2.2. 土壌及び地下水の採取・分析法

神栖地区における汚染実態を把握するため、ボーリング孔を用いて、土壌及び地下水を採取・採水し、ジフェニルアルシン酸(DPAA)の分析を行った。土壌及び地下水の採取・分析法は以下のとおりである。

2.2.1. 土壌採取・地下水採水法

(1) 土壌採取法

ボーリングによるボーリングコア試料を用いた。

(2) 地下水採水法

ボーリング孔の深度 10m、20m、30m から電動ポンプにて採水した。各ボーリング孔における採水の順は、10m、20m、30m とし、それぞれ 10L 汲み上げ後、電気伝導度と pH を監視しながら、電気伝導度と pH が安定した段階で採水した。

2.2.2. 試料分析法

(1) 土壌分析法

土壌コア約 1g を秤取し、純水 10mL で抽出後、遠心分離 (3,000rpm, 10 分) を行い、上澄み液をフィルター (sartorius Minisart 孔径 $0.45\,\mu$ m) で濾過したものを分析試料とした。誘導結合プラズマ発光分光分析 (ICP-AES)、誘導結合プラズマ質量分析法 (ICP-MS) を用いて総ヒ素濃度測定を、HPLC-ICP-MS を用いてジフェニルアルシン酸(DPAA) 濃度の測定を行った。なお、分析値は土壌コア湿重量当たりのヒ素濃度に換算した。

使用測定機器及び分析条件は以下のとおり。

①ICP-AES

装置: Thermo jarrell-Ash ICP(61E-Trace)

②ICP-MS

下記の地下水の分析方法に同じ

③HPLC-ICP-MS

下記の地下水の分析方法に同じ

(2) 地下水分析法

ボーリング井戸地下水約 10mL をフィルター(Sartorius Minisart 孔径 0.22μ m) で濾過したものを測定用 試料とした。フィルター濾過が困難であった地下水については、遠心分離 $(3,000 \mathrm{rpm},10 \, \mathcal{G})$ を行った後、上澄みをフィルター(同上 孔径 0.22μ m、ただし濾過が困難な場合は孔径 0.45μ m) で濾過し、測定試料とした。誘導結合プラズマ発光分光分析 $(\mathrm{ICP-AES})$ 、誘導結合プラズマ質量分析 $(\mathrm{ICP-MS})$ により総ヒ素濃度測定を、液体クロマトグラフー誘導結合プラズマ質量分析法 $(\mathrm{HPLC-ICP-MS})$ を用いてジフェニルアルシン酸 (DPAA) 濃度の測定を行った。使用測定機器及び分析条件は以下のとおり。

①ICP-AES

装置: Thermo jarrell-Ash ICP(61E-Trace)

Nippon jarrell-Ash ICP(ICAP-750)

②ICP-MS

装置:Yokogawa HP-4500

③HPLC-ICP-MS

装置:HPLC Agilent1100series

ICP-MS Agilent7500

HPLC 移動相: Tetramethylanmonium hydroxide 10mM, Malonic acid 10mM 水溶液

(アンモニアで pH6.8 に調整)

HPLC 移動相流速:1 mL/min.

HPLCカラム: Shodex Asahipak GC-220 7C(7.6mm ID×100mmL)

HPLC カラム温度: 40℃ 試料注入量: 20 µ L