期間の延長を実施している水田の排出係数については、Itoh et al. (2011) における中干し延長実施によるメタン削減率 (30%) を使用し、中干し延長のない水田の排出

.

¹ わらと堆肥を同時に投入したシナリオはモデル上で構築されているが、わらと堆肥を同時に投入している有機物管理割合 (fo) が得られないことから、インベントリ排出量の算定には使用していない。

係数に(1-0.3)を乗じることで設定した。

表 5-44 地域別の各施用区分における有機物投入量(X) [t-C/ha/年]

	項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	北海道	1.73	1.74	1.92	2.03	2.12	1.96	1.98	2.06	2.09	2.09	2.06	1.99	2.02	2.03	2.02
	東北	1.49	1.73	2.02	2.11	2.07	1.95	1.96	2.05	2.11	2.12	2.13	2.09	2.13	2.14	2.11
稲	北陸	2.69	2.62	2.74	2.82	2.75	2.45	2.43	2.49	2.53	2.54	2.55	2.49	2.52	2.53	2.50
わ	関東	1.32	1.49	1.77	1.96	1.96	1.80	1.79	1.85	1.88	1.89	1.90	1.87	1.89	1.89	1.87
6	東海・近畿	2.01	1.98	2.22	2.33	2.23	2.01	2.04	2.13	2.23	2.24	2.22	2.17	2.19	2.19	2.17
	中国・四国	1.74	1.83	2.10	2.13	2.15	1.93	1.91	1.98	2.01	2.02	1.94	1.84	1.86	1.86	1.84
	九州・沖縄	1.17	1.14	1.26	1.36	1.40	1.24	1.25	1.30	1.32	1.32	1.32	1.29	1.31	1.31	1.29
	北海道	1.69	1.86	2.10	2.05	2.18	1.87	1.98	1.88	2.00	1.93	1.85	2.07	1.91	2.04	1.97
	東北	1.69	1.86	2.10	2.05	2.18	1.87	1.98	1.88	2.00	1.93	1.85	2.07	1.91	2.04	1.97
堆	北陸	1.69	1.86	2.10	2.05	2.18	1.87	1.98	1.88	2.00	1.93	1.85	2.07	1.91	2.04	1.97
肥	関東	1.69	1.86	2.10	2.05	2.18	1.87	1.98	1.88	2.00	1.93	1.85	2.07	1.91	2.04	1.97
1/1/2	東海・近畿	1.69	1.86	2.10	2.05	2.18	1.87	1.98	1.88	2.00	1.93	1.85	2.07	1.91	2.04	1.97
	中国・四国	1.69	1.86	2.10	2.05	2.18	1.87	1.98	1.88	2.00	1.93	1.85	2.07	1.91	2.04	1.97
	九州・沖縄	1.69	1.86	2.10	2.05	2.18	1.87	1.98	1.88	2.00	1.93	1.85	2.07	1.91	2.04	1.97

表 5-45 各区分の稲作からの CH_4 排出係数(中干し延長なし) [kg- CH_4 -C/ha]

		項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
		北海道	585	588	636	665	690	647	652	676	682	682	675	654	663	665	662
		東北	573	636	714	739	727	696	699	722	739	742	745	734	744	746	739
	稲	北陸	741	725	753	772	754	684	679	694	702	705	708	693	701	703	696
	わ	関東	181	202	237	260	259	240	238	246	250	251	252	248	251	251	249
	ò	東海・近畿	436	429	477	499	478	435	441	459	479	482	477	467	472	472	466
		中国・四国	422	439	491	499	501	458	455	468	474	476	460	440	445	445	440
排		九州・沖縄	158	155	169	181	186	167	168	174	176	177	177	173	175	175	173
水		北海道	574	621	686	670	708	621	654	624	657	638	618	678	634	669	649
不		東北	627	673	736	721	758	673	705	676	708	689	670	729	686	720	700
良	堆	北陸	507	548	603	590	622	548	576	550	579	562	545	596	559	589	571
	肥	関東	226	248	277	270	287	248	263	249	264	255	246	273	254	269	260
常	/10	東海・近畿	372	406	454	443	470	407	430	409	433	419	404	448	416	441	427
時		中国・四国	411	445	492	481	508	446	469	448	471	457	443	486	455	480	465
湛水		九州・沖縄	221	242	271	264	281	243	257	244	258	250	241	268	248	264	255
小		北海道	114	114	114	114	114	114	114	114	114	114	114	114	114	114	114
	, .	東北	175	175	175	175	175	175	175	175	175	175	175	175	175	175	175
	無	北陸	113	113	113	113	113	113	113	113	113	113	113	113	113	113	113
	施田	関東	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18
	用	東海・近畿	35	35	35	35	35	35	35	35	35	35	35	35	35	35	35
		中国・四国	77	77	77	77	77	77	77	77	77	77	77	77	77	77	77
Ш		九州・沖縄	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
		北海道	585	588	636	665	690	647	652	676	682	682	675	654	663	665	662
	15	東北	547	610	687	711	700	669	672	694	711	715	717	706	716	718	711
	稲ち	北陸	552	539	562	578	563	505	501	513	520	522	525	513	519	520	515
	わら	関東 東海・近畿	164 352	182 346	213 386	234 405	233 388	216 352	215 357	221 371	226 388	226 391	227 387	224 378	227 382	227 382	224 378
		中国・四国	377	393	441	448	450	411	407	419	426	427	412	394	398	398	394
ы.		九州・沖縄	139	136	148	159	162	146	147	152	154	154	155	151	153	153	152
排		北海道	574	621	686	670	708	621	654	624	657	638	618	678	634	669	649
水不		東北	600	646	709	694	730	646	678	649	681	662	643	701	659	693	673
良		北陸	359	392	438	427	454	393	416	395	418	404	390	433	402	426	412
•	堆	関東	204	223	250	243	259	223	237	225	238	230	222	246	229	243	235
間	肥	東海・近畿	300	328	367	358	381	328	348	330	350	338	326	362	336	357	345
断		中国・四国	367	399	442	432	457	399	421	401	423	410	397	437	408	431	417
灌		九州・沖縄	192	210	235	229	243	210	223	211	224	216	209	232	215	228	221
漑		北海道	114	114	114	114	114	114	114	114	114	114	114	114	114	114	114
		東北	153	153	153	153	153	153	153	153	153	153	153	153	153	153	153
	無	北陸	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33
	施	関東	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17
	用	東海・近畿	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
		中国・四国	57	57	57	57	57	57	57	57	57	57	57	57	57	57	57
		九州・沖縄	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19

表 5-45 各区分の稲作からの CH4排出係数 (中干し延長なし) [kg-CH4-C/ha] (続き)

		衣 3-43 谷区2			- 15 V							なし			4 - C/n		祝さり
		項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
		北海道	342	344	375	394	410	382	385	400	405	405	400	387	392	394	392
	25.55	東北	423	471	530	549	540	516	519	536	549	552	553	545	553	554	549
	稲か	北陸	556	543	566	581	566	510	506	517	525	526	529	517	523	525	519
	わら	関東 東海・近畿	122 198	135 194	157 217	172 228	171 218	159 197	158 200	163 209	166 218	166 220	167 218	165 213	166 215	167 215	165 212
	9	中国・四国	166	174	196	199	201	182	180	186	189	190	183	174	176	176	174
		九州・沖縄	131	129	141	151	155	139	140	145	147	147	147	144	146	146	144
日		北海道	335	365	407	397	421	366	386	367	389	376	364	402	374	396	383
排		東北	463	499	547	536	564	499	523	501	526	511	497	541	509	535	519
除	.,,	北陸	366	399	444	433	459	399	422	401	424	411	397	438	408	432	418
*	堆肥	関東	151	164	183	179	189	164	174	165	175	169	163	181	168	178	172
常時	ЛC	東海・近畿	167	184	206	201	214	184	195	185	196	189	183	203	188	200	193
湛		中国・四国	162	176	197	192	204	176	187	177	188	182	176	194	181	191	185
水		九州・沖縄	185	202	227	221	235	203	215	204	216	209	202	224	208	221	213
-		北海道	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39
		東北	119	119	119	119	119	119	119	119	119	119	119	119	119	119	119
	無	北陸	46	46	46	46	46	46	46	46	46	46	46	46	46	46	46
	施田	関東	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17
	用	東海・近畿	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
		中国・四国	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17
H	-	九州・沖縄北海道	12 236	12 237	12 259	12 272	12 284	12 264	12 266	12 277	12 280	12 280	12 277	12 267	12 271	12 272	12 271
		東北	236	333	378	392	385	367	369	382	392	394	395	389	395	395	392
	稲	北陸	403	393	410	421	410	369	366	375	380	381	383	375	379	380	376
	わ	関東	90	100	116	127	126	117	117	120	122	123	123	121	123	123	121
	6	東海・近畿	89	87	98	103	98	89	90	94	98	99	98	96	97	97	95
		中国・四国	88	92	105	107	107	97	96	99	101	101	98	93	94	94	93
ь		九州・沖縄	75	73	80	86	88	79	80	82	84	84	84	82	83	83	82
日排		北海道	231	252	281	275	292	252	267	254	269	260	251	278	258	274	265
除		東北	328	354	390	382	403	354	372	356	374	363	353	386	362	381	370
	堆	北陸	264	288	321	313	332	289	305	290	307	297	287	317	295	313	302
間	肥	関東 東海・近畿	111 75	121 83	135 93	131 90	139 96	121 83	128 88	122 83	129 88	125 85	120 82	133 92	124 85	131	127 87
断		中国・四国	86	94	105	103	109	94	100	95	100	97	94	104	96	102	99
灌		九州・沖縄	105	115	129	126	134	116	123	116	123	119	115	128	118	126	121
漑.		北海道	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
		東北	71	71	71	71	71	71	71	71	71	71	71	71	71	71	71
	無	北陸	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
	施	関東	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
	用	東海・近畿	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
		中国・四国	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
		九州・沖縄	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
		北海道	308	310	338	355	369	344	347	361	365	365	361	349	354	355	353
	255	東北	385	431	488	506	497	475	477	493	506	508	510	502	509	511	506
	稲わ	北陸 関東	529 163	516 180	538 209	553 228	539 228	485 211	481 210	492 216	499 220	501 221	503 222	492 219	498 221	499 221	494 219
	5	東海・近畿	212	208	232	243	233	211	210	224	233	235	233	219	230	230	219
	9	中国・四国	225	235	266	270	271	247	245	252	256	257	248	236	239	239	236
4		九州・沖縄	157	154	169	181	185	166	167	173	176	176	176	172	174	174	173
時		北海道	302	329	367	358	380	329	348	331	350	339	328	362	337	357	345
間		東北	424	458	504	493	520	458	481	460	484	470	456	498	467	492	477
排除	堆	北陸	348	379	422	412	437	380	401	382	403	390	378	417	388	411	398
外	把肥	関東	201	218	243	237	251	218	231	219	232	225	217	240	223	236	229
常		東海・近畿	180	197	221	215	229	198	209	199	211	203	196	218	202	215	207
時		中国・四国	220	239	266	260	275	239	253	240	254	246	238	263	245	259	251
湛		九州・沖縄	33	243	272	265	282	243 33	258 33	244 33	259 33	250 33	242 33	269 33	249 33	264 33	255
水		東北	97	97	33 97	33 97	97	97	97	97	97	97	97	97	97	97	33 97
	無	北陸	43	43	43	43	43	43	43	43	43	43	43	43	43	43	43
	施	関東	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27
	用	東海・近畿	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
		中国・四国	27	27	27	27	27	27	27	27	27	27	27	27	27	27	27
Ш		九州・沖縄	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
		北海道	171	172	188	198	206	192	193	201	203	203	201	194	197	198	197
	-	東北	268	301	342	355	349	333	334	346	355	357	358	352	358	359	355
	稲か	北陸	356	347	362	372	362	326	323	331	335	336	338	330	334	335	332
	わら	関東 東海・近畿	111	123	144	157	157	145	145	149 125	151	152	153	150	152	152	151
		東海・近畿 中国・四国	119 156	117 163	130 184	137 187	131 188	119 170	120 169	174	131 177	132 178	131 171	128 163	129 165	129 165	128 163
4		九州・沖縄	93	91	100	107	109	98	99	102	104	104	104	103	103	103	103
時		北海道	167	183	205	200	212	183	194	184	195	189	182	202	188	199	192
間		東北	296	320	354	346	365	321	337	322	339	329	319	350	327	345	335
排除	堆	北陸	232	253	282	276	293	253	268	255	269	261	252	279	259	275	266
除 •	堆肥	関東	138	150	167	163	173	150	159	151	160	154	149	165	154	163	157
	/)	東海・近畿	101	111	124	121	129	111	117	111	118	114	110	122	113	120	116
		中国・四国	152	165	184	180	191	165	175	166	176	170	164	182	169	179	173
間断				144	161	157	167	144	153	145	154	148	143	159	147	157	151
間		九州・沖縄	131			1.4	14	14	14	14	14	14	14	14	14	14	14
間断		九州・沖縄 北海道	14	14	14	14								_			
間断灌	.favr	九州・沖縄 北海道 東北	14 59	59	59	59	59	59	59	59	59	59	59	59	59	59	59
間断灌漑	無無	九州・沖縄 北海道 東北 北陸	14 59 22	59 22	59 22	59 22	59 22	59 22	22	22	22	22	22	22	22	22	22
間断灌漑	施	九州・沖縄 北海道 東北 北陸 関東	14 59 22 16	59 22 16	59 22 16	59 22 16	59 22 16	59 22 16	22 16	22 16	22 16						
間断灌漑		九州・沖縄 北海道 東北 北関東 東海・近畿	14 59 22 16 6	59 22 16 6	59 22 16 6	59 22 16 6	59 22 16 6	59 22 16 6	22 16 6	22 16 6	22 16 6						
間断灌漑	施	九州・沖縄 北海道 東北 北陸 関東	14 59 22 16	59 22 16	59 22 16	59 22 16	59 22 16	59 22 16	22 16	22 16	22 16						

■ 活動量

地域別水稲作付面積 (A) は農林水産省「耕地及び作付面積統計」に示された値を用いた。 排水性割合 (f_D)、水管理割合 (f_W)、有機物管理割合 (f_O) はそれぞれ以下の表 5-46~表 5-49に示した農林水産省等の調査データをそれぞれ用いている。

中干し延長実施水田面積は、環境保全型農業直接支払交付金(農林水産省)の実施状況における 14 日以上の中干しである「長期中干し」の実施面積とした。なお、中干し延長の実施に対する同交付金は 2015 年度から開始されており、中干し延長も 2015 年度から開始されたこととする。

	項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Г	北海道	146	163	135	119	115	113	112	111	108	107	106	106	105	103	102
中	東北	525	539	456	444	429	419	419	414	413	412	412	412	408	407	403
干	北陸	258	260	221	218	213	215	216	214	213	212	213	213	212	211	210
延	関東	386	390	336	331	322	324	323	322	320	318	316	314	312	310	308
長	東海・近畿	261	264	217	208	199	198	196	182	179	177	178	177	176	174	172
な	中国•四国	236	232	187	182	178	175	173	170	167	165	162	159	157	155	152
し	九州・沖縄	246	251	207	206	202	203	201	199	196	195	192	192	190	188	186
L	合計	2,058	2,098	1,758	1,708	1,657	1,647	1,639	1,609	1,597	1,586	1,579	1,572	1,560	1,549	1,531
	北海道	_	_	_	_	_	_	_	0	0	0	0	0	0	0	0
中	東北	_	_	-	_	_	_	-	2	1	1	1	1	3	3	3
干,	北陸	_	_	_	_	_	_	_	0	0	0	0	0	0	0	0
延	関東	_	_	_	_	_	_	_	0	0	0	0	0	0	1	1
長	東海・近畿	_	_	_	_	_	_	_	11	12	13	11	12	11	11	11
あ	中国・四国	_	_	_	_	_	_	_	0	0	0	0	0	0	0	0
り	九州・沖縄						_		0	0	0	0	0	0	0	0
	合計	_	_	_	_	_	_	_	13	14	14	12	13	15	15	15

