平成19年度

臭素系ダイオキシンの 人への健康影響に関する 調査研究報告書

平成20年3月 環境省総合環境政策局 環境保健部環境安全課 環境リスク評価室

目次

1.	. ‡	調査の目的	1
2.		調査概要	1
	2.1.	. 調査媒体	1
	2.2.	. 調査項目	1
	2.3.	. 測定対象物質	2
	2.4.	. 調査試料	5
3.		試料概要	6
	3	3.1.1. 環境大気	6
	3	3.1.2. 室内空気	6
	3	3.1.3. 降下ばいじん	6
	3	3.1.4. ハウスダスト	7
	3	3.1.5. 水質および底質	7
	3	3.1.6. 水生生物	7
	3.2.	. 分析方法	8
	3.3.	. 採取試料の前処理	12
	3	3.3.1. 環境大気・室内空気・降下ばいじん	12
	3	3.3.2. 底質・ハウスダスト	12
	3	3.3.3. 水質	12
	3	3.3.4. 水生生物	12
	3.4.	. GC/MS 測定条件	14
	3.5.	. 定量下限および検出下限	18
4.		調査結果	25
	4.1.	. 環境大気	25
	4.2.	. 室内空気	28
	4.3.	. 降下ばいじん	31
	4.4.	. ハウスダスト	34
	4.5.	. 水質	37
	4.6.	. 底質	40
	4.7.	. 水生生物	43
5.		調査結果まとめ	48
	5.1.	. ポリ臭素化ダイオキシン類とポリ塩素化ダイオキシン類、ポリ臭素化ジフェニルエーテルとの相関	48
	5.2.	. 環境大気	48
	5.3.	. 室内空気	48
	5.4.	. 降下ばいじん	49
	5.5.	. ハウスダスト	49
	5.6.	. 水質	49
	5.7.	. 底質	50
	5.8.	. 水生生物	50
6.		まとめⅡ	52

1. 調査の目的

近年、臭素系ダイオキシン類による人の健康や生態系への影響が懸念されており、「ダイオキシン類対策特別措置法(平成11年法律第105号、平成12年1月施行)」の附則第2条においても、臭素系ダイオキシンの人への健康影響を調査することとされている。このため、臭素系ダイオキシン類の毒性やばく露実態に関する知見を収集、整理する(文献調査)とともに、わが国における臭素系ダイオキシン類等の汚染実態を調査することにより、臭素系ダイオキシン類の人の健康や生態系への影響に関する調査研究を推進するための資料を得ることを目的とした。

2. 調査概要

2.1. 調査媒体

環境大気、室内空気、降下ばいじん、ハウスダスト、水質、底質、および水生生物(魚介類)の7媒体について調査を実施した。

2.2. 調査項目

調査媒体毎の調査項目を表-1に示した。

表-1. 調査媒体毎の調査項目

調査項目	環境 大気	室内空気	降下 ばいじ ん	ハウス ダスト	水質	底質	水生 生物
臭素系ダイオキシン類	0	0	0	0	0	0	0
ポリ塩素化ダイオキシン類	0	0	0	0	0	0	0
ポリ臭素化ジフェニルエーテル	0	0	0	0	0	0	0
コプラナーポリハロゲン化ビフェニル	×	X	X	×	X	X	0

2.3. 測定対象物質

測定対象物質を表-2~表-6に示した。

臭素系ダイオキシン類の分析項目は、表-2に示すポリ臭素化ジベンゾ-パラ-ジオキシン(PBDDs)およびポリ臭素 化ジベンゾフラン(PBDFs)の異性体および同族体並びに表-3に示すモノ臭素ポリ塩素化ジベンゾ-パラ-ジオキシン (MoBPCDDs)およびモノ臭素ポリ塩素化ジベンゾフラン(MoBPCDFs)の異性体および同族体とした。

また、ポリ塩素化ダイオキシン類の分析項目を表ー4に、ポリ臭素化ジフェニルエーテル(PBDEs)の分析項目を表ー5に、およびコプラナーポリハロゲン化ビフェニル(Co-PXBs)の分析項目を表ー6に示した。

なお、臭素系ダイオキシン類、ポリ臭素化ジフェニルエーテルおよびコプラナーポリハロゲン化ビフェニルの分 析項目は、標準物質が入手可能なものを選定した。

表-2. 臭素化ダイオキシン類(PBDDs/PBDFs)測定対象物質

	75 ((= = = = = = = = = 7) (4) (2) (3 - 3 + 1) (2) (3 - 3 + 1) (2)
2,3,7,8-TeBDD	2,3,7,8-TeBDF
TeBDDs 総和	TeBDFs 総和
1,2,3,7,8-PeBDD	1,2,3,7,8-PeBDF
	2,3,4,7,8-PeBDF
PeBDDs 総和	PeBDFs 総和
1,2,3,4,7,8-/1,2,3,6,7,8-HxBDD	1,2,3,4,7,8-HxBDF
1,2,3,7,8,9-HxBDD	
HxBDDs 総和	HxBDFs 総和
1,2,3,4,6,7,8-HpBDD	1,2,3,4,6,7,8-HpBDF
HpBDDs 総和	HpBDFs 総和
OBDD	OBDF
	(PBDDs+PBDFs)総和

表-3. モノ臭素化ポリ塩素化ダイオキシン類(MoBPCDDs/PCDFs)測定対象物質

2-MoB-3,7,8-TrCDD	3-MoB-2,7,8-TrCDF	
1-MoB-2,3,7,8-TeCDD	1-MoB-2,3,7,8-TeCDF	
2-MoB-3,6,7,8,9-PeCDD		
1-MoB-2,3,6,7,8,9-HxCDD		
1-MoB-2.3.4.6.7.8.9-HpCDD		

表-4. ポリ塩素化ダイオキシン類(PCDDs/PCDFs、Co-PCBs)測定対象物質

1,3,6,8-TeCDD	1,2,7,8-TeCDF
1,3,7,9-TeCDD	2,3,7,8-TeCDF
2,3,7,8-TeCDD	
TeCDDs 総和	TeCDFs 総和
1,2,3,7,8-PeCDD	1,2,3,7,8-PeCDF
	2,3,4,7,8-PeCDF
PeCDDs 総和	PeCDFs 総和
1,2,3,4,7,8-HxCDD	1,2,3,4,7,8-HxCDF
1,2,3,6,7,8-HxCDD	1,2,3,6,7,8-HxCDF
1,2,3,7,8,9-HxCDD	1,2,3,7,8,9-HxCDF
	2,3,4,6,7,8-HxCDF
HxCDDs 総和	HxCDFs 総和
1,2,3,4,6,7,8-HpCDD	1,2,3,4,6,7,8-HpCDF
	1,2,3,4,7,8,9-HpCDF
HpCDDs 総和	HpCDFs 総和
THOUS WENTH	TIPCDI'S /INDY H
OCDD	OCDF
*	1
OCDD	1
OCDD 3,3',4,4'-TeCB(#77)	1
OCDD 3,3',4,4'-TeCB(#77) 3,4,4',5-TeCB(#81)	1
OCDD 3,3',4,4'-TeCB(#77) 3,4,4',5-TeCB(#81) 3,3',4,4',5-PeCB(#126)	1
OCDD 3,3',4,4'-TeCB(#77) 3,4,4',5-TeCB(#81) 3,3',4,4',5-PeCB(#126) 3,3',4,4',5,5'-HxCB(#169)	1
OCDD 3,3',4,4'-TeCB(#77) 3,4,4',5-TeCB(#81) 3,3',4,4',5-PeCB(#126) 3,3',4,4',5,5'-HxCB(#169) 2,3,3',4,4'-PeCB(#105) 2,3,4,4',5-PeCB(#114) 2,3',4,4',5-PeCB(#118)	1
OCDD 3,3',4,4'-TeCB(#77) 3,4,4',5-TeCB(#81) 3,3',4,4',5-PeCB(#126) 3,3',4,4',5,5'-HxCB(#169) 2,3,3',4,4'-PeCB(#105) 2,3,4,4',5-PeCB(#114) 2,3',4,4',5-PeCB(#118) 2',3,4,4',5-PeCB(#123)	1
OCDD 3,3',4,4'-TeCB(#77) 3,4,4',5-TeCB(#81) 3,3',4,4',5-PeCB(#126) 3,3',4,4',5,5'-HxCB(#169) 2,3,3',4,4'-PeCB(#105) 2,3,4,4',5-PeCB(#114) 2,3',4,4',5-PeCB(#118) 2',3,4,4',5-PeCB(#123) 2,3,3',4,4',5-HxCB(#156)	1
OCDD 3,3',4,4'-TeCB(#77) 3,4,4',5-TeCB(#81) 3,3',4,4',5-PeCB(#126) 3,3',4,4',5,5'-HxCB(#169) 2,3,3',4,4'-PeCB(#105) 2,3,4,4',5-PeCB(#114) 2,3',4,4',5-PeCB(#118) 2',3,4,4',5-PeCB(#123)	1
OCDD 3,3',4,4'-TeCB(#77) 3,4,4',5-TeCB(#81) 3,3',4,4',5-PeCB(#126) 3,3',4,4',5,5'-HxCB(#169) 2,3,3',4,4'-PeCB(#105) 2,3,4,4',5-PeCB(#114) 2,3',4,4',5-PeCB(#118) 2',3,4,4',5-PeCB(#123) 2,3,3',4,4',5-HxCB(#156)	1

表-5. ポリ臭素化ジフェニルエーテル(PBDEs)測定対象物質

4-MoBDE(#3)	2,2',3,4,4',5'-HxBDE(#138)
MoBDEs 総和	2,2',4,4',5,5'-HxBDE(#153)
2,4-DiBDE(#7)	2,2',4,4',5,6'-HxBDE(#154)
4,4'-DiBDE(#15)	2,3,3',4,4',5-HxBDE(#156)
DiBDEs 総和	HxBDEs 総和
2,2',4-TrBDE(#17)	2,2',3,4,4',5',6-HpBDE(#183)
2,4,4'-TrBDE(#28)	2,2',3,4,4',6,6'-HpBDE(#184)
TrBDEs 総和	2,3,3',4,4',5',6-HpBDE(#191)
2,2',4,4'-TeBDE(#47)	HpBDEs 総和
2,2',4,5'-TeBDE(#49)	2,2',3,3',4,4',5,6'-OcBDE(#196)
2,3',4,4'-TeBDE(#66)	2,2',3,3',4,4',6,6'-OcBDE(#197)
2,3',4',6-TeBDE(#71)	2,2',3,4,4',5,5',6-OcBDE(#203)
3,3',4,4'-TeBDE(#77)	2,3,3',4,4',5,5',6-OcBDE (#205)
TeBDEs 総和	OcBDEs
2,2',3,4,4'-PeBDE(#85)	2,2',3,3',4,4',5,5',6-NoBDE(#206)
2,2',4,4',5-PeBDE(#99)	2,2',3,3',4,4',5,6,6'-NoBDE(#207)
2,2',4,4',6-PeBDE(#100)	NoBDEs
2,3',4,4',6-PeBDE(#119)	DeBDE(#209)
3,3',4,4',5-PeBDE(#126)	
PeBDEs 総和	
	PBDEs 総和

^{*:}番号については、臭素の置換位置が同様の、対応するPCBのIUPAC No.を使用

表-6. コプラナーポリハロゲン化ビフェニル(Co-PXBs)測定対象物質

4'-MoB-2,3',4,5-TeCB(#118)

4'-MoB-2,3,3',4-TeCB(#105)

4'-MoB-3,3',4,5-TeCB(#126)

4'-MoB-2,3,3',4,5-PeCB(#156)

4'-MoB-3,3',4,5,5'-PeCB(#169)

3',4',5'-TrB-3,4-DiCB(#126)

^{*:}番号については、ハロゲンの置換位置が同様の、対応する PCB の IUPAC No.を使用

2.4. 調査試料

環境試料7媒体(大気、降下ばいじん、土壌、地下水、水質、底質および水生生物)について、調査媒体ごとに全国1地域、6地点を選定し試料の採取を行った(水生生物については別途5試料を採取)。調査試料一覧を表-7に示した。

表一7. 調査試料一覧

地域	地点		環境 大気	室内 大気	降下 ばいじん	ハウス ダスト
	S1	市街地(事業所)	1	1	1	1
S地域	S2	市街地(事業所)	1	1	1	1
	S3	郊外(一般家庭)	1	1	1	1
合計			3	3	3	3

地域	地点		水質	底質
	S4	河川	1	1
S地域	S5	河川	1	1
	S6	河川	1	1
合計			3	3

	水生生物
合計	5

3. 試料概要

3.1.1. 環境大気

対象地域より市街地2地点(S1、S2)、郊外1地点(S3)において環境大気試料を採取した。試料採取はハイボリウムエアサンプラー2台を用い、24時間毎に捕集剤(濾紙、PUFP)を交換し7日間にわたって行った。環境大気試料の採取状況の概要を表-8に示した。

採取時間 採取量 採取期間 採取地点 (m^3) (hr) S12008.6.3~6.13 170* 14200 S地域 S2 2008.6.3~6.17 170* 14600 S3 2008.6.3~6.13 168* 14100

表-8. 環境大気試料の概況

3.1.2. 室内空気

環境大気の測定地点と同地点にある建物(S1、S2 は事業所、S3 は一般家屋)内において、室内空気試料を採取した。試料採取はローボリウムエアサンプラーを用い、7 日間にわたって行った。室内空気試料の採取状況の概要を表-9に示した。

採取地点		採取期間	採取時間	採取量		
		7木4又为11月	(hr)	(m^3)		
	S1	2008.6.3~6.13	172.5*	652		
S地域	S2	2008.6.3~6.13	170*	669		
	S3	2008.6.3~6.13	168*	665		

