微小粒子状物質 (PM2.5) 成分自動測定機 データ取扱要領書 第2版

環境省 水·大気環境局 大気環境課

平成 31 年 2 月 21 日 改定 令和元年 7 月 8 日

目次

1.	測定局について・・・・・・・・・・・・・・・・・・・・・・1
2.	各測定局に設置されている自動測定機について・・・・・・・・・・・3
3.	自動測定機について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・4
4.	データの見方 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	4-1. フラグ及び注釈について ・・・・・・・・・・・・・・・・・9
	4-2. ACSA-14の SO ₄ ²⁻ 濃度の補正について ······13
	4-3. PX-375 の捕集時間について·····13
5	各自動測定機の公表ファイルの構成・・・・・・・・・・・・・・・・・14

データ取扱要領書

環境省では、PM2.5 モニタリング体制の強化を目的に、大学や地方自治体の協力を得て、平成 29 年 4 月より、毎時間の PM2.5 成分の連続測定を行う機器(以下「自動測定機」という)を全国 10 ヵ所に設置し、測定を行っています。これにより、国内の発生源や大陸からの越境汚染による影響等を詳細かつ迅速に把握することが可能となり、PM2.5 対策に貢献することが期待されます。

ここでは、自動測定機の概要とデータの取扱いについて、解説します。

1. 測定局について

測定局の箇所は、図-1及び表-1のとおりです。

図-1 測定局の箇所

表-1 測定局の所在及び地点の概要

			同一地点の気象データ			
地図の名称	測定局名	測定局所在地	風向 風速	雨量	温湿度	日射量
札幌	環境科学センター (国設札幌酸性雨測定所)	北海道札幌市北区北 19 条西 12 丁目	\circ	0	_	١
巻	国設新潟巻酸性雨測定所	新潟県新潟市西蒲区越前浜字向谷地 5876番地2	\circ	0	0	0
箟岳	国設箟岳大気環境測定所	宮城県遠田郡涌谷町小塚字桜清水 2-1-5	\circ	0	_	l
東京	科学技術館 (国設東京(北の丸))	東京都千代田区北の丸公園 2 番 1 号	_	0	_	_
果 从	東京都環境科学研究所	東京都江東区新砂 1-7-5	_	_	_	_
名古屋	国設名古屋大気測定所	愛知県名古屋市千種区鹿子殿 21番1号	_	_	_	-
大阪	国設大阪大気測定所	大阪府大阪市中央区大手前 4 丁目 1-67	_	_	_	_
赤穂	赤穂市役所	兵庫県赤穂市加里屋 81 番地	_	_	_	l
隠岐	国設隠岐酸性雨測定所	島根県隠岐郡隠岐の島町北方福浦 1700	\circ	0	0	0
五島	国設五島酸性雨測定所	長崎県五島市玉之浦町大宝郷字ヅンナ ン辻 1148番	0	0		
福岡	福岡大学	福岡県福岡市城南区七隈8丁目19-1	_	_		

2. 各測定局に設置されている自動測定機について

各測定局に設置されている自動測定機の種類と設置箇所は、図-2及び表-2のとおりです。

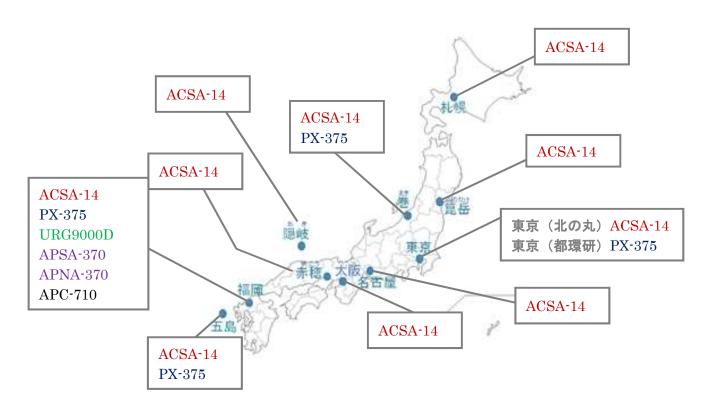


図-2 各測定局に設置されている自動測定機の種類と設置箇所

表-2 各測定局に設置されている自動測定機

				自動測定機			ロート地上高
地図の名称	測定局名	ACSA-14	PX-375	URG9000D	APSA-370 APNA-370	APC-710	(m)
札幌	環境科学センター (国設札幌酸性雨測定所)	0		_		_	9 (屋上)
巻	国設新潟巻酸性雨測定所	\circ	0	_	1	_	地上
箟岳	国設箟岳大気環境測定所	0	_	_	_	_	5 (屋上)
東京	科学技術館 (国設東京(北の丸))	0	—	_	_	—	22 (屋上)
	東京都環境科学研究所	_	\circ	_	-	_	23.5 (屋上)
名古屋	国設名古屋大気測定所	\circ	1	_	1	_	5 (屋上)
大阪	国設大阪大気測定所	0	_	_	_	_	25 (屋上)
赤穂	赤穂市役所	0	_	_	_	_	地上
隠岐	国設隠岐酸性雨測定所	0	_	_	_	_	地上
五島	国設五島酸性雨測定所	0	0	_	_	_	地上
福岡	福岡大学	0	0	0	0	0	30 (屋上) **

