



放射線による健康影響等に関する統一的な基礎資料

# 上巻放射線の基礎知識と健康影響

平成 28年度版

環境省 放射線健康管理担当参事官室 国立研究開発法人 量子科学技術研究開発機構 放射線医学総合研究所

#### はじめに

東京電力福島第一原子力発電所の事故からの一日も早い住民の方々の生活再建や地域の再生を可能にするため、早期帰還支援と新生活支援の両面の対策により、避難指示の解除に向けた取組が本格化し、福島の復興・再生は一歩一歩着実な進展を見せています。

今後の避難指示解除及び解除後の本格復興を更に推し進めるため、事故により放出された放射性物質による健康不安への対策をこれまで以上にきめ細かく講じていく必要があり、正確で時宜に応じた情報が極めて重要です。

国としては、これまで「帰還に向けた放射線リスクコミュニケーションに関する施策パッケージ\*」に基づき、正確で分かりやすい情報の発信、少人数(1対1・車座)によるリスコミの強化などの取組を推進してきました。

環境省総合環境政策局環境保健部放射線健康管理担当参事官室は、国立研究開発法人量子科学技術研究開発機構放射線医学総合研究所の協力を得て、有識者の方々に監修をいただきながら、放射線の基礎知識と健康影響に関する科学的な知見や関係省庁の取組について収集整理を行い、統一的な基礎資料をまとめてきました。

これまでにデータの更新、最新の情報の取り入れなどの見直しを適宜行い、今回で初版の発行から 4 回目の改訂となりました。監修にご協力いただいた方々に深く感謝いたします。

成果物は、すでに環境省ウェブサイト\*\*上で公開しており、ダウンロード して研修や授業等にお使いいただけます。ぜひ、ご活用ください。

平成 29 年 3 月 31 日

環境省総合環境政策局環境保健部 放射線健康管理担当参事官室 国立研究開発法人 量子科学技術研究開発機構 放射線医学総合研究所

\*帰還に向けた放射線リスクコミュニケーションに関する施策パッケージ http://www.reconstruction.go.jp/topics/main-cat1/sub-cat1-1/20140217175933.html

\*\*放射線による健康影響等に関する統一的な基礎資料の作成 http://www.env.go.jp/chemi/rhm/basic\_data.html

# 上巻 放射線の基礎知識と健康影響

目 次

| 第1章 放射線の基礎知識      |    | 原発事故由来の放射性物質          | 32 |
|-------------------|----|-----------------------|----|
| 1.1 放射能と放射線       |    | チェルノブイリと福島第一の         |    |
| 放射線・放射能・放射性物質とは   | 1  | 放射性核種の推定放出量の比較        | 33 |
| 放射線と放射性物質の違い      | 2  |                       |    |
| 放射線と放射能の単位        | 3  | 2.3 放射線の単位            |    |
| 被ばくの種類            | 4  | ベクレルとシーベルト            | 34 |
|                   |    | シーベルトの由来              | 35 |
| 1.2 放射性物質         |    | 単位間の関係                | 36 |
| 原子の構造と周期律         | 5  | グレイからシーベルトへの換算        | 37 |
| 原子核の安定・不安定        | 6  | 様々な係数                 | 38 |
| 様々な原子核            | 7  | 等価線量と実効線量の計算          | 39 |
| 自然由来•人工由来         | 8  | 線量概念:物理量、防護量、実用量      | 40 |
| 壊変と放射線            | 9  | 線量当量:実効線量を導く、測定可能な実用量 | 41 |
| 半減期               | 10 | 実効線量と線量当量の値の違い        | 42 |
| 半減期と放射能の減衰        | 11 | "シーベルト"を単位とする線量       | 43 |
| 長い半減期の原子核         | 12 |                       |    |
|                   |    | 2.4 線量測定と計算           |    |
| 1.3 放射線           |    | 様々な測定機器               | 44 |
| 放射線はどこで生まれる?      | 13 | 放射線測定の原理              | 45 |
| 放射線の種類            | 14 | 外部被ばく測定用の機器           | 46 |
| 電離放射線の種類          | 15 | 線量の測定方法               | 47 |
| 医療で使われるエックス線と発生装置 | 16 | 外部被ばく線量の特徴            | 48 |
| 電磁波の仲間            | 17 | 外部被ばく(測定)             | 49 |
| 放射線の電離作用ー電離放射線の性質 | 18 | 環境放射能の計測              | 50 |
| 放射線の種類と生物への影響力    | 19 | 遮へいと低減係数              | 51 |
| 放射線の透過力           | 20 | 事故後の追加被ばく線量(計算例)      | 52 |
| 放射線の体内での透過力       | 21 | 内部被ばく線量の算出            | 53 |
| 透過力と人体での影響範囲      | 22 | 預託実効線量                | 54 |
|                   |    | 実効線量への換算係数            | 55 |
| 第2章 放射線による被ばく     |    | 食品からの被ばく線量(計算例)       | 56 |
| 2.1 被ばくの経路        |    | 摂取量の推定のための放射能測定法      | 57 |
| 外部被ばくと内部被ばく       | 23 | 体内放射能の評価法の比較          | 58 |
| 体外から・体内から         | 24 | 内部被ばく測定用の機器           | 59 |
| 様々な被ばく形態          | 25 | 内部被ばく量の体外計測のデータ       | 60 |
| 外部被ばくと皮膚          | 26 | 体内放射能と線量評価            | 61 |
| 内部被ばく             | 27 |                       |    |
| 内部被ばくと放射性物質       | 28 | 2.5 身の回りの放射線          |    |
|                   |    | 自然・人工放射線からの被ばく線量      | 62 |
| 2.2 原子力災害         |    | 時間当たりの被ばく線量の比較        | 63 |
| 国際原子力事象評価尺度       | 29 | 年間当たりの被ばく線量の比較        |    |
| 原子炉事故による影響        | 30 | 自然からの被ばく線量の内訳(日本人)    | 65 |
| 原子炉内の生成物          | 31 | 大地の放射線(世界)            | 66 |
|                   |    |                       |    |

| 大地の放射線(日本)               | 67  | 3.6 がん・白血病           |     |
|--------------------------|-----|----------------------|-----|
| 屋内ラドン                    | 68  | 発がんの仕組み              | 97  |
| ラドン及びトロンの吸入による内部被ばく      | 69  | 放射線感受性の高い組織・臓器       | 98  |
| 固体のラジウムから気体のラドンの生成       | 70  | 年齢による感受性の差           | 99  |
| 体内、食品中の自然放射性物質           | 71  | 低線量率被ばくの発がんへの影響      | 100 |
| 診断で受ける放射線量               | 72  | 固形がんによる死亡と線量との関係     | 101 |
| 被ばく線量の比較(早見図)            | 73  | 白血病と線量反応関係           | 102 |
| 目で見る放射線                  | 74  | 白血病の発症リスク            | 103 |
| 大気圏核実験による放射性降下物の影響       | 75  | 被ばく時年齢と発がんリスクの関係     | 104 |
| 事故以前からの食品中セシウム 137 濃度の継時 | 的推移 | 固形がん発生のリスク係数         | 105 |
|                          | 76  | 被ばく年齢ごとの生涯リスク        | 106 |
|                          |     | 被ばく時年齢とがんの種類         | 107 |
| 第3章 放射線による健康影響           |     | 被ばく時年齢別発がんリスク        | 108 |
| 3.1 人体への影響               |     | がん種類別被ばく時年齢とリスク      | 109 |
| 影響の種類                    | 77  | 原爆被爆者における甲状腺がんの発症    | 110 |
| 被ばくの形態と影響                | 78  | 低線量率長期被ばくの影響         | 111 |
| 放射線影響の分類                 | 79  | チェルノブイリ原発事故によるセシウムの  |     |
| 確定的影響と確率的影響              | 80  | 内部被ばく                | 112 |
|                          |     | 甲状腺について              | 113 |
| 3.2 人体影響の発生機構            |     | ヨウ素について              | 114 |
| 放射線による電離作用               | 81  | 甲状腺がんの特徴             | 115 |
| DNA の損傷と修復               | 82  | 甲状腺がんの罹患率:海外の例       | 116 |
| DNA→細胞→人体                | 83  | 甲状腺がんの罹患率:日本         | 117 |
| 放射線による DNA の損傷           | 84  | 日本人における甲状腺がんのリスク     | 118 |
| 被ばく後の時間経過と影響             | 85  | 甲状腺がんと線量との関係         | 119 |
| 確定的影響                    | 86  | 甲状腺がんとヨウ素摂取          | 120 |
| 臓器・組織の放射線感受性             | 87  | チェルノブイリ原発事故避難集団の被ばく  | 121 |
| 確率的影響                    | 88  | 甲状腺線量の比較             | 122 |
|                          |     | 小児甲状腺がんの発症時期         | 123 |
| 3.3 確定的影響                |     | チェルノブイリ原発事故と東京電力福島第一 |     |
| 全身被ばくと局所被ばく              | 89  | 原子力発電所事故との比較         | 124 |
| 急性放射線症候群                 | 90  |                      |     |
| 様々な影響のしきい値               | 91  | 3.7 リスク              |     |
|                          |     | 確率的影響のリスク            | 125 |
| 3.4 胎児への影響               |     | 相対リスクと寄与リスク          | 126 |
| 確定的影響と時期特異性              | 92  | 低線量率被ばくによるがん死亡リスク    | 127 |
| 精神発達遅滞                   | 93  | 発がんに関連する因子           | 128 |
| 子供への影響ーチェルノブイリ原発事故ー      | 94  | がんのリスク(放射線)          | 129 |
|                          |     | がんのリスク(生活習慣)         | 130 |
| 3.5 遺伝性影響                |     |                      |     |
| 被爆二世における染色体異常            | 95  | 3.8 こころへの影響          |     |
| ヒトでの遺伝性影響のリスク            | 96  | 災害被災者のストレス要因         | 131 |
|                          |     | 放射線事故と健康不安           | 132 |

| 子供の精神医学的影響133              | 国際放射線防護委員会(ICRP)勧告と            |
|----------------------------|--------------------------------|
| 東京電力福島第一原子力発電所事故対応と        | 我が国の対応161                      |
| 地域社会(1/2)134               | 食品の規制値の比較162                   |
| 東京電力福島第一原子力発電所事故対応と        | 被ばく線量と健康リスクとの関係163             |
| 地域社会(2/2)135               |                                |
| 健康影響の総括ーチェルノブイリ原発事故ー 136   | 4.3 線量低減                       |
| 世界保健機関(WHO)による総括           | 外部被ばくの低減三原則164                 |
| ーチェルノブイリ原発事故ー137           | 内部被ばくー原子力災害直後の対応ー165           |
| 専門家グループの見解                 | 食品の調理・加工による放射性セシウムの除去166       |
| ーチェルノブイリ原発事故ー138           |                                |
| 世界保健機関(WHO)2006 年報告書と異なる見解 | 4.4 長期的影響                      |
| ーチェルノブイリ原発事故ー139           | 植物への移行167                      |
| 奇形誘発に関する知見                 | 土壌中の放射性セシウムの分布の状況168           |
| ーチェルノブイリ原発事故ー14O           | 環境中での放射性セシウムの動き                |
| 欧州での人工流産の増加                | : 粘土鉱物による吸着・固着169              |
| ーチェルノブイリ原発事故ー141           | 環境中での放射性セシウムの動き                |
| 一般的なこころのケアに関する参考資料(1/3)    | : 水中から植物への移行170                |
| こころのケアに関する全般的な情報142        | 環境中での放射性セシウムの動き                |
| 一般的なこころのケアに関する参考資料(2/3)    | : 森林土壌からの流出171                 |
| 災害時における子供のケア143            | 核実験フォールアウトの影響(日本)172           |
| 一般的なこころのケアに関する参考資料(3/3)    | 森林中の分布173                      |
| 災害時における疾患ごとのこころのケア144      | 降下・沈着したセシウムの環境中での移行174         |
| 支援者支援:ケアの三段階145            | 海洋中の放射性セシウムの分布175              |
| 支援者のストレス対策146              | 海産生物の濃縮係数176                   |
| 気分が落ち込んだり、不安を感じたら147       |                                |
|                            | 第5章 国際機関による評価                  |
| 第4章 防護の考え方                 | 5.1 WHO 報告書と UNSCEAR2013 報告書   |
| 4.1 防護の原則                  | WHO 報告書と UNSCEAR2013 年報告書(1/3) |
| 放射線防護体系149                 | 評価の比較(1/2)全体概要177              |
| 国際放射線防護委員会(ICRP)150        | WHO 報告書と UNSCEAR2013 年報告書(2/3) |
| 勧告の目的151                   | 評価の比較(2/2)公衆の線量評価と主な           |
| 被ばく状況と防護対策152              | 不確かさ178                        |
| 生物学的側面153                  | WHO 報告書と UNSCEAR2013 年報告書(3/3) |
| LNT モデルをめぐる論争154           | 「保守的な評価」と「現実的な評価」179           |
| 防護の三原則155                  |                                |
| 防護の正当化156                  | 5.2 WHO 報告書                    |
| 防護の最適化 157                 | WHO 報告書(1/4)                   |
| 参考レベルを用いた被ばくの低減158         | WHO 線量評価の概要180                 |
| 線量限度の適用159                 | WHO 報告書(2/4)                   |
|                            | 実効線量推計方法181                    |
| 4.2 線量限度                   | WHO 報告書 (3/4)                  |
| 国際放射線防護委員会(ICRP)勧告と        | 住民の健康リスク評価のまとめ182              |
| 国内法令の比較160                 |                                |

| WHO 報告書 (4/4)          |
|------------------------|
| 不確かさの評価183             |
|                        |
| 5.3 UNSCEAR2013 年報告書   |
| UNSCEAR2013 年報告書(1/9)  |
| 報告書の目的184              |
| UNSCEAR2013 年報告書 (2/9) |
| 公衆の被ばく線量評価の概要185       |
| UNSCEAR2013 年報告書(3/9)  |
| 公衆の被ばく線量評価に使われたデータ186  |
| UNSCEAR2013 年報告書 (4/9) |
| 4 グループごとに公衆の線量を推定      |
| UNSCEAR2013 年報告書 (5/9) |
| 公衆の被ばく線量評価 被ばく経路188    |
| UNSCEAR2013 年報告書 (6/9) |
| 公衆の被ばく線量評価 線量評価の結果189  |
| UNSCEAR2013 年報告書 (7/9) |
| 公衆の健康影響についての評価190      |
| UNSCEAR2013 年報告書 (8/9) |
| 公衆の被ばく線量評価 不確かさ191     |
| UNSCEAR2013 年報告書 (9/9) |
| 直接測定との比較192            |
|                        |
| 5.4 UNSCEAR2016 年白書    |
| UNSCEAR2016 年白書(1/5)   |
| 経緯と概要193               |
| UNSCEAR2016年白書(2/5)    |
| 新規文献がもたらし得る影響 1194     |
| UNSCEAR2016年白書 (3/5)   |
| 新規文献がもたらし得る影響 2195     |
| UNSCEAR2016年白書(4/5)    |
| 新規文献がもたらし得る影響 3196     |
| UNSCEAR2016 年白書 (5/5)  |
| 主要な結論 197              |

## 略語

原災法 原子力災害対策特別措置法

特措法 平成二十三年三月十一日に発生した東北地方太平洋沖地震に伴う原子力発電所の事故

により放出された放射性物質による環境の汚染への対処に関する特別措置法

ADI Acceptable Daily Intake 一日摂取許容量

ALARA As Low As Reasonably Achievable 合理的に達成可能な限り低く

ALPS Advanced Liquid Processing System 多核種除去装置

BMI Body Mass Index ボディ・マス指数

BSS Basic Safety Standards 国際安全基準

CT Computed Tomography コンピュータ断層撮影

DDREF Dose and Dose Rate Effectiveness 線量・線量率効果係数

Factor

DNA Deoxyribonucleic Acid デオキシリボ核酸

EEG Electroencephalogram 脳波

EUROCAT European Surveillance of congenital 欧州先天異常監視機構

**Anomalies** 

GM 計数管 Geiger-Müller counter ガイガー = ミュラー計数管

HPCI High Pressure Coolant Injection 高圧注水系

System

IAEA International Atomic Energy Agency 国際原子力機関

ICRP International Commission on Radio- 国際放射線防護委員会

logical Protection

ILO International Labour Organization 国際労働機関

INES International Nuclear Event Scale 国際原子力事象評価尺度

IQ Intelligence Quotient 知能指数

IXRPC International X-ray and Radium 国際X線・ラジウム防護委員会

**Protection Committee** 

JAEA Japan Atomic Energy Agency 国立研究開発法人日本原子力研究開発機構

JESCO Japan Environmental Storage & Safety 中間貯蔵・環境安全事業株式会社

Corporation

J-RIME Japan Network for Research and 医療被ばく研究情報ネットワーク

Information on Medical Exposure

LNT モデル Linear Non-Threshold model 直線しきい値なしモデル

MRIMagnetic Resonance Imaging磁気共鳴映像法MRLMaximum Residue Levels最大残留基準値NASNational Academy of Sciences全米科学アカデミー

ND Not Detected 不検出

OECD/NEA Organisation for Economic 経済協力開発機構/原子力機関

Co-operation and Development

/Nuclear Energy Agency

PET Positron Emission Tomography 陽電子放射断層撮影

PFA Psychological First Aid 心理的応急措置

PTSD Posttraumatic Stress Disorder 心的外傷後ストレス障害

RCIC Reactor Core Isolation Cooling System 原子炉隔離時冷却系

SDQ Strengths and Difficulties 子どもの強さと困難さアンケート

Questionnaire

SPEEDI System for Prediction of 緊急時迅速放射能影響予測

Environmental Emergency Dose ネットワークシステム

Information

TDI Tolerable Daily Intake 耐容一日摂取量

UNSCEAR United Nations Scientific Committee 原子放射線の影響に関する

on the Effects of Atomic Radiation 国連科学委員会

WBC Whole Body Counter ホールボディ・カウンタ

WHO World Health Organization 世界保健機関

単位

Sv Sievert シーベルト Bq Becquerel ベクレル Gy Gray グレイ eV electron volt 電子ボルト J Joule ジュール

#### SI 接頭辞

| 記号 | 読み           | べき数表記(十進数表記)                         | 漢数字表記 |
|----|--------------|--------------------------------------|-------|
| Т  | テラ (tera)    | 10 <sup>12</sup> (1 000 000 000 000) | 一兆    |
| G  | ギガ (giga)    | 10 <sup>9</sup> (1 000 000 000)      | 十億    |
| М  | メガ (mega)    | 10 <sup>6</sup> (1000 000)           | 百万    |
| k  | キロ (kilo)    | 10 <sup>3</sup> (1 000)              | 千     |
| d  | デシ (deci)    | 10 <sup>-1</sup> (0.1)               | 一分    |
| С  | センチ (centi)  | 10 <sup>-2</sup> (0.01)              | 一厘    |
| m  | ミリ (milli)   | 10 <sup>-3</sup> (0.001)             | 一毛    |
| μ  | マイクロ (micro) | 10 <sup>-6</sup> (0.000 001)         | 一微    |
| n  | ナノ (nano)    | 10 <sup>-9</sup> (0.000 000 001)     | 一塵    |

# 日本語索引

| ■あ行                                     | 急速ろ過法下 48                       |
|-----------------------------------------|---------------------------------|
| アポトーシス上 97                              | 局所被ばく上 25, 上 89                 |
| アララ(ALARA)上 <b>157</b> , 下 73           | 居住制限区域下 145, 下 146              |
| アルファ(a)線 ············ 上 15, 上 19        | 緊急被ばく状況 上 152, 上 161            |
| 遺伝性影響上 79, 上 83, 上 96                   | 空間線量率(経時変化) 下 15~下 18           |
| 医療被ばく 上 62, 上 72                        | 空間放射線量(率)上 50, 上 63, 上 67, 下 19 |
| エックス (X) 線 ······· 上 14, 上 16           | クーラーステーション下 80                  |
| 汚染状況重点調査地域······下 131, 下 133            | グレイ (Gy)上 36, 上 37, 上 40        |
| 汚染水 ·······下 4, 下 9, 下 10               | 計画被ばく状況上 152, 上 159             |
|                                         | 結節 下 167, 下 169                 |
| ■か行                                     | 原子核上 6, 上 7, 上 13               |
|                                         | 原子力安全委員会下 66, 下 195             |
| 外部被ばく上4,上23,上26,上48,上164                | 原子力災害対策特別措置法 下 145              |
| 外部被ばく線量評価システム ··············· 下 154     | 原子力災害対策本部 ······下 78, 下 83      |
| 壊変 ······上 9                            | 原子炉下 3, 下 4, 下 11               |
| 確定的影響上 77, 上 80, 上 86                   | 現存被ばく状況上 152, 上 161             |
| 格納容器下 4                                 | 懸濁物質下 35                        |
| 確率的影響 上 80, 上 88, 上 125                 | 原爆被爆上 95, 上 111                 |
| 仮設焼却施設······下 140, 下 142                | 現場保管 下 134                      |
| カリウム上 12, 上 60, 上 71, 下 196             | 県民健康管理ファイル 下 153                |
| 仮置場下 134                                | 県民健康調査下 151~下 153               |
| がん ·······上 79, 上 88, 上 97, 上 129       | 基本調査下 154, 下 155                |
| 環境放射能水準調査 下 16~下 18                     | 健康診査下 177~下 179                 |
| 感受性上 89, 上 99,上 107                     | 甲状腺検査下 162~下 166                |
| ガンマ (γ) 線 ·······上 14, 上 19, 上 47, 上 50 | こころの健康度・生活習慣下 182~下 184         |
| 管理型処分場······下 142, 下 143                | 妊産婦調査下 189~下 191                |
| 器官形成異常(奇形)···················上 92       | 航空機モニタリング 下 14, 下 20, 下 22      |
| 帰還困難区域下 145, 下 146                      | 公衆被ばく上 160, 上 161               |
| 基準値                                     | 甲状腺上 113, 上 122, 下 162          |
| 一般食品······上 162, 下 67~下 69              | 甲状腺がん 上 110, 上 115~上 120, 上 123 |
| 飲料水 下 67, 下 68                          | 高線量(率)                          |
| 牛乳下 67, 下 75, 下 76, 下 104               | コーデックス委員会下 68, 下 73             |
| 乳幼児食品 下 68, 下 69                        | 国際原子力・放射線事象評価尺度(INES) ········· |
| 吸収線量上 36, 上 37, 上 40                    | 上 29, 下 8                       |
| 吸収抑制対策 下 89                             | 国際放射線防護委員会(ICRP) ······         |
| 急性被ばく 上 78, 上 90                        | 上 150~上 161                     |
| 急性放射線症候群 ······ 上 77, 上 90              |                                 |

| 国連科学委員会(UNSCEAR) ····································                                                                                                                                                                                 | 線量測定 下 148                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 上 177~上 179,上 184~上 197                                                                                                                                                                                                               | スクリーニング調査 下 195                                                                                                                                                                                                                                                                                                            |
| こころの健康支援チーム 下 183                                                                                                                                                                                                                     | ストロンチウム·······上 7, 上 8, 上 32                                                                                                                                                                                                                                                                                               |
| 骨髄上 87                                                                                                                                                                                                                                | 精神発達遅滞上 92, 上 93                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                       | 正当化上 155, 上 156                                                                                                                                                                                                                                                                                                            |
| ■さ行                                                                                                                                                                                                                                   | 世界保健機関(WHO)上 137, 上 139, 上 177                                                                                                                                                                                                                                                                                             |
| サーベイメータ上 45~上 47, 上 49                                                                                                                                                                                                                | セシウム上32, 上56, 上112, 上162, 上168                                                                                                                                                                                                                                                                                             |
| 最適化                                                                                                                                                                                                                                   | 摂取制限下 83                                                                                                                                                                                                                                                                                                                   |
| 三県調査下 173                                                                                                                                                                                                                             | 先行検査 下 163, 下 172                                                                                                                                                                                                                                                                                                          |
| 参考レベル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                             | 穿刺吸引細胞診下 166, 下 174, 下 175                                                                                                                                                                                                                                                                                                 |
| 暫定規制値下 66, 下 67, 下 70                                                                                                                                                                                                                 | 染色体上 95, 上 96                                                                                                                                                                                                                                                                                                              |
| 暫定許容値 · · · · · · · · · · · · · · · · 下 93, 下 104                                                                                                                                                                                     | 先天異常発生率 下 193                                                                                                                                                                                                                                                                                                              |
| シーベルト (Sv) 上 3, 上 34~上 37                                                                                                                                                                                                             | 線量限度 上 159, 上 160                                                                                                                                                                                                                                                                                                          |
| しきい値(しきい線量)                                                                                                                                                                                                                           | 線量当量上 41, 上 42                                                                                                                                                                                                                                                                                                             |
| 上80, 上86, 上91, 上154                                                                                                                                                                                                                   | 全袋検査 下 95, 下 96, 下 98                                                                                                                                                                                                                                                                                                      |
| 自然放射線                                                                                                                                                                                                                                 | 早産率                                                                                                                                                                                                                                                                                                                        |
| 上62, 上63, 上65, 上111                                                                                                                                                                                                                   | 相対リスク上 101~上 103, 上 126                                                                                                                                                                                                                                                                                                    |
| 実効線量······上 36, 上 37, 上 39, 上 42                                                                                                                                                                                                      | 組織加重係数上 37, 上 38                                                                                                                                                                                                                                                                                                           |
| 実効線量係数······上 55, 上 56                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                            |
| •                                                                                                                                                                                                                                     | ± /=                                                                                                                                                                                                                                                                                                                       |
| 実用量 ······上 40                                                                                                                                                                                                                        | ■た行                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                       | ■た行<br>対策地域内廃棄物 ······ 下 140                                                                                                                                                                                                                                                                                               |
| 実用量上 40                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                            |
| 実用量 ······上 40<br>指定廃棄物·····下 141, 下 142, 下 144                                                                                                                                                                                       | 対策地域内廃棄物 下 140                                                                                                                                                                                                                                                                                                             |
| 実用量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                                                                                                                                                                               | 対策地域内廃棄物 ······ 下 140<br>大地からの放射線 ······ 上 66, 上 67                                                                                                                                                                                                                                                                        |
| 実用量・・・・・・上 40         指定廃棄物・・・・・下 141, 下 142, 下 144         遮へい・・・・・・上 20, 上 51, 上 164         出荷制限・・・・・下 66, 下 83, 下 84                                                                                                              | 対策地域内廃棄物 ····································                                                                                                                                                                                                                                                                              |
| 実用量上 40指定廃棄物下 141, 下 142, 下 144遮へい上 20, 上 51, 上 164出荷制限下 66, 下 83, 下 84職業被ばく上 152, 上 159, 上 161                                                                                                                                       | 対策地域内廃棄物 ·········· 下 140<br>大地からの放射線 ·······上 66, 上 67<br>チェルノブイリ ······上 112, 上 121~上 123<br>中間貯蔵施設 ······下 135, 下 136                                                                                                                                                                                                   |
| 実用量       上 40         指定廃棄物       下 141, 下 142, 下 144         遮へい       上 20, 上 51, 上 164         出荷制限       下 66, 下 83, 下 84         職業被ばく       上 152, 上 159, 上 161         食品安全委員会       下 70, 下 71                               | 対策地域内廃棄物 下 140<br>大地からの放射線 上 66, 上 67<br>チェルノブイリ 上 112, 上 121~上 123<br>中間貯蔵施設 下 135, 下 136<br>中性子 上 5, 上 13, 上 19, 上 20                                                                                                                                                                                                    |
| 実用量上40指定廃棄物下141, 下142, 下144遮へい上20, 上51, 上164出荷制限下66, 下83, 下84職業被ばく上152, 上159, 上161食品安全委員会下70, 下71食品区分下68                                                                                                                              | 対策地域内廃棄物                                                                                                                                                                                                                                                                                                                   |
| 実用量上40指定廃棄物下141, 下142, 下144遮へい上20, 上51, 上164出荷制限下66, 下83, 下84職業被ばく上152, 上159, 上161食品安全委員会下70, 下71食品区分下68食品検査(放射性物質)下78~下80, 下82食品中の自然放射性物質上71                                                                                         | 対策地域内廃棄物・・・・ 下 140<br>大地からの放射線・・・・・ 上 166, 上 67<br>チェルノブイリ・・・・・ 上 112, 上 121~上 123<br>中間貯蔵施設・・・ 下 135, 下 136<br>中性子・・・・ 上 5, 上 13, 上 19, 上 20<br>中長期ロードマップ・・・ 下 9<br>追加線量・・・・ 下 67, 下 75<br>低出生体重児率・・・ 下 193<br>低線量(率)・・・・ 上 100, 上 127, 上 153                                                                             |
| 実用量 上 40<br>指定廃棄物 下 141, 下 142, 下 144<br>遮へい 上 20, 上 51, 上 164<br>出荷制限 下 66, 下 83, 下 84<br>職業被ばく 上 152, 上 159, 上 161<br>食品安全委員会 下 70, 下 71<br>食品区分 下 68<br>食品検査 (放射性物質) 下 78~下 80, 下 82<br>食品中の自然放射性物質 上 71<br>除染 下 127, 下 129, 下 131 | 対策地域内廃棄物・・・・ 下 140<br>大地からの放射線・・・・・ 上 166, 上 67<br>チェルノブイリ・・・・・ 上 112, 上 121~上 123<br>中間貯蔵施設・・・ 下 135, 下 136<br>中性子・・・・・ 上 5, 上 13, 上 19, 上 20<br>中長期ロードマップ・・・ 下 9<br>追加線量・・・・ 下 67, 下 75<br>低出生体重児率・・・ 下 193<br>低線量(率)・・・・ 上 100, 上 127, 上 153<br>電子・・・・ 上 5, 上 15, 上 18                                                  |
| 実用量 上 40 指定廃棄物 下 141, 下 142, 下 144 遮へい 上 20, 上 51, 上 164 出荷制限 下 66, 下 83, 下 84 職業被ばく 上 152, 上 159, 上 161 食品安全委員会 下 70, 下 71 食品区分 下 68 食品検査 (放射性物質) 下 78~下 80, 下 82 食品中の自然放射性物質 上 71 除染 下 127, 下 129, 下 131 除染特別地域 下 131, 下 132        | 対策地域内廃棄物・・・・ 上 140 大地からの放射線・・・・ 上 112, 上 121~上 123 中間貯蔵施設・・・・ 下 135, 下 136 中性子・・・・ 上 5, 上 13, 上 19, 上 20 中長期ロードマップ・・・ 下 9 追加線量・・・ 下 67, 下 75 低出生体重児率・・・ 下 193 低線量(率)・・・ 上 100, 上 127, 上 153 電子・・・ 上 5, 上 15, 上 18 電磁波・・・ 上 14, 上 15, 上 17                                                                                  |
| 実用量上40指定廃棄物下141,下142,下144遮へい上20,上51,上164出荷制限下66,下83,下84職業被ばく上152,上159,上161食品安全委員会下70,下71食品区分下68食品検査(放射性物質)下78~下80,下82食品中の自然放射性物質上71除染下127,下129,下131除染特別地域下131,下132人工放射線上62                                                            | 対策地域内廃棄物・・・・・ 140<br>大地からの放射線・・・・・・ 上 166, 上 67<br>チェルノブイリ・・・・ 上 112, 上 121~上 123<br>中間貯蔵施設・・・ 下 135, 下 136<br>中性子・・・・・ 上 5, 上 13, 上 19, 上 20<br>中長期ロードマップ・・・ 下 9<br>追加線量・・・ 下 67, 下 75<br>低出生体重児率・・・ 下 193<br>低線量(率)・・・・・ 上 100, 上 127, 上 153<br>電子・・・・ 上 5, 上 15, 上 18<br>電磁波・・・ 上 14, 上 15, 上 17<br>電離作用・・・・ 上 18, 上 81 |
| 実用量                                                                                                                                                                                                                                   | 対策地域内廃棄物 下 140 大地からの放射線 上 66, 上 67 チェルノブイリ 上 112, 上 121~上 123 中間貯蔵施設 下 135, 下 136 中性子 上 5, 上 13, 上 19, 上 20 中長期ロードマップ 下 9 追加線量 下 67, 下 75 低出生体重児率 下 193 低線量(率) 上 100, 上 127, 上 153 電子 上 5, 上 15, 上 18 電磁波 上 14, 上 15, 上 17 電離作用 上 18, 上 81 転流 上 167, 下 88                                                                  |
| 実用量上40指定廃棄物下141,下142,下144遮へい上20,上51,上164出荷制限下66,下83,下84職業被ばく上152,上159,上161食品安全委員会下70,下71食品区分下68食品検査(放射性物質)上71除染下127,下129,下131除染特別地域下131,下132人工放射線上62心的外傷後ストレス障害(PTSD)上136,上138,下185                                                   | 対策地域内廃棄物 下 140 大地からの放射線 上 66, 上 67 チェルノブイリ 上 112, 上 121~上 123 中間貯蔵施設 下 135, 下 136 中性子 上 5, 上 13, 上 19, 上 20 中長期ロードマップ 下 9 追加線量 下 67, 下 75 低出生体重児率 下 193 低線量(率) 上 100, 上 127, 上 153 電子 上 5, 上 15, 上 18 電磁波 上 14, 上 15, 上 17 電離作用 上 18, 上 81 転流 上 167, 下 88 等価線量 上 36, 上 38, 上 39                                            |
| 実用量                                                                                                                                                                                                                                   | 対策地域内廃棄物 下 140 大地からの放射線 上 66, 上 67 チェルノブイリ 上 112, 上 121~上 123 中間貯蔵施設 下 135, 下 136 中性子 上 5, 上 13, 上 19, 上 20 中長期ロードマップ 下 9 追加線量 下 67, 下 75 低出生体重児率 下 193 低線量(率) 上 100, 上 127, 上 153 電子 上 5, 上 15, 上 18 電磁波 上 14, 上 15, 上 17 電離作用 上 18, 上 81 転流 上 167, 下 88 等価線量 上 36, 上 38, 上 39 透過力 上 19~上 22                              |
| 実用量                                                                                                                                                                                                                                   | 対策地域内廃棄物 下 140 大地からの放射線                                                                                                                                                                                                                                                                                                    |
| 実用量                                                                                                                                                                                                                                   | 対策地域内廃棄物 下 140 大地からの放射線 上 66, 上 67 チェルノブイリ 上 112, 上 121~上 123 中間貯蔵施設 下 135, 下 136 中性子 上 5, 上 13, 上 19, 上 20 中長期ロードマップ 下 9 追加線量 下 67, 下 75 低出生体重児率 下 193 低線量(率) 上 100, 上 127, 上 153 電子 上 5, 上 15, 上 18 電磁波 上 14, 上 15, 上 17 電離作用 上 18, 上 81 転流 上 167, 下 88 等価線量 上 36, 上 38, 上 39 透過力 上 19~上 22                              |

### ■な行

| 内部被ばく上4,上23,上53,上112,上165<br>乳児用食品下68,下69,下76<br>粘土鉱物上168,上169,上174<br>燃料(使用済燃料)取り出し下9,下11<br>燃料の溶融(溶融)下2,下4<br>農地土壌の汚染防止下93<br>のう胞下168,下169,下172,下174 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| ■ は行                                                                                                                                                   |
| バイオアッセイ       上 57, 上 58         廃止措置 …       下 9, 下 11         白内障 …       上 89, 上 91                                                                 |
| 白血病 ·······上 102, 上 103, 下 71, 下 72<br>半減期 ······上 8, 上 10, 上 11                                                                                       |
| 物理学的半減期 ·······上 11, 上 28, 上 32<br>生物学的半減期 ·····上 11, 上 28, 上 32, 上 61<br>実効半減期 ······上 28, 上 32                                                       |
| 反転耕 ····································                                                                                                               |
| 避難指示区域······ 下 145~下 147, 下 149<br>皮膚紅斑····· 上 26                                                                                                      |
| <ul><li>肥料中放射性物質濃度下 93</li><li>フォールアウト上 75, 上 172</li><li>旧フクシマエコテッククリーンセンター…下 143</li></ul>                                                           |
| 福島県立医大放射線医学県民健康管理センター下 152, 下 191                                                                                                                      |
| ふくしま心のケアセンター下 184<br>プルトニウム上7, 上8, 上32, 下63, 下64                                                                                                       |

| ベータ (β)線上 14, 上 15, 上 19                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ベクレル (Bq)上1, 上3, 上9, 上36                                                                                                                                                                                                             |
| ベント下7                                                                                                                                                                                                                                |
| 放射性降下物上 75, 上 172                                                                                                                                                                                                                    |
| 放射性物質上 2, 上 32, 上 50                                                                                                                                                                                                                 |
| 放射性物質汚染対処特措法下 131                                                                                                                                                                                                                    |
| 放射性プルーム 上 30, 下 23, 下 61                                                                                                                                                                                                             |
| 放射線上 1, 上 2, 上 13, 上 14                                                                                                                                                                                                              |
| 放射線加重係数 上 37, 上 38                                                                                                                                                                                                                   |
| 放射線検査 上 62, 上 64, 上 72                                                                                                                                                                                                               |
| 放射線治療上 73                                                                                                                                                                                                                            |
| 放射能                                                                                                                                                                                                                                  |
| ホールボディ・カウンタ(WBC)                                                                                                                                                                                                                     |
| 上59, 上60, 下196, 下197                                                                                                                                                                                                                 |
| 1 15 18                                                                                                                                                                                                                              |
| 本格検査下 171, 下 174, 下 175                                                                                                                                                                                                              |
| 本格検査                                                                                                                                                                                                                                 |
| 本格検査 ·························· 171, 下 174, 下 175 ■ま・や・ら・わ行                                                                                                                                                                          |
|                                                                                                                                                                                                                                      |
| ■ま・や・ら・わ行                                                                                                                                                                                                                            |
| ■ま・や・ら・わ行<br>マーケットバスケット ·······下 77                                                                                                                                                                                                  |
| ■ ま・や・ら・わ行<br>マーケットバスケット ·······下 77<br>慢性被ばく·····上 78                                                                                                                                                                               |
| ■ ま・や・ら・わ行 マーケットバスケット 下 77 慢性被ばく 上 78 マンモグラフィ 上 72                                                                                                                                                                                   |
| ■ ま・や・ら・わ行  マーケットバスケット 下 77  慢性被ばく 上 78  マンモグラフィ 上 72  モニタリングポスト 下 16~下 19                                                                                                                                                           |
| ■ま・や・ら・わ行 マーケットバスケット・・・・ 下 77 慢性被ばく・・・・ 上 78 マンモグラフィ・・・・ 上 72 モニタリングポスト・・・ 下 16~下 19 陽子・・・・ 上 5, 上 6, 上 15                                                                                                                           |
| ■ま・や・ら・わ行 マーケットバスケット・・・・・ 下 77 慢性被ばく・・・・・・・ 上 78 マンモグラフィ・・・・・・ 上 72 モニタリングポスト・・・・ 下 16~下 19 陽子・・・・・ 上 5, 上 6, 上 15 ヨウ素・・・・・・ 上 32, 上 59, 上 114, 上 120, 上 123 溶融燃料(燃料デブリ)・・・・ 下 9, 下 11                                               |
| ■ま・や・ら・わ行 マーケットバスケット・・・・・・ 下 77 慢性被ばく・・・・・・・・ 上 78 マンモグラフィ・・・・・・ 上 72 モニタリングポスト・・・・・ 下 16~下 19 陽子・・・・・・ 上 5, 上 6, 上 15 ヨウ素・・・・・ 上 32, 上 59, 上 114, 上 120, 上 123                                                                      |
| ■ま・や・ら・わ行 マーケットバスケット・・・・ 下 77 慢性被ばく・・・・ 上 78 マンモグラフィ・・・・ 上 72 モニタリングポスト・・・ 下 16~下 19 陽子・・・・ 上 5, 上 6, 上 15 ヨウ素・・・・ 上 32, 上 59, 上 114, 上 120, 上 123 溶融燃料(燃料デブリ)・・・ 下 9, 下 11 預託実効線量・・・・ 上 53, 上 54 預託線量・・・・ 上 54                      |
| ■ま・や・ら・わ行 マーケットバスケット・・・・・ 下 77 慢性被ばく・・・・・・・ 上 78 マンモグラフィ・・・・・・ 上 72 モニタリングポスト・・・・ 下 16~下 19 陽子・・・・・ 上 5, 上 6, 上 15 ヨウ素・・・・・・ 上 32, 上 59, 上 114, 上 120, 上 123 溶融燃料(燃料デブリ)・・・・ 下 9, 下 11 預託実効線量・・・・・ 上 53, 上 54                        |
| ■ま・や・ら・わ行 マーケットバスケット・・・・ 下 77 慢性被ばく・・・・ 上 78 マンモグラフィ・・・・ 上 72 モニタリングポスト・・・ 下 16~下 19 陽子・・・・ 上 5, 上 6, 上 15 ヨウ素・・・・・ 上 32, 上 59, 上 114, 上 120, 上 123 溶融燃料(燃料デブリ)・・・ 下 9, 下 11 預託実効線量・・・・ 上 53, 上 54 預託線量・・・・ 上 54 ラジウム・・・・ 上 69, 上 70 |

上125, 上126, 上129, 上130, 下70, 下72

## 外国語索引

#### $A\sim K$

A 判定(A1 判定、A2 判定)…下165,下172~下174
ALARA ……上157,下73
B 判定……下165,下172,下174
Bq ……上1,上3,上9,上36
C 判定……下165
Codex ……下68,下73
CT ……上62,上72
DNA ……上82,上84
Gy ……上36,上37,上40
IAEA ……上29
ICRP ……上150~上152,上154
INES ……上29,下8
K6 ……下185

#### ■L~Z

| LNT モデル・・・・・・・ 上 153, 上 154                                                     |
|---------------------------------------------------------------------------------|
| PCL····· 下 185                                                                  |
| PET 検査 ······上 72, 上 73                                                         |
| PTSD 上 138, 下 185                                                               |
| SDQ······ 下 188                                                                 |
| Sv ······ 上 1, 上 3, 上 34~上 37                                                   |
| UNSCEAR $\cdots$ $\perp$ 177 $\sim$ $\perp$ 179, $\perp$ 184 $\sim$ $\perp$ 197 |
| WBC ····· <u></u> <u> </u> <u> </u>                                             |
| WHO······                                                                       |
| X線 ······上 14, 上 16                                                             |

## 記号

a線 ·······上 14, 上 15, 上 19 β線 ······上 14, 上 15, 上 19 γ線 …… 上 14, 上 15, 上 19, 上 46, 上 50

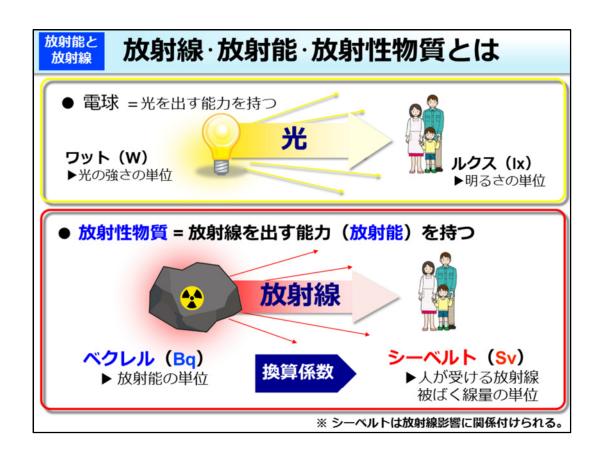
# 放射線による健康影響等に関する統一的な基礎資料 上巻 放射線の基礎知識と健康影響

 平成 26 年2月13日
 初版
 発行

 平成 26 年7月7日
 第2版
 発行

 平成 27 年7月1日
 第3版
 発行

 平成 28 年6月1日
 第4版
 発行


 平成 29 年3月31日
 第5版
 発行

発行 環境省総合環境政策局環境保健部 放射線健康管理担当参事官室 東京都千代田区霞が関 1-2-2

国立研究開発法人 量子科学技術研究開発機構 放射線医学総合研究所千葉県千葉市稲毛区穴川 4-9-1

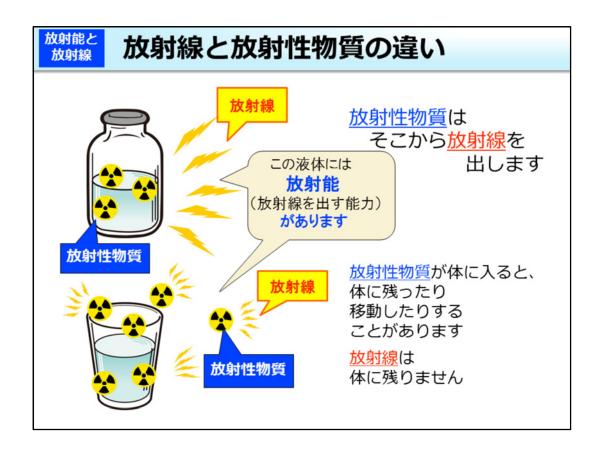
# 第1章

# 放射線の基礎知識



放射線、放射能、放射性物質について整理してみます。

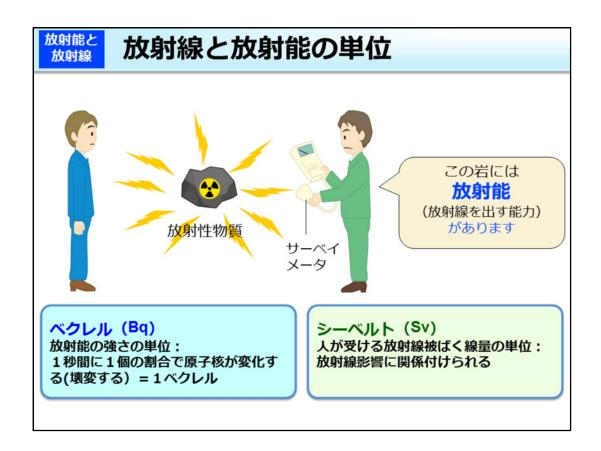
どこの家にもある電球は光(明かり)を出す能力があります。その能力を「ワット」という単位で表します。その光を人は受け取り、明るさとして感じます。そのときの単位が「ルクス」です。


よく耳にするベクレルとシーベルトという放射線に関する単位もこの関係に似ています。例えば、岩石等が放射線を出すとき、この岩石を「放射性物質」といいます。(上巻P3、「放射線と放射能の単位」)

放射性物質は放射線を出しますが、その能力を「放射能」といいます。「この岩石は放射能を持っている」、「この岩石は放射線を出す」という表現を用います。この岩石の持っている放射線を出す能力の大きさを「ベクレル(Ba)」という単位で表します。

その受けた放射線で、どれ位の影響を受けるかを知る際に必要な放射線被ばく線量の単位として、「シーベルト(Sv)」が使われます。「Bq」から「Sv」を求めるためには特有の換算係数があります。

放射能(ベクレルで表した数値)が大きいほど、放射性物質からたくさんの放射線が出ていることを意味しますが、被ばく量(シーベルトで表した数値)は放射性物質と被ばくする人の距離によって変わります。放射線の強さは、放射線を出しているものから近ければ強く、遠ければ弱くなります。明るい電球であっても、離れた所では暗いのと同じです。


本資料への収録日: 平成25年3月31日



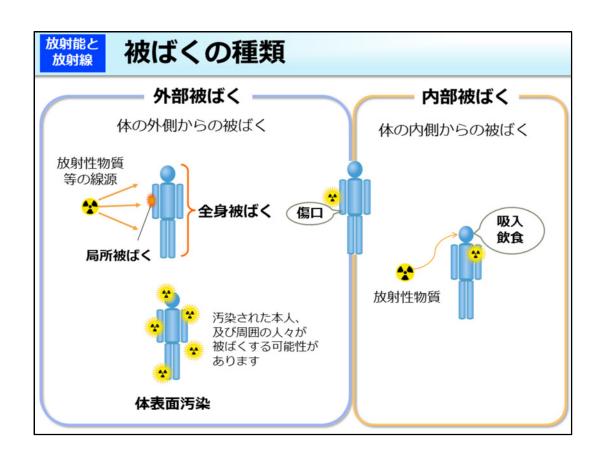
放射性物質とは放射線を出す物質のことです。例えば、「この水は放射性物質を含んでいる」といいます。放射能という言葉は、放射性物質と同じ意味に使われることもありますが、自然科学分野では放射線を出す能力の意味に使います。

密封された容器に放射性物質を含んだ水が入っていた場合、容器から放射線は出てきますが、放射性物質は出てきません。もしふたのない状態で放射性物質の入った水が置かれていたら、こぼれる等して放射性物質が広がっていく可能性があります。

本資料への収録日: 平成25年3月31日



放射線は目に見えず、においもないため、人間が五感で感じることはできません。しかし、測定することが比較的容易という特徴があります。


最近よく見聞きする「ベクレル」や「シーベルト」は放射線に関する単位です。例えば、専用の測定器を使って土壌や食品の放射能を測れば、どんな放射性物質がどれだけ含まれているかを知ることができます。ベクレルというのはこうした放射能の強さを表す単位です。シーベルトというのは、人体への影響の大きさを表す単位です(詳しくは、上巻P34~43、「2.3 放射線の単位」を参照)。

放射性物質が多くある所はどこなのか、手で持ち運びができるサーベイメータという機械を使って特定することができます。また物質が出す放射線の強さや種類も、人間が受ける放射線の大きさも、サーベイメータで調べることができます。

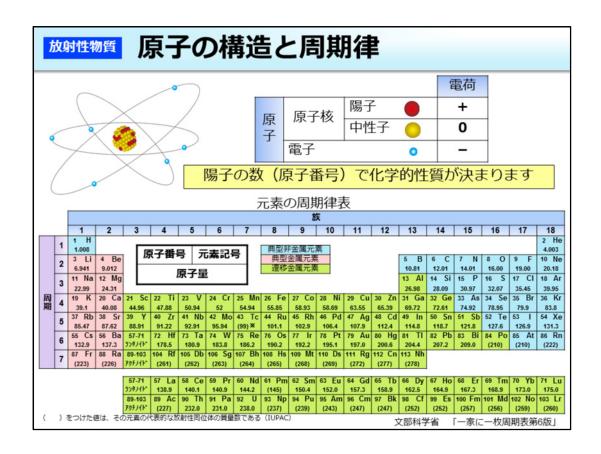
さらに、様々な調査研究の結果から、事故の影響で受けている放射線と自然から受けている放射線のそれぞれの量や合計量も知ることができます。

このように放射線の測定が容易であることを利用し、放射線の管理や防護が考えられています。

本資料への収録日: 平成25年3月31日



放射性物質から放射線を受ける事を放射線被ばくといいます。一方、放射能汚染とは、放射性物質の存在によって物(人も含めて)や場所が汚染されることです。つまり、 放射能汚染は通常存在しない場所に放射性物質が存在することを示すものです。


体の外にある放射性物質から、放射線を受けることを外部被ばくと呼びます。

空気中に飛散した放射性物質を空気と共に吸い込んだり、汚染された飲食物を取り込んだりすると、体の中から放射線を受けることになります。また傷口からも放射性物質が体の中に入ることがあります。この状況を内部被ばくと呼びます。

放射線の種類によって、空気中や体の中での通りやすさが異なるため、外部被ばくと内部被ばくでは、問題になる放射線の種類( $\alpha$ (アルファ)線、 $\beta$ (ベータ)線、 $\gamma$ (ガンマ)線)(上巻P13~22、「1.3 放射線」)や放射性物質(核種)が異なります。

また、放射性物質が体の表面に付いた状態を体表面汚染と呼びます。この場合、汚染した本人も被ばくをしますが、周囲の人々が二次的に汚染し、被ばくする可能性もあります。体表面に付着した放射性物質が鼻・ロ・傷口から侵入すれば体内汚染となり内部被ばくの原因にもなります。

本資料への収録日: 平成25年3月31日



原子は原子核とその周りを回る電子から構成されています。原子核はプラスの電荷を持つ陽子と電荷を持たない中性子で構成されており、原子の化学的性質(元素の種類)は陽子の数(原子番号)で決まります。

例えば炭素は陽子が6個の元素ですが、中性子がそれぞれ5個、6個、7個及び8個の炭素が存在しています。いずれも化学的性質は同じです。

これらの原子を区別して呼ぶ場合は、元素名(同種の原子を包括する呼び名)の 後に質量数(陽子と中性子の合計数)を付けて、炭素11、炭素12、炭素13、炭素14と 呼びます。炭素の中で、自然界で最も多いのは炭素12です。

炭素14は、窒素14に宇宙線の一つである中性子が当たり、陽子を追い出してできる、自然界に存在する放射性物質です。炭素14の原子核には陽子が6個、中性子が8個ありますが、両者の数のバランスが悪く、エネルギー的に不安定な状態です。

炭素14の中の一つの中性子が陽子に変わると、陽子も中性子も7個ずつになって安定します。このとき、余分なエネルギーが電子として放出されます。これが $\beta$  (ベータ)線の正体です。つまり、炭素14は $\beta$ 線を出すことで、陽子数が7個の窒素に戻り、エネルギー的に安定した状態になります。