表-9. 室内空気試料の概況

3.1.3. 降下ばいじん

環境大気の測定地点と同地点にて降下ばいじん試料を採取した。試料採取は降下ばいじんサンプラー2 台を用い、 1ヶ月にわたって行った。降下ばいじん試料の採取状況の概要を表-10に示した。

採取地点		採取期間	採取期間
1木4以北六		1本4次分1月	(day)
	S1	2008.6.3~7.4	31
S地域	S2	2008.6.4~7.4	30
	S3	2008.6.3~7.4	31

表-10. 降下ばいじん試料の概況

^{*}装置停止時間があるため全採取期間と異なる

^{*}装置停止時間があるため全採取期間と異なる

3.1.4. ハウスダスト

室内空気の測定地点においてハウスダスト試料を採取した。ハウスダスト試料の採取状況の概要を表-11に示した。

表-11. ハウスダストの採取状況

採取地点		採取日
	S1	2006.6.3
S地域	S2	2006.6.3
	S3	2006.6.3

3.1.5. 水質および底質

調査地域内の3河川について水質、底質試料を採取した。水質試料採取は大容量試料採取装置2台を用いて捕集 剤(濾紙、PUFP)に捕集することで行った。水質および底質試料の採取状況の概要を表-12に示した。

表-12. 水質試料の概況

採取地点 採取日			底質			
1木以地	<u> </u>	1木以口	水温(℃) 濁度		採取量(L)	強熱減量(%)
	S4	2008.6.9	22.2	28	406	10.8
S地域	S5	2008.6.10	23.7	15	463	2.8
	S6	2008.11.12	17.9	12	406	0.7

3.1.6. 水生生物

5種の水生生物を分析対象試料として準備した。採取した種を表-13に示した。、いずれも可食(筋肉)部分について分析試料を調製し、分析を行った。

表-13. 水生生物試料の種名

種名
アナゴ
スズキ
ボラ
カニ
サバ

3.2. 分析方法

分析法フローシートを図-1~図-4に示した。

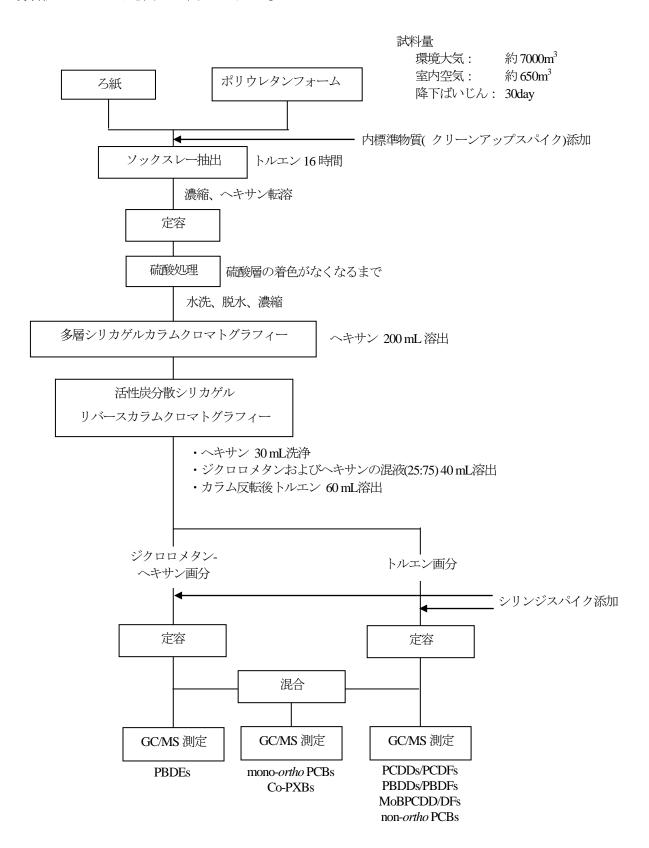


図-1. 環境大気、室内空気および降下ばいじんの分析法フローシート

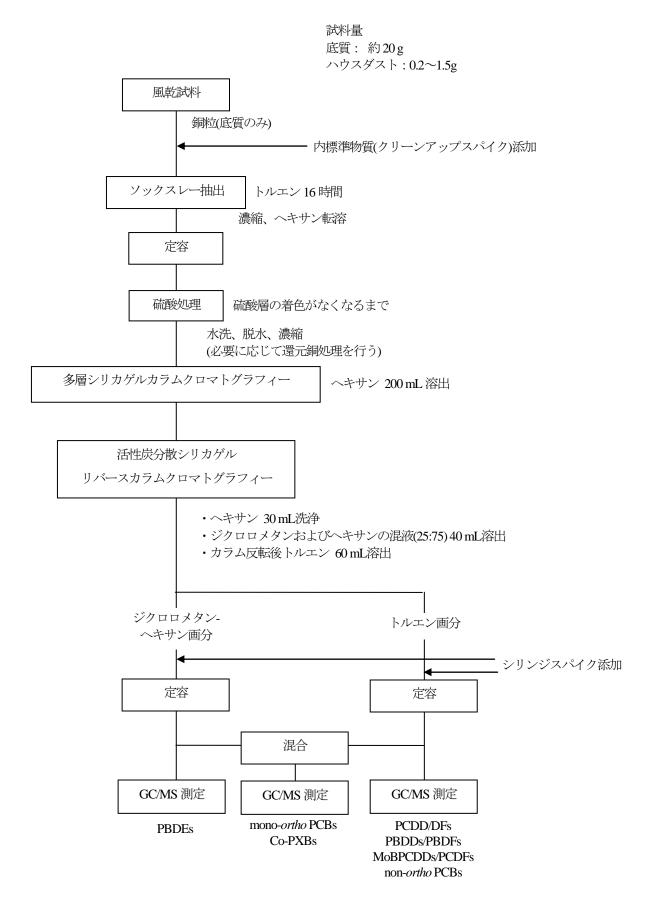


図-2. 底質およびハウスダストの分析法フローシート

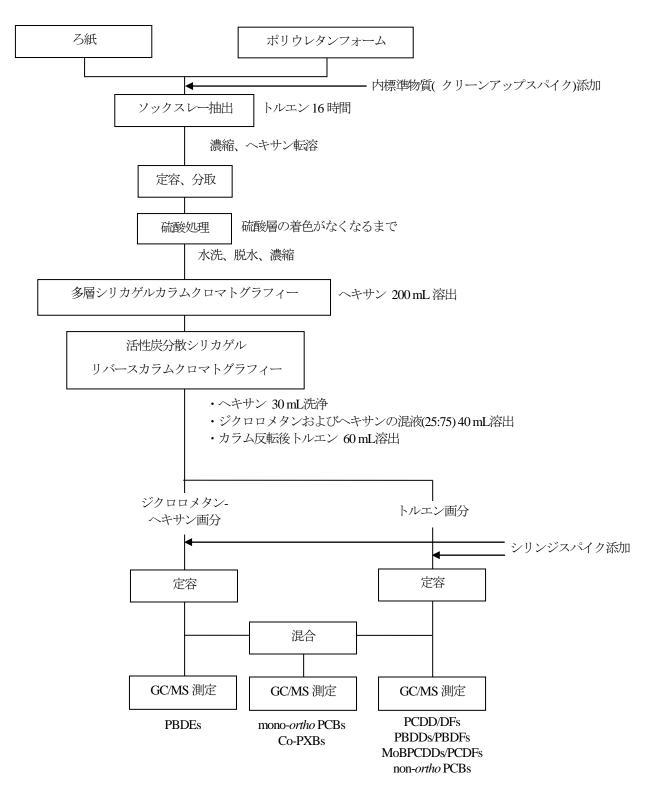


図-3. 水質の分析法フローシート

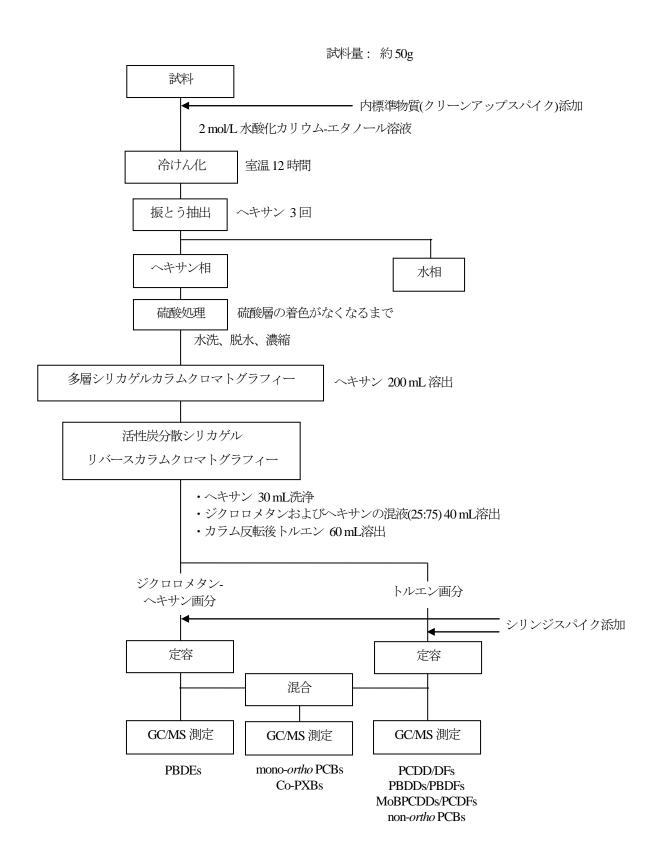


図-4. 水生生物の分析法フローシート

3.3. 採取試料の前処理

3.3.1. 環境大気・室内空気・降下ばいじん

採取したろ紙およびポリウレタンフォームを風乾後、クリーンアップスパイクを加えトルエンにて16時間ソックスレー抽出を行った。抽出液をロータリーエバポレーターにて濃縮、ヘキサン溶とした上で抽出液の着色がなくなるまで硫酸処理を行った。硫酸処理の後水洗、無水硫酸ナトリウムによる脱水及び濃縮を行った上で、多層シリカゲルカラム(50%硫酸および2%水酸化カリウム添加シリカゲル)によるクリーンアップを行った。試料をヘキサン200mLにより展開後、活性炭シリカゲルカラムにより分画を行った。抽出液を活性炭シリカゲルカラムに添加後、ヘキサンにて洗浄した上で25%ジクロロメタン含有ヘキサン溶液(PBDEs およびmono-ortho PCBs およびPXBs 含有)、およびトルエン(PCDDs/PCDFs、PBDDs/PBDFs、MoBPCDDs/PCDFs、non-ortho PCBs およびPXBs 含有)により展開した。展開溶液をロータリーエバポレーターにより濃縮、シリンジスパイクを加えた上で定容し、GC/MS 測定溶液とした。なお、操作はすべて紫外線カットした蛍光灯を用いた試験室で、褐色ガラス器具あるいはアルミ箔で包んだガラス器具を用いて行った。

3.3.2. 底質・ハウスダスト

採取した底質は風乾し、2mm 目のふるいを通して分析試料の調製を行った。試料を円筒ろ紙に採取し、トルエンで16時間ソックスレー抽出を行った(底質については還元銅粒を用いて硫黄除去を行った)。抽出液をロータリーエバポレーターにて濃縮、ヘキサン溶とした上で抽出液の着色がなくなるまで硫酸処理を行った。硫酸処理の後水洗、無水硫酸ナトリウムによる脱水及び濃縮を行った上で、多層シリカゲルカラム(50%硫酸および2%水酸化カリウム添加シリカゲル)によるクリーンアップを行った。試料をヘキサン200mLにより展開後、活性炭シリカゲルカラムにより分画を行った。抽出液を活性炭シリカゲルカラムに添加後、ヘキサンにて洗浄した上で25%ジクロロメタン含有ヘキサン溶液(PBDEs およびmono-ortho PCBs およびPXBs 含有)、およびトルエン(PCDDs/PCDFs、PBDDs/PBDFs、MoBPCDDs/PCDFs、non-ortho PCBs およびPXBs 含有)により展開した。展開溶液をロータリーエバポレーターにより濃縮、シリンジスパイクを加えた上で定容し、GC/MS測定溶液とした。なお、操作はすべて紫外線カットした蛍光灯を用いた試験室で、褐色ガラス器具あるいはアルミ箔で包んだガラス器具を用いて行った。

3.3.3. 水質

採取したろ紙およびポリウレタンフォームを風乾後、クリーンアップスパイクを加えトルエンにて16時間ソックスレー抽出を行った。抽出液をロータリーエバポレーターにて濃縮、ヘキサン溶とした上で抽出液の着色がなくなるまで硫酸処理を行った。硫酸処理の後水洗、無水硫酸ナトリウムによる脱水及び濃縮を行った上で、多層シリカゲルカラム(50%硫酸および2%水酸化カリウム添加シリカゲル)によるクリーンアップを行った。試料をヘキサン200mLにより展開後、活性炭シリカゲルカラムにより分画を行った。抽出液を活性炭シリカゲルカラムに添加後、ヘキサンにて洗浄した上で25%ジクロロメタン含有ヘキサン溶液(PBDEs およびmono-ortho PCBs およびPXBs含有)、およびトルエン(PCDDs/PCDFs、PBDDs/PBDFs、MoBPCDDs/PCDFs、non-ortho PCBs およびPXBs含有)により展開した。展開溶液をロータリーエバポレーターにより濃縮、シリンジスパイクを加えた上で定容し、GC/MS 測定溶液とした。なお、操作はすべて紫外線カットした蛍光灯を用いた試験室で、褐色ガラス器具あるいはアルミ箔で包んだガラス器具を用いて行った。

