令和3年度環境省委託業務

令和3年度 脱炭素社会を支えるプラスチック等資源循環システム構築実証事業(電子機器および住宅設備(インテリア)製品への多糖類系高機能バイオプラスチックの適用とリサイクルシステムの実証事業) 委託業務 成果報告書

令和4年2月 日本電気株式会社

令和3年度 成果概要

「プラスチック資源循環戦略」に基づく、枯渇性資源から再生可能資源への転換に向けた政策を背景に、本実証事業では、非可食バイオマスから得られる天然多糖類(セルロースやパラミロンなど)を用いて、高機能バイオプラスチックを開発し、電子機器や住宅インテリア製品への適用を実証するとともに、そのマテリアルフロー把握や劣化予測を含めたリサイクルシステムを構築し、その有効性について実証を行う。

そのために本事業では、日本電気株式会社/東京大学/株式会社LIXIL/株式会社ユーグレナの研究グループでこれまでに蓄積した知見をベースとして、下記に示す最終目標の達成を目指す。

【最終目標】

- ・電子機器筐体や水回りの住宅建材に適用するために必要な各種特性(耐熱性:HDT 90°C以上、難燃性:UL94 V-1 or V-2 相当以上、耐水性:温水浸漬試験の試験水 pH 6~7、リサイクル性:5回以上の再成形時の各種特性保持率 90%以上、量産性:バイオマス原料の安定供給性の確保を含めた生産性1t/月と製造コスト5,000円/kg)の達成
- 多糖類系バイオプラスチックを用いた製品から新たな製品を製造する効率的なマテリアルリサイクルの実証

最終年度となる今年度は、昨年度までに得られた結果を踏まえ、下記に示す成果を創出した。

実証内容1. 多糖類系バイオプラスチックの耐熱性および難燃性の検討

本事業は、電子機器や住宅インテリア製品へ適用可能な多糖類系バイオプラスチックを開発することを目指している。そのために要求される耐熱性と難燃性について、今年度は、昨年度立案した対策による改良を検討し、耐熱性(HDT) 90 °C 以上、および難燃性(UL94) V-1 レベルを実現すること、および、多糖類エステル誘導体の構造と熱流動性および成形加工性の相関を解明することを目標にして、以下を実施した。

まず、側鎖の構造、及び結合比率が異なるセルロースエステル誘導体、パラミロンエステル誘導体を合成し、分岐状の側鎖を導入することによってより高耐熱性を実現できることを見出した。また、合成した誘導体と添加剤の複合材を作製することで、目標レベルの耐熱性と難燃性を実現する多糖類系バイオプラスチックの最適な分子構造、もしくは材料設計を見出した。

また、今年度は多糖類エステル誘導体の実用化に向けた可能性と物性の多様性を目指して、セルロース(β-1,4-グルカン)、パラミロン(β-1,3-グルカン)に加え、虫歯菌から抽出した酵素を用いて試験管内重合により合成した α-1,3-グルカンを用

いた実験を実施した。α-1,3-グルカンからエステル誘導体を合成し、その物性および結晶構造の解析を行うとともに、熱流動性および成形加工性との相関についても考察した。

さらに、多糖類エステル誘導体の射出成形体について大型放射光を用いた分析 を実施し、成形条件が内部配向状態に及ぼす影響を明らかにした。

実証内容2. 多糖類系バイオプラスチックの耐水性の検討

住宅インテリア製品への適用を目指した多糖類系バイオプラスチックの開発において要求される耐水性について、今年度は、射出成形品の温水浸漬試験水 pH6~7の実現、及び、耐水性とその他物性の両立の実現を目標として以下を実施した。

まず、昨年度に目標未達となっていたパラミロンエステル誘導体について、側鎖の構造と結合比率を見直すことで改善し、機械物性、熱物性の目標値を達成する 最適な分子構造を見出した。

次に、パラミロンエステル誘導体、及び、セルロースエステル誘導体の射出成型品から水へ溶出する、合成処方由来の成分の除去方法を検討した。その結果、誘導体の合成後に温水による洗浄工程を追加することで、水道法・食品衛生法が定める基準値以下まで溶出成分を除去可能なことを、製品を用いた試験により確認した。また、この洗浄工程を追加することによる機械強度や耐熱性への影響はないことを確認し、耐水性とその他物性の両立を実現した。

実証内容3.多糖類系バイオプラスチックの量産性の検討

多糖類系バイオプラスチックの量産性を実証するため、誘導体化プロセス、プラント全体の設備設計を実施することでの技術課題を抽出、および経済性を把握することを目標にして、以下を実施した。

まず、パイロットスケールプラント全体の設備設計(生産量 501 kg/2days/batch)を行い、昨年度の溶媒回収工程の設計と合わせて検討プラントの設計を完了させた。加えて、生産量 20 万 t/y の商業プラント設計を可能にする実証プラントの規模を 1 万 t/y と決定し、設備設計を行うことでマテリアルバランス、プロセスフロー、機器配置図を作成し、概算建設費を算出した。

また、商業化した際の経済性を把握するため、算出した概算建設費を基に商業プラント見込みフィジビリティスタディーを実施した。その結果、セルロースエステルに関しては販売価格を 1,000 円/kg、パラミロンエステルに関しては 1,300 円/kgに設定して十分に採算性のとれることを明らかにした。

実証内容4. 多糖類バイオプラスチックのリサイクルシステムの検証

本事業は、多糖類系バイオプラスチックを用いた製品から新たな製品を製造する効率的なマテリアルリサイクルを実証する。今年度は、多糖類系バイオプラスチックのリサイクルプロセスフローの最適化、及び開発素材を用いた当該プロセスフローの実証を目標にして、以下を実施した。

まず、パラミロンエステル誘導体の光劣化性の評価を行い、光劣化対策として光 劣化防止剤および酸化防止剤との併用効果について検討した。続いて、添加剤を 含むセルロースエステル樹脂を用いてリサイクル性を評価し、樹脂のリサイクル率 を決定(リサイクルプロセスフローの最適化)した。

そして、セルロースエステル樹脂を用いて実製品筐体(ホームゲートウェイ機器: HGW)を成形し、昨年度に設計した小型面衝撃試験機を用いたプロセスフローを 試行した。その結果、本試験機が NECPF 掛川事業所の電子機器リサイクルラインで クローズドリサイクルプロセスとして適用可能であることを実証した。

実証内容5.LCAの検証・評価

本事業では、多糖類系バイオプラスチックの合成、製品製造から廃棄(リサイクル) に至るまでのライフサイクルに関する環境負荷アセスメントを検証する。今年度は、そのための各要素(工程)の CO2 排出量を算出し、全工程の環境負荷を取りまとめることを目標として、以下を実施した。

まず、量産プラント設計のシミュレーション結果、量産成形機での消費電力量測定およびクローズドリサイクルによる CO₂ 削減効果について検討し、昨年度の LCA 評価を更新した。また、藻類由来材料についても LCA 評価を行った。ライフサイクルフロー全体で見た結果、多糖類系バイオプラスチックの CO₂ 排出量の合計値はベースラインである PC 樹脂よりも低くなり、20 万 t/y 生産時の CO₂削減効果は 91 万 t/y になると試算された。

R3 Fiscal Year Summary

Using natural polysaccharides (cellulose, paramylon, etc.) obtained from non-edible biomass, we will develop highly functional bioplastics and demonstrate their application to electronic devices and home interior products. We will also demonstrate the effectiveness of out recycling system.

Therefore, this project aims to achieve the following final goals based on the knowledge accumulated so far in the research group of NEC Corporation / The University of Tokyo / LIXIL Corporation / euglena Co., Ltd.

[Final goals]

- Achieving various characteristics required for application to electronic products and home interior products (heat resistance: HDT 90 °C or higher, flame retardancy: UL94 V-1 or V-2 or higher, water resistance: hot water immersion test pH 6 ~ 7, recyclability: 90 % retention of various properties when remolded five times, mass productivity: demonstrate productivity of 1 t / month and production cost of 5,000 yen / kg while ensuring a stable supply of biomass raw materials).
- Demonstration of efficient material recycling for manufacturing new products from the products using polysaccharide-based bioplastics.

Last year (as the first year), we had determined each current physical property such as the heat resistance, flame retardancy, water resistance, and recyclability. We had also determined the current recycling process and identified issues with it. Finally, we had formulated the future development plans needed to achieve our final goals.

This year (as last year) the following results were produced, based on the results so far.

Subject 1. Examination of heat resistance and flame retardancy of polysaccharide-based bioplastic

This project aims to develop polysaccharide-based bioplastics applicable to electronic products and residential interior products. This fiscal year, we tried improvements to the heat resistance and flame retardancy required for these applications, and implemented the following with the goal of realizing heat resistance (HDT) of 90 °C or higher and flame retardant (UL94) V-1 levels. Also, we elucidated the correlation between the structure of polysaccharide ester derivatives and their melt flowability and moldability.

First, synthesizing cellulose ester derivatives and paramylon ester derivatives synthesized with a different side chain structure and binding ratio, we found the derivatives with branched side chain have higher heat resistance than the derivatives with linear side chain. And an optimal molecular structure or additives design of a polysaccharide bioplastic that achieves a target level of heat resistance and flame retardancy.

In addition to cellulose (β -1,4-glucan) and paramylon (β -1,3-glucan), α -1,3-glucan synthesized by *in vitro* polymerization using an enzyme extracted from *Streptococcus salivarius* was used to synthesize ester derivatives, to investigate the possibility of practical application of polysaccharide ester derivatives and the diversity of their physical properties. Ester derivatives were synthesized from α -1,3-glucan, and their physical properties and crystal structures were analyzed, as well as their correlation with thermal properties and processability.

Moreover, injection-molded articles of polysaccharide ester derivatives were analyzed using large synchrotron radiation, and the effect of molding conditions on the internal orientation state was clarified.

Subject 2. Examination of water resistance of polysaccharide-based bioplastic

In order to simultaneously satisfy residential component requirements of the elution resistance in hot water immersion, the water resistance and physical characteristics, optimization of side chain structure of polysaccharide-based bioplastics was investigated in this fiscal year.

According to the results of last year, the paramylon ester derivatives did not satisfy the target values of mechanical and thermophysical properties. The optimization of the structure of the side chain and the binding ratio succeded in satisfying the target values.

Another technical issue of the paramylon ester derivatives and the cellulose ester derivatives was the elusination of organic reaction byproduct compounds during immersion tests. The examinations of the removal methods showed that the addition of hot water cleaning process after synthesizing process was effective for the removal of the organic byproduct compounds. Evaluations of prototypes satisfied the required legal standard of Water Supply Act and Food Sanitation Act without the decreasing in the mechanical strength, heat resistance and other physical properties.

Subject 3. Examination of mass productivity of polysaccharide bioplastic

To demonstrate the mass productivity of the polysaccharide bioplastics, the following were carried out with the goal of extracting technical issues in the manufacturing process and understanding economic efficiency.

First, equipments of an entire pilot scale plant (production volume 501 kg / 2days / batch) was designed, and the design of the entire pilot scale plant was completed. In addition, the scale of the demonstration plant that enables design of a commercial plant with a production volume of 200,000 t / y was decided to be 10,000 t / y, and the material balance, process flow, and equipment layout were created by designing the equipment. And we calculated the rough construction cost.

In addition, feasibility study based on the calculated rough construction cost clarified the commercial plant is sufficiently profitable, even if the selling price of the polysaccharide bioplastic is set to 1,000 yen / kg.

Subject 4. Verification of material recycling system

This project demonstrates efficient material recycling to manufacture new products from recoverd products using polysaccharide bioplastics. In this fiscal year, we conducted the following with the goal of understanding recyclability in actual machines, optimizing recycling rates, and determining a possible recycle process flow plan.

First, the photodegradability of the paramylon ester derivatives was evaluated, and the effect of combined use with a photodegradation inhibitor and an antioxidant was examined as a photodegradation countermeasure. Subsequently, the recyclability was evaluated using the cellulose ester resin containing the additives, and the recycling rate of the resin was determined (optimization of the recycling process flow).

Then, the actual product housing (home gateway equipment: HGW) was molded using cellulose ester resin, and the process flow using the small surface impact tester designed last year was tried. As a result, it was demonstrated that this testing machine can be applied as a closed recycling process at the electronic equipment recycling line.

Subject 5. Verification and evaluation of LCA

In this project, we will verify the environmental load assessment related to the life cycle from the synthesis of polysaccharide-based bioplastics and product manufacturing to disposal (recycling). This year, the following was implemented with the goal of calculating the CO₂ emissions of each element (process) for that purpose and summarizing the environmental load of all processes.

First, the simulation results of mass production plant design, power consumption measurement in mass production molding machines, and CO_2 reduction effect by closed recycling were examined, and the LCA evaluation of last year was updated. LCA evaluation was also performed on algae-derived materials. As a result of looking at the entire life cycle flow, it was estimated the total CO_2 emissions of polysaccharide-based bioplastics are lower than those of the baseline PC resin, and the CO_2 reduction effect during production of 200,000 t / y is 910,000 t / y.

目次

1.	本	『業の背景と目標	2
2.	令和	🛮 3 年度の成果	4
	実証内	容1. 多糖類系バイオプラスチックの耐熱性および難燃性の検討。	4
	1.1.	多糖類系バイオプラスチックの耐熱性と難燃性の検討	4
	1.2.	多糖類系バイオプラスチックの合成スケールアップ検討	8
	1.3.		
	1.4.	α-1,3-glucan エステル誘導体の合成と物性評価	17
	1.5.	射出成形体の大型放射光を用いた構造解析	35
		容2. 多糖類系バイオプラスチックの耐水性の検討	
	2.1.	パラミロンエステル誘導体の機械強度・耐熱性の改善	
	2.2.	多糖類エステル誘導体からの溶出物質除去	
	2.3.		
	2.4.	多糖類エステル誘導体のマテリアルリサイクル性の評価	
	2.5.	本実証事業終了後の開発方針	50
		容3. 多糖類系バイオプラスチックの量産性の検討	
		パイロットスケールプラントにおける合成設備の設計	
	3.2.	パイロットスケールプラントの全体設備の設計	
	3.3.	2012 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 ·	
	3.4.	商業プラントの建設費概算とフィジビリティスタディー	128
	実証内	容4. 多糖類バイオプラスチックのリサイクルシステムの検証	131
	4.1.	多糖類バイオプラスチックの光劣化性の把握と対策検討	131
	4.2.	添加剤を含む多糖類バイオプラスチックのリサイクル性検討	133
	4.3.	実製品でのリサイクルシステム実証	136
	実証内	容5. LCAの検証・評価	144
	5.1.	条件設定	144
	5.2.	原材料調達・生産の LCA 評価	146
		生産の LCA 評価	
	5.4.	LCA 評価まとめ	151
3.	学名	会発表、著書・論文投稿、報道、特許等の実績	153

1. 本事業の背景と目標

プラスチックは、セメント、鉄鋼、非鉄金属に次ぐ主要材料であり、全世界で年間約3億トン(国内1100万トン)生産されている。しかし、製造~廃棄工程で年間5億トン以上のCO2などの温暖効果ガスを排出し、さらに枯渇する石油原料を使用したポリマーを主要素材として利用しているため、温暖化や資源枯渇の対策上、大きな課題がある。このため、CO2を光合成により利用して生育する再生可能な植物を原料とするバイオプラスチックは、温暖化対策に役立つ新素材として注目されており、すでに世界で年間約300万トン生産され、汎用(非耐久)製品向けだけでなく耐久製品向けも含めて年々生産が拡大している。しかし、食用植物のデンプンを主原料にしたものが主体であるため、原料の安定供給性に課題がある。そこで、安定供給が見込める非食用の植物原料を使用し、低エネルギーで製造が可能なバイオプラスチックが求められている。

このような「プラスチック資 源循環戦略」に基づく、枯渇性 資源から再生可能資源への転 換に向けた政策を背景に本実 証事業では、非可食バイオマ スから得られる天然多糖類 (セルロースやパラミロンな ど)を用いて、高機能バイオプ ラスチックを開発し、電子機器 や住宅インテリア製品への適 用を実証するとともに、その マテリアルフロー把握や劣化 予測を含めたリサイクルシス テムを構築し、その有効性に ついて実証を行うことを目的 とする(図 1)。

日本電気株式会社/東京大学/株式会社LIXIL/株式会社ユーグレナの研究グループでは、これまでに、非可食バイオマスから得られる天然多糖類(セルロースやパラミロンなど)が有する水酸基に対して、2種類のエステル基を効率的に導入して多糖類系バイオプラスチック(多糖類エステル誘導体)を合成する処方(酸クロ法、およびTFAA法など)を基本開発し、電子機器筐体や水回りの住宅建材に適用可能となる強度特性を中心に検討している。本事業では、これまで蓄積した知見をベースとして、下記に示す最終目標の達成を目指す。

【最終目標】

- ・電子機器筐体や水回りの住宅建材に適用するために必要な各種特性(耐熱性: HDT 90 °C 以上、難燃性: UL94 V-1 or V-2 相当以上、耐水性: 温水浸漬試験の試験水 pH 6 ~ 7、リサイクル性: 5回以上の再成形時の各種特性保持率 90 %以上、量産性: バイオマス原料の安定供給性の確保を含めた生産性 1 t/月と製造コスト 5,000 円/kg)の達成
- 多糖類系バイオプラスチックを用いた製品から新たな製品を製造する効率的なマテリアルリサイクルの実証

初年度(令和元年度)は、耐熱性・難燃性・耐水性・リサイクル性などの各物性項目やリサイクルプロセスの現状把握および課題抽出を実施するとともに、最終目標の達成に向けた対策の立案を行った。また、多糖類バイオプラスチックのベースとなる多糖類エステル誘導体の合成方法(酸クロ法、TFAA 法)について LCA、経済性の評価を実施し、酸クロ法の方が LCA、経済性の観点から有利であることを見出した。

2年目となる令和 2 年度は、初年度に立案した対策を検討し、耐熱性・難燃性・耐水性の各物性目標を達成するための分子構造(多糖類エステル誘導体の側鎖構造および結合量)、および複合材(添加剤の種類及び添加量)の最適化に取り組むと共に、リサイクル状態と各種物性の相関を解析し、面衝撃強度に着目した小型面衝撃試験機を設計した。

最終年度となる今年度は、昨年度までの結果を踏まえ、次頁以降に示す成果を創出した。

2. 令和 3 年度の成果

実証内容1. 多糖類系バイオプラスチックの耐熱性および難燃性の検討

本業務では、電子機器や住宅インテリア製品へ適用可能な多糖類系バイオプラスチックを開発するにあたって、要求される耐熱性と難燃性について検討することを目的としている。

今年度は、当研究グループがこれまでに確立してきた酸クロ法によって、側鎖エステル基(アセチル基、プロピオニル基、ヘキサノイル基、ステアロイル基など)を導入したセルロースエステル誘導体、パラミロンエステル誘導体を合成し、その分子構造設計および添加剤との複合材設計により、目標の耐熱性および難燃性を付与した結果について報告する。

1.1. 多糖類系バイオプラスチックの耐熱性と難燃性の検討

昨年度、酸クロ法で合成したセルロースエステル誘導体およびパラミロンエステル誘導体の耐熱性向上を目的として、柔軟成分である長鎖ステアロイル(St)基の置換度(Degree of Substitution (DS):グルコース 1 ユニットあたりの結合数)、を減らし、水酸基による水素結合を増やす方向で設計を行った。その結果、予想通りセルロースエステル誘導体の耐熱性(Tg および HDT)は向上し、最終的にはフィラーなどの添加剤の補強なしで最終年度目標(HDT 90°C以上)を上回る耐熱性が得られた。パラミロンエステル誘導体についても同様の分子設計を行ったが、パラミロンエステル誘導体はセルロースエステル誘導体に比べて耐熱性が低いため、短鎖をプロピオニル基からアセチル基に変更して合成を行うことで、添加剤の補強なしで最終年度目標の耐熱性を実現した。

また、難燃性については、いずれの多糖類エステル誘導体も UL94 HB レベルであり、最終年度目標である V-1/V-2 レベルより低いことがわかったため、難燃剤の添加を検討した。難燃剤として、土壌成分であり安全な難燃剤である水酸化アルミニウムを選定し、さらに衝撃強度を改善するためにリン系難燃剤を併用した。その結果、水酸化アルミニウムの添加量が多い系において V-0 レベルの難燃性が確認され、最終年度目標(V-1/V-2)を大幅に達成した。一方、リン系難燃性を併用したため、耐熱性は大きく低下した。

そこで今年度は、難燃剤の添加量調整やフィラーでの補強により、耐熱性と難燃性を両立する多糖類エステル誘導体について検討した。

セルロースエステル誘導体およびパラミロンエステル誘導体の合成は酸クロ法により実施した。酸クロ法によるセルロース誘導体の合成スキームを図 1-1、パラミロン誘導体の合成スキームを図 1-2 に示す。また、多糖類エステル誘導体の難燃性と耐熱性の評価に用いたベース樹脂の物性を表 1-1 に示す。セルロースエステル誘導体は、短鎖にプロピオニル基、長鎖にステアロイル基を付加したセルロース樹脂を用いた。パラミロンエステル誘導体は、短鎖にアセチル基、長鎖にステアロイル基を付加したパラミロンエステル①と、短鎖プロピオニル基、長鎖ステアロイル基を付加したパラミロンエステル②について評価を実施した。

$$\begin{array}{c|c} \text{OH} & \text{Propionyl Chloride} \\ \text{Stearoyl Chloride} & \\ \text{NMP, Pyridine} \\ \text{OR} & \\ \text$$

図 1-1 セルロースエステル誘導体の合成スキーム

$$\begin{array}{c|c} & OH & Acetyl \, Chloride \\ \hline & NMP, \, Pyridine \\ \hline & Paramylon & Paramylon & Paramylon \, ester \\ \hline & RO & OR \\ \hline & NMP, \, Pyridine \\ \hline & Paramylon \, ester \\ \hline & R = CH_3CO, \, CH_3(CH_2)_{16}CO \\ \hline \end{array}$$

図 1-2 パラミロンエステル誘導体の合成スキーム

表 1-1 多糖類エステル誘導体(ベース樹脂)の組成と樹脂物性

		勿組成 MR)		機械強	度	栖	MFR [g/10min]	
	長鎖DS	短鎖DS	曲げ 強度 [MPa]	曲げ 弾性率 [GPa]	シャルピー 衝撃強度 [kJ/m²]	ガラス 転移温度 Tg[℃]	荷重 たわみ温度 HDT[℃]	
セルロース エステル	St 0.27	Pr 2.4	42	1.3	12	123	78	13 220℃10kgf
パラミロン エステル①	St 0.24	Ac 2.5	37	1.4	1.0	141	90	3.6 220℃10kgf
パラミロン エステル②	St 0.19	Pr 2.1	36	0.91	1.0	101	70	1.8 210℃5kgf

1.1.1. セルロースエステル誘導体の耐熱性と難燃性の検討

昨年度、セルロースエステル誘導体の難燃剤として、リン系難燃剤と水酸化アルミニウムの併用を検討した。セルロースエステル誘導体とリン系難燃剤を一定の比率で混合したものに、水酸化アルミニウムの添加量を変えて評価した結果、水酸化アルミニウムの添加量が多い系において V-0 レベルの難燃性が確認され、最終年度目標(V-1/V-2)を大幅に達成した。評価結果を表 1-2 に示す。一方、リン系難燃性は可塑剤としても働くため、耐熱性は大きく低下した。

表 1-2 セルロースエステル誘導体の難燃性(昨年度の結果)

水酸化ア ルミニウム			機械強		耐熱	難燃性 UL94	
	添加量	曲げ 強度 [MPa]	曲げ 弾性率 [GPa]	IZOD 衝擊強度 [kJ/m²]	ガラス 転移温度 Tg[℃]	荷重 たわみ温度 HDT[℃]	
最終年度目標						>90℃	V-1/V-2
セルロースエステル +リン系難燃剤	なし	18	0.56	38	n.d.	-	Not V-2
1	少	19	0.65	9.3	n.d.	-	Not V-2
\uparrow	多	21	0.87	3.4	n.d.	47	V-0

今年度は、耐熱性を向上させる添加剤としてガラス繊維(GF)について検討した。まず、セルロースエステル誘導体とリン系難燃剤を一定の比率で混合したものに GF を添加し、さらに水酸化アルミニウムの添加量を変えて評価した結果を表 1-3 に示す。GF の添加により耐熱性(HDT)および曲げ強度が向上したものの、目標の耐熱性(HDT 90°C 以上)を達成することはで

きなかった。リン系難燃剤の添加量が多い、または GF の添加量が少ないためと考察した。

表 1-3 セルロースエステル誘導体の耐熱性と難燃性(1)

	水酸化 アルミニウム	GF [%]		機械強原		市村	熱性	難燃性 UL94
			曲げ 強度 [MPa]	曲げ 弾性率 [GPa]	シャルピー 衝撃強度 [kJ/m²]	ガラス 転移温度 Tg[℃]	荷重 たわみ温度 HDT[℃]	
最終年度目標							>90	V-1/V-2
セルロースエステル +リン系難燃剤	多	0	21	0.87	3.4 (IZOD)	n.d.	47	V-0
↑	少	少	33	2.3	2.9	n.d.	68	Not V-2
↑	中	少	37	3.0	2.4	n.d.	69	V-1

そこで、水酸化アルミニウムの添加量を一定(中)にして、リン系難燃剤の添加量を減らし GF の添加量を増やす方向で添加剤の配合量を検討した。評価結果を表 1-4 に示す。リン系難燃剤を減らし GF の添加量を増やすことで、最終的に耐熱性(HDT99°C)と難燃性(V-1)を両立する配合を見出した。さらに、GF の添加により曲げ強度および曲げ弾性率も大きく改善した。一方、衝撃強度についてはどの配合でも低い値を示した。今後、耐衝撃改良処方を検討する必要があると考えている。

表 1-4 セルロースエステル誘導体の耐熱性と難燃性(2)

	リン系	GF		機械強	渡	耐	熱性	難燃性
難燃剤			曲げ 強度 [MPa]	曲げ 弾性率 [GPa]	シャルピー 衝撃強度 [kJ/m²]	ガラス 転移温度 Tg[℃]	荷重 たわみ温度 HDT[℃]	UL94
最終年度目標							>90	V-1/V-2
セルロースエステル +水酸化アルミニウム	多	0	21	0.87	3.4	n.d.	47	V-0
\uparrow	多	少	37	3.0	2.4	n.d.	69	V-1
↑	多	中	50	5.6	3.1	n.d.	-	V-0
↑	中	中	61	5.8	3.2	n.d.	89	V-0
\uparrow	少	中	74	5.6	3.3	n.d.	99	V-1

1.1.2. パラミロンエステル誘導体の耐熱性と難燃性の検討

パラミロンエステル誘導体の耐熱性と難燃性の検討は、セルロースエステル誘導体と同じ添加剤(リン系難燃剤、水酸化アルミニウム、GF)を使用した。

まず、短鎖の鎖長が異なる2種のパラミロンエステル(①、②)にリン系難燃剤を添加した結果について表 1-5 に示す。パラミロンエステル①にリン系難燃剤を添加したところ、リン系難燃

剤の添加量を変えてもシャルピー 衝撃強度は非常に低いままであっ た。これは、短鎖がアセチル基で あるためパラミロンエステル誘導 体の極性は高く、リン系難燃剤が 相溶しなかったためと推察され る。一方、パラミロンエステル②に リン系難燃剤を添加すると、曲げ 強度は低下するがシャルピー衝撃 強度が向上した。短鎖をプロピオ ニル基にすることで樹脂とリン系 難燃剤と相溶し、衝撃強度が向上 したと思われる。この結果より、 パラミロンエステル誘導体の耐熱 性と難燃性の検討は、短鎖にプロ ピオニル基を付加したパラミロン エステル②で実施した。

表 1-5 パラミロンエステル誘導体 リン系難燃剤の添加効果

	リン系 難燃剤	機械強度			
		曲げ 強度 [MPa]	曲げ 弾性率 [GPa]	シャルピー 衝撃強度 [kJ/m²]	
パラミロンエステル① (Ac/St系)	なし	37	1.4	1.0	
\uparrow	少	35	1.2	1.0	
\uparrow	多	21	0.87	3.4	
パラミロンエステル② (Pr/St系)	なし	36	0.91	1.0	
\uparrow	少	22	0.63	7.0	
\uparrow	多	9.5	0.87	21	

次に、パラミロンエステル誘導体にリン系難燃剤、水酸化アルミニウムおよびガラス繊維(GF)を添加した結果について表 1-6 に示す。パラミロンエステル②にアルミニウムを一定量(中)添加し、リン系難燃剤と GF の添加量を変えて検討した。その結果、リン系難燃剤を添加せず GF を添加した系において高い耐熱性と難燃性を両立する配合が見出された。一方、パラミロンエステルの耐熱性目標(HDT>90°C)を達成するには、セルロースエステルよりも大量の GF を必要とすることがわかった。これは、やはりベース樹脂であるパラミロンエステル②の耐熱性がセルロースエステルよりも低いためである。GF の添加量が多すぎると他の物性に影響し、特に靭性が低下するため、今後はパラミロンエステル①(短鎖 Ac 基)と相溶性の高いリン系難燃剤の探索やパラミロンエステル②(短鎖 Pr 基)の耐熱性を高める分子設計が必要と考える。

表 1-6 パラミロンエステル誘導体の耐熱性と難燃性

	リン系			機械強度		耐	熱性	難燃性
	難燃剤	[%]	曲げ強度 [MPa]	曲げ弾性率 [GPa]	シャルピー 衝撃強度 [kJ/m ²]	ガラス 転移温度 Tg[℃]	荷重 たわみ温度 HDT[℃]	UL94
最終年度目標							>90	V-1/V-2
パラミロンエステル +水酸化アルミニウム	0	中	77	6.4	2.5	n.d.	94	Not V-2
\uparrow	0	多	80	7.6	2.2	n.d.	96	Not V-2
\uparrow	0	特大	78	9.4	2.2	n.d.	98	V-0
\uparrow	少	多	72	7.1	2.3	n.d.	85	V-0
\uparrow	中	多	56	5.9	2.3	n.d.	75	V-0

以上の結果より、難燃剤(リン系難燃剤、水酸化アルミニウム)とガラス繊維の添加量を調整することで、本プロジェクトの目標値(耐熱性 HDT90 ℃以上、難燃性 V-1, V-2 以上)を達成する多糖類エステル誘導体が得られた。ただ、樹脂の衝撃強度はまだ低いため、今後、さらに衝

1.2. 多糖類系バイオプラスチックの合成スケールアップ検討

本プロジェクトの目標である、多糖類エステル誘導体のリサイクル性実証実験を実施するためには、1評価あたり 30 ~ 50 kg の多糖類エステル誘導体を用意する必要がある。そこで、セルロースエステル誘導体の合成について、昨年度の 200 L 反応器(収量 10 kg)からさらに 1000L 反応器(収量 50 kg)までスケールアップして実施した。1000 L 合成反応の様子を図 1-3 に示す。

1000L合成装置(上部)

セルロース、酸クロライドの仕込み作業

ろ過乾燥機の外観およびセルロースエステルの回収作業

図 1-3 セルロースエステル誘導体 1000L 合成反応の様子

今回の 1000 L 反応器での合成は2回実施し、合計 100 kg のセルロースエステル誘導体が得られた。200 L から 1000L にスケールアップしても、反応時間やメタノールでの洗浄回数に大きな違いは見られなかった。反応終点はセルロース結晶の消失確認により判断し(図 1-4)、200L と同様、6 時間で反応が終了することを確認した。また、メタノールでの洗浄回数は7回から6回に減った。昨年度、ラボスケールから 200L 反応器にスケールアップした時は、メタノールでの洗浄回数は5回から7回に増え、200L 反応器では適切なサイズのろ過器がなく洗浄効率が悪かったためと推察したが、今年度の 1000L 合成ではろ過面積がより広いろ過器を使用したため、200L よりも効率よく洗浄できたのではないかと考えている。

図 1-4 偏光顕微鏡観察による反応中のセルロース結晶確認

合成したセルロースエステル誘導体の物性評価結果を表 1-7 に示す。1000L 反応器で合成したセルロースエステル樹脂は 200L 合成品よりも DS が若干高くなったため、曲げ強度や耐熱性は少し低下した。これは、1000L 反応器での合成に用いた原料セルロースの含水率が 200L合成で用いたものよりも低かったため(200L:含水率 5~6%、1000L:含水率 4~5%)と考察した。また、1000L合成の2ロットについても、DS や物性に若干のばらつきが見られた。今後、酸クロ法で多糖類エステル誘導体を製造するには、ロット間のばらつきを抑えるために、セルロースや酸クロライド、溶媒などの原料の水分管理が重要と考える。

表 1-7 セルロースエステル誘導体 スケールアッ

セルロースエス テル誘導体	生成物 (NN			機械強度		耐熱性		
	長鎖DS (St)	短鎖DS (Pr)	曲げ 強度 [MPa] 4mmt	曲げ 弾性率 [GPa] 4mmt	IZOD 衝撃強度 [kJ/m²]	ガラス 転移温度 Tg[℃]	荷重 たわみ温度 HDT[℃]	
最終年度目標							90	
200L	0.23	2.31	48	1.5	6.3	126	89	
1000L-1	0.27	2.38	42	1.3	12	123	78	
1000L-2	0.26	2.30	43	1.0	5.3	117	83	

1.3. パラミロン分岐状エステルの合成と物性評価

図 1-5 パラミロン分岐状および直鎖状エステル誘導体

1.3.1. はじめに

昨年まで、パラミロンは、炭素数2~14の直鎖状脂肪酸を用いてエステル化することにより、優れた熱的性質あるいは機械物性などを有する熱可塑性プラスチックになることや射出成形体および繊維に成形加工できることを報告してきた。具体的には、合成した全てのパラミロンエステル誘導体は、石油合成プラスチックであるポリエチレン(PE)、ポリプロピレン(PP)とポリエチレンテレフタレート(PET)の全ての物性をエステル基の長さを変えることにより網羅できることを証明した。

本年度は、物性の多様性を目指し、直鎖状脂肪酸に加え、分岐状脂肪酸を用いたエステル誘導体の合成及び物性評価を行った。具体的には、分岐状脂肪酸であるピバル酸、イソ酪酸、イソ吉草酸、4-メチル吉草酸、5-メチルヘキサン酸を用いてパラミロンのエステル化を行い、一連のパラミロン分岐状エステル誘導体を合成し、その構造の同定と様々な物性の測定を行った(図1-5)。また、比較のため、同じ方法により炭素数が3~7の直鎖状脂肪酸を用いて、パラミロン直鎖状エステル誘導体も合成した。

1.3.2. 実験

<試薬>

パラミロンは、ユーグレナ社から提供されたものをそのまま用いた。トリフルオロ酢酸無水物 (TFAA)、カルボン酸(酢酸、プロピオン酸、酪酸、吉草酸、ヘキサン酸、ヘプタン酸、イソ酪酸、ピバル酸、イソ吉草酸、4-メチル吉草酸、5-メチルヘキサン酸)、及び他の試薬は和光純薬工業株式会社から購入した。

<パラミロンエステル誘導体の合成>

パラミロンエステル誘導体は、カルボン酸と TFAA をフラスコに入れて、5 分間 50 °C で攪拌したのち、真空乾燥したパラミロン 3 g を加え、50 °C で攪拌しながら 1.5 時間反応させた。この溶液をメタノール/水混合溶液(1.5 L, 2:1 v/v)に投入し、生成物を沈殿させた。吸引ろ過で沈殿物を回収したのち、再度クロロホルムに溶解し、再びメタノール/水混合溶液に投入して沈殿し、三日間攪拌した。沈殿物を十分に洗浄したのち、吸引ろ過で回収し、105 °C、8 時間真空乾燥した。

<核磁気共鳴分光分析(1H-NMR)>

生成物の同定は、¹H-NMR により行った。測定は、JNM-500(日本電子)を用いて行った。約 15 mg のパラミロンエステルを 1 mL の重クロロホルムに溶解し、NMR 用のサンプルとして使用した。テトラメチルシラン(δ = 0)を内部標準物質として用いた。置換度は、パラミロンのリングプロトンのピーク面積とエステル側鎖のメチル基ピーク面積の面積比により算出した。

<ゲル浸透クロマトグラフィー(GPC)>

生成物の重量平均分子量(M_w)、数平均分子量(M_n)及び分子量分布(M_w / M_n)は、島津製作所の GPC システム(CBM-20A, DGU-20A3, LC-6 AD, SIL-20 AC HT, RID-10A, CTO-20A)を用いて測定した。移動相はクロロホルムを使用し、流速は 0.8 mL/min、カラムオープン温度は 40 °C に設定した。単分散のポリスチレン(昭和電工: $M_p = 1.20 \times 10^3$, 3.07×10³, 7.21×10³, 1.96×10⁴, 5.51×10⁴, 1.33×10⁴, 1.33×10⁵, 2.75×10⁵, 8.15×10⁵, 1.32×10⁶, 3.15×10⁶)を、分子量基準物質として用いた。

<熱重量分析(TGA)>

生成物の熱分解温度は、TGA により測定した。測定には、STA6000(Perkin Elmer)を用いた。 昇温プログラムは、窒素雰囲気下、速度 10 °C/min で 30 ~ 500 °C に設定した。サンプル重量は約 8 mg とした。

<キャストフィルムの作製>

ソルベントキャスト法により、各パラミロンエステル誘導体のキャストフィルムを 2 種類作製した。比較的薄いフィルムは DSC に使用し、厚い方は DMA に用いた。濃度 25 mg/mL となるようにエステル誘導体をクロロホルム溶液 10 mL に溶解した後、直径 54 mm のテフロンシャーレに入れ、一晩放置してクロロホルム溶媒を飛ばすことにより、薄いキャストフィルムを作製した。同じ方法で、濃度を 75 mg/mL にし、直径 42 mm のテフロンシャーレに入れて溶媒を飛ばさせたことで、比較的厚いキャストフィルムを作製した。厚さはそれぞれ約 0.1 mm と 0.2 ~ 0.4 mm であった。

<示差走査熱量測定(DSC)>

DSC 8500 (Perkin Elmer)を用いて、融点(T_m)とガラス転移点(T_g)の測定を行った。パラミロンエステル誘導体のキャストフィルム 2 mg をアルミニウムパンに封入し、測定サンプルとした。

30 °C から、20 °C/min の速度で 270 °C までに昇温し、270 °C で 1 分間保持した(1st run)。その後、200 °C/min で-30 °C まで急冷し、5 分間保持した後、300 °C まで 20 °C/min で昇温した(2nd run)。 PriBu と PrPi は 1st run (30 °C ~ 350 °C)のみ測定した。測定は窒素雰囲気下で行い、ブランクは空のアルミパンを用いた。 T_m は 1st run から読み取った。

<動的粘弹性測定(DMA)>

ガラス転移温度(*T*₉)を DVA-200s(ITK, Japan)を用いて測定した。キャストフィルム(厚さ: ca. 0.2 ~ 0.4 mm)をそれぞれ 20×5 mm²の小片に切り、測定サンプルとした。測定は、乾燥窒素雰囲気下、10 Hz、-50~250 °C、10 °C/min の昇温速度で行った。測定試料間距離は 10 mm とした。

<引張試験>

キャストフィルム(厚さ: ca. 0.1 mm)を用いて、引張試験を行った。測定装置は、EZ-test(島津製作所)を用いた。キャストフィルムを 30×2 mm² の小片に切り、測定サンプルとした。試験開始距離は 10 mm、引張速度は 20 mm/min、室温下で測定を行った。1 つの生成物に対して、測定サンプルを 8 つ作製し、測定を行い、平均値を取った。

1.3.3. 結果と考察

<パラミロンエステル誘導体の合成と同定>

パラミロンエステル誘導体を、カルボン酸と TFAA を用いて、不均一反応で合成した。パラミロン分岐状エステル誘導体とパラミロン直鎖状エステル誘導体の ¹H-NMR を図 1-6 に示す。表 1-8 に、パラミロン分岐エステル誘導体とパラミロン直鎖エステル誘導体の略称、置換基の種類、置換基の炭素数、置換度(DS)及び分子量を示す。 ¹H-NMR により、すべでの生成物の置換度 (DS)は 3 であり、分岐状エステルにもかかわらず、全ての水酸基(-OH)が完全に置換されていることを確認した。生成物の重量平均分子量は約 10~30 万ぐらいであった。

Paramylon carbon $M_{\rm n} \times 10^{-4}$ $M_{\rm W} \times 10^{-4}$ Acyl group DS $M_{\rm w}/M_{\rm n}$ ester number PriBu Isobutyrate 3 4.0 8.7 2.2 4 5 PrPi Pivalate 3 14.3 2.1 6.8 Isovalerate 5 3 7.8 20.6 PriVa 2.6 6 PriHe Isohexanoate 3 6.9 21.2 3.1 7 3 6.0 17.7 2.9 PriHep soheptanoate 3 3 PrPr **Propionate** 2.1 6.7 3.2 PrBu **Butyrate** 4 3 6.6 15.2 2.3 5 3 PrVa Valerate 14.1 29.5 2.1 3 PrHe Hexanoate 6 6.4 16.8 2.7 7 3 4.5 16.0 3.5 PrHep Heptanoate

表 1-8 パラミロン分岐状および直鎖状エステル誘導体の置換度と分子量

図 1-6 パラミロン分岐状エステル誘導体の NMR

<熱重量測定(TGA)>

パラミロンエステル誘導体の TGA 曲線を図 1-7 に示す。また、5 %と 50 %質量減少温度(T_{d-5} % & T_{d-50} %)を表 1-9 にまとめた。パラミロン分岐状エステル誘導体とパラミロン直鎖状エステル誘導体の分解温度はほとんど同じであり、 T_{d-5} % と T_{d-50} %はそれぞれパラミロンの場合より約 20 ~ 30 °C と 40 ~ 50 °C 高かった。すなわち、エステル化により、熱分解温度は上昇することがわかった。これは、エステル化により、パラミロンが分解するときに生じるレボグルコサンの形成を障害したことによると考えられる。

図 1-7 パラミロン分岐状および直鎖状エステル誘導体の熱分解曲線

表 1-9 パラミロン分岐状および直鎖状エステル誘導体の熱分解温度

		Pr	PriBu	PrPi	PriVa	PriHe	PriHep	PrPr	PrBu	PrVa	PrHe	PrHep
T_{d}	_{l-5 %} (^o C)	298	319	340	317	303	321	328	320	323	319	331
T_{d}	_{-50%} (°C)	321	360	360	368	369	368	360	364	375	371	373

<キャストフィルムの作製>

作製したキャストフィルム(厚さ: ca. 0.1 mm)の一例を図 1-8 に示す。全てのフィルムは、側鎖の違いと関係なく、無色透明であった。また、パラミロン分岐状エステル誘導体でも直鎖状エステル誘導体と同様、側鎖の炭素数が多いほど、フィルムは柔らかくて靭性が高かった(後述の図 1-11 参照)。

厚さが 0.2 ~ 0.4 mm のフィルムは、 厚さが 0.1 mm のフィルムの見た目と ほとんどが変わらなかった。

図 1-8 パラミロンエステル誘導体のフィルム

<示差走査熱量測定(DSC)と動的粘弾性測定(DMA)>

パラミロンエステル誘導体の T_m と T_g を得るために、DSC 測定と DMA 測定を行った。 T_m 、 T_g および ΔH の結果を図 1-9、図 1-10 および表 1-10 に示す。パラミロン分岐状エステル誘導体は直鎖状エステル誘導体と同じように、側鎖の炭素数の増加に伴い、 T_m と T_g の値は低くなる

ことが分かった。この傾向はセルロースエステル誘導体やデンプンエステル誘導体と同様である。PriBu と PrPi の T_m は、それぞれ 339 °C と 337 °C であった。これらの値は、これまで報告されているセルローストリアセテート(298 °C)、パラミロントリアセテート(287 °C)よりも高かった。一方、同じ炭素数の場合では、パラミロン分岐状エステル誘導体の T_m と ΔH は、パラミロン直鎖状エステル誘導体より高いことがわかった。これは、分岐側鎖の導入により、分子鎖間に存在する空間が埋まり、結果として結晶性が向上したことに起因すると考えられる。

 T_g の値は、DSC 曲線では明確に確認できなかったため、DMA を用いて測定した。 T_g 結果を、DSC で求めた T_m と一緒に図 1-10 に示す。三分岐の PrPi は最も高い T_g を持ち、173 °C であった。この値は、直鎖状エステル誘導体である PrPr(T_g =125 °C)より 50 °C 高かった。この T_g の値は、報告されたパラミロントリアセテート(171 °C)とグルコマンナントリアセテート(174 °C)の T_g とほぼ同じである。同じ炭素数の場合では、パラミロン分岐状エステル誘導体の T_g は、直鎖状エステル誘導体より 10 ~ 20 °C 高かった。これは、分岐状エステル基の方が直鎖状エステル基よりも強直であることに起因すると考えられる。PriBu と PrPi は同じ T_m を持つが、PrPi の T_g は PriBu より 60 °C ぐらい高かった。この現象の原因は、PrPi の側鎖が 3 分岐で、PriBu の側鎖が 2 分岐であることから、PrPi の方がより強直であることに起因すると考えられる。

パラミロン分岐状エステル誘導体の T_m と T_g は、パラミロン直鎖状エステル誘導体と同じように、側鎖の炭素数を変えることにより、制御することができることもわかった。

図 1-9 パラミロン分岐状および直鎖状エステル誘導体の DSC 曲線(1st run)

図 1-10 パラミロン分岐状および直鎖状エステル誘導体の融点(Tm)とガラス転移点(Tg)

表 1-10 パラミロン分岐状および直鎖状エステル誘導体の熱的性質

	Caula au ununala au af ai da alaain	T (0C)	T (0C)	A 11 (1/m)
	Carbon number of side chain	T _g (°C)	T _m (°C)	ΔH (J/g)
PriBu	4	110	339	19.5
PrPi	5	173	337	3.0
PriVa	5	91	250	17.2
PriHe	6	64	199	12.6
PriHep	7	41	126	3.2
PrPr	3	125	221	12.9
PrBu	4	92	201	10.0
PrVa	5	54	188	8.2
PrHe	6	40	124	3.3
PrHep	7	32	78	0.9

<キャストフィルムの引張試験>

厚さが約 0.1 mm のパラミロンエステル誘導体のキャストフィルムを用いて、引張試験を行った。応力ひずみ曲線を図 1-11 に示し、引張強度、ヤング率と破断伸びを表 1-11 にまとめた。分岐エステル誘導体同士、あるいは直鎖エステル誘導体同士を比べると、側鎖の炭素数が増加するにつれて、引張強度とヤング率は減少し、破断伸びは増加した。この傾向は、既に報告されたセルロース直鎖エステル誘導体や他の多糖類のエステル誘導体の結果と同じである。これは、側鎖の炭素数の増加につれて、柔軟性が向上したことによると考えられ、この傾向は Tg の結果と一致している。

同じ炭素数の場合では、分岐エステル誘導体は直鎖エステル誘導体より高い引張強度とヤング率、より低い破断伸びを持っていることがわかった。また、PrPi、PriBu と PrPr は近い引張強度を持っているが、破断伸びが PrPi と PriBu のほうが長かった。すなわち、側鎖に短い分岐エステル基を導入により、靭性が向上することが示唆された。これは、分岐側鎖の導入により、分子鎖間の絡み合い濃度が増加することによると考えられる。

