第4章 工業プロセス及び製品の使用分野

4.1. 工業プロセス及び製品の使用分野の概要

工業プロセスにおける化学的、物理的変化により温室効果ガスが大気中に排出される。ここでは表 4-1 に示す工業プロセス及び製品の使用からの排出量を算定した。なお、各排出源の算定方法、排出係数、活動量等は、各分野の専門家により構成される温室効果ガス排出量算定方法検討会のエネルギー・工業プロセス分科会、HFC 等 4 ガス分科会において検討され承認されたものである。(1章参照)

いくつかの年や排出源の排出量はゼロであるが、排出量は全ての年について推計されており、紙幅が許す限りかつ秘匿性に配慮した範囲で、関連指標は各サブカテゴリーの表中に示されている。また、各サブカテゴリー、各ガスの排出量は各カテゴリーの冒頭の表に記載している。

排出区分 CO, CH₄ N₂O HFCs PFCs 2.A.1 セメント製造 生石灰製造 2.A.3 ガラス製造 鉱物産業 陶磁器 その他プロセスでその他用途でのソーダ灰の使用 2.A.4 ΙE の炭酸塩の使用 マグネシア製造 その他 硝酸製造 NA 2.B.3 アジピン酸製造 カプロラクタム グ カプロラクタム リオキサール、グリ オキシル酸製造 グリオキシル酸 2.B.4 シリコンカーバイド カルシウムカーバイド カーバイド製 2.B.5 NA 2.B.6 二酸化チタン製造 ソーダ灰製造 2.B NO NO メタノール 化学産業 エチレン 1,2-ジクロロエタン、クロロエチレン 酸化エチレン 石油化学及び 2.B.8 アクリロニトリル カーボンブ カーボンブラック ラック製造 スチレン 無水フタル酸 無水マレイン酸 副生ガスの排出 - HCFC-22の製造 2.B.9 フッ化物製造 製造時の漏出 鉄鋼 ΙE NA 銑鉄 ΙE ΙE 直接還元鉄 2 C 1 ΙE ΙE 鉄鋼製造 焼結鉱 ΙE ΙE ペレット 2.C 鉄鋼製造における電気炉の使用 金属製造 鉄鋼製造における石灰石・ドロマイトの使用 フェロアロイ製造 ΙE 副次的排出 鋳造時のFガスの使用 NO マグネシウム製造 鉛製造 ΙE 2 D 1 潤滑油の使用 2.D.2 パラフィンろうの使用 燃料由来の非エ 尿素触媒 ネルギー製品及 2.D.3 その他 び溶剤の使用 NE 道路舗装 NE アスファルト屋根材 液晶 電子産業 太陽電池 2.E.4 熱伝導流体

表 4-1 工業プロセス及び製品の使用分野におけるカテゴリー

表 4-1 工業プロセス及び製品の使用分野におけるカテゴリー (続き)

		排出	出区分			CO ₂	CH	N ₂ O	HFCs	PFCs	SF ₆	NF ₂
		711-2			製造	2	4	2		NO	NO	NO
			家庭用冷蔵庫		使用				ΙE	NO	NO	NO
					廃棄				ΙE	NO	NO	NO
				業務用冷凍空	製造					NO	NO	NO
				表物用冷凍空	使用					NO	NO	NO
			業務用冷凍空調	DP 18% DD	廃棄					NO	NO	NO
			機器		製造					NO	NO	NO
				自動販売機	使用				IE	NO	NO	NO
					廃棄				IE	NO	NO	NO
	2.F.1	冷凍冷蔵及び		_	製造				IE	NO	NO	NO
	2.F.I	空調	輸送機器用冷蔵	庫	使用				IE IE	NO NO	NO NO	NO NO
					廃棄				IE	NO	NO	NO
			工業用冷蔵庫		製造 使用				IE	NO	NO	NO
			工采用/7 戲牌		廃棄				IE	NO	NO	NO
					製造					NO	NO	NO
			固定空調機器		使用				ΙE	NO	NO	NO
					廃棄				IE	NO	NO	NO
					製造					NO	NO	NO
2.F			輸送機器用空調	機器	使用				ΙE	NO	NO	NO
オゾン層破壊					廃棄				IE	NO	NO	NO
物質の代替と				ф L д х г	製造					NO	NO	NO
しての製品の				ウレタン フォーム	使用					NO	NO	NO
使用			閉鎖系気泡	- A - A	廃棄				ΙE	NO	NO	NO
			フォーム	押出発泡ポリ	製造					NO	NO	NO
	2.F.2	発泡剤		スチレン	使用					NO	NO	NO
				フォーム	廃棄				IE	NO	NO	NO
			開放系気泡	高発泡ポリエ	製造				110	NO	NO	NO
			フォーム	チレンフォー	使用				NO	NO	NO	NO
				Д	廃棄				NO NO	NO NO	NO NO	NO NO
	2.F.3	2M 11			製造				NO	NO	NO	NO
	2.1.5	消火			使用				NO	NO	NO	NO
					廃棄 製造				NO	NO	NO	NO
			定量噴霧式吸入		使用					NO	NO	NO
			正里喷粉以吸入	ធិជី	廃棄				IE	NO	NO	NO
	2.F.4	エアゾール			製造					NO	NO	NO
			エアゾール		使用					NO	NO	NO
					廃棄				ΙE	NO	NO	NO
			•		製造				NO	NO	NO	NO
	2.F.5	溶剤			使用						NO	NO
					廃棄				ΙE	IE	NO	NO
	2.F.6	その他利用			•				ΙE	NA	NA	NO
					製造							
	2.G.1	電気設備			使用							
					廃棄						IE	
			n. n-r: -		製造					NE	NE	
			防衛利用		使用					NE NE	NE	
					廃棄					NE NE	NE NE	
			加速器		製造					NO NO	NE	
			川迷奇		使用 廃棄					NE	NE	
		その他製品の使			製造					NE	NE	
	2.G.2	用からのSF ₆	防音窓		使用					NE	NE	
2.G		PFCs	1/10		廃棄					NE	NE	
その他製品の					製造					NE	NE	
製造及び使用			断熱特性:靴および	ゾタイヤ	使用					NO	NO	
			1,000		廃棄					NE	NE	
					製造					NA	NA	
			その他 鉄道用シリ	川ン整流器	使用					NA	NA	
			<u> </u>		廃棄					Ĺ	NA	
					製造			NO				
			医療利用		使用							
	2.G.3	製品の使用から			廃棄			NO				
		$oldsymbol{D}N_2O$		製造								
			1		/+ m			NO				
			半導体·液晶製造	上桯における利用	使用							
2.H その他	2.H.2	食品・飲料産業		上程における利用	使用 廃棄			NO				

なお、2016年度における当該分野からの温室効果ガス排出量は約95,856 kt- CO_2 換算であり、 我が国の温室効果ガス総排出量(LULUCF 分野を除く)の7.3%を占めている。 CO_2 、 CH_4 及び N_2O 排出量を1990年と比較すると37.3%の減少となっている。HFCs、PFCs 及び SF_6 及び NF_3 の排出量を1990年と比較すると38.0%の増加となっている。

1990 年度からの当該分野の排出量の減少は、特定物質の規制等によるオゾン層の保護に関する法律の下での規制により HCFC-22 の製造時の副生 HFC-23 が減少したこと(化学産業) クリンカ生産量の減少に伴うセメント製造時の CO_2 排出量 (鉱物産業) が減少したこと、アジピン酸製造における N_2O 分解設備の稼働によるアジピン酸製造時の N_2O 排出量(化学産業) が減少したこと等によるものである。

IPPU 分野で用いている方法論の Tier は、表 4-2 に示すとおりである。

温室効果ガスの種類	CO)2	CI	H ₄	N_2	0		
カテゴリー	算定方法	排出係数	算定方法	排出係數	算定方法	排出係數		
2.A. 鉱物産業	CS,T2	CS						
2.B. 化学産業	CS,T1,T2,T3	CS,D	CS,T1	CS	CS,T1,T2,T3	CS,PS		
2.C. 金属産業	NA	NA	CS	CS				
2.D. 燃料からの非エネルギー製品及び溶剤の使用	D,T1,T2	CS,D	NA	NA	NA	NA		
2.E. 電子産業								
2.F. オゾン層破壊物質の代替としての製品の使用								
2.G. その他製品の製造及び使用					CS	OTH		
2.H. その他	CS		NA	NA	NA	NA		
温室効果ガスの種類	HF	Cs	PF	Cs	SI	F ₆	N	F ₃
	#定方法	Cs 排出係數	PF 算定方法	Cs 排出係數	SI 算定方法	排出係數	N 算定方法	F ₃ 排出係數
温室効果ガスの種類						-		-
温室効果ガスの種類 カテゴリー						-		-
温室効果ガスの種類 カテゴリー 2.A. 鉱物産業	算定方法	排出係数				-		-
温室効果ガスの種類 カテゴリー 2.A. 鉱物産業 2.B. 化学産業	算定方法 T2	排出係数	算定方法	排出係數	算定方法	排出係數		-
温室効果ガスの種類 カテゴリー 2.A. 鉱物産業 2.B. 化学産業 2.C. 金属産業	算定方法 T2	排出係数	算定方法	排出係數	算定方法	排出係數		-
温室効果ガスの種類 カテゴリー 2.A. 鉱物産業 2.B. 化学産業 2.C. 金属産業 2.D. 燃料からの非エネルギー製品及び溶剤の使用	算定方法 T2 CS	排出係數 CS CS	算定方法 T2	排出係數	算定方法 CS	排出係數	算定方法	排出係數
温室効果ガスの種類 カテゴリー 2.A. 鉱物産業 2.B. 化学産業 2.C. 金属産業 2.D. 燃料からの非エネルギー製品及び溶剤の使用 2.E. 電子産業	算定方法 T2 CS T2	排出係數 CS CS	算定方法 T2 T2	排出係数 CS CS	算定方法 CS	排出係數	算定方法	排出係數

表 4-2 IPPU 分野で用いている方法論の Tier

D: IPCC デフォルト値、T1: IPCC Tier1、T2: IPCC Tier2、T3: IPCC Tier3、CS: 国独自の方法または排出係数

4.2. 鉱物産業 (2.A.)

本カテゴリーは、鉱物原料 ($CaCO_3$ 、 $MgCO_3$ 、 Na_2CO_3) の焼成などにより放出される CO_2 を扱う。当該カテゴリーは「2.A.1.セメント製造」、「2.A.2.生石灰製造」、「2.A.3.ガラス製造」、「2.A.4.その他プロセスでの炭酸塩の使用」から構成される。

2016 年度における当該カテゴリーからの温室効果ガス排出量は約 33,627 kt- CO_2 であり、我が国の温室効果ガス総排出量 (LULUCF 分野を除く)の 2.6% を占めている。 1990 年の排出量と比較すると 31.7%の減少となっている。

ガ	ス			単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
	2.A	.1 セメント集	造	kt-CO2	38,701	42,142	35,086	32,280	30,658	28,553	25,308	24,321	24,983	25,625	26,805	26,557	25,936	25,969
	2.A	.2 生石灰製		kt-CO2	6,674	5,795	5,900	6,646	7,012	6,592	5,365	6,285	5,896	5,679	5,767	5,812	5,477	5,487
	2.A	3 ガラス製造		kt-CO2	301	268	214	241	209	169	136	160	163	176	190	191	190	183
_	CO2 2.A.4 その他プロセスでの炭酸塩の使用	7 O /lk = 2 D	セラミックス製品	kt-CO2	930	1,066	981	737	887	847	896	891	869	964	1,017	1,040	973	881
0		その他用途での ソーダ灰の使用	kt-CO ₂	119	118	102	78	74	70	65	63	61	50	45	48	46	45	
		政温の反角	その他	kt-CO2	2,493	1,742	1,617	1,238	1,359	1,202	1,005	1,028	1,120	1,167	1,229	1,147	1,113	1,060
	合訂	it		kt-CO ₂	49,219	51,131	43,899	41,220	40,200	37,432	32,776	32,748	33,091	33,661	35,053	34,795	33,735	33,627

表 4-3 2.A. 鉱物産業からの CO₂排出量

4.2.1. セメント製造 (2.A.1.)

a) 排出源カテゴリーの説明

セメントの中間製品であり、酸化カルシウム(CaO)を主成分とするクリンカ 1 の生産の際、 炭酸カルシウム($CaCO_3$)を主成分とする石灰石の焼成により CO_2 が排出される。また、石灰石には $CaCO_3$ のほかに微量ながらも炭酸マグネシウム($MgCO_3$)が含まれており、 $MgCO_3$ の焼成により CO_2 が排出される。

b) 方法論

■ 算定方法

当該排出源については、2006年 IPCC ガイドラインの Tier 2 手法に従い、クリンカ生産量に国独自の排出係数を乗じて CO_2 排出量を算定した。

<u>セメント製造に伴う CO₂ 排出量 [t-CO₂]</u> = 排出係数 [t-CO₂/t-clinker] ×クリンカ生産量 [t] ×セメントキルンダスト補正係数

■ 排出係数

我が国のセメント業界では、他産業から多量の廃棄物・副産物を受け入れ、セメントの原料代替として再資源化しているため、炭酸塩起源以外の CaO、MgO がクリンカ中に含まれている。この CaO、MgO は石灰石の焼成段階を経ておらず、クリンカ生産の段階で CO_2 を排出していないことから、廃棄物等由来の CaO、MgO を控除した炭酸塩起源のクリンカ中 CaO、MgO 含有率を求め、排出係数を設定した。なお、わが国ではセメントキルンダスト (CKD) は製造工程において通常ほぼ全量回収・リサイクルされていることが一般社団法人セメント協会 (以下、セメント協会)により確認されており、CKD 補正係数については 1.00 を使用した。

セメント製造に伴う CO2 の排出係数は、以下のように設定した。

 $EF = EF_{CaO} + EF_{MgO}$ EF_{CaO} : $CaCO_3$ 由来 CO_2 排出係数(下式により設定) EF_{MgO} : $MgCO_3$ 由来 CO_2 排出係数(下式により設定) $EF_{CaO} = \left(CaO_{Cl} - CaO_{Cl-Waste}\right) \times 0.785$ $CaO_{Cl-Waste} = \frac{W_{dry} \times CaO_{Waste}}{M}$ CaO_{Cl} : クリンカ中 CaO 含有率

CaO_{Cl-waste} : クリンカ中 CaO 含有率 (廃棄物等由来)

0.785 : CaO と CO₂ の分子量比

粉砕し、せっこう等を加えることでセメントが完成する。(セメント協会ウェブサイトより、一部改変)

¹ 主原料である石灰石をはじめ、粘土、けい石、鉄原料などを調合し予熱機から巨大な回転窯に投入し、高温焼成した後、空気で急冷するとセメントクリンカと呼ばれる直径 1cm 程度の火山岩のような黒い塊になる。これを

 Wdry
 : 廃棄物等投入量(乾重量)

 CaOwase
 : 廃棄物等原料中 CaO 含有率

M : クリンカ生産量

$$EF_{MgO} = (MgO_{Cl} - MgO_{Cl-Waste}) \times 1.092$$

$$MgO_{Cl\ Waste} = \frac{W_{dry} \times MgO_{Waste}}{M}$$

MgO_{Cl} : クリンカ中 MgO 含有率

MgO_{Cl-Waste} : クリンカ中 MgO 含有率 (廃棄物等由来)

1.092 : MgO と CO₂ の分子量比 W_{dry} : 廃棄物等投入量(乾重量) MgO_{Waste} : 廃棄物等原料中 MgO 含有率

M:クリンカ生産量

原料工程で投入された廃棄物等乾重量

算定に使用する廃棄物等の種類として、石炭灰(焼却残渣)下水汚泥焼却灰、一般ごみ焼却灰、ガラスくず・陶磁器くず、コンクリートくず、高炉スラグ(水砕)高炉スラグ(徐冷)製鋼スラグ、非鉄鉱さい、鋳物砂、ばいじん・ダスト、石炭灰(流動床灰)石炭灰(集塵機捕集ダスト)の13種類を選定した(これらの廃棄物による廃棄物等由来 CaO のカバー率は90%以上、MgO のカバー率は80%以上)。廃棄物量(排出ベース)及び各廃棄物等における含水率はセメント協会調査より把握した(2000年度以降のみ)。

クリンカ中の廃棄物等由来の CaO 含有量、CaO 含有率、MgO 含有量、MgO 含有率

上記の種類別廃棄物等乾重量に、セメント協会調査による種類別の CaO 含有率、MgO 含有率をそれぞれ乗じてクリンカ中の廃棄物等由来の CaO、MgO の総量をそれぞれ算出し、クリンカ生産量で除してクリンカ中の廃棄物等由来 CaO 含有率、MgO 含有率を設定した。CaO 含有率については、1999 年度以前のデータが入手できないため、 $2000 \sim 2003$ 年度の平均値を用いた。廃棄物中の MgO 含有率は、2006 年度以前のデータは入手できないため、 $2007 \sim 2009$ 年度の平均値を用いた。

廃棄物等由来の CaO、MgO を除いたクリンカ中の CaO 含有率、MgO 含有率

セメント協会調査によるクリンカ中の平均 CaO 含有率、MgO 含有率から廃棄物等由来の CaO 含有率、MgO 含有率をそれぞれ差し引いて、排出係数の設定に使用するクリンカ中の CaO 率、MgO 率をそれぞれ設定した。

大分類	種類	含水率	CaO 含有率	MgO 含有率
燃え殻(焼却残	石炭灰	7.2 ~ 14.5%	5.0 ~ 5.8%	1.0 ~ 1.1%
渣)	下水汚泥焼却灰	10.9 ~ 15.1%	7.4 ~ 12.5%	3.5 ~ 3.8%
	一般ごみ焼却灰	19.2 ~ 24.4%	10.0 ~ 26.5%	2.6 ~ 2.8%
ガラスくず、コ	ガラスくず・陶磁器くず	12.1 ~ 32.7%	17.5 ~ 31.1%	1.0 ~ 2.5%
ンクリートくず	コンクリートくず	0 ~ 37.2%	6.4 ~ 43.9%	1.0 ~ 1.1%
及び陶磁器くず				
	高炉スラグ(水砕)	5.0 ~ 16.9%	40.0 ~ 42.4%	4.7 ~ 5.8%
	高炉スラグ(徐冷)	5.5 ~ 11.2%	40.8 ~ 41.5%	6.1 ~ 6.5%
鉱さい	製鋼スラグ	7.7 ~ 14.1%	34.8 ~ 40.5%	2.0 ~ 3.0%
	非鉄鉱さい	4.8 ~ 8.4%	6.4 ~ 10.0%	1.1 ~ 1.5%
	鋳物砂	9.8 ~ 14.0%	6.5%	1.3 ~ 1.6%
ばいじん類(集	ばいじん、ダスト	8.9 ~ 14.3%	9.0 ~ 13.4%	1.2 ~ 1.5%
塵機捕集ダス	石炭灰 (流動床灰)	0.1 ~ 3.2%	14.5 ~ 20.7%	0.7 ~ 0.9%
F)	石炭灰	1.0 ~ 3.9%	4.1 ~ 5.0%	1.0 ~ 1.1%

表 4-4 廃棄物等由来原料の組成

は2009年度よりの新規追加分

項目 1995 2007 2008 2009 2013 2014 2015 2016 クリンカ中平均CaO含有率 65.9 65.9 66.0 65.9 65.9 65.9 65.8 65.8 65.8 65.8 65.8 65.8 65.8 65.8 クリンカ中廃棄物等由来の 2.6 2.6 2.9 2.0 2.0 19 17 17 2.0 1.8 17 16 16 16 CaO含有率 廃棄物等を除いたクリンカ % 63.3 63.3 63.0 63.9 63.8 63.9 64.1 64.1 63.7 64.0 64.1 64.1 64.2 64.1 中のCaO含有率 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 0.785 CO₂/CaO -CO₂/ 0.497 0.497 0.495 0.501 0.501 0.502 0.503 0.503 0.500 0.502 0.503 0.503 0.504 0.503 排出係数 1990 1995 2000 2005 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 クリンカ中平均MgO含有率 1.3 クリンカ中廃棄物等由来の 0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 MgO含有率 _____ 廃棄物等を除いたクリンカ % 1.0 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.1 中のMgO含有率 CO₂/MgO 1.092 1.092 1.092 1.092 1.092 1.092 1.092 1.092 1.092 1.092 1.092 1.092 1.092 1.092 排出係数 t-CO2/t 0.010 0.010 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.012 0.012 0.012 0.012 2011 2012 2013 合計排出係数 0.508 0.508 0.505 0.512 0.512 0.513 0.514 0.514 0.511 0.514 0.514 0.515 0.516 0.515 t-CO2/

表 4-5 セメント製造に伴う CO₂の排出係数

■ 活動量

クリンカの生産量はセメント協会の提供データにより把握した。1990~1999 年度のクリンカ生産量は統計値が把握されていないため、2000~2003 年度におけるクリンカ生産量(セメント協会データ)と「窯業・建材統計年報」(経済産業省)に示された石灰石消費量の比率の平均値を用いて過去(1990~1999 年度)のクリンカ生産量を推計した。

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
石灰石消費量 実績	kt (dry)	89,366	97,311	81,376	-	-	-	-	-	-	-	-	-	-	-
クリンカ生産量 実績	kt	-	-	69,528	63,003	59,885	55,647	49,195	47,279	48,884	49,883	52,105	51,573	50,307	50,436
クリンカ生産量実績 / 石灰 石消費量実績*		0.853	0.853												
補正後クリンカ生産量**	kt	76,253	83,032	69,528	63,003	59,885	55,647	49,195	47,279	48,884	49,883	52,105	51,573	50,307	50,436

表 4-6 クリンカ生産量

c) 不確実性と時系列の一貫性

■ 不確実性

セメント製造における CO_2 排出の排出係数、活動量の不確実性評価においては、それぞれ 2006 年 IPCC ガイドラインに示された不確実性のデフォルト値を使用した。その結果、排出

^{* 1990~1999}年度のクリンカ生産量実績/石灰石消費量実績の値は、2000~2003年度における比率の平均値。

^{** 1990~1999} 年度のみ推計にて補正。2000~2010 年度は実績値。

量の不確実性は4%と評価された。

■ 時系列の一貫性

1990~1999 年度については、セメント協会提供データに基づく活動量・排出係数の推計値を用いて排出量を算定している。2000 年度以降は、セメント協会より提供を受けたデータを用いて、上記の算定方法に従って一貫して算定している。

d) QA/QC と検証

2006 年 IPCC ガイドラインに従った方法で、一般的なインベントリ QC 手続きを実施している。一般的なインベントリ QC には、排出量の算定に用いている活動量、排出係数等パラメータのチェック、及び出典文献の保存が含まれる。

QA/QC活動については、1章に詳述している。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.2.2. 生石灰製造 (2.A.2.)

a) 排出源カテゴリーの説明

生石灰製造時に原料として使用される石灰石に含まれる $CaCO_3$ 、 $MgCO_3$ を焼成(加熱分解) することにより、 CO_2 が放出される。

生石灰製造プロセスにおける CO₂ 発生メカニズム CaCO₃→CaO + CO₂ MgCO₃→MgO + CO₂

b) 方法論

■ 算定方法

石灰石消費量に我が国独自の排出係数を乗じて CO₂ 排出量を算定した。

<u>生石灰製造の原料の使用に伴う CO₂ 排出量 [t-CO₂]</u> = 排出係数 [t-CO₂/t-原料] ×石灰石消費量 [t-原料]

■ 排出係数

日本石灰協会から提供された原料(石灰石)当たりの排出係数(0.428 t-CO₂/t-原料)を用いた。

原料当たりの排出係数は、原料成分や生石灰製品中の炭素量等をもとに推計した原料当たりの CO2 排出量を、各地方の生産量で加重平均したものである。なお、生石灰製造の排出係数は、年変動が少ないと考えられるため全年一定値とした。なお、上述のとおりこの排出係数は国独自のものである。

■ 活動量

不均一価格物量表における「窯業 他窯業土石製品」に計上された消費量のうち、生石灰・ 消石灰用途の石灰石消費量を用いている。なお、セメント用の石灰石の含水率を使用して乾 重量ベースに換算している。 不均一価格物量表(経済産業研究所)について

不均一価格物量表は、産業連関表の金額投入表と鉱工業統計に示された消費量を使用して作成された物量表であり、総合エネルギー統計(エネルギーバランス表)における類似の推計手法を応用したものである。

既存の産業連関表附帯の物量表は、国内における製品の需給状況を漏れなく重複なく表現しているものの、各部門の物量は全産業の平均価格により投入額から換算されているため、実際の単価が異なっていれば、部門によっては物量値が過大・過小となっている恐れがあるが、一方、不均一価格物量表は、鉱工業統計等における統計値を可能な限り使用することで、各部門における製品の品質や形態の差異に基づく不均一な取引単価を考慮し、部門間の誤差を排除して従来の物量表における欠点を克服しようとするものである。

不均一価格物量表における消費量を活動量とすることで、二重計上や計上漏れなくあらゆる 産業の活動量を把握することができ、また部門が細分化されているため排出・非排出用途の正 確な分類が可能となると考えられる。

インベントリでは、「セメント製造 (2.A.1.)」を除いて、不均一価格物量表の部門別石灰石・ ドロマイト消費量を各石灰石関連排出源の活動量に使用する。

ただし、軽焼ドロマイト製造で消費されるドロマイトについては、「その他プロセスでの炭酸塩の使用(2.A.4.)」に含めて計上されるため、「生石灰製造(2.A.2.)」では算定しない。なお、不均一価格物量表では、生石灰生産量から軽質炭カル生産量を差し引いた量に相当する石灰石消費量が生石灰製造部門の中で計上されており、軽質炭カル製造による CO2 再吸収分が控除されている。

さらに、製糖工場内における生石灰製造については、生石灰製造時に排出される CO₂ は製糖プロセス中で再吸収されているため、これを計上していない。また、アルミニウム製造における生石灰製造については、不均一価格物量表においてアルミニウム関連部門における石灰石消費量の計上がなく、我が国における製造実態は確認されていない。(なお、2014 年に生産は終了)

表 4-7 石灰石消費量

	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
石灰石消費量 (dry)	kt	15,595	13,540	13,785	15,527	16,383	15,401	12,534	14,684	13,775	13,269	13,474	13,579	12,797	12,820

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性については、2006年 IPCC ガイドラインに示されたデフォルト値の 2% を採用した。活動量の不確実性については、2006年 IPCC ガイドラインに示されたデフォルト値の 3%を採用した。その結果、排出量の不確実性は 4%と評価された。

■ 時系列の一貫性

生石灰製造の活動量は、不均一価格物量表の石灰石消費量を 1990 年度から一貫して使用している。また、排出係数は 1990 年度から一定値を使用している。従って、生石灰製造による CO₂ 排出に関して、時系列の一貫性は担保されている。

d) QA/QC と検証

セメント製造 (2.A.1) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

2015年度の不均一価格物量表における石灰石消費量が見直されたことに伴い、排出量の再計算が行われた。再計算の影響の程度については10章参照。

f) 今後の改善計画及び課題 特になし。

4.2.3. ガラス製造 (2.A.3.)

a) 排出源カテゴリーの説明

石灰石には CaCO₃ 及び微量の MgCO₃ が、ドロマイトには CaCO₃ 及び MgCO₃ が含まれており、石灰石・ドロマイトを加熱すると、CaCO₃ 及び MgCO₃ 由来の CO₂ が排出される。ソーダ 灰からも同様に CO₂ が排出される。

<u>石灰石、ドロマイトの使用における CO2</u> 生成メカニズム CaCO3→CaO + CO2 MgCO3→MgO + CO2

b) 方法論

■ 算定方法

ガラス製造において使用された石灰石、ドロマイト及びソーダ灰の量に排出係数を乗じて、 排出量の算定を行った。

■ 排出係数

石灰石

排出係数は、化学反応式における CO_2 と $CaCO_3$ の重量比に石灰石から取り出せる CaO の割合 (55.4%:「石灰石の話(石灰石鉱業協会)」に示された割合「 $54.8 \sim 56.0\%$ 」の中間値)を乗じた値と、 CO_2 と $MgCO_3$ の重量比に石灰石から取り出せる MgO の割合 (0.5%:「石灰石の話(石灰石鉱業協会)」に示された割合「 $0.0 \sim 1.0\%$ 」の中間値)を乗じた値を加えて算出した。なお、以下のとおり排出係数は国独自のものである。この排出係数については、適用を継続しても問題ない旨 2009 年に確認している。

 $CaCO_3 \rightarrow CaO + CO_2$ $MgCO_3 \rightarrow MgO + CO_2$

・石灰石から取り出せる CaO の割合: 55.4%

(54.8~56.0%の中間値:石灰石鉱業協会「石灰石の話」)

・石灰石から取り出せる MgO の割合: 0.5%b

(0.0~1.0%の中間値:石灰石鉱業協会「石灰石の話」)

- ・CaCO3 (石灰石の主成分)の分子量: 100.0869^a
- ・MgCO₃の分子量:84.3139^a
- ・CaO の分子量: 56.0774a
- ・MgO の分子量:40.3044a
- ・CO₂の分子量: 44.0095^a
- ・CaCO3の含有率 = 石灰石から取り出せる CaO の割合× CaCO3の分子量 / CaO の分子量
- ・MgCO3 の含有率 = 石灰石から取り出せる MgO の割合× MgCO3 の分子量 / MgO の分子量
- ・ 排出係数 = CO₂の分子量 / CaCO₃の分子量× CaCO₃の含有率 + CO₂の分子量 / MgCO₃の分子量× MgCO₃の含有率

 $= 440 [kg-CO_2/t]$

(出典)

a. IUPAC "Atomic Weights of the Elements 1999"

(http://www.chem.qmul.ac.uk/iupac/AtWt/AtWt99.html)

b. 石灰石鉱業協会「石灰石の話」

ドロマイト

排出係数は、化学反応式における CO_2 と $CaCO_3$ の重量比にドロマイトから取り出せる CaO の割合 (34.5%: $33.1 \sim 35.85\%$ の中間値。石灰石鉱業協会「石灰石の話」)を乗じた値と、 CO_2 と $MgCO_3$ の重量比にドロマイトから取り出せる MgO の割合 (18.3%: $17.2 \sim 19.5\%$ の中間値。石灰石鉱業協会「石灰石の話」)を乗じた値を加え排出係数を算定した。なお、以下のとおり排出係数は国独自のものである。この排出係数については、適用を継続しても問題ない旨 2009年に確認している。

 $CaCO_3 \rightarrow CaO + CO_2$ $MgCO_3 \rightarrow MgO + CO_2$

- ・ドロマイトから取り出せる CaO の割合: 34.5%
 - (33.1~35.85%の中間値:石灰石鉱業協会「石灰石の話」)
- ・ドロマイトから取り出せる MgO の割合: 18.3%
 - (17.2~19.5%の中間値:石灰石鉱業協会「石灰石の話」)
- ・CaCO₃ (ドロマイトの主成分)の分子量: 100.0869
- ・MgCO₃ (ドロマイトの主成分)の分子量:84.3142
- · CaO の分子量: 56.0774
- ・MgO の分子量: 40.3044
- ・CO₂の分子量:44.0098
- ・CaCO₃ の含有率 = ドロマイトから取り出せる CaO の割合 × CaCO₃ の分子量 / CaO の分子量
- ・MgCO3の含有率 = ドロマイトから取り出せる MgO の割合 × MgCO3の分子量 / MgO の分子量
- 排出係数 = CO₂の分子量 / CaCO₃の分子量×CaCO₃の含有率
 - + CO₂の分子量 / MgCO₃の分子量×MgCO₃の含有率
 - = $471 [kg-CO_2/t]$

ソーダ灰

2.A.4.b「その他用途でのソーダ灰の使用」を参照。

■ 活動量

不均一価格物量表におけるガラス製品関連部門に計上された石灰石、ドロマイト及びソーダ灰消費量のうち、排出用途に分類される全部門の石灰石、ドロマイト及びソーダ灰消費量を本サブカテゴリ下に計上する)。なお、活動量はセメント用の石灰石の含水率を使用して乾重量ベースに換算されたものである。

本用途分類に対応する不均一価格物量表の部門については以下の通りである。

 用途
 該当部門 (石灰石)
 該当部門 (ドロマイト)
 該当部門 (ソーダ灰)

 ガラス製品
 2511-01 窯業 板ガラス ~ 2519-09 窯業 他ガラス製品
 2511-01 窯業 板ガラス・安全 ガラス
 2510-33 窯業 ガラス・ガラ ス製品

表 4-8 不均一価格物量表の該当部門

(注)部門名に付されている番号は、不均一価格物量表内の分類番号。

表 4-9 石灰石、ドロマイト及びソーダ灰の消費量

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
石灰石消費量	kt	66	42	26	31	25	16	12	17	16	20	23	23	23	21
ドロマイト消費量	kt	264	250	203	230	197	160	126	151	154	164	176	176	174	167
ソーダ灰消費量	kt	358	320	257	288	255	210	173	197	201	217	235	236	237	230

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性については、石灰石・ドロマイト・ソーダ灰のいずれも 2006 年 IPCC ガイドラインに示されたデフォルト値の 5%を採用した。活動量の不確実性については、石

灰石・ドロマイト・ソーダ灰のいずれも 2006 年 IPCC ガイドラインに示されたデフォルト値の 3%を採用した。その結果、石灰石・ドロマイト・ソーダ灰のいずれも排出量の不確実性は 6%と評価された。

■ 時系列の一貫性

活動量は、不均一価格物量表の石灰石、ドロマイト及びソーダ灰消費量を 1990 年度から一貫して使用している。また、排出係数は 1990 年度から一定値を使用している。従って、石灰石、ドロマイト及びソーダ灰の使用による CO_2 排出に関して、時系列の一貫性は担保されている。

d) QA/QC と検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

2014年について、不均一価格物量表におけるソーダ灰消費量が見直されたことに伴い、また、2015年について、石灰石・ドロマイト・ソーダ灰消費量が見直されたことに伴い、排出量の再計算が行われた。再計算の影響の程度については10章参照。

f) 今後の改善計画及び課題

特になし。

4.2.4. その他プロセスでの炭酸塩の使用 (2.A.4.)