表 5-46 地域別水稲作付面積(A)[kha]

(出典)「耕地及び作付面積統計」及び「環境保全型農業直接支払交付金」

		<i>y</i>	
地域	4時間排除割合	日排除程度割合	排水不良割合
北海道	51%	42%	7%
東北	63%	31%	6%
北陸	69%	26%	4%
関東	59%	32%	9%
東海・近畿	69%	23%	8%
中国・四国	65%	27%	8%
九州・沖縄	74%	21%	5%

表 5-47 排水性割合 (f_D)

(出典)「第4次土地利用基盤整備基本調査」

表 5-48 水管理割合 (fw)

	, .o , , . u . _ _ 1 1 1	y w/
地域	常時湛水田割合	間断灌漑水田割合
北海道	48 %	52 %
東北	5 %	95 %
北陸	4 %	96 %
関東	14 %	86 %
東海・近畿	11 %	89 %
中国・四国	8 %	92 %
九州・沖縄	7 %	93 %

(出典)「土壌由来温室効果ガス・土壌炭素調査事業」

表 5-49 我が国の有機物管理方法の割合 (fo)

項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
わら施用	63%	70%	71%	72%	74%	84%	85%	83%	82%	82%	82%	84%	83%	83%	84%
各種堆肥施用	17%	10%	9%	8%	9%	7%	6%	5%	6%	6%	6%	5%	6%	6%	5%
無施用	20%	20%	20%	20%	17%	9%	9%	12%	12%	12%	12%	11%	11%	11%	11%

(出典) 1990~2007年值:「土壤環境基礎調査」

2008~2012年値:「土壌由来温室効果ガス・土壌炭素調査事業」

⁽注) 算定上では東海と近畿は1地域としてまとめられ計算されている

2013~2014年値:「農地土壌温室効果ガス排出量算定基礎調査事業」

2015年以降:「農地土壤炭素貯留等基礎調査事業」

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性は、DNDC-Rice モデルから算出した 6%を用いた。活動量の不確実性は、「耕地及び作付面積統計」に示された水田面積の標準誤差(1%)を採用した。その結果、排出量の不確実性は 6%と評価された。

■ 時系列の一貫性

排出量は時系列的に一貫した算定方法、出典を用いて算定されている。

d) QA/QCと検証

2006 年 IPCC ガイドラインに従った方法で、一般的なインベントリ QC 手続きを実施している。一般的なインベントリ QC には、排出量の算定に用いている活動量、排出係数等パラメータのチェック、及び出典文献の保存が含まれる。QA/QC 活動については、別添4に詳述している。

DNDC-Rice モデルから算出されたメタン排出量の推定値と圃場におけるメタン排出量の実測値の比較は、Minamikawa et al. (2014)、麓他 (2010)、Katayanagi et al. (2016)の論文などで実施され、報告されている。下図 5-6 は Katayanagi et al. (2016)に記載されている年間メタン排出量の実測値と DNDC-Rice モデルによる推定値の比較である。論文によると、 CH_4 排出量の推定値は地点間の条件の違いによるばらつきを反映し、実測値と高い相関をもっていた(r=0.861)と報告している。また、DNDC-Rice モデルから算出された排出係数を我が国のインベントリに適用することの妥当性確認については、Katayanagi et.al (2016)の中で行うとともに、算定方法検討会の農業分科会においても検討を行っている。

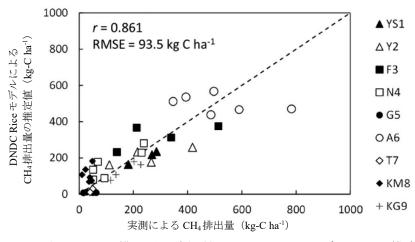


図 5-6 年間メタン排出量の実測値と DNDC-Rice モデルによる推定値の比較

(出典) Katayanagi et al. (2016) Fig.3 より引用

e)再計算

2019 年度以降の DNDC-rice モデルにおける有機物投入量を改定したため、2019 年度以降 において排出量が再計算された。再計算の影響の程度については 10 章参照。

f) 今後の改善計画及び課題

将来的に DNDC-Rice モデルの研究が進み、改良・アップデートされた際には、改良版 DNDC-Rice モデルの適用を検討する。

5.4.2. 天水田、深水田、その他の水田 (3.C.2., 3.C.3., 3.C.4.)

天水田、深水田については、International Rice Research Institute (IRRI) の World Rice STATISTICS 1993-94 (1995) に示されているとおり、我が国には存在しないため、「NO」として報告した。

その他の水田については、World Rice STATISTICS 1993-94 (1995) に示されているとおり、陸稲の作付が考えられるが、陸稲は湛水しない好気的な畑地で栽培される。CH4 生成菌は絶対嫌気性菌であり、土壌が嫌気性に保たれなければ CH4 は排出されない。従って、「NA」として報告した。

5.5. 農用地の土壌 (3.D.)

農用地からの N₂O の直接排出 (無機質窒素肥料の施肥、有機質窒素肥料の施肥、放牧家畜の排せつ物、作物残渣のすき込み、土壌有機物の損失/獲得による無機化/固定化、有機質土壌の耕起)及び間接排出 (大気沈降、窒素溶脱)を対象に算定、報告を行う。

2022 年度におけるこのカテゴリーからの温室効果ガス排出量は 5,203 kt-CO₂ 換算であり、 我が国の温室効果ガス総排出量(LULUCF を除く)の 0.5%を占めている。また、1990 年度 の排出量と比較すると 21.9%の減少となっている。この 1990 年度からの排出量減少の主な要 因は無機質肥料(化学肥料)施用量、家畜ふん尿由来の有機質肥料施用量が減少したことに よるものである。その主な理由には我が国の農地の栽培面積が減少していること(表 5-56) と、一部の地域においては、地下水の窒素汚染を緩和するために環境保全農業が推奨された ことによる。

ガス		区分	単位	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
		1.無機質肥料		6.2	5.3	5.0	4.8	4.2	4.2	4.1	3.9	3.9	3.9	3.9	3.8	3.8	3.8	3.8
		2.有機質肥料		5.5	5.2	5.0	4.4	4.8	4.7	4.8	5.3	5.3	5.5	5.4	5.1	5.2	5.1	5.1
	3.D.1.	3.放牧地のふん尿		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	直接排出	4.作物残渣	kt-N ₂ O	1.4	1.4	1.5	1.4	1.2	1.2	1.2	1.2	1.1	1.1	1.1	1.1	1.1	1.1	1.1
N ₂ O		5.無機化	KI-N ₂ O	1.5	1.5	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.3	1.3	1.3	1.3	1.3	1.3
N ₂ O		6.有機質土壌の耕起		0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
	3.D.2.	1.大気沈降		3.6	3.4	3.2	3.0	2.9	2.9	2.9	3.0	3.0	3.0	3.0	2.9	3.0	3.0	3.0
	間接排出	2.窒素溶脱・流出		6.4	5.9	5.7	5.4	5.1	5.0	5.0	5.0	4.9	5.0	5.0	4.9	4.9	4.9	4.9
	合計		kt-N ₂ O	25.1	23.2	22.3	20.9	20.1	19.9	19.8	20.2	20.0	20.3	20.1	19.7	19.7	19.7	19.6
	. E. El		kt-CO ₂ 換算	6,658	6,138	5,903	5,527	5,317	5,277	5,241	5,343	5,310	5,373	5,339	5,214	5,224	5,212	5,203

表 5-50 農用地の土壌からの N₂O 排出量 (3.D.)

5.5.1. 直接排出(3.D.1.)

農用地の土壌からは、無機質肥料の施肥、有機質肥料の施肥、放牧家畜の排せつ物、作物 残渣のすき込みにより土壌中にアンモニウムイオンが発生し、好気条件下でそのアンモニウ ムイオンが硝酸態窒素に酸化される過程で N_2O が発生する。また、硝酸態窒素が脱窒する過 程で N_2O が発生する。

また、鉱質土壌において有機物が分解することや有機質土壌を耕起することにより、窒素分の硝化・脱窒により N_2O が発生する。

なお、牧草地(飼肥料作物の作付面積内に含まれる、表 5-56 参照)への無機質肥料、有機

質肥料の施肥による N₂O 排出量は当該カテゴリーで算定する。

5.5.1.1. 無機質窒素肥料 (3.D.1.a.)

a) 排出源カテゴリーの説明

本カテゴリーでは、農用地の土壌への無機質窒素肥料(化学肥料)の施肥に伴う N_2O 排出の算定を行う。

b) 方法論

■ 算定方法

 N_2O 排出量については、2006 年 IPCC ガイドラインのデシジョンツリー(Vol.4、p.11.9、Fig.11.2)に従い、我が国独自の排出係数が存在するため、Tier2 法で算定を行った。

また、硝化抑制剤入り化学肥料を投入し、土壌からの N_2O 排出量を抑制する排出削減対策についても算定に組み込んだ。

$$E = \sum (F_{SNi,j} \times EF_{1i,j}) \times 44/28$$

E: 農用地の土壌への無機質肥料 (化学肥料) の施肥に伴う N₂O 排出量 [kg-N₂O]

 $F_{SNi,j}$: 作物種 i の農用地土壌に投入された化学肥料 j の窒素量 [kg-N]

 $EF_{1i,j}$: 作物種 i の化学肥料 j を投入した場合の N_2O 排出係数 $[kg-N_2O-N/kg-N]$

i : 作物種

j : 肥料の種類(硝化抑制剤入り又はなし)

■ 排出係数

排出係数については、我が国の各地で測定されたデータを解析し、化学肥料の投入窒素量と N_2O 排出量から、我が国独自の排出係数を設定した。また、硝化抑制剤入り化学肥料を投入した場合の排出係数は、我が国独自の排出係数に N_2O の削減率をかけて設定した。

また、作物の種類による排出係数の違いを比較したところ、他の作物に比べ茶が有意に高く、水稲が有意に低いことが判明した。しかし、他の作物については有意な差はなかったため、農用地の土壌への施肥に伴う N_2O の排出係数は、水稲、茶、その他の作物の3種類に区分して設定した。なお、我が国には火山灰由来の土壌が広く分布しており、排水性のよいこの土壌からの N_2O 排出量が少ないことが、我が国の排出係数が 2006 年 IPCC ガイドラインに示される排出係数のデフォルト値に比べ低い理由であると考えられる。なお、水稲の排出係数は、2006 年 IPCC ガイドラインにデフォルト値の1つとして採用されており、国際的に妥当性が認められている数値である。

硝化抑制剤入り化学肥料を投入した際の N_2O の削減率は Akiyama et al. (2010) におけるジシアンジアミド入り肥料による N_2O 削減率 (26~36%) の下限値である 26%と設定した。なお、我が国において硝化抑制剤として添加されているのは多くがジシアンジアミドであるが、一部の化学肥料では別の物質が添加されていることから、削減量の過大評価を避けるためジシアンジアミドの削減率の下限値を用いた。また、水稲については湛水され硝化が起きにくいことから、硝化抑制剤入り化学肥料が施用される可能性がほとんどないため、排出係数は設定しない。

74.5	21 /12/13-		70 TO 1 7 TYZO DI EN DI 1990
作物種	į.	非出係数(硝化抑制剤なし)	排出係数(硝化抑制剤入り)
		$[\%: kg-N_2O-N/kg-N]$	$[\%: kg-N_2O-N/kg-N]$
水稲		0.31%	_
茶		2.9%	2.1% [=2.9%×(1-0.26)]
その他の作物		0.62%	0.46% [=0.62%×(1-0.26)]

表 5-51 農用地の土壌への化学肥料の施肥に伴う N₂O 排出係数

(出典) Akiyama et al. (2006 a) Akiyama et al. (2006 b) Akiyama et al. (2010)

■ 活動量

化学肥料施用総量は農林統計協会「ポケット肥料要覧」の「窒素質肥料需要量」を用いた。この値から森林への施用量を除いたものを農用地の土壌の化学肥料施用量として用いた(表 5-52)。さらに、作物種別の化学肥料施用量は、各作物種の作付面積(表 5-56)に、各作物種の単位面積当たり化学肥料由来窒素施用量の我が国の調査結果(鶴田、2001)を乗じて作物別の窒素施用量に相当する値を求め、作物別の窒素施肥相当量に応じて化学肥料施用量を各作物別に配分した。

$$F_{SNi} \,=\, (\,F_T - F_{FRST}\,) \,\times\, \frac{(RA_i \,\times\, RF_i \,\times\, 10)}{\sum\, (RA_i \,\times\, RF_i \,\times\, 10)}$$

 F_{SNi} :作物種iの農用地に投入された化学肥料施用量[t-N]

 F_T : 化学肥料施用総量 [t-N]

 FFRST
 : 森林への化学肥料施用量 [t-N]

 RAi
 : 作物種 i の作付面積 [ha]

 RF_i :作物種 i の単位面積当たり化学肥料施用量 [kg-N/10a]

作物別の肥料施用量については、2000年に行われた営農調査(鶴田、2001)により各作物別の施肥量が化学肥料、有機質肥料別に把握されている。専門家判断によると、水稲、茶を除く作物においては経年的な施肥量の変化が余りないと考えられることから、これらの作物については、鶴田(2001)による単位面積当たり化学肥料施用量のデータ(表 5-54)を全ての年に対して一律に適用した。

茶の施肥量については、自治体の策定する施肥基準等の影響を受け経年的に変化している。 野中(2005)がまとめた 1993、1998、2002 年における茶畑に対する窒素施用量(化学肥料と有機質肥料由来窒素量の合計値)と鶴田(2001)における茶の化学肥料と有機質肥料の比を用いて、1993 年、1998 年、2002 年それぞれの化学肥料施用量と有機質肥料施用量を推計した。また、推計した3か年の施肥量を用いて1993年から2002年までは数値を内挿、1993年以前は1993年値を据え置き、2002年以降は2002年値を据え置きし、時系列データを作成した(表5-55参照)。

水稲の単位面積当たり化学肥料施用量については、「ポケット肥料要覧」により把握できる各年の施肥量データを用い、陸稲については、水稲の値で代用した。

硝化抑制剤入り化学肥料については、1996年より出荷量(製品ベース)(「化学肥料施用量(農地)」の内数) に関する農林水産省のデータを使用し、それらに含まれる窒素含有率は主要メーカー製品の平均値である 13%を用いた。この調査は 1996 年に始まり、それ以前のデータがないものの、1996年以前にも微量の硝化抑制剤の使用があったことが推測される。また、硝化抑制剤入り化学肥料は、水稲及び飼肥料作物に対して施用される可能性がほとんどないため、水稲及び飼肥料作物は施用対象から除いた。

表 5-52 化学肥料施用量 [t-N]

項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
化学肥料施用総量	611,955	527,517	487,406	471,190	409,590	409,918	394,629	372,339	374,879	374,879	374,879	374,879	374,879	374,879	374,879
化学肥料施用量 (森林)	288	248	229	222	193	193	186	175	176	176	176	176	176	176	176
化学肥料施用量 (農地)	611,667	527,269	487,177	470,968	409,397	409,725	394,443	372,164	374,703	374,703	374,703	374,703	374,703	374,703	374,703