1.3.4. 結言

本節では、炭素数が4~7の二分岐エステル基と炭素数が5の三分岐のエステル基を導入し たパラミロン分岐状エステル誘導体を合成し、側鎖炭素が 3 ~ 7 のパラミロン直鎖状エステル 誘導体の熱物性および機械物性と比較した。分岐状エステルにもかかわらず、置換度は 3 とな り、完全に分岐エステル化することに成功した。TGA の結果より、原料のパラミロンの 5 %質量 減少温度が 298 ℃ であるのに対して、パラミロン分岐状エステル誘導体の熱分解温度は約 20 °C~30 °C 高いことが分かった。DSC 測定より、全てのパラミロン分岐状エステル誘導体は融 点(Tm = 126 ~ 339 ℃)を持ったことから、いずれも結晶性ポリマーであることがわかった。その うち、PrPi と PriBu は特に高い融点(ca. 340 °C)を持つことが分かった。分岐状エステル誘導体 のガラス転移温度(Tg)は 41 ~ 173 ℃ であり、短鎖のものは石油合成プラスチックである PET (T_m = 270 °C; T_g = 70 °C)よりも高かった。直鎖状エステル誘導体の値と比較すると、同じ炭素 数の場合では分岐状エステル誘導体はより高い Tm と Tg を持つことが分かった。また、分岐状 エステル誘導体は直鎖状エステル誘導体と同じように、側鎖炭素数の増加につれて、Tmと To が減少した。分岐状エステル誘導体のキャストフィルムの引張試験を行った結果、同じ炭素数 の場合では、直鎖状エステル誘導体より高い引張強度と弾性率を持つことが分かった。分岐状 エステル誘導体は直鎖状エステル誘導体と同じように、側鎖炭素数が増加するとともに、引張 強度とヤング率が減少し、破断伸びが増加する傾向にあった。すなわち、分岐状エステル誘導 体も側鎖の炭素数を変えることにより、熱物性と機械的特性をコントロールすることができる ことが分かった。

図 1-11 パラミロン分岐状エステル(左)と直鎖状エステル(右)の応力-ひずみ曲線

表 1-11 パラミロン分岐状および直鎖状エステル誘導体の機械物性

	Tensile strength	Elongation at break	Young`s modulus
	(MPa)	(%)	(MPa)
PriBu	28.6±2.0	67.5±28.0	470±170
PrPi	35.7±1.3	28.7±4.6	580±64
PriVa	15.5±1.4	52.2±20.2	250±56
PriHe	18.6±2.1	180.1±21.4	280±50
PriHep	5.0±0.6	348.8±64.0	46±14
PrPr	35.7±4.6	6.0±0.6	740±100
PrBu	20.0±2.3	113.0±36.0	330±49
PrVa	15.0±2.3	113.8±22.0	150±31
PrHe	7.8±0.2	448.8±56.6	30±15
PrHep	4.8±0.3	1150.9±50.0	11±2

1.4. α-1,3-glucan エステル誘導体の合成と物性評価

1.4.1. はじめに

本節では、これまでに検討してきたセルロース(β-1,4-glucan)やパラミロン(β-1,3-glucan)に加え、さらなる多糖類種の多様化による物性カバー領域の拡大を目指し、α-1,3-glucan に関してエステル誘導体の合成と物性評価を実施した結果について述べる。

α-1,3-glucan は、口内連鎖球菌である Streptococcus 類が産生する多糖であり、菌類や酵母の細胞壁に構造多糖として存在する。近年、東京大学・岩田研究室において、Streptococcus Salivarius (ATCC25975)の α-1,3-glucan 合成酵素である GtfJ 遺伝子をクローニングし、大腸菌発現系を利用して GtfJ 酵素を作製、そして、それをスクロース溶液へ添加することで、完全直鎖状の α-1,3-glucan を得ることに成功した。α-1,3-glucan は、安価なスクロースを原料にし、水系ワンポットで合成できることから、低コストかつ環境負荷が小さいポリマーだと言える。また、合成温度を変化させることで重量平均分子量を 20 万から 70 万の間で制御できることも報告された。分子量は高分子材料の性能に大きな影響を与える因子であり、それを制御できる α-1,3-glucan は材料として非常に有望である。しかし、そのままの状態ではセルロースやパラミロンと同様に熱可塑性を持たないため、プラスチック素材として活用するためにはエステル化が必要となる。

本節では、従来の直鎖状エステルに加え、末端または根本が分岐したエステル基を α-1,3-

glucan へ導入し、熱・機械物性及びその結晶構造を評価した。さらに、その結晶弾性率を測定し、結晶構造と機械物性の相関を検討した。また、直鎖状と分岐状のエステル基を混合して、α-1,3-glucan の側鎖へ導入することで、新規物性の付与を目指した。多糖エステルにおいては、水酸基の置換度がその物性に大きな影響を与える。よって、置換度を制御した α-1,3-glucan エステルの合成と基礎物性評価を行った。

1.4.2. 実験

<遺伝子組み換え大腸菌培養による GtfJ 酵素の生産と α-1,3-glucan の酵素重合> Streptococcus salivarius ATCC 25975 からクローン化された、GtfJ を発現する pET-21a (+) (Novagen, USA)ベクターを含む、Escherichia coli BL21-Gold (DE3) (Stratagene, USA)を Luria-Bertani (LB)培地を用いて 37 °C で 16 時間培養した。培養した大腸菌を超音波処理により破砕し GtfJ 酵素を得た。

続いて、 α -1,3-glucan の酵素重合を行った。反応液を 0.01% NaN₃、100 mM 酢酸ナトリウム緩衝液、0.02 U/mL GtfJ、0.50M スクロース溶液とし、15°C で 2 週間攪拌した(図 1-12(a))。 溶液中に現れた白色沈殿を遠心分離によって回収し、凍結乾燥させ、白色粉末として α -1,3-glucan を得た。分子量は、重量平均分子量(Mw)は 1.5×10^5 であり、多分散度(PDI=Mw/Mn)は 1.7 であった。

<α-1,3-glucan エステルの合成>

90 ml の任意のカルボン酸と、120 ml のトリフルオロ酢酸無水物(TFAA)をナスフラスコに入れ、50 °C のオイルバス中で 5 分間撹拌した。得られた混合溶液に乾燥した 3.0 g の α-1,3-glucan を加え、50°C で 1 時間撹拌した(図 1-12(b))。反応後、茶色く透明な均一溶液になった。この反応液を 1 L のメタノールと水の混合溶媒に注ぎ、目的物を沈殿させ、ろ過によって回収した。回収した白色沈殿を 100 ml のクロロホルムに溶かし洗浄を行った。そのクロロホルム溶液をメタノールと水の混合溶媒に再沈殿させ、ろ過によって回収した。再びメタノールと水で洗浄した後、2 日間常温常圧で乾燥し、最後に 6 時間真空乾燥した。用いたカルボン酸は、直鎖状(5 種)、末端分岐状(7 種)、根本分岐状(4 種)とした。カルボン酸の名称とそのエステル誘導体の略称を以下に示す。

◎直鎖状カルボン酸:酢酸、プロピオン酸、酪酸、吉草酸、ヘキサン酸

(略称)α-1,3-glucan-Ac, α-1,3-glucan-Pr, α-1,3-glucan-Bu, α-1,3-glucan-Va, α-1,3-glucan-Hex

- ◎末端分岐状カルボン酸:
- (二分岐)2-メチルプロピオン酸、3-メチル酪酸、4-メチル吉草酸、5-メチルヘキサン酸
- (略称) α -1,3-glucan-2MPr, α -1,3-glucan-3MBu, α -1,3-glucan-4MVa, α -1,3-glucan-5MHex
- (三分岐)2,2-ヂメチルプロピオン酸、2,2-ヂメチル酪酸
- (略称)α-1,3-glucan-22DMPr, α-1,3-glucan-33DMBu
- ⑥根本分岐状:2-メチルプロピオン酸、2-メチル酪酸、2-メチル吉草酸、2-メチルヘキサン酸 (略称)α-1,3-glucan-2MPr, α-1,3-glucan-2MBu, α-1,3-glucan-2MVa, α-1,3-glucan-2MHex

<核磁気共鳴分光分析(1H-NMR)による置換度の算出>

¹H-NMR は 1.3.節と同様の手法で測定した。エステル誘導体の置換度(DS)は、α-1,3-glucanのリングプロトンのピーク面積とアルキル側鎖末端のメチル基のピーク面積の比から算出した。リングプロトンには7つ、直鎖状アルキル基及び根本分岐状アルキル基の最末端メチル基には3つ、二分岐状アルキル基のメチル基には6つ、三分岐状アルキル基のメチル基には9つの水素が存在する。よって、置換度は以下のように計算できる。

②直鎖状,根本二分岐状
$$DS = \frac{I_{acyl}/3}{I_{ringH}/5}$$
 ②末端二分岐状 $DS = \frac{I_{acyl}/6}{I_{ringH}/5}$ ②末端三分岐状 $DS = \frac{I_{acyl}/6}{I_{ringH}/5}$ ②末端三分岐状 $DS = \frac{I_{acyl}/9}{I_{ringH}/5}$

<ゲル透過クロマトグラフィー(GPC)による分子量測定>

1.3.節と同様の手法で測定した。その結果、エステル化前の α -1,3-glucan は Mw 1.2 ×10 5 、PDI 1.8 であった。また、各種 α -1,3-glucan エステルの Mw は 1.8 \sim 2.7×10 5 、PDI は 1.8 \sim 2.3 の範囲に収まっていた。

図1-12 (a) Enzymatic polymerization of α -1,3-glucan and (b) chemical esterification of α -1,3-glucan to synthesize α -1,3-glucan ester derivatives. Abbreviations of α -1,3-glucan esters are also shown.

<キャストフィルムの作製>

ソルベントキャスト法により、 α -1,3-glucan エステルのフィルムを作製した。0.30 g の α -1,3-glucan エステルを 5 ml のクロロホルムに溶解させ、直径 54 mm のテフロンシャーレに流し込んだ。常温・常圧で 3 日間静置し、溶媒を完全に揮発させ、キャストフィルムを得た。

<キャスフィルムの引張試験>

測定には卓上万能試験機 EZ-test(島津製作所)を用いた。キャストフィルムを長さ 25 mm、幅 2 mm に切断し、サンプルとして使用した。引張速度は 10 mm/min、初期長は 10 mm とした。測定は 5 回行い、それらの平均値を結果とした。

<キャストフィルムの光透過率測定>

紫外可視近赤外分光法(UV-Vis)によりキャストフィルムの光透過率を測定した。測定には U-2910(日立)を用いた。測定波長範囲は 190 ~ 1100 nm とし、スキャン速度は 400 nm/min とした。

<示差走査熱量測定(DSC)>

測定には DSC8500 (Perkin Elmer)を用いた。サンプルにはキャストフィルムを用い、重量は約2 mg とした。それぞれのサンプルを-30 °C から 380 °C までの昇温過程(1st run)において、融点を評価した。昇温速度は 20 °C/min とした。

<動的粘弾性測定(DMA)>

直鎖状または末端分岐状エステルの測定には DVA-200s (ITK, Japan)を用いた。厚さ 0.6 ~ 1.0 mm のキャストフィルムを長さ 7 mm、幅 5 mm に切断しサンプルとした。測定条件は、窒素雰囲気下で、剪断モード、温度範囲は 30 ~ 380 °C、昇温速度は 2 °C/min、測定周波数は 10 Hz とした。

根本分岐状エステルの測定には、DMA 8000 (PerkinElmer)を用いた。粉体サンプルをアルミパン(マテリアルポケット)にはさみこみ、測定試料とした。測定条件は、窒素雰囲気下で、剪断モード、温度範囲は 30 ~ 380 °C、昇温速度は 2 °C/min、測定周波数は 10 Hz とした。ただし、マテリアルポケットを使用した本測定では、得られた結果(貯蔵弾性率、損失弾性率、tanδ)に定量性はない。tanδ のピークを、ガラス転移点として決定することを主目的とした測定である。

<キャピラリーレオメーター>

測定には CFT-500EX(島津製作所)を用いた。サンプルにはエステル誘導体の粉体をペレット状にしたものを用いた。また、比較対象として良好な熱成形性をもつことが知られているポリプロピレン(PP)を用いた。サンプル重量は 1.5 g とした。測定開始温度はそれぞれのサンプルのガラス転移点付近とした。開始温度で 300 秒間加熱した後、5 °C/min で昇温した。サンプルが全て流出した時点で測定を終了した。試験力は 10 kgf、ダイ穴径は 1 mm、ダイ長さは 1 mm とした。

<α-1,3-glucan エステルの溶融紡糸>

溶融紡糸は、メルトインデクサー (IMC-19F8, Imoto, Japan)を用いて行った。ダイの直径と L/D 比はそれぞれ 0.5 mm と 2 とした。粉末状のエステル誘導体を使用した。融点を約 30 ℃ 上回る温度に炉の温度を設定し、粉体を投入してから、2 分後に 0.5 mm/s の速度で試料を押し出した。押し出された試料はローラーによって巻き取った。ダイとローラーの距離は 40 mm とし、ローラーの巻き取り速度は 50 ~ 500 rpm(18 ~ 180 m/min に対応する)で制御した。

<偏光顕微鏡 (POM) による繊維の観察>

ECLIPSE E600 偏光顕微鏡 (Nikon, Japan)及び DFC450 charge coupled device (CCD) カメラ(Leica)を用いて繊維の観察を行った。

<溶融紡糸繊維の引張試験>

測定には、卓上万能試験機 EZ-test(島津製作所)を用いた。溶融紡糸繊維を長さ 25 mm に切断し、サンプルとして使用した。引張速度は 10 mm/min、初期長は 10 mm とした。測定は 5 回行い、それらの平均値を結果とした。

<広角 X 線回折による結晶構造の解析>

二次元回折図の X 線回折図を MicroMax-007HF system (Rigaku MicroMax-007HF)または 大型放射光施設の SPring-8 (Harima, Japan)において、BL40B2 と BL03XU のビームラインを用いて行った。前者においては、40 kV, 30 mA, Cu K α 線 (λ = 0.15418 nm)を用い、サンプルと検出器は真空チャンバー中に設置し、二者間距離を 83 mm とした。二次元回折図はイメージングプレート(Fujifilm Corp.; 2540 × 2540 pixels, 50 × 50 μ m² pixel-1)に記録し、RAXIA-Di((Rigaku Corp.)により読み取り、2DP software (Rigaku Corp.)を用いて解析した。後者においては、 λ =0.1000 nm あった。また、配向度 f は回折図の強度-方位角プロファイルの半値幅 Wh を用いて下記式のように算出した。

②配向度 $f = \frac{(180 - \text{Wh})}{180}$

二次元回折図の指数付けは、以下のように行った。まず、観測した各回折の座標 (x, y) から、逆格子座標の (ξ, ζ) を算出した (力メラ長: R)。それらの値から、観測 d 値 (d_{obs}) を計算した。次に、結晶系を斜方晶系あるいは単斜晶晶系と仮定して、任意の格子定数 (a, b, c, γ) 及びミラー指数 (hkl) の条件を満たす、計算 d 値 (d_{cal}) を算出した。以上より得られた d_{obs} と d_{cal} の値の誤差が、可能な限り小さくなるように、格子定数及びミラー指数を決定した。誤差の程度は、対応する d_{obs} と d_{cal} をそれぞれ X 軸と Y 軸にとり、線形近似曲線を作製し、その R^2 値によって評価した。 R^2 値が 1 に最も近い条件で、 d_{obs} と d_{cal} の誤差が最も小さくなると言え、そのときの格子定数を採用した。いずれの結晶構造についても R^2 値は、0.99 より 1 に近づくまで、格子定数を調節した。

1.4.3. 結果と考察

<α-1,3-glucan エステルの合成>

2 I-13 H NMR spectra of α-1,3-glucan ester derivatives.

<キャストフィルムの引張試験>

直鎖状エステル、分岐状エステルのいずれからも無色透明なキャストフィルムを作製できた。 それらの引張試験の結果を図 1-14 に示す。

◎直鎖状エステル

α-1,3-glucan-Ac の最大応力が最も大きくおよそ 60 MPa に達した。側鎖長の増大と共に、 最大応力と弾性率が低下し、破断伸びが増加した。

◎末端分岐状エステル

末端二分岐状エステルは、同じ長さの側鎖長をもつ直鎖状エステルに比べ、高い弾性率を示し、硬く脆い傾向であった。末端三分岐状エステルにおいて、 α -1,3-glucan-22DMPr は α -1,3-glucan-2MPrに近い機械物性を示した。一方で、 α -1,3-glucan-33DMBuのキャストフィルムは、脆すぎて引張試験を実施できなかった。

◎根本分岐状エステル

 α -1,3-glucan-3MBu を除く根本分岐状エステルのキャストフィルムは、直鎖状や末端分岐状エステルのキャストフィルムより柔軟な傾向を示した。例えば、 α -1,3-glucan-2MVa の破断伸びは 115 \pm 17%であり、直鎖状の α -1,3-glucan-Va (13 \pm 2%) や末端分岐状の α -1,3-glucan-4MVa (18 \pm 1%) に比べ、それぞれ、10 倍、5 倍以上の値であった。最大応力や弾性率は、側鎖長が同等の誘導体では、側鎖の形状によって大きな差は観察されなかった。

以上より、末端に分岐がある場合に、最もフィルムに硬さを付与でき、根本に分岐がある場

合は、フィルムに柔軟性を付与できることが示された。

<キャストフィルムの光透過率測定>

作製したキャストフィルムの可視光領域の光透過度を図 1-15 に示した。二分岐状の α-1,3-glucan-2MPr と三分岐状の α-1,3-glucan-22DMPr の光透過率は、可視光領域でおよそ 80 ~ 90 %であった。この値は、直鎖状エステルより高く、比較として測定したポリエチレン(PE)やポリエチレンテレフタレート(PET)に匹敵した。光学用途に用いるガラスやアクリル樹脂の光透過率ははおよそ 90 %であり、それに近い値であると言える。また、芳香環をもつ PET は 300 ~ 400 nm 付近で著しく透過度が低下したが、α-1,3-glucan エステルはその領域においても高い光透過率を維持した。

また、直鎖状エステルは、側鎖が長いほど光透過率が低下した。側鎖が長いほど結晶化度が低下するため、透過率が上昇すると予想されるが、それとは逆の傾向を示した。この現象の明確な原因は特定できていない。考えられる原因として、側鎖長が大きい誘導体のほうが大きい結晶を形成し、それが可視光領域の波長に相当し、光透過率を低下させたことが挙げられる。

α-1,3-glucan-22DMPrについては、熱プレスフィルム(280°C、1 min)の光透過率を測定した。キャストフィルムと比べると、熱処理により低波長領域で光透過率の減少が観察された。しかし、その透過率は、直鎖状エステルのキャストフィルムと同等以上であり、十分に高い透明性を維持した熱プレスフィルムが作製できたと言える。

図1-15 (a) UV-Vis spectra of cast films of α -1,3-glucan ester derivatives together with PE and PET. Photographs of cast films of (b) α -1,3-glucan-2MPr and (c) α -1,3-glucan-22DMPr. (d) UV-Vis spectra of melt-quenched films of α -1,3-glucan-22DMPr.

<示差走査熱量測定(DSC)>

α-1,3-glucan 直鎖状及び分岐状エステルの DSC 曲線を図 1-16 に示した。

21-16 DSC 1st run curves of α -1,3-glucan ester derivatives.

◎直鎖状エステルの融点

 α -1,3-glucan-Hex を除くすべての誘導体の DSC 曲線において、融点に帰属できる吸熱ピークが観察された。 α -1,3-glucan-Ac の融点は 339 °C と非常に高かった。側鎖長が増大するにつれ、融点が低下し、 α -1,3-glucan-Va は 252 °C に融点が観察された。また、より側鎖が長い α -1,3-glucan-Hex は側鎖の内部可塑効果により、結晶性が消失したと考えられる。

α-1,3-glucan-Bu 及び α-1,3-glucan-Va の DSC 曲線には、二つの吸熱ピークが観察された。このような現象はカードラン(β-1,3-glucan)プロピオネートにおいても報告されている。例えば、カードランプロピオネート (CDPr) のキャストフィルムは、158 °C と 225 °C に融点を持つ。そして、その二つの融点の間の温度 (≥160 °C) で熱処理を行うと、らせん構造が 6 回らせんから、5 回らせんへ転移する。すなわち第一融点(158 °C)は 6 回らせんの結晶由来であり、第二融点(225 °C) は 5 回らせんの結晶由来であることが報告された。よって、α-1,3-glucan-Bu 及び α-1,3-glucan-Va も 2 種類の結晶構造をもつため、2 つ吸熱ピークが観察された可能性がある。これに関しては、X 線結晶構造解析の結果を後述する。

◎末端分岐状エステルの融点

合成したすべての末端分岐状エステルの DSC 曲線に吸熱ピークが観察された。いずれの二分岐状、三分岐状エステルにおいても、側鎖長の増大と共に、吸熱ピークが現れる温度は上昇した。具体的には、二分岐状で最も側鎖が短い α -1,3-glucan-2MPr の吸熱ピークは、251 °C であり、直鎖状エステルの α -1,3-glucan-Pr (292 °C)より顕著に低かった。しかし、側鎖が長い末端分岐状エステルの α -1,3-glucan-4MVa の吸熱ピークは 306 °C であり、直鎖状の α -1,3-glucan-Va (252 °C)より顕著に高かった。

結晶性の有無を評価するため、広角 X 線回折測定を行った(詳細は後述)。 α -1,3-glucan-2MPr は、明瞭な回折を示したが、それ以上側鎖の長い末端分岐状エステルにおいては、明瞭な回折は観察されなかった(cf. 図 1-27)。長鎖末端分岐状エステルは、結晶性が非常に低く、広角 X 線回折測定では、ピークが観測されなかった可能性がある。

結晶性が非常に低いものの、結晶性があるという説を採用すれば、これらの吸熱ピークは融

点に帰属できる。通常、側鎖長が増大するにつれ、側鎖の内部可塑剤としての機能が向上し、 融点が低下する。しかし、末端分岐状エステルにおいては、それと逆の結果が得られたことに なる。このような傾向は、他の多糖エステルにおいては報告例がない。よって、その結晶構造は 特異的な側鎖のパッキング体系をもつことが予想される。

一方で、結晶性が無いと仮定すると、分岐状エステルを導入したことにより、主鎖に剛直性がもたらされ、サーモトロピック液晶性をもったとも考えられる。この場合、吸熱ピークは液晶-等方性液体転移点温度として帰属できる。

いずれの末端分岐状エステルのキャストフィルムとも、吸熱ピーク温度以下のオーブン熱処理においては、形状を維持した。逆に、吸熱ピーク以下では熱成形できなかった。つまり、吸熱ピークが融点であるにしても、液晶-等方性液体転移点温度であるにしても、側鎖が長いほど、末端分岐状エステルの熱安定性は向上した。一方で、熱成形は困難になった。

◎根本分岐状エステルの融点

 α -1,3-glucan-2MHex を除くすべての誘導体の DSC 曲線において、融点に帰属できる吸熱ピークが観察された。側鎖長の増大に伴い融点は低下した。根本分岐状エステルの融点は、直鎖状及び末端分岐状エステルに比べ低い傾向にあった。例えば、根本分岐状エステルの α -1,3-glucan-2MVa の融点は 123 °C であったのに対し、直鎖状の α -1,3-glucan-Va の融点は 252 °C と大幅に高かった。融点は結晶構造に起因するものであり、結晶構造に基づいた考察を後述する。

<動的粘弾性測定(DMA)>

DSC 曲線の 2nd run からガラス転移点を測定する場合もあるが、多糖エステルは緩和速度が非常に遅く、また側鎖長によって緩和速度が大幅に異なるため、DSC では同じ条件(昇温速度)で測定が行えなかった。そこで、本実験では DMA を用い、得られた tanδ 曲線のピークトップをガラス転移点として採用した(図 1-17)。

21-17 Tanδ curves of α -1,3-glucan esters.

◎直鎖状エステルのガラス転移点

側鎖長の増大と共に、直鎖状エステルのガラス転移点は低下した。長い側鎖を導入すると、主鎖間距離が増大し、分子間凝集力が低下すると考えられる。例えば、 α -1,3-glucan-Ac のガラス転移点は 140 °C であり、 α -1,3-glucan-Hex は 49 °C であった。以前報告された Puanglek らの結果におおよそ一致した。しかし、 α -1,3-glucan-Ac のガラス転移点について、Puanglek らは、DSC の 100 °C/min で行った 2nd run から、168 °C と見積もったが、本実験で得られた値はそれより明らかに小さかった。これは、Puanglek らは、DSC の 100 °C/min という非常に速い測

定速度によりベースラインのシフトを観測したため、本実験の 2 °C/min で行われた DMA 測定に比べ、より高くガラス転移点を見積もったと考えられる。

◎末端分岐状エステルのガラス転移点

直鎖状エステルと同様に側鎖長の増大と共に、ガラス転移点は低下した。末端分岐状エステルのガラス転移点は直鎖状エステルに比べ高い傾向にあった。とりわけ、 α -1,3-glucan-2MPr と α -1,3-glucan-22DMPr のガラス転移点は非常に高く、200 °C 以上であった。これは、従来の3 置換体の多糖エステル誘導体と比べ、最も高い値であった。また、200 °C を超えるガラス転移点は、Nylon (47 °C)や Polyethylene terephthalate (PET: 69 °C)などの石油合成プラスチックを顕著に上回り、Polyether ether ketone (PEEK: 142 °C)や Polyamide imide (275 °C)などのスーパーエンジニアリングプラスチックの領域に達した。

実際に PET と α -1,3-glucan-22DMPr のフィルムに熱処理を行った。すると、PET は結晶化によりフィルムが白化したのに対し、 α -1,3-glucan-22DMPr はその高い熱安定性のため透明性を維持した(図 1-18)。

21-18 Tm and Tg of α-1,3-glucan-2MPr and α-1,3-glucan-22DMPr together with conventional plastics and photographs of (a) films of PET and (b) cast films of α-1,3-glucan-22DMPr before and after annealing.

さらに、特徴的なのは α-1,3-glucan-2MPr と α-1,3-glucan-22DMPr は、200 °C を超える非常に高いガラス転移点を持つにも関わらず、融点がそれぞれ、251 °C、307 °C と比較的低いことである。通常、多糖エステルの熱分解開始温度はおよそ300 °C である。よって、セルロースアセテートや α-1,3-glucan-Ac に代表される高い熱安定性をもつ多糖エステルは、熱分解温度以下で熱流動せず、熱成形できない。一方で、本節で合成した高熱安定性樹脂は熱分解温度以下で熱成形できる可能性を示した。

また、石油合成スーパーエンジニアリングプラスチックの多くは、主鎖骨格の芳香環によって 非常に剛直な構造をもつ。そのため、熱成形でなく、環境負荷の大きい有機溶媒を用いて成型 加工されている。つまり、200 °C のガラス転移点と熱成形性の両立は、熱可塑性高分子材料と してはほとんど実現されておらず、需要の高い物性だと言える。

◎根本分岐状エステルのガラス転移点

本実験では、粉体試料をアルミパンに挟み込んで DMA 測定を行った。測定試料のサイズを 決定できないことに加え、アルミパンの影響も大きく作用するため、貯蔵弾性率及び損失弾性 率を定量的に測定できない。一方で、温度に対する弾性率の変化の様子は定性的に評価でき る。よって、他の側鎖形状の誘導体の場合と同様に、 $an \delta$ 曲線のピークトップをガラス転移点として採用した。

根本分岐状エステルのガラス転移点は、他の場合と同様に、側鎖長の増大に伴い低下した。また、根本分岐状エステルのガラス転移点は、同様の側鎖長をもつ末端分岐状エステルと直鎖状エステルの中間程度の値を示した。例えば、末端分岐状エステルの α -1,3-glucan-2MVaのガラス転移点は、77 °Cであるのに対し、直鎖状エステルの α -1,3-glucan-Vaは 66 °Cであり、末端分岐状エステルの α -1,3-glucan-4MVaは 131 °Cであった。

以上より、α-1,3-glucan の側鎖に分岐形状を導入することで、直鎖状エステルに比べ、ガラス転移点が上昇することが分かった(図 1-19)。さらに、末端に分岐がある場合と根本に分岐がある場合では、前者のほうが、より高いガラス転移点をもたらすことが分かった。すなわち、末端に分岐がある場合に、多糖主鎖が最も剛直になると考えられる。

 $\boxtimes 1-19$ Td-5%, Tm and Tg of α -1,3-glucan esters with (a) linear, (b) terminally branch, and (c) primary branch side chains. Thermal properties of conventional plastics are also shown.

<キャピラリーレオメーターによる溶融粘度測定>

結晶性プラスチックは、融点を基準にして、それを上回る温度で熱成形を行う。しかし、試料が実際に流動を開始する温度は、必ずしも融点と一致するわけではない。そこで、本項では実際に試料が実際に流動する温度を決定することを目的に、溶融粘度測定を行った。試料には、高いガラス転移点を持ちながらも、熱分解温度(300 °C)以下に融点をもつ、 α -1,3-glucan-2MPr または α -1,3-glucan-22DMPr を用いて、熱成形性を評価した(図 1-20)。

 α -1,3-glucan-2MPrは、融点を少し超えた 270 °C付近で著しく粘度が低下した。この結果は、結晶性プラスチックの一般的な傾向である。一方で、 α -1,3-glucan-22DMPr は、ガラス転移点と融点の間の 240 °C 付近で著しく粘度が低下した。これは、 α -1,3-glucan-22DMPr の結晶性が低いことによると考えられ、非晶性プラスチック様の熱成形が可能であることが示唆された。以上より、ガラス転移点が 200 °C を超える α -1,3-glucan-2MPr と α -1,3-glucan-22DMPr は、300 °C 以下で熱成形できることが示された。

21-20 Melting viscosity of α-1,3-glucan-2MPr and α-1,3-glucan-22DMPr.

<溶融紡糸繊維の作製と引張試験>

◎直鎖状エステルの溶融紡糸繊維

 α -1,3-glucan-Pr、 α -1,3-glucan-Bu、 α -1,3-glucan-Va の溶融紡糸繊維を作製し、偏光顕微鏡による写真を図 1-21 に示した。 α -1,3-glucan-Pr (T_m = 294 °C) は 300°C、 α -1,3-glucan-Bu (268 °C) は 270 °C、 α -1,3-glucan-Va (252 °C) は 270 °C で、それぞれ装置の最大巻き取り速度の 180 m/min で紡糸することができた。これまでに、 α -1,3-glucan エステルの熱成形に関する報告例はなく、本研究で初めて溶融紡糸繊維の作製に成功した。しかし、 α -1,3-glucan-Ac は熱流動温度が高すぎ、溶融紡糸できなかった。また、 α -1,3-glucan-Hex は溶融粘度が低すぎ、紡糸中にべたついてしまい、溶融紡糸できなかった。

図**1-21** (a) Photographs of melt-spun fibers of α -1,3-glucan-Bu and (b) POM image of the fibers of linear esters.

溶融紡糸繊維の引張試験の結果を図 1-22 に示す。いずれの誘導体も熱処理を行うことで、 弾性率が 3 倍程度に上昇した。側鎖が短い α-1,3-glucan-Pr が最も高い弾性率を示し、側鎖長の増大と共に弾性率は減少した。溶融紡糸繊維の作製が報告された多糖エステルのパラミロン(β-1,3-glucan) エステルと比較すると、α-1,3-glucan エステルの弾性率は顕著に高かった。 例えば、熱処理を行なった α-1,3-glucan-Pr 繊維の弾性率は 4.63±0.47 GPa であり、同様の巻き取り速度で得られた熱処理後のパラミロンプロピオネート(PAPr)繊維(1.64±0.30 GPa)のおよそ3倍に匹敵した。この原因として、まずパラミロンエステル繊維の場合と同様に、熱処理後の α-1,3-glucan エステルの高分子主鎖の配向度が非常に高いことが挙げられる。実際、熱処理後

の PAPr 繊維の配向度は 95%と報告されており、α-1,3-glucan-Pr, Bu, Va の配向度は、それぞれ 90%、91%、89%と、それに匹敵する値を示した。次に、結晶構造の違いが機械物性に影響していることが考えられる。結晶構造と機械物性の相関については、本節末尾で検討した。

 α -1,3-glucan-Bu 繊維の最大応力は 200 MPa に達した。これは、セルロースエステル繊維には及ばないが、パラミロンプロピオネート(PaPr, Tensile strength = 200±14 MPa)に匹敵した。 α -1,3-glucan-Bu 繊維においては、分子鎖の高い配向性によるタフネスと側鎖の内部可塑効果による柔軟性がバランスよく発現され、高い機械物性が得られたと考えられる。

21-22 Stress strain curves of melt-spun fibers of α -1,3-glucan linear esters (a) before and (b) after annealing.

表**1-12** Mechanical properties of melt-spun fibers of α -1,3-glucan linear esters.

Sample	Diameter (µm)	Tensile strength (MPa)	Elongation at break (%)	Young's modulus (GPa)
α-1,3-glucan-Pr	96 ± 20	128.8 ± 4.7	11.5 ± 0.9	1.46 ± 0.14
α-1,3-glucan-Bu	77 ± 1	217.9 ± 8.6	15.3 ± 0.7	1.20 ± 0.09
α-1,3-glucan-Va	104 ± 2	79.4 ± 8.7	9.8 ± 2.3	0.68 ± 0.04
α-1,3-glucan-Pr_annealed	70 ± 9	115.1 ± 3.4	3.8 ± 0.9	4.63 ± 0.47
α-1,3-glucan-Bu_annealed	80 ± 6	213.5 ± 11.7	10.2 ± 1.7	3.93 ± 0.49
α-1,3-glucan-Va_annealed	60 ± 8	117.0 ± 4.3	8.3 ± 1.2	2.69 ± 0.20

◎分岐状エステルの溶融紡糸繊維

溶融温度は融点及び前項のキャピラリーレオメーターによる溶融粘度測定を参考にして決定した。 α -1,3-glucan-2MPr、 α -1,3-glucan-22DMPr はそれぞれ 280 °C、270 °C で溶融紡糸することができた(図 1-23)。しかし、得られた繊維は脆く引張試験は行えなかった。また、 α -1,3-glucan-2MBu、 α -1,3-glucan-2MVa、 α -1,3-glucan-2MHex については、連続的な溶融紡糸繊維の作製には至っていないが、配向試料の作製には成功した。そこで、これらの配向試料を用いて、広角 X 線回折測定を行った。

21-23 POM image of melt-spun fibers of α -1,3-glucan-2MPr and 22DMPr.

<広角 X 線回折による α-1,3-glucan エステルの結晶構造の解析>

上記で作製した直鎖状及び分岐状の熱処理前後の溶融紡糸繊維を試料とし、広角 X 線回折によってその結晶構造を解析した。熱処理については、いずれの試料に対しても結晶化温度(およそガラス転移点と融点の中間温度)で 1 時間のオーブンアニーリングとした。

◎直鎖状エステルの結晶構造解析

α-1,3-glucan-Pr、α-1,3-glucan-Bu、α-1,3-glucan-Va の熱処理前後の二次元 X 線回折図を図 1-24 に示す。α-1,3-glucan-Pr については、熱処理前は明瞭な回折は見えず、結晶性が低いことが分かる。ところが、熱処理後は明瞭な回折が多く観測された。これは、熱処理によって結晶化が顕著に進行したためである。また、第 3 層線の子午線上に強い回折が現れたことから、3 回らせん構造をとることが示唆された。

α-1,3-glucan-Bu については、熱処理前においても配向結晶化による回折がみられた。また、第 5 層線の子午線上に強い回折が現れたことから、5 回らせん構造をとると予想された。熱処理により配向結晶化が進行し、より明瞭な回折を示した。さらに、第 3 層線の子午線上に強い回折がみられたことから、3 回らせん構造をとると予想された。つまり、熱処理によって結晶のらせん構造が変化したと考えられる。

α-1,3-glucan-Va も、熱処理前は第 5 層線の子午線上に強い回折がみられたのに対し、熱処理後は第 3 層線の子午線上に強い回折がみられた。すなわち、α-1,3-glucan-Bu と同様に熱処理によってらせん構造が変化したと考えられる。

(a) Linear ester: Before annealing

α-1,3-glucan-Bu

α-1,3-glucan-Va

(b) Linear ester: After annealing

α-1,3-glucan-Pr

α-1,3-glucan-Bu

α-1,3-glucan-Va

21-24 2-D X-ray fiber diagrams of α -1,3-glucan linear esters.

続いて、熱処理繊維の X 線回折の指数付け及び格子定数の決定を行った。まず斜方晶の結晶構造を想定し、指数付けを行った。すると、得られた格子定数から算出された密度の計算値は、実測密度に比べ、顕著に低かった。よって、 α -1,3-glucan-Pr、 α -1,3-glucan-Bu、 α -1,3-glucan-Va の単位格子は斜方晶でないと結論付けた。次に、 α -1,3-glucan-Pr、 α -1,3-glucan-Bu、 α -1,3-glucan-Va の結晶構造を単斜晶($\gamma \neq 90^\circ$)として、指数付け及び格子定数の決定行った。格子定数から算出される密度と実測密度が一致するように γ の値を変化させることで、合理的な結晶構造のパラメーターを決定した。単位格子当たりの分子鎖数は 6 本と見積もられた。側鎖長が増大するにつれ、 α 、b、c の値が増加し、単位格子が大きくなった。それに加えて、 γ も増大し、単位格子のひずみが大きくなった。

また、下記 Polany 式(カメラ長: R, 層線番号: m)より求めた格子定数の c の値(繊維周期: /)から、単位格子当たり 3 残基のグルコースユニットが c 軸方向に配列されていることが分かった。つまり、いずれのエステル誘導体とも熱処理を行うことで、3 回らせん構造をとることが明らかにされた。以上の結果から推論される結晶構造を図 1-25 に示した。

$$\bigcirc$$
 Polany $\overrightarrow{\pi}$ $\sin \varphi = \frac{y}{\sqrt{R^2 + y^2}}$, $I = \frac{m\lambda}{\sin \varphi}$

 ext{21-25} Schematic diagram of the molecular conformations and crystal structures of α -1,3-glucan-Pr, Bu, and Va.

次に、単位格子への分子鎖の充填様式を考察する。充填様式は、単位格子内の分子鎖の対象性、すなわち空間群によって分類される。結晶構造の空間群の決定や構造の精密化は、以下のような手順で行う。まず、X線回折図の消滅則から、可能性がある空間群を調べる。次に、もっともらしい空間群を仮定して、結晶構造モデルを作る。そして、実測した各 X線回折の強度と、仮定モデルの構造因子とを比較する。両者の差が最も小さい空間群を採用し、さらに、内部ねじれ角や分子鎖の相対位置を変えながら精密化を行う。本研究では、X線回折の強度抽出は行っていないため、詳細な空間群の決定や構造の精密化は行っていない。

そこで、似た結晶構造を持つ高分子を参考にして、α-1,3-glucan 直鎖状エステルの ab 平面の分子鎖の模式図を推定した(図 1-26)。具体的には、アイソタクチックポリスチレンの結晶構造を参考にした。アイソタクチックポリスチレンは、α-1,3-glucan 直鎖状エステルと同様に、3 回らせん構造をとり、単位格子当たり6本鎖が含まれる。そして、空間群は、C₃√6-R3c または D₃d6-R3c であることが報告されている。いずれの空間群においても、右巻きの分子鎖が左巻きの分子鎖に取り囲まれている点は共通している。

図**1-26** Schematic diagram of the crystal structure of α -1,3-glucan-Pr.

◎直鎖状エステルの結晶構造と物性の相関

前項では、α-1,3-glucan-Bu と α-1,3-glucan-Va の結晶構造は、熱処理によって 5 回らせん構造から 3 回らせん構造に変化することが示された。この結晶構造の変化が、DSC 曲線に現れた二つの吸熱ピーク、すなわち二つの融点の原因だと考えられる。丸林らによる CDPr の熱処理による結晶構造変化の報告から推測されるように、α-1,3-glucan-Bu、α-1,3-glucan-Va のより低温側に現れた融点は、より緩いらせん構造である 5 回らせん構造の結晶由来の融点であり、高温側の融点は 3 回らせん構造の結晶の融点であると考えられる。

また、α-1,3-glucan-Pr の結晶構造は、3 回らせん構造のみであった。これは、α-1,3-glucan-Pr の融点が一つしか観測されなかったことと矛盾しない。カードランにおいては、結晶構造の転移が観察されたのは CDPr のみであり、CDBu や CDVa の結晶構造は 5 回らせんのみであった。そして、CDBu や CDVa の融点も一つだけであった。

溶融紡糸繊維の引張試験において α-1,3-glucan 直鎖状エステルの繊維は、熱処理によって 弾性率が著しく上昇し、パラミロンエステル繊維と比較し、顕著に高い弾性率を示した。この物性の差は、結晶部のらせん構造の差に起因する。つまり、熱処理後の α-1,3-glucan エステルのらせん構造が 3 回らせんであり、より緩いらせん構造である 5 回らせんのパラミロンエステルより剛直な結晶を形成したためである。らせん構造の差が機械物性にもたらす影響について、詳細な検討は本節末尾で行った。

◎分岐状エステルの結晶構造解析

 α -1,3-glucan-2MPr、 α -1,3-glucan-2MBu、 α -1,3-glucan-2MVa、 α -1,3-glucan-2MHex、 α -1,3-glucan-22DMPr の熱処理前後の二次元 X 線回折図を図 1-27 に示した。二分岐状の α -1,3-glucan-2MPr については、熱処理前後とも、第 8 層線の子午線上に強い回折が現れ、8 回らせん構造であることが示唆された。また、第 2 層線の子午線上にも回折が現れた。そこで、繊維を X 線の照射方向に傾斜させて測定を行った。8 回らせんの場合、第 8 層線の回折が強まる傾斜角度は、ブラッグの式(2dsin θ =n λ 、d λ は既知)によると 11°であり、その条件を採用した。結果、第 2 層線の子午線上の回折が弱まり、第 8 層線の子午線上の回折が強まった(図 1-28)。よって、 α -1,3-glucan-2MPr が、8 回らせん構造であることが支持された。

 α -1,3-glucan-2MBu、 α -1,3-glucan-2MVa、 α -1,3-glucan-2MHex は熱処理前後とも、第 5 層線の子午線上に回折が現れ、5 回らせん構造であることが示唆された。 α -1,3-glucan-2MHex は、DSC では融点は観察されなかったが、わずかに結晶性を持つと考えられる。

三分岐状の α-1,3-glucan-22DMPr は、熱処理前は配向結晶化による回折は現れなかったが、 熱処理後は、第 3 層線の子午線上に回折が現れ、3 回らせん構造であることが示唆された。分 岐状エステルにおいては、直鎖状エステルのような熱処理による結晶構造の変化は観察され なかった。

続いて、熱処理後の X 線回折の指数付け及び格子定数の決定を行った。直鎖状エステルの 結果に従って、単位格子は単斜晶(y ≠ 90°)と仮定して計算した。格子定数から算出される密度 と実測密度が一致するように γ の値を変化させ、合理的な結晶構造のパラメーターを決定した。直鎖状エステルの場合と同様に、単位格子当たりの分子鎖数は 6 本であり、側鎖長が増大するにつれ、γ の値が増大し、単位格子のひずみが大きくなった。

Polany 式より求めた格子定数の c の値 (繊維周期: /)から、 α -1,3-glucan-2MPr は単位格子当たり 8 残基、 α -1,3-glucan-2MVa、 α -1,3-glucan-Hex は単位格子当たり 5 残基、 α -1,3-glucan-22DMPr は単位格子当たり 3 残基のグルコースユニットが c 軸方向に配列されていることが分かった。すなわち、 α -1,3-glucan-2MPr は 8 回らせん、 α -1,3-glucan-2MVa、 α -1,3-glucan-2DMPr は 3 回らせん構造であることが明らかにされた(図 1-29)。

(a) branched ester: Before annealing

α-1,3-glucan-2MVa

α-1,3-glucan-2MHex

(b) branched ester: After annealing

α-1,3-glucan-22DMPr

α-1,3-glucan-2MPr

α-1,3-glucan-2MBu

図1-27 2-D X-ray fiber diagrams of α -1,3-glucan branched

図 **1-28** 2-D X-ray fiber diagram of α-1,3-glucan-2MPr tilted 11° to X-ray direction.

 \boxtimes **1-29** Schematic diagram of the molecular conformations and crystal structures of α -1,3-glucan-2MPr and 2MVa.

