食品中の放射性物質基準値の設定と出荷制限・摂取制限

基準値の設定

緊急とりまとめ(2011年3月29日)

ICRPの実効線量 10ミリシーベルト/年 緊急時の対応として、不適切とまでいえない

継続してリスク評価を実施

評価結果をとりまとめ(2011年10月27日)

2011年3月20日

結果を通知

評価を要請

厚生労働省

緊急を要するため、暫定規制値を設定 介入線量レベル*:5mSv/年 (2011年3月17日)

*放射線異常発生時に放射線防護上何らかの 介入措置を必要とする放射線レベル

暫定規制値の維持を決定 (2011年4月4日)

結果を通知

基準値の設定

介入線量レベル: 1mSv/年 (2012年4月施行)

出荷制限・摂取制限のプロセス

地域的な広がりが確認された場合

著しい高濃度が確認された場合

モニタリング 検査

基準值招過

出荷制限

摂取制限

食品安全委員会「解説資料(食品中の放射性物質による健康影響について)」、 厚生労働省「食品中の放射性物質の対策と現状について」より作成

食品中の放射性物質に関する検査結果の公表

国が対象品目、検査頻度を示し、各都道府県が検査計画を策定し、検査を実施しています。 検査結果を厚生労働省や地方公共団体において公表しています。

厚生労働省 食品中の放射性物質への対応

https://www.mhlw.go.jp/shinsai_jouhou/shokuhin.html

食品中の放射性物質検査データ

http://www.radioactivity-db.info/

2012年4月からの基準値

○ 暫定規制値に適合している食品は、健康への影響はないと一般的に評価され、安全は確保されていたが、より一層、食品の安全と安心を確保する観点から、暫定規制値で許容していた年間線量5ミリシーベルトから年間1ミリシーベルトに基づく基準値に引き下げた。

○放射性セシウムの暫定規制値※1

○放射性セシウムの現行基準値※2

食品群	規制値
飲料水	200
牛乳・乳製品	200
野菜類	
穀類	500
肉・卵・魚・その他	

食品群	基準値
飲料水	10
牛乳	50
一般食品	100
乳児用食品	50

(単位:Bq/kg)

※1 放射性ストロンチウムを含めて規制値を設定

※2 ストロンチウム90、放射性プルトニウム等を考慮して基準値を設定

食品区分について【参考】

● 基本的な考え方

特別な配慮が必要と考えられる「飲料水」、「乳児用食品」、「牛乳」は 区分を設け、それ以外の食品を「一般食品」とし、全体で4区分とする。

食品区分	設定理由	含まれる食品の範囲
飲料水	①全ての人が摂取し代替がきかず、摂取量が大きい ②WHOが飲料水中の放射性物質の指標値 (10Bq/kg)を提示 ③水道水中の放射性物質は厳格な管理が可能	○直接飲用する水、調理に使用する水及び水との 代替関係が強い飲用茶
乳児用食品	○食品安全委員会が、「小児の期間については、 感受性が成人より高い可能性」を指摘	○健康増進法(平成14年法律第103号)第26条第1項の 規定に基づく特別用途表示食品のうち「乳児用」に 適する旨の表示許可を受けたもの ○乳児の飲食に供することを目的として販売するもの
牛乳	①子供の摂取量が特に多い ②食品安全委員会が、「小児の期間については、 感受性が成人より高い可能性」を指摘	○乳及び乳製品の成分規格等に関する省令(昭和26年厚生省令第52号)の乳(牛乳、低脂肪乳、加工乳等)及び乳飲料
一般食品	以下の理由により、「一般食品」として一括して区分 ①個人の食習慣の違い(摂取する食品の偏り)の影響 を最小限にすることが可能 ②国民にとって、分かりやすい規制 ③コーデックス委員会等の国際的な考え方と整合	○上記以外の食品

厚生労働省ウェブサイト「食品中の放射性物質への対応」より作成 🙌 厚生労働省

食品健康影響評価の結果の概要

(2011年10月27日食品安全委員会)