4.2.4.1. セラミックス製品 (2.A.4.a)

a) 排出源カテゴリーの説明

石灰石には CaCO₃ 及び微量の MgCO₃ が、ドロマイトには CaCO₃ 及び MgCO₃ が含まれており、石灰石・ドロマイトを加熱すると、CaCO₃ 及び MgCO₃ 由来の CO₂ が排出される。

b) 方法論

■ 算定方法

陶磁器等のセラミックス製品製造において使用された石灰石及びドロマイトの量に排出係数を乗じて、排出量の算定を行った。

■ 排出係数

石灰石

排出係数 (440 [kg- CO_2/t]) は、化学反応式における CO_2 と $CaCO_3$ の重量比に石灰石から取り出せる CaO の割合(55.4%:「石灰石の話(石灰石鉱業協会)」に示された割合「 $54.8 \sim 56.0\%$ 」の中間値)を乗じた値と、 CO_2 と $MgCO_3$ の重量比に石灰石から取り出せる MgO の割合(0.5%: 「石灰石の話 (石灰石鉱業協会)」に示された割合「 $0.0 \sim 1.0\%$ 」の中間値)を乗じた値を加えて算出した。なお、排出係数は国独自のものである。この排出係数については、適用を継続しても問題ない旨 2009 年に確認している。(詳細は 4.2.3.b) 参照)

ドロマイト

排出係数 (471 [kg-CO₂/t]) は、化学反応式における CO₂ と CaCO₃ の重量比にドロマイトから取り出せる CaO の割合(34.5%:33.1~35.85%の中間値。石灰石鉱業協会「石灰石の話」) を乗じた値と、CO₂ と MgCO₃ の重量比にドロマイトから取り出せる MgO の割合(18.3%:17.2~19.5%の中間値。石灰石鉱業協会「石灰石の話」) を乗じた値を加え排出係数を算定した。

なお、排出係数は国独自のものである。この排出係数については、適用を継続しても問題ない旨 2009 年に確認している。(詳細は 4.2.3.b) 参照)

■ 活動量

不均一価格物量表におけるセラミックス製品関連部門に計上された石灰石及びドロマイト 消費量のうち、排出用途に分類される全部門の石灰石及びドロマイト消費量を本サブカテゴ リ下に計上する。なお、活動量はセメント用の石灰石の含水率を使用して乾重量ベースに換 算されたものである。

本用途分類に対応する不均一価格物量表の部門については以下の通りである。

用途	不均一価格物量表の該当部門	不均一価格物量表の該当部門
	(石灰石)	(ドロマイト)
セラミックス製品		0621-01 鉱業 窯業原料鉱物
		0621-09 鉱業 他非金属鉱物
	2531-01 窯業 陶磁器	2531-01 窯業 陶磁器
	2599-01 窯業 耐火物	2599-01 窯業 耐火物、-03 炭素黒鉛
		2599-09 窯業 他窯業土石製品
		2811-01 金属 建設用金属製品
		~ 2899-09 金属 他金属製品
		8611-09 個人サ 他娯楽サービス

表 4-10 不均一価格物量表の該当部門

(注)部門名に付されている番号は、不均一価格物量表内の分類番号。

			14 4-	·11 1	$\square / X \square$, I , I	X 1 1	1077	里貝比					
項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
石灰石消費量															
セラミック製品用(dry)	kt	442	1,110	1,138	467	659	575	417	400	434	480	729	906	979	867
ドロマイト消費量															
カラミック制ロ田(イロン)	1/+	1 561	1 227	1.020	1 129	1 267	1 261	1.514	1 510	1.440	1 597	1 //70	1 362	1 152	1.061

表 4-11 石灰石及びドロマイトの消費量

c) 不確実性と時系列の一貫性

■ 不確実性

生石灰製造 (2.A.2) に記載した内容と同一である。4.2.2.c) 節を参照のこと。

■ 時系列の一貫性

石灰石及びドロマイトの使用の活動量は、不均一価格物量表の石灰石及びドロマイト消費量を 1990 年度から一貫して使用している。また、排出係数は 1990 年度から一定値を使用している。従って、石灰石及びドロマイトの使用による CO_2 排出に関して、時系列の一貫性は担保されている。

d) QA/QC と検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

2013~2015 年について不均一価格物量表における石灰石消費量が見直されたことに伴い、排出量の再計算が行われた。また、2015 年について、不均一価格物量表におけるドロマイト消費量が見直されたことに伴い、排出量の再計算が行われた。再計算の影響の程度については 10 章参照。

f) 今後の改善計画及び課題

特になし。

4.2.4.2. その他用途でのソーダ灰の使用 (2.A.4.b)

a) 排出源カテゴリーの説明

ソーダ灰 (Na_2CO_3) の使用時に CO_2 が排出される。

- b) 方法論
- 算定方法

ソーダ灰消費量に我が国独自の排出係数を乗じて CO2 排出量を算定した。

■ 排出係数

不均一価格物量表において排出用途に分類されているソーダ灰消費量については、国産品・輸入品の別が特定できないため、国内総出荷量と海外総輸入量により以下の国内産ソーダ灰排出係数と輸入分の排出係数の加重平均をとって排出係数を設定する。

なお、国内産ソーダ灰については純度を用いて以下のように排出係数が設定されている。 (ソーダ灰の純度は経年変動が少ないため、排出係数は経年固定)

国内産ソーダ灰排出係数 = ソーダ灰純度(国内全2社算術平均)

× CO₂分子量 / Na₂CO₃分子量

 $= 0.995 \times 44.01 / 105.99$

= 0.413

輸入ソーダ灰及び輸入されたその他炭酸二ナトリウムについては代表値を求めるための十分な情報が得られていないため、2006 年 IPCC ガイドライン (vol.3 p.2.7) に示されるデフォルト値 (0.415 [t-CO₂/t-Na₂CO₃]) を用いる。

■ 活動量

不均一価格物量表において排出用途に分類されているソーダ灰消費量を用いた。(ガラス製造用を除く)

- c) 不確実性と時系列の一貫性
- 不確実性

排出係数の不確実性については、石灰石・ドロマイトともに 2006 年 IPCC ガイドラインに示されたデフォルト値の 5%を採用した。活動量の不確実性については、石灰石・ドロマイトともに 2006 年 IPCC ガイドラインに示されたデフォルト値の 3%を採用した。その結果、石灰石・ドロマイトともに排出量の不確実性は 6%と評価された。

■ 時系列の一貫性

ソーダ灰の使用に関する活動量は、不均一価格物量表のソーダ灰消費量を 1990 年度から一貫して使用している。また、排出係数は 1990 年度から一定値を使用している。従って、ソーダ灰の使用による CO₂ 排出に関して、時系列の一貫性は担保されている。

d) QA/QC と検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

2014年、2015年について不均一価格物量表におけるソーダ灰消費量が見直されたことに伴い、排出量の再計算が行われた。再計算の影響の程度については10章参照。

f) 今後の改善計画及び課題

特になし。

4.2.4.3. マグネシア製造 (2.A.4.c)

排出量は「2.A.4.d.その他」に含まれることから、「IE」と報告する。

4.2.4.4. その他 (2.A.4.d)

a) 排出源カテゴリーの説明

石灰石には CaCO₃ 及び微量の MgCO₃ が、ドロマイトには CaCO₃ 及び MgCO₃ が含まれており、石灰石・ドロマイトを加熱すると、CaCO₃ 及び MgCO₃ 由来の CO₂ が排出される。

石灰石、ドロマイトの使用における CO₂ 生成メカニズム CaCO₃→CaO + CO₂ MgCO₃→MgO + CO₂

b) 方法論

■ 算定方法

排煙脱硫・化学製品製造において使用された石灰石及びドロマイトの量に排出係数を乗じて、排出量の算定を行った。

■ 排出係数

石灰石

排出係数は、化学反応式における CO_2 と $CaCO_3$ の重量比に石灰石から取り出せる CaO の割合 (55.4%:「石灰石の話(石灰石鉱業協会)」に示された割合「 $54.8 \sim 56.0\%$ 」の中間値)を乗じた値と、 CO_2 と $MgCO_3$ の重量比に石灰石から取り出せる MgO の割合 (0.5%:「石灰石の話(石灰石鉱業協会)」に示された割合「 $0.0 \sim 1.0\%$ 」の中間値)を乗じた値を加えて算出した。なお、排出係数は国独自のものである。この排出係数については、適用を継続しても問題ない旨 2009 年に確認している。(4.2.3.b)参照)

ドロマイト

排出係数は、化学反応式における CO_2 と $CaCO_3$ の重量比にドロマイトから取り出せる CaO の割合 (34.5% : $33.1 \sim 35.85\%$ の中間値。石灰石鉱業協会「石灰石の話」) を乗じた値と、 CO_2 と $MgCO_3$ の重量比にドロマイトから取り出せる MgO の割合 (18.3% : $17.2 \sim 19.5\%$ の中間値。石灰石鉱業協会「石灰石の話」) を乗じた値を加え排出係数を算定した。なお、排出係数は国独自のものである。この排出係数については、適用を継続しても問題ない旨 2009 年に確認している。(4.2.3.b) 参照)

■ 活動量

不均一価格物量表における排煙脱硫・化学製品関連部門に計上された石灰石及びドロマイト消費量のうち、排出用途に分類される全部門の石灰石及びドロマイト消費量を本サブカテゴリー下に計上する。なお、活動量はセメント用の石灰石の含水率を使用して乾重量ベースに換算されたものである。

本用途分類に対応する不均一価格物量表の部門については以下の通りである。

用途	不均一価格物量表の該当部門	不均一価格物量表の該当部門
	(石灰石)	(ドロマイト)
排煙脱硫	0621-01 鉱業 窯業原料鉱物	
化学製品	2011-02 化学 化学肥料	2011-02 化学 化学肥料
	2022-09 化学 他無機化学製品	2022-09 化学 他無機化学製品
		2039-02 化学 油脂加工製品
	2039-09 化学 他有機化学製品	2039-09 化学 他有機化学製品
		2061-01 化学 医薬品
		2079-09 化学 他化学最終製品

表 4-12 主な用途と不均一価格物量表の該当部門

(注)部門名に付されている番号は、不均一価格物量表内の分類番号。

表 4-13 石灰石及びドロマイトの消費量

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
石灰石消費量															
排煙脱硫用(dry)	kt	1,841	2,139	1,813	2,075	2,135	1,922	1,699	1,795	2,008	2,149	2,067	1,741	1,627	1,629
化学製品用(dry)	kt	3,668	1,717	1,772	683	899	759	531	491	501	481	708	853	894	772
ドロマイト消費量															
化学製品用(dry)	kt	147	96	84	54	52	47	52	47	35	20	16	12	9	7

c) 不確実性と時系列の一貫性

■ 不確実性

ガラス製造 (2.A.3) に記載した内容と同一である。4.2.3.c) 節を参照のこと。

■ 時系列の一貫性

石灰石及びドロマイトの使用の活動量は、不均一価格物量表の石灰石及びドロマイト消費量を 1990 年度から一貫して使用している。また、排出係数は 1990 年度から一定値を使用している。従って、石灰石及びドロマイトの使用による CO₂ 排出に関して、時系列の一貫性は担保されている。

d) QA/QC と検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

排煙脱硫について、2013~2015年について不均一価格物量表における石灰石消費量が見直されたことに伴い、排出量の再計算が行われた。化学製品製造について、2013~2015年について不均一価格物量表における石灰石消費量が見直されたことに伴い、排出量の再計算が行われた。また、2015年について、不均一価格物量表におけるドロマイト消費量が見直されたことに伴い、排出量の再計算が行われた。再計算の影響の程度については10章参照。

f) 今後の改善計画及び課題

特になし。

4.3. 化学産業 (2.B.)

化学産業カテゴリーでは、化学製品の製造過程から大気中に排出される CO_2 、 CH_4 、 N_2O 、 HFC_8 、 PFC_8 、 SF_6 、 NF_3 を扱う。当該カテゴリーは、「2.B.1.アンモニア製造」、「2.B.2.硝酸製造」、「2.B.3.アジピン酸製造」、「2.B.4.カプロラクタム、グリオキサール、グリオキシル酸製造」、「2.B.5.カーバイド製造」、「2.B.6.二酸化チタン製造」、「2.B.8.石油化学製品及びカーボン

ブラック製造」、「2.B.9.フッ化物製造」から構成される。

2016年度における当該カテゴリーからの温室効果ガス排出量は約5,958 kt-CO $_2$ 換算であり、我が国の温室効果ガス総排出量(LULUCF 除く)の 0.5%を占めている。このカテゴリーの CO_2 、 CH_4 及び N_2 O について 1990 年の排出量と比較すると 68.8% の減少となっている。HFCs、 PFCs、 SF_6 及び NF_3 では 1990 年の排出量と比較すると 96.2% の減少となっている。

ガス				単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
	2.B.1			kt-CO ₂	3,416	3,456	3,183	2,163	2,255	2,003	1,919	2,118	2,003	1,849	1,934	1,891	1,947	1,658
	2.B.5	カーバイ	シリコンカー バイド	kt-CO ₂	C	С	C	С	С	С	С	С	С	С	С	С	С	С
	2.0.3	ド製造	カルシウム カーバイド	kt-CO2	С	C	С	C	C	C	С	C	С	C	C	C	C	C
	2.B.6	二酸化チタン	/製造	kt-CO2	102	39	53	59	62	51	43	62	65	51	60	62	53	58
			メタノール	kt-CO ₂	56	51	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
			エチレン	kt-CO2	C	C	C	C	C	C	C	C	C	C	C	C	C	C
CO ₂	2.70	石油化学及びカー	1,2-ジクロロエタ ン、クロロエチレ ン	kt-CO2	150	171	193	200	199	184	191	184	146	130	148	150	169	170
	2.B.8	ボンブ	酸化エチレン	kt-CO2	171	191	231	240	230	191	190	202	202	204	220	214	221	212
		ラック製 造	アクリロニト リル	kt-CO ₂	440	476	536	509	520	411	461	524	486	404	364	342	315	319
			カーボンブラック	kt-CO ₂	1,633	1,563	1,590	1,659	1,732	1,494	1,308	1,505	1,380	1,261	1,294	1,253	1,161	1,173
			無水フタル酸	kt-CO ₂	117	124	118	81	68	59	51	60	55	60	59	58	60	58
			無水マレイン酸	kt-CO2	123	138	163	114	115	96	94	102	91	78	89	88	90	91
			水素	kt-CO ₂	6	21	39	33	31	30	31	34	32	30	28	24	28	29
	合計			kt-CO2	7,039	7,013	6,810	5,790	5,962	5,103	4,868	5,422	5,098	4,646	4,788	4,685	4,591	4,305
	2.B.5	カーバイ ド製造	シリコンカー バイド	kt-CH4	С	C	С	С	C	С	С	С	С	C	C	С	С	С
			メタノール	kt-CH4	0.19	0.17	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
			エチレン	kt-CH4	C	C	С	C	C	C	C	C	C	C	C	C	C	C
CH4	2.B.8	石油化学 及びカー ボンブ ラック 製	1,2-ジクロロエタ ン、クロロエチレ ン	kt-CH4	0.01	0.02	0.02	NO										
		造	酸化エチレン	kt-CH4	C	C	C	C	C	C	C	C	C	C	C	C	C	C
			カーボンプラック	kt-CH4	C	C	C	C	C	C	C	C	C	C	C	C	C	C
			スチレン	kt-CH4	C	C	C	C	C	C	C	C	C	C	C	C	C	C
	合計			kt-CH4	1.50	1.48	1.37	1.35	1.21	1.27	1.43	1.45	1.43	1.13	1.13	1.01	1.27	1.07
	合計			kt-CO2換算	37.49	37.09	34.15	33.69	30.30	31.74	35.83	36.23	35.71	28.14	28.20	25.22	31.79	26.77
	2.B.2	硝酸製造		kt-N ₂ O	2.47	2.46	2.57	2.52	1.90	1.62	1.54	1.81	1.49	1.53	1.54	1.55	1.40	1.28
	2.B.3	アジピン酸	製造	kt-N2O	24.20	24.03	12.56	1.68	0.87	2.45	3.49	1.66	1.05	0.51	0.77	0.48	0.38	0.49
		カプロラクタ ム、グリオキ	カプロラクタム	kt-N ₂ O	4.66	4.93	5.20	3.92	3.66	2.83	3.05	3.17	3.00	2.76	2.35	1.59	1.39	1.17
N ₂ O	2.B.4	サール、グリ オキシル酸	グリオキサール	kt-N2O	С	С	С	С	C	С	С	С	С	С	С	С	С	С
		製造	グリオキシル酸	kt-N ₂ O	C	C	C	C	C	C	C	C	C	C	C	C	C	C
	合計		<u>I</u>	kt-N ₂ O	32,28	32,43	21.30	9.15	7.48	7.89	8,45	6.70	5.57	4.80	4.66	3.62	3.17	2.93
	무희 合計			kt-CO2換算	9,620	9,665	6,348	2,726	2.228	2,350	2,518	1,995	1.661	1.429	1,389	1.078	944	875
CO ₂ .		N2O合計		kt-CO2換算	16,696	16,715	13,192	8,550	8,220	7,485	7,422	7,454	6,795	6,103	6,206	5,788	5,567	5,206
ガス	C114,	1.20011		単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
HFCs	2.B.9	フッ化物製 造	HCFC-22の製造 に伴う副生 HFC-23の排出	単业 kt-CO₂換算	15,929	21,460	15,688	586	275	593	50	53	16	18	16	24	30	24
			製造時の漏出	kt-CO ₂ 換算	2	559	296	449	357	306	234	128	151	120	131	101	83	149
	合計		vz ma LL	kt-CO2換算	15,930	22.019	15,984	1.035	632	900	284	181	168	138	147	124	113	172
PFCs	ΠП		制件はの混山	kt-CO2換算	331	914	1,661	1,041	977	649	459	248	206	148	111	107	115	97
11.08			製造時の漏出	KI-CU2按昇	152	197	36	41	50	54	10	240	200	5	111	3	2	2
SF ₆	2.B.9	フッ化物製	製造時の漏出	1+ CO +5-5**	3,471	4,492	821	930	1,144	1,229	233	189	132	123	93	62	52	50
—	2. D .9	造		kt-CO2換算	_		7.0	72.1		_	66.8	76.9	93.1	76.4	86.4	56.1		25.1
NF3			製造時の漏出	1.00 ###	0.2	1.0	120	1.240	71.4	71.1		1.323	1,601	1.314			23.5	432
p#i z	13.2 5 7 7.11			kt-CO2換算	10.725	17					1,149	/	,	-/-	1,486	965		752
Fガス	Tip			kt-CO ₂ 換算	19,735	27,442	18,587	4,246	3,981	4,001	2,124	1,942	2,108	1,723	1,837	1,258	684	/52

表 4-14 2.B. 化学産業からの排出量

4.3.1. アンモニア製造(2.B.1.)

a) 排出源カテゴリーの説明

1) CO₂

アンモニア製造においては、原料の炭化水素を分解して H_2 を生成する過程で CO_2 が排出される。

アンモニア製造における CO_2 発生メカニズム $0.88CH_4 + 1.26$ 空気 $+ 1.24H_2O \rightarrow 0.88CO_2 + N_2 + 3H_2$ アンモニア合成 $N_2 + 3H_2 \rightarrow 2NH_3$

2) CH₄

実測例よりアンモニア製造に伴う CH_4 の排出は確認されているが、排出係数を設定するだけの十分な実測例が存在しないため、現状では排出量の算定はできない。また、排出係数のデフォルト値が 2006 年 IPCC ガイドラインに示されていないことから、「NE」と報告している。

3) N₂O

我が国ではアンモニアの製造は行われているが、アンモニア製造に伴う N_2O の排出は原理的に考えられず、また実測例でも N_2O の排出係数は測定限界以下であったことから「NA」と報告している。

b) 方法論

■ 算定方法

アンモニアの原料として使用された各燃料種の消費量に国独自の排出係数を乗じて、 CO_2 排出量の算定を行った。なお、 $1990 \sim 1993$ 年、 $1997 \sim 1999$ 年、2003 年、2004 年については、主にアンモニア製造プラントから供給された炭酸ガスが地中圧入されたため、その分を排出量から控除している。(詳細は 3.4.4 節 (1.C.) 参照)

■ 排出係数

表 4-15 に示す原料毎に、燃料の燃焼分野からの CO_2 排出量の算定に用いている排出係数 と同じ値を用いた(第3章参照のこと) なお、使用原料の割合は年ごとに変動するため、みなし排出係数もまた年次可変となる。

1995 2000 2005 2007 2009 2010 2011 2012 2013 2014 2016 単位 1990 2008 2015 ナフサ 総発熱量 MJ/l 33 57 33.55 33.53 33.53 33.31 18.17 18.17 18.17 18.17 18.17 炭素排出係数 tC/TJ 18.1 18.17 18.17 18.17 18.17 18.63 18.63 18.6 18.63 液化石油ガス 50.75 50.09 50.09 MJ/kg 50.5 50.63 50.70 50.73 50.72 50.77 50.76 50.78 50.09 総発熱量 tC/TJ 16.54 16.51 16.49 16.48 16.48 16.48 16.48 16.47 16.47 16.47 16.38 16.37 16.36 16.36 炭素排出係数 石油系炭化水素ガス 39.3 39.35 44.90 44.90 44.90 44.90 44.90 44.90 44.90 44.90 46.73 46.73 46.73 46.73 総発熱量 MJ/m³ 炭素排出係数 14.15 14.15 14.15 14.44 天然ガス 42.09 42.39 42.87 44.61 44.71 44.84 44.67 44.75 40.15 40.15 40.15 総発熱量 MJ/m 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 13.90 炭素排出係数 tC/TJ 13.97 13.97 石炭(一般炭、輸入炭)総発熱量 MJ/kg 25.9 25.95 26.60 25.70 25.70 25.70 25.70 24.71 炭素排出係数 tC/TJ 24.71 24.71 24.71 24.71 24.71 24.71 24.71 24.71 24.71 24.42 24.42 24.42 24.42 オイルコークス 総発熱量 MJ/kg 35.58 35.60 29.90 29.90 33.29 炭素排出係数 tC/TJ 25.35 25.35 25.35 25.35 25.35 25.35 25.35 25.35 25.35 25.35 24.50 24.50 24.50 24.50 液化天然ガス 54.54 54.52 54.51 54.49 54.48 54.40 54.46 54.46 54.46 総発熱量 MJ/kg 54.53 54.49 54.50 54.49 54.46 13.79 13.79 13.96 炭素排出係数 tC/TJ 13.81 13.82 13.82 13.82 13.82 13.82 13.81 13.81 13.96 13.95 13.96 コークス炉ガス 21.42 総発熱量 21.51 21.57 21.27 21.28 21.20 21.15 21.32 21.12 20.75 19.12 19.12 19.12 19.12 MJ/m³ 10.99 10.99 10.99 10.99 10,99 10.99 10.93 10.93

表 4-15 アンモニア製造時に使用する原料、排出係数及び発熱量

(出典)資源エネルギー庁「総合エネルギー統計」

■ 活動量

経済産業省「石油等消費動態統計年報」に示された表 4-16 の燃料種の固有単位(重量、容積等)を、資源エネルギー庁「総合エネルギー統計」に示された発熱量を用いて換算した値を用いた。なお、一部の燃料種の消費量については秘匿データである。

表 4-16 アンモニア製造に係る原料用消費量	量
-------------------------	---

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
ナフサ	kl	189,714	477,539	406,958	92,453	77,214	67,062	72,045	70,067	67,646	67,869	71,494	66,079	73,612	18,421
液化石油ガス	t	226,593	45,932	5,991	NO										
石油系炭化水素ガス	10^{3}m^{3}	C	230,972	240,200	147,502	144,196	151,553	140,783	143,634	126,809	NO	NO	NO	NO	NO
天然ガス	10^{3} m^{3}	C	100,468	86,873	77,299	50,986	50,260	21,773	41,640	41,169	45,808	47,956	51,858	17,498	637
石炭(一般炭、輸入炭)	t	C	209,839	726	1,239	763	802	522	629	879	390	919	787	362	891
オイルコークス	t	C	273,125	420,862	353,983	407,213	336,633	351,594	394,116	365,340	405,557	401,721	426,743	468,684	416,722
液化天然ガス	t	C	46,501	23,395	165,606	180,161	162,342	145,699	157,918	161,588	169,109	168,155	127,824	122,453	131,446
コークス炉ガス	10^{3}m^{3}	C	35,860	55,333	NO										

C: 秘匿情報

■ 留意事項

当該区分における燃料消費量は、エネルギー分野の活動量から控除されている(第3章参照のこと)。

c) 不確実性と時系列の一貫性

■ 不確実性

アンモニアの原料種別に不確実性を評価した。排出係数の不確実性については、炭素排出係数の 95%信頼区間の上限値・下限値より設定した。活動量の不確実性については、燃料の燃焼と同様の値を使用した。その結果、ナフサの不確実性は $-3 \sim +1\%$ 、LPG は $-3 \sim +1\%$ 、石油系炭化水素ガスは $-4 \sim +3\%$ 、天然ガスは $-1 \sim +1\%$ 、石炭(一般炭、輸入炭)は $-4 \sim +3\%$ 、オイルコークスは $-3 \sim +1\%$ 、液化天然ガスは $-1 \sim +1\%$ 、コークス炉ガスは $-4 \sim +3\%$ と評価された。

■ 時系列の一貫性

活動量は経済産業省「石油等消費動態統計年報」をもとに、1990年度値から一貫して使用している。また、排出係数は1990年度から「総合エネルギー統計」に基づいて設定している。 従って、アンモニア製造によるCO2排出に関して、時系列の一貫性は担保されている。

d) QA/QC と検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1. d) 節を参照のこと。

e) 再計算

液化天然ガスの総発熱量を見直したため、2014 年を除く全年にわたり、再計算が生じた。 2013 年、2015 年については、炭素排出係数の見直しも再計算に寄与した。再計算の影響の程 度については 10 章参照。

f) 今後の改善計画及び課題

特になし。

4.3.2. 硝酸製造 (2.B.2.)

a) 排出源カテゴリーの説明

アンモニアを原料とする硝酸 (HNO3) の製造に伴い N2O が排出される。

<u>硝酸製造における N₂O 発生メカニズム</u> $4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$ $2NO + H_2O \rightarrow 2NO_2$ $3NO_2 + H_2O \rightarrow 2HNO_3 + NO (\rightarrow N_2O)$

日本国内の硝酸製造においては、オストワルド法の化学反応をベースとした新ファウザー法(中圧) ケミコ式(高圧)などが主流となっている。なお、N₂O 分解については一部触媒

を用いた装置を稼働させている。

b) 方法論

■ 算定方法

2006 年 IPCC ガイドラインに示された Tier 2 手法に基づき、硝酸の生産量に排出係数を乗じて N_2O 排出量を算定した。なお、各工場における排出量のデータは秘匿情報であるため、硝酸生産量及び排出係数は我が国全体の総量に対して設定した。 N_2O 破壊量は現時点では把握されていないが、排出係数で考慮されている。

硝酸製造に伴う N₂O 排出量 [kg-N₂O]

= 排出係数 [kgN₂O/t] ×硝酸生産量 [t]

■ 排出係数

工場別のデータは秘匿情報であるため、我が国で硝酸の製造を行なっている国内全 10 工場の排出係数 (実測値)を各工場の硝酸製造量で加重平均して排出係数を設定した。なお、この排出係数は N_2O の回収・破壊を考慮した値である。

表 4-17 硝酸製造に伴う N₂O 排出係数

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
硝酸製造に伴う排出係数	kg-N2O/t	3.50	3.51	3.92	4.18	3.22	3.35	3.34	3.58	3.49	3.38	3.55	3.54	3.60	3.59

■ 活動量

硝酸製造時の N₂O 排出の活動量には、経済産業省より提供のデータを用いている。

表 4-18 硝酸生産量

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
硝酸生産量	kt	706	701	656	602	590	484	461	506	426	453	434	437	388	356

c) 不確実性と時系列の一貫性

■ 不確実性

硝酸製造に伴う N_2O の排出係数の不確実性については、工場別の排出係数及び生産量から排出係数の標準偏差を算出し、73% と評価した。活動量の不確実性については、2006 年 IPCC ガイドラインのデフォルト値の 2% を採用した。その結果、排出量の不確実性は 73% と評価された。

■ 時系列の一貫性

経済産業省より提供を受けた活動量・排出係数データをもとに、1990 年度値から一貫した 方法を使用して、算定している。

d) QA/QC と検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.3.3. アジピン酸製造 (2.B.3.)