<分岐状エステルの結晶構造と熱物性の相関>

前項より α -1,3-glucan 二分岐状エステルは、8回らせんや 5回らせん構造をとり、3回らせん構造の直鎖状エステルと比較すると、緩いらせん構造をとることが示された。また、直鎖状、分岐状とも単位格子当たりの分子鎖数は 6本であった。その結果、直鎖状エステルに比べ、分岐状エステルの密度は低い傾向にあった (α -1,3-glucan-Pr: ρ_{cal} =1.18、 α -1,3-glucan-2MPr: ρ_{cal} =1.15、 α -1,3-glucan-Va: ρ_{cal} =1.08、 α -1,3-glucan-2MVa: ρ_{cal} =1.07)。

結晶密度の低下は、結晶が溶融するためのエンタルピー (ΔH_f) 低下に寄与する。融点は $Tm = \Delta H_f / \Delta S_f$ として定義されることから、結晶密度の低下は融点の低下をもたらす。したがって、分岐状エステルは、直鎖状エステルに比べ、低い融点を示したと考えられる。

一方で、分岐状エステルの高いガラス転移点については、分岐状側鎖はかさ高く、非晶部の自由体積を減少させ、主鎖に剛直性をもたらしたためだと考えれば説明ができる。しかし、主鎖の剛直性の直接的な評価は行っていないため、現時点では予想にとどまる。例えば、粘度法により、Mark-Houwink-Sakurada 式 $([\eta]=KM)^{\alpha}$ における、高分子の剛直性を表す定数 a を評価すれば、剛直性の比較評価ができると考える。

実際に α -1,3-glucan エステルについて、粘度法を用いた研究の報告例はないが、未修飾の α -1,3-glucan は DMSO/3%LiCl 溶液において、a=0.9 であることが報告されている。これは、同 溶媒中におけるセルロース(a=0.7)と比べても高く、通常の良溶媒中の高分子(a=0.6 α 0.8)と 比べても高い値である。この結果は、 α -1,3-glucan がセルロースを上回る非常に高い剛直性を もつことを示すとともに、 α -1,3-glucan エステル誘導体が、セルロース誘導体を上回るガラス 転移点をもつことを強く示唆し、本研究の結果を支持していると言える。

1.4.4. 結言

従来報告されていた直鎖状エステルに加え、完全に水酸基を置換した α-1,3-glucan 末端または根本分岐状エステルの合成に成功した。いずれの誘導体からも無色透明なキャストフィルムを作成できた。末端分岐状エステルのフィルムは、直鎖状エステルフィルムより硬く脆い傾向にあった。一方で、根本分岐状エステルのフィルムは、直鎖状エステルよりも柔軟で、高い破断

伸びを示した。

熱物性については、いずれの分岐状エステルのガラス転移点とも、同じ側鎖長の直鎖状エステルより高かった。特に α-1,3-glucan-2MPr、α-1,3-glucan-22DMPr のガラス転移点は、200°C を超え、スーパーエンジニアリングプラスチックに匹敵した。末端分岐と根本分岐を比較すると、末端分岐状エステルのほうが高いガラス転移点を示す傾向にあった。

末端分岐状エステルの熱流動温度は、側鎖が長くなるにつれ上昇した。これは他の多糖エステルには見られない傾向であった。一方で、根本分岐状エステルの融点は、側鎖長の増大と共に、低下した。そしてその融点は、同じ側鎖長の直鎖状エステルと比較すると、低い傾向にあった。この原因を広角 X 線回折測定により明らかにした。具体的には、直鎖状エステルが 3 回らせん構造であるのに対し、根本分岐状エステルは 8 回らせんや 5 回らせんといったより緩いらせん構造をとり、結晶密度が低くなるため融点が低下したと考えられる。

熱成形によって、α-1,3-glucan 直鎖状エステルの溶融紡糸繊維の作製に初めて成功した。いずれの誘導体も熱処理によって高い配向度と、それに伴う高い弾性率を示した。特に α-1,3-glucan-Bu からは、最大応力が約 200 MPa の高い最大応力と約 4 GPa の高い弾性率を併せ持つ繊維が得られた。また、いくつかの分岐状エステルからも、熱成形によって配向結晶化試料を作製できた。

溶融紡糸によって得られた配向試料を利用し、直鎖状及び分岐状エステルの広角 X 線回折測定により、結晶構造解析を行った。いずれの誘導体も、単斜晶の単位格子に 6 本の分子鎖を含み、側鎖長と共に単位格子のひずみが増大することを示した。さらに、熱処理後の結晶構造について、X 線回折の指数付けを行い、格子定数を決定した。また、直鎖状エステルの α -1,3-glucan-Bu α -1,3-glucan-Va は熱処理によって、結晶構造が α -1,3-glucan-Va は熱処理とよって、結晶構造が α -1,3-glucan-Va は熱処理によって、結晶構造が α -1,3-glucan-Va は熱処理によって、結晶構造が α -1,3-glucan-Va は熱処理によって、結晶構造が α -1,3-glucan-Va は熱処理なる融点を持つことを明らかにした。

最後に、電子機器部品としての応用を考え、誘電率を測定した。 α -1,3-glucan-Ac はセルロースアセテートと同様な誘電率を示した。長鎖エステル基や分岐状エステル基を導入すると、さらに誘電率が低下することを明らかにした。特に、分岐状エステル基を導入した場合は、非常に高いガラス転移点(200 °C)と低い誘電率($\epsilon r'$ =3)が両立するため、従来には報告例が少ない、高透明性の高耐熱性低誘電率材料として、有望であることが示された。

以上から、α-1,3-glucan への分岐状側鎖の導入は、直鎖状側鎖の導入では得られない熱、機械、電気物性をもたらすことが明らかにされた。さらに、分岐位置を制御したアルキル基側鎖の導入は、他の多糖及びポリマーにおいても、新規物性の付与に有用であることが示唆された。

1.5. 射出成形体の大型放射光を用いた構造解析

1.5.1. はじめに

プラスチック製品の射出成形体は、成形体の形状によって分子鎖あるいは結晶の配向性が異なることが予想される。それは射出成形を行う際、形状によりせん断のかかり具合が異なるためと考えられる。同じ試料であっても、この射出成形体の形状による内部構造の違いを把握することは、最終製品の物性を制御するために最も必要な情報の一つであると考えられる。部材を破壊せずに、内部構造を解析する方法の一つとして X 線回折が挙げられる。しかしながら、一般の実験室で用いている X 線では輝度(強度)が低く、厚みのあるサンプルを透過することができず、明確なデータを取ることはできない。そこで本実験では、通常の実験室レベルの X 線の 10 億倍以上の強度を有する大型放射光(SPring-8)を用いて、回折実験を行い、成形体の形状による内部構造に違いがあるのかを検討することとした。

1.5.2. 実験

<パラミロンプロピオネート(PaPr)の射出成形体作製>

パラミロンプロピオネートから2種類の形状(図 1-30、短冊片とダンベル片)の射出成形体を作製した(図 1-31)。さらに、金型温度を 50 °C と 160 °C の 2 種類に設定することで、合計4種類のサンプルを作製した。溶融温度は 250 °C と統一し、サンプルを炉に入れ始めた時間からカウントし、押出しを始めるまでを溶融時間とした。実際の溶融時間は 3 ~ 5 分である。全てのサンプルを炉に入れて 30 秒間経過した後、射出圧:500 bar (1 bar = 10⁵ Pa)、保圧:250 bar に設定し、それぞれ 10 s 保持した。金型温度がガラス転移温度以下の50 °C の時は、樹脂がすぐ固化するため、射出後直ち

図1-30 パラミロンプロピオネート の短冊片とダンベル片

に、金型からサンプルを取り出した。一方、結晶化温度に近い 160 ℃ の時は、30~60 分経過した後に金型からサンプルを取り出した。

図 1-31 (左)射出成形機、(右)射出成形の模式図と金型

<大型放射光解析>

播磨大型放射光施設の BL03 ビームラインで広角 X 線回折実験を行った。X 線の波長は 0.1 nm を用い、カメラ長は約 10 cm にて測定を行った。照射時間は $1\sim10$ 秒とし、回折はピラタスに記録した。

1.5.3. 結果と考察

図 1-32 に、短冊片(a)とダンベル片(b)の X 線繊維図とそれぞれの全環平均のプロファイルを示す。金型温度が 50 ℃ の短冊片とダンベル片の回折を比較すると、いずれも2つのリングパターンのみが観察され、結晶性は認められるが、結晶配向性は認められなかった。この回折だけを見ると、短冊片もダンベル片も同じ構造を取っていると考えられる。

しかしながら、金型温度が 160 ℃ の場合を比較してみると、明確な違いが認められた。短冊片では結晶配向に由来する明確な分離した回折は認められなかった。しかし、ダンベル片では、結晶が非常にきれいに配向していることを示す分離した回折が認められた。これは、短冊片内では結晶の向きが揃っておらず無秩序に存在しているが、ダンベル片内では結晶は射出成形の長手方向に平行に並んでいることを示している。これは、短冊片よりダンベル片の方が、分子鎖が金型内に流動する時に、中心に向かってせん断力が集中しているのが原因であると

考えられる。

今回、大型放射光の強力 X 線を用いることにより、厚みのある短冊片とダンベル片の回折を撮影することができ、その結果、ダンベル片の方が強く結晶配向していることが分かった。さらに、160 °C 結晶化したサンプルの回折結果から、50 °C で成形したサンプル内でも分子鎖は、結晶化はしていないが射出成形の流れ方向に配列していると予想される。これらの結果は、最終サンプルの引張強度や曲げ強度等にも影響を及ぼすものと考えられ、今後も必要に応じて大型放射光を用いて内部構造の解析をする必要があると考えられる。

(a) 短冊片 短冊片 (金型温度: 50 °C) 金型温度: 50 °C (b) ダンベル片 毎型温度: 160 °C (b) ダンベル片 毎型温度: 160 °C 金型温度: 160 °C を型温度: 160 °C を型温度: 160 °C を型温度: 160 °C を型温度: 160 °C

図 1-32 短冊片とダンベル片の X 線繊維図とそれぞれの全環平均のプロファイル

実証内容2. 多糖類系バイオプラスチックの耐水性の検討

本業務では、住宅インテリア製品への適用を目指した多糖類系バイオプラスチックを開発するにあたって、要求される耐水性、及び、その他物性を両立するベース樹脂 多糖類エステル誘導体を検討することを目的とする。

昨年度までに、環境負荷が低い多糖類エステル誘導体の合成処方(酸クロリド法)を確立し、その処方によって作製したセルロースエステル誘導体では、目標であるポリプロピレン相当以上の機械強度と耐熱性を発現可能であることが明らかになった。一方、パラミロンエステル誘導体では機械強度と耐熱性は目標未達となった。

耐水性については、射出成形体を 80 ℃ の温水に浸漬することによって異常をきたさないか確認する温水浸漬試験において、パラミロン、セルロース、いずれの多糖類エステル誘導体についても、その試験水が目標 pH をクリアしており、また、長期耐水性にも問題がないことが確認された。しかし、その試験水からは合成処方に用いた成分由来の溶出物質が検出され、メタノールリンスによる洗浄によって一定の除去効果が確認されたものの、不完全であった。以上の昨年度までの検討結果を踏まえて、今年度は最終目標達成に向けて下記3つの検討を行った。

- ① パラミロンエステル誘導体の機械強度・耐熱性の改善
- ② 多糖類エステル誘導体からの溶出物質除去を目指した洗浄処方の改善、及び、形状のある試作部材を用いた製品での試験評価
- ③ 開発した多糖類エステル誘導体のマテリアルリサイクル性の評価

2.1. パラミロンエステル誘導体の機械強度・耐熱性の改善

生成物組成 機械強度 耐熱性 長鎖 短鎖 曲げ 80℃ 曲げ 80℃ シャルヒ°-ガラス 荷重 種類 DS DS 強度 曲げ 弾性率 曲げ 衝撃強度 転移温度 たわみ温度 強度 弾性率 [MPa] [MPa] [kJ/m²]Ta[℃] HDT[℃] [MPa] [MPa] 目標(現行品) 900 254 5.3 48 32 8.3 パラミロン誘導体 He 1.2 Pr 1.8 73 23 0.6 743 121 9.7 45 セルロース誘導体 He 0.9 Pr 2.1 42 9.3 1400 467 9.8 101 58

表 2-1 昨年度の多糖類エステル誘導体の機械強度と耐熱性の評価結果

昨年度に実施した、パラミロンエステル誘導体、及び、セルロースエステル誘導体の評価結果を表 2-1 に示す。酸クロリド法で誘導体を合成し、射出成形で試験片を作製してその機械物性と耐熱性を評価した。機械物性では、曲げ強度、曲げ弾性率、シャルピー衝撃強度を、耐熱性では、ガラス転移温度と荷重たわみ温度(HDT)を指標として目標値(現行品 ポリプロピレン)との比較を行った。試験の雰囲気温度は、曲げ試験では 23 ℃、もしくは 80 ℃ とし、シャルピー衝撃試験では 23 ℃ とした。また、荷重たわみ温度の曲げ応力は 1.80 MPa とした。

表 2-1 から、パラミロンエステル誘導体では全ての項目で目標未達となっているが、特に、80 °C 環境下で著しく機械強度が低下していることがわかる。そこで、改善に向けてパラミロンエステル誘導体のガラス転移温度(Tg)を 100 °C 程度まで高めることで、80 °C 環境下での機械強度を向上する方針を立てた。過去の知見を踏まえて Tg を高める側鎖構造の見直し検討を

行った結果、長鎖成分であるヘキサノイル基(He)と短鎖成分であるプロピオニル基(Pr)の比率を He: Pr = 0.3: 2.7 (全体置換度は 3.0 を維持)に変更することで Tg を 100 ℃ 程度にまで高めることが可能であると予想した。そこで、この長鎖短鎖の結合比率になるように合成処方を検討し、パラミロンエステル誘導体を酸クロリド法で合成して再評価を実施した。合成したパラミロンエステル誘導体の ¹N-NMR 分析を行ったところ、その長鎖短鎖の結合比率は、He: Pr = 0.3: 2.7、全体置換度 3.0 となっていることが確認された。

表 2-2 改善したパラミロンエステル誘導体の機械強度と耐熱性の評価結果

	生成物	物組成			耐熱性				
種類	長鎖 DS	短鎖 DS	曲げ 強度 [MPa]	80℃ 曲げ 強度 [MPa]	曲げ 弾性率 [MPa]	80℃ 曲げ 弾性率 [MPa]	シャルピー 衝撃強度 [kJ/m²]	ガラス 転移温度 Tg[℃]	荷重 たわみ温度 HDT[℃]
目標(現行品)			32	8.3	900	254	5.3		48
パラミロン誘導体 (改善前,再掲)	He 1.2	Pr 1.8	23	0.6	743	121	9.7	73	45
パラミロン誘導体 (改善品)	He 0.3	Pr 2.7	45	15	1390	644	8.8	106	62

表 2-2 に改善したパラミロンエステル誘導体の機械強度と耐熱性の評価結果を示す。プロピオニル基の側鎖置換度を 1.8 から 2.7 に高めることで、ガラス転移温度は 106 $^{\circ}$ C となり、改善前の 73 $^{\circ}$ C から約 30 $^{\circ}$ C、高めることができた。その結果、80 $^{\circ}$ C 環境下での曲げ強度は 15 MPa(改善前に対して約 25 倍)、曲げ弾性率は 1390 MPa(約 2 倍)に向上した。シャルピー衝撃強度はわずかに低下したものの、荷重たわみ温度は 62 $^{\circ}$ C に向上し、パラミロンエステル誘導体でも全ての項目で目標値を達成できた。

以上の結果から、ポリプロピレン相当を目指す場合の多糖類エステル誘導体の適正な長鎖短鎖の結合比率は、パラミロンエステル誘導体では He: Pr = 0.3:2.7(全体置換度 3.0)、セルロースエステル誘導体では、He: Pr = 0.9:2.1(全体置換度 3.0)であることが明らかになった。

2.2. 多糖類エステル誘導体からの溶出物質除去

昨年度に実施した、多糖類エステル誘導体の耐水性・溶出性の評価結果を表 2-3 に示す。酸クロリド法で合成したパラミロンエステル誘導体、セルロースエステル誘導体を用いて試験片

表 2-3 昨年度の多糖類エステル誘導体の耐水性、 溶出性の評価結果

	生成物組成		耐ス	溶出性	
種類	長鎖DS	短鎖DS	80℃温水 3時間浸漬	常温 3か月浸漬	80℃温水 3時間浸漬
目標(現行品)			pH 6∼7	著しい外観 異常なきこと	溶出なきこと
パラミロン誘導体	He 1.2	Pr 1.8	pH 7	異常なし	溶出物質 有り
セルロース誘導体	He 1.1	Pr 1.9	pH 7	異常なし	溶出物質 有り

表 2-3 から、耐水性についてはいずれの多糖類エステル誘導体でも試験水の pH は 7 となっており目標を達成できた。しかし溶出性では、合成処方由来の物質が検出され、残課題となっていた。

表 2-4 に昨年度の溶出性評価において、GC/MS 分析で検出された溶出物質を示す。これらのうち、ケトン類(3-ペンタノン、3-オクタノン)とカルボン酸(プロピオン酸、ヘキサン酸)は、合成処方に用いた長鎖・短鎖成分由来の物質であり、ピリジンは溶媒、4-エチルピリジン(もしくは、2,5-ジメチルピリジン)はピリジンが変性した成分である。昨年度の溶出性評価結果によると、これら6成分のうち特にケトン類が多く検出されていた。また、合成後の誘導体にメタノールリンスによる洗浄を施すと、一部の物質において一定の除去効果を確認できたものの、ケトン類の除去は困難であった。この昨年度の検討結果から、酸クロリド法で用いた合成処

表 2-4 昨年度の溶出性評価で 検出された溶出物質

<u>Дастиспатаж</u>
GC/MS 検出成分
3-ペンタノン
ピリジン
3-オクタノン
4-エチルピリジン、
もしくは、2,5-ジメチルピリジン
プロピオン酸
ヘキサン酸

方成分は現状の洗浄工程を経た後にも誘導体中に残留しており、射出成形体にまで移行していること、また、合成処方成分の中でも特に、長鎖・短鎖成分由来の物質が多いことが判明した。過去の知見から、多糖類エステル誘導体をクロロホルムなどの有機溶媒に溶解させ、再沈殿させる工程を数回行うことで GC/MS 分析で溶出物質が検出されないほど除去されたことが明らかになっている。しかし、この方法は環境負荷が大きく、また、工業的にも不向きである。そこで、なるべく簡便な残留物質の除去方法として、次の2つの方法を検討した。

- ① 多糖類エステル誘導体へのマイクロ波照射
- ② 水、もしくは、水・アルコール混合液による洗浄処方

合成後の誘導体にマイクロ波を照射することで、誘導体を乾燥しつつ残留物質を除去できる可能性があり、効率的、かつ、低環境負荷であることから、まずマイクロ波照射について検討を行った。

2.2.1. 多糖類エステル誘導体へのマイクロ波照射

最初に、多糖類エステル誘導体の射出成形体に含まれる残留物質量を定量化するため、溶出試験、及び、浸出試験を実施した。溶出試験は、食品衛生法 370 号に定められた試験方法に準拠した。浸出試験は、水道法に基づく試験方法(JIS S3200-7)に準拠した。パラミロンエステル誘導体(He: Pr = 0.3: 2.7、全体置換度 3.0)、及び、セルロースエステル誘導体(He: Pr = 0.9: 2.1、全体置換度 3.0)の射出成形体を試験片とし、60 ℃ の蒸留水に 30 分間浸漬した試験水を評価した。キッチン水栓などの製品を用いる試験では、製品中に試験水を封入し、所定時間が経過した後に水を入れ替える慣らし操作(コンディショニング)を所定日数 繰り返した後に評価するが、今回は残留物質量を把握することが目的のため、慣らし操作は行わずに評価を実施した。

表 2-5 に溶出試験、浸出試験結果を示す。表 2-5 によると、過マンガン酸カリウム消費量、蒸発残留物、及び、アミン類については基準値以下になっており、その中でも蒸発残留物とアミン類については測定限界以下であった。アミン類が検出されなかったことから、化学構造中に窒素を含むピリジン、及び、4-エチルピリジン(もしくは、2,5-ジメチルピリジン)については、基準値を超える溶出がなかったことがわかる。過マンガン酸カリウム消費量と全有機炭素量(TOC)はほぼ同程度の検出量となったが、より厳しい基準値が設けられている TOC では基準値を超える結果となった。特に、パラミロンエステル誘導体の TOC は 3.3mg/L と、基準値0.5mg/L を大きく超える結果となった。昨年度の GC/MS 分析結果から、この主成分はケトン類(3-ペンタノン、3-オクタノン)とカルボン酸(プロピオン酸、ヘキサン酸)であると考えられる。以

上の結果から、TOC を基準値以下にするために必要な低下幅と、留意すべき成分がケトン類とカルボン酸であることが判明した。そこでこれらを踏まえてマイクロ波照射の検討を行った。

表 2-5 多糖類エステル誘導体の溶出試験、浸出試験結果

5.8EA.7E		新						
	試験項目	パラミロン 誘導体	セルロース 誘導体	目標(基準)				
次山手段	過マンガン酸カリウム消費量(μg/mL)	3	1	10以下				
溶出試験	蒸発残留物(µg/mL)	10未満	10未満	10未満				
>= 111= PEA	全有機炭素量(TOC)(mg/L)	3.3	1.8	0.5以下				
浸出試験	アミン類(mg/L)	0.01未満	0.01未満	0.01以下				

表 2-6 長鎖・短鎖成分由来の溶出物質の沸点

溶出物質	沸点(°C)
3ーペンタノン	101
3ーオクタノン	167
プロピオン酸	141
ヘキサン酸	205

マイクロ波の照射タイミングは、多糖類エステル誘導体を合成し、再沈殿・濾過した後の乾燥工程で行うことを想定している。従って、誘導体の状態は、再沈殿に用いるメタノール水混合液を含んだ湿体、もしくは、ある程度乾燥が進んだ粉体である。そこで、マイクロ波照射サンプルは、乾燥粉体と湿体の2水準を検討した。湿体については、多糖類エステル誘導体にメタノール水混合液を含ませ、30L スケールでの合成実績に合わせて湿体/乾燥粉体の比率を 2.4 としてサンプルを作製した。多糖類エステル誘導体には、先の浸出試験において TOC が大きかったパラミロンエステル誘導体(He: Pr = 0.3: 2.7、全体置換度 3.0)を用いた。

表 2-6 に長鎖・短鎖成分由来の溶出物質とその沸点を示す。溶出物質の沸点はいずれもメタノールや水より高い 100°C 以上である。再沈殿・濾過後の誘導体に含まれるメタノールや水を揮発させながら効率的にマイクロ波によって溶出物質を揮発させるため、マイクロ波照射中の雰囲気温度を、湿体では照射開始時にメタノールの沸点(65°C)以上である 70°C とし、その後、水の沸点である 100°C まで昇温した。粉体では雰囲気温度を 100°C とした。マイクロ波の照射時間はいずれも 120分とした。マイクロ波の周波数は 2.45 GHz とし、サンプルに均一にマイクロ波を照射するため、撹拌羽でサンプルを撹拌した。撹拌速度は 60 rpm とした。また、1 L/分の窒素フローを行った。表 2-7 にマイクロ波照射条件を、図 2-1 にマイクロ波照射処理の様子を示す。また、図 2-2 に各サンプルの温度プロファイルを示す。

表 2-7 マイクロ波照射条件

サンプル	マイクロ波照射条件
パラミロン誘導体 (粉体)	100 ℃ 中で 120 分照射
パラミロン誘導体 (湿体)	70 ℃ 中で 30 分照射後、 100 ℃ 中で 90 分照射

図 2-1 マイクロ波照射処理の様子 →

図 2-2 パラミロン誘導体の温度プロファイル(左:粉体、右:湿体)

マイクロ波を照射したパラミロンエステル誘導体を用いて、射出成形によって試験片を作製し、80 °C の蒸留水に 3 時間浸漬した。この試験水を 80 °C で 30 分間加熱して揮発したガス成分を GC/MS 分析し、溶出物質の定性分析を行った。マイクロ波を照射しなかったパラミロンエステル誘導体でも同様の分析を行い、比較した。

図 2-3 にマイクロ波処理なし、粉体へマイクロ波処理、湿体へマイクロ波処理した射出成形試験片の外観を示す。マイクロ波処理の有無によって、

射出成形体の外観に違いは見られなかった。

表 2-8 に溶出性評価において GC/MS 分析で検出された溶出物質を、図 2-4 に GC/MS 分析チャートを示す。マイクロ波処理なし、マイクロ波処理(粉体)、マイクロ波処理(湿体)のいずれにおいてもケトン類、ピリジン系物質、カルボン酸が検出されており、マイクロ波照射の有無、サンプルの乾燥状態に関わらず溶出物質に違いはなかった。また、これらの中でもケトン類(3-ペンタノン、3-オクタノン)が多く検出された。

表 2-8 溶出性評価で検出 された溶出物質

GC/MS 検出成分
3-ペンタノン
ピリジン
3-オクタノン
4-エチルピリジン、
もしくは、2,5-ジメチルピリジン
プロピオン酸

図 2-3 射出成形試験片の外観 (左)マイクロ波照射なし、 (中央)粉体へマイクロ波照射処理、(右)湿体へマイクロ波照射処理

図 2-4 GC/MS 分析チャート

図 2-5 GC/MS ピークエリア (左)3-ペンタノン、(右)3-オクタノン

図 2-6 GC/MS ピークエリア (左)ピリジン、(中央)4-エチルピリジン、(右)プロピオン酸

次に、各溶出物質のGC/MSピークエリアを比較した結果を図 2-5、及び、図 2-6 に示す。図 2-5 図 2-6 から、3-ペンタノン、3-オクタノン、ピリジンについてはマイクロ波照射の有無、及び、サンプルの乾燥状態(粉体/湿体)によって差は見られず、マイクロ波処理の効果を確認できなかった。一方、4-エチルピリジンでは 10 ~ 20 %程度、プロピオン酸ではおよそ 50 %の除去効果が確認された。また、サンプルの乾燥状態(粉体/湿体)で比較すると、いずれも湿体の方がやや大きな除去効果が認められた。

しかし、一定の除去効果が表れた2物質(4-エチルピリジンとプロピオン酸)よりもケトン類の溶出量が圧倒的に多いため、全体としてはマイクロ波による顕著な除去効果は期待できず、今回行った処理条件下では TOC を基準値以下に低下することは難しいことが判明した。

この結果は、そもそも誘導体中に含まれる溶出物質量が誘導体量に対して極めて少ないため、マイクロ波を有効に溶出物質に照射することが難しかったことが要因の一つとして考えらえる。また、乾燥工程での照射を前提に検討を行ったため、マイクロ波の周波数や温度条件が水やメタノールの揮発には向いている条件ではあったものの、溶出物質の除去にはミスマッチだったことも考えられる。従って、マイクロ波による溶出物質の除去については、有効なマイクロ波の照射方法や条件についてさらに検討を行うことで効果を高められる可能性がある。しかしそのためには、より詳細な検討を要すると判断し、2つ目の方法である洗浄処方の検討に移った。

2.2.2. 水、もしくは、水・アルコール混合液による洗浄処方の検討

多糖類エステル誘導体に含まれる合成処方の残留物質を除去する2つ目の方法とフールの混合液による洗浄処方で、水、あるいは、水とアルカの混合液による洗浄率を対した。製造時の処方を検討した。製造時ない処方をは誘導体合成後のクエスをは誘導体合成後のクエールをはまずるため、多糖類エステル誘導等とした。これまでの検討場等に含まれる合成処方の残留物質は、温水やメタノール

リンスによって一定の 除去効果があることが 明らかになっている。各 溶出物質の水やアルコ ールへの溶解性を表 2-9 に示す。いずれの溶出 物質も水やアルコール

表 2-9 溶出物質の水とアルコールに対する溶解性

溶出物質	水	アルコール
3-ペンタノン	可溶 (1.7g/100g,20°C)	エタノールに可溶
3-オクタノン (2-オクタノン)	情報なし (0.09g/100g)	エタノールに易溶
プロピオン酸	易溶	エタノールに可溶
ヘキサン酸	可溶 (1.1g/100g)	エタノールに易溶
ピリジン	易溶	エタノールに易溶

表 2-10 洗浄場処方

洗浄処方	洗浄液	洗浄条件
温水洗浄	イオン交換水	80℃、180分
メタノール・水 混合液洗浄	メタノール:イオン交換水=1:1 (体積比)	60℃、180分

(エタノール)に易溶、もしくは、可溶である。メタノールへの溶解性については情報がないものの、過去の検討結果も踏まえるとエタノールへの溶解性と同様の傾向と予想される。そこで、 洗浄液には水とメタノールを選定し、表 2-10 に示す2つの洗浄処方を考案した。

温水洗浄の温度条件については、セルロースエステル誘導体の Tg が 101 °C、パラミロンエステル誘導体が 106 °C であることを踏まえ、誘導体にダメージを与えないように配慮して 80 °C とした。メタノール・水混合液の温度条件については、メタノールの沸点(65 °C)を鑑みて 60 °C とした。パラミロンエステル誘導体(He: Pr = 0.3: 2.7, 全体置換度 3.0)、及び、セルロース

エステル誘導体(He: Pr = 0.9: 2.1, 全体置換度 3.0)を2つの洗浄処方によって洗浄した後、射出成形体を作製して浸出試験の過マンガン酸カリウム消費量と溶出試験の TOC を評価した。 洗浄中の撹拌速度は60rpm とした。

図 2-7 過マンガン酸カリウム消費量の評価結果

図 2-8 全有機炭素量(TOC)の評価結果

図 2-7 に過マンガン酸カリウム消費量、図 2-8 に TOC の評価結果を示す。セルロースエステル誘導体の過マンガン酸カリウム消費量は、検出限界である 1 未満であった。過マンガン酸カリウム消費量について2つの洗浄処方を比較すると、パラミロンエステル誘導体、セルロースエステル誘導体のいずれも同等の結果となった。TOC については、パラミロンエステル誘導体では両洗浄処方の間でほぼ差は見られなかったが、セルロースエステル誘導体では温水洗浄の方が、メタノール・水混合液洗浄と比べておよそ 1/2 の TOC となった。TOC の結果がパラミロンエステル誘導体とセルロースエステル誘導体で異なったのは、合成処方に用いた長鎖・短鎖成分の仕込み比率の違いが現れたと考えられる。

以上の結果から、2つの洗浄処方の効果はパラミロンエステル誘導体についてはほぼ同等、 セルロースエステル誘導体ではやや温水洗浄の効果が大きいと判断した。そこで、洗浄処方と して温水洗浄を選定し、温水洗浄工程を追加することによって各種物性に影響が現れないか を確認した。

	4	上成物組 质	k		機械強度					耐熱性	
種類	長鎖DS	短鎖DS	分子量 (Mw)	曲げ 強度 [MPa]	80℃ 曲げ 強度 [MPa]	曲げ 弾性率 [MPa]	80℃ 曲げ 弾性率 [MPa]	シャルピー 衝撃強度 [kJ/m²]	ガラス 転移温度 Tg[℃]	荷重 たわみ温度 HDT[℃]	
目標(現行品)				32	8.3	900	254	5.3		48	
パラミロン誘導体 洗浄なし	He 0.3	Pr 2.7	68万	45	15	1390	644	8.8	106	62	
パラミロン誘導体 洗浄あり	He 0.3	Pr 2.7	88万	52	16	1380	703	8.0	104	68	
セルロース誘導体 洗浄なし	He 0.9	Pr 2.1	22万	42	9.3	1400	467	9.8	101	58	
セルロース誘導体 洗浄あり	He 0.9	Pr 2.1	25万	42	9.2	1310	437	14	101	57	

表 2-11 温水洗浄を行った多糖類エステル誘導体の物性評価結果一覧

表 2-11 に温水洗浄を行わなかった多糖類エステル誘導体、及び、温水洗浄を行った誘導体の各種物性評価の結果一覧を示す。パラミロンエステル誘導体、セルロースエステル誘導体のいずれにおいても、全ての項目で目標値を達成できた。また、概ねの項目で温水洗浄を施した

水準は、温水洗浄を行わなかった水準と同等の物性値を示した。温水洗浄を施した水準の方が施さなかった水準より低い値を示した項目が一部見られるものの、これはバラツキの範囲内であり同等の結果と判断した。以上の結果から、温水洗浄工程を追加することによって各種物性に悪影響を及ぼすことはないことが確認された。そこで、形状のある試作部材を用いた製品での試験評価を行った。

2.3. 浄水器向け試作品としての試験評価

本実証事業における水回りの住宅建材の具体的な用途として、キッチン水栓の内部に用いられる浄水カートリッジを想定している(図2-9)。そこで、TOCが多かったパラミロンエステル誘導体(He: Pr=0.3:2.7,全体置換度3.0)を用いて浄水カートリッジのキャップ部品を射出成形で作製し、浄水カートリッジを組み立ててキッチン水栓製品でのTOCを評価した。

図 2-9 想定用途(浄水カートリッジ部材)

水道法(JIS S3200-7)の試験 方法に則って、試作品を取り付けたキッチン水栓製品中にイオン交換水を封入し、所定時間が経過した後に封入水を入れ替える慣らし操作(コンディショニング)を 18 日間行った。試験環境温度は 23°C とした。慣らし操作で採取された試験水の TOC を測定

開発樹脂を組み込んだ

慣らし操作の様子

浄水カートリッジ 水栓への取り付けの様子

図 2-10 試作品と試験評価の様子

し、経時変化を評価した。基準値は 0.5mg/L である。図 2-10 に試作品と試験評価の様子を示す。

温水洗浄を行わなかったパラミロンエステル誘導体を用いた試作品の TOC 経時変化を図 2-11 に示す。慣らし操作の初期に基準値 0.5mg/L を大きく上回る TOC となり、その後、徐々に低下して 14 日後に基準値を下回った。この結果から、消費者が製品を使用し始めた段階では、基準値以上の溶出が発生する恐れがあることが判明した。

慣らし操作日数 (日)

図 2-11 温水洗浄を行わなかった試作品の TOC 経時変化

図 2-12 温水洗浄を行った試作品の TOC 経時変化

温水洗浄を行なったパラミロンエステル誘導体を用いた試作品の TOC 経時変化を図 2-12 に示す。慣らし操作の初期から基準値 0.5mg/L を下回り、10 日経過後にはほぼゼロとなった。従って、温水洗浄を行うことで消費者の製品使用開始段階から溶出量を基準値以下に抑制することができ、さらに、ある程度使用していくとほぼゼロとなることが明らかになった。この結果から、キッチン水栓製品用途においては多糖類エステル誘導体の製造工程に温水洗浄工程を追加する必要性があると判断した。

2.4. 多糖類エステル誘導体のマテリアルリサイクル性の評価

開発した多糖類エステル誘導体は、それが用いられた各種製品の寿命を終えた後にはリサイクルすることを目指しているため、各誘導体のマテリアルリサイクル性を評価した。パラミロンエステル誘導体(He: Pr = 0.3:2.7、全体置換度 3.0)、及び、セルロースエステル誘導体(He: Pr = 0.9:2.1、全体置換度 3.0)の射出成形体を作製し、凍結粉砕した後、再溶融してペレット状に加工し、再び射出成形体を作製するサイクルを5回まで繰り返し、各種物性に及ぼす影響を調べた。パラミロンエステル誘導体の射出成形温度は 220 ℃、再溶融温度は 215 ℃ とし、セルロースエステル誘導体では射出成形温度を 195 ℃、再溶融温度を 185 ℃ とした。リサイクル時にはバージン材を混合せず、リサイクル材率 100%とした。図 2-13 にリサイクル性の評価に用いた装置、図 2-14 にリサイクルした射出成形体の外観を示す。

セルロース誘導体
0回 1回 2回 3回 5回

図 2-13 リサイクル性の評価に用いた ラボ用小型混練機(左) 及び、小型射出成型機(右)

図 2-14 リサイクルした射出成形体の外観

図 2-15 リサイクル回数と重量平均分子量の関係

図 2-15 にリサイクル回数と多糖類エステル誘導体の重量平均分子量(Mw)の関係を示す。 どちらの多糖類エステル誘導体においても、リサイクルを繰り返すほど分子量は低下傾向を示した。セルロースエステル誘導体ではリサイクル 1 回ごとに約 10 %減少し、リサイクル5回後には約 30 %の減少となった。パラミロンエステル誘導体ではやや減少幅が大きく、リサイクル1回ごとに約 20 %減少し、リサイクル5回後には約 60 %の減少となった。いずれの誘導体も全体置換度と長鎖短鎖の結合比率に変化はなかったため、糖主鎖の切断が分子量低下の要因と考えられる。

図 2-16 リサイクル回数と溶融粘度の関係

図 2-17 分子量と溶融粘度の関係

図 2-16 にリサイクル回数と多糖類エステル誘導体の溶融粘度の関係を示す。測定方法は、JIS K 7210-1(B 法)に準拠した。温度は 220 °C、荷重は 1.2kgf とし、測定数 2 回の平均値で評価した。どちらの多糖類エステル誘導体においても、リサイクルを繰り返すほど溶融粘度は一定の上昇傾向を示し、総じてセルロースエステル誘導体の方が大きな値を示した。

分子量と溶融粘度の測定結果を基にして、これらの関係を図 2-17 に示す。分子量と溶融粘度の間には負の相関が見られた。各誘導体それぞれの分子量範囲において、分子量の低下に伴って上昇する溶融粘度の程度は、パラミロンエステル誘導体の方がセルロースエステル誘導体より緩やかであった。

図 2-18 リサイクル回数と曲げ強度の関係

図 2-19 リサイクル回数と曲げ弾性率の関係

図 2-20 リサイクル回数とシャルピー衝撃強度の関係

続いて、リサイクル回数と機械強度の関係を評価した。図 2-18 に曲げ強度、図 2-19 に曲げ弾性率、図 2-20 にシャルピー衝撃強度の結果を示す。いずれも試験環境温度は 23 ℃ とした。 曲げ強度、及び、曲げ弾性率では、どちらの多糖類エステル誘導体についてもリサイクル回数 5回まででは低下することなく横ばいを示し、目標値以上を維持した。一方で、シャルピー衝撃強度は、いずれの多糖類エステル誘導体でも低下傾向となった。特に、パラミロンエステル誘導体ではリサイクル回数5回で目標値を下回る結果となった。図 2-15 に示したように、リサイクル回数の増加に伴って分子量は低下するが、約 15 万前後の範囲までにおいては、曲げ強度や弾性率は比較的維持され、衝撃強度の方が影響を受けやすいことが判明した。

本節で使用したラボ用小型混練機は2軸のもので、材料にかかるシェアが比較的高いものである。一方、実施内容4において実施したリサイクル検討では材料に係るシェアが小さな1軸の押出機を用い、リサイクル5回でも物性が90%維持される傾向を見出している。そのため、本節のようなリサイクル回数の増加に伴う機械特性、分子量などの低下はリサイクル(リペレット)時の混練シェアや熱履歴に起因していると推測される。

実際の事業において、使用後の製品から回収された多糖類エステル誘導体をリサイクルする際には、リサイクル材の供給量(回収量)の観点から、適切な割合でバージン材との混合などの処置を施す必要がある。この点は、本実証事業終了後、事業化に向けての検討課題である。

2.5. 本実証事業終了後の開発方針

今年度は、まずパラミロンエステル誘導体の物性を向上するための分子設計を行い、機械強度と耐熱性を改善して全項目で目標値を達成した。次に、射出成形体から水へ合成処方由来の物質が溶出する課題に対して、誘導体合成後に温水洗浄工程を追加することで残留物質を除去でき、かつ、機械強度や耐熱性などの物性に影響を及ぼさないことを確認した。また、開発した樹脂を用いて浄水カートリッジを試作し、キッチン水栓製品に組み付けて水道法(JIS S3200-7)の溶出試験を行った結果、全有機炭素量(TOC)の基準値をクリアした。すなわち、水回りの住宅建材に適用するために必要な耐水性とその他物性の両立を実現し、最終目標を達成できた。さらに、開発樹脂のマテリアルリサイクル性をリサイクル回数 5 回まで評価した。材料に係るシェアが大きな2軸混練機を用いてリサイクルを繰り返すと分子量は徐々に低下し、その結果、曲げ強度・弾性率は維持されるものの、衝撃強度はリサイクル回数5回で目標値を下回ることが判明した。

以上の成果を踏まえて、本実証事業終了後の開発方針として、リサイクル実現(リサイクル材のサプライチェーンや衝撃強度調整など)に向けたリサイクル材とバージン材の複合化検討を行う予定である。

実証内容3. 多糖類系バイオプラスチックの量産性の検討

本業務では、電子機器や住宅インテリア製品へ適用可能な多糖類系バイオプラスチックの量産性と経済性について検討することを目的とする。昨年度までに、パイロットスケールプラント(501 kg/2DAY/Batch)の多糖類系バイオプラスチックの製造工程の内、排液工程の技術課題を抽出、および経済性を把握した。今年度は、はじめにパイロットスケールプラントの残りのプロセスであるエステル化工程、析出工程、洗浄工程(図 3-1 の赤枠部分)、並びに用役供給設備、空間インフラ設備に関して、技術課題を抽出、および経済性の把握を行うことでパイロットプラントのプロセス全体の設計を実施した。

図 3-1 多糖類系バイオプラスチックの誘導体化プロセス

加えて、パイロットプラントを基に、最終目的である年間 20 万トン生産スケールである商業プラントの設計を可能にする実証プラントの規模を決定し、設計を行った。最後に、実証プラントの設計結果を基に係数倍にて商業プラントのFSを実施し、現時点で想定される商業プラントの経済性の把握を行った。本項目での実施事項の略図を図 3-2 の①~④に示す。

図 3-2 今年度実施内容の略式図

3.1. パイロットスケールプラントにおける合成設備の設計

設計を行うパイロットスケールプラント生産量は、生産量 501 kg/バッチ、1 バッチの運転時間を 2 日間(48 時間)とした。これは、昨年先行して実施した廃液回収蒸留設備設計の廃液処理量 200 kg/時間に対応したものである。合成反応のマテリアルバランスは、表 3-1 に記した内容に従っている。また、設計における用役の条件は、表 3-2 の通りとした。すべての用役は配管あるいは配線により供給あるいは戻される。

表 3-1 パイロットプラントでの合成反応のマテリアルバランス設定

IN	kg/kg-BM	OUT	kg/kg-BM
長鎖脂肪酸	0.19	酸クロ化副生ガス	0.67
短鎖脂肪酸	0.57	廃液	19.17
酸クロル剤	0.83	BM(バイオマテリアル)	1.00
パラミロン	0.52		
NMP	6.10		
ピリジン	0.81		
メタノール[析出溶媒]	5.33		
水[析出溶媒]	1.49		
メタノール[洗浄溶媒]	4.44		
水[洗浄溶媒]	0.56		

表 3-2 パイロットプラントの用役条件

用役	圧力(MPaG)	温度(℃)	電圧
蒸気	1.6	204.3(飽和蒸気)	
冷却水	0.3	入口32 出口37	
計装空気	0.6		
電力(動力)			220V x 3Ф x 60Hz
電力(制御用)			110V x 60Hz

3.1.1. 合成における工程のプロセスフロー

設計条件に基づき、プロセスフローを構築した。フローは、反応攪拌槽・析出攪拌槽、洗浄・ろ過、乾燥、熱媒系、プロパン冷凍系の5つのパラミロンエステル合成設備プロセスフローダイアグラム(PFD)で構成される。各プロセスを主要機器に従い説明する。

<反応>

反応攪拌槽はパラミロンエステル合成反応行う機器である。原料である固体パラミロンと酸クロ剤を溶媒の NMP とピリジン混合溶液下でエステル化反応を行う。この反応は発熱反応で 1,709 kJ/kg-パラミロンと推定される。

反応はジャケット付きグラスライニング、6枚タービン翼(回転数毎分 150)でバッフル無しの 攪拌槽 1 基で計画した。これはテスト装置の仕様を踏襲している。PFD を図 3-3 に示す。

<析出>

反応攪拌槽で合成されたエステル化合物は溶媒中に混合液として存在し反応後、析出攪拌槽へ移送する。析出時の液量は反応時の液量に較べ 1.75 倍と大きくなり、またエステル化反応でホスゲンを使用し、塩酸の副生があるためである。析出攪拌槽の生成液にメタノールを投入してクエンチを行う。その後純水を投入しパラミロンエステルを析出する。エステルを析出した混合液をデカンテーションすることで、軽液を析出攪拌槽外に分離し、パラミロンエステルの固体が濃縮された重液を析出攪拌槽に滞留させる。PFD を図 3-3 に示す。

<洗浄・ろ過>

次にパラミロンエステルの固体が濃縮された重液を洗浄する。洗浄操作は6回行い、洗浄液はメタノールと純水の混合液で向流洗浄とし、各洗浄後に固液の分離を行う。第一回の洗浄は析出攪拌槽で行い、固液の分離も攪拌洗浄をデカンテーションで実施する。第一回洗浄後の混合物は粘稠であり、ろ過が困難であるとのテスト結果が反映された。第二回から第六回の洗浄と固液の分離はそれぞれ第一・第二洗浄槽およびろ過機供給槽と加圧ろ過で実施する。

洗浄液と固体は洗浄槽で攪拌洗浄され、洗浄後ろ過機供給槽へ移送される。ろ過機は加圧型ろ過機で、ろ過機供給槽との組合せでこの機器を循環しながらろ過が行われる。

析出操作で分離された溶媒と第一回洗浄液は廃液タンクに貯留される。ろ過機で分離された洗浄液は、向流洗浄液として再使用するため第一~五洗浄液タンクに貯留される。

あらかじめ洗浄液が仕込まれた洗浄槽が、ろ過で分離されたケーキを受入る。洗浄槽はケーキの受入とろ過機への送液の2操作が重なるために2基設置される。5回のろ過を終えたケーキは乾燥工程へ移送される。PFD を図 3-4 に示す。

<乾燥>

6回の洗浄、5回のろ過で洗浄・ろ過された固体ケーキは 34.9 重量%の湿分(大半は洗浄液)を含んでおり、乾燥機で乾燥され製品としてフレコンバックで出荷される。乾燥機はナウター乾燥機で、湿性ケーキは攪拌を受けながらジャケットでスチーム加熱(100°C)されケーキに含有された洗浄液は固体から蒸発し、バグフィルターを経由しコンデンサーで凝縮しドレンタンクに回収される。乾燥機は減圧下(200 mmHG)で運転され、ドレンタンクでドレンを分離した気体は真空ポンプで吸引される。コンデンサーの冷却媒体は低温熱媒(-20°C)が使用される。PFD を図 3-5 に示す。

<熱媒>

熱媒系は同一の熱媒(総研化学社製 NeoSK 170 相当品)で4レベルの温度を設置した。低温域(-20 °C)、冷却用(40 °C、61.3 °C)の二系統および加温用(50~110 °C)である。熱媒は反応攪拌槽のジャケットへ4レベルで使用され、かつ乾燥機のコンデンサーに低温域が使用される。低温域の熱媒の冷却にはプロパン冷凍が使用され、冷却用は二系統とも冷却水が使用される。加温用には低圧(0.15 MPa)スチームが使用される。PFD を図 3-6 に示す。

<プロパン冷凍>

低温域の熱媒を冷却するのはプロパン冷凍が使用される。プロパン冷凍はプロパン圧縮機、プロパン凝縮器、キックバック冷却器、プロパンガスタンクおよびプロパン冷媒タンクで構成される。プロパンガスタンク(2,000 kPa、-25.3 °C)のプロパンガスはプロパン圧縮機で昇圧され(14,000 kPa、67.4 °C)プロパン凝縮器で液化冷却(14,000 kPa、40.4 °C)されプロパン冷媒タンクに貯留される。液体のプロパンは使用先に減圧冷却(2,000 kPa、-25.3 °C)後供給され、冷熱を供給し、気化昇温されプロパンガスタンクへもどる。

キックバック冷却器は過剰の昇圧高温プロパンガスを冷却し、プロパンガスタンクへ戻る。PFD を図 3-7 に示す。

図 3-3 パイロットプラント反応攪拌槽・析出攪拌槽 PFD

図 3-4 パイロットプラント洗浄・ろ過 PFD

図 3-4 パイロットプラント乾燥 PFD

図 3-6 パイロットプラント熱媒系 PFD

図 3-7 パイロットプラントプロパン冷凍系 PFD

3.1.2. 運転スケジューリング

パラミロンエステル合成設備は下記の4工程で構成される。

- ① 合成工程
- ② クエンチ・析出工程
- ③ 洗浄工程・ろ過工程
- ④ 乾燥工程

①合成工程

合成工程は下記の 10 ステップからなる。[]内の数値は各ステップの運転時間(分)を示す。合成工程に掛かる時間は、合計で 1,584 分(26 時間 24 分)である。

ステップ01 [30] パラミロン投入

ステップ 02 [30] 窒素置換

ステップ 03 [30] NMP・ピリジン投入

ステップ 04 [480] 攪拌・膨潤

ステップ05 [111.7] 合成前冷却

ステップ06 [297] 酸クロ剤投入

ステップ 07 [197] 昇温

ステップ 08 [240] 反応(攪拌)

ステップ09 [147.5] 合成後冷却

ステップ 10 [20] 合成槽から析出槽への移送

②クエンチ・析出工程

クエンチ・析出工程は下記の5ステップからなる。[]内の数値は各ステップの運転時間(分)を示す。クエンチ・析出工程に掛かる時間は、合計で139分(2時間19分)である。

- ステップ01 [30] メタノール投入
- ステップ 02 [39] 純水投入
- ステップ 03 [10] 析出の攪拌
- ステップ04 [30] 析出の静置
- ステップ05 [30] 析出後の軽液分離

③洗浄・ろ過工程

洗浄・ろ過工程は下記の 25 ステップからなる。[]内の数値は各ステップの運転時間(分)を示す。洗浄・ろ過工程に掛かる時間は合計で 1,223.6 分(20 時間 24 分)である。

- ステップ01 [30] 洗浄液(第二回洗浄で使用した回収洗浄液)を析出槽へ投入
- ステップ02 [30] 第一回洗浄を析出槽での攪拌洗浄
- ステップ 03 [30] 第一回洗浄後析出槽で静置
- ステップ04 [30] 第一回洗浄後析出槽の軽液排出
- ステップ05 [30] 洗浄液(第三回洗浄で使用した回収洗浄液)を洗浄槽へ投入
- ステップ06 [30] 第一回洗浄後析出槽の重液を洗浄槽へ重力移送
- ステップ07 [30] 第二回洗浄を洗浄槽での攪拌洗浄
- ステップ08 [30] 洗浄槽液をろ過機供給槽へ移送
- ステップ09 [30] 洗浄液(第四回洗浄で使用した回収洗浄液)を洗浄槽へ投入
- ステップ 10 [30] 第一回ろ過
- ステップ 11 [30] 第三回洗浄を洗浄槽での攪拌洗浄
- ステップ 12 [30] 洗浄槽液をろ過機供給槽へ移送
- ステップ 13 [30] 洗浄液(第五回洗浄で使用した回収洗浄液)を洗浄槽へ投入
- ステップ 14 [30] 第二回ろ過
- ステップ 15 [30] 第四回洗浄を洗浄槽での攪拌洗浄
- ステップ 16 [30] 洗浄槽液をろ過機供給槽へ移送
- ステップ 17 [30] 洗浄液(第六回洗浄で使用した回収洗浄液)を洗浄槽へ投入
- ステップ 18 [30] 第三回ろ過
- ステップ 19 [30] 第五回洗浄を洗浄槽での攪拌洗浄
- ステップ20 [30] 洗浄槽液をろ過機供給槽へ移送
- ステップ21 [30] 新洗浄液を洗浄槽へ投入
- ステップ 22 [30] 第四回ろ過
- ステップ23 [30] 第六回洗浄を洗浄槽での攪拌洗浄
- ステップ24 [30] 洗浄槽液をろ過機供給槽へ移送
- ステップ 25 [30] 第五回ろ過