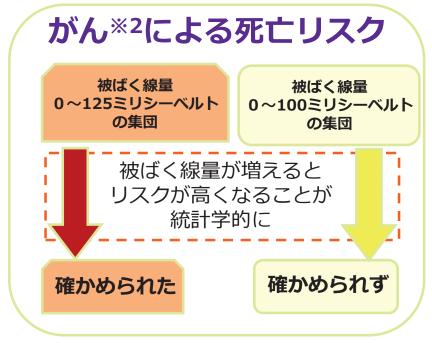
- 放射線による影響が見いだされているのは、生涯における追加の累積線量が、おおよそ100ミリシーベルト以上(通常の一般生活で受ける放射線量(自然放射線やレントゲン検査等)を除く)
- そのうち、小児の期間については、感受性が成人より高い可能性 (甲状腺がんや白血病)

- 5歳未満であった小児に白血病のリスクの増加 (Noshchenko et al. 2010 チェルノブイリ原発事故におけるデータ)
- ■被ばく時の年齢が低いほど甲状腺がんのリスクが高い (Zablotska et al. 2011 チェルノブイリ原発事故におけるデータ) 《ただし、どちらも線量の推定等に不明確な点があった》
- 100ミリシーベルト未満の健康影響について言及は難しい

- 被ばく量の推定の不正確さ
- 放射線以外の様々な影響と明確に区別できない可能性
- 根拠となる疫学データの対象集団の規模が小さい

食品健康影響評価の基礎

■インドの自然放射線量が高い(累積線量500ミリシーベルト強※1) 地域で発がんリスクの増加が見られなかった報告


(Nair et al. 2009)

白血病による死亡リスク被ばくした
集団
 統計学的に比較

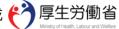
※1 被ばくした放射線がβ線又はγ線だったと仮定して、放射 線荷重係数1を乗じた

200ミリシーベルト※1以上でリスクが上昇 200ミリシーベルト※1未満では差はなかった

(Shimizu et al. 1988 広島・長崎の被ばく者におけるデータ)

※2 対象は、固形がん全体 (Preston et al. 2003 広島・長崎の被ばく者におけるデータ)

基準値設定の考え方◆基準値の根拠


Q. 基準値の根拠は、なぜ、年間1ミリシーベルトなのですか?

①科学的知見に基づいた国際的な指標に沿っている

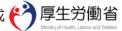
食品の国際規格を作成しているコーデックス委員会の現在の指標 で、年間1ミリシーベルトを超えないように設定されていること

- 注)国際放射線防護委員会(ICRP)は、年間1ミリシーベルトより厳しい措置を講じても、有意な線量 の低減は達成できないとしており、これに基づいてコーデックス委員会が指標を定めている。
 - ② 合理的に達成可能な限り低く抑えるため

モニタリング検査の結果で、多くの食品からの検出濃度は、時間の 経過と共に相当程度低下傾向にあること

影響を考慮する放射性核種

Q.なぜ、基準値は放射性セシウムだけなのですか?


○基準値は、原子力安全・保安院の評価に基づき東京電力福島第一原子力発電所事故に より放出されたと考えられる核種のうち、半減期1年以上の全ての核種を考慮。

規制対象核種	(物理的)半減期
セシウム134	2.1年
セシウム137	30年

ストロンチウム90	29年
プルトニウム	14年~
ルテニウム106	374日

- ※半減期が短く、既に検出が認められない放射性ヨウ素(半減期:8日)や、原発敷地内においても 天然の存在レベルと変化のないウランについては、基準値設定しない。
- ○ただし、放射性セシウム以外の核種は測定に時間が掛かるため、個別の基準値を 設けず、放射性セシウムの基準値が守られれば、上記の核種からの線量の合計が 1ミリシーベルトを超えないよう計算。
 - ※食品の摂取で放射性セシウム以外の核種から受ける線量が最大でどの程度になるかは、土壌の汚染 濃度、土壌から農作物への放射性物質の移行のしやすさのデータ等から、年代別に計算できる。例 えば、19歳以上の場合、放射性セシウム以外の核種からの線量は、全体の約12%。

A.セシウム以外の影響を計算に含めた上で、比率が最も高く、 測定が容易なセシウムを指標としている。

基準値の計算の考え方(1/2)

