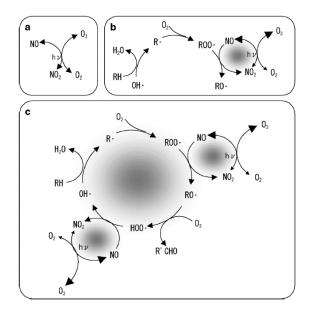
光化学オキシダントの化学組成、生成機構について

2 3

4


- 1. 光化学オキシダントの化学組成
- 5 光化学オキシダント(O_x)とは、オゾン(O_3)、パーオキシアセチルナイトレート(PAN:
- 6 Peroxy Acetyl Nitrate、CH₃-C(O)O₂NO₂) 等のパーオキシアシルナイトレート (PANs:
- 7 Peroxy Acyl Nitrates、R-C(O)O₂NO₂)、アルデヒド (R-CHO) 類のことであり、その
- 8 大部分がオゾンである。これらは、大気中の揮発性有機化合物 (VOC: Volatile Organic
- 9 Compounds)と窒素酸化物 (NOx) の混合系に太陽光 (特に紫外線) が照射されるこ
- 10 とにより反応して生成される。
- 11 日本における光化学オキシダントの環境基準設定に際しては、オゾン、PAN 及びそ
- 12 の同族体、過酸化物、アルデヒド類等、光化学反応により二次的に生成される酸化性物
- 13 質であって、中性ヨウ化カリウム溶液からヨウ素を遊離するもののうち二酸化窒素を除
- 14 いた物質を「光化学オキシダント」と定義している。また、光化学オキシダントの大部
- 15 分はオゾンであるとしている1。

16

- 17 2. 光化学オキシダントの生成機構
- 18 2. 1 オゾンの生成機構
- 19 図 1 に、Ox の主成分である O_3 の生成機構を模式的に示した。
- 20 まず、二酸化窒素 (NO₂) が太陽光の照射を受けて一酸化窒素 (NO) と原子状酸素
- O に光分解する。生成した O は直ちに酸素 O_2)と反応して O_3 が生成される(図
- 22 1a)。この反応は可逆反応であり、生成した O_3 は NO と反応して NO_2 と O_2 を生成す
- 23 ることで減少する。
- 24 しかしながら、VOC が共存するとヒドロキシラジカル(OH)との反応過程で生成す
- 25 るアルキルパーオキシラジカル (ROO) による NO の酸化経路が開かれて「NOx サイ
- 26 クル」が形成され、O3が増加する(図 1b)。
- 27 また VOC を発端とするラジカルは、 O_2 や NO との反応で形態を変えながら最終的
- 28 cOHを再生する「ラジカルサイクル」あるいは「HOx サイクル」を形成する(図 1c)。
- 29 O_3 は NOx サイクルにより生成し、ラジカルサイクルは 2 つの NOx サイクルを駆動す
- 30 る。大気中には O_2 が豊富に存在していることを考慮すると、この O_3 生成サイクルの駆
- 31 動には VOC および NOx (NO+NO₂) の供給が必要である。その結果、O₃ の発生は
- 32 NOx や VOC の放出量が大きい大都市圏において生じやすい。また NO₂ からの O₃ 生成
- 33 や VOC と最初に反応するOHの生成には光エネルギーが必要であるため、その発生は夏
- 34 季に多い。

^{1 「}窒素酸化物等に係る環境基準についての専門委員会報告(昭和 47 年 6 月 20 日中央公害対策審議会大 気部会窒素酸化物等に係る環境基準専門委員会)」において「光化学オキシダントの大部分はオゾンで ある」としている。

- 1 光エネルギーのない夜間には、 O_2 と NO_2 (+ h_{ν}) が反応し NO と O_3 が生成される
- 2 プロセスの逆反応により O₃ が消失する。また、NO 濃度が高いほど消失速度は大きく
- 3 なる。このため、夜間の O_3 濃度は、一般に都市中心部のほうが郊外部より低くなる。

5

- 図 1 オゾンの生成機構(板野泰之(2006)より一部改変)
- 8 (b) VOC (図中では RH) が存在すると、そのOHにより開始される連鎖反応によりROOが NO を不可逆的
- 9 に酸化するため、O₃の生成が加速する。
- 10 (c) O $\dot{\rm H}$ と反応した VOC はやがてO $\dot{\rm H}$ を再生し、次の VOC と反応するための連鎖反応サイクルが形成され
- 11 る。

12

- 13 2.2 PAN の生成機構
- 14 図 1 (c) の連鎖反応サイクル中で生成したROOはNO、三酸化窒素 (NO₃)、ROOと反
- 15 応してアルコキシラジカル (RÓ) を生成する。RÓは、分解反応によりアルデヒド等を
- 16 生成する (図 2 上段)。
- 17 生成したアルデヒドは、OH等、 O_2 と反応してアシルパーオキシラジカル (RC(O)OO)
- 18 を生成し、さらにNO₂との反応により PAN 等のパーオキシアシルナイトレート (PANs)
- 19 を生成する (図 2 下段)。