a) 排出源カテゴリーの説明

アジピン酸 ($C_6H_{10}O_4$)の製造過程で、シクロヘキサノンとシクロヘキサノールと硝酸の化学反応で N_2O が排出される。

b) 方法論

■ 算定方法

当該事業所における N_2O 発生率、 N_2O 分解量、アジピン酸生産量を用いて排出量を算定した。

■ 排出係数

国独自の排出係数は以下のパラメータを用いて設定した。なお、排出係数及びパラメータの各データは秘匿扱いである。

N₂O 発生率

我が国でアジピン酸を目的生産物として生産を行っている唯一の事業所における実測データを用いた。

N₂O 分解率

当該事業所における N₂O 分解率の実測結果を用いた。

N₂O 分解装置稼働率

当該事業所において全ての N₂O 分解装置を対象に毎年調査される N₂O 分解装置運転時間及 びアジピン酸製造プラント運転時間に基づいて算定された値を用いた。

■ 活動量

アジピン酸製造に伴う N₂O 排出の活動量は、当該メーカーから経済産業省に提供されたアジピン酸の生産量を用いた。なお、データは秘匿扱いである。

■ 留意事項

アジピン酸製造過程における N_2O 排出量は、1990 年から 1997 年にかけて、概ね増加傾向にあった。しかし、1999 年 3 月より、アジピン酸製造プラントにおいて N_2O 分解装置の稼働を開始したため、1999 年以降は N_2O 排出量が大幅に減少することとなった。なお、2000 年は N_2O 分解装置の故障により稼働率が低下したために N_2O 排出量が一時的に増加している。

c) 不確実性と時系列の一貫性

■ 不確実性

アジピン酸の排出係数は複数のパラメータにより算定しているため、各パラメータの不確実性を合成して排出係数の不確実性を算定した。 N_2O 発生率、 N_2O 分解率、分解装置の稼働率の不確実性を合成した結果、排出係数の不確実性は 9% と評価された。活動量の不確実性については、2006 年 IPCC ガイドラインに示された値を採用した (2%)。その結果、排出量の不確実性は 9% と評価された。

■ 時系列の一貫性

当該メーカーから経済産業省に提供された活動量・排出係数データを用い、1990 年度値から一貫した方法を使用して、算定している。

d) QA/QC と検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題 特になし。

- 4.3.4. カプロラクタム、グリオキサール、グリオキシル酸製造 (2.B.4.)
- 4.3.4.1. カプロラクタム (2.B.4.a)
 - a) 排出源カテゴリーの説明

カプロラクタムは、カーペット等の繊維素材や樹脂素材として利用されるナイロン 6 のモノマーであり、開環重合によりナイロン 6 となる。製造プロセスにおけるアンモニアの酸化工程において N_2O が排出される。

b) 方法論

■ 算定方法

国内総生産量に、2006 年 IPCC ガイドラインの Tier 1~3 手法に基づき事業者別に設定された排出係数の加重平均値を乗じて排出量を算定する。

■ 排出係数

日本化学工業協会より、現在国内でカプロラクタムを生産している 5 事業所における生産量・排出係数・排出量算定結果のデータ提供を受けたため、各事業所の合計排出量を生産量の合計で割った、生産量当たり排出量を我が国の独自の排出係数として設定する。各事業所における排出係数については、年次可変となっている。

■ 活動量

経済産業省「化学工業統計年報」に示されたカプロラクタム生産量を用いた。

表 4-19 カプロラクタム生産量

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
カプロラクタム生産量	kt	516	546	575	455	474	365	401	411	392	366	342	266	241	220

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性については、事業所別の排出係数及び生産量から排出係数の標準偏差を算出し、99%と評価した。活動量の不確実性については、2006 年 IPCC ガイドラインに示されたデフォルト値の 2%を採用した。その結果、排出量の不確実性は 99%と評価された。

■ 時系列の一貫性

活動量は経済産業省「化学工業統計年報」のデータをもとに、1990年度から一貫した方法を使用して算定している。排出係数については1990年度から同一の設定方法による値を使用している。従って、時系列の一貫性は担保されている。

d) QA/QC と検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題 特になし。

4.3.4.2. グリオキサール (2.B.4.b)

a) 排出源カテゴリーの説明

グリオキサールは、主にアクリル樹脂、消毒剤、ゼラチン硬化剤、繊維仕上げ剤等において架橋剤として使用される。濃硝酸とアセトアルデヒドの酸化、あるいはエチレングリコールの接触酸化により製造され、アセトアルデヒドの酸化工程において N_2O が排出される(下式参照)。

$$2C_2H_4O + 2HNQ \rightarrow 2C_2H_2O_2 + N_2O + H_2O$$

b) 方法論

■ 算定方法

2006年 IPCC ガイドラインの Tier 3 手法に基づき、国内総生産量に、実測結果から得られた我が国独自の排出係数を乗じて排出量を算定する。なお、2010年度以降、国内において生産活動が行われていないことから、"NO"として報告する。

■ 排出係数

生産活動を行っていた事業者より提供を受けた、生産量ベースの国独自の排出係数を使用する。事業者における、各々の製品の製造工程からの排ガス流量、N₂O 濃度の実測値を基に設定されたものであり、この排出係数を全年度に適用することとする。

■ 活動量

グリオキサールの生産量については、統計値等は公表されていないため、直近まで生産実績のあった事業者の生産量合計を活動量とする。なお、2009年度を最後に、国内に生産活動はない。

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性については、2006 年 IPCC ガイドラインに示されたデフォルト値の10%を採用した。活動量の不確実性については、2006 年 IPCC ガイドラインに示されたデフォルト値の2%を採用した。その結果、排出量の不確実性は10%と評価された。

■ 時系列の一貫性

活動量は直近まで生産実績のあった事業者のデータをもとに、1990年度から一貫した方法を使用して算定している。排出係数については1990年度から一定値を使用している。従って、時系列の一貫性は担保されている。

d) QA/QCと検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題 特になし。

4.3.4.3. グリオキシル酸 (2.B.4.c)

a) 排出源カテゴリーの説明

グリオキシル酸は、合成香料、農薬、医薬中間体の原料として使用される。グリオキサール の硝酸酸化によって製造され、硝酸が還元される過程において N₂O が排出される。

b) 方法論

■ 算定方法

2006年 IPCC ガイドラインの Tier 3 手法に基づき、国内総生産量に、実測結果から得られた我が国独自の排出係数を乗じて排出量を算定する。なお、2012年度以降、国内において生産活動が行われていないことから、"NO"として報告する。

■ 排出係数

生産活動を行っていた事業者より上記の活動量データと併せて提供を受けた、生産量ベースの N_2O 排出係数を使用する。事業者における、各々の製品の製造工程からの排ガス流量、 N_2O 濃度の実測値を基に設定されたものであり、この排出係数を全年度に適用することとする。

■ 活動量

グリオキシル酸の生産量については、統計値等は公表されていないため、直近まで生産実績のあった事業者の生産量合計を活動量とする。なお、2011年度を最後に、国内に生産活動はない。

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性については、2006 年 IPCC ガイドラインに示されたデフォルト値の10%を採用した。活動量の不確実性については、2006 年 IPCC ガイドラインに示されたデフォルト値の2%を採用した。その結果、排出量の不確実性は10%と評価された。

■ 時系列の一貫性

活動量は直近まで生産実績のあった事業者のデータをもとに、1990年度から一貫した方法を使用して算定している。排出係数については1990年度から一定値を使用している。従って、時系列の一貫性は担保されている。

d) OA/OC と検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題 特になし。

- 4.3.5. カーバイド製造(2.B.5.)
- 4.3.5.1. シリコンカーバイド製造(2.B.5.a)
 - a) 排出源カテゴリーの説明
 - 1) CO₂

シリコンカーバイド製造時に原料のシリカと石油コークスの反応に伴い CO2 が排出される。

<u>シ</u>リコンカーバイド製造プロセスにおける CO_2 発生メカニズム $SiO_2 + 3C \rightarrow SiC + 2CO (\rightarrow CO_2)$

2) CH₄

我が国においてシリコンカーバイドは電気炉で製造されており、シリコンカーバイド製造時には、還元剤として使用されるコークスが酸化する際に CH4 が発生すると考えられる。

- b) 方法論
- 1) CO₂
- 算定方法

シリコンカーバイドの原料として使用された石油コークスの消費量に排出係数を乗じて排出量を算定した。

■ 排出係数

我が国における実測データ及び独自の排出係数が存在しないため、2006 年 IPCC ガイドラインに示されたシリコンカーバイドの製造に伴う排出係数のデフォルト値 2.3 [t-CO $_2$ /t] を用いた。

■ 活動量

シリコンカーバイドの製造に伴う CO₂ 排出の活動量は、我が国でシリコンカーバイドの製造を行なっている唯一の事業所から提供された石油コークスの消費量を用いた。なお、データは秘匿扱いである。

- 2) CH₄
- 算定方法

燃料の燃焼分野 (1.A.固定発生源)からの CH4 排出量の算定と同様の手法を用い、我が国の実測データより設定した排出係数を、電気炉における電力消費量に乗じて排出量を算定した。

■ 排出係数

我が国で行われた実測調査のデータを基に、排ガス中の CH_4 濃度、単位時間当たりの実測乾き排ガス量、及び単位時間当たりの発生熱量の測定結果より電気炉からの電力消費に伴う排出係数(12.8~kg- CH_4 /TJ)を設定した(第 3 章の 3.2.5~エネルギー産業(1.A.1)における CH_4 と N_2 O の排出参照)。

■ 活動量

シリコンカーバイドの製造に伴う CH4排出の活動量は、我が国でシリコンカーバイドの製造を行っている唯一の事業所から提供された電力消費量を用いた。なお、データは秘匿扱いである。

- c) 不確実性と時系列の一貫性
- 不確実性
- 1) CO₂

排出係数の不確実性については、2006 年 IPCC ガイドラインに示されたデフォルト値の10%を採用した。活動量の不確実性については、2006 年 IPCC ガイドラインに示されたデフォルト値の5%を採用した。その結果、排出量の不確実性は11%と評価された。

2) CH₄

排出係数の不確実性については、2006 年 IPCC ガイドラインに示されたデフォルト値の10%を採用した。活動量の不確実性については、2006 年 IPCC ガイドラインに示されたデフォルト値の5%を採用した。その結果、排出量の不確実性は11%と評価された。

■ 時系列の一貫性

CO₂、CH₄ いずれも活動量は事業所からの提供を受けたデータをもとに、1990 年度から一貫した方法を使用して算定している。排出係数については CO₂、CH₄ いずれも 1990 年度から一定値を使用している。従って、シリコンカーバイド製造による CO₂、CH₄ 排出に関して、時系列の一貫性は担保されている。

d) QA/QC と検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

- 4.3.5.2. カルシウムカーバイドの製造及び使用(2.B.5.b)
 - a) 排出源カテゴリーの説明
 - 1) CO₂

カルシウムカーバイド製造に使用される生石灰を製造する過程で CO_2 が発生し、生石灰からカルシウムカーバイドを製造する過程で発生した CO が燃焼することにより CO_2 が排出される。しかし前者は「炭酸塩のその他のプロセスでの使用 (2.A.4.)」の化学製品からの排出に含まれるため、ここでは還元剤起源分のみを計上する。また、カルシウムカーバイドを水と反応させて得られるアセチレンを燃焼させた際に発生する CO_2 を計上する。

カルシウムカーバイド製造プロセスにおける CO_2 発生メカニズム (生産時) $CaCO_3 \rightarrow CaO + CO_2$ $CaO + 3C \rightarrow CaC_2 + CO (\rightarrow CO_2)$ (使用時) $CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2 (\rightarrow CO_2)$

2) CH₄

カーバイド製造時に発生する副生ガス(一酸化炭素ガスが主)には微量の CH4 が含まれるが、全て回収して燃焼させ燃料として使用しており、系外には排出していない。従って、当該排出源からの排出は「NA」と報告している。

b) 方法論

■ 算定方法

2006年 IPCC ガイドラインの Tier 2手法に基づき、カルシウムカーバイドの生産量に、以下の排出係数を乗じて CO₂ 排出量を算定した。

■ 排出係数

2007 年度以前については、我が国における実測データ及び独自の排出係数が存在しないため、2006 年 IPCC ガイドラインに示された以下のデフォルトの排出係数を用いた。

表 4-20 カルシウムカーバイドの生産及び消費に伴う CO₂ の排出係数 (2007 年度以前)

単位	生産時還元剤起源	使用時
t-CO ₂ /t	1.09	1.10

2008 年度以降については、わが国でカルシウムカーバイドを製造している国内全 2 社における実測データに基づいた還元剤起源の排出係数(年次可変)を使用する。なお、データは秘匿扱いである。使用時の排出係数については、2008 年度以降もデフォルト値(1.10 t-CO₂/t)を用いる。

なお、CO₂ 排出係数の算定に使用しているカルシウムカーバイド生産量にはカルシウムカーバイドだけでなく、原料として使用された未反応の生石灰も含まれるため、排出係数の値は純粋なカルシウムカーバイドのみの反応による化学量論的理論値よりも小さくなっている。これは、我が国では生石灰が過剰な状態でカルシウムカーバイドの生産を行っているためである。カルシウムカーバイドは高純度なほど融点が高くなるため、低温部では粘度が大きくなり固まってしまい製造に支障を来たすことから、意図的にカルシウムカーバイドの純度を抑えて融点を下げている。また、安全性の観点からも、製品の反応性を下げるために純度を抑えている。

■ 活動量

カルシウムカーバイドの生産量については、カーバイド工業会により提供されたカルシウムカーバイドの生産量を用いた。なお、データは秘匿扱いである。

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性については、還元剤起源、使用時ともに 2006 年 IPCC ガイドラインに示されたデフォルト値の 10%をを採用した。活動量の不確実性については、還元剤起源、使用時ともに 2006 年 IPCC ガイドラインに示されたデフォルト値の 5%を採用した。その結果、排出量の不確実性は還元剤起源、使用時ともに 11%と評価された。

■ 時系列の一貫性

カルシウムカーバイド製造の活動量はカーバイド工業会より提供を受けたデータをもとに、1990 年度値から一貫して使用している。排出係数については、1990 年度から 2007 年度まで一定値を使用している。2008 年度以降は我が国独自の排出係数を使用しているが、1990 年まで遡っての、生産規模や製造技術改良等、国独自の排出係数を設定するためのデータが把握できないことから、2007 年度以前の算定にはデフォルトの排出係数を使用した。

d) QA/QC と検証

セメント製造 (2.A.1) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.3.6. 二酸化チタン製造 (2.B.6.)

a) 排出源カテゴリーの説明

二酸化チタン(TiO₂)は白色顔料の一種であり、紙、プラスチック、ゴム、セラミック、織物、床カバー、印刷インキ、塗料等の顔料として一般的に使用されている。結晶構造によってアナターゼ型(正方晶)とルチル型(正方晶)に分類され、アナターゼ型は硫酸チタンを加水分解して焼成(硫酸法) あるいはチタンスラグから製造され、ルチル型は合成ルチルからの分離、あるいは塩化チタンに高温で酸素と反応させて製造(塩素法)される。

チタンスラグ製造における電気炉での炭素電極の酸化反応、合成ルチル製造中の黒炭の酸化反応、及び塩素法におけるオイルコークスの酸化反応により CO₂ が排出される。塩素法による CO₂ 発生メカニズムは下式の通り。

$$2TiO_2 + 4Cl_2 + 3C \rightarrow 2TiCl_4 + 2CO + CO_2$$
$$TiCl_4 + O_2 \rightarrow TiO_2 + 2Cl_2$$

b) 方法論

■ 算定方法

ルチル型二酸化チタンについては、2006 年 IPCC ガイドラインの Tier 1 手法に基づき、 CO_2 排出を伴う塩素法により生産される酸化チタン生産量 (ルチル型及びアナタース型)に、事業者固有の排出係数を乗じて排出量を算定する。

合成ルチルについては、2006 年 IPCC ガイドラインの Tier 1 手法に基づき、合成ルチル生産量に、デフォルトの排出係数を乗じて排出量を算定する。

■ 排出係数

ルチル型二酸化チタンについては、事業者におけるプロセスへのコークス投入量等を基に 以下のように算出した排出係数を使用する。

 CO_2 排出量 = (コークス投入量 - キャリーオーバー量 2)×コークス固定炭素純度×44/12

_

² 未反応のまま残った原料。

CO₂排出係数 = CO₂排出量 / 酸化チタン生産量

なお、上記算出法により排出係数が得られているのは2011~2013年の3カ年度のみのため、1990~2010年度については3カ年の平均値を使用する。

2006年 IPCC ガイドラインに記載されている上述の化学反応に従うと、二酸化チタン 2mol につき、3mol の CO_2 が発生することになるが、日本の事業者の場合、約 1,000 の高温状態での反応であり、上述の化学反応に加え、 $TiO_2 + 2Cl_2 + 2CO$ $TiCl_4 + 2CO_2$ の反応も同時に生じており、CO が消費されていることから、CO が全てこの反応で消費されると仮定すると、二酸化チタン 1 mol につき、1 mol の CO_2 しか生じないことになる。(プロセス中の余剰炭素は存在せず、 CO_2 はすべて投入したコークス由来のものである。)

合成ルチルについては、2006年 IPCC ガイドラインのデフォルト値(1.43 t-CO₂/t)を用いた。

■ 活動量

ルチル型二酸化チタンの生産量については、酸化チタン工業会により提供された CO2 排出を伴う塩素法により生産される酸化チタン生産量の生産量を用いた。

合成ルチルの生産量については、経済産業省により提供された合成ルチルの生産量を用いた。

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性については、ルチル型二酸化チタン、合成ルチルともに 2006 年 IPCC ガイドラインに示されたデフォルト値の 15%、10%をそれぞれ採用した。活動量の不確実性については、ルチル型二酸化チタン、合成ルチルともに 2006 年 IPCC ガイドラインに示されたデフォルト値の 5%を採用した。その結果、排出量の不確実性はそれぞれ 16%、11%と評価された。

■ 時系列の一貫性

活動量は酸化チタン工業会・経済産業省より提供を受けたデータをもとに、1990 年度値から一貫して使用している。排出係数については、酸化チタン工業会から提供されたデータを一貫して使用している。従って、二酸化チタン製造による CO2 排出に関して、時系列の一貫性は担保されている。

d) QA/QCと検証

セメント製造 (2.A.1) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.3.7. ソーダ灰の製造 (2.B.7.)

我が国では、塩安(NH₄Cl)ソーダ法によりソーダ灰(Na₂CO₃)の生産が行われている。 ソーダ灰の製造工程においては、石灰石とコークスを石灰炉で焼成しており、その際に CO₂ が排出される。石灰起源の CO₂ はそのほとんどが製品中へ取り込まれる。

ソーダ灰の製造工程において、購入した CO₂をパイプラインで投入する場合があるが、こ

の排出量はアンモニア工業から排出される CO₂ であるため、「アンモニア製造(2.B.1.)」で既に計上されている。また、コークスの消費量については、加熱用として石油等消費動態統計に記載されているため、コークス起源の CO₂ 排出量は既に「燃料の燃焼分野(1.A.)」に計上されている。従って、当該排出源からの排出量は、全て他分野にて既に計上されているため、「IE」と報告している。また、コークスについては熱源及び CO₂ 源として投入されている。

なお、2006 年 IPCC ガイドラインには、トロナ (Na_2CO_3 ・ $NaHCO_3$ ・ $2H_2O$) の焼成等による CO_2 排出量の算定方法が示されているが、我が国ではトロナを焼成してソーダ灰を製造して いる実績がないため、排出量は算定しない。

- 4.3.8. 石油化学及びカーボンブラック製造(2.B.8.)
- 4.3.8.1. メタノール製造 (2.B.8.-.)
 - a) 排出源カテゴリーの説明

メタノールの製造に伴い CO2及び CH4が排出される。

b) 方法論

■ 算定方法

メタノールの製造に伴う CO_2 及び CH_4 排出については、2006 年 IPCC ガイドラインの Tier 1 手法に基づいて算定した。

関連業界団体によれば、メタノールの生産(合成)は、内外価格差のため、我が国においては 1995 年で終了し、その後はメタノールを全て輸入しており、1995 年頃には国内のメタノール生産プラントもなくなっている。

従って、1990~1995 年までは、業界団体統計による生産量を使用して、排出量を報告し、1996 年以降については、我が国ではメタノールの生産(合成)が行われていないと考えられることから「NO」と報告している。

■ 排出係数

 CO_2 については、2006 年 IPCC ガイドラインに示された、メタノールのデフォルト値のうち、我が国固有の製法に応じた値を用いた。排出係数は、0.67 [t- CO_2/t] (2006 年 IPCC ガイドライン vol.3 p3.73 Table 3.12)。

CH₄ については、2006 年改訂 IPCC ガイドラインに示された、メタノールのデフォルト値を用いた。排出係数は、2.3 [kgCH₄/t] (2006 年改訂 IPCC ガイドライン vol.3 p3.74)。

■ 活動量

メタノール製造に伴う CO₂ 及び CH₄ 排出の活動量については、メタノールの生産量(暦年値、メタノール・ホルマリン協会調べ)を用いた。

表 4-21 メタノール生産量

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
メタノール生産量	kt	84	75	NO											

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性については、2006 年 IPCC ガイドラインに示されたデフォルト値の - $30 \sim +30\%$ (CO_2) $-80 \sim +30\%$ (CH_4) を採用した。活動量の不確実性については、2006 年 IPCC ガイドラインに示された類似化学製品のデフォルト値の - $5 \sim +5\%$ を採用した。そ

の結果、 CO_2 及び CH_4 の排出量の不確実性はそれぞれ - $30 \sim +30\%$ 、 - $80 \sim +30\%$ と評価された。

■ 時系列の一貫性

メタノール製造の活動量はメタノール・ホルマリン協会からの提供データをもとに、1990年から 1995年まで一貫して使用している。また、排出係数は 1990年から一定値を使用している。従って、メタノール製造による CO_2 及び CH_4 排出に関して、時系列の一貫性は担保されている。

d) QA/QCと検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.3.8.2. エチレン製造(2.B.8.-)

- a) 排出源カテゴリーの説明
- 1) CO₂, CH₄

エチレンの生産工程で CO₂ が排出される。また、エチレン製造の過程で、スチーム・クラッキング法によるナフサ分解により CH₄ が排出される。

なお、エチレン生産における炭素ロス分は、総合エネルギー統計(エネルギーバランス表)のエネルギー転換部門の石油化学で計上している。石油化学は、ナフサ・改質生成油から基礎化学原料を生産する工場で、製油所ガスや燃料油などの各種の石油製品が副生する過程をエネルギー転換とみなして表している部門である。

2) N_2O

エチレン原料のナフサには窒素がほとんど含まれず、また、エチレン製造は酸素がほとんど存在しない状態で行われる。原理的に N_2O の排出はない、との専門家判断により「NA」として報告している。

b) 方法論

■ 算定方法

エチレン製造に伴う CH_4 、 CO_2 排出については、2006 年 IPCC ガイドラインに示された Tier 1 手法に基づき、エチレンの生産量に我が国独自の排出係数を乗じて、排出量を算定した。

■ 排出係数

 CO_2

石油化学工業協会がエチレン製造に伴うCO2排出係数に関する調査を2009年に実施したので、その調査結果を用いて、排出係数を設定した。

CO₂ 排出係数は、デコーキング等からの CO₂ 排出量とエチレン生産量データに基づき設定している。なお、原料に由来する副生ガスのエネルギー利用に伴う CO₂ 排出量を「1.A.燃料の燃焼」において計上しているため、国独自の排出係数と IPCC デフォルト値との間に差異

が生じている。

なお、当該排出係数は秘匿とする。

 CH_{4}

我が国の実態を踏まえ、全事業所における定常運転時・非定常運転時におけるフレアスタックからの排ガス量の推計値(入り口量の 98%が燃焼したものと仮定³)、ナフサ分解炉及び再生ガス加熱炉からの排ガス量の測定値を生産量で除して各社ごとの排出係数を算出し、各社の生産量による加重平均をとって排出係数を設定した。(石油化学工業協会調べ)なお、当該排出係数は秘匿とする。

■ 活動量

エチレン製造に伴う CH₄、CO₂ 排出の活動量については、経済産業省「化学工業統計年報」 に示されたエチレン生産量を用いた。

表 4-22 エチレン生産量

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
エチレン生産量	kt	5,966	6,951	7,566	7,549	7,559	6,520	7,219	6,999	6,474	6,261	6,764	6,687	6,780	6,286

c) 不確実性と時系列の一貫性

■ 不確実性

エチレン製造の CO_2 、 CH_4 の不確実性については同じ方法で評価した。排出係数の不確実性については、統計的処理により 95%信頼区間を求め不確実性評価を行った。その結果、排出係数の不確実性は、 CO_2 、 CH_4 ともに 77% と評価された。活動量の不確実性については、2006年 IPCC ガイドラインのデフォルト値の 5%を採用した。その結果、エチレン製造に伴う CO_2 、 CH_4 の排出量は共に 77% と評価された。

■ 時系列の一貫性

エチレン製造の活動量は経済産業省「化学工業統計年報」をもとに、1990年度値から一貫して使用している。また、排出係数は 1990年度から一定値を使用している。従って、エチレン製造による CO_2 、 CH_4 排出に関して、時系列の一貫性は担保されている。

d) QA/QC と検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

- 4.3.8.3. 1,2-ジクロロエタン及びクロロエチレン製造(2.B.8.-)
 - a) 排出源カテゴリーの説明
 - 1) CO₂

1,2-ジクロロエタンは、ポリ塩化ビニルの前駆体とされ、主にクロロエチレンの生産に使用

 $^{^3}$ IPCC グッドプラクティスガイダンスに示されるフレアリング効率 98%の値 (Table 2.16 note e) をもとに仮定したもの。

される。その他には、洗浄剤、溶媒、殺虫剤、薫蒸剤等に使用される。直接塩素化法あるいはオキシ塩素化法、さらには両者を併用した製法によって製造され、直接塩素化法では塩素とエチレンの気相反応により 1,2-ジクロロエタンが生成し、オキシ塩素化法では塩酸と酸素とエチレンの気相反応により 1,2-ジクロロエタンが生成する。オキシ塩素化法のエチレン酸化反応の過程において CO₂ が排出される(下式)。

$$C_2H_4 + 0.5O_2 + 2HCl \rightarrow C_2H_4Cl_2 + H_2O$$

 $[C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O]$

生成した 1,2-ジクロロエタンは、加熱により、ポリ塩化ビニルの前駆物質であるクロロエチレンモノマーと塩化水素に分解される。オキシ塩素化法では、このときに生成する塩化水素を利用できるため、直接塩素化法とオキシ塩素化法を併用した製法が普及した。両者併用プロセスにおいても上式により CO2 が排出される。

2) CH₄

1,2 ジクロロエタンは洗浄、精製工程、熱分解工程を経てクロロエチレン(C_2H_3Cl)となるが、反応の際に発生する排ガス、洗浄、精製工程の排ガス中にごくわずかの CH_4 が生成される。

b) 方法論

■ 算定方法

 CO_2 排出については、2006年 IPCC ガイドラインの Tier 1 手法に基づき、国内総生産量に、工場別データを基に設定した我が国独自の排出係数を乗じて排出量を算定する。

 CH_4 排出については、 $1990 \sim 2000$ 年度については、2006 年 IPCC ガイドラインの Tier 1 手法に基づき、国内総生産量に、工場別データを基に設定した我が国独自の排出係数を乗じて排出量を算定する。但し、塩ビ工業・環境協会によると、排ガス燃焼設備の導入が全てのプラントにおいて完了し、排ガス中の CH_4 が検出限界未満となったとのことから、2001 年度以降は、NO として報告する。(燃焼処理した分は回収量として報告)。

■ 排出係数

 CO_2

塩ビ工業・環境協会より提供を受けた、クロロエチレン生産量ベースのCO₂排出係数(0.0647 t-CO₂/tVCM)を全年度に適用する。

この排出係数は、我が国において、1,2-ジクロロエタン・クロロエチレンを製造している事業者 5 社の 2012 年における CO_2 排出量実測値の合計値を同年のクロロエチレン国内総生産量で除したものである。

なお、デフォルト値 0.294 t- CO_2 /t-VCM には補助燃料の燃焼に伴う CO_2 も含まれるが、本排出係数はエネルギー分野との二重計上を回避するため、補助燃料の燃焼に伴う CO_2 排出を除いており、デフォルト値よりも小さい値となっている。

 CH_4

1990~2000 年度については、塩ビ工業・環境協会加盟3社(生産量の約70%)の排ガス中 CH4 濃度を実測し、加重平均して排出係数を設定した。排出係数は、0.0050 [kg-CH4/t] 1,2-ジクロロエタンを製造している各社の製造プロセスに関する情報を踏まえ、この排出係数の代表性は確認されている。(塩ビ工業・環境協会調べ)2001 年度以降については、排出係数は設定しない。

■ 活動量

CO₂ 排出の活動量については、経済産業省「化学工業統計年報」に示された塩化ビニルモノマー(クロロエチレン)の生産量(年度値)を用いた。

CH4 排出の活動量については、経済産業省「化学工業統計年報」に示された二塩化エチレン (1,2-ジクロロエタン) の生産量 (年度値)を用いた。

表 4-23 塩化ビニルモノマー(クロロエチレン)生産量

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
塩化ビニルモノマー生産量	kt	2,316	2,648	2,976	3,098	3,077	2,839	2,958	2,850	2,253	2,009	2,286	2,315	2,616	2,621

表 4-24 二塩化エチレン (1,2-ジクロロエタン) 生産量

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
1,2-ジクロロエタン生産量	kt	2,683	3,014	3,346	3,639	3,517	3,243	3,213	3,155	2,841	2,558	2,733	2,730	3,003	3,012

c) 不確実性と時系列の一貫性

■ 不確実性

 CO_2 、 CH_4 の排出係数の不確実性については、2006 年 IPCC ガイドラインのデフォルト値の $-50 \sim +20\%$ 、 $-11 \sim +11\%$ をそれぞれ採用した。活動量の不確実性については、2006 年 IPCC ガイドラインのデフォルト値の 5% を採用した。その結果、排出量の不確実性はそれぞれ $-50 \sim +21\%$ 、 $-12 \sim +12\%$ と評価された。

■ 時系列の一貫性

活動量は経済産業省「化学工業統計年報」をもとに、1990年度値から一貫して使用している。また、排出係数は1990年度から一定値を使用している。従って、時系列の一貫性は担保されている。

d) QA/QC と検証

セメント製造 (2.A.1) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.3.8.4. 酸化エチレン (2.B.8.-.)