[※] URG9000D、APSA-370、APNA-370 は、地上 4 階に設置

3. 自動測定機について

設置された自動測定機 (6機種) の概要は、下記のとおりです。

大気エアロゾル化学成分連続自動分析装置

機種名 ACSA-14

製造元 紀本電子工業株式会社

測定項目

測定項目	ファイル項目名	単位
PM2.5 濃度 ^{※1}	PM2.5	$\mu g/m^3$
微小粒子状物質濃度	PMf	$\mu g/m^3$
粗大粒子状物質濃度	PMc	$\mu g/m^3$
[PMf+PMc] 濃度	PM10	μg/m³
OBC 濃度(PMf のみ)**2	OBC	$\mu g/m^3$
PMfの硝酸イオン濃度	fNO3	$\mu g/m^3$
PMf の水溶性有機化合物濃度 ^{※3}	fWSOC-abs ^{¾4}	μgC/m³
PMf の酸性度	fH+	nmol/m ³
PMfの硫酸イオン濃度	fSO4	$\mu g/m^3$
PMc の硝酸イオン濃度	cNO3	$\mu g/m^3$
PMc の水溶性有機化合物濃度 ^{※3}	cWSOC-abs	$\mu gC/m^3$
PMc の酸性度	сН+	nmol/m³
PMc の硫酸イオン濃度	cSO4	$\mu g/m^3$

ACSA-14 写真

- ※1 スマートカルクによる演算
- ※2 ここでは、光学的元素状炭素のこと
- ※3 マレイン酸として測定
- ※4 -abs は、測定原理が吸光光度法であることを示す

測定原理

測定項目	ファイル項目名	測定原理
PM2.5 濃度	PM2.5	β線吸収法
[PMf+PMc] 濃度	PM10	(分級器は、PM2.5 バーチャルインパクタを使用)
OBC 濃度	OBC	近赤外散乱法
PMfの硝酸イオン濃度	fNO3	IKA III W W FEXT (200 LANE)
PMc の硝酸イオン濃度	cNO3	紫外吸光光度法(200nm 付近)
PMfの水溶性有機化合物濃度	fWSOC-abs	IKA III W W FEW (250 LANE)
PMc の水溶性有機化合物濃度	cWSOC-abs	紫外吸光光度法(250nm 付近)
PMfの酸性度	fH+	11 45 二、蛇 キーロン・キャロン サンド 中洋
PMc の酸性度	сН+	pH 指示薬を用いた吸光光度法
PMfの硫酸イオン濃度	fSO4	\\ \psi \psi \tau \\ \psi \tau \\ \psi \tau \\ \tau \tau \\ \tau \tau \\ \tau \tau \\ \tau \
PMc の硫酸イオン濃度	cSO4	光散乱検出器を用いた比濁法

大気採取流量 16.7 L/min

PM2.5 自動成分分析装置

機種名 PX-375

製造元 堀場製作所株式会社

測定項目

測定項目	ファイル項目名	単位
積算値	Mass	μg
瞬時質量濃度値	Conc	$\mu g/m^3$
チタン	Ti	$\mu g/m^3$
バナジウム	V	$\mu g/m^3$
クロム	Cr	$\mu g/m^3$
マンガン	Mn	$\mu g/m^3$
鉄	Fe	$\mu g/m^3$
ニッケル	Ni	$\mu g/m^3$
銅	Cu	$\mu g/m^3$
亜鉛	Zn	$\mu g/m^3$
砒素	As	$\mu g/m^3$
鉛	Pb	$\mu g/m^3$
アルミニウム	Al	$\mu g/m^3$
ケイ素	Si	$\mu g/m^3$
硫黄	S	$\mu g/m^3$
カリウム	K	$\mu g/m^3$
カルシウム	Ca	$\mu g/m^3$

PX-375 写真 堀場製作所 HP より

測定原理

測定項目	ファイル項目名	測定原理
積算值 瞬時質量濃度値	Mass Conc	β線吸収法 (分級器は、FRM インパクタ方式及び FEM-VSCC サイクロン方式を使用)
金属成分	Ti ∼ Ca	エネルギー分散型蛍光 X 線分析法

大気採取流量 16.7 L/min

空気中イオンモニター

機種名 URG9000D

製造元 URG 社 (米国)

測定項目

	測定項目	ファイル項目名	単位
	塩化物イオン	Cl- (p)	$\mu g/m^3$
	硝酸イオン	NO3 - (p)	$\mu g/m^3$
1/- 1	硫酸イオン	SO42- (p)	$\mu g/m^3$
粒子状成分	ナトリウムイオン	Na+ (p)	$\mu g/m^3$
成成公	アンモニウムイオン	NH4+ (p)	$\mu g/m^3$
)))	カリウムイオン	K+ (p)	$\mu g/m^3$
	マグネシウムイオン	Mg2+ (p)	$\mu g/m^3$
	カルシウムイオン	Ca2+ (p)	$\mu g/m^3$
41	塩化水素	HCl (g)	$\mu g/m^3$
カス	硝酸	NO3 (g)	$\mu g/m^3$
ガス状成分	二酸化硫黄**	SO2 (g) *	$\mu g/m^3$
Л	アンモニア	NH3 (g)	$\mu g/m^3$

URG9000D 写真 装置マニュアルより

測定原理

測定項目	ファイル項目名	測定原理
粒子状成分	*** (p)	拡散デニューダを通し粒子状成分とガス状成分
ガス状成分	*** (g)	に分けて、イオンクロマトグラフにより測定