本資料への収録日: 平成25年3月31日

| 放射性物質 原子核の安定・不安定 |         |                   |                              |                                                       |                   |                   |                   |                   |
|------------------|---------|-------------------|------------------------------|-------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|
|                  |         |                   |                              | 原子核<br>陽子と中性子の数のバランスにより、<br>不安定な原子核が存在します<br>=放射性の原子核 |                   |                   |                   |                   |
|                  |         | 炭素11              | 炭素12                         | 炭素13                                                  | 炭素14              | セシウム<br>133       | セシウム<br>134       | セシウム<br>137       |
| E 7 #            | 陽子数     | 6                 | 6                            | 6                                                     | 6                 | 55                | 55                | 55                |
| 原子核              | 中性子数    | 5                 | 6                            | 7                                                     | 8                 | 78                | 79                | 82                |
| 性                | 賃       | 放射性               | 安定                           | 安定                                                    | 放射性               | 安定                | 放射性               | 放射性               |
|                  |         | <sup>11</sup> C   | <sup>12</sup> C              | <sup>13</sup> C                                       | <sup>14</sup> C   | <sup>133</sup> Cs | <sup>134</sup> Cs | <sup>137</sup> Cs |
| 記                | <b></b> | 11 <sub>6</sub> C | <sup>12</sup> <sub>6</sub> C | <sup>13</sup> <sub>6</sub> C                          | 14 <sub>6</sub> C | <sup>133</sup> Cs | <sup>134</sup> Cs | <sup>137</sup> Cs |
|                  |         | C-11              | C-12                         | C-13                                                  | C-14              | Cs-133            | Cs-134            | Cs-137            |
|                  |         |                   |                              |                                                       |                   |                   |                   |                   |

同じ原子番号(陽子数)の原子で中性子数が異なる原子核の関係を「同位体」といいます。同位体には放射性壊変を起こして放射線を放出する「放射性同位体」と放射線を出さずに原子量も変わらない「安定同位体」があります。

放射性物質が、不安定な状態を解消するために放出する放射線には、 $\alpha$  (アルファ)線、 $\beta$  (ベータ)線、 $\gamma$  (ガンマ)線があります。 $\alpha$  線と $\beta$  線の放出後には、原子の種類が変化しますが、 $\gamma$  線が放出されるときには原子の種類は変わりません。どの放射線を出すかは、放射性物質の種類ごとに決まっています(上巻P34~43、「放射線の単位」)。

炭素は陽子の数が6個の元素ですが、中性子の数が5個から8個のもの等が存在します。セシウムは陽子の数が55個の元素ですが、中性子の数は57から96個のものまで見つかっています。そのうち安定なものは中性子の数が78個のセシウム133(陽子55個+中性子78個=133)だけで、残りは全て放射線を出す放射性物質です。原子力発電所の事故が起こると、ウラン235の核分裂により生成されたセシウム134やセシウム137が環境中に放出されることがあります。これらのセシウムは $\beta$ 線と $\gamma$ 線を放出します。

(関連ページ:上巻P31、「原子炉内の生成物」)

本資料への収録日:平成25年3月31日

## が 様々な原子核

同位体:陽子数(原子番号)が同じで中性子数の異なる原子核

| 元素      | 記号 | 陽子数                  | 同位体        |                     |  |  |
|---------|----|----------------------|------------|---------------------|--|--|
| 儿来      | 心力 | 7 <del>2</del> 7 664 | 安定         | 放射性                 |  |  |
| 水素      | Н  | 1                    | H-1, H-2*  | H-3*                |  |  |
| 炭素      | С  | 6                    | C-12, C-13 | C-11, C-14,··       |  |  |
| カリウム    | K  | 19                   | K-39, K-41 | K-40, K-42, · ·     |  |  |
| ストロンチウム | Sr | 38                   | Sr-88      | Sr-89, Sr-90, · ·   |  |  |
| ヨウ素     | ı  | 53                   | I-127      | I-125, I-131, · ·   |  |  |
| セシウム    | Cs | 55                   | Cs-133     | Cs-134, Cs-137, · · |  |  |
| ウラン     | U  | 92                   | なし         | U-235, U-238, · ·   |  |  |
| プルトニウム  | Pu | 94                   | なし         | Pu-238, Pu-239, · · |  |  |

※: H-2は重水素、H-3は三重水素又は、トリチウムと呼ばれます。

・・は、そのほかにも放射性物質があることを意味します。青字は自然に存在する放射性物質

水素原子のほとんどは、原子核が陽子1個のH-1ですが、陽子1個と中性子 1個のH-2(重水素)、陽子1個と中性子2個のH-3(トリチウム)も存在します。このうち放射線を出す水素はH-3だけです。

このように放射性の原子核が1種類しかない元素(同種の原子を包括する呼び名) もありますが、複数の種類の放射性の原子核を持つ元素も多くあります。またウランや プルトニウムのように、原子番号の大きい元素では、放射線を出さない安定した原子 核を持たないものもあります。

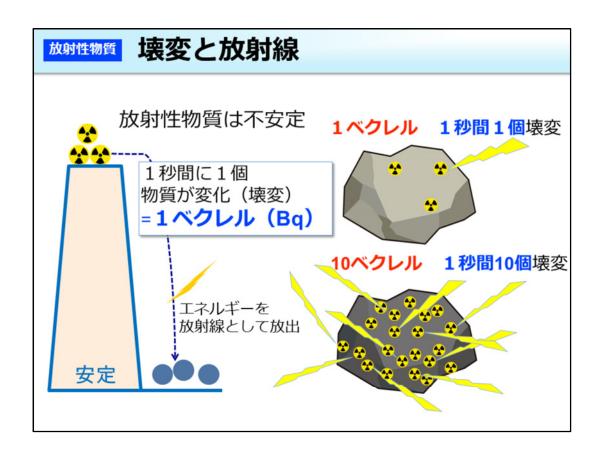
自然界にある放射性物質は、地球誕生のときから存在するものがほとんどですが、 炭素14のように宇宙線と大気との相互作用で今でも生成され続けているものもありま す。

本資料への収録日:平成25年3月31日

# 放射性物質 自然由来・人工由来

| 放射性物質              | 放出される放射線 | 半減期     |
|--------------------|----------|---------|
| トリウム232 (Th-232)   | α, γ     | 141億年   |
| ウラン238 (U-238)     | α, γ     | 45億年    |
| カリウム40 (K-40)      | β, γ     | 13億年    |
| プルトニウム239 (Pu-239) | α, γ     | 24,000年 |
| 炭素14 (C-14)        | β        | 5,730年  |
| セシウム137 (Cs-137)   | β,γ      | 30年     |
| ストロンチウム90 (Sr-90)  | β        | 29年     |
| セシウム134 (Cs-134)   | β,γ      | 2.1年    |
| ヨウ素131 (I-131)     | β,γ      | 8 ⊟     |
| ラドン222 (Rn-222)    | α, γ     | 3.8⊟    |

**赤字**は人工放射性物質 α:α(アルファ)線、β:β(ベータ)線、γ:γ(ガンマ)線

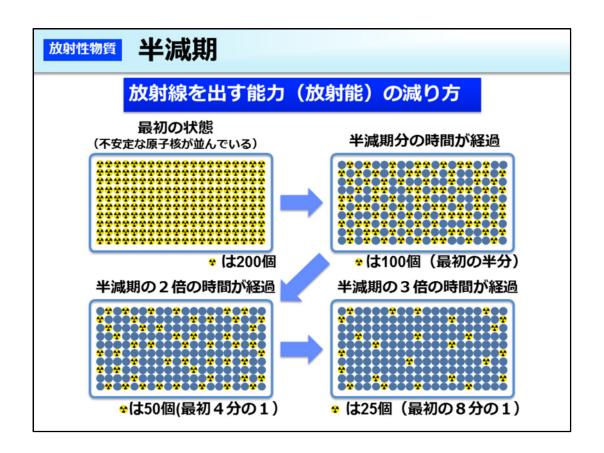

トリウム系列のトリウム232、ウラン系列のウラン238、カリウム40のように半減期が長い放射性物質は、遠い昔に宇宙で作られ、地球が誕生するときに地球に取り込まれたものです。

トリウム232は鉛208になるまでに、ウラン238は鉛206になるまでに、いろいろな放射性物質に形を変え、 $\alpha$  (アルファ)線や $\beta$  (ベータ)線、 $\gamma$  (ガンマ)線を出します。

炭素14も自然界に存在する放射性物質ですが、空気中の80%を占める窒素に宇宙線である中性子線が当たって生成されたものです。炭素14は $\beta$ 線を放出して、再び窒素に戻ります。

セシウム134、セシウム137、ストロンチウム90、ヨウ素131、プルトニウム239は、原子力発電所が事故を起こすと環境中に放出されることがあります。人工放射性物質の中にも、プルトニウム239のように、半減期が極めて長いものもあります。

本資料への収録日: 平成25年3月31日

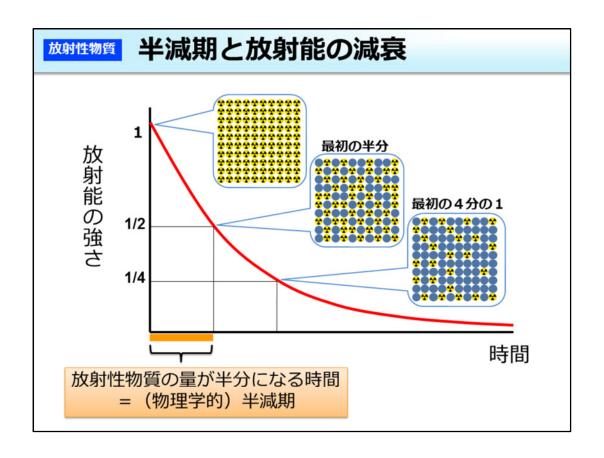



放射性物質は、エネルギー的に不安定な状態にあります。そこで、余分なエネルギーを出して、安定な状態に変わろうとします。このエネルギーを放射線として放出します。

放射能の強さを定量的に表すときに、ベクレルという単位を使います。1ベクレルは「1秒間に1個原子核が変化(壊変)する」量です。原子核が変化する際に放射線を出すことが多いので、ベクレルが放射線を出す能力の単位となっています。例えば、岩石の放射能が1ベクレルであった場合、岩石に含まれている放射性物質の原子核は、1秒間に1個変化することを意味します。10ベクレルであれば、1秒間に10個変化することになります。

放射性物質の原子核が変化し、放射線を出してエネルギー的に安定になれば、放射線を出さなくなります。

本資料への収録日: 平成25年3月31日




放射線を出すことでエネルギー的に安定な状態となった物質は放射線を出しません。 時間がたてば放射性物質の量が減り、放射能も弱まります。こうして放射能が弱まり、 はじめの半分になるまでの時間のことを半減期と呼びます。放射性物質の減り方と半 減期の関係を絵で見てみます。

もともと200個の放射性物質があったとします。半減期分の時間が経過する間に、約100個の放射性物質は放射線を出し、別の物質に変化します。残り約100個は放射性物質のままです。

次に、半減期の2倍の時間が経過する間に残りの約100個の放射性物質のうち約50個は放射線を出し、別の物質になります。結果的に放射性物質は約50個(元の約4分の1)までに減ります。さらに半減期の3倍の時間が経過した時点で、放射性物質の量はもともとの約8分の1に減少します。

本資料への収録日: 平成25年3月31日



放射能の減り方と半減期の関係をグラフで見てみます。

半減期分の時間が経過すると、放射性物質の量は元の半分になり、結果として放射能も半分になります。更に半減期分の時間が経過すると、放射性物質の量が更に半分(最初の4分の1)になります。このように、半減期分の時間が経過するごとに、放射能は1→2分の1→4分の1→8分の1→16分の1と減っていきます。横軸に経過時間、縦軸を放射能の強さにして、放射能の減り方をグラフに表すと、曲線(指数関数)的に減ることが分かります。

半減期は放射性物質の種類によって異なります。例えば、ヨウ素131の半減期は8日、セシウム134の半減期は2年、セシウム137の半減期は30年です。

なお、体内に取り込まれた放射性物質は、臓器や組織に取り込まれた後、排泄されます。排泄によって体内の放射性物質の量が半分になる時間を生物学的半減期といいます。

(関連ページ: 上巻P28、「内部被ばくと放射性物質」)

本資料への収録日:平成25年3月31日

#### 放射性物質

## 長い半減期の原子核



宇宙の誕生と共に放射性物質が存在し、地球が生まれたときに取り込まれた放射性物質



系列 放射性の原子核から安定な原子核になるまで、 次々に核種が変化しながら壊変する

- ・ウラン238
- 半減期:45億年
- ・トリウム232
- ・ウラン235

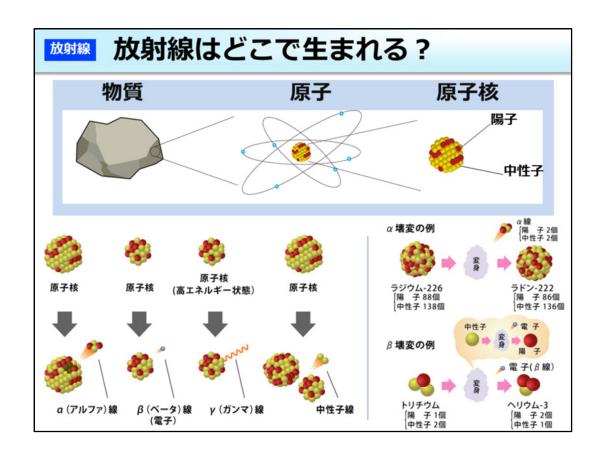
非系列 放射性の原子核から直接安定な原子核に壊変する

・カリウム40~

半減期:13億年

・ルビジウム87等

放射線を出す原子核の中には、大変長い半減期を持つものがあります。ウラン238の半減期は45億年です。地球の年齢は約46億年といわれていますので、地球が生まれたときに存在したウラン238は今ようやく半分になったところです。

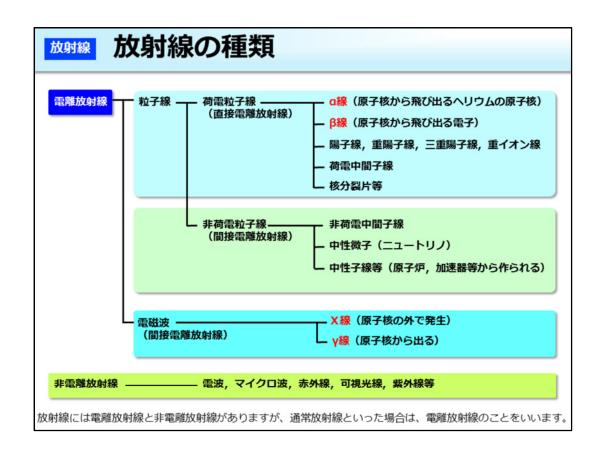

放射性物質の中には、1回放射線を出して安定になるものもありますが、安定な物質になるまでに複数回壊変して、いろいろな放射性物質に変化するものもあります。

例えば、ウラン238は $\alpha$  (アルファ)線を放出してトリウム234に変わりますが、これも放射性物質です。トリウム234は更に $\beta$  (ベータ)線を放出し、やはり放射性物質のプロトアクチニウム234に変化します。安定な鉛206になるまでに10数回も異なる原子に変化する系列をなしています。

カリウム40も、半減期が13億年と長く、地球が誕生したときに地球に取り込まれた自然起源の放射性物質です。しかし、カリウム40は系列を作らず1回の壊変で安定なカルシウム40になります。

(関連ページ:上巻P10、「半減期」)

本資料への収録日:平成25年3月31日



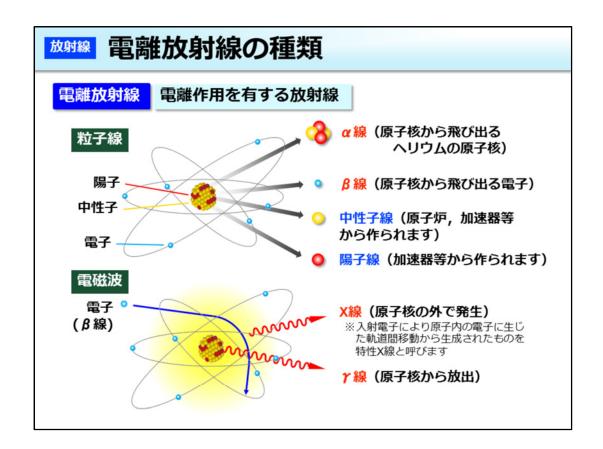

 $\alpha$  (アルファ)線、 $\beta$  (ベータ)線、 $\gamma$  (ガンマ)線、 $\chi$  (エックス)線という名前は、これらの放射線が発見された当時、その実体が分からないために付けられた名称です。今では、 $\alpha$  線とは、陽子2個と中性子2個からなるヘリウム原子核が高速で飛び出したものであることが分かっています。また  $\beta$  線は原子核から飛び出した電子です。ヘリウム原子核は、電子の約7,300倍の重さです。 $\alpha$  線や  $\beta$  線を出した直後の原子核は、通常、まだエネルギーが高く、不安定な状態なので、 $\gamma$  線を出して、より安定した状態になろうとします。しかし中には  $\gamma$  線を出さないものもあります。

 $\alpha$ 線、 $\beta$ 線、 $\gamma$ 線が原子核から放出されるのに対し、X線は原子核の外側で発生する電磁波です。X線と異なり、 $\gamma$ 線は原子核から発生しますが、どちらも実態は同じ電磁波です。中性子は、原子核を構成する粒子の一つです。原子核が核分裂する等の際に運動エネルギーを持って原子核の外へ飛び出す中性子のことを中性子線といいます。

(関連ページ: 上巻P14、「放射線の種類」、上巻P15、「電離放射線の種類」)

本資料への収録日: 平成25年3月31日



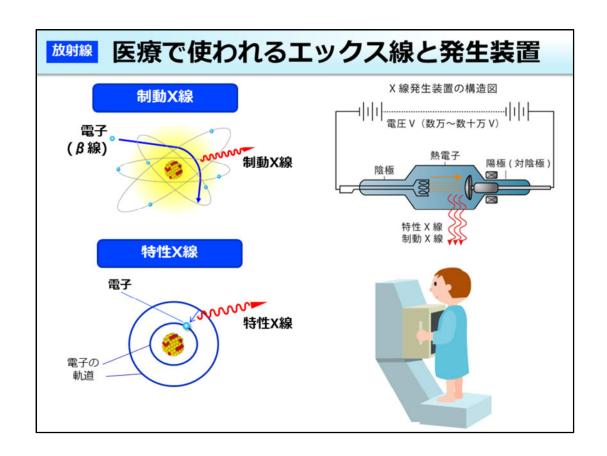

放射線と一般的にいう場合、電離放射線のことをいいます。電離放射線は物質を構成する原子を電離(正電荷のイオンと負電荷の電子に分離)する能力を有し、粒子線と電磁波があります。

粒子線の仲間には、 $\alpha$  (アルファ)線、 $\beta$  (ベータ)線、中性子線等が含まれます (上巻P13、「放射線はどこで生まれる?」)。粒子線のうち、電荷を持つ(イオン化した)ものを荷電粒子線、電荷を持たないものを非荷電粒子線と呼びます。 $\gamma$  (ガンマ)線、 $\chi$  (エックス)線は電磁波の一種です。

電磁波でも、電波、赤外線、可視光線のように電離作用を持たないものがあり、それらを非電離放射線と呼びます。紫外線は一部に電離作用がありますが、一般的には非電離放射線に分類されます(上巻P15、「電離放射線の種類」)。

(関連ページ:上巻P19、「放射線の種類と生物への影響力」、上巻P20、「放射線の透過力」)

本資料への収録日: 平成25年3月31日

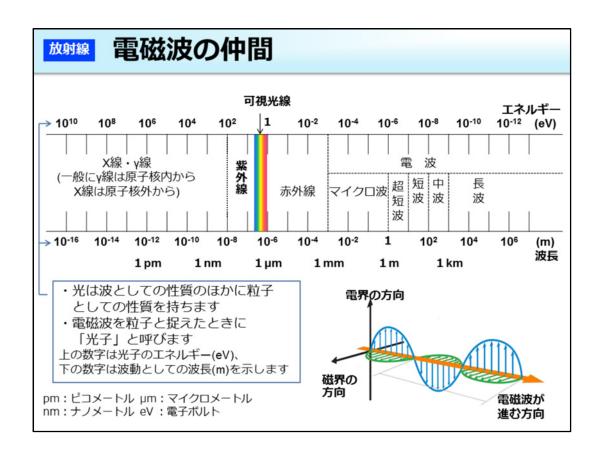



粒子線の仲間には、 $\alpha$  (アルファ)線、 $\beta$  (ベータ)線、中性子線等が含まれます。  $\alpha$  線とは、陽子2個と中性子2個からなるヘリウム原子核が高速で飛び出したもの、  $\beta$  線は原子核から飛び出した電子です。そのほかに中性子線や陽子線も粒子線の仲間です。

 $\gamma$ (ガンマ)線とX(エックス)線は電磁波の仲間です。  $\alpha$ 線、 $\beta$ 線、 $\gamma$ 線が原子核から放出されるのに対し、健康診査等で行われるX線検査で利用されるX線は原子核の外側で発生する電磁波です。X線検査の際には、X線管で発生させるX線が利用されます。X線には、制動X線と特性X線があります(上巻P16、「医療で使われるエックX8と発生装置」)。

(関連ページ:上巻P13、「放射線はどこで生まれる?」、上巻P14、「放射線の種類」)

本資料への収録日: 平成25年3月31日

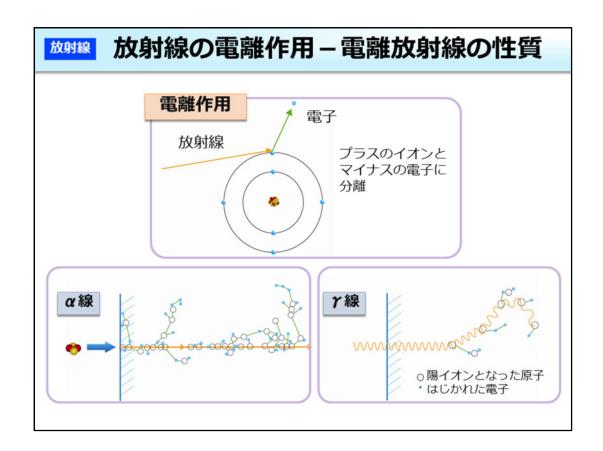



X(エックス)線検査の際には、X線管で発生させるX線が利用されます。X線管の内部では、陰極と陽極(タングステン、モリブデン、銅等)の間に高電圧がかけられており、熱電子が真空中を陰極から陽極に高速で移動します。熱電子が陽極の原子核に引き寄せられて進行方向を変えるときに発生するX線を制動X線といいます。また、陽極の原子の内側の電子軌道の電子をはじき飛ばすと、この空いた電子軌道へ外側の電子軌道から電子が移動(遷移)します。これに伴い発生するX線を特性X線といいます。X線管で発生するX線のほとんどは制動X線です。

なお、X線管のスイッチを切れば、X線の発生は止まります。

医療分野で利用されるX線発生装置は、診断用と治療用に分けられます。撮影する目的や部位に応じてX線のエネルギーと量は調節されます。胸部X線撮影(診断)の場合、1回に受ける放射線量は、おおよそ0.06ミリシーベルトです。

本資料への収録日: 平成28年3月31日




電磁波とは、電界(電場)と磁界(磁場)が相互に作用しながら空間を伝播する波のことです。波長が短くなる(周波数が高くなる)ほど、電磁波のエネルギーは高くなります。また放射線のエネルギーは電子ボルト(eV)で表されます。1eV は $1.6 \times 10^{-19}$  ジュール(J)です。

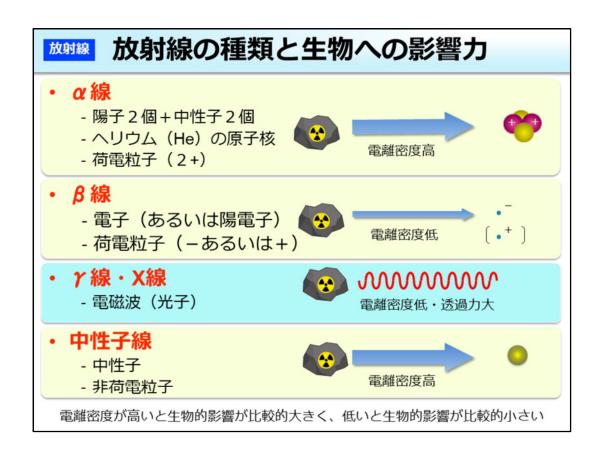
X (エックス)線と $\gamma$  (ガンマ)線は、発生のメカニズムの違いがありますが、どちらもエネルギーの高い電磁波です。

このように電磁波は、文字どおり波としての振る舞いをすることもあることから、図に示すように電磁波が進む方向に対し直角な波型に表すことがあります。

本資料への収録日:平成25年3月31日



放射線が物質中を通過する場合、持っているエネルギーにより、物質を構成している原子が持つ軌道電子をはじき出して、陽電荷を帯びた状態の原子(又は陽イオンの分子)と自由な電子とに分離します。これを電離作用といいます。


電離作用を持つ電離放射線の中には、物質を直接電離するものと、間接的に電離するものがあります。

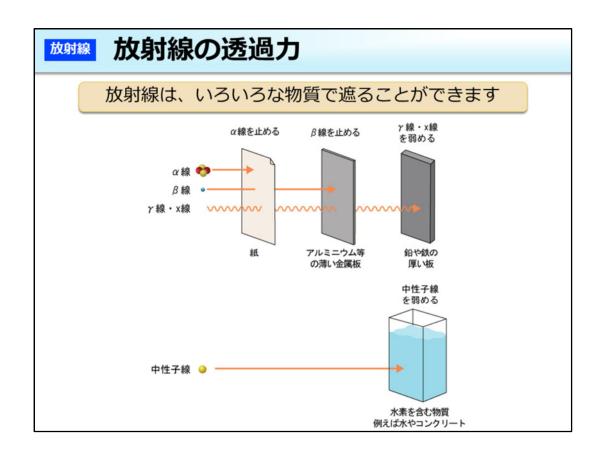
 $\alpha$  (アルファ)線、 $\beta$  (ベータ)線等の電荷を持った粒子線は、物質を直接電離します。 特に $\alpha$  線は、電離密度が高く、 $\beta$  線等の数百倍の密度の電離を引き起こします。

 $\gamma$  (ガンマ)線、X(エックス)線は、物質との相互作用によって発生した二次電子によって、物質を間接的に電離します。

(関連ページ:上巻P14、「放射線の種類」)

本資料への収録日:平成25年3月31日




α (アルファ)線は、皮膚の角質層(皮膚表面の死んだ細胞の層)を透過できないため、α 線による外部被ばくは問題になりません。しかし、α 線を放出する放射性物質による内部被ばくの場合は、組織内で局所的にたくさんの電離、すなわち、高密度の電離を起こし、集中的にエネルギーを与えます。そのため、DNAに大きな損傷を与え、生物への強い影響を引き起こします。

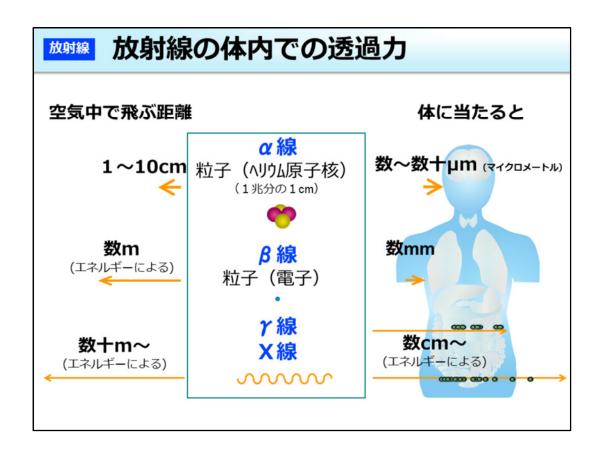
 $\beta$  (ベータ)線は $\alpha$ 線同様、通った所の物質に直接電離を引き起こしますが、電離の密度は低く、生物に及ぼす影響力は $\alpha$ 線ほど強くありません。体外からの被ばくでは、皮膚や皮下組織に影響を与える可能性があります。

 $\gamma$  (ガンマ)線・X(エックス)線は透過力が強く、深部の臓器・組織にまで到達しますが、やはり電離密度は高くありません。生物への影響力は $\beta$  線と同程度です。

中性子は陽子と質量がほぼ同じであるため、中性子線は、陽子と衝突すると効率よく止まります。人体は水分を多く含んでいるため、中性子は水分子を構成する水素の原子核(陽子)とぶつかりながら、エネルギーを失っていきます。

本資料への収録日:平成25年3月31日




電荷を持つ粒子や電磁波は、物質と相互作用し、エネルギー(速度)を失い、最終的には止まります。

 $\alpha$  (アルファ)線は電離する量が極めて多いので、紙1枚で止まります。 $\beta$  (ベータ)線は、エネルギーによりますが、空気中では数m程度飛び、プラスチック1cm、アルミ板2~4mm程度で止まります。 $\gamma$  (ガンマ)線・ $\chi$  (エックス)線は $\alpha$  線や $\beta$  線よりも透過力が高く、これもエネルギーにより、空気中の原子と衝突しながら次第にエネルギーを失い、空気中を数十mから数百m飛びます。一方、密度の高い鉛や鉄の厚い板によって止めることができるため、放射線発生装置からの $\gamma$  線や $\chi$  線は、鉄等を用いて遮へいすることができます。

電荷を持たない中性子は、衝突によりエネルギーを失い、その後、物質との相互作用等で吸収されます。すなわち、中性子は、物質を構成する原子核と直接衝突することで運動エネルギー(速度)を失います。質量がほぼ同じである陽子(水素の原子核)と衝突する場合に最も効果的に運動エネルギーを失います。

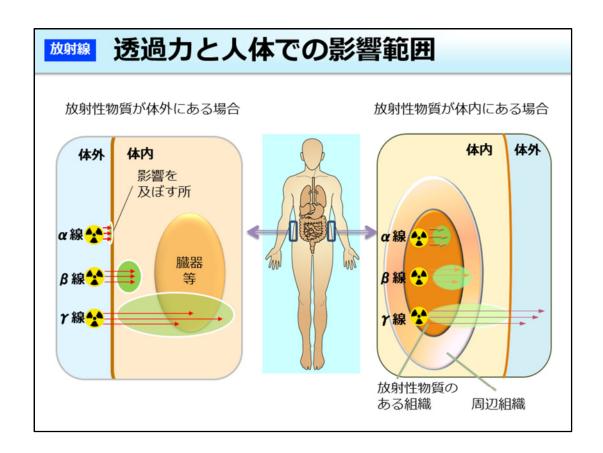
(関連ページ:上巻P21、「放射線の体内での透過力」)

本資料への収録日:平成25年3月31日



放射線はその種類によって、空気中や人体中の通りやすさが違います。そのため、外部被ばくと内部被ばくでは、問題となる放射線( $\alpha$ (アルファ)線、 $\beta$ (ベータ)線、 $\gamma$ (ガンマ)線)や放射性物質(核種)が異なります。

 $\alpha$ 線は空気中を数cm程度しか飛ぶことができず、紙一枚で止めることができます。


外部被ばくでは、皮膚表面の死んだ細胞の層(角質層)より深く到達しないので、影響が現れることはありません。しかし、体内に入った場合には、近傍にある細胞に集中的にエネルギーを与えます。

 $\beta$ 線が空気中で飛ぶ距離は数mなので、線源が体から離れた所にある場合には、  $\beta$ 線はほとんど被ばくに寄与しません。体表面に付いた場合は皮膚と皮下組織に、体内に入った場合は、周囲数mmの範囲にエネルギーを与えます。

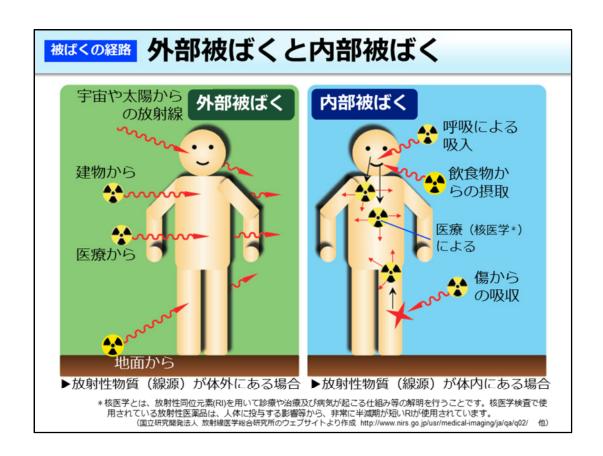
γ線・X(エックス)線は透過力が強く、空気中を数十mから数百mまで飛びます。体に当たった場合は、体の奥深くまで到達し、通り抜けてしまうこともあります。この通り道にエネルギーを与えます。X線検査では、X線が通り抜けやすい部分(肺等)は黒く映り、通り抜けにくい部分(骨等)は白く映ります。

(関連ページ:上巻P22、「透過力と人体での影響範囲」)

本資料への収録日:平成25年3月31日



外部被ばくでは、 $\alpha$  (アルファ)線に被ばくした場合、体表の角質層で止まってしまうこと( $\alpha$ 線の透過距離はおよそ数十 $\mu$ m(マイクロメートル))から、影響が現れることはありません。 $\beta$  (ベータ)線は皮膚を通過すること(透過距離はおよそ数mm(ミリメートル))から、線量が相当高い場合には熱傷(やけど)のような症状を引き起こしますが、体の奥深くまで届くことはありません。 $\gamma$  (ガンマ)線は体の奥の重要な臓器まで到達します。こうしたことから、外部被ばくで問題になるのは主に $\gamma$ 線です。


一方、内部被ばくでは、 $\alpha$ 線、 $\beta$ 線、 $\gamma$ 線を放出する全ての放射性物質が体内の細胞に影響を及ぼす可能性があります。 $\alpha$ 線の場合は、飛ぶ距離から考えても、その影響は放射性物質が存在する組織内に限定されますが、生物への影響力は強く、内部被ばくに関しては特に気を付ける必要があります。 $\gamma$ 線の場合は、飛ぶ距離が長いため、全身に影響を及ぼす可能性があります。

なお、ウランやプルトニウム等放射性物質の種類によっては、体内に取り込まれた場合、内部被ばくの影響だけでなく、化学的な金属毒性等の影響を受ける場合があります。

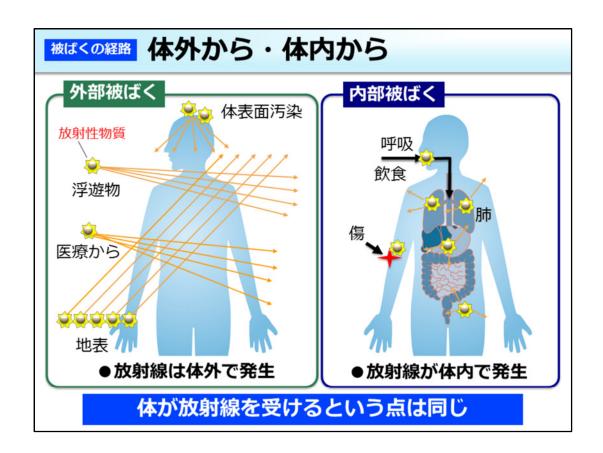
本資料への収録日: 平成25年3月31日

# 第2章

放射線による被ばく



放射線を体に浴びることを「放射線被ばく」といいます。


放射線被ばくには「外部被ばく」と「内部被ばく」の2種類があります。

体の外に放射性物質(放射線源あるいは単に線源ともいいます)があって、そこから 被ばくすることを「外部被ばく」といいます。

一方、放射性物質が体の中に入ってしまった場合、体の中に放射線源があるので、 体内で被ばくすることになります。これを「内部被ばく」といいます。

この区別は自然界からの放射線、事故由来の放射線、医療放射線といった区別とは関係なく用いられる言葉です(上巻P62、「自然・人工放射線からの被ばく線量」)。

本資料への収録日: 平成25年3月31日



地表にある放射性物質や空気中に浮遊する放射性物質、あるいは衣服や体表面に付いた放射性物質等から放射線を受けることが外部被ばくです(上巻P26、「外部被ばくと皮膚」)。

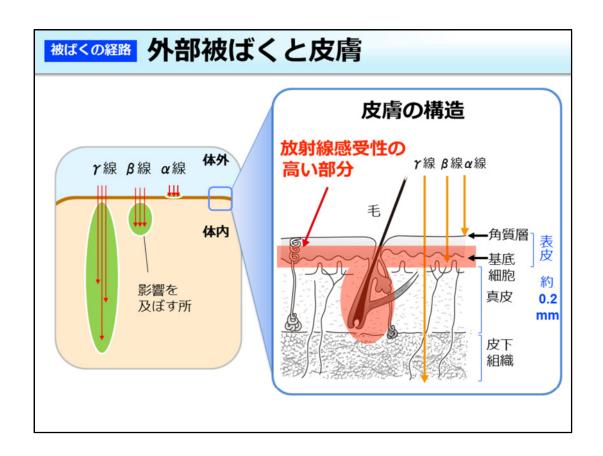
一方、内部被ばくは、①食事により飲食物中の放射性物質を体内に取り込んだ場合 (経口摂取)、②呼吸により空気中の放射性物質を体内に吸い込んだ場合(吸入摂取)、 ③皮膚から吸収された場合(経皮吸収)、④傷口から放射性物質を体内に取り込んだ 場合(創傷侵入)により起こります。一旦放射性物質が体内に入ると、排泄物と一緒に 体外に排泄されたり(生物学的半減期)、時間の経過と共に放射能が弱まるまで、人 体は放射線を受けることになります(上巻P27、「内部被ばく」)。

外部被ばくと内部被ばくの違いは、放射線を発するものが体外にあるか、体内にあるかの違いであり、体が放射線を受けるという点では同じです(上巻P25、「様々な被ばく形態」)。

本資料への収録日: 平成25年3月31日

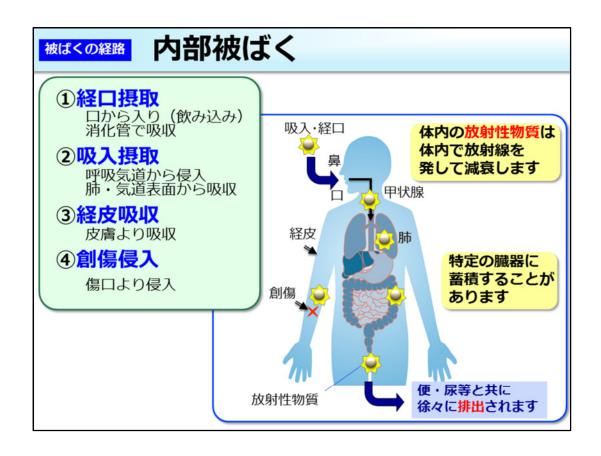


人体が放射線を受けたことにより、身体に影響を及ぼすかどうかは、どこに、どれだけ放射線を受けたかによって異なります。


全身に放射線を受けることを全身被ばく、部分的に受ける場合を局所被ばくと呼びます。

全身被ばくでは全ての臓器・組織で放射線の影響が現れる可能性がありますが、局所被ばくでは、原則として被ばくした臓器・組織のみに影響が現れます。被ばくした部位に免疫系や内分泌系の器官が含まれる場合には、離れた臓器・組織に間接的に影響が現れることがあり得ますが、基本的には被ばくした臓器・組織の影響が問題となります。

また、臓器によって放射線への感受性が異なります。このため、局所被ばくでは、被ばくした箇所に放射線感受性の高い臓器が含まれているかどうかで、影響の生じ方が大きく異なります。


内部被ばくの場合、放射性物質が蓄積しやすい臓器・組織では被ばく線量が高くなります。この蓄積しやすい臓器・組織の放射線感受性が高い場合、放射線による影響が出る可能性が高くなります。チェルノブイリ原発事故の後、ベラルーシやウクライナでは、子供の甲状腺がんの発症数が増加しましたが、これは、放射性ヨウ素が甲状腺に蓄積しやすいこと、子供の甲状腺が大人より放射線感受性が高いことの両方の原因によります。

本資料への収録日:平成25年3月31日



外部被ばくでは、透過力の弱い $\alpha$  (アルファ)線は表皮で止まってしまうので影響を及ぼすことはありませんが、 $\beta$  (ベータ)線を出す放射性物質が大量に体表面に付着し、長く放置された場合には、皮膚の放射線感受性の高い基底細胞や毛根細胞に影響を及ぼし、皮膚が赤色に変化する皮膚紅斑や脱毛等が起こることがあります。しかし、こうした被ばくは大変まれで、外部被ばくで問題になるのは、体の内部まで影響を及ぼす、 $\gamma$  (ガンマ)線を出す放射性物質によるものです。

本資料への収録日: 平成25年3月31日



内部被ばくには、放射性物質が食べ物と一緒に取り込まれる、呼吸と共に取り込まれる、皮膚から吸収される、傷口から体内に入るといった、4つの経路があります。

体に取り込まれた放射性物質は体内で放射線を放出します。放射性物質の種類によっては、特定の臓器に蓄積することがあります。

これは放射性物質の化学的性質によるところが大きく、例えば、ストロンチウムはカルシウムに似た性質を持っているため、体内に入ると、骨等カルシウムのある所に蓄積する性質を、セシウムはカリウムに似た性質を持っているため、体内に入ると全身に分布する性質を持っています。

また、ヨウ素は甲状腺ホルモンの構成元素なので、放射性ヨウ素も安定ヨウ素も、甲状腺に蓄積する性質があります。

本資料への収録日:平成25年3月31日

### 被ばくの経路

# 内部被ばくと放射性物質

## 内部被ばくで特に問題となる放射性物質の特徴

①  $\alpha$  線を出す物質>  $\beta$  線や $\gamma$  線を出す物質

②取り込まれやすく、排泄されにくい物質

③特定の組織に蓄積されやすい物質

放射性物質

体の中の放射性物質は、壊変により他の元素に変わっていくと共に、代謝により便・尿等と共に徐々に排泄されます。壊変により放射性物質が半分になるのに要する時間を物理学的半減期(Tp)、代謝により体内の放射性物質が半減する時間を生物学的半減期(Tb)といいます。体内に入った放射性物質は、物理学的半減期と生物学的半減期の両方により減少していきます。その半減する時間を実効半減期(Te)といい、Tp、Tbとの間に以下の関係があります。

1/Te = 1/Tp + 1/Tb

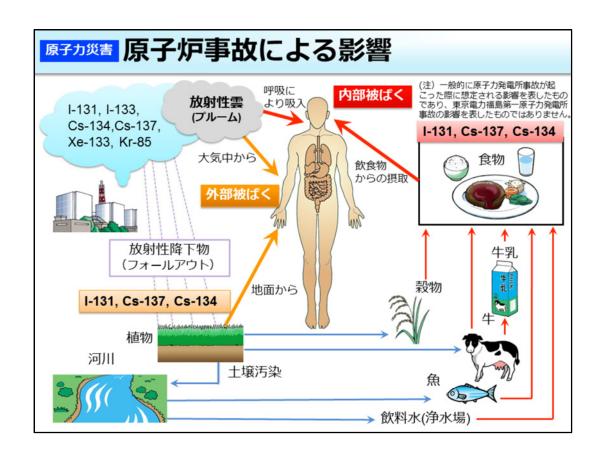
内部被ばくで特に問題になるのは、半減期が長く、α(アルファ)線を出す放射性物質です。また、体内での挙動でいうと、取り込まれやすく排泄されにくい物質や、特定の組織に蓄積しやすい物質も、内部被ばくの線量が高くなるため問題になります。

例えばプルトニウムは、消化管では吸収されにくいので、食べ物を介して体内へ取り込まれるよりも、呼吸と共に肺から取り込まれた場合に問題となります。その後、肺から血管に入り血流によって移動し、骨や肝臓に沈着します。プルトニウムはこうした器官内でα線を出すため、肺がん・白血病・骨腫瘍・肝がんを引き起こす可能性があります。

一方、放射性セシウムは、カリウムと似た性質のため、体内に取り込まれやすいのですが、同時に排泄されやすい性質も持っています。特定の組織には蓄積しませんが、筋肉を中心に取り込まれます。大人の場合、取り込まれた放射性セシウムの量が半分になるのに掛かる日数は約70日だといわれています(上巻P32、「原発事故由来の放射性物質」)。

本資料への収録日: 平成25年3月31日




国際原子力事象評価尺度(INES)は、国際原子力機関(IAEA)と経済協力開発機構原子力機関(OECD/NEA)が定めた尺度で、1992年に各国に採用が勧告されました。

原子力施設等の異常事象や事故は、その深刻度に応じて7つのカテゴリーに分類されます。各国は、異常事象や事故をこの尺度を使って深刻度を判定し、発表します。

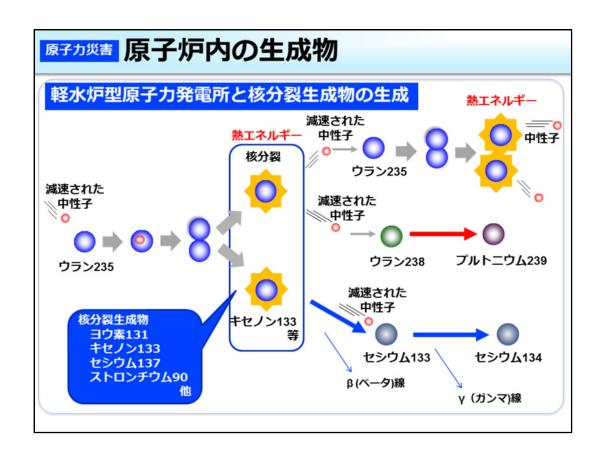
東京電力福島第一原子力発電所事故はその放射性物質の放出量から最も深刻な事故であることを示すレベル7と判断されています。

(関連ページ: 下巻P8、「INES(国際原子力・放射線事象評価尺度)評価」)

本資料への収録日:平成25年3月31日



原子力施設で緊急事態が発生し、気体状の放射性物質が漏れると、放射性雲(プルーム)と呼ばれる状態で大気中を流れていきます。


放射性雲には放射性希ガスや、放射性ヨウ素及びセシウム137のような粒子状物質が含まれることがあります。

放射性希ガス(クリプトン、キセノン)は、地面に沈着せず、呼吸により体内に取り込まれても体内にとどまることはありません。しかし、放射性雲が上空を通過中に、この中の放射性物質から出される放射線を人は受けます。これは「外部被ばく」になります。放射性ヨウ素や放射性セシウムは、放射性雲が通過する間に地表面等に沈着します。このため、通過後も沈着した放射性物質からの外部被ばくがあります(上巻P23、「外部被ばくと内部被ばく」)。

また、放射性雲の通過中の放射性物質を直接吸入すること及び放射性物質の沈着により汚染した飲料水や食物を摂取することによっても放射性物質を体内に取り込み、内部被ばくを受けることになります。

(関連ページ:上巻P31、「原子炉内の生成物」)

本資料への収録日: 平成25年3月31日



軽水炉型原子力発電所(東京電力福島第一原子力発電所も含む)は現在、世界で最も広く使われているタイプの原子炉です。燃料の濃縮ウラン(ウラン235:3~5%、ウラン238:95~97%)に中性子を当てると、核分裂が起こります。そのとき、ヨウ素131、セシウム137、ストロンチウム90等の放射性の核分裂生成物が作られます。また、ウラン238に中性子が当たると、プルトニウム239が作られます。

なお、セシウム134はウラン235の核分裂によって直接生成するのではありません。 核分裂生成物であるヨウ素131やキセノン133等が順次ベータ壊変してセシウム133 になり、さらに、セシウム133に、減速された中性子が捕獲されてセシウム134になり ます。

正常に原子炉が働けば、これらの生成物は燃料棒の中にとどまり、原子炉から 外へは漏れ出しません。

原子力施設には放射性物質を外に出さないようにする様々な仕組みがありますが、それらが全て機能しなくなると、放射性物質が漏れ出すことになります。

本資料への収録日:平成25年3月31日

# 原子力災害原発事故由来の放射性物質

|                                    | <b>I-131</b><br>ョウ素131 | <b>Cs-134</b><br>セシウム134   | <b>Cs-137</b><br>セシウム137   | Sr-90<br>ストロンチウム90 | <b>Pu-239</b><br>プルトニウム239 |
|------------------------------------|------------------------|----------------------------|----------------------------|--------------------|----------------------------|
| 出す放射線<br>の種類                       | β, γ                   | β, γ                       | β, γ                       | β                  | α, γ                       |
| 生物学的 半減期                           | 80日*1                  | 70日~<br>100日* <sup>2</sup> | 70日~<br>100日* <sup>3</sup> | 50年*3              | 肝臓:20年*4                   |
| 物理学的<br>半減期                        | 8日                     | 2.1年                       | 30年                        | 29年                | 24,000年                    |
| 実効半減期<br>(生物学的半減期と<br>物理学的半減期から計算) | 7日                     | 64日<br>~88日                | 70日<br>~99日                | 18年                | 20年                        |
| 蓄積する<br>器官・組織                      | 甲状腺                    | 全身                         | 全身                         | 骨                  | 肝臓、骨                       |

実効半減期:体内に取り込まれた放射性物質の量が、生物学的排泄作用(生物学的半減期)及び放射性物質の物理的壊変(物理学的半減期)の両者によって減少し半分になるまでの時間。緊急被ばく医療テキスト(医療科学社)の値を引用しました。

実効半減期は、生物学的半減期の表中に記載した蓄積する器官・組織の数値から計算。 \*1: ICRP Publication 78、\*2: セシウム137と同じと仮定、\*3: JAEA技術解説平成23年11月、\*4: ICRP Publication 48

東京電力福島第一原子力発電所事故により、環境中に放出された放射性物質で、健康や環境への影響において、主に問題となるものは、ヨウ素131、セシウム134、セシウム137、ストロンチウム90の4種類です。そのほかにも様々な物質が放出されましたが、いずれもこの4種に比べると半減期が短いか、放出量が小さいことが分かっています。

ョウ素131は、半減期が8日と短いのですが、体内に入ると10~30%は甲状腺に蓄積されます。そうなると甲状腺は、しばらくの間、 $\beta$  (ベータ)線と $\gamma$  (ガンマ)線による被ばくを受けることになります。

原子力発電所の事故による汚染の場合、問題になる放射性セシウムにはセシウム134とセシウム137の2種類があります。セシウム137の半減期は30年と長く、環境汚染が長く続きます。放射性セシウムは化学的性質がカリウムとよく似ているため、体に入った場合は、カリウム同様ほぼ全身に分布します。セシウムやヨウ素の生物学的半減期は年齢によって変わり、若いほど短くなることが知られています。

ストロンチウム90は半減期が長く、化学的性質がカルシウムに似ているため、体に入ると骨に蓄積します。γ線を出さないため、セシウム134及び137ほど簡単にどこにどれだけあるかを調べることはできません。原子力発電所事故の場合セシウム134及び137よりも量は少ないながら、核分裂によって発生したストロンチウム90も存在すると考えられています。東京電力福島第一原子力発電所事故由来のプルトニウム239等も検出されていますが、量的には事故発生前に全国で観測された測定値と同程度です。

(関連ページ:上巻P31、「原子炉内の生成物」)

本資料への収録日: 平成25年3月31日

## 原子力災害

## チェルノブイリと福島第一の 放射性核種の推定放出量の比較

| 核種              | 半減期 <sup>a</sup> | 沸点b   | n.e.s                | 環境への放出量 PBq*         |                      | 福島第一/<br>チェルノブイリ |
|-----------------|------------------|-------|----------------------|----------------------|----------------------|------------------|
| 仪程              | 干减别"             | 20 00 | チェルノブイリ <sup>d</sup> | 福島第一 <sup>e</sup>    |                      |                  |
| キセノン (Xe) 133   | 5⊟               | -108  | -112                 | 6500                 | 11000                | 1.69             |
| ヨウ素(I)131       | 8日               | 184   | 114                  | ~1760                | 160                  | 0.09             |
| セシウム (Cs) 134   | 2年               | 678   | 28                   | ~47                  | 18                   | 0.38             |
| セシウム (Cs) 137   | 30年              | 678   | 28                   | ~85                  | 15                   | 0.18             |
| ストロンチウム (Sr) 90 | 29年              | 1380  | 769                  | ~10                  | 0.14                 | 0.01             |
| プルトニウム (Pu) 238 | 88年              | 3235  | 640                  | 1.5×10 <sup>-2</sup> | 1.9×10 <sup>-5</sup> | 0.0012           |
| プルトニウム (Pu) 239 | 24100年           | 3235  | 640                  | 1.3×10 <sup>-2</sup> | 3.2×10 <sup>-6</sup> | 0.00024          |
| プルトニウム (Pu) 240 | 6540年            | 3235  | 640                  | 1.8×10 <sup>-2</sup> | 3.2×10 <sup>-6</sup> | 0.00018          |

