5. Scenario Analysis Parameters and Tools for reference

- 5-1. Parameter List
- **5-2.** Physical risk assessment tools
- 5-3. List of TCFD-related reports

Chapter 5. Scenario Analysis Parameters and Tools for 🦪

Provide useful materials for scenario analysis based on past supporting case studies.

5. Scenario Analysis Parameters and Tools for reference

5-1. Parameter List

- 5-2. Physical risk assessment tools
- 5-3. List of TCFD-related reports

Chapter 5. Scenario Analysis Parameters and Tools for reference $({\cal G})$ Provide useful materials for scenario analysis based on past supporting case studies.

5-1

[Summary of Parameter list] Partial excerpts on transition risk and physical risk parameters

	Lite	erature and Tools (List)	Literature and tools (Excerpt)	Parameters	Page number
П	IEA	World Energy Outlook (W Energy Technology Persp		<u>p5-12</u> ^	-74 Para
Transition	NGFS	CA Climate Impact Explor (Reference, Physical risk	er () IIASA Scenario Explorer	<u></u>	arameters
on risk	PRI IPR	 1.5°C RPS Scenario Forecast Policy Scenario FPS+Nature 	(FPS)	<u>p5-81</u> ^	
	SSP	SSP (Shared Socioeconor	nic Pathways) Public Database Ver2.0	p5-92 ~	102 Prer
Phys				AQUEDUCT Water Tool (WRI)	in past supp
Physical risk	Phy	sical risk tools used in p	bast support projects (excerpt) P5-106-111	Climate Change Knowledg Portal (World Bank)	e ort cases
				Climate Impact Viewer (AP-PLAT)	(FY 2020, FY2021) P5-4 ~11

[Methods to acquire transition risk data] Ways to obtain tools and literatures from IEA, NGFS, PRI, SSP

lssuing Organiza tion	Tool Name	Data acquisition method	URL
IEA	World Energy Outlook (WEO) 2022	 Download the PDF report from the IEA homepage From the IEA homepage, download the excel for related data. There are 2 data, the free dataset and the extended data set 	PDF : https://www.iea.org/reports/world- energy-outlook-2022 Free Dataset : https://www.iea.org/data- and-statistics/data-product/world-energy- outlook-2022-free-dataset Extended Dataset : https://www.iea.org/data-and-statistics/data- product/world-energy-outlook-2022-extended- dataset
	Energy Technology Perspectives (ETP) 2023	 From the IEA homepage, download the report (The excel data is not released as of February 2023) 	 https://www.iea.org/reports/energy-technology- perspectives-2023
NGFS	CA Climate Impact Explorer	 Can be viewed through the NGFS homepage. The datasets are available for download as an excel %Must make an account 	Web tool: https://www.ngfs.net/ngfs- scenarios-portal/data-resources Excel dataset: https://data.ene.iiasa.ac.at/ngfs/#/downloads
	(Reference、Physical risk) IIASA Scenario Explorer	 Can be viewed through the NGFS homepage	Web tool: https://climate-impact- explorer.climateanalytics.org/
	1.5℃ RPS Scenario	Download excel from the PRI homepage	https://www.unprl.org/download?ac=15399 XDownload will start after clicking the link
PRI	Forecast Policy Scenario (FPS)	Download excel from the PRI homepage	https://www.unprl.org/download?ac=15398 XDownload will start after clicking the link
	FPS + Nature	Download excel from the PRI homepage	https://www.unpri.org/ipr-fps-nature-value- drivers XDownload will start after clicking the link
SSP	SSP Public Database Ver2.0	Can be viewed through the web tool on the IIASA homepage	 https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htm lpage&page=10

5**-**3

[Parameters referenced in past support cases] Transition risk (1/5)

	Item	Parameter	Source	Reference: FY 2020~2021 supported companies
		Carbon tax	 IEA WEO2019, WEO2020, NZE2050, WEO2021 PRI IPR FPS Information of countries Ministry of the Environment "Introduction of Taxes to Combat Global Warming" IPCC "Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development" Below 1.5°C pathway 	ASKUL Corporation, ORIX Asset Management Corporation, Kyushu Railway Company, Shin-Etsu Chemical, Mitsui Mining & Smelting, YASKAWA Electric Corporation, SCSK Corporation, GUNZE, Nishi-Nippon Railroad, Nippon Paper Industries, Fuji Oil Company, Maruha Nichiro Corporation, UACJ Corporation
	Carbon price	Border carbon	IEA WEO2021 Ministry of the Environment "Recent Developments in Carbon Tax and Border Adjustment Measures" ICAP (Average of EU-ETS in 2020)	Fuji Oil Company, UACJ Corporation
		Electricity price	• IEA WEO2018, WEO2020	ASKUL Corporation, ORIX Asset Management Corporation, Kyushu Railway Company, Mitsui Mining & Smelting, SCSK Corporation, GUNZE, Nishi-Nippon Railroad, Nippon Paper Industries, UACJ Corporation
Transition risk	Carbon emissions	Target values for emissions	 Ministry of the Environment's "Draft Japanese Commitments," "Toward Significant Reductions in Greenhouse Gases by 2050" IEA ETP2020 Target set by countries Ministry of Foreign Affairs of Japan "Climate Change: Japan's Emission Reduction Targets" Ministry of Foreign Affairs of Japan "Domestic and International Developments Concerning Carbon Neutrality in 2050" Agency for Natural Resources and Energy "Basic Energy Plan" UNFCCC "Thailand's Updated Nationally Determined Contribution" (October 2020) 	Kyushu Railway Company, Shin-Etsu Chemical, YASKAWA Electric Corporation, SCSK Corporation, Nippon Paper Industries, Fuji Oil Company, UACJ Corporation
	targets/policies in each country	Target unmet penalty amount	• IEA WEO2021	Fuji Oil Company
		Annual target of forest area decrease	Indonesia NDC "First Nationally Determined Contribution REPUBLIC of INDONESIA"	ASKUL Corporation
		Spread of environmentally friendly vehicles (EVs and FC buses)	• IEA WEO2020, NZE2050	Nishi-Nippon Railroad
	Carbon emissions targets/policies in each country (Logging tax)	Logging tax	 Forestry Agency "Forest Environment Tax and Forest Environment Transfer Tax Customs and Tariff Bureau, Ministry of Finance "Overview of the TPP11 Agreement (CPTPP) (tax rate differences, etc.) Forestry Agency "Provision of Information on Legally Logged Timber, etc. 	Nippon Paper Industries

5-4 💥 The parameters surveyed during support program by the Ministry of the Environment are shown regardless of whether they are used by each company.

[Parameters referenced in past support cases] Transition risk (2/5)

	Item	Parameter	Source	Reference: FY 2020~2021 supported companies
	Carbon emissions targets/policies in each country (Plastic Regulation)	Recycled plastic usage rate	 EU Government Plastic Recycling and Reuse Association, European Plastics Strategy JPCA EU Technical Expert Group (TEG), "Taxonomy Report Technical Annex" 	ASKUL Corporation, Shin-Etsu Chemical, GUNZE, Fuji Oil Company
	Changes in the energy mix	Power Generation Mix (Japan)	 IEA WEO2019,2020, 2021 PRI IPR FPS2019 Japanese Government Agency for Natural Resources and Energy "Outline of the Basic Energy Plan (Draft 2)" 	Kyushu Railway Company, Mitsui Mining & Smelting, YASKAWA Electric Corporation, SCSK Corporation, Nippon Paper Industries
	energy mix	Fuel price increase/decrease rate	• IEA WEO2020, NZE2050	Nishi-Nippon Railroad
Ħ		Oil supply	• IEA WEO2021	Fuji Oil Company
Transition		ZEV ratio	 IEA ETP2017 Shinichiro Fujimori et al. "The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century" 	ASKUL Corporation, Kyushu Railway Company, Shin-Etsu Chemical
risk	Dissemination of renewable energy and	EV rate of new vehicles	IEA Global EV Outlook2021	SCSK Corporation, Nippon Paper Industries
	energy-saving technologies	EU Inventory	• IEA WEO2021	UACJ Corporation
	technologies	Global Telecommunications Volume Trends	 Cisco "Global IP Traffic Forecast by Cisco VNI, 2018-2023" Nomura Research Institute, "Nomura Research Institute, Outlook for ICT and Media Market Size and Trends through FY2025" SMART CITY PROJECT 	SCSK Corporation
	Development of next-	Spread of environmentally friendly trains	 East Japan Railway Company "Production of hybrid vehicle (fuel cell) test vehicle using hydrogen as energy source and implementation of demonstration test" June 2019 	Kyushu Railway Company
	generation technologies	Change in the number of passengers between private cars and buses due to decarbonization	• IEA NZE2050	Nishi-Nippon Railroad

5-5 💥 The parameters surveyed during support program by the Ministry of the Environment are shown regardless of whether they are used by each company.

[Parameters referenced in past support cases] Transition risk (3/5)

	Item	Parameter	Source	Reference: FY 2020~2021 supported companies
		Recycled Aluminum Utilization Rate	 IAI "1.5 DEGREES SCENARIO A MODEL TO DRIVEEMISSIONS REDUCTION" National Institute for Environmental Studies, "Estimating the Impacts of Carbon Constraints on Metal Production and Use on a Global Scale" (2021) 	UACJ Corporation
		Aluminum price	World Bank "World Bank Commodities Forecast"	UACJ Corporation
		Copper demand forecast	Sebastiaan Deetman et al "Scenarios for demand growth of metals in electricity generation technologies, cars and electronic appliances"	Mitsui Mining & Smelting
		Zinc demand forecast	World Bank "The Growing Role of Minerals and Metals for a Low Carbon Future"	Mitsui Mining & Smelting
Ţ		Lead demand forecast	World Bank "The Growing Role of Minerals and Metals for a Low Carbon Future"	Mitsui Mining & Smelting
ansiti	Changes in important	cobalt, nickel, and platinum demand forecast	 World Bank "The Growing Role of Minerals and Metals for a Low Carbon Future" 	Mitsui Mining & Smelting Mitsui Mining & Smelting
Transition risk	products/ prices	Aluminum demand forecast	CM group, IAI "AN ASSESSMENT OF GLOBAL MEGATRENDS AND REGIONAL AND MARKET SECTOR GROWTH OUTLOOK FOR ALUMINIUM DEMAND" (2020)	UACJ Corporation
		Fuel price (Oil price, coal price, natural gas price)	 IEA WEO2020, NZE2050, WEO2021 Agency for Natural Resources and Energy "Basic Energy Plan" 	ASKUL Corporation, Kyushu Railway Company, Shin-Etsu Chemical, Mitsui Mining & Smelting, GUNZE, Nishi-Nippon Railroad, Fuji Oil Company, UACJ Corporation
		Iron price	2ii "The Transition Risk-o-Meter Reference Scenarios for Financial Analysis"	Kyushu Railway Company
		Energy intensity	Japanese government	Shin-Etsu Chemical
		Smart city market size and M2M traffic	 SMART CITY PROJECT "Smart Cities, the world's most important national strategy" Statista "Smart City Market revenue worldwide 2019 – 2025, by segment" 	Shin-Etsu Chemical

5-6 X The parameters surveyed during support program by the Ministry of the Environment are shown regardless of whether they are used by each company.

[Parameters referenced in past support cases] Transition risk (4/5)

	Item	Parameter	Source	Reference: FY 2020~2021 supported companies
		Industrial robot market size in major countries	Japanese Government and others	Shin-Etsu Chemical
		Sales of sustainable certified product	Nielsen "Product Insider"	ASKUL Corporation, Nippon Paper Industries
		Purchase intention by ethical consumption	 Dentsu, "Ethical Consumption Awareness Survey 2020" Deloitte, "Millennial Generation Z Annual Survey 2021" 	GUNZE, UACJ Corporation
		Improvement rate of energy consumption intensity (Industrial sector)	• IEA WEO2019	YASKAWA Electric Corporation
		Market size of industrial robots	 IEA WEO2019 International Federation of Robotics, World Robotics 2019 Industrial Robots 	YASKAWA Electric Corporation
Tran		Market size of AC servos for industrial robots	 Fuji Keizai "2020 Featured Mechatronics Parts Market Survey" IEA WEO2019 	YASKAWA Electric Corporation
Transition risk	Changes in important products/ prices	Market size of industrial inverters	 Research Station LCC, Global market forecast for inverters Estimated from IEA WEO2019 	YASKAWA Electric Corporation
isk		Neodymium dysprosium demand forecast	 Sebastiaan Deetman et al "Scenarios for demand growth of metals in electricity generation technologies, cars and electronic appliances" 	YASKAWA Electric Corporation
		Server Market Trends	 IEA EV Outlook2021 IDC Japan "Server Market Trend in Japan in FY2020" 	SCSK Corporation
		Migratory Tuna Catch	 Johann D. Bell et al "Pathways to sustaining tuna- dependent Pacific Island economies during climate change" 	Maruha Nichiro Corporation
		Bait fish stocks	 Ministry of Agriculture, Forestry and Fisheries "Future Prospects for Adaptation to Climate Change Impacts in FY2008" 	Maruha Nichiro Corporation
		Fish size	 Global Change Biology "Sound physiological knowledge and principles in modeling shrinking of fishes under climate change" (August 2017) 	Maruha Nichiro Corporation

5-7 💥 The parameters surveyed during support program by the Ministry of the Environment are shown regardless of whether they are used by each company.

[Parameters referenced in past support cases] Transition risk (5/5)

	Item	Parameter	Source	Reference: FY 2020~2021 supported companies
		Changes in the volume of air passenger	 2ii "The Transition Risk-o-Meter Reference Scenarios for Financial Analysis" 	Kyushu Railway Company
		Number of engine-powered vehicles on the road	• IEA ETP2017	Fuji Oil Company
Transition risk	Changes in customer reputation / behavior	Increase / decrease in rent due to environmental performance	 Xymax "Economic analysis of environmental management" Smart Wellness Office Research Committee "Improving the sustainability of environmental real estate and its added value" Japan Real Estate Institute "Investors' perceptions of real estate ESG investment" (DBJ FY2019 Seminar "Sustainability and ESG Investment in Real Estate- GRESB evaluation result announcement and real estate ESG Investment outlook-") 	ORIX Asset Management Corporation
n risk		Energy intensity of buildings	 IEA ETP2017 MLIT "Energy consumption reduction targets in global warming countermeasure plans based on the Paris Agreement", p.1 	ORIX Asset Management Corporation
	Compliance with GHG emission regulations	Zero emission target of Tokyo	• Tokyo	ORIX Asset Management Corporation
		Emission factor for grid electricity	 IEA WEO2020 Ministry of Economy, Trade and Industry "Basic Energy Plan" RITE "Scenario Analysis of Carbon Neutrality in 2050" 	ORIX Asset Management Corporation, Fuji Oil Company
		Mandatory introduction of ZEB / ZEH(Government goal)	 IEA ETP2017 Agency for Natural Resources and Energy General Energy Policy (July 2018) METI 	ORIX Asset Management Corporation

5-8 💥 The parameters surveyed during support program by the Ministry of the Environment are shown regardless of whether they are used by each company.

[Parameters referenced in past support cases] Physical risk (1/3)

	ltem	Parameter	Source	Reference: FY 2020~2021 supported companies
		Loss of labor productivity due to heat stress in the industrial sector	ILO "Working on a warmer planet" (2019)	Mitsui Mining & Smelting, GUNZE, UACJ Corporation
		Increase of hot summer days	 WRI "The Aqueduct Global Flood analyzer" World Bank "Climate Change Knowledge Portal" 	ASKUL Corporation, Mitsui Mining & Smelting, UACJ Corporation
		Increase of temperature	World Bank "Climate Change Knowledge Portal"	ASKUL Corporation, Kyushu Railway Company
		Relationship between temperature rise and electricity demand	 IEEJ General Information Processing Center, Mie University "Visualization of Air Conditioning Efficiency by Power Analysis of Server Room" 	Kyushu Railway Company, SCSK Corporation
Physical risk	 World Bank "Climate Change Knowledge Portal" (Temperature rise) Ministry of the Environment, Ministry of Education, Culture, Sports, Science and Technology, Ministry of Agriculture, Forestry and Fisheries, Ministry of Land, Infrastructure, Transport and Tourism, Japan Meteorological Agency, "Climate Change Observation, Prediction and Impact Assessment Integrated Report 2018 - Climate Change in Japan and its Impacts" 		UACJ Corporation	
risk		Relationship between temperature rise and demand for beverage products	 National Observatory of Athens "The Impact of Climate Change on the Pattern of Demand for Bottled Water and Non-Alcoholic Beverages" (2014) 	UACJ Corporation
		CM Group, IAI "AN ASSESSMENT OF GLOBAL MEGATRENDS AND	UACJ Corporation	
		Track buckling rate	 ELSEVIER "Impacts of climate change on operation of the US rail network" (2017) 	Kyushu Railway Company
		Air conditioning cost	IEA "The Future of Cooling"	ASKUL Corporation
		Forest fire outbreak situation	• AP-PLAT	ASKUL Corporation
		Forest fire incidence (Vietnam)	Forest and Grass Fire Risk Assessment for Central Asia under Future Climate Scenarios	Nippon Paper Industries

5-9 💥 The parameters surveyed in the course of support program by the Ministry of the Environment are shown regardless of whether or not they are actually used by each company.

[Parameters referenced in past support cases] Physical risk (2/3)

	Item	Parameter		Source	Reference: FY 2020~2021 supported companies
		Forest fire incidence (Brazil)	•	Effects of climate and land - use change scenarios on fire probability during the 21st century in the Brazilian Amazon	Nippon Paper Industries
		Forest fire incidence (Japan)	•	Forestry Agency, "Recent Mountain Disasters"	Nippon Paper Industries
		Temperature rise: Underwear Sales	•	World Bank "Climate Change Knowledge Portal"	GUNZE
		Temperature rise: Cotton Cultivation	•	FAO "The future of food and agriculture Alternative pathways to 2050"	GUNZE
		Increase in insect infestation (Japan, Vietnam)	•	The Potential Global Distribution of the White Peach Scale Pseudaulacaspis pentagona (Targioni Tozzetti) under Climate Change	Nippon Paper Industries
Physica	Increases in the average temperature	Probability of heavy rainfall (Japan)	•	Ministry of Education, Culture, Sports, Science and Technology and Japan Meteorological Agency "Climate Change in Japan 2020" (December 2020)	Nippon Paper Industries
	Nippon Paper Industries				
		Probability of heavy rainfall (Brazil)	•	Assessment of multi-model climate projections of water resources over South America CORDEX domain	Nippon Paper Industries
		Rise in sea water temperature	•	IPCC AR6 "Climate Change 2021 The Physical Science Basis"	Maruha Nichiro Corporation
		Changes in dissolved oxygen in seawater	•	IPCC AR6 "Climate Change 2021 The Physical Science Basis"	Maruha Nichiro Corporation
		Ocean acidification	•	IPCC AR6 "Climate Change 2021 The Physical Science Basis"	Maruha Nichiro Corporation
	Sea level rise	Sea level rise	•	IPCC "Fifth Report", "1.5°C Special Report"	SCSK, Nippon Paper Industries

5-10% The parameters surveyed in the course of support program by the Ministry of the Environment are shown regardless of whether or not they are actually used by each company.

[Parameters referenced in past support cases] Physical risk (3/3)

	ltem	Parameter	Source	Reference: FY 2020~2021 supported companies
		Flood damage in urban areas	WRI "The Aqueduct Global Flood Analyzer"	ASKUL Corporation, ORIX Asset Management Corporation, Kyushu Railway Company, Mitsui Mining & Smelting
		 Ministry of Land, Infrastructure, Transport and Tourism, "Proposals for Flood Control Plans Based on Climate Change" 	ASKUL Corporation, ORIX Asset Management Corporation, Kyushu Railway Company, Mitsui Mining & Smelting, GUNZE, Nishi-Nippon Railroad, Fuji Oil Company, Maruha Nichiro Corporation	
P	Increasing extreme weather	Flood occurrence probability (Japan)	 Ministry of Land, Infrastructure, Transport and Tourism, "Impacts of Climate Change" 	SCSK Corporation, Nippon Paper Industries, UACJ Corporation
Physical	(typnoons, heavy rains, sediment, storm	Occurrence of typhoons and cyclones	 MOE-JMA and Others [Climate Change Observation / Forecast and Impact Assessment Integrated Report 2018 - Japan's Climate Change and Its Impact-J 	ORIX Asset Management Corporation, Mitsui Mining & Smelting, Maruha Nichiro Corporation
risk		Number of days per year of torrential rainfall	 Tokyo District Meteorological Observatory Website World Bank [Climate Change Knowledge Portal] 	Nishi-Nippon Railroad
	etc.)	Average sea level rise	 IPCC "Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development" MOE-JMA "Outline of IPCC Fifth Assessment Report -Working Group 1 Natural Science Basis-" (2014) (p.41) 	ORIX Asset Management Corporation, Mitsui Mining & Smelting
		Water risk by base (flood, drought)	 WRI "The Aqueduct Global Flood analyzer" Technical Study Group on Flood Plans Based on Climate Change "Study on Flood Control Plans Based on Climate Change" 	Shin-Etsu Chemical, YASKAWA Electric Corporation, GUNZE, UACJ Corporation
		Sediment disaster occurrence probability	A-PLAT, Climate Change Adaptation Information Platform	Kyushu Railway Company
		Domestic Disaster Response Product Market Trends	Yano Research Institute "Research on Disaster Prevention Food Market" (2020)	Nippon Paper Industries

5-11% The parameters surveyed in the course of support program by the Ministry of the Environment are shown regardless of whether or not they are actually used by each company.

IEA World Energy Outlook 2022

[IEA World Energy Outlook (WEO) Overview] A report on transition risk published by the IEA

What is the International Energy Agency (IEA)?

- Organization established in 1974 after the first oil crisis to avert oil supply crises (to establish a stable energy supply and demand structure) of the member countries.
- The objective is to promote energy security through collective response by members to the physical disruptions of oil supply.
- Energy-related surveys, statistical compilation, and publication of various reports and books.
- There are 30 members, including Japan.

World Energy Outlook(WEO)

A report on energy supply and demand published every

World Energy Outlook includes medium and long-term

Energy Technology Perspectives (ETP)

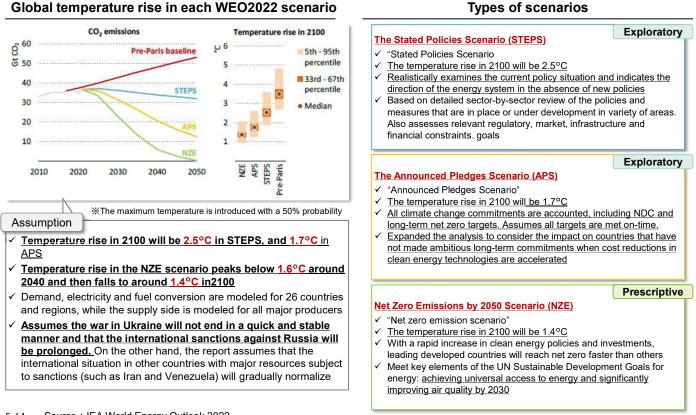
- Describes the process of energy technology innovation.
- Focusing on opportunities and challenges for expanding and accelerating clean energy technologies.
- Parameters on resources and supply chain are introduced.

energy market forecasts.

autumn.

[IEA WEO2022: Overview]

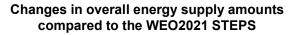
Demands for natural gas are declining due to the energy crisis and the situation in Ukraine, and the report points out the need for investments in clean energy technologies

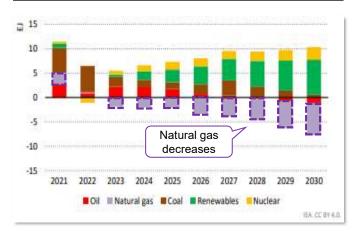

World Energy Outlook		WEO2022 Report Overview
2022	 oil prices have risen up to m With countries working to inve the necessity to use nuclear Ukraine will be difficult to br several scenarios Decrease in demand of The need for more inves Russia's decline in inter ✓ While policies in major energy scenarios has not yet been to infrastructure in developing Elaborates on the US In rising share of nuclear a 	stments in renewable energy national trade markets are promoting a clean energy economy, the gap between the APS and NZE fully resolved, and the need for additional investment in clean energy projects and countries are also noted. flation Reduction Act in the US, the GX program in Japan, declining energy demand in Chir nd renewable energy in South Korea, rising supply of renewable energy in India, etc. such as India and Indonesia have resulted in the APS scenario being projected at 1.7
2.2.2. [2.2.3. [2.3.1.] 2.3.2. [2.3.3. V scenarios 2.4. Inputs	d Context cene round to the global energy crisis Russia's invasion of Ukraine Economic consequences 3. Investment and trade responses Policy responses Norld Energy Outlook-2022	assumptions3.6. Transport2.4.2. Energy, mineral and carbon prices3.7. Buildings2.4.3. Technology costs5. Outlook for energy demandAn updated roadmap to Net Zero Emissions6. Outlook for electricityby 20507. Outlook for liquid fuels3.1. Emissions and temperature trends8. Outlook for gaseous fuels3.2. Energy trends9. Outlook for solid fuels3.3. Fuel supply10. Annex3.4. Electricity generation3.5. Industry

5-13 Source : IEA World Energy Outlook 2022

[IEA WEO2022: Types of Scenarios]

IEA World Energy Outlook 2022

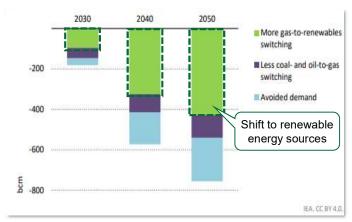

3 major scenarios were evaluated: NZE, which is a prescriptive scenario calculated backward from a specific results, and APS and STEPS, which are exploratory scenarios designed without targeting specific results



IEA World Energy Outlook 2022

[IEA WEO2022: Impact of the situation in Ukraine]

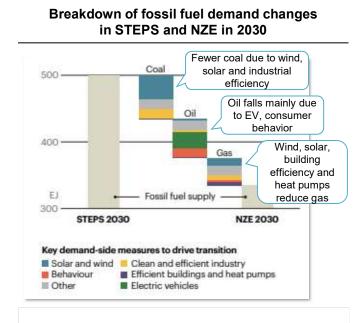
Lower demand for natural gas and an increased ratio of renewable energy and nuclear sources can be seen as a result of the situation in Ukraine and the energy crisis



- Natural gas demand will continue to decline, and the ratio of renewable energy and nuclear energy will increase
- While there will be a temporary increase in coal to satisfy supply/demand needs, it will soon decline

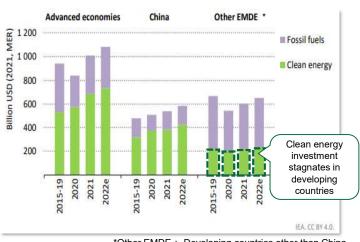
Source: IEA World Energy Outlook 2022

Factors behind changes in natural gas demand compared to the WEO2021 STEPS


Compared to WEO2021 levels, there will be a 750 bcm reduction in demand for natural gas in 2050 due to **transition to renewable energy** sources, reduced shifting from coal and oil to natural gas, lower demand

5 - 15

[IEA WEO2022: Gap with the NZE Scenario]


IEA World Energy Outlook 2022

To reduce the demand for fossil fuels and bridge the gap between the STEPS and APS scenarios and the NZE scenario, it is necessary to invest in clean energy in developing countries, etc.

