
巻末資料 2

面的な暑熱対策の効果検証調査結果(東京:三の輪商店街)

●暑熱適応のまちづくり

- ◆暑熱環境への適応を考慮したまちづくりの推進
 - ●地域の特性や資源に着目
 - ・新たに作るのではなく、すでにあるものを活用
 - ●効果を定量的に把握し、市民に情報発信
 - ・正しい情報・知識により発想の転換を促進
 - ●地域特性・資源の再評価
 - ・特性や資源の活用や保存・再生の意識を喚起
 - ⇒まちづくりの一環としての暑さ対策の認知

◆地域資源を活用した暑熱適応まちづくり

○春日部市ふじ通り

・観光資源・まちおこし

〇上越市高田雁木通り

- •観光資源•生活空間
- •高齢化対応

●研究の背景と目的

3

地球温暖化やヒートアイランド現象の進行に伴う高温化により、 都市部における猛暑日の増加や熱中症患者の増加などの生活 への影響が確認されている。

高齢化が進む社会において、夏季の環境においても高齢者が 安心して歩けるまちづくりが必要。



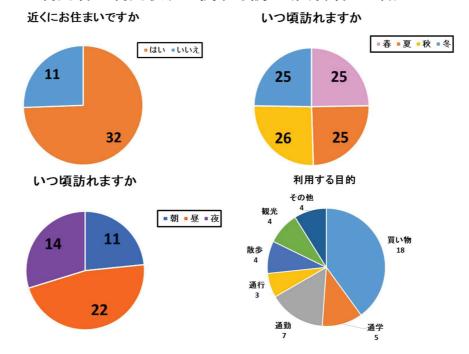
地域にもともとある特徴的な空間に着目 ⇒暑さ対策としてアーケードの効果を評価する

温熱環境と人体生理・心理反応および人体熱収支 による評価

人体への熱ストレス抑制効果の評価を目的。

調査場所 : 東京都荒川区 ジョイフル三の輪商店街

●調査対象空間の特徴

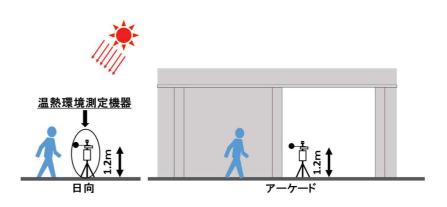

- ◆アーケード利用者に対するアンケート調査
 - •アーケード利用者の利用状況に関する調査(回答者:42名)

6

◆アーケード利用者に対するアンケート調査

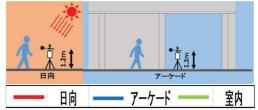
・アーケード利用者の利用状況に関する調査(回答者:42名)

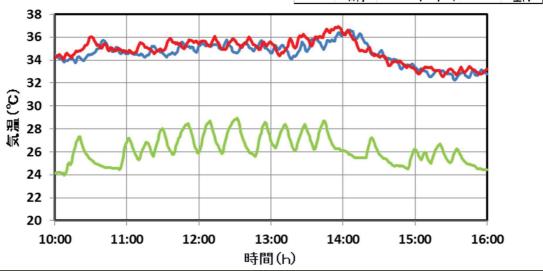
⇒「近所の人が季節に関係なく買い物や通勤・通学で使う空間」


● 温 熱 環 境 調 査

◆温熱環境の測定項目・機器

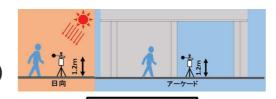
測定項目	方式等	測定機器名	測定間隔
温度•湿度	強制通風式温湿度計	温湿度計 HMP-60	
黒球温度	ベルノン式	グローブ温度計 PGT-01	1秒
風向・風速	2次元超音波風向・風速計	ウィンドソニック PGWS-100	ነ የሃ
路面温度	放射温度	K型熱電対 PRIT-100	
日射量	超短波放射量	超短波放射計 MR-50、CNR4	10秒
表面温度	赤外線センサー	FLIR—C2	適宜