事故発生時に炉心に蓄積されていた放射性核種の環境へ放出された割合

| 核種            | チェルノブイリ「 | 福島第一 9 |
|---------------|----------|--------|
| キセノン (Xe) 133 | ほぼ100%   | 約60%   |
| ヨウ素 (I) 131   | 約50%     | 約2-8%  |
| セシウム (Cs) 137 | 約30%     | 約1-3%  |

出典: a; ICRP Publication 72(1996年), bとc (NpとCmを除く); 理化学辞典第5版(1998年), d; UNSCEAR 2008 Report, Scientific Annexes C,D and E, e; 原子力安全に関するI A B A 閣僚会議に対する日本国政府の報告書(H23年8月), f; UNSCEAR 2000 Report, ANNEX J, g; UNSCEAR 2013 Report, ANNEX A

この表は、チェルノブイリ原子力発電所の事故及び東京電力福島第一原子力発電 所の事故により、環境中に放出された放射性物質のうち、代表的なものを比較して示 したものです。

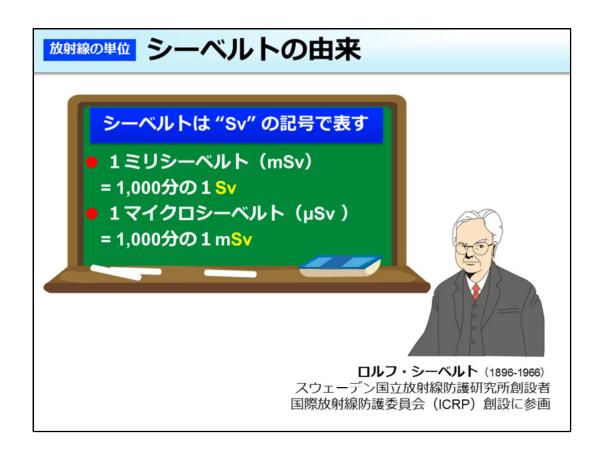
これらのうち、セシウム134とセシウム137は人の健康影響上考慮すべき放射性核種 の代表とされています。表にはそれぞれの核種の融点と沸点が示されています。

セシウムは沸点が678℃のため、核燃料が溶融(融点は2,850℃)した状態では気体 になります。気体状のセシウムが大気中に放出されると格納容器では温度が下がり沸 点以下になったところで液体状、さらに温度が融点の28°C以下になると粒子状になり ます。このため、大気中でセシウムの多くは微少な粒子状になり、風に乗って遠くまで 拡散することになります。これが、放射性セシウムが遠方まで拡散した大まかなメカニ ズムです。

チェルノブイリ原発と東京電力福島第一原子力発電所の放出量を単純に比較、評 価することはできませんが、チェルノブイリの場合の放出量が多いのは、爆発した炉心 が直接大気にさらされる状態になったことも影響していると思われます。一方、東京電 力福島第一原子力発電所では格納容器の大規模な破壊を防げたことが温度の低下、 わずかな漏れ量から放出の抑制につながったと考えられます。

しかし、一部キセノン133など大気に放出されやすい希ガスは、東京電力福島第一 原子力発電所でも高い割合(福島第一:約60%\*、チェルノブイリ:最大100%\*)で原子 炉から放出されたと評価されています。そのため発電所の出力規模(福島第一:合計 約200万kW、チェルノブイリ:100万kW)が大きく事故当時炉心に溜まっていた希ガスの 量が多かった東京電力福島第一原子力発電所では希ガスの放出量が多くなったと考 えられます。

本資料への収録日: 平成29年3月31日



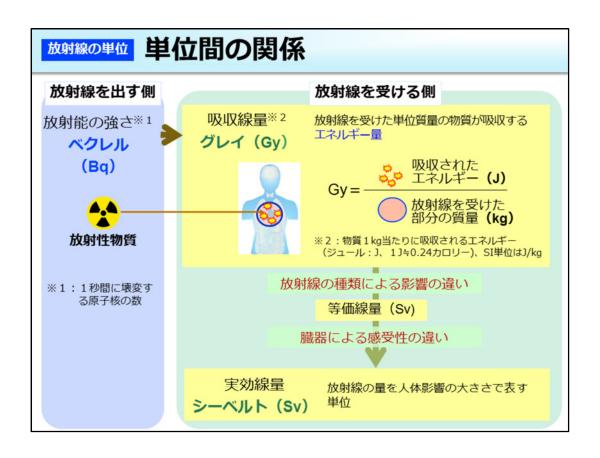

放射線の単位のうち、最もよく見聞きするものに、ベクレルとシーベルトがあります。ベクレルは放射能の単位で、放射線を出す側に着目したものです。土や食品、水道水等に含まれる放射性物質の量を表すときに使われ、ベクレルで表した数値が大きいほど、そこからたくさんの放射線が出ていることを意味します。一方、シーベルトは人が受ける被ばく線量の単位で、放射線を受ける側、すなわち人体に対して用いられます。シーベルトで表した数値が大きいほど、人体が受ける放射線の影響が大きいことを意味します(上巻P40、「線量概念:物理量、防護量、実用量」)。

放射線を受けた人体にどのような影響が現れるかは、外部被ばく、内部被ばく、全身被ばく、局所被ばくといった被ばくの様態の違い(上巻P23~28、「2.1 被ばくの経路」)や、放射線の種類の違い(上巻P13~22、「1.3 放射線」)等によって異なります。そこで、いかなる被ばくも同じシーベルトという単位で表すことで、人の健康への影響の大きさの比較ができるようなります。

外部被ばくで1ミリシーベルト受けた、ということと、内部ばくで1ミリシーベルトを受けた、ということは、健康への影響の大きさは同じになります。また体外から1ミリシーベルト、体内から1ミリシーベルトを受けたら、合わせて2ミリシーベルトの放射線を受けた、ということができます。

本資料への収録日:平成25年3月31日



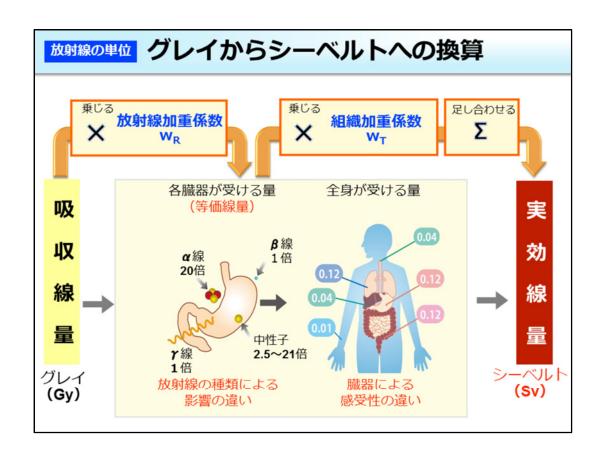

シーベルトという単位は、スウェーデンの放射線防護研究者である、ロルフ・シーベルトに由来しています。彼は、国際放射線防護委員会(ICRP)の前身である国際X線・ラジウム防護委員会(IXRPC)の議長を務め、ICRPの創設※に参画しています。日常生活で受ける放射線の量を表す際には、シーベルトの1,000分の1であるミリシーベルトや、100万分の1であるマイクロシーベルトを使うことがほとんどです。

なお、ベクレル(放射能の単位)、キュリー(かつての放射能の単位)、グレイ(吸収線量の単位)は、どれも放射線の研究で大きな業績を残した研究者の名前に由来しています。

※ICRPの創設に当たっては、英国国立物理学研究所のジョージ・ケイ(George Kaye) が中心的役割を果たしたといわれています。

(参考文献: ICRP Publication 109, The History of ICRP and the Evolution of its Policies, ICRP, 2009)

本資料への収録日: 平成25年3月31日




放射線に関する単位は、放射線を出す側の単位と受ける側の単位に大別できます。 放射能の強さの単位であるベクレルは放射線を出す側の単位です。一方、放射線を受ける側の単位には、グレイとシーベルトがあります。

放射線が通った所では、放射線のエネルギーを吸収します。この吸収線量の単位が グレイです。

放射線の種類やエネルギーによって、吸収線量が同じでも人体への影響の大きさが変わります。そこで、放射線の種類ごとに影響の大きさに応じた重み付けをした線量が等価線量(単位はシーベルト)です。実効線量は、放射線防護における被ばく管理のために考案されたもの(単位はシーベルト)です。等価線量に対して、臓器や組織ごとの感受性の違いによる重み付けをして、それらを合計することで全身への影響を表します。

本資料への収録日: 平成25年3月31日



放射線被ばくによる全身影響を表す実効線量を求めるに当たっては、まず被ばくした箇所の組織・臓器ごとの吸収線量を知る必要があります。各組織と臓器の吸収線量に、放射線の種類を考慮するための放射線加重係数( $w_R$ )を乗じて、導き出されるのが等価線量(単位はシーベルト)です。放射線加重係数は人体への影響が大きい放射線ほど、大きな値になります( $\alpha$ (アルファ)線:20、 $\beta$ (ベータ)線と $\gamma$ (ガンマ)線:1)。

放射線を受けた組織や臓器ごとの等価線量を求めたら、等価線量に臓器の感受性の違いを考慮するための組織加重係数(w<sub>T</sub>)を乗じて足し合わせます。この組織加重係数は、組織や臓器ごとの放射線感受性により重み付けをするための係数です。放射線により、致死がんが誘発されやすい臓器や組織に高い値の係数が割り振られています。

組織加重係数の合計は1になるように決められています。したがって、実効線量は 全身の臓器や組織の等価線量について、重み付け平均をとったものと考えることがで きます。また、実効線量は、外部被ばくも、内部被ばくも同様に計算することができます。 (関連ページ:上巻P38、「様々な係数」)

本資料への収録日: 平成25年3月31日

# 放射線の単位様々な係数

等価線量(Sv) = 放射線加重係数 w<sub>p</sub> × 吸収線量(Gy)

| 放射線の種類   | 放射線加重係数 W <sub>R</sub> |
|----------|------------------------|
| γ線、X線、β線 | 1                      |
| 陽子線      | 2                      |
| α線、重イオン  | 20                     |
| 中性子線     | 2.5~21                 |

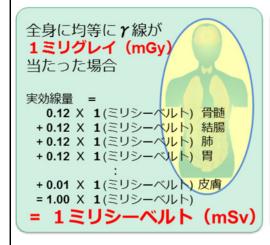
実効線量 (Sv) = Σ (組織加重係数  $W_T$  × 等価線量)

| 組織               | 組織加重係数 w <sub>T</sub> |
|------------------|-----------------------|
| 骨髄(赤色)、結腸、肺、胃、乳房 | 0.12                  |
| 生殖腺              | 0.08                  |
| 膀胱、食道、肝臓、甲状腺     | 0.04                  |
| 骨表面、 脳、唾液腺、皮膚    | 0.01                  |
| 残りの組織の合計         | 0.12                  |

Sv:シーベルト Gy:グレイ

出典:国際放射線防護委員会 (ICRP) 2007年勧告

国際放射線防護委員会(ICRP)が2007年に発表した勧告では、新たな放射線加重係数と組織加重係数が提示されています。その中では、 $\alpha$  (アルファ)線は、同じ吸収線量の $\gamma$  (ガンマ)線や $\beta$  (ベータ)線に比べ、人体に及ぼす影響は20倍に及ぶとされています。また中性子線の放射線加重係数も高く、エネルギーによって $\gamma$  線や $\beta$  線の2.5~21倍もの人体影響を見込んでいます(上巻P37、「グレイからシーベルトへの換算」)。


原爆被爆者の健康影響調査の結果、放射線により発がん影響が大きく出る臓器や 組織が明らかになっています。こうした組織には、組織加重係数として大きな数値が割 り当てられています。

また、原爆被爆者の二世、三世についても健康影響が調査されていますが、遺伝性影響は観察されていません。そのため、1990年勧告で発表された生殖腺の組織加重係数(0.2)に比べ、2007年勧告では値が引き下げられています(0.08)。このように実効線量を算出するために使われる係数は、新たな知見が得られれば見直しが行われています。

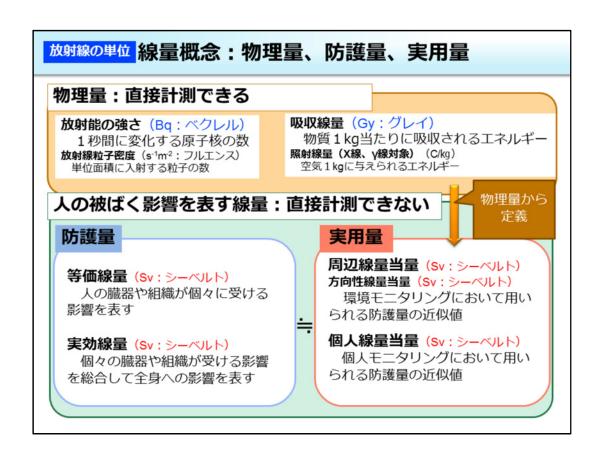
本資料への収録日:平成25年3月31日

# 放射線の単位 等価線量と実効線量の計算

実効線量(シーベルト (Sv)) = Σ(組織加重係数 × 等価線量)






全身に均等に $\gamma$ (ガンマ)線が1ミリグレイ当たった場合の実効線量と、頭部だけに1ミリグレイ当たった場合の実効線量の計算方法を比較してみます。

 $\gamma$ 線の放射線加重係数 $(w_R)$ は1なので、全身に均等に1ミリグレイを浴びたということは、均等に1ミリシーベルト(1グレイ× $1(w_R)$ =1ミリシーベルト)を受けていたことを意味します。つまり、等価線量はどの臓器・組織でも1ミリシーベルトです。ここから実効線量を求めるには、組織ごとの等価線量に組織加重係数を乗じて足し合わせます。骨髄、結腸、肺、胃、乳房は、放射線により致死がんを誘発するリスクが高い組織なので、0.12という高い係数が、また、皮膚には全身分の皮膚に0.01という係数が割り当てられています。このように全臓器・組織の等価線量に組織加重係数を乗じて足し合わせると、実効線量は1ミリシーベルトになります。

一方、放射線検査で頭だけ1ミリグレイを受けたような場合では、甲状腺、脳、唾液腺といった頭部に存在する臓器や組織では、全体が放射線を受けるため、組織ごとの等価線量は1ミリシーベルトになります。それに対して、骨髄や皮膚のように頭部に全体の一部が存在する組織や臓器は、放射線を受けた部分の割合(骨髄:10%、皮膚:15%)を乗じて等価線量を求めます。それぞれの等価線量と組織加重係数を乗じて、足し合わせると、実効線量は0.07ミリシーベルトになります。

(関連ページ:上巻P36、「単位間の関係」)

本資料への収録日:平成25年3月31日



放射線の人体への影響を管理するために、複数の箇所に受けた放射線の影響を足したり、過去に受けた放射線による影響を足したりして考える必要があります。このために考えられたのが等価線量と実効線量です。

等価線量は、人の臓器や組織が個々に受けた影響を、放射線の種類によって重み付けしたものです。

実効線量は、組織が受けた影響を全身分に換算しています。臓器ごとに受けた等価線量の単純平均ではなく、臓器ごとの放射線の感受性の違いで重み付けをしています。 個々の臓器への影響の大きさを重み付けする係数を組織加重係数といいます。

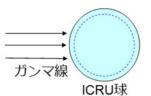
このように、防護量は人体の臓器や組織の線量から計算される量です。そのため、放射能の強さ(単位:ベクレル)や吸収線量(単位:グレイ)のような物理量とは異なり、測定器を使って容易に直接測定することができません。そこで、人体への影響を表すために定義されたものが実用量です。

サーベイメータの読み値にシーベルトが使われているものがあります。これは防護量を直接計測しているのではなく、計測した物理量から定義される近似値、すなわち実用量が示されています。実用量には、環境モニタリングにおいて用いられる周辺線量当量と、個人モニタリングにおいて用いられる個人線量当量があります。

(上巻P41、「線量当量:実効線量を導く、測定可能な実用量)

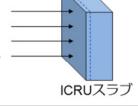
実用量は、防護量に対して保守的な(安全側の)評価を与えるように、防護量より少し大きな数値が出るよう定義されています。

本資料への収録日:平成25年3月31日


## 放射線の単位 線量当量:実効線量を導く、測定可能な実用量

## 線量当量=条件を満たす基準点の吸収線量×線質係数

実際には測定できない「実効線量」の代わりに、一定の条件のもと、実効線量とほぼ同じ値が測定で得られる「実用量」として周辺線量当量や個人線量 当量などが定義されている。


## 周辺線量当量(1cm線量当量)

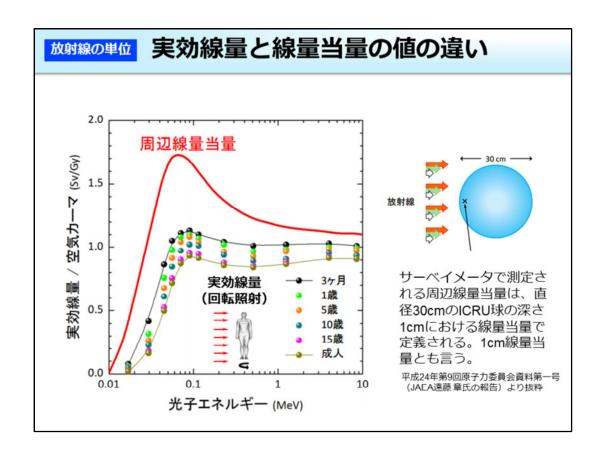
放射線が一方向から来る場に、人体の組織を模した30cm のICRU球を置き、球の表面から深さ 1cmで生じる線量当量。サーベイメータなどで空間の線量測定を行うときは、この値になる。



## 個人線量当量(1cm線量当量)

人体のある指定された点における深さ 1cmの線量当量。 測定器を体に身につけて測定するため、均等な方向からの 被ばくでは、常に自己遮蔽効果が働いた状態で評価される。




⇒ サーベイメータの値より、常に少なめの値となる!

実際には測定できない実効線量を推定するための実用量として(上巻P40「線量概念;物理量、防護量、実用量」)、作業環境などの空間の線量を評価する周辺線量当量 H\*(d) (dは深さ)、個人の被ばくを評価する個人線量 当量  $H_p(d)$ 、さらに、 $\beta$  線や軟X線による目の水晶体などの被ばくなど、深さや入射方向についても評価する必要がある場合の量として方向性線量当量  $H'(d,\alpha)(\alpha)(\alpha)$  は入射角度)が定義されています。

一般に、周辺線量当量も個人線量当量も、 $\gamma$ 線被ばくの場合は1cmの深さを用いることから、1cm線量当量とも呼ばれています。

しかし、周辺線量当量の測定には据え置き型の電離箱やサーベイメータ等、方向性の影響が少ない測定機器が用いられるのに対し、個人線量当量は人体の体幹部に小型の個人線量計を装着して測定されるため、背面からの入射に対しては常に自己遮蔽効果が働いた状態で評価されます。このため、実験室などでの被ばくの様に、常に正面方向からだけからの被ばくにおいては、周辺線量当量と個人線量当量は一致しますが、均等な方向からの被ばくにおいては、常にサーベイメータ等の値よりも小さい値を示します。ちなみに、実効線量を計算する場合、均等方向の入射においては、人体を回転させる「回転照射」の条件で計算されますが、これはまさに個人線量当量と一致する値となります。

本資料への収録日: 平成29年3月31日



サーベイメータで測定される周辺線量当量は、常に実効線量よりも大きな値になる様に値付けされています。

一方、個人線量計も正面だけからの入射の場合はサーベイメータと同じです。しかし個人線量計を身体に装着して、線源が一様に分布しているような環境では、人体の背中等の自己遮蔽効果により、「実効線量」に近い値を示します。

上図は、入射  $\gamma$  線のエネルギーに対する実効線量(回転による均等照射で背中等の自己遮蔽効果も含む)と周辺線量当量の違いが示されています。人の年齢に応じた体格差から、自己遮蔽の度合いが多少変化していますが、662keVのCs-137  $\gamma$  線の場合、サーベイメータで測定した値(周辺線量当量)は約30%程、成人の実効線量や個人線量計の値(個人線量当量)より大きな数値となる結果が示されています。

(関連ページ: 上巻P41、「線量当量: 実効線量を導く、測定可能な実用量)

本資料への収録日:平成29年3月31日



シーベルトは、①全身が受ける放射線の量(実効線量)(上巻P42、「実効線量と線量当量の値の違い」)、②内部被ばくによって受ける放射線の量(預託実効線量)(上巻P54、「預託実効線量」)、③ある場所だけ放射線を受ける局所被ばくの量(等価線量)、の単位として用いられています。どれも被ばくした個人や組織におけるがん、遺伝性影響の発生リスクを考慮して表されている点は共通です。

また、④サーベイメータの読み取り値にもシーベルトが使われているものもあります。 これは空気の吸収線量(グレイ)にある係数を乗じてシーベルト換算し、人間が受ける 実効線量の大きめの近似値として表示されているものです。全身均等被ばくの場合の 実効線量シーベルトの近似値と考えてよいでしょう(上巻P44、「様々な測定機器」)。

本資料への収録日: 平成25年3月31日



放射線は目に見えませんが、電離作用や励起作用などが知られており(上巻P45、「放射線測定の原理」)、それらを利用して様々な測定機器が目的と用途に応じて作られています。上記の様々な測定機器は全て励起作用を利用しています。

食品や土壌の放射能濃度を測定するためには、 $\gamma$ 線のスペクトルを測定できる Ge検出器やNaI(TI)検出器を鉛の遮蔽体の中に設置した測定装置が用いられます。 Ge検出器は、 $\gamma$ 線のエネルギー分解能に優れており、微量な放射能の定量に適しています。一方、NaI(TI)検出器は、エネルギー分解能はGe検出器に及びませんが、取り扱いが簡単で、また検出効率も比較的大きいことから、食品の検査に多く使用されています。

この他にも、多数のシンチレーションカウンタやGe検出器などを装着して、 $\gamma$ 線核種の体内放射能蓄積を評価するホールボディ・カウンタや、個人の被ばくを管理するための積算型個人線量計や電子式個人線量計などが市販されています。特に、福島の事故以降、様々な電子式個人線量計が考案され、一定時間ごとの被ばく情報が簡単にモニタ出来るようになってきました。

本資料への収録日: 平成25年3月31日

改定日:平成29年3月31日

#### 線量測定と計算 放射線測定の原理 放射線と物質との相互作用を利用して測定する。 (気体との)電離作用 励起作用 放射線 シンチレータ 光電子増倍管 気体 励起状態 電子 光 陽極 陰極 電流 放射線 基底状態 検出器には不活性ガスや空気などの気 放射線がシンチレータを通過すると、分 体が充填。 子が励起されるが再び元の状態(基底状 放射線が気体中を通過すると分子が電 態)に戻る。 離して陽イオンと電子を生成。 その過程で光を放出し、放出された光を 陽イオンと電子が電極に引き寄せられ 増幅・電流に変換して測定する。 電気信号に変換して測定する。 NaI (TI) シンチレーション式 サーベイメータなど GM計数管式サーベイメータ、 電離箱など

放射線は物質中を通過する時に、物質と相互作用することが知られています。放射線と物質との相互作用を利用して放射線の量を測定します。

GM計数管式サーベイメータや電離箱では、放射線と気体との電離作用を利用します。電離作用とは放射線が物質中の原子核の電子を外に弾き飛ばす作用です。GM計数管式サーベイメータや電離箱の検出器の中には、ガスが充填されています。検出器の中を放射線が通過すると、放射線が気体原子に対して電離作用を起し、原子が陽イオンと電子に分離します。分離した電子と陽イオンは、それぞれ電極に引き寄せられ電流が流れます。これを電気信号に変換して放射線の量として測定します。

NaI(TI)シンチレーション式サーベイメータでは、物質との励起作用を利用します。放射線が原子核の電子にエネルギーを与え、その電子が外側の軌道に飛び移る場合を励起と呼びます。この状態の原子は不安定な状態(励起状態)で、再び安定な状態(基底状態)に戻る際、エネルギーを光として放出します。これが励起作用です。シンチレータとは放射線が入射して光を発生する物質です。シンチレータから発せられる微弱な光を光電子増倍管で増幅し電気信号に変換して放射線を計測します。NaI(TI)シンチレーション式サーベイメータ以外にもゲルマニウム半導体検出器が同じ励起作用を利用しています。

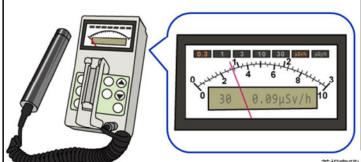
本資料への収録日:平成29年3月31日

| 線量測定と計算 外部被ばく測定用の機器                                 |          |                     |                                                             |  |  |  |
|-----------------------------------------------------|----------|---------------------|-------------------------------------------------------------|--|--|--|
| 型                                                   |          | 目的                  |                                                             |  |  |  |
| GM計数管式<br>サーベイメータ (電離)                              |          | 汚染の検出               | 薄い入射窓を持ち、β線を効率よく検出可能である。表面汚染の検出に適している。                      |  |  |  |
| 電離箱型<br>サーベイメータ (電離)                                |          | <b>γ</b> 線<br>空間線量率 | 最も正確であるが、シンチ<br>レーション式ほど低い線量<br>率は測れない                      |  |  |  |
| Nal(TI)シンチレー<br>ション式サーベイメータ<br>(励起)                 |          | <b>ア</b> 線<br>空間線量率 | 正確で感度もよい。環境レベルから10μSv/h程度のγ線空間線量測定に適している。                   |  |  |  |
| 個人線量計<br>(光刺激ルミネッセンス線量計<br>蛍光ガラス線量計電子式線量<br>計等)(励起) | (* 8.88) | 個人線量<br>積算線量        | 体幹部に装着し、その間に<br>被ばくした個人線量当量を<br>測定する。直読式や警報機<br>能を持つタイプもある。 |  |  |  |

サーベイメータには、体表面汚染検査用と空間線量率測定用があります。GM計数管式サーベイメータは  $\beta$  (ベータ)線に対する感度が高く、体表面汚染検査に適しています。安価で求めやすく、汚染されている場の特定や除染の効果を確認するのに有用です。

電離箱は高レベルの空間線量率の測定に最も適していますが、あまり低い線量率の測定はできません。そこで一般環境の空間線量率の測定にはシンチレーション式が 最も適しています。

NaI(TI)シンチレーション式サーベイメータを用いて、放射能の強さ(ベクレル)を計測することは可能ですが、測定する場の放射線レベルや測り方によって測定値が変わります。また測定値からベクレルへの換算をするためには、事前に基準となる放射線源を備えた施設での校正が必要になるので、実施に当たっては専門家の協力が必要です。


個人線量計を用いると、被ばくの積算線量を知ることができます。電子式の直読式のものであれば、一定期間ごと、あるいは作業ごとに、被ばくの程度を自分で確認することができます。

本資料への収録日:平成25年3月31日

# 線量測定と計算線量の測定方法

例: Nal(TI)シンチレーション式サーベイメータ (TCS-171)

- ① バックグランドの測定
- ② 現場での測定
  - ・レンジ(指示値が目盛の中央付近に)
  - ・時定数(時定数の3倍の時間が経過して値を読む)の調整
- ③ 線量の計算
  - ・指示値 $\times$ 校正定数 = 線量( $\mu$ Sv/h)



#### 指示値の読み方

0.3, 3, 30 µSv/hは上段 1, 10 µSv/hは下段

- 写真は0.3 µSv/hのレンジ
- ト段の数値を読む
- 針は0.92の目盛り

指示値は0.092 µSv/h

例えば、校正定数が0.95の場合 線量=0.092×0.95=0.087 µSv/h

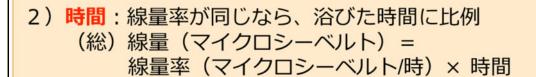
首相官邸HP「サーベイメータの取扱方法」より作成

線量の測定方法の例として、NaIシンチレーション式サーベイメータを用いた $\gamma$  (ガンマ)線空間線量率の測定方法を図示してあります。

測定前に機器の健全性(外観、電源、高圧)のチェックをし、その後バックグランドの測定をします( $[0.3\mu Sv/h]$ レンジ、[30sec]時定数に設定)。通常、バックグランド値は $0.1\mu Sv/h$ 程度を指示します。

現場での測定は、原則として地上約1mの高さで測定します。測定計数レンジを調整してメータの指示値が目盛の中央付近になるよう調整します。時定数の調整は測定の目的に合わせて調整します。粗く広範囲の測定や高線量の場合は、時定数を少なくし、精度の良い測定や低線量の場合は、時定数を大きくします。その場所での測定を開始してから、時定数の3倍程度の時間が経過してから、指示値の平均を読み取ります。(例えば30秒の場合は、1分30秒後に値を読みます)。

指示値を測定条件毎に決まっている校正定数で掛けることにより、線量当量率(µ Sv/h)を求めることができます。

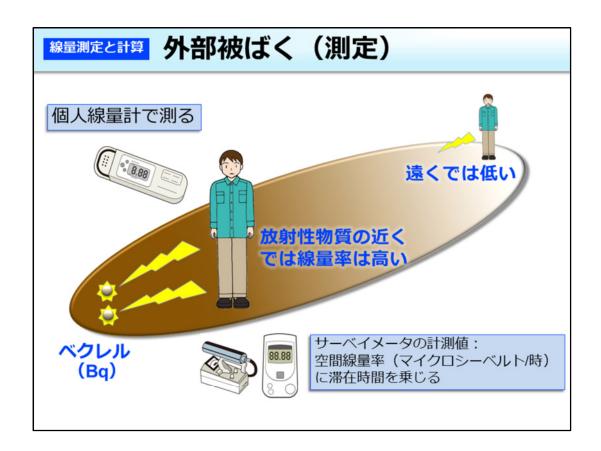

測定器の使用上の注意点として、使用前に動作が正常かどうか確認する事、精密機器のため丁寧に扱うこと、雨天時や汚染レベルの高い区域での測定では測定器をポリエチレンシートで被うことなどがあります。

本資料への収録日:平成29年3月31日

# 線量測定と計算 外部被ばく線量の特徴

1) 距離:線量率は距離の2乗に反比例

 $I=rac{k}{r^2}$  r:放射線の強さ(線量率) r: 距離 r: 定数




同じ量だけ放射性物質があったとしても、放射線の強さは、放射線を出しているものから近ければ強く、遠ければ弱くなります。放射性物質が1箇所にあるのであれば、距離の2乗に反比例して放射線量は弱くなります。

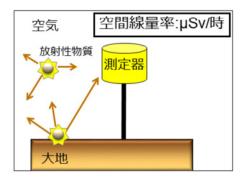
外部被ばく線量を計算するときには、放射能の強さを表すベクレルからではなく、人体が受けた放射線の量(グレイあるいはシーベルト)から計算します。

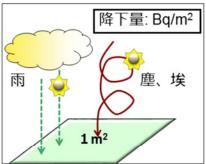
線量率が一定であるならば、その線量率に放射線を浴びていた時間を乗じることで 被ばく量を計算することができます。

本資料への収録日:平成25年3月31日



外部被ばくによる線量を計測するには2つの方法があります。


一つ目は、計測器で作業する場の空間放射線量率を計測する方法です。空間線量率は、その場に人がいたらどのくらい $\gamma$ (ガンマ)線による被ばくを受けるかを測った値です。体の外からの $\alpha$ (アルファ)線や $\beta$ (ベータ)線は体内にまでは届きませんので(上巻P22、「透過力と人体での影響範囲」)、外部被ばくの線量測定としては $\gamma$ 線を測定します。最近の計測機器は、1時間当たりのマイクロシーベルトで表示されるものが多いので、この測定値にその場にいた時間を乗じて、被ばく量を計算します。ただし、NaI(TI)シンチレーション式サーベイメータのように適切な性能を持ち、校正されている機器を用いるようにします。

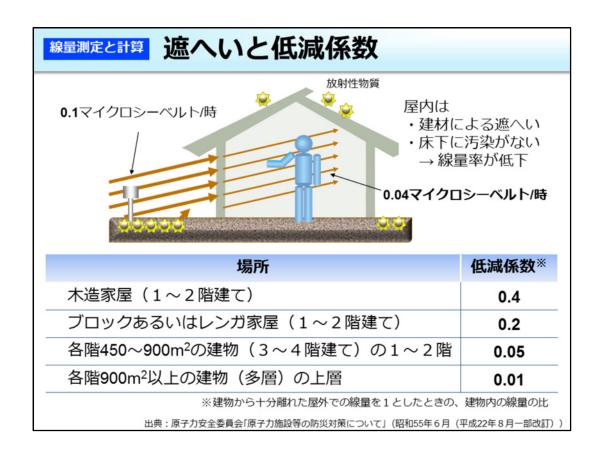

もう一つの方法は、個人線量計を装着して計測する方法です。個人線量計では、長時間に受ける放射線の積算量の計測や、時間当たりの読み取りが可能です。

本資料への収録日: 平成25年3月31日

#### 線量測定と計算 環境放射能の計測

- 空間線量率は空間の γ (ガンマ)線を測定。1時間当たりのマイクロシーベルト(μ Sv/時)で表示。
- 降下量は、一定期間の間に単位面積当たりに沈着した(あるいは降下した)放射性物質の量。 例えばベクレル/平方メートル(Bg/m²)

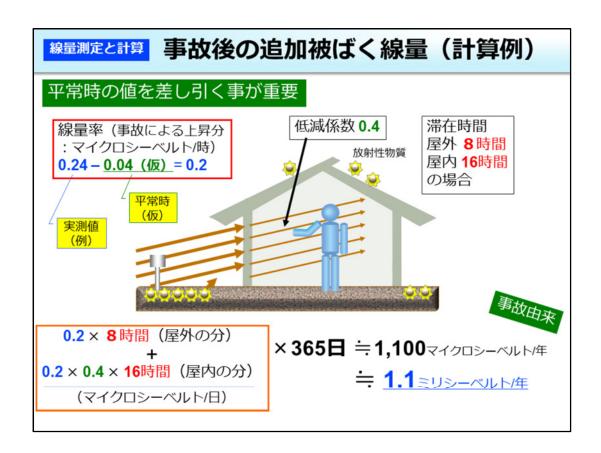





空間線量率というのは、空間中の $\gamma$ (ガンマ)線量を測定したもので、1時間当たりのマイクロシーベルトで表示されています。空気中に漂っている放射性物質からの $\gamma$ 線も検出していますし、大地に落ちた放射性物質からの $\gamma$ 線も検出しています。また計測しているのは事故由来の放射線だけではありません。大地に含まれている自然由来の放射性物質からの $\gamma$ 線や宇宙からの $\gamma$ 線も含まれた値です。

空間線量率は、人間がその場所に1時間立っていた場合に、γ線をどれくらい被ばくするかを表しています。通常、測定器は地上1mくらいの高さに置かれることが多いのですが、これは大人の場合この高さに重要な臓器があるからです。

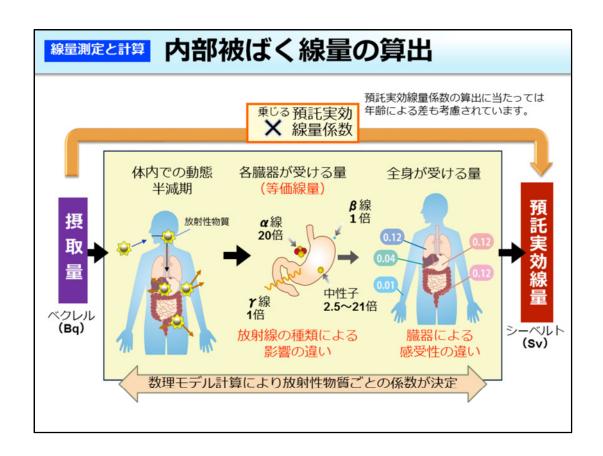
降下物中の放射能量は、単位面積当たりに落ちてきた放射性物質の量で表します。 放射性物質の種類ごとに、1日当たりあるいは1か月当たりといった期間ごとの数値 で示されることが一般的です。


本資料への収録日:平成25年3月31日



空間線量率を測定する適切なサーベイメータ(上巻P46、「外部被ばく測定用の機器」)がない場合は、国や地方自治体等が発表している空間線量率を基に計算することができます。屋外で受ける放射線量は、近くで計測された実測値を使います。屋内での線量率を求める場合は、建築物による遮へいや床下に汚染がないことを考慮し、近くの屋外線量率の値に低減係数を乗じて、屋内の空間線量率を推定します。

低減係数は建築の種類によって違います。例えば、木造家屋は外からの放射線の約6割を低減します。ブロックやレンガの家屋、鉄筋コンクリート家屋では、より遮へい効果が高まり、木造家屋に比べ放射線量は低くなります。また放射性物質が主に土壌表面上にある場合は、高層階になるに従い、土壌からの距離が離れるので、放射線量も少なくなります。


本資料への収録日:平成25年3月31日

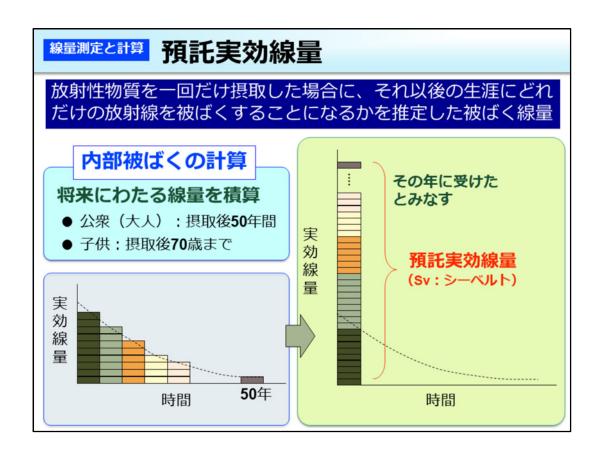


サーベイメータで計測される空間線量率には、自然界からの $\gamma$ (ガンマ)線も含まれています。もし東京電力福島第一原子力発電所事故による放射線量のみを算出する場合は、今実測される空間線量率から、東京電力福島第一原子力発電所事故前の計測値(バックグラウンド値)を引き、事故による上昇分を求めます。事故前の値は、ウェブサイト「日本の環境放射能と放射線(http://www.kankyo-hoshano.go.jp)」で調べることができます。

こうして屋外と屋内の空間線量率が分かれば、それぞれに、屋外で過ごす時間や屋内で過ごす時間を乗じて、1日分の被ばく線量や1年分の被ばく線量を求めることができます。

本資料への収録日: 平成25年3月31日




内部被ばくの実効線量を求める方法も、基本は外部被ばくの場合と同じです。ただ し臓器や組織の吸収線量の求め方が異なります。

放射性物質が体のどの部分に蓄積するのかは放射性物質ごとに異なります。また呼吸により呼吸器経由で放射性物質が体内に入った場合と、飲食物と一緒に消化管経由で体内に入った場合では、同じ放射性物質であっても体の中での代謝や蓄積といった挙動が違います。さらに大人か、子供か、赤ちゃんかによっても、放射性物質がどれだけ体の中にとどまっているかが違います。

こうした条件の違いごとに、数理モデル計算を行い、どのくらいの放射性物質を摂取したら、各臓器や組織がどれだけの吸収線量を受けるかを求めます。次に、外部被ばくの被ばく線量計算と同様に、放射線の種類や臓器による感受性の違いを考慮します。こうして算出した内部被ばくの被ばく線量を、預託実効線量(単位はシーベルト)と呼びます(上巻P54、「預託実効線量」)。

実際には、摂取量(単位はベクレル)に預託実効線量係数を乗じることで、内部被ば く線量を求めることができます。預託実効線量係数は、放射性核種の種類や年齢ごと に細かく定められています。

本資料への収録日:平成25年3月31日



放射性物質は、体内に摂取された後、一定期間体内にとどまります。その間、人体は放射線を受け続けることになります。そのため内部被ばくによる線量としては、1回に摂取した放射性物質の量から、将来にわたって受ける放射線の総量を考えます。これを預託線量(単位はシーベルト)といいます。

体内に取り込んだ放射性物質は、時間と共に体内から減少します。その原因の一つは放射性物質の壊変によるものです。もう一つは、尿や便等により排泄されることによるものです。体からの排泄の速度は、元素の種類やその化学形態、年齢によって異なります。預託線量はこのような違いを考慮して、ある放射性物質により人体が受ける放射線量の一生分を積算した量を、その年に受けたものとみなします。

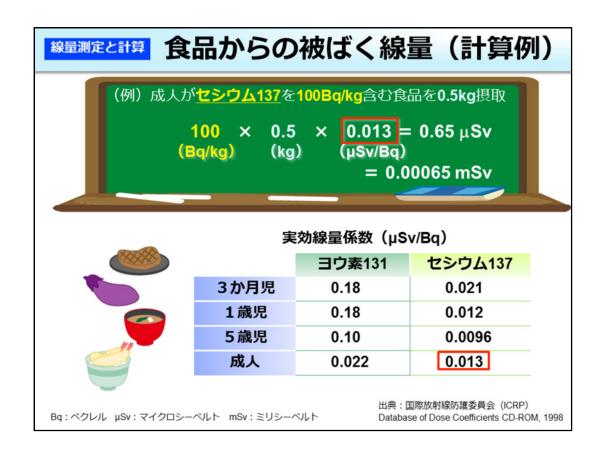
特に、実効線量に着目して一生分を積算した線量を「預託実効線量」と呼びます。このときの一生分とは、大人は50年、子供は70歳になるまでの年数です。放射性セシウムの場合、体外へ排出される速度が早いことから(実効半減期がセシウム134で64日、セシウム137で70日(上巻P32、「原発事故由来の放射性物質」)、摂取後2~3年の間に、預託線量のほとんどの被ばくを受けるとしています。

本資料への収録日: 平成25年3月31日

#### 線量測定と計算 実効線量への換算係数

# 預託実効線量係数(µSv/Bq)(経口摂取の場合)

|      | ヨウ素<br>131 | セシウム<br>134 | セシウム<br>137 | ストロンチウム<br>90 | プルトニウム<br>239 |
|------|------------|-------------|-------------|---------------|---------------|
| 3か月児 | 0.18       | 0.026       | 0.021       | 0.23          | 4.2           |
| 1歳児  | 0.18       | 0.016       | 0.012       | 0.073         | 0.42          |
| 5歳児  | 0.10       | 0.013       | 0.0096      | 0.047         | 0.33          |
| 10歳児 | 0.052      | 0.014       | 0.01        | 0.06          | 0.27          |
| 15歳児 | 0.034      | 0.019       | 0.013       | 0.08          | 0.24          |
| 成人   | 0.022      | 0.019       | 0.013       | 0.028         | 0.25          |


μSv/Bq:マイクロシーベルト/ベクレル

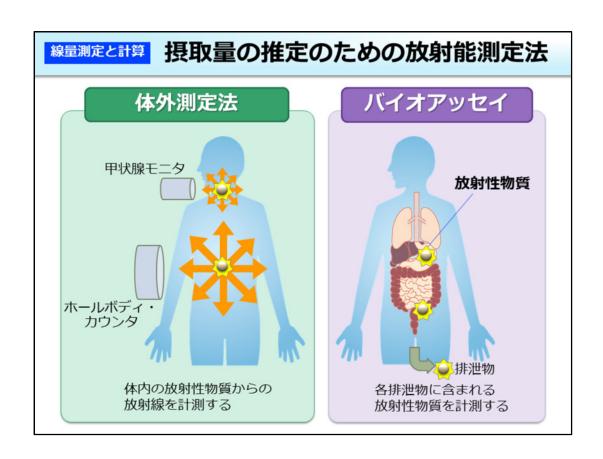
出典:国際放射線防護委員会(ICRP), ICRP Publication 119 , Compendium of Dose Coefficients based on ICRP Publication 60, 2012

内部被ばくの線量評価では、核種・化学形ごとに摂取量を推定し、それに線量係数を乗じて線量を計算します。線量係数とは、1ベクレルを摂取したときの預託等価線量又は預託実効線量のことで、国際放射線防護委員会(ICRP)によって、核種、化学形、摂取経路(経口あるいは吸入)、年齢ごとに具体的な値が与えられています。

預託の期間、すなわち線量の積算期間は、成人で50年、子供では摂取した年齢から70歳までとなっています。

本資料への収録日:平成25年3月31日




例えば、大人がセシウム137を含んだ飲食物を摂取した場合の線量を計算してみます。

1kg当たり100ベクレルのセシウム137を含んだ食品を0.5kg食べたとします。

実際に口に入ったセシウム137の量は、50ベクレルになります。この量に実効線量係数を乗じることで、預託実効線量(上巻P54、「預託実効線量」)を求めることができます。

実効線量係数は、放射性物質の種類ごと、経路ごと(吸入摂取か経口摂取か)、年齢ごとによって、細かく定められています。

本資料への収録日:平成25年3月31日



内部被ばく線量の計算に必要となる摂取量の推定には、体の中から出てくる $\gamma$  (ガンマ)線を直接測る体外計測法と、尿や便の中にある放射性物質の量を測るバイオアッセイを用いる方法があります。

これらの方法で得られた結果から、放射性核種の摂取時期、化学形、摂取経路(吸入、経口)等を勘案し、どのくらいの割合の放射性物質が体に残っているか、排泄物中にあるかを数理モデル(上巻P53、「内部被ばく線量の算出」)から計算し、摂取量を求めます。

本資料への収録日:平成25年3月31日

### 線量測定と計算 体内放射能の評価法の比較 体外計測法 バイオアッセイ 人体を直接測定 間接測定 試料(尿、便等)を提供 直接測定のため測定時間を拘束される 主に γ線を放出する物質が対象 全部の放射性物質が測定可 装置内での計測時間は短い 化学分析に時間が掛かる 線量評価の精度が高い 線量評価結果の誤差が大きい 尿等 放射線検出器 遮へい

体外計測法では、測定時間が長ければ長いほど正確な値が得られます。しかし体外計測器は、人体からの放射線と同時に、環境からの放射線も計測するので、空間線量率が高い場所で測定する際には、環境からの放射線の遮へいを十分に考慮する必要があります。また  $\gamma$  (ガンマ)線を出さない放射性物質については計測することはできません。

バイオアッセイでは、あらゆる放射性物質を測定することができますが、1回の試料採取では正確な数値を得ることができず、数日間分の試料(尿・便等)をためる必要があります。放射性物質の排出量が、個人によって、また体調や飲食量等でも変動することを考えると、体外計測法よりも誤差は大きくなると考えられます。

どちらの方法も、検出された放射性物質をいつ取り込んだか判断が難しい場合には、 割り出された被ばく量の誤差が大きくなります。

本資料への収録日: 平成25年3月31日

## 線量測定と計算 内部被ばく測定用の機器



全身立位型 ホールボディ・ カウンタ

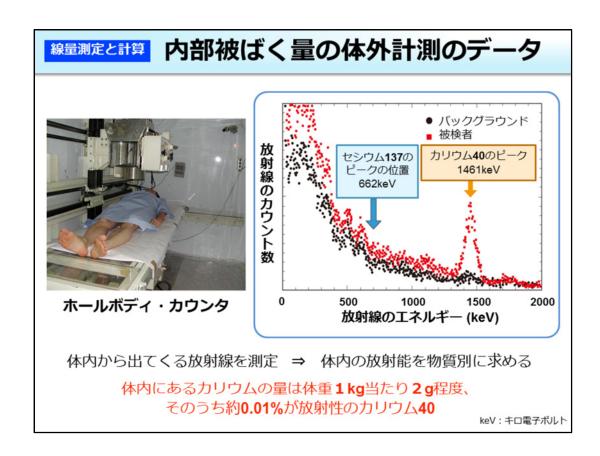


全身臥位型 ホールボディ・ カウンタ





甲状腺モニタ

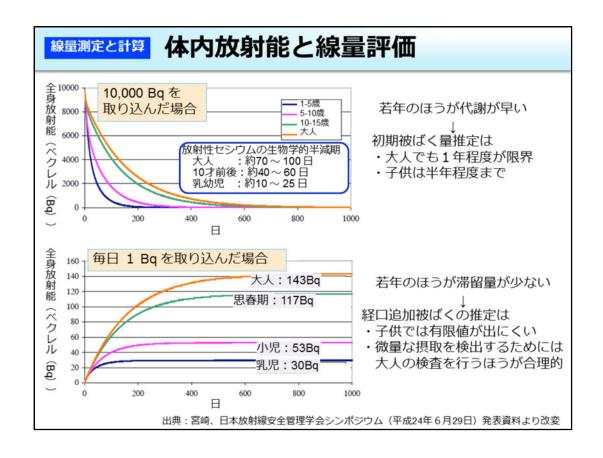



○ 検出器

体内の放射能を直接測定するためには、全身から出てくる  $\gamma$  (ガンマ) 線を測定するホールボディ・カウンタという機器を使います。ホールボディ・カウンタには、立って測る、寝て測る、座って測るタイプがあります。

放射性セシウムは、体の至る所に分布しますので、体内量の計測にはホールボディ・カウンタが使われます。一方、放射性ヨウ素による内部被ばくが疑われる場合には、甲状腺モニタが用いられます。これは、ヨウ素は甲状腺に蓄積するため、首の甲状腺のある部分に放射線検出器を当てて、そこから出てくるア線を測るものです。

本資料への収録日:平成25年3月31日



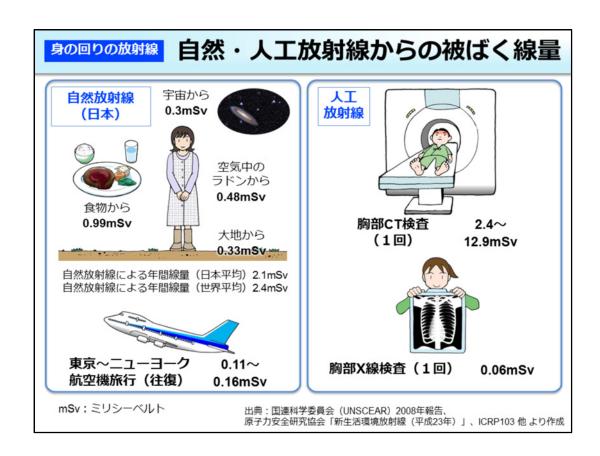

ホールボディ・カウンタで体内から出てくる放射線を測定すると、核種ごとに放射能を定量評価することができます。

グラフの黒い●は誰もベッドに乗らず空の状態(バックグラウンド)で測定した値です。 人が寝て測定すると、赤い■のように放射線のピークが見えます。γ(ガンマ)線は放射性物質ごとに固有のエネルギーを持っているので、特定のエネルギー、例えば、放射性カリウム(カリウム40)のγ線のエネルギーである1,461キロ電子ボルト(keV)に着目すると、体内の放射性カリウムからのγ線であることが分かります。なお、セシウム137のγ線エネルギーは662キロ電子ボルト(keV)です。

カリウムは生物に必須な元素ですが、全体のカリウムのうちの約0.01%が放射性のカリウムです。放射性カリウムは主に細胞の水分の中に含まれていて、筋肉中には存在しますが、水分をほとんど持たない脂肪細胞にはほとんど含まれていません(上巻P8、「自然由来・人工由来」)。

本資料への収録日:平成25年3月31日



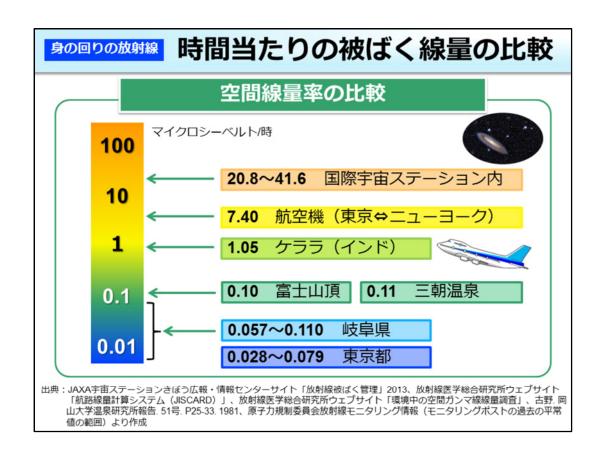

ホールボディ・カウンタでは、測定日当日の体内放射能量を測ることが可能ですが、 他の測定機器同様、機械の性能や測定時間によって検出限界が決まっています。

放射性セシウムの生物学的半減期(上巻P11、「半減期と放射能の減衰」)は成人で70~100日のため、初期被ばく量の推定は原発事故後1年程度が限界です。図に示されているように、体内に取り込まれたセシウムの放射能は、実効半減期により1年程度を過ぎると0ベクレルに近づいていくため、体内の放射能は以前の数値に戻っていきます。それ以降のホールボディ・カウンタ測定は、主に食品からの慢性被ばくを推定する目的で行われます(上巻P60、「内部被ばく量の体外計測のデータ」)。

一方、子供は代謝が早いことから、微量な摂取では初期被ばくの推定は半年程度、慢性的内部被ばくの推定も滞留量が少ないため検出限界以下となることが多くなります。このような場合、預託実効線量係数が、代謝の早い子供と遅い大人ではあまり変わらないことを踏まえ、大人を検査して被ばく量推定を行うほうが合理的と考えられています。