(注) 硝化抑制剤入り化学肥料を含む

(出典) 化学肥料施用総量:「ポケット肥料要覧」

化学肥料施用量(森林): 林野庁調べをもとに算出

表 5-53 硝化抑制剤入り化学肥料の出荷量(窒素量ベース)[t-N]

項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
硝化抑制剤入り化学肥料 出荷量 (窒素ベース)	NE	NE	4,030	4,290	4,940	7,800	4,550	5,070	5,330	5,070	5,590	6,045	5,785	6,084	6,084

(注) 製品中の窒素含有率を13%として算出

(出典) 農林水産省調査

表 5-54 作物種別単位面積当たり化学肥料施用量(水稲、茶以外)

作物種	施用量 [kg-N/10a]
野菜	21.27
果樹	14.70
ばれいしょ	12.70
豆類	3.10
飼肥料作物	10.00
かんしょ	6.20
麦	10.00
雑穀(そばを含む)	4.12
桑	16.20
工芸作物	22.90
たばこ	15.40

(出典) 鶴田 (2001)

表 5-55 単位面積当たり化学肥料施用量(水稲、茶) [kg-N/10a]

					. – •			_ , .			-				
項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
化学肥料施用量 (水稲)	9.65	8.71	7.34	6.62	5.95	6.10	5.97	5.85	5.85	5.85	5.85	5.85	5.85	5.85	5.85
化学肥料施用量 (茶)	57.23	54.88	48.06	44.76	44.76	44.76	44.76	44.76	44.76	44.76	44.76	44.76	44.76	44.76	44.76

(出典) 水稲:「ポケット肥料要覧」 茶:野中(2005)、鶴田(2001)

表 5-56 作物種別作付面積 [kha]

						1-1-7-7-7			_						
作物種	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
野菜	620.1	564.4	524.9	476.3	465.4	453.4	452.1	448.9	444.1	441.7	437.3	432.5	424.9	419.8	412.5
水稲 (子実用)	2,055.0	2,106.0	1,763.0	1,702.0	1,625.0	1,597.0	1,573.0	1,505.0	1,478.0	1,465.0	1,470.0	1,469.0	1,462.0	1,403.0	1,355.0
果樹	346.3	314.9	286.2	265.4	246.9	237.0	233.8	230.2	226.7	222.7	218.4	214.9	211.0	207.7	204.2
茶	58.5	53.7	50.4	48.7	46.8	45.4	44.8	44.0	43.1	42.4	41.5	40.6	39.1	38.0	36.9
ばれいしょ	115.8	104.4	94.6	86.9	82.5	79.7	78.3	77.4	77.2	77.2	76.5	74.4	71.9	70.9	71.4
豆類	256.6	155.5	191.8	193.9	189.0	178.5	181.0	187.6	187.7	187.9	185.4	183.6	183.3	184.0	188.3
飼肥料作物	1,096.0	1,013.0	1,026.0	1,030.0	1,012.0	1,012.0	1,019.0	1,072.0	1,082.0	1,084.9	1,068.6	1,059.1	1,052.6	1,102.5	1,130.0
うち、牧草地	646.7	660.7	644.7	630.6	616.7	611.1	607.7	606.5	603.4	601.1	598.8	596.9	595.2	593.5	591.4
かんしょ	60.6	49.4	43.4	40.8	39.7	38.6	38.0	36.6	36.0	35.6	35.7	34.3	33.1	32.4	32.3
麦	366.4	210.2	236.6	268.3	265.7	269.5	272.7	274.4	275.9	273.7	272.9	273.0	276.2	283.0	290.6
雑穀 (そばを含む)	29.6	23.4	38.4	45.9	49.7	62.9	61.4	59.7	62.2	64.5	65.5	67.1	68.3	67.2	67.3
桑	59.5	26.3	5.9	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
工芸作物	142.9	124.5	116.3	110.3	104.8	98.5	97.8	98.8	99.3	100.3	98.2	97.3	97.9	99.9	99.0
たばこ	30.0	26.4	24.0	19.1	15.0	8.9	8.6	8.3	8.0	7.6	7.1	6.5	6.1	5.7	3.6
陸稲	18.9	11.6	7.1	4.5	2.9	1.7	1.4	1.2	0.9	0.8	0.8	0.7	0.6	0.6	0.5
合計	5,256.2	4,783.7	4,408.5	4,295.1	4,147.4	4,085.0	4,063.9	4,046.1	4,023.2	4,006.3	3,979.9	3,954.9	3,928.9	3,916.6	3,893.6

(出典) ばれいしょ:「野菜生産出荷統計」、たばこ:日本たばこ産業株式会社資料

桑:農林水産省生産局調べ、それ以外の作物:「耕地及び作付面積統計」

(ただし、「工芸作物」については茶、なたね、てんさい、さとうきびの合計から推計した面積からたばこの面積を差し引いた値である。2016年度値までの「野菜」については、ばれいしょの面積を差し引いた値である。また、2017年度の野菜・果樹・豆類・飼肥料作物・雑穀については、作物分類合計の作付面積調査が廃止されたため、それらの作物分類に対象として含まれる作物の作付面積の合計から過去5年間のカバー率を算出して推計した。)

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性は、排出係数の出典である Akiyama et al. (2006 b) から求めた不確実性 (113%) を用いた。活動量の不確実性は、「耕地及び作付面積統計」に示された水田面積の標準誤差 (1%) で代替した。その結果、排出量の不確実性は 113%と評価された。

■ 時系列の一貫性

排出量は時系列的に一貫した算定方法、データソースを用いて算定されている。

d) QA/QCと検証

2006 年 IPCC ガイドラインに従った方法で、一般的なインベントリ QC 手続きを実施している。一般的なインベントリ QC には、排出量の算定に用いている活動量、排出係数等パラメータのチェック、及び出典文献の保存が含まれる。QA/QC 活動については、別添4に詳述している。

なお、我が国の排出係数と IPCC ガイドラインのデフォルト値が大きく異なる理由については上記「排出係数」に記載している。

e)再計算

2020 年度、2021 年度の耕地及び作付面積統計、作物統計が修正されたため、2020 年度、2021 年度の排出量が再計算された。再計算の影響の程度については10章参照。

f) 今後の改善計画及び課題

特になし。

5.5.1.2. 有機質窒素肥料 (3.D.1.b.)

a) 排出源カテゴリーの説明

本カテゴリーでは、農用地土壌への有機質肥料(家畜排せつ物由来及びその他有機質肥料)の施用に伴う N_2O 排出の算定を行う。

b) 方法論

■ 算定方法

2006年 IPCC ガイドラインのデシジョンツリー(Vol.4、p.11.9、Fig.11.2)に従い、Tier2 法で N_2O 排出量の算定を行った。

$$E = \sum_{i} (F_{ONi} \times EF_{1i}) \times 44/28$$

E : 農用地の土壌への有機質肥料の施用に伴う N_2O 排出量 $[kg-N_2O]$ F_{ONi} : 作物種 i の農用地に投入された有機質肥料に含まれる窒素量 [kg-N] EF_{Ii} : 作物種 i の有機質肥料を投入した場合の N_2O 排出係数 $[kg-N_2O-N/kg-N]$

i:作物種

■ 排出係数

化学肥料と有機質肥料の投入窒素量と N₂O 排出量の関係を調査したところ、水稲と茶については、排出係数に有意差がなかったため、無機質窒素肥料 (3.D.1.a.) の排出係数 (硝化抑制剤無し)を使用した。

他の作物については、有機質肥料の種類ごとに Akiyama et al. (2023) に示された化学肥料を併用しない場合 (without synthetic N fertilizers) の 2 つの土壌タイプ (Andosol、Non-Andosol) 別の排出係数の加重平均値を用いた。

家畜排せつ物の排出係数には、牛は堆肥とスラリーの加重平均値を用い、豚、鶏はそれぞれ堆肥の排出係数を用いた。その他家畜は、2019年改良 IPCC ガイドラインのデフォルト値を用いた。

下水汚泥肥料、その他有機質肥料(し尿、堆肥副資材、その他)の排出係数には、家畜ふん尿以外の有機質肥料(Non-manure organic fertilizers)の排出係数を用いた。一般的にその他有機質肥料は CN 比が低く、牛糞などの CN 比が比較的高い家畜排せつ物よりも N_2O 排出係数が高い(鶏糞と同等かそれ以上の EF)ものが多い。なお、2019 年改良 IPCC ガイドラインのデフォルト値では家畜排せつ物のデータが多く考慮されており、適切ではないと考えられる。

7,000	- 1 - 4/1 - 1/1·2	·,·
有機質肥料	EF [%]	参考文献
牛の堆肥・スラリーの加重平均	0.39	Akiyama et al. (2023)
豚の堆肥	0.70	
鶏の堆肥	0.83	
その他の家畜	0.60	2019 年改良 IPCC ガイドライン
下水汚泥肥料	1.16	Akiyama et al. (2023)
その他有機質肥料(し尿、堆肥副資材、その他)	1.10	

表 5-57 有機質肥料の排出係数

■ 活動量

活動量(有機質肥料に含まれる総窒素量)については、2006 年 IPCC ガイドラインに示された式(Vol.4、p11.12、Equation 11.3)をもとに、以下の窒素量を対象とした。

 $F_{ON} = F_{AM} + F_{SEW} + F_{FU} + F_{COMPsub} + F_{OOA}$

 F_{ON} : 農用地土壌に施用される有機質肥料に含まれる窒素量 [kg-N] F_{AM} : 農用地土壌に施用される家畜排せつ物に含まれる窒素量 [kg-N] F_{SEW} : 農用地土壌に施用される下水汚泥に含まれる窒素量 [kg-N] F_{FU} : 農用地土壌に施用されるし尿に含まれる窒素量 [kg-N]

FCOMPsub : 農用地土壌に施用される堆肥副資材(稲わら、もみ殻、麦わら)に含まれる窒素量

[kg-N]

Fooa: 農用地土壌に施用されるその他有機質肥料(魚かす、大豆粕、なたね油粕など)に

含まれる窒素量 [kg-N]

○ 農用地土壌に施用される家畜排せつ物に含まれる窒素量 (F_{AM})

農用地土壌に施用された家畜排せつ物に含まれる窒素量(F_{AM})は以下の式で示したように、家畜排せつ物中の総窒素量($F_{Total-AW}$)から、放牧家畜の排せつ物中に含まれる窒素量(F_{PRP})、公共下水道に放流される窒素量(F_{PSW})、大気中に N_2O として揮発する窒素量(放牧家畜を除く)(F_{N2O})、大気中に N_3+NOx として揮発する窒素量(放牧家畜を除く)(F_{NH_3+NOx})、産業廃棄物として処分したり浄化処理した後で河川に放流するなどの理由で、農地に還元しない窒素量($F_{disposal}$)を除いた量を使用した。

$F_{AM} = F_{Total-AW} - F_{PRP} - F_{PSW} - F_{N2O} - F_{NH3+NOX} - F_{disposal}$

 F_{AM} : 農用地に施用される家畜排せつ物中の窒素量 [kg-N]

F_{Total-AW}: 家畜から排せつされる窒素総量 [kg-N]

FPRP: 放牧家畜の排せつ物中に含まれる窒素量 [kg-N]

FPSW : 公共下水道に放流される窒素量 [kg-N]

 F_{N2O} : 家畜排せつ物から N_{2O} として大気中に揮発した窒素量(放牧家畜を除く)[kg-N]

 F_{NH_3+NOx} : 家畜排せつ物から NH_3 や NO_X として揮発した窒素量(放牧家畜を除く)[kg- NH_3 -

 $N+NO_X-N$

Fdisposal :産業廃棄物としての処分や浄化処理後に放流するなどの理由で農地に還元しない窒素量

[kg-N]

放牧家畜の排せつ物中に含まれる窒素量(F_{PRP})、公共下水道に放流される窒素量(F_{PSW})、大気中に N_2O として揮発する窒素量(放牧家畜を除く)(F_{N_2O}) は「3.B.家畜排せつ物の管理」で計算された結果を用いた。

農地に還元しない窒素量($F_{disposal}$)は、2019年の家畜排せつ物処理状況等調査結果に記された処理方法ごとの農業外利用割合を用いて計算した。

表 5-58 農用地土壌に施用された家畜排せつ物に含まれる窒素量(F_{AM})[\mathfrak{t}
--

項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
ふん尿中の窒素総量 (F _{Total-AW})	683,190	642,484	604,830	569,646	554,199	521,676	511,887	511,445	511,798	520,932	517,661	521,374	522,727	521,121	511,837
放牧家畜のふん尿と公共下水道に放 流される家畜ふん尿中の窒素総量 $(F_{PRP}+F_{PSW})$	12,987	12,836	12,024	11,653	11,365	10,592	10,025	10,119	9,907	9,890	9,851	9,693	9,425	9,251	9,230
大気中に N_2O として排出される窒素 量 (放牧・公共下水道分を除く) (F_{N2O})	5,977	5,663	5,636	6,302	6,845	6,354	6,172	6,098	6,033	6,090	6,011	6,040	6,066	6,015	5,953
大気中に NH_3 、 NOx として排出される窒素量(放牧・公共下水道分を除く) $(F_{NH3} + F_{NOx})$	236,054	219,528	202,664	184,778	178,364	166,498	163,830	163,718	164,529	168,030	166,569	166,521	166,620	165,971	161,177
農地に還元しない窒素量 $(F_{disposal})$	40,698	35,271	36,112	46,106	55,675	52,428	51,253	50,690	50,681	52,300	51,927	52,555	52,686	51,239	50,298
農用地に施用される家畜排せつ物に 含まれる窒素量 (F_{AM})	387,474	369,185	348,394	320,806	301,949	285,804	280,607	280,820	280,647	284,621	283,302	286,566	287,930	288,647	285,178

\bigcirc 農用地土壌に施用された下水汚泥に含まれる窒素量 (F_{SEW})

農用地土壌に施用される下水汚泥(F_{SEW})は、「ポケット肥料要覧」に記載された汚泥肥料の流通量に日本下水道協会のデータから設定した窒素含有率を掛けることによって算出した。

\bigcirc 農用地土壌に施用された人間のし尿に含まれる窒素量 (F_{FU})

し尿に含まれる窒素量(F_{FU})は、環境省環境再生・資源循環局「日本の廃棄物処理」等から算出した人間のし尿由来の窒素量を用いた。

○ 農用地土壌に施用される堆肥副資材(稲わら、もみ殻、麦わら)に含まれる窒素量 (F_{COMPsub})

堆肥副資材量については、稲わら、もみ殻、麦わらの用途別データ(都道府県において把握しているデータより算出)の「堆肥」、「畜舎敷料」の値を使用した。稲わら、もみ殻、麦わらの窒素含有率に関しては、後述の 5.5.1.4. 作物残渣で記述している値(表 5-66)を用いた。

○ 農用地土壌に施用されたその他有機質肥料に含まれる窒素量(F_{OOA})

農用地土壌に施用されるその他有機質肥料(魚かす、大豆粕、なたね油粕など)に含まれる窒素量 (F_{OOA}) は、「ポケット肥料要覧」に記載された有機質肥料の流通量に「ポケット肥料要覧」から設定した窒素含有率を掛けることによって算出した。