It has been pointed out that to close the gap \checkmark between NZE and STEPS, investment in cleaner energy, technological innovation and resilience in the supply chain must be established

Energy investment to date by region

*Other EMDE : Developing countries other than China

Investment in clean energy is slow in developing countries (other than China), with most investment coming from developed countries and China

Going forward, 3 times the 2022 investment (\$1.4 trillion) will be required by 2030 to align with the NZE scenario

[Comparison with WEO2021: Carbon price for each scenario]

There are no significant change in the carbon prices for each country compared to previous years. However, in the NZE scenario, there is a significant increase in carbon prices for other emerging market countries and developing countries

IEA report	1	NEO2021		1	NEO2022	
Carbon prices	2030	2040	2050	2030	2040	2050
Stated Policies Scenario (STEPS)						
Canada	55	60	75	54	62	77
Chile, Colombia	15	20	30	13	21	29
China	30	45	55	28	43	53
EU	65	75	90	90	98	113
South Korea	40	65	90	42	67	89
Announced Pledges Scenario (APS)						
Developed countries (countries with Net Zero pledges including OECD countries, except for Mexico)	-	-	-	135	175	200
Developed countries (countries with Net Zero pledges)	120	170	200	-	-	
Emerging market countries and developing countries (countries with Net Zero pledges)	40	110	160	40	110	160
Other emerging market countries and developing countries	-	-	-	-	17	47
Net Zero Emissions by 2050 Scenario (NZE)						
Developed countries (countries with Net Zero pledges)	130	205	250	140	205	250
Emerging market countries and developing countries (countries with Net Zero pledges, including China, India, Indonesia, Brazil, and South Africa)	-	-	-	90	160	200
Major emerging market countries (including China, Russia, Brazil, and South Africa)	90	160	200	-	-	
Other emerging market countries and developing countries	15	35	55	25	85	180
Scenario types]					Unit: L	JSD/t-CO2

[Scenario types]

Stated Policies Scenario (STEPS): A scenario for cases where policy takers do not make major changes to the country's course, which is not based on the premise that all targets announced by the governments of each country will be met

Announced Pledges Scenario (APS): A scenario that assumes that all climate change-related pledges by governments around the world will be met completely and on time

Net Zero Emissions by 2050 Scenario (NZE): A scenario for global achievement of net zero emissions by 2050 * Sustainable Development Scenario (SDS, a scenario for meeting targets established through the Paris Agreement) was removed in 2022

5-17 Source : IEA World Energy Outlook 2021, 2022

IEA World Energy Outlook 2022 [Comparison with WEO2021: Fuel prices for each scenario (1/2)] No significant changes in prices for oil, natural gas, or coal from last year calculated by IEA in the scenarios based on the policies for each country

			Unit (Oil price) Unit (Natural gas p	: USD/barrel rice) : USD/MBtu
IEA report	WEO20)21	WEO20	22
Oil prices	2030	2050	2030	2050
Stated Policies Scenario (STEPS)	77	88	82	95
Announced Pledges Scenario (APS)	67	64	64	60
Net Zero Emissions by 2050 Scenario (NZE)	36	24	35	24
Natural gas prices				
Stated Policies Scenario (STEPS)				
US	3.6	4.3	4.0	4.7
EU	7.7	8.3	8.5	9.2
China	8.6	8.9	9.8	10.2
Japan	8.5	8.9	10.9	10.6
Announced Pledges Scenario (APS)				
US	3.1	2.0	3.7	2.6
EU	6.5	6.5	7.9	6.3
China	8.5	8.1	8.8	7.4
Japan	7.6	6.8	9.1	7.4
Net Zero Emissions by 2050 Scenario (NZE)				
US	1.9	2.0	1.9	1.8
EU	3.9	3.6	4.6	3.8
China	5.3	4.7	6.1	5.1
Japan	4.4	4.2	6.0	5.1

Source: IEA World Energy Outlook 2021, 2022

[Comparison with WEO2021: Fuel prices for each scenario (2/2)]

No significant changes in prices for oil, natural gas, or coal from last year calculated by IEA in the scenarios based on the policies for each country

				Unit: USD/tonne
IEA report	WEO	2021	WEO	2022
Coal prices	2030	2050	2030	2050
Stated Policies Scenario (STEPS)				
US	39	38	46	44
EU	67	63	60	64
China	83	74	89	74
Japan	77	70	91	72
Announced Pledges Scenario (APS)				
US	25	25	42	24
EU	66	56	62	53
China	77	65	73	62
Japan	73	63	74	59
Net Zero Emissions by 2050 Scenario (NZ	ZE)			
US	24	22	22	17
EU	52	44	52	42
China	61	51	58	48
Japan	58	50	59	46

Source: IEA World Energy Outlook 2021, 2022 5-19

[IEA WEO2022 Parameter List] Chapter 1 (1/3)

ter			Time	Horizo	n			C	ountry/Regi	on	Data Type	Dava
Chapter	Specific Data	Single year	Several year	Past	'30	['] 40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	European Union and United Kingdom winter natural gas supply and options to compensate for a cut in Russian pipeline gas		0	0					0		Charged	Figure 1.1 (p.33)
	Historical energy investment and GDP trends		0	0				0			Charged	Figure 1.2 (p.35)
	Fossil fuel investment in countries with and without net zero emissions pledges, 2015-22		0	0					0		Charged	Figure 1.3 (p.36)
	Year-on-year increase in average power generation costs by selected country and region, 2022	0							0	0	Charged	Figure 1.4 (p.37)
	Value of natural gas trade, 2005-2022		0	0					0		Charged	Figure1.5 (p.38)
Ch.1	Contributions of energy and food to inflation in selected countries, 2022	0							0		Charged	Figure 1.6 (p.39)
	Number of people without access to electricity and clean cooking by scenario, 2021 and 2030		0		0				0		Charged	Figure 1.7 (p.40)
	Difference in total energy supply in the WEO-2022 STEPS relative to the WEO-2021 STEPS		0	0	0			0			Charged	Figure 1.8 (p.42)
	Fossil fuel demand in the STEPS, 1990-2050		0	0	0	0	0	0			Charged	Figure 1.9 (p.43)
	Global energy supply and demand by sector, scenario and fuel		0		0			0			Charged	Figure 1.10 (p.46)
	Mineral requirements for clean energy technologies by scenario, 2021 and 2030		0		0			0			Charged	Figure 1.11 (p.48)

[IEA WEO2022 Parameter List] Chapter 1 (2/3)

ter			Time	Horizo	n			C	ountry/Regi	on	Data Type	Dama
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Drivers of change in natural gas demand in the WEO-2022 STEPS relative to the WEO-2021 STEPS		0		0	0	0	0			Charged	Figure 1.12 (p.50)
	Energy use in transport by scenario, 2000-2050		0	0	0	0	0	0			Charged	Figure 1.13 (p.52)
	Crude oil and natural gas imports to the European Union and emerging market and developing economies in Asia by origin		0	0	0				0		Charged	Figure 1.14 (p.54)
	Changes in Russian oil production and natural gas export in 2035 in the WEO-2022 STEPS relative to the WEO-2021 STEPS	0							0		Charged	Figure 1.15 (p.56)
	Change in net trade position of selected oil and gas exporters in the STEPS, 2021-2030	0			0			0			Charged	Figure1.16 (p.57)
Ch.1	Fossil and non-fossil energy supply by scenario, 2020-2050			0			0	0			Charged	Figure 1.17 (p.58)
	Energy investment in the NZE Scenario, 2021 and 2030		0	0	0			0			Charged	Figure 1.18 (p.62)
	Energy-related and process CO2 emissions, 2010-2050 and temperature rise in 2100 by scenario		0	0	0	0	0	0			Charged	Figure 1.19 (p.64)
	Change in CO2 emissions in the 2022 APS relative to the WEO- 2021 APS, 2025-2050		0	0	0	0	0		0		Charged	Figure 1.20 (p.65)
	Population exposed to heavily polluted air, 2021 and 2050		0	0			0		0		Charged	Figure 1.21 (p.66)
	Energy demand growth by region and scenario, 2021-30		0	0	0				0	0	Charged	Figure 1.22 (p.67)

5-21 Source : IEA World Energy Outlook 2022

[IEA WEO2022 Parameter List] Chapter 1 (3/3), Chapter 2 (1/2)

ter			Time	Horizo	n			C	ountry/Regi	on	Data Type	Dawa
Chapter	Specific Data	Single year	Several year	Past	'30	['] 40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Government funding in the US Inflation Reduction Act and Infrastructure Investment and Jobs Act and technology deployment in the STEPS in the United States, 2021-30		0	0	0			0			Charged	Figure 1.23 (p.68)
Ch.1	CO2 emissions reductions in selected sectors, 2021-2030		0	0	0			0			Charged	Figure 1.24 (p.73)
0	Announced manufacturing capacity for selected energy technologies relative to deployment in the APS, 2021 and 2030		0	0	0			0			Charged	Figure 1.25 (p.76)
	Global employment in fossil fuels and clean energy		0	0	0			0			Charged	Figure 1.26 (p.78)
	Evolution in selected energy price indicators since September 2020	0		0				0			Charged	Figure 2.1 (p.87)
	Prices for Brent and Urals crude oil, and diesel in Northwest Europe since January 2021	0		0					0		Charged	Figure 2.2 (p.91)
	Natural gas pipeline flows from Russia to the European Union and Türkiye since January 2022	0		0					0		Charged	Figure 2.3 (p.92)
Ch.2	Change in base interest rates in selected economies, year-to- August 2022 relative to 2021		0	0					0	0	Charged	Figure 2.4 (p.93)
	Change in household savings rate in selected economies, year- to-August 2022 relative to 2021		0	0					0	0	Charged	Figure 2.5 (p.94)
	Oil and gas use relative to GDP per capita in selected countries/regions since 1971		0	0					0	0	Charged	Figure 2.6 (p.96)
	Global energy investment by region		0	0					0		Charged	Figure 2.7 (p.98)

[IEA WEO2022 Parameter List] Chapter 2 (2/2), Chapter 3 (1/4)

ter	Specific Data		Time	Horizo	on			Со	untry/Reg	ion	Data Type	Pogo
Chapter	Specific Data	Single year	Several year	Past	'30	['] 40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Global investment in upstream oil, gas and coal supply		0	0				0			Charged	Figure 2.8 (p.99)
	Ratio of global trade to GDP		0	0				0			Charged	Figure 2.9 (p.101)
	Total government outlays on sustainable recovery spending and energy affordability support		0	0					0		Charged	Figure 2.10 (p.105)
Ch.2	GDP average growth assumptions by region		0	0	0	0	0		0	0	Charged	Table 2.1 (p.108)
Cn.2	Fossil fuel prices by scenario		0	0	0		0		0	0	Charged	Table 2.2 (p.111)
	Average IEA crude import price by scenario		0	0	0	0	0	0			Charged	Figure 2.11 (p.111)
	Price developments for selected critical minerals and metals		0	0				0			Charged	Figure 2.12 (p.114)
	Changes in levelised costs for a benchmark project in Europe and North America, 2020, 2022 and 2030		0	0	0				0		Charged	Figure 2.13 (p.116)
	Energy-related CO2 emissions by sector and gross and net emissions in the NZE Scenario, 2010-2050		0	0	0	0	0	0			Charged	Figure 3.1 (p.126)
Ch.3	Temperature rise in 2050 and 2100 in the WEO-2022 scenarios		0				0	0			Charged	Figure 3.2 (p.127)
	Total energy supply of unabated fossil fuels and low-emissions sources in the NZE Scenario, 2010-2050		0	0	0	0	0	0			Charged	Figure 3.3 (p.128)

5-23 Source : IEA World Energy Outlook 2022

[IEA WEO2022 Parameter List] Chapter 3 (2/4)

ter			Time	Horizo	on			Со	untry/Reg	ion	Data Type	Page
Chapter	Specific Data	Single year	Several year	Past	'30	['] 40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Total final consumption by source in the NZE Scenario, 2010- 2050		0	0	0	0	0	0			Charged	Figure 3.4 (p.129)
	Final consumption, useful energy and non-electricity demand by sector and use in the NZE Scenario, 2021 and 2050		0	0			0	0			Charged	Figure 3.5 (p.130)
	Comparison of key indicators for the selected IPCC scenarios and the IEA NZE Scenario in 2050	0						0			Charged	Figure 3.6 (p.132)
	Oil, natural gas and coal supply by region in the NZE Scenario		0	0	0	0	0	0			Charged	Figure 3.7 (p.133)
	Bioenergy supply and hydrogen production by source in the NZE Scenario, 2021-2050		0	0	0	0	0	0			Charged	Figure 3.8 (p.135)
Ch.3	CO2 emissions by source and key milestones in the electricity sector in the NZE Scenario, 2020 to 2050		0	0	0	0	0	0			Charged	Figure 3.9 (p.137)
	Total installed capacity and electricity generation by source in the NZE Scenario, 2010-2050		0	0	0	0	0	0			Charged	Figure 3.10 (p.138)
	Emissions reductions and key milestones in the industry sector in the NZE Scenario relative to the STEPS, 2020-2050		0	0	0	0	0	0			Charged	Figure 3.11 (p.141)
	Final energy consumption by source in industry sub-sectors in the NZE Scenario, 2021-2050		0	0	0		0	0			Charged	Figure 3.12 (p.143)
	Emissions reductions and key milestones in transport in the NZE Scenario relative to the STEPS, 2020-2050		0	0	0	0	0	0			Charged	Figure 3.13 (p.146)
	Final energy consumption in transport by source and mode in the NZE Scenario, 2021-2050		0	0	0		0	0			Charged	Figure 3.14 (p.147)

[IEA WEO2022 Parameter List] Chapter 3 (3/4)

Chapt			Time	Horizo	n			C	ountry/Regi	on	Data Type	Dama
er	Specific Data	Single year	Several year	Past	'30	['] 40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Emissions reductions and key milestones in the buildings sector in the NZE Scenario relative to the STEPS, 2020-2050		0	0	0	0	0	0			Charged	Figure 3.15 (p.151)
	Total final consumption in buildings by source and end-use in the NZE Scenario, 2021-2050		0	0	0		0	0			Charged	Figure 3.16 (p.153)
	Annual improvement in access rate to clean cooking and by technology in the NZE Scenario, 2015-2030		0	0	0			0			Charged	Figure 3.17 (p.155)
	Total final consumption in the STEPS and demand avoided by measure in the NZE Scenario		0	0	0		0	0			Charged	Figure 3.18 (p.156)
	CO2 emissions reductions due to behavioural changes in the NZE Scenario		0	0	0		0	0			Charged	Figure 3.19 (p.157)
Ch.3	Aviation activity growth per capita and emissions reductions due to behavioural changes in the STEPS and NZE Scenario		0	0	0	0	0	0			Charged	Figure 3.20 (p.159)
	Energy consumption per capita in the NZE Scenario and car sales and SUV share in the STEPS and NZE Scenario, 2030		0	0	0			0	0		Charged	Figure 3.21 (p.161)
	Global average annual energy investment by sector and technology in the NZE Scenario		0	0	0	0	0	0			Charged	Figure 3.22 (p.163)
	Energy investment trends by region in the NZE Scenario, 2017-2050		0	0	0	0	0	0			Charged	Figure 3.23 (p.165)
	Clean energy investment and sources of finance in the NZE Scenario to 2030		0	0	0	0	0		0		Charged	Figure 3.24 (p.166)
	Battery demand growth in transport in the NZE Scenario and announced battery manufacturing capacity expansion, 2010- 2030		0	0	0			0			Charged	Figure 3.25 (p.167)

5-25 Source : IEA World Energy Outlook 2022

[IEA WEO2022 Parameter List] Chapter 3 (4/4), Chapter 4 (1/3)

ter			Time	Horizo	on			Со	untry/Reg	ion	Data Type	Page
Chapter	Specific Data	Single year	Several year	Past	'30	['] 40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Announced manufacturing capacity and installed electrolyser capacity projected on the basis of manufacturing capacity relative to the NZE Scenario, 2021-2030		0	0	0				0		Charged	Figure 3.26 (p.169)
	Solar PV capacity additions and mineral demand in the NZE Scenario, 2021 and 2030		0	0	0			0			Charged	Figure 3.27 (p.171)
Ch.3	Global CO2 capture by operating and planned source relative to the NZE Scenario, 2030	0			0			0			Charged	Figure 3.28 (p.172)
	Production or throughput capacity in 2021, assuming full implementation of announced project pipelines and NZE Scenario deployment levels in 2030		0	0	0			0			Charged	Figure 3.29 (p.174)
	Energy employment by technology in the NZE Scenario, 2019 and 2030		0	0	0			0			Charged	Figure 3.30 (p.176)
	Clean energy investment and reduction in fossil fuel import bills in developing economies in Asia in the NZE Scenario relative to the STEPS		0		0	0	0	0			Charged	Figure 4.1 (p.185)
	Annual average investment in fossil fuel supply, clean power, infrastructure, end-uses and low-emissions fuels by scenario		0	0	0			0			Charged	Figure 4.2 (p.187)
	Investment in clean energy and fossil fuels by scenario, 2025 and 2030		0	0	0			0			Charged	Figure 4.3 (p.188)
	Annual average investment and fossil fuel imports in the APS with projected prices and with high fossil fuel prices, 2021-30		0	0	0			0			Charged	Figure 4.4 (p.190)
	Unit energy consumption for selected equipment in 2021 relative to 2000		0	0				0			Charged	Figure 4.5 (p.192)

IEA World Energy Outlook 2022

[IEA WEO2022 Parameter List] Chapter 4 (2/3)

ter			Time	Horizo	on			Со	untry/Reg	ion	Data Type	Daga
Chapter	Specific Data	Single year	Several year	Past	'30	['] 40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Global stock by vintage for selected sectors, 2050		0	0	0	0	0	0			Charged	Figure 4.6 (p.194)
	Residential consumption of modern energy per household by income quintile, 2021	0							0		Charged	Figure 4.7 (p.196)
	Number of people without access to modern energy and losing the ability to afford modern energy in sub-Saharan Africa and developing Asia, 2022	0							0		Charged	Figure 4.8 (p.197)
	Consumer energy spending, subsidies and end-user investment for efficient, low-emissions equipment in the buildings and transport sectors in the STEPS and NZE Scenario by 2030		0	0	0			0			Charged	Figure 4.9 (p.198)
	Indicative weighted average cost of capital of utility-scale solar PV projects, 2021	0							0		Free	Table 4.2 (p.201)
Ch.4	Composition of levelised cost for a utility-scale solar PV plant with final investment decision secured in 2021	0							0		Charged	Figure 4.10 (p.202)
	Cumulative reduction in clean energy financing costs in emerging market and developing economies by lowering costs of capital in the APS and NZE Scenario, 2023-2050		0				0		0		Charged	Figure 4.11 (p.203)
	Load duration curve for natural gas-fired power generation in the European Union in the APS		0	0	0				0		Charged	Figure 4.12 (p.205)
	Stock and flow of passenger cars by type in the APS		0	0	0	0	0	0			Charged	Figure 4.13 (p.206)
	Export revenue from oil and gas versus hydrogen in the Middle East in the APS and NZE Scenario, 2021-2050		0	0	0		0		0		Charged	Figure 4.14 (p.210)
	Current distribution of energy-intensive industries by grid carbon intensity, solar potential and proximity to CO2 storage	0						0			Charged	Figure 4.15 (p.213)

5-27 Source : IEA World Energy Outlook 2022

[IEA WEO2022 Parameter List] Chapter 4 (3/3), Chapter 5 (1/4)

ter			Time	Horizo	on			Со	untry/Reg	ion	Data Type	Daga
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Flexibility needs and supply by region and scenario		0	0	0		0		0		Charged	Figure 4.16 (p.215)
	Critical mineral demand by weight and value for clean energy technologies by scenario		0	0	0		0	0			Charged	Figure 4.17 (p.218)
	Public reports of governance-related risks by mineral supply chain and region, 2017-2019		0	0					0		Charged	Figure 4.19 (p.220)
Ch.4	Share of installed power plant capacity exposed to global temperature rise under various IPCC AR6 scenarios	0							0		Charged	Figure 4.20 (p.224)
	Annual average loss of asset value from flooding at four indicative energy supply infrastructure sites based on two IPCC scenarios		0	0	0		0		0		Charged	Figure 4.21 (p.226)
	Fossil fuel consumption subsidies in selected countries		0	0					0		Charged	Figure 4.22 (p.229)
	Sources of finance by sector in the NZE Scenario, 2026-2030		0		0			0			Charged	Figure 4.23 (p.231)
	Total energy supply by fuel and CO2 emissions by scenario		0	0	0		0	0			Charged	Figure 5.1 (p.237)
Ch.5	Key energy indicators by scenario, 2010-2050		0	0	0		0	0			Free	Table 5.1 (p.239)
CII.5	Supply and demand of low-emissions hydrogen and fuels		0		0		0	0			Free	Table 5.2 (p.240)
	Total modern energy supply per capita by region in the STEPS and APS, 2021 and 2030		0	0	0				0		Charged	Figure 5.2 (p.242)

5-28 Source : IEA World Energy Outlook 2022

[IEA WEO2022 Parameter List] Chapter 5 (2/4)

ter			Time	Horizo	on			Со	untry/Reg	ion	Data Type	Page
Chapter	Specific Data	Single year	Several year	Past	'30	['] 40	'50	World	Particular country/ region	Japan	Free/ Charged	Fage Number
	Change in total energy supply by region, fuel and scenario, 2010-2019 and 2021-2030		0	0	0				0		Charged	Figure 5.3 (p.243)
	Oil, natural gas and electricity demand reductions from EU citizen actions based on the Playing My Part recommendations	0						0			Charged	Figure 5.4 (p.244)
	Changes in global final energy consumption by lever and sector in the STEPS and APS, 2021-2030		0	0	0			0			Charged	Figure 5.5 (p.247)
	Change in total final consumption by sector, fuel and scenario, 2010-2019 and 2021-2030		0	0	0			0			Charged	Figure 5.6 (p.248)
	Selected updated NDCs under the Paris Agreement	0			0				0		Free	Table 5.3 (p.250)
Ch.5	Countries with NDCs, long-term strategies and net zero emissions pledges, and their shares of global CO2 emissions	0							0		Charged	Figure 5.7 (p.251)
	Year when the cumulative CO2 emissions until 2050 in the NZE Scenario would be exhausted if the global population had the same per capita emissions as		0	0	0	0	0	0	0		Charged	Figure 5.8 (p.252)
	CO2 emissions by scenario and by region, 2021 and 2030		0	0	0			0	0		Charged	Figure 5.9 (p.253)
	CO2 emissions reductions by sector and scenario, 2021-2030		0	0	0			0			Charged	Figure 5.10 (p.254)
	Coverage of initiatives and additional corporate net zero emissions pledges in selected sub-sectors	0						0			Charged	Figure 5.11 (p.255)
	Population exposed to heavily polluted air and change in premature deaths from air pollution by region and scenario, 2021 and 2050		0	0			0		0		Charged	Figure 5.12 (p.256)