④乾燥工程

乾燥工程は下記の 3 ステップからなる。[]内の数値は各ステップの運転時間(分)を示す。 乾燥工程に掛かる時間は合計で 142 分(2 時間 22 分)である。

- ステップ01 [30] 恒率乾燥
- ステップ02 [30] 減率乾燥
- ステップ 03 [30] 乾燥ドレン移送

図 3-8 から図 3-27 にて、PFD に運転スケジュール上の時間と対象となる付番機器を示す。

図 3-8 運転スケジュール1ステップ1

図 3-9 運転スケジュール2ステップ2-1

図 3-10 運転スケジュール3ステップ2-2

図 3-11 運転スケジュール4ステップ3

図 3-12 運転スケジュール5ステップ4

図 3-13 運転スケジュール6ステップ5-1

図 3-14 運転スケジュール7ステップ5-2

図 3-15 運転スケジュール8ステップ5-3

図 3-16 運転スケジュール9ステップ6-1

図 3-17 運転スケジュール10ステップ6-2

図 3-18 運転スケジュール11ステップ6-3

図 3-19 運転スケジュール12ステップ7-1

図 3-20 運転スケジュール13ステップ7-2

図 3-21 運転スケジュール14ステップ8-1

図 3-22 運転スケジュール15ステップ8-2

図 3-23 運転スケジュール16ステップ9-1

図 3-24 運転スケジュール17ステップ9-2

図 3-25 運転スケジュール18ステップ10

図 3-26 運転スケジュール19ステップ11

図 3-27 運転スケジュール20ステップ12

3.1.3. マテリアル・ヒートバランス

<合成・析出工程のマテリアル・ヒートバランス>

表 3-3 に示すマテリアル・ヒートバランスは反応攪拌槽と析出攪拌槽の設計を行うための前 提条件である。

反応攪拌槽	kg	kg/kg-BM	析出攪拌槽	kg	kg/kg-BM
長鎖脂肪酸	95.2	0.19	反応撹拌槽(液体)	95.2	0.19
短鎖脂肪酸	285.6		メタノール [析出用]	285.6	0.57
酸クロ化剤	415.8	0.83	水[析出用]	415.8	0.83
パラミロン	260.5	0.52	析出攪拌槽(液体)	260.5	0.52
NMP	3,056.1	6.10			
ピリジン	405.8	0.81			
酸クロ化副生ガス	-335.7	-0.67			
反応撹拌槽(液体)	4,519.0	9.02			

表 3-3 合成・析出工程のマテリアル・ヒートバランス

200L 反応器の実験データから算出した結果、パラミロンの反応熱は 12,996 ~ 10,042 kJ と 算定された。すなわちパラミロンエステル合成反応の反応熱は 1,805 ~ 1,395 kJ/kg-パラミロンの発熱と算定される。反応熱の算出は、①ジャケット熱媒による除去熱、②反応槽内液の温度変化による熱、および③攪拌機の動力からの入熱の和で算出した。

- ① ジャケット熱媒による除去熱は
 - [熱媒流量(kg/min)]△×[熱媒温度差の平均(°C)]®×[熱媒比熱(kJ/kg/°C)]◎×[時間(min)]⑩
- ② 反応槽内液の温度変化による熱量は [容器内物質重量の平均(kg)]®×[比熱(kJ/kg/K)]®×[温度変化(k)]®
- ③ 攪拌機の動力
- Aは推測値で、B、D、Fおよび用は測定値で、CおよびGは Aspen Plus での推算値である。

① ジャケットの熱媒による除去熱

熱媒であるエチレングリコール 70wt%水溶液の密度 1,125[kg/m3]、比熱 2.93[kJ/kg/K](平均温度-19.1°C での値)で流速は 1.0m/s は推定した。ただし熱媒配管上には手動弁があり、その開度を 100%とした場合、質量流量は 24.7kg/min となる。手動弁開度により流量が絞られ、手動弁のタイプにより流量が変化する。この検討ではゲート弁(弁タイプ不明で、グローブ弁、ゲート弁あるいはボール弁で中間の流量となる弁を選定)として算出した。9:45~11:30 は実験記録に従い、11:30~以降は弁開度を 50%とした。ジャケットからのエチレングリコール水溶液による熱除去は[熱媒流量(kg/min)]×[流量%/100]×[熱媒温度差の平均(°C)]×[熱媒比熱(kJ/kg/°C)]×[時間(min)]で算出される。

反応時刻 9:45 ~ 10:00 の 15[min]間の例を用いて説明する。

9:45 ジャケット出口温度-18.2 °C、入口温度-20.1 °C で温度差 1.8 °C、手動弁開度 10% 10:00 ジャケット出口温度-17.2 °C、入口温度-18.3 °C で温度差 1.1 °C、手動弁はボール 弁とすると、この間の平均流量は 5%(手動弁開度 100%に対し、添付エクセルの 弁開度と流量%のグラフ読み値)となる。

この間の温度差の平均は 1.45 ℃ (= (1.8 + 1.1) / 2)となる。

この間熱除去量は 78.8 kJ (= (24.7) × (5 / 100) × (1.45) × (2.93) × (15))と算定される。

② 反応槽内液の温度変化による熱量

パラミロン、NMP およびパラミロンの初期充填量 102.846 kg に塩化プロピオニルと塩化ステアロイルが逐次投入される。比熱 1.484[kJ/kg/K](平均温度-9.3 °C での推定値)とし、熱量の変化=[容器内物質重量の平均(kg)]×[比熱(kJ/kg/K)]×[温度変化(k)] で算出される。 反応時刻 9:45 ~ 10:00 の 15[min] 間の例を用いた説明する。

9:45 内温-11.6°C、重量 102.846 kg

10:00 内温-12.5 °C、重量 103.7975 kg

熱量変化は-138.0 kJ(= (102.846 + 103.7975) / 2 × 1.484 × (-12.5 - -11.6))となる。

③ 攪拌機の動力

200GL 反応器の攪拌機のモーター定格は 200V、2.2kW であり、この定格に対し 25%が反応液に入るとした(定格の半分が実際のモーター容量でその半分が入熱と仮定した)(表 3-4)

9:45~11:42 までを加算すると(薄青網掛け) 12,996 kJ となる。

11:42 ~ 12:50 までを加算すると(薄黄網掛け) 5,415 kJ となる。

12:50~16:50までを加算すると(薄緑網掛け)-42,035 kJとなる。

エステル化反応熱は発熱であることは間違いなく、酸クロライド添加時以降の 12:50 ~ 16:50 は無視した。

攪拌機の動力は 9:45 ~ 11:42 と 11:42 ~ 12:50 の 185 分を対象とし、6,106 kJ (= 2.2 × 185 × 60 × 0.25)となる。表にエステル化反応の反応熱算出表を示す。

熱媒流量 | 熱媒流量 | 熱媒温度 | 熱媒温度 | Process 実験時刻 実験時刻 時間 Process 熱媒による プロス 内温 反応熱 [hour:mir [min] [min] [kg/min] [°C] [°C] [°C] [1] [1] [kg] [kJ] [kJ] [kJ] -20.1 -18.3 10 1.8 -11.6 102.846 9:45 1.24 1.45 1 0.951538 78.8 -138 -18.3 -17.2 -125 103,7975 10:00 15 15 1.24 1 0.951538 293.5 170 5.40 -16.8 -11.4 104.7491 10:15 30 25 -26.5 17.5 6.30 298 1198.5 10:30 45 50 -19.9 -9.5 106.6522 -22.8 2 1.903077 15 50 12.37 2.65 1440.4 32 108.5552 10:45 60 70 -9.3 -20.4 77.5 1.5 1.427308 2148.3 114 11:00 75 90 -18.6 -86 109.9825 3.40 1.5 1.427308 95 23,50 3511.3 148 10:15 90 100 -10.1 -7.7 9 111.4098 -14.2 2 1.903077 2826.4 11:30 105 -23.4 -22.3 1.1 -7.7 11 113.3129 1.35 2 1.903077 587.0 12084.2 50 12.37 288 115.216 12.37 -2.95 -2672.4 -513 12:07 142 2.9 115,216 12.37 -4.45 17115 -6450.0 115.216 93.2 91.8 -20.10 -2185.0 120 計 -11307.4 16721.9 5414.5 12:50 185 93.4 -38.8 91.8 115,216 752.0 60 12.37 -19.35 -42070.0 -154 60 12 37 0.15 326.1 -103 14:50 305 91.5 91.7 0.2 90.3 115.216 -17 115.216 15:50 -0.2 0.00 0.0 -17 -41743.8 -290.7 -42034.5 -5838.1 16:50 115.216 91.6 91.8 0.2

表 3-4 攪拌機の動力計算

<洗浄・ろ過工程のマテリアルバランス>

表 3-5 に示すマテリアルバランスは洗浄槽とろ過機の設計を行うための前提条件である。

表 3-5 洗浄・ろ過工程のマテリアルバランス

操作		析出	洗浄	10	デカン	テーショ	ン	洗浄	2回			ろ過1回	洗	浄 3回	ろ社	₫2回
流体名称		析出物	洗浄液1	析+洗1	軽液	重	液洗	浄液2	ケーキ+	洗2	ろ液	脱水ケー	- キ 洗浄液3	ケーキ+洗3	ろ液	脱水ケーキ
		析出攪拌槽	析出技	性槽	析出	攪拌槽		洗洗	辨			ろ過機	2	- 冷槽	5i	過機
固形分	kg	501		501			501			501		5	01	501		501
湿分	kg	1.487	2.505	3,920	2.479	1	.441	2.505	3,	946	3,6	77 2	69 2,50	5 2.774	2,505	269
合計	kg	1,988	2,505	4.420	2,479	1	.942	2.505	4.	447	3,6	77 7	70 2,50	5 3,275	2,505	770
固形	wt%	25.2		11.3			25.8			15.6		6	5.1	15,6		65.1
容量	m³	2.256	3.085	5.251	3.053	1.	906	3.085	5,1	210	4.52	29 0.7	3.08	3.836	3.085	0.755
密度	kg/m³	881	812	842	812	1	.019	812		854	8	12 1.0	19 81	2 854	812	1.019
移送先				フィルタ	廃液槽	洗浄	槽		フィル	ルタ	洗浄液槽	曹1	洗浄槽	フィルタ	洗浄液槽2	洗浄槽
備考						重液を ビティ ローで 槽へ移	-フ 析出									
操作		洗	浄 4回		ろ過3回		洗剂	争 5回			ろ過	40	洗浄 6回	(新液)	ろ過	50
流体名称		洗浄液4	ケーキ+洗	4 ろ液	脱水が	r-+	洗浄液5	ケーキ	+洗5	7	ろ液	脱水ケーキ	洗浄液5	ケーキ+洗5	ろ液	脱水ケーキ
		39	浄槽		ろ過機		洗	浄槽			ろ過	機	洗消	槽	ろ辿	機
固形分	kg		50)1		501			501			501		501		501
湿分	kg	2,505	2.77	4 2.5	05	269	2.505	:	2.774		2.505	269	2.505	2.774	2.505	269
合計	kg	2,505	3.27	5 2.5	05	770	2.505	:	3.275		2.505	770	2,505	3.275	2.505	770
固形	wt%		15	.6		65.1			15.6			65.1		15.30		65.1
容量	m ³	3.085	3.83	6 3.0	85 0.	755	3.085	3	3.836		3.085	0.755	3.085	3.214	3.085	0.755
密度	kg/m ³	812	2 85	64 8	12 1	.019	812		854		812	1,019	812	1019	812	1.019
移送先		洗浄槽	フィル	法净液	= 3	洗净	槽	フィ	ルタ	洗浄	液槽4	乾燥機		フィルタ		乾燥機
備考													フレッシュな 洗浄液 (5.0 wt/BM- wt)			乾燥機に固 形分を 500kg充填 し、2.1hで 乾燥

<乾燥工程のマテリアルバランス>

表 3-6 に示すマテリアルバランスは乾燥機の設計を行うための前提条件である。

表 3-6 乾燥工程のマテリアルバランス

脱水ケーキ	数	単位	固体	数	単位	成分	数	単位
重量	770	kg	重量	770	kg	メタノール	238.9	kg
容量	0.755	m³	湿分物性	数	単位	水	30.1	kg
密度	1.019	kg/m³	重量	770	kg			

3.1.4. 主要機器リスト

(機番)機器数は表 3-7 に示す通り全数で62基である。

表 3-7 主要機器数

	合成·析 出工程	洗浄・ろ 過工程	乾燥 工程	合計
攪拌槽	2	3	0	5
タンク	11	6	2	19
熱交換器	6	0	0	7
ポンプ	10	3	1	14
圧縮機	1	0	1	2
攪拌機	2	3	0	5
その他の機械	2	7	2	11
合計	34	22	6	62

表 3-8 から表 3-28 に主要な機器の仕様を記載した。

表 3-8 (機器リスト CLASS "A"撹拌機類1)

ブロ	コジェクト名	バラミロンエステル合成			+4	+4	+	-グレナ	- 日几			作成	KS	日付		
100	装置名称	パラミロンエステル合成設備		AM?	11	八五十	T—_	-,,,,,	供又			照査		日付		
***	海ブ番号	D-3001			機器	リスト	CLASS	S "A" 🖠	見拌機 勇	Į.		承認	FI	日付	2021/8/17	Preliminary
改訂	機器番号	機器名称	数量	型式	攪拌翼数	攪拌翼段数		イズ 攪拌翼径巾 (mm)	攪拌翼 回転数 (rpm)	設計: 温度 (°C)	条件 圧力 (kPaG)	駆動機 モーター定 格(kW)		攪拌槽内径 (mm)	適用法規	備考
	A-001	反応機斧機	1	タービン翼	6	1	700	250	180	-15 / 120	195	7.5	5.24	1,700		グラスライニング
	A-002	析出操拌機	1	タービン翼	6	1	800	250	300	80	10	75	63.20	2,200		SUS304

表 3-9 (機器リスト CLASS "A"撹拌機類2)

ブ	ロジェクト名	バラミロンエステル合成			14	+	+ ¬ _	-グレナ	上配			作成	KS	日付		
	装置名称	ろ過・洗浄・乾燥設備		and a	1/	八五	1-	フレ	供文			照査	KS	日付		
- 1	ジョブ番号	D-3001			機器	リスト	CLAS	S "A" 🛊	党拌機 男	Į.		承認	FI	日付	2021/10/22	Preliminary
改訂	機器番号	機器名称	数量	型式	攪拌翼数	攪拌翼段数		イズ 提拌翼径巾 (mm)	攪拌翼 回転数 (rpm)	設計 温度 (°C)	条件 圧力 (kPaG)	駆動機 モーター定 格(kW)		攪拌槽内径 (mm)	材質	備考
	A-021A	第一洗浄槽提拌機	1	ツインスター翼	2	1	1,050	by vendor (250)	180	40	Full Liquid	30	24.00	2,000	SUS316	
	A-021B	第二洗浄槽授拌機	1	ツインスター翼	2	1	1,050	by vendor (250)	180	40	Full Liquid	30	24.00	2,000	SUS316	
	A-022	ろ連模供給槽提拌機	1	ツインスター翼	2	1	400	by vendor (150)	180	40	Full Liquid	1.50	0.194	700	SUS316	
	COLUMN PARTITION OF THE															

表 3-10 (機器リスト CLASS "C"ガス圧縮機類1)

-	プロジェクト名	パラミロンエステル合成			## + ^	€社ユ-	_ <i>H</i> `L	上記几		作成	KS	日付		
	装置名称	パラミロンエステル合成設備	1	M	休八五	₹ ↑⊥	ソレ.	<i>,</i>		照査		日付		
	ジョブ番号	D-3001		J0	器リスト	CLASS "	C" ガス!	王縮機類		承認	FI	日付	2021/8/17	Preliminary
							運転仕様				モーター			
改訂	機器番号	機器名称	数量	型式	設計流量	分子量	吸込圧	吐出圧	吸入温度	材質	定格	BHP	適用法規	備考
					(L/min suct	(-)	(kPaA)	(kPaA)	(°C)		(kW)	(kW)		
					P,T)	.,	` '	, ,	` '		` ′	. ,		
	V 004 04	プロパン圧縮機	1+0	(0)	0.400.0	44.40	00.00	4000 70		h	30	24.7	高圧ガス	
	X-001-C1	プロハン圧標情	1+0	(Centri)	2,426.0	44.10	98.68	1298.70	-14.4	by Vender	30	24.7	商圧ガス	
1					l									
\vdash														
1					l			l	l					

表 3-11 (機器リスト CLASS "C"ガス圧縮機類2)

	プロジェクト名	パラミロンエステル合成			株式会	<u></u>	ガレキ	品几		作成	KS	日付		
	装置名称	ろ過・洗浄・乾燥設備		and	冰八五	11-1	101	卅又		照査	KS	日付		
	ジョブ番号	D-3001		機器	器リスト C	LASS "C		縮機類		承認	FI	日付	2021/10/22	Preliminary
改	T 機器番号	機器名称	数量	型式	設計流量 (L/min suct P,T)	分子量 (-)	運転仕様 吸込圧 (kPaA)	吐出圧 (kPaA)	吸入温度 (°C)	材質	モーター 定格 (kW)	BHP (kW)	適用法規	備考
	X-C-041	真空ポンプ	1+0	オイルフリースクロー ル真空ポンプ	600.0	29.00	24	103.30	10.0	by Vender	2.2	1.8		

表 3-12 (機器リスト CLASS "E"熱交類1)

ブ	ロジェクト名	パラミロンエステル合成				-	仕士ィ	<u></u> -		十二			作成	KS	日付		
	装置名称	パラミロンエステル合成設	*		M	•	体エしュ	∠ ↓	ークレ	ノー			照査		日付		
	ジョブ番号	D-3001		_		機	器リス	L CLA	ASS "E"	熱交 類			承認	FI	日付	2021/8/17	Preliminary
改訂	機器番号	機器名称	数量		流体名	型式	熱負荷 (kW)	伝熱 面積 (m²)	径/本数 (mm/-)	仕様 長さ (mm)	シェル径 (mm)	材質	設計 温度 (°C)	条件 圧力 (kPaG)	保温	適用法規	備考
П	E-001	熱媒加熱器	4	S	熱媒	H-BEU	109.5	9.68	19.0	2,000	300	CS	140	550	Hot		
	E-001	育な多米 カル 青な香酢	'	Т	スチーム	H-BEU	109.5	9.00	41U	2,000	300	CS	205	330&FV	Hot		
	E-002	熱媒チラー	1	S	プロパン	H-BKU	43.2	11.81	19.0	2,000	350	SUS304	-40 / 60	300&FV	Cold	高圧ガス	
	L-002	がなり来ナノー		Т	熱媒	TIPOR	40.2	11.01	50U	2,000	550	SUS304	-35 / 60	600	Cold	岡江ガス	
	E-003	第一熱媒冷却器	1	S	熱媒	ヘアーピン	1.4	0.15	19.0	650	外管径 80	CS	120	550	os		
	E-003	为一	'	Т	冷却水	ハノーレン	1.4	0.15	2hair-pins	030	7FE1E 00	CS	60	480	No		
	E-004	第二熱媒冷却器	1	S	熱媒	H-AEU	84.6	35.00	19.0	2,000	500	CS	75	550	os		
	E-004	第一照殊/中型音	'	Т	冷却水	H-AEU	04.0	35.00	147U	2,000	500	CS	60	480	No		
П	X-E-001	プロパン凝縮器	1	S	プロパン	H-AEU	71.04	6.45	19.0	2,000	250	CS	100	1,430	No	高圧ガス	
	A-L-001	ノいノのに相当	'	Т	S プロパン 「 冷却水	HAEU	71.04	0.45	27U	2,000	230	CS	60	480	No	両正ガス	
П	X-E-002	プロパンキックバック冷却	1	S	プロパン	H-AEU	1.84	0.55	19.0	500	200	CS	120	330&FV	No	高圧ガス	
	A-E-002	器器	'	Т	冷却水	HAEU	1.04	0.55	10U	300	200	CS	60	480	No	両正ガス	

熱交換器形式

表 3-13 (機器リスト CLASS "E"熱交類2)

Г	プロジェクト名	^ ラミロンエステル合成					性士べ	会社ユ-	_ガロ:	十四			作成	KS	日付		
	装置名称	ろ通・洗浄・乾燥設備		2	1		TA 14.3	\$ TI		人 供文			照査	KS	日付		
Г	ジョブ番号	D-3001				楼	器リス	k h CLA	ASS "E"	熱交 類			承認	FI	日付	2021/10/22	Preliminary
г							熱負荷	伝熱		仕様			設計	条件			
改	丁 機器番号	機器名称	数量		流体名	型式	(kW)	面積 (m²)	径/本数 (mm/-)	長さ (mm)	シェル径 (mm)	材質	温度 (°C)	圧力 (kPaG)	保温	適用法規	備考
Г	X-041-E1	コンデンサー		S	冷温熱媒	V-BEM	70.0	7.41	19.0	2,000	300	SUS304	-35 / 60	600	Cold		
L	A-041-E1	32729-	'	Т	メタノール+水	V-DEM	70.0	7.41	31U	2,000	300	CS	-5/70	FV	Cold		
Г																	
L																	
Г																	

表 3-14 (機器リスト CLASS"P"ポンプ類1)

7	プロジェクト名	パラミロンエステル合成			+	生士	社ユー	ガレー	記几			作成	KS	日付		
	装置名称	パラミロンエステル合成設備		1.1	1	不八五	<u> </u>	フレ)	共文			照査		日付		
	ジョブ番号	D-3001			機器			"P" ポ				承認	FI	日付	2021/8/17	Preliminary
改訂	機器番号	機器名称	数量	型式	仕 設計容量 (L/min)	集 揚程 (m)	压 吸込 (kPaG)	力 吐出 (kPaG)	運転温度 温度 (°C)	密度 (kg/m3)	粘度 (cP)	材質	モーター 定格 (kW)	BHP (kW)	適用法規	備考
	P-001	NMPポンプ	1+0	渦巻ポンプ	148.00	16.3	3	173	20	1032.7	1.853	Casing : SUS316L Internal : SUS316L	2.2	1.3	防爆仕様	メカニカルシール付き
	P-002	ピリジンポンプ	1+0	渦巻ポンプ	13.76	16.5	3	167	20	982.8	0.974	Casing : SUS316L Internal : SUS316L	1.1	0.7	防爆仕様	メカニカルシール付き
	P-003	酸クロ剤ポンプ	1+0	ダイヤフラム ポ ンプ	2.43	10.0	0	90	20	892	1.153	Casing : by vendor Internal : by vendor	0.2	0.047	防爆仕様	
L	P-004	反応攪拌槽ポンプ	1+0	満巻ポンプ	199.73	38.3	3.0	409	60	1046	20	Casing : SUS316L Internal : SUS316L	5.5	3.5	防爆仕様	メカニカルシール付き
	P-006	メタノールポンプ	1+0	渦巻ポンプ	112.60	33.8	2.4	273	20	790.8	0.58	Casing : SUS304 Internal : SUS304	3.7	1.8	防爆仕様	メカニカルシール付き
L	P-007	義水ポンプ	1+0	渦流ポンプ	19.20	32.5	3.0	332	20	998.2	1	Casing : SUS304 Internal : SUS304	2.2	1.4	防爆仕様	メカニカルシール付き
	P-008	加熱熱媒ポンプ	1+0	渦巻ポンプ	758.40	48.8	44.0	435	105.7	791.2	0.42	Casing : CI Internal : CS	11.0	8.5	防爆仕様	メカニカルシール付き
	P-009	低温熱媒ポンプ	1+0	渦巻ポンプ	673.20	47.6	50.0	480	-17.9	891.3	2.33	Casing : SUS304 Internal : SUS304	11.0	8.5	防爆仕様	メカニカルシール付き
	P-010	冷却熟媒ポンプ	1+0	渦巻ポンプ	745.90	45.4	44.8	415	90	804.4	0.47	Casing : CI Internal : CS	15.0	9.3	防爆仕様	メカニカルシール付き
Г	注:渦流ポン	プの流量 XX + YY XX:プロセス要3	た 洗量、	YY:ミニフローパイパ	1 72											

表 3-15 (機器リスト CLASS"P"ポンプ類2)

ブ	ロジェクト名	パラミロンエステル合成		A 2	+	++-	} →	<i>F</i> IL	品化			作成	KS	日付		
	装置名称	ろ過・洗浄・乾燥設備		4	17	木八云	社ユー	クレア	严又			照査	KS	日付		
-	ジョブ番号	D-3001					CLASS					承認	FI	日付	2021/10/22	Preliminary
改訂	機器番号	機器名称	数量	型式	世紀 設計容量 (L/min)	兼 揚程 (m)	吸込 (kPaG)	カ 吐出 (kPaG)	運転温度 温度 (℃)	密度 (kg/m3)	粘度 (cP)	材質	モーター 定格 (kW)	BHP (kW)	適用法規	備考
	P-021	洗浄液ポンプ	1+0	キャンドポンプ	155.0	19.7	3	165	40	812	1	Casing : SUS304 Internal : SUS304	2.2	1.300	防爆仕様	
	P-022	ろ過機供給ポンプ	1+0	キャンドポンプ	264.0	30.0	5	261	40	842	1	Casing : SUS304 Internal : SUS304	11.0	7.900	防爆仕様	
	P-023	ろ過機循環ポンプ	1+0	キャンドポンプ	417.0	69.8	5	600	40	842	1	Casing : SUS304 Internal : SUS304	11.0	8.200	防爆仕様	
	P-041	ドレンポンプ	1+0	キャンドポンプ	23.2	69.8	3	195	10	637	0.472	Casing : SUS304 Internal : SUS304	1.1	0.730	防爆仕様	
	注:渦流ポンプ	が の接量 XX+YY XX:プロセス要素	水流量、	YYミニフローパイノ	t z											

表 3-16 (機器リスト CLASS "T"槽類1)

J	ロジェクト名	パラミロンエステル合成			++ -+	· 4.	- <i>H</i> i	上即			作成	KS	日付		
Г	装置名称	パラミロンエステル合成設備		100	休工	云位-	ューグし	ノノアス			照査		日付		
	ジョブ番号	D-3001			機器!	リスト	CLASS "				承認	FI	日付	2021/8/17	Preliminary
改訂	機器番号	機器名称	数量	型式	サイズ 内径 (mm)	·容量 T-T長さ (mm)	材質	運転 温度 (°C)	条件 圧力 (kPaG)	設計 温度 (°C)	条件 圧力 (kPaG)	付属品	保温	適用法規	備考
	T-001	NMPタンク	1	Cone Roof	2,100	4,200	SUS 304	20	0	60	Full Liquid		NO	危険物 第三石油類	ρ=1.033
	T-002	ピリジンタンク	1	Cone Roof	1,100	2,200	SUS 304	20	0	60	Full Liquid		NO	危険物 第一石油類水溶 性液体	ρ=0.983
	T-003	メタノールタンク	1	Cone Roof	1,700	3,400	SUS 304	20	0	60	Full Liquid		NO	危険物 特殊引火物	ρ=0.791
	T-004	純水タンク	1	Cone Roof	1,100	2,200	SUS 304	20	0	60	Full Liquid		NO		ρ=0.998
	T-005	加熱熱媒タンク	1	V-Cylindrical	1,000	3,000	cs	106	0	135	Full Liquid		нот		ρ=0.791
	T-006	低温熱媒タンク	1	V-Cylindrical	1,000	3,000	SUS 304	-18	0	-30 / 60	Full Liquid		Cold		ρ=0.891
	T-007	第一冷却熱媒タンク	1	V-Cylindrical	1,000	3,000	cs	90	0	110	Full Liquid		нот		ρ=0.804
	T-008	第二冷却熱媒タンク	1	V-Cylindrical	1,000	3,000	cs	44	0	110	Full Liquid		нот		ρ=0.841
	T-009	固体原料ホッパー	1	V-Conical (see process sketch)	1,000	1,300	SUS 304	常温	0	60	Full Powder		NO		ρ=0.602
	X-001-T1	プロパンガスタンク	1	V-Cylindrical	600	1,800	SUS 304	-25.3	98.7	-35 / 60	190 & FV		Cold	高圧ガス	
	X-001-T2	プロパン冷媒タンク	1	V-Cylindrical	500	1,500	cs	40.4	1,299	60	1,430 & FV		Operating Stability	高圧ガス	ρ=0.467

表 3-17 (機器リスト CLASS "T"槽類2)

-	ロジェクト名	ハラミロンエステル合成									作成	KS	日付		
_		ハフミルウエスアル·日成 ろ過・洗浄・乾燥設備			株式会	会社ユ·	ーグレフ	ナ殿			照査	KS	日付		
	ジョブ番号	D-3001				スト CI ・容量	LASS "T"	槽類	条件	90-94	承認 条件	FI	日付	2021/10/22	Preliminary
改訂	機器番号	機器名称	数量	型式	内径 (mm)	T-T長さ (mm)	材質	温度 (°C)	圧力 (kPaG)	温度 (°C)	圧力 (kPaG)	付属品	保温	適用法規	備考
	T-021A	第一洗浄液タンク	1	V-Cylindrical Top head: Flat, Bottom head: 10% dish	1,600	1,290	SUS 316	40	0	120	Full Liquid		NO	危険物 特殊引火物	ρ =1.000
	T-021B	第二洗浄液タンク	1	V-Cylindrical Top head: Flat, Bottom head: 10% dish	1,600	1,290	SUS 316	40	0	120	Full Liquid		NO	危険物 特殊引火物	ρ=1.000
	T-021C	第三洗浄液タンク	1	V-Cylindrical Top head: Flat, Bottom head: 10% dish	1,600	1,290	SUS 316	40	0	120	Full Liquid		NO	危険物 特殊引火物	ρ=1.000
	T-021D	第四洗浄液タンク	1	V-Cylindrical Top head: Flat, Bottom head: 10% dish	1,600	1,290	SUS 316	40	0	120	Full Liquid		NO	危険物 特殊引火物	ρ=1.000
	T-021E	第五洗浄液タンク	1	V-Cylindrical Top head: Flat, Bottom head: 10% dish	1,600	1,290	SUS 316	40	0	120	Full Liquid		NO	危険物 特殊引火物	ρ=1.000
	T-022	島液タンク	1	V-Cylindrical Top head: Flat, Bottom head: 10% dish	1,800	1,350	SUS 304	40	0	120	Full Liquid		NO	危険物 特殊引火物	ρ=1.000
	X-041-T1	ドレンタンク	1	V-Cylindrical Top head: Flat, Bottom head: 10% dish	800	1,000	SUS 304	40	0	120	Full Liquid		NO	危険物 特殊引火物	ρ=1.000
	T-061	廃液回収タンク	1	Cone Roof	2,000	4,000	SUS 304	40	0	120	Full Liquid		NO	危険物 特殊引火物	ρ=1.000

表 3-18 (機器リスト CLASS "V"攪拌槽類1)

J	ロジェクト名	パラミロンエステル合成			1 4 = +	<u>-</u> → → -	ューグレ	. — 堲	,		作成	KS	日付		
	装置名称	パラミロンエステル合成設備		AM.	不工	· 本工-	エーフレ	/ / 洪又			照査		日付		
	ジョブ番号	D-3001			機器リ	スト C	LASS "V"	攪拌椎	類		承認	FI	日付	2021/8/17	Preliminary
改訂	機器番号	機器名称	応援拌槽 1		サイズ 内径 (mm)	·容量 T-T長さ (mm)	材質	運転 温度 (°C)	条件 圧力 (kPaG)	設計 温度 (°C)	条件 圧力 (kPaG)	付属品	保温	適用法規	備考
		反応提拌槽 (see process sketch)	1	V-Cylindrical	1,700	2,100	アルミキルト 鋼+ グラスライニング	-4 / 90	5	-15 / 120	195		Hot & Cold		
				(シ*ャケット)	1,726	1,900	アルミキルト・鋼	-20 / 110	196	-30 / 140	600		Hot & Cold		ジャケット間隙: 50mm
		析出提拌槽 (see process sketch)	1	V-Cylindrical	2,200	2,700	CS+ETFEコー ティング	60	Full Liquid	80	Full Liquid		NO		with 4 Baffles (SUS304)
\vdash			Н												

表 3-19 (機器リスト CLASS "V"攪拌槽類2)

プ	ロジェクト名	パラミロンエステル合成			+生 =+	<u>- +-</u>	1ーグレ	.十四	,		作成	KS	日付		, i
	装置名称	ろ過・洗浄・乾燥設備		M.	休工	·云11-	エークレ	ノノ灰			照査	KS	日付		
	ジョブ番号	D-3001			機器リ	スト CI	LASS "V"	攪拌棉	類		承認	FI	日付	2021/10/22	Preliminary
改訂	機器番号	機器名称	数量	型式	サイズ 内径 (mm)	・容量 T-T長さ (mm)	材質	運転 温度 (°C)	条件 圧力 (kPaG)	設計 温度 (°C)	条件 圧力 (kPaG)	付属品	保温	適用法規	備考
	V-021A	第一洗浄槽	1	V-Cylindrical Top head: Flat, Bottom head 10% dish	2,000	2,410	SUS316	40	FULL LIQUID	120	FULL LIQUID	with 4 Baffles (SUS304)	NO		ρ = 1,000kg/m3
	V-021B	第二洗浄槽	1	V-Cylindrical Top head: Flat, Bottom head 10% dish	2,000	2,410	SUS316	40	FULL LIQUID	120	FULL LIQUID	with 4 Baffles (SUS304)	NO		ρ = 1,000kg/m3
	V-022	ろ過機供給槽	1	V-Cylindrical Head: 10% dish	700	960	SUS316	40	FULL LIQUID	120	FULL LIQUID	without Baffle	NO		ρ = 1,000kg/m3

表 3-20 (機器リスト CLASS "X"特殊機械類1)

ジェク	1・名	パラミロンエステル合成		- tw	+ 4 + 7	ı ⊥ ⊟л		Ì	作成	KS	日付		
置名	称	ろ過・洗浄・乾燥設備	t	4	式会社ユーク	ノレア版			照査	KS	日付		
ブ番	号	D-3001		機器	リスト CLASS "M"	特殊機器	類		承認	FI	日付	2021/10/22	Preliminary
DH PT	機器番号	機器名称	数量	型式		材質	温度	医条件 圧力	設計 温度	条件 圧力	駆動機 モーター定格		備考
QX B J	1发给钳 芍	0支 信产口 4小	奴里	至八	サイズ	MA	(°C)	(kPaG)	(°C)	(kPaG)	(kW)	(kW)	洲专
	M-001	ドラム反転機	1	京町産業車両株式会社製同等品									
		均等荷重(kg):250				1							
		前輪内幅(mm):680					0						
		全幅(mm):1180											
		全長(mm):1180			-44	1		4					
		全高(mm):1920						9	25				
		ストローク(mm):0~1-	400(ドラ	· 厶應面)	_	JK-HDD-25	60	-					
		車輪径(mm)前輪/後	輪 : 夕 20	0(ジエン)/ ø 150(ゴム)				*		3			
		前脚外幅(mm):880			0			1 1	1	JK-HDS-2	200		
		前脚長さ(mm):870											
7													
\dashv													

表 3-21 (機器リスト CLASS "X"特殊機械類2)

ジェク	卜名	パラミロンエステル合成			++	+44- 1	°г ⊟Л	,		作成	KS	日付		
置名	称	ろ過・洗浄・乾燥設備	1		不	式会社ユーク	レノ			照査	KS	日付		
ブ番	号	D-3001			機器!	Jスト CLASS "M"	特殊機器	類		承認	FI	日付	2021/10/22	Preliminary
		11.72.11	I					連載	工条件		条件	駆動機		
改訂	機器番号	機器名称	数量	型式		サイズ	材質	温度 (°C)	圧力 (kPaG)	温度 (°C)	圧力 (kPaG)	モーター定格 (kW)	軸動力 (kW)	備考
	X-002	ロータリーパルブ	1	アイシン産業株式 同等品	会社製	RM-80						0.2		
		豊富な機種揃えで、最多 RMシリーズ ドロッ		る標準ロータリーバルブ イブ	Our most popu	ular standard rotary valve avoičable with a large variety of g RM servies (Drops th	roduct lineups rough type)							
		特 長 Fectures E E D シールで開ルた相談を の IRSO-7 SOS できせんズ の IRIS はあサイズル 見配合 を Excluse partners on Win Partners on Windows On Wi	ラインナップ 型フランジあり ressure sealing m 50 to 750	mm in colliber	7 字 by Coling 1	and multi-pooler	Anticol Solution							
		特 長 Fedures ラナー/電影性で発生視用い の電影物ののデインを一動 回動物のカナーンが(一)で ・ 個類形のウェーンが(一)で ・ ペースを、そ実) ・ ペースと、そ実) ・ サイズに16年2月度で ・ サイズに10年2月度で	生が向上 全力バー)を指		FBMAIN-300 FBMAIN-300 FBMAIN-300 FBMAIN-300 FBMAIN-300 FBMAIN-300 FBMAIN-300 FBMAIN-300 FBM-750 (1 PPARAIR-75) drive sector a Achievement chain cover Utubble for fit	200	1.0 0 75-1 1.15-1 1.15-1 1.15-1 1.2-1 1							

表 3-22 (機器リスト CLASS "X"特殊機械類3)

小名 /	パラミロンエステル合成			出せる	社ユーク		<u>ர</u>		作成	KS	日付		
称	ろ過・洗浄・乾燥設備			休八云	サユーン	ノレノ原	又		照査	KS	日付		
号□	D-3001		杨	機器リスト	CLASS "X"	特殊機器	B類		承認	FI	日付	2021/10/22	Preliminary
								条件		条件	駆動機		
機器番号	機器名称	数量	型式	-	サイズ	材質	温度 (℃)	圧力 (kPaG)	温度 (℃)	圧力 (kPaG)	モーター定格 (kW)	軸動力 (kW)	備考
X-021- M1	ディストリビュータ	1	山本機械株式会社製 同等品	分散数:3 シュート中心 径:	ト径:150Φ 高さ:800 mm p間距離:700 mm 1,000 mm rサイズ:100mm	SUS304	40	АМВ	80	190	0.4		
	特徴 搬送物のコンタミ防止	用途集合タン	東流 ク上に設置 内部シュー	トが回転し、各々									
-	搬送時間の短縮		のシュート	へ排出します									
		7	200										
		Tn N											
		F .		-									
ı	寸注 当業活動にとり 間報シュー	Laguet.	る為、A寸法が変わる場合があります。										
	シュート径 ∮150		ø250 ø300	∮ 380									
	分模数 4~20		4~20 4~20	4 ~ 20									
	A mm 800 ~ 1300	850	0 ~ 1680 850 ~ 1750	1070 ~ 2070									
	B 寸法 700~1300	821	0 ~ 2200 820 ~ 2370	1430 ~ 2890									
	C 寸法 1100~1700	0 130	00 ~ 2680 1300 ~ 2850	1790 ~ 3450									
	仕様												
	撃動モーター 0.4kw ブレーキ	H付 模型 GM	1直結 回転数 2.5rpm 60Hz ,	2.1rpm 50Hz									

表 3-23 (機器リスト CLASS "X"特殊機械類4)

ジェク	小名	パラミロンエステル合成		14	+4	+ ¬ <i>H</i>	`I. — — —			作成	KS	日付		
置名	称	ろ過・洗浄・乾燥設備	•	17	八五个	±ユーグ	レノ灰			照査	KS	日付		
ゴ番	号	D-3001		機器	リスト C	LASS "X"	特殊機器	質		承認	FI	日付	2021/10/22	Preliminary
改訂	機器番号	機器名称	数量	型式	t	トイズ	材質	運転 温度 (°C)	条件 圧力 (kPaG)	設計 温度 (°C)	条件 圧力 (kPaG)	駆動機 モーター定格 (kW)		備考
	X-021- M2A	第一スクリューコン ペア	1	三和コンベア株式会社製 同等品	分散数:3 シュート中心 径:1 排出ノズル	〜径:150Φ 高さ:800 mm 間距離:700 mm ,000 mm サイズ:100mm	SUS304	40	АМВ	80	190	0.75		
	X-021- M2B	第二スクリューコン ペア	1	三和コンベア株式会社製 同等品	分散数:3 シュート中心 径:1 排出ノズル	へ径:150Φ 高さ:800 mm 間距離:700 mm ,000 mm サイズ:100mm 000mm	SUS304	40	АМВ	80	190	0.75		
	X-021- M2C	第三スクリューコン ペア	1	三和コンベア株式会社製 同等品	分散数:3 シュート中心 径:1 排出ノズル	へ径:150Φ 高さ:800 mm 間距離:700 mm ,000 mm サイズ:100mm 000mm	SUS304	40	АМВ	80	190	0.75		
				10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SCP-STB-140-L SCP-STB-190-L SCP-STB-190-L SCP-STB-240-L SCP-STB-235-L SCP-STB-375-L SCP-STB-375-L SCP-STB-380-L SCP-STB-240-L SCP-STB-290-L SCP-STB-290-L SCP-STB-375-L	G-M2 60.5(76.3) G-M2 76.3(89.1) G-M2 89.1(114.3) G-M2 114.3 G-M2 114.3 S2 S2 G-M2 230 G-M2 280 G-M2 345 G-M2 345 G-M2 345	D2 140 16 18 190 21 18 190 21 18 190 21 18 190 21 18 190 21 18 190 25 375 40 190 25 40 190	D3 P 55.2 120 3 16.3 160 3 57.4 200 3 18.5 240 4 55.6 260 4 19 182 23 208 23 23 23 23 25 27 25 300	T FR 1.00 120 1500 1.00 160 1500 1.00 160 1500 1.00 160 1500 1.00 1.00 1.00 1.00 1.00 1.00 1.0	L ~3000(1500~3 ~3500(1500~4) ~4000(1500~4) ~4500(2000~5 2000~5000 H4	000)** 225 225 500)** 250 250 000)** 275 275 305 305 330 330 15 W1 W2 15 190 240 300 240 290 100 270 320	L3 L4 L5 293 170 52 293 170 52 293 170 53 306 173 52 332 180 52 367 201 52 367 201 52 367 501 5097/ 510	350 165.2 425 216.3 450 267.4 525 318.5

表 3-24 (機器リスト CLASS "X"特殊機械類5)

ジェク	卜名	パラミロンエステル合成			++ - + ∠	× ++ -		≒ "ı	_ <u></u> _ 6	J.L.			作成	KS	日付		
置名和	称	ろ過・洗浄・乾燥設備	C.	and the	株式会	マイエユ			丁県	汉			照査	KS	日付		
ブ番	号	D-3001			機器リスト	CLASS	S "X"	特	殊機	器舞			承認	FI	日付	2021/10/22	Preliminary
改訂	機器番号	機器名称	数量	型式		サイズ			材質		運 温度 (°C)	医条件 圧力 (kPaG)	設語 温度 (°C)	十条件 圧力 (kPaG)	駆動材 モーター定格 (kW)		備考
	X-021- M3	解砕機	1	アイシン産業株式会同等品	è社製	SKC type			SUS304		40	АМВ	80	190	0.4		
						解砕機 lump cru					C/SKS)		り Unit of dime	法単位: mm ension: mm			
						型式 Model	А	н	L1	L2	M A	概算重量(kg) pproximate wei	連用減速機 ght With Redu	付モーター[kW] cer Motor[kW]			
	4	A EV	No.			SK□-150				461	365	120	(),4~			
_	./9	ALL SOUN		Pt.		SK□-200				532	450 490	150 180		75~			
	C	+ 2				SK□-300		490	304	331	490	230		.5~			
	_ ()		9			SK□-350		650 700		700	510 545	410 560		22~			
	4	SKC type					100001										
	DE7H	/Retating Binde QUB/Coml	201)—2/ Screen			L2		, 6A				M				
								-		1							
										_							
\top										T							

表 3-25 (機器リスト CLASS "X"特殊機械類6)

表 3-26 (機器リスト CLASS "X"特殊機械類7)

ジェク	小名	ハラミロンエステル合成						Š. 15	ın.		作成	KS	日付		
置名	称	ろ過・洗浄・乾燥設備	1	1.00	竹	木式云1	ユーク	レナ	艾		照査	KS	日付		
ブ番	号	D-3001			機器	リスト (LASS "X"	特殊機	器類		承認	FI	日付	2021/10/22	Preliminary
			I						運転	条件	設計	条件	駆動機		
改訂	機器番号	機器名称	数量	型式		+	イズ	材質	温度 (°C)	圧力 (kPaG)	温度 (°C)	圧力 (kPaG)	モーター定格 (kW)	軸動力 (kW)	備考
	X-041- D1	ナウター乾燥機	1	ホソカワミクロの同等品	ン製	A:1 B:2 C:3	量:1,000 L 650 mm 270 mm ,600 mm 量:2,500 kg	SUS304 / JACKET : SUS304	60/ JACKET: 100	180& FV / JACKET : 101	120/ JACKET: 205	180& FV / JACKET : 330&FV	自転:5.5 公転:0.75		
			A	—— <u> </u>											
			Ę		-										
		T	7	\rightarrow											
					-										
				/ c	_										
		B 2) /	/											
			R/												
		7													

表 3-27 (機器リスト CLASS "X"特殊機械類8)