大気採取流量 3.0 L/min

^{※ (}測定機からの出力データ) × (64.0588/96.0576) にて算出

硫黄酸化物(SO2)濃度測定装置

機種名 APSA-370

製造元 堀場製作所株式会社

測定項目

測定項目	ファイル項目名	単位
二酸化硫黄	SO2	ppm

測定原理

測定項目	ファイル項目名	測定原理
二酸化硫黄	SO2	紫外線蛍光法

APSA-370 写真 堀場製作所 HP より

大気採取流量 0.7 L/min

窒素酸化物(NOx)濃度測定装置

機種名 APNA-370

製造元 堀場製作所株式会社

測定項目

測定項目	ファイル項目名	単位
一酸化窒素	NO	ppm
二酸化窒素	NO2	ppm
窒素酸化物	NOx	ppm

測定原理

測定項目	ファイル項目名	測定原理
一酸化窒素	NO	
二酸化窒素	NO2	クロスモデュレーション方式 化学発光法
窒素酸化物	NOx	10 1 707012

APNA-370 写真 堀場製作所 HP より

大気採取流量 0.8 L/min

有機エアロゾル自動計測器

機種名 APC-710

製造元 紀本電子工業株式会社

測定項目

測定項目	ファイル項目名	単位
有機炭素	OC-op [™]	μgC/m³
元素状炭素	EC-op*	μgC/m³

^{※ -}op は、近赤外線と紫外線の減衰を用いた測定法であることを示す

測定原理

測定項目	ファイル項目名	測定原理
有機炭素	OC-op	近赤外線と紫外線の透過減
元素状炭素	EC-op	衰と反射減衰により測定

APC-710 写真

大気採取流量 16.7 L/min

4. データの見方

4-1. フラグ及び注釈について

フラグ及び注釈は、自動測定機の精度の検証結果や欠測処理をした情報をユーザーに提供することを 目的に付与しています。

データ利用の際には、これらの内容を十分ご確認いただき、取り扱いに留意してください。

~ 自動測定機における測定精度の評価について ~

自動測定機から得られる測定値については、公表に先立ち専門家を交えて測定精度の評価を行いました。評価には、毎年度、全国で実施されている PM2.5 成分測定結果(以下「成分測定結果」という)を用いました。自動測定機と同一地点もしくは近隣の測定地点の1年間(4月~翌年3月)の成分測定結果との比較を行い、濃度変化及び濃度レベルの検証を行いました。

毎年度における自動測定機の確定値は、これらの比較結果に基づき、フラグ及び注釈の設定・付与を 行っています。

なお、測定精度の評価については、より精度の高い値を提供できるよう、今後も随時検証を行ってい くこととしています。

~ フラグ及び注釈付与の考え方 ~

フラグ(I群):欠測扱いとした値や、メンテナンスや校正中のデータを削除したことを示します。

フラグ (Ⅱ群): データとして出力しているものの、高濃度外れ値である等で、その値の使用に関しては 注意を要することを示します。

注 釈 : データとして出力しているものの、成分測定結果との比較により、濃度変化の相関がない成分や濃度レベルに差異がある成分であると判定され、その値の使用に関しては注意を要する成分です。

~ 速報値と確定値について ~

データの公表は、速報値と確定値の 2 つの公表形式があります。確定値については、1 年分のデータによるマイナス値の欠測処理、高濃度外れ値の判定、ACSA-14 の SO42-濃度の補正(13 ページを参照)や、成分測定結果との比較による測定精度の評価を行い、フラグや注釈を付与しています。速報値については、以下のとおり暫定的な評価を行っているため、フラグや注釈、値の取り扱いには留意が必要です。

- 【フラグ】速報値のマイナス値の欠測処理(フラグ E) や高濃度外れ値の判定(フラグ H または H1) に 用いる統計量は、暫定的に前年度の値を使用し、フラグを付与しています。確定作業時にはフラグの見直しを行うため、フラグが変わる可能性があります。
- 【注 釈】測定精度の評価は、次年度に当該年度の成分測定結果がそろった時点で行うため、速報値には 暫定的に前年度と同じ注釈を付与しています。

【ACSA-14 の SO₄2-濃度の補正】

速報値においても補正計算を施しますが、確定作業時にはフラグの見直しを行い、1年分のデータをもとに再計算を行うため、値が変わる可能性があります。

~ フラグ及び注釈一覧 ~

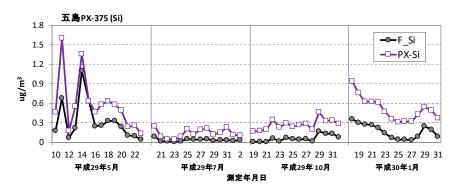
公表ファイルに使用したフラグ及び注釈は、下表のとおりです。 なお、注釈は、公表ファイル中の項目名の下に記載しています。

フラグ (I 群)

フラグ	内容	フラグ付与の説明
Е	測定エラー	機器の不具合、停電等の理由によるほか、マイナス値等により、欠測扱いとし
		たことを意味します。
		欠測となるマイナス値は、「年間のマイナス平均値-マイナス平均値の標準偏
		差の 3 倍」(マイナス平均-3σ)を基準とし、これを下回った値としていま
		す。
M	機器メンテナンス	このフラグが入った時間は、 機器のメンテナンス中であった ことを意味しま
		す。
C	機器校正	このフラグが入った時間は、機器の校正を実施していたことを意味します。

フラグ (Ⅱ群)

フラグ	内容	フラグ付与の説明
Н	高濃度外れ値	解析の結果、 高濃度外れ値である と判断されたことを意味します。
		高濃度の外れ値は、「年間の平均値+平均値の標準偏差の5倍」(平均+5σ)
		を基準とし、これを超過した値としています。
H1	高濃度外れ値(単独)	解析の結果、 単独の高濃度外れ値である と判断されたことを意味します。
		単独の高濃度外れ値は、高濃度の外れ値であることに加え、前後の時間帯の測
		定値に比べて10倍以上高い値としています。
K	K ⁺ 、Na ⁺ のコンタミ	URG9000D において、K*、Na*のコンタミネーションが発生していることを
		意味します。