3.3.4. 水生生物

採取した生物の可食部を分離し、ホモジナイザーによって均質化した。均質化した分析試料を三角フラスコにとり、内標準物質を加え、2mol/L 水酸化カリウム-エタノール溶液を加え、室温で12時間かくはんした。これを1L

容分液漏斗に移し、純水を加えた後へキサンにて3回抽出した。へキサン抽出液を水洗、無水硫酸ナトリウムにより脱水した後、抽出液の着色がなくなるまで硫酸処理を行った。硫酸処理の後水洗、無水硫酸ナトリウムによる脱水及び濃縮を行った上で、多層シリカゲルカラム(50%硫酸および2%水酸化カリウム添加シリカゲル)によるクリーンアップを行った。試料をヘキサン200mLにより展開後、活性炭シリカゲルカラムにより分画を行った。抽出液を活性炭シリカゲルカラムに添加後、ヘキサンにて洗浄した上で25%ジクロロメタン含有ヘキサン溶液(PBDEs およびmono-ortho PCBs およびPXBs含有)、およびトルエン(PCDDs/PCDFs、PBDDs/PBDFs、MoBPCDDs/PCDFs、non-ortho PCBs およびPXBs含有)、およびトルエン(PCDDs/PCDFs、PBDDs/PBDFs、MoBPCDDs/PCDFs、non-ortho PCBs およびPXBs含有)により展開した。展開溶液をロータリーエバポレーターにより濃縮、シリンジスパイクを加えた上で定容し、GC/MS測定溶液とした。なお、操作はすべて紫外線カットした蛍光灯を用いた試験室で、褐色ガラス器具あるいはアルミ箔で包んだガラス器具を用いて行った。

3.4. GC/MS 測定条件

GC/MS の測定条件を表-14~表-22に示した。

表-14. 臭素化ダイオキシン類の GC/MS 測定条件(4~6 臭素化体)

測定機: HP6890(Agilent Technologies)/Aut	tospec ULTIMA [micromass]				
カラム: BPX-DXN [SGE] 長さ30 m、内径0.25 mm					
導入系: スプリットレス					
注入口温度: 260℃					
昇温条件: 180°C(1min)5°C/min300°C(1mir	n)10°C/min330°C (hold)				
イオン源温度: 320℃	イオン化電流 : 500 μ A				
	イオン化電圧 : 35eV				
分解能: 10,000+					
設定質量数:					
TeBDD 499.6904, 501.6883	[¹³ C ₁₂]TeBDD 511.7306, 513.7286				
TeBDF 483.6955, 485.6934	$[^{13}C_{12}]$ TeBDF 495.7357, 497.7337				
PeBDD 577.6009, 579.5988	[¹³ C ₁₂]PeBDD 589.6412, 591.6391				
PeBDF 561.6060, 563.6039	[¹³ C ₁₂]PeBDF 573.6462, 575.6442				
HxBDD 655.5114, 657.5094	$[^{13}C_{12}]HxBDD$ 667.5517, 669.5496				
HxBDF 639.5165, 641.5144	[¹³ C ₁₂]HxBDF 651.5568,, 653.5547				

表-15. 臭素化ダイオキシン類の GC/MS 測定条件(7~8 臭素化体)

測定機: HP6890(Agilent Technologies)/Auto	ospec ULTIMA [micromass]
カラム: Env-5MS [SGE] 長さ15 m、内径	圣 0.25 mm、膜厚 0.1 μ m
導入系: スプリットレス	
注入口温度: 260℃	
昇温条件: 120°C(2min)—20°C/min—220°C(0n	min)10°C/min—330°C (hold)
イオン源温度: 320℃	イオン化電流: 500 μ A
イオン化法: EI	イオン化電圧:35eV
分解能: 10,000+	
設定質量数:	
HpBDD 735.4199, 737.4179	[¹³ C ₁₂]HpBDD 747.4601, 749.4581
HpBDF 719.4250, 721.4229	[¹³ C ₁₂]HpBDF 731.4652, 733.4632
OBDD 813.3304, 815.3284	[¹³ C ₁₂]OBDD 825.3707, 827.3686
OBDF 797.3355, 799.3334	[¹³ C ₁₂]OBDF 811.3737, 809.3757

表-16. モノ臭素化ポリ塩素化ダイオキシン類の GC/MS 測定条件

測定機: HP6890(Agilent Technologies)/Au	utospec ULTIMA [micromass]					
注入口温度: 260℃						
昇温条件: 180°C(1min)5°C/min300°C(1min)5°C/min5°C/min300°C(1min)5°C/min300°C(1min)5°C/min300°C(1min)5°C/min300°C(1min)5°C/min300°C(1min)5°C/min30°C/min	in)–10°C/min–330°C (hold)					
イオン源温度: 320℃	イオン化電流 : 500 μ A					
	イオン化電圧 : 35eV					
分解能: 10,000+						
設定質量数:						
MoBTrCDD 365.8440, 367.8410						
MoBTeCDD 399.8041, 401.8021	[¹³ C ₁₂]MoBTeCDD 411.8444, 413.8423					
MoBPeCDD 433.7651, 435.7651						
MoBHxCDD 467.7262, 469.7241						
MoBHpCDD 503.6851, 505.6822						
MoBTrCDF 349.8491, 351.8461						
MoBTeCDF 383.8092, 385.8071						

表-17. ポリ塩素化ダイオキシン類の GCMS 測定条件(PCDDs/PCDFs)						
測定機: HP6890(Agilent Technologies) / Autospec ULTIMA [micromass]						
カラム: BPX-DXN [SGE] 長さ60m、内径0.25 n	nm					
導入系: スプリットレス						
注入口温度: 300℃						
昇温条件: 130°C(1 min.)-(15°C/min.)->210°C(0 min.)-(3°C/min	n.)>290°C(0min)(10°C/min)> 330°C(hold)					
イオン源温度: 320℃	イオン化電流: 500 μ A					
イオン化法: EI	イオン化電圧:37eV					
分解能: 10,000+						
設定質量数:						
TeCDD 319.8965, 321.8936	[¹³ C ₁₂]TeCDD 331.9368, 333.9339					
PeCDD 355.8546, 357.8516	[¹³ C ₁₂]PeCDD 367.8949, 369.8919					
HxCDD 389.8157, 391.8127	[¹³ C ₁₂]HxCDD 401.8559, 403.8530					
HpCDD 423.7766, 425.7737	[¹³ C ₁₂]HpCDD 435.8169, 437.8140					
OCDD 457.7377, 459.7348	[¹³ C ₁₂]OCDD 469.7779, 471.7550					
TeCDF 303.9016, 305.8987	[¹³ C ₁₂]TeCDF 315.9419, 317.9389					
PeCDF 339.8597, 341.8568	[¹³ C ₁₂]PeCDF 351.9000, 353.8970					
HxCDF 373.8207, 375.8178	[¹³ C ₁₂]HxCDF 385.8610, 387.8580					
HpCDF 407.7818, 409.7789	[¹³ C ₁₂]HpCDF 419.8220, 421.8191					
OCDF 441.7428, 443.7399	[¹³ C ₁₂]OCDF 453.7830, 455.7801					

表-18. ポリ塩素化ダイオキシン類の GC/MS 測定条件(PeCDFs,HxCDFs,non-ortho PCBs)