	200	, 13	1/2/24/3	_ , ,	(131)	./3 🗀 📗	, –	- 10 1	1122	/3 1 /	- 1/			,		
	項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
動	物質肥料	384.1	389.4	341.0	262.7	268.3	298.3	268.2	300.6	310.0	285.4	287.5	277.2	268.2	220.7	220.7
	魚かす	111.5	88.6	89.0	73.9	62.2	60.0	51.7	52.9	54.7	53.3	61.8	53.2	51.4	37.1	37.1
	蒸製骨粉	113.1	134.2	112.8	11.4	16.7	16.2	18.5	20.0	22.3	20.0	18.4	22.5	15.5	13.7	13.7
	その他の動物質肥料	159.5	166.6	139.2	177.5	189.4	222.1	198.1	227.7	233.0	212.1	207.4	201.6	201.3	170.0	170.0
植	物質肥料	635.9	725.7	982.4	494.8	1,064.3	1,203.7	1,455.4	1,852.7	1,810.9	2,012.0	1,981.9	1,569.6	1,712.6	1,753.2	1,753.2
	大豆油粕	3.5	4.7	28.9	1.1	209.5	167.7	265.0	477.0	494.5	491.3	484.8	494.6	488.4	492.4	492.4
	なたね油粕	451.0	437.2	620.7	241.0	221.4	288.4	399.5	474.8	486.8	449.3	420.1	414.6	403.4	440.1	440.1
	その他の植物質肥料	181.4	283.8	332.8	252.7	633.5	747.6	790.9	900.9	829.6	1,071.4	1,077.0	660.4	820.7	820.8	820.8
汚	泥	787.3	935.2	817.7	1,287.4	1,395.6	1,355.5	1,292.9	1,395.7	1,351.7	1,377.8	1,358.0	1,345.9	1,261.5	1,259.8	1,381.9

表 5-59 有機質肥料 (汚泥肥料、その他有機質肥料) の流通量 [kt]

(出典)「ポケット肥料要覧」

表 5-60 各有機質肥料の窒素含有率

有機質肥料	窒素含有割合
魚かす	8.0%
蒸製骨粉	4.1%
その他の動物質肥料	7.5%
大豆油粕	7.5%
なたね油粕	5.1%
その他の植物質肥料	4.6%
汚泥	2.7%

(出典) 汚泥以外:「ポケット肥料要覧」

汚泥:日本下水道協会データより設定

表 5-61 農用地土壌に施用される有機質肥料に含まれる窒素量 [t-N]

項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
家畜ふん尿由来 (F _{AM})	387,474	369,185	348,394	320,806	301,949	285,804	280,607	280,820	280,647	284,621	283,302	286,566	287,930	288,647	285,178
下水汚泥由来 (Fsew)	21,257	25,250	22,078	34,760	37,682	36,599	34,907	37,685	36,497	37,202	36,666	36,339	34,059	34,016	37,312
し尿由来 (F _{FU})	10,394	4,747	2,116	874	427	286	273	231	204	223	260	234	197	200	200
堆肥副資材由来(F _{COMPsub})	18,316	15,514	11,485	11,217	8,864	8,879	7,700	6,816	6,774	6,480	6,578	6,471	6,589	6,247	6,231
その他有機質肥料由来 (Fooa)	57,128	60,790	71,314	43,685	76,006	83,796	96,378	123,560	122,844	130,034	128,575	108,916	114,802	113,401	113,401
合計 (農用地土壌に施用される 有機質肥料に含まれる窒素量)	494,569	475,485	455,387	411,343	424,929	415,363	419,864	449,112	446,965	458,560	455,381	438,525	443,578	442,511	442,324

○ 作物種 i の農用地に投入された有機質肥料に含まれる窒素量の推計

作物種 i の農用地に投入された有機質肥料に含まれる窒素量(F_{ONi})は、上記の農用地土壌に施用された有機質肥料に含まれる総窒素量(F_{ON})に、作物種 i に施用されるべき窒素量が総窒素量(F_{ON})に占める割合(施肥量割合)を乗じて推計した。施肥量割合は、作物種 i の単位面積当たり有機質肥料由来窒素施用量と各作物 i の作付面積の積を、全作物種の積の総和で除して求めた。

$$F_{ONi} = F_{ON} \times \frac{\left(RA_i \times RF_i / 10 \right)}{\sum \left(RA_i \times RF_i / 10 \right)}$$

FoNi: 作物種iの農用地に投入された有機質肥料に含まれる窒素量「t-N]

Fon: 農用地土壌に施用された有機質肥料に含まれる総窒素量 [t-N]

RAi : 作物種 *i* の作付面積 [ha]

 RF_i : 作物種 i の単位面積当たり有機質肥料施用量 [kg-N/10a]

茶の単位面積当たりの有機質肥料に含まれる窒素施用量に関して、化学肥料同様に、野中(2005)がまとめた 1993、1998、2002 年における茶畑に対する窒素施用量(化学肥料、有機質肥料の合計値)と鶴田(2001)における茶の化学肥料と有機質肥料の比を用いて、有機質肥料別の施肥量を推計し、時系列データを作成した(表 5-62 参照)。

茶以外の作物種別の単位面積当たりの有機質肥料施用量は、化学肥料と同様に鶴田 (2001) のデータを使用した。陸稲については、水稲の値で代用した。なお、作物種別の作付面積は 化学肥料の算定に用いたものと同様である。

表 5-62 単位面積当たり有機質肥料施用量(茶) [kg-N/10a]

項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
有機質肥料施用量(茶)	20.77	19.92	17.44	16.24	16.24	16.24	16.24	16.24	16.24	16.24	16.24	16.24	16.24	16.24	16.24

(出典) 野中 (2005)、鶴田 (2001)

表 5-63 作物種別単位面積当たり有機質肥料として施用された窒素量(茶以外)

作物種	施用量 [kg-N/10a]
野菜	23.62
水稲	3.2
果樹	10.90
ばれいしょ	7.94
豆類	6.24
飼肥料作物	10.00
かんしょ	8.85
麦	5.70
雑穀(そばを含む)	1.81
桑	0.00
工芸作物	3.96
たばこ	11.41

(出典) 鶴田 (2001)

c) 不確実性と時系列の一貫性

■ 不確実性

水稲と茶の排出係数の不確実性は、Akiyama et al. (2006 b) から求めた不確実性(196%、122%)、牛糞堆肥、豚糞堆肥、鶏糞堆肥、下水汚泥肥料、その他の有機質肥料の不確実性はAkiyama (2023) に示されたパーセンタイルから求めた不確実性(-100%~315%、-97%~250%、-89%~317%、-65%~161%、-65%~161%)、その他の家畜の堆肥については、2019 年改良 IPCC ガイドラインのデフォルト値(83%)を用いた。活動量の不確実性に関して、家畜ふん尿由来は、「畜産統計」と「家畜排せつ物処理状況等調査」に示された標準誤差から求めた不確実性(30%)を採用し、それ以外は、「耕地及び作付面積統計」に示された水田面積の標準誤差率(1%)で代替した。その結果、排出量の不確実性は-38~96%と評価された。

■ 時系列の一貫性

排出量は時系列的に一貫した算定方法、データソースを用いて算定されている。

d) QA/QCと検証

2006 年 IPCC ガイドラインに従った方法で、一般的なインベントリ QC 手続きを実施している。一般的なインベントリ QC には、排出量の算定に用いている活動量、排出係数等パラメータのチェック、及び出典文献の保存が含まれる。QA/QC 活動については、別添4に詳述している。

e) 再計算

2021 年度の「乳用牛群能力検定成績」における検定牛の産次別頭数、「養豚農業実態調査」における出荷日齢平均、採卵鶏における日産卵量と飼料要求量、堆肥副資材量、及び有機質肥料流通量が更新・修正されたため、2021 年度の家畜排せつ物由来、堆肥副資材由来及びその他有機質肥料由来の排出量がそれぞれ再計算された。有機質窒素肥料の種類ごとの排出係

数の設定により、家畜排せつ物由来の全年度の排出量が再計算された。再計算の影響の程度 については10章参照。

f) 今後の改善計画及び課題

特になし。

5.5.1.3. 放牧家畜の排せつ物(3.D.1.c.)

a) 排出源カテゴリーの説明

本カテゴリーでは、放牧家畜の排せつ物からの N₂O 排出の算定を行う。

b) 方法論

放牧家畜の排せつ物からの CH_4 、 N_2O 排出量の算定方法は「5.3.1.節 家畜排せつ物の管理」の「牛、豚、家禽類(採卵鶏、ブロイラー)(3.B.1.,3.B.3.,3.B.4.)」及び「水牛、めん羊、山羊、馬、うさぎ、ミンク(3.B.2.,3.B.4.)」でまとめて記述している。

5.5.1.4. 作物残渣 (3.D.1.d.)

a) 排出源カテゴリーの説明

本カテゴリーでは、作物残渣の農用地の土壌へのすき込みに伴う N₂O排出の算定を行う。

b) 方法論

■ 算定方法

 N_2O 排出量は2006年IPCCガイドラインをもとにして算出している。排出係数には2019年改良IPCCガイドラインのデフォルト値を用いた。ただし、活動量の算定において、2006年IPCCガイドラインの方法よりも正確に排出量を算定できると考えられるいくつかの作物(稲、茶、野菜類、さとうきび、てんさい)については我が国独自の方法を用いた。

$E = EF \times A_i \times 44/28$

E: N2O 排出量 [kg-N2O]

 EF
 : 残渣のすき込みの N₂O 排出係数 [kg-N₂O-N/kg-N]

 Ai
 : 土壌にすき込まれる作物 (i) 残渣中の窒素量 [kg-N]

■ 排出係数

0.006 [kg-N₂O-N/kg-N] (2019 年改良 IPCC ガイドライン、Disaggregated (Wet climates))

■ 活動量

【稲】

稲の地上部の作物残渣のすき込み量は、都道府県において把握しているデータより算出した稲わら・もみ殻の残渣すき込み量のデータを使用した。地上部の作物残渣中の窒素量は、すき込み量に伊達昇(1988)から設定した窒素含有率(稲わら・もみ殻)を乗じ推計した。また、地下部の作物残渣中の窒素量は、米の生産量、生産量に対する乾物割合、生産量に対する地下部残渣割合、地下部残渣の窒素含有率から推計した。生産量に対する地下部残渣割合(Frac_{BGR-P})は小川他(1988)で示されている27%を用いた。生産量に対する乾物割合(DRY)は2019年改良IPCCガイドラインで示されているデフォルト値の0.89を用いた。

$A_{Rice} = Residue \times N_{AG} + Y \times DRY \times Frac_{BGR-Y} \times N_{BG}$

 ARice
 : 土壌にすき込まれる作物残渣中の窒素量 [t-N] (稲)

 Residue
 : 稲の地上部の作物残渣すき込み量 (稲わら・もみ殻) [t]

 NAG
 : 稲の地上部残渣の窒素含有率 (稲わら・もみ殻) [%: kg-N/kg]

Y : 米の生産量 [t]

 DRY
 : 生産量に対する乾物割合 [%]

 Fracebgr-y
 : 生産量に対する地下部残渣割合 [%]

NBG : 稲の地下部残渣の窒素含有率 [%: kg-N/kg]

【茶】

茶に関しては、毎年土中に還る残渣として「落葉」分と「秋整枝」分を対象とし、加えて数年に一度土中に還る残渣として、5年に1度程度実施される「中切り」(地面から約30~50cm上の部分を剪枝)分を対象とした。「中切り」に関しては、茶の総面積のうち1/5で毎年実施され、5年ですべての茶園の更新が行われると仮定した。「落葉」、「秋整枝」、「中切り」の単位栽培面積当たり残渣中窒素量に栽培面積を乗じ、残渣中の窒素量を推計した。栽培面積は農林水産省「耕地及び作付面積統計」のデータを用いた。

$A_{Tea} = (A_{AP} + A_{LF} + A_{MP}/5) \times 10 \times Area$

ATea : 土壌にすき込まれる作物残渣中の窒素量 [kg-N] (茶)

 AAP
 : 秋整枝による残渣量 [kg-N/10a]

 ALF
 : 落葉による残渣量 [kg-N/10a]

 AMP
 : 中切りによる残渣量 [kg-N/10a]

Area : 茶作付面積「ha]

表 5-64 剪枝された残渣部の窒素含有量

剪枝	の種類	窒素含有量 [kg-N/10a]	出典
秋整枝	毎年	7.7	保科他(1982)、木下・辻(2005)、橘他(1996)
中切り	5年に一度	19.4	太田他(1996)
落葉	毎年	11.5	保科他(1982)

【野菜類、さとうきび、てんさい】

各作物の農地にすき込まれた作物残渣に含まれる窒素量は、松本(2000)から設定した「作物生産量当たりの残渣中に含まれる窒素量」に、年間作物収穫量(「作物統計」又は「野菜出荷統計」)を乗じ、それに持ち出し割合、野焼きされる割合(燃焼係数を考慮後)を除いた割合を乗じて推計した。

なお、「作物生産量当たりの残渣中に含まれる窒素量」について、さとうきびには鹿児島 県農業総合開発センター提供値を、てんさい、だいこん、たまねぎには北海道農政部「北海 道施肥ガイド 2010」のデータを、はくさい、レタスには尾和 (1996) のデータを用いた。

「作物生産量に対する残渣中に含まれる窒素含有率」のデータがない作物については、種類が近い作物の数値を用いた。また、全ての年度について同一の数値を使用した。

$A_{Vegetable} = Y \times (1 - Frac_{Remove} - Frac_{burnt} \times CF) \times N_R$

AVegetable : 土壌にすき込まれる作物残渣中の窒素量 [t-N] (野菜類、さとうきび、てんさい)

Y : 生產量 [t]

 FracRemove
 : 作物 T の持ち出し割合 [%]

 Fracburnt
 : 作物 T の焼却割合 (面積) [%]

CF:燃焼係数

NR : 残渣の窒素含有率 (作物生産量当たりの残渣中に含まれる窒素量) [%:kg-N/kg]

表 5-65 主な作物の地上部残渣の持ち出し割合($Frac_{Remove}$)、残渣の焼却割合($Frac_{burnt}$)、燃焼係数 (CF)、地上部バイオマスに対する地下部残渣の割合($RS_{(T)}$)

				(-)
作物	地上部残渣の持ち出し	残渣の焼却割合	燃焼係数	地下部残渣割合
11-40	割合 (Frac _{Remove})	(Fracburnt)	(CF)	$(RS_{(T)})$
野菜類、てんさい	47%	7%	0.85 4)	
いも類、その他作物	47% 1)	7% 1)	0.85 4)	いも類:0.20
(そば、たばこ等)	4/70 3/	170 3	0.83	その他作物: 0.22 8)
さとうきび	47% 1)	7% ¹⁾	0.80 5)	
飼肥料作物 (緑肥用)	0% 2)	0% 2)	_	牧草 : 0.80
飼肥料作物 (飼料用)	100% 3)	0% 3)		ソルガム:0.24 ⁹⁾
				小麦: 0.24 ⁶⁾
麦類(小麦、大麦、	表 5-67 参照	表 5-67 参照	0.90 6)	大麦:0.22
ライ麦、オート麦)	☆ 3-07 参照	公 3-07 参照	0.90	ライ麦:0.25 ¹⁰⁾
				オート麦:0.25
豆類	13%	12%	0.85 7)	0.19 7)
とうもろこし	47% 1)	7% 1)	0.80	とうもろこし:0.22
278920	4/70	//0 /	0.80	

- (出典) 麦類以外の Frac_{Remove}、Frac_{burnt}: 「土壌由来温室効果ガス・土壌炭素調査事業」 CF、RS_(T): 2019 年改良 IPCC ガイドライン
- (注) 1) 野菜の値で代用、

- 2) すべて土壌にすき込まれると設定、
- 3) 地上部すべてが飼料用として持ち出されると設定、5) とうもろこし・さとうきびの値、6) 小麦の値、
 - 党定、 4)野菜の値
 - 6) 小麦の値、 7) 大豆の値、 8) 穀物類の値、
- 9) とうもろこしとオート麦の平均値、
- 10) オート麦の値で代用

表 5-66 主な作物の地上部残渣の窒素含有率 (N_{AG}) 、地下部残渣の窒素含有率 (N_{BG})