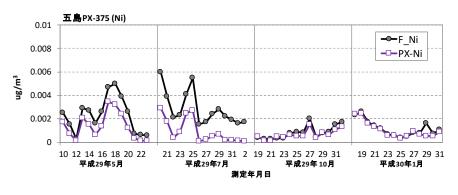

注釈

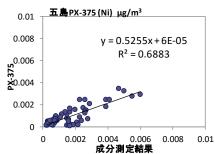
注釈	内容	注釈付与の説明
Lv1-H	取扱注意 (濃度レベルが高い)	この注釈が入った成分は、 成分測定結果との比較において、濃度変化の相関は良好であったものの、自動測定機から得られる値については、濃度レベルが高い可能性があることから、取扱に注意が必要である ことを意味します。
Lv1-L	取扱注意 (濃度レベルが低い)	この注釈が入った成分は、成分測定結果との比較において、濃度変化の相関は 良好であったものの、自動測定機から得られる値については、濃度レベルが低 い可能性があることから、取扱に注意が必要であることを意味します。
Lv2	取扱注意 (濃度変化の相関がみら れない)	この注釈が入った成分は、 成分測定結果との比較において、濃度変化の相関がみられないことから、取扱に注意が必要である ことを意味します。
Lv3	取扱注意 (測定精度が不十分)	この注釈が入った成分は、 成分測定結果との比較において、濃度変化の相関、 濃度レベルの精度が不十分であることから、取扱に注意が必要である ことを 意味します。

注釈 Lv1-H (濃度レベルが高い可能性がある)

例)測定地点「国設五島」 測定機器「PX-375」 測定成分「Si」

F_成分名:成分測定結果、PX-成分名:自動測定機の測定結果(日平均値)

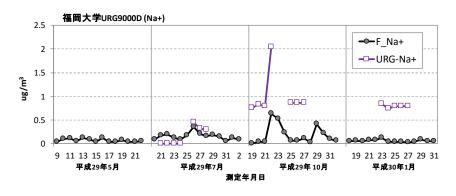


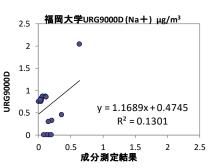


注釈 Lv1-L (濃度レベルが低い可能性がある)

例) 測定地点「国設五島」 測定機器「PX-375」 測定成分「Ni」

F 成分名:成分測定結果、PX-成分名:自動測定機の測定結果(日平均値)

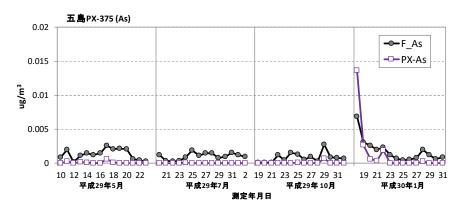


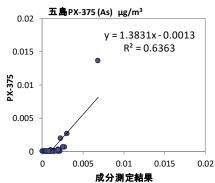


注釈 Lv2 (濃度変化の相関がみられない)

例)測定地点「福岡大学」 測定機器「URG9000D」 測定成分「Na+」

F_成分名:成分測定結果、URG-成分名:自動測定機の測定結果(日平均値)




※比較測定局 太宰府局

注釈 Lv3 (測定精度が不十分)

例)測定地点「国設五島」 測定機器「PX-375」 測定成分「As」

F_成分名:成分測定結果、APC-成分名:自動測定機測定結果(日平均值)

4-2. ACSA-14 の SO₄²-濃度の補正について

ACSA-14 では、毎日 23 時に、ゼロ濃度の抽出液測定(ZERO 液)及び一定濃度の標準液(SPAN 液)を自動的に測定しています。理論上、両液の濃度差は一定となりますが、実際の測定においては、ある程度の変動が生じます。また、時間の経過とともに徐々に濃度差は拡大する傾向にあります。

そこで、ACSA-14の SO_4^2 濃度については、直近の前後 2 日間と当日の計 5 日間のデータを基に、メーカー提供の補正式により濃度補正を行っています。

補正後の数値については、専門家及びメーカーを交えた検討会にて、成分測定結果との比較検証を行っており、補正を施すことで、成分測定結果との相関がより向上することを確認しています。

【ACSA-14 における SO₄2-濃度の補正式(提供:紀本電子工業株式会社)】

① fSO₄(nmol/m³)の補正式

$$\frac{\mathrm{fSO_4(I-I0)} - \mathrm{ZeroSO_4(I-I0)}}{\mathrm{SpanSO_4(I-I0)}} \times 50 \times \frac{16.7}{15.4} \times \frac{1}{\mathrm{tFlow}} \times$$
 セル定数

② cSO₄(nmol/m³)の補正式

$$\left(\frac{\text{cSO}_4(\text{I}-\text{I0})-\text{ZeroSO}_4(\text{I}-\text{I0})}{\text{SpanSO}_4(\text{I}-\text{I0})-\text{ZeroSO}_4(\text{I}-\text{I0})} \times 50 \times \frac{1}{\text{tFlow}} \times$$
セル定数 $\right)-\text{fSO}_4 \times \left(\frac{1.3}{16.7}\right)$

黒字:1時間値のカウント、桃色:前後5日移動平均のカウント※

※当日の Span のカウント値と Zero のカウント値の差が 1000 以下の場合、当日の補正計算は行なわない

fSO₄(I-I0): PMf の硫酸イオンの散乱光カウント値

cSO₄(I-I0): PMc の硫酸イオンの散乱光カウント値 ZeroSO₄(I-I0): 校正時の抽出液の散乱光カウント値

SpanSO₄(I-I0):校正時の標準液添加後の散乱光カウント値

50 (µmol/ml):校正時の標準液濃度 (16.7/15.4): PMf の流量の補正値 (1.3/16.7): PMc の流量の補正値

tFlow:ポンプ吸引開始から終了までの積算流量(m³)