##2 ## HP6890(Agilent Technologies) / Autospec ULTINA [micromass] カラム: RI-12MS [SGE] 良き 60 m、内径 0.25 mm 準久系: スプリットレス 注入口温度: 300°C 昇温条件: 130°C(min)-(15°Cmin)->210°C(0 min)-(3°Cmin)->310°C(0 min)-(10°Cmin)->330°C(0 min)-(10°Cmin)-330°C(0 min		/MS 測定条件(PeCDFs,HxCDFs,non-ortho PCBs)
導入系: スプリットレス 注入日間度: 300℃	測定機: HP6890(Agilent Technologies)/Autosp	ec ULTIMA [micromass]
注入口温度: 300°C 昇温条件: 130°C(n min.)~(15°C/min.)~210°C(0 min.)~(3°C/min.)~310°C(0 min.)~(10°C/min.)~330°C(0 e kl) イオン標温度: 320°C イオン化電形: 34eV 分解能: 10,000+ 設定質量数: PeCDF 339,8897, 341.8568 「「*C.]HepEDF 351,9000, 353,8970 HxCDF 373,8207, 375,8178 「*C.]HpBDF 385,8610, 387,8880 HxCDF 373,8207, 375,8178 「*C.]HpBDF 385,8610, 387,8880 Ry = 19. ボリ塩素化ダイオキシン類の GCMS 測定条件(mono-ortho PCBs) 割定膜: HP6890(Agilem Technologies)/Autospec ULTIMA [micromass] カラム: HT8-PCB [SGE] 長き60m、内径0.25 mm 導入系: スプリットレス 注入口温度: 280°C 月温条件: 120°C(2min)~20°C/min~220°C(0min)~10°C/min~330°C (bold) イオン化忠: EI イオン化電圧: 30eV 分解能: 10,000+ 設定質量数: PeCB 393,8025, 395,7995 「*C.]HpCB 393,8025, 395,7995 「*C.]HpCB 405,8428, 407,8398 表一20. ボリ臭素化ジフェニルエーデルの GCMS 測定条件 (1~7 臭素化体) 潮互機: HP6890(Agilem Technologies)/Autospec ULTIMA [micromass] カラム: BPX-DXN [SGE] 長き30m、 P径0.25 mm 導入系: スプリットレス 注入口温度: 260°C 昇温条件: 120°C(min)~20°C/min~20°C (min)~30°C (bold) イオン化電圧: 30eV 参応課題: 320°C オン化電流: 500 μ A イオン作品に 371,8817, 373,8788 HpCB 393,8025, 395,7995 「*C.] [HpCB 405,8428, 407,8398] 表一20. ボリ臭素化ジフェニルエーデルの GCMS 測定条件 (1~7 臭素化体) 測定機: HP6890(Agilem Technologies)/Autospec ULTIMA [micromass] カラム: BPX-DXN [SGE] 長き30m、 P径0.25 mm 導入系: スプリットレス 注入口温度: 260°C 昇温条件: 120°C(min)~20°C/min~180°C(0min)~5°C/min~330°C (bold) イオン化電流: 500 μ A イオン化電流: 500 μ A イオン化電流: 530 μ A イオン代温度: BI イオ×20,4198409 TeBDE 483,7132, 448,7111 PeBDE 405,8027, 448,80955 「*C.] [PBDE 495,7534, 497,7514] PeBDE 483,7132, 485,7111 PeBDE 483,7132, 485,7111 PeBDE 483,7137, 448,86955 「*C.] [PGDEDE 415,8273, 449,77514] PeBDE 481,697,747,7506 TeClpleBDE 415,8273, 417,8252	カラム: RH-12MS [SGE] 長さ60m、内径	0.25 mm
早温条件: 130°C(1 min.)→(15°Cmin.)→210°C(0 min.)→310°C(0 min.)→330°C(bold) イオン(滞温度: 320°C イオン化電流:500 μ A イオン化ま: EI イオン化電形:34eV 分解能: 10,000+ 設定質量数: PeCDF 339,8597、341,8568 「 ¹³ C ₁₂ PeCDF 351,9000、353,8970 HvCDF 373,8207、375,8178 「 ¹³ C ₁₂ PeCDF 351,9000、353,8970 TeCB 289,9224、291,9194 「 ¹³ C ₁₂ TeCB 301,9626、303,9597 HvCB 325,8804、327,8775 「 ¹³ C ₁₂ PECB 337,9207、339,9177 HvCB 359,8415、361,8385 「 ¹³ C ₁₂ PECB 371,8817、373,8788 表ー19、 ポリ塩素化ゲイオキシン類の GCMS 測定条件(mono-ortho PCBs) 測定機: HP6890(Agilem Technologies)/Autospec ULTIMA [micromass] カラム: HT8+PCB [SCE] 長さ60m、内径0.25 mm 導入系: スプリットレス 注入口温度: 280°C 月温条件: 120°C(2min.)—20°C/min.—220°C(0min.)—10°C/min.—330°C (hold) イオン化電流: 500 μ A イオン化溶正: 500 μ A イオン化溶正: 500 μ A イオン化溶正: 500 μ A イオン化溶正: 500 μ A オンルまり、表表を含さるでは、またののののでは、またのののののののののののののののののののののののののののののののののののの	導入系: スプリットレス	
イオン(地震) 320°C イオン化電流: 500 μ A イオン化電流: 500 μ A イオン化造: EI イオン化電用: 34eV 分解能: 10,000+ 設定質量数: PeCDF 339,8597, 341,8568 [¹³ C ₁₃]PeCDF 351,9000, 353,8970 [¹³ C ₁₃]PeCDF 373,8207, 375,8178 [¹³ C ₁₃]PeCDF 351,9000, 353,8970 [¹³ C ₁₃]PeCB 373,8207, 375,8178 [¹³ C ₁₃]PeCB 301,9626, 303,9597 PeCB 325,8804, 327,8775 [¹³ C ₁₃]PeCB 337,9207, 339,9177 HxCB 359,8415, 361,8385 [¹³ C ₁₃]PsCB 371,8817, 373,8788 表-19. ポリ塩素化ダイオキシン類のGCMS 測定条件(mono-ortho PCBs) 測定機: HP6890(Agilent Technologies)/Autospec ULTIMA [micromass] カラム: HT8-PCB [SGE] 長さ60m、内径0.25 mm 導入系: スプリットレス 注入口温度: 280°C 昇温条件: 120°C(2min)—20°C/min—220°C(0min)—10°C/min—330°C (hold) イオン郷温度: 320°C イオン化電流: 500 μ A イオン化電圧: 30eV 分解能: 10,000+ 設定質量数: PeCB 325,8804, 327,8775 [¹³ C ₁₂]PeCB 337,9207, 339,9177 HxCB 359,8415, 361,8385 [¹³ C ₁₂]PhCB 393,8025, 395,7995 [¹³ C ₁₂]PhCB 405,8428, 407,8398 表-2.0. ポリ臭素化ジフェニルエーテルのGCMS 測定条件 (1~7 臭素化体) 測定機: HP6890(Agilent Technologies)/Autospec ULTIMA [micromass] カラム: BPX-DXN [SGE] 長さ30 m、内径0.25 mm 導入系: スプリットレス 注入口温度: 260°C 月温条件: 120°C(1min)—20°C/min—180°C(0min)—5°C/min—330°C (hold) イオン/郷温度: 330°C イオン化電流: 500 μ A イオン化法: EI イオン化電流: 550 μ A イオン化法: EI イオン化器 EI イオン化電流: 550 μ A イオン化法: EI イオン化器 EI イオン化器 EI イオン化器 EI イオンのののも およののも [¹⁵ C ₁₂]PeBDE 437,374,439,9324 [¹⁶ C ₁₂]PaBDE 483,7132,485,7111 [¹⁶ C ₁₂]PeBDE 495,7534,497,7514 PeBDE 481,6975,483,6955 [¹⁶ C ₁₂]PeBDE 495,7734,497,7514 PeBDE 481,6975,483,6955 [¹⁶ C ₁₂]PeBDE 495,7734,499,77514 PeBDE 481,6975,483,6955 [¹⁶ C ₁₂]PeBDE 495,7734,499,77514 PeBDE 481,6975,483,6955 [¹⁶ C ₁₂]PeBDE 495,7734,497,7514 PeBDE 481,6975,483,6955 [¹⁶ C ₁₂]PeBDE 495,7734,499,77514 PeBDE 481,6975,483,6955 [¹⁶ C ₁₂]PeBDE 495,7734,497,7514 PeBDE 481,6975,483,6955 [¹⁶ C ₁₂]PeBDE 495,7734,77575	注入口温度: 300℃	
イオン(地震) 320°C イオン化電流: 500 μ A イオン化電流: 500 μ A イオン化造: EI イオン化電用: 34eV 分解能: 10,000+ 設定質量数: PeCDF 339,8597, 341,8568 [¹³ C ₁₃]PeCDF 351,9000, 353,8970 [¹³ C ₁₃]PeCDF 373,8207, 375,8178 [¹³ C ₁₃]PeCDF 351,9000, 353,8970 [¹³ C ₁₃]PeCB 373,8207, 375,8178 [¹³ C ₁₃]PeCB 301,9626, 303,9597 PeCB 325,8804, 327,8775 [¹³ C ₁₃]PeCB 337,9207, 339,9177 HxCB 359,8415, 361,8385 [¹³ C ₁₃]PsCB 371,8817, 373,8788 表-19. ポリ塩素化ダイオキシン類のGCMS 測定条件(mono-ortho PCBs) 測定機: HP6890(Agilent Technologies)/Autospec ULTIMA [micromass] カラム: HT8-PCB [SGE] 長さ60m、内径0.25 mm 導入系: スプリットレス 注入口温度: 280°C 昇温条件: 120°C(2min)—20°C/min—220°C(0min)—10°C/min—330°C (hold) イオン郷温度: 320°C イオン化電流: 500 μ A イオン化電圧: 30eV 分解能: 10,000+ 設定質量数: PeCB 325,8804, 327,8775 [¹³ C ₁₂]PeCB 337,9207, 339,9177 HxCB 359,8415, 361,8385 [¹³ C ₁₂]PhCB 393,8025, 395,7995 [¹³ C ₁₂]PhCB 405,8428, 407,8398 表-2.0. ポリ臭素化ジフェニルエーテルのGCMS 測定条件 (1~7 臭素化体) 測定機: HP6890(Agilent Technologies)/Autospec ULTIMA [micromass] カラム: BPX-DXN [SGE] 長さ30 m、内径0.25 mm 導入系: スプリットレス 注入口温度: 260°C 月温条件: 120°C(1min)—20°C/min—180°C(0min)—5°C/min—330°C (hold) イオン/郷温度: 330°C イオン化電流: 500 μ A イオン化法: EI イオン化電流: 550 μ A イオン化法: EI イオン化器 EI イオン化電流: 550 μ A イオン化法: EI イオン化器 EI イオン化器 EI イオン化器 EI イオンのののも およののも [¹⁵ C ₁₂]PeBDE 437,374,439,9324 [¹⁶ C ₁₂]PaBDE 483,7132,485,7111 [¹⁶ C ₁₂]PeBDE 495,7534,497,7514 PeBDE 481,6975,483,6955 [¹⁶ C ₁₂]PeBDE 495,7734,497,7514 PeBDE 481,6975,483,6955 [¹⁶ C ₁₂]PeBDE 495,7734,499,77514 PeBDE 481,6975,483,6955 [¹⁶ C ₁₂]PeBDE 495,7734,499,77514 PeBDE 481,6975,483,6955 [¹⁶ C ₁₂]PeBDE 495,7734,497,7514 PeBDE 481,6975,483,6955 [¹⁶ C ₁₂]PeBDE 495,7734,499,77514 PeBDE 481,6975,483,6955 [¹⁶ C ₁₂]PeBDE 495,7734,497,7514 PeBDE 481,6975,483,6955 [¹⁶ C ₁₂]PeBDE 495,7734,77575	昇温条件: 130°C(1 min.)-(15°C/min.)>210°C(0 min.)(3°C/min.)->310°C(0min) (10°C/min)> 330°C(hold)
イオン化語: EI イオン化電圧: 34eV 分解能: 10,000+ 設定質量数: PeCDF 339,8597, 341,8568 [1 ¹³ C ₁₂]PeCDF 351,9000, 353,8970 HxCDF 373,8207, 375,8178 [1 ¹³ C ₁₂]PeCDF 385,8610, 387,8580 HxCDF 373,8207, 375,8178 [1 ¹³ C ₁₂]PeCB 301,9026, 303,9597 PeCB 325,8804, 327,8775 [1 ¹³ C ₁₂]PeCB 337,9207, 339,9177 HxCB 359,8415, 361,8385 [1 ¹³ C ₁₂]PxCB 371,8817, 373,8788 表-19. ボリ塩素化タイオキシン類のGCMS 測定条件(mono-ortho PCBs) 測定機: HP6890(Agitent Technologies)/Autospec ULTIMA [micromass] カラム: HT8-PCB [SGE] 長さ60m, 内径0.25 mm 導入系: スプリットレス 注入口温度: 280°C 昇温条件: 120°C(2min)—20°C/min—220°C(0min)—10°C/min—330°C (hold) イオン側温度: 320°C イオン化塩産: 500 μ A イオン化塩産: 500 μ A イオン化塩産: 500 μ A イオン化塩素: 500 μ A イオン化塩素: 500 μ Specified は、1839,8415, 361,8385 [1 ¹³ C ₁₂]PxCB 337,9207, 339,9177 HxCB 393,8025, 395,7995 [1 ¹³ C ₁₂]PxCB 405,8428, 407,8398 表-20. ボリ臭素化シフェニルエーテルの GCMS 測定条件 (1~7 臭素化体) 測定機: HP6890(Agitent Technologies)/Autospec ULTIMA [micromass] カラム: BPX-DXN [SGE] 長さ30 m, 内径0.25 mm 導入系: スプリットレス 注入口温度: 260°C 月温条件: 120°C(1min)—20°C/min—180°C(0min)—5°C/min—330°C (hold) イオン側温度: 320°C イオン化電産: 500 μ A イオン化電産: 500 μ A イオン化塩法: EI イオン化電産: 5500 μ A イオン化電産: 35eV 別解能: 10,0000+ 設定質量数: MoBDE 247,9837, 249,9817 [1 ¹³ C ₁₂]MoBDE 260,0239, 262,0219 DiBDE 325,8942, 327,8921 [1 ¹³ C ₁₂]PxBDE 418,8737, 449,37514 PxBDE 483,7873, 449,77514 PxBDE 483,7870, 405,7850 [1 ¹³ C ₁₂]PxBDE 415,8273, 417,8252 PxBDE 481,8755, 483,6955 [1 ¹³ C ₁₂]PxBDE 495,7534, 497,7514 PxBDE 481,8755, 483,6955 [1 ¹³ C ₁₂]PxBDE 495,7534, 497,7514 PxBDE 481,8755, 483,6955 [1 ¹³ C ₁₂]PxBDE 495,7534, 497,7514 PxBDE 481,8755, 483,6955 [1 ¹³ C ₁₂]PxBDE 495,7534, 397,7537		
分解能: 10,000+ 設定質量数:		· · · · · · · · · · · · · · · · · · ·
設定質量数: PeCDF 339.8597, 341.8568		1 7 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PeCDF 339,8597, 341,8568		
HxCDF 373.8207、375.8178		[¹³ C ₁₃]PeCDF 351 9000 353 8970
TeCB		
HxCB 359.8415, 361.8385		
HxCB 359.8415, 361.8385	PeCB 325.8804, 327.8775	$[^{13}C_{12}]$ PeCB 337.9207, 339.9177