- a) 排出源カテゴリーの説明
- 1) CO₂, CH₄

酸化エチレンは、触媒存在下で酸素とエチレンを反応させることにより製造され、副生成物として CO_2 が排出される(下式)。酸素は、空気で供給あるいは空気を分離した純酸素で供給の二つの方法がある。

$$C_2H_4 + 0.5O_2 \rightarrow C_2H_4O$$

 $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$

発生した CO₂ は一部がベントにより大気放出され、一部が炭酸塩溶液により回収され食料品製造等に利用される。

一般的に酸化エチレン製造は、ガスを循環利用するプロセスであり、原料ガス中に含まれる微量の反応しない不純物(アルゴンや窒素など)の蓄積による圧力上昇を抑えるために一部系外にパージする必要があり、排ガスとなる。この排ガスには、エチレンやメタン、酸素、アルゴンなどが含まれ、一般的にはそのまま燃焼処理するが、漏出やベントにより CH4 が排出される場合もある。

b) 方法論

■ 算定方法

 CO_2

2006 年 IPCC ガイドラインの Tier 3 手法に基づき、国内総生産量に、工場別データを基に設定した我が国独自の排出係数を乗じて排出量を算定する。また、回収を反映していない排出係数と、回収量を差し引いた実排出係数の 2 通りの排出係数により排出量を算定し、その差分を CO₂ 回収量として「2.H.2.炭酸ガス・ドライアイスに由来する CO₂ 排出」で計上することとする(下式参照)。

$$E_{CO_2} = EO * EF_1$$

Eco2:酸化エチレン製造に伴う CO2排出量

EO:酸化エチレンの年間生産量

EF1:酸化エチレンの生産量当たり CO2排出量 (CO2回収を考慮)

$$R_{CO_2} = EO * EF_2 - E_{CO_2}$$

Rco2:酸化エチレン製造プロセスからのCO2回収量

EO:酸化エチレンの年間生産量

EF2:酸化エチレンの生産量当たり CO2排出量(CO2回収を考慮せず)

 CH_4

2006 年 IPCC ガイドラインの Tier 1 手法に基づき、排出がみられる事業者における酸化エチレン生産量に、当該事業者による実測結果に基づく事業者独自の排出係数を乗じて排出量を算定する。

■ 排出係数

 CO_2

生産量あたりの排出係数(回収を考慮:0.24 t-CO₂/t、回収を考慮せず:0.33 t-CO₂/t)を使用する(石油化学工業協会提供)。排出係数は、国内の全工場における工場別の排出係数を単純平均したものであり、各工場において投入された原料及び副資材の量と、製品及び副産物の生産量の炭素収支等を基に算出されている。工場別の生産量データは秘匿情報に当たり加重平均が困難であること、我が国では酸化エチレンは全て同一の製造プロセス(酸素法)により製造されていることから、単純平均としても実態からの乖離は軽微であると判断した。なお、我が国の酸素法では触媒の選択性がデフォルト値の設定よりも高いため、排出係数(回収を考慮せず)はデフォルト値0.663 t-CO₂/t よりも低い値となっている。

 CH_4

当該事業者での実測結果に基づく事業者独自の排出係数を使用する。排出係数設定に用いられた CH_4 排出量データは、当該事業者において、プロセスから排ガスをパージする際に外部から導入したガス中の CH_4 量を基に、大気中に排出された CH_4 量を推定したものである。ただし、データが把握されているのは 2004 年度以降のみのため、2003 年度以前については、 $2004 \sim 2006$ 年度の 3 カ年平均排出係数を固定値として使用する。なお、データは秘匿情報で

ある。

■ 活動量

 CO_2

「化学工業統計年報(経済産業省)」における酸化エチレン生産量を使用する(表 4-25)。

表 4-25 酸化エチレン生産量

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
酸化エチレン生産量	kt	714	795	961	1,001	957	795	792	843	842	849	915	894	923	882

 CH_4

当該事業者における酸化エチレン生産量を使用する。なおデータは秘匿情報である。

c) 不確実性と時系列の一貫性

■ 不確実性

 CO_2 の排出係数の不確実性については、2006 年 IPCC ガイドラインのデフォルト値の 10% を採用した。活動量の不確実性については、2006 年 IPCC ガイドラインのデフォルト値の 5% を採用した。その結果、排出量の不確実性は 11% と評価された。

CH4の排出係数の不確実性については、2006年 IPCC ガイドラインのデフォルト値の 60% を採用した。活動量の不確実性については、2006年 IPCC ガイドラインのデフォルト値の 5% を採用した。その結果、排出量の不確実性は 60%と評価された。

■ 時系列の一貫性

酸化エチレン製造の活動量は、CO2 は経済産業省「化学工業統計年報」、CH4 は排出事業者 提供のデータをもとに、それぞれ 1990 年度値から一貫して使用している。また、排出係数も それぞれ同じソースのデータをもとに設定されている。従って、酸化エチレン製造による CO2、 CH4 排出に関して、時系列の一貫性は担保されている。

d) QA/QC と検証

セメント製造 (2.A.1) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.3.8.5. アクリルニトリル (2.B.8.-.)

- a) 排出源カテゴリーの説明
- 1) CO₂

アクリロニトリル (C_3H_3N) は、アクリル繊維や合成樹脂の原料として利用されており、主に金属触媒の存在下でプロピレンにアンモニアと酸素を作用 (アンモ酸化)させるソハイオ法により生産されている。プロピレンの約85%が反応してアクリロニトリル、あるいは副産品であるアセトニトリル、シアン化水素を生成する (下式 1~3)。残りのプロピレンについては、副反応により他の炭化水素を介して、あるいは直接酸化されて CO_2 として排出される (下式 4)。

式 1 アクリロニトリルの生成反応
$$CH_2 = CHCH_3 + 1.5O_2 + NH_3 \rightarrow CH_2 = CHCN + 3H_2O$$
 式 2 シアン化水素の生成反応
$$CH_2 = CHCH_3 + 3O_2 + 3NH_3 \rightarrow 3HCN + 6H_2O$$
 式 3 アセトニトリルの生成反応
$$CH_2 = CHCH_3 + 1.5O_2 + 1.5NH_3 \rightarrow 1.5CH_3CN + 3H_2O$$
 式 4 CO_2 の生成反応
$$CH_2 = CHCH_3 + 4.5O_2 \rightarrow 3CO_2 + 3H_2O$$

2) CH₄

我が国のアクリロニトリルプラントにおいては、CH4についてオフガスを分析しているが、 検出されていないため、注釈記号 NA により報告を行う。

b) 方法論

■ 算定方法

2006 年 IPCC ガイドラインの Tier 3 手法に基づき、国内総生産量に、工場別データに基づく我が国独自の排出係数を乗じて排出量を算定した。

■ 排出係数

生産量ベースの CO₂ 排出係数(0.73 t-CO₂/t)を全年度に適用する。(石油化学工業協会提供)この排出係数は、各工場において投入された原料・副資材投入量と製品・副産物産出量の炭素収支等を基に設定した各工場別 CO₂ 排出係数を、国内の全工場について単純平均したものである。これは、工場別の生産量データが秘匿情報に当たり加重平均が困難であること、我が国ではアクリロニトリルは全て同一の製造プロセス(ソハイオ法)により製造されていることから、単純平均としても実態からの乖離は軽微であるためである。

なお、我が国のアクリロニトリル製造プロセスにおいては、アセトニトリルとシアン化水素が製品として回収されているため、2006 年 IPCC ガイドラインにおけるアセトニトリルとシアン化水素が製品として回収されている場合のデフォルト値(0.79 t-CO₂/t)に近い値となっている。やや下回っているのは、原単位改善等の効果によるものである。

■ 活動量

「化学工業統計年報 (経済産業省)」におけるアクリロニトリル生産量を使用する。

表 4-26 アクリロニトリル生産量

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
アクリロニトリル生産量	kt	602	652	734	697	713	563	631	718	665	553	499	468	431	437

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性については、2006 年 IPCC ガイドラインのデフォルト値の 60%を採用した。活動量の不確実性については、2006 年 IPCC ガイドラインのデフォルト値の 5%を採用した。その結果、排出量の不確実性評価は 60% として評価された。

■ 時系列の一貫性

アクリロニトリル製造の活動量は経済産業省「化学工業統計年報」をもとに、1990年度値から一貫して使用している。また、排出係数は1990年度から一定値を使用している。従って、アクリロニトリル製造によるCO2排出に関して、時系列の一貫性は担保されている。

d) QA/QC と検証

セメント製造(2.A.1)に記載した内容と同一である。4.2.1.d)節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.3.8.6. カーボンブラック製造 (2.B.8.-)

- a) 排出源カテゴリーの説明
- 1) CO₂, CH₄

カーボンブラックは主に石油精製や金属精錬過程で副生成物として得られるオイルやガスを高温ガス中で不完全燃焼させて製造される。(ファーネスブラック法)カーボンブラック製造プロセスから排出されるテールガス(オフガス)に含まれる CO₂, CH₄ が大気中に排出される。

b) 方法論

■ 算定方法

 CO_2

2006 年 IPCC ガイドラインの Tier 1 手法に基づき、国内総生産量に我が国独自の排出係数を乗じて排出量を算定する。

 CH_4

2006 年 IPCC ガイドラインの Tier 1 手法に基づき、カーボンブラックの生産量に工場別データをもとに設定した我が国独自の排出係数を乗じて算定する。

■ 排出係数

 CO_2

反応炉を加熱するために投入される天然ガス起源(二次原料起源)の CO_2 については、「燃料の燃焼分野(1.A.)」において既に計上されていると考えられるため、カーボンブラックの直接的な原料となるオイル・ガス起源(一次原料起源)の CO_2 のみを計上する。排出係数は、カーボンブラック協会より提供を受けた生産量ベースの CO_2 排出係数($2.06\ t\text{-}CO_2/t$)を使用する。この値は、カーボンブラック協会会員会社 5 社における実測値(原料中の炭素分からカーボンブラック製品中の残留分を差し引いたものを CO_2 換算し、製品重量当たりとしたもの)を生産量により加重平均したものであり、協会会員 5 社で国内生産・販売量の 95%以上を占めているため、代表性を有すると考えられる。なお、5 社はいずれもオイルファーネス法により製造しており、各社の排出係数のばらつきはそれほど大きくなく、年次変動もほとんどない。

 CH_4

我が国のカーボンブラック生産プラントにおいて、 CH_4 が大気中に排出されるのは、定常運転ではない停止・立ち上げ時のベントによるもののみである。また、「カーボンブラック便覧(カーボンブラック協会)」によると、我が国のカーボンブラック生産プラントから排出される平均的テールガスにおいては、 CH_4 濃度が 0.6 wt%、CO、 CO_2 、 CH_4 の合計濃度は 21.5 wt% とのことであり、定常運転時も停止・立ち上げ時も同じ組成とのことである。したがって、 CO_2 排出係数(2.06 t- CO_2 /t)より、 CH_4 排出係数は下式により算出される。データは秘匿である。

$$EF_{CH_4} = 2.06 \text{tCO}_2/\text{t} * R * \frac{0.6 \text{wt\%}}{21.5 \text{wt\%}} * \frac{16}{44}$$

R:全稼働時間に占める停止・立ち上げ時のベント時間の割合

なお、我が国のカーボンブラック製造においては、プロセス中は負圧となっており、基本的に系外にガスが漏出することはないため、ベントによる排出量のみを算定する。

■ 活動量

カーボンブラック製造に伴う CO2、CH4排出の活動量については、経済産業省「化学工業統計年報」に示されたカーボンブラック生産量を用いた。

表 4-27 カーボンブラック生産量

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
カーボンブラック生産量	kt	793	759	772	805	841	725	635	730	670	612	628	608	563	569

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性については、統計的処理により 95%信頼区間を求め不確実性評価を行った。その結果、排出係数の不確実性は、 CO_2 、 CH_4 ともに 55%と評価された。活動量の不確実性については、 CO_2 、 CH_4 ともに 2006 年 IPCC ガイドラインのデフォルト値の 5%を採用した。その結果、排出量の不確実性評価は CO_2 、 CH_4 ともに 55%として評価された。

■ 時系列の一貫性

カーボンブラック製造の活動量は経済産業省「化学工業統計年報」をもとに、1990年度値から一貫して使用している。また、排出係数は1990年度から一定値を使用している。従って、時系列の一貫性は担保されている。

d) OA/OCと検証

セメント製造(2.A.1)に記載した内容と同一である。4.2.1.d)節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.3.8.7. スチレン製造 (2.B.8.-)

a) 排出源カテゴリーの説明スチレンの製造に伴い CH4 が排出される。

b) 方法論

■ 算定方法

スチレン製造に伴う CH4排出については、2006 年 IPCC ガイドラインに示された手法に基づき、スチレンの生産量に我が国独自の排出係数を乗じて算定した。

■ 排出係数

国内全事業所における定常運転時・非定常運転時におけるフレアスタックからの排ガス量の推計値(入り口量の98%が燃焼したものと仮定⁴)及び加熱炉等からの排ガス量の測定値を生産量で除して各社ごとの排出係数を算出し、各社の生産量による加重平均をとって排出係数を設定した。(石油化学工業協会調べ)。なお、当該排出係数は秘匿とする。

■ 活動量

スチレン製造に伴う CH4排出の活動量については、経済産業省「化学工業統計年報」に示されたスチレンモノマーの生産量を用いた。

表 4-28 スチレン (モノマー) 生産量

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
スチレン生産量	kt	2,227	2,952	3,020	3,375	3,417	2,699	3,043	3,019	2,594	2,426	2,539	2,518	2,260	1,952

c) 不確実性と時系列の一貫性

■ 不確実性

スチレン製造に伴う CH4 の排出係数の不確実性については、統計的処理により 95%信頼区間を求め不確実性評価を行った。その結果、排出係数の不確実性は、113%と評価された。活動量の不確実性については、2006 年 IPCC ガイドラインのデフォルト値の 5%を採用した。その結果、排出量の不確実性は 113%と評価された。

■ 時系列の一貫性

スチレン製造の活動量は経済産業省「化学工業統計年報」をもとに、1990年度値から一貫 して使用している。また、排出係数は1990年度から一定値を使用している。従って、スチレン製造による CH4排出に関して、時系列の一貫性は担保されている。

d) QA/QC と検証

セメント製造 (2.A.1) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

-

⁴ 脚注1参照。

4.3.8.8. 無水フタル酸製造 (2.B.8.-)

a) 排出源カテゴリーの説明

無水フタル酸は、可塑剤、合成樹脂、塗料、染料等の原料として使用されている。無水フタル酸製造時には、ナフタレン酸化、o-キシレン酸化の反応により CO、CO2 が排出される。 CO も燃焼され最終的には CO2 として排出される。

b) 方法論

■ 算定方法

無水フタル酸生産量に生産量当たり排出係数を乗じて排出量を算定する。

■ 排出係数

製品及びその他の副生物とならなかった C が最終的に CO_2 になるとみなし、無水フタル酸の製法別の製品・副生物の収率[mol%] (「石油化学プロセス (石油学会)」) より CO_2 の生成比率[mol%]を算出する。さらに、 CO_2 と製品の生成比率と各物質の分子量より、製品の生産量当たりの CO_2 排出量を算出し、製法別の排出係数とする。なお、「石油化学プロセス (石油学会)」においては、収率は上限値及び下限値が示されているため、ここでは中央値を基に排出係数を設定する。

表 4-29 無水フタル酸製造における製法別物質生成率

製法	製品収率 [mol%]	無水マレイン酸 [mol%]	その他 [mol%]	CO ₂ [mol%]	排出係数 [tCO ₂ /t]
ナフタレン酸化	87-91	3-5	1	2-8	0.19
o-キシレン酸化	80-83	4-6	1-2	10-16	0.54

(出典)「石油化学プロセス(石油学会)」(但し を除く)

さらに、「化学品ハンドブック(重化学工業通信社)」の我が国における各年度別・製法別の無水フタル酸生産能力により、年度ごとに加重平均を行い、我が国を代表する排出係数とする。

表 4-30 無水フタル酸生産能力に基づく加重平均排出係数

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
加重平均排出係数	t-CO ₂ /t	0.39	0.39	0.41	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37

1995 年以前は製法別の生産能力不明のため 1996 年の排出係数を用いる。

■ 活動量

「化学工業統計年報(経済産業省)」における無水フタル酸生産量を使用する。

表 4-31 無水フタル酸生産量

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
無水フタル酸生産量	kt	300	319	288	216	181	159	137	160	148	162	158	156	159	156

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性については、排出係数の設定に使用した収率の理論値の上限値・下限値より設定した 32%を使用した。活動量の不確実性については、2006 年 IPCC ガイドラインのデフォルト値の 5%を採用した。その結果、排出量の不確実性は 32%と評価された。

■ 時系列の一貫性

無水フタル酸の活動量は経済産業省「化学工業統計年報」をもとに、1990年度値から一貫 した方法を使用して、算定している。また、排出係数についても一貫した方法を使用して、 算定している。

d) QA/QC と検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.3.8.9. 無水マレイン酸製造 (2.B.8.-)

a) 排出源カテゴリーの説明

無水マレイン酸は、不飽和ポリエステル樹脂原料をはじめとして、樹脂改良材、食品添加物、医薬原料、リンゴ酸、コハク酸等の有機酸の合成原料として使用されている。無水マレイン酸製造時には、ベンゼン法、n-ブタン法の反応により CO、CO2 が排出される。CO も燃焼され最終的には CO2 として排出される。

b) 方法論

■ 算定方法

無水マレイン酸生産量に生産量当たり排出係数を乗じて排出量を算定する。

■ 排出係数

製品及びその他の副生物とならなかった C が最終的に CO_2 になるとみなし、無水マレイン酸の製法別の製品・副生物の収率[mol%] (「石油化学プロセス(石油学会)」)より CO_2 の生成比率[mol%]を算出する。さらに、 CO_2 と製品の生成比率と各物質の分子量より、製品の生産量当たりの CO_2 排出量を算出し、製法別の排出係数とする。なお、「石油化学プロセス(石油学会)」においては、収率は上限値及び下限値が示されているため、ここでは中央値をもとに排出係数を設定する。

表 4-32 無水マレイン酸製造における製法別物質生成率

製法	製品収率 [mol%]	無水マレイン酸 [mol%]	その他 [mol%]	CO ₂ [mol%]	排出係数 [tCO ₂ /t]
ベンゼン法	70-80	-	-	20-30	0.74
n-ブタン法	55-60	-	-	40-45	1.65

(出典)「石油化学プロセス(石油学会)」(但し を除く)

さらに、「化学品ハンドブック(重化学工業通信社)」の我が国における各年度別・製法別の無水マレイン酸生産能力により、年度ごとに加重平均を行い、我が国を代表する排出係数とする。

表 4-33 無水マレイン酸生産能力に基づく加重平均排出係数

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
加重平均排出係数	t-CO ₂ /t	1.20	1.20	1.23	1.11	1.11	1.11	1.11	1.11	1.04	1.04	1.04	1.04	1.04	1.04

1995 年以前は製法別の生産能力不明のため 1996 年の排出係数を用いる。

■ 活動量

「化学工業統計年報 (経済産業省)」における無水マレイン酸生産量を使用する。

表 4-34 無水マレイン酸生産量

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
無水マレイン酸生産量	kt	103	116	132	103	104	86	85	93	88	75	86	85	87	88

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性については、排出係数の設定に使用した収率の理論値の上限値・下限値より設定した 16%を使用した。活動量の不確実性については、2006 年 IPCC ガイドラインのデフォルト値の 5%を採用した。その結果、排出量の不確実性は 17%と評価された。

■ 時系列の一貫性

無水マレイン酸の活動量は経済産業省「化学工業統計年報」をもとに、1990年度値から一貫した方法を使用して、算定している。また、排出係数についても一貫した方法を使用して、算定している。

d) QA/QCと検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.3.8.10. 水素製造 (2.B.8.-)

a) 排出源カテゴリーの説明

天然ガスや石油等の化石燃料を水蒸気改質して水素を製造する際に CO₂ が発生する。なお、石油精製やエチレン製造等においても水素が副生し、回収利用されているが、関連排出量はすでに他のカテゴリーで計上済みであるため、ここでは、水素そのものを得ることを目的として、原料から水素を製造している場合の CO₂ 排出量を対象とする。

b) 方法論

■ 算定方法

水素生産量に生産量当たり排出係数を乗じて排出量を算定する。

■ 排出係数

日本産業・医療ガス協会加盟企業からの報告値に基づく産業ガスメーカーにおける CO₂排出量の合計値を、同アンケート結果に基づく水素生産量の合計値で割った生産量当たりの CO₂排出量を排出係数とする。

表 4-35 水素製造における排出係数

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
排出係数	t-CO ₂ / 10 ³ Nm ³	0.82	0.83	0.83	0.88	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.86	0.86	0.85

■ 活動量

日本産業・医療ガス協会加盟企業からの報告値に基づく CO₂排出を伴う製造プロセスにより生産された水素生産量を使用する。

表 4-36 水素生産量

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
水素生産量	10^3Nm^3	7,431	25,116	46,562	37,911	36,082	34,330	36,277	38,889	37,437	34,846	32,170	28,394	32,257	34,235

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性は、エチレン製造の不確実性 77%を使用した。同様に、活動量の不確実性については、2006 年 IPCC ガイドラインのデフォルト値の 5%を採用した。その結果、水素製造に伴う CO_2 の排出量の不確実性は 77% と評価された。

■ 時系列の一貫性

活動量は 1990 年度値から一貫した方法を使用して、算定している。また、排出係数についても一貫した方法を使用して、算定している。

d) QA/QC と検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

排出係数の計算に一部用いている総合エネルギー統計の炭素排出係数、発熱量が変更になったため、2006~2015 年につき再計算が行われた。再計算の影響の程度については 10 章参照。

f) 今後の改善計画及び課題

特になし。

4.3.9. フッ化物製造 (2.B.9.)

4.3.9.1. 副生ガスの排出 - HCFC-22 の製造 (2.B.9.-)

a) 排出源カテゴリーの説明

HCFC-22 の製造に伴い HFC-23 が副生ガスとして排出される。

b) 方法論

■ 算定方法

国内の HCFC-22 製造プラントにおける HFC-23 の副生量から、副生 HFC-23 の回収・破壊量(実測値)を減じたものを排出量として計上した。HFC-23 の副生量は、HCFC-22 の製造量に、HFC-23 生成率(リアクター内部の組成分析を実施し、分析結果から設定)をかけて求めた。排出係数は国独自のものである。

プラントの稼働中は回収・除害装置は常に稼働しており、もし、装置にトラブルが発生した場合には、プラントの稼働を止める運転管理を行っており、回収・除害を実施できなかった部分についてはデータに反映されている。

<u>HCFC-22 の製造に伴う副生 HFC-23 の排出量</u>

HFC-23 排出量 = HCFC-22 生産量[t] × HFC-23 生成率[%] - 回収・破壊量[t]

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
HCFC-22の生 産量	t	60,122	81,000	95,271	65,715	61,197	60,401	26,682	46,149	45,314	54,388	47,546	51,753	49,121	48,833
HFC-23副生率	%	2.13%	2.13%	1.70%	1.90%	1.82%	2.00%	2.34%	2.01%	1.53%	1.60%	1.41%	1.46%	1.46%	1.38%
HCFC-22生産 に対する排出 割合	%	1.79%	1.79%	1.11%	0.06%	0.03%	0.07%	0.01%	0.01%	0.002%	0.002%	0.002%	0.003%	0.004%	0.003%
排出量	t	1,076	1,450	1,060	40	19	40	3	4	1	1	1	2	2	2
採山里	kt-CO2換算	15,929	21,460	15,688	586	275	593	50	53	16	18	16	24	30	24

表 4-37 HCFC-22 の製造に伴う副生 HFC-23 の排出の関連指標

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ 資料、平成 25 年度温室効果ガス排出量算定方法検討会第 1 回 HFC 等 4 ガス分科会資料

2004 年に全ての製造設備に回収・破壊装置が設置されたことにより、排出量が減少している。HCFC-22 生産に対する排出割合が低いのは、破壊設備の運転管理、保守技術の向上による設備稼働率低下防止に取り組んだためである。その後も継続的に運転管理技術等の改善に取り組んだため、排出の抑制が進んでいる。

なお、1990~1994年の排出量の算定に必要なデータが不足しているため、これらの年についてはフッ素樹脂生産量・フッ素樹脂生産量に対するフッ素樹脂原料用の HCFC-22 の割合(データ入手可能な 1995~2006年の平均)から推計したフッ素樹脂原料用の HCFC-22 生産量、および HCFC 総出荷量 5 ・1995年の冷媒用途の HCFC-22 出荷量から推計した冷媒用途の HCFC-22 生産量推計値の合算値を総 HCFC-22 生産量とし、1995年の HCFC-22 の生産量に対する排出割合のデータを用いて外挿をして算定を行っている。

c) 不確実性と時系列の一貫性

■ 不確実性

排出量の不確実性は 2006 年 IPCC ガイドラインの 2%を採用した。

■ 時系列の一貫性

1995 年以降の排出量については、経済産業省の製造産業分科会において、HFC 等 4 ガスの排出量を毎年継続的に集計している。1990~1994 年については、1995 年以降の関連データの外挿等をして算定を行っており、可能な限り時系列の一貫性に配慮している。

d) QA/QCと検証

製造産業分科会において集計されたデータを温室効果ガス排出量算定方法検討会において確認した上で、インベントリに使用している。また、日本国内全てのプラントで排出量の調査を行っている。組成分析の実施頻度については、あるプラントでは毎日測定を実施しているなど頻繁に実施している。濃度測定もプラントの排出口部分において実施している。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

_

⁵ 通商産業省平成9年第1回化学品審議会リスク管理部会温室効果化学物質分科会通商産業省作成資料。

4.3.9.2. 製造時の漏出 (2.B.9.-)

a) 排出源カテゴリーの説明

HFCs、PFCs、 SF_6 、 NF_3 製造時にガスが漏洩する。なお、回収容器の残存ガスを破壊処理して容器を洗浄する場合や、大気中に放出される場合は、これらの排出量は本サブカテゴリーの下で報告される。

b) 方法論

■ 算定方法

国内の HFCs、PFCs、SF6、NF3 製造の各プラントにおいて、排出量を実測して計上した。回 収除害等も考慮されている。プラントの稼働中は回収・除害装置は常に稼働しており、もし、 装置にトラブルが発生した場合には、プラントの稼働を止める運転管理を行っている。 関連指標を下表に示す。

表 4-38 HFCs の製造時の漏出の排出量

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
排出量	kt-CO2換算	2	559	296	449	357	306	234	128	151	120	131	101	83	149

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料(日本フルオロカーボン協会データ)経済産業省提供データ、平成25年度温室効果ガス排出量算定方法検討会第1回HFC等4ガス分科会資料

国の支援を受けた除害装置の設置や製造工程の見直し等による排出削減の取組により、排出削減が進められている。

表 4-39 PFCs の製造時の漏出の関連指標

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
排出量	kt-CO2換算	331	914	1,661	1,041	977	649	459	248	206	148	111	107	115	97

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料(日本化学工業協会データ) 平成 25 年度温室効果ガス排出量算定方法検討会第1回 HFC 等4 ガス分科会資料

国の支援を受けた除害装置の設置や製造工程の見直し等による排出削減の取組により、排出削減が進められている。また、2011年には希薄排出ガスの燃焼除害装置の設置で更なる排出削減を達成している。

表 4-40 SF₆の製造時の漏出の関連指標

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
SF6の生産量	t	1,848	2,392	1,556	2,313	2,723	2,647	2,562	2,201	1,993	2,230	2,128	1,997	2,027	2,003
排出量	t	152	197	36	41	50	54	10	8	6	5	4	3	2	2
排山里	kt-CO2換算	3,471	4,492	821	930	1,144	1,229	233	189	132	123	93	62	52	50

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料(日本化学工業協会データ) 平成 25 年度温室効果ガス排出量算定方法検討会第1回 HFC 等4 ガス分科会資料

2009 年に全ての製造設備に回収・破壊装置が設置されたことにより、排出量が減少している。また、製造工程や出荷時の作業見直しによる排出削減が進められている。

表 4-41 NF₃の製造時の漏出の関連指標

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
NF3の生産量	t	6	37	208	1,663	3,028	3,353	2,887	3,642	3,612	3,501	4,148	4,660	4,963	4,366
排出量	t	0.2	1.0	7.0	72.1	71.4	71.1	66.8	76.9	93.1	76.4	86.4	56.1	23.5	25.1
批山里	kt-CO2換算	3	17	120	1,240	1,228	1,223	1,149	1,323	1,601	1,314	1,486	965	404	432

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料(日本化学工業協会データ)

なお、1990~1994年の排出量の算定に必要なデータが不足しているため、これらの年については HFCs、PFCs、SF6生産量と比例すると考えられる HFCs、PFCs、SF6出荷量⁶、1995年の HFCs、PFCs、SF6、NF3 の生産量に対する排出割合、1995年の HFCs、PFCs の加重平均GWP値のデータを用いて外挿をして算定を行っている。

c) 不確実性と時系列の一貫性

■ 不確実性

排出量の不確実性は、HFCs、PFCs、SF₆、NF₃いずれについても 2006 年 IPCC ガイドラインの 2%を採用した。

■ 時系列の一貫性

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1.c) 節を参照のこと。

d) QA/QCと検証

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1. d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.4. 金属製造 (2.C.)

金属の生産カテゴリーは、金属製品の製造過程で大気中に排出される CO_2 、 CH_4 、 HFC_8 、 PFC_8 、 SF_6 を扱う。当該カテゴリーは、「2.C.1.鉄鋼製造」、「2.C.2.フェロアロイ製造」、「2.C.3. アルミニウム製造」、「2.C.4.マグネシウム製造」、「2.C.5.鉛製造」、「2.C.6.亜鉛製造」から構成される。

2016 年度における当該カテゴリーからの温室効果ガス排出量は約6,169 kt-CO₂ 換算であり、我が国の温室効果ガス総排出量 (LULUCF 分野を除く)の0.5%を占めている。このカテゴリーの CO_2 及び CH_4 について1990年の排出量と比較すると、19.5%の減少となっている。HFCs、PFCs 及び SF_6 では1990年の排出量と比較すると9.8%の減少となっている。

-

⁶ 通商産業省平成9年第1回化学品審議会リスク管理部会温室効果化学物質分科会通商産業省作成資料。以下1990~1994年排出量推計に用いている「国内出荷量」は同出典。

44	_			W ()	1000	1005	2000	2005	2007	2000	2000	2010	2011	2012	2012	201.4	2015	2016
ガス				単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
			鉄鋼製造にお ける電気炉の 使用	kt-CO2	356	357	201	242	212	156	112	160	162	174	144	159	130	141
CO ₂	2.C.1	鉄鋼製造	鉄鋼製造におけ る石灰石・ドロマ イトの使用	kt-CO2	6,888	6,492	6,538	6,255	6,483	6,081	5,356	5,941	5,803	5,887	6,037	5,948	5,786	5,695
CH₄	2.C.1	鉄鋼製造	鉄鋼製造にお ける電気炉の 使用	kt-CH4	0.74	0.72	0.67	0.68	0.71	0.61	0.51	0.59	0.60	0.59	0.60	0.59	0.55	0.55
C114	2.C.2	フェロアロ	イ製造	kt-CH4	0.19	0.14	0.13	0.13	0.11	0.11	0.11	0.12	0.11	0.13	0.13	0.12	0.12	0.11
	合計			kt-CH ₄	0.92	0.85	0.80	0.80	0.82	0.72	0.62	0.71	0.72	0.72	0.73	0.71	0.67	0.66
	合計			kt-CO2換算	23.05	21.34	20.04	20.10	20.60	17.89	15.43	17.70	17.96	17.99	18.16	17.68	16.69	16.47
CO ₂ 、	CH4€	計		kt-CO2換算	7,267	6,871	6,760	6,517	6,716	6,254	5,484	6,118	5,983	6,079	6,199	6,125	5,933	5,853
ガス				単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
HFCs	2.C.4	マグネシウ	ム製造	kt-CO2換算	NO	NO	NO	NO	NO	NO	NO	NO	1.00	1.29	1.29	1.29	0.86	1.14
PFCs	2.C.3	アルミニウ	ム製造	kt-CO2換算	203.66	103.55	26.41	21.76	21.62	21.59	16.22	15.28	15.24	13.27	9.59	1.91	0.00	0.00
C.F.	201	マグネシウ	7.001245	t	6.43	5.00	43.00	48.42	45.58	27.30	10.00	12.88	8.00	8.00	7.00	8.00	10.00	13.80
SF6	2.C.4	マクネシリ	ム米坦	kt-CO2換算	146.54	114.00	980.40	1,104.05	1,039.20	622.44	228.00	293.73	182.40	182.40	159.60	182.40	228.00	314.64
Fガ:	ス合計			kt-CO-換算	350	218	1.007	1.126	1.061	644	244	309	199	197	170	186	229	316

表 4-42 2.C. 金属製造からの排出量

4.4.1. 鉄鋼製造 (2.C.1.)