体内放射能の測定結果から預託実効線量を予測するためには、急性か慢性か、吸入か経口か、いつ摂取したのか等を踏まえて、適切な仮定とモデルを選ぶことが必要となります。

本資料への収録日:平成25年3月31日

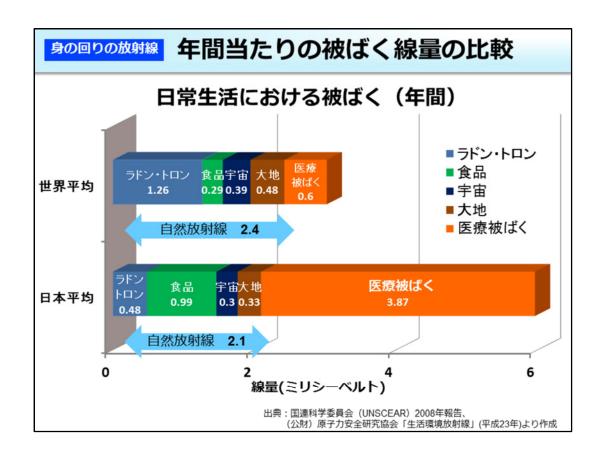



日常生活をする中で、私たちは知らず知らずのうちに放射線を受けています。

宇宙から、そして大地から受ける自然放射線による外部被ばくや、食物や空気中のラドン等、自然由来の放射性物質から受ける内部被ばくは、合計すると年間で世界平均では2.4ミリシーベルト、日本平均では2.1ミリシーベルトになります(上巻P64、「年間当たりの被ばく線量の比較」)。

また、日本では放射線検査等で受ける医療被ばくの割合が大きいことが知られています。これは一回の検査当たりの被ばく量が大きいCT検査が広く普及していることや胃がん検診で上部消化管検査が行われているためと考えられています。

本資料への収録日:平成25年3月31日




宇宙空間や航空機内では、銀河や太陽からの宇宙線により、空間線量率が高くなります。また富士山のような標高が高い所でも、標高の低い所に比べると宇宙線の影響を強く受けるので、空間線量率が高くなります。標高の低い所では、大気に含まれる酸素原子や窒素原子と宇宙線(放射線)が相互作用を起こしてエネルギーを失い、地表に到達する放射線の量が少なくなるため、空間線量率は低くなります。

人間の生活空間のほとんどの場所の空間線量率は、1時間に0.01から1マイクロシーベルトの範囲ですが、中には、土壌にラジウムやトリウムといった放射性物質を多く含むため、自然放射線レベルが高い地域があります。こうした地域を高自然放射線地域と呼びます(上巻P66、「大地の放射線(世界)」)。

日本には高自然放射線地域と呼ばれる場所はありませんが、ラドン温泉で有名な三朝温泉のように、土壌にラジウムを多く含んでいる場所では、若干空間線量率が高くなっています。逆に、関東ローム層で覆われた関東平野では、大地からの放射線が遮へいされ、空間線量率は低い傾向にあります(上巻 P67、「大地の放射線(日本)」)。

本資料への収録日:平成25年3月31日



平成23年12月に、(公財)原子力安全研究協会は20年ぶりに、日本人の国民線量を発表しました。調査の結果、1年間に受ける日本人の平均被ばく線量は5.98ミリシーベルトであり、そのうち2.1ミリシーベルトが自然放射線からの被ばくであると推定されています。

自然放射線の内訳を世界平均と比較すると、ラドン222及びラドン220(トロン)からの被ばくが少なく、食品からの被ばくが多いという特徴があります。今回の取りまとめにより、日本人は魚介類の摂取量が多いため、食品中の鉛210やポロニウム210からの被ばくが0.80ミリシーベルトと世界平均と比較して多いことが明らかにされました(上巻P65、「自然からの被ばく線量の内訳(日本人)」)。

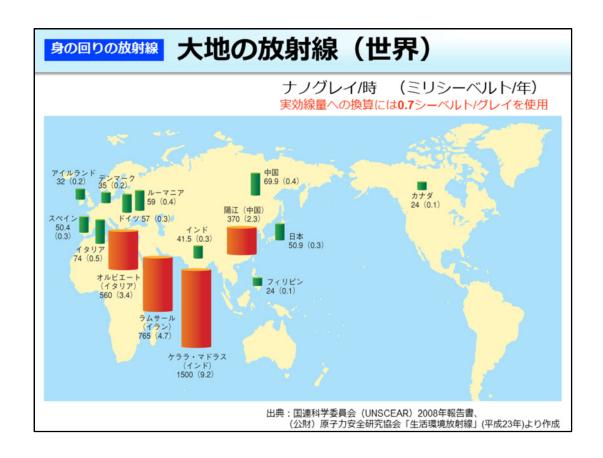
放射線検査による被ばく線量は個人差が大きいのですが、平均すると日本人の被ばく量は極めて多いことが知られています。特にCT検査が占める割合が大きくなっています。

なお、上記の国民線量の算定では、東日本大震災による東京電力福島第一原子力発電所事故の影響は考慮されていません。今後は、これまでの平常時の被ばく線量に、東京電力福島第一原子力発電所事故による被ばく線量が加算されることになると考えられます。

本資料への収録日:平成25年3月31日

| 身の回りの放射線<br>自然からの被ばく線量の内訳(日本人)   |                    |                     |  |
|----------------------------------|--------------------|---------------------|--|
| 被ばくの種類                           | 線源の内訳              | 実効線量<br>(ミリシ-ベルト/年) |  |
| 外部被ばく                            | 宇宙線                | 0.3                 |  |
| Traphyta                         | 大地放射線              | 0.33                |  |
| 内部被ばく<br>(吸入摂取)                  | ラドン222(屋内、屋外)      | 0.37                |  |
|                                  | ラドン220(トロン)(屋内、屋外) | 0.09                |  |
|                                  | 喫煙(鉛210、ポロニウム210等) | 0.01                |  |
|                                  | その他(ウラン等)          | 0.006               |  |
|                                  | 主に鉛210、ポロニウム210    | 0.80                |  |
| 内部被ばく<br>(経口摂取)                  | トリチウム              | 0.0000082           |  |
|                                  | 炭素14               | 0.01                |  |
|                                  | カリウム40             | 0.18                |  |
|                                  | 合 計                | 2.1                 |  |
| 出典:(公財)原子力安全研究協会「生活環境放射線」(平成23年) |                    |                     |  |

この表では、鉛210とポロニウム210による経口摂取が日本人の内部被ばくの大きな割合を占めることを示しています。鉛210とポロニウム210は、大気中のラドン222が次の過程を経て生成されます。それらが地表に沈着あるいは河川や海洋に沈降して食物を通じて人間の体内に取り込まれることになります。


ラドン222(半減期約3.8日)→ ポロニウム218(半減期約3分)→鉛214(半減期約27分)→ビスマス214(半減期約20分)→ポロニウム214(半減期約1.6×10<sup>-4</sup>秒)→鉛210(半減期約22年)→ビスマス210(半減期約5日)→ポロニウム210(半減期約138日)

日本人が欧米諸国に比べて食品からの被ばく線量が高い理由としては、魚介類を 多く摂取する日本人の食生活が関係しています。魚介類にはポロニウム210が多く含 まれているため、その分、実効線量が大きくなっています。

一方、日本人でラドン222及びラドン220(トロン)による被ばくが少ない理由としては、 日本家屋は通気性が良く、地中から屋内に侵入したラドン222及びラドン220(トロン)が 速やかに屋外に拡散するためと考えられています。

ラドン222及びラドン220(トロン)の吸入摂取による内部被ばくについては上巻P69、「ラドン及びトロンの吸入による内部被ばく」で説明します。

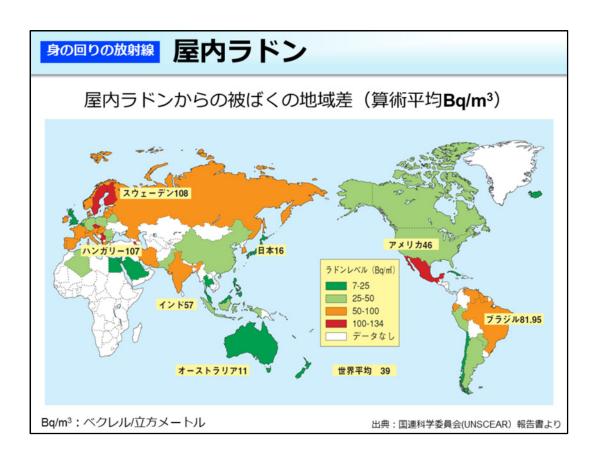
本資料への収録日: 平成25年3月31日



世界には、中国の陽江(ヤンジャン)、インドのケララ、イランのラムサール等、日本より2倍から10倍程度自然放射線が高い地域があります。こうした地域で自然放射線レベルが高い原因は、ラジウムやトリウム、ウラン等の放射性物質が土壌中に多く含まれることが挙げられます。

これまで高自然放射線地域として有名であったブラジルのガラパリは都市化によるアスファルト舗装の結果、空間線量率が減少したと報告されています。

中国やインドにおける疫学調査等から、これまでのところ、これらの地域では、がんの死亡率や発症率の顕著な増加は報告されていません(上巻P111、「低線量率長期被ばくの影響」)。ラムサールでは、がんリスクに関する解析が現在進められています。

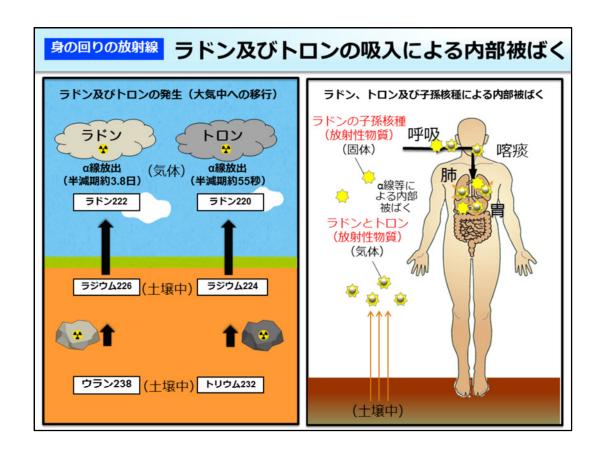

本資料への収録日: 平成25年3月31日



日本国内でも、大地からの放射線量が高い所と低い所があります。県単位で比較すると空間線量率は、最も高い岐阜と最も低い神奈川では年間0.4ミリシーベルトの差があるといわれています。

関東ローム層が大地からの放射線を遮へいする関東平野では、概して大地からの放射線量は少なくなっています。一方、花崗岩には、ウラン、トリウム、カリウム等の放射性核種が比較的多く含まれていることから、花崗岩が直接地表に露出している場所が多い西日本では、東日本より1.5倍ほど大地からの放射線量が高い傾向があります。

本資料への収録日:平成25年3月31日



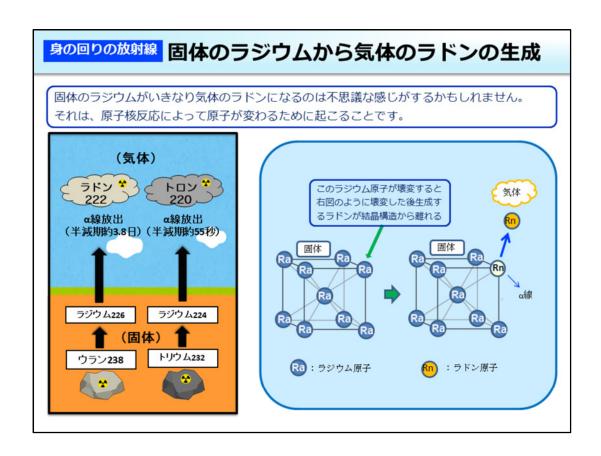

ラドンは、地下に広く存在するラジウムがアルファ壊変することにより発生する放射性の希ガスです。気体であることから、地中から出て家屋の中にも入り込みます(上巻 P69、「ラドン及びトロンの吸入による内部被ばく」)。

ヨーロッパのような石作りの家で生活する地域では、屋内ラドン濃度が高くなり、結果、被ばく線量が高くなる傾向にあります。

屋内ラドン濃度の世界平均は、1立方メートル当たり39ベクレルですが、日本では16ベクレルです。屋内ラドンからの内部被ばく量にも、大きな地域差が存在しています。

本資料への収録日:平成25年3月31日




ラドン(ラドン222)及びトロン(ラドン220)はラジウム鉱石が放射性壊変をした際に発生する気体状の放射性物質で、呼吸によって人体に取り込まれます。ラドンは、ウランから始まる壊変(ウラン系列)で生成したラジウム226が壊変したもの、トロンはトリウム232から始まる壊変(トリウム系列)で生成されたラジウム224が壊変したものです。半減期はそれぞれ、ラドンが約3.8日、トロンは約55秒です。

また、天然に存在する放射線による被ばくの中では、ラドン及びその子孫核種による被ばくの割合が一番大きいといわれています。

ラドン及びトロンは地面や建材等から空気中に拡散するため、私たちは普段の生活において日常的にラドン及びトロンを吸い込んでいます。呼吸によって吸い込まれたラドンは肺に到達し、α(アルファ)線を放出するため、肺への内部被ばくが問題となります。体内に吸い込まれたラドンは更に壊変して子孫核種となり、肺や、喀痰と共に食道から消化器官に移行して内部被ばくをもたらします。

ラドンとその子孫核種では、内部被ばくの寄与はラドンからは小さく、ラドンから壊変した子孫核種のほうが大きくなります。これは、ラドンは気体であるため、吸い込んだとしてもすぐ呼気と共に排出されやすいのに対し、ラドンの子孫核種である放射性のポロニウム218や更に壊変した鉛214等は固体状であるため、一旦吸い込むと、肺胞や気管支壁面に付着し、体外に排出されにくいことが原因です。

本資料への収録日:平成27年3月31日



放射性物質であるラジウムは常温常圧下で右図に示すような体心立方という結晶構造で固体として存在しています。

ラジウムが壊変すると、α(アルファ)線を放出し、ラドンに変わります。

ラドンはヘリウムやネオンと同じように化学的には安定な元素です。化学的に安定しているということは、他の元素と反応して化合物を作ることがなく、ラドンのまま安定して存在するということを意味しています(不活性元素)。またラドンは、融点が約−71℃、沸点が約−62℃であるため通常の状態で気体として存在します。 そこで、結晶構造を作っていたラジウム原子が壊変でラドン原子に変わると結晶構造から離れて(結晶として結合・束縛されていた力がなくなるため)気体として存在することになります。さらに、ラドンは不活性な気体であるため、地中の物質と反応することなく地面に移行して大気中に出てきます。

本資料への収録日: 平成28年3月31日

# 身の回りの放射線 体内、食品中の自然放射性物質

#### 体内の放射性物質



#### 体重60kgの場合

カリウム40 **※ 1** 4,000Bq 炭素14 **※ 2** 2,500Bq ルビジウム87 **※ 1** 500Bq 鉛・ポロニウム ※3 20Bq 地球起源の核種

**※ 2** 宇宙線起源のN-14由来の核種 地球起源ウラン系列の核種 ※3

食品中の放射性物質(カリウム40)の濃度



米 30 牛乳 50 牛肉 100 魚 100 ドライミルク 200 ほうれん草 200 ポテトチップス 400 お茶 600 干ししいたけ 700 干し昆布 2,000 (Bg/kg)

Bq:ベクレル Bq/kg:ベクレル/キログラム

出典: (公財) 原子力安全研究協会「生活環境放射線データに関する研究」(昭和58年) より作成

カリウムは生物に必要な元素であり、ほとんどの食品に含まれています。カリウムの 0.01%は放射性カリウムであるため、ほとんどの食品には放射性カリウムが含まれて います。放射性カリウムは $\beta$  (ベータ)線と $\gamma$  (ガンマ)線を放出するため、食品を摂取 することで内部被ばくをすることになります(上巻P74、「目で見る放射線」)。 体内のカ リウム濃度は一定になるように保たれているため、食品のカリウムからの被ばく量は 体格によって決まり、食生活による影響は受けないと考えられています(上巻P8、「自 然由来•人工由来」)。

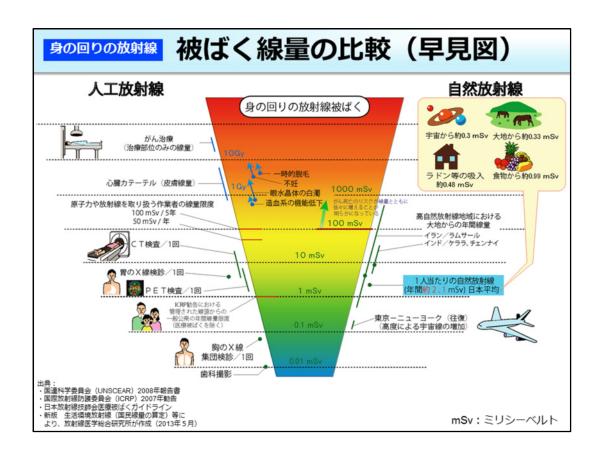
乾物は、製品の状態で分析された値であり、乾燥による濃度上昇の効果も含まれま す。例えば、乾燥により重量が10分の1になれば、濃度は10倍になります。

本資料への収録日: 平成25年3月31日

## **身の回りの放射線** 診断で受ける放射線量

| 検査の種類            | 診断参考レベル*1                           | 実際の被ばく線量*2                               |                |  |
|------------------|-------------------------------------|------------------------------------------|----------------|--|
| 校旦の程規            | 砂町多ちレイリレー                           | 線量                                       | 線量の種類          |  |
| 一般撮影:胸部正面        | 0.3mGy                              | 0.06mSv                                  | 実効線量           |  |
| マンモグラフィ (平均乳腺線量) | 2.4mGy                              | 2 mGy程度                                  | 等価線量<br>(乳腺線量) |  |
| 透視               | IVR:透視線量率<br>20mGy/分                | 胃の透視<br>4.2-32mSv程度*3<br>(術者や被検者により差がある) | 実効線量           |  |
| 歯科撮影             | 下顎 前歯部1.1mGy から<br>上顎 大臼歯部2.3mGy まで | 2-10µSv程度                                | 実効線量           |  |
| X線CT検査           | 成人頭部単純ルーチン85mGy                     | 5-30mSv程度                                | 実効線量           |  |
| 大阪し「快直           | 小児(6~10歳)頭部60mGy                    | 3-3011130/主/支                            | 一大小小水里         |  |
| 核医学検査            | 放射性医薬品ごとの値                          | 0.5-15mSv程度                              | 実効線量           |  |
| PET検査            | 放射性医薬品ごとの値                          | 2-20mSv程度                                | 実効線量           |  |

- \*1:医療被ばく研究情報ネットワーク他「最新の国内実態調査結果に基づく診断参考レベル」平成27年6月7日 (平成27年8月11日一部修正)(http://www.radher.jp/J-RIME/)
- \*2:量研機構「CT検査等医療被ばくの疑問に答える医療被ばくリスクとその防護についての考え方Q&A」 (http://www.nirs.qst.go.jp/rd/faq/medical.html)
- \*3:北里大学病院放射線部「医療の中の放射線基礎知識」(http://www.khp.kitasato-u.ac.jp/hoshasen/iryo/) 「健康診断のX線検査」の「胃(透視)」のデータより作成

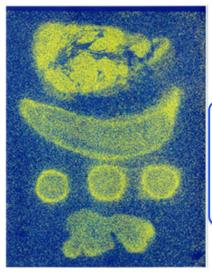

上記資料\*1、\*2及び\*3に基づき作成

放射線検査による被ばく線量は、検査の種類によって異なります。歯科撮影のように局所的にごく僅かな被ばくをするものもありますし、X線CTや核医学検査等、被ばく線量が比較的高めの検査もあります。また、同一の検査の種類でも、線量は医療機関によって大きな違いがあり得ます。そこで、診断にとって線量が高すぎるかどうかを判断する目安として、診断参考レベルの利用が推奨されています。その医療機関の平均的な放射線量が診断参考レベルと大きくかけ離れている場合、検査における照射条件の見直しを国際放射線防護委員会(ICRP)は考慮すべきとしています。

欧米等の諸外国では、診断参考レベルを既に利用している国もあります。日本では日本診療放射線技師会が、診断参考レベル相当の値を独自に取りまとめ、平成12年に「医療被ばくガイドライン(低減目標値)」を発行しました。その後、平成18年に、「医療被ばくガイドライン2006」として改訂されています。さらに、医療被ばく研究情報ネットワーク(J-RIME)\*は、参加団体が実施した実態調査の結果に基づいて、日本で初めて診断参考レベルを策定しました。(医療放射線防護連絡協議会他「最新の国内実態調査結果に基づく診断参考レベル」平成27年6月7日(平成27年8月11日一部修正))

注 \*: 医療被ばく研究情報ネットワーク(Japan Network for Research and Information on Medical Exposures: J-RIME)は、学協会等の協力を得て多くの専門家の力を結集し、医療被ばくに関する国内外の研究情報を収集・共有して、わが国の事情に合致した医療被ばくの防護体系を確立するための活動母体として平成22年に発足しました。J-RIMEの活動目的は、放射線診療における被ばく線量・リスク評価等医療被ばくに関するデータを収集し、我が国の医療被ばくの実態把握を行うと共に、国際的な動向を踏まえて医療被ばくの適切な防護体制を国内に構築する点にあります。(出典:国立研究開発法人量子科学技術研究開発機構放射線医学総合研究所ウェブサイト、http://www.nirs.qst.go.jp/rd/structure/merp/j-rime.html)

本資料への収録日:平成25年3月31日




日常生活で受ける放射線の量を比較すると、放射線治療のような特殊なケースを除き、一回の行為当たりの線量や年間当たりの線量は、ミリシーベルト程度のものがほとんどです(上巻P72、「診断で受ける放射線量」)。

なお、人への健康影響が確認されている被ばく線量は、100ミリシーベルト以上であると考えられています。

本資料への収録日: 平成25年3月31日

### 身の回りの放射線 目で見る放射線



豚肉、バナナ (縦切り及び横切り)、 ショウガの放射能像

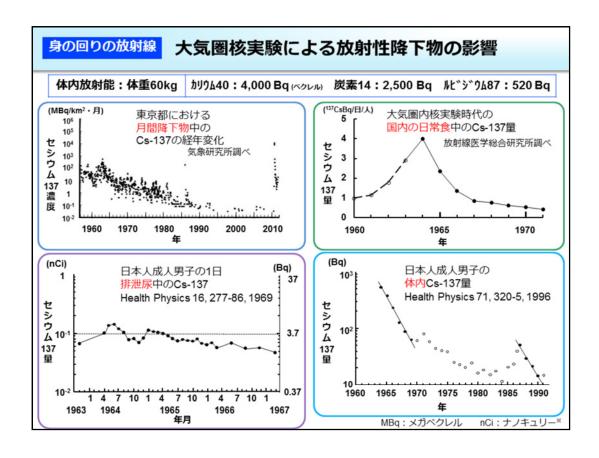
#### 食品からの放射線

·主にカリウム40のB(ベータ)線

·カリウム40の天然存在比\*は0.012%

·カリウム40の半減期は1.26×109年

※天然に存在するカリウムのうちカリウム40の割合


出典:森,応用物理,97,No.6,平成10年

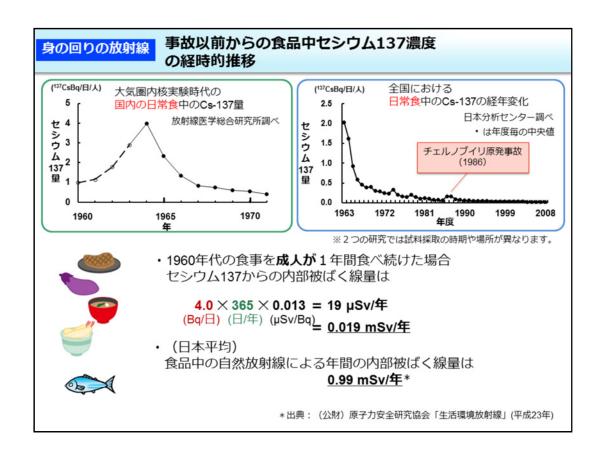
食品中に含まれるカリウム40からは $\beta$ (ベータ)線と $\gamma$ (ガンマ)線が放出されていま す。

イメージングプレートを利用すると、カリウム40からの β 線によってカリウムの分布を 調べることができます。

スライドの図は、豚肉、バナナ、ショウガをイメージングプレートの上に置き、外部か らの放射線を遮へいした状態で24日間露出して得た画像です。豚肉の蛋白質の部分、 バナナの皮の部分、ショウガの芽の部分等にカリウムは比較的多く含まれています。 豚肉の脂肪の部分にはカリウムがほとんど含まれていないことが分かります。

本資料への収録日:平成25年3月31日




大気圏核実験が行われていた時代には大量の人工放射性核種が環境中に放出されました。これらの人工放射性核種は気流に運ばれて全世界を取り巻き、大気圏から地球表面に向けて徐々に降下してきました。このような放射性降下物をフォールアウトと呼びます。フォールアウトの量は大気圏核実験が禁止される直前の1963年が最も高く、それ以降減少傾向を示しています。

食品へのセシウム移行や消費等の時間的ずれがあるため、日常食中の放射性セシウムの量は1964年で最大となり、その後1967年までに急速に低下し、それ以降は比較的緩慢に減少してきました。

日常食のセシウムの量と連動して、尿中や体内のセシウム137の量も1964年が最大でした。なお、チェルノブイリ原発事故による影響の結果、日本人の体内からもセシウムの増加が確認されています。

※キュリー(Ci):放射線の単位。1ナノキュリー(1nCi)は1キュリー(1Ci)の10<sup>-9</sup>、つまり10億分の1キュリーとなります。

本資料への収録日: 平成25年3月31日



1945年から1980年まで世界各地で大気圏核実験が行われました。その結果、大量の人工放射性核種が大気中に放出され、日本にも降下しました。放出された人工放射性核種がどのように健康に影響するか調べるため、日本全国で日常食中の放射能測定がなされてきました。

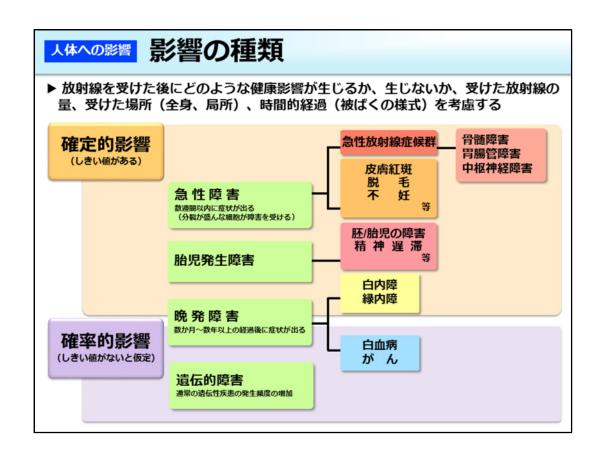
日常食中の放射能測定は、実際に摂取している食事を測定試料としており、食事に伴う内部被ばく線量の推定・評価に有用です。

日常食中のセシウム137の量は、特に大気圏内での核実験が禁止される1963年前後に最も高くなりました。その後は急速に減少し、1975年にはピーク時の10分の1程度にまで減少しました。1986年にはチェルノブイリ原発事故の影響で少し増えましたが、その後も2000年代まで緩やかに減少する傾向が見られます。

仮に、最もセシウム137濃度が高い1960年代の食事を成人が1年間食べ続けた場合、セシウム137からの内部被ばく線量は

4.0(Bg/日)×365(日/年)×0.013(uSv/Bg)=19 uSv/年 =0.019 mSv/年

となります。この値は日本人が食品中の自然放射線から受ける内部被ばく線量(0.99mSv/年)の約2%程度となります。


上記2つの研究では、測定試料(日常食)の採取地点および数が異なるため、数値に違いが見られます。

(全国における日常食中のセシウム137の経年変化のグラフ中の黒い点は、年度 ごとの中央値です)

本資料への収録日:平成29年3月31日

# 第3章

# 放射線による健康影響



放射線による人体への健康影響を考える際には、確率的な影響と確定的な影響の 二つに分けて考える方法があります。上の図は、確率的影響と確定的影響を整理した ものです。

確定的影響は一定以上の線量を被ばくしない限り発生することはありません。そのうちの多くは、被ばく後、数週間以内に現れる急性障害に分類されます。

確率的影響は、低い線量でも発生の可能性がゼロではないと考えられている影響です。一般的に安全側に立ち、しきい値がないと仮定して管理が行われています。

ただし、ヒトでは、実験動物の結果と同じような頻度で、放射線による遺伝性疾患が 出現することは確認されていません。

(関連ページ: 上巻P79、「放射線影響の分類」、上巻P80、「確定的影響と確率的影響」)

本資料への収録日: 平成25年3月31日



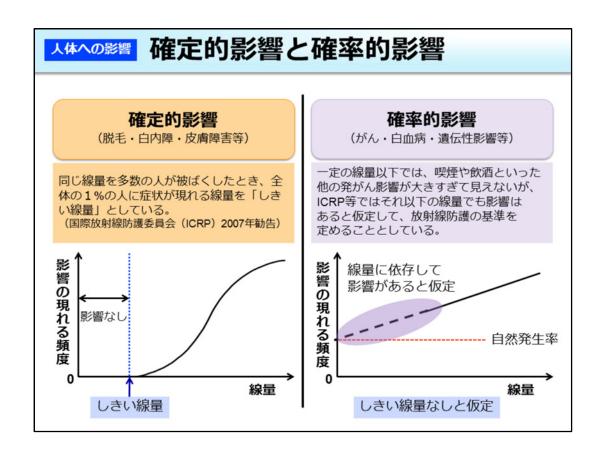
人体が放射線を受けたことにより、身体に影響を及ぼすかどうかは、外部被ばくか 内部被ばくか、全身被ばくか局所被ばくか、局所被ばくであるならば、どこに受けたの か、そしてどのくらいの量の放射線をどのくらいの期間で受けたかによって決まります。 放射線の身体的影響の種類や程度については、こうした情報が多ければ多いほど、 正確に判断することができます。

本資料への収録日: 平成25年3月31日

| 人体への影響 放射線影響の分類                                                                                                                 |       |                          |                                       |                                         |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------|---------------------------------------|-----------------------------------------|--|--|
|                                                                                                                                 |       | 潜伏期間                     | 例                                     | 放射線影響の機序                                |  |  |
| 野の出現                                                                                                                            |       | 数週間以内<br>=急性影響<br>(早期影響) | 急性放射線症候<br>群 <sup>※ 1</sup><br>急性皮膚障害 | 細胞死/細胞変性<br>で起こる<br>確定的影響 <sup>※2</sup> |  |  |
|                                                                                                                                 | 身体的影響 | 数か月以降 =<br>晩発影響          | 胎児の発生・発<br>達異常(奇形)                    | → ●                                     |  |  |
|                                                                                                                                 |       |                          | 水晶体の混濁                                |                                         |  |  |
|                                                                                                                                 |       |                          | がん・白血病                                | 突然変異で起こる<br>確率的影響                       |  |  |
|                                                                                                                                 | 遺伝性影響 |                          | 遺伝性疾患                                 | · → • · · ·                             |  |  |
| <ul><li>※1:主な症状としては、被ばく後数時間以内に認められる嘔吐、数日から数週間にかけて生じる下痢、<br/>血液細胞数の減少、出血、脱毛、男性の一過性不妊症等。</li><li>※2:一定量以上の被ばくがないと発生しない。</li></ul> |       |                          |                                       |                                         |  |  |

放射線の人体影響は、放射線を受けた本人に出る影響と子供や孫等子孫に出る影響に分けられます。

また、被ばくしてから症状が出るまでの時間によって分類されることもあります。すなわち、被ばく後、比較的早く症状が出る「急性影響(早期影響)」と、数か月後以降に現れる「晩発影響」に分けることができます。

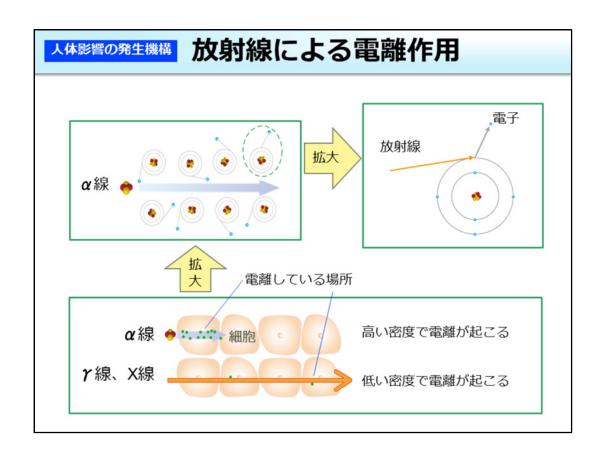

もう一つの分類方法は、放射線の影響が生じるメカニズムの違いによる分類です。

「確定的影響」は、臓器や組織を構成する細胞が多数死亡したり、変性したりすることで起こる症状です。例えば、比較的大量の放射線を浴びると、数週間以内に皮膚障害を起こしたり、造血能低下により血球の数が減ったりすることがあります(急性放射線症候群)。また妊娠中に大量の放射線を浴びると胎児に影響が出たり、眼に当たると、しばらくしてから白内障になることがあります。

一方、がんや遺伝性影響といった障害は、細胞の遺伝子が変異することで起こる影響です。放射線はDNAを傷つけ、その結果、突然変異が起こることがあります(上巻P84、「放射線によるDNAの損傷」)。個々の突然変異が病気につながる可能性は低いものの、理論的にはがんや遺伝性影響の原因となる可能性が全くないとはいえません。そこで、がんや遺伝性影響については、しきい線量はないと仮定して、管理が行われています。

(関連ページ:上巻P80、「確定的影響と確率的影響」)

本資料への収録日: 平成25年3月31日

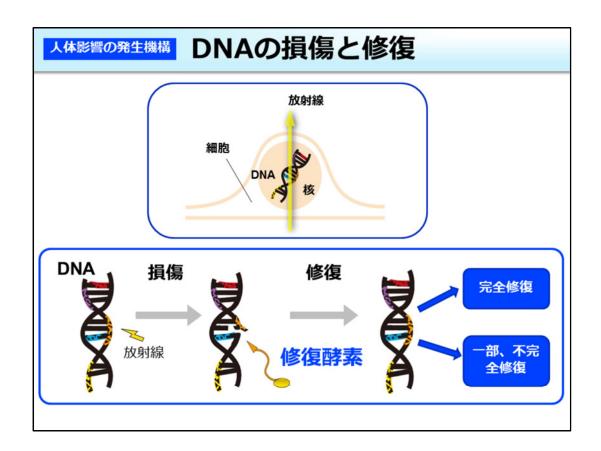



確定的影響の特徴は、これ以下なら影響が生じない、これ以上なら影響が生じるというしきい線量が存在するということです。しきい線量を超えると、一度にたくさんの細胞死や変性が起こり、影響の発生率は急激に増加します。

一方、放射線防護において、確率的影響にはしきい線量はないと仮定されています。この仮定に基づくと理論上どんなに低い線量でも影響が発生する確率はゼロではないことになります。100~200ミリシーベルト以下の低線量域については、放射線被ばくによる確率的影響を疫学的に検出することは極めて難しく、国際放射線防護委員会(ICRP)は、低線量域でも線量に依存して影響(直線的な線量反応)があると仮定して、放射線防護の基準を定めています。

低レベル放射線によるがんのリスクを評価する場合には、主に広島・長崎の原爆被爆者集団の疫学調査の結果を用いています。放射線被ばく線量とがん発生の関係はおよそ150ミリシーベルト以上では、ほぼ直線的に線量と共にリスクが上昇することが分かっています。しかし、150ミリシーベルトより低い線量では、直線的にリスクが上昇するかどうかは明らかではありません。また原爆のように短い時間に高い線量を受ける場合に対して、低い線量を長時間にわたって受ける場合(低線量率の被ばく)のほうが、被ばくした総線量が同じでも影響のリスクは低くなるような傾向が、実験動物や培養細胞の実験研究で明らかになっています。

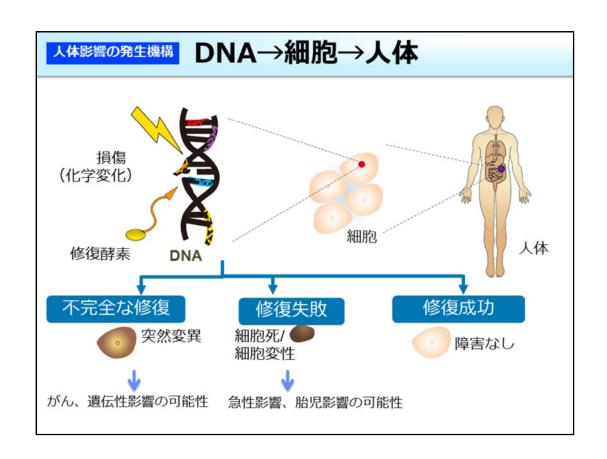
本資料への収録日:平成25年3月31日




放射線はその通り道の近くにエネルギーを与えていきます。与えられたエネルギーにより、通り道の物質の電子が弾き飛ばされます。これが電離作用です。

物質にエネルギーを与える密度は、放射線の種類によって異なりますが、 $\beta$  (ベータ)線や $\gamma$ (ガンマ)線に比べ、 $\alpha$ (アルファ)線はごく狭い範囲に集中的にエネルギーを与えます。このような電離作用の密度の違いにより、同じ吸収線量であっても細胞が受ける損傷の大きさが異なります。

放射線が直接生体分子に損傷を与える過程を直接作用といいます。細胞は約3分の2が水で構成されているので、放射線によって水のイオン化も起こります。このイオン化によって生じたラジカルと呼ばれる化学反応を起こしやすい成分により、生体分子に損傷を与える過程を間接作用といいます(上巻P83、「DNA→細胞→人体」)。


本資料への収録日: 平成25年3月31日

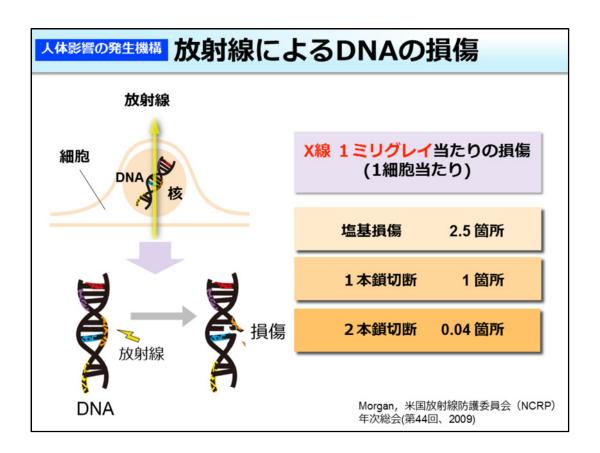


細胞は生命の設計図ともいえるDNA を持っています。DNA は糖・リン酸そして4種類の塩基を持った2本の鎖からできています。塩基の並び方に遺伝情報が組み込まれているので、並び方を保つために塩基は互いの鎖のいがたになるように組み合わされています。このDNA に放射線が当たると、当たった量に応じてDNA の一部が壊れる事があります(上巻P84、「放射線によるDNAの損傷」)。

DNA を傷つける原因は、放射線以外にも、食物の中の発がん物質、たばこ、環境中の化学物質、活性酸素等があり、一日1細胞当たり、1万から100 万か所の頻度でDNA は損傷を受けているといわれています。細胞には、DNA 損傷を修復する機能があり、DNA が損傷を受けると、修復酵素が駆けつけて、こうした傷を修復します。修復には、完全に修復される場合と一部が不完全に修復される場合があります(上巻P83、「DNA→細胞→人体」)。

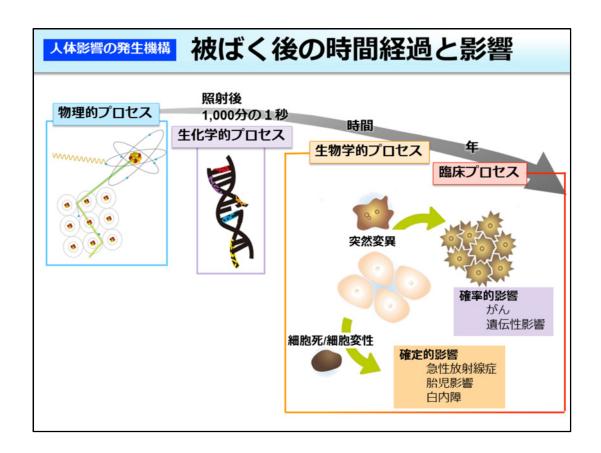
本資料への収録日: 平成25年3月31日




放射線の当たる箇所を細かく見てみると、放射線は細胞に当たり、細胞の中にある遺伝子の本体であるDNAに傷をつけることがあります。このついた傷は、体の中に備わっているシステムで修復されます。

少しの傷であれば修復が成功し、元に戻ります。傷が多ければ修復できずに細胞自体が死んでしまいます。少しの細胞が死んでも、他の細胞が代わりをすれば、その臓器や組織の機能障害は生じません。多くの細胞が死んだり変性した場合、脱毛・白内障・皮膚障害といった急性障害や胎児発生障害等の確定的影響が生じる可能性があります(上巻 P85、「被ばく後の時間経過と影響」、上巻P86、「確定的影響」)。

また、遺伝子の修復が完全ではない細胞が生き長らえた場合には、突然変異を起こし、がんや遺伝性の障害等の確率的影響が生じる可能性があります。

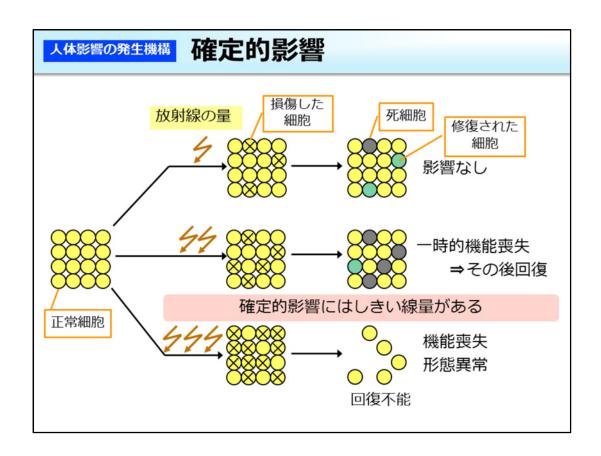

DNAを傷つける原因は、放射線以外にも、食物の中の発がん物質、喫煙、環境中の化学物質、活性酸素等があり、1日1細胞当たり、1万から100万箇所の頻度でDNAは損傷を受けているといわれています。低線量放射線による損傷は、代謝に伴うDNA損傷に比べて圧倒的に少ないのですが、放射線は局所にエネルギーを与えるために、複数のDNA損傷が複合した複雑な損傷を作ります。また、放射線による影響も、その約85%は放射線により生じる活性酸素等の影響であり、約15%が放射線による直接の損傷によるものです。

本資料への収録日: 平成25年3月31日



DNAに放射線が当たると、当たった量に応じてDNAの一部が壊れる事があります。 X(エックス) 線1ミリグレイ当たり、1細胞で平均1箇所の1本鎖切断が起こるといわれています。これは1ミリシーベルトに相当します。また2本鎖切断の頻度はこれより少なく0.04箇所のため、100細胞が均一に1ミリグレイ浴びたら、4細胞に2本鎖切断が起こることになります。

本資料への収録日: 平成25年3月31日




放射線を浴びた後、1,000分の1秒という短い時間にDNA切断や塩基損傷は起こります。1秒後には修復が始まり、修復に失敗した場合には、1時間~1日の間に細胞死や突然変異が起こります。こうした細胞レベルでの反応が生じてから、個体レベルで臨床症状が出るまでにはしばらく時間が掛かります。この時間のことを潜伏期といいます。

被ばく後、数週間以内に症状が生じるものを急性(早期)影響、比較的長く掛かる影響を晩発影響と呼びます。特にがんが発症するには数年から数十年の時間を要します。

(関連ページ:上巻P97、「発がんの仕組み」)

本資料への収録日:平成25年3月31日



放射線が少し当たって、多少細胞が死んでも、残りの細胞だけで十分に組織や臓器が機能すれば、臨床症状は現れません。

放射線の量が増え、死亡する細胞が増加すると、その臓器や組織の機能が一時的に衰え、臨床症状が出ることがあります。しかし、その後、正常の細胞が増殖すれば、症状は回復します。

更に大量の放射線を浴び、組織や臓器の細胞の損傷が大きい場合には、永久に機能喪失や形態異常が起こる可能性があります。

このように、細胞死によって起こる確定的影響には、これ以上放射線を浴びると症状が現れ、これ未満では症状が現れないという線量が存在します。この線量のことを「しきい線量」と呼びます(上巻P91、「様々な影響のしきい値」)。

本資料への収録日:平成25年3月31日

#### 人体影響の発生機構 臓器・組織の放射線感受性

分裂が盛ん 感受性が高い

**造血系**:骨髄、リンパ組織(脾臓、胸腺、リンパ節)

生殖器系:精巣、卵巣

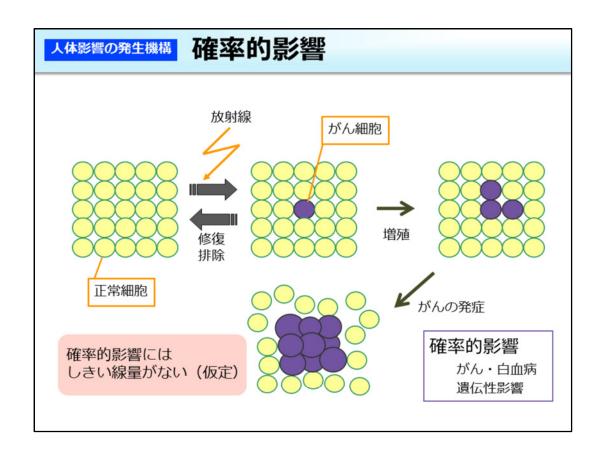
消化器系:粘膜、小腸絨毛

表皮、眼:毛囊、汗腺、皮膚、水晶体

その他:肺、腎臓、肝臓、甲状腺

支持系:血管、筋肉、骨

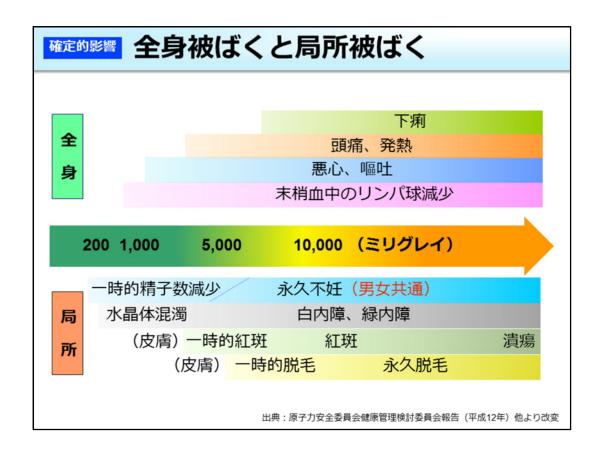
伝達系:神経


分裂しない 感受性が低い

細胞分裂が盛んで、分化の程度の低い細胞ほど、放射線感受性が高い傾向にあります。例えば、骨髄にある造血幹細胞は盛んに分裂しながら、血中の各種血液細胞に分化する細胞です。幹細胞から分裂(増殖)が進んだ未成熟(未分化)な造血細胞の放射線感受性は極めて高く、分化した細胞よりも少量の放射線で細胞死が起こります。

その結果、血液細胞の供給が止まり、血中の各種の細胞の数が減少します。また 消化管の上皮も常に新しい細胞に置き換わる新陳代謝が激しい臓器なので、放射線 感受性が高くなります。

一方、成体では細胞分裂をしない神経組織や筋組織は放射線に強いことが知られています。


本資料への収録日:平成25年3月31日

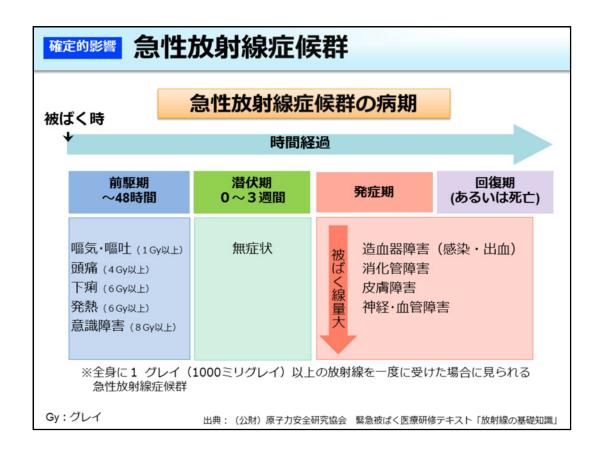


細胞の突然変異で起こる影響は、一つの細胞に突然変異が起こったとしてもそのリスクが増加すると考えられています。

突然変異を起こした細胞は、ほとんどが修復されたり排除されたりしますが、一部の変異細胞が生き残り、その子孫細胞に複数の遺伝子突然変異や遺伝子発現レベルの変化が追加的に起こると、がん細胞が生じる可能性が高まります。がん細胞が増殖すると、臨床的な(身体的症状から、医師が診断する)がんとして発症します。細胞のがん化は、複数の遺伝子に変異が起こり、修復されずに蓄積された結果として生じるため、発がん影響を評価する際には、受けた線量を全て考慮する必要があります。

本資料への収録日:平成25年3月31日




一度に100ミリグレイ程度以上の放射線を受けた場合、細胞死を原因とする人体影響が生じることがあります。こうした症状は、放射線の感受性の高い臓器ほど、少しの線量で症状が生じます。

分裂が盛んな臓器である精巣は、放射線感受性が高く、一時的な精子数の減少は 100~150ミリグレイで現れ、一過性の不妊になることがあります。骨髄も感受性が高く、 1,000ミリグレイ以下の被ばくでも血中のリンパ球が減少することがあります。しかし、こうした症状は自然に治癒します。

一方、2,000ミリグレイ以上の放射線を一度に受けた場合、治療を要する臨床症状が起こることがあります。

局所被ばくの場合には、被ばくした部分の臓器に障害が現れます。 (関連ページ:上巻P82、「DNAの損傷と修復」)

本資料への収録日: 平成25年3月31日



全身に1グレイ(1,000ミリグレイ)以上の放射線を一度に受けた場合、様々な臓器・組織に障害が生じ、複雑な臨床経過をたどります。この一連の臓器障害を、急性放射線症候群と呼びます。この時間経過をみると、典型的には、前駆期、潜伏期、発症期の経過をたどり、その後、回復するか死亡します。

被ばく後48時間以内に見られる前駆症状により、おおよその被ばく量を推定することができます。1グレイ以上の被ばくで、食欲不振、悪心、嘔吐といった症状が見られることがあります。4グレイ以上の被ばくをした場合、頭痛等を訴えることがあります。6グレイ以上被ばくした場合、下痢や発熱といった症状が現れることがあります。

その後、潜伏期を経て、発症期に入ると、線量増加と共に造血器障害、消化管障害、神経血管障害の順で現れます。これらの障害は、放射線感受性の高い臓器や組織を中心に現れます。概して線量が多いほど潜伏期は短くなります。

皮膚は大人の体で1.3~1.8m<sup>2</sup>とかなり大きな面積を持つ組織です。また、表皮は、 基底層で生まれた基底細胞が徐々に分化を遂げながら表面に押し上げられていき、 角質層となり最後は垢となって体表面から離れます。

基底層から表層への移行時間は大体20日~40日強といわれています。\*放射線の影響を受けた角質層から基底層までの細胞は表面に現れるのに2週間から1か月強程度の時間が掛かります。このため、放射線の強さにより被ばく直後に初期皮膚紅斑が出ることもありますが、一般に皮膚障害は、被ばく後2~3週間経ってから現れます(上巻P26、「外部被ばくと皮膚」)。

\*: UNSCEAR 1988、「放射線の線源、影響及びリスク」放射線医学研究所監訳、(株)実業広報 社、平成2年3月

本資料への収録日: 平成25年3月31日

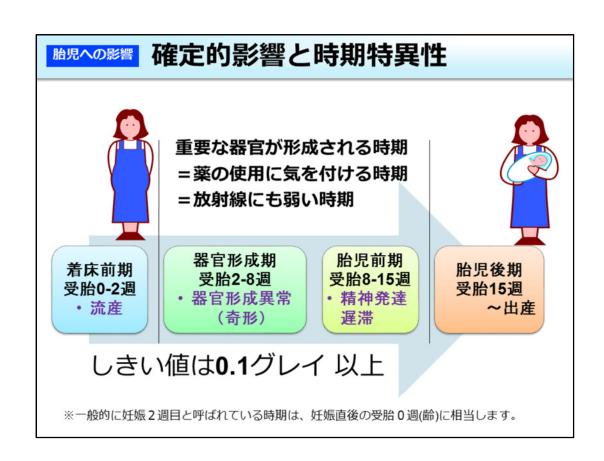
## **確定的影響** 様々な影響のしきい値

#### γ (ガンマ)線急性吸収線量のしきい値

| 障害        | 臓器/組織     | 潜伏期  | しきい値 (グレイ)* |
|-----------|-----------|------|-------------|
| 一時的不妊     | 精巣        | 3~9週 | 約0.1        |
| 永久不妊      | 精巣        | 3週   | 約6          |
| 从人小红      | 卵巣        | 1週以内 | 約3          |
| 造血能低下     | 骨髄        | 3~7日 | 約0.5        |
| 皮膚発赤      | 皮膚 (広い範囲) | 1~4週 | 3~6以下       |
| 皮膚熱傷      | 皮膚 (広い範囲) | 2~3週 | 5~10        |
| 一時的脱毛     | 皮膚        | 2~3週 | 約4          |
| 白内障(視力低下) | 眼         | 数年   | 0.5         |