セル定数:セルの容量を補正するための係数

4-3. PX-375 の捕集時間について

PX-375 では、平成30年1月より順次、1時間捕集を4時間捕集に変更しています。

各地点の4時間捕集を開始した日時は、以下のとおりです。

4時間捕集の最初のデータは、4時間捕集を開始した年月日の20:00に出力されたものです。

▶ 国 設 新 潟 巻 平成 30 年 2 月 5 日 16:00 以降

▶ 東京都環境科学研究所 平成 30 年 2 月 16 日 16:00 以降

▶ 国設五島
平成30年2月8日 16:00以降

➤ 福 岡 大 学
平成 30 年 1 月 30 日 16:00 以降

5. 各自動測定機の公表ファイルの構成

ファイルは、地点・自動測定機毎に、速報値については 1_{f} ヶ月単位、確定値については 1_{f} 年分の測定値が入った csv ファイル形式となっています。

自動測定機と表示項目及びその単位は、以下のとおりです。

ACSA-14

ファイル名 速報値: YYYYMM_***_ACSA-14.csv (YYYY は年, MM は月, ***は地点名)

確定值: YYYY *** ACSA-14.csv

成日:20	19/01	1/08	т	Т																											т
D. 地点	年	月	В	時	PM25 (ug/m3)	PM25 (Flag)	PMf (ug/m3)	PMf (Flag)	PMc (ug/m3)	PMc (Flag)	PM10 (ug/m3)	PM10 (Flag)	OBC (ug/m3)	OBC (Flag)		fN03 (Flag)	WSOC-abs (ugC/m3)	WSOC-abs (Flag)	fH+ (nmo1/m3)	fH+ (Flag)	fS04 (ug/m3)	fS04 (Flag)	cN03 (ug/m3)	cN03 (Flag)	WSOC-abs (ugC/m3)	WSOC-abs (Flag)	cH+ (nmo1/m3)	cH+ (Flag)	cS04 (ug/m3)	cS04 (Flag)	備考
													Lv1-L	Lv1-L																	
1 札幌	201	17	4 1	1 1	7	. 5	7.	9	18. 3		26. 1		0.6	3	0. 67642		0.5		6.6	1		E	0.33108	t	0.18	8		E		E	
1 札幌	201	17	4 1	1 2		7	7.	4	16. 2		23. 6		0.6	5	0.7006		0.48	1	7.3	4		E	0.3689	1	0.12	2		E		E	
1 札幌	201	17	4 1	1 3	8	. 8	9.	3	14		23. 3		0.8	5	0. 89094		0.49		7. 6	2		E	0.41912	2	0.07	7		E		E	
1 札幌	201	17	4 1	1 4	10	. 5	11.	1	16.3		27. 5		0.8	4	1. 33734		0.5	i	8.0	1		E	0.56048	t	0.16	6		E		E	
1 札幌	201	17	4 1	1 5		10	10.	5	11.7		22. 2		0.4	В	1. 18544		0.47		7.5	2		E	0.58652	2	0.14	4		E		E	
1 札幌	201	17	4 1	1 6	8	. 6		9	12. 5		21.5		0.2		1. 08562		0.38		7. 2			E	0.54622		0.13	3		E		E	
1 札幌	201	17	4 1	1 7		7	7.	4	12. 3		19. 6		0.3	7	1. 488		0.47	1	7.8	1		E	0.50964	ı	0.19	9		E		E	
1 札幌	201	17	4 1	1 8	10	. 2	10.	7	18. 5		29. 2		0.5	3	1. 88728		0.51		7.7	7		E	0.56482	2	0.09	9		E		E	
1 札幌	201	17	4 1	1 9	9	.7	10.	3	14. 2		24. 5		0.3	9	1. 65416		0.5	i	8. 5	4		E	0.69688	t	0.1	1		E		E	
1 札幌	201	17	4 1	1 10	7	. 6		8	7. 9		15. 9		0.1	В	0. 69378		0.35	i	9.0	6		E	0.71114	ı	0.08	8		E		E	
1 札幌	201	17	4 1	11	8	. 4	8.		8. 4		17. 2		0.1	4	0. 60264		0.28	t .	9.1	4		E	0.64976	6	0.04	4	-0.36	i		E	
1 札幌	201			1 12		. 3	7.		7. 7		15. 4		0.1		0. 65348		0.36		9.0			E	0.63674		0.12		-0.35			E	
1 札幌	201			1 13		. 8	11.		10. 4		21. 7		0.1		0.8339		0.34		9.3			E	0. 67828		0.13		-0.08			E	
1 札幌	201			1 14		. 2	11.		10. 2		21.9		0.1		0. 73408		0.49		10.7			E	0. 7843		0.14		0.34			E	
1 札幌	201			1 15		11	11.		11.5		23		0.		0. 53072		0.34		12. 6			E	0.87668		0.12		0. 23			E	
1 札幌	201			1 16		. 7	11.		11.1		22. 4		0.1		0. 46996		0. 22		12.9			E	0.96038		0.08		0.36			E	
1 札幌	201			1 17			12.		10		22. 9		0.1		0.4526		0. 29		12. 5			E	0.91512		0.07		-0.15			E	
1 札幌	201			1 18			13.		6.8		20		0.1		0. 75454		0.26		10.0			E	0.62744		0.07		0.66			E	
1 札幌	201			1 19		. 5	13.		11.3		24. 9		0.3		1. 03168		0.32		8. 7			E	0.33418		0.11		0.85			E	
1 札幌	201			20		.1	14.		12. 3		26. 4		0.3		1. 02424		0.39		8.			E	0.46934		0.13		1. 23			E	
1 札幌	201			21		. 2	16.		19. 2		35. 6		0.5		1. 66036		0.45		8.8			E	0.42036		0.11		-0. 23			E	
1 札幌	201			1 22		. 4	16.		13.8		30. 5		0.4		1. 43964		0.52	!	8.8	8		E	0. 4681		0.11	1	-0. 01			E	
1 札幌	201			23		. 4	14.		9.9		24. 3		0.2			C		C		C		E		C		C		C		E	
1 札幌	201	17	4 1	24	13	. 5	14.	5	8.4		22. 9		0.2	5	1. 41918		0.4	l .	9. 7	2		E	0.50964	ı	0.14	4	0.87			E	