● 温 熱 環 境 調 査

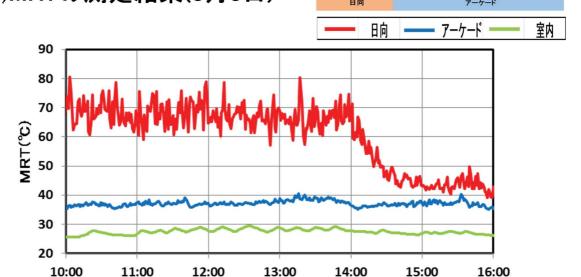
9

◆温熱環境の測定結果


1)気温の測定結果(8月8日)

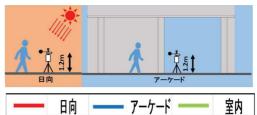
気温はアーケードと日向で大きな違いは見られない

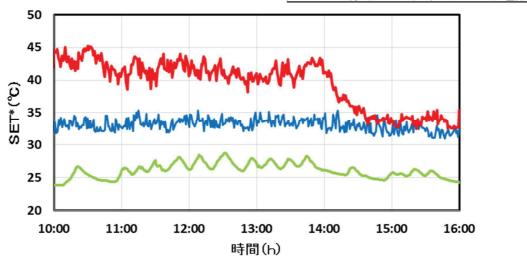
- ◆温熱環境の測定結果
 - 2)日射量の測定結果(8月8日)



● 温 熱 環 境 調 査

11

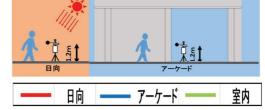

- ◆温熱環境の測定結果
 - 3)MRTの測定結果(8月8日)

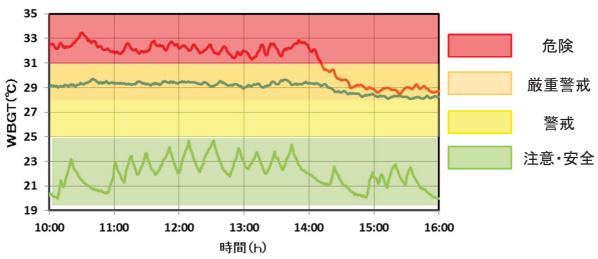


アーケードのMRTは日射量遮蔽により大きく低減

時間(h)

- ◆温熱環境の測定結果
 - 4)SET*の測定結果(8月8日)





アーケードのSET*は日向に比べて6~10℃程度低い

● 温 熱 環 境 調 査

- ◆温熱環境の測定結果
 - 4)WBGTの測定結果(8月8日)

アーケードのWBGTは日向より1ランク低く維持

◆WBGTの空間分布測定

•測定機器:電子式湿球黒球温度指数計(TANITA:TC-300BLE)

