

放射線による健康影響等に関する統一的な基礎資料平成28年度版

環境省 放射線健康管理担当参事官室 国立研究開発法人 量子科学技術研究開発機構 放射線医学総合研究所

はじめに

東京電力福島第一原子力発電所事故に伴う広範な地域の環境汚染は、福島県民は言うに及ばず、関東地方および東北地方の住民に放射線による健康影響不安を引き起こしました。自ら放射線測定機器を購入し、身の回りの放射線を測定し、その情報を自ら発信される方も現れました。また、様々な立場からの放射線健康影響に関する情報がネットや商業雑誌にあふれ出しました。そのような中、平成24年に環境省総合環境政策局環境保健部放射線健康管理担当参事官室は、放射線医学総合研究所に委託する形で、放射線の基礎知識や健康影響の基礎知識、原発事故の情報等を系統的に発信する事業を開始しました。平成26年2月には「放射線による健康影響等に関する統一的な基礎資料(以下基礎資料と略す) 平成25年度版」が公開・発行され、その後も情報更新による改訂が重ねられ、平成28年度版の基礎資料(上巻、下巻)に引き継がれています。

並行して、Q&A も自治体、関係省庁の公開情報の Q&A から転載し、環境省のウェブサイト上に公開してきました。当初、Q&A の回答・解説には、基礎資料と重複する内容を記載しておりましたが、利用者の読みやすい表現になっていないことが推察されました。検討委員会では、平成 28 年度の改訂に合わせ、基礎資料の説明を引用する形で、簡潔な「答え」を示す形式を主眼として 2 年間かけて Q&A を整理しました。

今回の Q&A の改訂では、各設問に対する回答をわかりやすいように、箇条書きで簡潔な構成となりました。回答は、出典として記載されている文献・インターネットの公開情報等を簡略化して編集したものとなっており、参考となるウェブサイトの URL や基礎資料の関連ページを併記しておりますので、より詳しい情報をお知りになりたい場合は、合わせてご参照ください。

基礎資料に十分な記載のない項目や回答への補足説明が必要であると思われた項目に関しては、従来通り、Q&A の解説記事をしっかり書き込むようにしております。基礎資料及びQ&Aが連携して効果的にお使いいただけるように今後とも工夫をしてまいります。平成28年度版Q&Aが、利用される皆様の満足を得られることを願っております。

平成 29 年 3 月 31 日

「放射線による健康影響等に関する統一的な基礎資料」検討委員会委員長 鈴木 元

目 次

第1草 放射	射線の基礎知識	
QA1-1	放射線、放射能、放射性物質は、何が違うのですか。	1
QA1-2	放射線に関する単位には、どんなものがありますか。	2
QA1-3	一般の環境にある放射線は、測れるのですか。	3
第2章 放	射線による被ばく	
QA2-1	「外部被ばく」と「内部被ばく」は、どう違うのですか。	4
QA2-2	内部被ばくの特徴は、どのようなものですか。	5
QA2-3	一度体内に取り込まれた放射性ヨウ素は、どうなるのでしょうか。	6
QA2-4	放射性物質の半減期とは、どういうものですか。「物理学的半減期」と「生物学的半減期」、 「実効半減期」は、どう違うのですか。	7
QA2-5	個人線量計を使う時、学童等の住民は、どのような点に注意すればよいですか。	9
QA2-6	組織加重係数(そしきかじゅうけいすう)とは、何ですか。	10
QA2-7	内部被ばくと外部被ばくでは、内部被ばくのほうが影響が大きいのではないですか。	11
QA2-8	シーベルト(Sv)という単位について教えてください。	12
QA2-9	古い論文に放射能の単位として c や Ci が出てきました。これは何ですか。	13
QA2-10	等価線量(とうかせんりょう)とは、何ですか。	14
QA2-11	放射線加重係数(ほうしゃせんかじゅうけいすう)とは、何ですか。	15
QA2-12	サーベイメータや線量計の測定値がマイクロシーベルト (µSv) で表示されているのは、 実効線量を表しているのですか。	16
QA2-13	内部被ばくの場合の線量である預託実効線量 (よたくじっこうせんりょう) とは、何ですか。	
0.40.4.4		
QA2-14	放射線は、どこまで測定できますか。	
QA2-15	放射線は目に見えませんが、どのように測るのですか。	
QA2-16	個人で放射線量を測りたいのですが、測定器の種類によって違いはありますか。	21
QA2-17	ホールボディ・カウンタ測定で、何が分かりますか。ホールボディ・カウンタによる内部 被ばくの評価方法について教えてください。	22
QA2-18	尿中のセシウムで内部被ばくを推定できますか。また、今回の東京電力福島第一原子力 発電所事故前にはどうだったのですか。	24
QA2-19	毎時3.8マイクロシーベルト(µSv)を年間被ばく線量20ミリシーベルト(mSv)に相 当すると考える根拠は何ですか。	25
QA2-20	年間の追加被ばく線量1ミリシーベルト(mSv/年)と、空間線量率毎時0.23マイクロシーベルト(µSv/h)の関係について教えてください。	27
QA2-21	外部被ばく量を空間線量率と個人線量計で評価する方法がありますが、どう違うのですか。	29
QA2-22	実効線量,周辺線量当量,空気吸収線量とは、どういうものですか。またそれらの値と個人線量計の数値とは、どのような関係がありますか。	30
QA2-23	事故後5年目でも土壌等に沈着しているセシウムが検出されていますが、内部被ばくに どの程度寄与しますか。	31
QA2-24	ストロンチウム90は、どのように測定しているのか教えてください。	32
QA2-25	土壌や農林水産物等の環境試料中のプルトニウムは、どのように測定するのですか。	33
QA2-26	東京電力福島第一原子力発電所周辺で見つかったプルトニウム239、240、241は、どのように測定されたのですか。	34

QA2-27	東京電力福島第一原子力発電所事故の前には、身の回りに放射線はなかったのですか。	35
QA2-28	昔の核実験でできた放射性物質が今も残っているというのは、本当ですか。	36
QA2-29	雨の日に一時的に空間線量率が高くなるのは、なぜですか。	37
QA2-30	東京電力福島第一原子力発電所事故以前にも、食品中にセシウムやストロンチウムが入っていたのですか。	38
第3章 放	射線による健康影響	
QA3-1	確定的影響と確率的影響の違いは何ですか。	
QA3-2	放射線は、人体へどのような影響を与えるのですか。	40
QA3-3	東京電力福島第一原子力発電所事故で放出されたプルトニウムやストロンチウムによる 健康影響はありますか。	41
QA3-4	私は妊婦です。胎児への放射線の影響はありませんか。	43
QA3-5	被ばくの影響は、遺伝しますか。	44
QA3-6	東京電力福島第一原子力発電所事故による放射線の観点から、今後妊娠しても大丈夫で しょうか。	45
QA3-7	チェルノブイリで白血病が増えたと聞きました。本当でしょうか。	46
QA3-8	微量の尿中セシウムによって、膀胱がんが増加するのですか。	47
QA3-9	放射線による子供への健康影響について教えてください。	48
QA3-10	子供の甲状腺がんのリスクは、どれくらいですか。	49
QA3-11	ヨウ素131は、半減期が短いため、今調べてもどれくらい被ばくしたのか分からないと聞きました。子供が本当はたくさん被ばくしていて、将来甲状腺がんになってしまうのではないかと心配です。	50
QA3-12	チェルノブイリ原発事故の後、周辺地域に住んでいた子供たちに甲状腺がんが多発した と聞きました。実際には、どれくらいの線量を被ばくしていたのですか。	51
QA3-13	原子力発電所の事故によって大気中に放出された放射性物質は、人にどのような影響がありますか。被ばくした量との関係、特に100ミリシーベルト(mSv)の意味について教えてください。	52
QA3-14	低線量被ばくによる健康への影響は、どのようなものですか。	53
QA3-15	放射線による健康リスクは、その他の健康リスクと比較するとどの程度ですか。	54
第4章 防	護の考え方	
QA4-1	放射線安全防護基準を決める際の科学的根拠は何ですか。	
QA4-2	外国に比べて甘いのではないですか。	
QA4-3	避難指示基準を年間20ミリシーベルト(mSv)としたのは、チェルノブイリ事故の際の 基準とは違うのですか。	57
QA4-4	東京電力福島第一原子力発電所事故の前に大気圏内核実験等で生成したストロンチウム 90やセシウム137が、現在でも一般の環境に残っているのは、なぜですか。	59
第5章 国	際機関による評価	
QA5-1	東京電力福島第一原子力発電所事故について、世界保健機構(WHO)や国連科学委員会(UNSCEAR)では、どのような評価を行っているのでしょうか。	60
第6章 事		
QA6-1	東京電力福島第一原子力発電所事故とチェルノブイリ原発事故とでは、影響の度合いは 違うのですか。	62
QA6-2	東京電力福島第一原子力発電所から放出されている放射性物質の量は、少なくなっているのですか	63

QA6-3	東京電力福島第一原子力発電所の安全性をどのように評価し、どのように規制していく のですか。
QA6-4	東京電力福島第一原子力発電所の廃炉は、どのように進められるのですか。 65
QA6-5	東京電力福島第一原子力発電所の状況について教えてください。66
第7章 環	境モニタリング
QA7-1	モニタリングの実施状況について教えてください。67
QA7-2	放射性セシウムの沈着状況の調査は、どうなっていますか。
QA7-3	物理減衰やウェザリング効果は、どの程度だと考えられるのですか。
QA7-4	航空機モニタリングでは、何を測定しているのですか。
QA7-5	モニタリングポストの測定値と、実際に線量計で測定した値が異なるのはなぜですか。 71
QA7-6	現在の放射性物質の沈着の度合いは、事故当時から変化していますか。
QA7-7	事故直後から現在までの土壌、食品のプルトニウム及び放射性ストロンチウムの測定結 果は、どのようになっていますか。
QA7-8	農地土壌の放射性物質による汚染状況は、どのようになっていますか。
QA7-9	水道水や井戸水等の安全・安心は、どのように確保されているのですか。
QA7-10	東京電力福島第一原子力発電所事故が発生した時、水道水中の放射性物質を低減するために、どのような対策がとられたのですか。77
QA7-11	プールに入っても大丈夫ですか。78
QA7-12	河川・湖沼のモニタリングの実施状況は、どうなっているのですか。
QA7-13	原子力災害が発生した場合、飲用井戸水にも放射能の影響が出るのでしょうか。 80
QA7-14	農業用ため池が放射性セシウムで汚染されたと聞きます。農作物に影響することはない のでしょうか。
QA7-15	汚染処理水(トリチウム)の海洋放出によって、海洋汚染は起こりますか。
QA7-16	海のモニタリングの実施状況はどうなっているのですか。84
第8章 食	品中の放射性物質
QA8-1	放射性セシウムが溜まりやすい食品はありますか。85
QA8-2	ストロンチウムは骨に蓄積されるので、危険だと聞きました。食品中の放射性ストロン チウム量についての規制はないのですか。86
QA8-3	雨水や日常食のストロンチウム90やセシウム137は、どのようにすれば測れるのですか。 88
QA8-4	食べものの安全は、どのように確保されているのですか。89
QA8-5	学校給食の安全・安心を確保するため、どのような措置を講じているのですか。 90
QA8-6	食品の基準値を年間1ミリシーベルト(mSv)に設定した理由を教えてください。 91
QA8-7	基準値を暫定規制値から厳しくしたということですが、これまでの暫定規制値の安全性 については、どのように考えているのですか。92
QA8-8	暫定規制値は、どのような取扱いになるのですか。93
QA8-9	食品の汚染割合を50%とした根拠を教えてください。
QA8-10	限度値の計算で、年齢が低いほど限度値が高くなっていますが、これは小児の放射線による影響を過小評価しているのではないですか。
QA8-11	一般食品を使って離乳食を手作りした場合、その材料は、1キログラム当たり100ベクレル(Bq/kg)が基準値となりますが、手作りの離乳食よりも市販のベビーフードのほうが安全ということですか。
QA8-12	基準値が厳しくなって、政府による検査計画の考え方も改正されるのですか。 97
QA8-13	基準値を下回る食品や飲料水は、乳幼児や胎児が口に入れても大丈夫ですか。
QA8-14	食品中の放射性物質の基準値は、セシウム以外の核種から受ける影響は考えられていな いのですか。

QA8-15	加工した食品に、基準値はどのように適用されるのですか。調理に使う 木炭	100
QA8-16	基準値を超える食品が見つかった場合の対応は、どうなっていますか。	
QA8-17	基準値は、今後、見直しが予定されているのですか。	
QA8-18	乳児用食品の対象となる乳児の年齢の範囲を教えてください。また、乳児と乳幼児は、対象となる年齢の範囲が違うのですか。	
QA8-19	主食の米から、少量しか摂取されない香辛料まで、摂取量に関係なく一般食品の基準値 を適用するのは、どうしてですか。	
QA8-20	食品添加物における放射性物質の基準値は、どのように考えればよいですか。	105
QA8-21	家庭菜園で作った野菜等、自己消費する食品についても基準値は適用されるのですか。	106
QA8-22	たばこには、食品の基準値が適用されるのですか。	107
QA8-23	食品のモニタリング検査とは、どのようなものですか。	108
QA8-24	製造・加工された食品にも基準値が適用となりますが、モニタリング検査も行われるのですか。	
QA8-25	基準値を厳しくすることで、検査件数が減り、違反品が流通するようになるのではないですか。	
QA8-26	食事から受ける放射線量の実態は、どの程度ですか。	111
QA8-27	現在、どの地域でどのような食品の出荷が禁止されていますか。	113
QA8-28	福島県及び近隣県では、どのように農産物・水産物を検査しているのですか。	114
QA8-29	モニタリング検査は、どのような品目がカバーされているのですか。	115
QA8-30	「茶」と名前のつく飲料やその他の飲料、粉末を水や湯に溶かして飲用するスープなどの濃縮食品、乾燥食品は、どのような基準値が適用されますか。	
QA8-31	生鮮農産物の原産地表示は、きちんと行われているのですか。	118
QA8-32	飲用に供する茶の試験に関し、検査の検出限界値を教えてください。	119
QA8-33	米の安全性は、どうなっていますか。	120
QA8-34	牛乳、肉、卵の安全性は、どうなっていますか。	121
QA8-35	畜産物の生産現場では、どのような取組がされていますか。	122
QA8-36	きのこ、山菜の安全性は、どうなっていますか。	123
QA8-37	イノシシ等の野生鳥獣の安全性は、どうなっていますか。	124
QA8-38	野生のきのこや山菜は、検査が行われていないのですか。	125
QA8-39	放射性物質で汚染されている水産物が、市場に流通しているのではないですか。	126
QA8-40	生鮮水産物の原産地表示は、きちんと行われているのですか。	127
QA8-41	海底に生息する魚介類は、放射性物質濃度が高いと聞きました。市場には流通しませんか。	

	放からの回復に向けた取組	
QA9-1	東京電力福島第一原子力発電所事故に関わる特措法とはどのような法律ですか。また、 それに基づいて実施に移す、除染のガイドラインはあるのでしょうか。	129
QA9-2	今回の東京電力福島第一原子力発電所事故に関連して実施されている除染とは何ですか。	130
QA9-3	庭の放射線量を測りましたが、空間線量率の高い場所がありました。なぜですか。また、 除染の方法を教えてください。	131
QA9-4	近所で線量率の高い場所を見つけた場合は、どうしたらいいのですか。	132
QA9-5	除染による効果はどの程度なのでしょうか。	133
QA9-6	除染した後でも、森林などに付着している放射性セシウムなどが流れてきて、生活環境 を再汚染することはないのですか。	
QA9-7	住宅地から20m までの範囲以外の森林の除染は、どのように取り組まれるのですか。.	135
049-8	李林除染け、全ての場所で行うわけでけなりませんが、沢水への影響けなりませんか。	136

QA9-9	仮置場の役割とその後除去土壌等は、どのようになるのですか。	137
QA9-10	仮置場の安全対策は、どのようになっているのでしょうか。	138
QA9-11	除染により、どのような廃棄物がでるのでしょうか。	139
QA9-12	除染で発生した汚染土を再生利用するとは、どのようなことでしょうか。	140
QA9-13	汚染廃棄物対策地域内に設置される仮設焼却施設とは、どのようなものですか。どうして焼却が必要なのですか。	
QA9-14	仮設焼却施設で焼却の際、放射性セシウムが漏れ出ることはないのしょうか。	142
QA9-15	焼却施設で焼却して発生する灰等は、放射能濃度が高いと考えられますが、どのように 処理されるのでしょうか。	
QA9-16	「除染特別地域」とは何ですか。	144
QA9-17	「汚染状況重点調査地域」とは何ですか。	145
QA9-18	除染の具体的な目標はありますか。	146
QA9-19	各市町村の除染の状況を知りたいのですが、どこを見れば分かりますか。	147
QA9-20	フォローアップ除染とは何ですか。	148
QA9-21	帰還後に、農作物の栽培をしても大丈夫ですか。	149
QA9-22	事故当時の避難基準について教えてください。	150
QA9-23	避難指示の解除基準は何ですか。	152
QA9-24	区域の運用について教えてください。	153
QA9-25	避難区域の見直しは、航空機モニタリングではなく、地上における詳細モニタリングに 基づいて行うべきではないですか。	
QA9-26	避難指示区域内において被ばくを低減するために心がけるべきことは何ですか。	155
QA9-27	避難区域における防犯、防火はどのように行っているのですか。	156
QA9-28	避難区域への立入りや車での交通によって、放射性物質が他の地域に拡散するのではないですか。	
QA9-29	避難指示解除準備区域と居住制限区域は自由に立入が可能ですか。	158
QA9-30	帰還困難区域へはどのように一時立入りするのですか。	159
QA9-31	避難指示区域内で可能な活動は何ですか。また、事業の再開は可能ですか。	160
第10章 儗	建康管理	
第10章につ	かいて16	1
1. 基本調査	£Q&A	
QA10-1	基本調査の目的は何ですか。 基本調査で何がわかるのですか。	162
QA10-2	外部被ばく線量の推計は、どのようにして行っているのですか。	163
QA10-3	内部被ばくについても推計してください。	164
2. 甲状腺検	·查 O&A	
QA10-4		165
QA10-5	甲状腺検査が病院でも受診できるようになりましたが、近くで受けられる病院がなくて 不便です。今後増える予定はないのですか。	
QA10-6	妊婦です。超音波検査で、お腹の子に何か悪い影響はありますか。	167
QA10-7	二次検査は、どのような検査を実施するのでしょうか。	168
QA10-8	判定結果の「A1」「A2」「B」「C」とは、具体的にどのような状態のことですか。	
QA10-9	「のう胞」、「結節」とは何ですか。	
QA10-10	診断に用いた画像や詳しい検査結果、医師による所見は、本人に通知されるのでしょうか。	
QA10-11	1回目の検査でのう胞がありましたが、2回目ではのう胞が消えました。このようなこと	

QA10-12	成人の検査は、必要ありませんか。	174
QA10-13	「チェルノブイリでは、子どもの甲状腺がんが多く発症した」と聞きますが、福島県は	
	本当に大丈夫なのでしょうか。	175
3. 健康診査	EQ&A	
QA10-14	「健康診査」の検査項目には、どのような意味があるのですか。	176
4. こころの	健康度・生活習慣に関する調査 Q&A	
QA10-15	この調査の目的を教えてください。	178
QA10-16	「支援」とはどのようなもので、どのように行われるのですか。	179
5. 妊産婦に	関する調査 Q&A	
QA10-17	・ 妊産婦に関する調査の目的は何ですか。	180
OA10-18	震災後生まれた子どもが、甲状腺がんになるのではないかと心配です。	181

第1章 放射線の基礎知識

QA1-1 放射線、放射能、放射性物質は、何が違うのですか。

A

- ① 「放射線」は物質を透過する力を持った光線に似たもので、 α (アルファ)線、 β (ベータ)線、 γ (ガンマ)線、 χ (エックス)線、中性子線等があります。
- ② 放射線を出す能力を「放射能」といい、この能力をもった物質を「放射性物質」といいます。

統一的な基礎資料の関連項目

上巻 第1章1ページ「放射線・放射能・放射性物質とは」

出典:消費者庁「食品と放射能 Q&A」(第10版)より作成

QA1-2 放射線に関する単位には、どんなものがありますか。

A

- ① 放射性物質が放射線を出す能力や被ばくの程度を表すにはベクレル (Bq) やシーベルト (Sv) 等の単位が用いられます。
- ② ベクレル (Bq) は放射能の強さの単位で、シーベルト (Sv) は人が受ける 放射線被ばく線量の単位です。

統一的な基礎資料の関連項目

上巻 第1章 3ページ「放射線と放射能の単位」 上巻 第2章 34ページ「ベクレルとシーベルト」

出典:計量法(平成4年法律第51号)より作成

出典の公開日:平成4年5月20日

本資料への収録日:平成29年3月31日

QA1-3 一般の環境にある放射線は、測れるのですか。

A

- ① 放射線は、目に見えない、音がしないので聞こえないなど、人の五感で直接感じることはできませんが、サーベイメータなどの測定器を用いることで測ることができます。
- ② 放射線を測る場合、 α (アルファ)線、 β (ベータ)線、 γ (ガンマ)線など、測りたい放射線の種類や測るもの(放射線量か汚染状況かなど)に合った測定器を正しく選んで測る必要があります。

統一的な基礎資料の関連項目

上巻 第1章 3ページ「放射線と放射能の単位」

上巻 第1章 18ページ「放射線の電離作用 - 電離放射線の性質」

上巻 第1章 20ページ「放射線の透過力」

上巻 第2章 44ページ「様々な測定機器」

出典:日本の環境放射能と放射線ウェブサイト Q&A より作成

出典の公開日: 平成 17 年 10 月 24 日本資料への収録日: 平成 29 年 3 月 31 日

第2章 放射線による被ばく

QA2-1 「外部被ばく」と「内部被ばく」は、どう違うのですか。

A

- ① 「外部被ばく」は、体の外(の放射線源)から放射線を受けることです。
- ② 「内部被ばく」は、体の中に取り込んだ放射性物質から放射線を受けることです。
- ③ 「外部被ばく」でも「内部被ばく」でも、シーベルト(Sv)で表す数値が同じであれば、人体への影響は同じと見なされます。

統一的な基礎資料の関連項目

上巻 第2章23ページ「外部被ばくと内部被ばく」 上巻 第2章24ページ「体外から・体内から」

出典:消費者庁「食品と放射能 Q&A」(第10版)より作成

QA2-2 内部被ばくの特徴は、どのようなものですか。

A

- ① 内部被ばくの特徴として、放射性核種によって特定の臓器に集まりやすいことがあります。特定の臓器についてはこちら*をご参照ください。
 - *放射線による健康影響等に関する統一的な基礎資料 上巻第2章32ページ
- ② しかし、体内に取り込まれた放射性物質は代謝によって体外に排出されます、代謝によって放射性物質が半減する時間を生物学的半減期と呼びます。 内部被ばくでは物理学的半減期だけでなく生物学的半減期についても考慮します。
- ③ 内部被ばくは、体内から放射線を浴びるため全ての放射線、特に α (アルファ)線について考慮する必要があります。

統一的な基礎資料の関連項目

上巻 第2章 22ページ「透過力と人体での影響範囲」

上巻 第2章 27ページ「内部被ばく」上巻 第2章 28ページ「内部被ばくと放射性物質」

上巻 第2章 32ページ「原発事故由来の放射性物質」

上巻 第2章 54ページ「預託実効線量」

上巻 第2章 81ページ「放射線による電離作用」

出典:放射線による健康影響等に関する統一的な基礎資料上巻 22, 27, 28, 32, 54, 81ページ「透過力と人体での影響範囲」「内部被ばく」「内部被ばくと放射性物質」「原発事故由来の放射性物質」「預託実効線量」「放射線による電離作用」より作成

出典の公開日:平成28年6月1日

本資料への収録日: 平成29年3月31日

QA2-3 一度体内に取り込まれた放射性ヨウ素は、どうなるのでしょうか。

A

- ① 体内に取り込まれた放射性ヨウ素は、まず血液中に入ります。そのうち 10~30%が甲状腺に蓄積されますが、その割合はもともと甲状腺に蓄積し ていた放射性でないヨウ素の摂取量に左右されます。
- ② 甲状腺に取り込まれた放射性ヨウ素は時間が経つと減衰すると共に、体内からも排出されます。80 日目には放射線を出す能力が 1000 分の 1 以下となり、ほとんど検出されなくなります。

統一的な基礎資料の関連項目

上巻 第2章 27ページ「内部被ばく」

上巻 第2章 32ページ「原発事故由来の放射性物質」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

QA2-4 放射性物質の半減期とは、どういうものですか。「物理学的半減期」 と「生物学的半減期」、「実効半減期」は、どう違うのですか。

A

- ① 放射性物質は放射線を出しますが、その量は時間と共に少なくなります。
- ② 放射性物質が、半分になるまでの時間を「半減期」といいます。
- ③ 「物理学的半減期」は、放射性物質の種類によって違います。
- ④ 「生物学的半減期」は、体内又は特定の組織や器官に取り込まれた放射性物質が、代謝により排出されることによって、半分になるまでの時間のことです。
- ⑤ 「実効半減期」は、体内に取り込まれた放射性物質が、物理的な減衰と生物学的な排泄の両方により、実際に半分になるまでの時間のことです。

統一的な基礎資料の関連項目

上巻 第1章 10ページ「半減期」

上巻 第1章 11ページ「半減期と放射能の減衰」

上巻 第2章 28ページ「内部被ばくと放射性物質」

上巻 第2章 32ページ「原発事故由来の放射性物質」

(解説)

原発事故によって、環境中に放出された放射性物質で、健康や環境への影響において、 主に問題となる核種の生物学的半減期、物理学的半減期及び実効半減期は、次の表のよう になります。

	I-131 ョウ素131	Cs-134 セシウム134	Cs-137 セシウム137	Sr-90 ストロンチウム90	Pu-239 プルトニウム239
出す放射線 の種類	β, γ	β, γ	β, γ	β	α, γ
生物学的 半減期	80日*1	70日~ 100日* ²	70日~ 100日* ³	50年*3	肝臓:20年*4
物理学的 半減期	8日	2.1年	30年	29年	24,000年
実効半減期 (生物学的半減期と 物理学的半減期から計算)	7日	64日 ~88日	70日 ~99日	18年	20年
蓄積する 器官・組織	甲状腺	全身	全身	骨	肝臓、骨