20

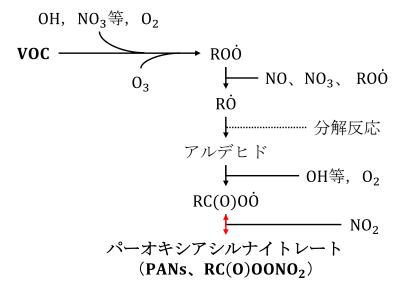


図 2 パーオキシアシルナイトレート(PANs)生成への VOC の関与 (環境省資料 SPM とオキシダントの生成メカニズムより一部改変)

PAN と O_3 の原因物質は NO_2 と VOC である点は共通している。 O_3 の光化学分解により生成されるOHはアルカン、アルケン、芳香族と連鎖的に反応し、アルデヒド等のカルボニル系化合物を生成する。この結果として PAN の形成に寄与する。また O_3 による NO_3 の酸化も PAN の生成に寄与する。PAN 側から O_3 に及ぼす影響としては、PAN が NO_2 のリザーバーとして機能し、PAN の分解で生じた NO_2 が O_3 生成を促進しうる (環境省, 2016)。

2.3 生物起源揮発性有機化合物(BVOC)の国内排出量

13 前述のとおり、Ox は、大気中の VOC 等の有機化合物と NOx の混合系が、太陽光 14 (特に紫外線)照射による反応を通じて生成するものである。

VOC には、人為起源揮発性有機化合物(AVOC: Anthropogenic Volatile Organic Compound)と生物起源揮発性有機化合物(BVOC: Biogenic Volatile Organic Compound)があり、BVOC の代表的な排出源は植物である。BVOC 排出量は AVOC の排出量より多いと考えられており、例えば平成 27 年度の日本国内の VOC 総排出量は 307 万 t 年⁻¹であり、そのうち BVOC は 213 万 t 年⁻¹(69.4%)を占めるとした推計結果がある。なお、同推計における AVOC の排出量は 94 万 t 年⁻¹、NOx の排出量は 171 万 t 年⁻¹である(PM_{2.5}排出インベントリ及び発生源プロファイル策定検討会事務局, 2019)。

23 植物由来の BVOC は、植物が生産する二次代謝物のうち大気へ放出される揮発性の 24 物質であり、植物の葉、茎、根や森林の土壌から放出されている。BVOC の代表的な物 25 質はテルペン類であり、揮発性の高いものから、1 分子に炭素原子 5 個を含むイソプレ $(C_{5}H_{8})$ 、炭素原子を 10 個含むモノテルペン $(C_{10}H_{16})$ 、炭素原子を 15 個含むセス

- 1 キテルペン $(C_{15}H_{24})$ 、炭素原子を 20 個含むジテルペン $(C_{20}H_{32})$ となり、炭素数の多
- 2 いセスキテルペン、ジテルペンは半揮発性の物質である。イソプレンは単一物質、モノ
- 3 テルペンは様々な異なる化学構造を持つ 100 以上の異性体からなる。代表的なモノテ
- 4 ルペンはマツの香りの α ピネンやオレンジの香りのリモネンである(谷と望月, 2016)。
- 5 植物から放出される BVOC の種類や放出特性は植物種によって異なり、日中のみあ
- 6 るいは一日を通して放出し続ける種や BVOC をまったく放出しない種もある。BVOC
- 7 の放出量は葉温や日射量等の気象条件にも依存する。また、昆虫による葉の食害の外的
- 8 ストレスも、ある種のテルペン類の生産・放出を高めることが知られている(谷と望月、
- 9 2016)
- 10 BVOC の代表的な物質であるテルペン類は、 O_3 や $O\dot{H}$ に対して反応性が極めて高く、
- 11 **O**Hとの一連の反応によって局地的な **O**₃ 生成にかかわる(谷と望月, 2016)。

13 3. 参考文献

- 14 板野泰之. (2006)都市大気における光化学オキシダント問題の新展開. 生活衛生, 50,
- 15 115-122.
- 16 環境省 SPM とオキシダントの生成メカニズム.
- 17 https://www.env.go.jp/air/osen/voc/materials/101.pdf (accessed 2022.06.15).
- 18 環境省. (2016) 平成 27 年度光化学オキシダント等大気汚染物質文献レビュー調査等業
- 19 務 新たな科学的知見に基づく光化学オキシダントの環境基準の再評価の論
- 20 点に係るとりまとめ報告書
- 21 谷晃,望月智貴. (2016) 大気環境と植物の揮発性有機化合物放出. 大気環境学会誌, 51,
- 22 A51-A56.
- 23 PM_{2.5} 排出インベントリ及び発生源プロファイル策定検討会事務局. (2019) 平成 30 年
- 24 度 PM_{2.5}インベントリ及び発生源プロファイル策定委託業務報告書.

25