「年間1ミリシーベルト」

- →「一般食品の放射性セシウム濃度:1kg当たり100ベクレル」はどう算出?
- 1. 計算をする際の前提・仮定
- ●飲料水については、世界保健機関(WHO)が示している指標に沿って、基準値を10Bq/kgとする。
 - →一般食品に割り当てる線量は、年間の線量1ミリシーベルトから、「飲料水」の線量(約0.1ミリシーベルト/年) を差し引いた**約0.9ミリシーベルト/年(0.88~0.92ミリシーベルト/年)**となる。
- ●国内産の食品が、全ての流通食品中に占める割合を50%と仮定する。
 - ※国内産の食品が基準値上限の放射性物質を含むとの仮定で基準値を算出。
- 2. 線量(ミリシーベルト)と、放射性物質の濃度(ベクレル)の換算方法 (イメージ)

線量 (ミリシーベルト) 放射性物質 の濃度 (Bq/kg)

X

摂取量 (kg)

X

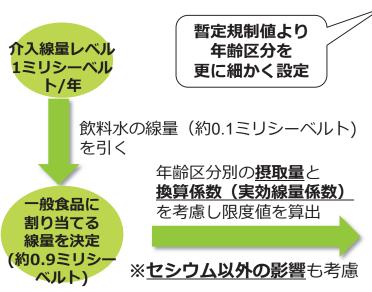
実効線量係数

- 1. の前提に基づいて、一般食品から受ける線量が割り当てた線量以下になるよう、一般食品1kg当たりの放射性物質の限度値を求める。
- (例) <13~18歳 男性の場合>

<u>0.88ミリシーベルト</u>=X (Bq/kg) × <u>374kg (年間の食品摂取量の50%)</u>×

X = 120 (Bq/kg) (3桁目を切り下げ)

全ての対象核種の影響を 考慮した実効線量係数 0.0000181


- ※成人のセシウム134の実効線量係数は0.000019、セシウム137は0.000013である等、核種によって実効線量係数は異なります。 このため、今回の基準値の計算では、各核種の食品中の濃度比率に基づき、全ての対象核種の影響を考慮に入れた実効線量係数を使って、限度値を計算しています。
- ※濃度比率は、各核種の半減期の違いにより経年的に変化しますが、今後100年間で最も安全側となる係数を用いています。
- ※以上の換算方法については、大まかな考え方を示しています。詳しい計算方法は薬事・食品衛生審議会資料をご覧ください。

厚生労働省ウェブサイト「食品中の放射性物質への対応」より作成

基準値の計算の考え方(2/2)

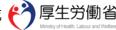
3. 年齢区分ごとに限度値を計算

年齢区分	性別	限度値(Bq/kg)
1歳未満	男女平均	460
1歳~6歳	男	310
1 /成/ ○ 〇 /成	女	320
7歳~12歳	男	190
/ //// / / / / / / / / / / / / / / / /	女	210
13歳~18歳	男	120
13/5%、~10/5%	女	150
19歳以上	男	130
195%以上	女	160
妊婦	女	160
最小	直	120