5-29 Source : IEA World Energy Outlook 2022

[IEA WEO2022 Parameter List] Chapter 5 (3/4)

ter			Time	Horizo	n			C	ountry/Regi	on	Data Type	Dogo
Chapter	Specific Data	Single year	Several year	Past	'30	['] 40	['] 50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Annual clean energy investment by sector and scenario, 2021 and 2030		0	0	0			0			Charged	Figure 5.13 (p.256)
	Number of people without access to electricity in sub-Saharan Africa and the world, 2012-2022		0	0				0	0		Charged	Figure 5.14 (p.260)
	Number of people without access to electricity in 2021 and 2030 by scenario		0	0	0				0		Charged	Figure 5.15 (p.262)
	Number of people without access to electricity coverage with targets in the APS	0						0			Free	Figure 5.15 (p.262)
	Number of people without access to clean cooking in 2021 and 2030 by scenario		0	0	0				0		Charged	Figure 5.16 (p.265)
Ch.5	Number of people without access to clean cooking coverage with targets in the APS	0						0			Free	Figure 5.16 (p.265)
011.0	Annual investments for access to electricity and clean cooking by scenario relative to tracked 2019 investments		0	0	0				0		Charged	Figure 5.17 (p.266)
	Space cooling needs and household air conditioner stock in the STEPS, 2021-2050		0	0	0		0		0		Charged	Figure 5.18 (p.268)
	Household air conditioner ownership in selected regions in the STEPS, 2021-2050		0	0	0	0	0		0	0	Charged	Figure 5.19 (p.269)
	Space cooling demand by region in the STEPS and APS, 2021- 2050		0	0	0		0		0	0	Charged	Figure 5.20 (p.270)
	Global road transport oil demand by scenario, 2010-2030, and EV sales by scenario, 2021-2030		0	0	0			0			Charged	Figure 5.21 (p.272)
	Market share of electric cars in key markets by scenario to 2030		0	0	0				0		Charged	Table 5.22 (p.274)

[IEA WEO2022 Parameter List] Chapter 5 (4/4), Chapter 6 (1/3)

ter			Time	Horizo	n			C	ountry/Regi	on	Data Type	Dese
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
Ch.5	Change in road transport oil consumption by region and effect in the STEPS and APS, 2021-2030		0	0	0				0		Charged	Figure 5.23 (p.275)
CII.5	Cumulative emissions from cars and trucks by age band and scenario, 2021-2050		0	0	0	0	0	0			Charged	Figure 5.24 (p.276)
	Global electricity demand and supply by scenario (TWh)		0	0	0		0	0			Free	Table 6.1 (p.281)
	Global growth in renewable electricity relative to total electricity generation growth by scenario, 2021-2050		0	0	0		0	0			Charged	Figure 6.1 (p.282)
	Electricity demand by region and scenario, 2010-2050 (TWh)		0	0	0		0		0	0	Free	Table 6.2 (p.283)
	Electricity demand in key regions by scenario, 2010-2030		0	0	0				0	0	Charged	Figure 6.2 (p.285)
Ch.6	Electricity demand growth by region and scenario, 2012-2030		0	0	0				0		Charged	Figure 6.3 (p.286)
	Global electricity demand and share of electricity in energy consumption in selected applications by scenario, 2021 and 2030		0	0	0			0			Charged	Figure 6.4 (p.287)
	Electricity demand growth by application in the APS, 2021-2050		0		0		0		0		Charged	Figure 6.5 (p.288)
	Global total electricity consumption with and without energy efficiency gains in the STEPS, 2015-2050		0	0	0	0	0	0			Charged	Figure 6.6 (p.289)
	Global electricity generation by source and scenario, 2010-2050		0	0	0		0	0			Charged	Figure 6.7 (p.293)

5-31 Source : IEA World Energy Outlook 2022

[IEA WEO2022 Parameter List] Chapter 6 (2/3)

ter			Time	Horizo	n			C	ountry/Regi	on	Data Type	Domo
Chapter	Specific Data	Single year	Several year	Past	'30	['] 40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Share of renewables in total power capacity additions by region in the STEPS, 2022-2050		0				0		0	0	Charged	Figure 6.8 (p.294)
	Global installed electricity capacity by source and scenario, 2010-2050		0	0	0	0	0	0			Charged	Figure 6.9 (p.295)
	Electricity generation by source, key region and scenario, 2021 and 2050		0	0			0		0	0	Charged	Figure 6.10 (p.298)
	Hourly wholesale electricity price duration curve and price setting technology in the European Union, first-half of 2022	0							0		Charged	Figure 6.11 (p.300)
	EU hourly wholesale electricity prices by shares of renewables and natural gas in electricity generation, first-half of 2022	0							0		Charged	Figure 6.12 (p.301)
Ch.6	CO ₂ emissions from electricity generation by source and scenario, 2010-2050 (Mt)		0	0	0		0	0			Free	Table 6.4 (p.303)
	Annual CO₂ emissions from electricity generation for regional groupings by scenario, 2010-2050		0	0	0	0	0		0		Charged	Figure 6.13 (p.304)
	Average CO ₂ intensity of electricity generation for selected regions by scenario, 2020-2050		0	0	0	0	0		0	0	Charged	Figure 6.14 (p.305)
	Average annual investment in the power sector by type and scenario, 2017-2050		0	0	0		0	0			Charged	Figure 6.15 (p.306)
	Hour-to-hour flexibility needs in the United States, European Union, China and India in the APS, 2021 and 2030		0	0	0				0		Charged	Figure 6.16 (p.308)
	Flexibility supply by source, region and scenario, 2021 and 2050		0	0			0		0		Charged	Figure 6.17 (p.309)

[IEA WEO2022 Parameter List] Chapter 6 (3/3)

ter			Time	Horizo	on			Со	untry/Reg	ion	Data Type	Dama
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Share of batteries in total dispatchable capacity and share of variable renewables in electricity generation for selected regions by scenario, 2021-2050		0	0	0		0		0		Charged	Figure 6.18 (p.311)
	Grid development by type, region and scenario, 2022-2050		0		0		0		0	0	Charged	Figure 6.19 (p.313)
	Typical deployment time for electricity grids, solar PV, wind and EV charging stations	0							0		Charged	Figure 6.20 (p.316)
Ch.6	Average annual electricity grid investment by type and scenario, 2012-2050		0	0	0	0	0		0		Charged	Figure 6.21 (p.317)
	Annual demand for critical minerals for low-emissions electricity supply, storage and networks by scenario, 2021-2050		0	0	0		0	0			Charged	Figure 6.22 (p.319)
	Annual demand for selected critical minerals used in low- emissions electricity supply, storage and networks by scenario, 2021-2050		0	0	0		0	0			Charged	Figure 6.23 (p.320)
	Demand for selected minerals used in electricity networks, solar PV and wind relative to 2021 in alternative technology cases in the NZE Scenario, 2050	0					0	0			Charged	Figure 6.24 (p.322)
	Global liquids demand and supply by scenario (mb/d)		0	0	0		0	0			Free	Table 7.1 (p.329)
Ch.7	Global oil demand and crude oil price by scenario		0	0	0	0	0	0			Charged	Figure 7.1 (p.330)
Cn.7	Liquids demand by region and scenario (mb/d)		0	0	0	0	0		0	0	Free	Table 7.2 (p.331)
	Oil demand by sector and scenario to 2030		0	0	0			0			Charged	Figure 7.2 (p.333)

5-33 Source : IEA World Energy Outlook 2022

[IEA WEO2022 Parameter List] Chapter 7 (1/2)

ter			Time	Horizo	n			C	ountry/Regi	on	Data Type	Dama
Chapter	Specific Data	Single year	Several year	Past	'30	['] 40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Growth in alternatives to oil in transport by scenario to 2030		0	0	0			0			Charged	Figure 7.3 (p.334)
	Change in oil demand by scenario, 2030-2050		0		0		0		0		Charged	Figure 7.4 (p.335)
	Oil production by scenario (mb/d)		0	0	0	0	0		0		Free	Table 7.3 (p.336)
	Oil production in the STEPS and change by scenario, 2021- 2030		0	0	0				0		Charged	Figure 7.5 (p.337)
	Changes in oil production by region and scenario, 2021-2050		0	0	0		0		0		Charged	Figure 7.6 (p.340)
Ch.7	Oil trade by region and scenario		0	0	0		0		0	0	Free	Table 7.4 (p.341)
	Average annual investment in oil by scenario		0	0	0		0	0			Charged	Figure 7.7 (p.342)
	Liquid biofuel demand and supply by scenario		0	0	0		0	0			Charged	Figure 7.8 (p.344)
	Low-emissions hydrogen-based liquid fuel demand by scenario and the declining cost gap with oil products in the NZE Scenario		0		0		0	0			Charged	Figure 7.9 (p.346)
	Plastic demand per capita and recycling collection rates, 2019	0						0	0		Charged	Figure 7.10 (p.348)
	Oil use in the chemical sector by scenario		0	0	0		0	0			Charged	Figure 7.11 (p.350)

[IEA WEO2022 Parameter List] Chapter 7 (2/2)

ter			Time	Horizo	on			Со	untry/Reg	ion	Data Type	Page
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Number
	Energy content of various packaging types in the European Union	0							0		Charged	Figure 7.12 (p.351)
	Years needed to discover, approve and develop new conventional upstream oil projects since 2010		0	0				0			Charged	Figure 7.13 (p.353)
	Annual average resources discovered, approved for development and consumed since 1970		0	0				0			Charged	Figure 7.14 (p.354)
	US tight oil production at different levels of investment		0	0	0				0		Charged	Figure 7.15 (p.355)
	Contribution of increased production of tight oil and NGLs, and new and approved projects in the STEPS and APS		0	0	0			0			Charged	Figure 7.16 (p.356)
Ch.7	Average annual upstream oil investment by scenario		0	0	0		0	0			Free	Table 7.6 (p.357)
	Regional refining margins and crack spreads by product		0	0					0		Charged	Figure 7.17 (p.358)
	Expected refining throughput growth and required throughput increase to meet middle distillate demand, 2022-2025		0					0			Charged	Figure 7.18 (p.359)
	World liquids demand by scenario (mb/d)		0	0	0	0	0	0			Free	Table 7.7 (p.361)
	Refining capacity and runs by region and scenario (mb/d)		0	0	0		0		0	0	Free	Table 7.8 (p.362)
	Operating and planned production capacity for renewable biodiesel and biojet fuels by company type	0						0			Charged	Figure 7.19 (p.363)

5-35 Source : IEA World Energy Outlook 2022

[IEA WEO2022 Parameter List] Chapter 8 (1/3)

ter			Time	Horizo	n			C	ountry/Regi	on	Data Type	Dama
Chapter	Specific Data	Single year	Several year	Past	'30	['] 40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Global gases by scenario (bcme)		0	0	0		0	0			Free	Table 8.1 (p.369)
	Natural gas prices by region and scenario		0	0	0	0	0		0	0	Charged	Figure 8.1 (p.371)
	Gas demand by region in the STEPS and APS (bcme)		0	0	0		0	0	0	0	Free	Table 8.2 (p.372)
	Change in natural gas demand by sector, region and scenario, 2021-2030		0	0	0				0		Charged	Figure 8.2 (p.373)
	Natural gas demand in the vehicle fleet related to policy support in 2019 and the outlook by scenario		0	0	0				0		Charged	Figure 8.3 (p.374)
Ch.8	Gas flows to meet demand for low-emissions fuels by sector in the APS and the NZE Scenario, 2050	0					0	0			Charged	Figure 8.4 (p.376)
	Natural gas production in the STEPS and APS (bcm)		0	0	0		0	0	0		Free	Table 8.3 (p.377)
	Change in natural gas production by scenario, 2021-2030		0	0	0				0		Charged	Figure 8.5 (p.378)
	Total gaseous fuel supply by scenario		0	0	0	0	0	0			Charged	Figure 8.6 (p.380)
	Change in natural gas net trade in selected regions in the STEPS and APS		0	0	0		0		0	0	Free	Figure 8.7 (p.381)
	Existing and under construction LNG capacity and total inter- regional LNG trade by scenario, 2015-2050		0	0	0	0	0	0			Charged	Figure 8.8 (p.383)

[IEA WEO2022 Parameter List] Chapter 8 (2/3)

ter			Time	Horizo	on			Со	untry/Reg	ion	Data Type	Dono
Chapter	Specific Data	Single year	Several year	Past	'30	['] 40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Average annual natural gas and hydrogen investment by scenario		0	0	0		0	0			Charged	Figure 8.9 (p.384)
	European Union gas taxonomy thresholds compared with global life cycle emissions of natural gas, 2021	0							0		Charged	Figure 8.10 (p.385)
	Share of Russian gas in total natural gas demand and share of gas in sectoral demand by European Union member states and the United Kingdom, 2021	0							0		Free	Table 8.4 (p.387)
	Drivers of reduced natural gas supply from Russia to the European Union in the APS		0	0					0		Charged	Figure 8.11 (p.388)
	European Union monthly natural gas supply balance in the APS		0	0	0				0		Charged	Figure 8.12 (p.389)
Ch.8	Potential for flaring and methane abatement to satisfy EU gas import demand compared with the capacity of Nord Stream I	0							0		Charged	Figure 8.13 (p.390)
	European Union natural gas contract balance compared with import requirements in the APS, 2022-2035		0		0				0		Charged	Figure 8.14 (p.391)
	Contract prices required to cover break-even costs of LNG supply for recently approved projects	0							0		Charged	Figure 8.15 (p.392)
	Average annual investment in clean energy to transition from natural gas in the European Union and gas import costs, 2016- 50		0	0		0	0		0		Charged	Figure 8.16 (p.394)
	Biomethane potential in the European Union by 2030 compared with share of natural gas demand in 2021	0			0				0		Charged	Figure 8.17 (p.395)
	Domestic supply and trade of low-emissions hydrogen for key regions in the APS by 2050	0					0		0	0	Charged	Figure 8.18 (p.396)

5-37 Source : IEA World Energy Outlook 2022

[IEA WEO2022 Parameter List] Chapter 8 (3/3)

ter			Time	Horizo	on			Со	untry/Reg	ion	Data Type	Page
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Faye Number
	Cost shares of a possible investment package to secure 20 Mt H2 for the European Union from local and imported supplies by 2030	0			0				0		Charged	Figure 8.19 (p.398)
	Capacity of proposed international hydrogen trade projects targeting operation by 2030 by exporter or importer country	0			0				0		Charged	Figure 8.20 (p.399)
	End-user prices for natural gas by sector emerging market and developing economies in Asia		0	0					0		Charged	Figure 8.21 (p.403)
Ch.8	Natural gas supply balance in emerging market and developing economies in Asia in the APS, 2010-2050		0	0	0	0	0		0		Charged	Figure 8.22 (p.404)
	Natural gas demand in emerging market and developing economies in Asia in the APS		0	0	0	0	0		0		Charged	Figure 8.23 (p.406)
	Drivers of change in natural gas demand in emerging market and developing economies in Asia in the APS		0	0	0	0	0		0		Charged	Figure 8.24 (p.407)
	Natural gas demand in emerging market and developing economies in Asia by WEO-2022 scenario and outlook of the Golden Age of Gas Scenario in 2011		0	0					0		Charged	Figure 8.25 (p.408)
	Global coal demand, production and trade, and solid bioenergy use by scenario (Mtce)		0	0	0		0	0			Free	Table 9.1 (p.412)
Ch.9	Coal and solid bioenergy demand by scenario		0	0	0	0	0	0			Charged	Figure 9.1 (p.413)
Ch.9	Coal demand by region and scenario (Mtce)		0	0	0	0	0	0	0	0	Free	Table 9.2 (p.414)
	Change in coal demand by scenario, 2021-2030		0	0	0				0		Charged	Figure 9.2 (p.415)

[IEA WEO2022 Parameter List] Chapter 9, Annex (1/5)

ter			Time	Horizo	'n			C	ountry/Regi	on	Data Type	Dama
Chapter	Specific Data	Single year	Several year	Past	'30	'40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Global coal demand by region and scenario to 2050		0	0	0	0	0		0		Charged	Figure 9.3 (p.417)
	Coal production by region and scenario (Mtce)		0	0	0	0	0	0	0		Free	Table 9.3 (p.418)
	Coal supply in the STEPS to 2030 and change by scenario		0	0	0				0		Charged	Figure 9.4 (p.419)
	Coal supply by scenario, 2010-2050		0	0	0	0	0	0			Charged	Figure 9.5 (p.420)
Ch.9	Top coal importers and exporters by scenario, 2021, 2030 and 2050		0	0	0		0		0	0	Charged	Figure 9.6 (p.421)
	Average annual investment in coal supply and coal-fired electricity generation by scenario		0	0	0		0		0		Charged	Figure 9.7 (p.422)
	Solid bioenergy demand by scenario		0	0	0		0	0			Charged	Figure 9.8 (p.423)
	Net GHG emissions savings from clean cooking access in the APS and NZE Scenario by 2030	0			0			0			Charged	Figure 9.9 (p.425)
	Bioenergy supply in the NZE Scenario		0	0	0	0	0	0			Charged	Figure 9.10 (p.427)
Annex	World energy supply data in the STEPS scenario		0	0	0	0	0	0			Free	Table A.1a (p.435)
Anr	World final consumption data in the STEPS scenario		0	0	0	0	0	0			Free	Table A.2a (p.436-7)

5-39 Source : IEA World Energy Outlook 2022

[IEA WEO2022 Parameter List] Annex (2/5)

ter			Time	Horizo	on			Со	untry/Reg	ion	Data Type	Page
Chapter	Specific Data	Single year	Several year	Past	'30	['] 40	'50	World	Particular country/ region	Japan	Free/ Charged	Fage Number
	World electricity sector data in the STEPS scenario		0	0	0	0	0	0			Free	Table A.3a (p.438)
	World CO2 emissions data in the STEPS scenario		0	0	0	0	0	0			Free	Table A.4a (p.439)
	World energy supply data in the APS scenario		0	0	0	0	0	0			Free	Table A.1b (p.440)
	World final consumption data in the APS scenario		0	0	0	0	0	0			Free	Table A.2b (p.441-2)
	World electricity sector data in the APS scenario		0	0	0	0	0	0			Free	Table A.3b (p.443)
Annex	World CO2 emissions data in the APS scenario		0	0	0	0	0	0			Free	Table A.4b (p.444)
	World energy supply data in the NZE scenario		0	0	0	0	0	0			Free	Table A.1c (p.445)
	World final consumption data in the NZE scenario		0	0	0	0	0	0			Free	Table A.2c (p.446-7)
	World electricity sector data in the NZE scenario		0	0	0	0	0	0			Free	Table A.3c (p.448)
	World CO2 emissions data in the NZE scenario		0	0	0	0	0	0			Free	Table A.4c (p.449)
	Total energy supply data (EJ)		0	0	0		0	0	0	0	Free	Table A.5 (p.450)

[IEA WEO2022 Parameter List] Annex (3/5)

ter			Time	Horizo	n			C	ountry/Regi	on	Data Type	Dama
Chapter	Specific Data	Single year	Several year	Past	'30	[,] 40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Renewables energy supply data (EJ)		0	0	0		0	0	0	0	Free	Table A.6 (p.450)
	Oil production data (mb/d)		0	0	0		0	0	0		Free	Table A.7 (p.451)
	Oil demand data (mb/d)		0	0	0		0	0	0	0	Free	Table A.8 (p.451)
	World liquids demand data (mb/d)		0	0	0		0	0			Free	Table A.9 (p.452)
	Refining capacity and runs data (mb/d)		0	0	0		0	0	0	0	Free	Table A.10 (p.452)
Annex	Natural gas production data (bcm)		0	0	0		0	0	0		Free	Table A.11 (p.444)
	Natural gas demand data (bcm)		0	0	0		0	0	0	0	Free	Table A.12 (p.453)
	Coal production data (Mtce)		0	0	0		0	0	0		Free	Table A.13 (p.454)
	Coal demand data (Mtce)		0	0	0		0	0	0	0	Free	Table A.14 (p.454)
	Electricity generation data (TWh)		0	0	0		0	0	0	0	Free	Table A.15 (p.455)
	Renewables generation data (TWh)		0	0	0		0	0	0	0	Free	Table A.16 (p.455)

5-41 Source : IEA World Energy Outlook 2022

[IEA WEO2022 Parameter List] Annex (4/5)

ter			Time	Horizo	n			C	ountry/Regi	on	Data Type	Dama
Chapter	Specific Data	Single year	Several year	Past	'30	['] 40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Solar PV generation data (TWh)		0	0	0		0	0	0	0	Free	Table A.17 (p.456)
	Wind generation data (TWh)		0	0	0		0	0	0	0	Free	Table A.18 (p.456)
	Nuclear generation data (TWh)		0	0	0		0	0	0	0	Free	Table A.19 (p.457)
	Natural gas generation data (TWh)		0	0	0		0	0	0	0	Free	Table A.20 (p.457)
	Coal generation data (TWh)		0	0	0		0	0	0	0	Free	Table A.21 (p.458)
Annex	Total final consumption data (EJ)		0	0	0		0	0	0	0	Free	Table A.22 (p.458)
	Industry consumption data (EJ)		0	0	0		0	0	0	0	Free	Table A.23 (p.459)
	Transport consumption data (EJ)		0	0	0		0	0	0	0	Free	Table A.24 (p.459)
	Buildings consumption data (EJ)		0	0	0		0	0	0	0	Free	Table A.25 (p.460)
	Hydrogen demand data (PJ)		0	0	0		0	0			Free	Table A.26 (p.460)
	Hydrogen balance data (Mt H2 equivalent)		0	0	0		0	0	0	0	Free	Table A.27 (p.461)

IEA World Energy Outlook 2022

[IEA WEO2022 Parameter List] Annex (5/5)

ter		Time Horizon						C	ountry/Regi	Data Type	Dama	
Chapter	Specific Data		Several year	Past	'30	[,] 40	'50	World	Particular country/ region	Japan	Free/ Charged	Page Number
	Total CO2 emissions data (Mt CO2)		0	0	0		0	0	0	0	Free	Table A.28 (p.461)
Annex	Electricity and heat sectors CO ₂ emissions data (Mt CO ₂)		0	0	0		0	0	0	0	Free	Table A.29 (p.462)
	Total final consumption CO ₂ emissions data (Mt CO ₂)		0	0	0		0	0	0	0	Free	Table A.30 (p.462)

5-43 Source : IEA World Energy Outlook 2022

[Parameters in IEA WEO2022] CO2 prices

Category Datasets Scenario **Time Horizon** Country / Region Sector • CO2 CO2 prices for • NZE • All <u>Global</u> • <u>Past</u> <u>Future</u> <u>Region</u> prices electricity, industry • APS • 2030 · Advanced economies with net Canada sector • and energy • • STEPS 2040 zero emissions pledges Chile • 2050 production in • Emerging market and • Colombia selected regions developing economies with net • China by scenario zero emissions pledges • EU Korea • Other emerging market and developing economies

[Unit]USD/tCO2

Region	Net Zero Emissions by 2050 Scenario (NZE)				ounced Pled cenario (APS	•	Stated Policies Scenario (STEPS)		
Ū	2030	2040	2050	2030	2040	2050	2030	2040	2050
Canada	-			-	-	-	54	62	77
Chile, Columbia	-	-	-	-	-	-	13	21	29
China	-		-			-	28	43	53
EU	-	-	-	-	-	-	90	98	113
Korea	-	-	-	-	-	-	42	67	89
Advanced economies with net zero emissions pledges	140	205	250	135	175	200	-	-	-
Emerging market and developing economies with net zero emissions pledges	90	160	200	40	110	160	-	-	-
Other emerging market and developing economies	25	85	180	 	17	47	-	-	

5-44 Source : IEA World Energy Outlook 2022, Table B.2 "CO2 prices for electricity, industry and energy production in selected regions by scenario" (P.465)

IEA World Energy Outlook 2022

[Parameters in IEA WEO2022] Price of key commodities/products (Fossil fuel prices)

Category	Datasets	Scenario	Time	Horizon	Country / Region		Sector
Price of key commodities/products	 Fossil fuel prices by scenario 	NZEAPSSTEPS	Past • 2010 • 2021	<u>Future</u> • 2030 • 2050	<u>Global</u> • World	Region • United States • EU • China • Japan	• All sector

[Unit]Crude oil : USD/barrel、Natural gas : USD/Mbtu、

Steam coal : USD/tonne

Category	Region	Pas	st	Net Zero En 2050 Scena		Announce Scenarie	•	Stated Policies Scenario (STEPS)	
		2010	2021	2030	2050	2030	2050	2030	2050
Crude oil	World	96	69	35	24	64	60	82	95
	United States	5.3	3.9	1.9	1.8	3.7	2.6	4.0	4.7
Natural gas	EU	9.0	9.5	4.6	3.8	7.9	6.3	8.5	9.2
Natural gas	China	8.0	10.1	6.1	5.1	8.8	7.4	9.8	10.2
	Japan	13.3	10.2	6.0	5.1	9.1	7.4	10.9	10.6
	United States	63	44	22	17	42	24	46	44
. .	EU	113	120	52	42	62	53	60	64
Cł	Coastal China	142	164	58	48	73	62	89	74
	Japan	132	153	59	46	74	59	91	72

 $Source: IEA \ World \ Energy \ Outlook \ 2022, \ Table \ 2.2 \ ``Fossil \ fuel \ prices \ by \ scenario'' \ (P.110)$

5-45

[Parameters in IEA WEO2022] CO2 emissions (CO2 emissions from electricity generation)

Category	Datasets	Scenario	Time H	Time Horizon Country / R		/ Region	Sector
CO ² emissions	 CO₂ emissions from electricity generation by source and scenario 	NZEAPSSTEPS	<u>Past</u> • 2010 • 2021	<u>Future</u> • 2030 • 2050	<u>Global</u> • World	Region • -	All sector

[Unit] Mt

Category	Pa	st	Net Zero En 2050 Scen		Announce Scenari	•	Stated Polici (STE	
Calegory	2010	2021	2030	2050	2030	2050	2030	2050
Coal	8,342	9,670	4,179	27	7,423	1,442	8,324	5,242
Natural gas	2,186	2,798	1,969	36	2,380	1,278	2,678	2,407
Oil	751	523	135	2	286	140	333	242
Bioenergy and waste	5	4	-65	-434	-31	-362	4	8
Total (net)	11,285	12,996	6,218	-369	10,057	2,498	11,338	7,899
Total CO2 captured		1	304	1,479	81	1,484	7	96