※臨床的な異常が明らかな症状のしきい線量(1%の人々に影響を生じる線量)

出典:国際放射線防護委員会 (ICRP) 2007年勧告、国際放射線防護委員会報告書118 (2012年)


放射線の感受性は臓器によって異なります。最も感受性が高い臓器は精巣です。

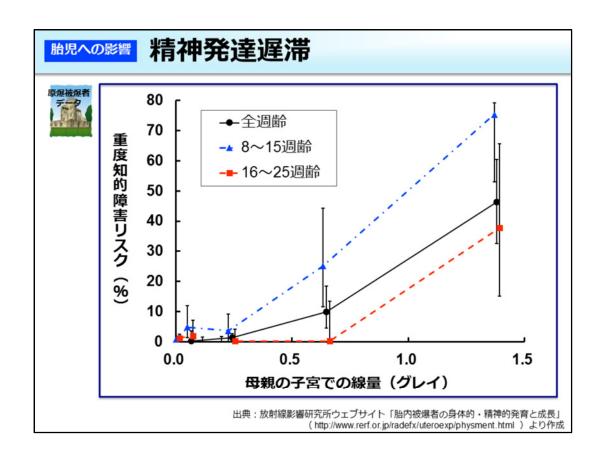
一度に0.1グレイ(100ミリグレイ)以上の $\gamma($ ガンマ)線等の放射線を受けると、精子 数が一時的に減少する一時的不妊を引き起こすことがあります。これは、精巣にある 精子を作り出す細胞が損傷を受けたために起こります。

また、骨髄が0.5グレイ(500ミリグレイ)以上の被ばくをすると、造血能が低下し、血液 細胞の数が減少します。

確定的影響の中には、白内障のように発症するまでに数年掛かるものもあります。 なお、白内障のしきい値は1.5グレイとされてきましたが、最近国際放射線防護委員 会(ICRP)はそれより低い0.5グレイ程度に見直し、眼の水晶体に対する職業被ばくの 新しい等価線量限度を設けました。

本資料への収録日: 平成25年3月31日




確定的影響の中でもしきい値の低いものに、胎児影響があります。妊婦が被ばくした場合、子宮内を放射線が通過したり、放射性物質が子宮内に移行したりすれば、胎児も被ばくする可能性があります。

胎児期は放射線感受性が高く、また影響の出方に時期特異性があることが分かっています。妊娠のごく初期(着床前期)に被ばくすると、流産が起こることがあります。

この時期を過ぎてからの被ばくでは、流産の可能性は低くなりますが、赤ちゃんの体が形成される時期(器官形成期)に被ばくすると、器官形成異常(奇形)が起こることがあります。大脳が活発に発育している時期(胎児前期)に被ばくすると、精神発達遅滞の危険性があります(上巻P93、「精神発達遅滞」)。

放射線への感受性が高い時期は、妊婦が薬をむやみに服用しないようにと指導されている時期と一致します。安定期に入るまでのこの時期は、薬同様、放射線の影響も受けやすい時期になります。こうした胎児への影響は0.1グレイ以上の被ばくで起こります。このことから、国際放射線防護委員会(ICRP)は、2007年の勧告の中で「胚/胎児への0.1グレイ未満の吸収線量は妊娠中絶の理由と考えるべきではない」という考え方を示しています。これは γ (ガンマ)線やX(エックス)線を一度に100ミリシーベルト受けた場合に相当します。なお、胎児の被ばく線量は母体の被ばく線量と必ずしも同じではありません。被ばく線量に応じて、がんや遺伝性影響といった確率的影響のリスクも高まります。

本資料への収録日:平成25年3月31日



胎児影響の時期特異性については、原爆により胎内被ばくした集団の健康調査で明らかになりました。

これは、原爆投下時の胎齢と精神発達への影響との関係を調べたグラフです。

原爆被ばく時の胎齢が8~15週齢の場合、放射線感受性が高く、子宮内での線量が0.1グレイから0.2グレイの間にしきい値があるように見えます。これ以上の線量域では、線量の増加に応じて重度知的障害の発生率が上がっていることが分かります。

しかし16~25週齢だった子供たちは、0.5グレイ程被ばくした場合でも重度な知的障害は見られず、1グレイを超えるような被ばくでは、かなりの頻度で障害が発生することが分かりました。

つまり、同じ量の被ばくをしても、8~15週齢で被ばくした場合と、16~25週齢の被ばくでは、障害の発生率が異なっています。

本資料への収録日: 平成25年3月31日

#### 胎児への影響

## 子供への影響-チェルノブイリ原発事故-

#### チェルノブイリ原発事故の際、妊娠中だった母親から生まれた 子供に関する調査



#### 調査対象

- ①胎内被ばくした子供138人と親(胎内被ばく群:被ばくした集団)
- ②ベラルーシの非汚染地域の子供122人と親

(対照群:被ばくしていない集団)

| 子供の      | 6~7歳時点  |      | 10~11歳時点 |      |
|----------|---------|------|----------|------|
| 精神発達     | ①胎内被ばく群 | ②対照群 | ①胎内被ばく群  | ②対照群 |
| 言語障害     | 18.1%   | 8.2% | 10.1%    | 3.3% |
| 情緒障害     | 20.3%   | 7.4% | 18.1%    | 7.4% |
| IQ=70~79 | 15.9%   | 5.7% | 10.1%    | 3.3% |

○精神発達において、胎内被ばく群と対照群との間に有意な差が見られたが、被ばくした線量と知能指数の間に相関がなかったことから、避難に伴う社会的要因が原因と考えられた

○親の極度の不安と子供の情緒障害の間には相関が見られた

妊娠中の放射線被ばくは、胎児及び成長後の小児の知能指数に直接影響していないと考えられる

出典: Kolominsky Y et al., J Child Psychol Psychiatry, 40 (2):299-305, 1999

ベラルーシの研究者らはチェルノブイリ原発事故の際、妊娠中で原発のそばに住んでいた母親から生まれた子供138人と、ほとんど被ばくしなかった事故時妊娠中だった母親から生まれた子供122人を対象に、胎児被ばくがその後の精神発達に及ぼした影響について6~7歳の時点と10~11歳の時点の2回調査しました。

2回の調査とも、言語障害、情緒障害を発生する頻度は、非被ばく児に比べて胎内 被ばく児では、統計学的に有意に多いという結果が得られています。

知能指数の平均も、非被ばく児に比べ平均以上の子供が少なく、正常と精神発達遅滞との境界域の子供が明らかに多いという結果でした。

しかし、甲状腺への吸収線量と知能指数には相関がなく、汚染された地域からの避難に伴う不利な社会心理学的、社会文化的要因(保護者の教育レベルや学校教育等)といった、被ばく以外の要因が原因である可能性が示唆されており、妊娠中の放射線被ばくが、胎児及び成長後の子供の知能指数に直接影響している可能性は低いと考えられています。

なお、親に対してのストレス評価指標調査の結果、親の不安症の頻度と子供の情緒障害の間には明らかな相関が認められました。

本資料への収録日:平成25年3月31日

### 遺伝性影響

## 被爆二世における染色体異常



### 原爆被爆者の子供における安定型染色体異常

| 異常の起源             | 染色体異常を持った子供の数<br>(割合) |                             |  |
|-------------------|-----------------------|-----------------------------|--|
| 共市の心脈             | 対照群(7,976人)           | 被ばく群(8,322人)<br>平均線量は0.6グレイ |  |
| 両親のどちらかに由来        | 15<br>(0.19%)         | 10<br>(0.12%)               |  |
| 新たに生じた例           | 1<br>(0.01%)          | 1<br>(0.01%)                |  |
| 不明 (両親の検査ができなかった) | 9<br>(0.11%)          | 7<br>(0.08%)                |  |
| 合 計               | 25<br>(0.31%)         | 18<br>(0.22%)               |  |

出典:放射線影響研究所ウェブサイト「被爆者の子供における染色体異常 (1967 – 1985年の調査) 」 (http://www.rerf.or.jp/radefx/genetics/chromeab.html)

原爆被爆者二世の健康影響調査では、重い出生時障害、遺伝子の突然変異や染色体異常、がん発生率、がんやそのほかの疾患による死亡率等について調べられていますが、どれも対照群との差は認められていません。

安定型染色体異常は細胞分裂で消失することがなく、子孫に伝わる形の染色体異常です。両親の少なくともどちらかが爆心地から2,000m以内で被ばく(推定線量が0.01 グレイ以上)した子供(被ばく群)8,322人の調査では、安定型染色体異常を持つ子供は18人でした。一方、両親とも爆心地から2,500m以遠で被ばく(推定線量0.005グレイ未満)したか、両親とも原爆時に市内にいなかった子供(対照群)7,976人では、25人に安定型染色体異常が認められました。

しかし、その後の両親及び兄弟姉妹の検査により、染色体異常の大半は新しく生じたものではなく、どちらかの親がもともと異常を持っていて、それが子供に遺伝したものであることが明らかとなりました。こうしたことから、親の被ばくにより、生殖細胞に新たに安定型染色体異常が生じ、二世に伝わるといった影響は、原爆被爆者では認められないことが分かりました。

本資料への収録日: 平成25年3月31日

## 遺伝性影響 ヒトでの遺伝性影響のリスク

- ■放射線による生殖腺(生殖細胞)への影響
  - ◎遺伝子突然変異

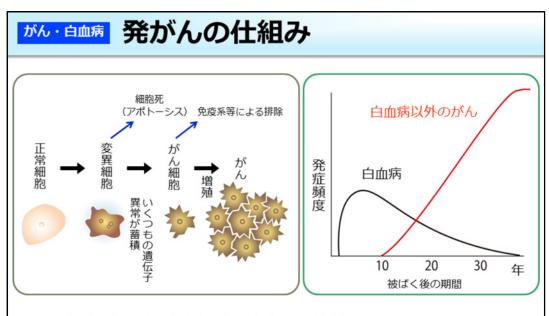
DNAの遺伝情報の変化(点突然変異)

◎染色体異常

染色体の構造異常

※ヒトでは子孫の遺伝病の増加は証明されていません

- ■遺伝性影響のリスク(子と孫の世代まで)
  - = 約0.2%/グレイ(1グレイ当たり1,000人中2人) (国際放射線防護委員会 (ICRP) 2007年勧告)




- ・ヒト集団での各遺伝性疾患の自然発生頻度
- ・遺伝子の平均自然突然変異率(ヒト)、平均放射線誘発突然変異率(マウス) ・マウスの放射線誘発突然変異からヒト誘発遺伝性疾患の潜在的リスクを外挿する補正係数
- ■生殖腺の組織加重係数 (国際放射線防護委員会(ICRP)勧告)  $0.25(1977年) \rightarrow 0.20(1990年) \rightarrow 0.08(2007年)$

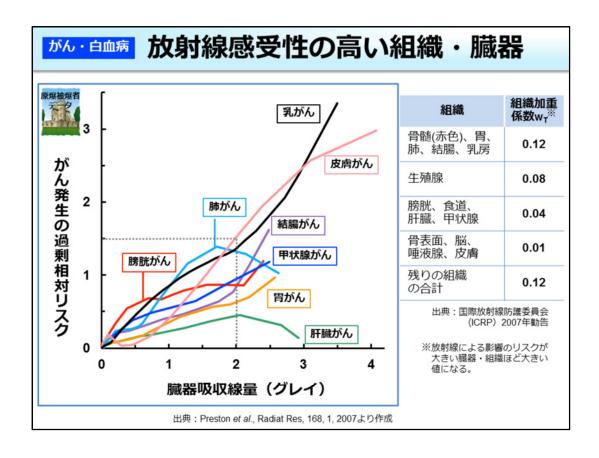
動物実験では親に高線量の放射線を照射すると、子孫に出生時障害や染色体異常 等が起こることがあります。しかし人間では、両親の放射線被ばくが子孫の遺伝病を 増加させるという証拠は見つかっていません。国際放射線防護委員会(ICRP)では、1 グレイ当たりの遺伝性影響のリスクは0.2%と見積もっています。これはがんの死亡リ スクの20分の1にも満たない値です。

原爆被爆者の二世では、死亡追跡調査、臨床健康診断調査や様々な分子レベルの 調査が行われています。こうした調査結果が明らかになるにつれ、従来心配されてい たほどには遺伝性影響のリスクは高くないことが分かってきたため、生殖腺の組織加 重係数の値も、最近の勧告ではより小さい値に変更されています。

本資料への収録日: 平成25年3月31日



- ・放射線はがんを起こす様々なきっかけの一つ
- ・変異細胞ががんになるまでには、いろいろなプロセスが必要 →数年~数十年掛かる


放射線ばかりではなく、様々な化学物質や紫外線等にもDNAを傷つける作用があります。しかし、細胞には傷ついたDNAを修復する仕組みがあり、大抵の傷はすぐに元どおりに修復され、また修復に失敗した場合でも、その細胞を排除する機能が体には備わっています(上巻P82、「DNAの損傷と修復」)。

ごく稀に、修復し損なった細胞が、変異細胞として体の中に生き残ることがあります。 こうしたがんの芽は生じては消え、消えては生じといったことを繰り返します。

その中でたまたま生き残った細胞に遺伝子の変異が蓄積し、がん細胞となることがありますが、それには長い時間が掛かります。原爆の被爆では、被爆後2年頃から白血病が増加し始めましたが、その後発生頻度は低くなっています。一方、固形がんは、約10年の潜伏期間を経て増加し始めました。

(関連ページ:上巻P85、「被ばく後の時間経過と影響」)

本資料への収録日: 平成25年3月31日



この図は、原爆被爆者を対象に、どれだけの線量をどこに受けるとがんのリスクが増加するかを調べたものです。横軸は、原爆投下時の高線量率一回被ばくによる臓器吸収線量です。縦軸は、過剰相対リスクといって、被ばくしていない集団と比べて、被ばくした集団ではどのくらいがん発症のリスクが増加したかを調べたものです。例えば、臓器吸収線量が2グレイの場合は、皮膚がんの過剰相対リスクが1.5となっていますので、放射線を受けなかった集団と比べて1.5倍のリスクが過剰に発症していることを意味しています(つまり、2グレイ被ばくした集団では皮膚がんの発症リスクは、放射線を受けていない集団(1倍)の2.5倍(1+1.5)となります)。

こうした疫学研究の結果から、乳腺、皮膚、結腸等は、放射線によってがんが出やすい組織・臓器であることが分かりました。国際放射線防護委員会(ICRP)の2007年勧告では、臓器の感受性やがんの致死性等も考慮し、組織加重係数を定めています。

本資料への収録日: 平成25年3月31日


| 子供は小さな大人ではない                                                                                                                                                                                        |                                               |                                       |                                          |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------|------------------------------------------|--|--|
|                                                                                                                                                                                                     | ヨウ素131の<br>預託実効線量係数 <sup>※1</sup><br>(μSv/Bq) | ヨウ131を100Bq<br>摂取したときの<br>預託実効線量(µSv) | ヨウ131を100Bq<br>摂取したときの<br>甲状腺等価線量*²(μSv) |  |  |
| 3か月児                                                                                                                                                                                                | 0.18                                          | 18                                    | 450                                      |  |  |
| 1歳児                                                                                                                                                                                                 | 0.18                                          | 18                                    | 450                                      |  |  |
| 5歳児                                                                                                                                                                                                 | 0.10                                          | 10                                    | 250                                      |  |  |
| 大人                                                                                                                                                                                                  | 0.022                                         | 2.2                                   | 55                                       |  |  |
| ※1:代謝や体格の違いから、子供は預託実効線量係数が高い ※2:甲状腺の組織加重係数は0.04から算出  出典:国際放射線防護委員会 (ICRP), ICRP Publication 119, Compendium of Dose Coefficients based on ICRP Publication 60, 2012  子供では大人と比較して、甲状腺 や皮膚のがんリスクが高くなる |                                               |                                       |                                          |  |  |

大人の場合、骨髄、結腸、乳腺、肺、胃という臓器は、放射線被ばくによってがんが発症しやすい臓器ですが、子供の場合は、甲状腺や皮膚も放射線被ばくによるがんリスクが高いことが分かってきました。

特に、子供の甲状腺は放射線に対する感受性が高い上に、摂取放射能量(ベクレル)当たりの預託実効線量が大人よりもはるかに大きいので、1歳児の甲状腺の被ばく線量が、緊急時の防護策を考える基準に取り入れられています。また、摂取放射能量(ベクレル)当たりの預託実効線量係数は、大人よりもはるかに大きい数値が採用されています。

(関連ページ:上巻P104、「被爆時年齢と発がんリスクの関係」)

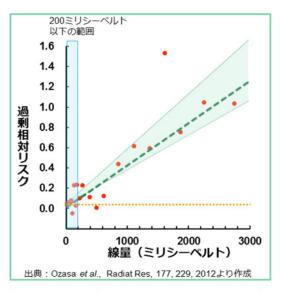
本資料への収録日:平成25年3月31日



原爆被爆者での調査では、大きな線量を一度に被ばくした場合の影響を調べています。しかし職業被ばくや、事故による環境汚染からの被ばくの多くは、慢性的な低線量率での被ばくになります。

そこで、マウスを用いて、一度に大きな線量を受けた場合と、じわじわと少しずつ受けた場合とでは、放射線による発がんのリスクにどのくらいの違いがあるのかを調べる実験が行われました。その結果、がんの種類によって、結果に違いはあるものの、概してじわじわと被ばくするほうが影響が小さいことが分かってきました。

線量・線量率効果係数は、それぞれ高線量のリスク(被ばく線量と発生率)から、実際のデータがない低線量におけるリスクを予想する際、あるいは急性被ばくのリスクから慢性被ばくや反復被ばくのリスクを推定する際に用いられる補正値です。この値をいくつにして放射線防護を考えれば良いのかについては、研究者によって様々な意見がありますが、国際放射線防護委員会(ICRP)の勧告では、補正値として2が使われており、少しずつ被ばくした場合は、一度に被ばくした場合に比べ、同じ線量を受けた場合でも、影響は半分になるとしています。


本資料への収録日: 平成25年3月31日



### 固形がんによる死亡と線量との関係



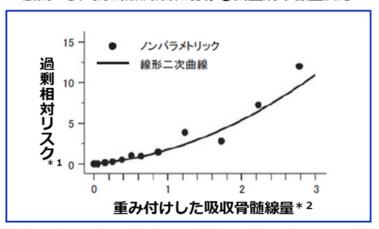
### 固形がんによる死亡(原爆被爆者での結果)



過剰相対リスク:放射線を受けなかった集団に比べ、放射線を受けた集団ではどのくらいがん発生のリスクが増加したかを調べたもの

原爆被爆者の健康影響調査の結果から、被ばくした量が増えると、発がんのリスクが高まることが知られています。最新の原爆被爆者の疫学調査でも、固形がんによる死亡リスクと線量の関係には、がん罹患で150ミリシーベルト以上で、また、がん死亡で200ミリシーベルト以上で直線性が見られるものの、150~200ミリシーベルト以下の関係については研究者によっても意見が分かれています。

150ミリシーベルト以下でも線量とがんリスクは比例関係にあるのか、それとも実質的なしきい値が存在するのか、あるいは別の相関があるのかは、今後の研究によって明らかになることが期待されます(上巻P154、「LNTモデルをめぐる論争」)。


本資料への収録日: 平成25年3月31日

#### 急性外部被ばく の発がん

## 白血病と線量反応関係

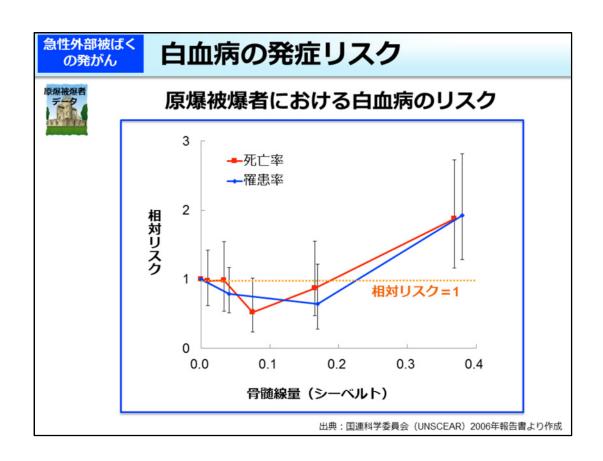


広島・長崎原爆被爆者における白血病の線量反応



※1:放射線被ばくを受けた場合の死亡率(または罹患率)の、被爆を受けなかった場合の死亡率(または罹患率)の、被爆を受けなかった場合の死亡率(または罹患率)に対する場合の死亡率(また

は罹患率)に対する増加分を示す指標。放射線被爆によって何倍増えたかを示す。


※2:白血病の場合、重み付けした骨髄線量(中性子線量を10倍したものとy(ガンマ)線量の和)を使用

出典: Wan-Ling Hsu et.al. The Incidence of Leukemia, Lymphoma and Multiple Myeloma among Atomic Bomb Survivors: 1950-2001, RADIATION RESEARCH 179, 361-382 (2013)より作成

原爆被爆者における調査の結果から、慢性リンパ性白血病および成人T細胞白血病を除いた白血病の線量反応関係は二次関数的であり、線量が高くなるほどリスク上昇が急になる上に凹型の線量反応が示されています(図中の線形二次曲線)。一方、低線量では、単純な線形線量反応で予測されるよりもリスクは低くなると考えられています。

図中には骨髄吸収線量の線量階級別に求めた過剰相対リスクが黒い点で示されており、線形二次線量反応モデルに基づく過剰相対リスクは黒いラインで示されています。

本資料への収録日: 平成25年3月31日



国連科学委員会(UNSCEAR)の報告によれば、原爆被爆者における白血病の相対リスク(被ばくしていない人を1としたとき、被ばくした人のリスクが何倍になるかを表したもの)は、0.2シーベルト以下の線量域では、白血病のリスクの増加は顕著ではありませんが、0.4シーベルト近くの群では有意な増加が認められています。

本資料への収録日:平成25年3月31日

# 急性外部被ばく の発がん

### 被ばく時年齢と発がんリスクの関係



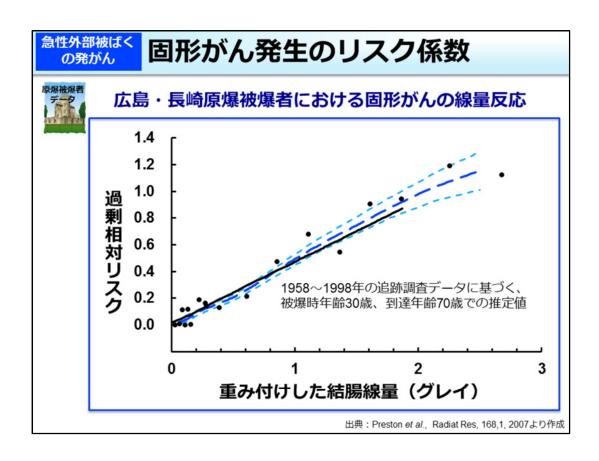
### 原爆被爆者の被ばく時年齢別の生涯リスク

| 年 | く時<br>:齢<br>歳) | 性  | 100mSv当たりの癌<br>死亡生涯リスク<br>(%) | バックグラウンド<br>癌死亡リスク<br>(%) | 100mSv当たりの白<br>血病死亡生涯リスク<br>(%) | バックグラウンド<br>白血病死亡<br>生涯リスク<br>(%) |
|---|----------------|----|-------------------------------|---------------------------|---------------------------------|-----------------------------------|
| 1 | 0              | 男性 | 2.1                           | 30                        | 0.06                            | 1.0                               |
| 1 | U              | 女性 | 2.2                           | 20                        | 0.04                            | 0.3                               |
| 3 | 0              | 男性 | 0.9                           | 25                        | 0.07                            | 0.8                               |
| 3 | U              | 女性 | 1.1                           | 19                        | 0.04                            | 0.4                               |
| 5 | 0              | 男性 | 0.3                           | 20                        | 0.04                            | 0.4                               |
| 5 | U              | 女性 | 0.4                           | 16                        | 0.03                            | 0.3                               |

#### 出典:

- Preston DL et.al., Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950-1997 Radiat Res., 2003 Oct;160(4):381-407.,
- Pierce DA et.al., Studies of the mortality of atomic bomb survivors. Report 12, Part I. Cancer: 1950-1990 Radiat Res., 1996 Jul;146(1):1-27.

この表は、放射線のリスクを、原爆被爆者の疫学調査で得られたデータに基づき、 癌による死亡のリスクを生涯リスクとして表したものです。具体的には、急性被ばく100 ミリシーベルト当たりの癌死亡と白血病による死亡の生涯リスクを、急性被ばくの無い 場合、つまり自然のバックグラウンド線量によるそれぞれの死亡リスクと比較していま す。


表から次のようなことが読み取れます。例えば、10歳の男子は、将来30%の確率で癌で死亡する可能性があるところ(表の10歳男性のバックグラウンド癌死亡リスク30%)、急性被ばくとして100ミリシーベルトを被ばくすると、被ばくによる癌死亡が2.1%増加して、トータルでは、32.1%の癌死亡のリスクになることを意味しています。

表からは、100ミリシーベルト当たり急性被ばくした場合、被爆時の年齢が低いほど、 生涯の癌による死亡のリスクが高い傾向がみられます。

その理由としては、若年者のほうが将来癌細胞に進展する可能性を持つ幹細胞の数が、また、細胞分裂をくり返す頻度が、それぞれ高年齢者に比較して多いことなどがあげられます。

(関連ページ:上巻P99、「年齢による感受性の差」)

本資料への収録日: 平成25年3月31日



この図は原爆被爆者における固形がん発症の過剰相対リスク(被ばくしていない集団に比べ、被ばくした集団ではどのくらいがん発症のリスクが増加したかを示す値)を示した結果です。1958~1998年の追跡調査データに基づき、太い実線は、被爆時年齢30歳の人が70歳に達した場合として推定したときの男女平均過剰相対リスクで、直線の線量反応を示しています。なお青の太い破線は、被ばくした線量区分別のリスクの代表値から推定した値であり、水色の細い破線はこの推定値の上下1標準誤差を示しています。

本資料への収録日:平成25年3月31日

# 急性外部被ばくの発がん

## 被ばく年齢ごとの生涯リスク



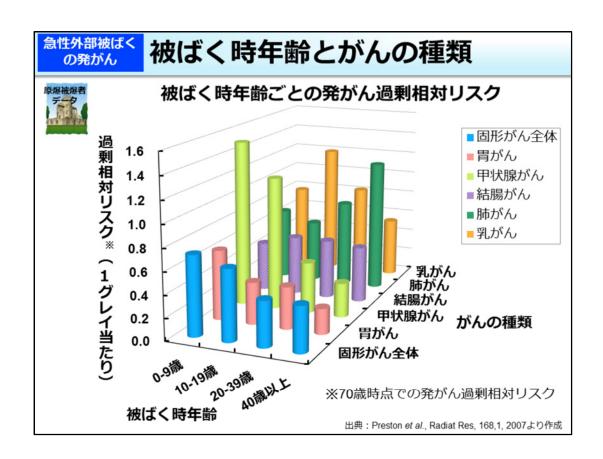
### 広島・長崎の原爆生存者の調査結果

100ミリシーベルト (mSv) での急性被ばくによる推定

| 被ばく時年齢 | 性 | 被ばくがない時の<br>発がんリスク<br>(A) (%) | 被ばくによる<br>過剰な生涯リスク*<br>(B) (%) | 被ばくがある時<br>の発がんリスク<br>(A+B) (%) |
|--------|---|-------------------------------|--------------------------------|---------------------------------|
| 10歳    | 男 | 30                            | 2.1                            | 32.1                            |
| 10/0%  | 女 | 20                            | 2.2                            | 22.2                            |
| 30歳    | 男 | 25                            | 0.9                            | 25.9                            |
| 30/0%  | 女 | 19                            | 1.1                            | 20.1                            |
| 50歳    | 男 | 20                            | 0.3                            | 20.3                            |
| 30 MW  | 女 | 16                            | 0.4                            | 16.4                            |

<sup>※</sup>被ばくした集団と被ばくしていない集団における生涯の間にがんで死亡する確率の差10歳の男性が、被ばくしないときにはその後の生涯で30%の発がんの可能性があるが、100mSv被ばくすると、被ばくにより2.1%増加し、32.1%になると推定される。

出典: Preston et al., Radiat Res, 160, 381, 2003

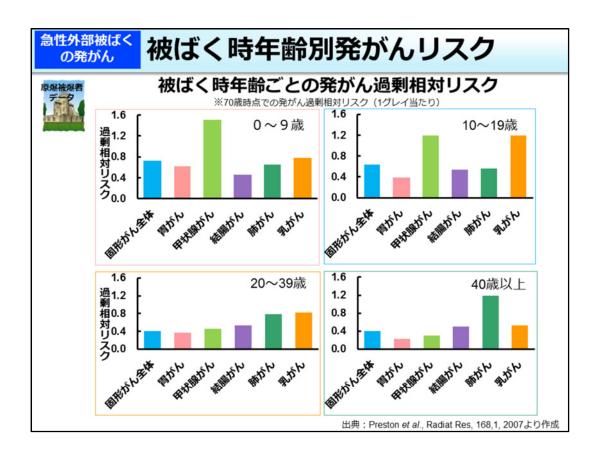

被ばくによる過剰相対リスク(被ばくしていない集団に比べ、被ばくした集団ではどのくらいがん発症のリスクが増加したかを表す値)の大きさは、被ばく年齢によって異なります。

例えば、10歳の男の子が、被ばくしないときにはその後の生涯で30%の発がんの可能性がありますが、100ミリシーベルト被ばくした場合は発がんリスクが2.1%増加し、32.1%になると推定されています。

一方、50歳の男性では、その後の生涯での発がんの可能性は20%ですが、100ミリシーベルト被ばくした場合の発がんリスクは0.3%増加し、20.3%になると推定されています。

(関連ページ:上巻P107、「被ばく時年齢とがんの種類」)

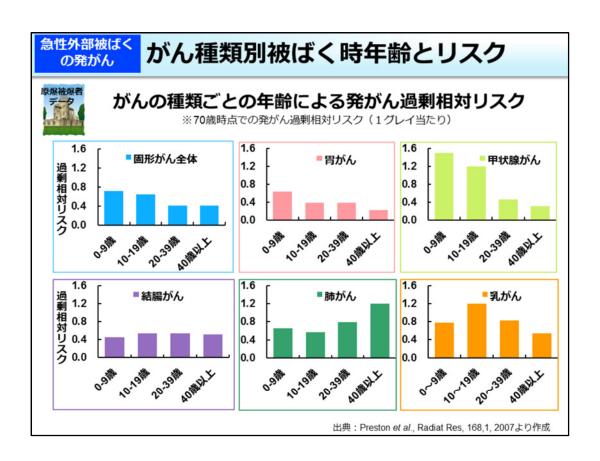
本資料への収録日:平成25年3月31日




これは、原爆被爆者の調査結果を用いて、被ばくしたときの年齢別、がんの種類別に、1グレイ当たりのがんの過剰相対リスク(被ばくしていない集団に比べ、被ばくした集団ではどのくらいがん発症のリスクが増加したかを表す値)を比較した図です。被ばく時の年齢が若いほどリスクが高いもの(甲状腺がん、胃がん、固形がん全体)、40歳以上でリスクが高いもの(肺がん)、思春期でリスクが高いもの(乳がん)、年齢依存の顕著な差がないもの(結腸がん)と、がんの種類によって放射線への感受性が高い時期が異なることが示唆されます。

なお、図で示した過剰相対リスクは、70歳になったときにそれぞれの臓器の被ばくによる発がんのリスクがどのようになるかを示したものです。

(関連ページ:上巻P106、「被ばく年齢ごとの生涯リスク」、上巻P108、「被ばく時年齢別発がんリスク」)


本資料への収録日: 平成25年3月31日



この図は、70歳になったときに、被ばくによるそれぞれの臓器の発がんの過剰相対リスク(被ばくしていない集団に比べ、被ばくした集団ではどのくらいがん発症のリスクが増加したかを表す値)がどのようになるかを示したものです。

被ばく時年齢によって、リスクが高いがんの種類に違いがあることが分かります。 (関連ページ:上巻P107、「被ばく時年齢とがんの種類」)

本資料への収録日: 平成25年3月31日



グラフは原爆被爆者の調査結果において、がんの種類ごとの年齢による発がん過剰相対リスク(被ばくしていない集団に比べ、被ばくした集団ではどのくらいがん発生のリスクが増加したかを表す値)を示したものです。例えば、固形がん全体の0~9歳の過剰相対リスクは0.7程度ですので、1グレイを浴びた集団では、放射線に被ばくしていない集団のリスクが0.7増加することを意味しています。つまり、放射線に被ばくしていない集団のリスクが1なら、1グレイ被ばくした0~9歳の集団のリスクは1.7倍になることを意味しています。20歳以上では固形がん全体の過剰相対リスクは0.4程度ですので、1グレイ浴びたときにはリスクが放射線に被ばくしていない集団の1.4倍になります。

リスクは、被ばく年齢やがんの種類によって異なることが分かります。

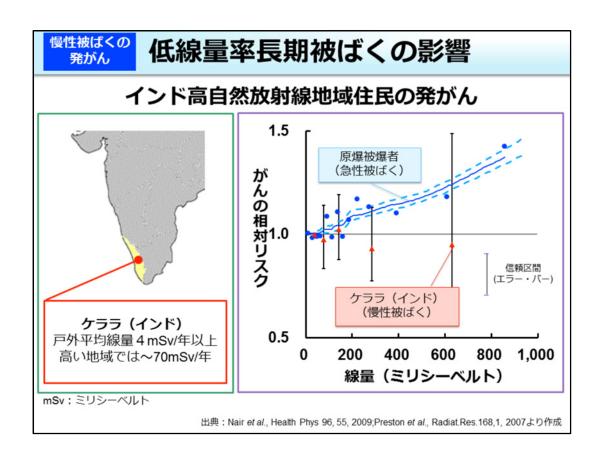
本資料への収録日:平成25年3月31日

### 急性外部被ばく 原爆被爆者における甲状腺がんの発症 の発がん 甲状腺がん Malignant Tumors オ10 ズ 比 8 95 6 % 信<sub>4</sub>-× 2 (P < .001)間 ) 1 2 3 重み付けした甲状腺線量 (Sv) 出典: (公財) 放射線影響研究所, JAMA 2006;295(9):1011-1022

| <b>微小乳頭がんの解析</b><br>mGy : ミリグレイ             |                   |           |         |                     |  |
|---------------------------------------------|-------------------|-----------|---------|---------------------|--|
| 重み付けした甲状腺線量                                 | 平均<br>線量<br>(mGy) | 対象<br>(人) | 発見数 (人) | オッズ比*<br>(95%信頼区間)  |  |
| <5mGy                                       | _                 | 755       | 33      | 1                   |  |
| 5∼<br>100mGy                                | 32                | 936       | 36      | 0.85<br>(0.52~1.39) |  |
| 100∼<br>500m <b>G</b> y                     | 241               | 445       | 22      | 1.12<br>(0.64~1.95) |  |
| 500mGy<                                     | 1237              | 236       | 15      | 1.44<br>(0.75~2.67) |  |
| 出典: Hayashi et al., Cancer, 116, 1646, 2010 |                   |           |         |                     |  |

※オッズ比:ある事象の起こりやすさを2つの集団で比較したときの、統計学的な尺度。 オッズ比が1より大きいとき、対象とする事象が起こりやすいことを示します。 それぞれの集団である事象が起こる確率をp(第1集団)、q(第2集団)としたとき、 オッズ比は次の式で与えられます。

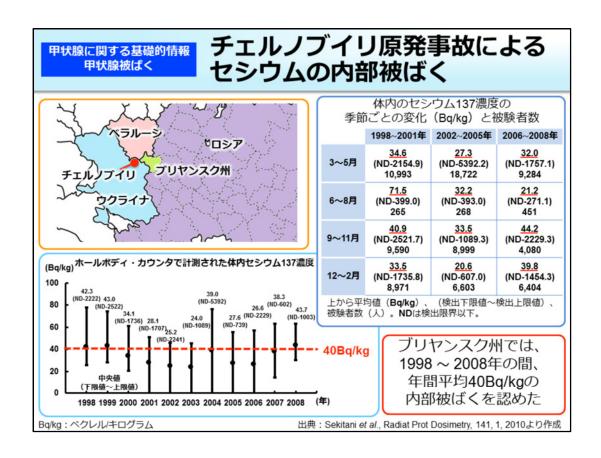
pのオッズ $\div q$ のオッズ =  $p/(1-p)\div q/(1-q)$ 95%信頼区間が1を含んでいなければ、統計学的に有意であるといえます。


原爆被爆者における甲状腺がんの発症についてオッズ比(ある事象の起こりやす さを2つの集団で比較したときの統計学的な尺度)を見てみると、線量が高くなるほど、 甲状腺がんのリスクが高くなることが示されています。

甲状腺微小がんに限った調査では、有意な差は見られませんでした\*。重み付け した甲状腺線量で100ミリグレイまではオッズ比が低く、100ミリグレイを超えるとオッ ズ比は1を若干超えることが示されています(オッズ比が1より大きいとき、対象とす る事象が起こりやすいことを示しますが、このデータでは95%信頼区間に1が含まれ ているため、統計学的に有意ではありません)。

\*出典: M. Imaizumi, et.al., "Radiation Dose-Response Relationships for Thyroid Nodules and Autoimmune Thyroid Diseases in Hiroshima and Nagasaki Atomic Bomb Survivors 55-58 Years After Radiation Exposure" JAMA 2006;295(9):1011-1022

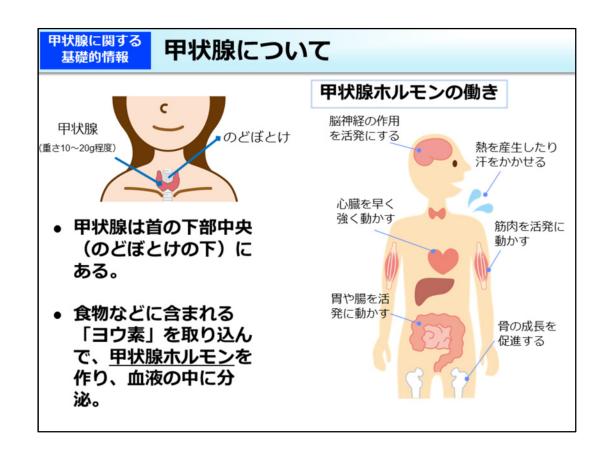
> Y. Hayashi, et.al., "Papillary Microcarcinoma of the Thyroid Among Atomic Bomb Survivors Tumor Characteristics and Radiation Risk" Cancer April 1, 2010, 1646-1655


本資料への収録日: 平成25年3月31日



低線量率被ばくと高線量率被ばくでは、影響の出方は違うと考えられています。

これは原爆被爆者のデータと、ケララ(インド)のような高自然放射線地域住民のリスクを比較したものですが、ケララでは積算線量が数百ミリシーベルトになってもがんの相対リスク(被ばくしていない人を1としたとき、被ばくした人のがんリスクが何倍になるかを表した値)の増加が見られていません。また、信頼区間(グラフ上のエラー・バー)の幅も非常に大きいことから更なる検討が必要ですが、慢性被ばくの場合、急性被ばくよりもリスクが小さくなることが示唆されます。


本資料への収録日:平成25年3月31日



1986年に起こったチェルノブイリ原発事故では、東京電力福島第一原子力発電所事故よりもはるかに大量の放射性物質が放出されました。事故当初、ソビエト連邦はこの事故を公表せず、施設周辺住民の避難措置等が採られませんでした。また、事故が起こった4月下旬には、旧ソ連の南部地域では既に放牧が行われていたため、牛乳の汚染等が起こりました。

1998年から2008年の間、ホールボディ・カウンタを用いて、ブリヤンスク州の住民のセシウム137の体内放射能を測定した結果、期間中の体内セシウム137の中央値は20~50ベクレル/kgで推移しつつ、2003年まで低下していましたが、2004年から上昇傾向が見られています。チェルノブイリ原発事故では、セシウム137による被ばくは長期にわたって続いていることが分かります。

本資料への収録日: 平成25年3月31日



甲状腺は、首の下部中央(のどぼとけの下)にある重さ10~20g程度の小さな臓器です。羽を広げた蝶のような形をしていて、気管を取り囲むように位置しています。甲状腺は、血液中のヨウ素を能動的に取り込み、取り込んだヨウ素を主原料として甲状腺ホルモンを作ります。甲状腺で作られた甲状腺ホルモンは、血液中に分泌され、全身に運ばれて様々な働きをします。

甲状腺ホルモンには、体内のタンパク質合成やエネルギーの代謝の維持促進といった新陳代謝の役割と、子供の体や脳の発育・発達を促進する役割があります。

本資料への収録日:平成29年3月31日

#### 甲状腺に関する 基礎的情報

### ヨウ素について

### • ヨウ素 = 甲状腺ホルモンの原料

| 1食の摂取量            | 含まれるヨウ素量    |
|-------------------|-------------|
| 昆布の佃煮<br>(5~10g)  | 10~20mg     |
| 昆布巻き<br>(3~10g)   | 6~20mg      |
| ひじき (5~7g)        | 1.5~2mg     |
| わかめの吸い物<br>(1~2g) | 0.08~0.15mg |
| 海苔2分の1枚<br>(1g)   | 0.06mg      |
| 昆布だし<br>(0.5~1g)  | 1~3mg       |
| 寒天(1g)            | 0.18mg      |

### <u>ヨウ素摂取量</u> 食事摂取基準2015年版

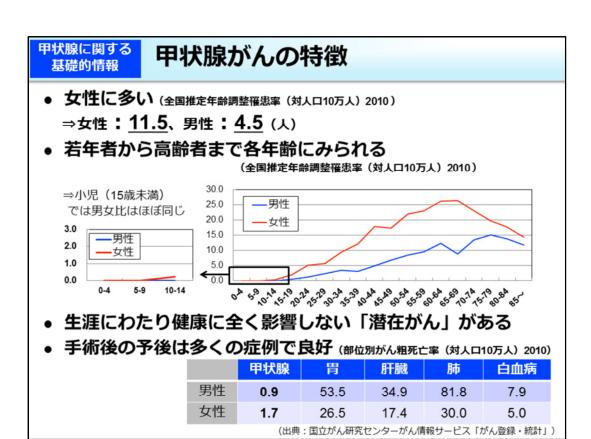
推定平均必要量: 0.095mg

推奨量: 0.13mg

・日本人の摂取量は 推定約1~3mg/日



出典: Zava TT, Zava DT, Thyroid Res 2011; 4:14.、「日本人の食事摂取基準(2015年版) 策定検討会」報告書 厚生労働省 、スーパー図解 甲状腺の病気。法研究


ヨウ素は甲状腺ホルモンの原料です。ヨウ素は日本人にとって身近な海藻や魚介類に多く含まれています。

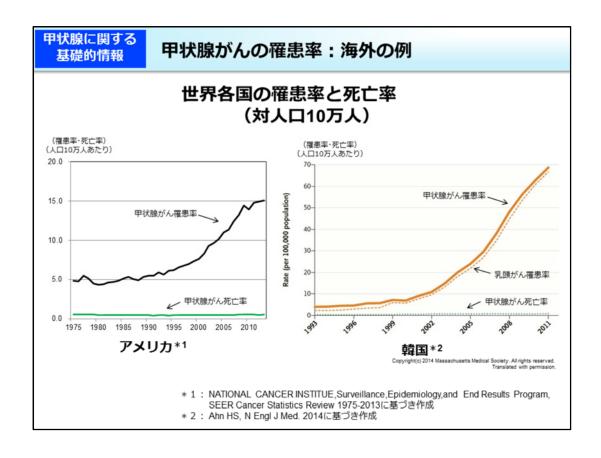
厚生労働省発表の「日本人の食事摂取基準」では、ヨウ素は推定平均必要量が1日 0.095mg、推奨量が1日0.13mgとされています。日本では、海藻や魚介類を多く摂取する食習慣があるため、必要量に対して十分にヨウ素を摂取していると考えられます(1日約1~3mg)。

日常的にヨウ素を摂取していると、常に甲状腺にヨウ素が足りている(充足)状態となります。ヨウ素充足状態では、新たにヨウ素を摂取した場合でもヨウ素の甲状腺への取り込み率は小さく、多くが尿として排出されることが分かっています。

そのため、原発事故等で放射性ヨウ素が放出された場合、日常的にヨウ素を摂取している集団では、放射性ヨウ素の甲状腺への蓄積が低く抑えられます。

本資料への収録日:平成29年3月31日




甲状腺がんは、他のがんと比較していくつかの特徴がみられます。

1つの特徴として、全体として女性の罹患率が男性よりも高いこと(女性11.5:男性4.5、2010年、全国年齢調整罹患率(対人口10万人))があります。ただし15歳未満では男女比はほぼ同じです。

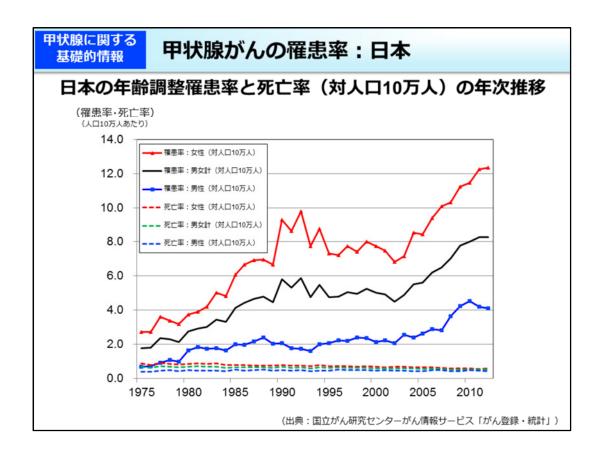
また、女性の乳がんは、40~50歳代の患者が多く、胃がんは男女とも60歳以降に罹患率が高くなることが知られていますが、甲状腺がんは10歳代から80歳代まで幅広く分布していることが特徴です。

さらに、甲状腺がんは生涯にわたり健康に全く影響しない潜在がんが多いがんとして以前から知られています。また、部位別がん粗死亡率(2010年、全国年齢階級別死亡率(対人口10万人)、全年齢)が、他のがんと比べても低く、予後が良いことも特徴の1つです。

本資料への収録日: 平成29年3月31日



近年、甲状腺がん罹患率の劇的な増加が報告されています。医療調査や保健医療サービスの利用増加と合わせ、新たな診断技術の導入によって、無症状で非致死性の微小な甲状腺がん(微小乳頭がん)が大量に発見されていることがその原因だといわれています。


一方、罹患率の上昇に比べ死亡率はほぼ一定であることから、このような非致死性 の微小な乳頭がんを多く診断している可能性(過剰診断)が指摘されています。\*

甲状腺がんの罹患率増加は、アメリカ、オーストラリア、フランス、イタリアなど世界中で見られている傾向ですが、特に韓国で顕著に見られます。韓国では1999年から甲状腺がん検査の公的援助が始まり、最先端の検査が低負担で受診出来るようになりました。そのため多くの人が受診し、甲状腺がん罹患率の大幅な上昇につながったと考えられます。

#### \*出典:

International Agency for Research on Cancer "Overdiagnosis is a major driver of the thyroid cancer epidemic:up to 50-90% of thyroid cancers in women in high-income countries estimated to be overdiagnoses" (August 18,2016)

本資料への収録日:平成29年3月31日



このグラフは、日本の甲状腺がんの罹患率(一定期間における人口に対する罹患患者の割合)と死亡率の年次推移を示しています。

日本の甲状腺がん罹患率は、男女とも増加傾向が見られます。増加傾向は女性でより明らかで、人口10万人あたり1975年では3人程度だった罹患率が2011年には12人超と増加しています。一方で、甲状腺がんの死亡率は大きな変化は見られず、男女ともに僅かに減少する傾向が見られます。また2010年の男女計の甲状腺がん罹患率は、人口10万人あたりアメリカが約15人、韓国が約60人、日本が約8人となっています。(上巻P116、「甲状腺がんの罹患率:海外の例」)

日本では、従来から甲状腺疾患の検査として、医師による触診が広く行われています。一方、人間ドックや集団検診の場での頚部超音波検査の実施が近年増えています。さらに、最近の超音波診断装置の進歩により、甲状腺検査の診断能力は上昇しており、特に腫瘤性病変の発見頻度が上昇しているとの報告があります。\*

\*出典: 志村 浩己.日本甲状腺学会雑誌.1(2).109-113.2010-10

本資料への収録日:平成29年3月31日

#### 甲状腺に関する 基礎的情報

### 日本人における甲状腺がんのリスク

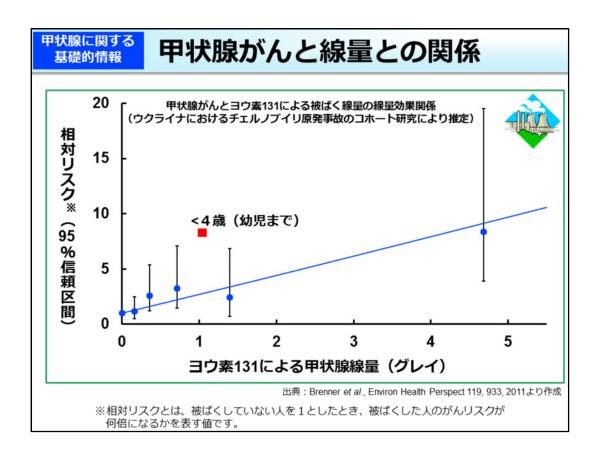
- 放射線被ばくとは関係なく、日本人が一生の間に甲状腺がんになる確率は、\*
  - 女性で0.78%、男性で0.23%

(Kamo et al., (2008) Jpan.J. Clin Oncol 38(8) 571-576)

\*わが国における1975年から1999年のがん罹患者数のデータに基づいて求めた、一生涯の間に少なくとも1回がんに罹患する確率。

(加茂他、厚生の指標,第52巻6号,2005年6月)

- 甲状腺への線量が1.000ミリシーベルトの場合、甲状腺がんになる確率の増分は、
  - 女性で0.58~1.39%、男性で0.18~0.34% (UNSCEAR2006年報告書附属書A)
- 1,000ミリシーベルトの甲状腺被ばくを受けた日本人が、
  - 一生の間に甲状腺がんになる確率は、 (放射線以外の要因による発症の確率を加算)
    - 女性 0.78+ (0.58~1.39) =1.36~2.17%
    - 男性 0.23 + (0.18~0.34) = 0.41~0.57% (Kamo et al., (2008) Jpan J. Clin Oncol 38(8) + UNSCEAR2006年報告書附属書A)


しかし、低線量の甲状腺被ばくにおいては、他の要因による発がんの影響で隠れてしま うため、リスクの増加を科学的に証明することは難しいとされています。

日本人が一生の間に甲状腺がんになる確率は女性で0.78%、男性で0.23%です。これは、1975年から1999年の間のわが国のがん罹患者数のデータのうち、甲状腺がんの罹患者数に基づいて求められた、一生涯の間に少なくとも一回甲状腺がんに罹患する確率を表しています。がんの危険性を一般の人々に分かりやすく説明する指標として考えられたものです。

もし、甲状腺が1,000ミリシーベルトの被ばくをした場合、甲状腺がんになる確率は、女性で0.58~1.39%、男性で0.18~0.34%増加し、最終的には、放射線以外の要因による発症の確率を加算し、女性では1.36~2.17%、男性では0.41~0.57%ぐらいに増加します。

しかし、甲状腺への被ばく線量が小さい場合は、他の要因による発がんの影響で隠れてしまうため、リスクの増加を科学的に証明することは難しいとされています。

本資料への収録日:平成25年3月31日 改訂日:平成29年3月31日



チェルノブイリ原発事故による子供たちの内部被ばく線量と甲状腺がんのリスクの関係に関しては、図のような研究結果が示されています。

それは、甲状腺が1グレイの放射線を受けると、甲状腺がんになる可能性が2倍になるというものです。この研究では、この2倍という数値は18歳までの子供たちの平均であり、幼児(<4歳)の場合には、これよりも高くなる(図の■)とされています。