測定機: HP6890(Agilent Technologies)/Autospec ULTIMA [micromass] カラム: HT8-PCB [SGE] 長さ60 m、内径 0.25 mm 導入系: スプリットレス 注入口温度: 280°C 昇温条件: 120°C(2min)—20°C/min—220°C(0min)—10°C/min—330°C (hold) イオン(部温度: 320°C イオン化電流: 500 μ A イオン化法: EI イオン化電圧: 30eV 分解能: 10,000+ 設定質量数: PeCB 325,8804、327,8775 [¹³C ₁₂]PeCB 337,9207、339,9177 HxCB 359,8415、361,8385 [¹³C ₁₂]HpCB 371,8817、373,8788 HpCB 393,8025、395,7995 [¹³C ₁₂]HpCB 405,8428、407,8398 麦-20. ポリ臭素(ビジフェニルエーテルの GCMS 測定条件 (1~7 臭素化体) 測定機: HP6890(Agilent Technologies)/Autospec ULTIMA [micromass] カラム: BPX-DXN [SGE] 長さ30 m、内径0.25 mm 導入系: スプリットレス 注入口温度: 260°C 昇温条件: 120°C(1min)—20°C/min—180°C(0min)—5°C/min—330°C (hold) イオン(化法: EI イオン化電流: 550 μ A イオン化法: EI イオン化電流: 550 μ A イオン化法: EI イオン化電流: 35eV 分解能: 10,000+ 設定質量数: MoBDE 247,9837、249,9817 [¹³C ₁₂]DiBDE 260,0239、262,0219 DiBDE 325,8942、327,8921 [¹³C ₁₂]DiBDE 337,9344、339,9324 TrBDE 405,8027、407,8006 [¹³C ₁₂]TrBDE 417,8429、419,8409 TeBDE 483,7132、485,7111 [¹³C ₁₂]PbBDE 417,8429、419,8409 TeBDE 483,7132、485,7111 [¹³C ₁₂]PbBDE 417,8429、419,8409 TeBDE 403,7870、405,7850 [¹³C ₁₂]FtBDE 493,7378、495,7337	HxCB 359.8415, 361.8385	[¹³ C ₁₂]HxCB 371.8817, 373.8788
測定機: HP6890(Agilent Technologies)/Autospec ULTIMA [micromass] カラム: HT8-PCB [SGE] 長さ60 m、内径 0.25 mm 導入系: スプリットレス 注入口温度: 280°C 昇温条件: 120°C(2min)—20°C/min—220°C(0min)—10°C/min—330°C (hold) イオン(部温度: 320°C イオン化電流: 500 μ A イオン化法: EI イオン化電圧: 30eV 分解能: 10,000+ 設定質量数: PeCB 325,8804、327,8775 [¹³C ₁₂]PeCB 337,9207、339,9177 HxCB 359,8415、361,8385 [¹³C ₁₂]HpCB 371,8817、373,8788 HpCB 393,8025、395,7995 [¹³C ₁₂]HpCB 405,8428、407,8398 麦-20. ポリ臭素(ビジフェニルエーテルの GCMS 測定条件 (1~7 臭素化体) 測定機: HP6890(Agilent Technologies)/Autospec ULTIMA [micromass] カラム: BPX-DXN [SGE] 長さ30 m、内径0.25 mm 導入系: スプリットレス 注入口温度: 260°C 昇温条件: 120°C(1min)—20°C/min—180°C(0min)—5°C/min—330°C (hold) イオン(化法: EI イオン化電流: 550 μ A イオン化法: EI イオン化電流: 550 μ A イオン化法: EI イオン化電流: 35eV 分解能: 10,000+ 設定質量数: MoBDE 247,9837、249,9817 [¹³C ₁₂]DiBDE 260,0239、262,0219 DiBDE 325,8942、327,8921 [¹³C ₁₂]DiBDE 337,9344、339,9324 TrBDE 405,8027、407,8006 [¹³C ₁₂]TrBDE 417,8429、419,8409 TeBDE 483,7132、485,7111 [¹³C ₁₂]PbBDE 417,8429、419,8409 TeBDE 483,7132、485,7111 [¹³C ₁₂]PbBDE 417,8429、419,8409 TeBDE 403,7870、405,7850 [¹³C ₁₂]FtBDE 493,7378、495,7337		
測定機: HP6890(Agilent Technologies)/Autospec ULTIMA [micromass] カラム: HT8-PCB [SGE] 長さ60 m、内径 0.25 mm 導入系: スプリットレス 注入口温度: 280°C 昇温条件: 120°C(2min)—20°C/min—220°C(0min)—10°C/min—330°C (hold) イオン(部温度: 320°C イオン化電流: 500 μ A イオン化法: EI イオン化電圧: 30eV 分解能: 10,000+ 設定質量数: PeCB 325,8804、327,8775 [¹³C ₁₂]PeCB 337,9207、339,9177 HxCB 359,8415、361,8385 [¹³C ₁₂]HpCB 371,8817、373,8788 HpCB 393,8025、395,7995 [¹³C ₁₂]HpCB 405,8428、407,8398 麦-20. ポリ臭素(ビジフェニルエーテルの GCMS 測定条件 (1~7 臭素化体) 測定機: HP6890(Agilent Technologies)/Autospec ULTIMA [micromass] カラム: BPX-DXN [SGE] 長さ30 m、内径0.25 mm 導入系: スプリットレス 注入口温度: 260°C 昇温条件: 120°C(1min)—20°C/min—180°C(0min)—5°C/min—330°C (hold) イオン(化法: EI イオン化電流: 550 μ A イオン化法: EI イオン化電流: 550 μ A イオン化法: EI イオン化電流: 35eV 分解能: 10,000+ 設定質量数: MoBDE 247,9837、249,9817 [¹³C ₁₂]DiBDE 260,0239、262,0219 DiBDE 325,8942、327,8921 [¹³C ₁₂]DiBDE 337,9344、339,9324 TrBDE 405,8027、407,8006 [¹³C ₁₂]TrBDE 417,8429、419,8409 TeBDE 483,7132、485,7111 [¹³C ₁₂]PbBDE 417,8429、419,8409 TeBDE 483,7132、485,7111 [¹³C ₁₂]PbBDE 417,8429、419,8409 TeBDE 403,7870、405,7850 [¹³C ₁₂]FtBDE 493,7378、495,7337	ま 10 ポルケスナキミハオ	語の OCM IS 測定タル(PCD-)
カラム: HT8-PCB [SGE] 長さ60m、内径0.25 mm 導入系: スプリットレス 注入口温度: 280°C 昇温条件: 120°C(2min)—20°C/min—220°C(0min)—10°C/min—330°C (hold) イオン源温度: 320°C イオン化電流: 500 μ A イオン化誌: EI イオン化電圧: 30eV 分解能: 10,000+ 設定質量数: PeCB 325.8804, 327.8775 [¹³ C ₁₂]PeCB 337.9207, 339.9177 HxCB 359.8415, 361.8385 [¹³ C ₁₂]HxCB 371.8817, 373.8788 HpCB 393.8025, 395.7995 [¹³ C ₁₂]HpCB 405.8428, 407.8398 麦ー20. ポリ臭素化ジフェニルエーテルの GC/MS 測定条件(1~7 臭素化体) 測定機: HP6890(Agilent Technologies) / Autospec ULTIMA [micromass] カラム: BPX-DXN [SGE] 長さ30 m、内径0.25 mm 導入系: スプリットレス 注入口温度: 260°C 昇温条件: 120°C(Imin)—20°C/min—180°C(0min)—5°C/min—330°C (hold) イオン化法: EI イオン化電流: 500 μ A イオン化法: EI イオン化電流: 500 μ A イオン化法: EI イオン化電流: 35eV 分解能: 10,000+ 設定質量数: MoBDE 247.9837, 249.9817 [¹³ C ₁₂]MoBDE 260.0239, 262.0219 DiBDE 325.8942, 327.8921 [¹³ C ₁₂]DiBDE 337.9344, 339.9324 TrBDE 405.8027, 407.8006 [¹³ C ₁₂]TrBDE 417.8429, 419.8409 TeBDE 483.7132, 485.7111 [¹³ C ₁₂]TeBDE 495.7534, 497.7514 PeBDE 403.7870, 405.7850 [¹³ C ₁₂]PeBDE 415.8273, 417.8252 HxBDE 481.6975, 483.6955 [¹³ C ₁₂]PeBDE 495.7534, 497.7514		
導入系: スプリットレス 注入口温度: 280°C 昇温条件: 120°C(2min)—20°C/min—220°C(0min)—10°C/min—330°C (hold) イオン源温度: 320°C イオン化電流: 500 μ A イオン化電流: 500 μ A イオン化電話: EI イオン化電圧: 30eV 分解能: 10,000+ 設定質量数: PeCB 325,8804, 327,8775 [¹³C₁₂]PeCB 337,9207, 339,9177 HxCB 359,8415, 361,8385 [¹³C₁₂]HxCB 371,8817, 373,8788 HpCB 393,8025, 395,7995 [¹³C₁₂]HpCB 405,8428, 407,8398 表一20. ポリ臭素化ジフェニルエーテルの GC/MS 測定条件(1~7 臭素化体) 測定機: HP6890(Agilent Technologies)/Autospec ULTIMA [micromass] カラム: BPX-DXN [SGE] 長さ30 m、内径 0.25 mm 導入系: スプリットレス 注入口温度: 260°C 昇温条件: 120°C(1min)—20°C/min—180°C(0min)—5°C/min—330°C (hold) イオン化法: EI イオン化電流: 500 μ A イオン化法: EI イオン化電流: 500 μ A イオン化法: EI イオン化電流: 35eV 分解能: 10,000+ 設定質量数: MoBDE 247,9837, 249,9817 [¹³C₁₂]MoBDE 260,0239, 262,0219 DiBDE 325,8942, 327,8921 [¹³C₁₂]DiBDE 337,9344, 339,9324 TrBDE 405,8027, 407,8006 [¹³C₁₂]TrBDE 417,8429, 419,8409 TeBDE 483,7132, 485,7111 [¹³C₁₂]TrBDE 417,8429, 419,8409 TeBDE 403,7870, 405,7850 [¹³C₁₂]TeBDE 495,7534, 497,7514 PeBDE 403,7870, 405,7850 [¹³C₁₂]PeBDE 415,8273, 415,8252 HxBDE 481,6975, 483,6955 [¹³C₁₂]PeBDE 495,73378, 495,7357	(8)	
注入口温度: 280°C 昇温条件: 120°C(2min)—20°C/min—220°C(0min)—10°C/min—330°C (hold) イオン(表: EI		0.25 mm
昇温条件: 120°C(2min)—20°C/min—220°C(0min)—10°C/min—330°C (hold) イオン(作電流: 500 μ A イオン化き: EI イオン化電圧: 30eV 分解能: 10,000+ 設定質量数: PeCB 325.8804, 327.8775 [1 ¹³ C ₁₂]PeCB 337.9207, 339.9177 HxCB 359.8415, 361.8385 [1 ¹³ C ₁₂]HxCB 371.8817, 373.8788 HpCB 393.8025, 395.7995 [1 ¹³ C ₁₂]HpCB 405.8428, 407.8398 麦-20. ポリ臭素化ジフェニルエーテルの GCMS 測定条件(1~7 臭素化体) 測定機: HP6890(Agilent Technologies)/Autospec ULTIMA [micromass] カラム: BPX-DXN [SGE] 長さ30 m、内径0.25 mm 導入系: スプリットレス 注入口温度: 260°C 昇温条件: 120°C(1min)—20°C/min—180°C(0min)—5°C/min—330°C (hold) イオン(作法: EI イオン化電圧: 35eV 分解能: 10,000+ 設定質量数: MoBDE 247.9837, 249.9817 [1 ¹³ C ₁₂]MoBDE 260.0239, 262.0219 DiBDE 325.8942, 327.8921 [1 ¹³ C ₁₂]DiBDE 337.9344, 339.9324 TrBDE 483.7132, 485.7111 [1 ¹³ C ₁₂]TiBDE 417.8429, 419.8409 TeBDE 403.7870, 405.7850 [1 ¹⁵ C ₁₂]TeBDE 495.7537, 417.8252 HxBDE 481.6975, 483.6955 [1 ¹⁵ C ₁₂]HxBDE 493.7378, 495.7357		
イオン作語: 500 μ A イオン化法: EI イオン化電圧: 30eV 分解能: 10,000+ 設定質量数: PeCB 325.8804, 327.8775 [1 ¹³ C ₁₂]PeCB 337.9207, 339.9177 HxCB 359.8415, 361.8385 [1 ¹³ C ₁₂]HxCB 371.8817, 373.8788 HpCB 393.8025, 395.7995 [1 ¹³ C ₁₂]HpCB 405.8428, 407.8398 表 - 20. ポリ臭素化ジフェニルエーテルの GCMS 測定条件(1~7 臭素化体) 測定機: HP6890(Agilent Technologies) / Autospec ULTIMA [micromass] カラム: BPX-DXN [SGE] 長さ30 m、内径 0.25 mm 導入系: スプリットレス 注入口温度: 260°C 昇温条件: 120°C(Imin)—20°C/min—180°C(0min)—5°C/min—330°C (hold) イオン(振温度: 320°C イオン化電流: 500 μ A イオン化法: EI イオン化電圧: 35eV 分解能: 10,000+ 設定質量数: MoBDE 247.9837, 249.9817 [1 ¹³ C ₁₂]MoBDE 260.0239, 262.0219 DiBDE 325.8942, 327.8921 [1 ¹³ C ₁₂]DiBDE 337.9344, 339.9324 TrBDE 405.8027, 407.8006 [1 ¹³ C ₁₂]TiBDE 417.8429, 419.8409 TeBDE 483.7132, 485.7111 [1 ¹⁵ C ₁₂]TiBDE 417.8429, 419.8409 TeBDE 403.7870, 405.7850 [1 ¹⁵ C ₁₂]PeBDE 495.7537, 417.8252 HxBDE 481.6975, 483.6955 [1 ¹⁵ C ₁₂]PeBDE 493.7378, 495.7357		
イオン化法: EI イオン化電圧: 30eV 分解能: 10,000+ 設定質量数: PeCB 325.8804, 327.8775 [¹³ C ₁₂]PeCB 337.9207, 339.9177 HxCB 359.8415, 361.8385 [¹³ C ₁₂]HxCB 371.8817, 373.8788 HpCB 393.8025, 395.7995 [¹³ C ₁₂]HpCB 405.8428, 407.8398 表一20. ポリ臭素化ジフェニルエーテルの GCMS 測定条件(1~7 臭素化体) 測定機: HP6890(Agilent Technologies)/Autospec ULTIMA [micromass] カラム: BPX-DXN [SGE] 長さ30 m, 内径 0.25 mm 導入系: スプリットレス 注入口温度: 260℃ 昇温条件: 120℃(1min)—20℃/min—180℃(0min)—5℃/min—330℃(hold) イオン(根電流: 500 μ A イオン化法: EI イオン化電圧: 35eV 分解能: 10,000+ 設定質量数: MoBDE 247.9837, 249.9817 [¹³ C ₁₂]MoBDE 260.0239, 262.0219 DiBDE 325.8942, 327.8921 [¹³ C ₁₂]DiBDE 337.9344, 339.9324 TrBDE 405.8027, 407.8006 [¹³ C ₁₂]TiBDE 417.8429, 419.8409 TeBDE 483.7132, 485.7111 [¹³ C ₁₂]TiBDE 495.7534, 497.7514 PeBDE 403.7870, 405.7850 [¹³ C ₁₂]PeBDE 495.7534, 497.7514 PeBDE 481.6975, 483.6955 [¹³ C ₁₂]PeBDE 495.7537, 417.8252 HxBDE 481.6975, 483.6955 [¹³ C ₁₂]PeBDE 493.7378, 495.7357	昇温条件: 120℃(2min)—20℃/min—220℃(0min	n)-10°C/min-330°C (hold)