*1: ICRP Publication 78

*2: セシウム 137 と同じと仮定

*3: JAEA 技術解説,平成 23年 11月

*4: ICRP Publication 48

出典:放射線による健康影響等に関する統一的な基礎資料 上巻 第4章 32ページ「原発

事故由来の放射性物質」より作成 出典の公開日:平成29年3月31日 本資料への収録日:平成20年3月31日

本資料への収録日:平成29年3月31日

QA2-5 個人線量計を使う時、学童等の住民は、どのような点に注意すれば よいですか。

A

- ① 個人線量計は、その場の空間線量ではなく、個人が受けた放射線の量(外部被ばく量)を測定し、個人線量を算定するために作られたものです。
- ② 個人線量を正しく算定するためには、常に身に着けることが前提ですが、 外出の際にはランドセルやバッグに入れたりしても測定はできます。
- ③ 個人線量計は、体幹部(胸や腹部)に装着するのが基本ですが、一時的に体から離して保存する必要があるときは、直接地面の上や芝の上には置かないで、ベンチ等地面から離れた場所に置いてください。
- ④ 電子式の個人線量計は、電磁波の影響を受けるため、携帯電話の近くには 置かないでください。

統一的な基礎資料の関連項目

上巻 第2章 43ページ「""シーベルト"を単位とする線量」 上巻 第2章 49ページ「外部被ばく(測定)」

出典:統一的な基礎資料 上巻第2章43ページ「""シーベルト"を単位とする線量」、49

ページ「外部被ばく(測定)」より作成 出典の公開日:平成25年3月31日 本資料への収録日:平成29年3月31日

QA2-6 組織加重係数(そしきかじゅうけいすう)とは、何ですか。

A

- ① 放射線による影響の受けやすさは、組織や臓器によって異なります。
- ② 個々の臓器への発がん等の影響の大きさを重み付けする係数を組織加重係数といい、実効線量を計算するときに用います。

統一的な基礎資料の関連項目

上巻 第2章37ページ「グレイからシーベルトへの換算」

上巻 第2章38ページ「様々な係数」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

QA2-7 内部被ばくと外部被ばくでは、内部被ばくのほうが影響が大きいのではないですか。

A

- ① 放射性物質の種類や被ばくの経路によって、人体への影響は異なります。 そこで、人体への影響の大きさを比較するために考えられたものが実効線量です。
- ② 実効線量が同じであれば、内部被ばくでも外部被ばくでも影響の大きさは同じです。

統一的な基礎資料の関連項目

上巻 第2章 36ページ「単位間の関係」

上巻 第2章 37ページ「グレイからシーベルトへの換算」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

出典の公開日:平成25年10月29日 本資料への収録日:平成29年3月31日

QA2-8 シーベルト(Sv)という単位について教えてください。

A

- ① シーベルト (Sv) という単位を使う数量はいろいろありますが、共通しているのは放射線の人体への影響に関連づけられた数値ということです。
- ② シーベルト (Sv) で表した数値が大きいほど、人体が受ける放射線の影響 を生じる可能性が高くなることを意味します。
- ③ どのような影響が現れるかは、被ばくのしかたや放射線の種類の違い等によって異なります。
- ④ いかなる被ばくでも同じシーベルト(Sv)という単位で表すことにより、 人の健康への影響の大きさの比較ができるようになります。

統一的な基礎資料の関連項目

上巻 第2章 34ページ「ベクレルとシーベルト」

上巻 第2章 43ページ「""シーベルト"を単位とする線量」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

出典の公開日:平成25年10月29日 本資料への収録日:平成29年3月31日

QA2-9 古い論文に放射能の単位として c や Ci が出てきました。これは何ですか。

A

- ① cやCiは古い放射能の単位で、キュリーと呼ばれます。
- ② 1953 (昭和 28) 年に国際放射線単位測定委員会 (ICRU) が1秒間に 3.7×10¹⁰ 個が壊変する放射性核種の量を1キュリーと呼ぶように定めました。
- ③ 現在使用されているベクレル (Bq) は、ICRU により定められ、1978 年 に導入が決まりました。

統一的な基礎資料の関連項目

上巻 第2章 35ページ「シーベルトの由来」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

QA2-10 等価線量(とうかせんりょう)とは、何ですか。

A

- ① 人体への放射線の影響は、放射線の種類やエネルギーによって異なります。
- ② 臓器や組織が吸収した線量に対し、その影響の大きさに応じて重み付けした線量を、その臓器あるいは組織の「等価線量」といい、単位はシーベルト(Sv)です。
- ③ 例えば、同じ吸収線量でも、 α (アルファ)線は β (ベータ)線や γ (ガンマ)線に比べて 20 倍影響が大きいとされています。

統一的な基礎資料の関連項目

上巻 第2章 36ページ「単位間の関係」

上巻 第2章 37ページ「グレイからシーベルトへの換算」

上巻 第2章 38ページ「様々な係数」

上巻 第2章 40ページ「線量概念:物理量、防護量、実用量」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

QA2-11 放射線加重係数(ほうしゃせんかじゅうけいすう)とは、何ですか。

A

- ① 放射線の人体への影響は、吸収線量が同じでも放射線の種類やエネルギーによって変わります。
- ② 放射線防護の観点から放射線の種類等による影響の度合いを重み付けする 係数を「放射線加重係数」といいます。例えば、 β (ベータ)線 γ (ガンマ)線は1のところ、 α (アルファ)線は20です。
- ③ 各組織と臓器の吸収線量にこの放射線加重係数を乗じることで等価線量を計算します。

統一的な基礎資料の関連項目

上巻 第2章 37ページ「グレイからシーベルトへの換算」

上巻 第2章 38ページ「様々な係数」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

QA2-12 サーベイメータや線量計の測定値がマイクロシーベルト(µSv)で表示されているのは、実効線量を表しているのですか。

A

- ① 実効線量は、直接測定することができません。
- ② サーベイメータなどの放射線測定器がシーベルト (Sv) の単位で表示されている場合、実効線量ではなく、「周辺線量当量」を示しています。
- ③ また、ガラスバッジなどの個人被ばく線量計の測定値 (シーベルト) は、「個人線量当量」を表しています。
 - %マイクロ(μ)は 10^{-6} (=百万分の1)を表す単位です。

統一的な基礎資料の関連項目

上巻 第2章 46ページ「外部被ばく測定用の機器」

上巻 第2章 49ページ「外部被ばく(測定)」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

QA2-13 内部被ばくの場合の線量である預託実効線量(よたくじっこうせんりょう)とは、何ですか。

A

- ① 内部被ばくによる線量は、1 回に摂取した放射性物質の量から将来にわたって受ける放射線被ばくの総量として考えます。これを預託線量といいます。
- ② そして特に実効線量に着目して一生分を積算した線量を預託実効線量と呼びます。
- ③ このときの一生分とは、大人は50年、子供は70歳になるまでの年数です。

統一的な基礎資料の関連項目

上巻 第2章 54ページ「預託実効線量」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

QA2-14 放射線は、どこまで測定できますか。

A

- ① 食品中の放射性セシウム測定下限値は、基準値の 1/5以下に設定することとされています。
- ② ホールボディ・カウンタ (WBC) による内部被ばくの検出下限値*については、特に定められていませんが、成人 (体重 60kg 程度) の場合、5分~10分の測定で300ベクレル(Bq)程度まで測定可能です。
- ③ 測定値がバックグラウンド測定値のばらつきの3倍未満であった場合は、「不検出(N.D.)」と示されます。

※検出下限値:検出できる最小量(値)のこと

統一的な基礎資料の関連項目

上巻 第2章 56ページ「食品からの被ばく線量(計算例)」

上巻 第2章 60ページ「内部被ばく量の体外計測のデータ」

(解説)

東京電力株式会社福島第一原子力発電所における事故により、広範囲の食品に放射性物質が含まれる事態となりました。これに対処するため、平成 24 年 3 月 15 日付の食安発 0315 第4号で示された「食品中の放射性セシウム検査法」により測定した場合の検出限界値は、基準値の 1/5 以下としていますので、

- ① 一般食品であれば、1キログラム当たり20ベクレル(Bg/kg)以下、
- ② 牛乳及び乳児用食品については、1キログラム当たり10ベクレル(Bg/kg)以下、
- ③ 飲料水については、1キログラム当たり2ベクレル(Bg/kg)以下です。

なお、測定値には自然放射線によるバックグラウンド計数が含まれるため、放射性セシウム濃度を評価する場合はバックグラウンド計数値を減算する必要があります。放射性物質の濃度を測定する際には、対象品目や測定機器により得られる計数は異なります。測定下限は、これらの計数値と測定時間の関数であるため、基準値の 1/5 以下が十分に確保できるよう、システムの測定時間を調整しています。

また、種々の測定結果において、「不検出(N.D.)」と記載されることがありますが、これは測定した放射能濃度が検出限界以下であることを示しています。その際、具体的な検出限界の数値(例えば<1キログラム当たり 20 ベクレル(Bq/kg))を記載することが必要です。

出典: ①厚生労働省「食品中の放射性物質に係る基準値の設定に関する Q&A」、②厚生労働省・食品衛生法(昭和 22 年法律第 233 号)規格基準「食品中の放射性セシウムスクリーニング法」より作成

出典の公開日:①平成24年7月5日、②平成24年3月1日

本資料への収録日:平成29年3月31日

QA2-15 放射線は目に見えませんが、どのように測るのですか。

A

- ① 放射線と物質との相互作用(電離や蛍光など)を利用して放射線を計測します。
- ② 電離作用を利用する場合、放射線が物質に当たって生じたイオン対を計測して検出します。
- ③ 蛍光作用を利用する場合、放射線が物質に当たって生じる微弱な光を計測して検出します。

統一的な基礎資料の関連項目

上巻 第1章 3ページ「放射線と放射能の単位」

上巻 第2章 44ページ「様々な測定機器」

出典:日本の環境放射能と放射線ウェブサイト Q&A より作成

出典の公開日:平成17年10月24日 本資料への収録日:平成29年3月31日

QA2-16 個人で放射線量を測りたいのですが、測定器の種類によって違いは ありますか。

A

- ① どのような目的で放射線を測定するかによって、用いる測定器を選ぶ必要があります。
- ② 外部被ばく評価用の機器には、個人線量測定用と空間線量率測定用があります。
- ③ 一般環境の空間放射線線量率の測定には、放射性セシウムからのγ (ガンマ)線を測るシンチレーション式が最も適しています。放射線源を備えた施設で定期的に校正された測定器を用いることが必要ですので、詳細な測定には、専門家の協力を得ることが望ましいです。
- ④ 個人線量計を用いると、被ばくの積算線量を知ることができます。電子式 の直読式のものであれば、一定期間ごと、あるいは作業ごとに、被ばくの 程度を自分で確認することができます。

統一的な基礎資料の関連項目

上巻 第2章 44ページ「様々な測定機器」

上巻 第2章 46ページ「外部被ばく測定用の機器」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

QA2-17 ホールボディ・カウンタ測定で、何が分かりますか。ホールボディ・カウンタによる内部被ばくの評価方法について教えてください。

A

- ① ホールボディ・カウンタ測定では、測定した時点で体内に存在する γ (ガンマ)線を放出する核種の種類について、それがどんなもので、それぞれの量がどれくらいかが分かります。
- ② 放射性物質の摂取状況(急性あるいは慢性)によって、測定時点での内部 被ばく線量の総量が異なる可能性があるため、内部被ばく線量の算定には、 摂取シナリオを設定することが必要です。
- ③ 放射性セシウムは生物学的半減期が成人で 70~100 日のため、急性 1 回摂取の場合は、1 年程度の推定が限界です。
- ④ 事故後、1 年程度以降の測定は、主に摂取した食品からの慢性被ばくを推定する目的で行われます。

統一的な基礎資料の関連項目

上巻 第2章 57ページ「摂取量の推定のための放射能測定法」

上巻 第2章 58ページ「体内放射能の評価法の比較」

上巻 第2章 59ページ 「内部被ばく測定用の機器 |

上巻 第2章 60ページ「内部被ばく量の体外計測のデータ」

上巻 第2章 61ページ「体内放射能と線量評価」

(解説)

放射性セシウムの生物学的半減期は年齢によって異なります。その理由は、子供は成人よりも代謝が活発なので、体内に取り込んだ物質が体外へ排出される速度が早いためで、 1歳では9日、9歳では38日です。そのため、急性摂取による内部被ばく量の推定は、1歳では一か月程度、9歳では半年程度が限界となります。

なお、ヨウ素 131 のように半減期が短い放射性核種は、東京電力福島第一原子力発電所事故後の時間経過により減衰してしまった後は検出することができません。また、ストロンチウム 90 は β (ベータ)線を出し、 γ (ガンマ)線は出しませんので、ホールボディ・カウンタでは測ることはできません。

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

出典の公開日: 平成 24年4月13日 本資料への収録日: 平成29年3月31日

23

QA2-18 尿中のセシウムで内部被ばくを推定できますか。また、今回の東京電力福島第一原子力発電所事故前にはどうだったのですか。

A

- ① 1日分の尿を使用すれば、ある程度推定することができます。
- ② ただし、セシウムの尿中への排泄には個人差や年齢差が大きく、推定には 比較的大きな誤差が含まれます。
- ③ 事故前にも大気圏核実験の影響等により、尿中にセシウム137が少量検出されていました。

統一的な基礎資料の関連項目

上巻 第2章 57ページ「摂取量の推定のための放射能測定法|

上巻 第2章 58ページ「体内放射能の評価法の比較」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

QA2-19 毎時 3.8 マイクロシーベルト(μSv)を年間被ばく線量 20 ミリシーベルト(mSv)に相当すると考える根拠は何ですか。

A

- ① 1日の滞在時間を屋外8時間、屋内(遮へい効果(0.4倍)を16時間と仮 定して、空間線量率から年間の被ばく線量を推計しています。
- ② これまでの調査では、年内の被ばく線量推計値より実際の被ばく線量が低くなっていることが確認されています。
 - ※ミリ(m)は 10^{-3} (=千分の1)、マイクロ(μ)は 10^{-6} (=百万分の1)を表す単位です。

統一的な基礎資料の関連項目

上巻 第2章 51ページ「遮へいと低減係数」

上巻 第2章 52ページ「事故後の追加被ばく線量(計算例)」

(解説)

具体的な計算方法は、以下のとおりです。

年間被ばく積算線量の推計式

年間 20 ミリシーベルト (mSv) = 1 日の被ばく線量 × 365 日

 \downarrow

屋内での被ばく線量 [3.8 マイクロシーベルト (μSv) × 16 時間 × 0.4 (低減効果) *1] +

屋外での被ばく線量 [3.8 マイクロシーベルト(µSv) × 8 時間]

※1:木造家屋の低減効果 0.4 は、国際原子力機関 (IAEA) がまとめた 「Planning for Off-Site Response to Radiation Accidents in Nuclear Facilities (IAEA TECDOC 225)」によるもの。 ※2:上記計算式では、①内部被ばく、②放射性物質の物理減衰やウェザリング効果 *3 を考慮していない。これは、①による線量増加分と②による線量減少分が相殺されると仮定しているため。

※3:ウェザリング効果 風雨等の自然要因によって放射性物質が移行し、その場の放射能が低減すること

出典:「福島県内の学校の校舎・校庭等の利用判断における暫定的考え方について」(平成 23

年4月19日原子力災害対策本部)より作成

出典の公開日:平成23年4月19日

本資料への収録日:平成29年3月31日

QA2-20 年間の追加被ばく線量 1 ミリシーベルト(mSv/年)と、空間線量 率毎時 0.23 マイクロシーベルト(µSv/h)の関係について教えて ください。

A

- ① 空間線量率・毎時 0.23 マイクロシーベルト(µSv/h)という値は、安全側に立った仮定の下で、年間追加被ばく線量1ミリシーベルト(mSv/年)を空間線量率に換算したものです。
- ② 換算の具体的な考え方は次のとおりです。
 - ・追加被ばく線量年間1ミリシーベルト(mSv/年)を、一時間当たりに換算すると、毎時0.19マイクロシーベルト(µSv/h)と考えられます。(1日のうち屋外に8時間、屋内(遮へい効果(0.4倍)のある木造家屋)に16時間滞在するという生活パターンを仮定)
 - ・放射線量率を測定する場合、自然放射線(日本平均は、毎時 0.04 マイクロシーベルト(µSv/h))も併せて測定されるため、これを加え、0.19+0.04=0.23 となります。
 - ※ミリ (m) は 10^{-3} (千分の 1)、マイクロ (μ) は 10^{-6} (百万分の 1) を表す単位です。

統一的な基礎資料の関連項目

上巻 第2章 42ページ「実効線量と線量当量の値の違い」

上巻 第2章 49ページ「外部被ばく(測定)」

上巻 第2章 51「遮へいと低減係数」

上巻 第2章 52ページ「事故後の追加被ばく線量(計算例)」

(解説)

追加被ばく線量は、空間線量率の測定によりある程度推測することができます。追加被ばく線量年間 1 ミリシーベルト(mSv/年)は、安全側に立った仮定の下で一時間当たりの空間線量率に換算すると、毎時 0.23 マイクロシーベルト(μ Sv/ h)に当たります。

追加被ばく線量の考え方

- ① 事故とは関係なく、自然界の放射線が元々存在し、大地からの放射線は、毎時 0.04 マイクロシーベルト(µSv/h)です。
- ② 1日のうち屋外に8時間、屋内(遮へい効果(0.4 倍)のある木造家屋)に16時間 滞在するという生活パターンを仮定すると、追加被ばく線量年間1ミリシーベルト (mSv/年)は、毎時0.19 マイクロシーベルト(µSv/h)と考えられます。
 - ※毎時0.19 マイクロシーベルト (μ Sv/h) × (8 時間 + 0.4 × 16 時間) × 365 日 = 年間 1 ミリシーベルト (μ Sv/年)
- ③ 航空機モニタリング等による空間線量率の測定では、事故による追加被ばく線量に加え、自然界からの放射線のうち、大地からの放射線分(毎時 0.04 マイクロシーベルト (µSv/h)) も測定されるため、 0.19+0.04= 毎時 0.23 マイクロシーベルト (µSv/h)が、追加被ばく線量年間1ミリシーベルト (mSv/年) に当たります。

出典:環境省「追加被ばく線量年間1ミリシーベルトの考え方」より作成

出典の公開日: (出典1) 平成23年10月10日

QA2-21 外部被ばく量を空間線量率と個人線量計で評価する方法がありますが、どう違うのですか。

A

- ① 空間線量率は、ある場所の時間当たりの放射線量のことです。ある場所における平均的な外部被ばく量を推測することができます。
- ② 個人線量計は、体に装着して計測するので、その人が実際に受けた放射線 の積算量の計測が可能です。
- ③ 空間線量率だけでは、一人一人が日常的にどれだけの放射線を受けている のかは分かりませんが、個人線量計を一定期間身につけて測定することで、 その人が実際に受けた放射線の量を把握することができます。
- ④ また、空間線量率の測定器は、過小評価を防ぐため、常に実効線量*よりも大きな値になるように設定されており、その測定値は個人線量計の値より大きな数値となります。

※実効線量:個々の臓器や組織が受ける影響を総合して全身への影響を示すもの。

統一的な基礎資料の関連項目

上巻 第2章 41ページ「線量当量; 実効線量を導く、測定可能な実用量)」

上巻 第2章 42ページ「実効線量と線量当量の値の違い」

上巻 第2章 49ページ「外部被ばく (測定)」

出典:①除染情報プラザ:なすびのギモン「空間線量と個人線量ってどう違うの?」、②環境省「除染に関する有識者との意見交換会ファクトブック」及び③統一的な基礎資料第2章42ページ「実効線量と線量当量の値の違い」より作成

出典の公開日: ①平成 25 年 11 月 20 日、②平成 26 年 8 月 1 日、③平成 29 年 3 月 31 日本資料への収録日: 平成 29 年 3 月 31 日

QA2-22 実効線量,周辺線量当量,空気吸収線量とは、どういうものですか。 またそれらの値と個人線量計の数値とは、どのような関係がありま すか。

A

- ① 空気吸収線量は物理的に測定可能な量です。実効線量は、人体に与える影響を評価するもので、計算により求められます。周辺線量当量は、作業環境における実効線量にできるだけ近い値が得られるような条件を設定してサーベイメータ等で測定可能とした実用量です。
- ② 空気吸収線量とは、空気に吸収された放射線のエネルギーを測定して求められる物理量です。周辺線量当量とは、作業環境モニタリングで用いられる放射線の実用量です。
- ③ 一般的な均等な放射線被ばくの環境では、個人線量計の数値は実効線量に近い値を示します。
- ④ 周辺線量当量などの実用量は、個人線量計の値よりも高い値が出るいかなる ときにも実効線量を下回らないように定義されています。

統一的な基礎資料の関連項目

上巻 第2章 36ページ「単位間の関係」

上巻 第2章 37ページ「グレイからシーベルトへの換算」

上巻 第2章 38ページ「様々な係数」

上巻 第2章 39ページ「等価線量と実効線量の計算」

上巻 第2章 40ページ「線量概念:物理量、防護量、実用量」

上巻 第2章 41ページ「線量当量:実効線量を導く、測定可能な実用量」

上巻 第2章 42ページ「実効線量と線量当量の値の違い」

出典:放射線による健康影響等に関する統一的な基礎資料上巻36~42ページ「単位間の関係」、「グレイからシーベルトへの換算」、「様々な係数」、「等価線量と実効線量の計算」、「線量概念:物理量、防護量、実用量」、「線量当量:実効線量を導く、測定可能な実用量」及び「実効線量と線量当量」より作成

出典の公開日: 平成28年6月1日および平成29年3月31日

QA2-23 事故後 5 年目でも土壌等に沈着しているセシウムが検出されていますが、内部被ばくにどの程度寄与しますか。

A

福島県では、平成 23 年の 6 月からホールボディ・カウンタによる住民の内部被ばく検査を行っています。平成 24 年の 2 月 1 日以降の検査では、1 ミリシーベルト (mSv) 以上の預託実効線量*が測定された方は、265,439 人中、1 人という結果でした。よって土壌等に沈着しているセシウムによる内部被ばくによる身体への影響は、ほとんどないと考えられます。

※預託実効線量: 平成24年1月までは3月12日の1回摂取と仮定、2月以降は平成23年3月12日から検査日前日まで毎日均等な量を継続して日常的に経口摂取したと仮定して、体内から受けると思われる内部被ばく線量について、成人で50年間、子供で70歳までの線量を合計したもの。

統一的な基礎資料の関連項目

上巻 第2章 52ページ「事故後の追加被ばく線量(計算例)」

上巻 第2章 53ページ「内部被ばく線量の算出」

下巻 第10章 197ページ「ホールボディ・カウンタによる内部被ばく検査の実施結果」

出典:統一的基礎資料下巻 第10章197ページ「ホールボディ・カウンタによる内部被

ばく検査の実施結果」より作成

出典の公開日: 平成 25 年 3 月 31 日

QA2-24 ストロンチウム 90 は、どのように測定しているのか教えてください。

A

- ① ストロンチウム 90 は β (ベータ) 線しか放出しないので、測定には測定用 試料を前処理する必要があり、時間と手間がかかります。
- ② 水試料の場合では、水分を蒸発させたり、特殊な吸着材を使うなど、ストロンチウムを濃縮して β (ベータ) 線専用の測定器で測定します。
- ③ 固形の試料の場合、加熱して灰にして化学処理によりストロンチウムだけを分離して β (ベータ) 線専用の測定器で測定します。

統一的な基礎資料の関連項目

下巻 第8章 81ページ「食品中の放射性物質に関する検査の手順)」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

QA2-25 土壌や農林水産物等の環境試料中のプルトニウムは、どのように測定するのですか。

A

- ① プルトニウムを測定する場合、プルトニウムだけを分離し、測定のために 行う前処理等**に**手間と時間を要します。
- ② 環境モニタリング等で測定されるプルトニウムの同位体は、プルトニウム 238、 プルトニウム 239、プルトニウム 240 で、これらはα(アルファ)線を放 出します。
- ③ 測りたい試料からプルトニムだけを抽出し、濃縮します。土壌試料の場合は、プルトニウムを分離精製し、ステンレス板上に電着(メッキ)してから、出てくる α (アルファ)線をシリコン半導体検出器を用いて測定し、プルトニウムを定量します。このとき、測定データはプルトニウム 239 と同 240 の合計と、プルトニウム 238 に分けて測定されます。

統一的な基礎資料の関連項目

下巻 第7章 63ページ「プルトニウム、ストロンチウム(福島県東部、広域)」 下巻 第7章 64ページ「プルトニウム(福島県)」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

QA2-26 東京電力福島第一原子力発電所周辺で見つかったプルトニウム 239、 240、241 は、どのように測定されたのですか。

A

- サンプルを加熱して灰にしたものを硝酸で溶かし、特殊な樹脂を用いて分離し、プルトニウムを回収します。通常は、ここでα(アルファ)線を測定してプルトニウム 239 とプルトニウム 240 の和を計算しますが、この場合、プルトニウム 241 の測定は困難です。
- ② 更に分離を繰り返し、プルトニウムの純度を高めたサンプルを、高分解能 ICP-MS (質量分析装置の一種)を用いて測定して、プルトニウム 239、プルトニウム 240、プルトニウム 241 をそれぞれ分けて測定します。
- ③ プルトニウムの測定は、プルトニウムを扱う許可を得た機関でないとできませんので、分析できる機関は限られています。

統一的な基礎資料の関連項目

下巻 第7章 64ページ「プルトニウム(福島県)」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

QA2-27 東京電力福島第一原子力発電所事故の前には、身の回りに放射線は なかったのですか。

A

- ① 私たちは原子力発電所の事故とは関係なく、日常生活をする中で自然界からある程度の量の放射線を受けています。
- ② 自然界にはもともと、宇宙・大地から受ける放射線や、食品中のカリウム40、 空気中のラドンなど自然由来の放射性物質から受ける放射線があります (自然放射線)。また、放射線検査等医療で受ける放射線(人工放射線)が 知られています。

統一的な基礎資料の関連項目

上巻 第2章 62ページ「自然・人工放射線からの被ばく線量」 上巻 第2章 64ページ「年間当たりの被ばく線量の比較」

出典:消費者庁「食品と放射能 Q&A」(第10版)より作成

出典の公開日: 平成28年3月15日 本資料への収録日: 平成29年3月31日

QA2-28 昔の核実験でできた放射性物質が今も残っているというのは、本当ですか。

A

セシウム137やストロンチウム90の半減期は約30年ですから、1945年から 1980年にかけてアメリカ、フランス、旧ソ連、中国などが行った大気圏内での 核実験により生成されたものが残っています。

