身の回りの 放射線

自然からの被ばく線量の内訳(日本人)

被ばくの種類	線源の内訳	実効線量 (ミリシーベルト/年)
外部被ばく	宇宙線	0.3
	大地放射線	0.33
内部被ばく (吸入摂取)	ラドン222(屋内、屋外)	0.37
	ラドン220(トロン)(屋内、屋外)	0.09
	喫煙(鉛210、ポロニウム210等)	0.006 (%)
	その他(ウラン等)	0.006
内部被ばく (経口摂取)	主に鉛210、ポロニウム210	0.80
	トリチウム	0.0000049
	炭素14	0.014
	カリウム40	0.18
特殊環境にお ける被ばく	温泉、地下環境などによる被ばく	0.005
	航空機利用に伴う被ばく	0.008
合 計		2.1

(※) 国民一人当たりの換算値。 喫煙者の被ばく線量は0.040ミリシーベルト/年。

出典: (公財)原子力安全研究協会「生活環境放射線(国民線量の算定)第3版」(2020年)より作成

この表では、鉛210とポロニウム210による経口摂取が日本人の内部被ばくの大きな割合を占めることを示しています。鉛210とポロニウム210は、大気中のラドン222が次の過程を経て生成されます。それらが地表に沈着あるいは河川や海洋に沈降して食物を通じて人間の体内に取り込まれることになります。

ラドン222(半減期約3.8日)→ポロニウム218(半減期約3分)→鉛214(半減期約27分)→ビスマス214(半減期約20分)→ポロニウム214(半減期約1.6×10⁻⁴秒)→鉛210(半減期約22年)→ビスマス210(半減期約5日)→ポロニウム210(半減期約138日)

日本人が欧米諸国に比べて食品からの被ばく線量が高い理由としては、魚介類を多く摂取する日本人の食生活が関係しています。魚介類にはポロニウム210が多く含まれているため、その分、実効線量が大きくなっています。なお、海外での食品中の鉛210やポロニウム210の分析は日本ほど実施されていないため、世界平均値に比較すると日本の値が大きくなっている要因の一つと考えられています。

一方、日本人でラドン被ばくが少ない理由としては、その崩壊によってラドン222を生じるウラン238の土壌中の濃度が低いこと、および日本家屋は通気性が良く、地中から屋内に侵入したラドン222が速やかに屋外に拡散するためと考えられています。

ラドン222及びラドン220(トロン)の吸入摂取による内部被ばくについては上巻 P71「ラドン及びトロンの吸入による内部被ばく」で説明します。

なお、トリチウムについては他の核種と比較して人体に与える影響が小さく、相対的に自然からの被ばく線量も小さくなっています(上巻P57 「実効線量への換算係数」)。

本資料への収録日:2013年3月31日

改訂日:2023年3月31日