ジェク	卜名	パラミロンエステル合成		+4-	+ムサー ガロ	上原几				作成	KS	B	付			
置名	称	ろ過・洗浄・乾燥設備		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	式会社ユーグレ	ノノ、灰又				照査	KS	В	付			
ブ番	号	D-3001		機器リン	スト CLASS "X" *	殊機器類				承認	FI	В	付	2021/10/22	Prelimi	nary
					-		運車	5条件	\neg	設計	条件		駆動機	動力		
改訂	機器番号	機器名称	数量	型式	サイズ	材質	温度 (°C)	圧力 (kPat		温度 (°C)	圧力 (kPaG)		一定格 W)	軸動力 (kW)	備考	
	X-041-F1	パッグフィルター	1	ホソカワミクロン パルスジェットコレクタHP型 同等品	HP 6-4 720 mmDIA × 2,630 mmH	CASING: SUS304	42	26.7	7	90	FV & 80	0	-			
		1				標準仕様 おおおり										_
\dashv		W.T. 28		1100		型式		HP-	4-4	6-4	9-4	16-4 2	25-4	37-4 4	5-4 51-4	
		- (- 111111111111111111111111111111111	雷	A GUAR		ろ過回積		(m ²)	1.8	2.7			_		0.1 22.7	
_			-	Della Control	400	フィルタ本数		(-)	4	6				37 4		-
		*****	٠,١			電磁升個数	-	(-)	2	2	3	4 5	5	7 7	9	
		5.5			No. of Street, or other party of the last	標準必要空気量		(NL/min)	50	50	80	100	130	180 1	30 230	
		0.0	1	Contract of the Contract of th		標準耐圧度		(kPa)	F.V. $\sim 1 M$							
			1	and A	Mr.	概略寸法	φD (520	720			_		540 1780	
-			2.	CONTRACTOR OF THE PARTY OF THE	- 16. N			(mm) (mm)	2400 450	2630 650			_		550 3740 100 1550	
		B (2-	10000					(mm) (mm)	1950	1980					150 2190	
		1 1		The second second		極略質量		(kg)	400	700	800				000 4100	т.
		" // I	7	The A		ろ布長さ6フィー										
-		x		1		型式		HP-	4-6	6-6	9-6	16-6 2	25-6	37-6 4	5-6 51-6	-
					4	ろ過而積			2.7	4.0					0.2 34.0	
			+			フィルタ本数		(-)	4	6	9	16 2	25	37 4	5 51	
		- T			_	電磁弁個数		.,	2	2		4 5	_	7 7		
		W				標準必要空気量			50	50	80	100	130	180 1	30 230	
_						標準耐圧度	SS ((kPa)	F.V. ~ 1M 520	Pa 720	820	1020	1280	1380 1	580 1780	-
		-				HORT TOX		(mm)	3100	3330			3900		250 4440	
_		圧空: 50NL/min×60r	ania dhad	2000NII /h				(mm)	450	650			1100		100 1550	_
		SUNL/MIN × 60F	nin/n=	3000NL/II			H2	(mm)	2650	2680	2700	2750 2	2800	2810 2	350 2890	
		逆洗頻度:90sec	なので4	10回/h		概略質量		(kg)	400	800	1000	1300 2	2200	2500 3	500 4700	
		3000NL/h + 40 →平均值50NL/r	回/h=7			注)標準必要空気	量に関して	(1) ヘッダー	-内初期圧は	0.6MPa, (2)	各バルブ作動は	190秒/サイ:	ウル			
\dashv																
															1	

表 3-28 (機器リスト CLASS "X"特殊機械類9)

ジェク	卜名	パラミロンエステル合成		+4	式会社ユーグ	`			作成	KS	日付		
置名	称	ろ過・洗浄・乾燥散化	1		式云社ユーグ	レノ灰			照査	KS	日付		
ブ番	号	D-3001		機器	JAL CLASS "X"	特殊機器類			承認	FI	日付	2021/10/22	Preliminary
改訂	機器番号	機器名称	数量	型式	サイズ	材質	運輸 温度 (°C)	E E力 (kPaG)	設 温度 (°C)	H条件 圧力 (kPaG)	駆動機 モーター定格 (kW)		備考
	X-021-F1	ろ連機	1	加圧ブローバックフィルター 三菱化工機 同等品	H: 1,710 mm W: 2,238 mm D: 1,088 mm	CASING: SUS304	42	26.7	90	FV & 800	7.5		
		▶ 機械	8	8 13 11 11 11 11 11 11 11 11 11 11 11 11	【各 部 4 ①フィルター ②主軸サけ ③主軸サンカ ⑤主軸 ⑥方主軸 ⑥方表過一キキシーパー ②のフィン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ドラム ーター バー 排出管 静一 トトグ							
				-							.2		

3.1.5. ユーティリティサマリー

パラミロンエステル合成設備で使用する用役の消費量は、下記のとおりである。運転スケジューリングに従い、ユーティリティサマリーを算出した。運転スケジューリングは、①合成・析出工程および②洗浄・ろ過・乾燥工程の二工程ごとに作成している。対象とした用役は①電力、②スチームおよび③冷却水である。

電力はモーターの最大定格容量を 63.2kW で、***V、3Phase、60Hz とした。ーバッチにおける電力消費量の推移は、図 6-1 および 6-4 に示した。電力合計消費量は合成・析出工程で 375kW・hr、洗浄・ろ過・乾燥工程で 337kW・hr の 712kW・hr である。ピーク消費量は合成・析出工程で 70.2kW、洗浄・ろ過・乾燥工程で 60.2kW となる。

スチームは 250kPaA、飽和蒸気とした。一バッチにおけるスチーム消費量の推移は図 6-2 および 6-5 に示した。スチーム合計消費量は、合成・析出工程で 316kg、洗浄・ろ過・乾燥工程で 155kg の 471kg である。ピーク消費量は合成・析出工程で 181kg/h、洗浄・ろ過・乾燥工程で 87kg/h となる。

冷却水は循環冷却水で供給温度 32°C、戻り温度 37°C で計画した。一バッチにおける冷却水量の推移は図 6-3 および 6-6 に示した。冷却水合計消費量は合成・析出工程で 101ton、洗浄・ろ過・乾燥工程で 38ton の 139ton である。ピーク消費量は合成・析出工程で 18ton/h、洗浄・ろ過・乾燥工程で 18ton/h となる。

他の用役としては計装空気と窒素がある。

表 3-29 に用役の合成・析出工程とろ過・洗浄工程のピーク時の消費量とバッチ当たりの消費量を示す。

表 3-29 各種用役のピーク量および消費量

	ピー (1時間	ク量 当たり)		貴量 ⁻ 当たり)	合計
	合成·析出	洗浄・ろ過	合成·析出	洗浄・ろ過	
スチーム[kg]	181	86.9	316	155	471
冷却水[ton]	18	18.3	101	38	139
電力[kWh]	70.2	60.2	375	337	712
計装空気[N㎡]					40
室素[Nm ³]			10		10

3.1.6. 概略配置計画図

パイロットプラントの概略配置計画図を図 3-28 から図 3-33 に示す。

合成設備の配置に必要な面積は、建屋部が 330 m² (22 × 15 m)で屋外部 130 m² (10 × 13 m)である。建屋部と屋外部は 7 m の間隔を置き、建屋の高さは 16.5 m で 4 階建てとした。

反応攪拌槽は 1F に設置し、パラミロンの投入は 3F からグラビティ-フローとした。析出攪拌槽は 4F に設置し、洗浄槽は 1F に設置した。第一回洗浄後のパラミロンエステルと洗浄液の混合物をグラビティ-フローで洗浄槽に送液する様計画した。ろ過機は 4F に設置し、乾燥機は 2F に設置した。脱液後のケーキがグラビティ-フローとスクリューコンベアで乾燥機に供給される。乾燥機の下にドラム缶を置き、パラミロンエステル製品として回収する。そのため乾燥機は 2F の設置とした。熱媒およびプロパン冷凍の設備は、反応攪拌槽に近い建屋側に設置した。 T-001 NMP タンク、T-002 ピリジンタンク、T-003 メタノールタンク、T-004 純水タンクおよび T-061 廃液回収タンクはいずれもコーンルーフ型で屋外設置とした。

図 3-28 パイロットプラント 合成設備機器配置設計図1(1階)

図 3-29 パイロットプラント 合成設備機器配置設計図2(2階)

図 3-30 パイロットプラント 合成設備機器配置設計図3(3-4階)

図 3-31 パイロットプラント 合成設備機器配置設計図4(屋外タンク貯蔵所)

図 3-32 パイロットプラント 合成設備機器配置設計図5(立面図1)

図 3-32 パイロットプラント 合成設備機器配置設計図6(立面図)

3.2. パイロットスケールプラントの全体設備の設計

昨年度設計を実施した排液工程に加えて、前節では今年度実施したエステル化工程、析出工程、洗浄工程の設計について報告した。本節では両設備に共通して必要となる用役供給設備と空間インフラ設備に関して、設計を実施することでパイロットプラントの全体の設計を実施した内容を報告する。

パラミロンエステル合成プロセス全体共通設備はパラミロンエステル合成設備および廃液回収蒸留設備で必用とする用役の供給設備とその設備サイトを構成する空間インフラに関するものである。

用役供給設備は下記のもので構成される。

- ① 電気設備
- ② 用水処理設備
- ③ 蒸気設備
- ④ 冷却水設備
- ⑤ 計装空気·窒素設備

空間インフラは次のもので構成される。

- ⑥ 排水設備
- ⑦ 制御設備室・電気設備室
- ⑧ 防消火設備
- ⑨ 固体原料·製品貯蔵場所
- ⑩ 外構等土木・建築構造物

3.2.1. 設備仕様

主要な用役設備を下記に説明する。

① 電気設備

400V の受電設備を設置する。電気は機器のモーター、加熱用電気、屋内・外照明、制御用 機器への供給電源、屋内のエアコン用電源等に配電される。危険場所に設置する電機 品は防爆仕様とする。

電気の仕様は下記のとおり。

電力 動力 $400V \times \phi 3 \times 60Hz$

制御用 110V × 60Hz

避雷設備を設ける。

② 用水処理設備

用水源としては水道水を使用することで計画した。使用先はプロセス水、ボイラー給水 および冷却水供給である。プロセス水およびボイラー給水には純水、冷却水供水には脱 塩素された水道水が使用される。

2,694 kg/h 水道水供給量 : 冷却水給水 1,741 kg/h

1 kg/h (必要量の 5%を供給、間欠使用)

プロセス水(合成用): ボイラー給水 : 954 kg/h

水道水は用水ろ過器で塩素を活性炭で除去し、軟水装置で硬度を下げ、純水装置で純 水を生成し各供給先に送られる。

③ 蒸気設備

蒸気は 1.6MPaG と 0.15MPaG の二系統で構成される。

蒸気の消費量は下記のとおり。

パラミロンエステル合成用 : 181.0 kg/h (ピーク消費量)

廃液回収蒸留用 : 568.1 kg/h : 688.1 kg/h 合計最大使用量

1.6MPaG スチームはパッケージボイラーから供給される。使用先は廃液回収蒸留設備の リボイラー熱源と 0.15 MPaG スチームへのレットダウンである。リボイラー熱源で使用 された 1.6MPaG スチームコンデンセイトは 0.5 MPaG スチームドラムに集められ、スチ ームが回収され、0.15 MPaG スチームへ供給される。0.15 MPaG スチームへのレットダ ウンされたスチームはデスパーヒーターで飽和蒸気となり使用先に供給される。

④ 冷却水設備

循環冷却水の使用量は下記のとおり。

パラミロンエステル合成用 : 18.3 ton/h (ピーク消費量)

廃液回収蒸留用 : 56.9 ton/h 合計最大使用量 : 75.2 ton/h

循環冷却水は冷却水循環ポンプで供給先に送られる。冷却に使用された循環冷却水 は冷却塔で蒸発により冷却され、冷却水として循環使用される。冷却水の汚れ防止対 策として循環量の10%をフィルター処理する。

⑤ 計装空気・窒素設備

計装空気の使用量は下記のとおり。

パラミロンエステル合成用 : 40 Nm³/h 廃液回収蒸留用 : 25 Nm³/h 共通設備用 : 5 Nm³/h 合計最大使用量 : 70 Nm³/h

窒素の使用量は下記のとおり。

パラミロンエステル合成用 : 8 Nm³/Batch (反応攪拌槽のパージ用)

廃液回収蒸留用: 0 Nm³/h共通設備用: 0 Nm³/h合計最大使用量: 0 Nm³/Batch

計装空気は空気圧縮で昇圧後、圧縮空気冷却器で 40 °C まで降温し圧縮空気ドレーナーで凝縮を分離する。凝縮水を分離した圧縮空気は圧縮空気除湿装置で水分を吸着分離して露点-20 °C 以下とし、ストレーナーを通して計装空気槽に貯留され各供給先に送られる。

窒素ガス窒素ガスシリンダ-から 0.6MPa に減圧され供給先に送られる。3 シリンダーが常備され、1 シリンダーあたり 5 バッチの反応攪拌槽の酸素パージに使用できる。

その他の共有設備に関して、下記のものを考慮した。

- ·消防火設備
- ·排水設備
- ·事務所
- ·制御室
- ・電気室
- ・倉庫
- ・屋内メンテナンススペース
- 屋外メンテナンススペース

それぞれの用役に関し、モーターのリストを表 3-30 に、PFD を図 3-33 から図 3-36 に示した。

表 3-30 それぞれの用役に関するモーターリスト

対象機器	MOTOR	運転モード		
Item No Service Name	定格[kW]			
	7.5 75.0 2.2 1.1 0.2 5.5 3.7 2.2 11.0 11.0 15.0 30.0 0.2 30.0 1.5 2.2 11.0 11.0	間欠	22	問問問遭連連連連連連連連連連連連連連連連連連連連連連連連連連連連連連連連連連連
	V2 0.4 V3 0.2	門 P-321 冷却水循		1
		冷却喑	ファン 3.7	連続
		空気圧縮		連続
		空気乾燥	機 3.0	連続

図 3-33 用水

図 3-34 スチーム

図 3-35 冷却水

図 3-36 計装空気·窒素

3.2.2. ユーティリティサマリー

共通設備で使用する用役の常用運転時の消費量とパラミロンエステル合成および廃液回収蒸留のそれぞれの合計消費量を表 3-31 に示す。合成系は 1 Batch 48 時間の消費量で、廃液回収蒸留および共通設備は連続運転で時間当たりである。原単位の算出に当たっては、年間の稼働日数 330 日を基準にして年間の変動費で計算する必要がある。詳細なユーティリティサマリーは、表 3-32 に示す。

表 3-31 ユーティリティサマリー

用役	単位	合成 (/Batch)	廃液回収蒸留	共通設備	合計 (/Batch)
電力	[kW]	471	15.6	31.2	2,716.4
蒸気	[kg/h]	712	568.1	-869.1	0
冷却水	[ton/h]	139	54.8	1.4	2,836.6
計装空気	[Nm3/h]	1,920	25	5	3,360
窒素	[Nm3/h]	10	0	0	10
燃料LPG	[kg/h]	0	0	53.7	2,577.6

^{*}蒸気は共通設備にて算出される量を消費量に対してマイナスの値として表示している。

表 3-32 ユーティリティサマリー詳細

Part	1					ドーゴ	ユーティリティサマリー	ī						
March Mar					DOC. No.	D3002-005							Date	2021/11/30
Application of Market Ballon		2			Job No.								Rev. No.	0
Facility Facilit					Customer	株式会社ユー	グレナ殿向						Approved by	F.Iwamoto
Manual Engine Construction			ユーティリティサマリー		Project	パラミロンエス	テル合成 共通	設備					Checked by	S.Ishita
Figure		W	AVE ENGINEERING CORPORATION		Location								Design	K.Satake
#No.			Equipment		電力		冷却水		蒸気(168	arG Sat.)	燃料(LPG)	計装空気		
冷却水が飛売がインディケー 15.00 9.00 17.120 18.00 19.00		ITEM No.	SERVICE	W	動力	茶 名	戻り	Δt	Nor	Max	5	N34	<u>«</u>	emarks
1.6MPsG バッケージボイケー 20+50 690 690 680 680 680 680 680 680 680 680 680 68		P-321	冷却水循環ポンプ	15.00	9.60		i di	٥	i de		2			
1.6Mp-62 ペッケーンポイテー 20+5の 690														
Fi		X-311-B1	1.6MPaG パッケージポイラー	2.0 + 5.0	6.90				-869.1		53.7			
計算変気機		T-311	0 5MP ₂ G ⋜∓─ ∆∺⋽ ∆	177 20										
持接登気情		2	CONTRACTOR OF THE PROPERTY OF	07:111										
A単格 3.70 3.30 (4) F1 用水が過ឆ្ 9.87 (1.07) W1 軟水装置 17.07 (1.07) P2 カーリッジフィルター 2.93 (1.07) P2 カーリッジフィルター 2.93 (1.02) P3 11.00 8.70 8.70 B4 11.00 8.70 2.70 B51 圧縮空気が射器 2.64 1,032 5 B6 計券空気フィルケー 2.64 1,032 5 T0al 10al 31.20 1,410 -869.1 0.000		T-331	計裝空気槽	13.41										
冷却路 370 330 () 冷却路サンドフィルター 0.06 ()														
F1 用水心過級階 9.87 (2.89) (2.83) (2.84) (2.83) (2.84)		X-321	冷却塔	3.70	3.30									
作利地サンドフィルター 0.06 (2.93) </td <th></th> <td></td>														
F1 用水ろ過装置 9.87 (17.07) <t< td=""><th></th><td>X-322</td><td>冷却塔サンドフィルター</td><td>90.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		X-322	冷却塔サンドフィルター	90.0										
F1 用水心過報酬 9.87 (2.93) (2.94)														
W1 軟水装庫 17.07 17.07 17.07 F2 カーバッジフィルター 2.93 11.00 8.70 8.70 11.00 B 上籍空気除湿装庫 3.00 2.70 378 5 1.032 5 E 橋空気除湿装庫 2.64 1,032 1,032 5 1.032 1.032 WB 計装空気フィルター 1,410 1,410 1,410 0.000 53.7		X-341-F1	用水ろ過装置	9.87										
W1 軟水装置 17.07 F2 カーリッジフィルター 2.93 (2.93) (2.93) (2.93) (2.93) (2.93) (2.93) (2.93) (2.94) (2.70) (3.70) (3.70) (3.70) (3.70) (3.70) (3.70) (3.70) (3.70) (3.70) (3.70) (3.70) (3.70) (3.70) (3.70) (3.70) (3.71) (3.70) (3.71) (3.71) (3.71) (3.71) (3.71) (3.71) (3.71) (3.71) (3.71) (3.71) (3.71) (3.71) (3.71) (3.71) (3.71) (3.71) (3.71) (3.72) (3.71) (3.72) (3.71) (3.72) (
F2 カーリッジフィルター 2.93 (2.93) (2.94) (2.70)		X-341-W1	軟水装置	17.07										
PF2 カードリッジフィルター 2.93 PR2 地本庫 11.00 8.70 8.70 78 378 5 E精空気除湿堆置 3.00 2.70 378 378 5 8 DS1 圧縮空気冷却器 2.64 1,032 1,032 5 8 VB 計禁空気フィルター 1,041 1,410 1,410 1,410 1,410 0.000 53.7														
2 数据機器 11.00 8.70 3.00 2.70 378 378 5 E 確空気冷却器 2.64 1,032 1,032 5 8 DS1 圧縮空気冷却器 2.64 1,032 5 8 VB 計装空気フィルター 8.70 8.70 8 9.78 8 VB 計装空気フィルター 1,410 1,410 1,410 1,410 6.89.1 0.000 53.7		X-341-F2	カートリッジフィルター	2.93										
25.圧除性 25.圧除性 11.00 8.70 378 378 5 圧縮空気停湿装置 3.00 2.70 378 5 8 圧縮空気冷却器 2.64 1,032 1,032 5 8 DS1 圧縮空気冷却器 2.64 1,032 5 8 VB 計禁空気フィルター 1,410 1,410 1,410 1,410 1,410 0.000 53.7														
空気圧能型 11.00 8.70 圧縮空気除湿装置 3.00 2.70 378 5 圧縮空気冷却器 2.64 1,032 1,032 5 DS1 L 指確空気冷却器 DS1 L 指確空気パルター VB 計装空気フィルター Total Total AB		X-341-W2	電子機能											
正確空気除湿装置 3.00 2.70 378 378 5 () DS1 圧縮空気冷却器 2.64 1,032 1,032 5 () () VB 計装空気フィルダー ()		C-331	1000年	11.00	8.70									
圧縮空気除湿装置 3.00 2.70 378 5 6 圧縮空気冷却器 2.64 1,032 1,032 5 8 DS1 圧縮空気ドレナー VB 計禁空気フィルター Total 31.20 1,410 1,410 -869.1 0.000 53.7														
正確空気冷却器 2.64 1,032 1,032 5 DS1 圧縮空気トレナー VB 計装空気フィルター Total 31.20 1,410 1,410 -869.1 0.000 53.7		X-331	圧縮空気除湿装置	3.00	2.70	378	378	5						
DS1 圧縮空気冷却器 2.64 1,032 1,032 1,032 1,032 1,032 1,032 VB 計構空気パルナー 1,410 1,410 1,410 1,410 1,410 1,410 0.000 53.7														
圧縮空気ドレナー 計装空気フィルター Total 31.20 1,410 -869.1 0.000 53.7		E-331	圧縮空気冷却器	2.64		1,032	1,032	2						
正確空ストレナー 上報空気フィルター 1,410 1,410 1,410 53.7 1.20 1,410 1,410 53.7 1.20 1,410		700	The Collection from 1 co											
計換空気フルルター Total 31.20 1,410 1,410 -869.1 0.000 53.7		X-331-DS1	圧槽公グトフナー											
31.20 1,410 1,410 -869.1 0.000 53.7		F-331A/B	計装空気フィルター											
31.20 1,410 1,410 -869.1 0.000 53.7														
31.20 1,410 1,410 -869.1 0.000 53.7	Ш													
			Total		31.20	1,410	1,410		-869.1	0.000	53.7	5		

^{4: 16} bargの飽和凝縮水基準 5:電力消費量はモーターKWの90%

NOTE 1 用役類は外部より供給されるものとする :消費 - :生成 2: 上記消費量は初期設計時のものであり、詳細設計並びに外部からの供給条件により多少の変動があります。 3: 冷却水供給温度=320C、戻り温度370C

3.2.3. 主要機器リスト

(機番)機器数は表 3-33 に示した通り、全数で 14 基である。表 3-34 から表 3-40 の機器リストに主要な仕様を示した。

表 3-33 主要機器数

	基数
タンク	2
熱交換器	1
ポンプ	1
圧縮機	1
パッケージボイラー	1
冷却塔	1
ピット	2
特殊機器	5
合計	14

表 3-34 (機器リスト CLASS "P" ポンプ類)

ブ	ロジェクト名	パラミロンエステル合成プロセス全体共変	直股備設計		+	# +	社ユー	ガレエ	品化			作成	KS	日付		
	装置名称	用役		AM	1	木八云	江ユー	クレナ	供文			照査		日付		
-	ジョブ番号	D-3002		2	機器	リスト	CLASS	"P" ポ	ンプ 類			承認	FI	日付	2021/11/30	Preliminary
改訂	機器番号	機器名称	数量	型式	世 設計容量 (L/min)	様 揚程 (m)	吸込 (kPaG)	力 吐出 (kPaG)	運転温度 温度 (℃)	密度 (kg/m3)	粘度 (cP)	材質	モーター 定格 (kW)	BHP (kW)	適用法規	備考
	P-321	冷却水循環ポンプ	1+0	温巻ポンプ	1463	26.8	0	270	32	995	0.8	Casing : CI Internal : CI	15.0	10.0	防爆仕様	
П	注:渦流ポン:	・ プの流量 XX+YY XX:プロセス]	要求流量、Y	Yミニフローパイパ												

表 3-35 (機器リスト CLASS "B" ボイラー類)

ブ	ロジェクト名	パラミロンエステル合成プロセス全体共通制	情設計			#+A	社ユー	ガレナ	. 日元			作成	KS	日付		
	装置名称	用役		1.0		怀八五	TT-T-	フレノ	卅又			照査		日付		
- 5	ジョブ番号	D-3002			機器	リスト	CLASS		イラー 類			承認	FI	日付	2021/11/30	Preliminary
改訂	機器番号	機器名称	数量	型式	使用圧力 (MPaG)	設計容量 (kg/h)	運転温度 温度 (℃)	燃料消費量 (kW) (kg/h)	送風機 モーター (kW)	給水機 モーター (kW)	機器重量 (kg)	材質	rþ (mm)	SIZE 奥行 (mm)	高さ (mm)	備考
	X-311-B1	1.6MPaG パッケージポイラー	1+0	LPG ポイラー	1.60	826.00	0	681 53.7	2.2	5.5	2,670	CS (by Vendor)	2,545.0	1,580.0	2,690	
I																
1																
1																
1	注:渦流ポン	プの流量 XX+YY XX:プロセス要求	t渡量、Y	Yミニフローバイバ	z				•							

表 3-36 (機器リスト CLASS "E" 熱交類)

7	ロジェクト名	ハラミロンエステル合成プロセス全体共	直設備		•		生士~	<u></u> -	_ <i>H</i> i	十二			作成	KS	日付		
	装置名称	用役			1	•	小工	Z T.L.		人 供文			照査		日付		
	ジョブ番号	D-3002		٢		機	器リス	L CLA	ASS "E"				承認	FI	日付	2021/11/30	Preliminary
改訂	機器番号	機器名称	数量		流体名	型式	熱負荷 (kW)	伝熱 面積 (m²)	径/本数 (mm/-)	仕様 長さ (mm)	シェル径 (mm)	材質	設計 温度 (°C)	条件 圧力 (kPaG)	保温	適用法規	備考
	E-331	圧縮空気冷却器	1	S	圧縮空気	H-BEU	2.2x1.2	1.30	19.0	2,000	200	CS	180	780	PP		
	200	工棚主义作品格	Ι'.	Т	冷却水	TI-BEO	2.231.2	1.50	5U	2,000	200	CS	60	480	NO		
				Ш													
			_														
\vdash			_	Ш													

熱交換器形式

表 3-37 (機器リスト CLASS "T" 槽類)

											* **				
-	プロジェクト名	ハラミロンエステル合成プロセス全体共通影	備設計		14 - 1	٠ ١	ューグレ	. +	,		作成	KS	日付		
	装置名称	用役		-Mg	休工	-五11-	エークレ	ノノ 灰又			照査		日付		
Г	ジョブ番号	D-3002			機器!	ノスト	CLASS "	「"槽	類		承認	FI	日付	2021/11/30	Preliminary
改訂	機器番号	機器名称	数量	型式	サイズ 内径 (mm)	·容量 T-T長さ (mm)	材質	運転 温度 (°C)	条件 圧力 (kPaG)	設計 温度 (°C)	条件 圧力 (kPaG)	付属品	保温	適用法規	備考
	T-311	0.5MPaG スチームドラム 1		V-Cylindrical	700	2,100	cs	158.8	500	190	FV 680		Hot		
	T-331	計装空気槽	1	V-Cylindrical	600	1,800	cs	40	600	60	780		NO		

表 3-38 (機器リスト CLASS "X" 特殊機器類1)

プロ	ジェクト名	パラミロンエステル合成プロセス全体			式会社二	1 <i>_ j</i> i	L.+	- G.C.		作成	KS	日付		
装置	名称	用役			八五11-	エーク	U)	卅又		照査	KS	日付		
ジョフ	が番号	D-3002		機器!	Jスト CLAS	SS "X"	特殊	機器類		承認	FI	日付	2021/11/30	Preliminary
改訂	機器番号	機器名称	数量	型式	**	イズ		流量 (m3/h)	冷却水入口 温度 (℃)	設計条件 冷却水出口 温度 (°C)		ファン・モーター定格 (kW)		備考
	X-321	冷却塔	1	SPC-U100ASSD6 (シンワ 冷却塔) 相当品	W:1,850(mm)	90(mm) (0(mm)	н:	90	37	32		3.7		
	X-322	冷却塔サンドフィルター	1	NS500-U 相当品		20 (mm) 00(mm)		9	37			(-)		本体:FRP-ろ 材:60 g

表 3-38 (機器リスト CLASS "X" 特殊機器類2)

_				1							I		
プロシ	ジェクト名	ハラミロンエステル合成プロセス全体	共通設備	● 株=	式会社ユーグ	`L.+	职		作成	KS	日付		
装置:	名称	用役		株 株	八五江二 ノ	D	卅 义		照査	KS	日付		
ジョブ	番号	D-3002		機器リ	スト CLASS "X"	特殊機	器類		承認	FI	日付	2021/11/30	AFP
			T						設計条件		ファン・モ	一タ動力	
改訂	機器番号	機器名称	数量	型式	サイズ		流量 (m3/h)	用水温度 (°C)	用水圧力 (MPaG)		モーター定格 (kW)	軸動力(kW)	備考
	X-341-F1	用水る過装置	1	MA-400(三浦工業) 相当品	L:1,195(mm) W:1,260(mm) 2,335(mm)	H:	6	40	0.39		バルブ駆動用 max 370W		
	X-341-W1	軟水装置	1	MW-100(三浦工業) 相当品	L: 790(mm) 650(mm) 1,115(mm)	W: H:	0.9	40	0.39		AC200V		
	X-341-F2	カートリッジフィルター	1	V-Clyndrial	D: 216 (mm Φ) H: 440(mm)		1	40	0.39				ハウジング: SUS304
	X-341-W2	純水装置		U-1000SE(三浦工業) 相当品	L:1,185(mm) W:1,990(mm) H:1,970(mm)		1	40	0.39		AC200V		

表 3-39 (機器リスト CLASS "X" 特殊機器類3)

プロ	ジェクト名	ハラミロンエステル合成プロセス全体	共通設備	→ +±	式会社二	1 <i></i>	`ı .+	- 屈几		作成	KS	日付		
装置	名称	用役			八五11-		U)	卅又		照査	KS	日付		
ジョフ	ブ番号	D-3002			機器リスト CLASS "X" 特殊機		機器類		承認	FI	日付	2021/11/30	AFP	
改訂	機器番号	機器名称	数量	型式	**	イズ		流量 (Nm3/h)	処理空気温 度 (°C)	設計条件 処理空気圧 カ (MPaG)		加熱用(kW)		備考
	X-331	圧縮空気除温装置	1	FD-4(丸谷化工機) 相当品	W:1,160(mm)	50(mm) 0(mm)	Н:	100	40	0.69		3 (加熱用)		

表 3-40 (機器リスト CLASS "M" 特殊機器類)

ジェ!	ナト名	パラミロンエステル合成プロセス全体す	株式会社ユーグレナ殿 機器リスト CLASS "M" 特殊機器類					作成	KS	日付				
置名	称	用役						照査	KS	日付				
ゴ番	号	D-3002						承認	FI	日付	2021/11/30	AFP		
改訂	機器番号	機器名称	数量	型式	設計流量 (NL/min)	分子量 (-)	運転仕様 吸込圧 (kPaA)	吐出圧 (kPaA)	吸入温度 (°C)	材質	モーター 定格 (kW)	BHP (kW)	適用法規	備考
	C-331	空気圧縮機	1+0	スクリュー圧縮機	1,600	29.00	101.3	700.00	20.0	by Vender	11	8.7		

3.2.4. パイロットプラントの配置計画

パイロットプラントの概略全体配置計画を図 3-37 に示す。パイロットプラントの配置に必要な面積は 3,575 m^2 (65 × 55 m)である(駐車場は除く)。建屋は合成系設備(含む制御室、電気室、事務所、倉庫) 390 m^2 (26 × 15 m)とユーティリティ設備建屋 115 m^2 (11.5 × 10 m)の2棟である。

合成設備はプラント北西側、廃液回収蒸留設備は南西側、ユーティリティ設備は南東側、屋外タンク貯蔵所は北東側に配置した。中央の東西方向に主パイプラックを設置し、西側でホスゲンの供給を受けるものと想定した。設備の全周に 6 m 巾の舗装道路を設け、原料(固体および液体)と製品の入出荷に使う。また、その道路の全外周に緑地帯を設け、フェンスを設置した。門は東南の位置に設置し 6 m 幅としている。参考として、パイロットプラントの鳥観図を図 3-38 に示す。

図 3-37 パイロットプラントの概略全体配置計画

図 3-38 パイロットプラント鳥観図

3.2.5. パイロットプラントの建設費と撤去費用概算

パイロットプラントの建設費は概算で 22.34 億円~24.06 億円と見積もられる。詳細な建設費 の積み上げを表 3-41 に示す。

表 3-41 パイロットプラントの建設費

		合成設備		廃液回収蒸留設備		ユーティリティ設備		全体設備		
	項目	設備項目	金額 (千円)	設備項目	金額(千円)	設備項目	金額(千円)	設備項目	金額(千円)	
		撹拌槽	81,100	塔	41,830	用水•鈍水設備	7,000	変圧・分電盤	2,000	
		槽	66,422	槽	13,826	蒸気設備	7,400	-	-	
	設備費	ポンプ	10,572	ポンプ	13,255	冷却水設備	9,900	-	-	
		熱交換器	16,920	熱交換器	50,117	計装空気設備	7,800	-		
		圧縮機・ 真空ポンプ	11,500	真空ポンプ	4,050	消火設備	7,500	-	•	
直接工事		特殊機器類	56,815	スタティック ミキサー	182	排水設備	6,000	-	-	
Ŧ	設備養合計	\$ 9244,000		# 9123,300		\$ 948,	,000	約20,000		
	現場工事費	\$ 9454,000		# ∫229,000		約124,000				
	建屋贵	\$90,000		-		\$ 920,000				
	防油堤費	約10,000		-		-				
	パイプラック費	-		-		\$930,000				
	舗装・フェンス・倒溝、 外灯など			-		\$ 940,000				
	直接工事費合計		約798,000	#g352,300			\$ 9280,000			

直接工事費総合計	約1,431,000		
間接工事費	約287,000		
工事費合計	約1,718,000		
間接費	#3516,000 ↑ 688,00		
建設費合計	\$12,234,000~ 2,406,000		

パイロットプラントの撤去費は概算で 4.35 億円 \sim 4.71 億円と見積もられる。詳細な撤去費の積み上げを表 3-42 から表 3-44 に示す。

表 3-42 パイロットプラントの撤去費1

±± + ≠.			W		
撤去	費	建設費	撤去費		
	機器項目	金額 (千円)	金額 (千円)	比率	備考
1	直接工事費				
1.1	機器費				
	機器費合計	約123,300	ı		
1.2	現場工事費	約229,000	約69,000		・建設時の直接工事費の労務費をベースとして撤去費を試算 ・労務費は直接工事費から機器費を除いた金額で工事材料費と案分(50%想定)で推算 ・撤去時の労務費は建設時の60%程度と想定
	直接工事費合計	約352,300	約69,000	100%	
2	間接工事費		約140,00	20%	
	工事費合計		約83,000	120%	
3	間接費		約17000~ 25,000		一般管理費、予備費等 (工事費合計の20%~30%想定)
	撤去費合計		約100,000~ 108,000		

表 3-43 パイロットプラントの撤去費2

撤去	費	建設費		撤去	A#			
	機器項目	金額(千円)		金額(千円)	比率	備考		
1	直接工事費							
1.1	機器費							
	機器費合計	約244,000		ı				
1.2	現場工事費	約454,000				・建設時の直接工事費の労務費をベースとして撤		
1.3	建屋費	約90,000	約534,000	約167,000		去費を試算 ・労務費は直接工事費から機器費を除いた金額 工事材料費と案分(50%想定)で推算		
1.4	防油堤費	約10,000				-撤去時の労務費は建設時の60%程度と想定		
	直接工事費合計	約798,000		約167,000	100%			
2	間接工事費			約34,000	20%	仮設費・工事管理費等 直接工事費の20%とした		
	工事費合計			約201,000	120%			
3	間接費			約41,000~ 61,000		一般管理費、予備費等 (工事費合計の20%~30%想定)		
	撤去費合計			約242,000~ 262,000				

表 3-44 パイロットプラントの撤去費3

撤去	費	ユーティリティ 設備建設費	全体設備 建設費	撤去費	t用	
	機器項目	金額(千円)	金額 (千円)	金額 (千円)	比率	備考
1	直接工事費					
1.1	設備費					
	設備費合計	約46,000	約20,000		35%	
1.2	現場工事費	約86,000	約38,000		65%	・建設時の直接工事費の労務費を
1.3	建屋費	約20,000				ベースとして撤去費を試算 ・労務費は直接工事費から機器費を 除いた金額で工事材料費と案分
l	パイプラック費		約30,000			(50%想定)で推算 -撤去時の労務費は建設時の60%程
1.5	舗装・フェンス・側溝、 外灯など		約40,000			度と想定
	直接工事費合計	約152,000	約128,000	約65,000	100%	
2	間接工事費			約13,000	20%	仮設費・工事管理費等 直接工事費の20%とした
	工事費合計			約78,000	120%	
3	間接費			約16,000~ 24,000		設計費、一般管理費、予備費等 (工事費合計の30%~40%想定)
	建設費合計			約94,000~ 102,000		

3.3. 実証スケールプラントの設計

前項にて設計を行ったパイロットスケールプラントの内容を基に、最終目標である商業プラント(生産量 20 万 t/年)を設計可能にするために必要となる実証プラントのスケール検討を行った。実証プラントのスケールを 1 万 t/年と 5 千 t/年に仮置きし、主要機器の系列数と機器製作の最大値から検討を行った。

それぞれの規模から商業プラントに対する Scale-up Factor は、1 万 t/年の場合は 20 倍、5 千 t/年の場合は 40 倍である。常識的な倍率としては 1 万 t/年の 20 倍を採用が好ましい。

機器製作において律速となるのは、加熱冷却が必要な反応槽であり、その製作可能な容量の上限が 300 m³ である。反応槽を 300 m³ とすると、用役平準化のため実証プラントの反応槽を 3 系列とした場合、それぞれの反応槽容量は 150 m³ と 75 m³ となる。反応槽の伝熱は運転時間に対する最も大きなリスクファクターであり、実証プラントの反応槽は、製作可能な容量上限の 1/2 サイズの 150 m³ とする方が好ましい。

以上から実証プラントの設備容量は、1万 t/年が適当と判断し、設計を行った。

3.3.1. プロセスフロー設計

実証プラントの規模を 1 万 t/年とした際の設計条件は下記の通りとなる。

パラミロンエステル: 年産 10,000 トン

廃液回収蒸留供給量: 24,194 kg/h

年間稼働日数: 8,000 時間 (333.3 日)

合成工程のバッチの運転時間: 2日間(48時間)

また、合成、析出・洗浄、廃液回収蒸留プロセス設計の条件となるマテリアルバランス、用役 条件は、パイロットプラント設計時のものと同じである。

設計にあたっては、図 3-39 に示すようにパイロットプラントではバッチ式であった、洗浄・ろ 過工程と乾燥工程を連続式に変更した。ろ過、乾燥工程を連続化することで機器サイズの大幅 な削減と、乾燥用スチームと冷却水使用量の削減が可能となった。

パイロットプラントの合成工程は、工程時間の精査により 1Batch が 48 時間以内で達成できるという結論に至っていた。実証プラントでは、合成工程を 3 系列化し、各系列を 16 時間ずらしで運用することとした。これによりパイロットプラントでは 48 時間 1Batch で設計するのに対し、Utilities の設備能力の平準化による設計容量の縮小が可能となった。合成工程での縮小は電力(60%)、スチーム(67%)、冷却水(48%)と計算された。

図 3-39 プロセス設計条件(上:パイロットプラント、下:実証プラント)

設計条件に基づきプロセスフローを構築した。フローは下記のパラミロンエステル合成と廃液回収蒸留で構成される。プロセスを主要機器に従い説明する。

<パラミロンエステル合成反応>

反応攪拌槽はパラミロンエステル合成反応行う機器である。原料である固体パラミロンと酸クロ剤を溶媒の NMP とピリジン混合溶液下でエステル化反応を行う。この反応は発熱反応で1,709 kJ/kg-パラミロンと推定される。

反応攪拌槽はジャケット付きでハステロイ C のクラッド鋼で製作され、6 枚タービン翼(回転数毎分 150)でバッフル無しの攪拌槽で計画した。攪拌槽は 3 基設置され 1Batch、48 時間で運転される。3 基の攪拌槽は 16 時間の間隔をもって運転開始される。

エステル化反応は下記のステップで行われる。

- ① パラミロンの投入
- ② NMP とピリジン混合溶液でパラミロンの溶解
- ③ ②の溶液の冷却(-10°C)
- ④ 酸クロ剤の添加
- ⑤ 酸クロ剤の添加後、昇温(90°C)
- ⑥ 昇温(90°C)の 4 時間保持
- ⑦ ⑥溶液の降温(60°C)

反応時、攪拌槽の温度を変え、かつ発熱反応を制御する必要があり、攪拌槽のジャケットに 同一の熱媒を流すことで制御を行う。

<クエンチ・析出>

反応攪拌槽で合成されたエステル化合物は溶媒中に混合液として存在し反応後、析出攪拌槽へ移送する。析出攪拌槽の溶液にメタノールを投入してクエンチを行う。その後純水を投入しパラミロンエステルを析出する。析出時の液量は反応時の液量に較べ 1.75 倍と大きくなり。このため、クエンチ・析出は析出槽で行われる。析出後の溶液は軽液と重液にデカンテーションで分離し、軽液を析出攪拌槽から廃液回収タンクへ分離送液し、パラミロンエステルの固体が濃縮された重液を析出攪拌槽に滞留させる。

この残留重液に第一回目のろ過操作で分離されたろ液(洗浄液タンク(1)の液)を注入混合される。析出攪拌槽で攪拌・混合され洗浄させる。この洗浄でゲル状の固体が溶液中に生成され攪拌操作を停止しデカンテーションを行い、軽液とゲル状の固体を含む重液に分離する。軽液を析出攪拌槽から廃液回収タンクへ分離送液し、ゲル状の固体を含む重液を析出攪拌槽に滞留させる。

この残留ゲル状の固体を含む重液に第二回目のろ過操作で分離されたろ液(浄液液タンク(2)の液)を注入・攪拌混合される。この混合液を3基の洗浄槽 A/B/C(1)へ定流量で送液する。

<洗浄・ろ過>

この工程でパラミロンエステルの固体を洗浄・ろ過する。洗浄・ろ過操作は5回行い、洗浄液はメタノールと純水の混合液で向流洗浄とし、洗浄後に固液の分離を行う。この5回の洗浄・ろ過に加え、析出攪拌槽で行う攪拌洗浄・デカンテーションの操作を加えると6回の洗浄・ろ過操作となる。

第一回洗浄後の混合物は粘稠であり、ろ過が困難であるとのテスト結果が反映された。第二回から第六回の洗浄と固液の分離はそれぞれ洗浄槽 A/B/C およびろ過機供給槽と加圧ろ過機で実施される。

洗浄液と固体は洗浄槽で攪拌洗浄され、洗浄後ろ過機供給槽へ移送される。洗浄槽は各3 基設置され、①洗浄液およびろ過機のケーキ受入れ、②攪拌洗浄、③ろ過機への供給をサイク リックに行い、洗浄・ろ過の連続運転を実現する。ろ過機は加圧型ろ過機で、ろ過機供給槽との 組合せで、ろ過機供給液を循環しながらろ過が行われる。

ろ過機で分離された洗浄液は、向流洗浄液として再使用するため第一~五洗浄液タンクに 貯留され、前の洗浄操作に再使用される。最終の第五回目の洗浄液は新し洗浄液(メタノール と純水)が使用される。

5回のろ過を終えたケーキは乾燥工程へ移送される。

<乾燥>

6回の洗浄、5回のろ過で洗浄・ろ過された固体ケーキは 34.9 重量%の湿分(大半は洗浄液) を含んでおり、乾燥機で乾燥され製品としてフレコンバックで出荷される。乾燥機はナウター型乾燥機で、湿性ケーキは攪拌を受けながらジャケットでスチーム加熱(100°C)されケーキに含有された洗浄液は固体から蒸発し、バグフィルターを経由しコンデンサーで凝縮しドレンタン

クに回収される。乾燥機は減圧下(200mmHG)で運転され、ドレンタンクでドレンを分離した気体は真空ポンプで吸引される。コンデンサーの冷却媒体は低温熱媒(-25.0°C)が使用される。 乾燥機は各3基設置され、①最終のろ過機からケーキ受入れ、②乾燥、③乾燥製品の排出をサイクリックに行う。

<熱媒>

熱媒系は同一の熱媒(総研化学社製 NeoSK 170 相当品)で4レベルの温度を設置した。低温域(-25°C)、冷却用(40°C、61.3°C)の二系統および加温用(50~110°C)である。熱媒は反応攪拌槽のジャケットへ4レベルで使用され、かつ乾燥機のコンデンサーに低温域が使用される。低温域の熱媒の冷却にはプロパン冷凍が使用され、冷却用は二系統とも冷却水が使用される。加温用には低圧(0.15 MPa)スチームが使用される。

<プロパン冷凍>

低温域の熱媒を冷却するのはプロパン冷凍が使用される。プロパン冷凍はプロパン圧縮機、プロパン凝縮器、キックバック冷却器、プロパンガスタンクおよびプロパン冷媒タンクで構成される。プロパンガスタンク(175kPa、-16.6 °C)のプロパンガスはプロパン圧縮機で昇圧され(14,000 kPa、67.4 °C)プロパン凝縮器で液化冷却(14,000 kPa、40.4 °C)されプロパン冷媒タンクに貯留される。液体のプロパンは使用先に減圧冷却(175 kPa、-28.7 °C)後供給され、冷熱を供給し、気化昇温されプロパンガスタンクへもどる。

キックバック冷却器は過剰の昇圧高温プロパンガスを冷却し、プロパンガスタンクへ戻る。

<廃液回収蒸留>

廃液回収蒸留フローはメタノール回収・排水分留と他溶液回収の2つの蒸留ブロックから構成される。それぞれのプロセス説明を下記に示す。

(1)メタノール回収・排水分離

メタノール回収塔、抽出塔の2塔とデカンターで構成される。

廃液はメタノール回収塔へ供給され、塔頂液としてメタノールが蒸留分離される。回収メタノールには若干の塩酸が含まれるが、回収メタノール冷却器により 40 °C に冷却されされる。 塔頂受槽は 66.6 °C であり若干のメタノール蒸気が放出される可能性がありベントコンデンサーで冷却凝縮回収し系外への排気を極力減らしている。塔底運転温度は 115.1 °C となる。

メタノール回収塔塔底液は抽出塔へ供給され、塔頂液としてピリジン/水の共沸物とエントレナーであるヘキサンが蒸留分離される。塔頂蒸気はコンデンサーで凝縮されさらに留出液冷却器により40°Cまで過冷却され、デカンターで上層液と下層液の2相に分離される。上層液はピリジン、水とヘキサンの混合物で、抽出塔のフィード段へ還流される。下層液はピリジン、メタノールおよびヘキサンを微量含む水である。水の純度は99.5重量%以上であり排水としてBLへ送液される。抽出塔は若干の正圧で塔頂は66.5°Cの温度で運転される。デカンターで若干のヘキサン蒸気が放出される可能性がありベントコンデンサーで冷却凝縮し系外への排気を極力減らしている。塔底運転温度は184.2°Cとなる。

ヘキサンはエントレナーとして循環使用され、運転開始時にエントレーナータンクから供給される。また装置の定修時等でヘキサンを装置外へ排出する場合はエントレーナータンクに回収される。

(2)他溶液回収

抽出塔塔底液はピリジン、短鎖脂肪酸、NMP、長鎖脂肪酸およびピリジン塩酸塩の混合溶液である。これらの溶液を低沸点順に順次蒸留操作により分離回収する。

抽出塔塔底液はピリジン回収塔へ供給され、塔頂液としてピリジンが蒸留分離される。 回収ピリジンは回収ピリジン冷却器により40°Cに冷却されピリジンタンクに送液される。 ピリジン回収塔は塔頂で負圧-89.5 kPaG、54.9°Cで運転される。塔底の運転温度は149.0°C となる。塔が負圧で運転されるのは塔底の温度を下げるためで、出来るだけ低い圧のスチームを熱源に使用するためである。このことにより溶液が高温になることを避け温度劣化を防ぐことになる。

ピリジン回収塔塔底液は短鎖脂肪酸回収塔へ供給され、塔頂液として短鎖脂肪酸が蒸留分離される。回収短鎖脂肪酸は回収短鎖脂肪酸冷却器により40°Cに冷却され脂肪酸の酸クロ化工程(他社の設計範囲)に送液される。短鎖脂肪酸回収塔は塔頂で負圧—89.5 kPaG、83.8°Cで運転される。塔底運転温度は141.8°Cとなる。