全ての年齢区分における限度値のうち、最も厳しい(小さい)値から基準値を設定

- ●どの年齢の方も考慮された基準値となる。
- ●乳幼児にとっては、限度値と比べて大きな余裕がある。

4. 牛乳・乳児用食品の基準値について

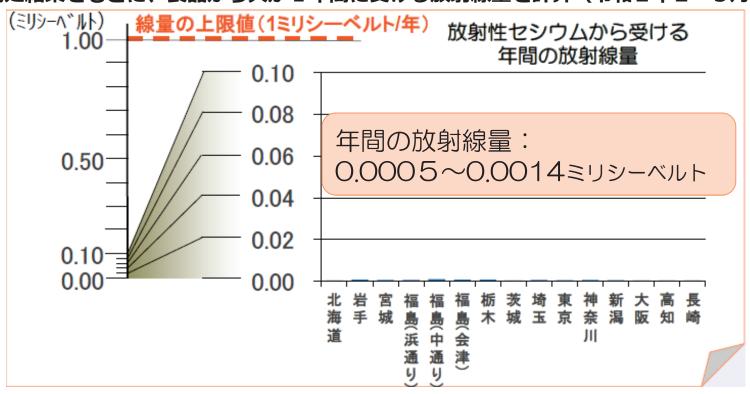

子供への配慮の観点で設ける食品区分であるため、万が一、これらの食品 の全てが基準値レベルとしても影響のない値を基準値とする。

粉ミルク

→ 一般食品の100Bg/kgの半分である50Bg/kgを基準値とする。

厚生労働省ウェブサイト「食品中の放射性物質への対応」より作成 🙌 厚生労働省

食品中の 放射性物質対<u>策</u>


飲料、乾燥食品の基準値適用の考え方【参考】

食品区分	放射性物質に関わる基準値				
飲料など					
緑茶、緑茶を原料の一部に含むブレンド茶	飲料水の基準				
緑茶等に砂糖、抹茶、香料、ビタミンC等を加えたもの	(1キログラム当たり10ベクレル(Bq/kg))				
麦茶	大麦の状態で一般食品の基準 (1キログラム当たり100ベクレル(Bq/kg))				
緑茶・麦茶以外の、紅茶、ウーロン茶、ハーブティ、 杜仲茶、ドクダミ茶、レギュラーコーヒーなど	飲む状態で一般食品の基準 (1キログラム当たり100ベクレル(Bq/kg))				
ミルクを加えたものなどで、乳及び乳製品の成分規格 等に関する省令(昭和26年厚生省令第52号)の乳(牛 乳、低脂肪乳、加工乳等) 及び乳飲料に該当するもの	牛乳の区分の基準 (1キログラム当たり50ベクレル(Bq/kg))				
抹茶や茶葉をそのまま粉砕した粉末茶	粉末の状態で一般の食品の基準 (1キログラム当たり100ベクレル(Bq/kg))				
粉末飲料等の希釈して飲まれる飲料	製品状態で一般食品の基準				
抹茶を原料に含むペットボトル飲料のうち、緑茶の浸 出液を原料に含まないもの	(1キログラム当たり100ベクレル(Bq/kg))				
乾燥食品					
濃縮スープ、濃縮たれ、濃縮つゆなどの濃縮食品	製品状態で一般食品の基準				
フリーズドライ食品、粉末スープ、即席みそ汁などの 乾燥食品	(1キログラム当たり100ベクレル(Bq/kg))				

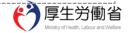
」 以 **(**) 厚生労働省

流通食品での調査(マーケットバスケット調査)

- 各地で流通する食品を購入し、放射性セシウムを精密に測定
 - 国民の食品摂取量(国民健康・栄養調査)の、地域別平均に基づいて購入し、混合して測定
 - ◆通常の食事の形態に従った、簡単な調理をして測定
 - ◆生鮮食品はできるだけ地元産・近隣産のものを購入
- この測定結果をもとに、食品から人が1年間に受ける放射線量を計算(令和2年2・3月調査)

実際の線量は、基準値の設定根拠である年間1ミリシーベルトの0.1%程度

検査対象自治体及び検査対象品目 (栽培/飼養管理が困難な品目群及び原木きのこ類)


栽培/飼養管理が困難な品目群の検査対象品目及びその対象自治体

		青森県	岩手県	秋田県	宮城県	山形県	福島県	茨城県	栃木県	群馬県	千葉県	埼玉県	東京都	神奈川県	新潟県	山梨県	長野県	静岡県
基準值超	野生のきのこ・山菜類等		0		0	•	0	0	•	0					0	0	0	0
の品目	野生鳥獣の肉類		0		0	0	0		0	0					•			
基準値の 1/2~基準 値の品目	野生のきのこ・山菜類等			•														
	海産魚種	-	-	::	_	-	-	_	×	×	-	×	_	_	·—	×	×	·—
	内水面魚種	-		:—:		-	0		0	0	0	-	_	_	_	: 3	-	-

原木きのこ類の検査対象品目及びその対象自治体

直近1年間(2019年4月1日から2020年2月29日まで)の結果に基づき分類

- ◎:基準値(水産物においては基準値の1/2)超過が検出されたもの。
- ●:基準値の1/2の超過が検出されたもの(基準値超過が検出されたものを除く。)。
- □:対象品目の管理の困難性(野生のきのこ類・山菜類等)、移動性(野生鳥獣の肉類)、出荷制限の設定状況(海産魚種)を考慮し検査が必要なもの。
- ▲:生産資材への放射性物質の影響の状況から、栽培管理及びモニタリング検査が必要なもの。
- : 直近1年間の検査結果等に基づいた場合、当該自治体において検査対象として区分されないもの。
- × : 該当なし。

