## 【公表用資料】 2023 年度苫小牧沖における春季調査(5~7月)結果(概要版)

2016 年 4 月から苫小牧沖において、海洋汚染等防止法に基づく環境大臣の許可を受けた 国内第 1 号の海底下 CCS 事業である苫小牧沖海底下 CCS 実証試験事業が開始され、海底 下への  $CO_2$  の圧入が経済産業省により実施されていました。2019 年 11 月末までに約 30 万 t の  $CO_2$  が圧入され終了しました。

2023 年度春季(2023 年  $1\sim2$  月)に環境省が調査した結果、2011 年度から 2015 年度までの調査 $^{11}$  と比較して、大きな変化はみられず、海洋への  $CO_2$  の漏出が懸念されるデータはありませんでした。

#### 【調査の概要】

海底下 CCS 事業に係る許可制度の規制当局である環境省として独自に、最新の知見に基づくモニタリング技術を活用し、結果を検証していくことにより、海底下 CCS 事業における適切な海域のモニタリング技術及びその適用方法の確立を図ることを目的として、苫小牧沖において海洋調査を実施しました。

調査海域は苫小牧沖の約 10 km×8 km の範囲とし、海水の化学的性状、底質、海洋生態系の変化について、図 1 に示す調査測点で調査しました。

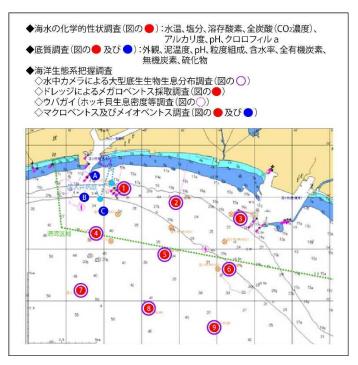



図1 調査海域及び調査測点

1

 $<sup>^{1)}</sup>$  2011~2015 年度に実施した海底下 CCS 実施のための海洋調査事業

# 1. 海水の化学的性状調査

万が一、圧入された  $CO_2$  が漏出した場合、海水中の  $CO_2$  濃度や平衡状態が変化すると予想され、例えば  $CO_2$  の分圧( $pCO_2$ )及び全炭酸(DIC)濃度の上昇や pH の低下が起こることが考えられます。このような変化を検知するため、採水を行い、海水中の  $CO_2$  に関係するパラメータとして DIC、アルカリ度、pH 及び塩分について分析し、 $pCO_2$  を算出しました。

海水中の  $CO_2$  濃度は、 $CO_2$  の漏出のような外的な要因だけでなく、例えば海水の混合度合いや生物の呼吸・光合成などにより著しく変化します。これらの影響を把握するため、多項目水質センサを用いて水温及び塩分の分布を把握し、溶存酸素(DO)や光合成を行う植物プランクトンの指標となるクロロフィル a 濃度についても分析しました。

海水の化学的性状調査は2023年5月23日、24日に実施しました。

#### 2. 底質調査

底泥中の水分(間隙水)に  $CO_2$  が溶解すると pH の低下が起こります。この変化を検知するため、採泥を行い、pH を測定するとともに、関連項目として含水率、有機炭素、無機炭素、全窒素及び硫化物について分析しました。

底質調査は2023年5月25日、26日、27日に実施しました。

#### 3. 海洋生態系把握調査

海洋生態系のうち、海底面上または底泥中に生息する底生生物は、海中を遊泳する魚類等と比較して移動範囲が狭いことから、底泥中の間隙水に CO<sub>2</sub> が溶解した場合、影響をより強く受ける可能性があります。特に炭酸カルシウムの殻を持つ生物は、底質の pH 低下の影響を受けやすいと考えられます。

底生生物については、肉眼でみえる大きさでドレッジやトロール等の底引き網で採取できるような大型の底生生物 (メガベントス)、1 mm以上の中型の底生生物 (マクロベントス)、1 mm 未満の小型の底生生物 (メイオベントス) に区分されます。

水中カメラによる大型の底生生物生息分布調査 $^2$ )は 2023 年 7 月 3 日 $\sim$ 9 日に、ドレッジによる大型の底生生物採取調査は 2023 年 5 月 29 日に、苫小牧地域の水産重要種であるウバガイ(ホッキガイ)生息密度等調査を 2023 年 5 月 22 日に実施しました。