4.4.1.1. 鋼製造 (2.C.1.a)

1) CO₂

鋼の製造に伴い発生する CO₂ は、還元剤として使用されるコークスが酸化されることで排出される。コークスの使用量は、燃料の燃焼分野 (1.A.) における燃料使用量に含まれており、還元剤として使用されるコークスの酸化により発生する CO₂ は燃料の燃焼分野 (1.A.) において既に算定されていることから、「IE」と報告している。

4.4.1.2. 銑鉄製造 (2.C.1.b)

1) CO₂

銑鉄の製造に伴い発生する CO_2 は、還元剤として使用されるコークスが酸化されることで排出される。コークスの使用量は、燃料の燃焼分野 (1.A.) における燃料使用量に含まれており、還元剤として使用されるコークスの酸化により発生する CO_2 は燃料の燃焼分野(1.A.) において既に算定されていることから、「IE」と報告している。

2) CH₄

銑鉄の製造に伴う CH4 の発生は原理的に考えられず、また実測例でも CH4 の排出はないことが確認されていることから「NA」と報告している。

4.4.1.3. 直接還元鉄製造(2.C.1.c)

1) CO₂

直接還元鉄の製造に伴い、還元剤として使用される天然ガスや石炭が酸化されることで CO₂が排出される。ただし、我が国において、これまで還元鉄の生産実績はないことから、「NO」と報告している。

2) CH₄

直接還元鉄の製造に伴い、天然ガスや石炭の燃焼により CH4 が発生する。ただし、我が国において、これまで還元鉄の生産実績はないことから、「NO」と報告している。

4.4.1.4. 焼結鉱製造 (2.C.1.d)

1) CO₂

焼結鉱の製造により発生する CO_2 は、全て粉コークスの燃焼により発生するものであり、その排出は燃料の燃焼分野 (1.A.) に該当する。当該排出量は、燃料の燃焼分野 (1.A.) において既に算定されているため「IE」と報告している。

焼結鉱製造時の石灰石及びドロマイトの使用に伴う CO_2 の排出は、 $\int 4.4.1.7$. 鉄鋼製造における石灰石・ドロマイトの使用」で計上している。

2) CH₄

焼結鉱の製造により発生する CH4 は、全て粉コークスの燃焼により発生するものであり、その排出は燃料の燃焼分野(1.A.)に該当する。また、当該排出量は、燃料の燃焼分野(1.A.)において既に算定されているため「IE」と報告している。

4.4.1.5. ペレット製造 (2.C.1.e)

1) CO₂

ペレットの製造により発生する CO_2 は、微粉鉱石の燃焼により発生するものであり、その排出は燃料の燃焼分野 (1.A.) に該当する。当該排出量は、燃料の燃焼分野 (1.A.) において既に算定されているため「IE」と報告している。

ペレット製造時の石灰石及びドロマイトの使用に伴う CO₂ の排出は、「4.4.1.7. 鉄鋼製造における石灰石・ドロマイトの使用」で計上している。

2) CH₄

ペレットの製造により発生する CH_4 は、微粉鉱石の燃焼により発生するものであり、その排出は燃料の燃焼分野 (1.A.) に該当する。また、当該排出量は、燃料の燃焼分野 (1.A.) において既に算定されているため「IE」と報告している。

ペレット製造時の石灰石及びドロマイトの使用に伴う CO₂ の排出は、「4.4.1.7. 鉄鋼製造における石灰石・ドロマイトの使用」で計上している。

4.4.1.6. 鉄鋼製造における電気炉の使用 (2.C.1.-)

a) 排出源カテゴリーの説明

製鋼用電気炉(アーク炉)の使用時に、炭素電極から CO_2 が排出される。また、鉄鋼製造に使用される電気炉から CH_4 が排出される。

b) 方法論

1) CO₂

■ 算定方法

鉄鋼製造における電気炉の使用に伴う CO₂ 排出量については、炭素電極の生産量と輸入量の合計から輸出量を差し引いた重量に相当する炭素量が電気炉において CO₂ として大気に放散されると仮定し、排出量を算定した。

総合エネルギー統計において表現されている電気炉ガスに含まれる炭素分は、「1.A. 燃料の燃焼」分野にて計上されているため、排出量から控除した。

■ 活動量

「窯業・建材統計年報」(経済産業省)における炭素電極の生産量、及び「日本貿易統計」 (財務省)炭素電極輸入量、輸出量を用いた。

	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
#A 輸入量	t	12,341	18,463	11,363	15,075	15,035	15,116	11,218	17,321	20,437	20,027	19,960	19,226	18,209	19,773
#B国内生産量	t	211,933	186,143	184,728	216,061	229,734	201,256	169,545	205,081	217,847	197,278	180,322	180,555	151,979	141,193
#C輸出量	t	87,108	92,812	107,998	138,409	150,491	134,509	116,489	139,757	154,204	135,863	128,435	121,079	103,834	90,664
#D電気炉ガス	t	39,983	14,300	33,201	26,700	36,415	39,349	33,709	39,017	39,949	33,898	32,572	35,221	30,848	31,687
国内消費 (#A+#B-#C-#D)	t	97,184	97,493	54,892	66,028	57,864	42,514	30,564	43,629	44,132	47,544	39,274	43,481	35,507	38,614
CO2排出量	kt-CO2換算	356	357	201	242	212	156	112	160	162	174	144	159	130	141

表 4-43 電気炉の電極からの CO₂排出量

2) CH₄

■ 算定方法

燃料の燃焼分野 (1.A.固定発生源)からの CH4 排出量の算定と同様の手法を用い、我が国の実測データより設定した排出係数を、電気炉における電力消費量に乗じて排出量を算定した。

■ 排出係数

我が国で行われた実測調査のデータを基に設定した電気炉における電力消費に伴う排出係数 (12.8 kg-CH₄/TJ) を用いた (第3章の3.2.5.節及び第4章の4.3.5.1. 節を参照)。

■ 活動量

総合エネルギー統計における鉄鋼業の細目分類である「電気炉」に計上された電力消費量を用いた。

表 4-44 電気炉における電力消費量

電力消費量	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
電気炉	TJ	57,564	55,986	52,457	52,747	55,687	47,316	39,753	45,793	47,185	46,195	46,786	46,156	42,919	42,976

c) 不確実性と時系列の一貫性

1) CO₂

■ 不確実性

電気炉の電極からの CO_2 は、全量が大気中に放出されるとして排出量の算定を行っており、排出係数は設定されていないため、活動量の不確実性を評価することで排出量の不確実性を評価した。活動量のパラメータの不確実性を合成した結果、電気炉の電極からの CO_2 排出量の不確実性は 5% と評価された。

■ 時系列の一貫性

鉄鋼製造における電気炉の使用の活動量(排出量)は、経済産業省「窯業・建材統計年報」及び財務省「日本貿易統計」をもとに、1990年度値から一貫した方法を使用して、算定している。

2) CH₄

■ 不確実性

電気炉の排出係数の不確実性は 163%、活動量の不確実性は 5%と評価された(第3章参照のこと)。その結果、電気炉の CH4排出の不確実性は 163%と評価された。

■ 時系列の一貫性

鉄鋼製造における電気炉の使用の活動量は資源エネルギー庁「総合エネルギー統計」をもとに、1990 年度値から一貫した方法を使用して、算定している。また、排出係数は 1990 年度から一定値を使用している。従って、鉄鋼製造における電気炉の使用による CH4 排出に関して、時系列の一貫性は担保されている。

d) QA/QCと検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

総合エネルギー統計の電気炉ガスに含まれる炭素分が修正されたため、1990 年、2002 年、2005 年、2013 ~ 2015 年について、また炭素電極輸入量が更新されたため、2011 年について CO_2 の再計算が生じた。総合エネルギー統計の電気炉における電力消費量が修正されたため、1999 年、2000 年、2012 年、2013 年、2015 年について CH_4 の再計算が生じた。

f) 今後の改善計画及び課題

特になし。

4.4.1.7. 鉄鋼製造における石灰石・ドロマイトの使用 (2.C.1.-)

a) 排出源カテゴリーの説明

石灰石には CaCO₃ 及び微量の MgCO₃ が、ドロマイトには CaCO₃ 及び MgCO₃ が含まれており、石灰石・ドロマイトを加熱すると、CaCO₃ 及び MgCO₃ 由来の CO₂ が排出される。

b) 方法論

■ 算定方法

鉄鋼製造において使用された石灰石及びドロマイトの量に排出係数を乗じて、排出量の算 定を行った。

■ 排出係数

石灰石

排出係数(440 [kg- CO_2/t])は、化学反応式における CO_2 と $CaCO_3$ の重量比に石灰石から取り出せる CaO の割合(55.4%:「石灰石の話(石灰石鉱業協会)」に示された割合「 $54.8 \sim 56.0\%$ 」の中間値)を乗じた値と、 CO_2 と $MgCO_3$ の重量比に石灰石から取り出せる MgO の割合(0.5%:「石灰石の話(石灰石鉱業協会)」に示された割合「 $0.0 \sim 1.0\%$ 」の中間値)を乗じた値を加えて算出した。なお、排出係数は国独自のものである。(詳細は4.2.3.b)参照)

ドロマイト

排出係数 (471 [kg-CO₂/t]) は、化学反応式における CO_2 と $CaCO_3$ の重量比にドロマイトから取り出せる CaO の割合(34.5%:33.1~35.85%の中間値。石灰石鉱業協会「石灰石の話」) を乗じた値と、 CO_2 と $MgCO_3$ の重量比にドロマイトから取り出せる MgO の割合(18.3%:17.2~19.5%の中間値。石灰石鉱業協会「石灰石の話」) を乗じた値を加え排出係数を算定した。 なお、排出係数は国独自のものである。(詳細は4.2.3. b)参照)

■ 活動量

不均一価格物量表における鉄鋼・精錬関連部門に計上された石灰石及びドロマイト消費量 のうち、排出用途に分類される全部門の石灰石及びドロマイト消費量を本サブカテゴリー下 に計上する。なお、活動量はセメント用の石灰石の含水率を使用して乾重量ベースに換算されたものである。

本用途分類に対応する不均一価格物量表の部門については以下の通りである。

表 4-45 不均一価格物量表の該当部門

用途	不均一価格物量表の該当部門	不均一価格物量表の該当部門
	(石灰石)	(ドロマイト)
鉄鋼・精錬	2611-01 鉄鋼 銑鉄	2611-01 鉄鋼 銑鉄
	~2611-04 鉄鋼 粗鋼(電気炉)	~2631-03 鉄鋼 鋳鉄品・鍛工品
	2631-02 鉄鋼 鋳鉄管、-03 鉄鋼 鋳鉄品・	
	鍛工品	
	2711-01 非鉄 銅、-02 鉛亜鉛	2711-02 非鉄 鉛亜鉛
	2722-03 非鉄 非鉄金属素型材	

(注)部門名に付されている番号は、不均一価格物量表内の分類番号。

表 4-46 石灰石及びドロマイトの消費量

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
石灰石消費量															
鉄鋼・製錬用 (dry)	kt	14,430	13,590	13,619	12,577	12,873	12,177	11,000	11,815	11,541	11,663	11,878	11,702	11,455	11,251
ドロマイト消費量															
鉄鋼・製錬用 (dry)	kt	1,144	1,089	1,160	1,530	1,739	1,535	1,096	1,576	1,539	1,603	1,720	1,695	1,584	1,581

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性については、石灰石、ドロマイトとも 2006 年 IPCC ガイドラインに示された不確実性のデフォルト値 3%を採用した。活動量の不確実性については、石灰石、ドロマイトとも 2006 年 IPCC ガイドラインに示された不確実性のデフォルト値 3%を採用した。その結果、石灰石の排出量の不確実性は 4%、ドロマイトの排出量の不確実性は 4%と評価された。

■ 時系列の一貫性

石灰石及びドロマイトの使用の活動量は、不均一価格物量表の石灰石及びドロマイト消費量を 1990 年度から一貫して使用している。また、排出係数は 1990 年度から一定値を使用している。従って、石灰石及びドロマイトの使用による CO2 排出に関して、時系列の一貫性は担保されている。

d) QA/QC と検証

セメント製造(2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

2013~2015 年について不均一価格物量表における石灰石消費量が見直されたことに伴い、排出量の再計算が行われた。また、2015 年について、不均一価格物量表におけるドロマイト消費量が見直されたことに伴い、排出量の再計算が行われた。再計算の影響の程度については 10 章参照。

f) 今後の改善計画及び課題

特になし。

4.4.2. フェロアロイ製造 (2.C.2.)

a) 排出源カテゴリーの説明

1) CO₂

我が国ではフェロアロイが製造されており、フェロアロイの製造に伴い発生する CO_2 は、還元剤として使用されるコークスの酸化によって排出される。コークスの使用量は、燃料の燃焼分野 (1.A.) における燃料使用量に含まれており、還元剤として使用されるコークスの酸化により発生する CO_2 は燃料の燃焼分野 (1.A.) において既に算定されている。また、フェロアロイ中に残存する炭素分は、鉄鋼の生産に使用される過程で酸化され、 CO_2 として大気中に放出される。したがって、「IE」と報告している。

2) CH₄

我が国においてフェロアロイは電気炉、小型高炉、テルミット炉等で製造されており、フェロアロイの製造に伴い発生する CH4 は、還元剤として使用されるコークスが酸化する際に発生すると考えられる。

b) 方法論

■ 算定方法

フェロアロイ製造に伴う CH_4 排出量は、燃料の燃焼分野 (1.A.1. エネルギー産業) からの CH_4 排出量の算定と同様の手法を用い、我が国の実測データより設定した排出係数を、電気炉における電力消費量に乗じて排出量を算定した。

■ 排出係数

フェロアロイが製造される炉種を考慮し、電気炉からの CH_4 排出係数と同じ値 (12.8 kg- CH_4 /TJ) を用いた。

■ 活動量

総合エネルギー統計における鉄鋼業の細目分類である「フェロアロイ」に計上された電力 消費量を用いた。

表 4-47 フェロアロイ製造における電力消費量

電力消費量	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
電気炉(フェロアロイ)	TJ	14,456	10,699	10,181	10,072	8,676	8,578	8,458	9,510	8,938	10,038	9,956	9,102	9,228	8,507

c) 不確実性と時系列の一貫性

■ 不確実性

電気炉の排出係数の不確実性は 163%、活動量の不確実性は 5%と評価された(第3章参照のこと)。その結果、電気炉の CH4排出の不確実性は 163%と評価された。

■ 時系列の一貫性

フェロアロイ製造の活動量は資源エネルギー庁「総合エネルギー統計」をもとに、1990 年度値から一貫した方法を使用して、算定している。また、排出係数は 1990 年度から一定値を使用している。従って、フェロアロイ製造による $\mathrm{CH_4}$ 排出に関して、時系列の一貫性は担保されている。

d) QA/QC と検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1. d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題 特になし。

4.4.3. アルミニウム製造 (2.C.3.)

4.4.3.1. 副次的排出(2.C.3.-)

a) 排出源カテゴリーの説明

1) CO₂

我が国ではアルミニウムの精錬が行われており、アルミニウムの精錬では、還元剤として使用される陽極ペーストの酸化によって CO2 が排出される。陽極ペーストの主原料であるコークスの使用量は燃料の燃焼分野 (1.A.) における燃料使用量に含まれており、還元剤として使用されるコークスの酸化により発生する CO2 は燃料の燃焼分野 (1.A.) において既に算定されていることから「IE」と報告している。

なお、アルミ精錬用の陽極ペーストには、コークス以外にバインダー材としてピッチも使用されている。このピッチは全て国内のコークス炉で副生されたコールタールを原料として製造されたものであり、輸入品は使用していない。総合エネルギー統計上はこのコールタールの消費量は産業部門におけるエネルギー利用として扱われている。よって、エネルギー分野の燃料の燃焼の固定排出源の下で計上されていることとなる。

2) PFCs

氷晶石などのふっ化物を溶かした電解浴を使用するため、アルミニウムの精錬時に PFCs が排出される。

b) 方法論

■ 算定方法

アルミニウムの一次精錬による生産量に 2006 年 IPCC ガイドラインに規定された算出式に基づいて算出された我が国独自の排出係数を乗じて、排出量を算定した。

なお、1990~1994年の排出量の算定に必要なデータが不足しているため、これらの年については関連データの外挿等をして算定を行っている。

■ 排出係数

2006 年 IPCC ガイドラインの Tier 2 手法において規定された算定式と技術毎に設定されている係数、ガス重量比等を用いて、排出係数を設定した。排出係数は下表の通り。

1990~1994年については、1995年の排出係数を用いている。

表 4-48	アルミニ	ウム製造に	伴う PFCs	排出係数、	生産量	1

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
PFC-14(CF ₄) 発生係数	kg-PFC-14/t	0.709	0.709	0.482	0.398	0.388	0.388	0.390	0.388	0.387	0.386	0.386	0.386	0	0
PFC-116(C ₂ F ₆) 発生係数	kg-PFC-116/t	0.060	0.060	0.041	0.034	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.033	0	0
アルミニウム生産量	t	34,100	17,338	6,500	6,490	6,610	6,600	4,930	4,670	4,670	4,075	2,950	588	0	0

(出典)資源統計年報、経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料

■ 活動量

アルミニウムの精錬に伴う PFCs 排出の活動量については、経済産業省「資源統計年報」 (1995~1997 年) 経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン 類等対策ワーキンググループ(旧経済産業省産業構造審議会化学・バイオ部会地球温暖化防 止小委員会)資料(1998 年~)に示されたアルミニウム生産量を用いた。(2014 年に生産終 了)

1990~1994年については、経済産業省「資源統計年報」に示されたアルミニウム生産量を用いた。

f) 不確実性と時系列の一貫性

■ 不確実性

排出係数、及び活動量の不確実性は、2006 年 IPCC ガイドラインのデフォルト値の 44%及び 2%をそれぞれ採用した。その結果、排出量の不確実性は 44%と評価された。

■ 時系列の一貫性

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1.c) 節を参照のこと。

g) QA/QCと検証

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1.d) 節を参照のこと。

h) 再計算

特になし。

i) 今後の改善計画及び課題

特になし。

4.4.3.2. 鋳造時の F ガスの使用 (2.C.3.-)

我が国における、アルミニウム鋳造時の SF₆ は使用実績がないことを確認したため、「NO」と報告している。

4.4.4. マグネシウム製造 (2.C.4.)

a) 排出源カテゴリーの説明

マグネシウム溶湯用酸化防止カバーガスとして使用されるため、マグネシウムの鋳造に伴って HFCs、SF₆ が排出される。

b) 方法論

マグネシウム鋳造を行う各事業者の HFCs、SF₆ 使用量を全て排出量として計上している。 マグネシウムの鋳造に伴う HFCs、SF₆ 排出については、経済産業省産業構造審議会製造産業 分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料に示された値を報告し た。関連指標を下表に示す。

表 4-49 マグネシウムの鋳造に伴う HFCs、SF₆排出の関連指標

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
HFC-134a使用量	t	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	0.9	0.9	0.9	0.6	0.8
SF6使用量	t	6.4	5.0	43.0	48.4	45.6	27.3	10.0	12.9	8.0	8.0	7.0	8.0	10.0	13.8

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料、平成 25 年度温室効果ガス排出量算定方法検討会第1回 HFC 等4 ガス分科会資料

なお、1990~1994年の排出量の算定に必要なデータが不足しているため、これらの年についてはマグネシウム溶解量と比例すると考えられるその他ダイカスト生産量(アルミニウム、亜鉛以外)、1995年のSF6使用量のデータを用いて外挿をして算定を行っている。

c) 不確実性と時系列の一貫性

■ 不確実性

排出量の不確実性は 2006 年 IPCC ガイドラインの Tier 2 手法の上限値の 5%を採用した。

■ 時系列の一貫性

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1. c) 節を参照のこと。

d) QA/QC と検証

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1. d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.4.5. 鉛製造 (2.C.5.)

鉛製造で発生する CO₂ は、還元剤として利用されるコークスが酸化されることで排出される。鉛の製造で使用される還元剤としてのコークス消費量は、石油等消費動態統計における非鉄金属地金工業の燃料区分である「直接加熱用」に含まれており、エネルギー部門における製造業および建設業(1.A.2)で既に排出量として計上されているため、「IE」として報告する。

4.4.6. 亜鉛製造 (2.C.6.)

鉛と同様に、亜鉛の製造に伴い発生する CO₂ は、還元剤として利用されるコークスが酸化されることで排出される。亜鉛の製造で使用される還元剤としてのコークス消費量は、石油等消費動態統計における非鉄金属地金工業の燃料区分である「直接加熱用」に含まれており、エネルギー部門における製造業および建設業 (1.A.2) で既に排出量として計上されているため、「IE」として報告する。

なお、鉱石中に炭素を含む菱亜鉛鉱($ZnCO_3$)を原料として用いた場合、還元過程で鉱石由来の CO_2 が発生する可能性があるが、現在我が国で菱亜鉛鉱を使用している例は存在しない。

4.5. 燃料からの非エネルギー製品及び溶剤の使用 (2.D.)

本カテゴリーでは、燃料からの非エネルギー製品及び溶剤の使用により大気中に排出される CO_2 を扱う。当該カテゴリーでは、「2.D.1.潤滑油の使用」、「2.D.2 パラフィンろうの使用」、「2.D.3.その他尿素の使用」から構成される。

2016 年度における当該カテゴリーからの温室効果ガス排出量は約 $1,881 \text{ kt-CO}_2$ 換算であり、 我が国の温室効果ガス総排出量 (LULUCF 分野を除く)の 0.1%を占めている。 1990 年比の排出量と比較すると 22.9%の増加となっている。

表 4-50 2.D. 燃料からの非エネルギー製品及び溶剤の使用からの排出量

ガス				単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
	2.D.1	潤滑油の使用	Ħ	kt-CO2	343	353	350	324	318	298	302	303	284	259	269	263	242	230
	2.D.2	パラフィンろ	の使用	kt-CO2	50	37	36	36	38	31	30	35	30	27	27	25	25	24
CO_2	2 D 2	7 O/H	尿素触媒	kt-CO2	NO	NO	NO	0.12	0.39	0.52	0.64	0.98	1.57	2.46	3.33	4.14	5.10	6.07
	2.D.3	その他	NMVOCの焼却	kt-CO ₂	1,139	1,319	1,437	1,686	1,793	1,620	1,718	1,629	1,680	1,554	1,645	1,490	1,545	1,622
	合計	•		kt-CO2	1,531	1,709	1,822	2,047	2,149	1,949	2,051	1,968	1,995	1,843	1,944	1,783	1,818	1,881

4.5.1. 潤滑油の使用 (2.D.1.)

a) 排出源カテゴリーの説明

潤滑油・グリースの使用時の酸化に伴い、 CO_2 が排出される。なお、全損タイプのエンジン油はエネルギー分野で報告し(1.A.3 参照)、全損タイプ以外のエンジン油は本分野で報告する。

b) 方法論

■ 算定方法

2006 年 IPCC ガイドラインに示された Tier 2 手法に基づき、潤滑油・グリースの油種別消費量に、油種別の炭素含有量及び ODU 係数を乗じて排出量を算定した。(下式)

$$E = \sum_{i} \left(LC_i * CC_i * ODU_i * 44/12 \right)$$

E: 潤滑油・グリースの使用中の酸化に伴う排出量(ktCO2)

LCi : 潤滑油・グリース消費量 (TJ)

CCi : 潤滑油・グリースの炭素含有量 (ktC/TJ)

ODUi : ODU (Oxidized During Use) 係数

i : 潤滑油・グリースの油種

■ 排出係数

炭素含有量については、「総合エネルギー統計」(資源エネルギー庁)に示された潤滑油及び他重質石油製品の炭素排出係数を用いる。ODU係数については、2006年 IPCC ガイドラインのデフォルト値(潤滑油:0.2、グリース:0.05)を用いる。

■ 活動量

潤滑油は、各エンジン油の消費量から全損タイプの消費量(3.2.8 節「活動量」参照)を減じて全損タイプ以外の消費量を算出する。

グリースの消費量は、資源・エネルギー統計年報及びエネルギー生産・需給統計年報に示されたグリースの国内向販売量に、総合エネルギー統計に示された他重質石油製品の発熱量を乗じた値を用いる。但し、1992~1999年度については、同出典にグリースの国内向販売量のデータが掲載されていないため、同出典に示されたグリースの「年初在庫・生産量・輸入量の和」から「輸出量・年末在庫の和」を減じた量を用いてグリースの国内向販売量を推計

する。

表 4-51 全損タイプ以外のエンジン油、グリース消費量

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
全損タイプ以外のエンジン油 消費量	TJ	23,449	24,385	24,144	22,298	21,717	20,449	20,804	20,768	19,476	17,756	17,788	17,384	15,998	15,169
グリース消費量	TJ	3,152	2,503	2,435	2,658	3,081	2,530	2,299	2,622	2,573	2,397	2,462	2,475	2,455	2,334

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性については、潤滑油、グリースともに 2006 年 IPCC ガイドラインのデフォルト値の 50%を採用した。活動量の不確実性については、潤滑油、グリースともに 2006 年 IPCC ガイドラインのデフォルト値の 5%を採用した。その結果、潤滑油、グリースともに排出量の不確実性評価は 50% として評価された。

■ 時系列の一貫性

活動量は経済産業省「化学工業統計年報」「エネルギー生産・需給統計年報」等をもとに、 1990年度値から可能な限り一貫した方法を使用して、算定している。また、排出係数につい ても一貫した方法を使用して、算定している。

d) QA/QC と検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

グリースの発熱量が 2012 ~ 2015 年について改訂されたため再計算が生じた。再計算の影響の程度については 10 章参照。

f) 今後の改善計画及び課題

特になし。

4.5.2. パラフィンろうの使用 (2.D.2.)

a) 排出源カテゴリーの説明

パラフィンろうの使用時の酸化に伴い、CO2が排出される。

- b) 方法論
- 算定方法

2006 年 IPCC ガイドラインの Tier 1 手法に基づき算定する。(下式)

 $E_{CO_2} = PW * CC_{Wax} * ODU_{Wax} * 44/12$

PW : パラフィンろう消費量 (TJ)

CCwax : パラフィンろうの炭素含有量 (kgC/GJ)

ODUwax : ODU (Oxidized During Use) 係数

■ 排出係数

炭素含有量は、「総合エネルギー統計」(資源エネルギー庁)における他重質石油製品の炭素排出係数を用いる。ODU係数は、2006年IPCCガイドラインのデフォルト値(0.2)を使用

する。

■ 活動量

「エネルギー生産・需給統計年報」及び「資源・エネルギー統計年報」(ともに経済産業省)におけるパラフィンの国内向販売量全量に、「総合エネルギー統計」(資源エネルギー庁)における他重質石油製品の発熱量を乗じて算定する。

c) 不確実性と時系列の一貫性

排出係数の不確実性については、2006 年 IPCC ガイドラインのデフォルト値の 100%を採用した。活動量の不確実性については、2006 年 IPCC ガイドラインのデフォルト値の 5%を採用した。その結果、排出量の不確実性評価は 100%として評価された。

■ 時系列の一貫性

活動量は経済産業省「エネルギー生産・需給統計年報」、「資源・エネルギー統計年報」を もとに、1990年度値から一貫した方法を使用して、算定している。また、排出係数について も一貫した方法を使用して、算定している。

d) QA/QCと検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

パラフィンろうの発熱量が 2012 ~ 2015 年について改訂された。再計算の影響の程度については 10 章参照。

f) 今後の改善計画及び課題

特になし。

- 4.5.3. その他 (2.D.3.)
- 4.5.3.1. 触媒として使用される尿素 (2.D.3.-)
 - a) 排出源カテゴリーの説明

自動車の尿素 SCR システムは、アンモニアにより排ガス中の NOx を還元し、 N_2 と H_2O に分解することで NOx 排出量を削減する技術である。尿素水を高温排気ガス中に噴射することで加水分解させ、アンモニアガスを得るが、その際に下式の反応式に従い、 CO_2 が排出される。

$$CO(NH_2)_2 + H_2O \rightarrow 2NH_3 + CO_2$$

- b) 方法論
- 算定方法

2006年 IPCC ガイドラインの手法に基づき算定する。(下式)

$$E_{CO_2} = AD *12/60 * P * 44/12$$

AD: 尿素 SCR システムにおける尿素系添加剤消費量[kt] P: 尿素系添加剤中の尿素割合[%](デフォルト値:32.5%)

■ 排出係数

尿素系添加剤中の尿素割合 P については、2006 年 IPCC ガイドラインのデフォルト値 32.5% を使用する。

■ 活動量

自動車工業会提供による尿素 SCR システム搭載車の累積販売台数に、1 台当たり軽油消費量を乗じ、尿素系添加剤/軽油消費割合を乗じて尿素系添加剤消費量を算出し、さらに国内の尿素消費量における輸入分の割合を乗じて、輸入分のみの尿素系添加剤消費量とする⁷。

AD = N * L * R * D * I

AD: 尿素 SCR システムにおける尿素系添加剤消費量[kt]

N: 尿素 SCR 搭載自動車の累積販売台数[千台]

L:1台当たり軽油消費量[kL/台]

R: 尿素系添加剤消費割合/軽油[%]

D:軽油密度[t/kL]

I:輸入率[%]

表 4-52 尿素系添加剤消費量の算定における各パラメータの出典・設定方法

項目	出典・設定方法
尿素 SCR システム搭載車の累積販売台数[千	日本自動車工業会提供データ
台]	
1 台当たり軽油消費量[kL/台]	「自動車輸送統計年報・自動車燃料消費量統計年報(国土交通省)」
	に基づく総軽油消費量を総登録台数で割って算定。
尿素系添加剤消費割合/軽油[%]	2006 年 IPCC ガイドラインに記載の 1~3%の中央値として 2%。
軽油密度[t/kL]	「総合エネルギー統計の解説(経済産業研究所)」を基に 0.8831t/kL
	と設定
輸入率[%]	「ポケット肥料要覧(農林統計協会)」における尿素の各年の輸入
	量/(国内向け出荷数量+輸入量)比率

c) 不確実性と時系列の一貫性

排出係数の不確実性については、2006 年 IPCC ガイドラインの自動車の燃料起源のデフォルト値の 5%を採用した。活動量の不確実性については、2006 年 IPCC ガイドラインのデフォルト値の 5%を採用した。その結果、排出量の不確実性評価は 7% として評価された。

■ 時系列の一貫性

活動量は日本自動車工業会提供データ等をもとに、1990年度値から一貫した方法を使用して、算定している。また、排出係数についても一貫した方法を使用して、算定している。

d) QA/QC と検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

 $2010 \sim 2015$ 年について軽油消費量が変更されたことに伴い、再計算が生じた。再計算の影響の程度については 10 章参照。

f) 今後の改善計画及び課題

特になし。

_

 $^{^7}$ 国内で生産される尿素については、アンモニアの製造工程において副生した CO_2 を回収して原料としており、 当該 CO_2 はインベントリでは、すでに「2.B.1.アンモニア製造」の排出量に含まれている。

4.5.3.2. NMVOC の焼却 (2.D.3.)

a) 排出源カテゴリーの説明

溶剤使用施設等における NMVOC の焼却処理に伴い CO2 が排出される。

b) 方法論

■ 算定方法

塗料、洗浄剤、印刷、化学製品、その他の 5 種類の用途別に、溶剤の国内供給量、大気への排出量、マテリアルリサイクル量をそれぞれ推計し、溶剤の国内供給量から大気への排出量とマテリアルリサイクル量を差し引くことで焼却処理量を導いて、NMVOC の焼却処理に伴う CO₂ 排出量を算定した。なお、一部の使用済み溶剤の焼却からの CO₂ 排出量については、エネルギー分野(原燃料利用)及び廃棄物分野(廃棄物の焼却(エネルギー回収を伴わない))で既に計上しているため、本カテゴリの排出から控除する。

$$E_{CO_2} = \sum_{i} \left(I_i \times C_i \times \frac{44}{12} \right)$$

 Eco2
 : NMVOC の焼却処理に伴う CO2 排出量 [t]

 Ii
 : 用途 i における NMVOC 焼却処理量 [t]

 Ci
 : 用途 i における NMVOC の平均炭素含有率 [-]

$$I_i = S_i - E_i - R_i$$

 I_i : 用途 i における NMVOC 焼却処理量 [t] S_i : 用途 i における溶剤の国内供給量 [t]

Ei : 用途 i における大気中への NMVOC 排出量 [t]Ri : 用途 i におけるマテリアルリサイクル量 [t]

■ 排出係数

「NMVOC 中の平均炭素含有率」については、各排出源から排出される NMVOC 各物質の炭素含有率を各物質の構成比率を用いて加重平均して算出した値を使用した。(間接 CO2 への換算に用いた値と共通の値を使用) 各物質の炭素含有率は分子式より設定し、各排出源に含まれる物質及びその構成比は、VOC 排出インベントリ等、各種資料より推定した。2015 年以降は、本カテゴリの平均炭素含有率 (0.64)を用いる。

■ 活動量

各パラメータの設定方法は以下の通りである。

用途iにおける溶剤の国内供給量

塗料については、「塗料からの VOC 排出実態推計のまとめ(日本塗料工業会)」の国内溶剤販売量のデータ等を用いた。洗浄剤、印刷、化学製品、その他については、VOC 排出インベントリ報告書(平成19年3月、環境省)の用途別全国溶剤販売量のデータ等を用いた。(いずれもデータのない年については内挿、製品販売数量等を使用した外挿にて推計)

用途 i における大気中への NMVOC 排出量

大気への NMVOC 排出量 E_i については、排出源別 NMVOC 排出量を使用した。(算定方法の詳細は別添 3 参照)

用途 i におけるマテリアルリサイクル量

用途 i の 2011 年度における溶剤の国内供給量に、用途 i の 2011 年度における溶剤供給量

1)に対する用途iの 2011 年度における外部リサイクル量(1)の比を乗じることによって、 用途iの 2011 年度の溶剤のマテリアルリサイクル量を推計し、これに溶剤回収量の 2011 年 度からの伸び率(2 に基づく)を乗じて推計した。(1「有機溶剤使用量・排出処理に関 する調査」2012 年 5 月、日本溶剤リサイクル工業会、 2「溶剤リサイクル数量調査」、日本 溶剤リサイクル工業会)

2008 2009 単位 項目 塗料 kt kt 洗浄剤 kt 化学製品 kt kt その他

表 4-53 焼却処理量

■ 時系列の一貫性

1990年度値から可能な限り一貫した方法、活動量・排出係数データを使用して、算定している。

c) QA/QC と検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

d) 再計算

2014年度に「その他」区分において焼却処理量が更新され、2015年度に全区分において焼却処理量が更新されたため、再計算が行われた。

e) 今後の改善計画及び課題

特になし。

4.5.3.3. 道路舗装 (2.D.3.-)

我が国ではアスファルト道路舗装は行われており、その工程で CO₂ はほとんど排出されないと考えられるが、その排出を完全には否定できない。また排出量の実測値も得られておらず、排出係数のデフォルト値もないことから、「NE」と報告している。

4.5.3.4. アスファルト屋根材 (2.D.3.-)

我が国ではアスファルト屋根葺き製造は行われており、製造工程や活動量等についての十分な情報が得られていないが、アスファルト屋根葺き製造に伴う CO2 の排出は否定出来ない。また排出量の実測値も得られておらず、排出係数のデフォルト値もないことから、「NE」と報告している。

4.6. 電子産業 (2.E.)