分解能: 10,000+ 設定質量数: PeCB 325.8804, 327.8775 [¹³ C ₁₂]PeCB 337.9207, 339.9177 HxCB 359.8415, 361.8385 [¹³ C ₁₂]HxCB 371.8817, 373.8788 HpCB 393.8025, 395.7995 [¹³ C ₁₂]HpCB 405.8428, 407.8398 表一20. ポリ臭素化ジフェニルエーテルの GC/MS 測定条件(1~7 臭素化体) 測定機: HP6890(Agilent Technologies) / Autospec ULTIMA [micromass] カラム: BPX-DXN [SGE] 長さ 30 m、内径 0.25 mm 導入系: スプリットレス 注入口温度: 260°C 昇温条件: 120°C(Imin)—20°C/min—180°C(0min)—5°C/min—330°C (hold) イオン源温度: 320°C イオン化電流:500 μ A イオン化法: EI イオン化電圧:35eV 分解能: 10,000+ 設定質量数: MoBDE 247.9837, 249.9817 [¹³ C ₁₂]MoBDE 260.0239, 262.0219 DiBDE 325.8942, 327.8921 [¹³ C ₁₂]DiBDE 337.9344, 339.9324 TrBDE 405.8027, 407.8006 [¹³ C ₁₂]TrBDE 47.8429, 419.8409 TeBDE 483.7132, 485.7111 [¹³ C ₁₂]TeBDE 495.7534, 497.7514 PeBDE 403.7870, 405.7850 [¹³ C ₁₂]TeBDE 495.7534, 497.7514 PeBDE 481.6975, 483.6955 [¹³ C ₁₂]HxBDE 493.7378, 495.7357	イオン源温度: 320℃	イオン化電流:500μΑ
設定質量数: PeCB 325.8804、327.8775 [l³C ₁₂]PeCB 337.9207、339.9177 HxCB 359.8415、361.8385 [l³C ₁₂]HxCB 371.8817、373.8788 HpCB 393.8025、395.7995 [l³C ₁₂]HpCB 405.8428、407.8398 表一20. ポリ臭素化ジフェニルエーテルの GC/MS 測定条件(1~7 臭素化体) 測定機: HP6890(Agilent Technologies) / Autospec ULTIMA [micromass] カラム: BPX-DXN [SGE] 長さ30 m、内径 0.25 mm 導入系: スプリットレス 注入口温度: 260 C 昇温条件: 120 C(Imin)—20 C/min—180 C(0min)—5 C/min—330 C (hold) イオン/原温度: 320 C イオン化電圧: 35eV 分解能: 10,000+ 設定質量数: MoBDE 247.9837、249.9817 [l³C ₁₂]MoBDE 260.0239、262.0219 DiBDE 325.8942、327.8921 [l³C ₁₂]DiBDE 337.9344、339.9324 TrBDE 405.8027、407.8006 [l³C ₁₂]TrBDE 417.8429、419.8409 TeBDE 483.7132、485.7111 [l³C ₁₂]TeBDE 495.7534、497.7514 PeBDE 403.7870、405.7850 [l³C ₁₂]TeBDE 415.8273、417.8252 HxBDE 481.6975、483.6955 [l³C ₁₂]HxBDE 493.7378、495.7357	イオン化法: EI	イオン化電圧 : 30eV
PeCB 325.8804, 327.8775	分解能: 10,000+	
HxCB 359.8415, 361.8385	設定質量数:	
### To be a space of the proof of the pro	PeCB 325.8804, 327.8775	
表-20. ポリ臭素化ジフェニルエーテルの GCMS 測定条件(1~7 臭素化体) 測定機: HP6890(Agilent Technologies) / Autospec ULTIMA [micromass] カラム: BPX-DXN [SGE] 長さ 30 m、内径 0.25 mm 導入系: スプリットレス 注入口温度: 260°C 昇温条件: 120°C(1min)—20°C/min—180°C(0min)—5°C/min—330°C (hold) イオン源温度: 320°C イオン化電流: 500 μ A イオン化法: EI イオン化電圧: 35eV 分解能: 10,000+ 設定質量数: MoBDE 247.9837, 249.9817 [¹³ C ₁₂]MoBDE 260.0239, 262.0219 DiBDE 325.8942, 327.8921 [¹³ C ₁₂]DiBDE 337.9344, 339.9324 TrBDE 405.8027, 407.8006 [¹³ C ₁₂]TiBDE 417.8429, 419.8409 TeBDE 483.7132, 485.7111 [¹³ C ₁₂]TeBDE 495.7534, 497.7514 PeBDE 403.7870, 405.7850 [¹³ C ₁₂]PeBDE 415.8273, 417.8252 HxBDE 481.6975, 483.6955 [¹³ C ₁₂]HxBDE 493.7378, 495.7357	HxCB 359.8415, 361.8385	
測定機: HP6890(Agilent Technologies) / Autospec ULTIMA [micromass] カラム: BPX-DXN [SGE] 長さ30 m、内径0.25 mm 導入系: スプリットレス 注入口温度: 260°C 昇温条件: 120°C(1min)—20°C/min—180°C(0min)—5°C/min—330°C (hold) イオン源温度: 320°C イオン化電流:500 μ A イオン化法: EI イオン化電圧:35eV 分解能: 10,000+ 設定質量数: MoBDE 247.9837, 249.9817 [¹³ C ₁₂]MoBDE 260.0239, 262.0219 DiBDE 325.8942, 327.8921 [¹³ C ₁₂]DiBDE 337.9344, 339.9324 TrBDE 405.8027, 407.8006 [¹³ C ₁₂]TrBDE 417.8429, 419.8409 TeBDE 483.7132, 485.7111 [¹³ C ₁₂]TeBDE 495.7534, 497.7514 PeBDE 403.7870, 405.7850 [¹³ C ₁₂]PeBDE 415.8273, 417.8252 HxBDE 481.6975, 483.6955 [¹³ C ₁₂]HxBDE 493.7378, 495.7357	HpCB 393.8025, 395.7995	[¹³ C ₁₂]HpCB 405.8428, 407.8398
測定機: HP6890(Agilent Technologies) / Autospec ULTIMA [micromass] カラム: BPX-DXN [SGE] 長さ30 m、内径0.25 mm 導入系: スプリットレス 注入口温度: 260°C 昇温条件: 120°C(1min)—20°C/min—180°C(0min)—5°C/min—330°C (hold) イオン源温度: 320°C イオン化電流:500 μ A イオン化法: EI イオン化電圧:35eV 分解能: 10,000+ 設定質量数: MoBDE 247.9837, 249.9817 [¹³ C ₁₂]MoBDE 260.0239, 262.0219 DiBDE 325.8942, 327.8921 [¹³ C ₁₂]DiBDE 337.9344, 339.9324 TrBDE 405.8027, 407.8006 [¹³ C ₁₂]TrBDE 417.8429, 419.8409 TeBDE 483.7132, 485.7111 [¹³ C ₁₂]TeBDE 495.7534, 497.7514 PeBDE 403.7870, 405.7850 [¹³ C ₁₂]PeBDE 415.8273, 417.8252 HxBDE 481.6975, 483.6955 [¹³ C ₁₂]HxBDE 493.7378, 495.7357		
測定機: HP6890(Agilent Technologies) / Autospec ULTIMA [micromass] カラム: BPX-DXN [SGE] 長さ30 m、内径0.25 mm 導入系: スプリットレス 注入口温度: 260°C 昇温条件: 120°C(1min)—20°C/min—180°C(0min)—5°C/min—330°C (hold) イオン源温度: 320°C イオン化電流:500 μ A イオン化法: EI イオン化電圧:35eV 分解能: 10,000+ 設定質量数: MoBDE 247.9837, 249.9817 [¹³ C ₁₂]MoBDE 260.0239, 262.0219 DiBDE 325.8942, 327.8921 [¹³ C ₁₂]DiBDE 337.9344, 339.9324 TrBDE 405.8027, 407.8006 [¹³ C ₁₂]TrBDE 417.8429, 419.8409 TeBDE 483.7132, 485.7111 [¹³ C ₁₂]TeBDE 495.7534, 497.7514 PeBDE 403.7870, 405.7850 [¹³ C ₁₂]PeBDE 415.8273, 417.8252 HxBDE 481.6975, 483.6955 [¹³ C ₁₂]HxBDE 493.7378, 495.7357	表一20 ポリ自妻ルジフェールエーラ	テルの CC/MS 測定条件: (1~7 自妻化休)
カラム: BPX-DXN [SGE] 長さ30 m、内径0.25 mm 導入系: スプリットレス 注入口温度: 260°C 昇温条件: 120°C(1min)—20°C/min—180°C(0min)—5°C/min-330°C (hold) イオン(根電流: 500 μ A イオン化法: EI イオン化電流: 500 μ A イオン化法: EI イオン化電圧: 35eV 分解能: 10,000+ 設定質量数: MoBDE 247.9837, 249.9817 [¹³C₁₂]MoBDE 260.0239, 262.0219 DiBDE 325.8942, 327.8921 [¹³C₁₂]DiBDE 337.9344, 339.9324 TrBDE 405.8027, 407.8006 [¹³C₁₂]TrBDE 417.8429, 419.8409 TeBDE 483.7132, 485.7111 [¹³C₁₂]TeBDE 495.7534, 497.7514 PeBDE 403.7870, 405.7850 [¹³C₁₂]PeBDE 415.8273, 417.8252 HxBDE 481.6975, 483.6955 [¹³C₁₂]HxBDE 493.7378, 495.7357		
導入系: スプリットレス 注入口温度: 260°C 昇温条件: 120°C(1min)—20°C/min—180°C(0min)—5°C/min—330°C (hold) イオン源温度: 320°C イオン化電流:500μA イオン化法: EI イオン化電圧:35eV 分解能: 10,000+ 設定質量数: MoBDE 247.9837, 249.9817 [¹³ C ₁₂]MoBDE 260.0239, 262.0219 DiBDE 325.8942, 327.8921 [¹³ C ₁₂]DiBDE 337.9344, 339.9324 TrBDE 405.8027, 407.8006 [¹³ C ₁₂]TiBDE 417.8429, 419.8409 TeBDE 483.7132, 485.7111 [¹³ C ₁₂]TiBDE 495.7534, 497.7514 PeBDE 403.7870, 405.7850 [¹³ C ₁₂]PeBDE 415.8273, 417.8252 HxBDE 481.6975, 483.6955 [¹³ C ₁₂]HxBDE 493.7378, 495.7357		
注入口温度: 260°C 昇温条件: 120°C(1min)—20°C/min—180°C(0min)—5°C/min—330°C (hold) イオン(根電流: 500 μ A) イオン(化電流: 500 μ A) イオン(化電流: 500 μ A) イオン(化電圧: 35eV) 分解能: 10,000+ 設定質量数: MoBDE 247.9837, 249.9817 [13°C12]MoBDE 260.0239, 262.0219 DiBDE 325.8942, 327.8921 [13°C12]DiBDE 337.9344, 339.9324 TiBDE 405.8027, 407.8006 [13°C12]TiBDE 417.8429, 419.8409 TeBDE 483.7132, 485.7111 [13°C12]TiBDE 495.7534, 497.7514 PeBDE 403.7870, 405.7850 [13°C12]PeBDE 415.8273, 417.8252 HxBDE 481.6975, 483.6955 [13°C12]HxBDE 493.7378, 495.7357		0.25 mm
昇温条件: 120°C(1min)—20°C/min—180°C(0min)—5°C/min—330°C (hold) イオン(根語: 320°C イオン化電流:500μA イオン化法: EI イオン化電圧:35eV 分解能: 10,000+ 設定質量数: MoBDE 247.9837, 249.9817 [¹³ C ₁₂]MoBDE 260.0239, 262.0219 DiBDE 325.8942, 327.8921 [¹³ C ₁₂]DiBDE 337.9344, 339.9324 TrBDE 405.8027, 407.8006 [¹³ C ₁₂]TrBDE 417.8429, 419.8409 TeBDE 483.7132, 485.7111 [¹³ C ₁₂]TeBDE 495.7534, 497.7514 PeBDE 403.7870, 405.7850 [¹³ C ₁₂]PeBDE 415.8273, 417.8252 HxBDE 481.6975, 483.6955 [¹³ C ₁₂]HxBDE 493.7378, 495.7357		
イオン(水温度: 320°C イオン化電流:500μA イオン化法: EI イオン化電圧:35eV 分解能: 10,000+ 設定質量数: MoBDE 247.9837, 249.9817 [¹³ C ₁₂]MoBDE 260.0239, 262.0219 DiBDE 325.8942, 327.8921 [¹³ C ₁₂]DiBDE 337.9344, 339.9324 TiBDE 405.8027, 407.8006 [¹³ C ₁₂]TiBDE 417.8429, 419.8409 TeBDE 483.7132, 485.7111 [¹³ C ₁₂]TiBDE 495.7534, 497.7514 PeBDE 403.7870, 405.7850 [¹³ C ₁₂]PeBDE 415.8273, 417.8252 HxBDE 481.6975, 483.6955 [¹³ C ₁₂]HxBDE 493.7378, 495.7357		
イオン化法: EI イオン化電圧: 35eV 分解能: 10,000+ 設定質量数: MoBDE 247.9837, 249.9817 [¹³ C ₁₂]MoBDE 260.0239, 262.0219 DiBDE 325.8942, 327.8921 [¹³ C ₁₂]DiBDE 337.9344, 339.9324 TiBDE 405.8027, 407.8006 [¹³ C ₁₂]TiBDE 417.8429, 419.8409 TeBDE 483.7132, 485.7111 [¹³ C ₁₂]TeBDE 495.7534, 497.7514 PeBDE 403.7870, 405.7850 [¹³ C ₁₂]PeBDE 415.8273, 417.8252 HxBDE 481.6975, 483.6955 [¹³ C ₁₂]HxBDE 493.7378, 495.7357	昇温条件: 120°C(1min)—20°C/min—180°C(0min	n)—5°C/min-330°C (hold)
分解能: 10,000+ 設定質量数: MoBDE 247.9837, 249.9817 [¹³ C ₁₂]MoBDE 260.0239, 262.0219 DiBDE 325.8942, 327.8921 [¹³ C ₁₂]DiBDE 337.9344, 339.9324 TrBDE 405.8027, 407.8006 [¹³ C ₁₂]TrBDE 417.8429, 419.8409 TeBDE 483.7132, 485.7111 [¹³ C ₁₂]TeBDE 495.7534, 497.7514 PeBDE 403.7870, 405.7850 [¹³ C ₁₂]PeBDE 415.8273, 417.8252 HxBDE 481.6975, 483.6955 [¹³ C ₁₂]HxBDE 493.7378, 495.7357	イオン源温度: 320℃	イオン化電流: 500 μ A
設定質量数: MoBDE 247.9837, 249.9817 [\begin{subarray}{cccccccccccccccccccccccccccccccccccc	イオン化法: EI	イオン化電圧:35eV
$\begin{array}{llllllllllllllllllllllllllllllllllll$	分解能: 10,000+	
DiBDE 325.8942, 327.8921 [\begin{array}{cccccccccccccccccccccccccccccccccccc	設定質量数:	
TrBDE 405.8027, 407.8006 [13C ₁₂]TrBDE 417.8429, 419.8409 TeBDE 483.7132, 485.7111 [13C ₁₂]TeBDE 495.7534, 497.7514 PeBDE 403.7870, 405.7850 [13C ₁₂]PeBDE 415.8273, 417.8252 HxBDE 481.6975, 483.6955 [13C ₁₂]HxBDE 493.7378, 495.7357		
TeBDE 483.7132, 485.7111 [13C ₁₂]TeBDE 495.7534, 497.7514 PeBDE 403.7870, 405.7850 [13C ₁₂]PeBDE 415.8273, 417.8252 HxBDE 481.6975, 483.6955 [13C ₁₂]HxBDE 493.7378, 495.7357	· · · · · · · · · · · · · · · · · · ·	
PeBDE 403.7870, 405.7850 [\frac{13}{C}_{12}]PeBDE 415.8273, 417.8252 HxBDE 481.6975, 483.6955 [\frac{13}{C}_{12}]HxBDE 493.7378, 495.7357		
HxBDE 481.6975, 483.6955 [13C ₁₂]HxBDE 493.7378, 495.7357		
првие 301.0000, 303.0039 [C ₁₂]првие 3/3.6462, 5/3.6442		
	првие 301.0000, 303.0039	[C ₁₂]npbDE 3/3.0402, 3/3.0442