短鎖脂肪酸回収塔塔底液は NMP 回収塔へ供給され、塔頂液として NMP が蒸留分離される。回収 NMP は回収 NMP 冷却器により 40°C に冷却され NMP タンクへ送液される。NMP 回収塔は塔頂で負圧—89.5 kPaG、131.7 °C で運転される。塔底運転温度は 163.7 °C となる。 NMP 回収塔塔底液は長鎖脂肪酸とピリジン塩酸塩の混合物である。ピリジン塩酸塩からピリジンを回収するため苛性ソーダ水溶液を注入しスタティックミキサーで混合することにより、ピリジンと NaCI に中和しピリジンを分離する。この中和された液はピリジン再回収塔へ供給され、塔頂液としてピリジンと水の共沸物として回収し、抽出塔のフィードにリサイクルされる。塔底液は長鎖脂肪酸ナトリウム、NaCI および水の混合廃液で廃液冷却器により 40 °C に冷却され BL に送液される。ピリジン再回収塔は若干の正圧で、塔頂は 101.6 °C の温度で運転される。塔底運転温度は 116.8 °C となる。

実証プラントの PFD を図 3-40 から 図 3-50 に示す。

表 3-45 実証プラントでの廃液回収蒸留工程 マテリアルバランス

Stream No on PFD		1	2	3	4	9	9	7	8	6	10	11	121	13	14	15	16	17	18
SIM No	単位	FEED	53	68		S10	84	S13	98	S15	S16	S11	\$12	S14 S	S17 S	S19	\$22	S21 S	S18
温度	0	40.0	9.99	115.1		40.0	42.1	42.1	183.0	53.8	149.0	82.7	141.8	130.5	163.7	40.0	97.5	116.8	40.0
压力	kPag	9	10	23		10	10	10	23	06-	39	06-	-85	06-	-85	15	10	16	0
平均MW		38.9	32.1	50.2		76.2	86.0	18.1	97.4	79.1	100.1	74.1	100.9	99.1	117.2	21.6	20.8	59.8	18.2
モル流量	kmol/hr	621.840	387.402	234.458		2142.637	1832.363	310.252	100.957	12.660	88.277	2.556	85.723	77.575	8.149	170.415	176.763	8.482	177.239
質量流量	kg/hr	24193	12421	11772	15444	163205	157597	2095	9836	1001	8835	189	8645	0692	922	3686	3671	202	3225
NMP	kg/hr	7,699	0	7,699	7,699	0	0	0	669'1	0	6692	0	7,698	7,690	6	8	0	6	0
アリジン	kg/hr	391	0	391	1,022	277	257	20	1,002	1,001	0	0	0	0	0	929	631	0	0
メタノール	kg/hr	12,331	12,326	5	5	11	7	5	0	0	0	0	0	0	0	0	0	0	0
关	kg/hr	2,545	4	2,541	5,582	5,655	73	5,582	0	0	0	0	0	0	0	2,687	3,041	9	2,903
塩酸	kg/hr	91	91	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ピリジン塩酸塩	kg/hr	921	0	921	921	0	0	0	921	0	921	0	921	0	921	0	0	0	0
短鎖脂肪酸	kg/hr	189	0	189	189	0	0	0	189	0	189	189	0	0	0	0	0	0	0
長鎖脂肪酸	kg/hr	25	0	25	25	0	0	0	25	0	25	0	25	0	25	0	0	0	0
ヘキサン	kg/hr	0	0	0	0	157,261	157,261	0	0	0	0	0	0	0	0	0	0	465	0
NaCl	kg/hr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	323
長鎖脂肪酸扑炒仏	kg/hr	0	0	0	0	0	0	0	0	0	0	0	0	0	0	24	0	18	0
密度	kg/cum	909.1	742.0	1003.7		651.8	642.0	991.3	938.0	947.9	0.966	931.0	1006.1	933.5	3693.4	1069.4	949.7	1466.8	1062.0
質量分率																			
NMP		0.3182	0.0000	0.6539	0.4985	0.0000	0.0000	0.0000	0.7826	0.0000	0.8714	0.0012	0.8905	1.0000	0.0091	0.0021	0.0000	0.0171	0.0000
パージン		0.0162	0.0000	0.0332	0.0662	0.0017	0.0016	0.0036	0.1018	0.9998	0.0000	0.0019	0.0000	0.0000	0.0000	0.1509	0.1718	0.0000	0.0000
メタノール		0.5097	0.9923	0.0004	0.0003	0.0001	0.0000	0.0008	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
关		0.1052	0.0003	0.2159	0.3614	0.0347	0.0005	0.9954	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.7290	0.8282	0.0123	0.9000
塩酸		0.0038	0.0074	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
ピリジン塩酸塩		0.0381	0.0000	0.0783	0.0597	0.0000	0.0000	0.0000	0.0937	0.0000	0.1043	0.0000	0.1066	0.0000	0.9645	0.0000	0.0000	0.0000	0.0000
短鎖脂肪酸		0.0078	0.0000	0.0161	0.0123	0.0000	0.0000	0.0000	0.0192	0.0002	0.0214	0.9969	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
長鎖脂肪酸		0.0010	0.0000	0.0021	0.0016	0.0000	0.0000	0.0000	0.0026	0.0000	0.0029	0.0000	0.0029	0.0000	0.0264	0.0000	0.0000	0.0000	0.0000
ヘキサン		0.0000	0.0000	0.0000	0.0000	0.9636	0.9979	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.9166	0.0000
NaCl		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1000
長鎖脂肪酸升り加		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0065	0.0000	0.0353	0.0000

図 3-40 実証プラント反応攪拌槽 PFD

図 3-41 実証プラント析出攪拌槽 PFD

図 3-42 実証プラント固液分離工程(ろ過機第1)PFD

図 3-43 実証プラント固液分離工程(ろ過機第2、3)PFD

図 3-44 実証プラント固液分離工程(ろ過機第4、5)PFD

図 3-45 実証プラント乾燥 PFD

図 3-46 実証プラント熱媒系 PFD

図 3-47 実証プラントプロパン冷凍系 PFD

図 3-48 実証プラント廃液回収蒸留工程1PFD

図 3-49 実証プラント廃液回収蒸留工程2PFD

図 3-50 実証プラント廃液回収蒸留工程3PFD

3.3.2. マテリアル・ヒートバランス

ここには、①反応工程、②析出工程、③第一回洗浄工程、④洗浄・ろ過工程、⑤乾燥工程および⑥廃液回収蒸留工程ごとに記述する。

<反応工程>

反応工程の反応攪拌槽は 3 基で構成される。パラミロンエステルの年間生産量は 10,000 トンで年間稼働日数は 333.3 日であるから、反応攪拌槽1基当たりの1バッチにおけるパラミロンエステルの生成量は 20,202 kg(= 10,000,000 / 3 / (330 / 2))である。

反応攪拌槽のマテリアルバランスは下記に示されるものとなる。

[kg]	[kg/kg-BM]
<u>20,202</u>	<u>1.00</u>
3,838	0.19
11,515	0.57
16,768	0.83
10,505	0.52
123,232	6.10
16,364	0.81
-13,535	-0.67
182,222	9.02
	3,838 11,515 16,768 10,505 123,232 16,364 –13,535

ヒートバランスの詳細は省略する。この工程では①常温からスタート、②冷却(-20°C)、③反応熱の除去し反応液の温度一定(0°C)、④反応液の昇温、⑤反応液の温度(90°C)の維持、⑥反応液の降温(60°C)と推移し、その各ステップ毎に熱の入出がある。

<析出工程>

析出工程も析出攪拌槽を 3 基で構成される。析出操作は析出攪拌槽の析出用のメタノールと純水を順次注入して行われる。析出後デカンテーションで軽液と重液を分離する。マテリアルバランスは下記に示されるものとなる。

析出完了時

	[kg]	[kg/kg-BM]
<u>パラミロンエステル</u>	<u>20,202</u>	<u>1.00</u>
反応攪拌槽(液体)	182,222	9.02
メタノール[析出用]	107,677	5.33
水[析出用]	30,101	1.49
析出攪拌槽(液体)	320,000	15.84

析出後デカンテーション完了時

I I . 183 1 / N ++ . N - / I .	[kg]	[kg/kg-BM]
析出攪拌槽(液体)	320,000	15.84
軽液	239,833	
重液	80,167	
(エステル	20,202)	
(液体分	59,965)	

この工程では熱の入出はない。

<第一回洗浄工程>

第一回洗浄は析出後のデカンテーションで軽液を排出し、析出攪拌槽に残存するスラリー溶液に洗浄液タンク(T-1021(1))の洗浄液を注入し、この槽で攪拌洗浄する。洗浄後デカンテーションで軽液と重液を分離する。マテリアルバランスは下記に示されるものとなる。

第一回洗浄完了時

	[kg]	[kg/kg-BM]
<u>パラミロンエステル</u>	<u>20,202</u>	<u>1.00</u>
重液	80,167	
(エステル	20,202)	
(液体分	59,965)	
洗浄液	147,478	
総量	227,645	

第一回洗浄後デカンテーション完了時

	[kg]	[kg/kg-BM]
<u>パラミロンエステル</u>	<u>20,202</u>	<u>1.00</u>
析出攪拌槽(液体)	227,645	
軽液	147,478	
重液	80,167	
(エステル	20,202)	
(液体分	59,965)	

この工程では熱の入出はない。

<洗浄・ろ過工程>

第一回洗浄工程が終了した時点で、析出槽には重液が残存し、ここに洗浄液タンク(T-1021(2))の洗浄液を受け入れる。析出槽は次の洗浄槽へ送液のためのバッファー槽として機能を有する。マテリアルバランスは下記に示されるものとなる。

洗浄液を受け入れた析出槽

	[kg]	[kg/kg-BM]]
<u>パラミロンエステル</u>	<u>20,202</u>	<u>1.00</u>
重液	80,167	
(エステル	20,202)	
(液体分	59,965)	
洗浄液	98,343	
総量	178,510	

この槽液量を 16 時間かけて、定流量で洗浄槽 V-1021A/B/C(1)へ移送する。

この後の5回の洗浄・ろ過工程のマテリアルバランスは下記に示されるものとなる。ここでは 運転はバッチから連続に替わる。パラミロンエステル(BM)の年間生産量は 10,000 トンであり、 年間運転時間は 8,000 時間(333.33 日間)として一時間当たりの BM 量は 1,250kg (=10,000,000/8,000 = 1,250 kg/h)となり下表のバランスとなる。

表 3-46 洗浄・ろ過工程のマテリアルバランス

操作		洗浄	1回	フィル	タNo.1	洗浄	2回	フィル	タNo.2	洗浄	3回
流体名称		洗浄液1	析+洗1	ろ液	脱水ケーキ	洗浄液2	ケーキ+洗2	ろ液	脱水ケーキ	洗浄液3	ケーキ+洗3
固形分	kg/h		1,250		1,250		1,250		1,250		1,250
湿分	kg/h	6,085	9,795	9,125	670	6,085	6,755	6,085	670	6,085	6,755
合計	kg/h	6,085	11,045	9,125	1,920	6,085	8,005	6,085	1,920	6,085	8,005
固形	wt%		11.3		65.1		15.6		65.1		15.6
容量	m3/h	7.5	13.1	11.2	1.9	7.5	9.4	7.5	1.9	7.5	9.4
密度	kg/m3	812	842	812	1019	812	854	812	1019	812	854
移送先			フィルタ	廃液槽	洗浄槽No	o.2A/B/C	フィルタ2	洗浄液槽1	洗浄槽No	o.3A/B/C	フィルタ3
操作		フィル	タNo.3	洗浄	+ 4回	フィル	タNo.4	洗浄 5回	(新液)	フィル	タNo.5
流体名称		ろ液	脱水ケーキ	洗浄液4	ケーキ+洗4	ろ液	脱水ケーキ	洗浄液5	ケーキ+洗5	ろ液	脱水ケーキ
固形分	kg/h		1,250		1,250		1,250		1,250		1,250
湿分	kg/h	6,085	670	6,085	6,755	6,085	670	6,085	6,755	6,085	670
合計	kg/h	6,085	1,920	6,085	8,005	6,085	1,920	6,085	8,005	6,085	1,920
固形	wt%		65.1		15.6		65.1		15.6		65.1
容量	m3/h	7.5	1.9	7.5	9.4	7.5	1.9	7.5	9.4	7.5	1.9
密度	kg/m3	812	1019	812	854	812	1019	812	854	812	1019
移送先		洗浄液槽2	洗浄槽No	o.4A/B/C	フィルタ4	洗浄液槽3	洗浄槽No	o.5A/B/C	フィルタ5	洗浄液槽4	乾燥機

<乾燥工程>

乾燥工程は連続運転でマテリアルバランスは下記に示される。

	[kg/h]
乾燥機[IN]	
ろ過機ケーキ	1,920
(固形分	1,250)
(湿分	670)
乾燥機[OUT]	
製品(固形分)	1,250
回収溶剤	670
(湿分 乾燥機[OUT] 製品(固形分)	670) 1,250

<廃液回収蒸留工程>

廃液回収蒸留工程では、1 バッチ、48 時間当たりの BM 生産量 501kg に対応する原料液供給量は 200kg/h である。新たな条件1バッチ、48 時間当たりの BM 生産量 60,606kg であるから、廃液回収蒸留工程の廃液供給量は 24,194kg/h (=200 x 60,606 / 501)となる。

3.3.3. 合成・析出工程および乾燥工程運転スケジューリング

廃液回収蒸留工程を含む全ての工程中バッチ運転であるのは①合成工程、②析出工程と第一回洗浄工程および③乾燥工程である。合成工程は反応攪拌槽での運転で、析出工程と第一回洗浄工程は析出攪拌槽での運転となる。反応攪拌槽と析出攪拌槽それぞれの運転時間は48時間以内である。ここではこれらのバッチ運転の運転スケジューリングについて説明する。

< 反応攪拌槽での合成工程運転スケジューリング >

この工程は下記の10ステップからなる。[]内の数値はステップの運転時間(分)を示す。合計で 1,650 分(27 時間 30 分)である。

ステップ 01 [30] パラミロン投入

ステップ 02 [30] 窒素置換

ステップ 03 [30] NMP・ピリジン投入

ステップ 04 [480] 攪拌・膨潤

ステップ 05 [111.7] 合成前冷却

ステップ06 [297] 酸クロ剤投入

ステップ 07 [197] 昇温

ステップ 08 [240] 反応(攪拌)

ステップ09 [147.5] 合成後冷却

ステップ 10 [20] 合成槽から析出槽への移送

<析出攪拌槽での析出工程と第一回洗浄工程運転スケジューリング>

析出工程は下記の 11 ステップからなる。[]内の数値はステップの運転時間(分)を示す。合計で 2,728 分(45 時間 28 分)である。

ステップ 11 [60] メタノール投入

ステップ 12 [60] 純水投入

ステップ 13 [60] 析出の攪拌

ステップ 14 [180] 析出の静置

ステップ15 [345] 析出後の軽液分離

ステップ 16 [291] 洗浄液(第二回洗浄で使用した回収洗浄液)を析出槽へ投入

ステップ 17 [60] 第一回洗浄を析出槽での攪拌洗浄

ステップ 18 [180] 第一回洗浄後析出槽で静置

ステップ19 [242] 第一回洗浄後析出槽の軽液排出

ステップ20 [291] 洗浄液(第三回洗浄で使用した回収洗浄液)を析出槽へ注入

ステップ21 [960] 洗浄液(第三回洗浄で使用した回収洗浄液)を洗浄槽へ移送

<乾燥工程運転スケジューリング>

乾燥工程は見かけ上は連続運転となっているが、実際には3基の乾燥機で構成れたバッチ 運転である。

3基の運転はケーキの①受入(4 時間)、②乾燥(4.5 時間)および③払出(3.5 時間)のバッチ運転で構成される。下記にバッチ運転のタイムチャートを示す。

図 3-51 バッチ運転のタイムチャート

3.3.4. ユーティリティサマリー

本設備で使用する用役の消費量を下記に示す。合成工程のバッチ運転、連続運転および廃液回収蒸留工程の連続運転毎に示す。

	₹ 3-4	, 人 皿ノフノ	「ひかり以心兵里	
用役	合成(Batch)	合成(連続)	廃液回収蒸留(連続)	計(1バッチ時間)
電力	21, 932[kWh]	654.5[kW]	83.2[kW]	57,342[kWh]
蒸気	32,045[kg]	451[kg/h]	68,778[kg/h]	3,355,037[kg]
冷却水	7, 003[ton]	160[ton/h]	6,453[ton/h]	324,427[ton]
計装空気	200[Nm	3/h]	125[Nm3/h]	325[Nm3/h]
窒素	282[Nm3]			282[Nm3]

表 3-47 実証プラントの用役消費量

3.3.5. 主要機器リスト

(機番)機器数は下表に示した通り、全数で 210 基である。

表 3-48 実証プラント主要機器数

	合成工程	廃液回収 蒸留工程	計
塔	0	6	6
槽	22	9	31
撹拌槽	26	0	26
撹拌機	22 26 31	0	31 26 31
熱交換器	8	20	28
ポンプ	30 3	16	46
圧縮機・ 真空ポンプ	3	1	4
ろ過機	5	0	5
乾燥機	3	0	5 3
その他	29	1	30
計	157	53	210

表 3-49 から表 3-77 の機器リストに主要な仕様を示した。

表 3-49 (機器リスト CLASS "A" 撹拌機類1)

_			_													
プ	ロジェクト名	パラミロン合成プロセス全体スケールアップ	設計		±4	#	+ ¬ _	-グレナ	- 配			作成	KS	日付		
	装置名称	パラミロンエステル合成工程		-MP	11	八五	1 —	プレブ	从又			照査		日付		
-	ジョブ番号	D-3003		The state of the s	機器	リスト	CLAS	S "A"	見 学機 男	Ī		承認	FI	日付	2021/11/30	AFP
								イズ	攪拌翼	設計		駆動機				
改訂	機器番号	機器名称	数量	型式	攪拌翼数	攪拌翼段数	攪拌翼径 (mm)	攪拌翼径巾 (mm)	回転数 (rpm)	温度 (°C)	圧力 (kPaG)	モーター定 格(kW)	軸動力 (kW)	攪拌槽内径 (mm)	適用法規	備考
	A-1001 A/B/C	反応槽攪拌機A/B/C	3	タービン翼	6	1	2,100	730	150	-15 / 120	195	90	71.30	5,000	防爆仕様	パステロイC
	A-1002 A/B/C	析出槽攪拌機A/B/C	3	タービン翼	4	1	2,750	900	45	80	10	220	183.00	6,500	防爆仕様	SUS304
	A-1004	逆洗液受槽	1	タービン翼	4	1	150	50	180	40.0	0	0.22	0.01	(300)	防爆仕様	SUS304

表 3-50 (機器リスト CLASS "C" ガス圧縮機類1)

-	プロジェクト名	パラミロンエステル合成			株式会	ナナ コ _	_ <i>H</i> `L.⊣	- 屈几		作成	KS	日付		
	装置名称	パラミロンエステル合成設備		and a	怀八五	TL-L	フレ	卅又		照査		日付		
	ジョブ番号	D-3001		*	機器リスト	CLASS "C		E縮機類		承認	FI	日付	2021/11/30	AFP
改訂	機器番号	機器名称	数量	型式	設計流量 (m3/h suct P,T)	分子量 (-)	運転仕様 吸込圧 (kPaA)	吐出圧 (kPaA)	吸入温度 (°C)	材質	モーター 定格 (kW)	BHP (kW)	適用法規	備考
	X-001-C1	プロパン圧縮機	1+0	(Centri)	6,900.0	44.10	75	1400.00	-16.6	by Vender	1,200	1,062.0	高圧ガス	

表 3-51 (機器リスト CLASS "P" ポンプ類1)

7	ロジェクト名	パラミロン合成プロセス全体スケールアップ			14	+	ナユーク	ゲレード	<u>:</u>			作成	KS	日付		
	装置名称	パラミロンエステル合成工程		AM?	17	八五九	1—-	<i>,</i> , , ,	权			照査		日付		
	ジョブ番号	D-3003		0.			CLASS					承認	FI	日付	2021/11/30	AFP
改訂	機器番号	機器名称	数量	型式	仕村 設計容量 (m3/h)	兼 揚程 (m)	吸込 (kPaG)	力 吐出 (kPaG)	運転温度 温度 (℃)	密度 (kg/m3)	粘度 (cP)	材質	モーター 定格 (kW)	BHP (kW)	適用法規	備考
	P-1001	NMPポンプ	1+0	キャンドポンプ	39.8	23.2	7	250	20	1032.7	1.853	Casing : SUS316L Internal : SUS316L	7.5	4.7	防爆仕様	
	P-1002	ピリジンポンプ	1+0	キャンドポンプ	5.6	28.9	7	295	20	982.8	0.974	Casing : SUS316L Internal : SUS316L	3.7	1.8	防爆仕様	
	P-1003	酸クロ剤ポンプ	1+0	ダイアフラムポンプ	2.5	23.2	0	210	20	892	1.153	Casing : by vendor Internal : by vendor	2.2	1.4	防爆仕様	
	P-1004	反応機件権ポンプ	1+0	キャンドポンプ	58.1	52.7	7.0	565	60	1046	20	Casing : SUS316L Internal : SUS316L	18.5	14.7	防爆仕様	
	P-1005	析出操件権ポンプ	1+0	キャンドポンプ	52.0	26.2	4.0	250	40	928	1	Casing : SUS316L Internal : SUS316L	11.0	6.6	防爆仕様	
	P1-006	メタノールポンプ	1+0	キャンドポンプ	45.4	37.9	6.0	310	20	790.8	0.58	Casing : SUS304 Internal : SUS304	11.0	6.6	防爆仕様	
	P-1007	純水ポンプ	1+0	キャンドポンプ	10.1	36.4	7.0	375	20	998.2	1	Casing : SUS304 Internal : SUS304	3.7	2.9	防爆仕様	
	P-1008	加熱熱媒ポンプ	1+0	キャンドポンプ	224.3 x 1.1	27.8	44.0	270	91.7	802.6	0.42	Casing : CI Internal : CS	30.0	21.1	防爆仕様	
	P-1009	低温熱媒ポンプ	1+0	キャンドポンプ	202.6 x 1.1	25.7	49.0	280	-14.4	888.5	2.05	Casing : SUS304 Internal : SUS304	30.0	19.7	防爆仕様	
	P-1010	冷却熱媒ポンプ	1+0	キャンドポンプ	223.9 x 1.1	27.7	44.0	270	91.7	804.4	0.47	Casing : CI Internal : CS	30.0	21.1	防爆仕様	
	P-1011	逆洗液ポンプ	1+0	渦流ポンプ	16.7 L/min	33.1	4.0	290	40	854	1	Casing : SUS316L Internal : SUS316L	1.1	0.9	防爆仕様	
	P-1012	洗浄メタノールポンプ	1+0	キャンドポンプ	6.8	36.7	6.0	300	20	790.8	0.58	Casing : SUS304 Internal : SUS304	3.7	2.2	防爆仕様	
	P-1013	洗浄水ポンプ	1+0	渦流ポンプ	11.4 L/min	29.0	7.0	300	20	998.2	1	Casing : SUS304 Internal : SUS304	0.4	0.4	防爆仕様	
	注:渦流ポン	プの流量 XX+YY XX:プロセス要:	水流量、	YY:ミニフローパイパス												

表 3-52 (機器リスト CLASS "T" 槽類1)

	コジェクト名	ハラミロン合成プロセス全体スケールアップ	7 設計		14. 1						作成	KS	日付		
*	表置名称	パラミロンエステル合成工程			株式	会社-	ユー グレ	ノナ殿			照査		日付		
9	ショブ番号	D-3003		- U	## 異	J ス ト	CLASS "	「"槽	5		承認	FI	日付	2021/11/30	AFP
改訂	機器番号	機器名称	数量	型式		·容量 T-T長さ (mm)	材質		条件 圧力 (kPaG)	設計 温度 (°C)	条件 圧力 (kPaG)	付属品	保温	適用法規	備考
	T-1001	NMPタンク	1	Cone Roof	7,000	14,000	SUS 304	20	0	60	Full Liquid		NO	危険物 第三石油類	ρ=1.033
	T-1002	ピリジンタンク	1	Cone Roof	3,600	7,200	SUS 304	20	0	60	Full Liquid		NO	危険物 第一石油類水溶 性液体	ρ=0.983
	T-1003	メタノールタンク	1	Cone Roof	3,800	6,700	SUS 304	20	0	60	Full Liquid		NO	危険物 特殊引火物	ρ=0.791
	T-1004	雑水タンク	1	V-Cylindrical	2,400	3,700	SUS 304	20	0	60	Full Liquid		NO		ρ=0.998
	T-1005	加熱熱媒タンク	1	V-Cylindrical	1,600	4,800	cs	91.7	0	120	Full Liquid		нот		ρ=0.791
	T-1006	低温熱媒タンク	1	V-Cylindrical	1,500	4,500	SUS 304	-14.4	0	-30 / 60	Full Liquid		Cold		ρ=0.891
	T-1007	第一冷却熱媒タンク	1	V-Cylindrical	1,600	4,800	cs	90	0	110	Full Liquid		нот		ρ=0.804
	T-1008	第二冷却熱媒タンク	1	V-Cylindrical	1,600	4,800	cs	40	0	110	Full Liquid		нот		ρ=0.841
	T-1009 A/B/C	固体原料ホッパーA/B/C	3	V-Conical (see process sketch)	1,500	3,600 / 1,500	SUS 304	常温	0	60	Full Powder		NO		ρ=0.602
	T-1010	廃液回収タンク	1	Cone Roof Tank	6,500	9,700	SUS 304	常温	0	60	Full Powder		NO	危險物 特殊引火物	ρ=0.812
	T-1011	逆洗液受槽	1	V-Cylindrical Top head: Flat, Bottom head:	300	500	SUS 304	常温	0	60	Full Powder		NO	危険物 特殊引火物	
	X-001-T1	プロパンガスタンク	1	V-Cylindrical	900	2,700	SUS 304	-28.7	50	-35 / 60	190 & FV		Cold	高圧ガス	
	X-001-T2	プロパン冷媒タンク	1	V-Cylindrical	1,200	3,600	cs	40.4	1,299	60	1,430 & FV		Operating Stability	高圧ガス	ρ=0.467
		T-1009(1)		3,600 m	m	1 500									
						1,500 mm									
					Q m										
					1,500 mmlD		>'								

表 3-53 (機器リスト CLASS "V" 撹拌槽類1)

ブ	ロジェクト名	パラミロン合成プロセス全体スケールアッフ	が設計		+4-	+4+	Lユーグl	· + Ø	Ն		作成	KS	日付		
	装置名称	パラミロンエステル合成工程		M	1本	八五九	レユークし	ノノ馬	Z		照査		日付		
	ジョブ番号	D-3003				スト	CLASS "V"	攪拌	曹類		承認	FI	日付	2021/11/30	AFP
改訂	機器番号	機器名称	数量	型式	サイス 内径 (mm)	・容量 T-T長さ (mm)	材質	運転 温度 (°C)	条件 圧力 (kPaG)	設計 温度 (°C)	条件 圧力 (kPaG)	付属品	保温	適用法規	備考
	V-1001 A/B/C	反応授拌槽 (see process sketch)	3	V-Cylindrical	5,000	8,900	アルミキルト 鋼+ハス テロイCクッラット	-4 / 90	5	-15 / 120	195		Hot & Cold		
				(ジャケット)	5,020	8,400	アルミキルト 鋼	-20 / 110	196	-30 / 140	600		Hot & Cold		ジャケット間隙: 50mm
	V-1002 A/B/C	析出 授拌槽 (see process sketch)	3	V-Cylindrical	6,500	11,200	CS+ETFEコーティ ング	60	Full Liquid	80	Full Liquid		NO		with 4 Baffles (SUS304)
П															

表 3-54 (機器リスト CLASS "A" 撹拌機類2)

_			_			H						<i>/</i> ///				
プロ	コジェクト名	パラミロン合成プロセス全体スケールアップ設	BH		栱	ナー	:+ ¬ —	-グレフ	⊢毆			作成	KS	日付		
-	麦置名称	洗浄・ろ過・乾燥工程		M	1/1	11/21		,,,	示义			照査	KS	日付		
3	与ブ番号	D-3003			機器	リスト	CLAS	S "A" 🚦	貴拌機 秀			承認	FI	日付	2021/10/22	AFP
改訂	機器番号	機器名称	数量	型式	攪拌翼数	攪拌翼段数		·イズ 攪拌翼径巾 (mm)	授拌翼 回転数 (rpm)	設計 温度 (°C)	条件 圧力 (kPaG)	駆動機 モーター定 格(kW)	動力 軸動力 (kW)	攪拌槽内径 (mm)	材質	備考
	A-1021 A/B/C(1)	洗浄禮授拌機A/B/C(1)	3	ターピン翼	4	1	720	by vendor (250)	180	40	Full Liquid	5.5	2.40	1,800	SUS316	
	A-1021 A/B/C(2)	洗净槽提拌機A/B/C(2)	3	タービン翼	4	1	640	by vendor (230)	180	40	Full Liquid	2.2	1.50	1,600	SUS316	
	A-1021 A/B/C(3)	洗净槽提拌機A/B/O(3)	3	タービン翼	4	1	640	by vendor (230)	180	40	Full Liquid	2.2	1.50	1,600	SUS316	
	A-1021 A/B/C(4)	洗浄槽提拌機A/B/C(4)	3	タービン翼	4	1	640	by vendor (230)	180	40	Full Liquid	2.2	1.50	1,600	SUS316	
	A-1021 A/B/C(5)	洗浄槽提拌機A/B/C(5)	3	タービン翼	4	1	640	by vendor (230)	180	40	Full Liquid	2.2	1.50	1,600	SUS316	
	A-1022 (1)	ろ連續供給槽提拌機(1)	1	タービン翼	4	1	640	by vendor (220)	180	40	Full Liquid	2.2	1.50	1,500	SUS316	
	A-1022 (2)	ろ連續供給槽提拌機(2)	1	タービン翼	4	1	550	by vendor (180)	180	40	Full Liquid	1.1	0.72	1,300	SUS316	
	A-1022 (3)	ろ連續供給槽提拌機(3)	1	タービン翼	4	1	550	by vendor (180)	180	40	Full Liquid	1.1	0.72	1,300	SUS316	
	A-1022 (4)	ろ連續供給槽提拌機(4)	1	タービン翼	4	1	550	by vendor (180)	180	40	Full Liquid	1.1	0.72	1,300	SUS316	
	A-1022 (5)	ろ連續供給槽提拌機(5)	1	タービン翼	4	1	550	by vendor (180)	180	40	Full Liquid	1.1	0.72	1,300	SUS316	
	A-1023 (1)	洗浄液タンク授件機(1)	1	タービン翼	4	1	2,600	by vendor (900)	54	40	Full Liquid	45	34.60	6,200	SUS316	
	A-1023 (2)	洗浄液タンク授件機(2)	1	タービン翼	4	1	2,300	by vendor (750)	60	40	Full Liquid	30	24.40	5,400	SUS316	
	A-1023 (3)	洗浄タンク液接拌機(3)	1	タービン翼	4	1	935	by vendor (320)	180	40	Full Liquid	15	9.40	2,200	SUS316	
	A-1023 (4)	洗浄タンク液接拌機(4)	1	タービン翼	4	1	935	by vendor (320)	180	40	Full Liquid	15	9.40	2,200	SUS316	
	A-1023 (5)	洗浄タンク水接拌機(5)	1	ターピン翼	4	1	935	by vendor (320)	180	40	Full Liquid	15	9.40	2,200	SUS316	

表 3-55 (機器リスト CLASS "C" ガス圧縮機類2)

				_										
-	プロジェクト名	パラミロン合成プロセス全体スケールアッフ	設計	- t4	式会社	¬/	- - Σ'ι . → Ε	ЭЛ		作成	KS	日付		
	装置名称	洗浄・ろ過・乾燥工程		AN TH	八五江		<i>, , ,</i> ,	权		照査	KS	日付		
	ジョブ番号	D-3003		機器リ	スト CLA	SS "C"	ガス圧解	機類		承認	FI	日付	2021/11/30	Preliminary
							運転仕様				モーター			
改訂	機器番号	機器名称	数量	型式	設計流量	分子量	吸込圧	吐出圧	吸入温度	材質	定格	BHP	適用法規	備考
					(L/min suct P,T)	(-)	(kPaA)	(kPaA)	(°C)		(kW)	(kW)		
	X-1041-C1	真空ポンプA/B	2	オイルフリースクロール真	2,003.0	29.00	24	103.30	10.0	by Vender	0.7	0.45		
	A/B	英型ホンノA/B	2	空ポンプ	2,003.0	29.00	24	103.30	10.0	by vender	0.7	0.45		
\vdash			_											
1									l					l I

表 3-56 (機器リスト CLASS "E" 熱交類1)

7	ロジェクト名	パラミロン合成プロセス全体スケールアップ	1991				生士~		_Hi.	十二			作成	KS	日付		
	装置名称	洗浄・ろ通・乾燥工程		1	M	•	休工	△廿二-	ークレ	ノ			照査		日付		
	ジョブ番号	D-3003				機	器リス	K F CLA	ASS "E"	熱交 類			承認	FI	日付	2021/11/30	AFP
							熱負荷	伝熱		仕様			設計	条件			
汝訂	機器番号	機器名称	数量		流体名	型式	(kW)	面積 (m²)	径/本数 (mm/-)	長さ (mm)	シェル径 (mm)	材質	温度 (°C)	圧力 (kPaG)	保温	適用法規	備考
	E-1001	熱媒加熱器	1	S	熱媒	H-BEU	1,961 x	146	19.0	6,000	600	CS	140	550	Hot		
	E-1001	元代 9米 ガル 元で省計	Ι'.	Т	スチーム	H-BEU	1.1	140	204U	6,000	600	CS	205	330&FV	Hot	1	
	E-1002	熱媒チラー	1	S	プロパン	н-вки	1,442 x	348	19.0	6.000	900/1,400	SUS304	-40 / 60	300&FV	Cold	高圧ガス	
	E-1002	Intersect 7	Ι'.	Т	熱媒	H-BK0	1.1	340	486U	0,000	300/1,400	SUS304	-35 / 60	600	Cold	同圧ガス	
	E-1003	第一熱媒冷却器	1	S	熱媒	H-AEU	20.5 x 1.1	2.0	19.0	2,000	300	CS	120	550	os		
	L-1003	第一 於珠/中型衛	Ľ	\dashv	冷却水	TI-ALO	20.5 X 1.1	2.0	8U	2,000	300	CS	60	480	No		
	E-1004	第二熱媒冷却器	I .	S	熱媒	H-AEU	1,282 x	376	19.0	6,000	900	CS	75	550	OS		
	E-1004	20 - XX 29K / 13 Z4/66F	Ι'.	Т	冷却水	HALO	1.1	370	525U	0,000	300	CS	60	480	No		
	V 1001 E1	プロパン凝縮器	I .	S	プロパン	H-AEU	2,414 x	229	19.0	6,000	700	CS	100	1,430	No	高圧ガス	
	7-1001-E1	ノロバンの大型製料	Ľ	Т	冷却水	TI-AEO	1.1	229	320U	5,500	, 30	CS	60	480	No	阿正刀人	
٦	V 1001 E2	プロパンキックバック冷却器	-	S	プロパン	プロパン	63.1 x 1.1	15.3	19.0	2.000	400	CS	120	330&FV	No	高圧ガス	
	A-1001-E2	プロハンイッシハック市即番	Ι'.	Т	冷却水		03.1 X 1.1	10.3	65U	2,000	400	CS	60	480	No	同圧ガス	

Note: OS: Operating stability 熱交換器形式

表 3-57 (機器リスト CLASS "E" 熱交類2)

	プ	ロジェクト名	パラミロン合成プロセス全体スケールアップ設計					仕士々	会社ユ-	_ガい	上即			作成	KS	日付		
		装置名称	洗浄・ろ過・乾燥工程		2	1		休工しュ	▼ ↑1	ークレ	人 供文			照査	KS	日付		
	:	ジョブ番号	D-3003				機		L CLA	SS "E"				承認	FI	日付	2021/11/30	AFP
改訂	ŧτ	機器番号	機器名称	数量		流体名	型式	熱負荷 (kW)	伝熱 面積 (m²)	径/本数 (mm/-)	仕様 長さ (mm)	シェル径 (mm)	材質	設計 温度 (°C)	条件 圧力 (kPaG)	保温	適用法規	備考
Г	Т	X-1041-E1A/B	溶剤凝縮器A/B	1	S	冷温熱媒	V-BEM	305 x 1.1	36.00	19.0	3,000	400	SUS304	-35 / 60	600	Cold	危険物	
	\perp		711717171111111111111111111111111111111	·	Т	メタノール+水		000 // //		100U	5,000		CS	-5 / 70	FV	Cold	74000 172	
]	
	┸																	
	Ш																	
	Т																	
]	
	Т																	
																	1	

表 3-58 (機器リスト CLASS "P" ポンプ類2)

		12 3		双伯プノク		133 F	* * -	ノノ坎(
双里	坐式	(m3/h)	789 T.E. (m)	(kPaG)	(kPaG)	(°C)	(kg/m3)	(cP)	刊具	(kW)	(kW)
1+0	キャンドポンプ	37.5 x 1.1	27.7	2	230	40	812	1	Casing : SUS304 Internal : SUS304	7.5	4.67
1+0	キャンドポンプ	25.0 x 1.1	31.4	2	260	40	812	1	Casing : SUS304 Internal : SUS304	5.5	4.00
1+0	キャンドポンプ	7.5 x 1.1	37.4	2	310	40	812	1	Casing : SUS304 Internal : SUS304	3.7	2.33
1+0	キャンドポンプ	7.5 x 1.1	37.4	2	310	40	812	1	Casing : SUS304 Internal : SUS304	3.7	2.33
1+0	キャンドポンプ	7.5 x 1.1	37.4	2	310	40	812	1	Casing : SUS304 Internal : SUS304	3.7	2.33
1+0	キャンドポンプ	13.1 x 1.1	38.8	4	340	40	854	1	Casing : SUS304 Internal : SUS304	5.5	3.37
1+0	キャンドポンプ	9.4 x 1.1	26.1	4	230	40	854	1	Casing : SUS304 Internal : SUS304	3.7	2.11
1+0	キャンドポンプ	9.4 x 1.1	29.7	4	261	40	854	1	Casing : SUS304 Internal : SUS304	3.7	1.89
1+0	キャンドポンプ	9.4 x 1.1	29.7	4	261	40	854	1	Casing : SUS304 Internal : SUS304	3.7	1.89
1+0	キャンドポンプ	9.4 x 1.1	29.7	4	261	40	854	1	Casing : SUS304 Internal : SUS304	3.7	1.89
1+0	キャンドポンプ	13.1 x 1.1	114.4	4	980	40	842	1	Casing : SUS304 Internal : SUS304	15.0	9.78
1+0	キャンドポンプ	9.4 x 1.1	103.9	4	890	40	842	1	Casing : SUS304 Internal : SUS304	11.0	7.44
1+0	キャンドポンプ	9.4 x 1.1	103.9	4	890	40	842	1	Casing : SUS304 Internal : SUS304	11.0	7.44
1+0	キャンドポンプ	9.4 x 1.1	103.9	4	890	40	842	1	Casing : SUS304 Internal : SUS304	11.0	7.44
1+0	キャンドポンプ	9.4 x 1.1	103.9	4	890	40	842	1	Casing : SUS304 Internal : SUS304	11.0	7.44
2	キャンドポンプ	8.5 x 1.1	49.4	1	320	10	637	0.472	Casing : SUS304 Internal : SUS304	3.7	2.56

表 3-59 (機器リスト CLASS "T" 槽類2)

ブ	ロジェクト名	パラミロン合成プロセス全体スケールアッン	が設計		LaL D	A 4.1					作成	KS	日付		
	装置名称	洗浄・ろ過・乾燥工程			株式会	会社ユ	ーグレ	ナ殿			照査	KS	日付		
٠,	ジョブ番号	D-3003		4	等器 リ	スト CI	LASS "T"	槽類			承認	FI	日付	2021/11/30	AFP
改訂	機器番号	機器名称	数量	型式	サイズ 内径 (mm)		材質		条件 圧力 (kPaG)	設計 温度 (°C)	条件 圧力 (kPaG)	付属品	保温	適用法規	備考
	T-1021 (1)	洗浄液タンク(1)	1	V-Cylindrical Top head: Flat, Bottom head: 10% dish	6,200	7,400	SUS 316	40	0	120	Full Liquid		NO	危険物 特殊引火物	ρ =1.000
	T-1021(2)	洗浄液タンク(2)	1	V-Cylindrical Top head: Flat, Bottom head: 10% dish	5,400	6,500	SUS 316	40	0	120	Full Liquid		NO	危険物 特殊引火物	ρ =1.000
	T-1021(3)	洗浄液タンク(3)	1	V-Cylindrical Top head: Flat, Bottom head: 10% dish	2,200	2,250	SUS 316	40	0	120	Full Liquid		NO	危険物 特殊引火物	ρ=1.000
	T-1021(4)	洗浄液タンク(4)	1	V-Cylindrical Top head: Flat, Bottom head: 10% dish	2,200	2,250	SUS 316	40	0	120	Full Liquid		NO	危険物 特殊引火物	ρ=1.000
	T-1021(5)	洗浄液タンク(5)	1	V-Cylindrical Top head: Flat, Bottom head: 10% dish	2,200	2,250	SUS 316	40	0	120	Full Liquid		NO	危険物 特殊引火物	ρ =1.000
	X-1041- T1A/B	回収溶剤タンクA/B	1	V-Cylindrical Top head: Flat, Bottom head: 10% dish	700	800	SUS 304	40	0	120	Full Liquid		NO	危険物 特殊引火物	ρ=1.000

表 3-60 (機器リスト CLASS "V" 撹拌槽類2)

ヺ	ロジェクト名	パラミロン合成プロセス全体スケールアップル	0:9+								作成	KS	日付		
_	装置名称	洗浄・ろ過・乾燥工程	~#'	₽ #	株式会	性ユー	グレフ	ナ殿			照査	KS	日付		
_	ジョブ番号	D-3003		- W	リスト	CLACC	m/m 4	慢拌槽	-		承認	FI	日付	2021/11/30	AFP
	ノコノ甘芍	D-3003	г -	饭品	リスト サイズ		V 1		類 転条件	設	計条件		DIA	2021/11/30	AFP
改訂	機器番号	機器名称	数量	型式	内径 (mm)	T-T長さ (mm)	材質	温度 (°C)	圧力 (kPaG)	温度 (°C)	圧力 (kPaG)	付属品	保温	適用法規	備考
	V-1021 A/B/C(1)	洗浄槽 A/B/C (1)	3	V-Cylindrical Top head: Flat, Bottom head 10% dish	1,800	2,250	SUS316	40	FULL LIQUID	120	FULL LIQUID	with 4 Baffles (SUS304)	NO		ρ = 1,000kg/m3
	V-1021 A/B/C(2)	洗浄權 A/B/C (2)	3	V-Cylindrical Top head: Flat, Bottom head 10% dish	1,600	2,000	SUS316	40	FULL LIQUID	120	FULL LIQUID	with 4 Baffles (SUS304)	NO		ρ = 1,000kg/m3
	V-1021 A/B/C(3)	洗浄槽 A/B/C (3)	3	V-Cylindrical Top head: Flat, Bottom head 10% dish	1,600	2,000	SUS316	40	FULL LIQUID	120	FULL LIQUID	with 4 Baffles (SUS304)	NO		ρ = 1,000kg/m3
	V-1021 A/B/C(4)	洗浄槽 A/B/C (4)	3	V-Cylindrical Top head: Flat, Bottom head 10% dish	1,600	2,000	SUS316	40	FULL LIQUID	120	FULL LIQUID	with 4 Baffles (SUS304)	NO		ρ = 1,000kg/m3
	V-1021 A/B/C(5)	洗浄槽 A/B/C (5)	3	V-Cylindrical Top head: Flat, Bottom head 10% dish	1,600	2,000	SUS316	40	FULL LIQUID	120	FULL LIQUID	with 4 Baffles (SUS304)	NO		ρ = 1,000kg/m3
	V-1022(1)	ろ通機供給槽(1)	1	V-Cylindrical Head: 10% dish	1,500	1,820	SUS316	40	FULL LIQUID	120	FULL LIQUID	without Baffle	NO		ρ = 1,000kg/m3
	V-1022(2)	ろ通機供給槽(2)	1	V-Cylindrical Head: 10% dish	1,300	1,600	SUS316	40	FULL LIQUID	120	FULL LIQUID	without Baffle	NO		ρ = 1,000kg/m3
	V-1022(3)	ろ通機供給槽(3)	1	V-Cylindrical Head: 10% dish	1,300	1,600	SUS316	40	FULL LIQUID	120	FULL LIQUID	without Baffle	NO		ρ = 1,000kg/m3
	V-1022(4)	ろ通機供給槽(4)	1	V-Cylindrical Head: 10% dish	1,300	1,600	SUS316	40	FULL LIQUID	120	FULL LIQUID	without Baffle	NO		ρ = 1,000kg/m3
	V-1022(5)	ろ通機供給槽(5)	1	V-Cylindrical Head: 10% dish	1,300	1,600	SUS316	40	FULL LIQUID	120	FULL LIQUID	without Baffle	NO		ρ = 1,000kg/m3

表 3-61 (機器リスト CLASS "RV" 特殊機器類(ロータリーバルブ)1)

		200.				. • •	11122111				,	- ,	
ジェク	卜名	パラミロン合成プロセス全体スケールアップ	附	***	さま はっぱい はっぱい はいしゅう はいしゅう はいしゅう はいし はいし はいし はいし はいし はい	_ <i>ガ</i> し	上即		作成	KS	日付		
置名	胨	洗浄・ろ過・乾燥工程		THE TABLE	スサイン	ークレ	人 供又		照査	KS	日付		
ブ番	号	D-3003		機器リスト CLA	SS "RV"	特殊機器類			承認	FI	日付	2021/11/30	AFP
	100 TO TO	100 DD 40 Th		We - b		1100		条件		条件		農動力	
次訂	機器番号	機器名称	数量	型式	サイズ	材質	供給量 (m3/h)	温度 (°C)	温度 (°C)	圧力 (kPaG)	モーター定格 (kW)	軸動力(kW)	備考
	RV-1041 A/B/C	乾燥機ロータリーパルプA/B/C	3	槙野産業株式会社製 同等品	GRL320-300		4	60			0.45		
\Box													
\dashv						' =	1		-	- 0D	_	' —	
	GRL	(粒体・樹脂ペレット向け 低圧用)		6						4			
	特 徴			-				+ n4					
4	 最大整E 	自送物やプラスチックペレット等の定量供給に最適です E20kPaまでの環境で使用できます	-	-	1			n#					
	 #655550 	±様のモーターを選定する事が可能です こはダブルリップシールを採用 −直結式を採用して低価格を実現しました	-				1-1	-	4	/			
\dashv	また、メ	一旦配がと扱うして 配面を主义をしないと シテナンスも容易です ズドエンドローター(シュランド型)	1	0.							-		
				1	GF								
\forall	-			0 0		型式	出たりの 容積 フランジサ・ r /rev mm ()	イズ eD 概算重量 Inch) 核g	B B	C	面開 H	_	
		1任: 100A~300A シジ: JIS 5KRF-10KFF			G		0,93 108	-	239	142			
\exists		ANSI 150lb DIN PN10	- 2	オブション	G	RL150-150	3.35 162	(6) 49	272	181	270		
	使用活材	度: ~80°C 質: ケーシング SCS13/CFB-AC		・ パラ研算 #その他、ご希望の世様をご連続ください。			7,45 212		293	505			
		□-9- SUS304			_		3,90 265 (7,56 315 (344 372	235		_	
					L	ncse0=300 i	7,00 310 (12) 143	3/2		グ中心から物理までの寸法で	g.	
							1	I	I	1			
4													
\dashv			\vdash				+	-	-		-		
\dashv													

表 3-62 (機器リスト CLASS "X" 特殊機器類1)