電子産業カテゴリーでは、各製品の製造時に大気中に排出される HFCs、PFCs、 SF_6 、 NF_3 を扱う。当該カテゴリーでは、「2.E.1.半導体製造」、「2.E.2 液晶製造」、「2.E.3.太陽光発電」、「2.E.4.熱伝導流体」から構成される。

2016 年度における当該カテゴリーからの温室効果ガス排出量は約 2,463 kt- CO_2 換算であり、我が国の温室効果ガス総排出量(LULUCF 分野を除く)の 0.2%を占めている。 1990 年比の排出量と比較すると 29.4%の増加となっている。

ガス			単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
/5 / \	2.E.1	半導体製造	kt-CO2換算	1	271	283	224	263	234	150	165	142	122	109	113	113	117
HFCs		液晶製造	kt-CO ₂ 換算	0.001	0.3	1.8	3.0	3.1	2.8	2.3	3.0	3.3	2.4	2.4	2.3	1.9	1.9
	合計		kt-CO2換算	1	271	285	227	266	237	152	168	145	124	112	115	115	119
	2.E.1	半導体製造	kt-CO2換算	1,423	3,933	6,771	4,594	4,433	3,339	2,109	2,214	1,863	1,624	1,556	1,617	1,582	1,721
PFCs	2.E.2	液晶製造	kt-CO2換算	31	87	214	152	107	83	39	46	59	68	76	90	86	71
	合計		kt-CO2換算	1,455	4,020	6,986	4,746	4,540	3,422	2,148	2,261	1,922	1,692	1,631	1,707	1,669	1,792
	2.E.1	半導体製造	t	13.6	17.5	27.6	23.7	18.9	14.4	9.3	9.9	8.6	8.1	8.0	7.7	8.1	8.4
SF ₆	2.E.2	液晶製造	t	4.8	6.2	38.5	31.2	16.0	13.0	8.7	11.8	8.7	7.5	7.4	8.4	8.4	6.9
316	合計		t	18.4	23.8	66.1	54.9	34.9	27.4	18.0	21.7	17.3	15.6	15.4	16.0	16.5	15.3
	合計		kt-CO2換算	419	542	1506	1252	796	625	410	494	394	356	351	366	375	349
	2.E.1	半導体製造	t	1.6	9.8	5.8	9.4	14.3	13.2	10.6	11.1	10.2	10.3	6.4	7.7	8.4	10.6
NF3	2.E.2	液晶製造	t	0.1	0.9	3.8	4.1	6.6	1.8	1.3	1.5	1.4	1.2	1.2	1.5	1.3	1.1
1 NF 3	合計		t	1.7	10.7	9.6	13.5	20.9	15.0		12.6				9.2	9.7	11.8
	合計		kt-CO2換算	30	184	165	232	359	258	205	217	199	198	131	158	167	203
全ガ	ス合計		kt-CO ² 換算	1,904	5.016	8,941	6,457	5,960	4,542	2,916	3,140	2,661	2,370	2,225	2,346	2,326	2,463

表 4-54 2.E. 電子産業からの排出量

4.6.1. 半導体製造 (2.E.1.)

a) 排出源カテゴリーの説明

半導体の製造時にHFCs、PFCs、SF6、NF3が排出される。

b) 方法論

■ 算定方法

半導体の算定方法は 2006 年 IPCC ガイドラインの Tier 2a 手法に則っている。使用している 各ガスの購入量、プロセス供給率、反応消費率、除害効率、副生成物の発生率、副生成物の除害効率を用いて算定した。なお、反応消費率、副生成物の発生率はデフォルト値を用いている。

プロセス供給率の残存分 10%の取り扱いについては、容器に 90%を再充填して出荷される場合は当区分で排出量が計上される。また、残存分の 10%を破壊処理して容器を洗浄する場合や、大気中に放出される場合は、ガスメーカーにおける排出量として「フッ化物製造製造時の漏出 (2.B.9.)」で計上されている。

各ガスの購入量は、電子情報技術産業協会によるデータを使用した。

半導体製造に伴うF ガスの排出量

ガスごとに、以下の考え方を用いて計算している。

HFC-23、PFCs (PFC-14、PFC-116、PFC-218、PFC-c318)、SF6、NF3排出量

排出量 = ガス購入量×プロセス供給率×(1-反応消費率)×(1-除害装置設置率×除害効率)

副生 PFC-14 等排出量

排出量 = ガス購入量×副生成物発生率×プロセス供給率×(1-除害装置設置率×除害効率)

関連指標を下表に示す。なお、除害装置設置率は秘匿である。

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
HFC-23の購入量	t	0.1	47.8	49.4	42.1	62.1	73.7	53.8	67.1	68.4	66.7	66.7	77.2	86.2	83.2
PFC-14の購入量	t	113.3	313.0	299.9	231.5	277.5	276.9	208.9	265.3	248.3	222.4	218.1	253.6	285.5	317.1
PFC-116の購入量	t	75.8	209.5	561.2	393.2	321.0	284.9	171.5	194.3	159.9	139.4	117.8	105.5	96.4	102.3
PFC-218の購入量	t	0.01	0.03	9.91	181.80	195.14	180.98	129.47	166.96	137.00	115.48	106.08	117.19	110.90	107.55
PFC-c318の購入量	t	0.2	0.6	38.6	24.8	33.4	40.2	33.3	35.8	36.8	39.7	42.2	52.6	63.3	70.4
SF6の購入量	t	70.1	90.8	131.9	96.8	82.9	79.1	60.2	76.7	65.2	63.7	57.6	64.9	68.0	73.4
NF3の購入量	t	8.8	54.4	106.3	406.7	730.7	821.8	724.8	860.7	834.5	880.5	905.4	1,055.3	1,232.1	1,310.1
プロセス供給率	%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%
PFCs等の反応消費率	%							10 - 9	98 %						
PFCs、SF6の除害効率	%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%
NF3の除害効率	%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%
副生CF4等発生率	%							2 - 2	0 %						
副生CF4等除害効率	%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%
HFCs排出量	kt-CO2換算	0.73	270.62	282.71	223.98	262.78	234.21	149.81	164.93	142.19	121.63	109.24	112.89	113.08	117.33
PFCs排出量	kt-CO2換算	1,423.43	3,933.17	6,771.47	4,594.11	4,432.88	3,338.90	2,109.08	2,214.33	1,863.33	1,624.17	1,555.73	1,616.86	1,582.22	1,721.27
SF6排出量	kt-CO ₂ 換算	309.09	399.99	628.71	540.21	430.60	328.62	210.92	224.79	196.50	183.55	181.46	174.76	183.97	192.15
NF₃排出量	kt-CO2換算	27.29	168.28	99.55	161.04	245.16	227.29	182.13	190.69	174.82	177.03	109.78	132.01	144.65	183.10

表 4-55 半導体製造時の F ガス排出の関連指標

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料、経済産業省提供データ、平成25年度温室効果ガス排出量算定方法検討会第1回HFC等4ガス分科会資料

(注)「副生 CF4 等発生率」「副生 CF4 等除害効率」はそれぞれ C2F6 を含む。

なお、1990~1994年の排出量の算定に必要なデータが不足しているため、これらの年については HFCs、PFCs、SF6、NF3排出量と比例すると考えられる入手可能な HFCs、PFCs、SF6 国内出荷量、及び NF3 生産量のデータを用いて外挿をして算定を行っている。

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性においては、2006年 IPCC ガイドラインのデフォルト値を用い、HFCs、PFCs、SF6、NF3 についてそれぞれ 100%、80%、300%、70%を使用した。活動量の不確実性は、2006年 IPCC ガイドラインの不確実性の上限値 10%を HFCs、PFCs、SF6、NF3 いずれにも採用した。その結果、排出量の不確実性は HFCs、PFCs、SF6、NF3 についてそれぞれ 100%、81%、300%、71%と評価された。

■ 時系列の一貫性

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1.c) 節を参照のこと。

d) QA/QC と検証

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1.d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.6.2. 液晶製造 (2.E.2.)

a) 排出源カテゴリーの説明

液晶の製造時に HFCs、PFCs、SF6、NF3が排出される。

b) 方法論

■ 算定方法

液晶も、半導体と同様の算定を行った。反応消費率、副生成物の発生率は基本的にデフォルト値を用いている。世界液晶産業協力会議で PFCs 削減自主行動計画を策定して削減の取組みを行っており、IPCC 基準に準拠することが前提とされているためである。

関連指標を下表に示す。なお、除害装置設置率は秘匿である。

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
HFC-23の購入量	t	0.0003	0.1	0.7	1.6	1.7	1.5	1.1	1.1	1.2	1.0	1.3	1.5	1.1	1.1
PFC-14の購入量	t	7.5	20.7	47.3	77.8	80.4	69.3	51.9	93.7	124.3	121.1	154.5	191.7	177.1	151.8
PFC-116の購入量	t	0.1	0.4	2.7	9.9	5.2	4.1	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
PFC-c318の購入量	t	0.0	0.0	0.0	0.8	2.0	1.9	1.7	1.6	1.9	1.7	1.4	1.8	1.1	1.1
SF6の購入量	t	8.9	11.5	85.3	101.4	117.4	146.8	127.1	176.9	129.0	104.1	107.4	126.2	126.6	109.6
NF3の購入量	t	1.3	8.1	106.9	232.2	438.9	556.1	532.2	764.1	718.0	668.0	783.8	918.9	808.0	691.9
プロセス供給率	%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%
PFCs等の反応消費率	%							40 - 9	97 %						
PFCs、SF6の除害効率	%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%
NF3の除害効率	%	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%	95%
副生CF4等発生率	%							0.9 -	7 %						
副生CF4等除害効率	%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%
HFCs排出量	kt-CO2換算	0.0007	0.27	1.84	2.98	3.06	2.83	2.30	3.02	3.28	2.39	2.37	2.26	1.93	1.93
PFCs排出量	kt-CO2換算	31.35	86.62	214.10	152.03	106.94	83.50	39.32	46.50	59.12	68.22	75.63	89.74	86.46	71.21
SF6排出量	kt-CO2換算	109.62	141.86	877.24	711.76	365.51	295.93	199.39	268.88	197.92	172.05	169.84	191.07	191.25	156.60
NF₃排出量	kt-CO2換算	2.53	15.61	65.82	70.59	113.56	30.83	23.06	26.37	24.24	20.74	21.38	26.19	22.18	19.61

表 4-56 液晶製造時の F ガス排出の関連指標

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料、平成 25 年度温室効果ガス排出量算定方法検討会第1回 HFC 等 4 ガス分科会資料

(注)「副生 CF4 等発生率」「副生 CF4 等除害効率」はそれぞれ CHF3 を含む。

なお、1990~1994年の排出量の算定に必要なデータが不足しているため、これらの年については HFCs、PFCs、 SF_6 、 NF_3 排出量と比例すると考えられる入手可能な HFCs、PFCs、 SF_6 国内出荷量、 NF_3 生産量のデータを用いて外挿をして算定を行っている。

c) 不確実性と時系列の一貫性

■ 不確実性

半導体(2.E.1.)に記載した内容と同一である。4.6.1.c)節を参照のこと。

■ 時系列の一貫性

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1. c) 節を参照のこと。

d) QA/QCと検証

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1. d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.6.3. 太陽光発電 (2.E.3.)

国内における光電池製造事業者のうち、製造プロセスにおいて PFC を使用する事業者は一社のみであるため、「C」と報告し、排出量は半導体製造からの PFC 排出量に含める。

4.6.4. 熱伝導流体 (2.E.4.)

電子製品製造の過程で、温度管理のためにフッ素化合物が利用される。装置を冷却する際の蒸発ロス等によってこのフッ素化合物が排出される。液体 PFC 等をまとめて把握している「4.7.5. 溶剤(2.F.5.)」の合計に含まれているため、「IE」と報告している。

4.7. オゾン層破壊物質の代替としての製品の使用(2.F.)

本カテゴリーでは、オゾン層破壊物質の代替としての製品の使用により大気中に排出される HFCs、PFCs を扱う。当該カテゴリーでは、「2.F.1. 冷蔵庫及び空調機器」、「2.F.2 発泡」、「2.F.3. 消火剤」、「2.F.4. エアゾール」、「2.F.5. 溶剤」から構成される。

2016 年度における当該カテゴリーからの温室効果ガス排出量は約 43,690 kt-CO₂ 換算であり、我が国の温室効果ガス総排出量(LULUCF 分野を除く)の 3.3%を占めている。1990 年の排出量と比較すると 9.6 倍になっている。

- 2			124 /T	1000	1005	2000	2005	2007	2000	2000	2010	2011	2012	2012	2014	2015	2016
ガス			単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
	2.F.1	冷蔵庫及び空調機器	kt-CO2換算	NO	925	2,977	8,876	13,468	15,686	17,998	20,483	23,140	26,354	29,008	32,536	35,873	38,903
	2.F.2	発泡	kt-CO2換算	1	497	484	937	1,429	1,510	1,608	1,749	1,923	2,081	2,229	2,373	2,484	2,651
HFCs	2.F.3	消火剤	kt-CO2換算	NO	NO	5	7	8	8	8	8	8	9	9	9	9	10
nres	2.F.4	エアゾール及び医療品製造	kt-CO2換算	NO	1,502	3,117	1,695	895	931	845	666	634	561	489	503	540	555
	2.F.5	溶剤	kt-CO2換算	NO	NO	NO	4	10	14	42	50	52	81	99	104	108	106
	合計		kt-CO2換算	1	2,923	6,583	11,519	15,809	18,148	20,501	22,956	25,757	29,085	31,834	35,525	39,014	42,225
PFCs	2.F.5	溶剤	kt-CO2換算	4,550	12,572	3,200	2,815	2,377	1,648	1,420	1,721	1,605	1,583	1,518	1,537	1,517	1,465
全ガ	ス合計	+	kt-CO2換算	4,551	15,496	9,783	14,334	18,187	19,796	21,922	24,677	27,363	30,668	33,352	37.062	40,531	43,690

表 4-57 2.F.オゾン層破壊物質の代替としての製品の使用からの排出量

4.7.1. 冷蔵庫及び空調機器 (2.F.1.)

4.7.1.1. 家庭用冷蔵庫の製造、使用、及び廃棄 (2.F.1.-)

- a) 排出源カテゴリーの説明
- 1) HFCs

家庭用冷蔵庫の生産時、使用時(故障時を含む) 及び廃棄時に HFCs が漏洩する。

2) PFCs

国内における製品製造時は使用実績がないため、「NO」と報告している。輸入製品についても PFCs が使用されていることは考えにくく、冷媒を補充することもないと考えられるため、使用時及び廃棄時についても「NO」と報告している。

b) 方法論

■ 算定方法

生産・出荷台数及び冷媒充填量を使用して、 生産時漏洩率、 使用時(故障時を含む)漏洩率、 廃棄時の機器に含まれる冷媒量から法に基づく回収量を減じたものをそれぞれ推定し、合計した。使用時、廃棄時の排出量は機器の製造年別に計算を行い、合計値を排出量とした。排出係数は国独自のものである。

家庭用冷蔵庫からのHFCs の排出量

HFCs 排出量 = 製造時 HFCs 充填総量 × 生産時漏洩率

- + Σ(HFCs 使用機器国内稼働台数 × 稼動機器 1 台当たり充填量 × 使用時漏洩率)
- + Σ(HFCs 使用機器廃棄台数 × 廃棄機器 1 台当たり充填量)
- HFCs 回収量

関連指標を下表に示す。

表 4-58 家庭用冷蔵庫からの HFCs 排出の関連指標

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
製造時HFC充填総量	t	NO	520	590	0.3	0.3	NO								
生産時漏洩率	%	1%	1%	1%	0%	NO									
HFC使用機器国内稼働台数	千台	NO	7829	33213	41796	37225	34509	31471	28085	24509	20984	17637	14520	11691	9182
1台当たり充填量	g	150	150	125	125	125	125	125	125	125	125	125	125	125	125
使用時(故障時含む)漏洩率	%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%
HFC使用機器廃棄台数	千台	NO	NO	176.76	1839.22	2771.16	3153.77	3444.64	3588.09	3600.39	3455.85	3204.10	2850.08	2450.85	2027.41
法律に基づくHFC回収量	t/年	-	-	-	51.653	90.505	110.75	111	111	160	169	189	166	144	138
機器製造時排出量	kt-CO2換算	NO	7.436	8.437	0.001	NO									
機器稼働時排出量	kt-CO2換算	NO	5.038	17.811	22.413	19.962	18.505	16.876	15.061	13.143	11.253	9.458	7.786	6.269	4.924
機器廃棄時排出量	kt-CO2換算	NO	NO	31.060	246.196	351.072	387.517	436.464	460.170	391.114	352.286	279.422	250.686	213.029	148.607
排出量	kt-CO2換算	NO	12.474	57.308	268.609	371.034	406.022	453.340	475.231	404.257	363.539	288.880	258.472	219.298	153.531

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料、平成 25 年度温室効果ガス排出量算定方法検討会第1回 HFC 等4 ガス分科会資料

(注)使用・廃棄時の排出量は機器の製造年別に計算を行っており、稼働装置の冷媒充填量(チャージ)廃 棄時の冷媒充填量は単純に示せない。

なお、1990~1994年の排出量の算定に必要なデータが不足しているため、これらの年については家庭用冷蔵庫出荷台数、出荷台数中の HFC 割合、および 1995年の出荷台数・1995年の出荷台数中の HFC 割合・1995年の製造時 HFC 充填総量から導いた出荷台数当たりの HFC 充填量、1995年の生産時漏えい率、1995年の一台当たり充填量、1995年の使用時漏えい率、1995年の HFC 使用機器廃棄台数のデータを用いて外挿等をして算定を行っている。

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性においては、製造・使用時は2006年 IPCC ガイドラインの電気設備の上限値30%を採用した。活動量の不確実性は、2006年 IPCC ガイドラインの金属工業のTier2手法の10%を製造・使用・廃棄時のいずれにも採用した。その結果、排出量の不確実性は、製造・使用時は32%、廃棄時は10%と評価された。

■ 時系列の一貫性

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1. c) 節を参照のこと。

d) QA/QC と検証

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1. d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.7.1.2. 業務用冷凍空調機器の製造、使用、及び廃棄 (2.F.1.-)

4.7.1.2.a. 業務用冷凍空調機器

- a) 排出源カテゴリーの説明
- 1) HFCs

業務用冷凍空調機器の生産時、現場設置時、冷媒補充時、故障時、廃棄時において HFCs が排出される。

2) PFCs

国内における製品製造時は使用実績がないため、「NO」と報告している。輸入製品についても PFCs が使用されていることは考えにくく、冷媒を補充することもないと考えられることから、使用時及び廃棄時についても「NO」と報告している。

b) 方法論

■ 算定方法

2006 年 IPCC ガイドラインの考え方に基づき、機種や機器の製造年等を考慮しつつ主にモデルを用いて算定している。以下に分類された機種及びそれらに使用されている冷媒毎に、各年の生産台数及び冷媒充填量等を使用して、 生産時漏洩量、 現場設置時の漏洩量、機器稼働時漏洩量、 廃棄時排出量をそれぞれ推定し、合計した。

遠心式冷凍機、スクリュー冷凍機、冷凍冷蔵ユニット、輸送用冷凍冷蔵ユニット、別置型ショーケース、内蔵型ショーケース、製氷器、冷水器、業務用冷凍冷蔵庫、パッケージエアコン、ガスヒートポンプ、チリングユニット

排出係数は、機器の種類ごとに一定期間中の冷媒充てん量と事故故障の発生率について大規模なサンプリング調査を行い決定した⁸。(サンプル数:26万台、2007~2009年に実施)

業務用冷凍空調機器からのHFCs の排出量

機種及び冷媒ごとに、以下の考え方を用いて計算している。

生産時漏洩量= (生産台数×生産時冷媒充填量×冷媒漏洩率)

現場設置時漏洩量 = (現場充填機器生産台数×冷媒充填量×冷媒漏洩率)

機器稼働時漏洩量= (市中稼働台数×稼働時冷媒充填量×使用時冷媒漏洩率)-整備時回収量

廃棄時排出量 = 「使用済機器発生台数×廃棄時平均冷媒充填量] - 法律に基づく回収量

機器稼働時漏洩量の計算において、稼働時冷媒充填量は毎年の減少を考慮している。また、市中稼働台数 及び使用済機器発生台数は、各年の出荷台数及び機器寿命より推定。

関連指標を下表に示す。

⁸ 詳細は、2009 年 3 月 17 日の産業構造審議会化学バイオ部会第 21 回地球温暖化防止対策小委員会の資料 1-1 及び資料 1-2 参照。

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
HFC機器生産台数	千台	NO	214	374	1,413	1,391	1,444	987	1,122	1,198	1,212	1,303	1,250	1,228	1,296
工場生産時平均冷媒充填量	g/台	372	372	597	3,378	3,548	3,533	3,276	3,280	3,360	3,462	3,413	3,539	3,473	3,358
工場生産時冷媒排出係数	%	0.2%	0.2%	0.2%	0.2%	0.2%	0.1%	0.1%	0.2%	0.2%	0.2%	0.2%	0.1%	0.3%	0.2%
HFC機器現場充填実施台数	千台	NO	9	32	138	190	199	175	171	190	239	225	260	240	246
現場設置時平均冷媒充填量	g/台	17,806	17,806	9,221	23,914	25,170	26,676	25,955	24,527	24,276	22,826	20,754	20,394	20,073	19,520
現場設置時冷媒排出係数	%	1%	1%	1%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
HFC機器市中稼働台数	千台	NO	375	1,957	6,770	8,983	10,027	10,847	11,743	12,678	13,616	14,568	15,414	16,134	16,859
機器稼働時平均冷媒充填量	g/台	1,012	1,012	1,043	4,549	5,361	5,632	5,802	5,981	6,192	6,440	6,596	6,799	6,950	7,041
機器稼働時冷媒排出係数	%	7.3%	7.3%	7.4%	5.3%	5.7%	5.6%	5.8%	6.0%	6.1%	6.2%	6.2%	6.3%	6.4%	6.4%
使用済HFC機器発生台数	千台	NO	1	23	127	220	269	325	397	453	512	576	663	748	816
法律に基づ〈整備時HFC回収量	t	NO	NO	NO	NO	236	436	503	548	571	671	682	759	772	861
法律に基づく使用済HFC回収量	t	NO	NO	NO	183	186	200	230	269	352	522	689	668	735	952
機器製造時排出量	kt-CO2換算	NO	3	9	150	225	234	202	198	220	269	225	256	228	229
機器稼働時排出量	kt-CO2換算	NO	40	258	3,415	6,346	7,646	9,035	10,524	12,233	14,231	15,850	17,638	18,998	20,150
機器廃棄時排出量	kt-CO2換算	NO	4	51	586	1,592	1,931	2,372	2,777	3,141	3,466	3,741	4,739	6,033	7,336
排出量	kt-CO2換算	NO	47	318	4,151	8,164	9,810	11,609	13,499	15,594	17,965	19,815	22,633	25,259	27,716

表 4-59 業務用冷凍空調機器からの HFCs 排出の関連指標

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料、経済産業省提供データ、平成 25 年度温室効果ガス排出量算定方法検討会第1回 HFC 等 4 ガス分科会資料

2002 年以降、業務用パッケージエアコンの増加により大型化が進み、平均冷媒充填量や現場設置時漏洩率が増加している。

2016年の機器製造時平均 GWP は 2,512、機器稼働時平均 GWP は 2,663、機器廃棄時平均 GWP は 2,196 である。ガス種別に排出量を計算しているが、秘匿性に配慮して Unspecified mix として報告している。

冷媒コンテナからの漏洩については、2006年 IPCC ガイドラインに算定方法が示されているが、他の排出源で捕捉済みでない再充填禁止容器 (NRC 容器)からの漏洩について検討したところ、算定方法検討会で定めた算定対象となる、50 万 t- CO_2 換算を超える排出量かつ活動量となりうる統計・調査が存在するものではないため、重要でないという意味での「NE」として報告した(別添 5 参照)。

2010 単位 1995 2000 2005 2007 2008 2009 2011 2012 2013 HFC機器生産台数 1台あたり製造時HFC充填量 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 製造時漏えい率 0% 0% 0.2% 0.2% HFC機器稼働台数 台 45 382 37 367 365 359 340 340 1台あたり使用時HFC充填量 kg 0% 使用時漏えい率 使用済HFC機器発生台数 台 廃棄時充填量 kg 30% 31% 34% 34% 38% 39% 機器製造時排出量 kt-CO2換算 NO NO 0.001 NO 0.0005 0.0005 NO NC NO NC NO NO NO 機器稼働時排出量 kt-CO2換算 NO NO 0.080 0.395 0.484 0.674 0.665 0.648 0.644 0.644 0.634 0.619 0.600 0.600 機器廃棄時排出量 kt-CO2換算 NO NO NO 0.041 0.057 0.038 0.050 0.054 0.068 0.077 0.075 NO 0.081 0.395 0.485 0.706 排出量

表 4-60 業務用冷凍機器(鉄道)からの HFCs 排出の関連指標

(出典)鉄道統計年報、IPCC デフォルト値等、但し はメーカーヒアリング

表 4-61 業務用冷凍機器(船舶)からの HFCs 排出の関連指標

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
ガス別製造時HFC総充填量	kg	0	0	0-960	0-8,460	0-14,370	0-16,900	0-17,560	0-16,210	0-27,420	0-38,860	0-45,980	0-32,280	0-25,030	0-54,110
製造時漏えい率	%	0%	0%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%
HFC機器稼働隻数	隻	0	0	9,422	8,562	8,350	8,180	7,948	7,863	7,779	7,800	7,783	7,829	7,828	7,921
1隻あたり使用時HFC充填量	kg	0	0	10-6,000	10-6,000	10-6,000	10-6,000	10-6,000	10-6,000	10-6,000	10-6,000	10-6,000	10-6,000	10-6,000	10-6,000
使用時漏えい率	%	0%	0%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%
使用済HFC機器発生台数	台	0	0	0	0	0	0	0	100	140	84	50	68	52	74
1台あたりガス別廃棄時充填量	kg	0	0	0	0	0	0	0-0.02	0-0.1	0-0.2	0-0.2	0-0.8	0-1.9	0-1.8	0-2.9
回収率	%	0%	0%	0%	0%	0%	0%	30%	31%	29%	34%	34%	32%	38%	39%
機器製造時排出量	kt-CO2換算	NO	NO	0.008	0.066	0.113	0.133	0.138	0.127	0.215	0.305	0.361	0.256	0.202	0.432
機器稼働時排出量	kt-CO2換算	NO	NO	1.163	23.783	42.086	52.353	62.463	77.897	95.516	124.812	162.755	176.794	189.264	205.130
機器廃棄時排出量	kt-CO2換算	NO	NO	NO	NO	NO	NO	0.009	0.024	0.102	0.081	0.761	1.842	1.713	2.565
排出量	kt-CO2換算	NO	NO	1.171	23.850	42.198	52.485	62.610	78.048	95.833	125.198	163.876	178.892	191.180	208.127

(出典) IPCC デフォルト値、海事レポート等、但し はメーカーヒアリングに基づく

機種	HFCs の種類	冷媒使用量	排出係数	HFCs 機器 市中稼働台数中の 割合 (2010 年)
小型冷凍冷蔵機器 (内蔵型等)	R-404A 、 HFC-134a 等	0.1 ~ 3 kg	2%	40%
別置型ショーケース	R-404A、R-407C等	20 ~ 41 kg	16%	3%
中型冷凍冷蔵機器(除、別置型ショーケース)	R-404A、R-407C等	2 ~ 30 kg	13 ~ 17%	6%
大型冷凍機	HFC-134a、R404A 等	300 ~ 2,300 kg	7 ~ 12%	0.05%
ビル用パッケージエアコン	R-410A、R-407C等	37 kg	3.5%	7%
その他業務用空調機器(除、ビル用パッケージエアコン)	R-410A、R-407C等	3 ~ 43 kg	3 ~ 5%	44%

表 4-62 業務用冷凍空調機器の機種別の HFCs の種類、機器稼働時冷媒排出係数

(出典)経済産業省産業構造審議会化学・バイオ部会地球温暖化防止小委員会第2回冷媒対策ワーキンググループ(2010年7月26日)資料、経済産業省提供データ

整備時、事故、故障時も含む

なお、1990~1994年の排出量の算定に必要なデータが不足しているため、これらの年については HFC 機器生産台数・HFC 機器現場充填実施台数と比例すると考えられる HFC 国内出荷量、および 1995年の工場生産時平均冷媒充填量、1995年の工場生産時冷媒漏えい率、1995年の現場設置時平均冷媒充填量、1995年の現場設置時冷媒漏えい率、1995年の機器稼働時平均冷媒充填量、1995年の使用時冷媒漏えい率のデータを用いて外挿等をして算定を行っている。

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性においては、製造時は2006年 IPCC ガイドラインの電気設備の上限値30%、使用時は経済産業省調査値5%を採用した。活動量の不確実性は、2006年 IPCC ガイドラインの金属工業のTier 2 手法の10%を製造・使用・廃棄時のいずれにも採用した。その結果、排出量の不確実性は、製造は32%、使用時は11%、廃棄時は10%と評価された。