測定項目	測定間隔
気温	1分
相対湿度	1分
黒球温度	1分
WBGT	1分

● 温 熱 環 境 調 査

15

◆WBGTの空間分布測定

•測定点

◆WBGTの空間分布測定

・測定結果(8月8日10時)・・・日向を基準とした差

アーケード内は日向に比べてWBGTが3~5℃程度低い

● 温 熱 環 境 調 査

17

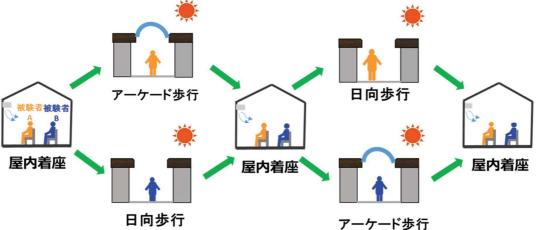
◆WBGTの空間分布測定

・測定結果(8月8日13時)・・・日向を基準とした差

アーケード内は日向に比べてWBGTが1~3℃程度低い

◆WBGTの空間分布測定

・測定結果(8月8日15時)・・・日向を基準とした差


日向の日射が陰るとWBGTの差が小さいか逆転する

● 被験者実験

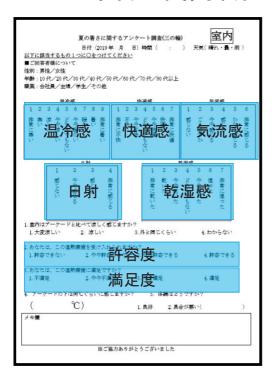
19

◆被験者実験のタイムテーブル

予定時間	10:15~	11:15	11:30	11:35	11:55	12:00	12:15	12:35	12:50	12:55	13:10	13:15	13:30
時間	60分	15分	5分	20分	5分	15分	20分	15分	5分	20分	5分	15分	45 -
内容	準備 説明	室内着座	移動	日向 アーケード	移動	室内着座	休憩	室内着座	移動	アーケード 日向	移動	着座	終了
●アンケート★体重・舌下	*	• •	*	•	*	•	*	• •	*	•	*	• •	

◆人体生理反応の測定項目・機器

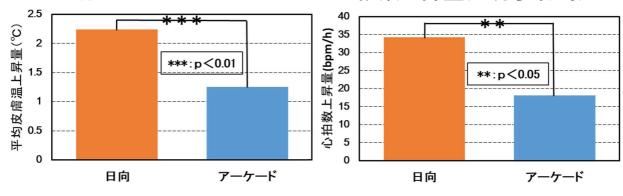
測定項目	測定機材	型番	測定感覚
心拍計	R腕時計型心拍系	POLAR-A360	
皮膚温(7点)	携带型精密温度計	LT-8A, LT-ST08-12	1秒
深部温度	耳内温度計	LT-8A, LT-ST08-13	
深部温度	舌下温度計	MC-6830L	着座前後
発汗量	精密体重計	A&D GP-100-K	相注則後



● 被験者実験

21

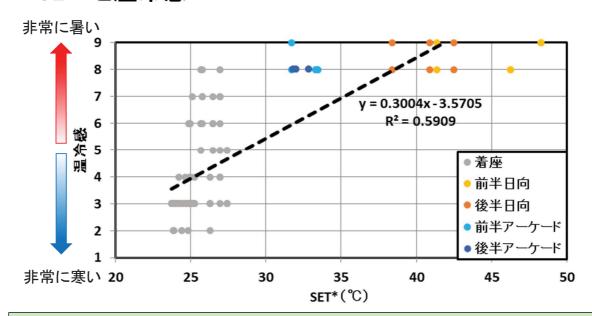
◆心理申告の質問項目・段階



心理申告	評価段階
体感温度	主観申告温度として記述
温冷感	9段階: 1. 非常に寒い⇔9. 非常に暑い
快適感	7段階:1. 非常に不快⇔7. 非常に快適
日射	4段階 : 1. 感じない⇔4. 非常に感じる
発汗度	5段階: 1. 汗をかいていない⇔5. 流れるほど汗をかいている
気流感	6段階 : 1. 感じない⇔6. 非常に感じる
乾湿感	7段階: 1. 非常に乾いた⇔7. 非常に湿った
許容度	4段階 : 1. 許容できない⇔4. 許容できる
満足度	4段階:1. 不満足⇔15. 満足

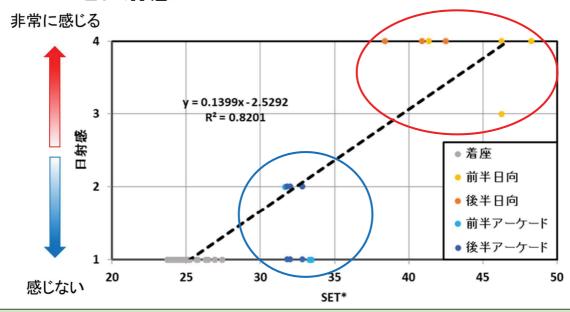
◆人体生理反応の測定結果

•平均皮膚温上昇量(20分歩行時) •



・20分歩行時において、アーケード内は日向に比べて 平均皮膚温度や心拍数の上昇を抑制する効果

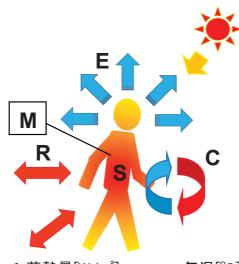
● 被験者実験


- ◆心理申告の測定結果
 - ・SET*と温冷感

アーケード内はSET*が低くても暑い空間と評価された

◆心理申告の測定結果

•SET*と日射感



アーケード内は日向に比べて日射感は無い

● 被験者実験

25

◆人体熱収支の解析方法

人体熱収支式①から蓄熱量Sを導く

$$S = M - (C + R + E) - 1$$

代謝量M:

着座時(1.0Met) 58.2[W/m²] 歩行時(2.6Met) 151.3[W/m²]

②~④式より放熱量C·R·Eを算出する

$$C = hc (tsk - ta)$$
 _2

$$R = hr (tsk - MRT)$$
 _3

$$E = \frac{s \times hL}{3600} \qquad -4$$

S: 蓄熱量[W/㎡]

ta: 気温[℃]

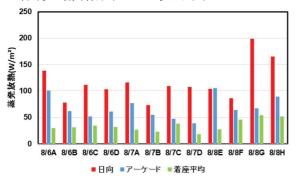
MRT: 平均放射温度[℃]

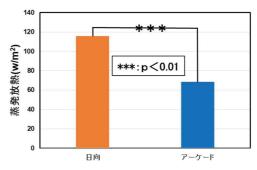
M: 代謝量[W/m]

hc:対流熱伝達率[W/(㎡·K)]

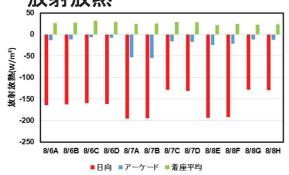
Tg:グローブ温度[℃]

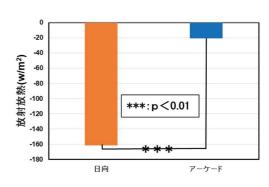
C: 対流放熱[W/m²] tsk: 平均皮膚温[℃]


hr:放射熱伝達率[W/m·K]

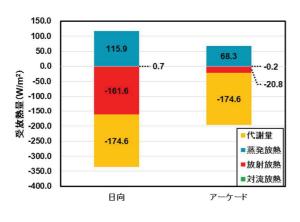

R: 放射放熱[W/m³] hL: 水の潜熱(皮膚温35[°C]として2416[J/g])

E:蒸発放熱[W/m] S:発汗量[g/(m².h)]

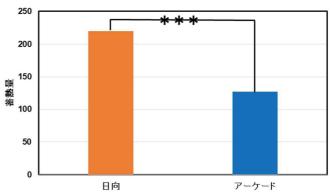

◆人体熱収支の解析結果


・蒸発放熱(主に発汗)

•放射放熱



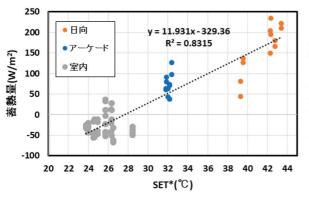
● 被験者実験

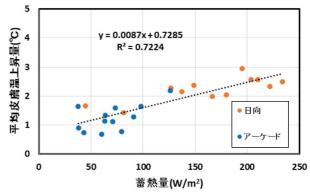

27

◆人体熱収支の解析結果

- 各熱収支項

- 蓄熱量




アーケード内は日向に比べて蓄熱量を低減 ⇒熱ストレス低減の効果を確認

◆人体熱収支の解析結果

・蓄熱量とSET*の関係

・蓄熱量と皮膚温上昇の関係

- ・蓄熱量は、SET*が上昇するにつれて大きくなる。
- ・蓄熱量が増加すると皮膚温度が上昇する傾向を確認

●まとめと今後の課題

29

◆まとめ

- アーケード内は、日向に比べると日射遮蔽の効果により、暑熱環境が緩和されている。
- ・20分歩行時において、皮膚温度や心拍数の上昇を 抑制しており、人体熱収支解析においても蓄熱量が 低減されており、熱ストレス低減効果を確認できた。

◆今後の課題

- ・アーケードに対する、利用者の評価をより詳しく調査 する必要がある。
 - ⇒ 空間利用の促進や、熱中症予防の意識向上に 繋げていく。