統一的な基礎資料の関連項目

上巻 第2章 75ページ「大気圏核実験による放射性降下物の影響」

出典:日本の環境放射能と放射線ウェブサイト Q&A より作成

出典の公開日:平成17年10月24日 本資料への収録日:平成29年3月31日

QA2-29 雨の日に一時的に空間線量率が高くなるのは、なぜですか。

A

- ① 大気中に存在する天然の放射性物質(ラドンの娘核種)の影響です。
- ② 空気中のラドンの娘核種が雨で地表面に落ち、地表近くの空間線量率を上げます。
- ③ そして、この現象は自然放射線によるものですので、今回の原子力発電所の事故以前にも観測されています。

統一的な基礎資料の関連項目

上巻 第2章 68ページ「屋内ラドン」

上巻 第2章 70ページ「固体のラジウムから気体のラドンの生成」

(解説)

(参考資料)

新潟県「天気や場所により放射線量が違う理由について教えて」

http://www.pref.niigata.lg.jp/houshasen/1206291659936.html

福井県原子力環境監視センター「空間放射線量率の変動」

http://www.houshasen.tsuruga.fukui.jp/pages/hendou.html

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

QA2-30 東京電力福島第一原子力発電所事故以前にも、食品中にセシウムや ストロンチウムが入っていたのですか。

A

- ① 大気圏内核実験が行われていた 1945 年から 1980 年にかけては、大気中で 人工放射性核種が生成され、その中でも生成量が多く半減期が約 30 年と長 いストロンチウム 90 やセシウム 137 が、現在でも微量に残っています。
- ② その影響で、1960 年代には食品中にもストロンチウム 90 やセシウム 137 が微量に検出されていましたが、近年はほとんどが検出限界以下のものとなっています。
- ③ チェルノブイリ原発事故後には、ごく一部の輸入食品の中に放射性物質の規制値を超える食品が発見されましたが、廃棄されたり輸出元に送り返されたりしました。

統一的な基礎資料の関連項目

上巻 第2章 75ページ「大気圏核実験による放射性降下物の影響」 上巻 第4章 172ページ「核実験フォールアウトの影響(日本)」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

第3章 放射線による健康影響

QA3-1 確定的影響と確率的影響の違いは何ですか。

A

- ① 確定的影響とは、大量の放射線を浴びることで細胞死が起こり、組織や臓器の機能喪失や形態異常が起こることです。
- ② 確率的影響とは、細胞の突然変異により発生する影響です。
- ③ 確定的影響にはしきい線量*があり、確率的影響にはしきい線量はありません。
 - ※しきい線量: これ以上放射線を浴びると症状が現れ、これ未満では症状が現れないという線量のこと。

統一的な基礎資料の関連項目

上巻 第3章 80ページ「確定的影響と確率的影響」

上巻 第3章 86ページ「確定的影響」

上巻 第3章 88ページ「確率的影響」

出典:放射線による健康影響等に関する統一的な基礎資料上巻 P.80「確定的影響と確率

的影響」より作成

出典の公開日:平成28年6月1日

QA3-2 放射線は、人体へどのような影響を与えるのですか。

A

- ① 人体は放射線を受けると、そのエネルギーにより細胞の中の DNA (遺伝子) の一部に損傷を受けます。しかし、生物には DNA の損傷を修復する仕組み が備わっており、ほとんどの細胞は修復され元に戻ります。
- ② 一度に大量の放射線を受けると、細胞死が多くなり、細胞分裂が盛んな組織に急性の障害が起こる等の健康影響(確定的影響)が生じます。
- ③ 受けた放射線の量が急性の障害等が起こらない量であった場合でも、まれに修復が完全でない細胞が増殖して、がん等の健康影響(確率的影響)が生じることがあります。

統一的な基礎資料の関連項目

上巻 第3章 77ページ「影響の種類」

上巻 第3章 81ページ「放射線による電離作用」

上巻 第3章 82ページ「DNAの損傷と修復」

上巻 第3章 83ページ「DNA→細胞→人体」

出典:消費者庁「食品と放射能 Q&A」(第10版)より作成

QA3-3 東京電力福島第一原子力発電所事故で放出されたプルトニウムやストロンチウムによる健康影響はありますか。

A

- ① どちらも健康に影響はありません。
- ② 事故後に行われた国の土壌調査で検出されたプルトニウム、放射性ストロンチウムのどちらの量も微量で、事故前の測定値と同じ範囲でした。
- ③ なお、今回の原発事故では、粒子質量の大きなプルトニウムが拡散した範囲は、非常に狭い範囲でした。元々自然界にはほとんど存在しないプルトニウムが現在の土壌中に存在しているのは、大気圏内の核実験に由来するものです。またその量もごく僅かですので、健康への影響はありません。

統一的な基礎資料の関連項目

下巻 第7章 63ページ「プルトニウム、ストロンチウム(福島県東部、広域)」

(解説)

【プルトニウム】

プルトニウムは元々自然界にはほとんど存在しない核種です。しかし、現在では微量ですが土壌中に存在しています。これはインドや中国などによる大気圏内の核実験が1950(昭和25)年から1960(昭和35)年代に盛んに行われ、その後1980(昭和55)年まで続いたことに由来するものです。これが、土壌に吸着されて未だに残っているわけです。今回の事故で測定されたプルトニウムは極めて微量で、上記の核実験に由来するものとほぼ同じレベルであり、この程度であれば、健康への影響はありません。

また、プルトニウムは融点が約 640℃、沸点は約 3,200℃ですから、セシウムやヨウ素のように低い温度で液化したり気化することはありません。したがって、現時点では健康に影響が出るような量のプルトニウムが広範囲に飛散することはありませんが、今後も調査を継続し、その汚染の広がりを慎重に確認していく必要があります。

【ストロンチウム】

平成23年9月に文部科学省が公表した環境中の放射性ストロンチウムの測定結果によれば、 土壌に含まれる放射性ストロンチウムの濃度の平均は、放射性セシウムに比べて100分の1以 下と、かなり低い数値です。

測定結果から算出した放射性ストロンチウムによる 50 年間の積算実効線量は、最も高い地点でも 0.12 ミリシーベルト (mSv) 程度です。つまり、最も高い地点に 50 年間とどまったとしても、放射性ストロンチウムで被ばくする外部被ばくと内部被ばくを合わせた線量は極めて限られた数値であるといえます。このため、放射性セシウムに関する対策をきちんとしておけば、放射性ストロンチウムに関する対策も十分取れていると考えられます。

(参考資料)

- ・原子力規制庁「環境放射線データベース」http://search.kankyo-hoshano.go.jp/servlet/search.top
- ・東京電力 ウェブサイト「福島第一原子力発電所周辺環境への影響|アーカイブ」 http://www.tepco.co.jp/nu/fukushima-np/f1/index2-j.html#anchor05

出典:①放射線医学総合研究所ウェブサイト「放射線被ばくに関する Q&A」、②長崎大学「放射線・放射性物質 Q & A (2)」より作成

出典の公開日: ①平成23年9月27日、②平成25年3月11日

QA3-4 私は妊婦です。胎児への放射線の影響はありませんか。

A

- ① 原爆被爆者の調査では、妊娠期間中に 100 ミリシーベルト (mSv) 以下では胎児への影響は見られていません。
- ② 今回の事故の影響で受ける累積の放射線量は、世界各地で受ける自然放射線の累積量の違いの範囲内におさまる程度であると考えられます。
- ③ 妊婦だからといって過度に心配する必要はありませんので、いつもどおりの健康管理に努めてください。

統一的な基礎資料の関連項目

上巻 第3章 92ページ「確定的影響と時期特異性」

上巻 第3章 93ページ「精神発達遅滞」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

QA3-5 被ばくの影響は、遺伝しますか。

A

ヒトでは被ばくの影響が遺伝することは確認されていません。原爆被爆者二世の健康影響調査でも、影響は認められていません。

統一的な基礎資料の関連項目

上巻 第1章 95ページ「被爆二世における染色体異常」 上巻 第1章 96ページ「ヒトでの遺伝性影響のリスク」

出典:放射線による健康影響等に関する統一的な基礎資料上巻 95、96 ページ「被爆二世

における染色体異常」、「ヒトでの遺伝性影響のリスク」

出典の公開日:平成28年6月1日

QA3-6 東京電力福島第一原子力発電所事故による放射線の観点から、今後 妊娠しても大丈夫でしょうか。

A

- ① 原爆被爆後に妊娠して産まれた子供(二世)については、発がんの上昇や遺伝子の変化等の影響は確認されていません。
- ② 東京電力福島第一原子力発電所事故に関連して受けた放射線量は少ないため、新生児に放射線が原因で何らかの遺伝的異常が現れるとは考えにくい状況です。

統一的な基礎資料の関連項目

上巻 第3章 95ページ「被爆二世における染色体異常」 上巻 第3章 96ページ「ヒトでの遺伝性影響のリスク」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

QA3-7 チェルノブイリで白血病が増えたと聞きました。本当でしょうか。

A

チェルノブイリ原発事故による放射線影響として、白血病の発症リスク増加は、住民において確認されていません。

(解説)

チェルノブイリ原発事故では様々な疾病について放射線影響健康調査が行われました。しかし、白血病については、事故との因果関係は現在までに確認されていません。

国	白血病症例数		全がん症例数		標準化罹患比(SIR)	
	観察数	期待数	観察数	期待数	白血病	全がん
汚染地域の住民						
ベラルーシ	281	302	9,682	9,387	93	103
ロシア	340	328	17,260	16,800	104	103
ウクライナ	592	562	22,063	22,245	105	99

この表は1986年から1987年にチェルノブイリ原発事故によって引き起こされた汚染地域の住民おける1993年と1994年のがん罹患を分析した調査結果です。3か国において有意な増加が確認されませんでした。汚染地域とは、セシウム137沈着密度が1平方メートル当たり185キロベクレル(kBq/m²)以上の地域を指します。UNSCAR2000年報告書では、放射線に関係した白血病のリスクの増加は事故処理作業者でも汚染した地域の住民でもみられていないと報告しています。

その後、作業者について、統計学的には有意ではないものの白血病罹患率の相対リスクの上昇がみられたとの研究報告や 1986 年に雇用された作業者とそれより線量が低かった 1987 年に雇用された作業者の白血病の罹患率を比較したところ前者のグループは約2倍であったとの研究報告もみられました。このような報告はあるものの UNSCAR2008 年報告書では有意な増加があることを説明するのに決定的であるというにはほど遠いとの見解を示しています。

一般公衆に関しては、胎児か小児期に被ばくした人々における白血病リスクに、測定可能 な増加があることを示唆する説得力のある証拠は見いだされていないと報告しています。

出典: ①UNSCEAR2000年報告書付属書、②UNSCEAR放射線の線源と影響 原子放射線の 影響に関する国連科学委員会UNSCEAR2008年報告書[日本語版] 第2巻:影響 科学的附 属書C・D・E

出典の公開日: ①平成12年10月27日、②平成25年7月5日

QA3-8 微量の尿中セシウムによって、膀胱がんが増加するのですか。

A

- ① 微量の尿中セシウムによって、膀胱がんが増加したり、膀胱がんに進展する膀胱炎が起こったりすることはないと考えられています。
- ② チェルノブイリ原発事故による放射線被ばくによる健康影響では、小児の 甲状腺がんの過剰発生データ以外の根拠は明らかではないと結論付けられ ています。

統一的な基礎資料の関連項目

上巻 第3章 123ページ「小児甲状腺がんの発症時期」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

QA3-9 放射線による子供への健康影響について教えてください。

A

- ① 子供は、大人と比較して甲状腺や皮膚への放射線による健康影響が大きいことが知られています。
- ② ただし、全身線量で 100 ミリシーベルト (mSv) 以下の低線量被ばくでは、 他の要因による発がんの影響によって隠れてしまうほど小さいため、放射 線による発がんリスクの増加、年齢層の違いによる発がんリスクの差は明 らかになっていません。

統一的な基礎資料の関連項目

上巻 第3章 99ページ「年齢による感受性の差」

上巻 第3章 104「被ばく時年齢と発がんリスクの関係」

出典: ICRP publication 103 より作成

出典の公開日:平成19年3月

QA3-10 子供の甲状腺がんのリスクは、どれくらいですか。

A

子供の甲状腺がんのリスクは、1,000 人の子供が甲状腺に 100 ミリシーベルト (mSv) 被ばくしたとき、1,000 人中 2 人が発症する程度と試算できます。

統一的な基礎資料の関連項目

上巻 第3章 119ページ「甲状腺がんと線量との関係」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

出典の公開日:平成24年4月13日

QA3-11 ヨウ素131は、半減期が短いため、今調べてもどれくらい被ばくしたのか分からないと聞きました。子供が本当はたくさん被ばくしていて、将来甲状腺がんになってしまうのではないかと心配です。

A

- ① 東京電力福島第一原子力発電所事故発生後にヨウ素131を対象とした検査 の数は限られますが、これらの結果から甲状腺に高い内部被ばくを受けた 子供は確認されていません。
- ② また、事故後早い段階で防護措置が図られたことから、福島県の子供の ヨウ素131による甲状腺の被ばくは、チェルノブイリ原発事故における避 難住民のそれと比較して相当低く抑えられたものと推定されています。
- ③ ただし、今後も、事故初期の内部被ばく線量について正確な推計を続けていることが重要です。

統一的な基礎資料の関連項目

下巻 第 10 章 195 ページ「小児甲状腺スクリーニング調査」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する O&A」より作成

出典の公開日: 平成 25 年 10 月 31 日本資料への収録日: 平成 29 年 3 月 31 日

QA3-12 チェルノブイリ原発事故の後、周辺地域に住んでいた子供たちに甲 状腺がんが多発したと聞きました。実際には、どれくらいの線量を 被ばくしていたのですか。

A

国連科学委員会(UNSCEAR)の報告書によれば、ベラルーシ、ロシア、ウクライナの汚染地域の住民全体における1986年の甲状腺線量は、102ミリグレイ(mGy)、未就学児では289ミリグレイ(mGy)と推定されています。

※グレイ(Gy):放射線を受けた物質が吸収するエネルギー量の単位

統一的な基礎資料の関連項目

上巻 第1章 36ページ「単位間の関係」

上巻 第3章 121ページ「チェルノブイリ原発事故 避難集団の被ばく」

(解説)

(参考資料)

原子放射線の影響に関する国連科学委員会 (UNSCEAR) 2008 年報告書第 2 巻附属書 D 「チェルノブイリ事故からの放射線による健康影響」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

QA3-13 原子力発電所の事故によって大気中に放出された放射性物質は、人にどのような影響がありますか。被ばくした量との関係、特に 100 ミリシーベルト(mSv)の意味について教えてください。

A

- ① 大気中に放出された放射性物質による放射線被ばくの影響は、受けた放射線の量に依存します。
- ② 受けた線量が高いほど数年後から数十年後にがんになる危険性が高まると考えられています。
- ③ 原爆被爆者を主とした疫学調査では、100 ミリシーベルト (mSv) 以上の線量では、線量が高いほどがん死亡が増加することが確認されていますが、100 ミリシーベルト (mSv) 以下の線量では、放射線によりがん死亡が増えることを示す明確な証拠はありません。

統一的な基礎資料の関連項目

上巻 第3章127ページ「低線量率被ばくによるがん死亡リスク」

上巻 第3章 129ページ「がんのリスク(放射線)」

上巻 第3章 130ページ「がんのリスク(生活習慣)」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

QA3-14 低線量被ばくによる健康への影響は、どのようなものですか。

A

- ① 放射線による発がんのリスクは、被ばく線量が 100 ミリシーベルト (mSv) 以下の場合は、他の要因による発がんの影響に隠れてしまうほど小さいことが分かっています。
- ② 積算した線量が同じであるときは、低線量率の環境で長期間にわたって被ばくした場合の健康影響は、短時間で被ばくした場合よりも小さいと推定されています。

統一的な基礎資料の関連項目

上巻 第3章 127ページ「低線量率被ばくによるがん死亡リスク」

出典: ICRP publication 103 より作成

出典の公開日:平成19年3月

QA3-15 放射線による健康リスクは、その他の健康リスクと比較するとどの 程度ですか。

A

- ① 1,000~2,000 ミリシーベルト (mSv) の被ばくによるがんの相対リスクは、 喫煙や大量飲酒 (毎日3合以上) と同等です。
- ② 200~500 ミリシーベルト (mSv) では、肥満、やせ、運動不足等と同等です。
- ③ 100~200 ミリシーベルト (mSv) では、野菜不足等と同等です。

統一的な基礎資料の関連項目

上巻 第3章 129ページ「がんのリスク(放射線)」 上巻 第3章 130ページ「がんのリスク(生活習慣)」

出典:放射線による健康影響等に関する統一的な基礎資料上巻 第3章129-130ページ「がんのリスク (放射線)」、「がんのリスク (生活習慣)」より作成

出典の公開日: 平成 25 年 3 月 31 日

第4章 防護の考え方

OA4-1 放射線安全防護基準を決める際の科学的根拠は何ですか。

A

- ① 原子放射線の影響に関する国連科学委員会(UNSCEAR)は、幅広い研究結果を包括的に評価し、国際的な科学コンセンサスをまとめ、報告書の形で発表しています。
- ② この UNSCEAR の評価は、各国政府や国連機関が電離放射線に対する防護 基準と防護のためのプログラムを作成するための科学的基盤となっていま す。
- ③ 国際放射線防護委員会 (ICRP) では、国連科学委員会の報告等を参考にし ながら、放射線防護の枠組みに関する勧告を行っています。

統一的な基礎資料の関連項目

上巻 第4章 149ページ「放射線防護体系」

出典:放射線による健康影響等に関する統一的な基礎資料上巻第4章149ページ「放射性

防護体系」より作成

QA4-2 今回の東京電力福島第一原子力発電所事故に対して定められた放射線に関する基準は、外国に比べて甘いのではないですか。

A

- ① 国際的な基準を参考にして決められています。外国に比べて甘い基準では ありません。
- ② 例えば、東京電力福島第一原子力発電所事故後に定められた避難の基準と 除染の目標は、国際放射線防護委員会(ICRP)の2007(平成19)年勧告 に基づいています。
- ③ また、食品中の放射性セシウム濃度の規制値は、欧州連合加盟国や米国の規制値に比べて低くなっています。

統一的な基礎資料の関連項目

上巻 第4章 152ページ「被ばく状況と防護対策」

上巻 第4章 160ページ「国際放射線防護委員会(ICRP)勧告と国内法令の比較」

上巻 第4章 161ページ「国際放射線防護委員会 (ICRP) 勧告と我が国の対応」

上巻 第4章 162ページ「食品の規制値の比較」

下巻 第8章 67ページ「平成24年4月からの基準値」

下巻 第8章 73ページ「基準値設定の考え方◆基準値の根拠」

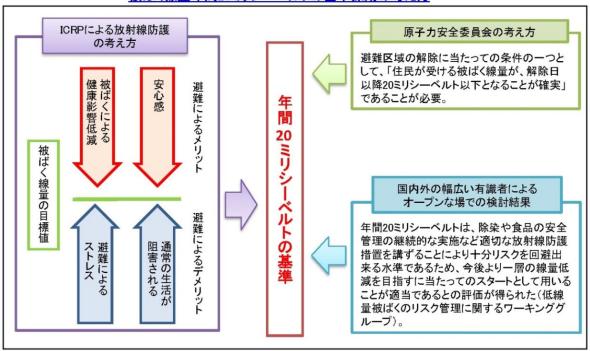
出典: ①国際放射線防護委員会(ICRP) 2007年勧告、②放射線による健康影響等に関する統一的な基礎資料 上巻160-162ページ「線量限度『国際放射線防護委員会(ICRP) 勧告と国内法令の比較』」、「国際放射線防護委員会(ICRP) 勧告と我が国の対応」、「食品の規制値の比較」より作成

出典の公開日: ①平成19年12月18日、②平成25年3月31日

QA4-3 避難指示基準を年間 20 ミリシーベルト(mSv)としたのは、チェルノブイリ事故の際の基準とは違うのですか。

A

- ① チェルノブイリ原発事故においては、事故直後は年間100ミリシーベルト (mSv)を避難基準として採用したのに対し、東京電力福島第一原子力発 電所事故においては、事故直後から年間20ミリシーベルト (mSv) を採用しました。
- ② 国際放射線防護委員会 (ICRP) では、原発事故等の緊急時の対策について、各国政府は年間 20~100 ミリシーベルト (mSv) の範囲で、それぞれの国や事故により被災した現地が置かれている状況を総合的に考慮して避難指示の基準を決定するよう勧告しています。日本政府は東京電力福島第一原子力発電所事故時に住民の安心を最優先し、事故直後から最も厳しい値である年間 20 ミリシーベルト (mSv) を避難指示の基準として採用しています。


統一的な基礎資料の関連項目

上巻 第4章 152ページ「被ばく状況と防護対策」

上巻 第4章 161ページ「国際放射線防護員会(ICRP)勧告と我が国の対応」

(解説)

被ばく線量年間20ミリシーベルトの基準採用の考え方

出典:「年間20ミリシーベルトの基準について」(平成25年3月原子力被災者生活支援

チーム) より作成

QA4-4 東京電力福島第一原子力発電所事故の前に大気圏内核実験等で生成されたストロンチウム90やセシウム137が、現在でも一般の環境に残っているのは、なぜですか。

A

- ① 最後の大気圏内核実験は1980(昭和55)年、チェルノブイリ原発事故が起こったのは1986(昭和61)年ですがストロンチウム90とセシウム137の半減期は、それぞれ29年、30年なので、まだ半分程度は残っていることになります。
- ② 大気圏内核実験ではウランやプルトニウムが核分裂して、多くの人工放射 性物質が生成されますが、その中でも、ストロンチウム90とセシウム137 は多く生成される核種の一つです。
- ③ 核実験やチェルノブイリ原発事故で大気中に放出されたものが、日本にも降ってきて土壌に沈着しました。

統一的な基礎資料の関連項目

上巻 第2章 75ページ「大気圏核実験による放射性降下物の影響」 上巻 第4章 172ページ「核実験フォールアウトの影響(日本)」

出典:日本の環境放射能と放射線ウェブサイト Q&A より作成

出典の公開日: 平成 17 年 10 月 24 日本資料への収録日: 平成 29 年 3 月 31 日

第5章 国際機関による評価

QA5-1 東京電力福島第一原子力発電所事故について、世界保健機構(WHO) や国連科学委員会(UNSCEAR)では、どのような評価を行ってい るのでしょうか。

A

- ① 世界保健機関(WHO)と国連科学委員会(UNSCEAR)が放射線の健康影響等の評価を行っています。
- ② 世界保健機関(WHO)は、福島事故による線量推計及び健康リスク評価を 行い、今回の事故による放射線によって、疾患の罹患の増加が確認される 可能性は小さく、福島県のいくつかの地域以外や、日本近隣諸国ではリス ク増加は無視できる水準であるとの結論を示しています。
- ③ 国連科学委員会(UNSCEAR) 2013(平成25)年次報告書は、事故により日本人が生涯に受ける被ばく線量は少なく、その結果として今後日本人について放射線による健康影響が確認される可能性は小さいとの結論を示しています。

統一的な基礎資料の関連項目

上巻 第 5 章 177 ページ「WHO 報告書と UNSCEAR2013 年報告書(1/3)・評価の比較 (1/2)全体概要」

上巻 第5章 178 ページ「WHO 報告書と UNSCEAR2013 年報告書(2/3)・評価の比較 (2/2)公衆の線量評価と主な不確かさ」

(解説)

(参考資料)

世界保健機関(WHO)による線量推計及び健康リスク評価の報告書:

- Preliminary dose estimation from the nuclear accident after the 2011 Great East Japan Earthquake and Tsunami (2012)
- Health risk assessment from the nuclear accident after the 2011 Great East Japan earthquake and tsunami, based on a preliminary dose estimation (2013)

原子放射線の影響に関する国連科学委員会(UNSCEAR)年次報告書(2013年):

•SOURCES, EFFECTS AND RISKS OF IONIZING RADIATION UNSCEAR 2013, Report, Volume I, REPORT TO THE GENERAL ASSEMBLY SCIENTIFIC ANNEX A: Levels and effects of radiation exposure due to the nuclear accident after the 2011 great east-Japan earthquake and tsunami (2013)

出典:放射線による健康影響等に関する統一的基礎資料第5章 177-178ページ「WHO報

告書と UNSCEAR2013 年報告書・評価の比較」より作成

出典の公開日: 平成 27 年 3 月 31 日 本資料への収録日: 平成 29 年 3 月 31 日

第6章 事故の状況

QA6-1 東京電力福島第一原子力発電所事故とチェルノブイリ原発事故とでは、影響の度合いは違うのですか。

A

- ① 違いがあります。
- ② チェルノブイリ原発事故では原子炉が爆発することで多量の放射性物質が拡散しましたが、東京電力福島第一原子力発電所事故では、冷却できなくなったことで核燃料が溶けてしまい、気体状となった放射性物質が大気中に放出されました。
- ③ 大気への放射性物質の放出を比較すると、チェルノブイリ原発事故では、 ウランやプルトニウムなど半減期の長い核種が多いが、東京電力福島第一 原子力発電所事故では、ヨウ素やセシウムなど半減期の短い核種が多く、 その量も10分の1程度と試算されています。

統一的な基礎資料の関連項目

上巻 第2章 29ページ「国際原子力事象評価尺度」 下巻 第6章 4ページ「事故の要因(推定)原子炉内の状況」

(解説)

東京電力福島第一原子力発電所事故における国際原子力・放射線事象評価尺度(INES) 評価の考え方については、原子力安全に関する国際原子力機関(IAEA)閣僚会議に対する 日本国政府の報告書の添付IX-9をご参照ください。

http://www.kantei.go.jp/jp/topics/2011/pdf/app-chap09.pdf

出典:原子力安全に関する IAEA 閣僚会議に対する日本国政府の報告書について(平成 23

年6月原子力災害対策本部)より作成 出典の公開日:平成23年6月原25日 本資料への収録日:平成29年3月31日

QA6-2 東京電力福島第一原子力発電所から放出されている放射性物質の量は、少なくなっているのですか。

A

- ① 東京電力福島第一原子力発電所については、平成 23 年 7 月に測定された原子力発電所の建屋上部近傍での空気を分析して得られたセシウムの放出量は約毎時 10 億ベクレル (Bq/h) でしたが、1 年後には約 100 分の1まで減少しました。
- ② 東京電力は、敷地境界付近に設置したモニタリングポストにより、常に、 同発電所から放出される放射性物質の状況を監視していますが、平成28年 12月時点では、毎時3万5千ベクレル(Bq/h)未満です。