また、中型の底生生物及び小型の底生生物調査は 2023 年 5 月 25 日、26 日、27 日に 実施しました。

<sup>&</sup>lt;sup>2)</sup> 2020 年度までは、海水の化学的性状調査等を実施した 9 測点を含む 33 測点で実施していましたが、 2021 年度から、海水の化学的性状調査等と同じ 9 測点で実施しています。

# 【調査の結果】

#### 1. 海水の化学的性状調査

水温は  $4.99\sim9.47$  °C、塩分は  $31.90\sim32.90$ 、アルカリ度は  $2,199\sim2,246$   $\mu$ mol/kg、DIC は  $1,962\sim2,094$   $\mu$ mol/kg、pH は  $7.90\sim8.09$ 、pCO $_2$ (計算値)は  $229\sim356$   $\mu$ atm、DO は  $304\sim337$   $\mu$ mol/kg、DO 飽和度(計算値)は  $96\sim115$  %、クロロフィル a 濃度は  $0.4\sim1.7$   $\mu$ g/L の範囲でした。過年度調査結果と比較して大きな変化はみられませんでした。

前述したように、海水中の  $CO_2$  の漏出が起こらなくても、海域での光合成や呼吸(有機物の分解を含む)など生物的な要因によっても大きく変化します。光合成と呼吸は海水中の酸素の放出と消費を伴うことから、これら生物的な要因による変化分を  $pCO_2$  と DO 飽和度の関係から見積もることが可能であると考えられました。2011 年度から 2015 年度までの調査で得られたデータの解析により、調査海域における  $pCO_2$  と DO 飽和度には曲線で示す関係があることが確認されています。この曲線の 95%予測区間の上限を超過するデータが確認された場合、 $CO_2$  圧入開始以前の過去の傾向から統計的に外れたとみなされることから、漏出を懸念することとしました。ただし統計学的には、漏出が発生していない場合においても、2.5%の確率で上限を超過するデータが確認される可能性があります。

2023 年度春季の  $pCO_2$  と DO 飽和度との関係を 2011 年度から 2015 年度までの調査結果と比較したところ、図 2 のとおり  $CO_2$  漏出を懸念させるデータはありませんでした。

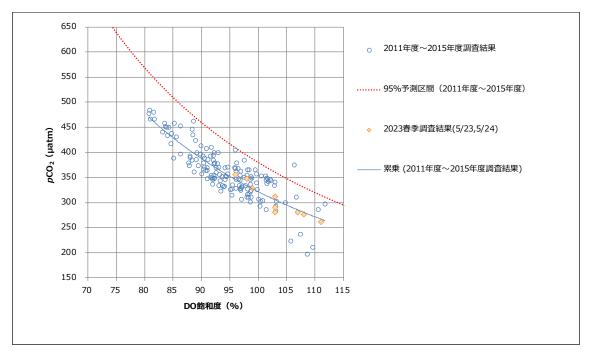



図2 pCO<sub>2</sub>とDO飽和度との関係

## 2. 底質調査

pH は  $7.25\sim7.87$ 、含水率は  $21.9\sim34.7$ %、有機炭素は  $1.1\sim10.5$  mg/g-dry、無機炭素は定量下限値未満 $\sim0.4$  mg/g-dry、全窒素は  $0.28\sim1.43$  mg/g-dry の範囲でした。硫化物は調査測点 6 及び C で検出され、 $0.1\sim0.2$  mg/g-dry の範囲でした。

調査測点 3 の pH で過年度春季調査結果の最小値を下回る値(pH=7.31)を示しました。調査測点 3 は有機物が多く、有機物分解により pH 低下が起こった可能性が考えられます。それ以外の調査測点及び項目は過年度春季調査結果と比較すると、大きな変化はみられませんでした。

## 3. 海洋生態系把握調査

## (1) 水中カメラによる大型底生生物 (メガベントス) 生息分布調査結果

ヒダベリイソギンチャク、イソギンチャク目(イソギンチャクの仲間)、アヤボラ、エ ゾボラ、腹足綱(マキガイの仲間)、ヤドカリ亜目(ヤドカリの仲間)、スナヒトデ、キン コ、カジカ科(カジカの仲間)、カレイ目(カレイ・ヒラメの仲間)等が観察されました。 過年度春季調査結果<sup>3)</sup>と比較して、大きな変化はみられませんでした。