検査対象自治体及び検査対象品目 (栽培/飼養管理が可能な品目群(原木きのこ類は除く))

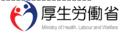
栽培/飼養管理が可能な品目群(原木きのこ類は除く)の検査対象品目及びその対象自治体

		福島県
基準値の 1/2~基準	野菜類	•
1/2~基準値の品目	果実類	•
	*	

※飼養管理の影響を大きく受けるため、継続的なモニタリング検査が必要な品目のうち、 乳の検査は福島県において、牛肉の検査は、岩手県、宮城県、福島県及び栃木県において実施する。

直近1年間(2019年4月1日から2020年2月29日まで)の結果に基づき分類

- ◎:基準値(水産物においては基準値の1/2)超過が検出されたもの。
- ●:基準値の1/2の超過が検出されたもの(基準値超過が検出されたものを除く。)。
- ■:「検査計画、出荷制限等の品目・区域の設定・解除の考え方(2020年3月23日)」(原子力災害対策本部)の 別添において検査対象となっているもの。
- : 直近1年間の検査結果等に基づいた場合、当該自治体において検査対象として区分されないもの。


検査計画、出荷制限等の品目・区域の設定・解除の考え方

	○及び●の自治体(■及び▲の自治体も準じて実施)						
	>基準値の2分の1の市町村	その他の市町村					
>基準値の2分の1	3 検体以上	1 検体以上※1					
牛肉	農家毎に3か月に1回※2						
乳	クーラーステーション等の単位で 定期的に実施 ^{※3}						
内水面魚 海産魚	定期的に実施						

- ※1:県内を市町村を越えて複数の区域に分割し、区域単位で3検体以上実施することもできる。
- ※2:自治体が適切な飼養管理が行われていることを確認した農家は、12か月に1回程度とすることができる。 ただし、過去3年間において基準値の1/2を超える放射性セシウムが検出されたことがない農家で飼養される牛で、飼料の流通・利用の自粛対象外であるほ場で生産された飼料又は輸入飼料のみが給与され、かつ、自粛対象のほ場で生産された飼料の誤用防止措置が取られていることを都道府県が確認し、検査の必要がないと認める牛については検査を要しないことができる。
- ※3:自治体が適切な飼養管理が行われていることを確認し、出荷制限が解除されてから3年を経過した区域で生産された原乳のみを取り扱っており、かつ直近3年間の検査が全て基準値の1/2以下であるクーラーステーション等についてはこの限りではない。

直近1年間(2019年4月1日から2020年2月29日まで)の結果に基づき分類

- ◎:基準値(水産物においては基準値の1/2)超過が検出された自治体。
- ●:基準値の1/2の超過が検出された自治体(基準値超過が検出されたものを除く)。
- ▲:生産資材への放射性物質の影響の状況から、栽培管理及びモニタリング検査が必要な自治体。
- ■:「検査計画、出荷制限等の品目・区域の設定・解除の考え方(2020年3月23日)」(原子力災害対策本部)の別添において検査対象となっているもの

食品中の放射性物質に関する検査の手順

精密な検査(①)と、効率的なスクリーニング検査(②)を組み合わせて実施

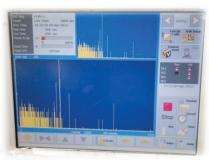
- ① ゲルマニウム半導体検出器を用いた核種分析法
 - ② NaIシンチレーションスペクトロメータ等を用いた 放射性セシウムスクリーニング法
 - ← 短時間で多数の検査を実施するため導入

<測定の流れ>

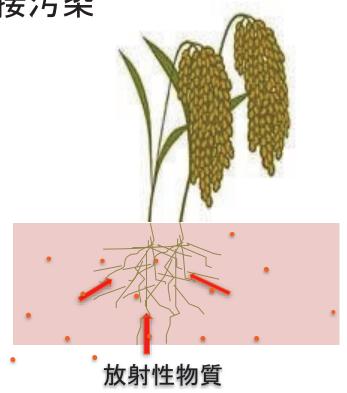
細 切

秤 量

測定


解

厚生労働省ウェブサイト「食品中の放射性物質への対応」より作成 🙌 厚生労働省



農産物の汚染経路

降下した放射性物質による 直接汚染 (事故直後)