作物	地上部残渣の窒素含有率(NAG)	地下部残渣の窒素含有率 (NBG)	備考
稲 (地上部)	稲わら:0.541% ^{a)}		現物重比
110 (201.00)	もみ殻: 0.423% a)		がが重れ
稲 (地下部)	_	0.9% 1)	乾物重比
	だいこん:	(0.093% b) c)	
	はくさい	: 0.071% ^{c)}	
野菜類	キャベツ	: 0.183% ^{e)}	現物重比
	レタス:	0.164% ^{c)}	光 物里儿
	たまねぎ:	(0.019% b) c)	
てんさい	0.095	5% b) c)	
さとうきび	0.548	3% d)	
飼肥料作物	牧草 : 1.5% z)	牧草 : 1.2% z)	
民門加工本半十十十分	ソルガム:0.7% ^{z)}	ソルガム : 0.6% ^{z)}	
小麦	0.43% ^{e)}	$0.9\%^{2)}$	
大麦	二条大麦:2.14% ^{e)}	1.4% ^{z)}	
人友	六条大麦:0.31% ^{e)}	1.4%	おかまい
ライ麦	0.50% ^{z)}	1.1% ^{z)}	乾物重比
オート麦	0.70% ^{z)}	0.8% ^{z)}	
とうもろこし	1.64% ^{e)}	0.7% ^{z)}	
大豆	0.65% ^{e)}	0.8% ^{z)}	
小豆	0.84% ^{e)}	1.0% 3)	
ばれいしょ	2.42% ^{e)}	1.4% ^{z)}	

- (出典) a) 伊達 (1988)
 - b) 北海道農政部(2010)
 - c) 尾和 (1996)
 - d) 鹿児島県農業総合開発センター資料
 - e) 松本 (2000)
 - z) 2019 年改良 IPCC ガイドライン
- (注) 1) 2006年 IPCC ガイドラインの小麦の値で代用
 - 2) 2006 年 IPCC ガイドラインの小麦の値
 - 3) 2006年 IPCC ガイドラインの Dry bean の値で代用

【飼肥料作物、麦類、とうもろこし、豆類、いも類、その他の作物(そば、たばこ等)】

活動量は、2006 年 IPCC ガイドラインに従い、以下の式で示した方法で算出した。なお、パラメータに関しては表 5-65~表 5-66 に示した値を用いた。麦類の野焼きされる割合及び残渣の持ち出し割合については、農林水産省が調査した麦稈の処理方法別作付面積から表 5-67 に示すように設定した。なお、2006 年度以前は調査データがないため、2007 年度値を適用している。更新割合(Frac_{Renew})は、飼肥料作物(飼料用)のみ、各種調査結果を踏まえた専門家判断により 3%と設定しているが、それ以外の作物は 100%更新されるとして計算している。

$$A = \sum_{T} \left\{ \frac{\left(Area_{(T)} - Area_{burnt(T)} \times CF\right) \times Frac_{Renew(T)} \times \left(1 - Frac_{Remove(T)}\right) + \left(AG_{DM(T)} \times 1000 + Crop_{(T)}\right) \times R_{BG-BIO(T)} \times N_{BG(T)} \right\}$$

$Areaburnt_{(T)} = Area_{(T)} \times Frac_{burnt(T)}$

A: 土壌にすき込まれる作物残渣中の窒素量 [t-N]

Area(T): 作物 T の作付面積 [ha]Areaburnt(T): 作物 T の焼却面積 [ha]

CF: 燃燒係数

FracRenew(T) :作物 Tの更新割合 [%]

AGDM(T): 作物 Tの地上部残渣の乾物重量 [Mg/ha]NAG(T): 作物 Tの地上部残渣の窒素含有率 [%]

FracRemove(T) : 作物 Tの持ち出し割合 [%]

Crop(T): 作物 Tの生産物の乾物重量 [kg/ha]

RBG-BIO(T): 作物 Tの地上部バイオマスに対する地下部残渣の割合「%]

N_{BG(T)} : 作物 Tの地下部残渣の窒素含有率 [%]

Frac_{burnt(T)} :作物 Tの焼却割合「%]

表 5-67 麦類の残渣持ち出し割合、焼却割合 [%]

項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
残渣の持ち出し割合	32.1	32.1	32.1	32.1	37.8	41.0	41.0	37.9	40.2	38.5	39.5	37.2	37.2	36.3	39.8
焼却割合	13.5	13.5	13.5	13.5	10.6	8 8	8.3	8.0	77	77	6.0	7.5	7.6	8.5	8.0

⁽注) 都道府県において把握しているデータより算出

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性は、2006年 IPCC ガイドラインのデフォルト値(-70%~+200%)を採用した。活動量の不確実性は、「耕地及び作付面積統計」で示された水田面積の標準誤差 1%で代替した。その結果、排出量の不確実性は、-70%~+200%と評価された。

■ 時系列の一貫性

排出量は時系列的に一貫した算定方法、データソースを用いて算定されている。

d) QA/QCと検証

2006 年 IPCC ガイドラインに従った方法で、一般的なインベントリ QC 手続きを実施している。一般的なインベントリ QC には、排出量の算定に用いている活動量、排出係数等パラメータのチェック、及び出典文献の保存が含まれる。QA/QC 活動については、別添4に詳述している。

2012年度の算定方法検討会農業分科会において、稲の窒素含有率の精査が実施された。その結果、稲わらともみ殻の窒素含有率を分け、日本各地の数値の中で中間的な数値であり、

日本全体の値として使用するのが最も適切であると考えられる伊達(1988)の値を用いることとした。

e)再計算

燃焼係数に 2019 年改良 IPCC ガイドラインの値を適用したので、全年度の排出量が再計算された。再計算の影響の程度については 10 章参照。

f) 今後の改善計画及び課題

排出係数について我が国独自の排出係数が使用できるよう検討している。

5.5.1.5. 土壌有機物中の炭素の消失により無機化された窒素からの N₂O 排出 (3.D.1.e.)

a) 排出源カテゴリーの説明

本カテゴリーでは、鉱質土壌における土壌有機物中の有機物が酸化され炭素が失われる際に無機化された窒素由来の N_2O の算定を行う。

b) 方法論

■ 算定方法

2006年 IPCC ガイドライン Vol.4、11.2.1.に記載されている式 11.1 及び式 11.8 をもとに、単位面積当たりの N_2O 排出係数 $(EF_{N2O-Ni,j})$ $[kg-N_2O-N]$ を設定し、算定を行った。 N_2O 排出係数は我が国独自の地目別地域別の値、活動量は鉱質土壌の転用のない耕地及び牧草地面積を用いた。

$$N_2O - N_{direct_N_{Minerarl_{i,j}}} = EF_{N2O_N_{i,j}} \times A_{i,j}$$

 N_2O-N direct-NMinerali,j : 鉱質土壌の有機物の損失に伴う無機化された窒素からの N_2O 直接排出量 $[kg\ N_2O-M]$

N

EF: 有機物の損失に伴う無機化された窒素からの単位面積当たり N2O 排出量 [kg N2O-

N/ha]

A: 土壌有機物の損失に伴い土壌炭素を損失した鉱質土壌面積 [ha]

i: 土地利用・地目タイプ(水田、普通畑、樹園地、茶畑)

j : 地域(北海道、東北、関東、北陸、東海・近畿、中国・四国、九州・沖縄)

■ 排出係数

排出係数は Shirato et al. (2021) により設定されたものを使用した。設定の概要については 土地利用、土地利用変化及び林業分野(6.14.b)) を参照のこと。

表 5-68 水田及び普通畑、牧草地の地域別 N₂O の排出係数 [kg N₂O-N/ha]

地域	水田	普通畑	牧草地
北海道	0.244	0.210	0.206
東北	0.269	0.189	0.187
関東	0.291	0.166	0.178
北陸	0.265	0.167	0.199
東海・近畿	0.284	0.172	0.195
中国・四国	0.307	0.200	0.191
九州・沖縄	0.310	0.197	0.173

(出典) Shirato et al. (2021)

■ 活動量

鉱質土壌の面積は、「耕地及び作付面積統計」から把握した地域別の水田及び普通畑の作

付面積から我が国の水田及び普通畑、牧草地における有機質土壌(泥炭土及び黒泥土)面積を減じることにより設定する。また、鉱質土壌のうち転用された水田・普通畑・牧草地については、土地利用、土地利用変化及び林業分野で計上する。詳細については土地利用、土地利用変化及び林業分野の算定(後述 6.6.1 b) 2)の「活動量」の項目)を参照のこと。

項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
対象となる水田	2,630	2,572	2,499	2,417	2,359	2,322	2,313	2,301	2,284	2,268	2,252	2,238	2,222	2,205	2,189
北海道	190	189	187	180	178	178	178	178	177	177	177	176	176	176	176
東北	575	580	577	564	557	541	539	535	532	528	525	523	520	517	514
関東	485	476	465	445	429	422	420	418	415	412	409	406	403	399	396
北陸	317	305	296	288	282	280	279	278	277	276	275	274	273	272	271
東海近畿	366	351	337	325	313	309	307	305	303	301	297	295	293	291	288
中国四国	338	323	303	291	282	277	276	274	271	269	267	265	262	259	256
九州沖縄	360	348	334	324	317	315	314	313	309	305	302	299	296	292	289
対象となる畑地	1,163	1,115	1,100	1,105	1,124	1,122	1,119	1,114	1,112	1,105	1,100	1,094	1,088	1,084	1,080
北海道	389	367	371	380	393	396	397	398	399	400	401	401	402	402	402
東北	135	132	129	129	131	129	129	128	127	126	125	124	124	123	123
関東	291	286	287	284	282	278	276	273	271	268	265	262	260	258	256
北陸	23	21	21	22	24	25	25	25	25	25	25	25	25	24	24
東海近畿	55	53	53	56	58	60	60	60	60	60	60	59	59	59	59
中国四国	59	56	50	50	53	53	53	52	52	52	51	50	49	48	47
九州沖縄	211	201	189	184	182	180	179	178	177	175	173	172	170	169	167
対象となる牧草地	3.94	9.02	11.78	13.37	14.47	22.54	21.53	21.07	14.34	14.32	14.29	14.28	14.26	14.23	14.20
北海道	3.83	8.60	11.11	12.52	12.81	14.68	17.31	18.22	13.30	13.28	13.26	13.26	13.25	13.23	13.22
東北	0.10	0.40	0.54	0.64	1.16	5.29	2.85	1.91	0.70	0.69	0.68	0.67	0.66	0.66	0.65
関東	0.003	0.009	0.03	0.04	0.10	0.54	0.28	0.19	0.07	0.08	0.09	0.09	0.09	0.09	0.09
北陸	0.004	0.006	0.010	0.015	0.03	0.14	0.07	0.05	0.02	0.02	0.02	0.02	0.02	0.02	0.02
東海近畿	0.0003	0.00004	0.004	0.010	0.03	0.15	0.08	0.05	0.02	0.02	0.02	0.02	0.02	0.02	0.02
中国四国	0	0	0.006	0.007	0.03	0.18	0.10	0.07	0.03	0.03	0.03	0.03	0.03	0.03	0.03
九州沖縄	0	0.01	0.08	0.15	0.31	1.57	0.83	0.56	0.21	0.21	0.20	0.20	0.19	0.18	0.18

表 5-69 農業分野で対象となる鉱質土壌面積 [kha]

c)不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性は、Shirato et al. (2021) に示されている標準偏差から求めた不確実性 (水田 2.4%、畑地 2.9%) を用いた。活動量の不確実性は、「耕地及び作付面積統計」で示された水田面積の標準誤差 1%を用いた。その結果、排出量の不確実性は、2.4%と評価された。

■ 時系列の一貫性

排出量は時系列的に一貫した算定方法、データソースを用いて算定されている。

d) QA/QC と検証

2006 年 IPCC ガイドラインに従った方法で、一般的なインベントリ QC 手続きを実施している。一般的なインベントリ QC には、排出量の算定に用いている活動量、排出係数等パラメータのチェック、及び出典文献の保存が含まれる。QA/QC 活動については、別添 4 に詳述している。

e) 再計算

LULUCF 分野における鉱質土壌耕地面積が変更されたことにより、全年にわたり排出量が再計算された。再計算の影響の程度については10章参照。

f) 今後の改善計画及び課題

特になし。

5.5.1.6. 有機質土壌の耕起(3.D.1.f.)

a) 排出源カテゴリーの説明

我が国では、北海道を中心に有機質土壌が存在している。本カテゴリーでは「黒泥土」と「泥炭土」の2種類の土壌区分を有機質土壌として取り扱っている。我が国では有機質土壌における農地造成は1970年代までにほぼ終了しており、一般的に客土が行われた土地が耕作に利用されている。

b)方法論

■ 算定方法

2006 年 IPCC ガイドラインに従い、耕起された有機質土壌の水田面積、普通畑面積及び草地面積にそれぞれの排出係数を乗じて有機質土壌の耕起による N₂O 排出量を算定する。

$E = EF \times A \times 44/28$

E: 有機質土壌の耕起に伴う N_2O 排出量 $[kg-N_2O]$

EF: 有機質土壌の耕起の際の N₂O 排出係数 [kg-N₂O-N/ha]

A: 耕起された有機質土壌の面積「ha]

■ 排出係数

有機質土壌の水田耕作においては、畑作に比べ N_2O 排出量が低くなることが知られている。 我が国では北海道の有機質土壌耕作地で行われた N_2O 排出の観測事例(永田・鮫島、2006) が存在するが、窒素施用分の排出も含めた観測結果であることから、施肥による排出分(上 記表 5-51 で示した排出係数 $(0.31\% [\%: kg-N_2O-N/kg-N])$ を用いて算出)を控除して我が 国独自の排出係数 $0.30 [kg-N_2O-N/ha]$ を設定した。

畑地と牧草地については、それぞれ13 [kg-N₂O-N/kg-N]、8.2 [kg-N₂O-N/kg-N] の2019年 改良 IPCC ガイドラインのデフォルト値を使用する。

■ 活動量

有機質土壌面積は、LULUCF 分野で計算された値を用いた。土壌群別土壌面積データが得られる 1992 年、2001 年、2010 年には、都道府県別地目別の土壌群別土壌面積データより有機質に分類される土壌の割合を算出し、それを都道府県別の各地目の面積に乗じることで算出した。それ以外の年度においては、1992 年、2001 年、2010 年の各時点の有機質土壌面積を起点に、拡張・かい廃面積の一定割合を有機質土壌とみなして加減することで各年の各地目の有機質土壌面積を計算した。

耕起された有機質土壌の面積は、農地の内の水田と普通畑における有機質土壌のすべてと 更新した牧草地の有機質土壌面積とし、樹園地、更新されていない牧草地、採草放牧地、原 野の面積を含んでいない。これは、樹園地、採草放牧地及び原野は、耕起されないためであ る。(6.7.1.転用のない草地)

牧草地の更新とは、再耕耘と新しい種まきを伴った、数年に一度行われる牧草地管理の作業である。毎年の牧草地の有機質土壌の耕起面積は牧草地の更新割合と当該域の牧草地の有機質土壌面積を乗じて算出した。牧草地の更新割合は、波多野(2017)の調査結果を使用した。波多野の結果は、2006年から 2015年に渡り、北海道と他の都府県の 2 つに地域を区分した更新割合からなる。2005年度以前と 2016年度以降については、2006年度~2010年度の平均値(北海道:3.0%、都府県:1.3%)を使用した。