統一的な基礎資料の関連項目

下巻 第6章6ページ「事故直後から2か月間の空間線量率(東京電力福島第一原子力発 電所敷地内及び敷地境界)」

下巻 第6章 7ページ「事故直後から2週間の空間線量率(東京電力福島第一原子力発電 所敷地内及び敷地境界)」

出典:第三八回廃炉・汚染水対策チーム会合/事務局会議より作成

出典の公開日:平成29年1月26日 本資料への収録日:平成29年3月31日

QA6-3 東京電力福島第一原子力発電所の安全性をどのように評価し、どのように規制していくのですか。

A

- ① 原子力規制委員会は平成 24 年 11 月、法律に基づき東京電力福島第一原子力発電所を、特別な管理が必要な施設として「特定原子力施設」に指定し、東京電力に対して実施計画を策定することを求めました。
- ② 東京電力から提出を受けた実施計画について、原子力規制委員会では、外 部有識者を含む「特定原子力施設監視・評価検討会」などの議論を踏まえ、 審査や検査を実施しています。

(解説)

(参考資料)

・東京電力株式会社福島第一原子力発電所に設置される原子炉施設を特定原子力施設に指 定しました。

https://www.nsr.go.jp/disclosure/law/earthquake/h24fy/1107tokutei_shitei.html

・東京電力株式会社特定原子力施設に関する保安又は特定核燃料物質の防護のための措置 に係る実施計画を受領しましたので公表します

https://www.nsr.go.jp/disclosure/law/earthquake/h24fy/1207tokutei_jyuryo.html

出典:第1回特定原子力施設監視・評価検討会より作成

出典の公開日:平成24年12月21日 本資料への収録日:平成29年3月31日

QA6-4 東京電力福島第一原子力発電所の廃炉は、どのように進められるのですか。

A

- ① 東京電力福島第一原子力発電所の廃炉は、平成 27 年 6 月に改訂された国の中長期ロードマップに基づき、30~40 年の完了を目標として安全かつ着実に進められています。
- ② 使用済燃料プールからの燃料の取り出しについて、4号機では平成26年の 12月に、1,533体の全ての燃料の取り出しが無事に完了しました。現在、 1~3号機について、瓦礫の撤去や除染など、燃料取り出しに向けた準備 を着実に進めています。
- ③ 燃料デブリの取り出しについては、格納容器内部の調査や燃料デブリ取り出し工法の開発など、世界の英知を結集して、研究開発を進めており、平成29年中に号機ごとの取り出し方針を決定する予定です。

統一的な基礎資料の関連項目

下巻 第6章 9ページ「中長期ロードマップ (2015年6月改訂)」

出典:第二回廃炉・汚染水対策関係閣僚等会議より作成

出典の公開日: 平成27年6月12日 本資料への収録日: 平成29年3月31日

QA6-5 東京電力福島第一原子力発電所の状況について教えてください。

A

- ① 原子炉建屋からの放射性物質の放出量等については、有為な変動がなく、 冷温停止状態を維持しています。
- ② また、汚染水対策については、「汚染源に水を近づけない」、「汚染水を漏らさない」、「汚染源を取り除く」の3つの基本方針に基づき、予防的かつ重層的な対策を進めており、東京電力福島第一原子力発電所の港湾外の放射性物質濃度は、法令で定める告示濃度限度に比べて十分低い状況です。

統一的な基礎資料の関連項目

下巻 第6章 9ページ「中長期ロードマップ(2015年6月改訂)」

(解説)

(参考資料)

- ・「東京電力福島第一原子力発電所・事故の収束に向けた道筋」平成 23 年 4 月決定 http://www.meti.go.jp/earthquake/nuclear/0417roadmap.html
- ・「東京電力(株)福島第一原子力発電所の廃止措置等に向けた中長期ロードマップ」 平成 23 年 12 月決定、平成 27 年 6 月 12 日改訂が最新版 http://www.kantei.go.jp/jp/singi/hairo_osensui/dai2/siryou3.pdf

出典:第三八回廃炉・汚染水対策チーム会合/事務局会議より作成

出典の公開日:平成29年1月26日 本資料への収録日:平成29年3月31日

第7章 環境モニタリング

QA7-1 モニタリングの実施状況について教えてください。

A

- ① 東京電力福島第一原子力発電所の事故以降、関係府省、福島県などが連携 して「総合モニタリング計画」を作成し、陸域、海域、食品など、様々な モニタリングを実施しています。
- ② 平成 24 年 9 月の原子力規制委員会の発足以降は同委員会の統括の下、避 難指示区域の見直しに沿って、区域ごとに放射性物質の除染が行われ、モニタリング結果などを確認した上で、住民の帰還に向けた努力が行われています。

統一的な基礎資料の関連項目

下巻 第7章 「環境モニタリング」

下巻 第8章 66ページ「食品中の放射線物質への対応の流れ」

下巻 第8章 70ページ「食品安全委員会による評価」

(解説)

各モニタリングに関する情報については、放射線モニタリングのポータルサイト(原子力規制委員会)をご参照ください。

http://www.nsr.go.jp/activity/monitoring/

出典:原子力規制委員会「総合モニタリング計画」(平成23年8月2日モニタリング調整

会議)より作成

出典の公開日:平成23年8月2日

QA7-2 放射性セシウムの沈着状況の調査は、どうなっていますか。

A

- ① 東京電力福島第一原子力発電所周辺の土壌について、放射性セシウムの沈 着量の測定を実施しています。
- ② その結果を基に、東京電力福島第一原子力発電所周辺を中心に、土壌濃度マップを作成し、公表しています。

統一的な基礎資料の関連項目

下巻 第7章 13ページ「空間線量率の推移(80km 圏内)」

下巻 第7章 21ページ「セシウム 134、セシウム 137 (広域)」

下巻 第7章 22ページ「セシウム 134、セシウム 137 (80Km 圏内)」

(解説)

(参考資料)

放射性物質の分布状況等に関する調査:

http://radioactivity.nsr.go.jp/ja/list/338/list-1.html

出典:原子力規制委員会「総合モニタリング計画」(平成23年8月2日モニタリング調整

会議)より作成

出典の公開日:平成23年8月2日

QA7-3 物理減衰やウェザリング効果は、どの程度だと考えられるのですか。

A

- ① 放射性のセシウム134の半減期は約2年、同137の半減期は約30年です。 事故後6年以上経過していますので、セシウム134の放射能は8分の1(事 故後6年として計算)以下に減っています。したがって、放射性セシウム全 体の減衰は、事故直後の放射能の60%以下(事故後6年として計算)となって います。
- ② 風雨等の自然要因による減衰(ウェザリング効果)により、推定年間被ばく線量は、更に減少すると考えられています。

統一的な基礎資料の関連項目

上巻 第2章 32ページ「原発事故由来の放射性物質」

下巻 第7章 13ページ「空間線量率の推移(80km 圏内)」

出典:放射線による健康影響等に関する統一的な基礎資料 上巻 第2章 32 ページ「原発事故由来の放射性物質」及び下巻 第7章 15 ページ「空間線量率の推移(80km 圏内)」より作成

出典の公開日: 平成 25年3月31日および平成26年3月31日

QA7-4 航空機モニタリングでは、何を測定しているのですか。

A

- ① 航空機モニタリングでは、航空機やヘリコプターを使って、地表面から放射されるγ(ガンマ)線を上空から測定し、その測定結果を基に地上から1mの高さの空間線量率に換算しています。
- ② 航空機モニタリングの特色は、里山や山林など人による測定が難しい場所 を含む広範な地域を一括して測定でき、また、地上の平均的な放射線量に 換算するのに有効な手法であることです。

統一的な基礎資料の関連項目

上巻 第2章 44ページ「様々な測定機器」

下巻 第7章 13ページ「空間線量率の推移(80km圏内)」

下巻 第7章 14ページ「空間線量率(広域)」

出典:原子力規制委員会「総合モニタリング計画」(平成23年8月2日モニタリング調整

会議)より作成

出典の公開日:平成23年8月2日

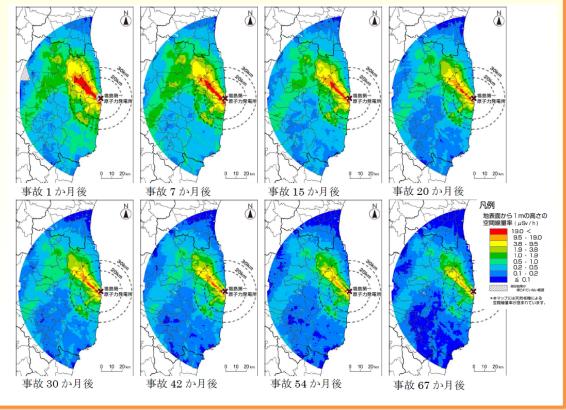
QA7-5 モニタリングポストの測定値と、実際に線量計で測定した値が異なるのはなぜですか。

A

- ① モニタリングポストは空気吸収線量率(グレイ/時(Gy/h))を測定・表示し、ウェブサイトでは実効線量率(シーベルト/時(Sv/h))に換算して表示しています。
- ② 一方、サーベイメータ等の線量計では 1cm 線量当量率(シーベルト/時 (Sv/h))を測定・表示しています。
- ③ 実効線量と 1cm 線量当量は、いずれも同じシーベルト (Sv) 単位で表しますが、1cm 線量当量は実効線量に比べて高めの値となります。
- ④ このほか、機器固有の誤差等により、測定結果に数十%の違いが出ることがあります。

統一的な基礎資料の関連項目

上巻 第2章 42ページ「実効線量と線量当量の値の違い」 下巻 第7章 19ページ「現在の空間線量率の状況」


出典: ICRP publication74 より作成

出典の公開日:平成10年3月

QA7-6 現在の放射性物質の沈着の度合いは、事故当時から変化していますか。

A

- ① 事故当時と比べると、放射性物質の自然減衰や除染効果などにより放射性物質の存在の度合いは時間の経過と共に減ってきています。
- ② 下記のウェブサイトで、最新の放射線量の実測値などを閲覧することができます。
 - ・原子力規制委員会 放射線リアルタイムモニタリング情報 http://radioactivity.nsr.go.jp/map/ja/index.html
 - ・食品中の放射性物質検査データ http://www.radioactivity-db.info/ (厚生労働省の委託により国立保健医療科学院が運営・管理)
 - ・日本の環境放射能と放射線(環境、土壌、食品等) http://www.kankyo-hoshano.go.jp/kl_db/servlet/com_s_index (原子力規制庁の委託により公益財団法人日本分析センターが運営・管理)
- ③ 下の図は、東京電力福島第一原子力発電所から 80km 圏内の空間線量率を 航空機モニタリングにより測定したものです。空間線量率が時間の経過と 共に減少していることが分かります。

統一的な基礎資料の関連項目

下巻 第7章 13ページ「空間線量率の推移 (80km 圏内)」 下巻 第7章 14ページ「空間線量率 (広域)」

出典:放射線による健康影響等に関する統一的な基礎資料・下巻 第7章 13ページ「空間

線量率の推移(80km 圏内)」、14ページ「空間線量率(広域)」より作成

出典の公開日: 平成 28 年 1 月 18 日 本資料への収録日: 平成 29 年 3 月 31 日

QA7-7 事故直後から現在までの土壌、食品のプルトニウム及び放射性ストロンチウムの測定結果は、どのようになっていますか。

A

- ① 土壌については、ごく限られた地域を除いて、過去の大気圏内核実験の影響の範囲内にあります。
- ② 食品については、一部の試料から放射性ストロンチウム (ストロンチウム 90) が検出されましたが、いずれも事故以前と同じ範囲内でした。プルトニウムは検出されていません。

統一的な基礎資料の関連項目

下巻 第7章 63ページ「プルトニウム、ストロンチウム(福島県東部、広域)」

下巻 第7章 64ページ「プルトニウム(福島県)」

下巻 第8章 74ページ 「影響を考慮する放射性核種 |

出典:①放射線による健康影響等に関する統一的基礎資料・下巻第7章 環境モニタリング 63ページ「プルトニウム、ストロンチウム(福島県東部、広域)」、64ページ「プルトニウム (福島県)」及び②厚生労働省「食品中の放射性ストロンチウム及びプルトニウムの測定 結果」より作成

出典の公開日: ①平成 25年3月31日、②平成 25年11月8日、平成 26年5月23日、 平成 26年8月22日、平成27年5月15日、平成27年7月31日、平成28年6月3日、

平成 28 年 8 月 19 日

QA7-8 農地土壌の放射性物質による汚染状況は、どのようになっていますか。

A

- ① 農林水産省等による調査により、福島県において、384 地点の農地土壌の 放射性セシウム濃度を測定し、市町村ごとに濃度分布図を作成しています。
- ② 最新の結果については、平成29年1月19日に農林水産省が公表した「農地土壌の放射性物質濃度分布図の作成について」ウェブサイト*をご確認ください。
- ③ 前回 (平成 27 年 11 月公表) の濃度分布図と比較して、避難指示区域外の 水田で約 8%、畑で約 18%、牧草地及び樹園地で約 3%、放射性セシウム の濃度が低下していることが分かりました。
 - ※平成 29 年 1 月 19 日公表「農地土壌の放射性物質濃度分布図の作成について」 http://www.affrc.maff.go.jp/docs/map/h28/290119.htm

統一的な基礎資料の関連項目

下巻 第7章 33ページ「放射性セシウム(福島県)」

下巻 第8章 88ページ「農作物の汚染経路」

出典:農地土壌の放射性物質濃度分布図の作成について(平成27年11月30日農林水産

技術会議事務局) より作成

出典の公開日: 平成 29年1月19日

QA7-9 水道水や井戸水等の安全・安心は、どのように確保されているのですか。

A

- ① 国は、水道水中の放射性物質に係る管理目標値(放射性セシウム(セシウム134及び137の合計)1キログラム当たり10ベクレル(Bq/kg))を設定しています。
- ② 国及び福島県をはじめとする宮城県、茨城県、栃木県等では、水道水や井戸水等の放射性物質のモニタリングを行い、その結果を公表しています。
- ③ 現在、水道水中からは管理目標値を上回る放射性セシウムは検出されていません。
- ④ 地下水についても、放射性物質の地下水への浸透は確認されていません。

統一的な基礎資料の関連項目

下巻 第7章 47ページ「放射性セシウムの制御」

下巻 第7章 48ページ「上水道の仕組み」

下巻 第8章 85ページ「ウェブサイトでの情報提供」

(解説)

(参考資料)

厚生労働省「水道水中の放射性物質に関する検査の結果」

http://www.mhlw.go.jp/topics/bukyoku/kenkou/suido/kentoukai/houshasei_monitoring.html

原子力規制委員会「放射線モニタリング情報」

http://radioactivity.nsr.go.jp/ja/index.html

環境省「東日本大震災の被災地における放射性物質関連の環境モニタリング調査:公共用 水域 水質・底質」

www.env.go.jp/jishin/monitoring/results_r-pw.html

出典:「水道水中の放射性物質の検査について」(厚生労働省ウェブサイト)より作成

出典の公開日:平成23年3月19日 本資料への収録日:平成29年3月31日

QA7-10 東京電力福島第一原子力発電所事故が発生した時、水道水中の放射 性物質を低減するために、どのような対策がとられたのですか。

A

- ① 東京電力福島第一原子力発電所事故では、放出された主な放射性物質は放射性セシウムと放射性ヨウ素であり、これらの物質が降雨により河川に流れ込み、水道水の原水として取水されたり、浄水場内に降下したりしました。
- ② 浄水場では水道水中の放射性物質を低減するため、取水量の抑制、浄水施設の覆蓋、粉末活性炭の投入など様々な対策を行いました。
- ③ 放射性セシウムは一般的な浄水処理工程(凝集沈殿、ろ過)や活性炭吸着で除去することができました。
- ④ 放射性ヨウ素は活性炭吸着で一部が除去できますが、セシウムと比べると 除去率が低いため、事故の際には浄水処理工程で除去しきれなかった放射 性ヨウ素が水道水から検出されることがありました。
- ⑤ 福島県が実施している福島県内の水道水モニタリング検査においては、放射性セシウム及び放射性ヨウ素は平成23年5月5日以降検出されていません。

統一的な基礎資料の関連項目

下巻 第7章 39ページ「長期モニタリング結果」 下巻 第7章 48ページ「上水道の仕組み」

出典:厚生労働省「水道水における放射性物質対策中間取りまとめ」より作成

出典の公開日:平成23年6月21日 本資料への収録日:平成29年3月31日

QA7-11 プールに入っても大丈夫ですか。

A

- ① プールに使用する上水に含まれる放射性物質は検出限界以下となっているので、入っても大丈夫です。
- ② 放射性セシウムは土などに強く吸着するため、土が落ちていても、水中に溶け出してくることはほとんどなく、あっても極めて微量です。

統一的な基礎資料の関連項目

下巻 第7章 48ページ「上水道の仕組み」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

出典の公開日: 平成 25 年 10 月 31 日本資料への収録日: 平成 29 年 3 月 31 日

QA7-12 河川・湖沼のモニタリングの実施状況は、どうなっているのですか。

A

- ① 平成 23 年 5 月から福島県等の河川・湖沼・水源地等の水環境において、水 や水底の泥等に含まれる放射性物質の調査を継続して実施しています。結 果については、環境省ウェブサイトで公表しています。
 - http://www.env.go.jp/jishin/monitoring/results_r-pw.html
- ② 最新の調査では、水中の放射性セシウムはほぼ不検出となっています。水 底の泥についても物理的半減期を超えるスピードで減少していることが確認されています。

統一的な基礎資料の関連項目

下巻 第7章 49ページ「被災地における放射性物質モニタリング(公共用水域)」

下巻 第7章 50ページ「水質の調査結果」

下巻 第7章 51ページ「河川底質(分布)|

下巻 第7章 52ページ「湖沼底質(分布)」

下巻 第7章 53ページ「沿岸海域の底質(分布)」

下巻 第7章 54ページ「河川底質(推移)阿武隈川水系」

下巻 第7章 55ページ「河川底質(推移)利根川水系」

下巻 第7章 56ページ「湖沼底質(推移)」

出典:「被災地における放射性物質モニタリング(公共用水域)」(環境省水大気局)よ

り作成

出典の公開日:平成23年10月11日 本資料への収録日:平成29年3月31日

QA7-13 原子力災害が発生した場合、飲用井戸水にも放射能の影響が出るのでしょうか。

A

- ① 放射性セシウムは、特定の粘土鉱物に強く吸着する性質があるため、ほとんどが土壌表層部にとどまり、飲料用井戸水を取水する地下深くまで浸透することはないと考えられています。
- ② しかし、激しい雨等によって表層土壌が井戸に直接流れ込む場合には注意が必要です。
- ③ 東京電力福島第一原子力発電所事故に関しては、飲用井戸水にはほとんど 影響がありませんでした。

統一的な基礎資料の関連項目

上巻 第4章 174ページ「降下・沈着したセシウムの環境中での移行」 下巻 第7章 36ページ「福島県の井戸水の検査結果」

(解説)

地下水は、地上に降った雨や雪が土壌を通して地下へと浸透したものです。飲用井戸水は、帯水層という地下にある貯水槽のような水の溜まっている場所から地下水をくみ上げています。一般的に、井戸は汲み上げる地下水の性質によって浅井戸^{*1}と深井戸^{*2}に分けられます。図1は浅井戸と深井戸がそれぞれ帯水層から水を汲み上げるところを示したものです。

放射性セシウムには特定の粘土鉱物に強く吸着する性質があります。雨や雪によって地表に降り注いだ放射性セシウムは、土壌がフィルターのような役割をすることによって地表近くにとどまり、地下深部の帯水層まではほとんど移行しません。現在では、東京電力福島第一原子力発電所事故由来の放射性セシウムのほとんどが土壌表層にとどまっていることがわかっています。したがって、激しい雨等によって表層土壌が直接井戸に流れ込むような場合には注意が必要です。

なお、福島県が実施している飲用井戸水のモニタリングでは、これまで放射性セシウム は検出されていません。

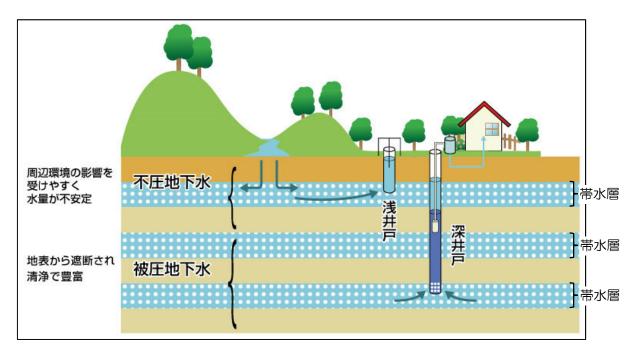


図1 井戸のタイプについて

(出典:ふくしま復興ステーション「飲用井戸に関すること」より作成)

- ※1:浅井戸とは、一般的に深さ10~20メートルまでの浅い位置にある帯水層の地下水を 取水する井戸です。近傍の川・池を供給元としており天候により水量の変動が大きく、 また、周辺環境の影響を受けやすいのが特徴です。
- ※2:深井戸とは、深い位置にある水を通し難い地層(岩盤や粘土層)より下にある被圧水 (水位が地表近くまで上がってくる地下水)を水源とする井戸です。地表から遮断さ れ汚染の恐れはなく水量が豊富なところが特徴です。

(参考資料)

公益社団法人 日本地下水学会 Q&A

「原子力発電所からの放射能汚染は深井戸へどのような影響を及ぼすのでしょうか?」 http://www.jagh.jp/jp/g/activities/torikichi/faq/132.html

出典:福島県ふくしま復興ステーション「飲用井戸に関すること」より作成

出典の公開日: 平成27年3月1日 本資料への収録日: 平成29年3月31日

QA7-14 農業用ため池が放射性セシウムで汚染されたと聞きます。農作物に 影響することはないのでしょうか。

A

- ① 水に含まれる放射性セシウムには、水中に溶けている「溶存態」のほか、 土や葉っぱなどに吸着・固定されている「懸濁態」があり、懸濁態の放射 性セシウムは、根から吸収されにくいので、作物へ移ることはほとんどあ りません。
- ② 溶存態の放射性セシウムは作物が根を通して吸収しますが、作土中に十分 な量のカリウムが含まれていれば、セシウムの吸収を抑えることができます。
- ③ なお、ため池からは溶存態の放射性セシウムはほとんど検出されておりません。

統一的な基礎資料の関連項目

上巻 第4章 170ページ「環境中での放射性セシウムの動き:水中から植物への移行」

出典:農林水産省「ため池と放射性物質」

 $http://www.maff.go.jp/tohoku/osirase/higai_taisaku/hukkou/160205_risukomi_ta.html$

より作成

出典の公開日:平成28年2月5日

QA7-15 汚染処理水(トリチウム)の海洋放出によって、海洋汚染は起こりますか。

A

- ① トリチウムは宇宙線等により年間 7.0×10¹⁶ ベクレル (Bq) 程度生成されます。大気から雨として地表に降下し、天然水、人体中と幅広く存在します。
- ② 平成 22 年度における国内の1つの原子力発電所(例えば福島第二原子力発電所の場合、 $1 \sim 4$ 号機の合計)からのトリチウムの海洋への放出は、 $2.2 \times 10^{10} \sim 1.0 \times 10^{14}$ ベクレル(Bq)です。これは自然発生起源トリチウムの0.14%程度以下となります。

出典:経済産業省「トリチウム水タスクフォース報告書」より作成

出典の公開日:平成28年6月3日

OA7-16 海のモニタリングの実施状況はどうなっているのですか。

A

- ① 海のモニタリングについては、モニタリング総合調整会議において決定された「総合モニタリング計画」及び「平成28年度海域モニタリングの進め方」に沿って、福島県沖、宮城県沖、茨城県沖等を対象に、海水、海底土、海洋生物に含まれる放射性物質の濃度を測定しています。
- ② 海水では、放射性セシウムの測定値(平成28年4月~11月)は、1リットル当たり1ベクレル(Bq/L)(飲料水の基準値は1リットル当たり10ベクレル(Bq/L))を下回る水準です。
- ③ 海底土は、放射性セシウムの測定値(平成 28 年 4 月~10 月)が、福島県沖において 1 キログラム当たり約 3~1,000 ベクレル(Bq/kg)の範囲となっています。
- ④ 海洋生物の放射性セシウムの濃度は、生物の種類によって異なります。海を広く回遊するカツオ・マグロ類、サンマ等では、これまで基準値(1キログラム当たり100ベクレル(Bq/kg))を超える測定結果は得られていません。

統一的な基礎資料の関連項目

下巻 第7章 57ページ [沿岸海域底質(推移)|

下巻 第7章 58ページ「海水と海底土の濃度」

下巻 第7章 59ページ「海水濃度の推移」

下巻 第7章 60ページ「海底土濃度の推移」

下巻 第 7 章 124 ページ「魚種別の放射性セシウム濃度の傾向(2/2)」

(解説)

(参考資料)

原子力規制委員会 海洋モニタリング結果

http://radioactivity.nsr.go.jp/ja/list/428/list-1.html

出典:原子力規制委員会「総合モニタリング計画」より作成

出典の公開日:平成23年8月2日

第8章 食品中の放射性物質

QA8-1 放射性セシウムが溜まりやすい食品はありますか。

A

- ① 一般の農作物で極端に放射性セシウムを蓄積する種類は知られていません。
- ② ただし、きのこや山菜の一部はセシウムを吸収しやすいことが知られています。
- ③ 水産生物は、放射性セシウムをカリウムなどの他のミネラル類と区別できないため、環境(海水・淡水)や餌から体内に取り込み、徐々に排出します。淡水魚では、海産魚に比べて放射性セシウムの排出に要する時間が長いことが知られています。
- ④ 放射性セシウムの場合、体内に取り込まれても代謝により排出されるため、 生物濃縮の程度は一般的にあまり大きくありません。

統一的な基礎資料の関連項目

上巻 第4章 167ページ「植物への移行」

上巻 第4章 168ページ「土壌中の放射性セシウムの分布の状況」

下巻 第8章 112ページ「きのこ等の特用林産物の安全確保対策」

下巻 第8章 123ページ「魚種別の放射性セシウム濃度の傾向(1/2)」

下巻 第8章 124ページ「魚種別の放射性セシウム濃度の傾向(2/2)」

下巻 第8章 125ページ「消費者への原産地情報の提供」

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

出典の公開日:平成24年4月13日 本資料への収録日:平成29年3月31日

QA8-2 ストロンチウムは骨に蓄積されるので、危険だと聞きました。食品 中の放射性ストロンチウム量についての規制はないのですか。

A

- ① 存在比率が最も高く、測定が容易な放射性セシウムを測定することで、割合の少ない放射性ストロンチウムの影響を考慮した規制ができるようにしています。
- ② 放射性セシウムの基準値は、放射性セシウム以外の核種の被ばく量を合計 しても年間 1 ミリシーベルト (mSv) を超えないように設定されています。
- ③ 平成24年2月以降、厚生労働省は国内に、実際に流通する食品や一般家庭で調理された食品に含まれる放射性ストロンチウムの濃度を定期的に測定していますが、いずれも事故以前の範囲内でした。