表-21. ポリ臭素化ジフェニルエーテルの GC/MS 測定条件 (8~10 臭素化体)

測定機: HP6890(Agilent Technologies)/Auto	ospec ULTIMA [micromass]					
カラム: Env-5MS [SGE] 長さ15 m、内径	カラム: Env-5MS [SGE] 長さ 15 m、内径 0.25 mm、膜厚 0.1 μ m					
導入系: スプリットレス						
注入口温度: 260℃						
昇温条件: 120°C(2min)—20°C/min—220°C(0m	nin)10°C/min—330°C (hold)					
イオン源温度: 320℃	イオン化電流: 500 μ Α					
イオン化法: EI	イオン化電圧: 35eV					
分解能: 10,000+						
設定質量数 :						
OcBDE 639.5165, 641.5144	[¹³ C ₁₂]OcBDE 651.5567, 653.5547					
NoBDE 719.4250, 721.4429	[¹³ C ₁₂]NoBDE 731.4652, 733.4632					
DeBDE 797.3355, 799.3334	[¹³ C ₁₂]DeBDE 809.3757, 811.3737					

表-22. コプラナーポリハロゲン化ビフェニルの GC/MS 測定条件

表一22. コノフケーホリハロク	ノ化ピノエーハの GC/MIS 側足条件				
測定機: HP6890(Agilent Technologies)/Autospec ULTIMA [micromass]					
カラム: HT8PCB [SGE] 長さ30 m、内径(0.25 mm				
注入口温度: 260℃					
昇温条件: 130°C(1min)—20°C/min—210°C(0min	n)2°C/min—250°C (0min)10°C/min—330°C (hold)				
イオン源温度: 320℃ イオン化電流:500 µ A					
イオン化法: EI	イオン化電圧:35eV				
分解能: 10,000+					
設定質量数 :					
MoBTeCB 369.8303, 371.8277	[¹³ C ₁₂] MoBTeCB 381.8706, 383.8678				
MoBPeCB 403.7913, 405.7886	[¹³ C ₁₂] MoBPeCB 415.8315, 417.8288				
TrBDiCB 459.7274, 457.7297	[¹³ C ₁₂] TrBDiCB 471.7676, 469.7699				

3.5. 定量下限および検出下限

臭素化ダイオキシン類の標準的な検出下限、定量下限を表-23および表-24に示した。

表-23. 臭素化ダイオキシン類の検出下限・定量下限

	環境大気		室内空気		降下ばいじん		ハウスダスト	
	(pg/m^3)		(pg/m^3)		(pg/m²/day)		(pg/g)	
	検出	定量	検出	定量	検出	定量	検出	定量
	下限	下限	下限	下限	下限	下限	下限	下限
2,3,7,8-TeBDD	0.0002	0.0006	0.002	0.006	0.3	0.9	5	17
TeBDDs	0.0002	0.0006	0.002	0.006	0.3	0.9	5	17
1,2,3,7,8-PeBDD	0.0003	0.0010	0.003	0.011	0.4	1.4	5	16
PeBDDs	0.0003	0.0010	0.003	0.011	0.4	1.4	5	16
1,2,3,4,7,8/1,2,3,6,7,8-HxBDD	0.0004	0.0013	0.004	0.014	0.6	1.9	20	70
1,2,3,7,8,9-HxBDD	0.0003	0.0011	0.004	0.012	0.5	1.6	30	80
HxBDDs	0.0004	0.0013	0.004	0.014	0.6	1.9	20	70
1,2,3,4,6,7,8-HpBDD	0.0003	0.0010	0.003	0.011	0.5	1.5	10	40
HpBDDs	0.0003	0.0010	0.003	0.011	0.5	1.5	10	40
OBDD	0.001	0.003	0.01	0.04	1	5	40	120
2,3,7,8-TeBDF	0.0002	0.0005	0.002	0.006	0.2	0.8	5	15
TeBDFs	0.0002	0.0005	0.002	0.006	0.2	0.8	5	15
1,2,3,7,8-PeBDF	0.0001	0.0005	0.002	0.005	0.2	0.7	8	27
2,3,4,7,8-PeBDF	0.0003	0.001	0.003	0.011	0.5	1.5	7	23
PeBDFs	0.0002	0.0008	0.002	0.008	0.3	1.1	8	25
1,2,3,4,7,8-HxBDF	0.0003	0.0009	0.003	0.010	0.4	1.3	10	50
HxBDFs	0.0003	0.0009	0.003	0.010	0.4	1.3	10	50
1,2,3,4,6,7,8-HpBDF	0.0003	0.0011	0.004	0.012	0.5	1.7	5	18
HpBDFs	0.0003	0.0011	0.004	0.012	0.5	1.7	5	18
OBDF	0.003	0.008	0.03	0.09	4	13	80	280

表-24. 臭素化ダイオキシン類の検出下限・定量下限

	水質		底質		水生生物	
	(pg/L)		(pg/g-dry)		(pg/g-wet)	
	検出	定量	検出	定量	検出	定量
	下限	下限	下限	下限	下限	下限
2,3,7,8-TeBDD	0.006	0.02	0.05	0.16	0.02	0.06
TeBDDs	0.006	0.02	0.05	0.16	0.02	0.06
1,2,3,7,8-PeBDD	0.01	0.03	0.05	0.16	0.02	0.05
PeBDDs	0.01	0.03	0.05	0.16	0.02	0.05
1,2,3,4,7,8/1,2,3,6,7,8-HxBDD	0.01	0.04	0.2	0.7	0.07	0.23
1,2,3,7,8,9-HxBDD	0.01	0.04	0.2	0.8	0.09	0.31
HxBDDs	0.01	0.04	0.2	0.7	0.07	0.23
1,2,3,4,6,7,8-HpBDD	0.01	0.04	0.1	0.4	0.09	0.29
HpBDDs	0.01	0.04	0.1	0.4	0.09	0.29
OBDD	0.04	0.12	0.3	1.2	0.1	0.3
2,3,7,8-TeCDF	0.006	0.019	0.04	0.15	0.03	0.08
TeBDFs	0.006	0.019	0.04	0.15	0.03	0.08
1,2,3,7,8-PeBDF	0.005	0.017	0.08	0.27	0.01	0.04
2,3,4,7,8-PeBDF	0.01	0.04	0.07	0.22	0.02	0.06
PeBDFs	0.008	0.027	0.07	0.25	0.02	0.05
1,2,3,4,7,8-HxBDF	0.009	0.031	0.1	0.5	0.04	0.13
HxBDFs	0.009	0.031	0.1	0.5	0.04	0.13
1,2,3,4,6,7,8-HpBDF	0.01	0.04	0.05	0.18	0.09	0.28
HpBDFs	0.01	0.04	0.05	0.18	0.09	0.28
OBDF	0.09	0.30	0.8	2.8	0.2	0.8

モノ臭素化ポリ塩素化ダイオキシン類の標準的な検出下限、定量下限を表-25および表-26に示した。

表-25. モノ臭素化ポリ塩素化ダイオキシン類の検出下限・定量下限

	環境大気		室内	空気	降下ばいじん		ハウスダスト	
	(pg/m^3)		(pg/1	m^3)	(pg/m	n²/day)	(pg/g)	
	検出	定量	検出	定量	検出	定量	検出	定量
	下限	下限	下限	下限	下限	下限	下限	下限
2-MoB-3,7,8-TrCDD	0.00007	0.00025	0.0008	0.0027	0.1	0.4	5	17
1-MoB-2,3,7,8-TeCDD	0.0002	0.0006	0.002	0.007	0.3	1.0	5	16
2-MoB-3,6,7,8,9-PeCDD	0.0001	0.0005	0.002	0.005	0.2	0.7	8	26
1-MoB-2,3,6,7,8,9-HxCDD	0.0003	0.0009	0.003	0.010	0.4	1.3	10	40
1-MoB-2,3,4,6,7,8,9-HpCDD	0.0003	0.0010	0.003	0.011	0.4	1.5	10	40
3-MoB-6,7,8-TrCDF	0.00009	0.00031	0.001	0.003	0.1	0.5	4	14
1-MoB-2,3,7,8-TeCDF	0.0001	0.0005	0.002	0.005	0.2	0.7	10	30

表-26. モノ臭素化ポリ塩素化ダイオキシン類の検出下限・定量下限

	水红	質	底	質	水生生物	
	(pg/L)		(pg/g	-dry)	(pg/g-	-wet)
	検出 定量		検出	定量	検出	定量
	下限	下限	下限	下限	下限	下限
2-MoB-3,7,8-TrCDD	0.003	0.009	0.05	0.17	0.04	0.13
1-MoB-2,3,7,8-TeCDD	0.007	0.023	0.05	0.16	0.04	0.14
2-MoB-3,6,7,8,9-PeCDD	0.005	0.017	0.08	0.25	0.03	0.09
1-MoB-2,3,6,7,8,9-HxCDD	0.009	0.031	0.1	0.4	0.04	0.14
1-MoB-2,3,4,6,7,8,9-HpCDD	0.01	0.04	0.1	0.4	0.05	0.16
3-MoB-6,7,8-TrCDF	0.003	0.011	0.04	0.14	0.009	0.03
1-MoB-2,3,7,8-TeCDF	0.005	0.016	0.1	0.3	0.03	0.09

表-27. ポリ塩素化ダイオキシン類の検出下限・定量下限

	環境		室内			降下ばいじん ハウスダス)		
	(pg/r		(pg/			n^2/day)		g/g)
	検出	定量	検出	<i>)</i> 定量	検出	定量	検出	定量
	下限	下限	下限	下限	下限	下限	下限	下限
1,3,6,8-TeCDD	0.00006	0.00020	0.0007	0.0022	0.09	0.30	2	8
1,3,7,9-TeCDD	0.00006	0.00020	0.0007	0.0022	0.09	0.30	2	8
2,3,7,8-TeCDD	0.00006	0.00020	0.0007	0.0022	0.09	0.30	2	8
TeCDDs	0.00006	0.00020	0.0007	0.0022	0.09	0.30	2	8
1,2,3,7,8-PeCDD	0.0000	0.0003	0.001	0.003	0.1	0.5	0.6	1.8
PeCDDs	0.0001	0.0003	0.001	0.003	0.1	0.5	0.6	2.0
1,2,3,4,7,8-HxCDD	0.0001	0.0004	0.001	0.005	0.1	0.6	2	6
1,2,3,6,7,8-HxCDD	0.0001	0.0004	0.0001	0.0027	0.2	0.4	4	14
1,2,3,7,8,9-HxCDD	0.00008	0.00023	0.0008	0.0027	0.1	0.4	2	5
HxCDDs	0.0001	0.0003	0.002	0.003	0.2	0.7	3	8
						0.09		4
1,2,3,4,6,7,8-HpCDD	0.00002	0.00006	0.0002	0.0006	0.03		1	
HpCDDs	0.00002	0.00006	0.0002	0.0006	0.03	0.09	1	4
OCDD	0.0008	0.0026	0.009	0.028	1	4	8	26
1,2,7,8-TeCDF	0.00003	0.00010	0.0003	0.0011	0.05	0.15	1	4
2,3,7,8-TeCDF	0.00003	0.00010	0.0003	0.0011	0.05	0.15	1	4
TeCDFs	0.00003	0.00010	0.0003	0.0011	0.05	0.15	1	4
1,2,3,7,8-PeCDF	0.00006	0.00020	0.0007	0.0022	0.09	0.30	0.6	2.0
2,3,4,7,8-PeCDF	0.00008	0.00026	0.002	0.006	0.2	0.8	0.9	3.1
PeCDFs	0.00007	0.00023	0.001	0.004	0.1	0.6	0.8	2.6
1,2,3,4,7,8-HxCDF	0.00005	0.00017	0.0005	0.0018	0.07	0.25	1	3
1,2,3,6,7,8-HxCDF	0.00005	0.00017	0.0006	0.0018	0.07	0.25	2	5
1,2,3,7,8,9-HxCDF	0.00009	0.00032	0.002	0.007	0.3	0.9	3	11
2,3,4,6,7,8-HxCDF	0.00006	0.00020	0.0006	0.0021	0.09	0.29	2	6
HxCDFs	0.00006	0.00020	0.0009	0.0030	0.1	0.4	2	6
1,2,3,4,6,7,8-HpCDF	0.00009	0.00031	0.001	0.003	0.1	0.5	1	4
1,2,3,4,7,8,9-HpCDF	0.00008	0.00026	0.0009	0.0029	0.1	0.4	0.4	1.2
HpCDFs	0.00009	0.00029	0.001	0.003	0.1	0.5	0.7	2.6
OCDF	0.00007	0.00023	0.0007	0.0025	0.1	0.3	4	13
3,3',4,4'-TeCB(#77)	0.0001	0.0003	0.002	0.007	0.3	1.0	2	7
3,4,4',5-TeCB(#81)	0.00006	0.00020	0.001	0.004	0.2	0.6	2	7
3,3',4,4',5-PeCB(#126)	0.00006	0.00020	0.001	0.004	0.2	0.6	3	9
3,3',4,4',5,5'-HxCB(#169)	0.00004	0.00012	0.0008	0.0026	0.1	0.4	5	16
2,3,3',4,4'-PeCB(#105)	0.0001	0.0003	0.0005	0.0017	0.07	0.23	0.7	2.4
2,3,4,4',5-PeCB(#114)	0.00008	0.00027	0.0004	0.0015	0.06	0.20	3	9
2,3',4,4',5-PeCB(#118)	0.0002	0.0006	0.0009	0.0032	0.1	0.4	3	11
2',3,4,4',5-PeCB(#123)	0.0001	0.0003	0.0005	0.0018	0.07	0.24	2	7
2,3,3',4,4',5-HxCB(#156)	0.00007	0.00023	0.0004	0.0013	0.05	0.17	0.5	1.8
2,3,3',4,4',5'-HxCB(#157)	0.00009	0.00031	0.0005	0.0017	0.07	0.23	2	7
2,3',4,4',5,5'-HxCB(#167)	0.00006	0.00021	0.0003	0.0012	0.05	0.16	1	4
2,3,3',4,4',5,5'-HpCB(#189)	0.0001	0.0004	0.0006	0.0021	0.08	0.28	3	9