表 5-70	牧草地の更	新割合
1X J=/V	1 X - 1 1 V / X	

年度	2005年 度以前	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016年 度以降
北海道	3.0%	2.5%	2.8%	3.0%	3.7%	2.9%	3.5%	3.6%	3.3%	3.9%	4.1%	3.0%
都府県	1.3%	1.0%	1.2%	1.0%	1.4%	2.1%	3.8%	15.7%	9.6%	5.2%	3.5%	1.3%

(出典) 波多野 (2017)

表 5-71 農業分野で対象となる有機質土壌面積「kha]

項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
対象となる水田	131.6	129.8	129.1	127.3	125.3	125.1	125.2	125.2	125.1	125.1	125.2	125.2	125.2	125.1	125.1
対象となる畑地	16.4	16.7	17.0	16.9	16.8	16.6	16.5	16.5	16.5	16.4	16.4	16.4	16.4	16.3	16.3
対象となる牧草地(北海道)	1.1	1.2	1.2	1.2	1.1	1.3	1.5	1.6	1.2	1.2	1.2	1.2	1.2	1.2	1.2
対象となる牧草地(都府県)	0.005	0.004	0.003	0.003	0.004	0.018	0.010	0.006	0.002	0.002	0.002	0.002	0.002	0.002	0.002

c)不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性は、2006 年 IPCC ガイドラインで示されている不確実性 (-75%~+200%) を用いた。活動量の不確実性は、「耕地及び作付面積統計」に示された水田面積の標準誤差 (1%) を採用した。その結果、排出量の不確実性は-75%~+200%と評価された。

■ 時系列の一貫性

排出量は時系列的に一貫した算定方法、データソースを用いて算定されている。

d) QA/QCと検証

2006 年 IPCC ガイドラインに従った方法で、一般的なインベントリ QC 手続きを実施している。一般的なインベントリ QC には、排出量の算定に用いている活動量、排出係数等パラメータのチェック、及び出典文献の保存が含まれる。QA/QC 活動については、別添4に詳述している。

我が国独自の有機質土壌の水田の排出係数 0.30 $[kg-N_2O-N/ha]$ は、北海道の泥炭土の水田で行われた N_2O 排出の実測値(永田・鮫島、2006)を基にして設定している。泥炭土の水田からの N_2O は 8 つの観測点で測定され、排出量実測値は $-0.28\sim1.27$ $[kg-N_2O-N/ha]$ であった。永田・鮫島(2006)が行った観測では施肥が行われているため、排出係数設定の際には、施肥に伴う排出量を控除している。水田への施肥に伴う N_2O の排出推測値は $0.11\sim0.29$ $[kg-N_2O-N/ha]$ であり、泥炭土の水田における N_2O の排出係数は 0.30 $[kg-N_2O-N/ha]$ となった。なお、畑地のデフォルトの排出係数 13 $[kg-N_2O-N/ha]$ (2019年改良 IPCC ガイドライン Vol. 11、p. 11.11) は、永田・鮫島(2006)が泥炭土の畑地(9 つの観測点)で N_2O 排出の観測を行った際の排出量実測値 $2.87\sim13.60$ $[kg-N_2O-N/ha]$ の範囲に有った。

e) 再計算

LULUCF 分野における有機質土壌耕地面積が変更されたことにより、1990 年度、1991 年度、2011 年度以降の排出量が更新された。畑地と牧草地の排出係数に 2019 年改良 IPCC ガイドラインの値を適用したので、全年度の排出量が再計算された。再計算の影響の程度については 10 章参照。

f) 今後の改善計画及び課題

特になし。

5.5.2. 間接排出 (3.D.2.)

農用地土壌へ施用された無機質肥料及び有機質肥料、放牧家畜のふん尿から揮発したアンモニアなどの窒素化合物が乱流拡散、分子拡散、静電力効果、化学反応、植物呼吸、降雨洗浄などの作用によって大気から土壌に沈着して微生物活動を受けてN₂Oが発生する。

農用地土壌へ施用された無機質肥料、有機質肥料などの窒素が硝酸として溶脱・流出したものから、微生物の作用により N_2O が発生する。

5.5.2.1. 大気沈降(3.D.2.a.)

a) 排出源カテゴリーの説明

本カテゴリーでは無機質肥料、有機質肥料、放牧家畜のふん尿から NH₃ や NOx として揮散した窒素化合物による大気沈降に伴い発生した N₂O の排出量の算定、報告を行う。

b) 方法論

■ 算定方法

2019 年改良 IPCC ガイドラインのデシジョンツリー (Vol.4、Page 11.23、Fig.11.3) に従い、 N_2O 排出量の算定を行った。

$E = EF \times A \times 44/28$

E : 大気沈降による N₂O 排出量 [kg N₂O]

EF : 大気沈降による N₂O 排出量に関する排出係数 [kg-N₂O-N/kg-NH₃-N+NO_X-N volatilized]
 A : 無機質肥料、有機質肥料、放牧家畜のふん尿から NH₃ や NO_X として揮発した窒素量 [kg-NH₃-N+NO_X-N]

■ 排出係数

0.014 [kg-N₂O-N/kg-NH₃-N+NO_X-N volatilized] (2019 年改良 IPCC ガイドライン Vol.4、Table11.3)

■ 活動量

活動量は以下の式で示したように、無機質窒素肥料 (肥料種別)、有機質肥料、放牧家畜のふん尿から NH_3 や NOx として揮発した窒素量で構成されている。なお、家畜排せつ物処理過程で NH_3 や NO_x として揮発した窒素量は 3.B.5.で報告している。

$A = \sum_{t} (F_{SNt} \times Frac_{GASFt}) + [(F_{ON} + F_{PRP}) \times Frac_{GASM3}]$

4 :無機質肥料、有機質肥料、放牧家畜のふん尿から NH3 や NOx として揮発した窒素量

 $\lceil kg-NH_3-N+NO_X-N \rceil$

 F_{SNt} : 農用地に施用された無機質窒素肥料 t 中の窒素量 [kg-N]

FracGASFt : 農用地に施用された無機質窒素肥料 tから NH3 や NOx として揮発する割合 [kg-NH3-

 $N + NO_X-N/kg-N$

 FON
 : 農用地に施用された有機質肥料中の窒素量 [kg-N]

 FPRP
 : 放牧家畜の排せつ物に含まれる窒素量 [kg-N]

FracGASM3 : 農用地に施用された有機質肥料中の窒素 (FoN) 及び放牧家畜の排せつ物中の窒素

(FPRP) から NH3 や NOx として揮発する割合 [kg-NH3-N + NOx-N/kg-N]

〇 農用地土壌に施用された無機質窒素肥料から NH_3 や NOx として揮発した窒素量 (F_{SN} × $Frac_{GASF}$)

農用地に施用された肥料種別の無機質窒素施用量 (F_{SNt}) は「ポケット肥料要覧」の「窒素質肥料需要量」を用いた。この値から森林への施用量を除いたものを農用地の土壌の化学

肥料施用量として用いた(表 5-72)。揮散割合(*Fracgaset*)は、以下の表 5-73 に示した 2019 年改良 IPCC ガイドラインのデフォルト値を用いた。2006 年 IPCC ガイドラインでは分けられていなかった肥料種別の窒素揮発割合が、2019 年改良 IPCC ガイドラインで提供されており、これらの割合を使用することで、国独自の肥料構成が算定に反映されると考えられる。

表 5-72 肥料種別無機質窒素肥料の農用地への施用量 [t-N]

								,,							
項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
尿素	115,620	107,917	106,712	125,170	117,267	136,391	129,924	136,622	132,424	132,424	132,424	132,424	132,424	132,424	132,424
アンモニア	465,738	393,888	363,180	286,181	245,364	239,123	228,585	208,505	224,393	224,393	224,393	224,393	224,393	224,393	224,393
硝安	8,010	7,090	3,947	2,207	989	1,105	889	713	3,160	3,160	3,160	3,160	3,160	3,160	3,160
その他	22,300	18,374	13,338	57,410	45,778	33,105	35,045	26,325	14,726	14,726	14,726	14,726	14,726	14,726	14,726

(出典)「ポケット肥料要覧」

表 5-73 無機質窒素肥料及び有機質窒素肥料中の窒素から NH_3 や NO_X として揮発する割合 $[kg-NH_3-N+NO_X-N/kg-N]$

	種類	値
	尿素	0.15
Eugo	アンモニアベース	0.08
Fracgase	硝安ベース	0.05
	その他(化学肥料一般の値を使用)	0.11
$Frac_{GASM}$	有機質窒素肥料	0.21

(出典) 2019 年改良 IPCC ガイドライン (Vol.4、Table 11.3)

〇 農用地土壌に施用された有機質肥料及び放牧家畜の排せつ物から NH_3 や NOx として 揮発した窒素量 $((F_{ON} + F_{PRP}) \times Frac_{GASM3})$

農用地土壌に施用された家畜排せつ物に含まれる窒素量 (F_{ON}) は有機質窒素肥料 (3.D.1.b.) で記述した値を用いた。放牧家畜の排せつ物に含まれる窒素量 (F_{PRP}) は、3.B で計算された値を用いた。 NH_3+NOx 揮発割合 $(F_{rac_{GASM}})$ は上記の表 5-73 に示した 2019 年改良 IPCC ガイドラインのデフォルト値 $(F_{rac_{GASM}}=0.21)$ を用いた。

表 5-74 無機質窒素肥料、有機質窒素肥料、放牧家畜のふん尿から NH_3 や NOx として揮発した 窒素量 $[t\ (NH_3-N+NO_X-N)]$

項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
無機質肥料由来 (F _{SN} ×Frac _{GASF})	57,455	50,074	46,726	48,095	42,304	43,285	41,675	40,105	39,593	39,593	39,593	39,593	39,593	39,593	39,593
有機質肥料由来 (F _{ON} ×Frac _{GASM3})	103,859	99,852	95,631	86,382	89,235	87,226	88,171	94,313	93,863	96,298	95,630	92,090	93,151	92,927	92,888
放牧家畜由来 (F _{PRP} ×Frac _{GASM4})	2,727	2,696	2,506	2,342	2,220	2,058	1,940	1,959	1,913	1,904	1,894	1,856	1,800	1,767	1,765
合計 (NH ₃ +NOxとして 揮散した窒素量) (A)	164,042	152,622	144,863	136,819	133,759	132,569	131,786	136,377	135,369	137,794	137,117	133,539	134,544	134,287	134,246

c)不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性は、2006 年 IPCC ガイドラインに示されている各パラメータの不確実性から合成して算出した値(-106%~+447%)を用いた。活動量の不確実性は、家畜の中で最も大きいブロイラーの値(9%)で代替した。その結果、排出量の不確実性は-106%~+447%と評価された。

■ 時系列の一貫性

排出量は時系列的に一貫した算定方法、データソースを用いて算定されている。

d) QA/QCと検証

2006 年 IPCC ガイドラインに従った方法で、一般的なインベントリ QC 手続きを実施して

いる。一般的なインベントリ QC には、排出量の算定に用いている活動量、排出係数等パラメータのチェック、及び出典文献の保存が含まれる。QA/QC活動については、別添4に詳述している。

e)再計算

2021 年度の「乳用牛群能力検定成績」における検定牛の産次別頭数、「養豚農業実態調査」における出荷日齢平均、採卵鶏における日産卵量と飼料要求量、堆肥副資材量が更新され、有機質肥料流通量が修正されたため、2021 年度の有機質肥料由来、及び放牧家畜由来の排出量が再計算された。再計算の影響の程度については10章参照。

f) 今後の改善計画及び課題

排出係数や投入した窒素の揮発率などについて、我が国独自の数値が設定出来るよう、検討している。

5.5.2.2. 窒素溶脱·流出(3.D.2.b.)

a) 排出源カテゴリーの説明

本カテゴリーでは、農用地の土壌からの窒素溶脱・流出に伴う N₂O排出の算定を行う。

b) 方法論

■ 算定方法

 N_2O 排出量は、2019年改良 IPCC ガイドラインのデシジョンツリー (Vol. 4、11.23、Fig11.3) に従い、デフォルトの排出係数に、溶脱・流出した窒素量を乗じて算定を行った。

$E = EF \times A \times 44/28$

E : 窒素溶脱・流出に伴う N₂O 排出量 [kg-N₂O]

EF: 室素の溶脱及び流出に伴う排出係数 [kg-N₂O-N/kg-N]

A: 化学肥料、有機質肥料などから溶脱・流出した窒素量 [kg-N]

■ 排出係数

0.011 [kg-N₂O-N/kg-N] (2019 年改良 IPCC ガイドラインデフォルト値、Table 11.3)

■ 活動量

活動量は以下の式で示したように、無機質窒素肥料、有機質窒素肥料、放牧家畜のふん尿、作物残さ、炭素消失による無機化からそれぞれ溶脱・流出する窒素量で構成されている。上述の $3.D.1.a.\sim3.D.1.e.$ でそれぞれ算定した窒素量に、2019年改良 IPCC ガイドラインに示されたデフォルトの溶脱・流出割合($Frac_{LEACH}=0.24$)を乗じて算定した。2019年改良 IPCC ガイドラインの値は、より幅広い気候帯や作物種、家畜種、投入肥料を網羅したデータセットを使って得られた、より正確な値であると考えている。

$A = (F_{SN} + F_{ON} + F_{PRP} + F_{CR} + F_{SOM}) \times Frac_{LEACH}$

A : 無機質窒素肥料、有機質肥料などから流出した窒素量 [kg-N] F_{SN} : 農用地に施用された無機質窒素肥料に含まれる窒素量 [kg-N]

Fon : 農用地に施用された有機質窒素肥料中の窒素量 [kg-N]

 FPRP
 : 放牧家畜の排せつ物に含まれる窒素量 [kg-N]

 FCR
 : 作物残さのすき込みによる窒素投入量 [kg-N]

FSOM: 鉱質土壌の炭素消失時に無機化された窒素量 [kg-N]

FracLEACH : それぞれの活動で溶脱・流出する窒素割合 [%]

表 5-75 無機質肥料、有機質肥料などから溶脱・流出した窒素量 [t (NH₃-N+NO_X-N)]

項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
無機質肥料由来 (F _{SN} ×Frac _{LEACH})	146,800	126,545	116,922	113,032	98,255	98,334	94,666	89,319	89,929	89,929	89,929	89,929	89,929	89,929	89,929
有機質肥料由来 (F _{ON} ×Frac _{LEACH})	118,697	114,116	109,293	98,722	101,983	99,687	100,767	107,787	107,272	110,054	109,292	105,246	106,459	106,203	106,158
放牧家畜由来 (F _{PRP} ×Frac _{LEACH})	3,117	3,081	2,864	2,676	2,537	2,351	2,217	2,239	2,187	2,175	2,165	2,121	2,057	2,019	2,018
作物残さのすきこみ由来 (F _{CR} ×Frac _{LEACH})	36,041	35,620	37,982	34,989	30,032	30,451	29,687	29,358	28,105	27,957	27,754	28,353	27,792	27,965	27,453
無機化された窒素由来 (F _{SOM} ×Frac _{LEACH})	66,321	64,680	62,933	61,187	60,045	59,287	59,059	58,764	58,322	57,917	57,514	57,163	56,777	56,354	55,967
合計 (溶脱流出した窒素量)(A)	370,976	344,042	329,994	310,606	292,853	290,111	286,396	287,467	285,814	288,033	286,653	282,812	283,012	282,470	281,523

c)不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性は、2006 年 IPCC ガイドラインに示されている各パラメータの不確実性から合成して算出した値(-115%~+287%)を用いた。活動量の不確実性は、上記「大気沈降」同様に9%を採用した。その結果、排出量の不確実性は-115%~+287%と評価された。

■ 時系列の一貫性

排出量は時系列的に一貫した算定方法、データソースを用いて算定されている。

d) QA/QCと検証

2006 年 IPCC ガイドラインに従った方法で、一般的なインベントリ QC 手続きを実施している。一般的なインベントリ QC には、排出量の算定に用いている活動量、排出係数等パラメータのチェック、及び出典文献の保存が含まれる。QA/QC 活動については、別添4に詳述している。

e) 再計算

2021 年度の「乳用牛群能力検定成績」における検定牛の産次別頭数、「養豚農業実態調査」における出荷日齢平均、採卵鶏における日産卵量と飼料要求量、堆肥副資材量、稲わらともみ殻のすきこみ量が更新され、有機質肥料流通量が修正されたため、2021 年度の有機質肥料由来、放牧家畜由来、及び、作物残さのすきこみ由来、それぞれの排出量が再計算された。作物残渣における燃焼係数に 2019 年改良 IPCC ガイドラインの値を適用したので、全年度の排出量が再計算された。再計算の影響の程度については 10 章参照。

f) 今後の改善計画及び課題

排出係数や窒素の溶脱・流出割合などについて、我が国独自の数値が設定出来るよう、検討している。

5.6. サバンナを計画的に焼くこと(3.E.)