PX-375

ファイル名 速報値: YYYYMM *** PX-375.csv (YYYY は年, MM は月, ***は地点名)

確定值: YYYY *** PX-375.csv

MKH:	2019/	01/09	_					-	-										-	***	***							-				41	-						_
烛	dā :	年 .	я в	st Ma		Mass	Conc	Conc			III	V	V .	Gr	Cr	Min Com	Min)	re	re .	NI COL	NI	Cu	Cu	Zn	Zn .	AS	AS .	PD (n)	Pb .	AI (m)	AI .	51	21	S	2	K (+)	K .	Ga G	(6) (6)
100				. (n	ıg)	(Flag)	(ug/m3	(Fla		ug/m3)	(Flag)	(ug/m3)	(Flag)	(ug/m3)	(Flag)	(ug/m3)	(Flag)	(ug/m3)	(Flag)	(ug/m3)		(ug/m3)	(Flag)	(ug/m3)	(Flag)			(ug/m3)		(ug/m3)	(Flag)	(ug/m3)	(Flag)	(ug/m3)				(ug/m3) ((Flag)
							-		L	v1-L	Lv1-L	Lv3	Lv3							Lv1-L	Lv1-L					Lv3	Lv3				Lv1-H	Lv1-H	Lv1-H	Lv1-H			Lv1-L		\rightarrow
		2017	4 1	1	15. 2		15.	26		. 0			0		D	_)	0.01886						0.00565				0.00101		2.6116		0.1331	7	1.3039	7	0.0097		0.02024	_
	渴卷		4 1	2	14. 7		14.			- 0			0		0	-)	0.01984						0.00713				0.00217		2. 6182		0.1432		1. 2959		0.00484		0.01458	_
		2017	4 1	3	11.6		11.			- 0			0		0)	0. 02195						0.00599				0.00027		2. 49831		0. 1217		1. 2763		0		0.00397	_
		2017	4 1		12. 4		12.			. 0			0		D	0.0006	1	0.01625						0.00398				. 0		2. 57929		0.1451		1. 2749		0		0.00517	_
		2017	4 1	5	12. 4		12.			- 0			0		0)	0.01497		0.0008				0.0061				0.00056		2. 56462		0.1179		1. 2917.		- 0		0.00127	
		2017	4 1	6	11.5		11.			- 0			0		D	0.00018		0. 01511		(0.00776				0.00043		2. 61134		0.1310		1.3712		- 0		0.0087	
		2017	4 1	7	13. 5		13.						0		0	0.00014	1	0.0145		0.0008				0.00656				0.00151		2. 59173		0.1330		1. 4341		0.01646		0.01333	
		2017	4 1	8	12.1		12.	15					0		0)	0. 02178		0.00064				0.00984				0.00133		2. 6443		0.1329		1. 3231		0.03133		0.02218	
	渴卷				13. 2		13.						0		0	0.0006	1	0.0208		0.00074				0.01258				0.00141		2. 65666		0.1717		1. 3267		0		0.04186	
		2017	4 1		11.1		11.			0			0		0)	0.02556						0.00012				0		2. 52291		0.1698		1. 2835		0		0.0166	
	爲卷		4 1		12		12.					0.0002	8	0.0006	9	0.0006		0.01901							1			0		2. 49902		0.1388		1. 2871		0		0.01014	
		2017	4 1		10.8		10.						0		0	0.0016		0.0303						0.00075	i			0.00007		2. 53413		0. 2362		1. 337		0		0.02461	
	8#		4 1		8.7		8.	74		- 0		0.0000	3	0.0000	7	0.00014	1	0.0255		0.0006				0	1			0		2. 5312		0.1804		1.4117	9	0		0.01365	
	爲卷		4 1		10.7		10.			0			0		0	0.0006		0.02607						0				0		2. 6158		0. 2098		1.5354	4	0		0.0187	
新;		2017	4 1		10.3		10.			0			0		0	0.0015	7	0.02385		0.00038				0	(0		2. 52883		0. 201		1.5018		0		0.01339	
新	爲卷	2017	4 1	16	14.5		14.			0			0		0)	0.02488						0	1			0		2. 56008		0.19		1.5523		0		0.01957	
		2017		17	15.1		15.			0			0		0)	0.03425				0.00039		0	1			0		2. 57418		0. 2503		1.7042		0		0.02938	
新;	渴卷	2017	4 1	18	12.7		12.			0		0.0001	3	0.0001	4	0.00022	2	0.03773		0.00022				0	1			0		2. 64418	i i	0.3606		1.9445	4	0		0.0276	
新:		2017	4 1		10.9		10.			0			0		0)	0.02269		0.00066				0	1			0.0014		2. 59263		0.2566		1.7791		0		0.01306	
		2017	4 1		9		9.	02		0			0		0)	0.0173						0	1			0.00007		2. 50175		0.1953		1. 434		0		0	
新		2017	4 1	21	7.7			72		0			0		0	0.0000	7	0.01762		0.00002				0	1			0		2. 52916	i	0.1916	8	1.2974	4	0		0.00412	
		2017	4 1	22	6.7			72		0			0	0.000	1	0.00043	3	0.01969						0	1			0.00105		2. 47978		0.158		1. 2076		0		0	
新	岩巻	2017	4 1		6.9	1	6.	92		0			0		0)	0.01401						0	1			0.00024		2, 48821		0.1515	1	1. 2014	5	0		0	
2 \$5	紀米	2017	4 1	24	4.2		4.	21		0			0		0)	0.03251						0.02336				0.00747		2. 4752		0.1469	1	1. 135	4	0		0	