統一的な基礎資料の関連項目

下巻 第8章 74ページ「影響を考慮する放射性核種」

(解説)

食品中のストロンチウムを測って規制をしてはいませんが、セシウムを指標とした基準値は、ストロンチウムの影響も計算に含めた上で設定されています。食品の基準値の指標にセシウムだけが使われている理由は次のとおりです。

まず、基準設定の検討に当たり、東京電力福島第一原子力発電所事故後の長期的な状況に対応するものであることから、比較的半減期が長く、長期的な影響を考慮する必要がある核種を対象としています。具体的には、大気中に放出されたと考えられる核種のうち、半減期が1年以上の核種全て(セシウム134、セシウム137、ストロンチウム90、プルトニウム、ルテニウム106)が対象にされました。次に、規制対象の核種のうち、セシウム以外のストロンチウムなどの核種については測定に非常に時間が掛かることから、移行経路ごとに放射性セシウムとの比率を算出し、合計して年間1ミリシーベルト(mSv)を超えないように現実的により短時間で測定できる放射性セシウムの基準値が設定されています。他の放射性核種と放射性セシウムとの比率の計算では、穀類、乳製品といった食品分類ごとに行っており、放射性物質の移行に関する食品ごとの特性も考慮されています。具体的には、食品中のストロンチウムについては、事故後の土壌や河川水の試料の測定結果より、放

射性核種の存在割合から、ストロンチウムはセシウムの土壌で0.3%、河川水で0.2%として、それぞれ農作物や水産物にこの割合で放射性ストロンチウムが含まれているとしています*。

ストロンチウムはカルシウムと化学的性質が似ているため、体内に入ると骨に集積しますが、徐々に代謝や排泄といった体の仕組みにより減少し、最終的には便などと共に排出されます。実効線量を計算する際には、こうした放射性物質の代謝や集積する場所での影響も考慮しています。つまり、食品の規制の年間1ミリシーベルト(mSv)の内訳には、骨へのストロンチウムの蓄積分も含まれています。なお、実効線量で表された線量(シーベルト、Sv)が同じであれば、外部被ばくも内部被ばくも影響は同じと考えられています。

*:薬事・食品衛生審議会食品衛生分科会放射性物質対策部会報告書「食品中の放射性物質に係る規格基準の設定について」(平成23年12月22日)より

(参考文献)

- ・厚生労働省 「飲食物摂取制限に関する指標について」(平成10年3月6日)
- ・文部科学省放射線モニタリング情報 「福島第1原子力発電所の事故に係る陸土及び植物 の放射性ストロンチウム分析結果(平成23年3月16日、17日、19日)」
- ・文部科学省 「文部科学省による、プルトニウム、ストロンチウムの核種 分析の結果について」

出典:①量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関する Q&A」及び②厚生労働省「食品中の放射性ストロンチウム及びプルトニウムの測定結果」より作成

出典の公開日: ①平成 25 年 10 月 31 日、②平成 25 年 11 月 8 日、平成 26 年 5 月 23 日、平成 26 年 8 月 22 日、平成 27 年 5 月 15 日、平成 27 年 7 月 31 日、平成 28 年 6 月 3 日、平成 28 年 8 月 19 日

QA8-3 雨水や日常食のストロンチウム90やセシウム137は、どのようにすれば測れるのですか。

A

- ① 放射性のセシウム137は、NaI(TI)検出器や Ge 検出器を用いた γ (ガンマ) 線計測により、定量することができます。
- ② 一方、ストロンチウム90は γ (ガンマ)線を出しませんので、ストロンチウムを選択的に取り出して、GM 計数管や液体シンチレーションカウンタなどの測定器を用いた β (ベータ)線計測により、定量することができます。
- ③ 雨水や日常食のような極めて微量しか放射能が含まれていない試料は、濃縮操作を行った後、①と②の方法を用いて定量します。雨水は濃縮させた後、日常食は低温灰化処理を行った後、①の方法でセシウムを定量します。また、②の方法で、濃縮物や灰化物からストロンチウムを選択的に取り出し、ストロンチウムを定量します。

統一的な基礎資料の関連項目

下巻 第8章 81ページ「食品中の放射性物質に関する検査の手順)」

出典:日本の環境放射能と放射線ウェブサイト Q&A より作成

出典の公開日:平成17年10月24日 本資料への収録日:平成29年3月31日

QA8-4 食べものの安全は、どのように確保されているのですか。

A

- ① 国が設定した食品中の放射性物質の基準値に基づき、地方自治体において 食品中の放射性物質検査が実施されています。基準値を超えている場合に は、回収・廃棄等の対応がとられます。
- ② 平成24年4月から、食品中の放射性物質について、食品の安全と安心を確保するために、事故後の緊急的な対応としてではなく、長期的な観点から基準値を設定しました。なお、基準値を設定する際には、年齢にかかわらず、全ての方に安心して食品を食べていただけるよう、配慮しています。
- ③ 平成28年2月から3月に各地で購入した食品を検査し、食品中の放射性 セシウムから受ける年間放射線量を推計したところ、現行基準値の設定根 拠である年間線量の上限値(1ミリシーベルト(mSv))の1%以下であり、 極めて小さいことが確かめられました。

統一的な基礎資料の関連項目

下巻 第8章 66ページ「食品中の放射性物質への対応の流れ」

下巻 第8章 67ページ「平成24年4月からの基準値」

下巻 第8章 77ページ「流通食品での調査(マーケットバスケット調査)」

下巻 第8章 82ページ「食品中の放射性物質に関する検査結果の公表」

出典:「食品中の放射性物質への対応」厚生労働省ウェブサイトより作成

出典の公開日:平成24年12月25日 本資料への収録日:平成29年3月31日

QA8-5 学校給食の安全・安心を確保するため、どのような措置を講じているのですか。

A

児童生徒の安全・安心を確保するため、学校給食における放射性物質の有無等について分析が行われており、その結果は教育委員会等のウェブサイトで公表されています。

(解説)

福島県教育委員会のウェブサイト*において、学校給食モニタリング事業放射性物質の測定結果を公表しています。また、文部科学省のウェブサイトでは、各都道府県で公表している学校給食の放射性物質の検査結果へのリンク先一覧を掲載しています。

* http://www.kenkou.fks.ed.jp/kyushoku/monitoring/kakoken/gennendo.htm

出典:学校給食モニタリング事業放射性物質の測定結果について(福島県教育委員会)より 作成

出典の公開日:平成24年3月

QA8-6 食品の基準値を年間 1 ミリシーベルト(mSv)に設定した理由を教えてください。

A

- ① 食品の国際規格を策定している国際機関(コーデックス委員会)が食品の 介入免除レベル(特段の措置をとる必要がないと考えられているレベル) として採用している年間線量1ミリシーベルト(mSv)に基づき、設定さ れています。
- ② また、食料調達に影響がない範囲内で合理的に達成可能な限り低く抑えるという ALARA*の原則に基づき、設定されています。
 - ※ "as low as reasonably achievable" の略語

統一的な基礎資料の関連項目

下巻 第8章 73ページ「基準値設定の考え方◆基準値の根拠」

出典:厚生労働省「食品中の放射性物質に係る基準値の設定に関する Q&A について (平成

24年7月5日)」より作成

出典の公開日:平成24年7月5日

QA8-7 基準値を暫定規制値から厳しくしたということですが、これまでの 暫定規制値の安全性については、どのように考えているのですか。

A

- ① 原子力安全委員会(当時)が平成10年3月に示した「飲食物摂取制限に関する指標について」は、原子力発電所事故直後の緊急被ばく状況に対応するため、食品中の放射性物質から受ける放射線量が年間5ミリシーベルト(mSv)を超えないように設定され、暫定規制値はこの指標に基づいて設定されています。
- ② 暫定規制値に適合している食品は、健康への影響はないと評価され、安全性は確保されています。
- ③ 暫定規制値は、事故後の緊急的な対応として定められたものであったので、 長期的な状況に対応する新たな放射性セシウムの基準値を定めることとし たものです。

統一的な基礎資料の関連項目

上巻 第4章 162ページ「食品の規制値の比較」 下巻 第8章 67ページ「平成24年4月からの基準値」

出典: ①厚生労働省「食品中の放射性物質に係る基準値の設定に関する Q&A について(平成 24 年 7 月 5 日)」、②厚生労働大臣からの放射線審議会(文部科学省)への答申(平成 24 年 2 月 16)より作成

出典の公開日: ①平成24年7月5日、②平成24年2月16

QA8-8 暫定規制値は、どのような取扱いになるのですか。

A

- ① 東京電力福島第一原子力発電所の事故後、平成 10 年 3 月 6 日に、原子力 安全委員会(当時)が示した指標値を食品中の放射性物質の「暫定規制値」 として平成 23 年 3 月 17 日に設定し、対応が行われてきました。
- ② 平成24年4月1日からは、厚生労働省の審議会などでの議論を踏まえて設定した新たな基準値に基づき対応が行われています。
- ③ 食品中の放射性物質については、今後は食品衛生法第11条に基づく基準値が適用されます。
- ④ 暫定規制値の取扱いについては、原子力規制委員会で有事の際における防 災指針の見直しが行われており、これらを踏まえ検討することとしていま す。

統一的な基礎資料の関連項目

下巻 第8章 67ページ「平成24年4月からの基準値」

出典:厚生労働省「食品中の放射性物質に係る基準値の設定に関する Q&A について(平成

24年7月5日)」より作成

出典の公開日:平成24年7月5日

QA8-9 食品の汚染割合を 50%とした根拠を教えてください。

A

- ① 食品の国際規格を作成しているコーデックス委員会で定められた放射性物 質に関するガイドラインの考え方を採用しています。
- ② 一般食品においては我が国の食料自給率(平成22年度はカロリーベースで39%)等との関係から、流通する食品の半分が基準濃度と等しい場合でも安全が確保できるように、基準値を設定しています。

統一的な基礎資料の関連項目

下巻 第8章 75ページ「基準値の計算の考え方(1/2)」

出典:厚生労働省「食品中の放射性物質に係る基準値の設定に関する Q&A について(平成

24年7月5日)」より作成

出典の公開日:平成24年7月5日

QA8-10 限度値の計算で、年齢が低いほど限度値が高くなっていますが、 これは小児の放射線による影響を過小評価しているのではないで すか。

A

- ① 限度値を算出する際には、年齢区分ごとの年間の食品摂取量や、体格、代謝が考慮された線量係数を用いて計算します。
- ② その結果、限度値は 1 歳未満(男女平均)が最も大きく、13~18 歳男性が 1 キログラム当たり 120 ベクレル(Bq/kg)と最も小さくなります。これを、安全側に切り下げて 1 キログラム当たり 100 ベクレル(Bq/kg)を基準値として適用することで、全ての世代に配慮したものとなっています。
- ③ 年齢が低いほど限度値が高くなる傾向があるのは、年齢区分ごとの線量係数の差よりも食品摂取量の差の方が大きく寄与しているためです。

統一的な基礎資料の関連項目

下巻 第8章 67ページ [平成24年4月からの基準値]

下巻 第8章 75ページ「基準値の計算の考え方(1/2)」

下巻 第8章 76ページ「基準値の計算の考え方(2/2)」

出典:厚生労働省「食品中の放射性物質に係る基準値の設定に関する Q&A について(平成

24年7月5日)」より作成

出典の公開日:平成24年7月5日

QA8-11 一般食品を使って離乳食を手作りした場合、その材料は、1キログ ラム当たり 100 ベクレル (Bq/kg) が基準値となりますが、手作り の離乳食よりも市販のベビーフードのほうが安全ということですか。

A

- ① 一般食品の基準値は、乳幼児をはじめ、全ての世代に配慮したものとなっています。
- ② とくに乳児用食品は国産割合を 100%と仮定して一般食品の基準値を更に引き下げて、半分に設定しています。
- ③ 仮に、乳幼児が一般食品(全ての世代に配慮した基準値1キログラム当たり100ベクレル(Bq/kg))を食べ続けたとしても、摂取量の少ない乳幼児の安全性は十分に確保されています。

統一的な基礎資料の関連項目

下巻 第8章 67ページ [平成24年4月からの基準値]

下巻 第8章 68ページ「食品区分について【参考】」

下巻 第8章 76ページ「基準値の計算の考え方(2/2)」

出典:厚生労働省「食品中の放射性物質に係る基準値の設定に関する Q&A について(平成

24年7月5日)」より作成

出典の公開日:平成24年7月5日

QA8-12 基準値が厳しくなって、政府による検査計画の考え方も改正される のですか。

A

- ① 平成 24 年 4 月からの新基準値の施行を踏まえ、過去の検査結果等も勘案 し、原子力災害対策本部が定めた「検査計画、出荷制限等の品目・区域の 設定・解除の考え方」を改正すると共に、必要に応じて見直しを行ってきました。国が都道府県に対象品目や検査頻度などを示しています。
- ② 放射性セシウムが高く検出される可能性のあるきのこや山菜などを重点的 に検査しています。
- ③ 検査結果は、厚生労働省にて取りまとめ、全て公表されています。
- ④ 今後も最新の状況に応じた検査が実施されます。

統一的な基礎資料の関連項目

下巻 第8章 78ページ「検査計画、出荷制限等の品目・区域の設定・解除の考え方(1/3)」

出典:厚生労働省「食品中の放射性物質に係る基準値の設定に関する Q&A について(平成24年7月5日)」より作成

出典の公開日:平成24年7月5日

QA8-13 基準値を下回る食品や飲料水は、乳幼児や胎児が口に入れても大丈夫ですか。

A

- ① 厚生労働省が設定している食品中の放射性物質から受ける放射線量の基準値は、年間1ミリシーベルト(mSv)を超えないというものです(平成24年4月から施行)。
- ② 基準値は乳幼児や妊婦(胎児)をはじめ、全ての世代に配慮して決められています。
- ③ 「一般食品」は、最も厳しい限度値から基準値を設定し、国産率を 50%(※) と仮定して 1 キログラム当たり 100 ベクレル (Bq/kg) としました。
- ④ 「乳児用食品」と「牛乳」は、子供の放射線感受性が高い可能性を考慮し、 万が一全ての食品が基準値上限の値で汚染されていたとしても影響がない よう一般食品の半分の1キログラム当たり50ベクレル(Bq/kg)としました。
 - ※日本の食料自給の状況などを考慮し、流通する食品の 50% (国産品の全て) が放射性物質を含む場合を仮定しています。

統一的な基礎資料の関連項目

下巻 第8章 67ページ [平成24年4月からの基準値]

下巻 第8章 68ページ「食品区分について【参考】」

下巻 第8章 69ページ「「乳幼児食品」「牛乳」の区分について【参考】」

下巻 第8章 76ページ「基準値の計算の考え方(2/2)」

出典:①消費者庁「食品と放射能 Q&A」(第10版))、②厚生労働省ウェブサイト「食品中の放射性物質への対応」より作成

出典の公開日: ①平成28年3月15日、②平成27年11月20日

QA8-14 食品中の放射性物質の基準値は、セシウム以外の核種から受ける影響は考えられていないのですか。

A

- ① 基準値は、事故で放出されたと考えられる核種のうち、物理学的半減期が1年以上の放射性核種(セシウム134、セシウム137、ストロンチウム90、プルトニウム238、プルトニウム239、プルトニウム240、プルトニウム241、ルテニウム106)から受ける影響を考慮しています。
- ② これまでの調査等で、食品からの放射性物質の影響は、放射性セシウムが大部分を占め、放射性セシウム以外の核種からは1割程度ということが分かっています。
- ③ 放射性セシウムの寄与率(全体に占める割合)を算出した上で、他の放射性物質の影響を考慮して、合計して年間 1 ミリシーベルト (mSv) を越えないように放射性セシウムの基準値を設定し、セシウムだけ測定しても、他の核種の影響も含んで、年間 1 ミリシーベルト (mSv) を管理できるような工夫をしています。

統一的な基礎資料の関連項目

下巻 第8章 74ページ「影響を考慮する放射性核種」

出典:消費者庁「食品と放射能 Q&A」(第10版)より作成

出典の公開日:平成28年3月15日 本資料への収録日:平成29年3月31日

QA8-15 加工した食品に、基準値はどのように適用されるのですか。調理に 使う「木炭」や「薪」には、基準値があるのですか。

A

- ① 加工食品には、原材料、製造時、加工後の各状態で、一般食品の基準値1 キログラム当たり100ベクレル(Bq/kg)が適用されます。
- ② 木炭や薪などについては、これまでの研究から、放射性セシウムの大部分は食品に移行せず、約9割が燃焼灰にとどまることが分かっています。
- ③ そのため、燃焼灰は一般廃棄物の基準値1キログラム当たり8,000 ベクレル (Bq/kg) 以下となるように、灰になる割合から逆算して、木炭1キログラム当たり280 ベクレル (Bq/kg)、薪1キログラム当たり40 ベクレル (Bq/kg) という当面の指標値を定め管理しています。

統一的な基礎資料の関連項目

下巻 第8章 68ページ「食品区分について【参考】」

出典:消費者庁「食品と放射能 Q&A」(第10版)より作成

QA8-16 基準値を超える食品が見つかった場合の対応は、どうなっていますか。

A

- ① モニタリング検査で、基準値を超える食品が見つかった場合は、回収・廃棄されます。
- ② さらに基準値を超える食品に地域的な広がりが確認された場合には、「出荷制限」の措置がとられます。
- ③ 出荷制限を指示された県域・一部地域(市町村・地域ごと等)では、検査 結果にかかわらず、その品目の出荷・販売などが制限されます。
- ④ また、著しく高濃度の放射性物質が検出された場合は、「出荷制限」に加え、 生産者が自ら栽培した農産物や家庭菜園での農産物であっても、食べることを差し控えるよう「摂取制限」が設定されます。

統一的な基礎資料の関連項目

下巻 第8章 83ページ「基準値を上回ったときの対応:出荷制限・摂取制限」 下巻 第8章 84ページ「原子力災害対策特別措置法に基づく出荷制限の対象食品(平成 28年12月26日時点)」

下巻 第8章 85ページ「ウェブサイトでの情報提供」

出典:消費者庁「食品と放射能 Q&A」(第10版)より作成

QA8-17 基準値は、今後、見直しが予定されているのですか。

A

基準値は、東京電力福島第一原子力発電所の事故を受けた平成 24 年 4 月以降の長期的な状況に対応するものであり、状況に大きな変化や新たに設定根拠を見直すための科学的知見がなければ、見直しの予定はありません。また、現行の基準値は、国内で流通するどんな食品を食べても、基準値内であれば安全は確保できるという十分余裕を持った値として設定されています。

統一的な基礎資料の関連項目

上巻 第4章 162ページ「食品の規制値の比較」

下巻 第8章 67ページ「平成24年4月からの基準値」

下巻 第8章 70ページ「食品安全委員会による評価」

出典:厚生労働省「食品中の放射性物質に係る基準値の設定に関する Q&A について(平成

24年7月5日)」より作成

出典の公開日:平成24年7月5日

QA8-18 乳児用食品の対象となる乳児の年齢の範囲を教えてください。 また、乳児と乳幼児は、対象となる年齢の範囲が違うのですか。

A

- ① 乳児用食品の対象となる乳児の年齢については、児童福祉法等に準じて 1 歳未満としています。
- ② 乳幼児は、乳児と、それ以上の年齢の幼児の両方を含みます。
- ③ 乳幼児向けである旨が表示された食品についても、乳児が対象に含まれていることから、乳児用食品に該当します。
- ④ 乳児(1 歳未満)も喫食することが想定されるような食品であっても、表示内容等により乳児を対象にしていると判断される場合以外は、乳児用食品に係る規制の対象とはなりません。

統一的な基礎資料の関連項目

下巻 第8章 68ページ「食品区分について【参考】」

下巻 第8章 69ページ「「乳児用食品」「牛乳」の区分について【参考】」

下巻 第8章 85ページ「ウェブサイトでの情報提供」

出典:厚生労働省「食品中の放射性物質に係る基準値の設定に関する Q&A について(平成

24年7月5日)」より作成

出典の公開日:平成24年7月5日

QA8-19 主食の米から、少量しか摂取されない香辛料まで、摂取量に関係な く一般食品の基準値を適用するのは、どうしてですか。

A

- ① 食品区分の設定に当たっては、個人の食習慣の違いの影響を最小限にすることが可能であること、国民にとって分かりやすい規制となること、国際連合食糧農業機関(FAO)や世界保健機関(WHO)等の国際的な考え方と整合すること、を考慮し、食品全体(一般食品)を1つの基準値とすることを基本としています。
- ② それにより、国民にとっても分かりやすい規制になると同時に、国際的な 考え方とも整合性がとられています。

統一的な基礎資料の関連項目

下巻 第8章 67ページ「平成24年4月からの規制値」

出典:厚生労働省「食品中の放射性物質に係る基準値の設定に関する Q&A について(平成

24年7月5日)」より作成

出典の公開日:平成24年7月5日

QA8-20 食品添加物における放射性物質の基準値は、どのように考えればよいですか。

A

- ① 基準値は、食品一般の成分規格として定めるものであり、食品添加物は対象となりません。
- ② ただし、食品添加物が使用された食品に対しては、基準値が適用となります。

統一的な基礎資料の関連項目

下巻 第4章 85ページ「ウェブサイトでの情報提供」

出典:厚生労働省「食品中の放射性物質に係る基準値の設定に関する Q&A について(平成

24年7月5日)」より作成

出典の公開日:平成24年7月5日

QA8-21 家庭菜園で作った野菜等、自己消費する食品についても基準値は適用されるのですか。

A

- ① 自分や家族で食べるために作った野菜など、販売することを目的にしない 食品は、規制の対象にはなりません。
- ② ただし、販売することを目的にしない食品であっても摂取制限の対象になります。

統一的な基礎資料の関連項目

下巻 第8章 83ページ「基準値を上回ったときの対応: 出荷制限・摂取制限」

下巻 第8章 85ページ「ウェブサイトでの情報提供」

出典: ①厚生労働省「食品中の放射性物質に係る基準値の設定に関する Q&A について(平成 24 年 7 月 5 日)」、②厚生労働省「食品中の放射性物質の対策と現状について(平成 27 年 11 月 20 日)」より作成

出典の公開日: ①平成24年7月5日、②平成27年11月20日

QA8-22 たばこには、食品の基準値が適用されるのですか。

A

- ① たばこは食品ではないので、食品衛生法に基づく規制の対象にはなりません。
- ② 日本たばご産業 (JT) は、福島第一原子力発電所事故以降、自社基準値を 設定し、購買前及び製品工程の各段階において、検査・確認を行っていま す。
- ③ 平成27年産については、自社基準値を超えた地域は全111地域のうち1地域であった旨、報告されています。

統一的な基礎資料の関連項目

下巻 第8章85ページ「ウェブサイトでの情報提供」

(解説)

(参考資料)

日本たばこ産業(JT)

2016年 国産葉たばこに関する放射性物質の購買前検査について

https://www.jti.co.jp/news/20161014/index.html

出典:厚生労働省「食品中の放射性物質に係る基準値の設定に関する Q&A について (平成

24年7月5日)」より作成

出典の公開日:平成24年7月5日

QA8-23 食品のモニタリング検査とは、どのようなものですか。

A

- ① 基準値を超える食品が、市場に出回らないために行われる検査です。
- ② 国が定めた考え方に基づいて、各都道府県で行われます。
- ③ 過去の検査で放射性セシウムの濃度が高かった食品(きのこや山菜や野生 鳥獣肉など)や飼料(えさ)に含まれる放射性セシウムの影響を受けやす い食品(乳、牛肉)や水産物などが、検査対象になっています。
- ④ 各都道府県で実施された食品中の放射性物質の検査結果は、厚生労働省が取りまとめ、全て公表しています。

http://www.mhlw.go.jp/stf/kinkyu/0000045250.html

統一的な基礎資料の関連項目

下巻 第8章 83ページ「規準値を上回ったときの対応:出荷制限・摂取制限」

(解説)

(参考資料)

下記は、厚生労働省が公表した食品中の放射性物質の検査結果に基づき、検査結果の検索を可能としたサイトです。

・食品中の放射性物質検査データ(国立保健医療科学院) http://www.radioactivity-db.info

出典:①消費者庁「食品と放射能 Q&A」(第 10 版)、②原子力災害対策本部「検査計画、出

荷制限等の品目・区域の設定・解除の考え方」より作成

出典の公開日: ①平成28年3月15日、②平成27年3月20日

QA8-24 製造・加工された食品にも基準値が適用となりますが、モニタリング検査も行われるのですか。

A

国が定めたガイドラインでは、原材料だけでなく製造・加工された食品についても検査対象としています。

統一的な基礎資料の関連項目

下巻 第8章 78ページ「検査計画、出荷制限等の品目・区域の設定・解除の考え方(1/3)」 下巻 第8章 85ページ「ウェブサイトでの情報提供」

出典:厚生労働省「食品中の放射性物質に係る基準値の設定に関する Q&A について(平成

24年7月5日)」より作成

出典の公開日:平成24年7月5日

QA8-25 基準値を厳しくすることで、検査件数が減り、違反品が流通するようになるのではないですか。

A

- ① 食品の安全は、人々の健康にとって基本的なことの一つですから、おろそかにすることはできません。
- ② 食品の検査は、効率的なスクリーニング検査と精密な検査を組み合わせて 実施しています。
- ③ 国は、それぞれの自治体に係る負担をなるべく減らしてスムーズな検査が 行えるように、自治体が作成する検査計画のための情報を示し、自治体に よる検査機器導入の補助支援や、必要な場合には国の研究機関等での検査 を行うなどのサポートを行っています。

統一的な基礎資料の関連項目

下巻 第8章 81ページ「食品中の放射性物質に関する検査の手順」 下巻 第8章 85ページ「ウェブサイトでの情報提供」

出典:①厚生労働省「食品中の放射性物質に係る基準値の設定に関する Q&A について」、②原子力災害対策本部「検査計画、出荷制限等の品目・区域の設定・解除の考え方」、③厚生労働省医薬食品局食品安全部監視安全課「農畜水産物等の放射性物質検査について」より作成