当該排出区分では、2006 年 IPCC ガイドラインにおいて「亜熱帯における草地の管理のために・・・」と記されているが、我が国では該当する活動が存在しないため、「NO」として報告する。

5.7. 農作物残さの野焼き (3.F.)

a) 排出源カテゴリーの説明

野外における作物残渣の不完全な燃焼により、 CH_4 、 N_2O が大気中に放出される。本カテゴリーでは、これらの CH_4 、 N_2O 排出に関する算定、報告を行う。

2022 年度におけるこのカテゴリーからの温室効果ガス排出量は CH_4 が 30.3 kt- CO_2 換算、 N_2O が 8.3 kt- CO_2 換算であり、我が国の温室効果ガス総排出量(LULUCF を除く)のそれぞれ 0.003%、0.001%を占めている。また、1990 年度の排出量と比較するとそれぞれ 61.1%、 63.4%の減少となっている。

2000 2005 2010 2013 2014 2015 2021 2022 大麦 0.03 0.04 0.04 3.F.1. とうもろこし 0.06 0.04 0.04 0.04 0.03 0.03 0.03 0.04 0.05 0.04 0.03 0.50 0.44 1.71 1.21 0.66 0.60 0.42 その他穀物類 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.11 0.05 0.10 0.10 0.09 0.11 0.11 0.11 0.10 0.10 0.11 0.11 その他豆類 0.03 0.02 0.02 0.02 0.02 0.02 kt-CH₄ ばれいしょ 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 CH₄ 3.F.3. 根菜類 その他根菜類 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 (野菜類除く 3 F 4 さとうきび 0.03 0.02 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 3.F.5 その他作物 0.01 0.01 kt-CH₄ 1.09 1.02 1.10 1.14 1.08 34 3 30.4 28.5 30 3 0.0120 0.0066 0.0073 0.0050 0.0074 0.0019 0.0019 0.0016 0.0012 0.0011 0.0010 0.0010 0.0009 0.0010 0.0008 0.0011 0.0011 0.0012 大麦 3.F.1. とうもろこし 0.0012 0.0010 0.0009 0.0009 0.0009 0.0008 0.0009 0.0008 0.0009 0.0009 0.0016 0.0011 0.0010 0.0008 0.0008 0.0139 0.0158 0.0150 0.0607 0.0410 0.0306 0.0206 0.0166 0.0168 0.0203 その他穀物類 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 0.0003 0.0003 0.0003 0.0027 0.0014 0.0026 0.0027 0.0024 0.0028 0.0029 0.0030 0.0027 0.0027 0.0027 0.0029 0.0029 3 F 2 0.0027 0.0027豆類 その他豆類 0.0013 0.0010 0.0008 0.0007 0.0006 0.0006 0.0006 0.0006 0.0004 | 0.0005 0.0005 | 0.0005 | 0.0005 0.0004 0.0005 kt-N₂O 0.0009 0.0006 0.0006 0.0006 0.0005 0.0008 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 N₂O 3.F.3 0.0011 0.0010 0.0010 0.0008 0.0010 0.0008 0.0010 0.0011 0.0011 0.0009 0.0011 0.0009 0.0009 0.0010 0.0010 その他根菜類 0.0007 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0003 0.0003 (野菜類除く 3.F.4 さとうきび 0.0008 0.0007 0.0006 0.0005 0.0006 0.0005 0.0005 0.0005 0.0007 0.0005 0.0005 0.0005 0.0006 0.0006 0.0005 0.0018 野菜類 0.0026 0.0024 0.0022 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0017 0.0018 0.0017 3.F.5 0.0020 0.0019 その他作物 0.0009 0.0007 0.0004 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.00020.00020.00020.0002 kt-N₂O 0.086 0.062 0.053 0.037 0.039 0.034 0.032 0.032 0.031 0.031 合計 ガス合計 kt-CO₂換算 100.68 63.20 43.96 46.21 41.49 38.92 37.38 36.44 39.20 38.48 38.67

表 5-76 野外で農作物の残留物を焼くことによる CH₄及び N₂O 排出量 (3.F.)

b) 方法論

■ 算定方法

 CH_4 、 N_2O の排出については、2006 年 IPCC ガイドラインに示された方法を用いて算定した。

$E = A \times M_B \times C_f \times G_{ef} \times 10^{-3}$

E: 農作物残渣の野焼きによる温室効果ガス排出量 [t-CH4 or t-N2O]

A:野焼き対象の面積 [ha]

MB:単位面積当たり燃焼重量 [t/ha]

Cf:燃焼係数

Gef : 排出係数 [g-CH4/kg or g-N2O/kg]

■ 排出係数

農作物残渣の野焼きのうち、最も CH_4 と N_2O の排出量が大きい稲わらの野焼きの排出係数については、Miura and Kanno(1997)と Hayashi et al. (2014)からの参照値の平均値を用いた。その他の作物は 2006 年 IPCC ガイドラインのデフォルト値を用いた。

	,,,	77.13//20 1 2/1 11/1//	•
	CH4 [g-CH4/kg(乾物)]	N ₂ O [g-N ₂ O/kg(乾物)]	参考文献
稲わら	2.36	0.08	Miura and Kanno(1997)と K. Hayashi et al. (2014) の値の平均値
その他の作物	2.7	0.07	2006年 IPCC ガイドライン、Table 2.5

表 5-77 野焼きの排出係数

■ 活動量

算定に使用したパラメータは表 5-78 に記載している。残渣の焼却割合と燃焼係数は、作物 残渣のすき込み (3.D.1.d.) と共通のものを使用している。なお、麦類の野焼きされる割合 については、表 5-67 で示した焼却割合を用いている。

衣 3-78 残食の焼料	制合、燃焼係剱	
作物	残渣の焼却割合	燃燒係数(Cf)
稲	_	0.80
豆類	12% 1)	0.85
野菜類、てんさい、 いも類、そば、なたね、い、葉たばこ	7% ²⁾	0.85
とうもろこし、さとうきび	7% 2)	0.80
麦類	表 5-67 参照	0.90 3)

表 5-78 残渣の焼却割合 燃焼係数

(出典) 残渣の焼却割合:「土壌由来温室効果ガス・土壌炭素調査事業」

C_f: 2019 年改良 IPCC ガイドライン

(注) 1) 豆類の値、2) 野菜の値、3) 小麦の値

稲の野焼きされる作物残渣量は、都道府県において把握しているデータより算出した稲わら・もみ殻のうち焼却処理される量のデータを使用した(表 5-79)。その他の作物については「作物統計」及び「野菜生産出荷統計」に掲載されている面積データから推計した。湿重量から乾燥重量への換算には、2006年 IPCC ガイドラインの乾物率(0.89)を使用した。

表 5-79 焼却処理される稲わら及びもみ殻量(湿重量)[kt]

項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
稲わら	438.2	536.9	429.1	276.6	149.3	183.4	161.7	144.2	152.8	129.3	136.1	123.3	129.7	115.6	115.6
もみ殻	581.3	528.3	291.3	260.3	212.9	206.6	193.9	147.5	142.6	114.2	140.7	140.7	132.8	134.3	134.3
計	1,019.5	1,065.2	720.4	536.9	362.2	390.0	355.6	291.7	295.4	243.5	276.8	264.0	262.5	249.9	249.9

(出典) 都道府県において把握しているデータより算出

c)不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性は、2006 年 IPCC ガイドラインに示されている各パラメータの不確実性から合成して算出した値($CH_4:296\%$ 、 $N_2O:300\%$)を用いた。活動量の不確実性は、「耕地及び作付面積統計」に記載されている水田面積の標準誤差(1%)で代替した。その結果、 CH_4 、 N_2O 排出量の不確実性はそれぞれ、296%、300%と評価された。

■ 時系列の一貫性

排出量は時系列的に一貫した算定方法、データソースを用いて算定されている。

d) QA/QCと検証

2006 年 IPCC ガイドラインに従った方法で、一般的なインベントリ QC 手続きを実施している。一般的なインベントリ QC には、排出量の算定に用いている活動量、排出係数等パラメータのチェック、及び出典文献の保存が含まれる。QA/QC 活動については、別添4に詳述している。

e)再計算

稲わらの排出係数の改訂、及びその他の作物の燃焼係数の更新により、全年度の排出量が 更新された。再計算の影響の程度については 10 章参照。

f) 今後の改善計画及び課題

特になし。

5.8. 石灰施用 (3.G.)

a) 排出源カテゴリーの説明

炭酸カルシウム($CaCO_3$)肥料やドロマイト($CaMg(CO_3)_2$)肥料の土壌への施用により、土壌水中で炭酸水素イオン(HCO_3)が遊離され、さらに CO_2 となり大気中に放出される。本カテゴリーではそれらの農地土壌への石灰施用に伴う CO_2 排出量を取り扱う。2022年度における当該カテゴリーからの CO_2 排出量は 203kt- CO_2 であり、我が国の温室効果ガス総排出量(LULUCF を除く)の 0.02%を占めている。1990年度比 63.1%の減少となっている。

 ガス
 区分
 単位
 1990
 1995
 2000
 2015
 2010
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022

 AG- 炭酸カルシウム
 BH-CO2
 550
 303
 332
 231
 242
 379
 362
 258
 252
 293
 241
 241
 232
 223
 201

 AG- ドロマイト
 BH-CO2
 550
 304
 333
 231
 243
 380
 363
 259
 253
 294
 242
 242
 233
 225
 203

 AH-CO2
 550
 304
 333
 231
 243
 380
 363
 259
 253
 294
 242
 242
 233
 225
 203

表 5-80 石灰施用に伴う CO₂排出量(3.G.)

b) 方法論

■ 算定方法

2006 年 IPCC ガイドライン (Vol.4、11.27、Figure 11.4) のデシジョンツリーに従い、Tier 1 法を用いて算定方法を行った。

$E = (M_{Limestone} \times EF_{Limestone} + M_{Dolomite} \times EF_{Dolomite}) \times 44/12$

E: 農地土壌への石灰施用に伴う CO₂排出量 [t-CO₂]

M_{Limestone} : 炭酸カルシウムの施用量 [t]

EFLimestone : 炭酸カルシウムの排出係数 [t-C/t]

MDolomite: ドロマイトの施用量 [t]EF Dolomite: ドロマイトの排出係数 [t-C/t]

■ 排出係数

炭酸カルシウム (CaCO₃) : 0.12 [t-C/t] (2006年 IPCC ガイドライン、p.11.29) ドロマイト (CaMg(CO₃)₂) : 0.13 [t-C/t] (2006年 IPCC ガイドライン、p.11.29)

■ 活動量

活動量は、「ポケット肥料要覧」に示される肥料の種類別生産量及び輸入量を積算して求めた。なお専門家判断に基づき、同統計に示される肥料のうち「炭酸カルシウム肥料」の全量、「貝化石肥料」、「粗砕石灰石」、「貝殻肥料」の70%を炭酸カルシウム、また、「炭酸苦土

肥料」の全量及び「混合苦土肥料」の74%をドロマイトと想定した。

表 5-81 炭酸カルシウムとドロマイトの施用量 [kt]

項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
炭酸カルシウム施用量	1,250	689	755	524	550	860	822	586	573	665	548	549	527	508	458
ドロマイト施用量	0.7	1.1	1.1	1.4	2.0	2.2	2.0	1.7	1.7	2.0	1.9	1.9	1.8		3.5

(出典)「ポケット肥料要覧」のデータより算出

c)不確実性と時系列の一貫性

■ 不確実性評価

排出係数の不確実性は、2006 年 IPCC ガイドラインに示されている 50%を用いた。活動量の不確実性は、「耕地及び作付面積統計」に記載されている水田面積の標準誤差 (1%) で代替した。その結果、排出量の不確実性は 50%と評価された。

■ 時系列の一貫性

排出量は時系列的に一貫した算定方法、データソースを用いて算定されている。

d) OA/OCと検証

2006 年 IPCC ガイドラインに従った方法で、一般的なインベントリ QC 手続きを実施している。一般的なインベントリ QC には、排出量の算定に用いている活動量、排出係数等パラメータのチェック、及び出典文献の保存が含まれる。QA/QC 活動については、別添4に詳述している。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

5.9. 尿素施用(3.H.)

a) カテゴリーの説明

尿素 $((NH_3)_2CO)$ の施肥により、土壌水中で炭酸水素イオン (HCO_3^-) が遊離され、さらに CO_2 となり大気中に放出される。本カテゴリーでは、この CO_2 排出に関する算定、報告を行う。

2022 年度における当該カテゴリーからの CO_2 排出量は 208 kt- CO_2 であり、我が国の温室効果ガス総排出量(LULUCF を除く)の 0.02%を占めている。また、1990 年度の排出量と比較すると 14.5%の増加となっている。

表 5-82 尿素施用に伴う CO₂排出量 (3.H.)

ガス	区分	単位	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
CO_2	3.H. 尿素施用	kt-CO ₂	182	170	168	197	184	214	204	215	208	208	208	208	208	208	208

b) 方法論

■ 算定方法

2006 年 IPCC ガイドライン (Vol.4、11.33、Figure 11.5) のデシジョンツリーに従い、Tier 1 法を用いて算定方法を行った。

 $E = (M \times EF) \times 44/12$

E: 農地土壌への尿素肥料に伴う CO2排出量 [t-CO2]

M: 尿素の施用量 [t]

EF: R素肥料の排出係数 [t-C/t]

■ 排出係数

0.20 t-C/t (2006年 IPCC ガイドラインデフォルト値、p.11.34)

■ 活動量

尿素の施用量として「ポケット肥料要覧」に示されている「尿素肥料需要量」を用いた。

表 5-83 尿素肥料需要量 [kt]

項目	1990	1995	2000	2005	2010	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
尿素肥料需要量	248	231	229	268	251	292	279	293	284	284	284	284	284	284	284

(出典)「ポケット肥料要覧」のデータより算出

c) 不確実性と時系列の一貫性

■ 不確実性評価

排出係数の不確実性は、2006 年 IPCC ガイドラインに示されている 50%を用いた。活動量の不確実性は、「耕地及び作付面積統計」に記載されている水田面積の標準誤差 (1%) で代替した。その結果、排出量の不確実性は 50%と評価された。

■ 時系列の一貫性

排出量は時系列的に一貫した算定方法、データソースを用いて算定されている。

d) QA/QCと検証

2006 年 IPCC ガイドラインに従った方法で、一般的なインベントリ QC 手続きを実施している。一般的なインベントリ QC には、排出量の算定に用いている活動量、排出係数等パラメータのチェック、及び出典文献の保存が含まれる。QA/QC活動については、別添4に詳述している。

e)再計算

特になし。

f) 今後の改善計画及び課題

特になし。

5.10. その他の炭素を含む肥料 (3.I.)