Source : IEA World Energy Outlook 2022, Table 6.4 "CO₂ emissions from electricity generation by source and scenario, 2010-2050 (Mt)" (P.303) 5-46

[Parameters in IEA WEO2022]

Energy demand and supply (Supply and demand of low-emissions hydrogen and fuels)

Category	Category Datasets		Time H	Time Horizon		Country / Region		
Energy demand and supply	 Supply and demand of low-emissions hydrogen and fuels 	NZEAPSSTEPS	<u>Past</u> • -	<u>Future</u> • 2030 • 2050	<u>Global</u> • World	Region • -	• All sector	

[Unit] Mt hydrogen equivalent (energy basis)

Category (Large)	Category (Small)	Net Zero Em 2050 Scena				Stated Policies Scenari (STEPS)	
		2030	2050	2030	2050	2030	2050
Low - emissions hydrogen production	Total	90	452	30	225	6	24
	Water electrolysis	58	329	21	167	4	17
	Fossil fuels with CCUS	31	122	9	57	2	8
	Bioenergy	0	2	0	1	0	0
Transformation	Total	50	186	14	95	3	10
	To power generation	27	60	4	19	0	1
	To hydrogen - based fuels	18	118	6	69	0	3
	To oil refining	2	4	3	6	2	5
	To biofuels	3	3	1	1	1	1
Demand by end - use sector	Total	40	266	16	131	3	15
	Total final consumption	31	174	12	80	1	10
	Onsite production	9	92	4	51	2	4
Low - emissions hydrogen - based fuels	Total	15	96	3	55	0	3
	Total final consumption	7	68	3	39	0	1
	Power generation	8	28	0	16	0	2
Trade		18	73	4	44	1	5

5-47 Source : IEA World Energy Outlook 2022, Table 5.2 "Supply and demand of low-emissions hydrogen and fuels" (P.240)

[Parameters in IEA WEO2022] IEA World Energy Outlook 2022 Energy demand and supply (Global electricity demand and supply)

Category	Datasets	Scenario	Time H	lorizon	Country	/ Region	Sector
 Energy demand and supply 	Global electricity demand and supply	NZEAPSSTEPS	<u>Past</u> ● 2010 ● 2021	<u>Future</u> • 2030 • 2050	<u>Global</u> • World	Region • -	 All Buildings Industry Transport

【Unit】 TWh、%

[Unit] I Wh. %								
Category	Pas	t	Net Zero Emi 2050 Scena		Announced Scenario		Stated Policie (STEF	
	2010	2021	2030	2050	2030	2050	2030	2050
Buildings	9,637	12,594	13,293	15,850	14,889	19,623	15,383	21,940
Industry	7,450	10,166	13,776	21,697	12,471	18,332	12,036	15,073
Transport	295	441	2,236	10,243	1,570	7,845	1,169	3,607
Hydrogen production		2	2,464	11,433	879	5,714	159	663
Global electricity demand	18,548	24,700	33,733	62,159	31,752	53,810	30,621	43,672
Unabated coal	8,670	10,201	4,666	0	8,076	1,580	9,044	5,892
Unabated natural gas	4,855	6,552	4,977	82	6,100	3,577	6,848	6,658
Unabated oil	969	682	180	3	363	175	432	312
Fossil fuels with CCUS	-	1	282	1,317	75	1,338	5	133
Nuclear	2,756	2,776	3,896	5,810	3,547	5,103	3,351	4,260
Hydropower	3,449	4,327	5,725	8,251	5,213	7,543	5,078	6,809
Wind	342	1,870	7,840	23,486	5,816	17,416	4,604	10,691
Solar PV	32	1,003	7,551	27,006	4,838	18,761	4,011	12,118
Other renewables	411	859	1,948	5,762	1,707	5,153	1,380	2,833
Hydrogen and ammonia	-	-	603	1,467	79	567	9	44
Global electricity supply	21,539	28,334	37,723	73,232	35,878	61,268	34,834	49,845
Renewables share	20%	28%	61%	88%	49%	80%	43%	65%

5-48 Source : IEA World Energy Outlook 2022, Table 6.1 "Global electricity demand and supply by scenario (TWh)" (P.281)

[Parameters in IEA WEO2022] Energy demand and supply (Electricity demand)

Category	Datasets	Scenario	Time H	Horizon		Country / Region		
 Energy demand and supply 	 Electricity demand by region 	• APS • STEPS	Past • 2010 • 2021	Future • 2030 • 2050	<u>Global</u> • World	RegionNorth AmericaCentral and South AmericaEuropeAfricaMiddle EastEurasiaAsia Pacific	• All sector	

【Unit】 TWh

Deview	0 auntrus	Past		APS		STEP	S
Region	Country	2010	2021	2030	2050	2030	2050
North America	-	4,632	4,852	5,544	8,786	5,266	6,830
	United States	3,880	4,004	4,529	7,187	4,281	5,482
Central and South America	-	932	1,097	1,447	2,940	1,308	2,168
	Brazil	451	541 ¹	637	1,138	622	985
Europe	-	3,567	3,645	4,639	6,561	4,182	5,060
	European Union	2,574	2,608	3,271	4,348	2,922	3,327
Africa	¦ _	570	707	1,128	3,355	994	2,041
	South Africa	214	194	248	494	229	365
Middle East	; _ ;	709	1,064	1,343	2,878	1,372	2,430
Eurasia		985	1,181	1,280	1,652	1,291	1,669
Asia Pacific		7,154	12,164	16,371	27,638	16,208	23,475
	China	3,659	7,556	9,940	14,504	9,969	12,868
	India	717	1,273	2,107	5,314	2,117	4,293
	Japan	1,071	934	952	1,153	893	922
	Southeast Asia	607	1,037	1,580	3,214	1,537	2,848
Global electricity	v demand	18,548	24,700	31,752	53,810	30,621	43,672

5-49 Source: IEA World Energy Outlook 2022, Table 6.2 "Electricity demand by region and scenario, 2010-2050 (TWh)" (P.283)

IEA World Energy Outlook 2022

[Parameters in IEA WEO2022] Energy demand and supply (Global liquids demand and supply1)

Category	Datasets	Scenario	Time	Horizon	Country	/ Region	Sector
 Energy demand and supply 	 Global liquids demand and supply 	NZEAPSSTEPS	<u>Past</u> • 2010 • 2021	<u>Future</u> • 2030 • 2050	<u>Global</u> ▪ World	Region • -	 All Transport Buildings etc.

[Unit] mb/d

Catagony	Pas	st	NZE		APS	6	STEF	PS
Category	2010	2021	2030	2050	2030	2050	2030	2050
World liquids demand	88.4	96.7	81.9	34.1	98.7	69.5	105.8	107.6
World oil demand	87.2	94.5	75.3	22.8	93.0	57.2	102.4	102.1
Road transport	36.5	40.5	27.5	1.3	37.8	17.3	41.9	39.0
Aviation and shipping	9.9	9.9	10.0	2.0	12.8	9.5	14.0	18.1
Industry and petrochemicals	17.2	20.5	20.1	13.4	21.5	18.1	23.7	25.5
Buildings and power	12.4	11.4	6.5	0.6	8.3	3.7	9.3	7.0
Other sectors	11.2	12.2	11.1	5.6	12.6	8.6	13.6	12.5
Liquid biofuels	1.2	2.2	5.7	5.7	5.5	9.2	3.4	5.3
Low - emissions hydrogen - based fuels	-	-	0.9	5.6	0.2	3.2	0.0	0.2
World oil production	83.4	90.3	73.5	22.2	90.7	55.3	99.9	99.3
Conventional crude oil	66.8	60.1	44.2	12.6	56.8	31.0	62.5	62.6
Tight oil	0.7	7.4	9.2	1.6	9.7	6.7	10.9	9.9
Natural gas liquids	12.7	18.2	16.4	6.1	19.2	13.9	20.9	19.3
Extra-heavy oil and bitumen	2.6	3.7	3.3	2.0	4.1	3.4	4.4	6.2
Other production	0.6	0.9	0.3	0.0	1.0	0.3	1.2	1.4
OPEC share	40%	35%	36%	52%	36%	43%	36%	43%
World processing gains	2.2	2.3	1.8	0.6	2.3	1.9	2.5	2.8
World oil supply	85.5	92.6	75.4	22.8	93.0	57.2	102.4	102.1
IEA crude oil price	96	69	35	24	64	60	82	95

5-50 Source : IEA World Energy Outlook 2022, Table 7.1 "Global liquids demand and supply by scenario (mb/d)" (P.329)

[Parameters in IEA WEO2022] Energy demand and supply (Global liquids demand and supply)

Category	Datasets	Sce	enario	Time H	orizon	Country	/ Region	Sector
Energy demand and supply	Global liquids dem and supply		PS TEPS	2020	<u>Future</u> • 2030 • 2050	<u>Global</u> • World	Region • -	 All sector
【Unit】 Mb/d					1			
Category	Pas	st		APS			STEPS	
Category	2020	2021	2030	2040	2050	2030	2040	2050
Total liquids	90.9	96.7	98.	7 82	.8 69	.6 105.	8 107.5	107.
Biofuels	2.0	2.2	5.	5 8	9.7 9.	.2 3.4	4 4.6	5.3
Low-emissions hydrogen-bas fuels	ed 0.0	0.0	0.	2 1	.2 3.	.2 0.0	0 0.1	0.2
Total oil	88.9	94.5	93.	0 72	.9 57	.2 102.4	4 102.8	102.
CT*, GTL** and additives	0.8	0.9	1.	0 0	0.7 0.	.3 1.	1 1.3	1.3
Direct use of crude oil	1.0	0.8	0	4 C	0.3 0.	.2 0.	5 0.4	0.3
Oil products	87.1	92.8	91.	6 71	.9 56	.7 100.	8 101.1	100.
LPG and ethane	13.3	13.6	14.	4 12	.4 10	.4 15.	6 16.2	15.8
Naphtha	6.4	6.9	7.	3 7	.4 7.	.4 7.	7 8.6	9.
Gasoline	21.9	23.6	20.	6 13	8.1 8.	.2 23.	2 21.4	19.3
Kerosene	4.7	5.7	8.	7 8	3.0 7.	.6 9.:	2 10.3	11.8
Diesel	25.0	26.5	25.	0 18	3.3 12	.6 28.	2 28.4	28.2
Fuel oil	5.7	5.9	4.	8 3	.4 2	.5 5.	5 5.6	6.3
Other products	10.1	10.6	10.	8 9	.3 8	.0 11.4	4 10.6	9.0
Fractionated products fi NGLs***	rom 11.3	11.5	12.	7 10	0.1 8.	.8 13.4	4 12.1	11.0
Refinery products	75.8	81.3	78.	9 61	.8 47	.9 87.4	4 89.0	88.9
Refinery market share	83%	83%	80%	6 75	69	83%	6 83%	83%

*CT:coal - to - liquids;、**GTL:gas - to - liquids、***NGL:natural gas liquids

5-51 Source : IEA World Energy Outlook 2022, Table 7.7 "World liquids demand by scenario (mb/d)" (P.361)

[Parameters in IEA WEO2022] Energy demand and supply (Global gas demand, 1/2)

IEA World Energy Outlook 2022

supply • APS • 2020 •	<u>uture</u> <u>Global</u>	Region	• All
• STEPS • 2021 •	2030 • World 2050	• -	PowerIndustry etc
(Unit] bcme			

Ontonioni	Pas	t	NZE		APS	6	STEPS	
Category	2020	2021	2030	2050	2030	2050	2030	2050
Total gas demand	3,351	4,248	3,666	2,681	4,069	3,568	4,456	4,661
Natural gas demand	3,329	4,213	3,268	1,159	3,874	2,661	4,372	4,357
Power	1,345	1,633	1,177	119	1,422	880	1,590	1,469
Industry	701	882	802	213	891	644	1,003	1,116
Buildings	757	886	486	-	737	372	890	852
Transport	108	147	99	12	126	58	159	172
Low-emissions H2 production inputs	-	1	145	566	41	266	10	32
Other	417	664	559	248	658	441	720	717
Natural gas abated with CCUS	2	12	223	738	103	420	24	74
Losses from low - emissions H2 production	-	-	45	175	13	82	3	10
Natural gas production	3,274	4,149	3,264	1,178	3,878	2,660	4,372	4,355
Conventional gas	2,768	2,964	2,292	827	2,731	2,016	2,962	3,025
Unconventional gas	506	1,185	972	351	1,147	644	1,410	1,329
Natural gas trade	641	878	667	224	833	497	944	991
LNG	275	450	443	153	545	324	559	649
Pipeline	366	428	224	71	288	173	385	342

5-52 Source : IEA World Energy Outlook 2022, Table 8.1 "Global gases by scenario (bcme)" (P.369)

IEA World Energy Outlook 2022

[Parameters in IEA WEO2022] Energy demand and supply (Global gas demand, 2/2)

Category	Datasets	Scenario	Time H	lorizon	Country	/ Region	Sector
Energy demand and supply	Global gas demand	NZEAPSSTEPS	<u>Past</u> • 2020 • 2021	<u>Future</u> • 2030 • 2050	<u>Global</u> ▪ World	Region • -	 All Power Industry etc.

[Unit] bcme

Code and an	Pa	ist	NZI	Ξ	AP	S	STE	PS
Category	2020	2021	2030	2050	2030	2050	2030	2050
Low - emissions H2 demand	-	1	299	1,509	100	752	21	8
Power	-	-	91	200	14	63	1	2
Industry	-	-	84	451	36	248	7	20
Buildings	-	-	10	40	6	30	-	;
Transport	-	-	38	396	11	158	2	2
Low - emissions H2 production inputs	-	-	60	395	19	229	1	11
Other	-	1	16	27	15	24	10	20
Low - emissions H2 production	-	1	299	1,509	100	752	21	8
Fossil fuel - based (with CCUS)	-	1	103	406	29	192	8	2
Electrolytic	-	-	195	1,097	70	557	13	50
Bioenergy-based	-	-	1	7	1	4	-	
Biogas demand	22	35	199	404	123	339	70	244
Biogas	21	27	59	138	58	142	46	102
Biomethane	1	8	140	267	65	197	24	14:

 $Source: {\it IEA World Energy Outlook 2022, Table 8.1 "Global gases by scenario (bcme)"} \ ({\it P.369})$

5-53

[Parameters in IEA WEO2022] Energy demand and supply (Gas demand by region)

Category Datasets Scenario Time Horizon Country / Region Sector • Energy Global • APS · All sector Past <u>Future</u> <u>Global</u> <u>Region</u> • 2010 • 2021 gas demand • STEPS 2030 World North America • 2050 Central and South America and demand supply • Europe Africa · Middle East • Eurasia Asia Pacific

[Unit] bcme

Deview	Counting	Past		APS		STEP	S
Region	Country	2010	2021	2030	2050	2030	2050
North America	-	835	1 106	933	396	1 118	820
	United States	678	871	716	252	864	575
Central and	¦	147	161	141	96	159	179
South America	Brazil	29	42	28	17	34	37
Europe	-	698	625	394	122	511	395
	European Union	446	421	242	45	340	235
Africa	¦ - :	105	172	189	193¦	215	292
	North Africa	85	132	137	120	155	182
Middle East		391	567	638	582	689	833
Eurasia	-	578	662	587	532	626	635
	Russia	472	543	470	424	498	470
Asia Pacific	-	576	920	983	731	1,043	1,173
	China	110	368	406	238	443	442
	India	64	66	110	102	115	170
	Japan	95	103	57	17	64	43
	Southeast Asia	150	162	194	177	203	272

5-54 Source : IEA World Energy Outlook 2022, Table 8.2 "Gas demand by region in the STEPS and APS (bcme)" (P.372)

[Parameters in IEA WEO2022] Energy demand and supply (Global coal demand)

07								
Category	Datasets	:	Scenario	Time H	orizon	Country	/ Region	Sector
Energy demand and supply	Global coal dema	•	NZE APS STEPS	<u>Past</u> • 2020 • 2021	<u>Future</u> • 2030 • 2050	<u>Global</u> • World	Region • -	 All Power Industry
[Unit] Mtce、EJ								
Category	Past			NZE	A	PS	STE	PS
Category	2020	2021	2030	2050	2030	2050	2030	2050
World coal demand	5,220	5,644	3,0	24 53	9 4,539	9 1,613	5,149	3,828
Power	3,108	3,642	1,68	35 30	6 2,852	<u>938</u>	3,174	2,086
Industry	1,690	1,629	1,1	59 200	6 1,426	640	1,684	1,520
Other sectors	423	373	18	30 28	3 261	36	291	222
Share of demand with CCUS	0%	0%	3	% 89%	6 1%	31%	0%	1%
Advanced economies	1,585	1,024	2	67 84	4 375	5 127	526	297
Emerging market and developing economies	3,686	4,620	2,70	62 45	5 4,164	1,486	4,623	3,532
World coal production	5,235	5,825	3,02	24 539	9 4,539) 1,613	5,149	3,829
Steam coal	4,069	4,560	2,2	71 40	7 3,538	3 1,177	4,026	2,954
Coking coal	866	1,030	7	16 120	0¦ 855	5 381	936	736
Peat and lignite	300	235	:	38 12	2 146	5 56	187	139
Advanced economies	1,512	1,124	30	62 99	9 522	2 186	729	590
Emerging market and developing economies	3,723	4,702	2,60	62 443	3 4,017	7 1,427	4,420	3,239
World coal trade	948	1,135	5	39 13 ⁻	7 859	9 470	999	958
Trade as share of production	18%	19%	18	% 25%	6 19%	o 29%	19%	25%
Coastal China steam coal price	142	155	:	52 44	4 66	5 56	81	67
Solid bioenergy (EJ)	49	60		58 74	4 62	2 87	66	80
Traditional use of biomass	25	24		-	- 9	96	20	18
Modern bioenergy and losses	24	36		58 74	4 53	8 81	46	62

5-55 Source : IEA World Energy Outlook 2022, Table 9.1 "Global coal demand, production and trade, and solid bioenergy use by scenario (Mtce)" (P.412)

IEA World Energy Outlook 2022

[Parameters in IEA WEO2022] Energy demand and supply (Global coal demand by region)

Category	Datasets	Scenario	Time I	Horizon		Sector	
Energy demand and supply	 Global coal demand by region 	• APS • STEPS	Past • 2010 • 2021	Future • 2030 • 2040 • 2050	<u>Global</u> • World	RegionNorth AmericaCentral and South AmericaEuropeAfricaMiddle EastEurasiaAsia Pacific	• All

[Unit] Mtce

Deview	Country	Past	t 📕		APS		STEPS			
Region	Country	2010	2021	2030	2040	2050	2030	2040	2050	
North America	-	768	389	80	37	30	107	50	42	
	United States	716	363	64	24	17	91	32	26	
Central and	-	37	46	28	25	20	40	52	60	
South America	Brazil	21	25	16	14	12	23	27	29	
Europe	¦ - :	539	369	157	99	72	229	176	167	
	European Union	360	238	79	35	20	125	69	56	
Africa	-	156	152	119	59	30	148	132	131	
	North Africa	144	129	95	34	6	113	87	78	
Middle East	i - i	5	5	7	8	9	8	11	12	
Eurasia	-	203	222	162	131	121	172	158	160	
	Russia	151	166	113	100	95	114	104	102	
Asia Pacific	¦;	3,513	4,460	3,986	2,449	1,332	4,444	3,816	3,258	
	China	2,565	3,157	2,691	1,603	789	2,974	2,342	1,856	
	India	399	614	704	420	243	773	738	671	
	Indonesia	45	102	124	90	41 ¹	136	164	160	
	Japan	165	143	97	58	35	103	87	62	
	Southeast Asia	76	166	171	138	110	201	243	263	

5-56 Source : IEA World Energy Outlook 2022, Table 9.2 "Coal demand by region and scenario (Mtce)" (P.414)

[Parameters in IEA WEO2022] Energy demand and supply (Oil production, 1/3)

Category	Datasets	Scenario	Time Horizon		Country / Region		Sector
Energy demand and supply	Oil production by region	• APS • STEPS	Past • 2010 • 2021	Future • 2030 • 2040 • 2050	<u>Global</u> • World	Region• North America• Central and South America• Europe• Africa• Middle East• Eurasia• Asia Pacific	• All

[Unit] mb/d

Deview	Country	Pas	st		APS			STEPS	
Region	Country	2010	2021	2030	2040	2050	2030	2040	2050
North America		14.2	24.4	25.8	19.2	14.7	28.6	27.0	24.6
	Canada	3.5	5.6	5.4	4.1	3.2	6.2	6.4	5.5
	United States	7.8	16.8	18.8	14.0	10.7	20.7	18.6	16.7
Central and South America	-	7.4	5.9	8.3	7.7	6.5	9.0	10.1	11.4
	Brazil	2.2	3.0	4.4	3.8	3.3	4.5	4.3	5.1
	Guyana	0.0	0.1	1.4	1.5	1.0	1.6	2.0	1.1
	Venezuela	2.8	0.6	0.7	1.2	1.3¦	0.8	1.4	2.7
Europe	-	4.4	3.6	2.7	1.3	0.6	3.1	2.2	1.:
	Norway	2.1	2.0	1.9	1.0	0.5	2.0	1.3	0.6
	United Kingdom	1.4	0.9	0.5	0.2	0.1	0.6	0.4	0.3
Africa	; _	10.2	7.4	5.8	4.0	2.9	7.0	6.4	6.1
	Angola	1.8	1.2	0.8	0.6	0.5	0.9	0.8	0.9
	Nigeria	2.5	1.7	1.2	0.9	0.7	1.3	1.3	1.3

5-57 Source : IEA World Energy Outlook 2022, Table 7.3 "Oil production by scenario (mb/d)" (P.336)

IEA World Energy Outlook 2022

[Parameters in IEA WEO2022] Energy demand and supply (Oil production, 2/3)

Category	Datasets	Scenario	D Time Horizon		Country / Region		Sector
 Energy demand and supply 	Oil production by region	• APS • STEPS	Past • 2010 • 2021	Future • 2030 • 2040 • 2050	Global • World	RegionNorth AmericaCentral and South AmericaEuropeAfricaMiddle EastEurasiaAsia Pacific	• All

[Unit] mb/d

Deview	C a sum times	Pas	st		APS			STEPS	
Region	Country	2010	2021	2030	2040	2050	2030	2040	2050
Middle East	-	25.4	27.9	31.2	27.5	22.9	33.9	38.2	40.4
	Iraq	2.4	4.1	4.6	3.7	2.7	4.6	5.5	6.2
	Iraq	4.2	3.4	3.7	4.0	2.8	3.9	4.6	5.0
	Kuwait	2.5	2.7	3.0	2.6	2.3	3.3	3.4	3.5
	Saudi Arabia	10.0	11.0	12.3	10.9	10.0	13.5	14.8	15.9
	United Arab Emirates	2.8	3.6	4.1	3.2	2.5	4.8	5.4	5.5
Eurasia	-	13.4	13.7	11.2	7.6	5.4	11.9	10.8	10.6
	Russia	10.4	10.9	8.5	5.5	3.9	8.8	7.7	7.7
Asia Pacific	-	8.4	7.4	5.7	3.5	2.2	6.3	5.4	4.8
	China	4.0	4.0	3.3	1.9	1.1	3.6	3.1	2.7

IEA World Energy Outlook 2022

[Parameters in IEA WEO2022] Energy demand and supply (Oil production, 3/3)

Category	Datasets	Scenario	Time I	Time Horizon Count		Country / Region	Sector
 Energy demand and supply 	Oil production by region	• APS • STEPS	Past • 2010 • 2021	Future • 2030 • 2040 • 2050	Global • World	Region• North America• Central and South America• Europe• Africa• Middle East• Eurasia• Asia Pacific	• All

[Unit] mb/d

Pagion	Country	Pas	st		APS			STEPS	
Region	Country	2010	2021	2030	2040	2050	2030	2040	2050
Conventional crude oil	-	66.8	60.1	56.8	41.9	31.0	62.5	62.5	31.0
Tight oil		0.7	7.4	9.7	8.3	6.7	10.9	11.3	6.7
	United States	0.6	6.9	8.8	7.8	6.2	9.9	9.7	6.2
Natural gas liquids	-	12.7	18.2	19.2	15.9	13.9	20.9	19.9	13.9
Canada oil sands		1.6	3.4	3.5	2.8	2.2	3.9	3.8	2.2
Other production		1.6	1.3	1.6	1.8	1.6	1.7	2.6	1.6
Total	I <u> </u>	83.4	90.3	90.7	70.7	55.3	99.9	100.1	55.3
OPEC share (%)	-	40%	35%	40%	40%	43%	36%	40%	43%

Source : IEA World Energy Outlook 2022, Table 7.3 "Oil production by scenario (mb/d)" (P.336) 5-59

[Parameters in IEA WEO2022] Energy demand and supply (Natural gas production, 1/2)

Category Datasets Scenario **Time Horizon** Country / Region Sector • Energy demand • APS • All Natural gas <u>Past</u> <u>Future</u> <u>Global</u> <u>Region</u> STEPS • 2010 • 2030 • World North America and supply production • • 2021 • 2050 . Central and South America • Europe • Africa • Middle East • Eurasia • Asia Pacific