本資料への収録日: 平成25年3月31日

#### 甲状腺に関する 基礎的情報

## 甲状腺がんとヨウ素摂取

| 安定ヨウ素剤 | 1 グレイ(Gy)での相対リスク*<br>(95%信頼区間) |                    |  |  |
|--------|--------------------------------|--------------------|--|--|
| 女にコフ赤舟 | 土壌中ヨウ素<br>濃度が高い地域              | 土壌中ヨウ素<br>濃度が低い地域  |  |  |
| 投与なし   | 3.5<br>(1.8-7.0)               | 10.8<br>(5.6-20.8) |  |  |
| 投与あり   | 1.1<br>(0.3-3.6)               | 3.3<br>(1.0-10.6)  |  |  |

出典: Cardis et al., JNCI, 97, 724, 2005

※相対リスクとは、被ばくしていない人を1としたとき、被ばくした人のがんリスクが何倍になるかを表す値です。

この表のように、ヨウ素が足りない地域では、安定ヨウ素剤を投与した場合でも1グレイ当たりの甲状腺がんの相対リスクが約3倍に増加するという報告もあります。チェルノブイリ周辺地域は内陸に位置しており、周辺に海がないため、土壌中のヨウ素濃度が低い地域です。また、ヨウ素を多く含む海藻や海の魚を食べる習慣がなく、日本とは食生活が異なります。

日本は、全体的にチェルノブイリ周辺地域より土壌中のヨウ素濃度が高い上、ヨウ素の摂取量が海外諸国に比較して多いということもあり、このような海外でのデータがそのまま当てはまるわけではありません。

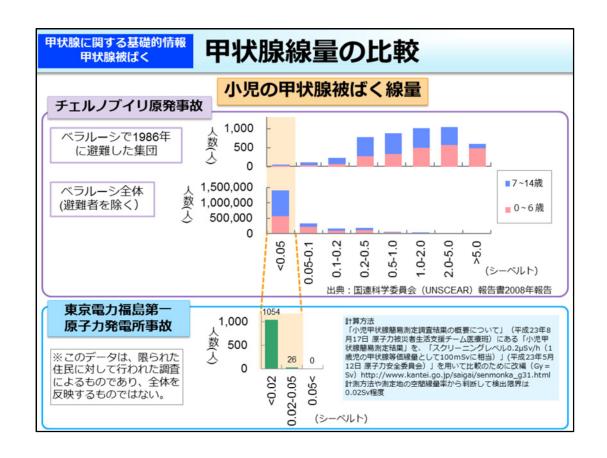
本資料への収録日: 平成25年3月31日

#### 甲状腺に関する基礎的情報 甲状腺被ばく

## チェルノブイリ原発事故 避難集団の被ばく

| 国 人数  |      | 平均実効 | 平均甲状腺         |         |
|-------|------|------|---------------|---------|
| (A)   | (千人) | 外部   | 内部<br>(甲状腺以外) | 線量(mGy) |
| ベラルーシ | 25   | 30   | 6             | 1,100   |
| ロシア   | 0.19 | 25   | 10            | 440     |
| ウクライナ | 90   | 20   | 10            | 330     |

mSv: ミリシーベルト mGy: ミリグレイ


出典: 国連科学委員会 (UNSCEAR) 2008年報告より

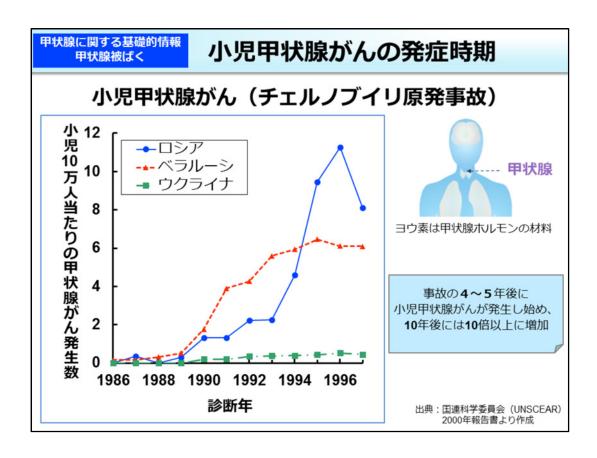
チェルノブイリ原発事故に際して避難を余儀なくされた人々の甲状腺の被ばく線量は高く、平均甲状腺被ばくで約490ミリグレイと推定されています。子どもではさらに高い平均甲状腺線量が推定されています。これは、事故直後から2~3週間にわたって、ヨウ素131で汚染した牛乳を飲んだこと等が主な原因です。

避難地域以外の旧ソビエト連邦に居住していた人々の平均甲状腺被ばく線量は約20ミリグレイ、汚染地域に住んでいる人々の線量は約100ミリグレイとなっており、そのほか欧州諸国に暮らす人々の線量(約1ミリグレイ)よりもはるかに高い結果になりました。

甲状腺被ばく以外の内部被ばくと外部被ばくからの実効線量は、平均で約31ミリシーベルトでした。それぞれベラルーシでは約36、ロシアでは約35、ウクライナでは約30ミリシーベルトでした。平均甲状腺被ばく線量同様、平均実効線量はウクライナやロシアよりもベラルーシにおいて高いことが分かっています。

本資料への収録日:平成25年3月31日




東京電力福島第一原子力発電所事故により、子供たちの甲状腺が放射性ヨウ素によりどのくらいの被ばくをしたのか、正確に評価することは大変難しいですが、事故後約2週間の時点で行われた小児甲状腺被ばく線量のスクリーニング調査の結果を用いると、おおよそのことが推定できます。

この事故後2週間の時点でのスクリーニング調査は、甲状腺線量が高いと予想された川俣、いわき、飯舘の15歳以下の1,080人の子供たちに対し、サーベイメータを用いて行われたものです。

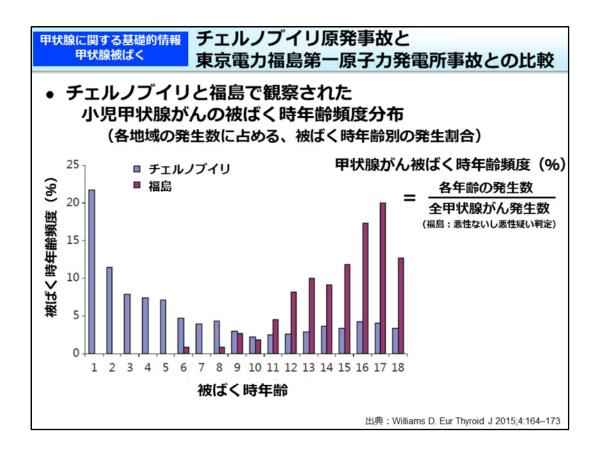
その結果、原子力安全委員会(当時)が設定したスクリーニングレベルを超える子供はいないこと、検査を受けた子供全員の甲状腺被ばく線量が50ミリシーベルト以下であることが分かりました。

国連科学委員会(UNSCEAR)によるチェルノブイリ原発事故での甲状腺被ばく線量に関する解析では、50ミリシーベルト以下の線量域は最も小さい線量域として扱われています。小児甲状腺がんの発生の増加が見られたベラルーシでの小児甲状腺被ばく線量は、特に避難した集団で0.2~5.0あるいは5.0シーベルト以上といった値が示されており、福島県で調査された甲状腺被ばく線量より二桁も大きい値となっています。

本資料への収録日: 平成25年3月31日



チェルノブイリ原発事故では、爆発によって放射性物質が大量に飛び広がりました。その中で健康被害をもたらしたのは、主には放射性ヨウ素であったといわれています。

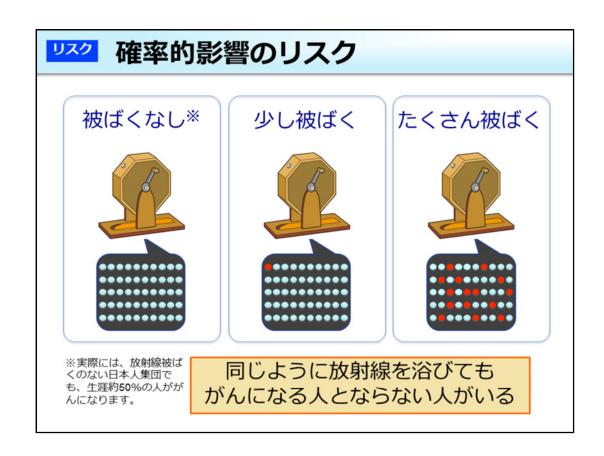

地上に降り注いだ放射性ヨウ素を吸入したり、食物連鎖によって汚染した野菜や牛乳、肉を食べた子供たちの中で、小児甲状腺がんが発症しました。特に、牛乳に含まれていたヨウ素131による内部被ばくに由来するところが大きかったといわれています。

ベラルーシやウクライナでは、事故後4~5年ごろから小児甲状腺がんが発生し始め、15才未満の甲状腺がん罹患率については、1986~1990年の5年間に比べ、1991~1994年の罹患率は5~10倍に増加しました。

ただし、ベラルーシとウクライナは全国の小児10万人当たりの甲状腺がんの発生数であるのに対し、ロシアは汚染が高い特定の地域のみの小児10万人当たりの甲状腺がんの発生数となっています(UNSCEAR2000年報告書附属書)。

本資料への収録日: 平成25年3月31日

最終改訂日:平成28年3月31日




チェルノブイリ原発事故後に発生した甲状腺がんの事故当時年齢別の頻度と東京電力福島第一原子力発電所事故(福島原発事故)後の3年間で診断された甲状腺がんの18歳以下における事故当時年齢別頻度を比較したグラフです。(図中の%は「その地域での発生数全体のうち、各年齢の発生数が全体の何%を占めているか」という年齢別割合です。全年齢を合計すると100%となります。)チェルノブイリでは福島のように統一された甲状腺検査が実施されていないこと、また対象人数や観察期間が示されていないことなどから、正確に頻度を比較することはできませんが、年齢分布には明らかな違いがあることがわかります。

一般的に放射線で誘発される甲状腺がんは、被ばく時年齢が低いほど(特に5歳以下)高リスクであることが知られています。チェルノブイリでは被ばく時年齢がより低いほど、甲状腺がん頻度の高い傾向が見られました。一方、福島では事故後の3年間において、低年齢層では甲状腺がん頻度の上昇は見られず、年齢の上昇に伴う頻度の上昇が認められました。これは通常の甲状腺がんの罹患率の上昇パターンと同じです。

Williamsによると日本はチェルノブイリ周辺地域と比べてヨウ素の日常的な食事摂取量が多いこと、また、子供の甲状腺被ばく推定線量の最大値がチェルノブイリとは大きく違うこと(福島:66ミリグレイ、チェルノブイリ:5,000ミリグレイ)からも、福島原発事故後の3年間で見つかった甲状腺がんは、原発事故の放射線の影響によるものではないと示唆されています。

本資料への収録日: 平成29年3月31日

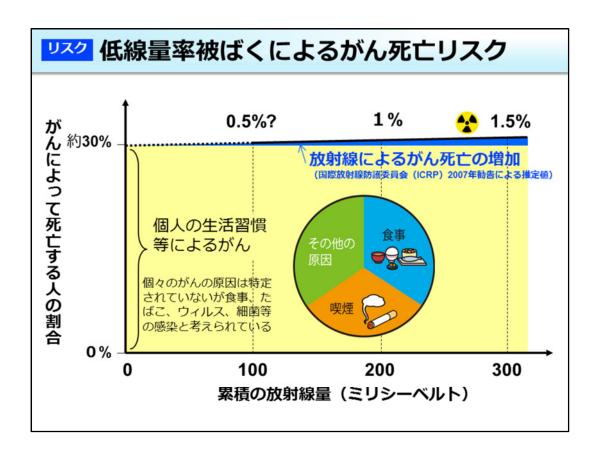


がんや遺伝性影響といった確率的影響に関しては、同じように放射線を受けた集団の中でも、疾患になる人とならない人が出てきます。しかも誰がなるかという予想はできません。また、一般に、多く被ばくしたからといって、症状が重くなるわけではなく、発症確率が上がるだけです。

そのため、がんや遺伝性影響の危険性は、何人中何人が病気になるかという確率で表現されます。

本資料への収録日: 平成25年3月31日




相対リスクとは、ある原因により、それを受けた個人のリスクが何倍高まるか、ということを表したリスクです。疫学で普通にリスクといった際には、「相対リスク」のことを指していることが多いのですが、これ以外にも、寄与リスクという考え方があります。寄与リスクとは、ある原因により、集団の罹患率や死亡率がどのくらい増えるかということを表しています。

例えば、ある集団が何かしらのリスク源に曝されている、ある集団は曝されていないとします。曝されていない集団では、ある疾患の患者が、100万人に2人出るのに対し、曝されている集団では100万人中3人患者が出るとします。

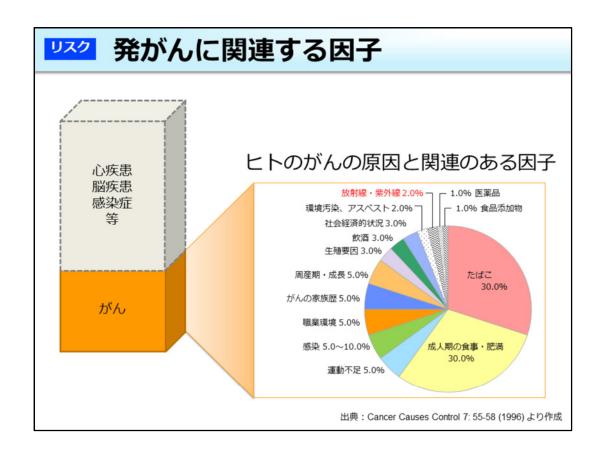
相対リスクというのは、どれだけ疾患になりやすくなるかという観点のリスクですので、患者が2人が3人になった、つまり、リスクは1.5倍になったと評価します。

一方寄与リスクでは、集団内でどれだけ患者が増えた分を考えますので、100万人中の1人、つまりは10<sup>-6</sup>リスクが増加したと考えます。

本資料への収録日: 平成25年3月31日



国際放射線防護委員会(ICRP)では、大人も子供も含めた集団では、100ミリシーベルト当たり0.5%がん死亡の確率が増加するとして、防護を考えることとしています。これは原爆被爆者のデータを基に、低線量率被ばくによるリスクを推定した値です。


現在、日本人の死因の1位はがんで、大体30%の方ががんで亡くなっています。

つまり1,000人の集団がいれば、このうちの300人はがんで亡くなっています。これに放射線によるがんでの死亡確率を試しに計算して加算すると、全員が100ミリシーベルトを受けた1,000人の集団では、生涯で305人ががんで死亡すると推定できます。

しかし実際には、1,000人中300人という値も年や地域によって変動しますし\*\*、今のところ病理診断のような方法でがんの原因が放射線だったかどうかを確認する方法は確立されていません。そのため、この100ミリシーベルト以下の増加分、つまり最大で1,000人中5人という増加分について実際に検出することは大変難しいと考えられています。

※: 平成22年度の年齢調整死亡率を県別で比較すると、人口10万対で女性では、248.8人(長野県)から304.3人(青森県)、男性では477.3人(長野県)から662.4人(青森県)とばらつきます。そのうち、がんが死因である割合を調べると、これも男性では29.0%(沖縄県)から35.8%(奈良県)、女性では29.9%(山梨県)から36.1%(京都府)とばらつきが見られます。

本資料への収録日:平成25年3月31日



私たちは様々ながんの原因に囲まれて暮らしています。図の円グラフはアメリカのデータですが、食物やたばこが、がん発生に密接に関わっているという知見が得られています。これに放射線によるリスクが上乗せされるので、生物学的な面からだけいえば、放射線を受けないに越したことはないということになります。

そこで、X(エックス)線検査を断る、飛行機に乗らないようにするといった生活をすることも可能ですが、その代わり、疾患の早期発見ができなかったり、生活が不便になったりします。その割には、がんになる危険性が劇的に減るということもありません。なぜなら、放射線以外にもがんになる原因が身の回りにいろいろあるからです。

(関連ページ: 上巻P129、「がんのリスク(放射線)」、上巻P130、「がんのリスク(生活習慣)」)

本資料への収録日: 平成25年3月31日

| リスク                                                                                                                                    | <b>がんのリスク</b>        | (放射線)                       |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|--|--|--|--|
|                                                                                                                                        | 放射線の線量<br>(ミリシーベルト)  | がんの<br>相対リスク <sup>※</sup>   |  |  |  |  |
|                                                                                                                                        | 1,000 ~ 2,000        | 1.8<br>【1,000mSv当たり1.5倍と推計】 |  |  |  |  |
|                                                                                                                                        | 500 ~ 1,000          | 1.4                         |  |  |  |  |
|                                                                                                                                        | 200 ~ 500            | 1.19                        |  |  |  |  |
|                                                                                                                                        | 100 ~ 200            | 1.08                        |  |  |  |  |
|                                                                                                                                        | 100 未満               | 検出困難                        |  |  |  |  |
|                                                                                                                                        | 出典: 国立がん研究センターウェブサイト |                             |  |  |  |  |
| ※放射線の発がんリスクは広島・長崎の原爆による瞬間的な被ばくを分析したデータ(固形がんのみ)であり、<br>長期にわたる被ばくの影響を観察したものではありません。 ※相対リスクとは、被ばくしていない人を1としたとき、被ばくした人のがんリスクが何倍になるかを表す値です。 |                      |                             |  |  |  |  |

この図は国立がん研究センターが発表した放射線の被ばく線量によってがんの相対リスクがどの程度高くなるか比べた表です。

放射線の被ばく線量が1,000~2,000ミリシーベルトでは1.8倍、500~1,000ミリシーベルトでは1.4倍、200~500ミリシーベルトでは1.19倍高まると推計されています。

一方、100ミリシーベルト以下では、発がんリスクを検出することが極めて難しいと考えられています。

(関連ページ:上巻P130、「がんのリスク(生活習慣)」)

本資料への収録日:平成25年3月31日

| リスク | <sup>リスク</sup> がんのリスク(生活習慣)                      |                            |        |  |  |  |
|-----|--------------------------------------------------|----------------------------|--------|--|--|--|
|     | 生活習慣因子                                           | がんの<br>相対リスク               |        |  |  |  |
|     | 煙者<br>量飲酒 (450g以上/週) <sup>※</sup>                | 1.6<br>1.6                 |        |  |  |  |
| 肥   | 量飲酒 (300〜449g以上/週) ※<br>満 (BMI≧30)<br>せ (BMI<19) | 1.4<br>1.22<br>1.29        |        |  |  |  |
| 運   | 動不足<br>塩分食品                                      | 1.15 ~ 1.19<br>1.11 ~ 1.15 |        |  |  |  |
|     | 菜不足<br>動喫煙 (非喫煙女性)                               | 1.06<br>1.02 ~ 1.03        |        |  |  |  |
| _   |                                                  | ※飲酒については、エタノール換算量を示す       |        |  |  |  |
|     |                                                  | 出典:国立がん研究センターウ             | フェブサイト |  |  |  |

この図は、国立がん研究センターが発表した生活習慣とがんの相対リスクを比べた表です。

たばこや大量飲酒の習慣がある人は、そうでない人と比べてがんの相対リスクが1.6 倍高くなると推計されています。また肥満では1.22倍、運動不足では1.15~1.19倍、野菜不足では1.06倍、それぞれの生活習慣によってがんの相対リスクが高くなると推計されています。

(関連ページ: 上巻P128、「発がんに関連する因子」、上巻P129、「がんのリスク(放射線)」)

本資料への収録日: 平成25年3月31日

## **ごごろへの影響** 災害被災者のストレス要因

- ・将来の不確実性
- ・住居及び職場の安全の不確実性
- ・社会の偏見
- ・メディアの影響
- ・風土や慣習の違い

#### 放射線災害特有



- ・災害予告ができない
- ・被害の範囲の把握が困難
- ・将来出現するかもしれない放射線影響

出典:原子力規制委員会(旧原子力安全委員会)被ばく医療分科会心のケア及び健康不安対策検討会第3回会合資料3-2号「チェルノブイリ事故時の心のケアについて」より作成
http://warp.da.ndl.go.jp/info:ndljp/pid/8422832/www.nsr.go.jp/archive/nsc/senmon/shidai/kokoro/kokoro003/siryo2.htm

一般的に、被災者のストレスの要因というのは、将来の不確実性、住居及び職場の安全の不確実性、社会の偏見、メディアの影響、風土や慣習の違い等があると考えられています。これに加えて、放射線災害の場合は、災害予告ができない、被害の範囲の把握が困難、将来出現するかもしれない放射線影響、というストレス要因が加わります(上巻P132、「放射線事故と健康不安」)。

特に、将来出現するかもしれない放射線影響というのは、いつかがんになるかもしれないという不安を長い間抱えるので、大きなストレスになります。

本資料への収録日:平成25年3月31日

#### こころへの影響

## 放射線事故と健康不安

## 放射線事故によって生じる不安

- ・「放射線」による健康影響への不安
- ・子供の現在及び将来における健康影響への不安

## 不安の長期化によるこころへの影響

- ・メンタルヘルスが悪化する可能性
- ・母親の不安が子供の精神状態や成長に影響を及ぼす可能性

## 不安を増大させる要因

- ・信頼できる情報を入手できない
- ・科学的に正確ではない情報による混乱
- ·烙印(スティグマ)と偏見(ステレオタイプ)

放射線事故が起こった場合、放射線に被ばくした可能性があるのか、被ばくした場合、どのくらい被ばくしたのか、その結果起こる健康影響はどのようなものなのか、不安を感じます。特に保護者らは、子供の現在及び将来への健康影響に不安を抱えます。

将来出現するかもしれない放射線の影響による不安が長く続いた結果、メンタルへルスが悪化します。母親の不安が子供の精神状態や成長に影響を及ぼす可能性も指摘されています。

また、放射線に関する信頼できる情報や、正確な情報を、的確に入手できないことにより、不安感が高じる場合もあるようです。さらに、汚染や被ばくを受けた住民に対する社会からのいわれなき烙印(スティグマ)や偏見(ステレオタイプ)が、メンタルヘルスを更に悪化させると報告されています。\*

#### \*出典:

- ・福島県精神保健福祉センター「福島県 心のケアマニュアル」
- Werner Burkart (Vienna) "Message to our friends affected by the nuclear component of the earthquake/tsunami event of March 2011 (August 26, 2013)" (Werner Burkart: Professor for Radiation Biology at the Faculty of Medicine of the Ludwig Maximilians University in Munich, Former Deputy Director General of the International Atomic Energy Agency (IAEA) ) (http://japan.kantei.go.jp/incident/health\_and\_safety/burkart.html)

本資料への収録日: 平成25年3月31日

## こころへの影響 子供の精神医学的影響

#### 放射線問題が精神面に与える影響として考えられること:

- ・放射線に対して親が不安になるのは子育てに熱心である証拠
- ・放射線のことを過剰に心配すると、親の不安が子供の心身に影響を与えることがある

#### チェルノブイリ原発事故による胎児被ばくと神経心理学的障害については:

- ・事故時に胎児であった子供への神経心理学的障害については、研究結果が一致していない
- ・被ばくによって胎児のIQに影響があったという報告もあるが、甲状腺の被ばく線量とIQ の間に相関はなかった

#### 福島県の子どもの情緒と行動に関するアンケートについて

子どものこころの健康度を評価する指標としてSDQを用いた調査による傾向:

- ・日本の被災していない一般人口を対象とした先行研究におけるSDQ16点以上の割合(9.5%) と比較すると、4~6歳群と6~12歳群とも16点以上の割合が高かった。
- ・しかし、事故のあった平成23年度調査と比べると平成26年度の調査では4~6歳群と6~12歳群とも減少傾向であった。

SDQ: Strengths and Difficulties Questionnaire

出典:・平成26年度 県民健康調査「こころの健康度・生活習慣に関する調査」結果報告書、福島県立医科大学、平成28年 6月 ・Kolominsky Y et al., J Child Psychol Psychiatry, 40(2):299-305, 1999

チェルノブイリ原発事故時に胎児であった子供たちへの、これらの研究では、神経 心理学的影響についても調査が行われています。

必ずしも研究結果は一致していませんが、原発事故の影響により子供の情緒障害があったとする報告でも、放射線による被ばくが直接の影響ではなく、保護者の不安等そのほかの影響が要因として指摘されています。

福島県の放射線医学県民健康管理センターでは、将来の子どもたちの世代に向けて、自然災害時や緊急時における「こころのケア」のより良いあり方を受け継ぐことを目的に、こころの健康度・生活習慣に関する調査を実施しています。

この調査では、子どものこころの健康度を評価する指標としてStrengths and Difficulties Questionnaire (SDQ)\*を用いています。日本の被災していない一般人口を対象とした先行研究におけるスクリーニング得点であるSDQ16点以上の割合 (9.5%)と比較すると、平成26年度に行った調査結果は、4~6歳群は13.4%、6~12歳群は15.1%と依然として16点以上の割合が高い結果を示しています。しかし、事故のあった平成23年度調査と比べると平成26年度の調査では4~6歳群と6~12歳群とも減少傾向であることが分かっています。大きい点数 (16点以上)の割合が高いほど支援が必要とされています。

\*SDQ (Strength and Difficulties Questionnaire) は、保護者や保育士が5分でチェックすることが可能な行動スクリーニング質問紙です。SDQは、英国を中心に北欧やドイツなどヨーロッパで広く用いられており、子どもの困難さ(difficulty)のみならず、強み(strength)も評価できる点が他の質問紙とは異なります。

(参考文献:厚生労働省、第四章 健康診査ツール 第3節 行動評価法 http://www.mhlw.go.jp/bunya/kodomo/boshi-hoken07/h7\_04a.html)

本資料への収録日:平成25年3月31日

こころへの影響

## 東京電力福島第一原子力発電所事故対応と 地域社会(1/2)

## 住民との対話からの結論 1 (国際放射線防護委員会 (ICRP) の見解)

- ▶ 住民が事故の影響に関する情報を理解、評価でき、また放射線被ばくを減らすために周知された対策が行えるには、放射線防護の文化を醸成することが重要である、とのことが参加者の間で認識された。
- ▶ 住民自身がどこでいつどのように放射線に被ばくするかを知ることができるように、放射線状況についてのより詳しい把握が必要であることが認識された。
- ➤ 若い世代の県外避難と農業放棄の加速がもたらす将来の人口動態に対する強い 危機意識が、参加者により強調された。
- ▶ 参加者は、事故の影響を受けた地域の人々、とりわけ結婚適齢期の人々が結婚し、子供を持つことに対する差別の問題について、強く語った。
- ➤ 伝統的でありかつ一般的に行われている山菜の採集は、福島のコミュニティの 絆を維持する上で文化的に重要である、と確認された。

出典: Lochard, J (2012) 第27回原安協シンポジウム資料より作成

被災者の心理的支援には、現実的な問題の解決を助けたり、対処に役立つ情報を 提供することが有効であることが知られています。

原子力災害の場合は、問題となる放射線影響を理解したり、放射線防護のための方策を考える上で、専門的な知識を必要とします。

チェルノブイリ原発事故でも、そして東京電力福島第一原子力発電所事故後も、専門家と地域住民との対話が行われていますが、専門家からのサポートにより、被災者自身が放射線の問題を解決できるようになると、心理的ストレスの低減にも大きな効果があると考えられています。

本資料への収録日: 平成25年3月31日

## こころへの影響

## 東京電力福島第一原子力発電所事故対応と地域社会(2/2)

## 住民との対話からの結論 2 (国際放射線防護委員会 (ICRP) の見解)

- ▶ 地域コミュニティと住民から提案されている生活環境改善のためのプロジェクトを支援する仕組みを確立する。
- ▶ 復興のための活動を決定するに当たってコミュニティの優先度が考慮されるよう支援し、地域事情に関する彼らの認識を踏まえて、現在と将来の利益をサポートする。
- ▶ 人々が自ら判断することができるように、個人の内部被ばくと外部被ばくを測定すること、さらにその情報と機器を供与することの努力を継続する。
- ▶ 食品問題に関与する全ての関係者(生産者、流通関係者、消費者)の間で対話を恒久的に継続するためのフォーラムを創る。
- ▶ 子供たちの間で放射線防護の文化を形成することに対し、父母、祖父母そして 教師の関わりを促す。
- ▶ 国内外の利害関係者(ステークホルダー)との協力関係と対話を強化する。

出典: Lochard, J (2012) 第27回原安協シンポジウム資料より作成

放射線防護の専門家と東京電力福島第一原子力発電所事故の被災者との対話の成果として、国際放射線防護委員会(ICRP)から具体的な提案が行われています。その中には、地域社会の優先の反映、被ばく線量に関する情報と機器の提供、食品に関する継続的フォーラムの創生、放射線防護の文化形成等が含まれています。

本資料への収録日:平成25年3月31日

## こころへの影響 健康影響の総括-チェルノブイリ原発事故-

## メンタルヘルスへの影響のまとめ



## チェルノブイリ原発事故20周年として2006年に公表された世界保健機関(WHO)の報告書

- ➢ 被災者の集団ストレス関連疾患として、うつ状態、心的外傷後ストレス障害(PTSD)を含む不安、医学的に説明されない身体症状が、対照群に比較して増えている
- メンタルヘルスへの影響は、チェルノブイリ原発事故で引き起こされた、最も大きな住民の健康問題である

出典: World Health Organization: Mental, psychological and central nervous system effects. Health effects of the UN Chernobyl accident and special health care programmes: report of the UN Chernobyl forum expert group "Health"(eds. Bennett B., et al), 93-97, WHO, Geneva 2006.

原子力災害の心理的影響としてよく挙げられる事例に、チェルノブイリ原発事故による影響があります。

国際原子力機関(IAEA)や世界保健機関(WHO)による取りまとめでは、放射線による直接の健康影響よりも心理的影響のほうが大きかったとされています。

チェルノブイリ原発事故後、精神的ストレスから身体不調を訴えた人が多く見られました。これは、放射線の影響だけが原因というわけではなく、当時ソビエト連邦の崩壊によって社会・経済が不安定化し、人々に大きな精神的ストレスが加わったこと等、複数の要因が複雑に絡み合った結果であると考えられています。

本資料への収録日: 平成25年3月31日

#### こころへの影響

#### 世界保健機関 (WHO) による総括-チェルノブイリ原発事故-

#### 世界保健機関 (WHO) 2006年報告書における検討



- ① ストレス関連症状
- ② 発育中の脳への影響についての不安(胎児影響)
- ③ 脳の機能性障害(汚染除去作業者への影響)
- ④ 汚染除去作業者の高い自殺率

出典: World Health Organization: Mental, psychological and central nervous system effects. Health effects of the UN Chernobyl accident and special health care programmes: report of the UN Chernobyl forum expert group "Health"(eds. Bennett B., et al), 93-97, WHO, Geneva 2006.

原子力災害で、ストレスによりどのような精神医学的影響が見られたのか、世界保健機関(WHO)報告書のまとめでは4つに要約しています。

1つ目はストレス関連症状です。被ばく者集団では、説明できない身体症状や自己 評価による健康不良を申告する割合が対象集団の3~4倍に上がったとの研究報告 があります。

2つ目は、事故発生時に妊娠中であった母親たちが、生まれてきた子供の脳の機能への影響を非常に気にしていることが分かっています。例えば、母親たちに「自分の子供は記憶力に問題を抱えていると思うか」といったアンケートでは、そう思うと答えた母親は、非汚染地区(7%)に比べ、強制避難地区(31%)では4倍になりました。

3つ目と4つ目はそれぞれ、汚染除去作業者に見られた脳機能への影響と高い自殺率です。

ある研究グループからは、最も高い線量に被ばくした汚染除去作業者は認識障害、 脳波検査(EEG)の変化、統合失調症、認知症、器官脳の機能障害の徴候、及び磁気 共鳴映像法(MRI)による映像の変化等があったという報告があります。しかし、このような所見は、個々の研究者によって確認されているわけではありません。

また、汚染除去作業に参加したエストニア人4,742人について追跡調査を行ったところ、1993年までに、がんの発生率と死亡率の増加は認められませんでしたが144人の死亡が確認され、その19.4%が自殺であることが分かりました。

本資料への収録日:平成25年3月31日

## こころへの影響 専門家グループの見解-チェルノブイリ原発事故-

### Brometら (2011) によるまとめ

- (1) 事故直後の処理や汚染除去に参加した作業者は、事故から 20年経過してもまだ抑うつと心的外傷後ストレス障害 (PTSD) の割合が高い。
- (2) 高汚染地域の子供の精神医学的影響については研究によって結果は様々。
- (3) 一般集団についての研究では、自己申告による健康状態の 不調、臨床的あるいは前臨床的な抑うつ、不安、及びPTSD の割合が高い。
- (4) 子供たちの母親は、主に家族の健康のことがいつまでも気に なっていて、精神医学的な高リスクグループにとどまっている。

出典: Bromet EJ, JM Havenaar, LT Guey. A 25 year retrospective review of the psychological consequences of the Chernobyl accident. Clin Oncol 23, 297-305, 2011

チェルノブイリ原発事故によりどのような精神医学的影響が見られたのか、精神 医学と予防医学を専門とする研究グループが平成23年に論文を発表しました。

事故直後に現場で作業した高いレベルの放射線に被ばくした集団は、事故から20年経過してもまだ抑うつと心的外傷後ストレス障害(PTSD)の割合が高いことが分かっています。事故発生時に、原発周辺に住んでいた、あるいは高汚染地域に住んでいた幼児や胎児への影響については、研究によって結果は様々です。例えば、胎内被ばくした子供たちについて、キエフ、ノルウェー及びフィンランドで行われた研究結果では、特異的な精神心理学的及び心理学的障害があったことを示唆していますが、他の研究ではそのような健康障害は見つかっていません。また一般集団についての研究では、自己申告による健康状態の不調、臨床的あるいは前臨床的な抑うつ、不安及び心的外傷後ストレス障害の割合が高いことが分かっています。そして母親は、主に家族の健康のことがいつまでも気になっていて、精神医学的観点からは、高リスクグループにとどまっています。

チェルノブイリ原発事故の場合は、こうした症状の原因全てが、放射線への不安に帰するわけではありません。政府への不信、不適切なコミュニケーション、ソ連崩壊、経済問題及びそのほかの要因が関係していますし、おそらくはそのうちの1つが原因というよりは、いくつかが複合的に作用しています。

本資料への収録日: 平成25年3月31日

こころへの影響

## - チェルノブイリ原発事故 -

世界保健機関 (who) 2006年報告書と異なる見解

世界保健機関(WHO)2006年報告書: 不安等のメンタルヘルスが、地域保健上の最大の問題



これに対し



WHO2006年報告書以降、国際的な調査の減少に対する懸念も

- ①WHO報告書の見解よりも、チェルノブイリ原発事故による 身体的影響被害は大きい可能性があり、今後も国際的な調査 が必要であるとの指摘※1
- ②WHOの見解が、汚染地域由来の食品への警戒を弱め、今後 の調査研究を妨げる原因になっているという批判※2

※1:根拠となっているのは、ウクライナのRivne州で、神経管欠損の発生率が、10,000人出生当たり 22.2人と、ヨーロッパで最大となっている点である。(Wertelecki, Pediatrics, 125, e836, 2010) しかし、この原因については今のところ明らかではない。

※2: Holt, Lancet, 375, 1424 - 1425, 2010

世界保健機関(WHO)報告書等では、不安等のメンタルヘルス面が強調されるあま り、身体的影響に関してなおざりになっているのではないかという論旨の報告も示され ています。

その大きな根拠になっているのは、ウクライナのRivne州で暮らす「森の住民」と呼ば れるポーランド系孤立集落の人々において、特に神経管欠損の発症率が高くなってい るという報告です。近親婚の影響も疑われていることや、神経管欠損は、葉酸欠乏や 母親の飲酒によっても起こるため、Rivne州の神経管欠損が、チェルノブイリ原発事故 由来の放射線によるものか、そのほかの影響によるものか、あるいは複合影響なのか は分かっていません。

本資料への収録日: 平成25年3月31日

## こころへの影響 奇形誘発に関する知見 - チェルノブィリ原発事故・

### チェルノブイリ原発事故によって奇形は増加したか?

チェルノブイリ原発事故前後における、欧州奇形児・双子登録データベースの比較

## 欧州先天異常監視機構(EUROCAT) 9カ国18地域: 事故前後で奇形発生頻度の変化なし

## <u>フィンランド、ノルウェー、スウェーデン</u>: 事故前後で奇形発生頻度の変化なし

#### ベラルーシ:

汚染地域かどうかに関わらず流産児の奇形登録増加 報告者バイアスの可能性あり※1

## ウクライナ: 今世紀にEUROCAT参加 Rivne州のポーランド系孤立集落で神経管欠損増加 放射線に加え、葉酸欠乏、アルコール依存症、近親 婚等の影響を評価する必要あり※2

※ 1 :Stem Cells 15 (supple 2): 255, 1997 ※ 2 :Pediatrics 125:e836, 2010

放射線が、これから生まれてくる子供たちにどのような影響を及ぼす可能性があるのか、チェルノブイリ原発事故前後の先天奇形の発生頻度については、様々な報告がなされています。欧州先天異常監視機構(EUROCAT)や、フィンランド、ノルウェー、スウェーデンの先天異常に関するデータベースを事故前後で比較した結果、奇形発生頻度に変化は見られませんでした。

ウクライナのRivne州、北半分のポリシア郡には、汚染地域で自給自足の生活を送っている人たちがいます。かれらは「ポリシチュクス(森の住人)」と呼ばれるとおり、森で野イチゴやキノコを採り、狩りや漁をして暮らしています。彼らの間で、神経管欠損が増えているという報告があり、放射線によるものかどうかについての評価が待たれています。

本資料への収録日:平成25年3月31日

## **こころへの影響 欧州での人工流産の増加-チェルノブイリ原発事故-**

## チェルノブイリ原発事故発生:1986年4月26日



#### 遠隔地での人工流産の増加

ギリシャ:1987年1月の出生率が激減

⇒1986年5月に妊娠初期の胎児の23%が人工流産と推定

イタリア:事故後5か月間は1日当たり約28~52件の不必要

な中絶があったと推定

デンマーク: 少しあった

スウェーデン、ノルウェー、 ハンガリー : なかった

出典: Proceedings of the Symposium on the effects on pregnancy outcome in Europe following the Chernobyl accident. Biomedicine & Pharmacotherapy 45/No 6, 1991

放射線の健康影響への過度な不安は、精神と共に身体も傷つけることがあります。 例えば自殺やアルコール依存症は体に害を及ぼします。

チェルノブイリ原発事故ではストレスから自然流産が増えたとする報告があります。また、チェルノブイリ原発から遠い地域でも、人工流産が増加したという報告もあります。ギリシャのチェルノブイリ原発事故の影響は1ミリシーベルトを超えない程度でしたが、事故が起こった翌月には中絶した妊婦が多くなり、次の年の1月の出生児数が激減しました。出生率から計算すると、妊娠初期の23%が中絶したと推定されています。一方、ハンガリーのように、胎児の被ばく量が100ミリシーベルトを超えない限り人工中絶は許されていない地域では、中絶は行われませんでした。

本資料への収録日: 平成25年3月31日

#### 般的なこころのケアに関する参考資料(1/3) こころのケア対応 こころのケアに関する全般的な情報 掲載URL タイトル 発行機関 発行年月 世界保健機関(WHO) ① 心理的応急処置 (PFA) 平成23年 http://saigai-フィールド・ガイド 日本語版翻訳:国立精神・ kokoro.ncnp.go.jp/pdf/w ho\_pfa\_guide.pdf 神経医療研究センター、ケ ア宮城、(公財)プラン・ ジャパン ② 災害時地域精神保健医療活動のガイド 厚生労働省厚生科学研究費 平成15年1月 http://saigai-補助金厚生科学特別研究事 kokoro.ncnp.go.jp/docu ライン(平成26年度現在、改訂中) ment/medical\_personnel 05.html ③ 災害時地域精神保健医療活動ロード 国立精神・神経医療研究セ 平成23年3月 http://saigai-ンター災害時こころの情報 更新 kokoro.ncnp.go.jp/docu マッブ ment/pdf/mental\_info\_m 支援センター ap.pdf ④ 災害救援者・支援者メンタルヘルス・ 国立精神・神経医療研究セ 平成23年3月 http://saigai-マニュアル ンター災害時こころの情報 更新 kokoro neno go in/docu ment/pdf/mental\_info\_s 支援センター aigai\_manual.pdf ⑤ 原子力災害時における心のケア対応の (公財)原子力安全研究協 平成21年3月 http://saigai-手引き-周辺住民にどう応えるか-会(文部科学省委託事業) kokoro.ncnp.go.ip/docu ment/pdf/mental\_info\_n uclear.pdf

この図では、災害時や放射線の健康影響に限らず、一般的なこころのケアに関する 参考資料を紹介しています。

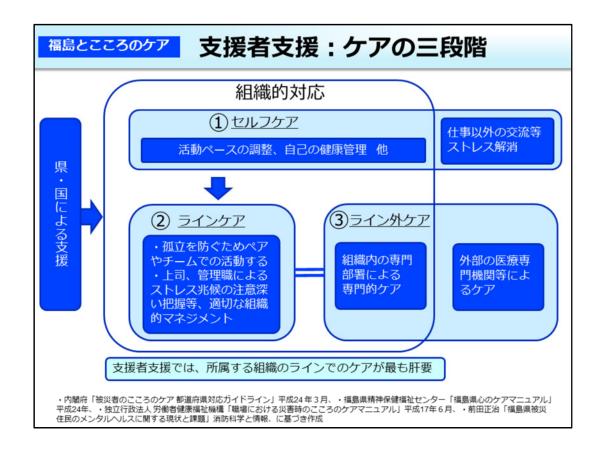
- ①は、日本語に訳された心理的応急措置(サイコロジカルファーストエイド: PFA)のガイドです。PFAを実践する際のすべきこと、してはならないこと等支援者の留意事項が挙げられています。
- ②は、災害時のストレス対策に関するガイドラインです。医師、保健師、看護師、精神保健福祉士、そのほかの専門職、行政職員向けに、地域住民に及ぼす精神的影響への具体的な対応策が説明されています。
- ③は、震災直後そして中長期的な精神保健活動を示したロードマップです。保健・医療 関係者向けに、災害被災者の心理的、精神的反応とそれらに合わせた活動が説明 されています。
- ④は、災害時の支援者のストレス対策に関するマニュアルです。保健・医療関係者向けに、支援者に現れる心身の反応やストレス対策が説明されています。
- ⑤は、原子力災害時のこころのケアについて示された手引きです。災害後の心理的反応の事例や不安を抱える人への応急措置法を示し、それらに気づいた際には速やかに医師等に相談することを勧めています。また、支援者に見られやすい症状をチェックシートで確認し、適切な対応をとることを勧めています。

本資料への収録日:平成27年3月31日

|     | タイトル                                           | 用途及び対象                                                                                 | 発行機関                                                                    | 発行年月     | 掲載URL                                                                                      |
|-----|------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------|
| 1   | 子どもにやさしい空間<br>ガイドブック<br>第1部 (理念編)              | <ul><li>・用途:緊急時に子供が安心して、<br/>安全に過ごすことのできる空間を<br/>作る</li><li>・支援対象:子供</li></ul>         | (公財) 日本ユニセフ<br>協会<br>国立精神・神経医療研<br>究センター 精神保健<br>研究所災害時ごころの<br>情報支援センター | 平成25年11月 | http://saigai-<br>kokoro.ncnp.go.jp/pdf/cf<br>_20130614_1.pdf                              |
| 2   | 子どもにやさしい空間<br>ガイドブック<br>第2部(実践編)               | <ul> <li>・用途:第1部(理念編)の内容を<br/>実践するために必要な準備や実際<br/>の手続きの説明</li> <li>・支援対象:子供</li> </ul> | (公財) 日本ユニセフ協会<br>国立精神・神経医療研究センター<br>保健研究所災害時こころの情報支援センター                | 平成25年11月 | http://saigai-<br>kokoro.ncnp.go.jp/pdf/c<br>s_20130614_2.pdf                              |
| 3   | 被災した子どもの支援<br>をする方々へ〜急性期<br>の心理的なサポートに<br>ついて〜 | <ul><li>・用途:被災した直後の子供の心のケア</li><li>・支援対象:子供</li></ul>                                  | 日本児童青年精神医学会·災害対策委員会                                                     | 平成23年3月  | http://saigai-<br>kokoro.ncnp.go.jp/docu<br>ment/pdf/mental_info_c<br>hilds_02.pdf         |
| 4   | 被災した子どもの支援<br>をする方々へ〜中長期<br>の心理的なサポートに<br>ついて〜 | <ul><li>・用途:被災した子供の中長期的<br/>な支援</li><li>・支援対象:子供</li></ul>                             | 日本児童青年精神医学会·災害対策委員会                                                     | 平成23年7月  | http://child-<br>adolesc.jp/wp-<br>content/uploads/tebiki_<br>huuchouki.pdf                |
| (5) | 支援者のみなさまへ<br>災害時の障害児への対<br>応のための手引き            | <ul> <li>用途:被災時に障害児を支援する際の身体面そして心理・行動面の問題への対処</li> <li>支援対象:障害児、保護者</li> </ul>         | 日本児童青年精神医<br>学会                                                         | 平成23年3月  | http://saigai-<br>kokoro.ncnp.go.jp/docu<br>ment/pdf/mental_info_h<br>andicapped_child.pdf |

この図では、災害時における一般的なこころのケアのうち、主に子供のケアに関する 参考資料を紹介しています。

- ①は、緊急時のガイドブックです。避難所・民間団体・自治体・医療・福祉・教育の関係者向けに、子供が安心して、安全に過ごすことのできる空間を作る際に理解しておくことや心掛けておくべき基本方針がまとめられています。
- ②は、①の実践編です。避難所・民間団体・自治体・医療・福祉・教育の関係者向けに、子供に優しい空間をつくるために必要な準備や実際の手続きが例示されています。
- ③には、災害直後の、また、④には中長期的な子供のこころのケア方法が、看護師、 保健師、心理士、養護教諭向けにまとめられています。
- ⑤は、保健・医療関係者が特に障害児を支援する際の手引きです。身体面そして心理・行動面の問題への対処方法がまとめられています。また、保護者への支援方法も掲載されています。


本資料への収録日: 平成27年3月31日

| ど言時における疾患ごとのこころのケア |                                           |                                                                                                      |                                       |               |                                                                                 |  |  |
|--------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------|---------------|---------------------------------------------------------------------------------|--|--|
|                    | タイトル                                      | 用途及び対象                                                                                               | 発行機関                                  | 発行年月          | 掲載URL                                                                           |  |  |
| 1                  | うつ対策推進方策<br>マニュアルー都道<br>府県・市町村職員<br>のために- | <ul><li>・用途:うつ病への適切な対処</li><li>・支援対象:地域住民</li></ul>                                                  | 厚生労働省<br>地域におけるうつ対策<br>検討会            | 平成16年1月       | http://www.mhlw.go.jp/shi<br>ngi/2004/01/s0126-<br>5.htm#1                      |  |  |
| 2                  | うつ対応マニュア<br>ルー保健医療従事<br>者のために-            | ・用途:うつ病への適切な対処<br>・支援対象:地域住民                                                                         | 厚生労働省<br>地域におけるうつ対策<br>検討会            | 平成16年1月       | http://www.mhlw.go.jp/shi<br>ngi/2004/01/s0126-<br>5.html#2                     |  |  |
| 3                  | 被災時の飲酒問題                                  | <ul><li>・用途: 飲酒により心身を害している人への対処</li><li>・支援対象: 被災によりアルコールに依存してしまう人</li></ul>                         | 究センター災害時ここ                            | 平成23年4月<br>更新 | http://saigai-<br>kokoro.ncnp.go.jp/docur<br>ent/pdf/mental_info_alco<br>ol.pdf |  |  |
| 4                  | 自殺に傾いた人を<br>支えるために-相<br>談担当者のための<br>指針-   | <ul> <li>用途:相談と支援活動に必要な基本的な知識や行動指針の確認</li> <li>支援対象:自殺未遂者、自傷を繰り返す人及び自殺を考えている人を含む「自殺に傾いた人」</li> </ul> | 厚生労働省厚生労働科<br>学研究費補助金こころ<br>の健康科学研究事業 | 平成21年1月       | http://www.mhlw.go.jp/bur<br>ya/shougaihoken/jisatsu/<br>I/02.pdf               |  |  |
| (5)                | ひきこもりの評<br>価・支援に関する<br>ガイドライン             | <ul><li>・用途:「ひきこもり」の評価と支援の実践的なガイドラインとして作成されています。</li><li>・支援対象:ひきこもり事例に当たる人</li></ul>                | 厚生労働省厚生労働科<br>学研究費補助金こころ<br>の健康科学研究事業 | 平成22年5月       | http://www.zmhwc.jp/pdf/r<br>eport/guidebook.pdf                                |  |  |
| 6                  | 被災した認知症の<br>人と家族の支援マ<br>ニュアル<医療用<br>>     | <ul><li>・用途:医療用</li><li>・支援対象:避難所等で生活されている認知症の人と家族</li></ul>                                         | 日本認知症学会                               | 平成28年4月       | http://dementia.umin.jp/i<br>ou419.pdf                                          |  |  |
| 7                  | 被災した認知症の<br>人と家族の支援マニュアル<介護用              | <ul><li>・用途:介護用</li><li>・支援対象:避難所等で生活されている認知症の人と家族及び介護職の人</li></ul>                                  | 日本認知症学会                               | 平成28年4月       | http://dementia.umin.jp/kigo419.pdf                                             |  |  |

この図では、災害時における一般的なこころのケアのうち、特に、うつ病、ストレス、 飲酒、自殺、ひきこもり、認知症等のケアに関する参考資料を紹介しています。

- ①及び②は、地域の行政職員や保健医療従事者が一般的なうつ対策に取り組む際のマニュアルです。不安を抱えている人との会話での注意点と、説明の仕方や問いかけの例が具体的に挙げられています。
- ③では、保健・医療関係者向けに、被災によりアルコールに依存してしまう人への対処法が説明されています。
- ④は、自殺未遂者、自傷を繰り返す人及び自殺を考えている人を含む「自殺に傾いた人」を支援対象者として想定しています。保健所及び精神保健福祉センター職員、市町村職員や民生委員・児童委員向けに、相談支援活動に必要な基本的知識や行動指針が書かれています。
- ⑤は、ひきこもり事例のガイドラインです。精神保健・医療・福祉・教育等の専門機関向けの「ひきこもり」の評価と支援の実践的な資料です。
- ⑥及び⑦は、避難所等で生活されている認知症の人と家族に関するマニュアルです。 ⑥は、現地で認知症医療に携わる医師や看護師等医療従事者を対象としています。 一方、⑦は、介護職の人を支援することを目的としています。

本資料への収録日:平成27年3月31日



行政職や医療職等被災者に対する支援業務者は、被災住民の苦悩を最も間近に 感じ取る立場にあることが多く、また問題が長期化していることから無力感や罪責感情 を抱きやすい状況になっています。

そのような支援者のこころのケアは、本来は組織のラインによる対応が最も肝要であり、そうしたケアにより組織の安定性や恒常性が守られます。しかし、福島県においては、あまりにも広範囲で長期的、複雑な問題が引き起こされているため、あるいはそれらの問題の収束点や解決プロセスが見えにくいため、ライン・ケアのみで支援者をサポートすることが難しい状況になってきています。

このような支援者のケアは、まず、自らがそのような状況になる可能性のある状況の中で活動していることを認識し、ストレスの軽減に努める等のセルフケアが重要です。次に、上司、管理職、あるいは周囲の同僚等が早期に兆候を把握し、組織のラインにおいてケアの対応をとることが最も重要です。また、支援を行うべき専門的部署をライン外に設ける等の工夫も必要になります。さらに、このようなケアシステムの構築のためにも、とくに管理職に対する(管理職自身も含めた)心理教育や啓発的活動は非常に大切です。

また、県や国は、被災者のこころのケア支援事業等を通じて直接的、間接的に被災者のこころのケアに関する支援を行っています。

本資料への収録日:平成28年3月31日

## 福島とこころのケア 支援者のストレス対策

#### 支援者の組織内でのケア

#### 1. 職務の目標設定

- ・業務の重要性、目標を明確に持つ
- ・日報、日記、手帳等で記録をつけて頭の 中を整理

#### 2. 生活ペースの維持

- ・十分な睡眠、食事、水分をとる
- 3. 意識的に休養を心掛ける
- 4. 気分転換の工夫
- ・深呼吸、目を閉じる、瞑想、ストレッチ
- ・散歩、体操、運動、音楽を聴く、食事、 入浴等

#### 5. 一人でためこまないこと

・家族、友人等に積極的に連絡する (できれば業務と関連のない人がよい)