出典の公開日: ①平成 24 年 7 月 5 日、②平成 26 年 3 月 20 日、③平成 23 年 4 月 4 日本資料への収録日: 平成 29 年 3 月 31 日

QA8-26 食事から受ける放射線量の実態は、どの程度ですか。

A

- ① 平成28年2月から3月に、全国15地域で、実際に流通する食品を購入して、放射性セシウムの測定を行い、食品中の放射性セシウムから受ける放射線量を測定しました。
- ② 食品中の放射性セシウムから、人が1年間に受ける放射線量は、0.0006~0.0011 ミリシーベルト(mSv)と推定され、現行基準値の設定根拠である年間上限線量1ミリシーベルト(mSv)の1%であり、極めて小さいことが確かめられました。
- ■マーケットバスケット調査:

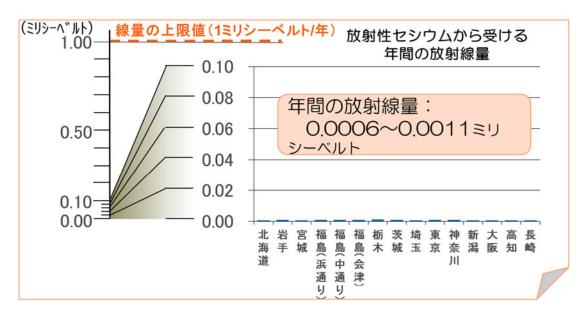
種々の化学物質の1日摂取量を推定するための調査方法の一つです。

出典:厚生労働省ウェブサイト

http://www.mhlw.go.jp/shinsai_jouhou/market_basket.html

・マーケットバスケット調査・陰膳調査 結果

http://www.mhlw.go.jp/shinsai_jouhou/shokuhin.html (ページの中程に平成 24 年 2 月からの調査結果を掲載しています。)


③ 今後も継続的に同様の調査を行い、食品の安全性の検証に努めていきます。

統一的な基礎資料の関連項目

下巻 第8章 77ページ「流通食品での調査(マーケットバスケット調査)」

(解説)

マーケットバスケット調査(平成 27 年 2 ・ 3 月調査)結果を基に、食品から人が 1 年間に受ける放射線量を推計すると、下記の図のようになります。

出典:厚生労働省ウェブサイト「食品中の放射性物質への対応」より作成

QA8-27 現在、どの地域でどのような食品の出荷が禁止されていますか。

A

出荷制限の情報については、適宜更新しておりますので、以下の資料をご参 照ください。

現在の出荷制限・摂取制限の指示の一覧 http://www.mhlw.go.jp/stf/houdou/2r9852000001a3pj-att/2r9852000001a3rg.pdf

統一的な基礎資料の関連項目

下巻 第8章 84 ページ「原子力災害対策特別措置法に基づく出荷制限の対象食品(平成 28年 12月 26日時点)」

(解説)

(参考資料)

- ・厚生労働省「東日本大震災関連情報 食品中の放射性物質への対応」 http://www.mhlw.go.jp/shinsai_jouhou/shokuhin.html
- ・農林水産省「東京電力福島第一原子力発電所事故による農畜水産物等への影響〜関係府省等のサイトへのポータル」

農畜水産物の出荷制限の指示及び解除について

http://www.maff.go.jp/noutiku_eikyo/syukka_seigen.html

出典:厚生労働省「東日本大震災関連情報 食品中の放射性物質への対応 | より作成

QA8-28 福島県及び近隣県では、どのように農産物・水産物を検査しているのですか。

A

- ① 原子力災害対策本部が定めた「検査計画、出荷制限等の品目・区域の設定・解除の考え方」に基づき、各都道府県で検査計画を策定し、実施しています。
- ② 検査は、ゲルマニウム半導体検出器を用いた核種分析法による精密な検査 と、NaI(TI)シンチレーションスペクトロメータ等を用いた放射性セシ ウムスクリーニング法による効率的な検査を組み合わせて行っています。
- ③ 放射性セシウムスクリーニング法では、対象食品を一般食品とし、スクリーニングレベルを基準値の 1/2 以上(1キログラム当たり 50 ベクレル (Bq/kg))、測定下限値を基準値の 1/4(1キログラム当たり 25 ベクレル (Bq/kg)) 以下とします。
- ④ その結果、スクリーニングレベル以下とならず、基準値よりも確実に低い と判断できない場合は、ゲルマニウム半導体検出器で確定検査を行います。

統一的な基礎資料の関連項目

下巻 第8章 78ページ「検査計画、出荷制限等の品目・区域の設定・解除の考え方(1/3)」 下巻 第8章 81ページ「食品中の放射性物質に関する検査の手順」

出典:消費者庁「食品と放射能 Q&A (第10版)」より作成

OA8-29 モニタリング検査は、どのような品目がカバーされているのですか。

A

- ① 「検査計画、出荷制限等の品目・区域の設定・解除の考え方」に基づき、 各都道府県で検査計画を策定し、検査を実施しています。
- ② 「検査計画、出荷制限等の品目・区域の設定・解除の考え方」では、次のような品目について検査対象としています。
 - (ア)基準値又は基準値の1/2を超える放射性セシウムが検出された品目
 - (イ)乳や牛肉など飼養管理の影響を大きく受けるため、継続的なモニタリン グ検査が必要な品目
 - (ウ)水産物(基準値の1/2を超える放射性セシウムが検出された品目)
 - (工)その他の品目

統一的な基礎資料の関連項目

下巻 第8章 78ページ「検査計画、出荷制限等の品目・区域の設定・解除の考え方(1/3)」 下巻 第8章 79ページ「検査計画、出荷制限等の品目・区域の設定・解除の考え方(2/3)」

下巻 第8章 80ページ「検査計画、出荷制限等の品目・区域の設定・解除の考え方(3/3)」

(解説)

(参考資料)

各都道府県で実施された食品中の放射性物質の検査結果は、厚生労働省が取りまとめ、 全て公表しています。

http://www.mhlw.go.jp/stf/kinkyu/0000045250.html

出典:原子力災害対策本部「検査計画、出荷制限等の品目・区域の設定・解除の考え方(

改訂版) 」より作成

QA8-30 「茶」と名前のつく飲料やその他の飲料、粉末を水や湯に溶かして 飲用するスープなどの濃縮食品、乾燥食品は、どのような基準値が 適用されますか。

A

- ① 緑茶や緑茶を原料の一部に含むブレンド茶については、消費者から緑茶と同類の商品と認識されているものを含むため、茶に該当し、飲料水の基準値が適用されます。
- ② 「茶」と名が付いても、緑茶の浸出液を原料に含まないものやその他の飲料については、一般食品の基準値が適用されます。
- ③ ミルクを加えたもので、乳及び乳製品の成分規格等に関する省令の乳飲料に該当するものは牛乳の区分に該当します。
- ④ 濃縮食品やフリーズドライ食品は、原則として製品状態で一般食品の基準値が適用されます。
- ⑤ 乾燥きのこ類、乾燥野菜、乾燥させた海藻類、乾燥させた魚介類は、原材料の状態と実際に食べる状態(水戻しを行った状態)で一般食品の基準が適用されます。

統一的な基礎資料の関連項目

下巻 第8章 68ページ「食品区分について【参考】」 下巻 第8章 85ページ「ウェブサイトでの情報提供」

(解説)

飲料等において適用される放射性物質に係る基準値の一覧を以下に示します。

食品区分	放射性物質に係る基準値
緑茶 [※]	飲料水の基準
	(1キログラム当たり10ベクレル(Bq/kg))
緑茶を原料の一部に含むブレンド茶	飲料水の基準
	(1キログラム当たり10ベクレル(Bq/kg))
麦茶	大麦の状態で一般食品の基準
	(1キログラム当たり100ベクレル (Bq/kg))

緑茶と麦茶以外の、紅茶、ウーロン茶、ハーブティ、	飲む状態で一般食品の基準
杜仲茶、ドクダミ茶、レギュラーコーヒーなど	(1キログラム当たり100ベクレル(Bq/kg))
抹茶や、茶葉をそのまま粉砕した粉末茶	粉末の状態で一般の食品の基準
	(1キログラム当たり100ベクレル(Bq/kg))
緑茶等に砂糖、抹茶、香料、ビタミンC等を	飲料水の基準
加えたもの	(1キログラム当たり10ベクレル(Bq/kg))
ミルクを加えたものなどで、乳及び乳製品の成	牛乳の区分の基準
分規格等に関する省令の乳飲料に該当するもの	(1キログラム当たり50ベクレル(Bq/kg))
粉末飲料等の希釈して飲まれる飲料	製品状態で一般食品の基準
	(1キログラム当たり100ベクレル(Bq/kg))
抹茶を原料に含むペットボトル飲料のうち、	製品状態で一般食品の基準
緑茶の浸出液を原料に含まないもの	(1キログラム当たり100ベクレル (Bq/kg))

※緑茶は、せん茶と、これに類するものとして玉露、ほうじ茶、玄米茶などチャノキを原料とし、 茶葉を発酵させていないものを指す。

粉末を水や湯に溶かして飲用するスープなどの濃縮食品、乾燥食品において適用される 放射性物質に係る基準値は以下のとおりです。

食品区分	放射性物質に係る基準値
濃縮スープ、濃縮たれ、濃縮つゆなどの濃縮	製品状態で一般食品の基準
食品	(1キログラム当たり 100 ベクレル (Bq/kg))
フリーズドライ食品、粉末スープ、即席みそ	製品状態で一般食品の基準
汁などの乾燥食品	(1キログラム当たり 100 ベクレル (Bq/kg))

原材料の状態と食べる状態(水戻しを行った状態)で一般食品の基準値を適用する、乾燥食品の範囲は、乾燥きのこ類、乾燥野菜、乾燥させた海藻類、乾燥させた魚介類になります。具体的な食品としては、乾燥きのこ類は、日本標準商品分類(以下「商品分類」という)に示された乾燥きのこ類のうち、しいたけ、きくらげ等、乾燥野菜は、商品分類に示された乾燥野菜のうち、フレーク及びパウダーを除くものとし、かんぴょう、割り干しだいこん、切り干しだいこん、ぜんまい、わらび、いもがら等が該当します。乾燥させた海藻類は、商品分類に示された加工海藻類のうち、こんぶ、干わかめ類、干ひじき、干あらめ、寒天等が、乾燥させた魚介類は、商品分類に示された素干魚介類のうち、本干みがきにしん、棒たら、さめひれ等、煮干魚介類のうち、干あわび、干なまこ等が、それぞれ該当します。

乾燥しいたけについては、粉砕後のサンプルに、日本食品標準成分表等の水戻しによる水分含量の公表データ(重量変化率)を参考として、必要な水分をあらかじめ添加して検査を行うことを原則としています。この方法では、だし汁に溶出する分も含めて検査をしていることと同義となります。

出典:厚生労働省「食品中の放射性物質に係る基準値の設定に関する Q&A について」より作成

出典の公開日:平成24年7月5日

QA8-31 生鮮農産物の原産地表示は、きちんと行われているのですか。

A

- ① 国産の生鮮農産物の原産地表示については、食品表示法に基づく食品表示 基準により、義務づけられています。
- ② この表示義務に違反したり、虚偽の表示をした食品を販売した場合には、 行政措置や刑事罰の対象となります。

統一的な基礎資料の関連項目

下巻 第8章 82ページ「食品中の放射性物質に関する検査結果の公表」 下巻 第8章 85ページ「ウェブサイトでの情報提供」

出典:消費者庁「食品と放射能 Q&A」(第10版) より作成

QA8-32 飲用に供する茶の試験に関し、検査の検出限界値を教えてください。

A

製品(製茶)となる過程である荒茶又は製茶については、「食品中の放射性物質の試験法について」で示した方法により測定する場合は、同試験法で基準値の 1/5 以下と定められているので、1 キログラム当たり 40 ベクレル(Bq/kg)以下となります。

また、「食品中の放射性セシウムスクリーニング法」の要件を満たした検査機器により測定した場合は、同法で定められているとおり、1キログラム当たり25ベクレル(Bq/kg)以下となります。

統一的な基礎資料の関連項目

下巻 第8章 81ページ「食品の放射性物質に関する検査の手順」

出典:厚生労働省「食品中の放射性物質に係る基準値の設定に関する Q&A について(平成

24年7月5日)」より作成

出典の公開日:平成24年7月5日

QA8-33 米の安全性は、どうなっていますか。

A

- ① 米については、過去の検査結果から対策が必要と考えられる一部の地域では適切な量のカリウム肥料を施肥して、放射性セシウムの吸収抑制対策が図られています。
- ② 避難指示区域等については、避難指示区域の見直しや前年産の検査結果を踏まえて「米の作付等に関する方針」を定めており、吸収抑制対策や収穫後の検査を組み合わせた安全確保の取組を行っています。
- ③ これらの対策により、基準値の超過割合は年々減少し、平成 27 年産米については基準値を超過するものはありませんでした。

統一的な基礎資料の関連項目

下巻 第8章 90ページ「農産物に係る放射性物質の移行低減対策(2/5)-カリ施肥による 吸収抑制対策-」

下巻 第8章 94ページ「米の作付等に関する方針」

下巻 第8章 96ページ「福島県における米の全袋検査」

下巻 第8章 98ページ「米(全袋検査を含む)の検査結果の推移」

出典:消費者庁「食品と放射能 Q&A」(第10版) より作成

QA8-34 牛乳、肉、卵の安全性は、どうなっていますか。

A

- ① 畜産物については、(a)家畜の適切な飼養管理を徹底し、(b)出荷前に放射性物質の検査を行い、(c)検査結果に応じて出荷制限を行う、ことで安全を確保しています。
- ② このような対応により、原乳では平成23年4月以降はすべて規準値の1キログラム当たり50ベクレル(Bq/kg)以下となっています。牛肉、豚肉、鶏肉、鶏卵では、平成25年以降、基準値の超過はみられていません。

統一的な基礎資料の関連項目

下巻 第8章 103ページ「畜産物の安全確保」

下巻 第8章 104ページ「基準値に対応した飼養管理(1/2)」

下巻 第8章 105ページ「基準値に対応した飼養管理(2/2)」

下巻 第8章 106ページ「畜産物の放射性物質検査(平成28年度)」

出典:消費者庁「食品と放射能 Q&A」(第10版) より作成

QA8-35 畜産物の生産現場では、どのような取組がされていますか。

A

- ① 畜産物に含まれる放射性物質は、主に家畜の食べる飼料に由来するので、 飼料中の放射性セシウムを抑制する必要があります。
- ② このため、飼料を与える家畜の種類ごとに、飼料中の放射性セシウムの目 安を定め、これを超える飼料を与えないよう指導しています。
- ■飼料の放射性セシウムの暫定許容値
 - ・牛、馬用飼料 1キログラム当たり 100 ベクレル(Bq/kg)
 - ・豚用飼料 1キログラム当たり 80 ベクレル (Bg/kg)
 - ・家きん(鳥)用飼料 1キログラム当たり 160 ベクレル(Bq/kg)
 - ・養殖魚用飼料 1キログラム当たり 40 ベクレル(Bq/kg)
 (製品重量^{*}、ただし粗飼料は水分含有量 8 割ベース)
 - ※製品重量とは、配合飼料等家畜に給与される製品段階の重量です。

統一的な基礎資料の関連項目

下巻 第8章 104ページ「基準値に対応した飼養管理(1/2)」

下巻 第8章 105ページ「基準値に対応した飼養管理(2/2)」

下巻 第8章 106ページ「畜産物の放射性物質検査(平成28年度)」

出典:消費者庁「食品と放射能 Q&A」(第10版)より作成

QA8-36 きのこ、山菜の安全性は、どうなっていますか。

A

- ① きのこには、「栽培管理されているもの」と「野生のもの」があります。出 荷制限を行っている主なきのこは、栽培されているしいたけと野生のきの こです。
- ② しいたけの栽培に使用されている「原木やほだ木、菌床用培地」は、定められた基準に適合したものを使用するよう生産指導等がなされています。 このような管理により、基準値超過が減少しています。
- ③ 低減対策がとれない野生のきのこや山菜では、基準値超過がみられます。
- ④ 出荷制限、摂取制限地域では野生のきのこや山菜の採取は控えてください。

統一的な基礎資料の関連項目

下巻 第8章 112ページ「きのこ等の特用林産物の安全確保対策」

下巻 第8章 113ページ「(参考) きのこ原木等の当面の指標値」

下巻 第8章 114ページ「きのこ類(栽培)の検査結果の推移」

下巻 第8章 115ページ「山菜類等(栽培)の検査結果の推移」

下巻 第8章 116ページ「きのこ類(野生)の検査結果の推移」

下巻 第8章 117ページ「山菜類等(野生)の検査結果の推移」

出典:消費者庁「食品と放射能 Q&A」(第10版)より作成

QA8-37 イノシシ等の野生鳥獣の安全性は、どうなっていますか。

A

- ① 各自治体は、イノシシ、シカ、クマ等の野生の鳥獣肉の放射性物質検査を行い、結果を公表しています。
- ② 野生の鳥獣肉は、低減対策がとれないため体内に放射性物質が蓄積し、基準値超過の割合が多くなっています。
- ③ 基準値超過を超える可能性がある地域では、出荷制限・摂取制限、出荷自 粛が行われていますので、各県のウェブサイトを確認してください。

福島県:「野生鳥獣の放射線モニタリング調査結果」

http://www.pref.fukushima.lg.jp/site/portal/wildlife-radiationmonitoring1.html

岩手県:「野生鳥獣肉の放射性物質検査について(野生動物(自然保護課))」

http://www.pref.iwate.jp/houshasen/torikumi/19116/002879.html

宮城県:「放射能情報サイトみやぎ(その他の測定結果:野生鳥獣)」

http://www.r-info-miyagi.jp/r-info/other/#11

茨城県:「野生鳥獣の放射性物質検査の結果について」

http://www.pref.ibaraki.jp/seikatsukankyo/kansei/chojyuhogo/shuryo-hosha-kensa.html

栃木県:「野生鳥獣の放射性物質モニタリング調査結果」

http://www.pref.tochigi.lg.jp/kinkyu/d04/houshanou_choujuu.html

群馬県:「野生鳥獣肉の放射性物質検査結果」 http://www.pref.gunma.jp/04/e2300272.html

千葉県:「野生鳥獣肉の放射性物質検査結果について」

http://www.pref.chiba.lg.jp/shizen/choujuu/fousyanou/kennsa.html

新潟県:「平成 28 年度の野生鳥獣の肉の放射性物質の検査結果について」 http://www.pref.niigata.lg.jp/kankyokikaku/1356840385937.html

統一的な基礎資料の関連項目

下巻 第8章 85ページ「ウェブサイトでの情報提供」

出典:①消費者庁「食品と放射能 Q&A」(第 10 版)、②「福島復興ステーション、岩手県、 宮城県、茨城県、栃木県、群馬県、千葉県、および新潟県の各ウェブサイト」より作成

QA8-38 野生のきのこや山菜は、検査が行われていないのですか。

A

- ① 自治体毎に検査が行われており、検査結果は厚生労働省ウェブサイトで公表されています。
- ② 自家消費用のきのこは持込検査を行う場合には、「持込検査を受け付けている機関」についてお住まいの自治体等にお問い合わせください。

(参考資料)

厚生労働省「月別検査結果」

http://www.mhlw.go.jp/stf/kinkyu/0000045250.html

農林水産省「きのこ・山菜等の放射性物質の検査結果について」 http://www.rinya.maff.go.jp/j/tokuyou/kinoko/kensakekka.html

ふくしま復興ステーション「県内における自家消費野菜等の放射能検査」 http://www.pref.fukushima.lg.jp/site/portal/kennai-hoshanoukensa.html

統一的な基礎資料の関連項目

下巻 第8章 116ページ「きのこ類(野生)の検査結果の推移」 下巻 第8章 117ページ「山菜類等(野生)の検査結果の推移」

出典:消費者庁「食品と放射能 Q&A」(第10版) より作成

QA8-39 放射性物質で汚染されている水産物が、市場に流通しているのでは ないですか。

A

養殖や漁等により採取された魚介類については、放射能検査が実施されています。食品中の放射性物質の濃度が基準値を超えた場合には、出荷制限が行われ、市場には流通しません

統一的な基礎資料の関連項目

下巻 第8章 78ページ「検査計画、出荷制限等の品目・区域の設定・解除の考え方(1/3)」

下巻 第8章 79ページ「検査計画、出荷制限等の品目・区域の設定・解除の考え方(2/3)」

下巻 第8章 80ページ「検査計画、出荷制限等の品目・区域の設定・解除の考え方(3/3)」

下巻 第8章 119ページ「水産物の検査結果(福島県海産種:40,381点)」

下巻 第8章 120ページ「水産物の検査結果(福島県淡水種:4,048点)」

下巻 第8章 121ページ「水産物の検査結果(福島県以外海産種:45,309点)」

下巻 第8章 122ページ「水産物の検査結果(福島県以外淡水種:11,151点)」

下巻 第8章 123ページ「魚種別の放射性セシウム濃度の傾向(1/2)」

下巻 第8章 124ページ「魚種別の放射性セシウム濃度の傾向(2/2)」

(解説)

(参考資料)

水産庁. 水産物についてのご質問と回答(放射性物質調査)

http://www.jfa.maff.go.jp/j/kakou/Q_A/

福島県漁業協同組合連合会. 福島県における試験操業の取組

http://www.fsgyoren.jf-net.ne.jp/siso/sisotop.html

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

出典の公開日: 平成 25 年 10 月 31 日本資料への収録日: 平成 29 年 3 月 31 日

QA8-40 生鮮水産物の原産地表示は、きちんと行われているのですか。

A

- ① 国産の生鮮水産物の原産地表示については、食品表示法に基づく食品表示 基準により、義務づけられています(例:茨城県沖、三陸沖等)。
- ② ただし、水域をまたがって漁をする場合等、水域名の記載が困難な場合には、「水揚げした港名又はその属する都道府県名」をもって水域名の記載に代えることができることになっています。
- ③ この表示義務に違反した場合には、生鮮農産物と同様に、行政措置や刑事 罰の対象となります。

統一的な基礎資料の関連項目

下巻 第8章 85ページ「ウェブサイトでの情報提供」 下巻 第8章 125ページ「消費者への原産地情報の提供」

出典:消費者庁「食品と放射能 Q&A」(第10版) より作成

QA8-41 海底に生息する魚介類は、放射性物質濃度が高いと聞きました。市場には流通しませんか。

A

- ① 震災以降、10万検体を超える(平成28年12月時点)水産物中の放射性物質モニタリングを実施しており、海産物では平成27年4月以降、基準値を超えるものは検出されておらず、水産物中の放射性物質濃度は低下しています。
- ② モニタリングにより、水産物から基準値を超える放射性物質が検出された場合には、同水域で漁獲された同種の水産物が流通することがないよう、速やかに出荷の自粛要請や出荷制限指示等が出される体制となっています。
- ③ このため、基準値を上回る水産物が市場に流通することはありません。

統一的な基礎資料の関連項目

下巻 第8章 78ページ「検査計画、出荷制限等の品目・区域の設定・解除の考え方(1/3)」

下巻 第8章 79 ページ「検査計画、出荷制限等の品目・区域の設定・解除の考え方(2/3)」

下巻 第8章 80ページ「食検査計画、出荷制限等の品目・区域の設定・解除の考え方(3/3)」

下巻 第8章 119ページ「水産物の検査結果(福島県海産種:40,381点)」

下巻 第8章 120ページ「水産物の検査結果(福島県淡水種:4,048点)」

下巻 第8章 121ページ「水産物の検査結果(福島県以外海産種:45,309点)」

下巻 第8章 122ページ「水産物の検査結果(福島県以外淡水種:11,151点)」

下巻 第8章 123ページ「魚種別の放射性セシウム濃度の傾向(1/2)」

下巻 第8章 124ページ「魚種別の放射性セシウム濃度の傾向(2/2)|

出典:水産庁「水産物についてのご質問と回答(放射性物質調査)」より作成

出典の公開日:平成27年10月7日

第9章 事故からの回復に向けた取組

QA9-1 東京電力福島第一原子力発電所事故に関わる特措法とはどのような 法律ですか。また、それに基づいて実施に移す、除染のガイドライ ンはあるのでしょうか。

A

- ① 特措法とは、「平成二十三年三月十一日に発生した東北地方太平洋沖地震に伴う原子力発電所の事故により放出された放射性物質による環境の汚染への対処に関する特別措置法」のことをいいます。
- ② 東北地方太平洋沖地震に伴う原子力発電所の事故に由来する放射性物質による環境の汚染への対処に関し、国、地方公共団体、関係原子力事業者等が講ずべき措置等を定めた法律です。
- ③ 事故由来放射性物質による環境の汚染が人の健康又は生活環境に及ぼす影響を速やかに低減することを目的として、平成23年8月30日に公布され 平成24年1月1日に全面施行されました。
- ④ 国が除染事業を進める地域(除染特別地域)、市町村等が除染を実施する区域(汚染状況重点調査地域)等を定めています。
- ⑤ また、除染等を進めるに当たり次のようなガイドラインが作成されています。
 - ・除染関係ガイドライン
 - ・廃棄物関係ガイドライン
 - ・放射性物質による局所的汚染箇所への対処ガイドライン
- ⑥ 特措法の概要、ガイドラインの詳細は環境省の次のウェブサイトで見ることができます。

http://josen.env.go.jp/about/tokusohou/summary.html http://shiteihaiki.env.go.jp/radiological_contaminated_waste/guidelines/

出典:環境省「除染情報サイト・放射性物質汚染対処特措法の概要」 より作成

QA9-2 今回の東京電力福島第一原子力発電所事故に関連して実施されている除染とは何ですか。

A

- ① 除染とは、人々が日常生活する空間において受ける放射線の量をできるだけ早く減らす目的で、放射性物質で汚染された土壌を取り除いたり、屋根、壁、道路等を水で洗浄したり、上層の土と下層の土を入れ替えたり(天地返し)することです。
- ② 放射性物質による汚染の状況や地域の実情によって、具体的な除染の方法 は異なります。