# (2) ドレッジによる大型底生生物 (メガベントス) 採取調査結果

出現個体数は、多毛綱(ゴカイの仲間)のみ出現した環形動物門、クモヒトデ綱(クモヒトデの仲間)が多数を占めた棘皮動物門、二枚貝綱(二枚貝の仲間)が多数を占めた軟体動物門の順でした。

底質のpH低下の影響を受けやすいと考えられる炭酸カルシウムの殻を持つもので、出現個体数が多かったのは *Ophiura* 属 (クモヒトデの仲間)、チョノハナガイ、スガメソコエビ属でした。

過年度春季調査結果と比較すると、個体数(生息密度)では、調査測点 4 及び 8 で過年度春季調査結果の 95%信頼区間(平均値± $2\sigma$ (標準偏差))を下回り、調査測点 1 で上記区間を上回りました。それ以外の調査測点は上記区間の範囲に収まっており、大きな変化はみられませんでした。

一方、底生生物の組成は大きく変動しており、今後も継続して変動の傾向を把握する必要があります。

## (3) ウバガイ(ホッキ貝) 生息密度調査結果

ウバガイ調査は 2 回曳網を行いました。1 回目の曳網では 597 個体/100m<sup>2</sup>、湿重量は 185.8 kg-wet/100m<sup>2</sup>、2 回目の曳網では、生息密度は 702 個体/100m<sup>2</sup>、湿重量は 207.0

<sup>3) 2020</sup> 年度までの調査における 33 測点のうち、今回調査を実施した 9 測点の調査結果。

kg-wet/100m<sup>2</sup>でした。また、個体重量に対する貝殻重量の割合は 1 回目の曳網では 60%で、2 回目の曳網では 62%でした。

過年度春季調査結果と比較すると、生息密度(1、2 回目とも)、貝殻重量及び軟体部湿重量では、それぞれの過年度春季調査結果の 95%信頼区間(平均値 $\pm 2\sigma$ (標準偏差))の範囲に収まっており、大きな変化はみられませんでした。また、個体重量に対する貝殻重量の割合も大きな変化はみられませんでした。

## (4) 中型底生生物(マクロベントス)及び小型底生生物(メイオベントス)調査結果

中型底生生物の出現個体数は、多毛綱(ゴカイの仲間)が最も多く、次に軟甲綱(エビ・カニ・ヨコエビ等の仲間)、二枚貝綱(二枚貝の仲間)の順でした。

底質の pH 低下の影響を受けやすいと考えられる炭酸カルシウムの殻を持つもので出現個体数が多かったのは、キヌタソコエビ属、キタスガメ、クルミガイでした。

過年度春季調査結果と比較して、個体数(生息密度)では調査測点 2 及び A で過年度春季調査結果の 95%信頼区間(平均値  $\pm 2\sigma$  (標準偏差))を上回りました。その他の調査測点は上記区間の範囲に収まっており、個体数に大きな変化はみられませんでした。

小型底生生物の出現個体数は、線形動物門(線虫の仲間)が最も多く、次に有孔虫目(有 孔虫の仲間)、ソコミジンコ目(ソコミジンコの仲間)の順でした。

底質のpH低下の影響を受けやすいと考えられる炭酸カルシウムの殻を持つもので、出現個体数が多かったのは、有孔虫目、ソコミジンコ目、ノープリウス幼生でした。

過年度春季調査結果と比較して、個体数(生息密度)では調査測点 3、7、9 及び C で 過年度春季調査結果の 95%信頼区間(平均値 $\pm 2\sigma$  (標準偏差))を下回りました。他の 調査測点は上記区間の範囲に収まっており、個体数に大きな変化はみられませんでした。

一方、中型底生生物及び小型底生生物の組成は大きく変動しており、今後も継続して変動の傾向を把握する必要があります。

# 担当者等連絡先

部 署 名:環境省 水·大気環境局海洋環境課

T E L:03-5521-9023 (直 通)

:課長 大井通博

担当者名:課長補佐 堀野上 貴 章 (内線:25523)