#### 支援者のセルフケア

#### a. 活動しすぎない

• 自分の限度をわきまえ、活動ペースを調整する

#### b. ストレスに気付く

自己の健康を管理し、ストレスの兆候に早めに 気づく

#### c. ストレス解消に努める

- リラクゼーション、身体的ケア、気分転換、
- 仕事以外の仲間(家族、友人等)との交流を行う

#### d. 孤立を防ぐ

- ペアやチームで活動する
- e. 考え方の工夫

出典:福島県精神保健福祉センター、「福島県心のケアマニュアル」 平成24年

福島県精神保健福祉センターが作成した、「福島県心のケアマニュアル」では、支援者のストレス対策として注意することがいくつか挙げられています。

支援者のセルフケアとしては、活動しすぎない、ストレスに気付く等があります。支援者の置かれてる状況ではなかなか難しいことかもしれませんが、活動しすぎないことが挙げられています。自分の限度をわきまえ、活動ペースを調整すること、1日にあまりに多くの被災者と関わらないために、人に任せるということも大切なことです。ストレスの兆候があることは恥ずかしいことではなく、自分の体調を知る大事な手掛かりです。自己の健康を管理し、ストレスの兆候に早めに気付くことも必要です。 ストレス解消のためには、リラクゼーション、身体的ケア、気分転換、仕事以外の仲間(家族、友人等)との交流を行うこと等が効果的です。孤立はストレスを受けやすい環境では極力避けることが望ましく、そのためペアやチームで活動する、定期的に、自分の体験(目撃した災害状況や自分の気持ち)を仲間と話し合ったり、先輩等からの指導を受ける機会を持つことも必要になります。災害後の困難な状況では特に、一人の力で全てを変えることはできないことは普通のことですから、自分の行動をポジティブに評価し、自分はふさわしくない、あるいは能力がないというようなネガティブに考える必要は全くないのです。

また、支援者の組織内でのケアとしては、次のような対策が具体的に挙げられています。

- 「自分だけ休んでいられない」といった罪悪感はストレスのサイン
- ・心身の反応が出ている場合は、早めに上司や同僚に相談する
- なるべくこまめに声を掛け合い、お互いの頑張りをねぎらう
- お互いの体調に気を付け、負担が強くなっている職員がいる場合には、本人、指揮担当者に伝える

本資料への収録日:平成28年3月31日

#### **福島とこころのケア** 気分が落ち込んだり、不安を感じたら

このような感じの変化を自分で気づいたら、近くの保健師、看護師や 専門の機関に相談しましょう 何でも話して、聞いてもらうことが大事です

#### うつ病を疑うサイン-自分が気づく変化

- ・悲しい、憂うつな気分、沈んだ気分、・何事にも興味がわかず、楽しくない、
- ・気力、意欲、集中力の低下を自覚する(おっくう)、
- ・疲いい、愛フラスなが、かいて入り、 ・疲れやすく、元気がない(だるい)、・気力、意欲、集中力の低下を自覚する(おっくう・寝つきが悪くて、朝早く目がさめる、・食欲がなくなる、・人に会いたくなくなる、・ク方より朝方の方が気分、体調が悪い、・心配事が頭から離れず、考えが堂々めぐりする、
- ・失敗や悲しみ、失望から立ち直れない、・自分を責め、自分は価値がないと感じる など

(厚生労働省「うつ病を知っていますか? (国民向けパンフレット 案) Jhttp://www.mhlw.go.jp/shingi/2004/01/s0126-5d.html)

| こころの悩み、      | 相談窓口                                  | 電話番号         | 受付日時                           |  |  |  |  |
|--------------|---------------------------------------|--------------|--------------------------------|--|--|--|--|
| 不安、孤独、お      | ふくしま心のケアセンター                          | 024-925-8322 | 月~金 9:00~12:00と13:00~<br>17:00 |  |  |  |  |
| 酒の問合いなど、     | 被災者相談ダイヤル ふくここライン                     |              | (祝日、年末年始を除く)                   |  |  |  |  |
| ご自信やご家族      | こころの健康相談ダイアル<br>(福島県内にお住まいの方)         | 0570-064-556 | 月〜金 9:00〜17:00<br>(祝日を除く)      |  |  |  |  |
| のことでお悩み      | (福島県外にお住まいの方)                         | 024-535-5560 |                                |  |  |  |  |
| の際にご利用頂      | 福島いのちの電話                              | 024-536-4343 | 毎日 10:00~22:00 (年中無休)          |  |  |  |  |
| ける窓口です。      | 福島県精神保健福祉センター                         | 024-535-3556 | 月〜金 9:00〜17:00<br>(祝日、年末年始を除く) |  |  |  |  |
| フ ビナの担談 (40- | フ じょ の 日歌 (40 キャ 法) ・ ふあい フ しが もり は ・ |              |                                |  |  |  |  |

子どもの相談(18才未満):心配なことがあれば、最寄りの市町村保健センターに相談しましょう。

出典:福島県立医科大学 放射線医学県民健康管理センターの資料「その他、各種相談窓口一覧」に基づき作成

うつ病は、脳の中にある、感情や意欲に関係した場所の働きが低下することによっ て起きる病気であると考えられています。

私達は、普段から悩み事があったり、緊張したり多くのストレスにさらされています。 睡眠を十分にとって休んだりすることによって、そのようなストレスをある程度解消する ことができています。これは、私達の身体が持っている自然治癒力によるものです。

しかし、悩み事や緊張がずっと続き、解放されなかったり、頑張り過ぎる状態が続い たりするとうつ病が起きやすい状態になります。うつ病、あるいいはうつ病の疑いがあ る症状としては、次のようなことがあげられます。

- ①気分が落ち込む、やる気が出ない、集中できない、考える力が落ちるといった感情 や意欲に係わる症状
- ②寝つきが悪い、夜中に目が覚める、眠りが浅い、朝早く起きてしまうなどの睡眠に係 わる症状
- ③食べたいと思わない、美味しいと思えない、胃のもたれやむかつきがあるなどの食 欲に係わる症状


このようなことを感じたら、ためらわずに、専門機関や相談機関に電話をして相談す ることが大切です。

参考資料:ふくしま心のケアセンター「うつ病、うつ状態について」大江 美佐里監修

本資料への収録日: 平成29年3月31日

# 第4章

## 防護の考え方



毎年、世界の研究者から、放射線の線源や影響に関する研究が多数発表されます。 原子放射線の影響に関する国連科学委員会(UNSCEAR)は、幅広い研究結果を包 括的に評価し、国際的な科学コンセンサスを政治的に中立の立場からまとめ、定期的 に報告書の形で見解を発表しています。

国際放射線防護委員会(ICRP)では、UNSCEARの報告等を参考にしながら、放射線防護の枠組みに関する勧告を行っています。ICRPの勧告や、国際原子力機関(IAEA)が策定した国際的な合意形成による基本安全基準を参考に、日本でも放射線防護に関する法令や指針等が定められています。

本資料への収録日:平成25年3月31日

#### 防護の原則

## 国際放射線防護委員会(ICRP)

## 国際放射線防護委員会(ICRP)

放射線防護の基本的な枠組みと防護基準を勧告することを目的とする。 主委員会と5つの専門委員会(放射線影響、線量概念、医療被ばくに 対する防護、勧告の適用、環境の放射線防護)で構成されている。

(参考) ICRPの勧告より、線量限度について抜粋

|                | 1977年<br>勧告 | 1990年<br>勧告                | 2007年<br>勧告                |
|----------------|-------------|----------------------------|----------------------------|
| 線量限度<br>(職業人)  | 50mSv/年     | 100mSv/5年<br>かつ<br>50mSv/年 | 100mSv/5年<br>かつ<br>50mSv/年 |
| 線量限度<br>(一般公衆) | 5 mSv/年     | 1 mSv/年                    | 1 mSv/年                    |



mSv: ミリシーベルト

1928年、医療従事者を放射線の障害から防ぐために国際X線ラジウム防護委員会が設立されました。1950年に、国際X線ラジウム防護委員会は、国際放射線防護委員会(ICRP)に改組され、放射線防護の基本的な枠組みと防護基準を勧告する機関という重要な役割を担うことになりました。近年では1977年、1990年、2007年に勧告を行っています(上巻P151、「勧告の目的」)。ICRPが勧告を発表すると、多くの国では放射線防護関係の法令の見直しが行われます(上巻P160、「国際放射線防護委員会(ICRP) 勧告と我が国の対応」)。

ICRPの勧告の骨格は、原爆被爆者の疫学調査を始めとする広範な科学的知見を基にしており、1990年以降、確定的影響と確率的リスクの総合的な推定値は基本的には変わらないとして、これまでの防護体系がほぼ踏襲されています。

本資料への収録日: 平成25年3月31日

## 防護の原則 勧告の目的

## 勧告の目的 (国際放射線防護委員会 (ICRP) 2007年勧告)

- 1)人の健康を防護する
- ・放射線による被ばくを管理し、制御することにより、 確定的影響を防止し、 確率的影響のリスクを合理的に達成できる程度に減少 させる
- 2)環境を防護する
- ・有害な放射線影響の発生の防止、又は頻度の低減

国際放射線防護委員会(ICRP)の勧告の目的は、「放射線被ばくに関連して望ましい人間の努力及び行動を不当に制限せずに、放射線被ばくによる有害な影響から人間と環境を守るための適正な水準の防護に寄与すること」とされています。

この目的達成には、「放射線被ばくとその健康影響に関する科学的知見は必要な前提条件ではあるが、防護の社会的・経済的側面にも考慮しなければならず、この点は、危険の管理に関する他の分野と異なるものではない」と、2007年勧告には記載されています。

勧告の主目的は、人の健康の防護にありますが、2007年勧告では、新たに環境を 防護するという目的が追加されました。

本資料への収録日:平成25年3月31日

#### 防護の原則

## 被ばく状況と防護対策

#### 放射線による人の被ばく状況

#### 計画被ばく状況

被ばくが生じる前に防護 対策を計画でき、被ばく の大きさと範囲を合理的 に予測できる状況

#### 線量限度

(一般公衆)1mSv/年 (職業人)100mSv/5年 かつ50mSv/年

#### 対策

放射性廃棄物処分、長 寿命放射性廃棄物処分 の管理等

mSv: ミリシーベルト

#### 現存被ばく状況

管理についての決定が なされる時点で既に被ば くが発生している状況

#### 参考レベル

1~20mSv/年のうち低 線量域、

長期目標は1mSv/年

#### 対策

自助努力による放射線 防護や放射線防護の文 化の形成等

#### 緊急時被ばく状況

急を要するかつ、長期的 な防護対策も要求される かもしれない不測の状況

#### 参考レベル

20~100mSv/年の範囲

#### **新校**

避難、屋外退避、放射線 状況の分析・把握、モニ タリングの整備、健康調 査、食品管理等

国際放射線防護委員会(ICRP)は人の被ばく状況を、計画的に管理できる平常時(計画被ばく状況)、事故や核テロ等の非常事態(緊急時被ばく状況)、事故後の回復や復旧の時期等(現存被ばく状況)の3つの状況に分けて、防護の基準を定めています。

平常時には、身体的障害を起こす可能性のある被ばくがないようにした上で、将来起こるかもしれないがんのリスクの増加もできるだけ低く抑えるように防護の対策を行うこととされています。そのため、放射線や放射性物質を扱う場所を管理をすることで、一般公衆の線量限度が年間1ミリシーベルト以下になるように定めています。

また、放射線を扱う職業人には、5年間に100ミリシーベルトという線量限度が定められています。

一方、放射線事故のような非常事態が起こった場合(緊急被ばく状況)、平常時には起こり得ない身体的障害の可能性があることから、平常時の対策(将来起こるかもしれないがんのリスクの増加を抑えること)よりも、重大な身体的障害を防ぐための対策を優先することとされています。このため、線量限度は適用せず、一般公衆の場合、年間20~100ミリシーベルトの間の参考レベルを定め、被ばく低減を進めることが定められています。緊急措置や人命救助に従事する人の場合、状況に応じて500~1,000ミリシーベルトを制限の目安とすることもあるとされています。

その後、回復・復旧の時期(現存の被ばく状況)に入ると、緊急時の参考レベルよりは低く平常時の線量限度よりは高い、年間1~20ミリシーベルトの間に設定されることもあるとされています。

(関連ページ:上巻P161、「国際放射線防護委員会(ICRP)勧告と我が国の対応」)

本資料への収録日: 平成25年3月31日

## **SERVICION DE MANAGEMENT DE**

### 放射線の健康影響には、確定的影響と確率的影響がある

- ・約100ミリグレイまでの吸収線量域では、どの組織も 臨床的に意味のある機能障害を示すとは判断されない
- ・約100ミリシーベルトを下回る線量域では、確率的影響の発生率は臓器や組織の等価線量の増加に比例して増加すると仮定する (直線しきい値なしモデル=LNTモデルの採用)
- ・ 固形がんに対する線量・線量率効果係数は「2」
- ・低線量において、直線的反応を仮定すると、がんと遺伝性影響による致死リスクは1シーベルト当たり約5%

出典: ICRP Publication 103「国際放射線防護委員会の2007年勧告」The International Commission on Radiological Protection(国際放射線防護委員会)、2007

国際放射線防護委員会(ICRP)の勧告の目的の一つは、放射線に対する防護体系を構築するための考察や仮定を与えることによって、確定的影響の発生を防止することにあります。そこで、しきい値の最小値である100ミリグレイ(≒100ミリシーベルト)近くまで年間線量が増加した場合には、防護対策を導入すべきと考えられています。

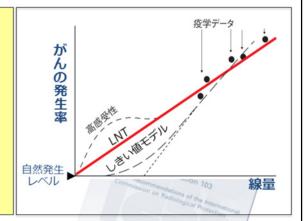
年間およそ100ミリシーベルトを下回る場合は、確率的影響の発生の増加は低い確率であり、バックグラウンド線量を超えた放射線量の増加に比例すると仮定する「直線しきい値なし(LNT)モデル」が、低線量・低線量率での放射線防護の管理に実用的で、予防原則の観点からもふさわしいとされています。

ICRPが根拠としている原爆被爆者のデータは、1回の被ばくである一方で、管理すべき被ばくのほとんどは、長期間の少しずつの被ばくです。そのため、低線量・低線量率による影響軽減分の補正が行われています。動物実験やヒトの細胞における染色体異常や突然変異誘発の結果等から、様々な数値が報告されていますが、防護のためには係数として2を使うと定められています。つまり1回被ばくに比べ、少しずつの被ばくでは、同じ総線量を受けた場合の影響の出方が半分になるということです。

こうした補正を行った結果、致死的ながんリスクの増加は、低線量や低線量率の場合1シーベルト当たり約5%になると考えられています。

本資料への収録日:平成25年3月31日

## DEMOSE LNTモデルをめぐる論争


#### ◎支持:

全米国科学アカデミー (2006) 放射線被ばくには「これ以下なら 安全」と言える量はない

#### ◎批判的:

フランス医学・科学アカデミー (2005)

一定の線量より低い放射線被ばくでは、がん、白血病等は実際には生じず、LNTモデルは現実に合わない過大評価



⇒国際放射線防護委員会(ICRP)は、放射線防護の目的上、単純かつ合理的な仮定として、直線しきい値なし(LNT)モデルを採用

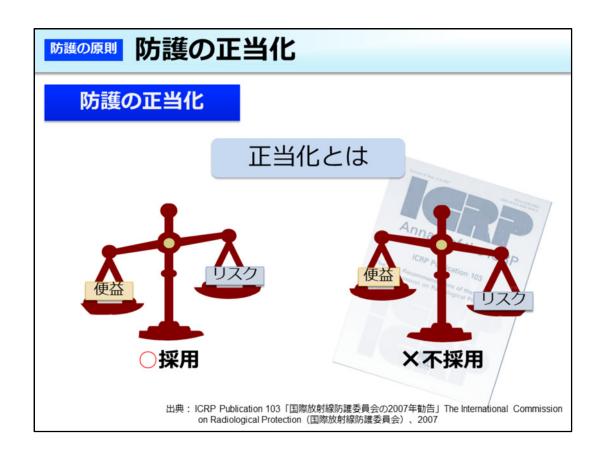
科学的な議論としては、100ミリシーベルト以下の確率的影響のリスク評価に直線しきい値なし(LNT)モデルが妥当であるかどうかということについての決着はついてはいません。例えば、全米科学アカデミー(NAS)では、2006年にLNTモデルは科学的にも妥当との見解を発表しました。100ミリシーベルト以下でもがんリスク上昇が見られる疫学的証拠があるとしています。

一方、フランスの医学アカデミーと科学アカデミーは共同で、一定の線量より低い被ばくでは、がん、白血病等は実際には生じず、LNTモデルは現実に合わない過大評価である、という見解を2005年に発表しています。ここでは、インドや中国の高自然放射線地域の住民のデータに発がんリスクの増加が見えないこと、低線量放射線に特異的な防御的生物反応が次々と見つかったことが根拠となっています。

国際放射線防護委員会(ICRP)の勧告では、LNTモデルと線量・線量率効果係数の2を用いることで、放射線防護の実用的目的、すなわち、低線量被ばくのリスクの管理においてより単純かつ合理的な仮定を提供するとしています。

本資料への収録日:平成25年3月31日

## 防護の原則 防護の三原則


## 国際放射線防護委員会(ICRP)の防護の三原則

- ・正当化
- ・防護の最適化
- ・線量限度の適用

出典: ICRP Publication 103「国際放射線防護委員会の2007年勧告」The International Commission on Radiological Protection(国際放射線防護委員会)、2007

がんや遺伝性影響では、影響の現れ方が確率的です。また現在の放射線防護では、低線量域でも直線しきい値なし(LNT)モデルを適用していますので(上巻P154、「LNTモデルをめぐる論争」)、安全と危険を明確に区分することはできません。そこで、どんなに小さくとも有限のリスクがあるものとして、「リスクを容認できる」ことを基準に、防護のレベルが考えられています。これが放射線防護の原則として「正当化」「防護の最適化」「線量限度の適用」が重要であると考えられる基盤になっています(上巻P156、「防護の正当化」、上巻P157、「防護の最適化」、上巻P159、「線量限度の適用」)。

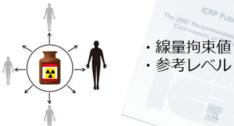
本資料への収録日:平成25年3月31日



防護の原則の1つ目は正当化です。放射線を使う行為は、もたらされる便益(ベネフィット、メリット)が放射線のリスクを上回る場合のみ認められるという大原則です。

正当化は「放射線を扱う行為」に対してのみ適用されるものではなく、被ばくの変化をもたらす活動全てが対象となります。別の言い方をすれば、計画被ばく状況だけではなく、緊急時被ばく状況及び現存被ばく状況にも適用されます。例えば、汚染地域の除染を検討する場合にも、正当化が求められます。

本資料への収録日: 平成25年3月31日

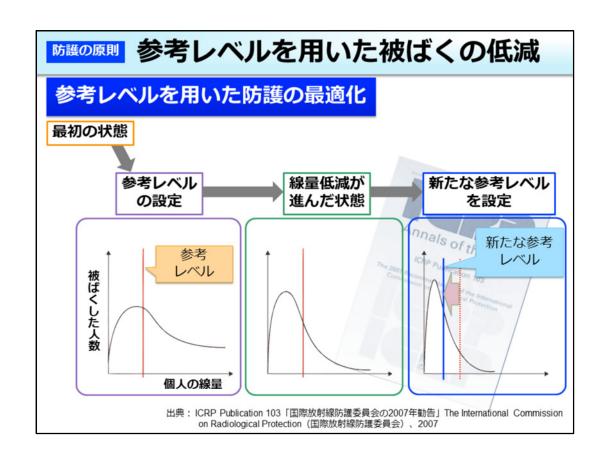

#### 防護の原則

## 防護の最適化

## 防護の最適化

個人の被ばく線量や人数を、 経済的及び社会的要因を考慮に入れた上、 合理的に達成できる限り低く保つことである。

この原則をALARA (As Low As Reasonably Achievable) アララの原則という




出典: ICRP Publication 103「国際放射線防護委員会の2007年勧告」The International Commission on Radiological Protection(国際放射線防護委員会)、2007

放射線防護の原則の2つ目は防護の最適化です。放射線を伴う行為のメリットが放射線のリスクを上回る場合は、合理的に達成可能な限り被ばく量を減らして、放射線を利用します。この原則は、英語の頭文字から「ALARA(アララ)の原則」と呼ばれています。防護の最適化とは、社会・経済的なバランスも考慮しつつ、できるだけ被ばくを少なくするよう努力するということで、必ずしも被ばくを最小化するということではありません。

防護の最適化を進めるために利用されるのが、線量拘束値や参考レベルです。例 えば、除染等によって特定の線源からの個人に対する線量を制限する際の目安として、 参考レベルが用いられています。

本資料への収録日: 平成25年3月31日



東京電力福島第一原子力発電所事故による被ばくを合理的に低減する方策を進めるときには、国際放射線防護委員会(ICRP)の2007年勧告における参考レベルという概念が用いられています。事故や核テロのような非常事態が起こった場合には、緊急時被ばく状況として、重大な身体的障害を防ぐことに主眼をおいて対応します。このため、線量限度(計画被ばく状況における全ての規制された線源からの被ばくに対するもの)は適用せず、一般人の場合で年間20~100ミリシーベルトの間に参考レベルを定め、それ以下に被ばくを抑えるように防護活動を実施します。平常時には起こり得ない身体的障害が、非常時には起こり得ます。そこで、その防護対策が、平常時の対策(将来起こるかもしれないがんのリスクの増加を抑えること)より優先して行われます。

一人一人が受ける線量がばらついている状況において、不当に高い被ばくを受ける人がいないようにすることが参考レベルの目的です。全体の防護のための方策を考える際に、参考レベルを超えて被ばくするおそれのある人がいる場合には、それらの人々に重点的に対策を講じます。その結果、集団内の線量分布が改善し、参考レベルよりも高い線量を受ける人がほとんどいない状況が達成されたときには、必要に応じて、更に低い参考レベルを設定して線量低減を進めます。このように、状況に合わせて適切なレベルを設定することで、被ばく低減を効率的に進めることができます。

本資料への収録日:平成25年3月31日

## 防護の原則 線量限度の適用

## 線量限度は計画被ばく状況に適用される

○職業人(実効線量)

1年間 50 ミリシーベルト かつ

5年間 100 ミリシーベルト

○一般公衆 (実効線量)

1年間 1ミリシーベルト

### (例外) 医療被ばくには適用しない

- ・個々のケースで正当化
- ・防護の最適化が重要

出典: ICRP Publication 103「国際放射線防護委員会の2007年勧告」The International Commission on Radiological Protection(国際放射線防護委員会)、2007

放射線防護の原則の3つ目は、線量限度の適用です。国際放射線防護委員会 (ICRP)の2007年勧告では、放射線作業(緊急時の作業を除く)を行う職業人の実効線量の限度は5年間で100ミリシーベルト、特定の1年間に50ミリシーベルトと定められています。

一般公衆の場合、実効線量限度が年間1ミリシーベルトと定められています。

線量限度は、管理の対象となるあらゆる放射線源からの被ばくの合計が、その値を 超えないように管理するための基準値です。線量限度を超えなければそれでよいので はなく、防護の最適化によって更に被ばくを下げる努力が求められます。このことから、 線量限度はそこまで被ばくしてよいという値ではなく、安全と危険の境界を示す線量で もありません。

また、健康診断の際や、医療において患者が受ける医療被ばくには線量限度を適用しません。これは、医療被ばくに線量限度を適用すると、必要な検査や治療を受けられないケースが生じ、患者の便益を損なうおそれがあるからです。そのため、3つのレベル(医療における放射線の利用は患者に害よりも便益を多く与えること、特定の症状の患者に対する特定の手法の適用、個々の患者に対する個々の手法の適用)についての正当化と、診断参考レベルの適用等による線量の最適化を行うこととされています。

本資料への収録日:平成25年3月31日

改訂日: 平成28年3月31日

| 線量限度<br>国際放射線防護委員会 (ICRP) 勧告と国内法令の比較 |                                                                              |                                                            |                                                                        |                                                                                         |                                                                    |  |
|--------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
|                                      |                                                                              | 職業被ばく                                                      |                                                                        | 公衆被ばく                                                                                   |                                                                    |  |
|                                      |                                                                              | 国際放射線<br>防護委員会<br>(ICRP)<br>2007年勧告                        | 放射線障害の防止に<br>関する法令<br>(日本)<br>平成24年3月時点                                | 国際放射線<br>防護委員会<br>(ICRP)<br>2007年勧告                                                     | 放射線障害の防止<br>に関する法令<br>(日本)<br>平成24年3月時点                            |  |
| 実効線量の<br>線量限度                        |                                                                              | 定められた 5 年間の<br>平均が20mSv<br>いかなる 1 年も<br>50mSvを超えるべき<br>でない | 勧告に同じ                                                                  | 1 mSv/年 (例外<br>的に 5 年間の平均<br>が年当たり 1 mSv<br>を超えなければ、<br>単一年に限度を超<br>えることが許され<br>る場合がある) | 線量限度の規定は<br>ない(事業所境界<br>の線量限度、排気<br>排水の基準は1<br>mSv/年を基に設<br>定している) |  |
| 等                                    | 眼水晶体                                                                         | 150mSv/年                                                   | 150mSv/年                                                               | 15mSv/年                                                                                 | _                                                                  |  |
| 等<br>線価<br>量線                        | 皮膚                                                                           | 500mSv/年                                                   | 500mSv/年                                                               | 50mSv/年                                                                                 | -                                                                  |  |
| 限量度の                                 | 手先、<br>足先                                                                    | 500mSv/年                                                   | _                                                                      | _                                                                                       | _                                                                  |  |
| 職業人<br>(女子の場合)<br>の線量限度              |                                                                              | 妊娠の申告以降の妊娠期間に胎児の等価線量(子宮内被ばく)が1mSvを超えないようにする                | 5 mSv/3か月<br>妊娠の事実を知った<br>後、出産まで<br>腹部表面の等価線量<br>限度2 mSv<br>内部被ばく1 mSv | _                                                                                       | _                                                                  |  |
| mSv : 3                              | 出典: 国際放射線防護委員会(ICRP)2007年勧告<br>mSv: ミリシーペルト 放射線障害の防止に関する法令(平成24年 3 月時点) より作成 |                                                            |                                                                        |                                                                                         |                                                                    |  |

日本の現行法令には、まだ、国際放射線防護委員会(ICRP)の2007年勧告の取り入れは行われていませんが、線量限度については、2007年勧告と1990年勧告に大きな違いはないため、ほぼ2007年勧告と合致しています。なお、職業人女性の線量限度(5ミリシーベルト/3か月)のように、日本特有の線量限度も存在します。

本資料への収録日: 平成25年3月31日

| 線量限度<br>国際放射線防護委員会 (ICRP) 勧告と我が国の対応           |                           |                                          |                                                                                                            |  |  |  |
|-----------------------------------------------|---------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|
|                                               | 国際放射線防護<br>2007:          | 東京電力福島第一原子力<br>発電所事故での対応                 |                                                                                                            |  |  |  |
|                                               | 救命活動<br>(情報を知らされ<br>た志願者) | 他の者への利益が<br>救命者のリスクを<br>上回る場合は線量<br>制限なし | 厚生労働省電離放射線障害防止規則の特例<br>緊急時被ばく限度を従来の100<br>mSvから250 mSvに一時的に                                                |  |  |  |
| 職業被ばく                                         | 他の緊急救助活動                  | ∼500 mSv                                 | 引き上げ<br>(平成23年3月14日から同年<br>12月16日まで)<br>電離放射線障害防止規則の一<br>部を改正し、特例緊急被ばく<br>の上限を250mSvとした(平<br>成28年4月1日から施行) |  |  |  |
| 公衆被ばく                                         | 緊急被ばく状況                   | <b>20~100 mSv</b> /年の<br>範囲で決める          | 例<br>計画避難地域での避難の基準:<br>20 mSv/年                                                                            |  |  |  |
| AJKTIXIO V                                    | 復旧時<br>(現存被ばく状況)          | <b>1~20mSv</b> /年の範<br>囲で決める             | 例<br>長期的に目標とする追加被ば<br>く線量: <b>1 mSv</b> /年                                                                 |  |  |  |
| 出典: 国際放射線防護委員会 (ICRP) 2007年勧告<br>mSv: ミリシーベルト |                           |                                          |                                                                                                            |  |  |  |

国際放射線防護委員会(ICRP)の2007年勧告の国内法令取り入れの審議中に、東京電力福島第一原子力発電所事故が起こりました。

事故によって被ばく状況が変わり、公衆被ばくについては、日本の法令にはない参考レベルの考え方が採用されました。参考レベルを用いた被ばく線量の線量管理においては、第一に、ICRP2007年勧告の被ばく状況に応じた線量目安を参考に、不当に高い被ばくを受ける人がいないように参考レベルを設定し、第二に、その参考レベルよりも高い線量を受ける人がほとんどいない状況が達成されたら、必要に応じて、更に低い参考レベルを設定することで、線量低減を効率的に進めていくこととされています。

一方、職業被ばくについては、東京電力福島第一原子力発電所での災害拡大防止のために、特にやむを得ない場合として、緊急時の職業被ばくの線量限度については、一時的に特例として100ミリシーベルトから250ミリシーベルトに変更して対応されました。その後、原子炉が安定的な冷温停止状態を達成するための工程が完了したことを踏まえて、この特例も廃止されました。

また、今後、仮に原子力施設において原子力緊急事態等が発生した場合に備え、 緊急作業期間中における放射線障害の防止に関する規定を整備する必要があり、あ らかじめ、特例的な緊急被ばく限度等に関する基準として250ミリシーベルトを上限とす るよう電離放射線障害防止規則の一部が改正され、平成28年4月 1日から施行されることになりました。

本資料への収録日:平成25年3月31日

## **☆☆◎** 食品の規制値の比較

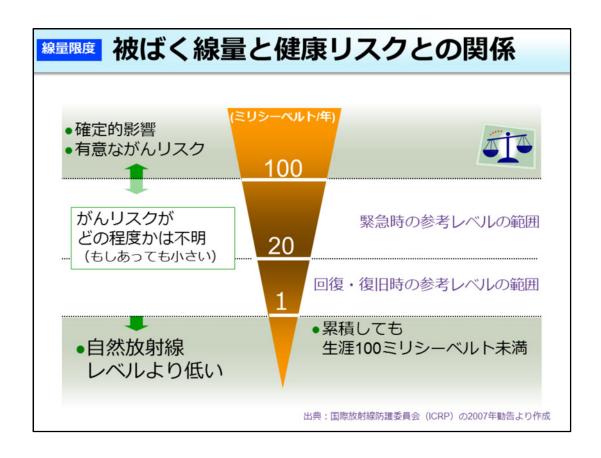
#### 食品中の放射性セシウム濃度の規制値

|       | 日本<br>基準値<br>(平成24年4月~) | コーデック<br>ス委員会 <sup>※</sup> | EU(域内の<br>流通品) | アメリカ  | 韓国  |
|-------|-------------------------|----------------------------|----------------|-------|-----|
| 飲料水   | 10                      | 1,000                      | 1,000          | 1,200 | 370 |
| 牛乳    | 50                      | 1,000                      | 1,000          | 1,200 | 370 |
| 一般食品  | 100                     | 1,000                      | 1,250          | 1,200 | 370 |
| 乳児用食品 | 50                      | 1,000                      | 400            | 1,200 | 370 |

単位はベクレル/kg

※消費者の健康の保護、食品の公正な貿易の確保等を目的として、1963年に国際連合食糧農業機関(FAO)及び 世界保健機関(WHO)により設置された国際的な政府間機関であり、国際食品規格の策定等を行っています。

わが国では平成24年4月1日より、新たに食品中の放射性物質について「基準 値」が設定されました。新しい基準値では食品を4項目に分類し、最も摂取頻度の 高い「飲料水」については10ベクレル/kgと設定されました。

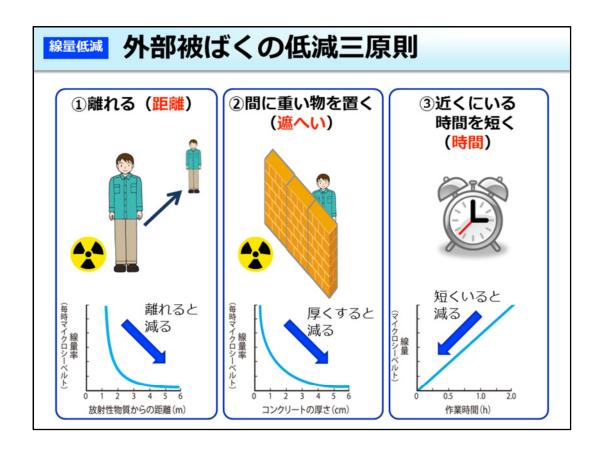

また、乳幼児の摂取量が多い「牛乳」は50ベクレル/kgに、さらに乳児の安全生確 保の面から「乳児用食品」という新たな項目が設定され、牛乳と同じレベルの50ベ クレル/kgとされました。それ以外の「一般食品」全てについては100ベクレル/kgと いう値が設定されました。

一般食品として全部を一括りにした背景には、個々人の食習慣の違いから来る 追加被ばく線量の差を最小限にするという考えがありました。どんな食品を食べて も、それらが基準値内であれば安全は確保できるという十分余裕を持った値として 設定されました。

なお、各国の規制値が異なる理由は、規制値を設定する際に仮定した1年間の 被ばく限度や、食品中の汚染率等が、それぞれの国等によって異なるためです(日 本:被ばく限度は年間1ミリシーベルトまで。安全側に立ち一般食品は50%、牛乳・ 乳製品と乳児用食品は100%が汚染されていると仮定。コーデックス委員会:被ばく 限度は年間1ミリシーベルトまで。食品中の10%が汚染されていると仮定)。

(関連ページ:下巻P67、「平成24年4月からの基準値」)

本資料への収録日:平成25年3月31日




100~200ミリシーベルト以上の線量に対しては、がんになるリスクが上昇するという科学的証拠が存在します。そこで、放射線事故による緊急時には、まずは重大な身体的障害を防ぐため、年間100ミリシーベルト以上の被ばくをしないように参考レベルを設定します。事故の収束によって、はじめに設定した参考レベルよりも高い線量を受ける人がほとんどいない状況が達成されたときには、将来起こるかもしれないがんのリスクの増加をできるだけ低く抑えるため、更に低い参考レベル(年間1~20ミリシーベルト等)を設定して、被ばくする線量の低減を進めます(上巻P152、「被ばく状況と防護対策」)。

平常時の基準値としては年間1ミリシーベルトが用いられます。そのため、被ばく量が年間1ミリシーベルトを超えると危険だとか、ここまで被ばくをしてもいいと誤解されることがありますが、線量限度は、安全と危険の境界線ではありません。

他方、1ミリシーベルトまで浴びてもよいわけではなく、諸事情を考慮して現実的に可能な範囲で、できるだけ低く被ばくを抑えることが原則です。

本資料への収録日:平成25年3月31日



外部被ばくの線量を少なくするためには、3つの方法があります。

1つ目は離れるという方法です。放射性物質で汚染した土を取り除いて、生活の場から離す、という方法がこれに当たります。

2つ目は遮へいです。屋内にいるということや、放射性物質で汚染した土とその下の 汚染していない土を入れ替え、汚染していない土を遮へい材として用いることもこの方 法に当てはまります。

3つ目は、空間線量率が高い所にいる時間を短くするという方法です。

本資料への収録日:平成25年3月31日

# 線量低減 内部被ばく一原子力災害直後の対応一

- ○原則は口、鼻、傷口から入らないように
- ○基準値以下の微量の放射性物質を過剰に心配して、 食物の栄養バランスを崩さないように
- ○放射性物質の放出の情報に気を付ける
- ○土が身体、靴、服に付けばすぐに洗う



内部被ばくについては、呼吸を介した吸入と食品の摂取からの両方を考える必要があります。例えば、子供たちが空間放射線量が高い所で屋外活動をする場合を想定して線量計算すると、内部被ばくによる線量は2~3%程度であり、被ばくのほとんどは外部からの放射線によるものでした。そこで吸入による被ばくに関してはあまり神経質になることはないのですが、日頃の衛生管理(入浴、散髪、手洗い、掃除、洗濯等)をしっかり行うと一定の効果はあります。

一方、経口による被ばくに関しては、野生の食材のように、安全性が確認できない食品には注意することが必要です。特に、シダ類とキノコ類はセシウムを濃縮する性質があることから注意が必要です。

内部被ばくに関しては、空間線量率とは異なり、自分で調べることが難しいので、省 庁が発表している数値等を参考にしましょう。食品中の放射性物質濃度は、厚生労働 省や農林水産省から公表されています。

本資料への収録日:平成25年3月31日

改訂日:平成27年3月31日

#### 線量低減

## 食品の調理・加工による放射性セシウムの除去

# 調理の過程で放射性物質の低減が可能

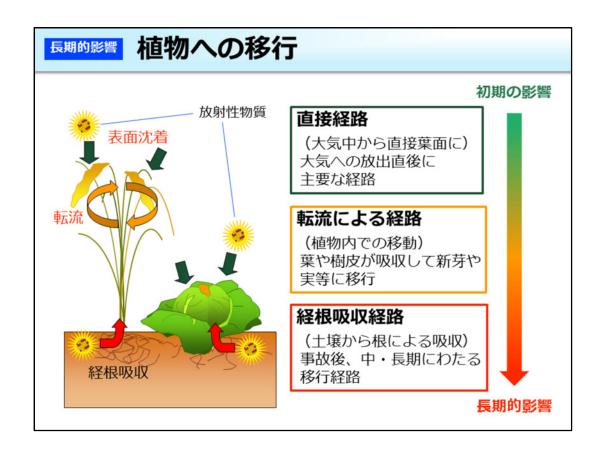
| 品目    | 調理・加工法           | 除去率(%) |
|-------|------------------|--------|
| 米     | 精米-水洗い-炊飯        | 66~72  |
| ほうれん草 | 水洗い-ゆでる          | 7~78   |
| たけのこ  | 水洗い-ゆでる          | 26~36  |
| 栗     | ゆでる-渋皮まで皮むき      | 11~34  |
| 大根    | 皮むき              | 24~46  |
| ウメ    | 塩漬け              | 34~43  |
| 桜葉    | 塩漬け              | 78~87  |
| 乾しいたけ | 水戻し(戻し汁は使わない)    | 51~54  |
| 牛肉    | 薄切り肉をゆでる(しゃぶしゃぶ) | 55~69  |
| 魚     | ワカサギの南蛮漬け        | 22~32  |

#### ● 野生のものは大量に食べない

除去率 (%) =  $\left(1 - \frac{$  調理・加工後の食品(調理・加工品中の放射能総量(Bq) $\right)$  × 100

出典:原子力環境整備促進・資金管理センター「環境パラメータ・シリーズ増補版 (2013年) 食品の調理・加工 (こよる放射性核種の除去率 - わが国の放射性セシウムの除去率データを中心に-」平成25年9月

東京電力福島第一原子力発電所事故の直後は、野菜から検出された放射性物質は表面に付いているだけでしたので、表面に付着した放射性物質はある程度洗い流すことができました。


現在では、野菜の表面に付着することはほとんどないのですが、土壌中に含まれる 放射性物質が部分的に根から吸収され野菜などの内部に入ることがあります。根から 吸収されて野菜の中に入ったセシウムも調理や加工するときの工夫によって放射性物 質を除去することができます。

スライドの表は、食品の内部に取り込まれている放射性セシウムの除去率が示されています。

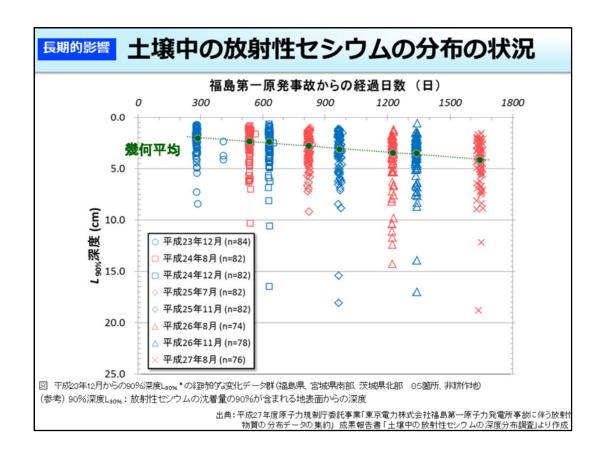
野菜をゆでる場合、ゆで時間が長いほど除去率が大きくなると考えられていますが、これは野菜の細胞に取り込まれていた放射性セシウムが細部が壊れて出てきてゆで湯に移行するためと考えられています。また、塩漬けの場合も塩漬けの時間が長いほど除去率が高くなるとされていますが、これは塩の成分のナトリウムと野菜の中に含まれている放射性セシウムが入れ替わることによるものと考えられています。

肉や魚も煮る場合は、放射性セシウムが移行した煮汁を捨てることにより、放射性物質の量を半分程度までは減らすことができるとされています。焼くよりも、ゆでたり煮た場合の方が除去率が高いことが分かっています。

データの詳細については、<u>http://www.rwmc.or.jp/library/other/kankyo/</u> を参照してください。



セシウム137は、半減期が30年と長いため、原子力発電所の事故等によって環境へ放出された場合、影響が長期化すると考えられます。環境中の放射性物質が作物の可食部(食べている所)に移行する経路は、大きく3つに分けられます。


1つ目は大気中から直接葉等の可食部の表面等に付くものです。東京電力福島第一原子力発電所事故の直後に、野菜から計測された放射性物質は、大気中に放出された放射性物質が直接葉の表面に付いたものでした。

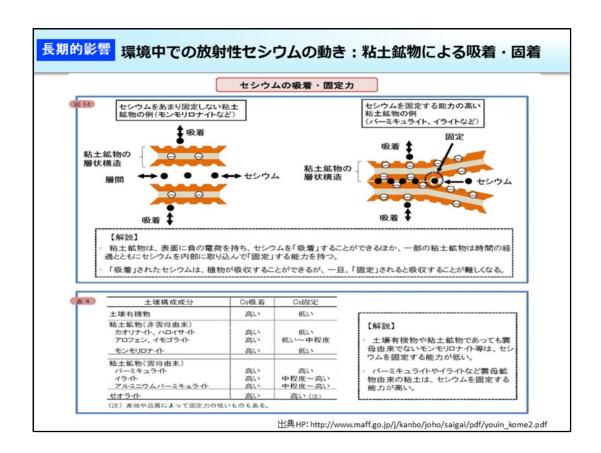
2つ目は、転流を介した経路です。転流とは、植物体内で、吸収した栄養素や光合成でできた栄養やその代謝産物がある組織からほかの組織へと運搬されることをいいます。放射性物質が葉や樹皮に付着すると、葉や樹皮が放射性物質を吸収し、植物内で新芽や実の部分に移行することがあります。茶葉やタケノコ、ビワや梅等で比較的高濃度の放射性物質が見つかったのは、こうした移行経路によるものであると考えられています。

3つ目は、土壌に含まれている放射性物質が根から吸収される経路です。大気中への放射性物質の放出が終わった後は、農地に降下した放射性物質が根から吸収される経路が主となります。

本資料への収録日: 平成25年3月31日

改訂日:平成27年3月31日




今回の福島第一原子力発電所の事故に伴い環境中に放出された放射性セシウムの土壌中の深度分布に関する調査が、平成23年(2011)度から福島県、宮城県南部、茨城県北部において実施されてきています。

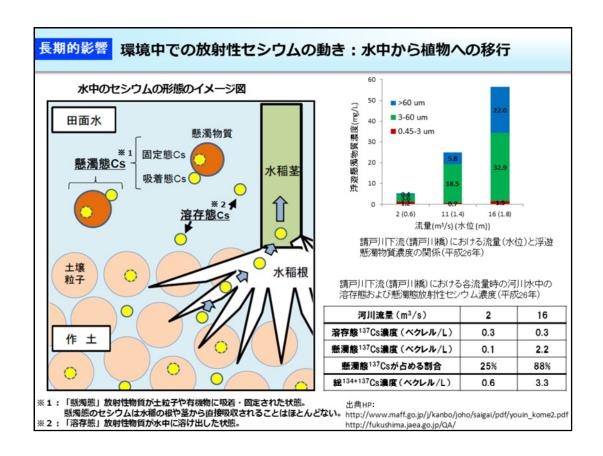
土壌に沈着した放射性セシウムの90%が存在する土壌表面からの深度(90%深度)は、時間の経過とともにわずかずつ地中に浸透していますが、その幾何平均値は平成27年8月時点で4.1cmであり、5cmを下回っています。

除染や深耕やひび割れなどの土壌の性状により、放射性セシウムの分布状況が変わります。土壌中の粘土質の中には、バーミキュライトを含む粘土鉱物やゼオライトなどはセシウムを強く吸着する性質を持っています。セシウムは、これらの粘土質に吸着され、水に溶けにくくなり、土壌に固定されて土壌の表層付近に長期間とどまります。

これにより、放射性セシウムが土壌の表層付近にあることで、地表面よりも深くに根を生やしている植物では、物理的に根と放射性セシウムが隔てられていることになります。

1986年に起こったチェルノブイリ原発事故の影響調査では、事故後14年経過しても、 事故により降ったセシウム137の約80%が、表面から10cm内の所にとどまっていること も分かっています。(国際原子力機関(IAEA)国際チェルノブイリフォーラム報告書 (2006年))




セシウムはカリウム等と化学的に同じような性質(1価の正電荷)を持っていることから、表面に負の電荷をもつ粘土鉱物にセシウムが吸着されやすい性質があります。 さらに、一部の粘土鉱物は時間の経過と共に吸着したセシウムを「固定」する能力を持ち、一度固定されたセシウムは水に溶け出しにくいことが分かっています。

今回の事故により環境中に放出された放射性セシウムは、時間の経過ともに土壌中の粘土鉱物による吸着・固定が進み、作物に吸収されにくくなっています。(上図)

なかでも、バーミキュライトやイライト等の雲母鉱物由来の粘土はセシウムを固定する能力が高いことが分かっています。(下表)

これまでの調査研究の結果から、福島県内の河川において、河川水中の放射性セシウム濃度は、徐々に減少する傾向が確認されています。また、森林等から河川に流入する放射性セシウムの濃度も、時間とともに減少する傾向が確認されています(注1)。

注1:原子力規制庁委託事業「平成26年度東京電力株式会社福島第一原子力発電 所事故に伴う放射性物質の分布データの集約及び移行モデルの開発」事業 成果報告書



田植えの代かきで田に水をはると、セシウムが溶け出した溶存態と土壌粒子などに くっついて浮遊する懸濁態がありますが、土壌に吸着もしくは固定化している状況では、 溶存態は極めて少なく、懸濁態の状態では水稲の根や茎から直接吸収されることはあ りません。(左図)

また、ため池や水路等における水中のセシウムは時間とともに、土壌に吸着もしくは、 固定化されます。このため、福島県内の調査結果では、河川の流量が少なく、濁りが 少ない状態では、大部分の放射性セシウムは溶存態で存在しますが、その濃度は通 常の放射能濃度測定の検出限界(約1ベクレル/L)より低い濃度です。

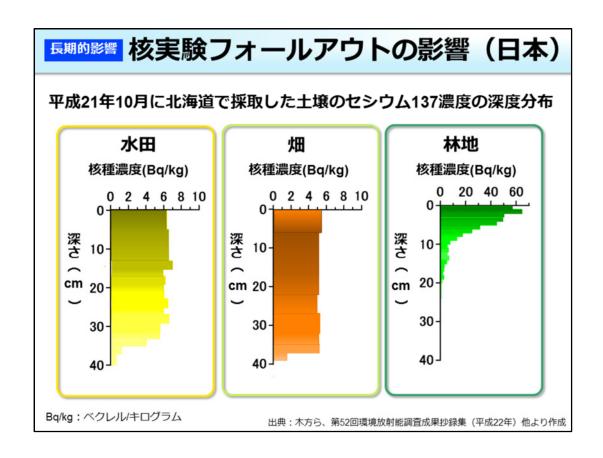
右の上図に示すように、大雨時など河川の流量が増加(高水時)すると、浮遊懸濁物質の濃度が高くなりますが、この懸濁物質には放射性セシウムが強く吸着されています(懸濁態)。そのため、高水時には溶存態の放射性セシウム濃度はあまり変わらず、懸濁態の放射性セシウム濃度だけが高くなりますが、時間とともに低下します。また、河川の流量の増加に伴い、浮遊懸濁物質の粒径が大きくなり、河川水は濁ります。この濁りはろ過で取り除くことができます。これまでの福島県・請戸川の調査事例では、右下の表に示すように通常時の放射性セシウム濃度は飲料水基準値(10ベクレル/L)を下回っていますし、高水時でも増加した懸濁態をろ過することにより上澄み水では、放射性セシウムは検出限界(約1ベクレル/L)以下となります。

## 長期的影響 環境中での放射性セシウムの動き:森林土壌からの流出

これまでの調査から、森林土壌から1年間に流出する放射性セシウム137の流出率は、 <u>流域の土壌への沈着量の0.02~0.3%程度であることが分かっています。</u>

【表1】流域から河川への放射性Csの流出(流出率)

| 流域                             | 川俣町       |         |          | 筑波山     | 丸森町        |
|--------------------------------|-----------|---------|----------|---------|------------|
| 流域                             | 疣石山流域*1   | 石平山流域*1 | 高太石山流域*1 | 霞ヶ浦流域*2 | 宇多川上流*2    |
| 調査期間                           | 44~45日間*3 |         |          | 21か月間   | 15か月間      |
| 土壌へのCs-137沈着量<br>(kBq/m)       | 544       | 298     | 916      | 13      | 170~230    |
| Cs-137流出量**4<br>(kBq/m)        | 0.087     | 0.026   | 0.021    | 0.06    | 0.22~0.34  |
| 土壌へのCs-137沈着量<br>に対するCs-137流出量 | 0.016%    | 0.009%  | 0.002%   | 0.5%    | 0.12~0.15% |


| Cs-137の年間流出量 <sup>∞5</sup> | 0.13% | 0.07% | 0.02% | 0.26% | 0.10~0.12% |
|----------------------------|-------|-------|-------|-------|------------|

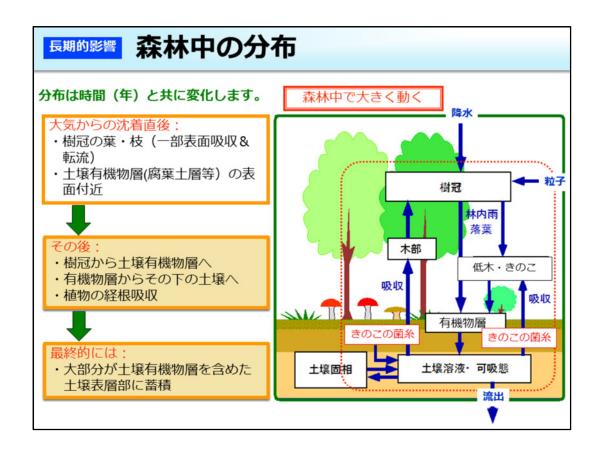
- ※1:(出典) JAEA:平成24年度放射能測定調査委託事業 [福島第一原子力発電所事故に伴う放射性物質の長期的影響把握手法の確立]成果報告書
- ※2: (出典)国立環境研究所, 2012,2013 ※3:3流域の比較可能な2012年10月1日~9・10日、10月22日~11月3日、11月29・30日~12月18・19日調査期間 (44~45日間) を抽出し合計。
- ※4:○疣石山漁城、石平山漁城、高太石山漁域: 渓流水における溶存態、SS(懸濁態物質)、租大有機物(渓流水中の葉や枝等)のCs-137の合計。 ・溶存態:2012年8月、10月の平常時における溶存態放射性セシウム濃度を渓流水の流出量にかけた。
- ※5:上表のデータより、土壌への沈善量に対する流出率と調査期間から年間流出率に換算(環境省による試算)。
- その際、放射性セシウムの自然崩壊や対象期間内の降雨の状況等は考慮していない。

事故当初樹木の葉、枝等に付着した放射性物質は、時間の経過とともに林床の落 葉層や土壌に移行し、現状では8割程度が土壌表層部に滞留しており、鉱質土壌に よって強く保持されています。

また、これまでの調査から、森林土壌から1年間に流出する放射性セシウム137の流 出率は、流域の土壌への沈着量の0.02~0.3%程度であることが分かっています。

※第16回環境回復検討会資料に基づき作成。




1950年代後半から1960年代前半をピークに多くの大気中核実験が実施されたことから、これに起因する放射性降下物が地球全域に降り注ぎました。平成23年3月11日以前の日本で検出されている放射性セシウムやストロンチウム90はこのフォールアウト由来であると考えられます(上巻P75、「大気圏核実験による放射性降下物の影響」)。

平成21年に北海道で行われた土壌調査の結果、水田や畑のように耕された土壌では、表面から40cm深くまでセシウム137が検出されましたが、耕されていない林地では、表面から20cm内にセシウム137がとどまっていました(上巻P168、「土壌中の放射性セシウムの分布の状況」)。