統一的な基礎資料の関連項目

下巻 第8章 89ページ「農産物に係る放射性物質の移行低減対策(1/5)-農地の除染-」

下巻 第9章 127ページ「除染とは?」

下巻 第9章 128ページ「除染と線量の低減」

下巻 第9章 129ページ「除染の方法」

出典:環境省「除染情報サイト」より作成

出典の公開日: 平成24年10月

QA9-3 庭の放射線量を測りましたが、空間線量率の高い場所がありました。 なぜですか。また、除染の方法を教えてください。

A

- ① 今回の東京電力福島第一原子力発電所の事故により、環境中に放出された 放射性物質が、雨などで流されることにより、雨水が流れ込んだり、泥が 溜まったりする雨樋出口や側溝などの場所で付着した放射性物質が、雨で 流されて溜まったりする側溝などの場所で、放射線量率が高くなりやすい 傾向があります。
- ② 山や森などが近くにある場合は、庭の外の周辺からの影響を受けていることも考えられます。
- ③ 除染の方法につきましては、放射線量の高さや場所によっても大きく異なりますので、各関係機関が設けている専用のウェブサイトなどを参照してください。

統一的な基礎資料の関連項目

下巻 第9章 129ページ「除染の方法」

(解説)

除染作業の実際については、下記のウェブサイトもご参照ください。

- ・放射線安全管理学会「個人住宅を対象とするホットスポット発見/除染マニュアル」 http://www.jrsm.jp/shinsai/0728soil.pdf
- ・農林水産省「除染について」 http://www.maff.go.jp/j/kanbo/joho/saigai/jyosen/
- ・環境省「除染関係ガイドライン第 2 版(平成 28 年 9 月追補)」 http://www.env.go.jp/jishin/rmp/attach/josen-gl-full_ver2_supplement-201609.pdf
- ・福島県「放射線量低減化対策パンフレットについて」http://www.pref.fukushima.lg.jp/sec/01010d/senryo-teigen.html

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

QA9-4 近所で線量率の高い場所を見つけた場合は、どうしたらいいのですか。

A

- ① 線量が高いところが見つかった場合、その場を離れ近づかないようにしてください。
- ② 他の人も近づかないようにその場所の線量が高い旨を知らせる目印を付けてください。
- ③ お住まいの各自治体に連絡してください。

統一的な基礎資料の関連項目

下巻 第9章 127ページ「除染とは?」

(解説)

(参考資料)

原子力規制委員会 放射線モニタリング情報 「福島県以外の地域における周辺より放射線量の高い箇所への対応について」

http://radioactivity.nsr.go.jp/ja/contents/8000/7526/view.html

出典:量子科学技術研究開発機構 放射線医学総合研究所ウェブサイト「放射線被ばくに関

する Q&A」より作成

QA9-5 除染による効果はどの程度なのでしょうか。

A

- ① これまでの除染の結果を評価したところ、除染によって空間線量率が平均値で30~50%程度低減したとの報告があります。
- ② 実際の低減効果については、次のウェブサイトで確認することができます。

「国及び地方自治体が実施した除染事業における除染の効果 (空間線量率) について」 (平成 25 年 12 月)

http://www.env.go.jp/jishin/rmp/conf/10/ref05.pdf

統一的な基礎資料の関連項目

下巻 第9章 128ページ「除染と線量の低減」

出典:除染情報プラザ「除染・放射線 QA」より作成

出典の公開日:平成26年6月9日

QA9-6 除染した後でも、森林などに付着している放射性セシウムなどが流れてきて、生活環境を再汚染することはないのですか。

A

- ① 調査の結果、森林から生活圏等に飛散する大気中の浮遊じんに含まれる放射性セシウムの量は、空間線量率に影響を与えるような量ではないことが明らかになっています。
- ② また、降雨による放射性セシウムを含む土壌等の森林からの流出は、生活 圏の空間線量率に明確な影響を与えるものではないことも明らかになって います。
- ③ さらに、流域から河川への放射性セシウムの年間流出率は、流域の土壌への沈着量の0.02~0.3%程度と見積もられ、流域の放射性物質濃度の変動への寄与は限られています。
- ④ このように、一般的には土壌等の森林からの流出による生活圏の空間線量率への影響は限定的ですが、土壌被覆率が低く、勾配が急でかつ汚染度の高い森林からの土壌等の流出による再汚染があった場合には、対策を実施します。

統一的な基礎資料の関連項目

上巻 第4章 171ページ「環境中での放射性セシウムの動き:森林土壌からの流出」

上巻 第4章 173ページ「森林中の分布.」

上巻 第4章 174ページ「降下・沈降したセシウムの環境中での移行」

出典:①第16回環境回復検討会「森林における放射性物質対策の方向性について」、②福島の森林・林業の再生のための関係省庁プロジェクトチーム「参考資料 森林の放射性物質に関する知見」、③福島の森林・林業の再生のための関係省庁プロジェクトチーム「福島の森林・林業の再生に向けた総合的な取組」

出典の公開日: ①平成27年12月21日 ②③平成28年3月9日

QA9-7 住宅地から 20m までの範囲以外の森林の除染は、どのように取り組まれるのですか。

A

- ① 住居周辺の里山等の森林内の日常的に人が立ち入る場所について、地元の 具体的な要望を踏まえて、現場の状況を勘案し、追加被ばく線量を低減す る観点から、対象範囲や実施方法等を検討し、除染を実施します。
- ② 具体的には、ほだ場、炭焼場、キャンプ場、遊歩道・散策道・林道、休憩 所、広場、駐車場など、森林内の人々の憩いの場や人が立ち入る機会の多い場所について、立入り頻度や滞在時間、土壌流出のリスク等を勘案し、 適切に除染を実施します。

統一的な基礎資料の関連項目

下巻 第9章 130ページ「福島の森林・林業の再生に向けた総合的な取組」

出典:福島の森林・林業の再生のための関係省庁プロジェクトチーム「福島の森林・林業

の再生に向けた総合的な取組」より作成 出典の公開日:平成28年3月9日

QA9-8 森林除染は、全ての場所で行うわけではありませんが、沢水への影響はありませんか。

A

- ① 環境省では、福島県内の避難区域等のうち、要望のあった市町村において 住民が飲用する沢水のモニタリングを実施しています。
- ② その結果、ほとんどの検体で検出下限値(1リットル当たり 1 ベクレル (Bq/L)) 未満であり、平成 26 年以降は全検体で飲料水基準(1リットル 当たり 10 ベクレル(Bq/L))を下回ることが確認されています
- ③ なお、放射性セシウムが検出された検体について、ろ過後に再度測定した 結果、全検体で不検出であることも確認されています。

統一的な基礎資料の関連項目

下巻 第9章 130ページ「福島の森林・林業の再生に向けた総合的な取組」

出典:①避難区域等における沢水モニタリングの測定結果について(平成28年7月~平成28年9月採取分)、②食品衛生法に基づく食品、添加物等の規格基準(飲料水)(厚生労働省告示第130号)、③水道水中の放射性物質に係る目標値(水道施設の管理目標値)(健水発0305第1号厚生労働省健康局水道課長通知)より作成

出典の公開日: ①平成28年10月、②平成24年3月15日、③平成24年3月5日

QA9-9 仮置場の役割とその後除去土壌等は、どのようになるのですか。

A

- ① 仮置場は、除染で取り除いた除去土壌などが中間貯蔵施設へ搬入されるまでの期間一時的に保管する施設です。
- ② 平成 27 年 3 月より除去土壌などの中間貯蔵施設への輸送を実施しています。福島県内の除去土壌については、中間貯蔵施設で貯蔵開始後、30 年以内に福島県外で最終処分することとしています。

統一的な基礎資料の関連項目

下巻 第9章 134ページ「仮置場の例(地上に除去土壌を保管する場合)」

出典:①環境省「中間貯蔵施設情報サイト・施設の状況、輸送の状況」、②「除染情報サイ

ト・仮置場での保管について平成25年7月第2版」より作成

出典の公開日: ①平成27年3月、②平成25年7月

QA9-10 仮置場の安全対策は、どのようになっているのでしょうか。

A

- ① 仮置場は、放射線を遮へいしたり、周囲に放射性物質が漏れないようにしたりするなどの安全対策を講じて管理されています。
- ② 具体的には、居住地域からの距離を十分に確保した上で、柵などを設置し、 人が誤って仮置場に近づかないようにします。
- ③ 取り除いた土などは、フレキシブルコンテナや大型土のうなどに入れて、 水を通さない層(遮水シートなどの防水シート)の上に置き、その上部を 雨水などの流入や飛散を防ぐために防水シートなどで覆います。
- ④ 仮置場の設置後は、定期的に敷地境界での空間線量率を測定すると共に、 定期的に地下水を採取し、放射性物質の濃度を測定し、安全を確認します。

統一的な基礎資料の関連項目

下巻 第9章 134ページ「仮置場の例(地上に除去土壌を保管する場合)」

(解説)

(参考資料)

環境省「仮置場での保管について」平成 25 年 7 月 第 2 版 http://josen.env.go.jp/material/pdf/handbook_kariokiba.pdf?var_02

出典:環境省「保管場所ってなんで必要なの?~仮置場での保管について~(ハンドブック)

(第2版)」より作成

出典の公開日:平成25年7月

QA9-11 除染により、どのような廃棄物がでるのでしょうか。

A

- ① 住宅や森林等の除染に伴い、落ち葉・枝等の廃棄物が発生します。
- ② また、除染廃棄物を焼却した結果発生する焼却灰もあります。

(参考資料)

環境省「除染廃棄物関係ガイドライン 第2版」平成25年3月 https://www.env.go.jp/jishin/rmp/attach/haikibutsu-gl04_ver2.pdf

統一的な基礎資料の関連項目

下巻 第9章 135ページ「除去土壌等の中間貯蔵施設とは?」

出典:環境省「廃棄物関係ガイドライン(第2版)」より作成

出典の公開日:平成25年3月

QA9-12 除染で発生した汚染土を再生利用するとは、どのようなことでしょうか。

A

- ① 放射性物質を含む除去土壌はそのままでは利用が難しいのですが、土壌は本来貴重な資源であるため、汚染の程度を下げる処理などを行った上で、安全性を確保しつつ地元の理解を得て利用することを目指しています。
- ② その際、想定される用途ごとの追加被ばく線量評価に基づき、追加被ばく 線量を制限するための土壌の放射能濃度の設定や覆土等の遮へい措置を講 じた上で、適切な管理の下で利用することが考えられています。
- ③ 具体的には、管理主体や責任体制が明確となっている公共事業等における 盛土材等の構造基盤の部材に限定して利用することが考えられています。
- ④ 土壌資源を有効利用することにより、最終処分が必要となる量を減少させ、 最終処分場の施設規模を縮小すると共に、土砂の新規採取量の抑制を図る ことも可能になると考えられます。

(解説)

(参考資料)

環境省「再生資材化した除去土壌の安全な利用に係る基本的考え方について」 http://josen.env.go.jp/chukanchozou/facility/effort/investigative_commission/pdf/investigative commission 160630.pdf

出典:①環境省「再生資材化した除去土壌の安全な利用に係る基本的考え方」、②環境省・中間貯蔵除去土壌等の減容・再生利用技術開発戦略検討会 除去土壌等の再生利用に係る放射線影響に関する安全性評価検討ワーキンググループ「除去土壌等の再生利用に係る放射線影響に関する安全性評価検討 - 検討状況の取りまとめ案 -」より作成

出典の公開日: ①②平成28年6月30日 本資料への収録日: 平成29年3月31日

QA9-13 汚染廃棄物対策地域内に設置される仮設焼却施設とは、どのようなものですか。どうして焼却が必要なのですか。

A

- ① 仮設焼却施設は、主にごみの受け入れ供給設備、焼却炉、排ガス処理設備、 灰出し設備、さらに、放射性物質のモニタリング装置で構成されます。
- ② 燃焼形式は、最も一般的な火格子の上で燃焼させるストーカー炉、気流中で流動状態の熱せられた砂ですばやく燃焼させる流動床炉、震災廃棄物の焼却でも活躍したロータリーキルン炉など、多くの種類のシステムが使用されています。汚染廃棄物対策地域内ではストーカー炉と流動床炉が使用されていますが、中でもストーカー炉が多く採用されています。
- ③ 放射性物質によって汚染された可燃性の廃棄物は、腐敗や臭気を防止し、 減容化を図るため焼却することが必要です。
- ④ 処分する際には、廃棄物の性状が安定していることと、なるべく処分量が 少ないことが求められます。焼却することで廃棄物を安定にすると共に、 体積を 1/5~1/20 程度に減らすことができます。

統一的な基礎資料の関連項目

下巻 第9章 140ページ「対策地域内廃棄物の処理の進め方」

出典:環境省「放射性物質汚染廃棄物処理情報サイト」より作成

QA9-14 仮設焼却施設で焼却の際、放射性セシウムが漏れ出ることはないの しようか。

A

- ① 排ガス中の微粒子の灰(飛灰といいます)を除去する高性能の排ガス処理 装置(バグフィルター)により排ガス中の放射性セシウムはほぼ完全に除 去されます。
- ② 排ガス中のセシウムは、施設外へ漏れ出ることのないようにばいじんモニタリング装置及び施設周辺に設置したモニタリングポストで常時監視しています。
- ③ 廃棄物の焼却によって燃えがら(主灰といいます)も発生しますが、焼却炉の炉底から排出され回収・環境中に漏れ出すことはありません。
- ④ 焼却によって生じたこれらの灰は、放射性物質の濃度に応じて中間貯蔵施 設などで適切に管理することになっています。

出典:環境省「放射性物質汚染廃棄物処理情報サイト」より作成

QA9-15 焼却施設で焼却して発生する灰等は、放射能濃度が高いと考えられますが、どのように処理されるのでしょうか。

A

- ① 汚染廃棄物を焼却すると、一般的に放射能濃度は高くなります。しかし、 日常生活の中で排出されるごみ、稲わらやたい肥などを焼却してもほとん どの焼却灰は濃度が比較的低いという実績が得られています。
- ② 焼却によって発生した灰等の放射能濃度が、1 キログラム当たり 8,000 ベクレル (Bq/kg) 以下のものは、一般の廃棄物と同様の方法で安全に処理・処分できます。
- ③ 灰等の放射能濃度が、1 キログラム当たり 8,000 ベクレル(Bq/kg)以上 10 万ベクレル(Bq/kg)以下で環境大臣が指定したものは、国の責任の下、管理型構造の処分場などで処分されます。なお、福島県の場合、特定廃棄物埋立処分施設(旧フクシマエコテッククリーンセンター)で処分することとしています。
- ④ 放射能濃度が 10 万ベクレル (Bq) を超える灰等で環境大臣が指定したものは、国の責任の下、遮断型構造の処分場で処分されます。なお、福島県の場合、一旦中間貯蔵施設に保管されます。
- ⑤ 管理型処分場では、放射性物質が埋立層周辺に流出することを防止するため、埋め立てる廃棄物の下に土壌の層を設けることとされています。また、 遮断型処分場は、放射線障害の防止のため、コンクリート造りの外周仕切 設備を設けることとされています。

統一的な基礎資料の関連項目

下巻 第9章 142ページ「指定廃棄物の処理の進め方」

出典:環境省「放射性物質汚染廃棄物処理情報サイト」より作成

QA9-16 「除染特別地域」とは何ですか。

A

- ① 除染特別地域とは、国が除染事業を進める地域として、法律に基づき指定されている地域を指します。
- ② 警戒区域又は計画的避難区域であったことのある福島県内の 11 市町村が 指定されています。

統一的な基礎資料の関連項目

下巻 第9章 131ページ「除染特別地域と汚染状況重点調査地域」

下巻 第9章 132ページ「除染特別地域(補足説明)」

出典:除染情報プラザ「除染・放射線 Q&A」より作成

出典の公開日: 平成24年10月

QA9-17 「汚染状況重点調査地域」とは何ですか。

A

- ① 汚染状況重点調査地域とは、空間線量率が毎時0.23マイクロシーベルト(µSv/h)以上の地域を含む市町村(平成23年8月を基準)のうち、法律に基づき、指定されている地域です。
- ② この毎時 0.23 マイクロシーベルト (µSv/h) という要件は、その地域における追加被ばく線量が年間 1 ミリシーベルト (mSv/年) に当たる放射線量 (安全側に立った仮定の下の推計値)です。
- ③ 平成28年12月末現在、福島県を中心に、全国で8県94市町村が指定されており、当該市町村が中心となって除染を実施することになっています。

統一的な基礎資料の関連項目

下巻 第9章 131ページ「除染特別地域と汚染状況重点調査地域」

下巻 第9章 133ページ「汚染状況重点調査地域(補足説明)」

出典:環境省「除染情報サイト」より作成

出典の公開日: 平成24年10月

QA9-18 除染の具体的な目標はありますか。

A

- ① 除染作業による放射線量低減の具体的な目標はありません。除染は事故由 来放射性物質による環境の汚染が、人の健康又は生活環境に及ぼす影響を速やかに低減することを目的**としたものです。
- ② それぞれの現場によって、汚染の状況は多様で、対象となる場所や手法、 空間線量等が異なることもあり、追加被ばく線量の低減を目標としています。
- ③ 政府は長期目標として、除染だけでなく、モニタリング、食品の安全管理等の総合的な取組を行い、今回の原子力発電所事故由来の放射性物質による個人が受ける追加被ばく線量が年間1ミリシーベルト(mSv/年)以下になることを目指しています。
 - ※放射性物質污染対処特措法 第一章 総則(目的)

統一的な基礎資料の関連項目

下巻 第9章 131ページ「除染特別地域と汚染状況重点調査地域」

出典:除染情報プラザ「除染・放射線 Q&A」より作成

出典の公開日: 平成24年10月

QA9-19 各市町村の除染の状況を知りたいのですが、どこを見れば分かりますか。

A

- ① 国が除染を実施する地域の除染の状況は、環境省のウェブサイトの次の URL で確認できます。http://josen.env.go.jp/area/index.html
- ② 市町村が中心になって除染を実施する地域における除染の進捗状況は、環境省のウェブサイトの次の URL で確認できます。 http://josen.env.go.jp/zone/
- ③ 除染に関する情報については、環境省と福島県が設置している除染情報プラザのウェブサイトでご参照いただけます。

http://josen-plaza.env.go.jp/

統一的な基礎資料の関連項目

下巻 第9章 131ページ「除染特別地域と汚染状況重点調査地域」

下巻 第9章 132ページ「除染特別地域(補足説明)」

下巻 第9章 133ページ「汚染状況重点調査地域(補足説明)」

出典:①環境省「除染情報サイト」、②環境省「除染情報プラザ」

QA9-20 フォローアップ除染とは何ですか。

A

- ① フォローアップ除染とは、除染後の事後モニタリングの結果等を踏まえ、 再汚染や取り残し等により、除染の効果が維持されていない箇所が確認された場合に実施する除染のことです。
- ② 居住制限区域においては、除染後も宅地内で年間積算線量が20ミリシーベルト (mSv) 以下となることを確実に満たすとはいえない場合、その原因となっている箇所に限定して、事後モニタリングを待たず本格除染直後に、個々の現場の状況に応じたフォローアップ除染を実施します。
- ③ その他の地域においては、個々の現場の状況に応じて原因を可能な限り把握し、合理性や実施可能性を判断した上で、適切な手法によりフォローアップ除染を実施します。ただし、「追加被ばく線量が年間1ミリシーベルト (mSv/y)以下」という長期目標が既に達成されていることを確認できる場合には、フォローアップ除染の検討対象とはしません。

(解説)

(参考資料)

環境省第16回環境回復検討会資料「フォローアップ除染の考え方について」 http://josen.env.go.jp/about/efforts/follow_up_thinking.html

出典:環境省「除染情報サイト・除染のフォローアップについて」 より作成

QA9-21 帰還後に、農作物の栽培をしても大丈夫ですか。

A

- ① 土壌から農産物への放射性物質の移行は、移行係数という値で数値化できますが、この値は0.0001~0.01と非常に小さいです。
- ② 表面の土壌を取り除く除染が行われていれば、今回の事故で放出された放射性セシウムはほぼ取り除かれていると考えられます。
- ③ また、河川などの水からは放射性セシウムはほとんど検出されていません。
- ④ これらのことから、農作物の栽培を行うことは可能であると考えられます。
- ⑤ 心配な場合は、自治体等への相談、収穫された農作物の放射能濃度の測定 などを行ってください。

統一的な基礎資料の関連項目

上巻 第4章 167ページ「植物への移行」

下巻 第8章 89ページ「農産物に係る放射性物質の移行低減対策(1/5)-農地の除染-」

出典:統一的基礎資料 下巻第8章89ページ「農産物に係る放射性物質の移行低減対策

(1/5)-農地の除染-」より作成

QA9-22 事故当時の避難基準について教えてください。

A

平成23年3月11日の地震・津波が原因で発生した東京電力福島第一原子力発電所事故による放射性物質の環境中への大量放出が確認されて以降、市町村は、原子力災害の拡大防止のため、国の指示に基づき、警戒区域及び避難指示区域を設定してきました。

①警戒区域

東京電力福島第一原子力発電所半径 20km 圏内について、住民の安全及び治安を確保するため、避難を指示すると共に、同地域を警戒区域に設定し、区域内への立入りを原則禁止。

②計画的避難区域

事故発生から 1 年の期間内に積算線量が 20 ミリシーベルト (mSv) に達するおそれがある区域。当該区域の住民は、別の場所に計画的に避難してもらうことが求められた。

③緊急時避難準備区域

計画的避難区域を除く 20km~30km 圏内について、緊急時の屋内退避や避難が可能な準備等を求める区域。

※ (本区域割は平成24年4月1日見直し)

統一的な基礎資料の関連項目

下巻 第9章 145ページ「避難指示区域について」

(参考)

出典:①原子力災害対策本部「警戒区域の設定について)、②経済産業省「「計画的避難区域」

と「緊急時避難準備区域」の設定について」より作成

出典の公開日: ①平成23年4月21日、②平成23年4月11日

QA9-23 避難指示の解除基準は何ですか。

A

以下の3つの条件に照らして、避難指示解除の判断をすることとされています。

- ① 空間線量率で推定された年間積算線量が 20 ミリシーベルト (mSv) 以下 となることが確実であること
- ② 電気、ガス、上下水道、主要交通網、通信等日常生活に必須なインフラや 医療・介護・郵便等生活関連サービスが概ね復旧すること、子供の生活環 境を中心とする除染作業が十分に進捗していること
- ③ 県、市町村、住民との十分な協議

統一的な基礎資料の関連項目

下巻 第9章 149ページ「避難指示区域の解除について」

出典:内閣府原子力災害対策本部資料より作成

出典の公開日:平成24年12月25日 本資料への収録日:平成29年3月31日

QA9-24 区域の運用について教えてください。

A

平成24年4月1日の避難指示区域の見直しによって、新たに「避難指示解除準備区域」、「居住制限区域」、「帰還困難区域」として設定され直し、線量に応じて、行える活動の範囲が異なり、帰還できる環境整備を段階的に進めていきます。

統一的な基礎資料の関連項目

下巻 第9章 145ページ「避難指示区域について」

下巻 第9章 146ページ「見直し後の避難指示区域について」

下巻 第9章 147ページ「避難指示区域の見直し前後の変化(1/2)」

下巻 第9章 148ページ「避難指示区域の見直し前後の変化(2/2)」

下巻 第9章 149ページ「避難指示区域の解除について」

出典:原子力災害対策本部「ステップ2の完了を受けた警戒区域及び避難指示区域の見直

しに関する基本的考え方及び今後の検討課題について」より作成

出典の公開日: 平成 23 年 12 月 26 日本資料への収録日: 平成 29 年 3 月 31 日

QA9-25 避難区域の見直しは、航空機モニタリングではなく、地上における 詳細モニタリングに基づいて行うべきではないですか。

A

- ① 避難区域の設定・見直しについては、地区単位など広い範囲の放射線量を測定し、判断する必要があります。
- ② 広い範囲の放射線量を効率的に測定・評価する方法として航空機モニタリングが行われています。
- ③ 航空機モニタリングの結果と、地上での測定結果が概ね一致することを確認しています。

統一的な基礎資料の関連項目

下巻 第7章 13ページ「空間線量率の推移(80㎞圏内)」

下巻 第7章 19ページ「現在の空間線量率の状況」

(解説)

避難区域の見直しは、面的に放射線量を測定できる航空機モニタリングの結果を用いることを基本としています。また、航空機モニタリングは「総合モニタリング計画」(平成 23年8月2日モニタリング調整会議)に基づき行われています。

- (1) 航空機モニタリングは、地上における田畑や山林等の人や車によるモニタリングでは測定しにくい場所も含め、面的に一定範囲における線量の平均値を測ることが可能です。
- (2) このため、政府では、航空機モニタリングの測定結果を基に、年間被ばく線量の推定値を算出し、避難区域の見直しを行うことを基本としています。
- (3) なお、測定手法の違いによるバラツキはあるものの、航空機モニタリングの測定結果 (空間線量率) は、地上において NaI(TI) シンチレーション式サーベイメータにより 測定された結果と概ね一致することを確認しています。

出典:①原子力災害対策本部「避難区域等の見直しに関する考え方」、②原子力災害対策本部「ステップ2の完了を受けた警戒区域及び避難指示区域の見直しに関する基本的考え方および今後の検討課題について」より作成

出典の公開日: ①平成23年8月9日、②平成23年12月26日

QA9-26 避難指示区域内において被ばくを低減するために心がけるべきこと は何ですか。

A

- ① 帰還困難区域では、被ばく防護の観点から、立ち入りに際して、防護装備 の着用をお願いしています。
- ② 居住制限区域では、不要不急の立ち入りを控えると共に、用事が終わったら速やかに区域から退出することを求めています。
- ③ 避難指示解除準備区域では、雨樋や軒先等、局所的に線量の高い可能性のある場所の除染作業も進んでいますが、念のためそのような場所にはできるだけ近づかないようにして、不要な被ばくを避けてください。

統一的な基礎資料の関連項目

上巻 第4章 164ページ「外部被ばくの低減三原則」

下巻 第9章 147ページ「避難指示区域の見直し前後の変化(1/2)」

下巻 第9章 148ページ「避難指示区域の見直し前後の変化(2/2)」

出典:復興庁「避難住民説明会等でよく出る放射線リスクに関する質問・回答集」より作

成

出典の公開日: 平成 24 年 12 月 25 日本資料への収録日: 平成 29 年 3 月 31 日

QA9-27 避難区域における防犯、防火はどのように行っているのですか。

A

- ① 避難住民の方々の安全・安心を確保するため、十分な防犯・防火対策を講じていきます。
- ② 具体的には、警察では、主要道路での検問、初動捜査の強化、防犯カメラの設置、自治体やボランティアと連携したパトロール強化、防犯広報等の諸対策を実施しています。
- ③ 消防では、定期的な巡回、監視カメラの設置、消火栓の復旧や防火水槽の増設、大規模火災等の発生に備えた県内消防本部や関係機関による応援体制の確立等の対策を講じています。