放射性物質 葉物野菜 果樹•茶

農地に降下した放射性物質 を根から吸収することによる 間接汚染

樹木に付着した放射性物質 が果実や新芽に転流

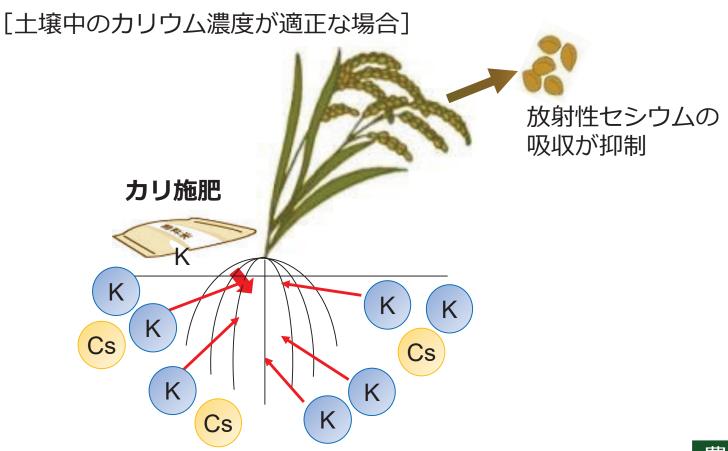
農林水産省「農林水産現場における対応」より作成

農産物に係る放射性物質の移行低減対策(1/5)

一農地の除染一


表土の削り取り

農地土壌を薄く削り取り、土壌 表層に蓄積している放射性物 質を除去


表層土と下層土の反転

表層土と下層土を反転する ことで、作物が吸収する層 の放射性物質濃度を低減

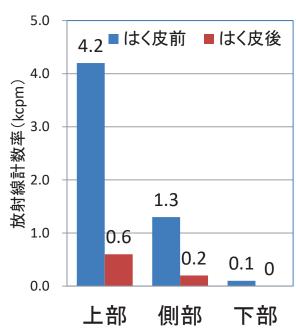
農産物に係る放射性物質の移行低減対策(2/5) 一 カリ施肥による吸収抑制対策 —

- 玄米中の放射性セシウム濃度が高い水田は、土壌中のカリウム濃度が低い傾向
- 土壌中のカリウムは、セシウムと化学的に似た性質を有しており、適切なカリ 肥料の施用により、作物によるセシウム吸収抑制が可能

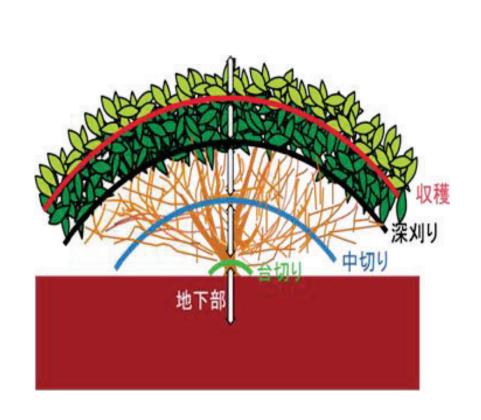
農産物に係る放射性物質の移行低減対策(3/5)

一果樹の樹体洗浄、粗皮削り一

樹体に付着した放射性セシウムを、高圧水による樹体洗浄、粗皮削り等により低減


柿の高圧洗浄作業

ナシの粗皮削り作業


ナシの主枝の処理と放射線量

農林水産省「食品中の放射性物質検査結果について」より作成

農産物に係る放射性物質の移行低減対策(4/5) 一 茶の剪定 一

葉や樹体に付着し、茶葉に移行する放射性セシウムを、剪定・整枝により低減

農産物に係る放射性物質の移行低減対策(5/5) — 肥料等の管理 —

- ・農地土壌の汚染を防ぐため、<u>肥料、土壌改良資材、培土等</u> の資材の暫定許容値(400 Bq/kg)を設定(※)
- ・各自治体等が検査を行い、許容値を超過するものについて は利用の自粛等を実施

※堆肥等を長期間施用しても、原発事故前の農地土壌の 放射性セシウム濃度の範囲に収まるよう設定。食品とは 別の観点で設定。