■ 時系列の一貫性

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1. c) 節を参照のこと。1995 年以降の全ての期間で生産量は同一の機器製造業者の業界 団体から入手し、排出係数についても経済産業省が平成21年に報告した値を使用している。

d) QA/QC と検証

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1. d) 節を参照のこと。

e) 再計算

統計の更新に伴い、2014年について鉄道における冷凍機器からの排出量の再計算が生じた。 また、同様に 2015年について鉄道・船舶における冷凍機器からの排出量の再計算が生じた。 再計算の影響の程度については 10 章参照。

f) 今後の改善計画及び課題

特になし。

4.7.1.2.b. 自動販売機の製造、使用、及び廃棄

a) 排出源カテゴリーの説明

1) HFCs

自動販売機の生産時、故障時、廃棄時に HFCs が排出される。

2) PFCs

国内における製品製造時は使用実績がないため、「NO」と報告している。輸入製品についても PFCs が使用されていることは考えにくく、冷媒を補充することもないと考えられることから、使用時及び廃棄時についても「NO」と報告している。

b) 方法論

■ 算定方法

生産・出荷台数及び冷媒充填量を使用して、 生産時漏洩量、 故障時排出量、 廃棄時排出量を推定した。排出係数は国独自のものである。

自動販売機からのHFCs の排出量

生産時漏洩量= (生産台数×生産時冷媒充填量×冷媒漏洩率)

故障時排出量= (市中稼働台数×稼働時冷媒充填量×事故・故障発生率×故障時平均漏洩率)

廃棄時排出量

(a) 2001 年まで

廃棄時排出量= (使用済機器発生台数×廃棄時冷媒充填量×(1-回収率))

(b) 2002 年以降

廃棄時排出量= [使用済機器発生台数×廃棄時平均冷媒充填量]-法律に基づく回収量

自動販売機関連の HFCs の排出については、産業構造審議会製造産業分科会資料に示された値を報告した。関連指標を下表に示す。

表 4-63 自動販売機からの HFCs 排出の関連指標

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
HFC使用機器生産(販売)台数	千台	NO	NO	272	355	301	270	173	173	124	30	10	8	7	7
1台当たり充填量	g	NO	NO	300	220	219	219	219	219	219	219	219	219	219	219
生産時漏洩率	%	NO	0.4%	0.4%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%
稼働台数	千台	NO	NO	284	1,999	2,393	2,384	2,368	2,279	2,055	1,759	1,530	1,068	748	431
事故・故障発生率	%	NO	0.004	0.004	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
故障時平均漏洩率	%	NO	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
修理時平均漏洩率	%	NO	0.009	0.009	0.005	0.005	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
廃棄台数	千台	NO	NO	NO	NO	183	213	293	286	347	277	273	299	266	264
排出量	t	NO	NO	0	1	1	12	17	16	19	15	15	17	15	15
11 山里	kt-CO2換算	NO	NO	1	1	1	22	30	29	34	22	22	24	21	21

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料、平成 25 年度温室効果ガス排出量算定方法検討会第1回 HFC 等4 ガス分科会資料

1999、2000 年は、故障がほとんどない(数台程度)ことからゼロとした。2001 年以降は故障発生を計算に 反映。

なお、1990~1994 年については、HFCs が充填された自動販売機は用いられていなかったことが確認されたため、排出量は NO とした。(環境省報道発表、平成 12 年 7 月 31 日、冷媒フロンの廃棄等の見通しについて < 参考 1 >)

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性においては、製造時・使用時・廃棄時いずれも 2006 年 IPCC ガイドラインの電気設備の上限値 30%を採用した。活動量の不確実性は、2006 年 IPCC ガイドラインの金属工業の Tier 2 手法の 10%を製造・使用・廃棄時のいずれにも採用した。その結果、排出量の不確実性は、製造時・使用時・廃棄時いずれも 32%と評価された。

■ 時系列の一貫性

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1.c) 節を参照のこと。

d) QA/QC と検証

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1. d) 節を参照のこと。

e) 再計算

稼働台数の更新に伴い、2013~2015年について再計算が生じた。再計算の影響の程度については10章参照。

f) 今後の改善計画及び課題

特になし。

4.7.1.3. 輸送機器用冷蔵庫の製造、使用、及び廃棄 (2.F.1.-)

1) HFCs

「4.7.1.2.a 業務用冷凍空調機器」の合計に含まれているため、「IE」と報告している。

2) PFCs

国内における製品製造時は使用実績がないため、「NO」と報告している。輸入製品についても PFCs が使用されていることは考えにくく、冷媒を補充することもないと考えられることから、使用時及び廃棄時についても「NO」と報告している。

4.7.1.4. 工業用冷蔵庫の製造、使用、及び廃棄 (2.F.1.-)

1) HFCs

「4.7.1.2. 業務用冷凍空調機器」の合計に含まれているため、「IE」と報告している。

2) PFCs

国内における製品製造時は使用実績がないため、「NO」と報告している。輸入製品についても PFCs が使用されていることは考えにくく、冷媒を補充することもないと考えられることから、使用時及び廃棄時についても「NO」と報告している。

4.7.1.5. 固定空調機器 (家庭用エアコン)の製造、使用、及び廃棄 (2.F.1.-)

a) 排出源カテゴリーの説明

1) HFCs

家庭用エアコンの生産時、機器稼働時、廃棄時において HFCs が排出される。

2) PFCs

国内における製品製造時は使用実績がないため、「NO」と報告している。輸入製品についても PFCs が使用されていることは考えにくく、冷媒を補充することもないと考えられることから、使用時及び廃棄時についても「NO」と報告している。

b) 方法論

■ 算定方法

IPCC ガイドラインに準拠し、生産・出荷台数及び冷媒充填量を使用して、生産時漏洩量、機器稼働時漏洩量、廃棄時の機器に含まれる冷媒量から法に基づく回収量を減じたものをそれぞれ推定し、合計した。排出係数は国独自のものである。

家庭用エアコンからのHFCs の排出量

生産時漏洩量= (生産台数×生産時平均冷媒充填量×生産時漏洩率)

機器稼働時漏洩量 = (市場保有台数 x 稼働時平均冷媒充填量 x 使用時漏洩率)

廃棄時排出量 = (廃棄台数×廃棄時平均冷媒充填量)-法律に基づく回収量

機器稼働時漏洩量の計算において、稼働時平均冷媒充填量は毎年の減少を考慮している。また、市場保有 台数及び廃棄台数は、各年の出荷台数及び機器寿命より推定。

関連指標を下表に示す。

表 4-64 家庭用エアコンからの HFCs 排出の関連指標

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
HFC使用機器生産台数	千台	NO	NO	1,077	3,981	4,172	3,970	2,618	3,169	3,155	3,263	3,581	3,076	8,166	8,528
1台当たり充填量	g	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
生産時排出係数	%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.1%	0.1%
HFC機器市中稼働台数	千台	NO	NO	1,726	26,091	40,356	47,584	53,966	61,540	68,769	75,833	83,349	89,020	94,197	99,157
機器稼働時平均冷媒充填量	g/台	NO	NO	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
機器稼働時冷媒排出係数	%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
使用済HFC機器発生台数	千台	NO	NO	2	83	227	351	524	764	1,075	1,456	1,907	2,423	2,990	3,567
機器廃棄時平均冷媒充填量	g/台	NO	NO	954	911	884	870	856	841	827	814	803	796	792	795
法律に基づく使用済HFC回収量	t/年	-	-	-	10	40	67	122	231	264	322	466	508	570	700
機器製造時排出量	kt-CO2換算	NO	NO	4	17	17	20	13	12	10	10	8	7	9	7
機器稼働時排出量	kt-CO2換算	NO	NO	72	1,089	1,685	1,987	2,253	2,569	2,871	3,165	3,424	3,534	3,549	3,523
機器廃棄時排出量	kt-CO2換算	NO	NO	3	139	346	511	710	916	1,322	1,833	2,301	2,984	3,767	4,486
排出量	kt-CO2換算	NO	NO	80	1,245	2,048	2,517	2,976	3,498	4,204	5,008	5,733	6,524	7,325	8,015

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料、平成 25 年度温室効果ガス排出量算定方法検討会第1回 HFC 等4 ガス分科会資料

なお、1990~1994 年については、HFCs が充填された固定空調機器(家庭用エアコン)は用いられていなかったことが確認されたため、排出量は NO とした。(環境省報道発表、平成12 年 7 月 31 日、冷媒フロンの廃棄等の見通しについて < 参考 1 >)

- c) 不確実性と時系列の一貫性
- 不確実性

業務用冷凍空調機器 (2.F.1.-) に記載した内容と同一である。4.7.1.2.a.c) 節を参照のこと。

■ 時系列の一貫性

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1. c) 節を参照のこと。

d) QA/QC と検証

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1. d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

- 4.7.1.6. 輸送機器用空調機器の製造、使用、及び廃棄 (2.F.1.-)
 - a) 排出源カテゴリーの説明
 - 1) HFCs

輸送機器用空調機器の生産時、使用時、故障時、事故時、廃棄時において HFCs が排出される。

2) PFCs

国内における製品製造時は使用実績がないため、「NO」と報告している。輸入製品についても PFCs が使用されていることは考えにくく、冷媒を補充することもないと考えられることから、使用時及び廃棄時についても「NO」と報告している。

- b) 方法論
- 算定方法

IPCC ガイドラインに準拠し、生産・出荷台数及び冷媒充填量を使用して、 生産時漏洩量、 使用時漏洩量、 故障時排出量、 事故時排出量、 廃棄時の機器に含まれる冷媒量から 法に基づく回収量を減じたものをそれぞれ推定し、合計した。排出係数は国独自のものである。なお、鉄道・船舶における空調機器からの排出も同様の方法で算定されている。

輸送機器用空調機器(カーエアコン)からのHFCs の排出量

車種ごとに、以下の考え方を用いて計算している。

生産時漏洩量 = (生産台数×生産時冷媒充填量×冷媒漏洩率)

使用時漏洩量= (市中車輌台数×稼働時冷媒充填量×冷媒漏洩率)

故障時排出量 = (市中車輌台数 × 稼働時冷媒充填量 × 故障発生率 × 故障発生時冷媒漏洩率)

事故時排出量 = (全損事故車輌数×全損事故時冷媒充填量)

廃棄時排出量

(a) 2001 年まで

廃棄時排出量= (使用済車輌台数×廃棄時冷媒充填量×(1-回収率))

(b) 2002 年以降

廃棄時排出量 = [使用済車輌台数×廃棄時平均冷媒充填量]-法律に基づく回収量

使用時漏洩量の計算において、稼働時冷媒充填量は毎年の減少を考慮している。

関連指標を以下に示す。

表 4-65 カーエアコンからの HFC-134a の排出の関連指標

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
HFCエアコン車生産台数	千台	0	9,745	9,761	10,407	11.191	11.163	7,653	9.292	8,136		9,613	9,753	9,273	9,205
1台当たり生産時漏洩量	g	4	4	4	3	3	3	1	1	1	1	1	1	1	1
HFCエアコン車両保有台数	千台	0	15,655	42,374	60,364	63,687	64,543	65,375	66,043	67,366	70,406	72,054	72,813	73,272	72,216
1台当たり平均冷媒充填量	g	700	700	615	548	522	520	497	497	497	497	497	497	497	497
1台当たり年間使用時漏洩量(普通自動車)	g	15	15	15	10	10	10	10	10	10	10	10	10	10	10
故障発生割合	%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%	4%
故障事故車両冷媒漏洩率	%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%
全損事故車両数	千台	0	50	136	193	204	207	209	211	216	225	231	233	234	231
全損事故車輌冷媒充填量	g	681	681	610	522	490	475	461	448	439	426	417	409	404	399
使用済HFC車国内台数	千台	0	116	789	2,058	1,893	2,176	2,498	2,895	2,235	2,709	2,835	2,839	2,694	2,666
使用済HFC車冷媒充填量	g	676	676	593	522	475	466	456	444	427	404	412	393	380	370
HFC回収量(2002年度以降は法律に基づく)	t/年	-	-	-	531	604	686	787	898	645	786	785	773	710	682
機器製造時排出量	kt-CO2換算	NO	49	49	45	40	40	13	13	9	11	11	10	10	10
機器稼働時排出量	kt-CO2換算	NO	704	1,798	1,573	1,456	1,307	1,131	939	1,305	1,152	1,154	1,150	1,216	1,191
機器廃棄時排出量	kt-CO2換算	NO	112	669	1,536	1,285	1,450	1,627	1,838	1,365	1,565	1,670	1,597	1,464	1,411
排出量	kt-CO2換算	NO	865	2,516	3,153	2,780	2,798	2,771	2,791	2,679	2,728	2,835	2,757	2,690	2,612

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料、平成 25 年度温室効果ガス排出量算定方法検討会第1回 HFC 等4 ガス分科会資料

表 4-66 鉄道用空調機器からの HFCs 排出の関連指標

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
機器生産台数	台	0	2,312	1,736	2,012	2,728	2,240	2,195	1,956	1,807	1,589	1,692	1,645	1,737	1,761
1車両あたり製造時充填量	kg	0	4 - 16	4 - 16	4 - 16	4 - 16	4 - 16	4 - 16	4 - 16	4 - 16	4 - 16	4 - 16	4 - 16	4 - 16	4 - 16
製造時漏えい率	%	0%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%
機器稼働台数	台	0	78,121	72,557	69,295	67,159	66,890	66,710	66,488	66,004	65,443	65,207	64,790	64,212	64,212
1車両あたり使用時充填量	kg	0	4 - 16	4 - 16	4 - 16	4 - 16	4 - 16	4 - 16	4 - 16	4 - 16	4 - 16	4 - 16	4 - 16	4 - 16	4 - 16
使用時漏えい率	%	0%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%
機器製造時排出量	kt-CO2換算	NO	0.003	0.033	0.062	0.090	0.078	0.081	0.075	0.065	0.052	0.060	0.059	0.058	0.049
機器稼働時排出量	kt-CO2換算	NO	0.710	3.224	13.734	20.881	23.955	27.336	31.015	34.290	36.833	39.667	42.601	45.451	48.205
機器廃棄時排出量	kt-CO2換算	NO	0.066	0.134	0.091	0.121	0.072	0.100	0.191	0.146	0.106	0.060	0.078	0.082	0.059
排出量	kt-CO ₂ 換算	NO	0.779	3.391	13.887	21.092	24.105	27.516	31.281	34.502	36.991	39.787	42.737	45.591	48.313

(出典)鉄道統計年報、鉄道車両等生産動態統計年報、IPCC デフォルト値等、但し はメーカーヒアリング

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
機器生産台数	台	0	2,290	1,842	2,546	3,277	3,367	3,004	2,895	3,424	2,804	2,691	2,755	2,634	2,230
1台あたり製造時充填量	kg	0	0.5 - 43.4	0.7 - 40.4	0.6 - 37.2	0.6 - 38.0	0.7 - 38.3	0.6 - 36.7	0.6 - 39.0	0.6 - 36.8	0.6 - 39.9	0.6 - 37.9	0.6 - 34.5	0.5 -33.5	1.1 -35.3
製造時漏えい率	%	0%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%	0.2%
機器使用隻数	隻	0	11,267	9,422	8,562	8,336	8,161	7,919	7,810	7,700	7,680	7,619	7,631	7,601	7,663
1隻あたり使用時充填量	kg	0	6 - 54.7	6 - 53.6	6 - 50.8	6 - 49.8	6 - 49.4	6 - 48.9	6 - 48.6	6 - 48.2	6 - 48.07	6 - 47.9	6 - 47.7	6 - 47.5	6 - 40.2
使用時漏えい率	%	0%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%	15%
使用済機器発生台数	台	0	0	0	0	0	138	321	150	210	126	75	102	78	111
1台あたり廃棄時充填量	kg	0	0	0	0	0	0.2 - 21.3	0.2 - 20.1	0.3 - 19.2	0.3 - 19.2	0.3 - 19.9	0.3 - 19.2	0.3 - 17.1	0.3 - 19.1	0.3 - 17.4
回収率	%	0%	0%	0%	0%	0%	28%	30%	31%	29%	34%	34%	32%	38%	39%
機器製造時排出量	kt-CO2換算	NO	0.0003	0.004	0.070	0.138	0.199	0.200	0.246	0.263	0.223	0.186	0.177	0.153	0.142
機器稼働時排出量	kt-CO2換算	NO	0.077	0.739	19.384	40.284	54.787	66.696	80.925	92.989	103.133	110.083	116.936	121.421	127.563
機器廃棄時排出量	kt-CO2換算	NO	NO	NO	NO	NO	0.036	0.084	0.011	0.030	0.005	0.123	0.283	0.211	0.446
排出量	kt-CO2換算	NO	0.077	0.743	19.454	40.423	55.021	66.979	81.182	93.282	103.361	110.393	117.397	121.785	128.151

表 4-67 船舶用空調機器からの HFCs 排出の関連指標

(出典) IPCC デフォルト値、海事レポート等、但し はメーカーヒアリングに基づく

なお、カーエアコンについては、HFC が使用された 1992~1994 年の排出量の算定に必要なデータが不足しているため、これらの年については HFC エアコン車生産台数と比例すると考えられる HFCs 国内出荷量、および 1995 年の 1 台当たり生産時漏えい量、1995 年の 1 台当たり平均冷媒充填量、1995 年の 1 台当たり年間使用時漏洩量(普通自動車) 1995 年の故障発生割合、1995 年の故障事故車両冷媒漏洩率、1995 年の全損事故車両台数、1995 年の HFC エアコン車両保有台数、1995 年の全損事故車両冷媒充填量、1995 年の使用済 HFC 車国内台数、1995 年の使用済 HFC 車冷媒充填量のデータを用いて外挿等をして算定を行っている。

c) 不確実性と時系列の一貫性

■ 不確実性

自動販売機(2.F.1.-)に記載した内容と同一である。4.7.1.2.b.c)を参照のこと。

■ 時系列の一貫性

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1.c) 節を参照のこと。

d) QA/QC と検証

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1. d) 節を参照のこと。

e) 再計算

HFC エアコン車両保有台数等が更新されたため、2015 年について再計算が生じた。また、統計の更新に伴い、2014 年について鉄道における空調機器からの排出量の再計算が生じた。また、同様に2015 年について鉄道・船舶における空調機器からの排出量の再計算が生じた。再計算の影響の程度については10章参照。

f) 今後の改善計画及び課題

特になし。

4.7.2. 発泡剤 (2.F.2.)

4.7.2.1. 閉鎖系気泡フォーム (2.F.2.-)

4.7.2.1.a. ウレタンフォーム (2.F.2.-)

a) 排出源カテゴリーの説明

発泡剤として使用される HFC-134a、HFC-245fa、HFC-365mfc が排出される。

b) 方法論

■ 算定方法

IPCC ガイドライン (閉鎖系気泡フォーム)に準拠し、各年の発泡剤使用量のうち、10%が製造初年度に排出され、残りが4.5%ずつ20年かけて使用時に全量排出されるとして算定した。各年の発泡剤使用量はウレタンフォーム工業会、ウレタン原料工業会によるデータを使用した。

また、ウレタンフォームの廃棄は様々な時期に行われ、現実的に「使用」と「廃棄」を区分することは困難である。「使用」と「廃棄」は一体として取扱い、「使用」に全量を計上し、「廃棄」は「IE」として報告している。

ウレタンフォームに関連する HFC 排出量

HFC 排出量 = HFC の使用量 [t]× 発泡時漏洩率 [%]

- + 前年までの使用量の合計 [t]× 使用時年間排出割合 [%]
- = 製造時排出量 + 使用時排出量

						_,,, _				- 1/1/~	-3111/3	•			
項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
HFC-134a 使用量	t	NO	NO	167	224	216	145	109	66	65	34	28	14	12	NO
HFC-245fa 使用量	t	NO	NO	NO	3,893	4,024	3,044	2,440	2,365	2,597	2,613	2,570	2,533	2,230	2,577
HFC-365mfc 使用量	t	NO	NO	NO	1311	1401	1122	847	900	960	977	921	866	779	794
発泡時漏洩率	%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%
使用時HFC年間排出率	%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%	4.5%
HFC-134a 製造時初年度排出量	t	NO	NO	17	35	27	15	11	7	7	3	3	1	1	NO
HFC-245fa 製造時初年度排出量	t	NO	NO	NO	389	402	304	244	237	260	261	257	253	223	258
HFC-365mfc 製造時初年度排出量	t	NO	NO	NO	131	140	112	85	90	96	98	92	87	78	79
HFC-134a 使用時排出量	t	NO	NO	NO	44	65	75	82	86	89	92	94	95	96	96
HFC-245fa 使用時排出量	t	NO	NO	NO	86	446	627	764	874	981	1,097	1,215	1,331	1,445	1,545
HFC-365mfc 使用時排出量	t	NO	NO	NO	33	159	222	273	311	352	395	439	480	519	554
HFC-134a 総排出量	kt-CO2換算	NO	NO	24	112	132	128	132	133	137	137	138	138	139	138
HFC-245fa 総排出量	kt-CO2換算	NO	NO	NO	490	874	960	1,039	1,144	1,277	1,399	1,516	1,631	1,718	1,857
HFC-365mfc 総排出量	kt-CO2換算	NO	NO	NO	130	238	266	284	318	355	391	421	450	474	503

表 4-68 ウレタンフォームからの HFC 排出の関連指標

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料、経済産業省提供データ、平成25年度温室効果ガス排出量算定方法検討会第1回HFC等4ガス分科会資料

なお、1990~1994 年については、HFCs を使用したウレタンフォームは用いられていなかったことが確認されたため、排出量は NO とした。(環境省、平成 23 年度 PRTR 届出外排出量の推計方法)

c) 不確実性と時系列の一貫性

■ 不確実性

排出量の不確実性は、製造時・使用時ともに 2006 年 IPCC ガイドラインの 50%を採用した。

■ 時系列の一貫性

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1.c) 節を参照のこと。

d) QA/QC と検証

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1. d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題 特になし。

4.7.2.1.b. 押出発泡ポリスチレンフォーム(2.F.2.-)

a) 排出源カテゴリーの説明 発泡剤として使用される HFC-134a が排出される。

b) 方法論

■ 算定方法

各年の発泡剤使用量のうち、25%が製造初年度に排出され、残りが 0.75% ずつ排出されるとして算定した。各年の発泡剤使用量は押出発泡ポリスチレン工業会によるデータを使用した。 なお、この考え方は、2006 年 IPCC ガイドラインや PRTR における押出発泡ポリスチレン製造事業所の HCFCs の移動量の算出方法と整合している。

断熱材は、建物の改修時、被災時、解体時など様々な時期に「廃棄」されるため、現実的には「使用」と「廃棄」を区分することは困難である。廃棄されたものは使用されているものと同じように HFCs を排出すると考えられることから、これらを一体で扱うこととし、全量を「使用」で計上したと考えて「廃棄」は「IE」としている。

<u>押出発泡ポリスチレンフォームに関連する HFC-134a の排出量</u>

HFC-134a 排出量 = HFC-134a の使用量 [t] × 発泡時漏洩率 (25%) + 前年までの使用量の合計 [t] × 使用時年間排出割合 [%]

表 4-69 押出発泡ポリスチレンフォームからの HFC-134a の排出の関連指標

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
HFC-134a 使用量	t	NO	NO	NO	26	NO									
フォーム製品化率	%	-	-	-	75%	75%	75%	75%	75%	75%	75%	75%	75%	75%	75%
使用時HFC年間排出率	%	-	-	-	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%	0.8%
製造時排出量	t	NO	NO	NO	6.50	NO									
使用時排出量	t	NO	NO	NO	9.00	9.23	9.23	9.23	9.23	9.23	9.23	9.23	9.23	9.23	9.23
排出量	t	NO	NO	NO	15.50	9.23	9.23	9.23	9.23	9.23	9.23	9.23	9.23	9.23	9.23
製造時排出量	kt-CO2換算	NO	NO	NO	9.30	NO									
使用時排出量	kt-CO2換算	NO	NO	NO	12.87	13.20	13.20	13.20	13.20	13.20	13.20	13.20	13.20	13.20	13.20
排出量	kt-CO2換算	NO	NO	NO	22.17	13.20	13.20	13.20	13.20	13.20	13.20	13.20	13.20	13.20	13.20

(出典)産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料、平成 25 年度温室効果ガス排出量算定方法検討会第1回 HFC 等4 ガス分科会資料他

なお、1990~1994 年については、HFCs を使用した押出発泡ポリスチレンフォームは用いられていなかったことが確認されたため、排出量は NO とした。(環境省、平成 23 年度 PRTR 届出外排出量の推計方法)

c) 不確実性と時系列の一貫性

■ 不確実性

ウレタンフォーム製造 (2.F.2.-) に記載した内容と同一である。4.7.2.1.a.c) 節を参照のこ

と。

■ 時系列の一貫性

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1.c) 節を参照のこと。

d) QA/QCと検証

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1. d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.7.2.2. 開放系気泡フォーム (2.F.2.-)

4.7.2.2.a. 高発泡ポリエチレンフォーム (2.F.2.-)

a) 排出源カテゴリーの説明

発泡剤として使用される HFC-134a、HFC-152a が排出される。

b) 方法論

■ 算定方法

IPCC ガイドライン (開放系気泡フォーム)に準拠し、各年の発泡剤使用量が、製造時に全量排出されるとして計算した。各年の発泡剤使用量は高発泡ポリエチレン工業会によるデータを使用した。

表 4-70 高発泡ポリエチレンフォームからの HFC-134a 排出の関連指標

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
HFC-134a使用量	t	1	346	322	128	120	100	98	98	98	98	98	98	98	98
北山里	t	1	346	322	128	120	100	98	98	98	98	98	98	98	98
排出量	kt-CO2換算	1.34	494.78	460.46	183.04	171.60	143.00	140.29	140.29	140.29	140.29	140.29	140.29	140.29	140.29

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料、経済産業省提供データ、平成 25 年度温室効果ガス排出量算定方法検討会第 1 回 HFC 等 4 ガス分科会資料

表 4-71 高発泡ポリエチレンフォームからの HFC-152a 排出の関連指標

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
HFC-152a使用量	t	0.04	14	NO											
排出量	t	0.04	14	NO											
批山里	kt-CO2換算	0.005	1.736	NO											

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料、平成 25 年度温室効果ガス排出量算定方法検討会第1回 HFC 等4 ガス分科会資料

なお、1990~1994年の排出量の算定に必要なデータが不足しているため、これらの年については発泡剤使用量と比例すると考えられる HFCs 国内出荷量のデータを用いて外挿をして算定を行っている。

c) 不確実性と時系列の一貫性

■ 不確実性

ウレタンフォーム (2.F.2.-) に記載した内容と同一である。4.7.2.1.a.c) 節を参照のこと。

■ 時系列の一貫性

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1. c) 節を参照のこと。

d) QA/QC と検証

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1. d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.7.3. 消火剤 (2.F.3.)

a) 排出源カテゴリーの説明

消火剤として使用される HFCs が排出される。

b) 方法論

■ 算定方法

製造時については、HFC-23 と HFC-227ea が使用されている。2004 年時点において消火設備のボンベに充填されているのは HFC-227ea のみである。HFC-23 消火剤については、各社とも HFC-23 が既にボンベに充填されたものを購入しているため、製造時の排出は起こらない。2004 年度における製造時の HFC-227ea の排出量を計算したところ、0.0007(t)と非常に少ないことから、専門家判断により「NO」とした。

使用時については、1995年時点においては HFCs を充填した消火剤はほとんど出回っておらず、使用実績が無いと考えられることから、1995年、およびそれ以前の排出量は「NO」とした。1996年以降の排出量は、HFCs 消火剤の設置・ストック量をもとに以下の式で算定した。

消火剤使用時における HFCs の排出量

HFCs 排出量 [t] = HFCs 消火剤の設置・ストック量 [t] x 使用時の排出係数

廃棄時については、消火剤用途として HFCs が使用され始めてからの年次が浅く、建物の耐用年数(30~40年)から考えても、現時点において廃棄されることは考えにくいことから、現状では「NO」とする。

■ 排出係数

HFCs 消火剤使用時の排出係数について現在、知見が得られていない。よって同様の消火剤であるハロンの補充量実績(消防庁提供)から求めた排出率(0.00088)をこの区分の排出係数として採用した。

表 4-72 排出係数の参考値(ハロン消火剤の排出率)

	単位	2002	2003	2004	2005	2006	2007	平均
ハロン設置量(A)	t	17,094	17,090	17,060	16,994	17,075	16,889	17,034
ハロン補充量(B)	t	13	13	22	13	14	15	15
(B) / (A)		0.00076	0.00076	0.00129	0.00076	0.00082	0.00089	0.00088

■ 活動量

消火剤の使用に伴う HFCs 排出の活動量については、消防庁提供の HFCs 設置・ストック量を用いた。

表 4-73 消火剤設置・ストック量

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
HFC-23 ストック量	t	NO	NO	306	478	496	501	512	523	528	533	537	546	559	567
HFC-23 排出量	t	NO	NO	0.27	0.42	0.44	0.44	0.45	0.46	0.46	0.47	0.47	0.48	0.49	0.50
HFC-23 排山里	kt-CO2換算	NO	NO	3.99	6.23	6.46	6.52	6.67	6.81	6.87	6.94	6.99	7.11	7.29	7.38
HFC-227ea ストック量	t	NO	NO	225	392	442	467	498	522	544	596	640	686	738	754
HFC-227ea 排出量	t	NO	NO	0.20	0.34	0.39	0.41	0.44	0.46	0.48	0.52	0.56	0.60	0.65	0.66
HFC-22/6a 採山里	kt-CO2換算	NO	NO	0.64	1.11	1.25	1.32	1.41	1.48	1.54	1.69	1.81	1.94	2.09	2.14
合計排出量	kt-CO2換算	NO	NO	4.63	7.34	7.72	7.85	8.08	8.29	8.42	8.63	8.80	9.06	9.38	9.51

c) 不確実性と時系列の一貫性

■ 不確実性

排出量の不確実性は、2006年 IPCC ガイドラインの 16%を採用した。

■ 時系列の一貫性

消防庁より提供を受けた排出係数・活動量データをもとに、1995 年度からの一貫した方法を使用して算定している。1990~1994 年については、1995 年時点で HFCs を充填した消火剤の使用実績がないことに照らし、排出量は「NO」とした。

d) QA/QC と検証

セメント製造 (2.A.1) に記載した内容と同一である。4.2.1. d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.7.4. エアゾール (2.F.4.)