セシウムがどれだけ土壌に強く吸着するかは、土壌の性質にもよりますが、日本の土壌でも、セシウム137が表層にとどまりやすいことが分かっています。

本資料への収録日:平成25年3月31日

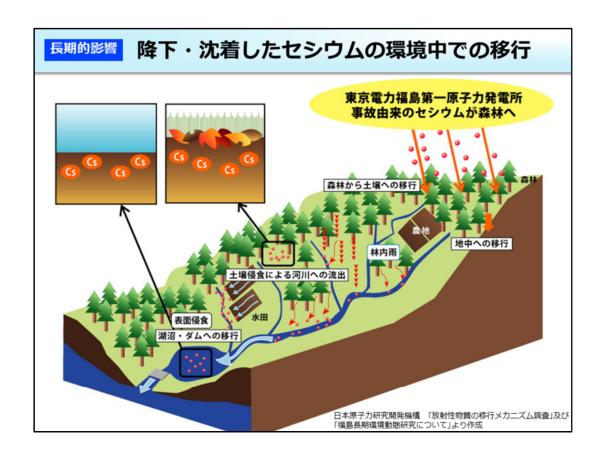
改訂日: 平成27年3月31日



森林中の放射性物質の分布は年単位の時間経過によって大きく変化すると考えられています。

大気中に含まれる放射性セシウムは葉や枝に付着します。葉や枝はやがて枯れて腐葉土のような有機物を含んだ土壌になります。放射性物質の一部は葉や樹皮から吸収され、植物内で新芽や実の部分に移行することもありますが、これもいずれは土になります。

有機物の多い土壌では、セシウムを吸着する粘土質に乏しいため、セシウムが植物に吸収されやすい状態にあります。例えば、きのこに比較的高濃度のセシウムが取り込まれる理由としては、きのこ自体の性質にもよりますが、きのこの菌糸が生育する環境は有機物が多く、粘土成分が少ないこととも関係していると考えられています。

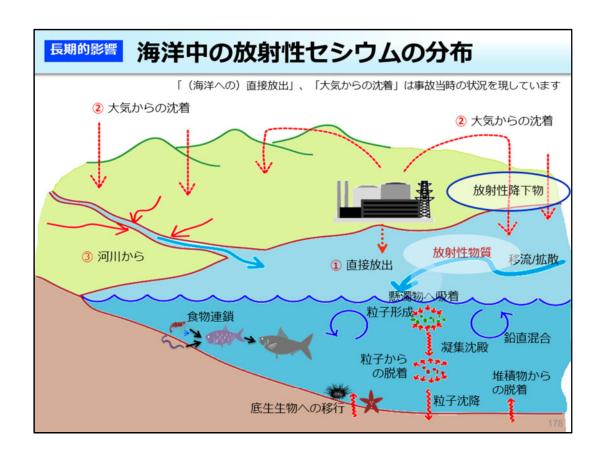

有機物層にあるセシウムはその下の土壌に徐々に移行し、表層よりも少し深い所に 根を張る植物もセシウムを吸収するようになります。

このように、放射性セシウムも安定なセシウムと同様に、植物と土壌との間を循環する過程で土壌の粘土質に固着され、最終的には土壌表層部に蓄積します。

なお、国立研究開発法人森林総合研究所が渓流水を採取してセシウムを計測した ところ大部分の渓流水では、セシウムは検出されませんでした。降雨のあった日の一 部の濁り水にセシウムが含まれていましたが、その量はごく僅かでした。

本資料への収録日:平成25年3月31日

改訂日:平成27年3月31日




東京電力福島第一原子力発電所事故によって環境中へ放出されたセシウムの分布は時間経過と共に大きく変化しました。事故直後に樹皮や枝葉に付着したセシウムは落葉や降雨等によって林床へと移行し、現在では90%以上が地表から5cmの深さまでにとどまっていることが分かっています。一方で、地表面付近のセシウム減少量が物理減衰による減少よりも大きいことから、僅かに地中方向に移動していることが推測されています。

セシウムは特定の粘土鉱物に強く吸着する性質があり、水中にはほとんど溶け出しません。また、風等による大気中への再飛散も現在ではほとんどないことが分かっています。これらのことから、森林から生活圏へのセシウムの流入は少ないことが予想されています。

上の図は、森林に降下・沈着したセシウムが上流から河口にあるダム湖に流れ込むまでの過程をイラストで示したものです。2つの拡大図は林床とダム湖底質をそれぞれ表しており、どちらもセシウムが土壌表層に堆積していることが分かります。

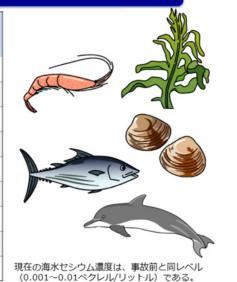
セシウムは、急流においては土粒子に吸着した状態で下流へと運搬され、緩流においては堆積する傾向にあります。また、上流にダム湖がある場合、セシウムがダム湖によってせき止められるため、下流へのセシウムの流出が少ない傾向にあります。さらに、台風や大雨等によってダム湖水位が高くなった場合においても、ダムの放流口付近の底質の流速が遅いため、堆積土壌の巻き上げはほとんど起こらないことが分かっています。



東京電力福島第一原子力発電所事故により放出された放射性物質の海洋中の分布は、時間経過によって大きく変化します。放射性物質が海洋に運ばれる経路には、①発電所からの海洋への直接の流入、②風に乗って運ばれた放射性物質の海洋への降下、③陸に降下した放射性物質の河川や地下水を介した海への運搬の3つのルートが考えられます。ただし、セシウムの場合は、土壌中に強く吸着されることから、地下水と共に移行して海に達することはほとんど考えられません。

海水中の放射性セシウムの濃度は、事故直後急激に上昇しましたが、1~2か月のうちに海流に乗って流されたり、拡散したりすることで下がりました。海産生物の放射性セシウムの濃度は海水中の濃度と関係があり、海水中の濃度の低下と共に海産生物の濃度も低下しました。また、放射性セシウムの一部は海底に沈降したため、海底付近にいる魚類(底魚)への移行が懸念されましたが、調査研究の結果、ヒラメ・マダラ等の底魚の放射性セシウムの濃度は福島沖を含めて低下しており、海底土から海産生物への放射性セシウムの移行はごく僅かであることが判明しています(出典:水産庁、水産物の放射性物質の検査に係る報告書、平成27年)。

本資料への収録日: 平成25年3月31日


改訂日: 平成29年3月31日

### 長期的影響

# 海産生物の濃縮係数

# 濃縮係数= (海産生物中の濃度)/(海水中の濃度)

| 生物の種類    | 濃縮係数 <sup>※</sup><br>(セシウム) |
|----------|-----------------------------|
| イカ・タコ    | 9                           |
| 植物プランクトン | 20                          |
| 動物プランクトン | 40                          |
| 藻類       | 50                          |
| エビ・カニ    | 50                          |
| 貝類       | 60                          |
| 魚        | 100                         |
| イルカ      | 300                         |
| トド       | 400                         |



出典:国際原子力機関(IAEA)Sediment Distribution Coefficients and Concentration Factors for Biota in the Marine Environment, 2004

濃縮係数とは、海産生物が一定の濃度の海水に長期間置かれた場合の、海産生物 中の濃度と海水中の濃度の比率を表したもので、放射性物質の海産生物への蓄積の 度合いを示しています。

セシウムの濃縮係数を比べると、プランクトンより魚、魚よりは魚を捕食する大型哺 乳類のほうが高いことが分かります。

セシウムについても生物濃縮はありますが、水銀やカドミウムのように生物体への 蓄積が続くことはほぼなく、海水中のセシウム濃度が下がれば低下していくと考えられ ています。

なお、表中の濃縮係数は国際原子力機関(IAEA)による推奨値です。現在、海水中 のセシウム濃度は、東京電力福島第一原子力発電所港湾内を除き、事故前とほぼ変 わらない濃度(0.001~0.01ベクレル/L)まで下がっています。

本資料への収録日: 平成25年3月31日

改訂日: 平成27年3月31日

# 第5章

# 国際機関による評価

# WHO報告書とUNSCEAR2013年報告書(1/3) 評価の比較 (1/2) 全体概要

|      | WHO                                                                            | UNSCEAR                                                                                                                         |
|------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 目的   | 事故後1年間の住民の被ばくによる健康リスクを見積もる(保守的評価)                                              | <ul><li>これまでに得た情報を集約し、評価する</li><li>科学的な知見を提供する(現実的評価)</li></ul>                                                                 |
| 内容   | ・ 被ばく線量推計<br>・ 健康リスク評価                                                         | <ul><li>原発事故の時系列的展開</li><li>放射性物質の放出と拡散状況</li><li>公衆の被ばく線量</li><li>作業者の被ばく線量</li><li>健康影響</li><li>ヒト以外の生物の被ばく線量とリスク評価</li></ul> |
| 評価時期 | 事故発生直後<br>(2011年9月までのデータ)<br>事故直後は精度の高くない情報も多い。                                | 事故からある程度の時間が経過(2012年9月までのデータ)<br>一部の更に新しい情報は特に適切であった場合は考慮に入れた。                                                                  |
| 公表時期 | 線量評価:2012年5月<br>健康リスク評価:2013年2月                                                | 2014年4月                                                                                                                         |
| 結論   | 今回の事故による放射線によって、疾患の罹患の増加が確認される可能性は小さく、福島県のいくつかの地域以外や、日本近隣諸国ではリスク増加は無視できる水準である。 | 事故により日本人が生涯に受ける被ばく線量は<br>少なく、その結果として今後日本人について放<br>射線による健康影響が確認される可能性は小さい。                                                       |

ここでは、世界保健機関(WHO)による線量推計及び健康リスク評価の報告書\*1と国連科学委員会(UNSCEAR)2013年次報告書\*2を対比しながら、その概要及び要点等を紹介します。

WHO報告書の目的は、「事故直後の1年間における住民の被ばく線量を推計し、緊急対策が必要となる地域を特定すること」にありました。したがって、限られた情報を基に暫定的に住民の健康リスク評価を行い、2012年5月に暫定的な被ばく線量評価報告書が公表されました。

その後、2013年2月に暫定的な健康リスク評価の報告書が公表されています。

一方、UNSCEARは世界各国の放射線被ばくの状況を、科学的な情報のレビューを基に定期的に報告しています。チェルノブイリ原発事故の影響も長年にわたり調査・分析されており、東京電力福島第一原子力発電所事故による被ばくの影響については、2014年4月に報告書が公表されました。

(関連ページ: 上巻P180、「WHO報告書(1/4)WHO線量評価の概要」、上巻P185、「UNSCEAR2013年報告書(2/9)公衆の被ばく線量評価の概要」)

- ※1:世界保健機関(WHO)による線量推計及び健康リスク評価の報告書:
- •Preliminary dose estimation from the nuclear accident after the 2011 Great East Japan Earthquake and Tsunami (2012)
- •Health risk assessment from the nuclear accident after the 2011 Great East Japan earthquake and tsunami, based on a preliminary dose estimation (2013)
- ※2:原子放射線の影響に関する国連科学委員会(UNSCEAR)年次報告書(2013年):
- SOURCES, EFFECTS AND RISKS OF IONIZING RADIATION UNSCEAR 2013, Report, Volume I, REPORT TO THE GENERAL ASSEMBLY SCIENTIFIC ANNEX A: Levels and effects of radiation exposure due to the nuclear accident after the 2011 great east-Japan earthquake and tsunami (2013)

## WHO報告書とUNSCEAR2013年報告書(2/3) 評価の比較(2/2)公衆の線量評価と主な不確かさ

|                                 | WHO                                                                                                                                                                                    | UNSCEAR                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 事故後1年間の実効線量推計結果<br>(単位はミリシーベルト) | 20歳 (成人) 1歳 (乳児) ① 福島県: 1~50 1~50 ② 福島近隣県: 0.1~10 0.1~10 ③ その他の: 0.1~1 0.1~1 都道府県                                                                                                      | 20歳(成人) 1歳(乳児)   ①予防的避難区域: 1.1-5.7 1.6-9.3   ②計画的避難区域: 4.8-9.3 7.1-13   ③避難区域外の福島県: 1.0-4.3 2.0-7.5   ④近隣県: 0.2-1.4 0.3-2.5   ③その他の都道府県: 0.1-0.3 0.2-0.5                                                   |
| 不確かさ                            | 大きい (評価の迅速性を優先)                                                                                                                                                                        | WHOの報告書に比べて、現実的な評価を指向しているが、依然として不確かさは残る。                                                                                                                                                                   |
| 線量評価の<br>不確かさの<br>主な原因          | <ul> <li>・地表面沈着の測定値に基づく大気中放射性物質濃度の推定</li> <li>・放射性物質の放出に関する情報(ソースターム)と拡散シミュレーション</li> <li>・放射性核種の組成と化学形</li> <li>・建物の遮へい効果</li> <li>・食物摂取による線量推計の仮定</li> <li>・食習慣による線量係数の変動</li> </ul> | <ul> <li>・地表に沈着した短半減期放射性核種の測定値</li> <li>・時間の経過に伴う放射性核種の放出率の推移と放出時の気象情報についての知見</li> <li>・大気中の粒子状及びガス状I-131の組成</li> <li>・食品モニタリングにおける試料選定の偏り(汚染の高いものが優先されている)</li> <li>・日本人のヨウ素代謝(甲状腺へのヨウ素の取り込み率)</li> </ul> |

注:WHOの推計線量は、UNSCEARに比較すると保守的な(過大な)評価結果になっている。 用語の説明:

- ・ソースタームとは、線量評価に必要とされる放射性物質の種類、化学形、放出量の総称。
- ・拡散シミュレーションとは、気象状況や風向き等のデータとソースタームのデータを合わせて、放射性物質の拡散の傾向を計算すること。

実効線量推計結果では、世界保健機関(WHO)が、①福島県、②福島県の近隣県(千葉県、群馬県、茨城県、宮城県及び栃木県)、及び③福島県と近隣県以外のほかの道府県の3区分の住民で評価を行ったのに対し、国連科学委員会(UNSCEAR)では、福島県内の3区分に加え、④福島県の近隣県(宮城県、群馬県、栃木県、茨城県、千葉県、岩手県)、⑤その他の都道府県の合計5区分の住民で評価を行いました。

一方、WHO、UNSCEARの報告書は共に、外部被ばく及び内部被ばくのそれぞれに関し、線量評価の基礎となるデータには不確かさがあるため、被ばく線量評価の結果にも不確かさがあることを述べています。WHOとUNSCEARの報告書で述べられている線量評価における不確かさの原因は、表現の違いはあるものの、項目としてはほぼ同じです。なお、WHOのほうがより過大な評価になっています。(関連ページ:上巻P181、「WHO報告書(2/4)実効線量推計方法」、上巻P183、「WHO報告書(4/4)不確かさの評価」、上巻P187、「UNSCEAR2013年報告書(4/9)4グループごとに公衆の線量を推定」、上巻P189、「UNSCEAR2013年報告書(6/9)公衆の被ばく線量評価線量評価の結果」、上巻P191、「UNSCEAR2013年報告書(8/9)公衆の被ばく線量評価不確かさ」)

#### 【報告書記載箇所】

実効線量推計結果について:

- WHO健康線量評価報告書(P40~45(3. Results)から作成)
- UNSCEAR報告書(Annex A,日本語版P56~57,第209~214項から作成) 線量評価の不確かさについて:
- ・WHO健康線量評価報告書(P60~62, 4.7の4.7.1~4.7.7節に基づき作成)
- •UNSCEAR報告書(Annex A.日本語版P35~36, 第110~115項から作成)

# WHO報告書とUNSCEAR2013年報告書(3/3) 「保守的な評価」と「現実的な評価」

# 保守的な評価

- 原子力災害直後の緊急時の対応においては、不確かな情報について過小とはならないような仮定(「保守的な仮定」)を置き、被ばく線量及び健康リスクを高めに見積もる。
- 「保守的な」評価を行うと、実際の被ばく線量よりも高い値が算出される。
- その線量に基づいてリスクを評価すると、健康影響の予測は実際より過大となる。

# 現実的な評価

原子力災害後の回復期では、その時点で得られている情報や測定データを基に、できるだけ現実に近い仮定を置いて、被ばく及び将来の健康影響の可能性について評価する。

原子力災害直後の緊急時の対応では、放射線被ばくによる健康影響を回避するという防護の観点から、被ばく線量及び健康リスクを高めに見積もることが行われます。

つまり、リスク評価が過大とはなっても、過小とはならないように「保守的に」見積もります。この「保守的な」評価は、起こる可能性のある最悪の事態を回避するために有効であるとされています。一方、原子力災害時の緊急対応が収束した回復期には、残された断片的な情報や測定データを基に事故の状況を復元し、現実的な被ばく状況の把握を行い、将来の健康影響の可能性についての評価が行われます。

例えば、世界保健機関(WHO)の健康リスク評価報告書では、過大に算出された線量を基に、更に「保守的な」仮定を置き、健康リスクを算出しています。そのため、リスク評価結果は、上限を与えるものにはなりますが、全体として過大に見積もられることになります。

国連科学委員会(UNSCEAR)の報告書では、事故による被ばくレベルと放射線リスク評価を、十分な情報が集まった時点で、できるだけ現実的な評価を実施しようとされています。ただし、実際のデータに限りがあることから評価には不確かさがあることが示されています。例えば、線量評価の際の、地表に沈着した放射性核種の測定レベルに関わる不確かさや食品中の放射性核種濃度の設定に伴う不確かさがその例です。このためUNSCEARの報告書では、線量の評価結果が、実際の被ばくよりも過大に見積もられている可能性がある一方、場合によっては過小に見積もられている可能性もあるとして示されています。

# WHO報告書(1/4) WHO線量評価の概要

#### 目的

- 東京電力福島第一原子力発電所事故による緊急対応が必要な地域・集団を特定する
- そのために事故後1年間の被ばく線量を推計する
- 線量推計の結果を基に、日本及び世界の住民の健康リスクを評価する

## 評価方法

- 線量推計には、保守的な条件を設定し被ばく線量を評価
- 外部被ばく及び内部被ばくからの線量を推計
- 年齢別(1歳(乳児)、10歳(小児)、20歳(成人)) 及び地域別に被ばく線量を推計

世界保健機関(WHO)は、緊急時における放射線健康リスクの評価を行う責務を有しています。そのため、東京電力福島第一原子力発電所事故当時、緊急対策が必要となる対象地域や集団を特定することを目的として、事故後1年間における日本及び周辺国の住民の被ばく線量評価を実施しました。

WHOによる被ばく線量の評価は、①地面からの外部被ばく、②放射性プルームからの外部被ばく(上巻P30、「原子炉事故による影響」)、③吸入摂取による内部被ばく及び④経口摂取による内部被ばくの4経路で行われました。①、②及び③吸入による内部被ばく線量は、平成23年9月時点の地表汚染密度の情報を基にシミュレーションにより推計されました。また、④摂取による内部被ばく線量は、食品及び飲料水の測定値を基に推計されました。

①~④の推計値を合計して、住民の被ばく線量が算出されますが、WHOは評価が過小となることを避けるために、保守的な条件を設定し、考えられる最大の被ばく線量を評価しました。具体的には、計画的避難、屋内退避、食品流通制限等の防護対策はとらなかったとの条件を採用しています。

被ばく線量は地域及び年齢によって異なるため、地域を福島県、福島近隣県(千葉県、群馬県、茨城県、宮城県及び栃木県)、そのほかの都道府県、日本の周辺国、世界のそのほかの地域に区分し、それぞれ事故時年齢1歳(乳児)、10歳(小児)、20歳(成人)の人を対象に被ばく線量を推計しています。

# WHO報告書(2/4) 実効線量推計方法

## 実効線量推計の要点

- 外部被ばく及び吸入摂取による内部被ばく線量は、地表面沈着の測定 データから算出
- 経口摂取による内部被ばく線量は、食品の測定データから算出
- 20km圏内は推計対象外
- 計画的避難区域は、事故後4か月間滞在と仮定

## 被ばくの経路

全ての主要な被ばく経路を仮定

- グラウンドシャイン\*1からの外部被ばく
- クラウドシャイン\*2からの外部被ばく
- 吸入摂取による内部被ばく
- 経口摂取による内部被ばく

世界保健機関(WHO)による実効線量推計方法の要点は次のとおりです。

- ・日本国内における外部被ばくや大気の吸入による内部被ばく線量は、測定された 地表面の放射性核種濃度の情報を基に算出された。
- ・日本国内における経口摂取による内部被ばく線量は、測定された食品の放射性核 種濃度の情報を基に算出された。
- ・東京電力福島第一原子力発電所から20km圏内は、事故後速やかに避難が行われたため、被ばく線量推計が行われていない。
- ・計画的避難区域である浪江町、飯舘村、葛尾村については、実際の避難対応を考慮せず、事故後4か月間当該地域に滞在したと仮定して推計された。

また、被ばく経路として①グラウンドシャイン\*1及び②クラウドシャイン\*2からの外部被ばく並びに③食品・飲料水からの経口摂取及び④大気の吸入による内部被ばくの、4つの経路を仮定しています。

なお、外部被ばくの推計では、1日のうち16時間を屋内で過ごすとして、終日屋外にいた場合の60%程度の被ばく量と仮定しています。

- ※1:グラウンドシャイン:地表面に沈着した放射性核種からの外部被ばく
- ※2: クラウドシャイン: 放射性プルーム(上巻P30、「原子炉事故による影響」) 中の放射性核種からの外部被ばく

#### 【報告書記載箇所】

- ・WHO健康線量評価報告書(P25, Figure 5.から作成)
- ・WHO健康リスク評価報告書FAQ(Q4)
- ・WHO線量評価報告書FAQ(Q3後半)・WHO線量評価報告書(P38及びP86)

# WHO報告書(3/4) 住民の健康リスク評価のまとめ

#### リスク評価の前提

- 放射線発がんにはしきい線量がないものとし、固形がんについては直線型、白血病については直線-二次曲線型の線量反応を採用
- 線量・線量率効果係数 (DDREF) は、適用せず

#### 結果

- 住民の被ばく線量は、あらゆる確定的影響のしきい値を下回っている
- 被ばく線量が最も高かった地域においても、小児甲状腺がんを含む、がん・白 血病のリスクの増加は小さく、自然のばらつきを超える発生は予想されない
- 被ばくによる遺伝性影響のリスクは、がんのリスクよりもはるかに小さい
- 結果として、放射線に関連する疾患の過剰発症を検出できるレベルではない

#### まとめ

• 本報告書にあるリスクの数値は、リスクの程度を大まかに把握するためのものであり、将来の健康影響を予測するものではない

世界保健機関(WHO)の健康リスク評価は、健康管理を行うべき対象者及び疾患の範囲を検討することを目的に実施されました。この評価では、過小評価を防ぐためにかなり保守的な仮定をおいて推定された線量が基になっています。したがって、この報告書に記載されている数値は、リスクの程度を大まかに把握するためのものであり、将来の健康影響を予測するものではありません。

#### 【報告書記載箇所】

WHO線量評価報告書(P44~47, Table3,4) WHO健康リスク評価報告書(P8、P92~93、及びP156, Table43)

# 国際機関による評価 WHO報告書 (4/4) **不確かさの評価**

- 地表面沈着の測定値に基づく大気中放射性物質濃度の推定 に関する不確かさ
- 放射性核種の組成と化学形に関する不確かさ
- 建物の遮へい効果を低く想定したことによる不確かさ
- 食習慣による線量係数の変動に伴う不確かさ
- ・放射性物質の放出に関する情報(ソースターム)と拡散シ ミュレーションの不確かさ
- 食物摂取による線量推計の仮定に伴う不確かさ

世界保健機関(WHO)は、実効線量推計結果の不確かさについて、主に次のように 説明しています。

- ・空間中の放射性物質濃度を地表の沈着量から推定することに伴う不確かさがあります。例えば、ヨウ素の化学形により沈着量が異なるため、吸入による被ばく線量の評価には大きな不確かさが伴います。また、地域によって、ヨウ素131とセシウム137の組成割合等、放射性核種の組成が異なることも不確かさの原因の一つとなっています。
- ・線量評価では、コンクリート等の建物に比べて遮へい効果が小さい木造の建物を想 定しており、これが過大評価につながる不確かさの一因となっています。
- ・内部被ばくの評価に当たり、線量換算係数(1ベクレルの体内摂取による線量の値)には、国際放射線防護委員会(ICRP)による標準的な値を使用しています。しかし、日本人は海産物摂取が多く、体内に存在する安定ヨウ素の量が多いといわれています。その場合、一時的に放射性ヨウ素を体内に摂取したとしても甲状腺に取り込まれる量は少なくなりますが、このことは考慮されておらず、内部被ばく評価の不確かさの一因になっています。
- ・食物摂取による内部被ばくの評価においては、福島県及び近隣県の食品のみを摂取したと仮定する等、過大評価につながる仮定の下で評価が行われており、不確かさの一因になっています。

#### 【報告書該当箇所】

・WHO線量評価報告書(P60~62, 4.7 Main sources of uncertainty and limitations及びP31~33, 2.6.1 Ingestion doses inside Japan)

# UNSCEAR2013年報告書 (1/9) 報告書の目的

# 目的

- 原子力事故がもたらした放射線被ばくのレベル、及びその健康影響とリスク、さらにヒト以外の生物相への影響に関する知見の提示。
- 線量の推定値を提示し、UNSCEARがこれまで行ってきた科学的評価に照らして、日本国内に加え、近隣諸国での様々な集団の健康との関連を含めて議論。
- 将来実施される可能性のある追跡調査や研究のために、どのような 知識が不足しているかを挙げる。

国連科学委員会(UNSCEAR)2013年報告書の第 I 巻 科学的付属書「2011年東日本大震災後の原子力事故による放射線被ばくのレベルと影響」と題する報告書は、次の事項を目的に作成されました。

- ・原子力事故がもたらした放射線被ばくのレベル、それに関連した人々に対する健康影響とリスク、ヒト以外の生物相に対する影響に関する知見を提供することで、主に平成23年と平成24年に得た情報を評価すること。
- ・線量の推定値を提示すると共に、UNSCEARが収集したデータ及び情報を使用し、 事故を含む全ての発生源に由来する放射線の健康と環境への影響について UNSCEARがこれまでに行ってきた科学的評価に照らして、日本国内に加え、度合いは低くなるが近隣諸国での様々な集団の健康との関連を含めて議論すること。
- ・将来実施される可能性のある追跡調査や研究のために、どのような知識が不足しているかを挙げること。
- 一方で、目的としないこととして次の二点が示されています。
- ・人権、公衆の健康防護、環境保護、放射線防護、緊急時に係る準備と対応、事故の管理、原子力安全及びこれらに関連する事項についての教訓を抽出したり政策問題を検討しない。
- ・地方自治体や日本政府、その他、国家機関や国際機関に対する助言を意図する ものではない。

#### 【報告書記載箇所】

•UNSCEAR報告書(Annex A, P6, 第8項から作成)

## UNSCEAR2013年報告書(2/9) 公衆の被ばく線量評価の概要

- 1. 評価はできるかぎり測定データに基づいて行った
- 2. 事故後1年間に公衆が受けた被ばく線量を評価。対象は、20歳(成人)、10歳(小児)、1歳(乳児)
- 3. 事故後10年間及び80歳までに被ばくする線量を予測
- 4. 実測値に基づいて状況を客観的に評価するため、できるだけ現実に即したモデルを使用
- 5. 最初の1年間に講じられた防護措置により回避された線量 も推定

報告書の緒言で述べられているように、国連科学委員会(UNSCEAR)は、第58 回会合(平成23年5月)において、東日本大震災後の原子力発電所事故による被ばくレベルと放射線リスク評価を、十分な情報が集まった時点で実施することを決定しています。主に平成24年9月までに発表された日本の都道府県データ、政府機関によるデータ、さらに日本以外の国連加盟国により提供されたデータや文献、国際原子力機関(IAEA)や世界保健機関(WHO)等の国際機関のデータと文献に準拠することとされました。また、それ以降、平成25年末までに得られた重要な新しい情報が可能な限り検討されました。

UNSCEAR報告書の「第IV章 公衆の被ばく線量評価」の構成は次のとおりです。 A.被ばく経路、B.線量評価のデータ、C.公衆被ばく評価方法の概要、D.線量評価の結果、E.不確かさ、F.直接測定と他の評価の比較

なお、D.線量評価の結果については、日本の公衆の実効線量と特定の臓器の吸収線量について推定を行った結果を示しています。その内容構成は次のとおりです。①避難しなかった公衆の1年目の線量、②避難者の線量、③日本の将来的被ばく線量評価、④他の国における被ばく線量の評価。

公衆の被ばく線量評価の少し詳しい内容は、次のページ以降で説明します。

#### 【報告書記載箇所】

・UNSCEAR報告書(Annex A,日本語版P5,第3~4項及びP7,第12項から作成)

## UNSCEAR2013年報告書(3/9) 公衆の被ばく線量評価に使われたデータ

### 利用した測定値等

- 1. 外部被ばく及び吸入による内部被ばく
  - ① 地上で、及び航空機により測定された放射性物質の地表面の沈着密度
  - ② 事故炉から放出された放射性物質の種類と量の推定値と大気中拡散シミュレーションにより推定された大気中及び地表面の放射性物質濃度
- 2. 経口摂取による内部被ばく
  - 食品及び飲料水中の放射性物質濃度
    - ① 1年目:市場に流通した食品及び飲料水中の放射性核種濃度の測定データ
    - ② 2年目以降:土壌汚染濃度データからシミュレーションにより推定した食品中の放射性物質濃度。海産物については福島県沖海域での測定データ及び放射性核種拡散シミュレーションにより推定した海水中の放射性物質濃度。
  - ・日本人の食品摂取量(国民健康・栄養調査)

東京電力福島第一原子力発電所事故で放出された放射性物質のうち、主に被ばく に寄与するのは、ヨウ素131、セシウム134とセシウム137であると考えられています。

線量評価の最も確実な方法は、外部被ばくについては個人線量計による測定、内部被ばくについてはホールボディ・カウンタによる測定を行うことです。今回の事故に関しては、それらのデータも一部には存在しますが、福島県全体、さらにはその他の都道府県の人々の内部被ばく線量を算出するためには十分ではありませんでした。

そこで、国連科学委員会(UNSCEAR)は、このスライドに示したデータを基に線量推計を行い、それ以外の測定データは、計算結果を検証するために使用しています。

## 【報告書記載箇所】

・UNSCEAR報告書(Annex A,日本語版P25~26,第67~78項, APPENDIX A及び APPENDIX BのIV TRANSPORT AND DISPERSION IN THE OCEANから作成)

## UNSCEAR2013年報告書(4/9) 4グループごとに公衆の線量を推定

#### 線量評価のための地域区分

| グループ | 地 域                                          | 公衆の線量評価における空間解像度                                               |
|------|----------------------------------------------|----------------------------------------------------------------|
| 1    | 人々が事故後、数日から数<br>か月の単位で避難した福島<br>県の地区         | 18の避難シナリオで特定された各地区における典型<br>的な場所を使用                            |
| 2    | 避難が行われなかった福島<br>県の行政区画                       | 外部経路及び吸入経路については行政区画レベル<br>(各1km格子点で推定値に基づき行政区画レベル<br>での平均値を算出) |
|      |                                              | 経口摂取経路については県レベル                                                |
| 2    | 福島の隣接県(宮城県、栃<br>木県、群馬県、茨城県)又<br>は福島県に近い県(岩手県 | 外部経路及び吸入経路については行政区画レベル<br>(各1km格子点で推定値に基づき行政区画レベル<br>での平均値を算出) |
| 3    | と千葉県)                                        | 岩手県における経口摂取による推定被ばく線量はグループ4と同じ、他の5つの県については、5つの県の平均に基づいた        |
| 4    | その他の都道府県全て                                   | 外部経路及び吸入経路は県レベル<br>摂取経路についてはその他全ての都道府県平均                       |

事故に伴う公衆の放射線被ばくは、場所によって異なります。また、避難をした人たちは、時間と共に場所を移動しています。

そこで国連科学委員会(UNSCEAR)は、公衆の被ばく線量を評価するために地域を4つのグループに区分し、被ばく経路によっては、更に狭い範囲を対象に線量を推計しています。表は、4つのグループの地域を示しています。

- ・グループ1:人々が事故後、数日から数か月の単位で避難した福島県の地区
- ・グループ2: 避難が行われなかった福島県の行政区画
- ・グループ3:福島の近隣県(宮城県、栃木県、群馬県、茨城県)又は福島県に近い 県(岩手県と千葉県)
- ・グループ4:その他の都道府県全て

なお、福島県には行政区画が12ありますが、事故直後12行政区画をカバーした18の 避難シナリオがありました。したがって、12の行政区画の一部は、同時に複数の避難 シナリオに関係していました。そこで、ある一つの行政区画内で避難シナリオに応じて 考慮の対象になった特定の区域を代表するものとして「地区」という言葉が使われてい ます。

#### 【報告書記載簡所】

•UNSCEAR報告書(Annex A,日本語版P27,第79~80項、Appendix C, P167~168,第 30~32項から作成)

# UNSCEAR2013年報告書(5/9) 公衆の被ばく線量評価 被ばく経路



- 1. 放射性プルームの大気中移動
  - ✓ 外部被ばく
  - ✓ 内部被ばく(吸入)
- 2. 地表沈着
  - ✓ 外部被ばく
  - ✓ 内部被ばく (再浮遊、吸入)
- 3. 地表等沈着
  - ✓ 内部被ばく(飲食物移行)

#### 主な評価対象の被ばく経路

- ① プルーム中放射性物質による外部被ばくと吸入による内部被ばく
- ② 地表沈着放射性物質からの外部被ばく及び飲食物移行放射性核種の摂取による内部被ばく
- ③ 海産物へ移行した放射性物質の摂取による内部被ばく

事故により環境中に放出された放射性物質による被ばく線量を推定するために、被ばくの形態の分析が行われます。

この図は、放射性物質による被ばくの経路を整理して示したものです。放射性プルームとして大気中を移動した後、人々の居住地域に到達する経路です。この場合、通過するプルーム中に含まれる放射性物質からの外部被ばくとプルーム中の放射性物質を吸い込むことにより起こる内部被ばくの2つの経路があります。

さらに、プルーム中に含まれた放射性物質が降雨等により地表に沈着した場合にも、2つの被ばく経路があります。1つ目は、地表に沈着した放射性物質からの放射線による外部被ばくです。2つ目は、沈着した放射性物質が農作物に移行するか、あるいはそれを食した家畜を摂取することにより起こる内部被ばくです。飲食物の摂取による被ばくとしては、水道水等放射性物質が含まれる飲料水を飲用することによる内部被ばくと、海洋に移行した放射性物質が魚介類に移行しそれを食することによる内部被ばくの経路が考えられます。

また、地表に沈着した放射性物質が大気中に再浮遊して、それを吸入することによる内部被ばくも考えられないことはありませんが、この被ばく経路の放射線影響は小さいと評価されています。

以上により、大気中に放出された被ばく経路の主なものは次のとおりとなります。

- ①放射性プルーム中の放射性核種による外部被ばく
- ②放射性プルーム中の放射性核種の吸入による内部被ばく
- ③地面に沈着した放射性核種からの外部被ばく
- ④食品及び水に含まれる放射性核種の摂取による内部被ばく

### 【報告書記載箇所】

•UNSCEAR報告書(Annex A, 日本語版P24, 第65~66項、Appendix C, P160~161,第C3~C7項から作成)

#### 

| 表1. 事故後1年間の地域平均の実効線量及び甲状腺吸収線量の推定値*1 |                      |           |         |               |         |  |  |
|-------------------------------------|----------------------|-----------|---------|---------------|---------|--|--|
| 避難をした地区                             |                      |           |         |               |         |  |  |
| グループ                                |                      | 実効線量(mSv) |         | 甲状腺の吸収線量(mGy) |         |  |  |
|                                     |                      | 20歳(成人)※2 | 1歳(乳児)  | 20歳(成人)※2     | 1歳(乳児)  |  |  |
| 1 a                                 | 予防的避難区域 <sup>b</sup> | 1.1-5.7   | 1.6-9.3 | 7.2-34        | 15-82   |  |  |
| 1-                                  | 計画的避難区域c             | 4.8-9.3   | 7.1-13  | 16-35         | 47-83   |  |  |
| 避難をしていない地域                          |                      |           |         |               |         |  |  |
| 2                                   | 福島県(避難区域外)           | 1.0-4.3   | 2.0-7.5 | 7.8-17        | 33-52   |  |  |
| 3                                   | 近隣県 <sup>d</sup>     | 0.2-1.4   | 0.3-2.5 | 0.6-5.1       | 2.7-15  |  |  |
| 4                                   | その他の都道府県             | 0.1-0.3   | 0.2-0.5 | 0.5-0.9       | 2.6-3.3 |  |  |

a 18の避難シナリオを用いて避難者の線量を推計

※1:日本の避難地区及び避難区域外の典型的な住民における線量推定 mSv:ミリシーベルト mGy:ミリグレイ

※2:10歳の推定値は省略

参考:日本の近隣諸国及び世界の他地域における公衆の線量評価について:UNSCEARは、日本国外に居住する住民

の事故直後1年間における事故による平均実効線量を0.01mSvより小さかったと結論した。

この表は、避難地区の典型的な住民及び福島県内の避難区域外の行政区画と他の都道府県の住民の、事故後1年間における実効線量と甲状腺の吸収線量を推定したものです。

表に示されている線量は、自然放射線によるバックグラウンド線量に追加したものです。つまり、東京電力福島第一原子力発電所事故により環境中に放出された放射性 核種による被ばく線量の推定値を示しています。

なお、線量の範囲は、対象とするグループの中で、区域内の市町村又は避難シナリオごとの代表値の範囲を示します。

### 【報告書記載箇所】

-UNSCEAR報告書(Annex A.日本語版P56~57,第209~214項から作成)

<sup>&</sup>lt;sup>b</sup> 高度の被ばくを防止するための緊急時防護措置として平成23年3月12日から3月15日にかけて避難を指示された地区

c 平成23年3月末から同年6月にかけ避難を指示された地区

d 岩手県,宮城県,茨城県,栃木県,群馬県,千葉県

#### 国際機関による評価 いSCEAR2013年報告書(7/9) 公衆の健康影響についての評価

- 将来のがん統計において、事故による放射線被ばくに起因し得る有意な変化が見られるとは予測していない。
- 最も高い被ばくを受けたと推定される小児の集団について、甲状腺がんのリスクが理論上増加する可能性がある。そのため、今後、状況を綿密に追跡・評価する必要がある。
- 先天性異常/遺伝的影響は見られない。

出典: 国際連合広報誌「UNSCEAR: 福島第一原子力発電所事故(情報に基づく意思決定のための放射線に関する科学的情報の 評価)」に基づき作成

国連科学委員会(UNSCEAR)は、被ばく線量評価に基づいて、公衆の健康影響について、上表のように評価しました。

また、個別のがんや疾患のリスクに関する評価は次のとおりです。

- ・甲状腺がん:線量のほとんどは、放射線被ばくによる甲状腺がんの過剰発生率を確認できないレベルであったが、その中で上限に近い甲状腺吸収線量では、十分に大きな集団において、甲状腺がんの発生率上昇が観察される可能性がある。しかし、東京電力福島第一原子力発電所事故後の甲状腺吸収線量が、チェルノブイリ原発事故後の線量よりも大幅に低いため、福島県でチェルノブイリ原発事故後のように多数の放射線誘発性甲状腺がんを発生させるというように考える必要はない。
- ・白血病:胎児及び幼少期、小児期に被ばくした人の白血病のリスクを検討した。当該集団でのかかる疾患の発生率が識別可能なレベルで上昇するとは予測していない。
- 乳がん:若年期に被ばくした人の乳がんのリスクを検討した。当該集団でのかかる 疾患の発生率が識別可能なレベルで上昇するとは予測していない。
- ・妊娠中の被ばく:自然流産、流産、周産期死亡率、先天的な影響、又は認知障害が増加するとは予測していない。さらに、東京電力福島第一原子力発電所事故で被ばくした人の子孫に遺伝的な疾患が増加することも予測していない。

#### 【報告書記載箇所】

-UNSCEAR報告書(Annex A.日本語版P58,第220項及び第222~224項から作成)

# UNSCEAR2013年報告書(8/9) 公衆の被ばく線量評価 不確かさ

- 1. 地表に沈着した短半減期放射性核種の測定レベルと地域による空間的な分布
- 2. 時間の経過に伴う放射性核種の放出率の推移と放出時の 気象情報
- 3. 放射性ヨウ素の粒子径・化学形
- 4. 食品中の放射性核種濃度の設定
- 5. 日本人の甲状腺への放射性ヨウ素の取り込み率

国連科学委員会(UNSCEAR)は、東京電力福島第一原子力発電所事故からの放射性物質による公衆の被ばく線量評価は、不十分な知識と情報に基づいて一定の仮定を前提として行われており、その結果には不確かさが含まれていると評価しています。

- 1.地表に沈着した放射性核種の測定レベルに関わる不確かさ
  - ・セシウム134とセシウム137の測定値の不確かさは比較的小さい
  - ・ヨウ素131については、半減期が約8日であり、測定前に放射性壊変が進んでいたことによる不確かさが大きい
- 2.時間の経過に伴う放射性核種の放出率の推移と放出時の気象情報についての知見に関する不確かさ
  - ・平成23年3月に避難した人々の線量推定は、拡散シミュレーションの結果に基づいた
  - ・この場合、最大4~5倍の過大あるいは過小評価の可能性がある
- 3.甲状腺吸収線量評価に影響する不確かさ
  - ・大気中の粒子状及びガス状のヨウ素131の相対量のデータがなく、各放出量は同等であると仮定したため、主要な被ばく期間にわたり最大2倍の不確かさを有している
- 4.食品中の放射性核種濃度の設定に伴う不確かさ
  - ・事故後初期には最も高濃度の食品の特定が優先されたため、モニタリングの対象となった食品はランダムにサンプリングされておらず、評価に使用した平均濃度値が過大評価の原因になった可能性がある
  - ・食物の流通・消費のパターンの想定(福島県産品摂取量の過大評価)にも不確かさがあった
  - ・食品の放射性物質濃度の測定値が検出限界以下の場合、一律に10ベクレル/kgとしたため、最初の一年間の食品摂取による内部被ばく評価は過大になった
- 5.日本人の甲状腺への放射性ヨウ素の取り込み率に関する不確かさ
  - ・日本人の甲状腺への放射性ヨウ素の取り込み率は、標準的な国際放射線防護委員会 (ICRP)のモデルと異なっている可能性がある(不確かさの度合いはほかの項目より小さく、 これによる被ばく線量減少は30%より小さい)

#### 【報告書記載箇所】

・UNSCEAR報告書(Annex A,日本語版P35~36,第110~115項、Appendix Cの IV Uncertainties, 第C113~C131から作成)

# UNSCEAR2013年報告書(9/9) 直接測定との比較

二つの放射性核種の測定情報が、公衆の被ばくを評価するための情報源となった。

- ① 甲状腺、特に小児の甲状腺におけるヨウ素131 (I-131) の測定値
- ② セシウム134 (Cs-134) とセシウム137 (Cs-137) の全身モニタリング結果
- 1. 国連科学委員会(UNSCEAR)が内部被ばくによる甲状腺の地区 平均吸収線量を推定した結果は、同じ対象グループの直接の モニタリングから導き出された甲状腺の地区平均吸収線量よ り最大で約5倍高かった。
- 2. 福島県において10万6,000人以上の住民を対象にしたホールボディ・カウンタ検査結果は、UNSCEARが推定したCs-134とCs-137の吸入と経口摂取による平均的実効線量値よりもかなり低かった。

国連科学委員会(UNSCEAR)報告書では、公衆の放射線被ばくを推定するに当たり、例えば、情報不足による防護措置に関する仮定や線量測定に関する因子等に関し若干の過大評価を行った可能性が示されています。そのことは、東京電力福島第一原子力発電所事故直後に福島県内で行われたヨウ素131の甲状腺測定、及びセシウム134とセシウム137の全身測定(ホールボディ・カウンタ検査)結果との比較でも確認されています。

比較の対象とされたデータは、次のとおりです。

- ①内部被ばくによる甲状腺吸収線量:平成23年3月26日から30日までの間に、いわき市、川俣町、飯舘村に居住する1歳から15歳の乳児、小児1,080人を対象に可搬型線量率計を用いて行われた甲状腺モニタリングのデータ
- ②内部被ばくによる実効線量:福島県の県民健康調査の一環として実施された、福島県における10万6,000人以上の住民を対象にしたホールボディ・カウンタ検査のデータ。さらに、研究者らが平成23年10月から平成24年2月にかけて福島県と近隣県の3万3,000人の住民を対象にしたホールボディ・カウンタ検査のデータ

スライドで示したとおり、これらの実測データとUNSCEARによる推計の比較について、 UNSCEAR報告書は次のようにまとめています。

- ・上記①に関しては実測データの地区平均吸収線量より最大で5倍
- ・上記②に関しては実測データよりかなり高い(実測データがUNSCEARによる評価線量よりもかなり低い)

#### 【報告書記載箇所】

•UNSCEAR報告書(Annex A.日本語版P36~37,第116~118項から作成)



国連科学委員会(UNSCEAR)は2つの段階によるフォローアップ活動を進めてきています。

- ①第1段階は新たな情報の体系的かつ継続的なレビュー
- ②第2段階は2013年報告書の適切な時期における更新

UNSCEARは、2013年報告書への影響を評価するため関連する新規情報のレビューを行い、注目すべき情報として、国際原子力機関(IAEA)による東京電力福島第一原子力発電所での事故に関する報告書を特定しました。IAEAの報告書及び新規情報の大部分は、UNSCEARの2013年報告書の主な仮定及び知見を改めて確認するものでした。

#### 【報告書記載箇所】

-UNSCEAR2016年白書(日本語版P v ~ vi.第9~12項及びP1~2.第1~6項から抜粋)

## UNSCEAR2016年白書 (2/5) 新規文献がもたらし得る影響 1

UNSCEAR2013年報告書以降に公表された情報のレビューで得られた知見から、 新規情報のUNSCEAR2013年報告書への影響、研究・調査の継続等の影響を紹介

#### 「放射性核種の大気中への放出、拡散、沈着に関する更新情報」について

①ソースタームの推定値のほか、大気中および地上に沈着した放射性核種のレベルの推定値が有意に改善される可能性:

経時的なヨウ素131、セシウム134、セシウム137の大気中濃度、土壌サンプル中のヨウ素129の測定値に基づくヨウ素131の沈着、及び放出されたヨウ素の化学形についての新規データが入手可能になりつつある点に着目。

②2013 年報告書で特定されたニーズへの対応に寄与する可能性が高い分野の研究を特定: 放射性核種の大気輸送や拡散モデルに関する研究等

関連した事項から3項目を取り上げ、その内「放射性核種の大気中への放出、拡散、 沈着に関する更新情報」について要点を示しています。

## 【報告書記載箇所】

•UNSCEAR2016年白書(日本語版P7,第26~27項から抜粋)

## UNSCEAR2016年白書 (3/5) 新規文献がもたらし得る影響 2

UNSCEAR2013年報告書以降に公表された情報のレビューで得られた知見から、 新規情報のUNSCEAR2013年報告書への影響、研究・調査の継続等の影響を紹介

#### 「公衆の線量評価に関する更新情報」について

#### ①結論:

2013年報告書の当該分野における知見は引き続き有効。それ以降に発表された新規情報の影響をほとんど受けていない。

①2013年報告書で確認された研究ニーズへの対応に寄与する可能性が高い調査等を特定: さまざまな環境での沈着物質への外部被ばくによる線量率を継続的に測定、予測し、経時的な変化を追跡する等いくつかの分野での調査等

3項目のうち、「公衆の線量評価に関する更新情報」について要点を示しています。

新規情報の大部分は、2013年報告書の主要な仮定及び知見を広く裏付けあるいは追認していること。さらに、全身計測の結果により、食品中の放射性核種の経口摂取による実効線量は実際には理論的な推定値よりもかなり低かった可能性があるという2013年報告書の記述の信頼性が増したといえる、等を紹介しています。

#### 【報告書記載箇所】

・UNSCEAR2016年白書(日本語版P15~16,第66~68項及びP19~20,第86~87項、から抜粋)

# UNSCEAR2016年白書 (4/5) 新規文献がもたらし得る影響 3

UNSCEAR2013年報告書以降に公表された情報のレビューで得られた知見から、 新規情報のUNSCEAR2013年報告書への影響、研究・調査の継続等の影響を紹介

#### 「作業者と公衆における健康影響に関する更新情報」について

#### ①結論:

2013年報告書の当該分野における知見は引き続き有効。新規情報の影響をほとんど受けていない。放射能を原因とする甲状腺がんのリスクに関する本委員会の知見に異議を唱えたように見える1編の調査には、重大な欠陥。

② 2013年報告書で特定された研究ニーズへの対応に寄与する可能性が高い分野等を特定: 福島県での甲状腺検診プログラムの知見を適切に理解するには、福島第一原発事故の 放出による影響を受けていない同等の日本人集団を対象とした十分な規模の調査結果との 関連性においてそれらの知見を検討すること等、さらなるデータまたは情報が2013年報告書 で特定された研究ニーズへの対応に寄与する可能性が高いとして特定。

3項目のうち、「作業者と公衆における健康影響に関する更新情報」について要点を示しています。

詳細なレビューが行われた11編の査読付き学術論文とIAEA報告書は、1編を除いてUNSCEAR 2013 年報告書の知見を強化するか、補足したことを紹介しています。

このうちIAEA 報告書については、東京電力福島第一原子力発電所事故後に日本で開始された健康調査について記述していること、この中には、公衆を対象とした福島県民健康調査と復旧作業に関与した作業者の健康モニタリングが含まれていることを紹介しています。さらに、同報告書が、その刊行時点において、作業者と公衆については、医師により診断され、病理学的に確認され、それが東京電力福島第一原子力発電所事故で生じた放射線被ばくに起因すると考えうる健康への影響は認められていないと結論していることを紹介しています。

#### 【報告書記載筒所】

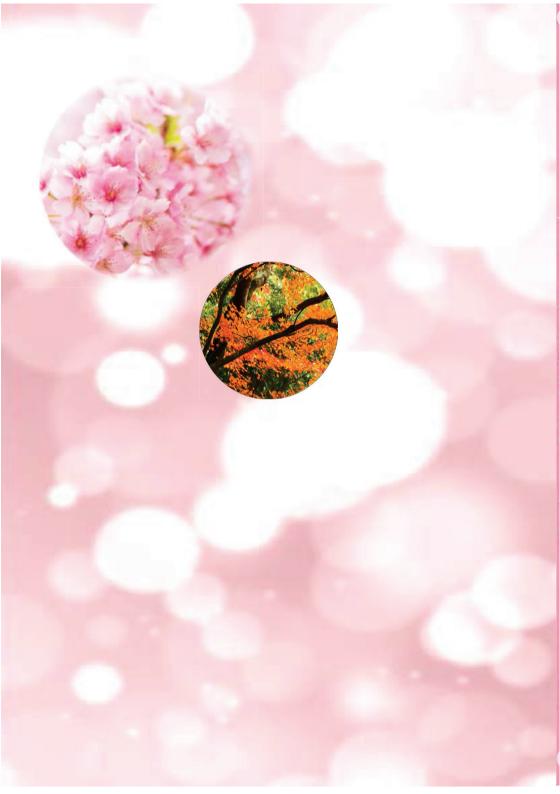
・UNSCEAR2016年白書(日本語版P24,第104~106項及びP27~28,第119~120項から 抜粋)

## UNSCEAR2016年白書 (5/5) 主要な結論

#### 結論 (総論)

- ① 評価された新しい情報源の大部分が、2013年報告書の主要な仮定の1 つまたは複数を追認するものであった。
- ② 実質的に2013年報告書の主要な知見に影響を及ぼしたり、主要な仮定に異議を唱えたものはなかった。

#### 結論:「2013年報告書に対する潜在的な異議」に関するもの


- ① ソースタームおよび大気と地上に沈着した放射性核種のレベルの推定値が、日本原子力研究開発 機構により得られた最新情報によって大幅に改善される可能性が大きい。
- ② ヨウ素の3つの異なる物理化学形(元素状、有機状、粒子状)での放出も考慮に入れたソースターム推定の最新情報は、避難者の推定線量と甲状腺への推定線量の精度についての議論に寄与する可能性がある。
- ③ 甲状腺がんの発見率が増加したことを実証したと主張する論文は、その調査に重大な欠陥が指摘され、他の調査と一致しないことが確認された。
- ④ ヒト以外の生物相に対する個体群レベルでの影響を報告した他の文献は、2013年報告書のこの分野の知見を支持するものであった。引き続き学際的な調査の必要性を提言した。

2013年報告書に対する潜在的な異議に関することが述べられています。

ョウ素131、セシウム134、およびセシウム137の大気中での経時的な測定濃度、および土壌サンプルでのヨウ素129の測定値からのヨウ素131の沈着に関する新規データが入手可能になっている。ソースタームおよび大気と地上に沈着した放射性核種のレベルの推定値がこれらのデータによって大幅に改善される可能性があります。

#### 【報告書記載箇所】

-UNSCEAR2016年白書(日本語版P32~33,第135~139項から抜粋)