ジェク	L 夕	パラミロン合成プロセス全体スケールアップ設!	+							作成	KS	日付		
置名		洗浄・ろ過・乾燥工程		林	式会社	ユユーグ	レナ殿			照査	KS	日付		
ブ番	号	D-3003		機器	リスト C	LASS "X"	特殊機器	類 運転	AV III.	承認設計	FI	日付駆動	2021/11/30	AFP
改訂	機器番号	機器名称	数量	型式	+	ナイズ	材質	連報 温度 (°C)	压力 (kPaG)	温度 (°C)	圧力 (kPaG)		軸動力(kW)	備考
	X-1041- M2	乾燥機排出コンペア	1	三和コンベア株式会社製 同等品		イズ: 220mm Φ 8,500mm	SUS304	40	АМВ	80	190	0.75		
		M MM MX 'P' M M '' MAM ''' 0 0 0 0 0 0 0	2 10 E		20	304(ステンレス 2 式 D 140-L-G-M2 48.66	D2 D3	PT	FR	-ンケース・モータ L	L1 L2	L3 L4 L5	単位 (mm) CP S1 350 165.2	
			¥		SCP-STB- SCP-STB- SCP-STB- SCP-STB-	140-L-G-M2 48.66 190-L-G-M2 60.5(7 240-L-G-M2 76.3(8 290-L-G-M2 114 375-L-G-M2 114	6.3) ⁸ 190 216.3 9.17 240 267.4 4.3) ⁸ 290 318.5 1.3 325 355.6 1.3 375 406.4	160 3.0 200 3.0 240 4.0 260 4.0	160 1500~ 200 1500~ 240 2000~ 260	4500(1500~4500 4500(2000~5000 2000~5000 2000~5000		293 170 52 306 173 52 332 180 52 367 201 52 367 201 52	350 165.2 425 216.3 450 267.4 525 318.5 530 355.6 530 406.4	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ç	10 mar	SCP-STB- SCP-STB- SCP-STB- SCP-STB- SCP-STB- SCP-STB-	140-L-G-M2 230 -190-L-G-M2 280 -240-L-G-M2 345 -290-L-G-M2 390 -325-L-G-M2 435 -375-L-G-M2 495 カッコ内の場合、D1寸出	265 8 1 320 8 2 385 12 2 430 12 2 480 12 2 540 16 2	9 182.6 3 208.2 3 233.7 3 259.3 5 277.8 5 303.2	182.6 208.2 233.7 259.3 277.8 303.2	232.7 215 258.6 230 283.7 215	190 240 240 290 260 310 270 320 300 350	5097/ 5097/ 5097/510 5107/ 511	5107/5117 5107/5117 57/5117/5127 57/5117/5127 57/5127 17/5127	

表 3-63 (機器リスト CLASS "X" 特殊機器類2)

ジェク	卜名	パラミロン合成プロセス全体スケールアップ█	at the	+4-	+44	- コ <i>_ ド</i> ロ	. + @			作成	KS	日付		
置名	称	洗浄・ろ過・乾燥工程		(本)	八云仙	ニユーグレ	ノノ灰又			照査	KS	日付		
ブ番	号	D-3003		機器リ	スト CL	ASS "X" \$	持殊機器類	i		承認	FI	日付	2021/11/30	AFP
								運動	条件	投資	†条件	駆動	機動力	
改訂	機器番号	機器名称	数量	型式		サイズ	材質	温度 (°C)	圧力 (kPaG)	温度 (°C)	圧力 (kPaG)		軸動力(kW)	備考
	X-1041- F1(1)	パッグフィルター(1)	1	ホソカワミクロン パルスジェットコレクタHP型 同等品		HP 37-4 DIA x 3,310 mmH	CASING: SUS304	42	26.7	90	FV & 800	-		
	X-1041- F1(2)	パッグフィルター(2)	1	ホソカワミクロン パルスジェットコレクタHP型 同等品		HP 37-4 DIA x 3,310 mmH	CASING : SUS304	42	26.7	90	FV & 800	-		
	X-1041- F1(3)	パッグフィルター(3)	1	ホソカワミクロン パルスジェットコレクタHP型 同等品		HP 37-4 DIA x 3,310 mmH	CASING : SUS304	42	26.7	90	FV & 800	-		
						·								
						標準仕様 ろか長さ 4 フィート		-	-					
						7522	HP- 4-4	6-4	9-4 16		37-4 45-4	51-4		
		W				ろ遊雨積	(m ²) 1.8	2.7	4.0 7.2		16.4 20.1	22.7		
		(3111) 111		-		フィルタ本数	(-) 4	6	9 16		37 45	51		
		CHITCHE INCOME	Det	žla.		電磁弁個数 標準必要空気量	(·) 2 (NL/min) 50	50	3 4 80 10		7 7 180 180	230		
		**************************************	-(14)	G			(kPa) F.V. ~		80 10	130	100 100	230		
			steen,	The state of the s			D (mm) 520	720	820 10	120 1280	1380 1540	1780		
		(ACCUPANT	ALL			Н	(mm) 2400	2630	2750 29	150 3200	3310 3550	3740		
		1	(4)	SAS		HI	(mm) 450	650	750 90	0 1100	1200 1400	1550		
		170-0 6700	SER.	The state of the s			(mm) 1950	1980	2000 20		2110 2150	2190		
		9 (C)	257			網略質量	(kg) 400	700	800 11	00 1900	2100 3000	4100		
_				1		ろか長さ 6 フィート						_		
		1	of the last	4	1	型式	HP- 4-6	6-6	9-6 16	16 25-6	37-6 45-6	51-6		
					1	る過函額	(m ²) 2.7	4.0	6.0 10	16.8	24.8 30.2	34.0		
						フィルタ本数	(-) 4	6	9 16		37 45	51		
		: \ \ \ \		-	1	电磁升侧数	(-) 2	2	3 4		7 7	9		
					1	標準必要空気量	(NL/min) 50	50	80 10	0 130	180 180	230		
					1		(kPa) F.V. ~ D (mm) 520	1MPa 720	820 10	120 1280	1380 1580	1780		
		圧空:			1		(mm) 3100			120 1280	4010 4250	4440		
		50NL/min × 60min/h=3000NL	h				(mm) 450	650	750 90		1200 1400	1550		
П		逆洗頻度:90secなので40回/h					(mm) 2650	2680	2700 27		2810 2850	2890		
		3000NL/h + 40回/h=75NL/90s →平均值50NL/min	ec			概略質量	(kg) 400	800		000 2200	2500 3500	4700		
		→ 十月種5UNL/min				(1) 標準必要空気量に関し	、て (1) ヘッダー内初度	EE42 O.6MPu, (2	各バルブ作動は 9(0秒/サイクル		_		
											I	I		

表 3-64 (機器リスト CLASS "X" 特殊機器類3)

_					- J/\ CL/\	33 A	1.3	771172	77,111				
ジェク	1・名	パラミロン合成プロセス全体スケールアップ設態	Ħ		式会社ユーグ	1.十即			作成	KS	日付		
置名	称	洗浄・ろ過・乾燥工程		17	スム社ユージ	レノ殿			照査	KS	日付		
ブ番	号	D-3003		機器	リスト CLASS "X"	特殊機器	類		承認	FI	日付	2021/11/30	AFP
								条件	設計		駆動机	動力	
改訂	機器番号	機器名称	数量	型式	サイズ	材質	温度 (°C)	圧力 (kPaG)	温度 (℃)	圧力 (kPaG)	モーター定格 (kW)	軸動力(kW)	備考
	X-1021- M2A/B/C (1)	第一スクリューコンペアA/B/C(1)	1	三和コンベア株式会社製 同等品	ノズルサイズ : 220mm Φ L : 3,500mm	SUS304	40	AMB	80	190	0.75		
	(2)	第一スクリューコンペアA/B/C(2)	1	三和コンベア株式会社製 同等品	ノズルサイズ : 220mm Φ L: 3,500mm	SUS304	40	АМВ	80	190	0.75		
	(3)	第一スクリューコンペアA/B/C (3)	1	三和コンペア株式会社製 同等品	ノズルサイズ : 220mm Φ L: 3,500mm	SUS304	40	АМВ	80	190	0.75		
	(4)	第一スクリューコンペアA/B/C (4)		三和コンベア株式会社製 同等品	ノズルサイズ : 220mm Φ L: 3,500mm	SUS304	40	AMB	80	190	0.75		
	X-1021- M2A/B/C (5)	第一スクリューコンペアA/B/C (5)		三和コンペア株式会社製 同等品	ノズルサイズ: 220mm Φ L: 3,500mm	SUS304	40	AMB	80	190	0.75		
16	9 8	• • • • • • • • • • • • • • • • • • •	N1-661		型 SUS304(ステンレス 型 式 D1 SCP-STB-140-L-G-M2 48 6605 SCP-STB-190-L-G-M2 60 5(76 SCP-STB-290-L-G-M2 89 (に1) SCP-STB-290-L-G-M2 114.	D2 D3 (5)** 140 165.2 (3)** 190 216.3 (1)** 240 267.4 (4.3)** 290 318.5 3 325 355.6	P T 120 3.0 160 3.0 200 3.0 240 4.0 260 4.0	FR 120 1500~ 160 1500~ 200 1500~ 240 2000~ 260	-ンケース・モータ L 3000(1500~3500 3500(1500~4000 4000(1500~4500 4500(2000~5000 2000~5000 2000~5000	L1 L2 200 200 200	L3 L4 L5 293 170 52 293 170 52 306 173 52 306 173 52 367 201 52	単位 (mm) CP S1 350 1652 425 216.3 450 267.4 5525 318.5 530 355.6 530 406.4	
Œ		SX-\$112)			型 式 S2 SCP-STB-140-L-G-M2 230 SCP-STB-190-L-G-M2 230 SCP-STB-290-L-G-M2 345 SCP-STB-290-L-G-M2 435 SCP-STB-325-L-G-M2 435 SCP-STB-325-L-G-M2 495 ※レザ法がカッコ内の場合、D1寸法の	265 8 1 320 8 2 385 12 2 430 12 2 480 12 2 540 16 2	9 182.6 3 208.2 3 233.7 3 259.3 5 277.8 5 303.2 29ます。	H2 182.6 208.2 233.7 259.3 277.8 303.2	232.7 215 258.6 230	260 310 270 320 300 350	5097/ 5097/ 5097/510 5107/ 511	- 9 中帯(住友) 5107/5117 5107/5117 7/5117/5127 5117/5127 7/5127 7/5127	
	-		2-814										

表 3-65 (機器リスト CLASS "X" 特殊機器類4)

表 3-66 (機器リスト CLASS "X" 特殊機器類5)

ジェク	卜名	パラミロン合成プロセス全体スケールアップ	設計		性士~	社ユーグ	1. 十四几			作成	KS	日付		
置名	陈	洗浄・ろ過・乾燥工程			休エして	オエーン	レノ版		1	照査	KS	日付		
ブ番	号	D-3003			機器リスト	CLASS "X"	特殊機器類			承認	FI	日付	2021/11/30	AFP
			T					運転			条件		协機動力	
改訂	機器番号	機器名称	数量	型式		サイズ	材質	温度 (°C)	圧力 (kPaG)	温度 (°C)	压力 (kPaG)	モーター定 格(kW)	轴動力(kW)	備考
	X-1021- M1(1)	ディストリビュータ(1)	1	山本機械株式会 社製 同等品	分散数 シュート 排出ノ	ユート径:250 Φ 牧:3 高さ:850 mm 中心間距離:820 mm 径:1,300 mm ズルサイズ:200mm	SUS304	40	АМВ	80	190	0.4		
	X-1021- M1(2)	ディストリビュータ(2)	1	山本機械株式会 社製 同等品	分散数シュート排出ノ	ュート径:250 Φ 技:3 高さ:850 mm 中心間距離:820 mm 径:1,300 mm ズルサイズ:200mm	SUS304	40	АМВ	80	190	0.4		
	X-1021- M1(3)	ディストリビュータ(3)	1	山本機械株式会 社製 同等品	分散数シュート	ュート径:250 Φ 抜:3 高さ:850 mm 中心間距離:820 mm 径:1,300 mm ズルサイズ:200mm	SUS304	40	АМВ	80	190	0.4		
	X-1021- M1(4)	ディストリビュータ(4)	1	山本機械株式会 社製 同等品	シ 分散数 シュート	ュート径:250 Φ 数:3 高さ:850 mm 中心間距離:820 mm 径:1,300 mm ズルサイズ:200mm	SUS304	40	АМВ	80	190	0.4		
	X-1021- M1(5)	ディストリビュータ(5)	1	山本機械株式会 社製 同等品	分散数シュート	ュート径:250 Φ	SUS304	40	АМВ	80	190	0.4		
		報送物のコンタを設立 気のサンテ上に設置 内部シュ 報送時のコンタを設立 気のサンテ上に設置 内部シュー	ートが回転し、各々 トへ終出します											
_		### ##################################	#300 4~36 365~366											
		E 98 0-10 00-000 00-000 00-000 00-000 00-000 00-000 000-000 000-000 000-000 000-000 000-000 000-000 000-000 000-000 000-000 000-000 000-000 000-000 000-000	100 - 000 170 - 240 130ye 100											

表 3-67 (機器リスト CLASS "RV" 特殊機器類(ロータリーバルブ)2)

	パラミロン合成プロセス全体スケールアップ	設計	→ ++ -+	<u>- 4</u>	HI.	_ 日几		作成	KS	日付		
名称	洗浄・ろ過・乾燥工程		4年1	会社ユー	ークレフ	供又		照査	KS	日付		
番号	D-3003		機器リスト CLA	SS "RV" #	寺殊機器類(ロータリー	パルブ)	承認	FI	日付	2021/11/30	AFP
		1				運転	条件		条件	駆動材		
散器番号	機器名称	数量	型式	サイズ	材質	供給量 (m3/h)	温度 (°C)	温度 (°C)	压力 (kPaG)	モーター定格 (kW)	軸動力(kW)	備考
RV-1002 A/B/C	原料ロータリーパルプA/B/C	3	アイシン産業株式会社製同等品	NRM-200	By vendor	5.82	20			0.4		
	IIIよれ、最多の実施を得る他専ロータリーバルフ リーズ ドロップスルータイプ	Dur nos	popular standard othery roller southful with a large crisisy. RM series (Despite Modern specifications of the processor of t	finough type)								
□ 口径50~7 □ 口径は各句 □ Excelent pr □ A wide spi	here: 下売れた性質を発揮 下売れた性質を発揮 下売れた性質を発揮 下売れた性質を発揮 下売れた性質がある。 下売れた力マプ イズル、見記を用ランジ海の eliorence with pressor sealing or of products into 70 to 720 cm is calibre or of sectorylar farge types to fee vote of sect calibre	製作仕名 1988-CH HAM-50 RM-90 RM(A)-10 RM-125	### ### ##############################	## EPLEES								
		RMA - 20 RMA - 25 RMA - 30 UNM - 30 RMA - 45 RMA - 45 RMA - 50 RA - 50 RM - 700	200 4 6-74 1 2017 2 10 327 4 11 507 4 1	7.74. 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								
の影響性の	hores 動式で長年使用していた調査製のチェーンがバー(安全カバー) のデザイン条一報 計計が少なく安全性が向上 ェー・ンカバー(安全別バー)を採用することにより スペース化・安全別	Comple drive se improve Achieve	thely remewed design for the steel salety cover and ction, which was used with chain drive valves for d salety with less exposure of the rotating section ment of a light-neight and space saving design by war over judicy cover).	and the choin many years								

表 3-68 (機器リスト CLASS "X" 特殊機器類6)

シェク	卜名	パラミロン合成プロセス全体スケールアップを	221	● #±	会社ユーク	ブレ. 十四			作成	KS	E	3付				
名	称	洗浄・ろ過・乾燥工程		1木工(2	マイエーン	ノレノ版			照査	KS	E	3付				
ブ番	号	D-3003		機器リスト	CLASS "X"	特殊機器	類		承認	FI	E	3付		2021/11	/30	AFP
汝訂	400 00 VI III	W 80 C 74		W-4		44.00	運転			条件		駆動				
Xal	機器番号	機器名称	数量	型式	サイズ	材質	温度 (°C)	圧力 (kPaG)	温度 (°C)	圧力 (kPaG)	±-9-	·正格(K	W)	軸動力(ド	W)	備考
	X-1021- F1(1)	ろ過機(1)	1	加圧ブローバックフィルター LAROX社 同等品	H: 2,830 mm W: 2,685 mm L: 2,695 mm	CASING : SUS304	40	600	90	FV & 800		ic unit:4				
	X-1021- F1(2)	ろ通機(2)	1	加圧ブローバックフィルター LAROX社 同等品	H: 2,830 mm W: 2,685 mm L: 2,695 mm	CASING : SUS304	40	600	90	FV & 800		ic unit:4				
	X-1021- F1(3)	ろ過機(3)	1	加圧ブローバックフィルター LAROX社 同等品	H : 2,830 mm W : 2,685 mm L : 2,695 mm	CASING : SUS304	40	600	90	FV & 800		ic unit:4 rives:6.0				
	X-1021- F1(4)	ろ過機(4)	加圧ブローバックフィルター LAROX社 同等品	H : 2,830 mm W : 2,685 mm L : 2,695 mm	CASING: SUS304	40	600	90	FV & 800		lic unit:4 rives:6.0					
	X-1021- F1(5)	ろ過機(5)	加圧ブローバックフィルター LAROX社 同等品	H: 2,830 mm W: 2,685 mm L: 2,695 mm	CASING: SUS304	40	600	90	FV & 800		ic unit:4 rives:6.0					
		sed Filters for Extreme Refinery and		(h (k)		Frame Size	DI	800-4	DS 800-8	3	DS 800-12			DS 800-1	i	
		y Applications	- 1			Туре	4/2	4/3 4 8	/5 8/6 8/7	8 12/9	12/10 12/11	-	16/13	16/14 16/	_]
		automatic pressure filters are fully are handling of hazardous or corrosive	- 1		•	Number of Chambi		3 4	5 6 7	8 9	10 11	12	13	14 1	-	
proc	esses that req	uire containment, The Fume Tight design	- 1			Effective Filter Surf	1		5 5.4 6.3		9 9.9	-	11.7	12.6 13	_	11
		ntainment and security of the process. As can be delivered as a gas-tight execution	- 1	LABOR		Chamber Depth 25			53 63 74		105 116	126	137	147 15	-	
		operation in explosive atmospheres, lective areas from 1.8-14.4 m² and offer	- 1			Chamber Depth 40			33 99 116		165 182	+	215	231 24	_	11
very	effective cake	washing capabilities where required.	- 1		١.	Chamber Depth 50	mm (I) 43	64 86 1	07 128 150		214 235	257	278	300 32	1 342	
		rate a unique double-sided filtration em especially suitable for slower filtering	- 1			Filter Plate Size	_				0 x 800				-	1
proc	esses where r	nore filtration area is required and typically	- 1			Max. Working Pess	ure				6 bar					1
		are formed. Internal clean-in-place tal cleaning of the filter as needed.			_	Length (mm)	_				2695			_		-
			- 1	Die I	1.	Width (mm)			3490		2685			5055		H
DS8 mak	100 Series filter	rs use 800 mm all-polypropylene plates for corrosive processes. 25, 40 or 50 mm	- 1			Machine Height (m	_	2830	3490		4165					-
char	mber depths ar	re available. Typical applications include:	- 1		K	Machine Vesight (I)		B	9	-	10			- 11		
	ckel leach resid		- 1			Connecting Line O	stput			10.00						1
· Pre	cious metals		- 1			Hydraulic Unit	_			1 x Depending on i	4,0 kW restalled cloth of	trives				
• Ori	ganic regenera	ation in SX	-		- 1	Belt Drives					ith 16 chambe					
						The technical data is subject	to change without not	10.								
													Т			
		1		1					1	1	1		- 1			

表 3-69 (機器リスト CLASS "X" 特殊機器類7)

-				1									
\vdash	ジェクト名	ハラミロン合成プロセス全体スケールアップ	雅	● 烘=	大会社ユー	グレナ	铅		作成	KS	日付		
装置	名称	洗浄・ろ過・乾燥工程		17.1	CAIL	,,,,	·×		照査	KS	日付		
ジョフ	ブ番号	D-3003		機器リス	スト CLASS "X	"特殊機	器類		承認	FI	日付	2021/11/30	AFP
П								条件		条件		農動力	
改訂	機器番号	機器名称	数量	型式	サイズ	材質	温度 (°C)	圧力 (kPaG)	温度 (℃)	圧力 (kPaG)	モーター定格 (kW)	軸動力(kW)	備考
	X-1021- M3(1)	解砕機(1)	1	アイシン産業株式会社製 同等品	SKC-200type	SUS304	40	АМВ	80	190	0.75		
	X-1021- M3(2)	解砕機(2)	1	アイシン産業株式会社製 同等品	SKC-200type	SUS304	40	АМВ	80	190	0.75		
	X-1021- M3(3)	解砕機(3)	1	アイシン産業株式会社製 同等品	SKC-200type	SUS304	40	АМВ	80	190	0.75		
	X-1021- M3(4)	解砕機(4)	1	アイシン産業株式会社製 同等品	SKC-200type	SUS304	40	AMB	80	190	0.75		
	X-1021- M3(5)	解砕機(5)	1	アイシン産業株式会社製 同等品	SKC-200type	SUS304	40	AMB	80	190	0.75		
	Bersel	SKC type SKC type // Kanning Nicle Cult / Coult 2/27>/ Scc			SKC-250 250A 330 2 SKC-250 250A 440 2 SKC-300 300A 490 3 SKC-350 350A 650 4	1 L2 M ,	In the second sec	Unit of dimension of the second of the secon	-9-1cw educer[kw]				

表 3-70 (機器リスト CLASS "X" 特殊機器類8)

			_		(IXX HH	•				ויוויג ני ו	~~ ~~ ~~	,,,,			
ジェク	1ト名	パラミロン合成プロセス全体スケールアップ設	計		烘井	ᄼᅪ	ユーグ	`L.+#	近		作成	KS	日付		
置名	称	洗浄・ろ過・乾燥工程			不工	五江	.4-7	U) #	汉		照査	KS	日付		
ブ番	号	D-3003		U	機器リスト	- CL	ASS "X"	特殊機器	器類		承認	FI	日付	2021/11/30	AFP
П									運転	条件	設計	†条件	駆動材	夏動力	
改訂	機器番号	機器名称	数量	型式		サイズ		材質	温度 (°C)	圧力 (kPaG)	温度 (°C)	圧力 (kPaG)	モーター定格 (kW)	軸動力(kW)	備考
	X-1041- D1 (1)	乾燥樓(1)	1	ホソカワミクロン製 同等品	mm	12 000 kg	A:3,300 mm C:6,930 概略重量:	SUS304 / JACKET : SUS304	60/ JACKET: 100	180& FV / JACKET : 101	120/ JACKET: 205	180& FV / JACKET : 330&FV	自転:18.5 公転:2.2		
	X-1041- D1 (2)	乾燥樓(2)	1	ホソカワミクロン製 同等品	mm	n 12.000 kø	A:3,300 mm C:6,930 概略重量:	SUS304 / JACKET : SUS304	60/ JACKET: 100	180& FV / JACKET : 101	120/ JACKET: 205	180& FV / JACKET : 330&FV	自転:18.5 公転:2.2		
	X-1041- D1 (3)	(集機(3) 1		ホソカワミクロン製 同等品	mm		A:3,300 mm C:6,930 概略重量:	SUS304 / JACKET : SUS304	60/ JACKET: 100	180& FV / JACKET : 101	120/ JACKET: 205	180& FV / JACKET : 330&FV	自転:18.5 公転:2.2		
		. '	\neg												
П		<u> </u>	┰┃												
П			П												
П															
П			С												
		B B													

表 3-71 (機器リスト CLASS "C" 塔類)

Г	プロジェクト名	パラミロン合成プロセス全体スケールフ	ップ設計	•	14 15 4 1						作成	KS	日付		
F	装置名称	廃液回収蒸留工程	77 100.01	1.M	株式会社	エユー	-グレフ	ナ殿			照査		日付		
H	ジョブ番号	D-3003			機器リス	L CLA	ee "C"	塔 類			承認	FI	日付	2021/11/30	AFP
\vdash	フコン田ち	D-3003	$\overline{}$				33 し イズ	一	運転	条件		条件	L 19	2021/11/30	AFF
改訂	丁 機器番号	機器名称	数量	型式	ルイ段数& 充填量高さ	内径 (mm)	T-T長さ (mm)	材質	温度 (°C)	圧力 (kPaG)	温度 (°C)	圧力 (kPaG)	保温	適用法規	備考
	C-1101	メタノール回収塔	1	Packed Column	6,000 x 2 Structured Packing	2,800	15,800	SUS329	67 / 115	10.50	125	195 & FV	Hot	危険物	
	C-1102	抽出塔	1	Packed Column	4,000 x 2 / 4,500 Structured Packing	6,100	17,100	SUS316L	67 / 184	10.50	195	195 & FV	Hot	第一石油類	
	C-1201	ピリジン回収塔	1	Packed Column	3,000 / 5,000 x 2 Structured Packing	1,400	17,600	SUS316L	55 / 149	-89.50	160	180 & FV	Hot	危険物 第一 石油類 水溶 性液体	
	C-1202	短額脂肪酸回収塔	1	Packed Column	2,500 x 2 Structured Packing	2,000	8,700	SUS316L	84 / 142	-89.50	155	180 & FV	Hot	危険物 第三 石油類	
	C-1203	NMP回収塔	1	Packed Column	2,500 x 2 Structured Packing	2,300	8,700	SUS316L	132 / 164	-89.50	175	180 & FV	Hot	危険物 第三 石油類	
	C-1204	ピリジン再回収塔	1	Packed Column	2,500 x 2 Structured Packing	1,400	8,700	SUS329	102 / 117	10.50	130	195 & FV	Hot	危険物 第三 石油類	

表 3-72 (機器リスト CLASS "T & D" 槽類)

				× • · -	(1.77	H				•					
ブ	ロジェクト名	バラミロン合成プロセス全体スケールアップถ	致計		+生一	- 	ューグレ	·+®	,		作成	KS	日付		
	装置名称	廃液回収蒸留工程		M	不工	· 五 11-	エークレ	ノノ映図			照査		日付		
	ジョブ番号	D-3003			機器リ	スト C	LASS "T 8	& D" 相	類		承認	FI	日付	2021/11/30	AFP
改訂	機器番号	機器名称	数量	型式	サイズ 内径 (mm)	・容量 T-T長さ (mm)	材質	運転 温度 (°C)	条件 圧力 (kPaG)	設計 温度 (°C)	条件 圧力 (kPaG)	付属品	保温	適用法規	備考
	T-1101	メタノール回収塔塔頂受槽	1	V-Cylindrical	1,750	5,250	SUS 329	67	10	80	190 & FV		НОТ	危険物	ρ=0.742
	T-1102	ヘキサンタンク	1	Cone Roof	7,200	11,400	SUS 304	40	Full water	110	Full liquid		No	第一石油類	ρ=0. 642
	T-1201	ピリジン回収塔塔頂受権	1	V-Cylindrical	1,050	3,150	SUS316L	54	-90	65	180 & FV		нот		ρ=0.9334
	T-1202	短鎖脂肪酸回収塔塔頂受槽	1	V-Cylindrical	1,250	3,750	SUS316L	83	-90	95	180 & FV		нот		ρ=0.931
	T-1203	NMP回収塔塔頂受槽	1	V-Cylindrical	1,400	4,200	SUS316L	131	-90	145	180 & FV		НОТ	危険物 第 三石油類	ρ=0.9335
	T-1204	ピリジン再回収塔塔頂受槽	1	V-Cylindrical	1,000	3,000	SUS 329	98	10	110	180 & FV		НОТ	危険物 第 一石油類 水溶性液体	ρ=0.950
	T-1205	苛性ソーダタンク	1	Cone Roof	5,000	8,900	SUS 304	40	Full Liquid	110	Full liquid		No		ρ=1.108
	T-1206	廃液タンク	1	Cone Roof	2,500	4,100	SUS 304	40	Full Liquid	110	Full liquid		No		ρ=1.500
	D-1101	デカンター	1	V-Cylindrical	5,500	16,500	SUS316L	40	0	60	180 & FV		Operating Stability		ρ=0.991

表 3-73 (機器リスト CLASS "E" 熱交類3)

7	ロジェクト名	パラミロン合成プロセス全体スケールアッ゚	プ設計		2		## -#-	× →± ¬	Жı	느므자			作成	KS	日付		
	装置名称	廃液回収蒸留工程		لے	W		休八云	€社ユ-	ークレ	厂供又			照査		日付		
\vdash	ジョブ番号	D-3003		·		梅	異リス	ト CLA	SS "F"	熱交 類			承認	FI	日付	2021/11/30	AFP
\vdash				Н		1/84	熟負荷	伝熱		仕様			898	条件			
改訂	機器番号	機器名称	数量		流体名	型式	(kW)	面積 (m²)	径/本数 (mm/-)	長さ (mm)	シェル径 (mm)	材質	温度 (°C)	圧力 (kPaG)	保温	適用法規	備考
	F-1101	メタノール回収塔	1	S	スチーム	V-AFI	10,245 x	237	19.0	6.000	700	CS	220	1760&FV	Hot	第一種圧力	
	2-1101	リボイラー	<u> </u>	Т	プロセス液+水	V-MLL	1.2	201	331U	0,000	700	SUS329	125	205&FV	Hot	容器	
	E-1102	メタノール回収塔	1	S	メタノール+HCI	H-AEU	9,375 x 1.2	667	19.0	6,000	1,200	SUS329	80	195&FV	PP		
	L-1102	コンデンサー	Ľ	Т	冷却水	TIPALO	0,070 X 1.2	007	932U	0,000	1,200	SUS329	60	480	No		
	E-1103	メタノール回収塔	1	S	メタノール+HCI	H-AJU	15.9 x 1.1	7	19.0	2,000	300	SUS329	80	180	No		
	L-1100	ベントコンデンサー	Ľ	Т	冷却水	11-7-00	10.0 % 1.1	'	30U	2,000	000	SUS329	60	480	No		
	E-1104	回収メタノール冷却器	1	S	メタノール	H-AEU	300 x 1.1	63	19.0	4.000	500	SUS316L	80	220	PP		
	L-1104	E AND TO THE STATE OF THE STATE		Т	冷却水	TIPALO	300 X 1.1	00	133U	4,000	300	SUS316L	60	480	No		
	E-1105	抽出塔リポイラー	1	S	スチーム	V-AFL	21,436 x	1.970	19.0	6.000	2.000	CS	220	1760&FV	Hot	第一種圧力	
1	E-1105	描山塔リホイフー	l '	Т	NMP	V-AEL	1.2	1,970	5,500	6,000	2,000	SUS316L	195	205&FV	Hot	容器	
\vdash	E 4400	44.0144-1-1-1		S	ヘキサン		19,479 x	4.000	19.0		4.000	SUS316L	80	195&FV	PP		
1	E-1106	抽出塔コンデンサー	1	Т	冷却水	H-AEU	1.2	1,838	2,567U	6,000	1,900	SUS316L	60	480	No	1	
\vdash	E 440E	Ad a county of the county of the county	٠.	s	ヘキサン		4.0004.4	400	19.0		4.000	SUS316L	65	195&FV	No		
1	E-1107	抽出塔留出液冷却器	1	Т	冷却水	H-AEU	1,622 x 1.1	490	685U	6,000	1,000	SUS316L	60	480	No	1	
	E-1108	HARLING CO. II - S S. III.	1	S	ヘキサン	H-AJU	109 x 1.1	131	19.0	4,000	700	SUS329	65	180&FV	No		
1	E-1100	抽出塔ベントコンデンサー	Ι'	Т	冷却水	H-AJU	109 X 1.1	131	275U	4,000	700	SUS329	60	480	No	1	
П	E-1201	ピリジン回収塔	1	S	NMP	H-BKU	478 x 1.2	30	19.0	4,000	300/600	SUS316L	160	180&FV	Hot	第一種圧力	
1	E-1201	リポイラー	Ι'	Т	スチーム	H-DKU	4/0 X 1.2	30	64U	4,000	300/600	SUS316L	220	1760&FV	Hot	容器	
	E-1202	ピリジン回収塔	1	S	ピリジン	H-AJU	715 x 1.2	83	19.0	4.000	500	SUS316L	65	180&FV	No		
	E-1202	コンデンサー	l '	Т	冷却水	n-AJU	/15 x 1.2	63	174U	4,000	500	SUS316L	60	480	No	1	
	E-1203	回収ピリジン冷却器	1	S	ピリジン	H-AEU	6.8 x 1.1	3	19.0	2.000	200	SUS316L	65	290	No		
	E-1203	凹状とリンノ市型語	<u>'</u>	Т	冷却水	H-AEU	0.0 X 1.1	3	13 U	2,000	200	SUS316L	60	480	No		
	E-1204	短鎖脂肪酸回収塔	1	S	NMP	H-BKU	1.155 x 1.2	83	19.0	4,000	500/800	SUS316L	155	180&FV	Hot	第一種圧力	•
L	2-1204	リボイラー	'	Т	スチーム	. I-BRO	1,100 x 1.2	65	174U	4,000	300/000	SUS316L	220	1760&FV	Hot	容器	
	E-1205	短鎖脂肪酸回収塔	1	S	短鎖脂肪酸	H-AJU	1.195 x 1.2	56	19.0	4.000	500	SUS316L	95	180&FV	PP		
	2-1200	コンデンサー	l '	Т	冷却水	THAT	1,180 X 1.2	30	118U	4,000	300	SUS316L	60	480	No		
	E-1206	回収短鎖脂肪酸冷却器	1	S	短鎖脂肪酸	ヘアーピン	2.8 x 1.1	0.67	19.0	2.000	外管径 40	SUS316L	95	245	PP		
	2-1200	これが報酬別級小型器	l '	Т	冷却水	.,	2.0 X 1.1	0.07	3 hair-pin	2,000	7/81± 40	SUS316L	60	480	No		
	F-1207	NMP回収塔	1	S	ピリジン塩酸塩	H-BKU	2.065 x 1.2	222	19.0	5.000	800/1,200	SUS316L	175	180&FV	Hot	第一種圧力	
	2-1201	リボイラー	L'_	Т	スチーム	. I-DRO	2,000 x 1.2	222	373U	0,000	500/1,200	SUS316L	220	1760&FV	Hot	容器	
	E-1208	NMP回収塔	1	S	NMP	H-AJU	2.111 x 1.2	50	19.0	4,000	400	SUS316L	145	180&FV	PP		
	2-1200	コンデンサー	L'	Т	冷却水	11-7400	2, X 1.2	30	105U	4,300	450	SUS316L	60	480	No		
	E-1209	回収NMP冷却器	1	S	NMP	H-AEU	358 x 1.1	54	19.0	4,000	400	SUS316L	145	180	PP		
\Box	L-1205	ELIVIANI VITABLE	<u>L'</u>	Т	冷却水	THALO	000 X 1.1	- 54	113U	4,300	-500	SUS316L	60	480	No		

表 3-74 (機器リスト CLASS "E" 熱交類4)

7	プロジェクト名	パラミロン合成プロセス全体スケールア゙	7 設計	4	N o		性士々	· 社ユ-	_ <i>ガ</i> し	上即			作成	KS	日付		
	装置名称	廃液回収蒸留工程		4	W		休八工	<u>- 11 </u>	-, , , , , , , , , , , , , , , , , , ,	/ 供又			照査		日付		
	ジョブ番号	D-3003] `		機	器リス	ト CLA	SS "E"	熱交 類			承認	FI	日付	2021/11/30	AFP
							熱負荷	伝熱		仕様				条件			
改訂	機器番号	機器名称	数量		流体名	型式	(kW)	面積 (m²)	径/本数 (mm/-)	長さ (mm)	シェル径 (mm)	材質	温度 (℃)	圧力 (kPaG)	保温	適用法規	備考
Ξ																	
Г	E-1210	ピリジン再回収塔	1	S	長鎖脂肪酸ナトリウム	H-BKU	2.436 x 1.2	82	19.0	4.000	500/800	SUS316L	125	195&FV	Hot	第一種圧力	
	E-1210	リボイラー	l '	Т	スチーム	H-BKU	2,430 X 1.2	02	172U	4,000	300/600	SUS316L	220	1760&FV	Hot	容器	
	E-1211	ピリジン再回収塔	1	S	ピリジン+水	H-AEU	2.215 x 1.2	78	19.0	4.000	500	SUS316L	115	195&FV	PP		
ı	E-1211	コンデンサー	Ι'	Т	冷却水	II-ALO	2,210 X 1.2	70	164U	4,000	300	SUS316L	60	480	No	1	
Г	E-1212	廃液冷却器	1	S	長鎖脂肪酸ナトリウム	H-AEU	9.9 x 1.1	2	19.0	2,000	200	SUS316L	110	305.00	PP		
	E-1212	DE /DC /TI JAP tot	<u> </u>	Т	冷却水	n-AEU	3.5 X 1.1		9U	2,000	200	SUS316L	60	480	No]	

表 3-75 (機器リスト CLASS "P" ポンプ類3)

7	プロジェクト名 パラミロン合成プロセス全体スケールアゥブ設計		№ 株式会社ユーグレナ殿							作成	KS	日付				
	装置名称 廃液回収蒸留工程			P	17	不八云1	и—	フレリ	供又			照査		日付		
	ジョブ番号	D-3003		機 器 リ ス ト CLASS "P" ポンプ 類				承認	FI	日付	2021/11/30	AFP				
改訂	機器番号	機器名称	数量	型式	世報 設計容量 (m3/h)	兼 揚程 (m)	压 吸込 (kPaG)	力 吐出 (kPaG)	運転温度 温度 (°C)	密度 (kg/m3)	粘度 (cP)	材質	モーター 定格 (kW)	BHP (kW)	適用法規	備考
	P-1101	メタノール回収塔供給ポンプ	1+0	キャンドポンプ	36.60	29.0	0	260	40	909.1	0.563	Casing : SUS329 Internal : SUS329	7.5	5.3	防爆仕様	
	P-1102	メタノール回収塔塔底ポンプ	1+0	キャンドポンプ	12.5 x 1.1	60.7	20	585	115	942.4	0.325	Casing : SUS329 Internal : SUS329	7.5	5.6	防爆仕様	
	P-1103	メタノール回収塔塔頂ポンプ	1+0	キャンドポンプ	41.9 x 1.1	32.1	10	245	67	742	0.333	Casing : SUS329 Internal : SUS329	7.5	5.3	防爆仕様	
	P-1104	抽出塔塔底ポンプ	1+0	キャンドポンプ	11.1 x 1.1	61.1	20.0	555	184	886.7	0.318	Casing : SUS316L Internal : SUS316L	7.5	4.9	防爆仕様	
	P-1105	デカンター上層液ポンプ	1+0	キャンドポンプ	245.5 x 1.1	32.7	3.0	210	40	642	0.26	Casing : SUS316L Internal : SUS316L	30.0	21.0	防爆仕様	
	P-1106	デカンター下層液ポンプ	1+0	キャンドポンプ	5.7 x 1.1	43.4	5.0	430	40	991	0.68	Casing : SUS316L Internal : SUS316L	11.0	4.7	防爆仕様	
	P-1107	エントレナー補給ポンプ	1+0	キャンドポンプ	6.20	33.1	0.0	210	40	642	0.26	Casing : SUS316L Internal : SUS316L	2.2	1.3	防爆仕様	
	P-1201	ピリジン回収塔塔底ポンプ	1+0	キャンドポンプ	8.9 x 1.1	37.6	-75.0	295	149	996	0.443	Casing : SUS316L Internal : SUS316L	3.7	3.0	防爆仕様	
	P-1202	ビリジン回収塔塔頂ポンプ	1+0	キャンドポンプ	5.6 x 1.1	47.6	-90.0	355	54	947.9	0.615	Casing : SUS316L Internal : SUS316L	11.0	7.6	防爆仕様	
	P-1203	短鏡脂肪酸回収塔塔底ポンプ	1+0	キャンドポンプ	8.7 x 1.1	35.7	-85.0	265	142	992	0.44	Casing : SUS316L Internal : SUS316L	3.7	2.9	防爆仕様	
	P-1204	短額脂肪酸回収塔塔頂ポンプ	1+0	キャンドポンプ	11 x 1.1	49.5	-90.0	365	83	931	0.531	Casing : SUS316L Internal : SUS316L	5.5	4.1	防爆仕様	
	P-1205	NMP回収塔塔底ポンプ	1+0	キャンドポンプ	5.3 x 1.1	62.7	-85.0	400	164	784.1	0.826	Casing : SUS316L Internal : SUS316L	5.5	3.30	防爆仕様	
	P-1206	NMP回収塔塔頂ポンプ	1+0	キャンドポンプ	16.5 x 1.1	36.4	-90.0	245	131	933.5	0.486	Casing : SUS316L Internal : SUS316L	5.5	3.9	防爆仕様	
	P-1207	ピリジン再回収塔塔底ポンプ	1+0	ダイアフラム	0.3 x 1.1	8.6	15.0	140	117	1466.8	0.177	Casing : SUS329 Internal : SUS329	0.2	0.18	防爆仕様	インバータによる流量制御
	P-1208	ピリジン再回収塔塔頂ポンプ	1+0	キャンドポンプ	4.2 x 1.1	37.7	2.0	355	98	949.7	0.29	Casing : SUS316L Internal : SUS316L	3.7	2.40	防爆仕様	
	P-1209	苛性ソーダポンプ	1+0	キャンドポンプ	2.9 x 1.1	16.7	2.0	185	40	1108	1.4	Casing : SUS316L Internal : SUS316L	3.7	2.70	防爆仕様	
	注:															

表 3-76 (機器リスト CLASS "SM" スタティックミキサー類)

ブ	ロジェクト名	パラミロン合成プロセス全体スケールアッフ	"設計		株式会社ユーグレナ殿			作成	KS	日付				
	装置名称	廃液回収蒸留工程			休式去社ユーブレ ア級			照査		日付				
	ジョブ番号	D-3003		機器リス	スト CLASS "SM" スタティックミキサー類			承認	FI	日付	2021/11/30	AFP		
			運転仕様			設計								
改訂	機器番号	機器名称	数量	型式	設計流量 (kg/h)	密度 (kg/m3)	粘度 (cP)	供給圧 (kPaG)	供給温度 (°C)	圧力 (kPaG)	温度 (°C)	材質	適用法規	備考
	SM-201	スタティックミキサー	1	スタティックミキ サー(2エレメント)	3,230 1,173	1,108 1,466.8	1.4 0.177	185	40 117	230	58	SUS329		SIZE= 2B

表 3-77 (機器リスト CLASS "VP" 真空ポンプ類)

-	プロジェクト名	バラミロン合成プロセス全体スケールアッフ	"設計		ᄷᅷᄼ	≿	_ゲレー	上即		作成	KS	日付		
	装置名称	置名称 廃液回収蒸留工程		株式会社ユーグレナ殿				照査		日付				
	ジョブ番号 D-3003			機器リスト CLASS "VP" 真空ポンプ類			承認	FI	日付	2021/11/30	AFP			
改訂	機器番号	機器名称	数量	型式	設計流量 (L/min suct P,T)	分子量 (-)	運転仕様 吸込圧 (kPaA)	吐出圧 (kPaA)	吸入温度 (℃)	材質	モーター 定格 (kW)	BHP (kW)	適用法規	備考
	VP-201	真空ポンプ	1+0	ドライ真空ポンプ	1,296.0	29.00	5	106.30	84.6	by Vender	2.2 + 3.7		防爆仕様	/カニカルアースタ付き真 空ポンプ TAM0551相当 CW: 15L/min

3.3.6. 実証プラントの配置計画

実証プラントの概略全体配置計画を図 3-78 に示す。実証プラントの配置に必要な面積は 17,850 m² (170 × 105 m)である(駐車場は除く)。建屋は合成設備、ろ過・乾燥設備、ユーティリティ設備、倉庫・資材、電気室制御室および分析所事務所の5建屋で計画した。各工程は原則プロセスフローの流れに従って配置した。合成設備は北西側に、ろ過・乾燥設備は北東側、廃液回収蒸留設備は南東側、屋外タンク貯蔵所はプラントの中心部に配置した。その外側の北西側にユーティリティ設備、南西側に冷却水排水および消火のピットを配した。同様に外側の北東側に倉庫・資材建屋、南東側に電気室制御室と分析所事務所の建屋を配し全体を矩形の配置とした。中央東西方向に主パイプラックを設置し、西側で酸クロ剤の供給を配管で供給されるものとした。酸クロ工程はプラントの西側に設置されていると想定している。

設備の全周に6m巾の舗装道路を設け、原料と製品の入出荷に使う。プラント外周には緑地帯を設け、フェンスを設置した。

3.3.7. 実証プラントの建設費概算

図 3-52 に実証プラントの概略全体配置計画を、表 3-78 にシミュレーションにより算出された実証プラントの建設費用概算を示す。実証プラントの建設費概算は、215.38 ~ 231.94 億円と見積もられる。

図 3-52 パイロットプラントの概略全体配置計画

表 3-78 シミュレーションにより算出された実証プラントの建設費用概算

		合成	設備	廃液回収	蒸留設備	ユーティリ	リティ設備	全体	設備	
	項目	設備項目	金額 (千円)	設備項目	金額 (千円)	設備項目	金額 (千円)	設備項目	金額 (千円)	
		撹拌槽	1,378,500	塔	813,380	用水•純水設備	148,000	受変電設備	120,000	
		槽	346,943	槽	202,281	蒸気設備	164,000	-	-	
	設備費	ポンプ	19,944	ポンプ	11,094	冷却水設備	234,000	-	-	
		熱交換器	61,400	熱交換器	424,785	計装空気設備	23,000	-	-	
		圧縮機・ 真空ポンプ	130,000	真空ポンプ	4,050	消火設備	90,000	-	-	
直接工事		特殊機器類	1,044,050	スタティック ミキサー	338	排水設備	72,000	-	-	
事	設備費合計		約2,981,000		約1,456,000		,000	約120	,000	
	現場工事費		約4,472,000		約2,184,000	約1,277,000				
	建屋費		約430,000	-	-	\$ 9352,000				
	防油堤費		約40,000		-	-				
	パイプラック・ スリーパー費		-		-	\$ 9186,000				
	舗装・フェンス・側溝、 外灯など	-		-		約177,000				
	直接工事費合計 約7,923,000				約3,640,000		約2,84	3,000		

直接工事費 総合計	約14,406,000
間接工事費	約2,161,000
工事費合計	約16,567,000
間接費	約4,971,000~ 6,627,000
建設費合計	約21,538,000~ 23,194,000

3.4. 商業プラントの建設費概算とフィジビリティスタディー

商業化した際の経済性を把握するため、これまでで設計を行った実証プラントの建設費に加えて、投入する資材、運転費用の概算を係数倍し、商業プラントのフィジビリスタディ(FS)を実施した。

3.4.1. 実証プラント建設費概算からの商業プラント建設費推定

設計を行ったパイロットプラント、実証プラントの設備費用と推定される商業プラントの設備費用、運転費用を表 3-79 に示す。設備費用は、実証プラント(1 万 t/年)から商業プラント(20 万 t/年)へのスケールアップ時のコスト試算について、0.6 乗則を採用している。0.6 乗則とは、化学工業プラントのコスト概算等において経験的に用いられている方法であり、処理能力が2倍のプラントを考える場合、処理能力に応じてコストも2倍となるのではなく、スケールメリット等によりおおよそ2倍を0.6 乗(2^{0.6})した1.52倍となるという考え方である。実際の計算上は、設備費用に余裕を持たせるため、0.65 乗を採用している。また、運転費用に関しては、実証プラントから概算される費用に対して、人件費は 2 倍、試薬とユーティリティの単価はスケールメリットを鑑み 0.95 倍としている。