URG9000D

ファイル名 速報値: YYYYMM_***_URG9000D.csv (YYYY は年, MM は月, ***は地点名)

確定值: YYYY *** URG9000D.csv

成日:2	019/0	11/09	\perp				H00 ()	NOO ()	0040 ()	0040 ()			MILE ()	ARIA ()	W ()	W ()			0.0 ()	0.0 ()	Hel ()	1101 ()	18100 ()	1800 ()	000 ()	000 ()	MIIO ()	MILO ()	+-
. 地点	年	月	日日					N03- (p) (Flag)		S042- (p) (Flag)	Na+ (p) (ug/m3)	Na+ (p) (Flag)		NH4+ (p) (Flag)	K+ (p) (ug/m3)	K+ (p) (Flag)	Mg2+ (p) (ug/m3)	Mg2+ (p) (Flag)	Ca2+ (p) (ug/m3)	Ca2+ (p) (Flag)	HCI (g) (ug/m3)		HN03 (g) (ug/m3)	HNO3 (g) (Flag)	S02 (g) (ug/m3)			NH3 (g) (Flag)	備導
				Lv	1-H L	v1-H					Lv2	Lv2	Lv1-L	Lv1-L	Lv3	Lv3	Lv3	Lv3	Lv3	Lv3									
11 福岡	引 20	017	5 26	1 n.	a.		0. 281		2. 967		0. 381	K	1.532		n. a.	K	n. a.		n. a.		0.613		0.515		0.51283		2. 644		
11 福岡	B 20	017	5 26	2 n.	a.		0.313		2. 975		0. 356	K	1.532		0.089	K	n. a.		n. a.		0.596		0.484		0.44881		2. 626		
11 福岡	引 20	017	5 26	3	0.056		1.385		4. 225		0. 449	K	2. 424		0. 125	K	n. a.		n. a.		0.777		0.58		2.00864		2. 534		
11 福岡	B 20	017	5 26	4	0.179		1.994		5. 32		0. 568	K	3. 117		n.a.	K	n. a.		n. a.		0.633		0.584		2. 770882		2. 838		
11 福岡	引 20	017	5 26	5	0.24		2. 124		5. 654		0. 635	K	3. 31		0. 162	K	n. a.		n. a.		0.503		n. a.		1. 827249		3. 131		
11 福岡	9 20	017	5 26	6	0.274		1. 282		2. 459		0. 708	K	1. 633		0.104	K	n. a.		n. a.		0. 992		0.748		2. 412101		3. 051		
11 福岡	B 20	017	5 26	7	0.517		n. a.		2.017		0. 711	K	1. 207		0.095	K	n. a.		n. a.		0.762		0.551		1. 899938		2. 905		
11 福岡	9 20	017	5 26	8	1.029		1.048		1. 735		0. 954	K	1.017		0.095	K	n. a.		n. a.		0.648		0.515		1. 899938		3. 257		
11 福岡	B 20	017	5 26	9	1.336		0. 797		1. 51		1. 177	K	0.745		n.a.	K	n. a.		n. a.		0.668		0.519		1. 324422		3. 212		
11 福岡	引 20	017	5 26	10	0.883		n. a.		1. 437		1. 054	K	0.685		0.074	K	0. 031		n. a.		0.712		0. 529		1. 173707		3. 198		
11 福岡	9 20	017	5 26	11	0.684		0.71		1. 483		0. 932	K	0. 699		0.069	K	n. a.		n. a.		0. 733		0.51		1.007654		2. 88		
11 福岡	B 20	017	5 26	12	0.509		n. a.		1. 737		0. 846	K	0.788		0.073	K	n. a.		n. a.		0.845		0.554		1. 159036		2. 801		
11 福岡	引 20	017	5 26	13	0.63		0.869		1. 935		0. 781	K	0.916		n. a.	K	n. a.		n. a.		0.811		0.507		1. 208385		2. 646		
11 福岡	B 20	017	5 26	14	0.329		n. a.		2. 156		0. 768	K	1.02		0.077	K	n. a.		n. a.		0.868		0.545		1. 595842		2. 444		
11 福岡	引 20	017	5 26	15	0.29		0.933		2. 204		0. 748	K	1.094		0.084	K	n. a.		n. a.		0.904		0. 529		1. 179042		2. 302		
11 福岡	B 20	017	5 26	16	0.28		0.847		2. 127		0. 716	K	1.066		0.084	K	n. a.		n. a.		1.071		n.a.		1. 421786		2. 378		
11 福岡	B 20	017	5 26	17	0.219		0.874		1. 939		0. 667	K	1.014		0.067	K	n. a.		n. a.		0.884		0.519		1. 321754		2. 33		
11 福岡	9 20	017	5 26	18	0.191		0.807		1.873		0. 626	K	0. 972		n. a.	K	n. a.		n. a.		1.085		n. a.		1. 772564		2. 212		
11 福岡	F 20	017	5 26	19	0.219		0.829		2. 042		0. 655	K	1.019		n. a.	K	n. a.		n. a.		1.058		n.a.		1. 528487		2. 186		
11 福岡	9 20	017	5 26	20	0. 213		0.818		2. 137		0. 645	K	1.05		n. a.	K	n. a.		n. a.		1.094		n. a.		1. 709878		2. 129		
11 福岡	F 20	017	5 26	21	0.194		0. 785		2. 194		0. 623	K	1.074		n. a.	K	n. a.		n. a.		0.967		0.586		1. 684536		2. 124		
11 福岡	9 20	017	5 26	22	0.21		0.779		2. 222		0. 624	K	1. 118		n. a.	K	n. a.		n. a.		0.848		0.536		1.80124		2. 088		
11 福岡	F 20	017	5 26	23	0. 22		0.768		2. 273		0. 597	K	1. 206		0.068	K	n. a.		n. a.		0. 722		0.511		1. 253733		2. 316		
11 福岡	B 20	017	5 26	24	0. 201		0.726		2. 161		0. 564	K	1. 162		0.068	K	n. a.		n. a.		0.857		0.612		1. 261735		2. 217		