当該排出区分に該当する活動が存在しないため、「NO」として報告する。

5.11. その他 (3.J.)

その他として考えられる排出源がないため、「NO」として報告する。

参考文献

- 1. IPCC「国家温室効果ガスインベントリのための 2006 年 IPCC ガイドライン」(2006)
- 2. IPCC「国家温室効果ガスインベントリのための 2006 年 IPCC ガイドラインの 2019 年改良」 (2019)
- 3. International Rice Research Institute (IRRI), "World Rice STATISTICS 1993-94"
- 4. 環境庁「温室効果ガス排出量算定に関する検討結果 第1部(平成12年9月)」(2000)
- 5. 環境省「温室効果ガス排出量算定に関する検討結果 第3部(平成14年8月)」(2002)
- 6. 環境省「温室効果ガス排出量算定に関する検討結果(平成18年2月)」(2006)
- 7. 環境省環境再生・資源循環局「廃棄物の広域移動対策検討調査及び廃棄物等循環利用量実態 調査報告書(廃棄物等循環利用量実態調査編)」
- 8. 環境省環境再生・資源循環局「日本の廃棄物処理」
- 9. 気象庁「日本気候表」
- 10. 農林水産省生産局畜産部畜産企画課「家畜排せつ物処理状況調査結果(平成 21 年 12 月 1 日 現在)」(2011)
- 11. 農林水産省生産局畜産部畜産振興課「家畜排せつ物処理状況等調査結果(平成 31 年 4 月 1 日 現在)」(2021)
- 12. 農林水産省「平成 23 年度農林水産分野における地球環境対策推進手法の開発事業のうち農林水産業由来温室効果ガス排出量精緻化検討・調査事業 報告書」(2012)
- 13. 農林水産省「平成 24 年度農林水産分野における地球環境対策推進手法開発事業のうち農林水産業由来温室効果ガス排出量精緻化検討・調査事業 報告書」(2013)
- 14. 農林水産省「平成 25 年度農林水産分野における地球環境対策推進手法開発事業のうち農林 水産業由来温室効果ガス排出量精緻化検討・調査事業 報告書」(2014)
- 15. 農林水産省「土壌環境基礎調査」(1990)
- 16. 農林水産省「第4次土地利用基盤整備基本調査」(2006)
- 17. 農林水産省「鶏の改良増殖目標」(2015)
- 18. 農林水産省「食料・農業・農村基本計画(平成27年3月)」(2015)
- 19. 農林水産省「農地土壌温室効果ガス排出量算定基礎調査事業 報告書」(2014)
- 20. 農林水産省「農地土壌炭素貯留等基礎調査事業 報告書」(2018)
- 21. 農林水産省「作物統計」
- 22. 農林水産省「畜産統計」
- 23. 農林水産省「小動物及び実験動物等の飼養状況」
- 24. 農林水産省「耕地及び作付面積統計」
- 25. 農林水産省「農業経営統計調査」
- 26. 農林水産省「畜産物生産費統計」
- 27. 農林水産省「畜産物流通統計」
- 28. 農林水産省「牛乳乳製品統計」
- 29. 農林水産省「家畜の飼養に係る衛生管理の状況等」
- 30. 農林水産省「飼料月報」
- 31. 農林水産省「野菜生産出荷統計」
- 32. 農林水産省生産局畜産部畜産振興課「馬関係資料」
- 33. 農林水産省「環境保全型農業直接支払交付金」
- 34. 平成 20 年度環境バイオマス総合対策推進事業のうち農林水産分野における地球温暖化対策調査事業報告書(全国調査事業) 事業課題名 我が国の気候条件等を踏まえた家畜排せつ物管理に伴う温室効果ガス排出量算定方法の検討(2009)

- 35. 北海道農政部「北海道施肥ガイド 2010」(2010)
- 36. 沖縄県「家畜・家きん等の飼養状況調査結果」
- 37. (株) ゲン・コーポレーション「コマーシャル鶏飼養管理ガイド」
- 38. (財)農林統計協会「ポケット肥料要覧」
- 39. 農業·食品産業技術総合研究機構編「日本飼養標準」(社)中央畜産会
- 40. 農業·食品產業技術総合研究機構編「日本標準飼料成分表」(社)中央畜産会
- 41. (社)中央畜産会「家畜改良関係資料」
- 42. (社)家畜改良事業団「乳用牛群能力検定成績」
- 43. (社)日本養豚協会「養豚農業実態調査報告書(全国集計結果)」
- 44. (財) 畜産環境整備機構 編「家畜ふん量処理・利用の手引き: 畜産現場に役立つ家畜ふん尿 処理・利用のマニュアル」畜産環境整備機構 (1998)
- 45. (社) 畜産技術協会「畜産における温室効果ガスの発生制御 第四集」(1999)
- 46. (社) 畜産技術協会「畜産における温室効果ガスの発生制御 総集編」(2002)
- 47. (社) 畜産技術協会「ブロイラー飼養実態アンケート調査」(2008)
- 48. (社) 日本下水道協会 資料
- 49. 日本たばこ産業株式会社 資料
- 50. 温暖化対策土壌機能調査協議会「土壌由来温室効果ガス・土壌炭素調査事業」
- 51. Akiyama, H., Yagi, K., and Yan, X., "Direct N₂O emissions and estimate of N₂O emission factors from Japanese agricultural soils", In program and Abstracts of the International Workshop on Monsoon Asia Agricultural Greenhouse Gas Emissions, March 7-9, 2006, Tsukuba, Japan, 27 (2006 a)
- 52. Akiyama, H., Yan X. and Yagi, K., "Estimations of emission factors for fertilizer-induced direct N₂O emissions from agricultural soils in Japan: Summary of available data", Soil Science and Plant Nutrition, 52, 774-787 (2006 b)
- 53. Akiyama, H., Yan X. and Yagi, K., "Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N₂O and NO emissions from agricultural soils: meta-analysis", Global Change Biology, 16(6), 1837-1846 (2010)
- 54. 長命洋佑、寺田文典、広岡博之「乳牛と肉牛における窒素排せつ量の予測と比較」畜産学会報、77(4),485-494(2006)
- 55. 伊達昇「便覧 有機質肥料と微生物資材」、農山漁村文化協会、pp. 116-117、(1988)
- 56. 麓 多門、柳原哲司、齋藤 隆、八木一行「農地からの温室効果ガス発生量の推定 -プロセスモデルによるアプローチ-」、土壌の物理性 114、49-52、(2010)
- 57. 波多野隆介「草地飼料畑の管理実態調査事業」平成 28 年度日本中央競馬会畜産振興事業の報告書(2017)
- 58. Hayano, M., Fumoto, T., Yagi, K. and Shirato, Y., "National-scale estimation of methane emission from paddy fields in Japan: Database construction and upscaling using a process-based biogeochemistry model" Soil Science Plant Nutrition, 59(5), 812–823 (2013)
- 59. 寳示戸雅之、池口厚男、神山和則、島田和宏、荻野暁史、三島慎一郎、賀来康一「わが国農 耕地における窒素負荷の都道府県別評価と改善シナリオ」日本土壌肥料学雑誌、74(4), 467-474(2003)
- 60. 保科次雄、香西修治、本荘吉男「土壌中におけるチャ有機物の分解と茶樹による窒素の再吸収」、茶業研究報告 55 号、30-36 (1982)
- 61. 石橋誠、橋口純也、古閑護博「畜産業における温室効果ガス排出削減技術の開発(第2報)」 畜産環境保全に関する試験研究 平成 15 年度畜産研究所試験成績書、熊本県農業研究セン ター畜産研究所(2003)
- 62. Katayanagi, N., Fumoto, T., Hayano, M., Takata, Y., Kuwagata, T., Shirato, Y., Sawano, S., Kajiura, M.,

- Sudo, S., Ishigooka, Y. and Yagi, K., "Development of a method for estimating total CH₄ emission from rice paddies in Japan using the DNDC-Rice model", Science of the Total Environment, 547, 429–440 (2016)
- 63. Katayanagi, N., Fumoto, T., Hayano, M., Shirato, Y., Takata, Y., Leon, A. and Yagi, K., "Estimation of total CH₄ emission from Japanese rice paddies using a new estimation method based on the DNDC-Rice simulation model", Science of the Total Environment, 601–602, 346–355 (2017)
- 64. 木下忠孝、辻正樹「てん茶園の窒素収支」、茶業研究報告 100 号、52-54 (2005)
- 65. Kume, S., Nonaka, K., Oshita, T. and Kozakai T., "Evaluation of drinking water intake, feed water intake and total water intake in dry and lactating cows fed silages", Livestock Science, 128(1-3), 46-51 (2010)
- 66. 松本成夫「地域における窒素フローの推定方法の確立とこれによる環境負荷の評価」、農業 環境技術研究所報告 18 号、81-152 (2000)
- 67. Minamikawa, K., Fumoto, T., Itoh, M., Hayano, M., Sudo, S. and Yagi, K., "Potential of prolonged midseason drainage for reducing methane emission from rice paddies in Japan: a long-term simulation using the DNDC-Rice model", Biology and Fertility of Soils, 50(6), 879-889 (2014)
- 68. Mori, A. and Hojito, M., "Methane and nitrous oxide emissions due to excreta returns from graizing cattle in Nasu, Japan", Grassland Science, 61(2), 109-120 (2015)
- 69. 丹羽太左衛門「養豚ハンドブック」養賢堂(1994)
- 70. 野中邦彦「茶園における窒素環境負荷とその低減のための施肥技術」、茶業研究報告 100 号、 29-41 (2005)
- 71. 永田修、鮫島良次「石狩川泥炭地の土地利用と温室効果ガス―湿原、水田、転換畑の比較 ―」、新しい研究成果:北海道地域、115-121 (2006)
- 72. 小川和夫、竹内豊、片山雅弘「北海道の耕草地におけるバイオマス生産量及び作物による無機成分吸収量」北海道農業試験場研究報告、149、57-91(1988)
- 73. Ogino, A., Murakami, H., Yamashita, T., Furuya, M., Kawahara, H., Ohkubo, T. and Osada, T., "Estimation of nutrient excretion factors of broiler and layer chickens in Japan", Animal Science Journal 88(4), 659-668 (2017)
- 74. 荻野 暁史, 大森 英之, 井上 寛暁, 山下 恭広, 長田 隆「肥育豚における窒素, リン, カリウム排せつ量原単位の推定」畜産学会報、91(3), 281-288(2020)
- 75. 太田充、岩橋光育、森田明雄「一番茶後の更新茶園における整せん枝有機物の分解と窒素の 消長」茶業研究報告 84 号別冊、130-131 (1996)
- 76. 大谷文博、甘利雅拡、田鎖真澄、久米新一「泌乳牛の尿量は窒素およびカリウム摂取量と乳量から推定できる」畜産草地研究所成果情報 (2010)
- 77. Osada, T., Kuroda, K. and Yonaga, M., "Determination of nitrous oxide, methane, and ammonia emissions from a swine waste composting process", Journal of Material Cycles and Waste Management, 2(1),51-56 (2000)
- 78. Osada, T., "Nitrous Oxide Emission from Purification of Liquid Portion of Swine Wastewater", Greenhouse Gas Control Technologies 6 International Conference, Volume I, J. Gale and Y. Kaya (Eds.), 1299-1304 (2003)
- Osada, T., Fukumoto, Y., Tamura, T., Shiraihi, M. and Ishibashi, M., "Greenhouse gas generation from livestock waste composting", Proceedings of the Fourth International Symposium on Non-CO₂ Greenhouse Gases (NCGG-4), Science, Control, Policy and Implementation, Millpress, Rotterdam, 105-111 (2005)
- 80. 尾和尚人「我が国の農作物の栄養収支」(「平成8年度関東東海農業環境調和型農業生産における土壌管理技術に関する第6回研究会「養分の効率的利用技術の新たな動向」)(1996)

- 81. 斎藤守「肥育豚及び妊娠豚におけるメタンの排泄量」日本畜産学会報 59 (9)、773-778 (1988)
- 82. 柴田正貴、寺田文典、栗原光規、西田武弘、岩崎和雄「反芻家畜におけるメタン発生量の推定」、日本畜産学会報、64(8),790-796(1993)
- 83. 白石 誠、長田 隆、水木 剛、高取 健治「牛舎排水浄化処理施設から発生する温室効果ガス」日本畜産学会報、88(4)、479-490(2017)
- 84. 橘尚明、池田敏久、池田勝彦「茶樹における樹齢の進行および多肥条件下での窒素吸収特性」、日本作物学会紀事 65(1)、8-15(1996)
- 85. 土屋いづみ、悦永秀雄、堂岸宏、坂本卓馬、石田三佳、長谷川三喜、長田隆「鶏糞乾燥処理施設における温室効果ガス発生量の測定」 日本畜産学会報、85(1)、61-69(2014)
- 86. 築城幹典、原田靖生「家畜の排泄物量推定プログラム」、システム農学 (J、JASS)、13 (1)、 17-23 (1997)
- 87. 鶴田治雄「温室効果ガス削減農法モデルの構築 亜酸化窒素について-」「平成 12 年度温室 効果ガス排出量削減定量化法調査報告書」、(財)農業技術協会、p.42 (2001)
- 88. Yagasaki, Y., and Shirato, Y., "Assessment on the rates and potentials of soil organic carbon sequestration in agricultural lands in Japan using a process-based model and spatially explicit landuse change inventories Part 1: Historical trend and validation based on nation-wide soil monitoring" Biogeosciences, 11(16), 4429–4442 (2014)
- 89. Shirato, Y., Kishimoto-Mo, W. A. and Takata, Y., "A modeling approach to estimating N₂O emission derived from loss of soil organic matter for the Japanese greenhouse gas inventory" Soil Science and Plant Nutrition, 67(3), 347-352 (2021)
- 90. Itoh, M., Sudo, S., Mori, S., Saito, H., Yoshida, T., Shiratori, Y., Suga, S., Yoshikawa, N., Suzue, Y., Mizukami, H., Mochida, T. and Yagi, K., "Mitigation of methane emissions from paddy fields by prolonging midseason drainage", Agriculture, Ecosystems and Environment, 141, 359–372, (2011)
- 91. National Research Council of the National Academies (NRC), "Nutrient Requirements of Swine Animal Nutrition Series—" (2012)
- 92. Canatoy, R.C., Jeong S. T., Galgo C. S.J., Kim P. J., and Cho S. R., "Biochar as soil amendment: Syngas recycling system is essential to create positive carbon credit" Science of the Total Environment, 809 (2022) 151140
- 93. Akiyama H., Sano T., Nishina K., Sudo S., Oura N., Fujimori M., Uezono I., Yano S., Ohkoshi S., Fujita Y., Shiratori Y., Tsuji M., Hasukawa H., Suzue Y., Yamada Y., Mizukami H., Matsumoto T., and Yagi K., "N₂O emission factors for organic amendments in Japan from measurement campaign and systematic review", Science of the Total Environment, 864 (2023) 161088
- 94. Miura, Y. and Kanno, T. "Emissions of trace gases (CO₂, CO, CH₄, and N₂O) resulting from rice straw burning", Soil Science and Plant Nutrition, 43, 849-854 (1997)
- 95. Hayashi K., Ono, K., Kajiura, M., Sudo, S., Yonemura S., Fushimi A., Saitoh, K., Fujitani, Y., and Tanabe K., "Trace gas and particle emissions from open burning of three cereal crop residues: Increase in residue moistness enhances emissions of carbon monoxide, methane, and particulate organic carbon" Atmospheric Environment, 95, 36-44 (2014)