[Unit] bcm

Decien	Country	Pas	st	AP	S	STE	PS
Region	Country	2010	2021	2030	2050	2030	2050
North America	-	811	1,189	1,098	485	1,283	1,017
	Canada	156	189	154	87	189	200
	Mexico	51	31	31	34	31	34
	United States	604	969	913	364	1 063	784
Central and South America		160	151	133	95	149	195
	Argentina	41	41	51	60	53	107
	Brazil	16	25	19	11	25	38
Europe	-	341	239	177	65	247	208
	European Union	148	51	17	2	39	34
	Norway	110	119	80	20	126	78
Africa		203	265	285	239	313	369
	Algeria	85	103	97	39	103	65
	Egypt	57	72	74	50	74	58
	Mozambique	3	4	14	43	23	83
	Nigeria	33	44	48	41	51	57

5-60 Source : IEA World Energy Outlook 2022, Table 8.3 "Natural gas production in the STEPS and APS (bcm)" (P.377)

[Parameters in IEA WEO2022] Energy demand and supply (Natural gas production, 2/2)

Category	Datasets	Scenario	Time I	lorizon		Country / Region	Sector
 Energy demand and supply 	Natural gas production	• APS • STEPS	Past • 2010 • 2021	Future • 2030 • 2050	<u>Global</u> • World	Region • North America • Central and South America • Europe • Africa • Middle East • Eurasia • Asia Pacific	• All

[Unit] bcm

Pagion	Country	Pas	t	AP	S	STE	PS
Region	Country	2010	2021	2030	2050	2030	2050
Middle East	-	463	660	798	690	853	1,030
	Iran	144	236	245	154	248	319
	Iraq	5	12	29	28	32	44
	Qatar	121	169	236	225	247	326
	Saudi Arabia	73	100	148	189	150	191
Eurasia	-	807	998	751	654	831	857
	Azerbaijan	17	33	35	29	35	24
	Russia	657	793	584	483	633	612
	Turkmenistan	45	90	73	100	91	155
Asia Pacific	¦	488	648	636	432	694	678
	Australia	53	151	154	121	165	150
	China	96	200	228	120	250	285
	India	51	32	47	53	48	78
	Indonesia	86	58	50	33	57	38
	Rest of Asia Pacific	203	206	156	106	174	126

5-61 Source : IEA World Energy Outlook 2022, Table 8.3 "Natural gas production in the STEPS and APS (bcm)" (P.377)

[Parameters in IEA WEO2022] Energy demand and supply (Coal production)

IEA World Energy Outlook 2022

Category	Datasets	Scenario	Time Horizon		Country / Region		Sector
Energy demand and supply	 Coal production by region 	• APS • STEPS	Past • 2010 • 2021	Future • 2030 • 2040 • 2050	<u>Global</u> • World	Region• North America• Central and South America• Europe• Africa• Middle East• Eurasia• Asia Pacific	• All

Decien	Country	Pas	st 🔤		APS			STEPS	
Region	Country	2010	2021	2030	2040	2050	2030	2040	2050
North America		818	478	138	57	32	188	105	106
	United States	758	433	115	50	29	156	79	80
Central and South America		79	62	24	10	3	41	42	41
	Colombia	73	58	22	10	3	37	38	37
Europe	-	331	200	79	27	20	126	80	59
	European Union	220	138	46	10	8	71	29	10
Africa		210	212	162	87	47	188	158	171
	South Africa	206	199	138	58	19	162	114	109
Middle East	-	1	1	0	0	0	1	1	1
Eurasia	-	309	444	292	245	216	323	307	274
	Russia	238	371	239	212	187	265	250	215
Asia Pacific	<u> </u>	3,487	4,428	3,843	2,382	1,295	4,282	3,701	3,177
	Australia	352	421	304	255	138¦	408	425	419
	China	2,461	3,004	2,554	1,522	733	2,808	2,228	1,776
	India	304	447	509	251	109	546	508	436
	Indonesia	266	438	364	247	210	393	405	402
	Rest of Southeast Asia	52	60	59	52	53	67	70	72

5-62 Source : IEA World Energy Outlook 2022, Table 9.3 "Coal production by region and scenario (Mtce)" (P.418)

[Parameters in IEA WEO2022] Predictions on production and sales (Oil trade, Imports)

Category	Datasets	Scenario	Time Horizon		C	Country / Region	Sector
Predictions on production and sales	• Oil trade	APSSTEPS	Past • 2021	Future • 2030 • 2050	Global • -	Region • China • European Union • Other Asia Pacific • Japan ⋅ Korea • India • Other Europe	• All

[Unit] Mb/d

		AF	vs		STEPS						
Net importer in 2021	Net imports (mb/d)		Share of demand		Net imports (mb/d)			Share of demand			
	2030	2050	2030	2050	2021	2030	2050	2021	2030	2050	
China	12.2	6.9	75%	82%	12.3	13.0	10.6	78%	75%	76%	
European Union	7.6	2.0	95%	93%	9.7	8.9	5.7	93%	95%	92%	
Other Asia Pacific	9.3	7.9	83%	87%	6.4	10.0	13.5	70%	82%	87%	
Japan ⋅ Korea	5.0	2.3	98%	97%	5.8	5.5	4.1	96%	98%	98%	
India	5.4	3.8	90%	90%	4.1	6.2	8.0	87%	89%	92%	
Other Europe	0.7	0.9	21%	60%	0.3	0.9	2.2	7%	25%	67%	

Source : IEA World Energy Outlook 2022, Table 7.4 "Oil trade by region and scenario" $(\mathsf{P.341})$ 5-63

IEA World Energy Outlook 2022

[Parameters in IEA WEO2022] Predictions on production and sales (Oil trade, Exports)

Category	Datasets Scenario Time Horizon		C	Sector			
 Predictions on production and sales 	• Oil trade	• APS • STEPS	<u>Past</u> ▪ 2021	Future • 2030 • 2050	<u>Global</u> • -	Region• China• European Union• Other Asia Pacific• Japan • Korea• India• Other Europe	• All

[Unit] Mb/d

		A	PS		STEPS						
Net exporter in 2021	Net exports (mb/d)		Share of production		Net exports (mb/d)			Share of production			
	2030	2050	2030	2050	2021	2030	2050	2021	2030	2050	
Middle East	22.4	14.4	72%	63%	19.6	24.3	28.5	70%	72%	71%	
Russia	5.1	1.0	60%	27%	7.2	5.3	4.4	66%	61%	58%	
Africa	0.6	n.a.	11%	n.a.	3.4	1.7	n.a.	46%	25%	n.a.	
North America	7.3	7.5	28%	51%	2.5	7.9	7.7	10%	27%	31%	
Caspian	1.8	0.4	64%	26%	2.0	2.0	1.4	72%	66%	49%	
Central & South America	3.1	3.8	37%	59%	0.4	3.1	5.0	8%	34%	44%	

Source : IEA World Energy Outlook 2022, Table 7.4 "Oil trade by region and scenario" (P.341)

[IEA ETP2023 : Overview] Supply chains for clean energy technologies are concentrated in certain areas, emphasizing the need for supply chain diversity

Energy Technology Perspectives 2023	ETP2023 Report Overview							
	~	ETP2023 provides a comprehensive inventory of the current state of the global clean energy supply chain, using the Announced Pledges Scenario (APS) and the Net Zero Emissions by 2050 scenario (NZE) . The report refers to the supply of materials such as lithium, copper, nickel, steel, cement, aluminum, and plastic, as well as the production and adoption of key technologies						
Register report - January 2023	√	Emphasized the increase in prices of clean energy technologies in the recent years due to the tightening of the supply chains caused by the situation in Ukraine. Also points out the need for diversification of the supply chains to reduce physical risks since clean energy production/trade and mineral resources are concentrated in specific regions.						
		 70% of the manufacturing capacity for wind, batteries, electrolysers, solar panels and heat pumps are from three countries, with the majority manufactured in China 						
		• Higher prices for lithium and nickel contributed to a 10% increase in battery prices worldwide in 2022. With the steel and copper prices doubling in 2020 and the first half of 2022, the cost of wind turbines outside of China is also rising						
	~	Various governments are competing for economic opportunity while increasing resilience and diversifying the clean energy supply chains						
Table of		 Examples would be the US "Inflation Reduction Act", EU "Fit for 55 Package" and "REPowerEU Plan", Japan's GX program, India's "the Production Linked Incentive scheme" 						
Table of Contexts								
chains Scope an 1. Energy supply The clean Implicatio 2. Mapping out c	erg d a ch i er ns lea	y and technology supply 3. Mining and material production Material needs for net zero emissions nalytical approach ains in transition mergy transition of net zero for supply chains n energy supply chains Mass manufacturing of clean n energy supply chains						
Assessing chains	g vi	Inerabilities in supply Installation of large-scale, site-tailored Prioritizing policy actions technologies Endet Prioritizing policy actions						

5-65 Source : IEA Energy Technology Perspective 2023

*Excel data of the parameters are not available as of February 21st, 2023

IEA Energy Technology Perspective 2023

[List of IEA ETP2023 Parameters] List of charts with quantitative information (1/9)

Chap ter	Chart number	Chart
	Figure 1.2	Global total primary energy supply in the NZE Scenario
	Figure 1.4	Total primary energy supply, electrification rates and energy intensity in 2030 in the APS and NZE Scenario
	Figure 1.5	Global cumulative energy sector CO2 emissions reductions by decarbonisation pillar and clean energy and technology supply chains studied in ETP-2023, 2021-2050
	Figure 1.6	Global deployment of selected clean energy technologies in the NZE Scenario
	Figure 1.7	Heat pumps and heating distribution system market price and installation time for a typical household by type of equipment, 2021
	Figure 1.8	Time frame for prototype to market introduction and early adoption for selected clean energy technologies in the past and the NZE Scenario
	Figure 1.9	Global average raw material requirements for selected energy technologies, 2021
Ch.1	Figure 1.10	Global supply gap with the NZE Scenario and geographic concentration by stage and technology based on expansion announcements, 2030
	Figure 1.11	Global investment in selected clean energy supply chains needed to bring online enough capacity in 2030 in the NZE Scenario, by supply chain step
	Figure 1.12	Cost of capital for bulk material production industries by country/regional grouping, 2020
	Figure 1.13	Indicative levelised cost of production for selected bulk materials
	Figure 1.14	Increase in the global average prices of selected clean energy products from switching to low-emission bulk material production
	Figure 1.15	Lead times for mining of selected minerals
	Figure 1.16	Range of (top) and average (bottom) global lead times for selected clean energy technology supply chains
	Figure 1.17	Global scaling-up of selected energy and other supply chains by lead time in the past (solid) and the NZE Scenario (dashed)
	Figure 1.18	Typical operating lifetime of selected energy technologies

[List of IEA ETP2023 Parameters] List of charts with quantitative information (2/9)

Chap ter	Chart number	Chart						
	Figure 1.19	Global energy sector employment by technology						
	Figure 1.20	Energy employment by region and supply chain step, 2019						
Ch.1	Figure 1.21	Energy employment in selected sectors by region, 2019						
	Figure 1.22	Global energy sector employment by technology in the NZE Scenario						
	Figure 1.23	Global employment by skill level, 2019						
	Figure 2.2	Regional shares of global fossil fuel and uranium production and resources, 2021						
	Figure 2.3	Global reserves and extraction of selected resources by region, 2021						
	Figure 2.4	Regional shares of global production of selected critical materials, 2021						
	Figure 2.5	Estimated end-use shares of global consumption of selected bulk materials, 2021						
	Figure 2.6	Regional shares in global production of bulk materials and intermediate commodities, 2021						
	Figure 2.7	Regional shares of manufacturing capacity for selected mass-manufactured clean energy technologies and components, 2021						
	Figure 2.8	Regional shares in global installed operating capacity of selected large-scale site-tailored clean energy technologies, 2021						
Ch.2	Figure 2.9	Share of inter-regional trade in global production for selected minerals, materials and technologies, 2021						
	Figure 2.10	Trade balance along supply chains in selected countries/regions, 2021						
	Figure 2.12	EV imports to Europe by country of production and manufacturer, 2021						
	Figure 2.16	Heat pump manufacturing capacity by company headquarters and plant location, and installations by region/country, 2021						
	Figure 2.17	International prices of selected critical and bulk materials and energy						
	Figure 2.18	Energy intensity of extracting and producing selected critical and bulk materials, and of manufacturing selected energy technologies, 2021						
	Figure 2.19	Average manufacturing cost breakdown of selected energy technologies and components by commodity, 2019-2021						
	Figure 2.20	Average ammonia production costs by technology and component in selected regions/countries, 2022						

5-67 Source : IEA Energy Technology Perspective 2023

IEA Energy Technology Perspective 2023

[List of IEA ETP2023 Parameters] List of charts with quantitative information (3/9)

Chap ter	Chart number	Chart						
	Figure 2.21	Return on assets of companies in selected upstream, bulk materials and manufacturing sectors						
	Figure 2.22	Global inventories as a share of annual consumption for selected bulk materials, minerals and fuels						
	Figure 2.23	Semiconductor manufacturing capacity and market share revenue, 2021						
	Figure 2.23	Semiconductor manufacturing capacity and market share revenue, 2021						
Ch.2	Figure 2.24	Supply chain step shares in total CO2 emissions from the production of solar PV, wind turbines, EVs and heat pumps, 2021						
	Figure 2.25	Global average life-cycle greenhouse gas emissions intensity of selected energy technologies, 2021						
	Figure 2.26	Global average primary energy and CO2 emissions intensity of mining and processing of selected critical and bulk materials, 2021						
	Figure 3.2	Total global material demand by type in the NZE Scenario						
	Figure 3.3	Global critical material demand by end use in the NZE Scenario						
	Figure 3.4	Estimated global bulk material demand by end use in the NZE Scenario						
	Figure 3.5	Share of secondary production in the global supply of selected materials in the NZE Scenario						
	Figure 3.6	Change in global demand for selected minerals in the NZE Scenario, 2021-2030						
	Figure 3.7	Primary production of selected minerals by country/region in the NZE Scenario and based on currently anticipated supply						
Ch.3	Figure 3.8	Anticipated investment in mining of critical minerals by region/country and that required to meet mineral demand over 2022-2030 in the NZE Scenario						
	Figure 3.9	Shares of the leading regions in global mining of selected critical minerals in 2021 and 2030 based on currently anticipated investments						
	Figure 3.10	Global energy intensity and average grade of ore production for selected metals						
	Figure 3.11	Theoretical global energy consumption and CO2 emissions in mining of selected minerals for meeting NZE Scenario demand levels at current carbon intensity						

[List of IEA ETP2023 Parameters] List of charts with quantitative information (4/9)

Chap ter	Chart number	Chart						
	Figure 3.12	Decomposition of change in global direct CO2 emissions from mining of selected minerals between 2021 and 2050 in the NZE Scenario						
	Figure 3.13	Production of selected critical materials by country/region in the NZE Scenario and based on currently anticipated supply						
	Figure 3.14	Anticipated investment in critical material production by region/country and that required to meet demand over 2022-2030 in the NZE Scenario						
Ch.3	Figure 3.15	Shares of the leading regions in global processing of selected critical minerals in 2021 and 2030 based on currently anticipated investments						
	Figure 3.16	Emissions intensity of different lithium hydroxide production routes by fuel used and process temperature, 2021						
	Figure 3.17	Production of bulk materials by country/region and type of technology in the NZE Scenario						
	Figure 3.18	Estimates of near zero emission material production based on project announcements and the NZE Scenario in 2030						
	Figure 3.19	Shares of the leading regions in global production of selected bulk materials in 2021 and 2030 in the NZE Scenario						
	Figure 4.1	Current global manufacturing capacity, announced capacity additions, capacity shortfall in 2030 relative to the NZE Scenario, and lead times for selected mass-manufactured clean energy technologies and components						
	Figure 4.2	Current global capacity, announced capacity additions, capacity shortfall in 2030 relative to the NZE Scenario, and installation lead times for selected large-scale, site-tailored clean energy technologies						
Ch.4	Figure 4.3	Global employment in manufacturing and installing selected mass manufactured clean energy technologies in the NZE Scenario, 2019 and 2030						
011.4	Figure 4.4	Announced global cumulative investment in mass manufacturing of selected clean energy technologies by region/country and that required to meet demand in 2030 in the NZE Scenario, 2022-2030						
	Figure 4.5	Solar PV manufacturing capacity by country/region according to announced projects and in the NZE Scenario						
	Figure 4.6	Wind power manufacturing capacity by component and country/region according to announced projects and in the NZE Scenario						

5-69 Source : IEA Energy Technology Perspective 2023

IEA Energy Technology Perspective 2023

[List of IEA ETP2023 Parameters] List of charts with quantitative information (5/9)

Chap ter	Chart number	Chart						
	Figure 4.7	Financial indicators for non-Chinese wind turbine manufacturers						
	Figure 4.8	Battery and component manufacturing capacity by country/region according to announced projects and in the NZE Scenario						
	Figure 4.9	Heavy-duty fuel cell truck and mobile fuel cell manufacturing capacity by country/region according to announced proje and in the NZE Scenario						
	Figure 4.10	Heat pump manufacturing capacity by country/region according to announced projects and in the NZE Scenario						
	Figure 4.11	Global annual sales of heat pump technologies for buildings in the NZE Scenario						
	Figure 4.12	Electrolyser manufacturing capacity by country/region according to announced projects and in the NZE Scenario						
Ch.4	Figure 4.13	Announced global cumulative investment in large-scale, site-tailored clean energy technologies by region/country and that required to meet demand in 2030 in the NZE Scenario, 2022-2030						
	Figure 4.14	Capacity of hydrogen production from natural gas with CCS by country/region according to announced projects and in the NZE Scenario						
	Figure 4.15	Direct air capture capacity by country/region for use and storage according to announced projects and in the NZE Scenario						
	Figure 4.16	Capacity of bioenergy with CO2 captured for use and storage by country/region according to announced projects and in the NZE Scenario						
	Figure 4.17	Low-emission synthetic hydrocarbon fuel production capacity by country/region according to announced projects and in the NZE Scenario						
	Table 4.1	Selected announced expansion projects for manufacturing solar PV supply chain components						
	Table 4.2	Announced expansion projects of selected battery makers and automakers						
Ch.5	Figure 5.1	Global historic deployment and investments in electricity and natural gas infrastructure						
Cn.5	Figure 5.3	Global high-voltage direct current (HVDC) transmission lines by country/region and line type						

5-70 Source : IEA Energy Technology Perspective 2023

[List of IEA ETP2023 Parameters] List of charts with quantitative information (6/9)

Chap ter	Chart number	Chart
	Figure 5.4	Gross electricity grid additions in advanced and emerging economies in the NZE Scenario
	Figure 5.5	Average annual transformer and stationary-battery capacity additions in the NZE Scenario
	Figure 5.6	Average annual material needs for selected grid technologies in the NZE Scenario
	Figure 5.7	Typical material composition of overhead lines and cables by weight, 2021
	Figure 5.8	Typical material composition of transformers and stationary batteries by weight and value, 2021
	Figure 5.11	Average lead times to build new electricity grid assets in Europe and the United States, 2010-2021
	Figure 5.14	Global natural gas and hydrogen supplies in the NZE Scenario
	Figure 5.15	Average annual global investment in hydrogen and natural gas infrastructure in the NZE Scenario
Ch.5	Figure 5.16	Global hydrogen transmission pipeline length in the NZE Scenario
	Figure 5.17	Global production of low-emission merchant hydrogen and interregional trade in the NZE Scenario
	Figure 5.18	Interregional trade and infrastructure for shipping low-emission hydrogen in the NZE Scenario compared with historical LNG trade
	Figure 5.19	Tanker capacity in energy and volume terms by energy carrier type in the NZE Scenario, 2030
	Figure 5.20	Global LNG trade and largest LNG and LH2 tanker sizes
	Figure 5.22	Indicative levelised cost of delivering hydrogen, by transport option and distance in the NZE Scenario, 2030
	Figure 5.23	Indicative levelised cost of delivering hydrogen, by shipping-option step and distance in the NZE Scenario, 2030
	Figure 5.24	Global underground geological storage capacity for hydrogen in the NZE Scenario and historical growth in natural gas storage by region

5-71 Source : IEA Energy Technology Perspective 2023

[List of IEA ETP2023 Parameters] List of charts with quantitative information (7/9)

IEA Energy Technology Perspective 2023

Chap ter	Chart number	Chart
	Figure 5.25	Global liquefied gas tanker deliveries by country and type in the NZE Scenario
	Figure 5.26	Lead times of selected natural gas infrastructure projects
	Figure 5.27	Global energy consumption for hydrogen transportation in the NZE Scenario
	Figure 5.28	Energy consumption and overall efficiency of hydrogen transport and distance in the NZE Scenario, 2030
	Figure 5.32	Indicative CO2 shipping and offshore pipeline transportation costs
	Figure 5.33	Existing and planned annual global CO2 storage injection capacity, compared with projected NZE Scenario needs in 2030
Ch.5	Figure 5.34	Lead times for the CO2 storage component of selected CCUS projects with dedicated storage
	Figure 5.35	Lead times of selected recent natural gas and CO2 pipeline projects
	Table 5.1	Global grain-oriented steel manufacturing capacity by country and manufacturer, 2020
	Table 5.3	Announced designs for liquefied hydrogen tankers expected to be commercial before 2030
	Table 5.4	Characteristics of types of underground geological storage for hydrogen
	Table 5.6	CO2 pipeline deployment for CO2 capture in the NZE Scenario, 2050
	Figure 6.2	Annual energy sector investments by regional grouping in the NZE Scenario
	Figure 6.3	Public energy R&D by region and corporate energy R&D by technology
Ch.6	Figure 6.5	Geographic concentration for key critical minerals, material production and manufacturing operations for clean energy technologies
	Figure 6.6	Announced project throughput and deployment for key clean energy technologies in the APS and the NZE Scenario

[List of IEA ETP2023 Parameters] List of charts with quantitative information (8/9)

Chap ter	Chart number	Chart
	Figure 5.25	Global liquefied gas tanker deliveries by country and type in the NZE Scenario
	Figure 5.26	Lead times of selected natural gas infrastructure projects
	Figure 5.27	Global energy consumption for hydrogen transportation in the NZE Scenario
	Figure 5.28	Energy consumption and overall efficiency of hydrogen transport and distance in the NZE Scenario, 2030
	Figure 5.32	Indicative CO2 shipping and offshore pipeline transportation costs
	Figure 5.33	Existing and planned annual global CO2 storage injection capacity, compared with projected NZE Scenario needs in 2030
Ch.5	Figure 5.34	Lead times for the CO2 storage component of selected CCUS projects with dedicated storage
	Figure 5.35	Lead times of selected recent natural gas and CO2 pipeline projects
	Table 5.1	Global grain-oriented steel manufacturing capacity by country and manufacturer, 2020
	Table 5.3	Announced designs for liquefied hydrogen tankers expected to be commercial before 2030
	Table 5.4	Characteristics of types of underground geological storage for hydrogen
	Table 5.6	CO2 pipeline deployment for CO2 capture in the NZE Scenario, 2050
	Figure 6.2	Annual energy sector investments by regional grouping in the NZE Scenario
	Figure 6.3	Public energy R&D by region and corporate energy R&D by technology
Ch.6	Figure 6.5	Geographic concentration for key critical minerals, material production and manufacturing operations for clean energy technologies
	Figure 6.6	Announced project throughput and deployment for key clean energy technologies in the APS and the NZE Scenario

5-73 Source : IEA Energy Technology Perspective 2023

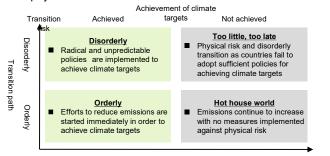
IEA Energy Technology Perspective 2023

[List of IEA ETP2023 Parameters] List of charts with quantitative information (9/9)

Chap ter	Chart number	Chart					
	Figure 6.7	Market size for key clean energy technologies and net fossil fuel trade in the APS					
	Figure 6.8	Employment in clean energy technology manufacturing by region					
	Figure 6.9	Concentrations of the largest enterprises in global manufacturing capacity and material production, 2021					
	Figure 6.11	Industry end-user prices for natural gas and electricity in selected countries					
Ch.6	Figure 6.12	Indicative production costs for hydrogen and hydrogen-based commodities produced via electrolysis					
	Figure 6.13	Global cathode production for passenger light-duty BEVs by chemistry in the NZE Scenario					
	Figure 6.14	Risk of failing to reduce CO2 emissions in the most intensive steps of selected clean energy and technology supply chains					
	Figure 6.15	Number of companies committed to purchasing low-emission steel by end-use sector, and global market size for selected bulk materials in the NZE Scenario					

[What is the NGFS (Network for Greening the Financial System)] NGFS was established as an international climate risk management platform for central banks and regulatory authorities; it released its Phase III scenarios in September '22, which were updated with pledges and renewable energy trends in each country from COP26

Background behind establishment	Established in December 2017 through efforts led by central banks and financial supervisors. It was established to be an international platform for central banks and financial supervisors to consider financial supervisory measures toward climate change-related risk management. Japanese participants are the Financial Services Agency and Bank of Japan
Description of activities	Description of activities: Release of six recommendations for measures against climate change risk (April 2019) and climate change scenarios (June 2020); the Phase III climate change scenarios were announced in September 2022
Targets	Central banks, financial supervisors, policy makers
Scenario overview	For the NGFS Phase III scenarios made public in September 2022, the scenarios were released after updating the database forming the basis of the scenario assumptions with information such as pledges and the latest trends for renewable energy sources from COP26, and macroeconomic impact of loss due to extreme weather and chronic physical risks, which includes the latest GDP and demographic information (does not take into account the Russian invasion of Ukraine and its aftermath, as these are still unclear and thus difficult to model)
Assumed activity scope for NGFS scenarios	 Since the assumed readers are central banks, financial supervisors, and policy makers, NGFS scenarios are not expected to be used frequently for scenario analysis by private companies in non-financial sectors For transition risk parameters that are referenced frequently such as carbon price, energy mix, fuel prices, the information from IEA scenario (NZE, APS, STEPS) are also available IEA, SSP, PRI's transition risk parameters can be used as a complement Although the number of physical risk parameters are limited, it may be used together with water risk tools (AQUEDUCT) and RCP On the other hand, the opportunities to reference NGSF scenarios for climate change-related risk management in financial institutions may increase