4.7.4.1. 医療用エアゾール (定量噴射剤: MDI)(2.F.4.-)

a) 排出源カテゴリーの説明

定量噴射剤の使用時・廃棄時に HFCs が排出される。

b) 方法論

■ 算定方法

IPCC ガイドラインに準拠し、各年に使用された量のうち、50%が製造年に排出され、残りの 50%が次年に排出されるとして算定を行った。

ガス購入量、国内生産 MDI 使用量、輸入 MDI 使用量、廃棄処理量はそれぞれ日本製薬団体連合会のデータによる。また、廃棄処理量には同会が主として製造工程の不良品を破壊処

理した MDI に含まれる HFCs 量を計上した。

<u>医療品製造(定量噴射剤: MDI (Metered Dose Inhalers))に関連する F-gas (HFC-134a, HFC-227ea)</u> の排出量

n 年度における当該 F-gas 排出量 = 製造時漏洩量 [t]

- + (n-1)年度における F-gas 潜在排出量 × 50[%]
- + n 年度における潜在 F-gas 排出量 × 50 [%]
- n年度における F-gas 廃棄処理量

当該 F-gas 潜在排出量 = 国内生産 MDI 使用量 [t] + 輸入 MDI 使用量 [t]

関連指標を下表に示す。

表 4-74 医療品製造の排出量算定結果 (HFC-134a)

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
国内生産MDI使用量	t	NO	NO	1.4	0.9	0.6	0.9	0.9	1.1	0.8	0.8	0.6	0.9	0.6	0.9
輸入MDI使用量	t	NO	NO	42.0	70.7	59.6	61.9	57.1	57.1	54.0	48.3	46.0	42.4	41.3	39.2
廃棄処理量	t	NO	NO	0.1	1.9	1.3	0.5	0.4	2.5	2.4	0.8	0.7	0.2	3.6	0.4
排出量	t	NO	NO	37.2	62.8	63.7	61.2	60.0	55.5	54.1	51.3	47.2	44.9	39.3	40.7
	kt-CO2換算	NO	NO	53.2	89.7	91.0	87.5	85.7	79.4	77.4	73.3	67.5	64.2	56.3	58.2

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料、経済産業省提供データ、平成25年度温室効果ガス排出量算定方法検討会第1回HFC等4ガス分科会資料

表 4-75 医療品製造の排出量算定結果 (HFC-227ea)

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
国内生産MDI使用量	t	NO	NO	NO	41.0	36.2	45.9	27.8	36.0	30.9	25.8	25.1	21.0	23.0	21.4
輸入MDI使用量	t	NO	NO	3.6	2.1	0.7	9.0	1.6	0.4	0.8	0.7	0.7	0.4	18.8	0.4
廃棄処理量	t	NO	NO	NO	1.2	1.3	1.6	0.9	0.8	0.9	0.8	0.8	0.5	0.7	0.2
排出量	t	NO	NO	1.8	48.1	39.3	46.4	42.8	33.1	34.3	29.8	26.9	23.9	31.7	32.1
排山里	kt-CO2換算	NO	NO	5.8	154.7	126.6	149.5	137.7	106.7	110.4	96.0	86.7	77.1	102.1	103.2

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料、経済産業省提供データ、平成25年度温室効果ガス排出量算定方法検討会第1回HFC等4ガス分科会資料

1997 年に HFC-134a、2001 年に HFC-227ea (輸入分については 2000 年から) を用いた MDI の生産を開始している。

なお、1990~1994年の排出量の算定に必要なデータが不足しているため、これらの年については HFC-134a は 1995年、1996年の国内製品 MDI 使用量・輸入 MDI 使用量がそれぞれゼロ、HFC-227ea は 1995~1999年の国内製品 MDI 使用量・輸入 MDI 使用量がそれぞれゼロであることから、排出がないとした。

c) 不確実性と時系列の一貫性

■ 不確実性

MDIの製造時及び使用・廃棄時における排出係数については、最終的に使用量が排出量となることから不確実性は 0%とした。活動量の不確実性は、2006 年 IPCC ガイドラインの金属工業の Tier 2 手法の 10%を製造時及び使用・廃棄時のいずれにも採用した。その結果、排出量の不確実性は製造時及び使用・廃棄時ともに 10%と評価された。

■ 時系列の一貫性

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1.c) 節を参照のこと。

d) QA/QCと検証

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1. d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.7.4.2. 一般用エアゾール (2.F.4.-)

a) 排出源カテゴリーの説明

エアゾールの製造時・使用時に HFCs が排出される。

b) 方法論

■ 算定方法

2006年 IPCC ガイドラインに則り、各年に製品に充填された量(潜在排出量)のうち、50% が製造年に排出され、残りの50%が次年に排出されるとして算定した。

また、製造時漏洩量についても、製造に使用した量と、製品に充填された量の実測値の差として把握しており、排出量に含めた。製造に使用した量と製品に充填された量は日本エアゾール協会によるデータを使用した。

「廃棄」については、実態としては廃棄されるエアゾール中に HFCs がある程度残っていると考えられるが、「使用」に「廃棄」分を含めて潜在排出量の全量が計上されているので「廃棄」については「IE」としている。

エアゾールに関連する HFC 排出量

n 年度における当該 HFC 排出量 = 製造時漏洩量 [t]

- + (n-1) 年における当該 HFC 潜在排出量 × 50 [%]
- +n年における当該 HFC 潜在排出量 × 50 [%]

n年度における製造時漏洩量 = n年度における製造時 HFC 使用量 - n年度における HFCs 潜在排出量

関連指標を下表に示す。

表 4-76 エアゾールからの HFC-134a 排出の関連指標

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
潜在排出量	t	NO	1,300	2,044	604	307	343	230	200	190	168	168	223	206	236
製造時漏洩量	t	NO	NO	80	25	13	13	10	8	7	8	7	12	15	22
製造年使用時排出量	t	NO	650	1,022	302	154	172	115	100	95	84	84	112	103	118
残存量(次年排出量)	t	NO	650	1,022	302	154	172	115	100	95	84	84	112	103	118
排出量	t	NO	1,050	2,137	908	347	338	297	223	202	187	175	208	230	243
11・山里	kt-CO2換算	NO	1,502	3,056	1,299	497	483	424	319	289	268	250	297	328	347

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料、平成 25 年度温室効果ガス排出量算定方法検討会第1回 HFC 等4 ガス分科会資料他

1992~1997年の製造時漏洩量は潜在排出量に含まれている。

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
潜在排出量	t	NO	NO	34	1,300	1,193	1,416	764	558	502	542	320	353	279	328
製造時漏洩量	t	NO	NO	1	29	124	381	494	638	730	464	249	185	109	68
製造年使用時排出量	t	NO	NO	17	650	596	708	382	279	251	271	160	177	140	164
残存量(次年排出量)	t	NO	NO	17	650	596	708	382	279	251	271	160	177	140	164
排出量	t	NO	NO	18	1,217	1,439	1,685	1,584	1,299	1,260	986	680	522	425	372
	kt-CO2換算	NO	NO	2.3	150.9	178.4	208.9	196.4	161.1	156.2	122.3	84.3	64.7	52.6	46.1

表 4-77 エアゾールからの HFC-152a 排出の関連指標

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料、平成25年度温室効果ガス排出量算定方法検討会第1回 HFC 等4ガス分科会資料他2000年に HFC-152a を用いたエアゾールの生産を開始している。

表 4-78 エアゾールからの HFC-245fa 排出の関連指標

			-	-		_			• —			•			
項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
潜在排出量	t	NO	NO	NO	0.795	0.595	0.667	0.318	0.388	2.034	1.094	0.17	1.1	0.275	0
製造時漏洩量	t	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
製造年使用時排出量	t	NO	NO	NO	0.398	0.298	0.334	0.159	0.194	1.017	0.547	0.085	0.550	0.138	NO
残存量(次年排出量)	t	NO	NO	NO	0.398	0.298	0.334	0.159	0.194	1.017	0.547	0.085	0.550	0.138	NO
th: 니 므	t	NO	NO	NO	0.547	0.562	0.631	0.493	0.353	1.211	1.564	0.632	0.635	0.688	0.138
排出量	kt-CO2換質	NO	NO	NO	0.5629	0.5783	0.6499	0.5073	0.3636	1.2473	1.6109	0.651	0.6541	0.7081	0.1416

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料、平成 26 年度温室効果ガス排出量算定方法検討会第 2 回 HFC 等 4 ガス分科会資料他

表 4-79 エアゾールからの HFC-365mfc 排出の関連指標

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
潜在排出量	t	NO	NO	NO	1.115	1.476	0.56	NO	NO	NO	0.274	NO	0.244	0.24	NO
製造時漏洩量	t	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
製造年使用時排出量	t	NO	NO	NO	0.558	0.738	0.280	NO	NO	NO	0.137	NO	0.122	0.12	NO
残存量(次年排出量)	t	NO	NO	NO	0.558	0.738	0.280	NO	NO	NO	0.137	NO	0.122	0.12	NO
th: 니 므	t	NO	NO	NO	0.74	1.5095	1.018	0.28	NO	NO	0.137	0.137	0.122	0.242	0.12
排出量	kt-CO2換算	NO	NO	NO	0.5876	1.1985	0.8083	0.2223	NO	NO	0.1088	0.1088	0.0969	0.1921	0.0953

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料、平成 26 年度温室効果ガス排出量算定方法検討会第 2 回 HFC 等 4 ガス分科会資料他

本サブカテゴリーにおける HFC-43-10mee の排出は、2006 年 IPCC ガイドラインに算定方法が示されているが、算定方法検討会で定めた算定対象となる 3,000t-CO $_2$ 換算を超える排出量とはならないため、重要でないという意味での「NE」として報告した(別添 5 参照)。

なお、1990~1994年の排出量の算定に必要なデータが不足しているため、これらの年については潜在排出量と比例すると考えられる HFCs 国内出荷量のデータを用いて外挿等をして算定を行っている。

c) 不確実性と時系列の一貫性

■ 不確実性

エアゾールの製造時及び使用・廃棄時における排出係数については、使用量が排出量となることから不確実性は 0%とした。活動量の不確実性は、2006 年 IPCC ガイドラインの金属工業の Tier 2 手法の 10%を製造時及び使用・廃棄時のいずれにも採用した。その結果、排出量の不確実性は製造時及び使用・廃棄時ともに 10%と評価された。

■ 時系列の一貫性

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1. c) 節を参照のこと。

d) QA/QC と検証

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。

4.3.9.1.d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題 特になし。

4.7.5. 溶剤 (2.F.5.)

a) 排出源カテゴリーの説明

液体状の HFC-365mfc がソルカンドライという名称で業務用ドライクリーニングの溶剤として使用されており、揮発等によって大気中に排出されている。また、一般電子部品洗浄時、半導体・液晶製造時の溶剤として使用される HFCs 及び PFCs が排出される。使用されている液体 PFCs は、 C_5F_{12} (PFC-41-12)、 C_6F_{14} (PFC-51-14) である。なお、一般電子部品洗浄時、半導体・液晶製造時の溶剤の用途で使用する HFCs については秘匿情報に該当するため PFCs の内数として報告している。

b) 方法論

■ 算定方法

HFCs

国内のメーカー4 社のソルカンドライ用クリーニング機の累積出荷台数から廃棄台数を減じたものに、1 台あたりの年間平均溶剤使用量を乗じて、年別溶剤使用量を推計し、当該年に使用された溶剤(=補充される溶剤)の全量を HFC-365mfc 排出量とした。

HFC-365mfc 排出量=(専用機累積出荷台数-専用機累積廃棄台数)

- × 専用機の年間平均溶剤使用量
- + (混合機累積出荷台数 混合機累積廃棄台数)
 - ×混合機の年間平均溶剤使用量

ソルカンドライ用クリーニング機の 1 台当たりの年間平均溶剤使用量については、大手メーカーのソルカンドライ出荷重量及び累積出荷台数より把握した各年の 1 台当たりの年間平均溶剤使用量(下表)とした。ソルカンドライ専用クリーニング機の 2007 年以前の 1 台当たりの年間平均溶剤使用量については、2008 年の同大手メーカーのソルカンドライ出荷量及び累積出荷台数より把握した 1 台当たりの年間平均溶剤使用量(417kg/台)とした。また、ソルカンドライ混合クリーニング機の 1 台あたりの年間平均溶剤使用量については、専用機使用量に係数を乗じて算出した。

2002 年以前のソルカンドライ用クリーニング機の出荷台数は 0 であるので、排出は 2003 年以降からになる。

表 4-80 ソルカンドライ用クリーニング機累積出荷台数及び年間平均溶剤使用量

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
専用機及び混合機累積台数	台	0	0	0	12	33	48	81	121	171	191	210	225	229	241
専用機の年間平均使用量	kg/台	417	417	417	417	417	417	719	554	403	567	634	631	648	610

PFCs

液体 PFCs 出荷量のほぼ全量が溶剤、洗浄等の用途に使用され、これを排出量として使用時

に計上している。(2016年の平均 GWP は 3,755、ガス種別に排出量を計算しているが、秘匿性に配慮して Unspecified mix として報告)製造時の排出についてはブレンドして使用する実態はないため「NO」と報告している。PFCs の廃棄処理の実態については把握が困難であるため、安全側の観点より使用時に廃棄分も含めた全量が排出されるとして「IE」と報告している。なお、1995年当時においては、廃棄処理が実施されていないことが確認されている。関連指標を下表に示す。液体 PFCs 排出量から鉄道用整流器内蔵量(詳細は 2.G.2.参照)を差し引いたものが溶剤 PFCs 排出量となる。

なお、1990~1994年の排出量の算定に必要なデータが不足しているため、これらの年についてはPFCs 排出量と比例すると考えられる PFCs 国内出荷量のデータを用いて外挿をして算定を行っている。

c) 不確実性と時系列の一貫性

■ 不確実性

HFCs の排出係数の不確実性については、2006年 IPCC ガイドラインの電気設備の使用時の 上限値の30%を採用した。活動量の不確実性は、2006年 IPCC ガイドラインの金属工業のTier 2 手法の10%を採用した。その結果、排出量の不確実性は32%と評価された。

PFCs の排出係数の不確実性については、使用量全量を排出量として計上しているため 0%を使用した。活動量の不確実性は、2006 年 IPCC ガイドラインの金属工業の Tier 2 手法の 10%を採用した。その結果、排出量の不確実性は 10%と評価された。

■ 時系列の一貫性

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1.c) 節を参照のこと。

d) QA/QC と検証

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1.d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.7.6. その他利用 (2.F.6.)

研究・医療の用途に使用される部品に充填された冷媒量は把握し、他区分の冷媒に含めて 計上しているため、専門家判断により「IE」とする。

4.8. その他製品の製造および使用 (2.G.)

本カテゴリーでは、その他製品の製造及び使用により大気中に排出される N_2O 、PFCs、SF₆を扱う。当該カテゴリーは、「2.G.1. 電気設備」、「2.G.2 防衛利用」、「2.G.2 加速器」、「2.G.2 その他鉄道用シリコン整流器」、「2.G.3. 麻酔」、「2.G.3. 半導体・液晶製造工程における利用」から構成される。

2016 年度における当該カテゴリーからの温室効果ガス排出量は約 1,989 kt-CO² 換算であり、

我が国の温室効果ガス総排出量 (LULUCF 分野を除く) の 0.2% を占めている。このカテゴリーの N_2 O について 1990 年の排出量と比較すると 47.4%の増加となっている。PFCs 及び SF_6 では 1990 年の排出量と比較すると 82.3%の減少となっている。

ガス			単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
		麻酔	kt-N2O	0.93	1.41	1.10	0.86	0.52	0.42	0.39	0.32	0.31	0.29	0.25	1.11	0.22	0.22
N ₂ O	2.G.3	半導体・液晶製造工程におけ る利用	kt-N2O	0.05	0.10	0.15	0.38	0.61	0.58	0.48	0.60	0.59	0.74	0.95	0.99	1.13	1.22
	合計		kt-N2O	0.98	1.51	1.25	1.23	1.13	1.00	0.87	0.92	0.91	1.03	1.20	2.10	1.35	1.44
	合計		kt-CO2換算	291	449	371	368	336	297	259	275	270	308	359	627	402	429
ガス			単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
PFCs	2.G.2	その他 鉄道用シリコン整流器	t	NO	NO	NO	0.03	0.15	0.25	0.34	0.47	0.64	NO	1.11	0.97	0.84	2.24
	2.G.1	電気設備	t	355.8	460.5	127.6	39.4	38.6	36.3	31.2	27.3	31.0	31.5	28.2	26.4	26.8	28.7
SF ₆	2.G.2	防衛利用	t	NO	NO	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
31.0	2.0.2	加速器	t	30.8	35.2	34.5	36.8	37.1	37.1	36.7	35.0	35.3	36.2	36.3	36.2	37.7	37.5
			t	386.6	495.6	163.3	77.5	77.0	74.6	69.1	63.5	67.5	69.0	65.7	63.8	65.7	67.5
Fガス	く合計		kt-CO2換算	8,814	11,300	3,724	1,767	1,756	1,704	1,579	1,452	1,545	1,573	1,508	1,464	1,505	1,560

表 4-81 2.G.その他製品の製造および使用からの排出量

4.8.1. 電気設備 (2.G.1.)

a) 排出源カテゴリーの説明

電気設備の製造時・使用時において SF₆が排出される。

b) 方法論

■ 算定方法

製造時については、SF₆購入量に製造時漏洩率を乗じたものが排出量となっている。 使用時については、設置されている機器に対する使用中の漏洩率から排出量を計算した。 排出係数は国独自のものである。点検時及び廃棄時には、SF₆の排出量を実測により求めた。 CRFにおける報告では、廃棄時の排出を使用時に含め「IE」として報告している。

電気設備製造時のSF6排出量

製造時 SF₆排出量 = SF₆ガス購入量 [t] ×製造時漏洩率 [%]

電気設備使用時のSF6排出量

使用時 SF₆排出量 = SF₆ガス保有量 × 使用中の環境中への排出率 (0.1%)

電気設備点検時のSF6排出量

点検時 SF6排出量 = 実測による SF6 ガス排出量

電気設備廃棄時のSF6排出量

廃棄時 SF₆排出量 = 実測による SF₆ガス排出量

電気絶縁ガス使用機器からの SF₆の排出量の関連指標を下表に示す。

表 4-82 電気設備からの SF₆排出

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
製造時排出量	kt-CO2換算	7,047.27	9,120.00	2,291.17	523.09	459.44	423.45	250.80	157.32	168.72	145.92	125.40	136.80	163.43	179.07
使用·点検·廃棄時SF ₆ 排出	kt-CO2換算	1,065.20	1,378.49	618.52	376.32	420.51	404.66	460.35	464.91	537.87	572.98	517.35	464.91	446.67	476.31

(出典)経済産業省産業構造審議会製造産業分科会化学物質政策小委員会フロン類等対策ワーキンググループ資料、経済産業省提供データ、平成25年度温室効果ガス排出量算定方法検討会第1回HFC等4ガス分科会資料

なお、1990~1994年の排出量の算定に必要なデータが不足しているため、これらの年については SF_6 購入量・機器 SF_6 ガス保有量と比例すると考えられる SF_6 国内出荷量、および 1995年の絶縁機器への SF_6 補充量、1995年の製造時漏えい率、1995年の使用時漏えい率のデータを用いて外挿をして算定を行っている。

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性においては、2006年 IPCC ガイドラインのデフォルト値を用い、製造・使用時は $-30 \sim +30\%$ 、廃棄時は $-20 \sim +40\%$ を使用した。活動量の不確実性は、2006年 IPCC ガイドラインの金属工業の Tier 2 手法の 10%を製造・使用時及び廃棄時の両方に使用した。その結果、製造・使用時の排出量の不確実性は $-32 \sim +32\%$ 、廃棄時の排出量の不確実性は $-22 \sim +41\%$ と評価された。

■ 時系列の一貫性

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1. c) 節を参照のこと。

d) QA/QC と検証

フッ化物製造 副生ガスの排出 - HCFC-22 の製造(2.B.9.-.)に記載した内容と同一である。 4.3.9.1. d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

- 4.8.2. その他製品の使用からの SF₆、 PFCs (2.G.2.)
- 4.8.2.1. 防衛利用 (2.G.2.-)
 - a) 排出源カテゴリーの説明

早期警戒管制機(AWACS)のレーダーシステム内の絶縁体として SF_6 が使用されており、飛行機が上昇する際、気圧差維持のため自動的に SF_6 がシステムから排出される。また、飛行機が降下する際には、機上の SF_6 コンテナから自動的に SF_6 がシステムに充填される。

- b) 方法論
- 算定方法

2006 年 IPCC ガイドラインの Tier 2 手法(マスバランス法)に相当する算定方法で排出量を算定する。

SF₆排出量 = AWACS の SF₆ コンテナ中の SF₆減少量

- + AWACS の SF₆ コンテナ購入・交換に伴う SF₆ 漏洩量
- SF₆ 回収・破壊量 AWACS 充填量の純増分

なお、AWACS 4 機は、1999 年 3 月 24 日に運用試験開始されていることから、1999 年から SF₆の排出が始まったものとする。

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数を設定していないため、活動量の不確実性を評価することで排出量の不確実性を評価した。活動量の不確実性は、金属製造の 10%を採用した。その結果、排出量の不確実性は 10%と評価された。

■ 時系列の一貫性

排出量は時系列的に一貫した算定方法、データソースを用いて算定されている。

d) QA/QC と検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

4.8.2.2. 加速器 (2.G.2.-)

a) 排出源カテゴリーの説明

SF₆は大学・研究施設、及び産業用・医療用(がん治療)の粒子加速器の充填ガスとして使われている。機器の保守の際、SF₆は貯蔵タンクに移されるため、排出は主にガスの移動の際に起こる。

b) 方法論

■ 算定方法

2006 年 IPCC ガイドラインの Tier 1 手法で排出量を算定する。

 SF_6 排出量 = (加速器の数) \times (SF_6 使用率) \times (SF_6 充填量) \times (SF_6 排出率)

排出量の算定に用いた各加速器の種類毎の SF₆使用率、SF₆充填量、SF₆排出率、加速器数を以下に示す。

項目 大学・研究施設設置 産業用粒子加速器 医療用粒子加速器 小規模(1MeV未 の粒子加速器 満)の電子加速器 100% 100% 100% SF6使用率 33% SF6充填量 2,400kg 1,300kg 0.5kg400kg 0.07kg/kg SF₆排出率 0.07 kg/kg0.07kg/kg 2.0 kg/kg

表 4-83 加速器の種類毎の SF₆使用率、SF₆充填量、SF₆排出率

医療用粒子加速器のうち、サイクロトロン及びシンクロトロンについては、SF6を使用している機器はないと考えられるため、算定対象から除いている。

(出典) を除き 2006 年 IPCC ガイドラインのデフォルト値。 は主要加速器メーカーへのヒアリング 結果。

表 4-84 加速器の種類毎の数

項目	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
粒子加速器数(大学·研究施設)	188	214	212	209	207	214	219	218	216	231	225	222	241	241
粒子加速器数(産業用)	143	164	145	181	187	186	181	174	179	184	188	190	193	193
粒子加速器数(医療用)	531	641	754	857	905	922	936	926	986	1028	1068	1081	1108	1108
小規模電子加速器(1MeV未満)数	243	276	314	282	276	263	255	218	215	203	201	197	201	196

(出典)放射線利用統計(日本アイソトープ協会)但し、小規模電子加速器のみ原子力年鑑(日本原子力 産業会議)等

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性は、2006 年 IPCC ガイドラインの医療用の粒子加速器の -50 ~ +400 %を採用した。活動量の不確実性は、金属製造の -10 ~ +10 %を採用した。その結果、排出量の不確実性は -51 ~ +400 %と評価された。

■ 時系列の一貫性

排出量は時系列的に一貫した算定方法、データソースを用いて算定されている。

d) QA/QC と検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

2015年の加速器数が更新されたため、再計算が生じた。再計算の影響の程度については 10章参照。

f) 今後の改善計画及び課題

特になし。

4.8.2.3. 防音窓 (2.G.2.-)

本サブカテゴリーは、2006 年 IPCC ガイドラインに算定方法が示されているが、算定方法検討会で定めた算定対象となる 3000t-CO₂ 換算を超える排出量とはならないため、重要でないという意味での「NE」として報告した(別添 5 参照)。

4.8.2.4. 断熱特性: 靴およびタイヤ (2.G.2.-)

断熱性用途のゴムにおける PFC 及び SF_6 の使用実績は確認されなかったため、「NO」と報告する。

4.8.2.5. その他 鉄道用シリコン整流器 (2.G.2.-)

a) 排出源カテゴリーの説明

鉄道用シリコン整流器の廃棄時において PFC が排出される。

b) 方法論

■ 算定方法

環境省のハロン・液体 PFC 等管理方策検討調査(2006年度) ハロン・PFC 破壊処理実態 等調査(2010年度)から、地上設置機器、車載機器それぞれについて PFC-51-14 保有機器の 設置台数、保有量、耐用年数が得られたため、これらを用いて、年度別の鉄道用シリコン整流器の廃棄台数に 1 台当たりの PFC 内蔵量を乗じて、鉄道用シリコン整流器に使用された PFC-51-14 の年度別廃棄量を推計した。これより当該年度の回収破壊量を減じて PFC 排出量を算定する。

鉄道用シリコン整流器の廃棄時における PFC 排出量

廃棄時における PFC 排出量 = PFC 廃棄量 - 回収破壊量

c) 不確実性と時系列の一貫性

■ 不確実性

排出係数の不確実性については、類似排出源である溶剤の不確実性 0%を採用した。活動量の不確実性は、2006 年 IPCC ガイドラインの金属工業の Tier 2 手法の 10%を採用した。その結果、排出量の不確実性は 10%と評価された。

■ 時系列の一貫性

排出量は時系列的に一貫した算定方法、データソースを用いて算定されている。

d) QA/QCと検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1. d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

特になし。

- 4.8.3. 製品の使用からの N₂O (2.G.3.)
- 4.8.3.1. 医療利用 (2.G.3.a)
 - a) 排出源カテゴリーの説明

麻酔剤(笑気ガス)の使用に伴い N_2O が排出される。2006 年より一部の病院で N_2O 分解 装置が導入されているので、その削減量も排出量に反映している。なお、我が国では、麻酔剤として CO_2 は使用されていないため、 CO_2 排出は「NA」と報告する。

b) 方法論

■ 算定方法

麻酔剤の使用に伴い排出される N_2O の排出量については、2005 年までは麻酔剤として医薬品の製造業者又は輸入販売業者から出荷された N_2O の量をそのまま計上した。2006 年以降については、麻酔の N_2O 分解装置を導入している国内病院における笑気ガス使用量、分解率 (99.9%)を用いて計算した N_2O 回収量を薬事用 N_2O 出荷量から差し引いて排出量として計上した。

麻酔剤 (笑気ガス) の使用に伴う N2O 排出量

= 薬事用 N2O 出荷量

- N2O 分解装置を導入している病院における笑気ガス使用量×分解率

■ 排出係数

麻酔剤として使用される N_2O は、回収されない限り全量が大気中に放出されると仮定したため、排出係数は設定していない。

■ 活動量

2005 年までは厚生労働省「薬事工業生産動態統計年報」に示された、全身麻酔剤(亜酸化窒素)の出荷数量(暦年値)を用いた。2006 年以降 2009 年までは、上記出荷数量から麻酔の N_2O 分解装置を導入している国内 3 病院、2010 年以降については国内 4 病院における N_2O 回収量を差し引いた量を用いた。

表 4-85 全身麻酔剤 (N₂O)の出荷量及び国内病院における回収量

項目	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
笑気ガス出荷量	kg-N2O	926,030	1,411,534	1,099,979	859,389	519,011	417,919	389,749	320,110	314,155	292,971	253,218	1,111,265	219,011	219,011
国内病院におけるN2O回収量	kg-N2O	-	-	-	-	3,042	1,454	1,049	914	779	450	509	0	0	0

a) 不確実性と時系列の一貫性

■ 不確実性

医療用ガスとして使用される N_2O は、全量が大気中に放出されるとして排出量を算定しており、排出係数が設定されていないため、活動量の不確実性を評価することで排出量の不確実性を評価した。「薬事工業生産動態統計年報」は統計法に基づく基幹統計であるため、5%を採用した。

■ 時系列の一貫性

1990年以来笑気ガスの出荷量は「薬事工業生産動態統計年報」に示された全身麻酔剤(亜酸化窒素)を一貫して使用している。

b) QA/QC と検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

c) 再計算

2015 年の N₂O 出荷量の統計値が更新された。再計算の影響の程度については 10 章参照。

d) 今後の改善計画及び課題

特になし。

4.8.3.2. その他 (2.G.3.b)

4.8.3.2.a. 半導体・液晶製造工程における利用 (2.G.3.b.-)

a) 排出源カテゴリーの説明

半導体・液晶製造工程における絶縁酸化膜形成のための酸化剤として N_2O が使用されるが、 未反応分が大気中に排出されているとみられる。

- b) 方法論
- 算定方法

半導体・液晶製造用 N2O 出荷量全量を排出量とする。

半導体・液晶製造における N2O 排出量 = 半導体・液晶製造向け N2O 出荷量

■ 排出係数

活動量=排出量とするため、排出係数は設定しない。

■ 活動量

日本産業・医療ガス協会において報告されている半導体・液晶製造用 N₂O 出荷量を活動量とする。

c) 不確実性と時系列の一貫性

■ 不確実性

半導体・液晶製造工程において使用される N_2O は、全量が大気中に放出されるとして排出量を算定しており、排出係数が設定されていないため、活動量の不確実性を評価することで排出量の不確実性を評価した。活動量の不確実性は、2006 年 IPCC ガイドラインのデフォルト値 5% を採用した。

■ 時系列の一貫性

1990年以来半導体・液晶製造用 N_2O 出荷量は日本産業・医療ガス協会において報告されているものを一貫して使用している。

d) QA/QC と検証

セメント製造 (2.A.1.) に記載した内容と同一である。4.2.1.d) 節を参照のこと。

e) 再計算

特になし。

f) 今後の改善計画及び課題

半導体・液晶製造用 N₂O 出荷量全量を排出量として計上しているため、過大推計の可能性がある。

4.9. その他 (2.H.)

4.9.1. 食品・飲料産業 (2.H.2.)

「2.B.8.-、酸化エチレン製造」の排出量算定と併せて算定した CO2回収量を、本カテゴリーにおいて計上する。

なお、我が国における炭酸ガス・ドライアイス製造用の主な CO₂ 供給源として、他に石油精製プラント、アンモニア製造プラント、製鉄プラント等が存在するが、石油精製プラント・製鉄プラントについては「1.A.燃料の燃焼」、アンモニア製造プラントについては「2.B.1.アンモニア製造」においてすでに計上されている。

表 4-86 食品・飲料産業からの排出量

ガス	単位	1990	1995	2000	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
CO2 2.H.2 食品·飲料産業	kt-CO2	64.27	71.54	86.50	90.05	86.16	71.55	71.29	75.85	75.81	76.41	82.33	80.44	83.04	79.41

参考文献

- 1. IPCC「1996 年改訂 IPCC ガイドライン」(1997)
- 2. IPCC「温室効果ガスインベントリにおけるグッドプラクティスガイダンス及び不確実性管理報告書」(2000年)
- 3. IPCC「2006 年 IPCC ガイドライン」(2006)
- 4. IUPAC "Atomic Weights of the Elements 1999" (http://www.chem.qmul.ac.uk/iupac/AtWt/AtWt99.html)
- 5. 環境省「温室効果ガス排出量算定に関する検討結果 第2部」(平成14年8月)
- 6. 環境省「温室効果ガス排出量算定に関する検討結果 第1部」(平成18年8月)
- 7. 環境省平成 25 年度温室効果ガス排出量算定方法検討会第1回 HFC 等4 ガス分科会資料(平成 26 年1月)
- 8. 環境省報道発表、平成 12 年 7 月 31 日、冷媒フロンの廃棄等の見通しについて < 参考 1 >
- 9. 環境省、平成 23 年度 PRTR 届出外排出量の推計方法
- 10. 経済産業省「エネルギー生産・需給統計年報」
- 11. 経済産業省「化学工業統計年報」
- 12. 経済産業省産業構造審議会化学・バイオ部会地球温暖化防止小委員会資料
- 13. 経済産業省資源エネルギー庁「総合エネルギー統計」
- 14. 経済産業省「資源・エネルギー統計年報」
- 15. 経済産業省「資源統計年報」
- 16. 経済産業省「石油等消費動態統計年報」
- 17. 経済産業省「窯業·建材統計年報」
- 18. 経済産業省「鉄鋼・非鉄金属・金属製品統計年報」
- 19. 経済産業省「鉄鋼統計年報」
- 20. 通商産業省平成9年第1回化学品審議会リスク管理部会温室効果化学物質分科会通商産業省 作成資料
- 21. 財務省「貿易統計」
- 22. 経済産業研究所「不均一価格物量表」
- 23. 石灰石工業会「石灰石の話」
- 24. カーボンブラック協会「カーボンブラック便覧」
- 25. 石油学会「石油化学プロセス」
- 26. 重化学工業通信社「化学品ハンドブック」
- 27. 環境省「ハロン・液体 PFC 等管理方策検討調査」(2006 年度)
- 28. 環境省「ハロン・PFC 破壊処理実態等調査」(2010年度)
- 29. 厚生労働省「薬事工業生産動態統計年報」