これらの試算より、多糖類系バイオマスプラスチックの誘導体化を行う商業プラントの設備 費は約 1,695.0 億円、運転費用は約 1,235.7 億円と見積もられる。

表 3-79 実証プラント建設費概算

プラ	ント規模	パイロット スケール (501kg/2days/batch)	実証スケール (1万t/y)	商業スケール (20万t/y) *実証スケールの係数倍
設備	講費用合計	24.1億	231.9億	1,695.0億
	合成設備	13.4億	23.6億	894.2億
内訳	蒸留回収設備	5.9億	58.6億	410.8億
D/ \	ユーティリティ	4.7億	32.7億	229.0億
運転	运費用概算合計		85.8億	1235.7億
	人件費		23.2億	46.4億
内訳	試薬		37.3億	708.6億
ы/ С	ユーティリティ		25.3億	480.7億

3.4.2. 商業プラントでのフィジビリティスタディー

前項までで行った試算を基に、商業プラントの経済性に関して FS を行った。

本事業にて実施したプラントは、多糖類系バイオマスを誘導体化するプロセスを行うものであるため、先に市場流通量から現状調達可能性について目星が立っているセルロースに関して報告する。

原料多糖をセルロース 100%と仮定した場合の概算を表 3-80 に示す。販売単価を 1,000 円/kgと設定した場合、売上高が 2000 億円/年、原料費が 397 億円/年、OPEX が 1235.7 億円/年となる。CAPEX は 1695 億円であり、粗利は 367 億円/年となる。これらの値より、IRR(5 年)は 3%と見積もられることから、事業採算性が見込まれる。

表 3-80 セルロースエステル誘導体生産時の商業プラント経済性

販売単価1000	円/kg時の年間収支想定	CAPEXの回収年数目安			
売上高	2000億円/年	CAPEX	▲1695億円		
原料費	▲397.0億円/年	粗利	367億円/year		
OPEX	▲1235.7億円/年	IRR(5年)	3%		

この販売単価は、事業化に向けた価格目標として本実証事業開始時に想定していた浄水カートリッジパーツの素材(約 30g)1 個あたり 150 円に対して、30 円と大きく下回り、事業採算性が見込まれる。

原料多糖をパラミロン 100%と仮定した場合、商業プラントで使用するパラミロンは現時点での市場流通量を超過することからパラミロンを生産するプラントを併設する必要がある。誘導体化原料として必要なパラミロンの生産と誘導体化を行う商業プラントを想定した場合の概算を表 3-81 に示す。パラミロン生産に係るプラントの設備費用は今回の事業の範囲外であるため、おおよその数字として誘導体化に係るプラントの設備費用と同額とした。販売単価を1,300円/kgと設定した場合、売上高が2600億円/年、原料費が660億円/年、OPEXが1282億円/年となる。CAPEXは3323億円であり、粗利は685億円/年となる。これらの値より、IRR(7年)は9%と見積もられることから、推定値を多く含むも事業採算性が見込まれる。

表 3-81 パラミロンエステル誘導体生産時の商業プラント経済性

販売単価1300F	円/kg時の年間収支想定	CAPEXの	回収年数目安
売上高	2600億円/年	CAPEX	▲3323億円
原料費	▲660.0億円/年	粗利	658億円/year
OPEX	▲1282億円/年	IRR(7年)	9%

この販売単価は、事業化に向けた価格目標として本実証事業開始時に想定していた浄水カートリッジパーツの素材(約 30g)1 個あたり 150 円に対して、セルロースエステル誘導体と同様、39 円と大きく下回る。

事業化に向けて残る課題としては、原料費の内、脂肪酸を塩化物させる上で必要となる酸クロ化剤(ホスゲン)が350円/kgと高価であることがあげられる。酸クロ化剤は、生産物である樹脂1kgに対して0.83kg必要になり、これは廃液回収蒸留工程で再利用されない原料として最大の使用量となることから、安価な酸クロ化剤調達が販売価格の低減に向けた重要な課題となる。

実証内容4. 多糖類バイオプラスチックのリサイクルシステムの検証

本業務では、電子機器や住宅インテリア製品へ適用可能な多糖類バイオプラスチックのリサイクル性および製造現場でのリサイクルシステムについて検討することを目的とする。

昨年度、プラスチックの劣化の大きな要因である熱や光劣化について検討し、劣化原因と対策を明らかにした。熱劣化については、セルロースエステル樹脂を適切な温度で熱加工することが重要であり、特に適切な押出温度で再ペレット化することで、リサイクル率 100%でのリサイクルが可能となった。光劣化については、光劣化防止剤の添加が効果的であり、セルロースエステル樹脂の光架橋や物性低下を抑制できることが明らかになった。

また、リサイクルシステムの検証では、リサイクル回数と樹脂の各種物性との相関性について評価し、リサイクル回数と面衝撃強度の相関性が高いことを確認した。そして、リサイクルを判別するシステムとして、物性の劣化状態を簡易に評価する小型選別機を設計・作製し、実現可能なプロセスフロー案を決定した。従来樹脂のリサイクルプロセスにバイオプラが混入した際の影響評価についても実施した。

今年度は、パラミロンエステル誘導体の光劣化性の評価を行い、光劣化対策として光劣化防止剤および酸化防止剤との併用効果について検討した。添加剤を含むセルロースエステル樹脂を用いてリサイクル性を評価し、樹脂のリサイクル率を決定した。そして、セルロースエステル樹脂を用いて実製品筐体(ホームゲートウェイ機器:HGW)を成形し、選別機として小型面衝撃試験機での実験を行うことで、この選別機が NECPF 掛川事業所のリサイクルラインでクローズドリサイクルプロセスとして使用可能か実証した。

4.1. 多糖類バイオプラスチックの光劣化性の把握と対策検討

本実証事業で対象とする電子機器製品は、長期間の使用が想定されており(本実証事業では2年間)、筐体材料の光劣化性について把握し対策する必要がある。昨年度はセルロースエステル誘導体を対象とし、屋内の窓ガラス越しによる光劣化を想定した環境(キセノンランプ耐光試験 550 W/m² (300 ~ 800 nm)、ウインドウガラスフィルター、65 °C)で耐光性試験を行った。その結果、光劣化防止剤として HALS(ヒンダードアミン系光安定剤)と UVA(紫外線吸収剤)を添加することで、光架橋やシャルピー衝撃強度の低下が抑制され、光劣化への効果が確認された。

今年度は、パラミロンエステル誘導体を対象とした耐光性試験を実施した。光劣化防止剤として、昨年度に評価した2種のHALS-1,2とUVAを用いた。HAL-1は2級アミン型、HAL-2は3級アミン型である。添加剤の添加量は、セルロースエステル誘導体で効果の高かった量(HALS:少)に合わせた。また、光劣化防止剤と酸化防止剤との併用効果についても確認した。

酸化防止剤については、ヒンダードフェノール系酸化防止剤(酸化防止剤-1)とホスファイト系酸化防止剤(酸化防止剤-2)を用いた。パラミロンエステル誘導体に用いた添加剤の組み合わせを表 4-1、耐光性試験の評価結果を表 4-2、耐光試験前後の成形体の写真を図 4-1 に示す。

表 4-1 パラミロンエステル誘導体の添加剤組み合わせ

パラミロン	光	劣化防.	止剤	酸化防止剤		
誘導体	HALS -1	HALS -2	UVA	酸化防止剤-1	酸化防止剤 -2	
Ref						
1	レ		レ			
2		レ	レ			
3	レ		レ	レ	レ	
4		レ	レ	レ	レ	

表 4-2 パラミロンエステル誘導体 耐光性試験評価結果

パラミロン	シャルピー衝撃強度								
誘導体	0h (kJ/m2)	360h (kJ/m2)	360h後の 物性保持率(%)						
Ref	5.7	0.53	9%						
1	6.9	5.8	84%						
2	5.9	4.6	77%						
3	6.2	6.7	107%						
4	5.6	2.4	43%						

図 4-1 パラミロンエステル誘導体 耐光性試験前後の成形体外観

光劣化防止剤を含まないパラミロンエステル誘導体(表 4-2, Ref)は、光照射によりシャルピー衝撃強度が大きく低下し、クロロホルムに不溶となったことから、セルロースエステル誘導体と同様に、パラミロンエステル誘導体においても光架橋が起こることがわかった。一方、HALSと UVA を添加したパラミロンエステル誘導体においては(表 4-1, Sample 1 and 2)、シャルピー衝撃強度の低下が抑制され、添加剤の光劣化への効果が確認された。そして、HALS-2 よりも HALS-1 の方が若干高い効果が見られた。ただし、Sample 1、2 ともに 360 時間の光照射後はクロロホルムに不溶となったことから、光架橋は起きていることがわかった。

光劣化防止剤と酸化防止剤を併用した系(Sample 3 and 4)は、HALSの種類によって異なる結果となった。HALS-1 を用いた場合は(Sample 3)、360 時間の光照射後もシャルピー衝撃強

度は低下せず、高い耐光性を示した。これは、光劣化防止剤と酸化防止剤の効果が発現し、光と熱による樹脂の酸化劣化反応が抑制されたためと思われる。一方、HALS-2 を用いた場合 (Sample 4)、酸化防止剤を添加しなかった Sample 2 よりもシャルピー衝撃強度が低下した。 HALS-1 は2級アミンであり HALS-2 は 3 級アミンであることから、HALS-1 を添加した系においては樹脂に残存する酸が捕捉されたため劣化が抑制されたが、HALS-2 は酸を捕捉する効果が弱いため、残留する酸によって酸化防止剤が変質したのかもしれない。また、Sample3, 4 も 360 時間の光照射後はクロロホルムに不溶となったことから、酸化防止剤が添加されていても光架橋は起きることがわかった。

光劣化防止剤と酸化防止剤の併用により、パラミロンエステル樹脂の耐光性を向上することができた。しかし、光架橋を完全に防ぐことはできていないため、今後、より詳細なメカニズムの解明と多糖類エステル誘導体に合った光劣化防止剤をさらに探索する必要があると考える。

4.2. 添加剤を含む多糖類バイオプラスチックのリサイクル性検討

プロジェクト初年度より、セルロースエステル誘導体を対象として、実機(中型機)を用いて複数回熱加工したリサイクル品を作成し、それらのリサイクル性を評価してきた。初年度は、セルロースエステル誘導体をリサイクルすることで、成形体の濃色化、流動性(MFR)の増加および衝撃強度の低下など、熱劣化が確認された。昨年度は、リサイクル(再ペレット)時のセルロースエステル誘導体の熱分解を抑制するため押出温度の最適化を行い、5回リサイクル後の評価において MFR 増加および分子量低下は多少見られたものの衝撃強度は低下せず、リサイクル率 100%であっても物性を保持できることがわかった。

今年度は、添加剤(リン系難燃剤、水酸化アルミニウム、ガラス繊維)のリサイクルへの影響を確認するため、添加剤を含むセルロースエステル誘導体のリサイクル性について評価した。

まず、水酸化アルミニウムとリン系難燃剤を添加したセルロースエステル誘導体を作成し、中型機でリサイクル性評価を実施した。中型機での評価条件としては、1軸押出機を用いてセルロースエステル誘導体と添加剤の混練およびペレット化を 5 回繰り返した(図 4-2)。混練時にはバージン材を混合せず、リサイクル率 100%の条件で実施した。

図 4-2 中型機(1軸押出機)での ペレット化 上段:1 軸混練機、 中段:押し出された樹脂、 下段:樹脂ペレット

昨年度の中型機を用いたセルロースエステル誘導体のリサイクル性実証において、ペレット化工程での押出温度を 210 °C 以下とすることで、リサイクル率 100 %で樹脂物性を保持できることがわかった。そこで、今年度も押出温度を 210 °C 以下(170 ~ 190 °C)としてセルロースエステル誘導体複合材のペレット化を実施した。リサイクル回数(5回まで)と各物性の評価結果を表 4-3、図 4-3 に示す。5回リサイクル後の曲げ強度、衝撃強度、分子量の特性保持率はいずれも 90%以上であった。また、側鎖の DS にも変化は見られなかったことから、側鎖の分解は起きていないことがわかった。以上の結果より、水酸化アルミニウムおよびリン系難燃剤を添加したセルロースエステル誘導体において、リサイクル率 100%で5回リサイクル可能であることを実証した。

また、ペレットの色については、リサイクル回数を重ねるごとに着色が強くなった(図 4-4)。 添加剤を含んでいなくても同様に着色することから、この着色は添加剤によるものではなく、 多糖類や樹脂にわずかに残留する窒素系不純物(タンパク質、ピリジンなど)がメイラード反応 を起こしている可能性があると考えている。

表 4-3 セルロースエステル誘導体 中型機を用いたリサイクル性評価

	リサイクル 回数	0	1	3	5	5回後 特性保持率 (%)
曲げ 強度	MPa	14	14	14	14	100
曲げ 弾性率	GPa	0.58	0.58	0.58	0.53	-
破断 ひずみ	%	>10	>10	>10	>10	-
衝撃 強度	kJ/m2	25.6	25.2	25.6	23.6	92
MFR	g/10min (210℃ 5kgf)	59	69	83	103	-
GPC	Mw*10 ⁵	12.0	11.3	12.1	10.8	90
NMR	短鎖DS 長鎖DS	2.38 0.27	2.34 0.27	2.36 0.27	2.34 0.27	-

図 4-3 リサイクルとセルロースエステル樹脂の特性保持率

図 4-4 セルロースエステル誘導体 リサイクルペレット外観

次に、ガラス繊維のリサイクル性について評価した。ガラス繊維は樹脂の耐熱性を向上する効果が期待されるものの、リサイクル工程でガラス繊維の破砕により繊維長が短くなると、耐熱性が低下する恐れがある。そこで、ガラス繊維を添加したセルロースエステル誘導体のリサイクル回数と耐熱性について評価した。

小型2軸押出機でガラス繊維および難燃剤を添加したセルロースエステル誘導体を作成し、 ラボ用の小型射出成型機および小型2軸押出機で5回の模擬的なリサイクル試験(200 ℃ 射出 成型⇒切断⇒200 ℃ 再ペレット化)を行った(図 4-5)。リサイクル時にはバージン材を混合せず、 リサイクル率 100%の条件で実施した。

図 4-5 リサイクル性の確認に用いた小型射出成形機(左)、およびラボ用小型2軸押出機(右)

リサイクル回数と耐熱性を含む各物性の評価結果を表 4-4、図 4-6、成形体写真を図 4-7 に示す。耐熱性(HDT)はリサイクル0回(バージン材)から5回までほぼ変化なく、5回リサイクル後もガラス繊維による耐熱性向上効果は持続することがわかった。また、曲げ強度に関してもガラス繊維の影響を受けるが、これに関しても5回リサイクル後の保持率は 100%であった。熱可塑性(MFR)はリサイクルにより上昇するが、大きな変化は見られなかった。また、成形体の着色性については、リサイクル回数を重ねるごとに着色が強くなる傾向であった。着色の様子が上記の結果(図 4-4)に近いことから、この着色の原因はガラス繊維ではなく、樹脂そのものに原因があると考えている。

表 4-4 セルロースエステル誘導体 小型機を用いたリサイクル性評価

	リサイクル 回数	0	1	3	5	5回後 特性保持率 (%)
曲げ 強度	МРа	42	38	37	44	100
曲げ 弾性率	GPa	2.4	2.5	2.5	2.7	-
破断 ひずみ	%	3.7	3.8	3.6	3.4	-
MFR	g/10min (210℃ 5kgf)	1.2	1.9	2.6	2.7	-
HDT	°C	71	72	71	70	99

図 4-6 セルロースエステル誘導体 リサイクルと樹脂の特性保持率

図 4-7 セルロースエステル誘導体 リサイクル成形体外観

以上の結果より、添加剤(水酸化アルミニウム、リン系難燃剤、ガラス繊維)を含むセルロース エステル誘導体のリサイクル性を評価し、これらの添加剤はセルロースエステル誘導体のリサイ クルに影響を及ぼさず、セルロースエステル誘導体はリサイクル率 100%で 5 回リサイクル可能 であることを実証した。

4.3. 実製品でのリサイクルシステム実証

初年度のマテリアルリサイクルシステムの検証において、本実証事業で活用するモデル製品として、NECプラットフォームズ株式会社(NECPF)掛川事業所で製造している家庭用ネットワークルータ(ホームゲートウェイ: HGW)製品(図 4-8)を選定した。本製品はレンタル品としてお客様へ工場から直送され、レンタル終了と共に工場へ返送されるインフラが形成されているため、リサイクルプロセスの実証に適している。

図 4-8 モデル製品:家庭用ネットワーク ルーター外観(HGW)

そして、この製品における現状のリサイクル

プロセスを整理した結果、クローズドリサイクルを実現するためには、選別工程において、リサイクルの可否を現場で簡単に判別できるシステム作りが必要であることがわかった。そこで昨年度は、セルロース樹脂リサイクル材の各種物性を評価し、面衝撃エネルギー値がリサイクル性と相関性が高いことを確認した。そして、劣化度合を簡単に判別するプロセスとして、小型の面衝撃試験機を設計・作製し、セルロース樹脂の平板を用いて小型面衝撃試験機の有効性を確認した。

今年度は、開発素材(長鎖付加セルロース樹脂)および小型面衝撃試験機を用いた実製品でのリサイクルプロセスの実証を行った。まず、長鎖付加セルロース樹脂を用いて、NECPFの量産成形機でHGW製品筐体を成形した。次に、小型面衝撃試験機で製品筐体を評価するための

治具について検討した。そして最後に、実際のリサイクル現場で小型面衝撃試験機を用いた模擬的なリサイクルを行い、その有効性を確認した。

図 4-9 小型面衝撃試験機によるクローズドリサイクルのイメージ

4.3.1. 長鎖付加セルロースエステル樹脂を用いた HGW 筐体成形

実製品に使用する成形機(160t 成形機)と金型を用いて、長鎖付加セルロース樹脂の HGW 筐体の試作を行った。長鎖付加セルロース樹脂は、実施内容1に記載した 1000L 反応器での合成品をベースとし、水酸化アルミニウムおよびリン系難燃剤を添加したものを用いた。

長鎖付加セルロース樹脂の成形は、樹脂乾燥温度 50°C、樹脂温度 160~180°C、金型温度 50°C で実施した。樹脂の成形温度条件を表 4-5、成形機関連設備の写真を図 4-10、4-11、成形体の写真を図 4-12 に示す。長鎖付加セルロース樹脂は長鎖成分やリン系難燃剤の可塑化効果により昨年度のセルロース樹脂(短鎖系)よりも熱可塑性が高いため、低温で成形することができた。HGW 筐体は 2 種類の成形体(Cover, Base)を組み合わせたものであり、両方とも成

形を実施した。なお、この成形 試作の際に消費電力量を測定 し LCA 評価に反映させた。詳細 は実証内容5で示す。

表 4-5 樹脂の成形温度条件

		材料名				
	設備名	PC樹脂	セルロース樹脂	長鎖付加 セルロース樹脂		
1	材料乾燥炉	120℃	80℃	50℃		
2	成形機 (金型温度)	90℃	70℃	50℃		

図 4-10 成形工程 関連設備 (左:材料乾燥炉、右:金型温調器)

図 4-11 160t成形機 製品筐体成形の様子

図 4-12 長鎖付加セルロース樹脂 HGW 筐体成形体

4.3.2. 小型面衝撃試験機 製品筐体用の治具の検討

昨年度はリサイクル現場での 使用を想定した小型で安価な面 衝撃試験機を設計・作製し、平板 サンプルを用いて高速衝撃試験 機による面衝撃強度と小型面衝 撃試験機の相関性を確認した。 小型面衝撃試験機の模式図を図 4-13 に示す。成形体を装置下の 治具に設置後、ボタンを押すとシ リンダが下降し、成形体に衝撃を 与えることができる。スプリング とストライカにより、成形体に与 える衝撃力を調整する。スプリン グとストライカはボルトを外し、 ストライカを含む下側部品を抜 いて交換する。

図 4-13 小型面衝撃試験機の模式図

今年度は、HGW 筐体を設置するための治具を設計、作成した。設計した治具の模式図を図 4-14、4-15、試作した治具の写真を図 4-16 に示す。装置下に治具を設置できる土台を作り、その上に専用治具をはめ込むことができる設計とした。平板用の治具は、穴の開いた金属板で平板を挟む構造になっている。今回の HGW 筐体用の治具はリサイクル現場での利用を想定して、筐体の着脱が簡単にできるような設計となっている。筐体の四辺を金属片で囲み、筐体の両側をオートラッチで固定できるようにした。これらの専用治具は市販品の組み合わせでできていることから、非常に安価で作成することができる。

図 4-14 治具の模式図(1)

図 4-15 治具の模式図(2)

図 4-16 治具の写真

また、小型衝撃試験機においてもリサイクル現場での使用を考慮し、キャスターを取り付け可動式にし、安全カバーを取り付ける改良を行った。小型面衝撃試験機の模式図を図 4-17、試験機の写真を図 4-18 に示す。試験機のサイズは 58 × 50 × 140 cm であり、リサイクル現場に設置可能な大きさである。

図 4-17 小型面衝撃試験機の改良設計

図 4-18 小型面衝撃試験機の実機(改良後)

4.3.3. 小型面衝撃試験機を用いた実製品でのリサイクルシステム実証

昨年度、小型面衝撃試験機を用いてセルロース樹脂、ポリカーボネート(PC)樹脂およびポリ スチレン(PS)樹脂の面衝撃試験を実施し、高速衝撃試験機で得られたエネルギー値と小型衝撃 試験機で実施した結果に相関性があることを明らかにした。

今年度は、長鎖付加セルロース樹脂の実製品筐体を用いて、小型面衝撃試験機でリサイクル システム実証を行った。なお。小型面衝撃試験機は実際のリサイクル現場(NEC プラットフォー ムズ掛川事業所)に設置して評価した。

まず初めに、長鎖付加セルロース樹脂 (バージン材、5回リサイクル材)の高速面 衝撃試験を実施し、面破壊によるエネルギ 一量を測定した。成形体の写真を図 4-19、 長鎖付加セルロース樹脂(バージン材、5 回リサイクル材)およびセルロース樹脂(短 鎖系)、PS樹脂の高速面衝撃試験の結果を 表 4-6 に示す。長鎖付加セルロース樹脂の パンクチャ―点エネルギー量は5回リサイ クルにより低下するものの、セルロース樹 脂の5回リサイクル品よりも高い値を示し た。

図 4-19 高速面衝撃試験サンプル (長鎖付加セルロース樹脂 70 ×70 × 2 mmt)

表 4-6 高速面衝撃試験の結果

使用樹脂	種類	最大衝撃力 (kN)	パンクチャー 点変位(㎜)	パンクチャー点 エネルギー(J)
長鎖付加セルロー	バージン材	2.2	12.0	11.0
ス樹脂	5回リペレ材	1.8	11.0	8.6
使用樹脂	種類	最大衝撃力 (kN)	パンクチャー 点変位(㎜)	パンクチャー点 エネルギー(J)
	バージン材	3.1	8.0	10.0
セルロース樹脂	5回リペレ材	1.8	8.1	5.9
	10回リペレ材	1.8	5.8	5.0
ポリスチレン樹脂	バージン材	1.0	10	5.4

次に、小型面衝撃試験機を用いて長鎖付加セルロース樹脂、セルロース樹脂およびポリスチレン(PS)樹脂の面衝撃試験を実施し、高速面衝撃試験の結果と比較した。試験荷重の調整はスプリングとストライカ径(5.8 mmφ または 20 mmφ)により調整した。スプリングの種類と荷重を測定した結果について図 4-20 に示す。スプリングの荷重はデジタル加圧計により測定した。また、今年度は新たに DC672(130N)と P559(650N)の間の荷重を持つスプリングを入手し評価に用いた。

スプリング	荷重(N)	
C266	80	
WM27-45	120	new
DC672	130	
C290	150	new
P555	300	new
C320	410	new
P545	460	
P559	650	
P578	980	
P567	4420	
terretories and terretories		

※衝撃位置から-20mm地点を測定

図 4-20 スプリングの種類と荷重測定結果

各樹脂の製品筐体または平板を用いた小型衝撃試験機での評価結果を表 4-7 に示す。ストライカ径 20 mmφ、スプリング P555 の組み合わせにすることで、バージン材では破損しないが 5回リサイクル材(セルロース樹脂)では破損する、つまりリサイクルの可否が判別できることが わかった。これは、表 4-6 の高速衝撃試験で得られたパンクチャー点エネルギー量と相関性を 持つ結果となった。 また、高速衝撃試験での樹脂の破壊タイプが、小型面衝撃試験機で実施したものと差異がないことを確認した(図 4-21)。

表 4-7 小型面衝撃試験の結果(20 mmφ, 平板 1 mmt)

			4 123 3	M- 4:37(- 1			··· T'	1 1/// -	-,		
/+ m/+/ne	7千地工	スプリング									
使用樹脂	種類	C266	DC 672	WM 27-45	C290	P555	C320	P545	P559	P578	P567
長鎖付加 セルロース 樹脂 (筐体)	バージン材	-	-	-	-	-	NY	NY	NY	NY	NY
セルロース 樹脂 (筐体)	バージン材	-	-	-	-	-	NY	NY	NY	NY	NY
	バージン材	-	-	-	_	-	NY	NY	NY	NY	NY
セルロース 樹脂 (PLATE)	5回リペレ材	-	-	-	-	NY	NY	NY	NY	NY	NY
(I LAIL)	10回リペレ材	-	-	-	_	NY	NY	NY	NY	NY	NY
ポリスチレン 樹脂 (PLATE)	バージン材	-	-	-	-	NY	NY	NY	NY	NY	NY

破壊タイプ - :破損なし

NY:降伏しない挙動、YS:安定き裂

図 4-20 面衝撃試験後の成形体写真

最後に、実際のリサイクル現場(NEC プラットフォームズ掛川事業所)にて、小型衝撃試験機を用いた筐体の選別実験を行った(図 4-21)。この実験においては、ストライカ径やスプリングだけでなく、さらにストライカの位置も変えて衝撃力を調整した。衝撃力を調整することで、筐体形状でも長鎖付加セルロース樹脂とセルロース樹脂の選別が可能であることを実証した(図 4-22)。(パンクチャー点エネルギー量:長鎖付加セルロース樹脂 11」、セルロース樹脂 10」)

図 4-21 小型面衝撃試験の様子

図 4-22 小型面衝撃試験を用いた筐体の選別工程実証 (左:セルロース樹脂、右:長鎖付加セルロース樹脂)

以上の結果をまとめると、開発素材である長鎖付加セルロース樹脂を用いて実製品筐体を成形し、実際のリサイクル現場(NEC プラットフォームズ掛川事業所)にて、小型衝撃試験機の有効性を確認した。その結果、小型試験機により簡易的にリサイクルの可否を選別できることを実証した。

4.3.4. 今後の課題

本事業における検討の結果、開発素材を用いた電子機器筐体部材のクローズドリサイクルが実現可能であることを確認した。今後、本業務で実証したリサイクルシステムの他素材、他製品への展開が課題となる。他素材への展開については、小型衝撃試験機のストライカ径、スプリング強度の調整により技術的に対応可能である。一方、他製品への展開の第1候補として、住宅インテリア製品への適用を検討したが、製品の寿命が非常に長い点やリサイクルサプライチェーンが未整備である点など、適用に向けての課題が多いことが判明した。そこで、新たに立ち上げたパラレジンジャパンコンソーシアムの中で適用可能な製品の探索を継続していく。

実証内容5.LCAの検証・評価

本業務では、多糖類バイオプラスチックの LCA 評価を目的とする。

昨年度は、セルロースエステル誘導体のライフサイクルフロー全体の LCA 評価を実施した。 具体的には、原材料調達・生産(原料採取から合成工程まで)の CO₂ 排出量を昨年度よりも実 情に近い条件で算出した。また、生産工程、使用工程およびリサイクル工程(粉砕のみ)において は、NECプラットフォームズ株式会社(NECPF)掛川事業場他の実設備を活用してフォアグラウ ンドデータを取得し、より実情に近い条件での LCA 評価を実施した。その結果、ライフサイクル フロー全体で見ると、セルロース樹脂の CO₂ 排出量の合計値はベースラインである PC 樹脂よ りも低くなる結果が得られた。

今年度は、量産プラント設計のシミュレーション結果、量産成形機での消費電力量測定およびクローズドリサイクルによる CO₂削減効果について検討し、昨年度の LCA 評価を更新した。また、藻類由来材料についても LCA 評価を行った。

5.1. 条件設定

LCA 評価・検証の対象製品、ベースライン、機能単位は、下表(表 5-1)のように設定した。また、LCA 評価・検証に用いるライフサイクルフロー図と評価範囲として、図 5-1 のように策定した。今年度は、多糖類バイオプラスチックのクローズドリサイクルを 5 回実施する設定を追加した。

表 5-1 LCA 評価・検証する対象製品、ベースライン、機能単位

評価対象製品	電子機器筐体部品
ベースライン	ポリカーボネート樹脂
機能単位	1台の電子機器(ホームゲートウェイ機器、レン
	タル販売品)の筐体(約 <mark>200</mark> g)として2年使用
	し、回収する(化石燃料由来の材料を用いた
	ケースとバイオ由来の材料を用いたケース)。

5.2. 原材料調達・生産の LCA 評価

昨年度、多糖類バイオプラスチックの合成処方を酸クロ法で実施することとし、より実情に近い条件で LCA 評価を実施した。具体的には、多糖類(セルロース)および長鎖脂肪酸の LCA において、樹種や輸入先など設定条件を精査し、輸送による CO2 排出量を追加した。樹脂の合成工程においては、廃液の蒸留回収シミュレーションで得られた溶媒の回収率を用いて、LCA 評価を行った。

今年度は、実証内容3で実施した多糖類バイオプラスチック(パラミロンエステル誘導体)合成プロセスのシミュレーション結果を用いて、多糖類バイオプラスチック合成工程の CO₂ 排出量を算出した。そして、実証事業終了時点(樹脂製造量1万t/y)および普及時点(商業スケール20万t/y)での原材料調達・生産に係る CO₂ 排出量を算出した。

5.2.1. 合成工程の CO₂ 排出量

合成工程での CO2排出量は、製造設備(合成設備および廃液蒸留回収設備)で使用する用役の消費量から算出した。合成工程で使用する用役は、電力、蒸気、冷却水、計装空気、窒素である。蒸気は LPG を燃料としてボイラーから供給され、合成設備や廃液蒸留回収設備の熱源として使用される。冷却水、計装空気、窒素ガスの動力は電力である。従って、用役からの CO2排出量は、電力と蒸気の燃料(LPG)から算出した。

まず、パイロットプラントスケールでの用役の消費量とバイオプラスチック 1 kgあたりの CO2 排出量を表 5-2 に示す。パイロットプラントの設計においては、合成プロセスはバッチ式であり、廃液の蒸留回収プロセスは連続式の設備で設計されている。1 バッチあたり 48 時間を有する。このシミュレーション結果より、CO2排出量の多くは蒸気を発生するための燃料(LPG)由来であることが明らかになった。また、合成設備と廃液蒸留回収設備の蒸気の使用量について比較すると、圧倒的に廃液蒸留回収設備の方が多い(合成設備の蒸気:712 kg/1 バッチに対し、蒸留回収設備の蒸気:568×48 時間=27269kg/1 バッチ)。

そこで、廃液蒸留回収設備の各回収塔について、蒸気の使用量および CO2 排出量を算出した(表 5-3)。その結果、最も多くの蒸気が使用されるのは抽出塔であった。さらに、各回収塔の廃液処理量と塔頂・塔底温度を整理した結果、抽出塔で蒸気が大量に使用される理由としては、廃液処理量が他よりも 1 桁大きく、塔底温度も高いためであることがわかった(表 5-4)。抽出塔はメタノールを回収した後の廃液から水を分離する工程であり、ピリジン/水の共沸物のエントレナーとして大量のヘキサンを蒸留する必要がある。従って、合成工程において、水の使用量を減らすことで蒸留に係るエネルギーも減らすことができる。今後、合成工程で CO2 排出量を削減するには、水の使用量を減らすプロセスを考えていく必要がある。

	な 3-2 ハーロット クラット CV/// 区/// 兵里 C CO2 折山里								
			廃液			CO ₂ 排	℃ ₂ 排出量		
用役	単位	合成 (/Batch)	蒸留 回収 (/h)	共通 設備 (/h)	合計 (/Batch)	エネルギー 起源 [kgCO ₂ /kgBM]	非エネルギー 起源 [kgCO ₂ /kgBM]		
電力	kWh	471	15.6	31.2	2716.4	2.537	0.000		
蒸気	kg	712	568.1	-869.1	0	0.000	0.000		
冷却水	t	139	54.8	1.4	2836.6	0.000	0.000		
計装空気	Nm ³	1920	25	5	3360	0.000	0.000		
窒素	Nm ³	10	0	0	10	0.000	0.000		
LPG	kg	0	0	53.7	2577.6 合計	15.435	0.000		
			17.972	0.000					

表 5-2 パイロットプラントでの用役消費量と CO₂排出量

表 5-3 廃液蒸留回収設備の蒸気使用量および CO2 排出量

蒸留設備(ボイラー)	蒸気 (t/h)	CO2排出量 エネルギー起源 [kgCO ₂ /kgBM]
メタノール回収ボイラー	147.6	3.908
抽出塔リボイラー	330.3	8.746
ピリジン回収塔リボイラー	7.1	0.188
短鎖脂肪酸回収塔ボイラー	17.2	0.455
NMP回収塔ボイラー	30.8	0.816
ピリジン再回収塔リボイラー	35.1	0.929
合計	568.1	15.042

表 5-4 廃液蒸留回収設備の廃液処理量と塔頂・塔底温度

蒸留設備(ボイラー)	フィード量 (kg/h)	塔頂液量 (kg/h)	塔頂温度 (℃)	塔底温度 (°C)		
メタノール回収塔	200	102.68	66.6	115.1		
抽出塔	127.67 +ヘキサン1300	1349.14	66.5	184.2		
ピリジン回収塔	81.32	8.28	54.9	149.0		
短鎖脂肪酸回収塔	73.03	1.57	83.8	141.8		
NMP回収塔	71.47	63.57	131.7	164.1		
ピリジン再回収塔	34.55	30.35	101.6	116.8		

次に、実証事業終了時点(樹脂製造量 1万 t/y)での用役の消費量とバイオプラスチック 1 kg あたりの CO2 排出量を算出した(表 5-5)。その結果、実証プラントでの CO2 排出量は、パイロットプラントのものよりも低い値を示した。これは、設備のスケールアップにより、洗浄工程がバッチ式から連続式に変更されたためである。また、パイロットプラントと同様、CO2 排出量のほとんどが蒸気を発生させるための燃料(LPG)由来であり、この蒸気はほぼ廃液蒸留回収設備で使用される設計となっていた。

表 5-5 実証事業終了時点での用役消費量と CO₂ 排出量

				廃液		CO ₂ 排出量		
用役	単位	合成 (/Batch)	合成 (/h)	蒸留 回収 (/h)	合計 (/Batch)	エネルギー 起源 [kgCO ₂ /kgBM]	非エネルギー 起源 [kgCO ₂ /kgBM]	
電力	kWh	21,932	654.5	83.2	57,342	0.443	0.000	
蒸気	kg	32,045	451	68,778	3,355,037	0.000	0.000	
冷却水	t	7,003	160	6,453	324,427	0.000	0.000	
計装空気	Nm ³		200	125	325	0.000	0.000	
窒素	Nm ³	282	0	0	282	0.000	0.000	
LPG	kg			223680		11.072	0.000	
					合計	11.515	0.000	

そして、普及時点(商業スケール 20 万 t/y)での原材料調達・生産に係る CO₂ 排出量は、実証プラントよりもさらに効率が良くなると予測して表 5-6 の値とした。

表 5-6 普及時点での商業プラントでの用役消費量と CO2 排出量

	CO ₂ 排出量				
用役	エネルギー	非エネルギー			
/1312	起源	起源			
	[kgCO ₂ /kgBM]	[kgCO ₂ /kgBM]			
電力	0.421	0.000			
蒸気	0.000	0.000			
冷却水	0.000	0.000			
計装空気	0.000	0.000			
窒素	0.000	0.000			
LPG	10.518	0.000			
合計	10.939	0.000			

5.2.2. セルロースエステル誘導体の LCA

上記の結果および昨年度の検討結果を用いて、セルロースエステル誘導体の合成工程(原材料調達・生産)における CO2排出原単位および普及時点(商業スケール 20万 t/y)を表 5-7 に整理した。(生産に関する値はパラミロンエステル誘導体の合成をモデルにシミュレーションした結果である。セルロースエステル誘導体はパラミロンエステルよりも酸クロライドの使用量が多いため、表の値も若干高くなる。)原材料よりも生産からの CO2排出量が多く、上記で述べたとおり、廃液の蒸留回収で使用する燃料 LPG が大部分を占めている。これを CO2排出係数のより低い燃料に変えることで、生産の CO2排出量を低減することができる。例えば、LPG よりCO2排出係数の低い LNG やバイオマス由来燃料、水素燃料、鉄鋼やセメントなど製造工程で出てくる排熱などを利用することによって、CO2排出量は低くなる。さらに電力を従来の化石エネルギーから再生可能エネルギーへ移行することで、生産の CO2排出量はゼロに近くなると思われる。

表 5-7 セルロースエステル誘導体の原材料調達・生産の CO2 排出原単位および CO2 排出量

	00= 37 [
	CO ₂ 排	出原単位	普及時点(20万t/y)でのCO ₂ 排出量				
	エネルギー起源	非エネルギー起源	エネルギー起源	非エネルギー起源			
	[kgCO2/kg] [kgCO2/kg]		[tCO2/y]	[tCO2/y]			
原材料	2.39	0.08	478,870	16,899			
生産 (樹脂合成)	10.94	0	2,187,843	0			

5.2.3. パラミロンエステル誘導体の LCA

藻類由来の多糖類であるパラミロンを原料とした、パラミロンエステル誘導体についても LCA 評価を実施した。パラミロンの CO2 原単位は、セルロース(パルプ)と同等の CO2 原単位に するにはパラミロンの年間生産量をいくらにすれば良いかという観点で試算した。その結果、パラミロンを年間 75 万t生産すると仮定すると、セルロースの原単位と同等になることが分かった。多糖類の年間生産量および CO2 原単位を表 5-8 に示す。セルロース(パルプ)の年間生産量は 722 万 t であり、パラミロンの約 10 倍である。もし、パラミロンの用途拡大によりセルロースの年間生産量に近づけば、スケールアップ効果によりパラミロンの CO2 排出原単位はさらに下がると予想される。

表 5-8 多糖類の年間生産量および CO2 原単位

多糖類	年間生産量 (t/y)	CO2排出原単位 (エネルギー起源) [kgCO2/kg]	CO2排出原単位 (非エネルギー起源) [kgCO2/kg]					
セルロース (パルプ)	722万	0.594	0.0022					
パラミロン	75万(仮)	0.556	0.043					

この値を使って、パラミロンエステル誘導体の合成工程(原材料調達・生産)における CO₂ 排出原単位および普及時点(商業スケール 20 万 t/y)を表 5-9 に整理した。パラミロンエステル誘導体の CO₂ 原単位(1.98 + 0.09 = 2.07)がセルロースエステル誘導体(2.39 + 0.08 = 2.47)よりも低いのは、パラミロンエステル誘導体の合成で使用する酸クロライドの量がセルロースエステル誘導体よりも少ないためである(耐熱性を高めるために酸クロライド量を調整している)。また、セルロースエステル誘導体と同様に、生産からの CO₂ 排出量が多くを占める。廃液蒸留回収工程で低 CO₂ 原単位の燃料や再生エネルギー電力を使用することで、生産の CO₂ 排出量はゼロに近くなる。

表 5-9 パラミロンエステル誘導体の原材料調達・生産の CO2 排出原単位および CO2 排出量

	CO ₂ 排出原単位		普及時点(20万t/y)でのCO₂排出量	
	エネルギー起源 [kgCO2/kg]	非エネルギー起源 [kgCO2/kg]	エネルギー起源 [tCO2/y]	非エネルギー起源 [tCO2/y]
原材料	1.98	0.09	396,177	18,321
生産 (樹脂合成)	10.94	0	2,187,843	0

図 5-2 成形工程 関連設備 (160t射出成型機)

図 5-3 成形工程 関連設備 (材料乾燥炉、温調機)

5.3. 生産の LCA 評価

今年度は、生産工程(成形工程)の CO₂ 排出量について、長鎖付加セルロース樹脂を用いて 実際の量産設備で成形した時のフォアグラウンドデータを取り、生産工程における CO₂ 排出量 を更新した。

5.3.1. 成形工程の LCA

長鎖付加セルロース樹脂で HGW 筐体を成形した時の消費電力量を測定し CO2 排出量を算出した。成形工程の関連設備を図 5-2,5-3 に示す(図 4-10,4-11 と同じ)。消費電力量は、使用設備(成形機)の各ブレーカーにクランプオンパワーハイテスターを取り付けて測定した(図 5-4)。

HGW 筐体成形工程での消費電力量について、長鎖付加セルロース樹脂(長鎖バイオプラ)、セルロース樹脂(バイオプラ)およびベ

図 5-4 電力量測定器

ースライン樹脂である PC 樹脂との比較を行った。成形 1 ショットあたりの消費電力量の測定結果を表 5-10 にまとめた。長鎖付加セルロース樹脂を用いた成形の消費電力量はセルロース樹脂から 23%削減可能、PC 樹脂から 54%削減可能であることがわかった。これは、表 5-11 の樹脂の成形温度条件に示すとおり、長鎖付加セルロース樹脂は熱可塑性が高いので、セルロース樹脂や PC 樹脂よりも材料の乾燥温度、金型温度が低いためである。

表 5-10 1 ショット当たりの消費電力量(160t 成形機)

単位:[Ws] 材料名 成形機 設備名 備考 バイオプラ PC 長鎖バイオプラ 156,228 60,467 30,040 材料乾燥炉 乾燥炉温度 (120°C) (80°C) (50°C) 145,955 184,542 134,147 1ショット当たり 成形機 金型温度 (90°C) (70°C) (50°C) 160t で質出 成形機 樹脂温度 (275~295°C) (200~220°C) (160~180°C) 85.012 42,739 27,362 温調機 (90°C) (70°C) (50°C) 温水温度 1個当たりの粉砕 粉砕機 6,009 6,009 6,009 4 時間を1sとする PC対比 431,791 合計 255,169 197,558 -54%低減

表 5-11 樹脂の成形温度条件

		材料名			
	設備名	PC樹脂	セルロース樹脂	長鎖付加 セルロース樹脂	
1	材料乾燥炉	120℃	80℃	50°C	
2	成形機 (金型温度)	90℃	70℃	50℃	

5.3.2. 生産工程(ペレット化、成形)の LCA 評価

上記で得た成形時のフォアグラウンドデータを用いて、長鎖付加セルロース樹脂の生産工程での CO2 排出量を更新した(表 5-12)。生産工程においては、長鎖付加セルロース樹脂の方がPC 樹脂よりも CO2排出量が低く、普及時点において(樹脂生産 20万 t/y)、長鎖付加セルロース樹脂はPC 樹脂に比べて約 38 %の CO2削減効果があることがわかった。今回の長鎖付加セルロース樹脂の評価において、成形はフォアグラウンドデータを取得し更新したが、ペレット化はセルロース樹脂(短鎖)のデータをそのまま使用している。長鎖付加セルロース樹脂の方がセルロース樹脂よりも熱可塑性が高いため、ペレット化の CO2 排出量をフォアグラウンドデータにすることで、CO2排出量はさらに低くなると思われる。

生産工程 普及時点 20万tスケール	長鎖付加セルロース樹脂	PC樹脂
樹脂1kgあたりの電力量 (×10 ⁴)Ws/樹脂1kg	210	337
1年あたりの消費電力量 (×10 ⁴)KWh/y	11690	18740
CO2排出量 t-CO2/y	54706	87703

表 5-12 生産工程での CO2 排出量

5.4. LCA 評価まとめ

最後に、多糖類系バイオプラスチックのクローズドリサイクルまでを含めた LCA 評価を実施した。多糖類系バイオプラスチック(セルロースエステル誘導体)およびベースライン樹脂(PC 樹脂)について、普及段階(20 万 t/y)での LCA 評価結果を表 5-13 に示す。ライフサイクルフロー全体で見た結果、多糖類系バイオプラスチックの CO2 排出量の合計値はベースラインである PC 樹脂よりも低くなり、CO2削減効果は 91 万 t/y になると試算された。

各項目の LCA 評価結果について、以下にまとめた。

- ・原材料調達、生産:実証内容4にて多糖類系バイオプラスチックは5回リサイクル可能であることを実証し、原材料調達・生産の CO2 排出量にクローズドリサイクルの効果を反映させた。クローズドリサイクルの効果により、多糖類系バイオプラスチックの CO2 排出量は PC 樹脂よりも低い値を示した。
- ・生産:フォアグランドデータにより CO2排出量を算出した結果、セルロース樹脂は PC 樹脂 よりも 38%ほど CO2削減可能であることがわかった。
- ・使用:セルロース樹脂の電子機器適用時の消費電力量は、PC 樹脂と同等であった。
- ・廃棄・リサイクル:廃棄の CO2 排出量は、焼却により樹脂中の炭素がすべて CO2 に変わると仮定して算出し、クローズドリサイクルの効果を反映させた。また、リサイクルの CO2 排出量は、粉砕工程での消費電力量より算出した。廃棄・リサイクルにおいても、多糖類系バイオプラスチックは PC 樹脂よりも高い CO2 削減効果を示した。これは、焼却廃棄の場合、多糖類系バイオプラスチックのバイオマス由来成分量がカーボンニュートラルとして扱われるので、PC 樹脂よりも CO2 排出量が低くなるためである(樹脂 1kg あたり焼却時のCO2 排出量…多糖類系バイオプラスチック:0.790 kgCO2/kg、PC 樹脂:2.769kgCO2/kg)。

表 5-13 普及段階(2030年) 樹脂生産量 20 万 t/y での LCA 評価結果(赤字:昨年度からの更新箇所)

	# □	325400	79933	305333
③削減量 (②-①)	廃棄・ リサイ クル	527474	0	527474
	使用	0	0	0
	流通	0	0	0
(i)	土産	32997	0	32997
	原材料 調達 • 生産	71550 264929	79933	344862
②ベースライン:PC樹脂	 -	5871550	82749	5954299
	廃棄・ リサイ クル	554568	0	554568
	使用	0 4519897 554568 587	0	0 4519897 554568
	流通		0	
	土産	87703	0	87703
	原材料 調達 • 生産	709382	2817 82749	792131
①評価対象製品:バイオプラスチック	↓ □	0 4519897 27094 5046149 709382	2817	5048966
	廃棄・ リサイ クル	27094	0	27094
	使用	4519897	0	0 4519897 27094
	流通		0	
	生産	54706	0	447269 54706
	原材料 調達 • 生産	44452 54706	2817	447269
(tCO2/y) 原材料 調達・ 生産		エネル ギー起源	非エネルギー起源	40

3. 学会発表、著書・論文投稿、報道、特許等の実績

※2021 年度分のみ

<特許>

- 特願 2021-049319:バイオプラスチックを含むリサイクル樹脂成形体の衝撃試験装置およびそのリサイクル方法、出願日:2021 年 3 月 23 日、出願人:日本電気株式会社、NECプラットフォームズ株式会社
- 特願 2021-093726:β グルカンエステル誘導体、出願日:2021 年 6 月 9 日、出願人:株式会社 LIXIL