Source : Complied by Ministry of Environment from NGFS "NGFS publishes the third vintage of climate scenarios for forward looking climate risks assessment" 5 - 75

NGFS NGFS climate scenarios for central banks and supervisors] In 2021, the NGFS recategorized scenarios into 6 types; the same categories will also be used in 2022

Climate scenario framework

5-76

· Scenarios are designed to show the scope of transition and physical risk

Risk factor	Implications
Transition risk	Low if an orderly transition path is established, high if it is disorderly
Physical risk	Low if climate targets are achieved, high if they are not
Scenario elements	Overview
Orderly	Emission reduction policies are implemented immediately, and ne zero emissions are achieved by 2070. Transition and physical risks are both low
Disorderly	Emission reduction policies fail to be implemented before 2030; transition risk increases due to the need for rapid policy responses
Hot House World	Emissions continue to increase until 2080 with no emission reduction policies implemented; physical risk increases due to the temperature rising 3°C or more
Too Little, Too late	Not set

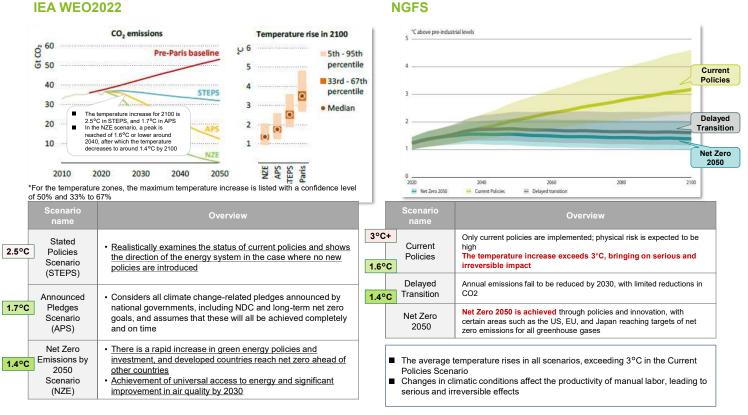
Scenario types

· 6 scenarios categorized through the climate scenario framework

Tr	ransition risk					
	Disorde 3 Diverge Net Ze	ent 4 Delayed	Too little, too late	One upper quadrant, "Too Little, Too Late", has not had scenarios set		
	Orderly Net Ze 2050	ro Below 2°C		urrent olicies		
_				Physical risk		
	Scenario name		Overview			
1 Net Zero 2050		Net Zero 2050 is achieved through policies and innovation, with certain areas such as the US, EU, and Japan reaching targets of net zero emissions for all greenhouse gases				
2	Below 2°C	Policies are gradually made stricter, and the 2°C and below target is reached at a rate of 67%				
3	Divergent Net Zero	Net Zero 2050 is achieved, but with higher costs due to divergent policies and a quicker phase-out of fossil fuels				
4 Delayed Transition		Annual emissions fail to be reduced by 2030, with limited reductions in CO2				
5	NDCs		I to a certain extent whe ed emission reduction ta			
6	Current Policies	Only current policies a to be high	are implemented; physic	al risk is expected		

[About the NGFS scenarios]

The NGFS scenarios characterize physical risks and transition risks in terms of macro-financial risk overall based on policy ambition, policy response, and changes in and degree of use of technologies


				[Legend]	: Low risk, : Med	ium risk, Eigh risk
		Physical risk		Transit	ion risk	
Category	Scenario	Policy ambition	Policy response	Changes in technology	Use of CO2 removal	Variation in regional policies
Orderly Climate policies are	Net Zero 2050	1.4°C	Swift and smooth	Fast	Medium to high	Medium
introduced at an early stage. Risk is comparatively modest	Below 2°C	1.6°C	Swift and smooth	About medium	Medium to high	Low
Disorderly Policies are delayed, and transition risk increases due to gaps	Divergent Net Zero	1.4°C	Swift but with variation among sectors	Fast	Low to medium	Medium
between countries and sectors. Carbon prices become higher than usual	Delayed Transition	1.6°C	Delayed	Slow / fast	Low to medium	High
Hot house world Global efforts are insufficient and global warming cannot be curbed. Physical risks	Nationally Determined Contributions (NDCs)	2.6°C	NDC	Slow	Low to medium	Medium
and irreversible effects such as rising sea levels occur.	Current Policies	3°C+	Without current policies	Slow	Low	Low

Source: "NGFS Scenarios for central banks and supervisors" (NGFS)

5-77

NGFS [Comparison with the IEA: Trends for rising global surface temperatures (median)] Both the IEA and NGFS use Integrated Assessment Models (IAM) to show transition paths for various scenarios; while the details of the paths differ, consistent results are shown

IEA WEO2022

The available parameters in the NGFS Phase 3 Scenario Explorer

NGFS Phase 3 Scenario Explorer

lssuin Ageno	•	NGFS			6 scenarios 1 variable 1 region 🗮
Scenar	io	Below 2°C / Divergent Net Zero / Delayed Transition / Nationally Determined Contributions (NDCs) / Current Policies			
Time Hor	izon	~2100, every 5 years (historical data varies by scenario)			20 30 210 210 210 210 210 210 210 21
		List of availab	le	paramet	ters
Category		Details		Category	Details
Macro- economic	• Ma	P、Population cro-economic climate damage(GDP change) mperature(global mean)、Surface temperature			Carbon sequestration (CCS, land use) Trade (biomass, gas, coal, oil) Production (primary energy, secondary energy, final
 Damage factor Emissions (BC, C2F6, CF4, CH4, CO, CO2, Fガス, HFC, Kinta costa and N20, N40, N20, D50, S56, Stylen (200) 			Energy	energy) • Production (cement, chemicals, non-ferrous metals, s	

Cimate	Kyoto gases、N2O、NH3、NOx、OC、PFC、SF6、Sulfur、VOC)		•
	Concentration (CH4、CO2、N2O)		
	Radiative forcing		•
	 Carbon (Industry, residential and commercial, transportation, 	Conital	
	SCC, supply)	Capital	•
	 Primary energy (biomass, coal, gas, oil) 	Cost	•
	• Secondary energy (electricity, gas, hydrogen, liquid fuels, solid		•
Price	fuels)		
	 Final energy (industry, residential and commercial, 	Agricultural	
	transportation)	crops and	
	Industry (cement)	forestrv	I.
	Agriculture (corn, Non-energy crops, soybean, wheat)	loiestiy	L.
	• Electricity (biomass, coal, gas, geothermal, hydro, nuclear, oil,		Ľ
	other, solar, biomass, wind)		•
Capacity	 Gas (biomass, coal, hydrogen, liquids) 	Other	•
	Capacity additions (biomass, coal, gas, geothermal, hydro,		•

			=
600	region. World, variable: Final Energy		
550			
500			
	100000	•	
eo 40	it to the second		
1		0	
50			
2010 2520	2038 2540 2558 2568	25/3 2580 29	90 2100

Production (cement, chemicals, non-ferrous metals, steel) Energy supply investment (CO2 transport and storage, electricity, extraction, heat, hydrogen, liquids, other) Electricity (biomass, coal, gas, geothermal, hydro, nuclear, solar, wind) Gas (biomass. coal) Hydrogen (Biomass, coal, electricity, gas) ' Liquids (biomass, coal, gas, oil) Agricultural demand/production Forestry demand/production Yield (cereal, oil crops, sugar crops) Fertilizer use (nitrogen, phosphorus) Food demand (crops, livestock) Government tax revenue Water consumption Land cover

nuclear, oil, solar, biomass, wind)

NGFS CA Climate Impact Explorer

(Reference, Physical risk) [NGFS CA Climate Impact Explorer Parameter] The available parameters in the NGFS CA Climate Impact Explorer

NGFS CA Climate Impact Explorer						
Issuing Agency	NGFS	Absolute change in mean air temperature in Japan. This sprah horos hore absolute changes in Mann Air Temperature (expressed in degrees Cathios) will approx horos their a dispart at offering regulated anoming bank category and the company of the strategory and the dispart of the strategory of the strategory pulsions science. The company of anterest exactly	- Devretand			
Scenario	RCP 2.6 / 4.5 / 6.0 / 8.5 NGFS Net Zero 2050 / Delayed Transition / Current Policies / CAT Current Policies	Ramo Adv Paragonalises II 12: 4.0 2.0 2.0 2.0 2.0	- FiGPS surrant			
Time horizon	2015~2100, every 5 years	 A state of the sta	Baseline 11,14°C (reference period 1986-2006)			

NGFS Net Zero 2050 / Delayed Transition / Current Policies / CAT Current Policies	4.0 2.0 Global 10	15: International Internationa
2015~2100, every 5 years	0.0 2020 3-055, sonthiteole interval Source: ITAMUS	Server 2000 2000 2000 2000 0000 0000 0000 00
List of availab	le parameters	
Details	Category	Details
Annual expected damage from river floods Annual expected damage from tropical cyclones 1-in-100 year expected damage from tropical cyclones		Relative humidity Specific humidity Precipitation Specific
Land fraction annually exposed to river floods Annual maximum river flood depth Land fraction annually exposed to crop failures	Climate	 Snowfall Atmospheric pressure (surface) Atmospheric pressure (adjusted to sea level)

Mean air

temperature

Freshwater

Labor productivity

Wind speed

Surface runoff

River discharge

Downwelling longwave radiation

Daily maximum air temperature

Daily minimum air temperature

Maximum of daily river discharge

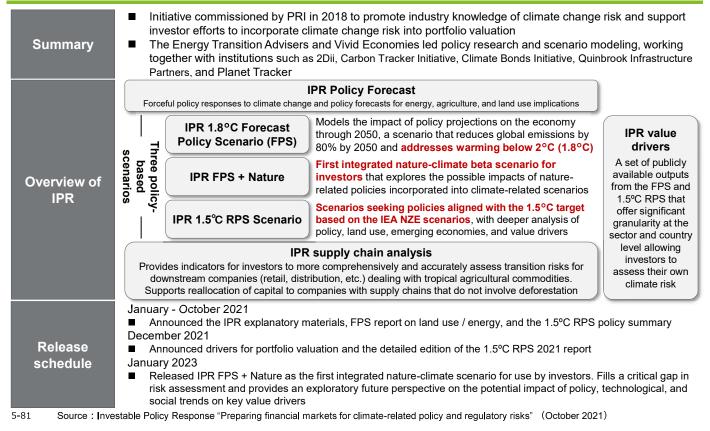
Minimum of daily river discharge

Reduced labor productivity due to heat stress

Land fraction annually exposed to Annual maximum river flood depth Land fraction annually exposed to crop Fraction of population annually exposed to crop Peril-specific failures hazards Land fraction annually exposed to wildfires Fraction of population annually exposed to wildfires Land fraction annually exposed to heatwaves Fraction of population annually exposed to heatwaves Soil moisture Annual mean maize yield Agriculture Annual mean rice yield Annual mean soy yield Annual mean wheat yield

Source : NGFS CA Climate Impact Explorer Climate Analytics - Climate impact explorer

Category


Economic

damades

Source : NGFS Phase 3 Scenario Explorer https://data.ene.iiasa.ac.at/ngfs/#/workspaces 5 - 79

[Outline of IPR scenario]

IPR (the Inevitable Policy Response) is an initiative for supporting investor efforts to incorporate climate change risks into portfolio valuation; in December 2021, it released detailed information for the 1.5°C scenario group

[List of IPR 1.5°C RPS 2021 Value Drivers Parameters] IPR 1.5°C RPS 2021 GHG emissions, CO2 removal, New Deployment, Capex, Capacity, Technology stock, Price

	Ра	rameter	Reg	gion		
Category	Variable	Industry	World	Japan	Unit	Time Horizon
GHG Emission	CO2 Emission	Power, Buildings, Transport, Other Energy, Industry, Total Land use	•	•	Mt	2020-2050
CO2 removal	BECCS	Power, Industry, Total	•	•	Mt	2020-2050
CO2 removal	DACS	Total	•	-	Mt	2020-2050
	Electricity Generation	Power, Hydrogen	•	•	GW	2020-2050
New	Vehicles	Transport	•	•	Vehicles (thousands)	2020-2050
Deployment	Heating systems	Buildings	•	•	% mix	2020-2050
	Battery capacity	Total	•	•	GWh	2020-2050
	Electricity generation	Power, Hydrogen	•	•	USD (million)	2020-2050
Capex	Vehicles	Transport	•	•	USD (million)	2020-2050
	Heating systems	Buildings	•	•	USD (million)	2020-2050
Capacity	Electricity generation	Power	•	•	GW	2020-2050
	Electricity	Hydrogen	•	•	GW	2020-2050
Technology Stock	Vehicles	Transport	•	•	Vehicles (thousands)	2020-2050
	Heating systems	Buildings	•	•	% mix	2020-2050
	Battery	-	•	-	USD / kWh	2020-2050
	Nickel	-	•	_	USD / tonne	2020-2050
	Copper	-	•	-	USD / tonne	2020-2050
Ditte	Aluminum	-	•	-	USD / tonne	2020-2050
Price	Lithium	-	•	-	USD / tonne	2020-2050
	Cobalt	-	•	-	USD / tonne	2020-2050
	石炭	_	_	•	USD / tonne	2020-2050
	Oil	-	_	•	USD / tCO2	2020-2050

Source : PRI "IPR FPS 2021 Value Drivers Database"、 "IPR 1.5°C RPS 2021 Value Drivers Database"、 "IPR FPS + Nature 2023 Value Drivers" (AS of February 2023) 5-82

[List of IPR 1.5°C RPS 2021 Value Drivers Parameter] Electricity Generation, Production

	Para	ameter	Regi	ion		
Category	Variable	Industry	World	Japan	Unit	Time Horizon
	Coal	Power	•	•	TWh	2020-2050
	Coal CCS	Power	•	•	TWh	2020-2050
	Oil	Power	•	•	TWh	2020-2050
	Natural gas	Power	•	•	TWh	2020-2050
	Natural gas CCS	Power	•	•	TWh	2020-2050
	Nuclear	Power	•	•	TWh	2020-2050
Electricity Generation	Hydro	Power	•	•	TWh	2020-2050
Jeneration	Biomass	Power	•	•	TWh	2020-2050
	Biomass CCS	Power	•	•	TWh	2020-2050
	Solar	Power	•	•	TWh	2020-2050
	Onshore Wind	Power	•	•	TWh	2020-2050
	Offshore Wind	Power	•	•	TWh	2020-2050
	Hydrogen	Power	•	•	TWh	2020-2050
	Steel	Industry	•	•	Mt	2020-2050
	Cement	Industry	•	•	Mt	2020-2050
	Hydrogen	Industry	•	•	Mt	2020-2050
	Chemicals	Industry	•	•	Mt	2020-2050
-	Aggregates	Industry	•	•	Mt	2020-2050
Production	Nickel	Industry	•	_	kt	2020-2050
	Steel	Industry	•	_	kt	2020-2050
	Aluminum	Industry	•	_	kt	2020-2050
	Lithium	Industry	•	_	kt	2020-2050
	Cobalt	Industry	•	_	kt	2020-2050

Source : PRI "IPR FPS 2021 Value Drivers Database", "IPR 1.5°C RPS 2021 Value Drivers Database", "IPR FPS + Nature 2023 Value Drivers" (As of February 2023) 5-83

[List of IPR 1.5°C RPS 2021 Value Drivers Parameters] IPR 1.5°C RPS 2021 Sector energy demand, Primary energy demand, Demand, Population, Price (high), Price (low)

		Parameter	Reg	gion	Unit	Time Horizon
Category	Variable	Industry	World	Japan	, one	
	Oil	Power, Buildings, Transport, Industry, No-energy use, Other energy	•	•	PJ	2020-2050
	Natural Gas	Power, Buildings, Transport, Industry, No-energy use, Other energy	•	•	PJ	2020-2050
Sector Energy Demand	Coal	Power, Buildings, Transport, Industry, No-energy use, Other energy	•	•	PJ	2020-2050
Cector Energy Demand	Biomass	Power, Buildings, Transport, Industry, Other energy	•	•	PJ	2020-2050
	Electricity	Power, Buildings, Transport, Industry, Other energy	•	•	PJ	2020-2050
	Hydrogen	Power, Buildings, Transport, Industry, Other energy	•	•	PJ	2020-2050
	Oil	Total	•	•	PJ	2020-2050
Primary Energy	Natural gas	Total	•	•	PJ	2020-2050
Demand	Coal	Total	•	•	PJ	2020-2050
	Biomass	Total	•	•	PJ	2020-2050
Demand	Aviation	Transport	•	•	RTK (billion)	2020-2050
Population	_	Total	•	•	Million Population	2020-2050
Price (High)	Oil	_	•	_	USD / Barrel	2020-2050
Price (Low)	Oil	-	•	_	USD / Barrel	2020-2050

5-84 Source : PRI "IPR FPS 2021 Value Drivers Database", "IPR 1.5°C RPS 2021 Value Drivers Database", "IPR FPS + Nature 2023 Value Drivers" (As of February 2023)

[List of IPR 1.5°C RPS 2021 Value Drivers Parameters]

Nature-based solutions, Bioenergy, Timber, Agriculture, Alternative meat

	Parameter		Region		Unit	Time Horizon
Category	Variable	Industry	World	Japan		
	Area	Land Use	•	•	Million ha	2020-2050
	Carbon Value	Land Use	•	•	USD 2020	2020-2050
Nature-based Solution	CAPEX	Land Use	•	•	USD 2020 , USD 2020/ha , Index (2020 = 1)	2020-2050
	OPEX	Land Use	•	•	USD 2020/ha/yr (average over project lifetime)	2020
Diaman	Production	Land Use	•	-	EJ/yr	2020-2050
Bioenergy	Price Index	Land Use	•	-	Index (2025 = 100)	2020-2050
Timber	Industrial roundwood	Land Use	•	-	Million M3, Index (2020 = 100)	2020-2050
	Production	Land Use	•	-	Mt DM/yr	2020-2050
Agriculture	Crop Yields	Land Use	•	-	t DM/ha	2020-2050
	Average annual food price change 2020-2050	Land Use	•	-	Percent	2020
	Production	Land Use	•	-	Mt DM	2020-2050
Alternative Meat	Production Cost	Land Use	•	_	Index (Animal meat average 2020年=100)	2020-2050

Source : PRI "IPR FPS 2021 Value Drivers Database", "IPR 1.5°C RPS 2021 Value Drivers Database", "IPR FPS + Nature 2023 Value Drivers" (As of February 2023) 5-85

[List of FPS 2021 Energy Parameters] FPS 2021 Energy GHG emissions, CO2 removal, New deployment, Capex, Capacity, Technology stock, Price

	Paramet	er	Reg	gion	11-24	T ion 11 and 1 and
Category	Variable	Industry	World	Japan	Unit	Time Horizon
GHG emissions	CO2 emissions	Power, Buildings, Industry, Transport, Other energy, Total	• • Mt		Mt	2020-2050
CO2	BECCS	Power, Industry	•	•	Mt	2020-2050
Removal	DACS	Total	•	-	Mt	2020-2050
	Electricity Generation	Power, Hydrogen	•	•	GW	2020-2050
New	Vehicles	Transport	•	•	Vehicles (thousands)	2020-2050
Deployment	Heating systems	Buildings	•	•	% mix	2020-2050
	Battery capacity	Total	•	•	GWh	2020-2050
	Electricity Generation	Power, Hydrogen	•	•	USD (million)	2020-2050
Capex	Vehicles	Transport	•	•	USD (million)	2020-2050
	Heating systems	Buildings	•	•	USD (million)	2020-2050
Capacity	Electricity Generation	Power	•	•	GW	2020-2050
	Electricity Generation	Hydrogen	•	•	GW	2020-2050
Technology Stock	Vehicles	Transport	•	•	Vehicles (thousands)	2020-2050
	Heating systems	Buildings	•	•	% mix	2020-2050
	Battery	-	•	_	USD / kWh	2020-2050
	Nickel	-	•	_	USD / tonne	2020-2050
	Copper	-	•	-	USD / tonne	2020-2050
Price	Aluminum	-	•	_	USD / tonne	2020-2050
Price	Lithium	-	•	_	USD / tonne	2020-2050
	Cobalt	-	•	_	USD / tonne	2020-2050
	Coal	-	-	•	USD / tonne	2020-2050
	Carbon	_	_	•	USD / tCO2	2020-2050

5-86 Source : PRI "IPR FPS 2021 Value Drivers Database", "IPR 1.5°C RPS 2021 Value Drivers Database", "IPR FPS + Nature 2023 Value Drivers" (As of February 2023)

[List of FPS 2021 Energy Parameters] Electricity Generation, Production

	Parameter	Parameter				T '
Category	Variable	Industry	World	Japan	Unit	Time Horizon
	Coal	Power	•	•	TWh	2020-2050
	Coal CCS	Power	•	•	TWh	2020-2050
	Oil	Power	•	•	TWh	2020-2050
	Natural gas	Power	•	•	TWh	2020-2050
	Natural gas CCS	Power	•	•	TWh	2020-2050
	Nuclear	Power	•	•	TWh	2020-2050
Electricity Generation	Hydrogen	Power	•	•	TWh	2020-2050
Concration	Biomass	Power	•	•	TWh	2020-2050
	Biomass CCS	Power	•	•	TWh	2020-2050
	Solar	Power	•	•	TWh	2020-2050
	Onshore wind	Power	•	•	TWh	2020-2050
	Offshore wind	Power	•	•	TWh	2020-2050
	Hydrogen	Power	•	•	TWh	2020-2050
	Steel	Industry	•	•	Mt	2020-2050
	Cement	Industry	•	•	Mt	2020-2050
	Hydrogen		•	•	Mt	2020-2050
	Chemicals	Industry	•	•	Mt	2020-2050
	Aggregates	Industry	•	•	Mt	2020-2050
Production	Nickel	Industry	•	_	kt	2020-2050
	Copper	Industry	•	_	kt	2020-2050
	Aluminum	Industry	•	_	kt	2020-2050
	Lithium	Industry	•	_	kt	2020-2050
	Cobalt	Industry	•	_	kt	2020-2050

Source : PRI "IPR FPS 2021 Value Drivers Database", "IPR 1.5°C RPS 2021 Value Drivers Database", "IPR FPS + Nature 2023 Value Drivers" (As of February 2023) 5-87

[FPS 2021 Energy Parameters] FPS 2021 Energy Sector energy demand, Primary energy demand, Demand, Population, Price (high), Price (low)

		Parameter	Reg	gion	Unit	Time Horizon
Category	Variable	Industry	World	Japan		
	Oil	Power, Buildings, Transport, Industry, Non-energy use, Other energy	•	•	PJ	2020-2050
	Natural gas	Power, Buildings, Transport, Industry, Non-energy use, Other energy	•	•	PJ	2020-2050
Sector energy	Coal	Power, Buildings, Industry, Non-energy use, Other energy	•	•	PJ	2020-2050
demand	Biomass	Power, Buildings, Transport, Industry, Other energy	•	•	PJ	2020-2050
	Electricity	Power, Buildings, Transport, Industry, Other energy	•	•	PJ	2020-2050
	Hydrogen	Power, Buildings, Transport, Industry, Other energy	•	•	PJ	2020-2050
	Oil	Total	•	•	PJ	2020-2050
Primary	Natural gas	Total	•	•	PJ	2020-2050
energy demand	Coal	Total	•	•	PJ	2020-2050
	Biomass	Total	•	•	PJ	2020-2050
Demand	Aviation	Transport	•	•	RTK(billion)	2020-2050
Population	-	Total	•	•	Million	2020-2050
Price (high)	Oil	-	•	-	USD / Barrel	2020-2050
Price (low)	Oil	-	•	_	USD / Barrel	2020-2050

5-88 Source : PRI "IPR FPS 2021 Value Drivers Database", "IPR 1.5°C RPS 2021 Value Drivers Database", "IPR FPS + Nature 2023 Value Drivers" (As of February 2023)

[List of FPS 2022 Land Use Parameters] Opex, Capex, Annual revenue

	Paramete	er	Region		Unit	Time
Category	Variable	Industry	World	Japan	Unit	Horizon
	Cropland-improve	Land use	•	-	USD 2021/ha/yr (average over project lifetime)	2020
	Forest-avoid	Land use	•	_	USD 2021/ha/yr (average over project lifetime)	2020
	Forest-plant	Land use	•	_	USD 2021/ha/yr (average over project lifetime)	2020
Opex	Forest-restore	Land use	•	_	USD 2021/ha/yr (average over project lifetime)	2020
	Mangrove-restore	Land use	•	_	USD 2021/ha/yr (average over project lifetime)	2020
	Pasture-improve	Land use	•	-	USD 2021/ha/yr (average over project lifetime)	2020
	Peat-restore	Land use	•	-	USD 2021/ha/yr (average over project lifetime)	2020
	Cropland-improve	Land use	•	_	USD 2021/ha	2020-2050
	Forest-avoid	Land use	•	_	USD 2021/ha	2020-2050
	Forest-plant	Land use	•	_	USD 2021/ha	2020-2050
Capex	Forest-restore	Land use	•	_	USD 2021/ha	2020-2050
	Mangrove-restore	Land use	•	_	USD 2021/ha	2020-2050
	Pasture-improve	Land use	•	_	USD 2021/ha	2020-2050
	Peat-restore	Land use	•	_	USD 2021/ha	2020-2050
	Cropland-improve	Land use	•	_	USD 2021	2020-2050
	Forest-avoid	Land use	•	_	USD 2021	2020-2050
	Forest-restore-plant	Land use	•	_	USD 2021	2020-2050
Annual Revenue	Mangrove-restore	Land use	•	_	USD 2021	2020-2050
Coverine	Pasture-improve	Land use	•	_	USD 2021	2020-2050
P	Peat-restore	Land use	•	_	USD 2021	2020-2050
	All NBS	Land use	•	_	USD 2021	2020-2050