APSA-370

ファイル名 速報値: YYYYMM_***_APSA-370.csv (YYYY) は年, MM は月, ***は地点名)

確定値: YYYY_***_APSA-370.csv

	019/01/09							
No.	地点	年	月	日	時	S02 (ppm)	S02 (Flag)	備考
	福岡	2017	4	1	1	0.0006		
	福岡	2017	4	1	2	0.0008		
	福岡	2017	4	1	3	0.0007		
	福岡	2017	4	1	4	0.0004		
	福岡	2017	4	1	5	0.0004		
	福岡	2017	4	1	6	0.0003		
	福岡	2017	4	1	7	0.0003		
11	福岡	2017	4	1	8	0.0005		
11	福岡	2017	4	1	9	0.0007		
11	福岡	2017	4	1	10	0.0008		
11	福岡	2017	4	1	11	0.0022		
11	福岡	2017	4	1	12	0.0017		
11	福岡	2017	4	1	13	0.0005		
11	福岡	2017	4	1	14	0.0006		
11	福岡	2017	4	1	15	0.0005		
11	福岡	2017	4	1	16	0.0004		
	福岡	2017	4	1	17	0.0005		
	福岡	2017	4	1	18	0.0005		
	福岡	2017	4	1	19	0.0003		
	福岡	2017	4	1	20	0.0004		
	福岡	2017	4	1	21	0.0007		
	福岡	2017	4	1	22	0.0004		
	福岡	2017	4	1	23			
	福岡	2017	4	1	24			

APNA-370

ファイル名 速報値: YYYYMM_***_APNA-370.csv (YYYY は年, MM は月, ***は地点名)

確定値: YYYY_***_APNA-370.csv

0.	地点	年	月	B	時	NO (ppm)	NO (Flag)	NO2 (ppm)	NO2 (Flag)	NOx (ppm)	NOx (Flag)	備考
1	1 福岡	2017	4	1	1	0. 0006		0. 0118		0. 0124		
1	1 福岡	2017	4	1	2	0.0007		0. 011		0.0117		
1	1福岡	2017	4	1	3	0.0009		0. 012		0.0129		
1	1福岡	2017	4	1	4	0.0007		0.0116		0.0123		
1	1福岡	2017	4	1	5	0.0006		0.0087		0.0093		
1	1福岡	2017	4	1	6	0.0005		0.0096		0.0102		
1	1福岡	2017	4	1	7	0.0014		0.0124		0.0138		
1	1福岡	2017	4	1	8	0.0082		0. 0222		0.0304		
1	1福岡	2017	4	1	9	0.0095		0. 0237		0.0332		
1	1 福岡	2017	4	1	10	0.0032		0.0142		0.0174		
1	1 福岡	2017	4	1	11	0.0042		0.0154		0.0196		
1	1福岡	2017	4	1	12	0.0025		0.009		0.0115		
1	福岡	2017	4	1	13	0.0008		0.0029		0.0038		
1	1 福岡	2017	4	1	14	0.0009		0.0028		0.0037		
1	1福岡	2017	4	1	15	0.0009		0.0031		0.004		
1	1 福岡	2017	4	1	16	0.0007		0.0026		0.0033		
1	1 福岡	2017	4	1	17	0.0007		0.0032		0.0039		
1	1 福岡	2017	4		18	0.0006		0.0036		0.0042		
1	1 福岡	2017	4	1	19	0.0004		0.0036		0.004		
1	福岡	2017	4	1	20	0.0005		0.0037		0.0043		
	福岡	2017	4		21			0.0048		0.0052		
1	1 福岡	2017	4	1	22	0.0006		0.0045		0.0052		
	1 福岡	2017	4		23			0.0042		0.0049		
1	福岡	2017	4	1	24	0.0007		0.0041		0.0048		

APC-710

ファイル名 速報値: YYYYMM_****_APC-710.csv (YYYY) は年, MM は月, ***は地点名)

確定値: YYYY_***_APC-710.csv

гж ц · z lo.	019/01/09 地点	年	月	В	時	OC-on (ugC/m3) OC-op (Flag	EC-on	(ugC/m3)	EC-op (Flag)	備考
J.	地点	+	Я		и тј	OC-op (ugC/m3) UU-UP (FTag	Lv1-L	(ugo/III3)	Lv1-L	胂右
11	福岡	2017	4	1	1	2	56		0. 091		
	福岡	2017			2		102		0. 017		
	福岡	2017			3	2.	307		-0. 01		
	福岡	2017			4	2.	656		0.062	2	
11	福岡	2017	4	1	5	2.	347		0. 204	ļ	
11	福岡	2017	4	1	6	2.	561		0. 156	6	
11	福岡	2017			7	3.	123		0. 29		
	福岡	2017			8		118		0. 943		
	福岡	2017			9		044		1.057	7	
	福岡	2017			10		15		0. 59		
	福岡	2017			11		726		0. 547		
	福岡	2017			12		539		0. 38		
	福岡	2017			13		557		0. 175		
	福岡	2017			14		124		0. 155		
	福岡	2017			15		292		0. 118		
	福岡	2017			16		503		0. 122		
	福岡	2017			17		558		0.149		
	福岡	2017			18		675		0. 128		
	福岡	2017			19		578		0. 148		
	福岡	2017			20		492		0. 146		
	福岡	2017			21		62		0. 17		
	福岡	2017			22		735		0.086		
	福岡	2017			23		191		-0. 02		
- 11	福岡	2017	4	1	24	1.	721		0. 045	5	