出典:経済産業省原子力被災者生活支援チーム「避難指示区域内における活動について」 より作成

出典の公開日:平成24年5月9日

QA9-28 避難区域への立入りや車での交通によって、放射性物質が他の地域 に拡散するのではないですか。

A

- ① 自動車が警戒区域を通り、退出する際に放射性物質を拡散する程度は、警戒区域への一時立ち入りに伴うスクリーニングの基準よりも、十分低いことが確認されています。
- ② 線量の特に高い帰還困難区域では、放射性物質の拡散を防ぐ等の観点から、 区域境界にバリケードを設置し、区域への立ち入りを制限しています。ま た、区域からの退出に際しては、スクリーニングを確実に実施することが 求められています。

統一的な基礎資料の関連項目

下巻 第9章 147ページ「避難指示区域の見直し前後の変化(1/2)」

下巻 第9章 148ページ「避難指示区域の見直し前後の変化(2/2)」

出典:経済産業省原子力被災者生活支援チーム「避難指示区域内における活動について」

より作成

出典の公開日:平成24年5月9日

QA9-29 避難指示解除準備区域と居住制限区域は自由に立入が可能ですか。

A

避難指示解除準備区域と居住制限区域の両区域では、関係者(住民、インフラ復旧・除染・原発作業員等)の立入りに制限はありませんが、引き続き、避難指示が継続している地域であることから、関係者以外の立入りは控えることとしています。

統一的な基礎資料の関連項目

下巻 第9章 147ページ「避難指示区域の見直し前後の変化(1/2)」 下巻 第9章 148ページ「避難指示区域の見直し前後の変化(2/2)」

出典: 内閣府「区域見直し後の区域でできる活動などに関する Q&A (平成 23 年 3 月公開版)」

より作成

出典の公開日:平成23年3月

QA9-30 帰還困難区域へはどのように一時立入りするのですか。

A

- ① 帰還困難区域においても可能な限り、住民の意向に配慮した形で一時立入りを実施していきます。一時立ち入りの実施方法については、各市町村にお問い合わせください。
- ② 立入りの際は、防護装備等を着用することになっています。
- ③ また、スクリーニングや線量管理が必要となります。スクリーニング場については、帰還困難区域周辺のスクリーニング場等で実施可能です。

統一的な基礎資料の関連項目

下巻 第9章 148ページ「避難指示区域の見直し前後の変化(2/2)」

出典: 内閣府「区域見直し後の区域でできる活動などに関する Q&A (平成 23 年 3 月公開版)」より作成

出典の公開日:平成23年3月

QA9-31 避難指示区域内で可能な活動は何ですか。また、事業の再開は可能 ですか。

A

- ① 避難指示解除準備区域では、主要道路における通過交通、住民の方の一時的な帰宅、公益を目的とした立入り、復旧・復興事業者や一時帰宅者等を対象とした事業、営農・営林及び上記の諸活動に付随する事業の実施のための立入り、が可能です。
- ② 住居制限区域では、広く復旧・復興に不可欠な事業、稲の作付け制限など国の指示を守ると共に除染の動向などにも留意しながらの営農・営林、その他、 復旧・復興に不可欠だと認められる事業が可能となります。
- ③ 帰還困難区域では、市町村等が認める範囲で、主要道路における通過交通、住民の方の一時的な帰宅、公益を目的とした立ち入り、復旧・復興に不可欠な事業のみが可能となっています。

統一的な基礎資料の関連項目

下巻 第9章 147ページ「避難指示区域の見直し前後の変化(1/2)」

下巻 第9章 148ページ「避難指示区域の見直し前後の変化(2/2)」

出典: 内閣府原子力被災者生活支援チーム「避難指示区域内における活動について(改訂版)」 より作成

第10章 健康管理

第 10 章について

この 10 章の Q&A は、「福島県県民健康調査」への問合せ内容を中心に 福島県民向けに作成したものから編集しています。

県民健康調査に関してより詳しい情報をお知りになりたい場合は、下記 ウェブサイトをご参照ください。

- ○福島県立医科大学 放射線医学県民健康管理センターウェブサイト
- ・県民健康調査について http://fukushima-mimamori.jp/outline/
- ○ふくしま復興ステーション
- ・県民健康調査について http://www.pref.fukushima.lg.jp/site/portal/ps-kenkocyosa-gaiyo.html

1. 基本調査 Q&A

QA10-1 基本調査の目的は何ですか。 基本調査で何がわかるのですか。

A

- ① 福島第一原子力発電所の事故時に福島県におられた方々の外部被ばく線量を、行動記録に基づいて回答者ごとに推計し、結果をお返しします。
- ② 空間線量率が最も高かった時期の外部被ばく線量を把握する、唯一の方法です。
- ③ ご本人の健康管理の基礎資料となることはもちろん、健康の見守りに必要な施策の検討などを目的に、地域別など、個人が特定されない形で結果を解析します。

統一的な基礎資料の関連項目

下巻 第10章 154ページ「基本調査 目的」

出典:福島県立医科大学 放射線医学県民健康管理センターウェブサイトより作成

QA10-2 外部被ばく線量の推計は、どのようにして行っているのですか。

A

- ① 提出いただいた問診票の行動パターンの結果と線量率マップを組み合わせて、外部被ばく線量評価が行われています。
- ② 線量率マップは文部科学省のモニタリングデータが用いられています*。

統一的な基礎資料の関連項目

下巻 第10章 157ページ「基本調査 解析方法 行動パターン調査と線量率マップ」

(解説)

※ 文部科学省が公表しているモニタリングデータが利用できない平成23年3月12日から15日のうち、3月12日から14日までの3日間は、平成23年6月に原子力安全・保安院(当時)が公表した放射性物質の放出量データを用いて、緊急時迅速放射能影響予測ネットワークシステム(SPEEDI)により計算された結果を適用しました。3月15日については、3月16日のデータと同じとし、3月16日以降については、文部科学省が公表しているモニタリングデータを利用しました。

出典:福島県立医科大学 放射線医学県民健康管理センターウェブサイトより作成

QA10-3 内部被ばくについても推計してください。

A

- ① 現在の内部被ばく線量については福島県がホールボディ・カウンタによる 内部被ばく検査を行っています。
- ② 詳細は福島県のウェブサイトをご覧ください。
 - ホールボディ・カウンタによる内部被ばく検査 検査の実施について (県内・県外)

http://www.pref.fukushima.lg.jp/site/portal/wbc-kensa.html

統一的な基礎資料の関連項目

下巻 第10章 197ページ「ホールボディ・カウンタによる内部被ばく検査の実施結果」

出典:福島県立医科大学 放射線医学県民健康管理センターウェブサイトより作成

2. 甲状腺検査 Q&A

QA10-4 甲状腺検査の目的は何ですか。

A

- ① チェルノブイリ原発事故で明らかになった健康被害として、放射性ヨウ素 の内部被ばくによる、小児甲状腺がんがあります。
- ② 福島県ではチェルノブイリに比べて甲状腺の被ばく線量が低いと推定されていますが、子どもたちの甲状腺の状態を把握し、健康を長期に見守るため定期的に検査をしています。

統一的な基礎資料の関連項目

下巻 第10章 162ページ「甲状腺検査 目的と対象」

出典:福島県立医科大学 放射線医学県民健康管理センターウェブサイトより作成

QA10-5 甲状腺検査が病院でも受診できるようになりましたが、近くで受けられる病院がなくて不便です。今後増える予定はないのですか。

A

関係各位のご協力をいただきながら、県民健康調査の甲状腺検査を実施可能な検査機関(主に病院などの医療機関)を増やすように努めております。平成28年12月現在で、県内医療機関が58機関、県外医療機関が102機関となっております。検査機関一覧の最新情報は下記のリンクよりご確認ください。

県内の検査機関一覧

http://fukushima-mimamori.jp/thyroid-examination/kyoten/

県外の検査機関一覧

http://fukushima-mimamori.jp/thyroid-examination/schedule-outside/media/inspection-list-outside-the-prefecture.pdf

統一的な基礎資料の関連項目

下巻 第10章 170ページ「甲状腺検査 県内・県外検査体制について」

出典:福島県立医科大学 放射線医学県民健康管理センターウェブサイトより作成

QA10-6 妊婦です。超音波検査で、お腹の子に何か悪い影響はありますか。

A

甲状腺検査で行う超音波検査は、妊娠中に産婦人科で胎児の状態を診る方法 として広く普及している、いわゆる「エコー(超音波)」検査と原理は同じです。 妊婦の方でも安心して甲状腺検査の超音波検査をお受けいただくことができま す。

出典:福島県立医科大学 放射線医学県民健康管理センターウェブサイトより作成 出典の公開日:平成27年3月31日本資料への収録日:平成29年3月31日

QA10-7 二次検査は、どのような検査を実施するのでしょうか。

A

一次検査の結果、二次検査(精密検査)が必要と判断された方は、医師による問診、より詳細な超音波検査、血液検査、尿検査を行います。その結果必要と判断された場合、甲状腺の細胞を細い針で採取し、検査を行う穿刺吸引細胞診(せんしきゅういんさいぼうしん)を行うこともあります。

統一的な基礎資料の関連項目

下巻 第 10 章 165 ページ「甲状腺検査 概要(3/4)」 下巻 第 10 章 166 ページ「甲状腺検査 概要(4/4)」

(解説)

【二次検査実施機関について】

二次検査は福島医大のほか、協定を締結している県内外の検査実施機関で受診することが可能です。

二次検査実施機関一覧については下記をご参照ください。

http://fukushima-mimamori.jp/qanda/thyroid-examination/media/secondary-inspection-list.pdf 今後も医療機関へ協力を仰ぎ、二次検査実施機関を整備していきます。また、二次検査 初診予約は、県民健康管理センターで調整をいたしますので、検査実施機関への直接のご連絡はご遠慮ください。

【検査費用について】

二次検査は無料です。ただし、検査会場までの交通費等については自己負担となりますのでご了承ください。また、二次検査の結果、治療や経過観察が必要になった場合は通常の保険診療に移行します。保険診療による医療費のご負担は現在住民票をお持ちの自治体の制度によって異なります。なお、二次検査後に生じた経済的負担を支援する福島県の制度(県民健康調査甲状腺検査サポート事業)が実施されています。詳しい制度については、こちらからご確認ください。

(http://www.pref.fukushima.lg.jp/site/portal/kenkocyosa-kojyosen-support.html)

出典:福島県立医科大学 放射線医学県民健康管理センターウェブサイトより作成

QA10-8 判定結果の「A1」「A2」「B」「C」とは、具体的にどのような状態 のことですか。

A

① A判定は、のう胞又は結節の有無によって2つに分かれます。

A1:超音波検査によって、のう胞、結節共に、その存在が認められなかった状態です。

A2:超音波検査によって、大きさが 20mm以下ののう胞、又は 5mm以下の結節が認められた状態です。

- ② A1,A2 のどちらも、今回はこれ以上の詳細な検査は必要がないと考えられることから、定期的に実施されている次回の検査を受診いただくようご案内しています。
- ③ BおよびC判定は、甲状腺の状態をより詳しく把握するため、二次検査の受診をお勧めするものです。B判定は超音波検査によって、大きさが20.1mm以上ののう胞、又は5.1mm以上の結節が認められた状態です。なお、県民健康調査の甲状腺検査では、のう胞の中に結節と思われる充実部分がある場合、それをのう胞ではなく、結節として取扱います。例えば、30mmののう胞の中に、3mm程度の充実部分があった場合は、「30mmの結節」とし、B判定としています。
- ④ C判定は、複数の医師による検討の結果、速やかに二次検査を実施した方がよいとの判断をした状態です。甲状腺がんのリスク以外に、例えば、声帯の近くにのう胞があり、声が出しづらいことが推察されるため、日常生活を支障なく送るために早めの治療をお勧めする、といった場合を含みます。
- ⑤ 甲状腺と検査結果については動画でも解説をしております。以下のウェブ サイトをご覧ください。

http://fukushima-mimamori.jp/thyroid-examination/explanation-video/

統一的な基礎資料の関連項目

下巻 第 10 章 165 ページ「甲状腺検査 概要(3/4)」

出典:福島県立医科大学 放射線医学県民健康管理センターウェブサイトより作成

QA10-9 「のう胞」、「結節」とは何ですか。

A

- ① 「のう胞」とは体液の溜まった袋状のものです。のう胞の中身は液体のみで、細胞がないためがんになることはありません。
- ② 「結節」は「しこり」とも呼ばれ、甲状腺の細胞が変化したものです。結節には良性と悪性(がん)があり、多くは良性です。
- ③ なお、のう胞の中にはのう胞の中に結節を伴うものがあります。県民健康 調査では、これをのう胞とせず、結節と判定しています。

統一的な基礎資料の関連項目

下巻 第10章 167ページ「甲状腺検査 結節とは」

下巻 第10章 168ページ「甲状腺検査 のう胞とは」

下巻 第10章 169ページ「甲状腺検査 充実部分を伴うのう胞の扱い」

出典:福島県立医科大学 放射線医学県民健康管理センターウェブサイトより作成

QA10-10 診断に用いた画像や詳しい検査結果、医師による所見は、本人に 通知されるのでしょうか。

A

- ① 一次検査で得られた超音波画像は、その場では判定せず、複数の専門医により構成される判定委員会で判定を確定します。これは、見落としを少しでも減らすためです。また、この検査は長きにわたり様々な医療機関でも検査を続けていくことから、県民健康調査として一定の基準で判断することを心がけているためです。
- ② 確定した検査結果については、後日、郵送でお送りしております。なお、 検査結果が郵送されるまでの間の不安の軽減や検査の意義をよりよく理解 していただくために、公共施設等の一般会場にて、希望者に対し医師によ る暫定的な結果内容を説明する機会(説明ブース)を設けています。(県内・ 県外の検査実施機関では、説明ができない場合もあります。学校検査では 説明をしておりません。あらかじめご了承ください。)また、甲状腺検査対 象者及びご家族の皆さまが利用できる質問専用ダイヤルを設けています。
- ③ 希望される場合は、申請により検査結果の詳細情報(以下の情報)を得ることができます。
 - ・一次検査実施時の超音波診断装置による画像(静止画、動画)。
 - ・のう胞や結節の有無、大きさ等を記載した検査レポート。
 - ・二次検査対象者は二次検査時の超音波診断装置による画像(静止画、動画)、血液検査や尿検査結果表など。

統一的な基礎資料の関連項目

下巻 第10章 166ページ「甲状腺検査 概要(4/4)」

(解説)

詳しくは、「甲状腺検査詳細情取得手続きの簡素化について」 http://fukushima-mimamori.jp/thyroid-examination/data-request/をご参照いただくか、下記までお問い合わせください。

【お問い合わせ】

福島県立医科大学 ふくしま国際医療科学センター

放射線医学県民健康管理センター

電話:024-549-5130 (土日祝日を除く 9:00~17:00)

おかけ間違えのないようご注意ください

メール: kenkan@fmu.ac.jp

出典:福島県立医科大学 放射線医学県民健康管理センターウェブサイトより作成

QA10-11 1 回目の検査でのう胞がありましたが、2 回目ではのう胞が消えました。このようなことはあるのですか。

A

- ① のう胞は、成長の過程で現れたり消えたりするもので、その大きさも頻繁 に変わります。
- ② 甲状腺と検査結果については、動画でも解説をしています。「甲状腺検査」解 説動画のウェブサイト[※]をご覧ください。
 - * http://fukushima-mimamori.jp/thyroid-examination/explanation-video/

統一的な基礎資料の関連項目

下巻 第10章 168ページ「甲状腺検査 のう胞とは」

出典:福島県立医科大学 放射線医学県民健康管理センターウェブサイトより作成

QA10-12 成人の検査は、必要ありませんか。

A

- ① チェルノブイリ原発事故後に明らかになった健康被害として、放射性ヨウ素の内部被ばくによる甲状腺がんの発症があります。甲状腺がんは被ばく時の年齢が低いほど発症のリスクが高いことがわかっており、チェルノブイリでは、事故当時の年齢が0~5歳など年齢の低い層に、事故後4~5年経ってから甲状腺がん発症の増加を認めていることが問題とされました。
- ② このため、福島県の甲状腺検査では、万一のことを考えて検査対象者の年齢幅を大きくとり、事故当時 18 歳以下の全県民を対象に、この検査を行い、さらにその方々が成人した後も長期的に見守っていくこととしました。

統一的な基礎資料の関連項目

下巻 第 10 章 162 ページ「甲状腺検査 目的と対象」

出典:福島県立医科大学 放射線医学県民健康管理センターウェブサイトより作成

QA10-13 「チェルノブイリでは、子どもの甲状腺がんが多く発症した」と 聞きますが、福島県は本当に大丈夫なのでしょうか。

A

- ① 福島県で行われている甲状腺検査の先行検査で見つかった甲状腺がんは、 東京電力福島第一原子力発電所事故による放射線の影響とは考えにくいと されています。
 - (ア)被ばく線量がチェルノブイリ事故と比べて総じて小さいこと、
 - (イ)被ばくからがん発見までの期間が概ね1年から4年と短いこと、
 - (ウ)事故当時 5 歳以下からの発見はないこと、
 - (工)年齢分布が福島県とチェルノブイリでは大きく違うこと
 - (オ)地域別の発見率に大きな差がないこと
 - から、総合的に判断して、放射線の影響とは考えにくいと評価したものです。
- ② しかし、放射線影響をみるためには、今後も長期にわたり経過を見る必要があり、これからも継続して検査を受診することが必要です。

統一的な基礎資料の関連項目

下巻 第10章 176ページ「甲状腺検査 先行検査結果に対する見解」

出典:統一的な基礎資料 下巻第10章 176ページ「甲状腺検査 先行検査結果に対する見解」

3. 健康診査 Q&A

QA10-14 「健康診査」の検査項目には、どのような意味があるのですか。

A

- ① 「健康診査」においては、今回の東日本大震災及び東京電力福島第一原子力発電所事故の影響により、突然避難を余儀なくされ、生活習慣・生活スタイルを一変せざるを得なかった方々を対象として、生活習慣病の予防を含め、様々な疾病の早期発見、早期治療につなげることに主眼をおいた検査項目を設定しています。
- ② 16 歳以上の健診項目については、これまでの「特定健康診査」の検査項目を基本として、感染症やアレルギー、白血病、がんなど様々な病気の診断や早期発見の一助となる血算(貧血検査、血小板数、白血球数、白血球分画)と共に、尿潜血、血清クレアチニン、eGFR(糸球体濾過率:腎臓が血液を1分間に濾過する能力)、尿酸を追加項目として設定しています。
- ③ 15歳以下のお子様についても血液検査(血算)を実施することとしており、小学生以上の方につきましては、生活習慣病の早期発見の一助となるよう、希望により血液生化学検査を追加して検査することができるようにしています。
- ④ 乳幼児に関しては、それに伴う身体的負荷や心理的不安が少なくないこと等から、これらを考慮し、採血の実施は保護者の希望により選択できることをより明確にするため、「受診録兼結果報告書」に採血の希望の有無の欄を設け、確認しています。

統一的な基礎資料の関連項目

下巻 第10章 178ページ「健康診査 概要(1/2)」

(解説)

県民健康調査「健康診査」では、次の検査を行っております。

- ・ 身体の発育状況の検査(身長、体重)
- ・貧血検査(赤血球数、ヘマトクリット、ヘモグロビン)
- ・腎臓機能の状態の検査(尿潜血、尿蛋白、血清クレアチニン、eGFR)
- ・ 肝臓機能の状態の検査(AST、ALT、 γ -GT)
- ・脂質異常症の有無を評価する検査(HDL-C、LDL-C、中性脂肪(TG))
- ・生活習慣病に関する検査(血圧、腹囲、空腹時血糖、ヘモグロビン A1c (HbA1c)、尿糖)
- ・感染症や白血病等の発見の一助となる検査(血小板数、白血球数、白血球分画)
- ・痛風などを見つける手がかりとなる検査(尿酸)

出典:福島県立医科大学 放射線医学県民健康管理センターウェブサイトより作成

4. こころの健康度・生活習慣に関する調査 Q&A

QA10-15 この調査の目的を教えてください。

A

今回の東日本大震災により、津波で近親者を失う、家財を喪失する、恐怖体験をするなど心的外傷(トラウマ)を負った方もいらっしゃると思います。また、放射線による健康への影響を不安に思っている方もおられます。福島県においても精神的影響が予測されることから、こころとからだの健康状態と現在の生活習慣などを把握して、適切なケアを提供するため、こころの健康度・生活習慣に関する調査を実施しています。

統一的な基礎資料の関連項目

下巻 第10章 183ページ「こころの健康度・生活習慣に関する調査 概要(1/2)」

出典:福島県立医科大学 放射線医学県民健康管理センターウェブサイトより作成

QA10-16 「支援」とはどのようなもので、どのように行われるのですか。

A

- ① 「こころの健康度・生活習慣に関する調査」の回答を専門家が検討し、回答して頂いた方全員に結果を郵送します。
- ② 支援が必要と思われる方へは、電話か文書で連絡します。
- ③ 電話の場合、支援チームである臨床心理士や保健師、看護師等が連絡します。
- ④ 必要に応じて支援や助言を行い、場合によっては市町村や、ふくしま心のケアセンター、医療機関等をご紹介する場合もあります。

出典:福島県立医科大学 放射線医学県民健康管理センターウェブサイトより作成

5. 妊産婦に関する調査 Q&A

QA10-17 妊産婦に関する調査の目的は何ですか。

A

福島県で子供を産み、育てようとする妊産婦の皆様の多くが、東日本大震災 及び東京電力福島第一原子力発電所事故の影響により、避難生活を送り、生活 習慣の変化からのストレスや放射線への心配事を抱えています。

そこで、福島県で子供を産み、育てようとする妊産婦の皆様の現状、からだやこころの健康度、ご意見・ご要望を的確に把握し、不安の軽減や必要なケアを提供すること、安心の提供と今後の福島県内の産科・周産期医療の充実へつなげることを目的として実施しています。

統一的な基礎資料の関連項目

下巻 第10章 189ページ「妊産婦に関する調査 目的」

出典:基礎資料下巻 第10章190ページ「妊産婦に関する調査 目的」より作成

出典の公開日:平成24年11月20日 本資料への収録日:平成29年3月31日

QA10-18 震災後生まれた子どもが、甲状腺がんになるのではないかと心配です。

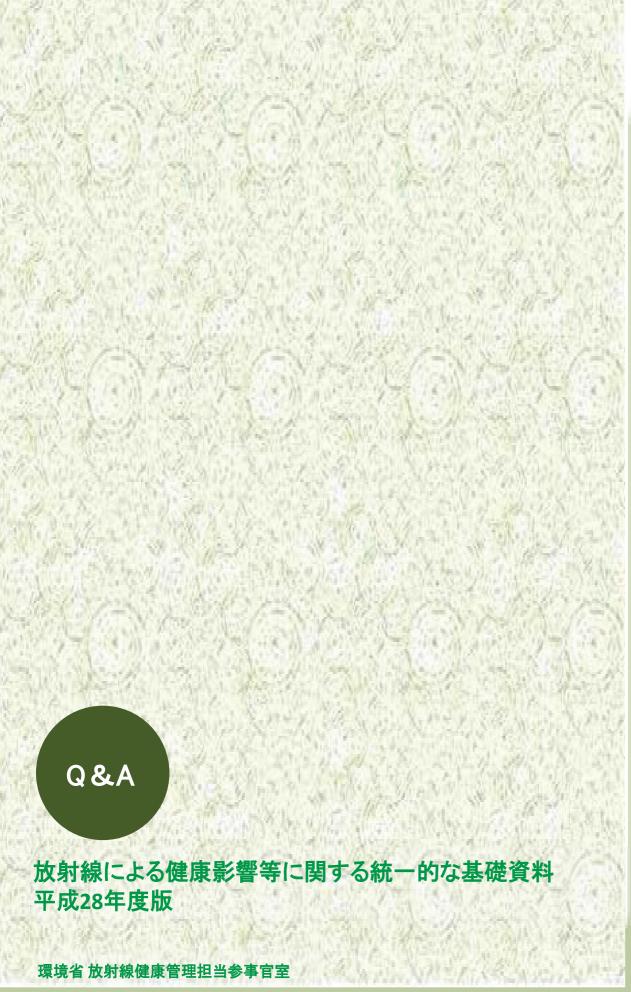
A

① チェルノブイリの放射線事故で、現在まで明らかに発がんが増加した疾患は、子どもの甲状腺がんと言われていますが、これは、放射性ヨウ素の内部被ばくが原因と考えられています。物理的半減期から4月下旬以降は環境中から消失しています。しかも今回の東京電力福島第一原子力発電所事故によるほとんどの福島の子どもさんの甲状腺被ばく線量は、チェルノブイリとは全く違い、かなり低いと予想されています。

放射性物質の物理学的半減期	
放射性物質	半減期(物理学的半減期)
セシウム 137	30 年
セシウム 134	2.1 年
ヨウ素 131	8 🛭
カリウム 40	13 億年

- ② しかしわずかでも甲状腺の被ばくを考え長期にフォローした方がいい子どもさんがおられる可能性を考え、現在、福島の子どもたちの甲状腺の検査が行われています。
- ③ 胎児と甲状腺がんの発症率に関してのチェルノブイリの事故のデータでは、事故の時、胎児(お母さんのお腹の中にいた)だった子どもの甲状腺がん発症は2409人を調べてわずかに1人で、事故のとき既に生まれていた新生児の甲状腺がん発症率は31人/9720人(Shibata Y ら. Lancet 2001年)で、単純に比較すると胎児の発症リスクは子どもの8分の1となり、胎児はお母さんにより守られていたと考えられています。
- ④ 以上のデータはあくまでもあるレベル被ばくした場合の(例えば甲状腺の被ばく線量、臓器等価線量が数千mSvというチェルノブイリと比較したときの)リスクの話が中心です。福島県での一般住民の被ばく量はいままでお話してきたデータに出てくる数値より更に少ない量と考えられます。

出典:福島県立医科大学 放射線医学県民健康管理センターウェブサイトより作成


出典の公開日:平成24年11月20日 本資料への収録日:平成29年3月31

放射線による健康影響等に関する統一的な基礎資料 Q & A

平成29年 3月31日 発 行

発行 環境省総合環境政策局環境保健部 放射線健康管理担当参事官室 東京都千代田区霞が関 1-2-2

国立研究開発法人 量子科学技術研究開発機構 放射線医学総合研究所 千葉県千葉市稲毛区穴川 4-9-1

国立研究開発法人 量子科学技術研究開発機構 放射線医学総合研究所