Source : PRI "IPR FPS 2021 Value Drivers Database", "IPR 1.5°C RPS 2021 Value Drivers Database", "IPR FPS + Nature 2023 Value Drivers" (As of February 2023) 5-89

FPS 2022 Land Use

[List of FPS 2022 Land Use Parameters] Cumulative investment, Cumulative area

	Parameter		Reg	gion	Unit	Time Horizon
Category	Variable	Industry	World	Japan		
	Cropland-improve	Land Use	•	_	USD 2021	2020-2050
	Forest-avoid	Land Use	•	_	USD 2021	2020-2050
	Forest-restore-plant	Land Use	•	_	USD 2021	2020-2050
Cumulative Investment	Mangrove-restore	Land Use	•	_	USD 2021	2020-2050
	Pasture-improve	Land Use	•	_	USD 2021	2020-2050
	Peat-restore	Land Use	•	_	USD 2021	2020-2050
	AIINBS	Land Use	•	_	USD 2021	2020-2050
	Cropland-improve	Land Use	•	_	Mha	2020-2050
	Forest-avoid	Land Use	•	_	Mha	2020-2050
	Forest-restore-plant	Land Use	•	_	Mha	2020-2050
Cumulative area	Mangrove-restore	Land Use	•	_	Mha	2020-2050
	Pasture-improve	Land Use	•	_	Mha	2020-2050
	Peat-restore	Land Use	•	_	Mha	2020-2050
	AII NBS	Land Use	•	_	Mha	2020-2050

Source : PRI "IPR FPS 2021 Value Drivers Database", "IPR 1.5°C RPS 2021 Value Drivers Database", "IPR FPS + Nature 2023 Value Drivers" (As of February 2023)

[List of FPS + Nature 2022 Land Use Parameters] CO2, Land price index, Opex, Price

	Parameters		Reg	gion	11	Time
Category	Variable	Industry	World	Japan	Unit	Horizon
002	-	Land Use	•	-	Mt CO2/yr	2020-2050
₋and price ndex	-	Land Use	•	-	Index (2020 = 100)	2020-2050
	Cropland-improve	Land Use	•	-	USD 2021/ha/yr (average over project lifetime)	2020
	Forest-avoid	Land Use	•	-	USD 2021/ha/yr (average over project lifetime)	2020
	Forest-plant	Land Use	•	-	USD 2021/ha/yr (average over project lifetime)	2020
Dpex	Forest-restore	Land Use	•	-	USD 2021/ha/yr (average over project lifetime)	2020
	Mangrove-restore	Land Use	•	-	USD 2021/ha/yr (average over project lifetime)	2020
	Pasture-improve	Land Use	•	-	USD 2021/ha/yr (average over project lifetime)	2020
	Peat-restore	Land Use	•	-	USD 2021/ha/yr (average over project lifetime)	2020
	Coffee	Land Use	•	-	Index(2020 = 100)	2020-2050
	Cocoa	Land Use	•	-	Index(2020 = 100)	2020-2050
	Rubber	Land Use	•	-	Index(2020 = 100)	2020-2050
	Sugar cane	Land Use	•	-	Index(2020 = 100)	2020-2050
	Maize	Land Use	•	-	Index(2020 = 100)	2020-2050
	Oil palm fruit	Land Use	•	-	Index(2020 = 100)	2020-2050
	Temperate cereals	Land Use	•	-	Index(2020 = 100)	2020-2050
Price	Poultry meat	Land Use	•	-	Index(Animal meat average 2020 = 100)	2020-2050
	Industrial roundwood	Land Use	•	-	Index(2020 = 100)	2020-2050
	Soybean	Land Use	•	-	Index(2020 = 100)	2020-2050
	Monogastric meat	Land Use	•	-	Index(Animal meat average 2020 = 100)	2020-2050
	Ruminant meat	Land Use	•	-	Index(Animal meat average 2020 = 100)	2020-2050
	Animal meat average	Land Use	•	-	Index(Animal meat average 2020 = 100)	2020-2050
	Dairy	Land Use	•	-	Index (Dairy average 2020 = 100) , Index (2020 = 100)	2020-2050
	Rice	Land Use	•	_	Index(2020 = 100)	2020-2050

Source : PRI "IPR FPS 2021 Value Drivers Database", "IPR 1.5°C RPS 2021 Value Drivers Database", "IPR FPS + Nature 2023 Value Drivers" (As of February 2023) 5-91

[List of FPS + Nature 2022 Land Use Parameters] Price index, Food price index, Production, Capex

FPS + Nature 2022 Land Use

	Parameter	Parameter			11.29	
Category	Variable	Industry	World	Japan	Unit	Time Horizon
Price index	Second-generation	Land Use	•	_	Index(2020 = 100)	2020-2050
Food price index	_	Land Use	•	-	Index(2020 = 100)	2020-2050
	Coffee	Land Use	•	-	Mt DM/yr	2020-2050
	Cocoa	Land Use	•	-	Mt DM/yr	2020-2050
	Rubber	Land Use	•	-	Mt DM/yr	2020-2050
	Sugar cane	Land Use	•	-	Mt DM/yr	2020-2050
	Maize	Land Use	•	-	Mt DM/yr	2020-2050
	Oil palm fruit	Land Use	•	-	Mt DM/yr	2020-2050
	Temperate cereals	Land Use	•	-	Mt DM/yr	2020-2050
Production	Poultry meat	Land Use	•	-	Mt DM/yr	2020-2050
	Industrial roundwood	Land Use	•	-	Mm3/yr	2020-2050
	Soybean	Land Use	•	-	Mt DM/yr	2020-2050
	Second-generation	Land Use	•	-	EJ/yr	2020-2050
	Monogastric meat	Land Use	•	-	Mt DM/yr	2020-2050
	Ruminant meat	Land Use	•	-	Mt DM/yr	2020-2050
	Dairy	Land Use	•	-	Mt DM/yr	2020-2050
	Rice	Land Use	•	-	Mt DM/yr	2020-2050
	Cropland-improve	Land Use	•	-	USD 2021/ha	2020-2050
	Forest-avoid	Land Use	•	-	USD 2021/ha	2020-2050
	Forest-plant	Land Use	•	-	USD 2021/ha	2020-2050
Capex	Forest-restore	Land Use	•	-	USD 2021/ha	2020-2050
	Mangrove-restore	Land Use	•	-	USD 2021/ha	2020-2050
	Pasture-improve	Land Use	•	-	USD 2021/ha	2020-2050
	Peat-restore	Land Use	•	_	USD 2021/ha	2020-2050

Source : PRI "IPR FPS 2021 Value Drivers Database", "IPR 1.5°C RPS 2021 Value Drivers Database", "IPR FPS + Nature 2023 Value Drivers" (As of February 2023)

[List of FPS + Nature 2022 Land Use Parameter]

Annual revenue, Average crop yields, Cumulative investment, Cumulative area

	Parameter		Reg	gion		
Category	Variable	Industry	World	Japan	Unit	Time Horizon
	Cropland-improve	Land Use	•	-	USD21	2020-2050
	Forest-avoid	Land Use	•	_	USD21	2020-2050
	Forest-restore-plant	Land Use	•	-	USD21	2020-2050
Annual revenue	Mangrove-restore	Land Use	•	-	USD21	2020-2050
	Pasture-improve	Land Use	•	_	USD21	2020-2050
	Peat-restore	Land Use	•	_	USD21	2020-2050
	All NBS	Land Use	•	-	USD21	2020-2050
Average crop yields	-	Land Use	•	_	t DM/ha	2020-2050
	Cropland-improve	Land Use	•	-	USD21	2020-2050
	Forest-avoid	Land Use	•	-	USD21	2020-2050
	Forest-restore-plant	Land Use	•	-	USD21	2020-2050
Cumulative Investment	Mangrove-restore	Land Use	•	-	USD21	2020-2050
Investment	Pasture-improve	Land Use	•	-	USD21	2020-2050
	Peat-restore	Land Use	•	-	USD21	2020-2050
	All NBS	Land Use	•	_	USD21	2020-2050
	Cropland-improve	Land Use	•	_	Mha	2020-2050
	Forest-avoid	Land Use	•	-	Mha	2020-2050
	Forest-restore-plant	Land Use	•	_	Mha	2020-2050
Cumulative Area	Mangrove-restore	Land Use	•	_	Mha	2020-2050
,	Pasture-improve	Land Use	•	_	Mha	2020-2050
	Peat-restore	Land Use	•	_	Mha	2020-2050
	All NBS	Land Use	•	_	Mha	2020-2050

5-93 Source : PRI "IPR FPS 2021 Value Drivers Database", "IPR 1.5°C RPS 2021 Value Drivers Database", "IPR FPS + Nature 2023 Value Drivers" (As of February 2023)

[IPR Parameter] Tools related to "IPR Supply Chain Analysis 2022"

PRI IPR Supply Chain Analysis 2022

			a
Issuing Agency		Inevitable Policy Response	
Scenario		IPR FPS/IPR RPS/BAU ※R6/R7: IPR FPS only	
Time Horizon		2020–2050, every 5 years	\$
	• R • R	1 : Commodity production 2 : Commodity global prices 6 : Upgrading Operation costs 2 : Commodity price promise	E
	R1	 7 : Commodity price premia 1. Modeled after several policy scenarios and explores the long-term trends in global and regional productions 2. To assess the likelihood of downstream companies facing chronic demand shift 	- -
ltem/ Use case	R2	 A chronological study of price trends in various policy scenarios To analyze the impact of global price change on downstream company's business models 	(
	R6	 To assess the total cost of operational improvements that downstream firms must bear to reduce deforestation 	F
	R7	 To evaluate the sum of the prices that downstream firms must pay to procure goods that internalize the cost of deforestation using the Price Premier Value Driver 	ę

IPR Supply Chain Analysis 2022

R1/R6	: List of available parameters
Category	Region
Soybean	 SEA : Southeast Asia ANZ : Australia and NZ CHA : China, Korean Democratic People's
Beef	Republic, Taiwan, HK, and Macau • EUR : West Europe
Palm oil	 NEU : North Europe IND : India DEA : Japan and Korea
Timber	 MEA : Middle East Asia CAN : Canada, Saint Pierre and Miquelon TLA : Tropical Latin America
Сосоа	 USA : USA REF : East Europe RUS : Russia
Coffee	SAS : South Asia SCO : Latin America`s Southern Cone BRA : Brazil
Rubber	TAF : Tropical Africa SAF : Southern Africa
R2/R7	: List of available parameters
Category	Region
Same as above	• Global

Source : IPR Supply Chain Analysis 2022 Value drivers, Inevitable Policy Response - Supply Chain Analysis (SCA) download (unpri.org) (October 2022)

[Overview of SSP (Shared Socioeconomic Pathways)] SSP was developed as a socio-economic scenario based on recent policies and socio-economic environment

- Based on the issues of the socio-economic scenario "SRES" related to the evaluation of existing climate change, National Institute for Environmental Studies (Japan), PNNL(US), PBL(Netherland), IIASA(Austria) and Germany(PIK) has developed SSP*1
 - > SPES has problems such as the old base year (1990) and the inability to reflect recent policies
 - SSP considers recent changes in the external environment such as recent policies, vital statistics, GDP, and urbanization *2, and has relevance to existing socio-economic scenarios such as "SERS" and "RCPs". Developed as a scenario. It consists of 5 scenarios

		5 Scenario Composition of	of SSF		
SSP	Scenario	Scenario Outline ^{*3}		•	
SSP1	Sustainability	A scenario that assumes the realization of both international mitigation measures and adaptation measures related to climate change	nomic mitigation	★ ssp 5: (Mit. Challenges Dominate) Fossil-fueled Development	(High Challenges) Regional Rivalry A Rocky Road
SSP2	Middle of the Road	A scenario that assumes that the current socio-economic growth will continue	ecor	Taking the Highway (Intermediate Middle of	Challenges)
SSP3	Regional Rivalry	A scenario that assumes a situation where the country is divided, and it is difficult to realize international mitigation measures and adaptation measures	Socio- challenges	★ SSP 1: (Low Challenges) Sustainability	★ SSP 4: (Adapt. Challenges Dominate Inequality
SSP4	Inequality	A scenario that assumes an international economic society with widening disparities	ę	Taking the Green Road	A Road Divided
SSP5	Fossil-fueled Development	A scenario that assumes that the international community will develop depending on fossil fuels			nic challenges ptation

*1: https://www.nies.go.jp/whatsnew/20170221/20170221.html 、*2: https://unfccc.int/sites/default/files/part1_iiasa_rogelj_ssp_poster.pdf
 *3: https://www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change

5-95

[List of SSP Public Database Version2.0 Parameters (1/10)] SSP Public Database Version2.0 IAM Scenarios Model : GDP, Population, Primary Energy, Secondary Energy (Electricity)

	Categ	orv	-			SSP			
Large	Medium	Small	Unit	SSP1	SSP2	SSP3	SSP4	SSP5	Remark
GDP	PPP	-	billionUS\$ 2005/yr	0	0	0	0	0	
Population	Population	-	million	0	0	0	0	0	
Energy	Primary Energy	Total	EJ/yr	0	0	0	0	0	
Energy	Primary Energy	Biomass(Total / Traditional / with CCS/ without CCS)	EJ/yr	0	0		0	0	Some data (Traditional, CCS) is not available in SSP3
Energy	Primary Energy	Coal (Total / with CCS /without CCS)	EJ/yr	0	0	\triangle	0	0	Some data (CCS) is not available in SSP3
Energy	Primary Energy	Oil (Total / with CCS / wihout CCS)	EJ/yr	0		\triangle	0	\triangle	Some data (CCS) is not available in SSP2,3,5
Energy	Primary Energy	Gas (Total / with CCS/ without CCS)	EJ/yr	0	0		0	0	Some data (CCS) is not available in SSP3
Energy	Primary Energy	Fossil (Total , with CCS, wihout CCS)	EJ/yr	0	0		0	0	Some data (CCS) is not available in SSP3
Energy	Primary Energy	Nuclear	EJ/yr	0	0	0	0	0	
Energy	Primary Energy	Non-Biomass Renewables	EJ/yr	0	0	0	0	0	
Energy	Primary Energy	Hydro	EJ/yr	0	0	0	0	0	
Energy	Primary Energy	Geothermal	EJ/yr	-	0	0	0	0	Data is not available in SSP1
Energy	Primary Energy	Other	EJ/yr	0	0	0	—	—	Data is not available in SSP4,5
Energy	Primary Energy	Solar	EJ/yr	0	0	0	0	0	
Energy	Primary Energy	Wind	EJ/yr	0	0	0	0	0	
Energy	Primary Energy	Secondary Energy Trade	EJ/yr	-		0	_	_	Data is not available in SSP1,2,4,5
Energy	Secondary Energy (Electricity)	Total	EJ/yr	0	0	0	0	0	
Energy	Secondary Energy (Electricity)	Biomass(Total / with CCS/ without CCS)	EJ/yr	0	0		0	0	Some data (CCS) is not available in SSP3
Energy	Secondary Energy (Electricity)	Coal (Total / with CCS /without CCS)	EJ/yr	0	0		0	0	Some data (CCS) is not available in SSP3
Energy	Secondary Energy (Electricity)	Oil	EJ/yr	0	0	0	0	0	
Energy	Secondary Energy (Electricity)	Gas (Total / with CCS/ without CCS)	EJ/yr	0	0	\triangle	0	0	Some data (CCS) is not available in SSP3
Energy	Secondary Energy (Electricity)	Geothermal	EJ/yr	—	0	0	0	0	Data is not available in SSP1
Energy	Secondary Energy (Electricity)	Hydro	EJ/yr	0	0	0	0	0	
Energy	Secondary Energy (Electricity)	Non-Biomass Renewables	EJ/yr	0	0	0	0	0	
Energy	Secondary Energy (Electricity)	Nuclear	EJ/yr	0	0	0	0	0	
Energy	Secondary Energy (Electricity)	Solar	EJ/yr	0	0	0	0	0	
Energy	Secondary Energy (Electricity)	Wind	EJ/yr	0	0	0	0	0	

5-96 Source : SSP Public Database Version2.0 (As of February 2023)

[List of SSP Public Database Version2.0 Parameters (2/10)] IAM Scenarios Model : Secondary Energy, Final Energy

	Catego	ry	Unit			SSP			Domost
Large	Medium	Small		SSP1	SSP2	SSP3	SSP4	SSP5	Remark
Energy	Secondary Energy (Gases)	Total	EJ/yr	0	0	0	0	0	
Energy	Secondary Energy (Gases)	Biomass	EJ/yr	_	0	—	0	0	Data is not available in SSP1,3
Energy	Secondary Energy (Gases)	Coal	EJ/yr	_	0	—	0	0	Data is not available in SSP1,3
Energy	Secondary Energy (Gases)	Natural Gas	EJ/yr	0	0	0	0	0	
Energy	Secondary Energy (Heat)	Total	EJ/yr	-	0	0	—	0	Data is not available in SSP1,4
Energy	Secondary Energy (Heat)	Geothermal	EJ/yr	-	0	0	—	0	Data is not available in SSP1,4
Energy	Secondary Energy (Hydrogen)	Total	EJ/yr	0	0	-	0	0	Data is not available in SSP3
Energy	Secondary Energy (Hydrogen)	Biomass(Total / with CCS/ without CCS)	EJ/yr	0	0		0	0	Data is not available in SSP3
Energy	Secondary Energy (Hydrogen)	Electricity	EJ/yr	0	0		0	0	Data is not available in SSP3
Energy	Secondary Energy (Liquids)	Total	EJ/yr	0	0	0	0	0	
Energy	Secondary Energy (Liquids)	Biomass(Total / with CCS/ without CCS)	EJ/yr		0		0	0	Some data (CCS) is not available in SSP1, (CCU- without CCU) is not available in SSP1
Energy	Secondary Energy (Liquids)	Coal (Total / with CCS /without CCS)	EJ/yr	—	0	—	—	0	Data is not available in SSP1,3,4
Energy	Secondary Energy (Liquids)	Gas (Total / with CCS/ without CCS)	EJ/yr	—	0	—	—	—	Data is not available in SSP1,3,4,5
Energy	Secondary Energy (Liquids)	Oil	EJ/yr	0	0	0	0	0	
Energy	Secondary Energy (Solids)	<u> </u>	EJ/yr	0	0	—	—	0	Data is not available in SSP3,4
Energy	Final Energy	Total	EJ/yr	0	0	0	0	0	
Energy	Final Energy	Electricity	EJ/yr	0	0	0	0	0	
Energy	Final Energy	Gases	EJ/yr	0	0	0	0	0	
Energy	Final Energy	Heat	EJ/yr	0	0	0	0	0	
Energy	Final Energy	Hydrogen	EJ/yr	0	0		0	0	Data is not available in SSP3
Energy	Final Energy	Liquids	EJ/yr	0	0	0	0	0	
Energy	Final Energy	Solar	EJ/yr	0	0		—		Data is not available in SSP3,4,5
Energy	Final Energy (Solids)	Total	EJ/yr	0	0	0	0	0	
Energy	Final Energy (Solids)	Biomass (Total, Traditional)	EJ/yr	0	0	Δ	0	0	Some data (Traditional) is not available in SSP3
Energy	Final Energy (Solids)	Coal	EJ/yr	0	0	0	0	0	
Energy	Final Energy	Industry	EJ/yr	0	0	0	0		Data is not available in SSP5
Energy	Final Energy	Residential and Commercial	EJ/yr	0	0	0	0	_	Data is not available in SSP5
Energy	Final Energy	Transportation	EJ/yr	0	0	0	0	0	

Source : SSP Public Database Version2.0 (As of February 2023) 5-97

%Extract parameters for which Global values can be obtained %2005, 2010~2100, data is available for each 10 years

[List of SSP Public Database Version2.0 Parameters (3/10)] SSP Public Database Version2.0 IAM Scenarios Model : Energy Service (Transportation), Land Cover, Emissions (unharmonized)

	Category		Unit			SSP			Remark
Large	Medium	Small	Unit	SSP1	SSP2	SSP3	SSP4	SSP5	Remark
Energy	Energy Service (Transportation)	Freight	bn tkm/yr	0	_	—	0	0	Data is not available in SSP2,3
Energy	Energy Service (Transportation)	Passenger	bn pkm/yr	0	_	—	0	0	Data is not available in SSP2,3
Land Cover	Built-up Area		million ha	0	-	0	0	0	Data is not available in SSP2
Land Cover	Cropland		million ha	0	0	0	0	0	
Land Cover	Forest		million ha	0	0	0	0	0	
Land Cover	Pasture	—	million ha	0	0	0	0	0	
Emissions (unharmonized)	BC		Mt BC/yr	0	0	0	0	0	
Emissions (unharmonized)	CH4	Total	Mt CH4/yr	0	0	0	0	0	
Emissions (unharmonized)	CH4	Fossil Fuels and Industry	Mt CH4/yr	-	_	_	0	0	Data is not available in SSP1,2,3
Emissions (unharmonized)	CH4	Land Use	Mt CH4/yr	0	0	0	0	0	
Emissions (unharmonized)	со	<u> </u>	Mt CO/yr	0	0	0	0	0	
Emissions (unharmonized)	CO2	Total	Mt CO2/yr	0	0	0	0	0	
Emissions (unharmonized)	CO2 (Carbon Capture and Storage)	Total	Mt CO2/yr	0	0	_	0	0	Data is not available in SSP3
Emissions (unharmonized)	CO2 (Carbon Capture and Storage)	Biomass	Mt CO2/yr	0	0	_	0	0	Data is not available in SSP3
Emissions (unharmonized)	CO2	Fossil Fuels and Industry	Mt CO2/yr	0	0	0	0	0	
Emissions (unharmonized)	CO2	Land Use	Mt CO2/yr	0	0	0	0	0	
Emissions (unharmonized)	F-Gases	_	Mt CO2- equiv/yr	0	0	0	0	0	
Emissions (unharmonized)	Kyoto Gases	_	Mt CO2- equiv/yr	0	0	0	0	0	
Emissions (unharmonized)	N2O	Total	kt N2O / yr	0	0	0	0	0	
Emissions (unharmonized)	N2O	Land Use	kt N2O / yr	0	0	0	0	0	
Emissions (unharmonized)	NH3	_	Mt NH3/yr	0	0	0	0	0	
Emissions (unharmonized)	NOx	-	Mt NO2/yr	0	0	0	0	0	
Emissions (unharmonized)	oc	_	Mt OC/yr	0	0	0	0	0	
Emissions (unharmonized)	Sulfur		Mt SO2/yr	0	0	0	0	0	
Emissions (unharmonized)	VOC	_	Mt VOC/yr	0	0	0	0	0	

5-98 Source : SSP Public Database Version2.0 (As of February 2023)

[List of SSP Public Database Version2.0 Parameters (4/10)] IAM Scenarios Model : Emissions (harmonized), Climate

	Category	1	Unit			SSP			Remark
Large	Medium	Small	Unit	SSP1	SSP2	SSP3	SSP4	SSP5	Remark
Emissions (harmonized)	BC	-	Mt BC/yr	-	—	0	—	0	Data is not available in SSP1,2,4
Emissions (harmonized)	CH4	Total	Mt CH4/yr	-	—	0	—	0	Data is not available in SSP1,2,4
Emissions (harmonized)	CH4	Fossil Fuels and Industry	Mt CH4/yr	-	—	0	—	0	Data is not available in SSP1,2,4
Emissions (harmonized)	CH4	Land Use	Mt CH4/yr	-	—	0	—	0	Data is not available in SSP1,2,4
Emissions (harmonized)	СО	-	Mt CO/yr	-	—	0	—	0	Data is not available in SSP1,2,4
Emissions (harmonized)	CO2	Total	Mt CO2/yr	-	—	0	—	0	Data is not available in SSP1,2,4
Emissions (harmonized)	CO2	Fossil Fuels and Industry	Mt CO2/yr	—	—	0	—	0	Data is not available in SSP1,2,4
Emissions (harmonized)	CO2	Land Use	Mt CO2/yr	—	_	0	—	0	Data is not available in SSP1,2,4
Emissions (harmonized)	F-Gases	-	Mt CO2- equiv/yr	-	_	0	_	0	Data is not available in SSP1,2,4
Emissions (harmonized)	Kyoto Gases	-	Mt CO2- equiv/yr	_	_	0	_	0	Data is not available in SSP1,2,4
Emissions (harmonized)	N2O	—	kt N2O/yr	-	—	0	—	0	Data is not available in SSP1,2,4
Emissions (harmonized)	NH3	—	Mt NH3/yr	-	_	0	—	0	Data is not available in SSP1,2,4
Emissions (harmonized)	NOx	-	Mt NO2/yr	-	_	0	—	0	Data is not available in SSP1,2,4
Emissions (harmonized)	OC	-	Mt OC/yr	-	—	0	—	0	Data is not available in SSP1,2,4
Emissions (harmonized)	Sulfur	-	Mt SO2/yr	-	—	0	—	0	Data is not available in SSP1,2,4
Emissions (harmonized)	VOC	-	Mt VOC/yr	-	—	0	—	0	Data is not available in SSP1,2,4
Climate	Concentration	CO2	ppm	0	0	0	0	0	
Climate	Concentration	CH4	ppb	0	0	0	0	0	
Climate	Concentration	N2O	ppb	0	0	0	0	0	
Climate	Forcing	Total	W/m2	0	0	0	0	0	
Climate	Forcing	CO2	W/m2	0	0	0	0	0	
Climate	Forcing	CH4	W/m2	0	0	0	0	0	
Climate	Forcing	N2O	W/m2	0	0	0	0	0	
Climate	Forcing	Kyoto Gases	W/m2	0	0	0	0	0	
Climate	Forcing	F-Gases	W/m2	0	0	0	0	0	
Climate	Forcing	Aerosol	W/m2	0	0	0	0	0	
Climate	Temperature	Global Mean	°C	0	0	0	0	0	

Source : SSP Public Database Version2.0 (As of February 2023) 5-99

%Extract parameters for which Global values can be obtained %2005, 2010~2100, data is available for each 10 years

[List of SSP Public Database Version2.0 Parameters (5/10)] SSP Public Database Version2.0 IAM Scenarios Model : Agricultural Indicators, Economic Indicators, Technological Indicators

Ŭ	Category		_			SSP			
Large	Medium	Small	Unit	SSP1	SSP2	SSP3	SSP4	SSP5	Remark
Agricultural Indicators	Demand	Crops	million t DM/yr	0	0	0	_	_	Data is not available in SSP4,5
Agricultural Indicators	Demand	Crops (Energy)	million t DM/yr	_	-	0	_	0	Data is not available in SSP1,2,4
Agricultural Indicators	Demand	Livestock	million t DM/yr	0	0	0	_	0	Data is not available in SSP4
Agricultural Indicators	Production	Crops (Energy)	million t DM/yr	0	0	0	0	0	
Agricultural Indicators	Production	Crops (Non-Energy)	million t DM/yr	0	0	0	0	0	
Agricultural Indicators	Production	Livestock	million t DM/yr	0	0	0	0	0	
Economic Indicators	Consumption	_	billion US\$2005/yr	0	0	0	_	0	Data is not available in SSP4
Economic Indicators	Price (Carbon)	_	US\$2005/t CO2	0	0	-	0	0	Data is not available in SSP3
Technological Indicators	Capacity (Electricity)	Total	GW	0	0	0	0	0	
Technological Indicators	Capacity (Electricity)	Biomass	GW	0	0	0	0	0	
Technological Indicators	Capacity (Electricity)	Coal	GW	0	0	0	0	0	
Technological Indicators	Capacity (Electricity)	Gas	GW	0	0	0	0	0	
Technological Indicators	Capacity (Electricity)	Geothermal	GW	-	0	0	0	0	Data is not available in SSP1
Technological Indicators	Capacity (Electricity)	Hydro	GW	0	0	0	_	0	Data is not available in SSP4
Technological Indicators	Capacity (Electricity)	Nuclear	GW	0	0	0	0	0	
Technological Indicators	Capacity (Electricity)	Oil	GW	0	0	0	0	_	Data is not available in SSP5
Technological Indicators	Capacity (Electricity)	Other	GW	0	-	-	_	_	Data is not available in SSP2,3,4,5
Technological Indicators	Capacity (Electricity)	Solar (Total, CSP, PV)	GW	0	0			0	Data is not available in SSP3(CSP), and SSP4(CSP, PV)
Technological Indicators	Capacity (Electricity)	Wind (Total, Offshore, Onshore)	GW	0	0		Δ	Δ	Data is not available in SSP3 (Onshore),and SSP4,5(Onshore, Offshore)

Source : SSP Public Database Version2.0 (As of February 2023)

5-100

[List of SSP Public Database Version2.0 Parameters (6/10)] CMIP6 Emissions Model : BC, C2F6, CF4, CH4

	Category				SSP			
Large	Medium	Unit	SSP1	SSP2	SSP3	SSP4	SSP5	Remark
BC	Agricultural Waste Burning	Mt BC/yr	0	0	0	0	0	
вс	Aircraft	Mt BC/yr	0	0	0	0	0	
вс	Energy Sector	Mt BC/yr	0	0	0	0	0	
вс	Forest Burning	Mt BC/yr	0	0	0	0	0	
BC	Grassland Burning	Mt BC/yr	0	0	0	0	0	
вс	Industrial Sector	Mt BC/yr	0	0	0	0	0	
вс	International Shipping	Mt BC/yr	0	0	0	0	0	
вс	Peat Burning	Mt BC/yr	0	0	0	0	0	
BC	Residential Commercial Other	Mt BC/yr	0	0	0	0	0	
вс	Transportation Sector	Mt BC/yr	0	0	0	0	0	
3C	Total	Mt BC/yr	0	0	0	0	0	
3C	Waste	Mt BC/yr	0	0	0	0	0	
C2F6	—	kt C2F6/yr	0	0	0	0	0	
CF4	—	kt CF4/yr	0	0	0	0	0	
CH4	Agricultural Waste Burning	Mt CH4/yr	0	0	0	0	0	
CH4	Agriculture	Mt CH4/yr	0	0	0	0	0	
CH4	Energy Sector	Mt CH4/yr	0	0	0	0	0	
CH4	Forest Burning	Mt CH4/yr	0	0	0	0	0	
CH4	Grassland Burning	Mt CH4/yr	0	0	0	0	0	
CH4	Industrial Sector	Mt CH4/yr	0	0	0	0	0	
CH4	International Shipping	Mt CH4/yr	0	0	0	0	0	
CH4	Peat Burning	Mt CH4/yr	0	0	0	0	0	
CH4	Residential Commercial Other	Mt CH4/yr	0	0	0	0	0	
CH4	Transportation Sector	Mt CH4/yr	0	0	0	0	0	
CH4	Total	Mt CH4/yr	0	0	0	0	0	
CH4	Waste	Mt CH4/yr	0	0	0	0	0	

Source : SSP Public Database Version2.0 (As of February 2023)

5-101

%Extract parameters for which Global values can be obtained %2005, 2010~2100, data is available for each 10 years

[List of SSP Public Database Version2.0 Parameters (7/10)] CMIP6 Emissions Model : CO2, CO, HFC, N2O

SSP Public Database Version2.0

	Category	Unit			SSP			Remark
Large	Medium	Unit	SSP1	SSP2	SSP3	SSP4	SSP5	Remark
CO2	AFOLU	Mt CO2/yr	0	0	0	0	0	
CO2	Aircraft	Mt CO2/yr	0	0	0	0	0	
CO2	Energy Sector	Mt CO2/yr	0	0	0	0	0	
CO2	Industrial Sector	Mt CO2/yr	0	0	0	0	0	
CO2	International Shipping	Mt CO2/yr	0	0	0	0	0	
CO2	Residential Commercial Other	Mt CO2/yr	0	0	0	0	0	
CO2	Solvents Production and Application	Mt CO2/yr	0	0	0	0	0	
CO2	Transportation Sector	Mt CO2/yr	0	0	0	0	0	
CO2	Total	Mt CO2/yr	0	0	0	0	0	
CO2	Waste	Mt CO2/yr	0	0	0	0	0	
CO	Agricultural Waste Burning	Mt CO/yr	0	0	0	0	0	
со	Aircraft	Mt CO/yr	0	0	0	0	0	
со	Energy Sector	Mt CO/yr	0	0	0	0	0	
со	Forest Burning	Mt CO/yr	0	0	0	0	0	
со	Grassland Burning	Mt CO/yr	0	0	0	0	0	
со	Industrial Sector	Mt CO/yr	0	0	0	0	0	
СО	International Shipping	Mt CO/yr	0	0	0	0	0	
со	Peat Burning	Mt CO/yr	0	0	0	0	0	
со	Residential Commercial Other	Mt CO/yr	0	0	0	0	0	
со	Transportation Sector	Mt CO/yr	0	0	0	0	0	
со	Total	Mt CO/yr	0	0	0	0	0	
СО	Waste	Mt CO/yr	0	0	0	0	0	
HFC	<u> </u>	Mt CO2-equiv/yr	0	0	0	0	0	
N2O	—	kt N2O/yr	0	0	0	0	0	

Source: SSP Public Database Version2.0 (As of February 2023)

[List of SSP Public Database Version2.0 Parameters (8/10)] **CMIP6 Emissions Model : NH3, Nox**

	Category				SSP			
Large	Medium	Unit	SSP1	SSP2	SSP3	SSP4	SSP5	Remark
NH3	Agricultural Waste Burning	Mt NH3/yr	0	0	0	0	0	
NH3	Agriculture	Mt NH3/yr	0	0	0	0	0	
NH3	Aircraft	Mt NH3/yr	0	0	0	0	0	
NH3	Energy Sector	Mt NH3/yr	0	0	0	0	0	
NH3	Forest Burning	Mt NH3/yr	0	0	0	0	0	
NH3	Grassland Burning	Mt NH3/yr	0	0	0	0	0	
NH3	Industrial Sector	Mt NH3/yr	0	0	0	0	0	
NH3	International Shipping	Mt NH3/yr	0	0	0	0	0	
NH3	Peat Burning	Mt NH3/yr	0	0	0	0	0	
NH3	Residential Commercial Other	Mt NH3/yr	0	0	0	0	0	
NH3	Transportation Sector	Mt NH3/yr	0	0	0	0	0	
NH3	Total	Mt NH3/yr	0	0	0	0	0	
NH3	Waste	Mt NH3/yr	0	0	0	0	0	
Nox	Agricultural Waste Burning	Mt NOx/yr	0	0	0	0	0	
Nox	Agriculture	Mt NOx/yr	0	0	0	0	0	
Nox	Aircraft	Mt NOx/yr	0	0	0	0	0	
Nox	Energy Sector	Mt NOx/yr	0	0	0	0	0	
Nox	Forest Burning	Mt NOx/yr	0	0	0	0	0	
Nox	Grassland Burning	Mt NOx/yr	0	0	0	0	0	
Nox	Industrial Sector	Mt NOx/yr	0	0	0	0	0	
Nox	International Shipping	Mt NOx/yr	0	0	0	0	0	
Nox	Peat Burning	Mt NOx/yr	0	0	0	0	0	
Nox	Residential Commercial Other	Mt NOx/yr	0	0	0	0	0	
Nox	Solvents Production and Application	Mt NOx/yr	0	0	0	0	0	
Nox	Transportation Sector	Mt NOx/yr	0	0	0	0	0	
Nox	Total	Mt NOx/yr	0	0	0	0	0	
Nox	Waste	Mt NOx/yr	0	0	0	0	0	

Source : SSP Public Database Version2.0 (As of February 2023)

5-103

oc

*Extract parameters for which Global values can be obtained ※2005, 2010~2100, data is available for each 10 years

SSP Public Database Version2.0

[List of SSP Public Database Version2.0 Parameters (9/10)] CMIP6 Emissions Model : OC, SF6, Sulfur

Category SSP Remark Unit Large SSP1 SSP2 SSP3 SSP4 SSP5 Medium OC Agricultural Waste Burning Mt OC/yr 0 0 0 0 Aircraft Mt OC/yr 0 0 0 0 0 Energy Sector Mt OC/yr 0 0 0 0 Forest Burning Mt OC/yr 0 0 0 0 0 Mt OC/yr Grassland Burning 0 0 0 0 0 Industrial Sector Mt OC/yr 0 0 0 0 0 International Shipping Mt OC/yr 0 0 0 0 0 Peat Burning Mt OC/yr 0 0 0 0 Residential Commercial Other Mt OC/yr 0 0 Transportation Sector Mt OC/yr 0 0 0 Total Mt OC/yr 0 0 0 Waste Mt OC/yr 0 0 0 0 0 SF6 kt SF6/yr 0 0 0 0 0 Sulfur Agricultural Waste Burning Mt SO2/yr 0 Sulfur Aircraft Mt SO2/yr \bigcirc Sulfur Energy Sector Mt SO2/yr \bigcirc Sulfur Forest Burning Mt SO2/yr \bigcirc Sulfur Grassland Burning Mt SO2/yr Sulfur Industrial Sector Mt SO2/yr \bigcirc \bigcirc Sulfur International Shipping Mt SO2/yr Sulfur \bigcirc Peat Burning Mt SO2/yr Mt SO2/yr Sulfur Residential Commercial Other \bigcirc 0 Sulfur Transportation Sector Mt SO2/yr Mt SO2/yr Sulfur Total 0 Mt SO2/yr Sulfur Waste

Source: SSP Public Database Version2.0 (As of February 2023)

[List of SSP Public Database Version2.0 Parameters (10/10)] CMIP6 Emissions Model : VOC

	Category	Unit			SSP			Demont
Large	Medium	Unit	SSP1	SSP2	SSP3	SSP4	SSP5	Remark
VOC	Agricultural Waste Burning	Mt VOC/yr	0	0	0	0	0	
VOC	Aircraft	Mt VOC/yr	0	0	0	0	0	
VOC	Energy Sector	Mt VOC/yr	0	0	0	0	0	
VOC	Forest Burning	Mt VOC/yr	0	0	0	0	0	
VOC	Grassland Burning	Mt VOC/yr	0	0	0	0	0	
VOC	Industrial Sector	Mt VOC/yr	0	0	0	0	0	
VOC	International Shipping	Mt VOC/yr	0	0	0	0	0	
VOC	Peat Burning	Mt VOC/yr	0	0	0	0	0	
VOC	Residential Commercial Other	Mt VOC/yr	0	0	0	0	0	
VOC	Solvents Production and Application	Mt VOC/yr	0	0	0	0	0	
VOC	Transportation Sector	Mt VOC/yr	0	0	0	0	0	
VOC	Total	Mt VOC/yr	0	0	0	0	0	
VOC	Waste	Mt VOC/yr	0	0	0	0	0	

%Extract parameters for which Global values can be obtained %2005, 2010~2100, data is available for each 10 years

5. Scenario Analysis Parameters and Tools for reference

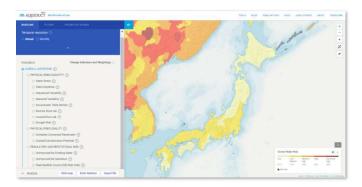
5-1. Parameter List

5-2. Physical risk assessment tools

5-3. List of TCFD-related reports

Chapter 5. Scenario Analysis Parameters and Tools for reference

[Physical risk tools used in past project] Physical risk tools used in past projects (excerpt)


#	Issuing Agency	Tool Name	URL	Subject region	Explanation related page
1	World Resources Institute (WRI)	Aqueduct Water Risk Atlas	https://www.wri.org/aqueduct	Global	5-108
2	World Bank	Climate Change Knowledge Portal	https://climateknowledgeportal.worldbank.org/	Global	5-110
3	AP-PLAT	Climate Impact Viewer	https://a-plat.nies.go.jp/ap-plat/min_peoffo/index.html	Asia	5-111
4	A-PLAT	Web GIS	https://adaptation-platform.nins.go.jp/webgis/index.html	Japan	5-112~5-122
5	European Commission	European Climate Adaptation Platform (Climate-ADAPT)	https://climate-adapt.eea.europa.eu/	EU	 ※European Adaptation Platform
6	IPCC TGICA	IPCC Data Distribution Centre	https://www.ipcc-data.org/	Global	— ※Database of the Intergovernmental Panel on Climate Change (IPCC)
7	FAO	The future of food and agriculture Alternative pathways to 2050	Maps, Stress, Tex. angle field perspectives, absolved water being segmentions. In: 2020 or	Global	_

5-107

[Physical risk tools used in past projects (excerpt) : Parameter] AQUEDUCT Water Risk Atlas (WRI)

WRI AQUEDUCT Water Risk Atlas

	AQUEDUCT W	at
lssuing Agency	World Resource Institution	
Scenario	Pessimistic / Business as usual / Optimistic	
Time Horizon	Baseline / 2030—2040	

ter Risk Atlas					
List of available parameters					
Indicators (Current)					
Physical Risks (Quantity)	 Water Stress Water Depletion Interannual Variability Seasonal Variability Groundwater Table Decline Riverine flood risk / Coastal flood risk Drought Risk 				
Physical Risks (Quality)	Untreated Connected WastewaterCoastal Eutrophication Potential				
Regulatory and Reputational Risk	 Unimproved/No Drinking Water Unimproved/No Sanitation Peak RepRisk Country ESG Risk Index 				
Indicators (2030-2040)					
 Water Stress Seasonal Variability Water Supply Water Demand 					

Source : AQUEDUCT Water Risk Atlas

https://www.wri.org/applications/aqueduct/water-risk-atlas/#/?advanced=false&basemap=hydro&indicator=w_awr_def_tot_cat&lat=30&lng=-80&mapMode=view&month=1&opacity=0.5&ponderation=DEF&predefined=false&projection=absolute&scenario=optimistic&scope=baseline&timeScale=annual &year=baseline&zoom=3 (As of February 2023)

[(Reference) Physical risk tools (excerpt): Parameter] H08 Water Risk 1 H08 Water Risk Tool (National Institute for Environmental Studies)

Issuing National Institute for Environmental	
agency Studies	L
RCP2.6 (2°C increase) / RCP7.0 (3°Cincrease) / RCP8.5 (4°C increase)	
Time Horizon 1901-2090 (Selected per year)	e Model

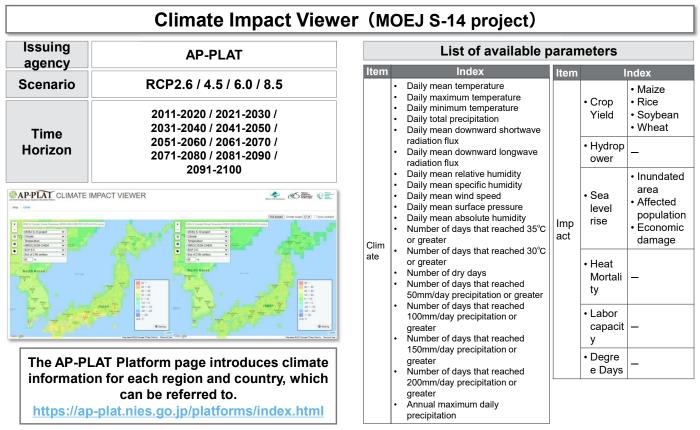
Results from the H08 water risk tool can also be compared with results from other tools, such as Aqueduct, to enhance analysis and improve the reliability of information on the tightness of water resources.

List of available parameters				
Indicators (map)				
Climate Model	 GFDL-ESM4 MPI-ESM1-2-HR IPSL-CM6A-LR MRI-ESM2-0 UKESM1-0-LL Ensemble (Average of the above five models) 			
Water stress index	 Water stress Water depletion Interannual variability Seasonal variability Groundwater level decline Possible sustainable water intake 			
Basic variables	 Total water withdrawal Annual river discharge (water resources) Water intake from sustainable water sources 			
Indicators (Time series)				
 Specify the location on map Specify the location from the name of place Specify the location from the latitude and longitude 				

Source : H08 Water Risk Tool <u>https://h08.nies.go.jp/~ddc/cgi-bin/viewer2021/index_ja.php</u> (As of February 2023) 5-109

[Physical risk tools used in past projects (excerpt) : Parameter] Climate Change Knowledge Portal (World Bank)

World Bank Climate Change Knowledge Portal


	Climate Change	KNC
Issuing agency	World Bank	
Scenario	SSP1-1.9 / SSP1-2.6 / SSP2-4.5 / SSP3-7.0 / SSP5-8.5	
Time Horizon	2020—2039 / 2040—2059 / 2060—2079 / 2080—2099	С
VOLDEACEON VOLDEACEON	TIME PERIOD SCENARIO CALCULATION A JOYO V 200500 V SV113 V MILENCE	
NIGHTS		

Climate Change Knowledge Portal

List of available parameters				
Item	Variable			
Essential Climate Variable	 Mean-Temperature (month·year) Max-Temperature (month·year) Min-Temperature (month·year) Precipitation (month·year) 			
Temperature	 Days with heat index (>35°C) Maximum of Daily Max-Temperature Number of Frost Days (T-min<0°C) Number of Summer Days (T-max>25°C) Number of Tropical Nights (T-min>20°C, 26°C) Number of Hot Days (T-max>35°C, 40°C, 42°C, 45°C) Minimum of Daily Min-Temperature Warm Spell Duration Index 			
Precipitation	 Average Largest 1-Day Precipitation Average Largest 5-Day Cumulative Precipitation Days with Precipitation>20mm Max Number of Consecutive Dry Days Max Number of Consecutive Wet Days Precipitation Percent Change Average Largest Monthly Cumulative Precipitation Days with Precipitation>50mm Precipitation amount during wettest days 			
Additional Variables	Relative humidityGrowing Season Length			

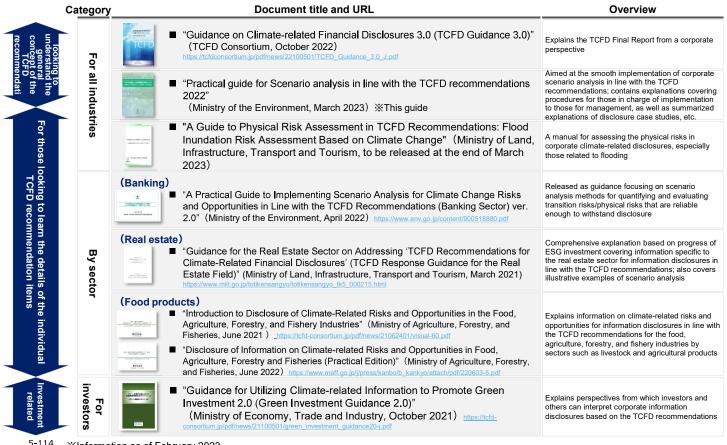
Source : World Bank, Climate Change Knowledge Portal

https://climateknowledgeportal.worldbank.org/country/japan/climate-dataprojections (As of February 2023)

5-111 Source : AP-PLAT, Climate Impact Viewer https://a-plat.nies.go.jp/ap-plat/asia_pacific/index.html (As of February 2023)

5. Scenario Analysis Parameters and Tools for Reference

- 5-1. Parameter List
- 5-2. Physical risk assessment tools
- 5-3. List of TCFD-related reports


Chapter 5. Scenario Analysis Parameters and Tools for reference (

[List of reports released by TCFD] The TCFD has issued recommendations, manuals and guidance on the recommended disclosure items, including scenario analysis

Category	Document title and URL (Original/Japanese)	Overview
TCFD recommendation as whole For those looking to understand the general	 Final Report: "Recommendations of the Task Force on Climate-related Financial Disclosures" (June 2017) (Original) https://assets.bbhub.io/company/sites/60/2021/10/FINAL-2017-TCFD-Report.pdf (Japanese) https://www.sustainability-fj.org/sust/wp/wp-content/uploads/2019/01/ccc822ae11d/3bb3/0543d9bd3c7232d.pdf 	Final report providing background and frameworks for climate-related financial disclosures
TCFD nendation as a whole se looking to and the general to f the TCFD	 Annex: "Implementing the Recommendations of the Task Force on Climate-related Financial Disclosures" (revised in October 2021)* > (Original) https://assets.bbhub.jo/company/sites/60/2021/07/2021-TCFD-Implementing_Guidance.pdf > (Japanese) https://tcld-consortium.jo/pdf/about/2021_TCFD_Implementing_Guidance_2110_ip.pdf 	Report providing detailed information that is useful when <u>implementing the</u> recommended disclosure items
Stra For those individua	Technical Supplement: "The Use of Scenario Analysis in Disclosure of Climate- Related Risks and Opportunities" (June 2017) (Original) https://www.austanability-fi.org/supplement/2010/ficed822019/01/cce822ee11d/3bb3/0543d9bd3c7232d.edf (Japanese) https://www.austanability-fi.org/supplement/upplement/2019/01/cce822ee11d/3bb3/0543d9bd3c7232d.edf	Report providing detai l ed information for referencing when <u>considering</u> scenario analysis
Risk Metri Strategy manage & ment targe For those looking to learn the details of the individual TCFD recommendation items	(Non-financial) ■ "Guidance on Scenario Analysis for Non-Financial Companies" (October 2020) > (Original) https://assets.bbhub.io/company/sites/60/2020/09/2020-TCFD_Guidance-Scenario-Analysis-Guidance.pdf	Guidance on practical processes for scenario analysis and ideas for resilience disclosures for different climate-related scenarios
Risk manage ment arn the detai	 "Guidance on Risk Management Integration and Disclosure" (October 2020) (Original) https://assets.bbhub.io/company/sites/60/2020/09/2020-TCFD_Guidance-Risk-Management-Integration-and-Disclosure.pdf 	Guidance targeted at companies that integrate climate-related risks into their existing risk management processes and disclose this information
Metrics & targets Is of the	 "Guidance on Metrics, Targets, and Transition Plans" (October 2021) (Original) https://assets.bbhub.io/company/sites/60/2021/07/2021-Metrics_Targets_Guidance-1.pdf 	Guidance explaining the latest trends in climate-related metrics, transition plans, and cross-industry climate- related metrics
Other Progress status	 "2022 Status Report" (October 2022) (Original) 2022-TCFD-Status-Report.pdf (bbhub.io) 	Annual report explaining progress, insights, and challenges in climate- related disclosure (Issued annually from 2018)

XInformation as of February 2023 *: The Annex includes financial and non-financial sectors (key sectors are energy, transport, materials/architecture, and agriculture/food/forestry products) 5-113

[List of Japanese reports related to the TCFD and scenario analysis] Some excerpts from the guidelines on TCFD and scenario analysis practices in Japan

Ministry of the Environment

This report is supported by Deloitte Tohmatsu Consulting LLC.