表-28. ポリ塩素化ダイオキシン類の検出下限・定量下限

	水質		底	質	水生生物		
	(pg/		(pg/g		(pg/g		
	検出	定量	検出	定量	検出	定量	
	下限	下限	下限	下限	下限	下限	
1,3,6,8-TeCDD	0.001	0.003	0.02	0.08	0.008	0.027	
1,3,7,9-TeCDD	0.001	0.003	0.02	0.08	0.008	0.027	
2,3,7,8-TeCDD	0.001	0.003	0.02	0.08	0.008	0.027	
TeCDDs	0.001	0.003	0.02	0.08	0.008	0.027	
1,2,3,7,8-PeCDD	0.002	0.006	0.005	0.018	0.008	0.026	
PeCDDs	0.002	0.006	0.005	0.02	0.008	0.03	
1,2,3,4,7,8-HxCDD	0.002	0.006	0.02	0.06	0.02	0.05	
1,2,3,6,7,8-HxCDD	0.001	0.004	0.04	0.14	0.007	0.025	
1,2,3,7,8,9-HxCDD	0.0006	0.0020	0.02	0.05	0.01	0.05	
HxCDDs	0.001	0.004	0.03	0.08	0.01	0.04	
1,2,3,4,6,7,8-HpCDD	0.001	0.004	0.01	0.04	0.01	0.03	
HpCDDs	0.001	0.004	0.01	0.04	0.01	0.03	
OCDD	0.002	0.006	0.08	0.25	0.01	0.04	
1,2,7,8-TeCDF	0.001	0.004	0.01	0.04	0.005	0.016	
2,3,7,8-TeCDF	0.001	0.004	0.01	0.04	0.005	0.016	
TeCDFs	0.001	0.004	0.01	0.04	0.005	0.016	
1,2,3,7,8-PeCDF	0.002	0.005	0.006	0.020	0.006	0.021	
2,3,4,7,8-PeCDF	0.01	0.04	0.01	0.05	0.006	0.019	
PeCDFs	0.006	0.023	0.008	0.035	0.006	0.020	
1,2,3,4,7,8-HxCDF	0.002	0.006	0.01	0.03	0.009	0.030	
1,2,3,6,7,8-HxCDF	0.002	0.006	0.01	0.05	0.01	0.04	
1,2,3,7,8,9-HxCDF	0.02	0.06	0.05	0.16	0.01	0.04	
2,3,4,6,7,8-HxCDF	0.001	0.005	0.02	0.06	0.007	0.023	
HxCDFs	0.006	0.02	0.02	0.08	0.009	0.03	
1,2,3,4,6,7,8-HpCDF	0.001	0.003	0.01	0.04	0.006	0.020	
1,2,3,4,7,8,9-HpCDF	0.002	0.005	0.003	0.012	0.009	0.029	
HpCDFs	0.002	0.004	0.007	0.026	0.008	0.025	
OCDF	0.002	0.008	0.04	0.13	0.009	0.031	
3,3',4,4'-TeCB(#77)	0.005	0.018	0.03	0.10	0.009	0.029	
3,4,4',5-TeCB(#81)	0.009	0.031	0.03	0.11	0.01	0.04	
3,3',4,4',5-PeCB(#126)	0.01	0.04	0.04	0.13	0.02	0.05	
3,3',4,4',5,5'-HxCB(#169)	0.02	0.05	0.07	0.23	0.01	0.05	
2,3,3',4,4'-PeCB(#105)	0.002	0.005	0.007	0.024	0.003	0.010	
2,3,4,4',5-PeCB(#114)	0.003	0.009	0.03	0.08	0.004	0.013	
2,3',4,4',5-PeCB(#118)	0.003	0.009	0.03	0.11	0.005	0.017	
2',3,4,4',5-PeCB(#123)	0.002	0.006	0.02	0.07	0.006	0.021	
2,3,3',4,4',5-HxCB(#156)	0.003	0.009	0.005	0.017	0.006	0.019	
2,3,3',4,4',5'-HxCB(#157)	0.001	0.005	0.02	0.07	0.005	0.016	
2,3',4,4',5,5'-HxCB(#167)	0.002	0.007	0.01	0.04	0.004	0.015	
2,3,3',4,4',5,5'-HpCB(#189)	0.003	0.009	0.03	0.08	0.008	0.028	

ポリ臭素化ジフェニルエーテルの標準的な検出下限、定量下限を表-29および表-30に示した。

表-29. ポリ臭素化ジフェニルエーテルの検出下限・定量下限

	環境	大気	室内	空気	降下ば	いじん	降下ばいじん ハウスダ	
	(pg	$/\text{m}^3$)	(pg	y/m^3)	(pg/m	² /day)	(pg	(g)
	検出	定量	検出	定量	検出	定量	検出	定量
	下限	下限	下限	下限	下限	下限	下限	下限
4-MoBDE(#3)	0.002	0.008	0.03	0.09	3	12	100	300
2,4-DiBDE(#7)	0.0003	0.0009	0.003	0.010	0.4	1.3	9	30
4,4-DiBDE(#15)	0.0001	0.0004	0.001	0.004	0.2	0.5	7	24
2,2',4-TriBDE(#17)	0.0005	0.0016	0.005	0.017	0.7	2.3	10	50
2,4,4'-TriBDE(#28)	0.0005	0.0016	0.005	0.017	0.7	2.4	10	30
2,2',4,4'-TeBDE(#47)	0.002	0.006	0.02	0.06	2	8	40	140
2,2',4,5'-TeBDE(#49)	0.0005	0.0018	0.006	0.019	0.8	2.6	10	40
2,3',4,4'-TeBDE(#66)	0.0003	0.0011	0.004	0.012	0.5	1.6	10	40
2,3',4',6-TeBDE(#71)	0.0003	0.0011	0.003	0.012	0.5	1.6	6	20
3,3',4,4'-TeBDE(#77)	0.0004	0.0012	0.004	0.013	0.5	1.8	10	30
2,2',3,4,4'-PeBDE(#85)	0.0005	0.0017	0.005	0.018	0.7	2.5	10	40
2,2',4,4',5-PeBDE(#99)	0.0009	0.0029	0.01	0.03	1	4	20	80
2,2',4,4',6-PeBDE(#100)	0.001	0.004	0.01	0.04	2	5	10	30
2,3',4,4',6-PeBDE(#119)	0.0005	0.0016	0.005	0.018	0.7	2.4	10	40
3,3',4,4',5-PeBDE(#126)	0.001	0.003	0.01	0.04	2	5	10	40
2,2',3,4,4',5'-HxBDE(#138)	0.0008	0.0027	0.009	0.029	1	4	20	70
2,2',4,4',5,5'-HxBDE(#153)	0.0004	0.0014	0.005	0.016	0.6	2.1	20	80
2,2',4,4',5,6'-HxBDE(#154)	0.0005	0.0017	0.006	0.019	0.8	2.6	10	50
2,3,3',4,4',5-HxBDE(#156)	0.001	0.003	0.01	0.04	1	5	30	90
2,2',3,4,4',5',6-HpBDE(#183)	0.0004	0.0015	0.005	0.016	0.7	2.2	20	80
2,2',3,4,4',6,6'-HpBDE(#184)	0.001	0.004	0.01	0.04	2	5	30	90
2,3,3',4,4',5',6-HpBDE(#191)	0.0007	0.0022	0.007	0.024	1	3	30	110
2,2',3,3'4,4',5,6'-OcBDE(#196)	0.0006	0.002	0.007	0.022	0.9	3	20	60
2,2',3,3'4,4',6,6'-OcBDE(#197)	0.0002	0.0008	0.003	0.009	0.4	1.2	9	31
2,2',3,4,4',5,5',6-OcBDE(#203)	0.0004	0.0014	0.005	0.015	0.6	2.1	10	40
2,3,3',4,4',5,5',6-OcBDE (#205)	0.0004	0.0014	0.005	0.015	0.6	2.1	10	40
2,2',3,3'4,4'5,5',6-NoBDE(#206)	0.003	0.009	0.03	0.09	4	13	100	500
2,2',3,3'4,4'5,6,6'-NoBDE(#207)	0.0008	0.0026	0.009	0.029	1	4	30	100
DeBDE(#209)	0.004	0.015	0.05	0.16	7	22	200	700
Total MoBDEs	0.002	0.008	0.03	0.09	3	12	100	300
Total DiBDEs	0.0002	0.0006	0.002	0.007	0.3	0.9	8	27
Total TriBDEs	0.0005	0.0016	0.005	0.017	0.7	2.3	10	40
Total TeBDEs	0.0006	0.0022	0.007	0.024	1	3	20	60
Total PeBDEs	0.0008	0.0026	0.009	0.029	1	4	10	50
Total HxBDEs	0.0007	0.0023	0.007	0.025	1	3	20	70
Total HpBDEs	0.0007	0.0024	0.008	0.026	1	4	30	90
Total OcBDEs	0.0004	0.0014	0.005	0.015	0.6	2.1	10	40
Total NoBDEs	0.002	0.006	0.02	0.06	2	8	80	280
DeBDE	0.004	0.015	0.05	0.16	7	22	200	700

表-30. ポリ臭素化ジフェニルエーテルの検出下限・定量下限

	水質		底	質	水生生物		
	(pg/		(pg/g	g-dry)	(pg/g	g-wet)	
	検出	定量	検出	定量	検出	定量	
	下限	下限	下限	下限	下限	下限	
4-MoBDE(#3)	0.08	0.27	1	3	0.2	0.5	
2,4-DiBDE(#7)	0.009	0.031	0.09	0.29	0.03	0.1	
4,4-DiBDE(#15)	0.004	0.013	0.07	0.24	0.03	0.08	
2,2',4-TriBDE(#17)	0.02	0.06	0.1	0.5	0.03	0.09	
2,4,4'-TriBDE(#28)	0.02	0.06	0.1	0.3	0.09	0.29	
2,2',4,4'-TeBDE(#47)	0.06	0.20	0.4	1.3	0.1	0.5	
2,2',4,5'-TeBDE(#49)	0.02	0.06	0.1	0.4	0.07	0.23	
2,3',4,4'-TeBDE(#66)	0.01	0.04	0.1	0.4	0.05	0.16	
2,3',4',6-TeBDE(#71)	0.01	0.04	0.06	0.20	0.04	0.15	
3,3',4,4'-TeBDE(#77)	0.01	0.04	0.1	0.3	0.03	0.11	
2,2',3,4,4'-PeBDE(#85)	0.02	0.06	0.1	0.4	0.1	0.3	
2,2',4,4',5-PeBDE(#99)	0.03	0.1	0.2	0.8	0.1	0.4	
2,2',4,4',6-PeBDE(#100)	0.04	0.12	0.1	0.3	0.08	0.26	
2,3',4,4',6-PeBDE(#119)	0.02	0.06	0.1	0.4	0.08	0.26	
3,3',4,4',5-PeBDE(#126)	0.04	0.12	0.1	0.4	0.1	0.4	
2,2',3,4,4',5'-HxBDE(#138)	0.03	0.09	0.2	0.6	0.08	0.25	
2,2',4,4',5,5'-HxBDE(#153)	0.01	0.05	0.2	0.8	0.09	0.31	
2,2',4,4',5,6'-HxBDE(#154)	0.02	0.06	0.1	0.5	0.05	0.18	
2,3,3',4,4',5-HxBDE(#156)	0.03	0.12	0.3	0.8	0.1	0.4	
2,2',3,4,4',5',6-HpBDE(#183)	0.02	0.05	0.2	0.8	0.1	0.5	
2,2',3,4,4',6,6'-HpBDE(#184)	0.04	0.12	0.3	0.9	0.1	0.5	
2,3,3',4,4',5',6-HpBDE(#191)	0.02	0.08	0.3	1.1	0.1	0.4	
2,2',3,3'4,4',5,6'-OcBDE(#196)	0.02	0.07	0.2	0.6	0.1	0.4	
2,2',3,3'4,4',6,6'-OcBDE(#197)	0.008	0.028	0.09	0.3	0.1	0.4	
2,2',3,4,4',5,5',6-OcBDE(#203)	0.01	0.05	0.1	0.4	0.1	0.4	
2,3,3',4,4',5,5',6-OcBDE (#205)	0.01	0.05	0.1	0.4	0.1	0.4	
2,2',3,3'4,4'5,5',6-NoBDE(#206)	0.09	0.30	1	4	0.4	1.3	
2,2',3,3'4,4'5,6,6'-NoBDE(#207)	0.03	0.09	0.3	1.0	0.1	0.4	
DeBDE(#209)	0.2	0.5	2	6	0.9	3.1	
Total MoBDEs	0.08	0.27	1	3	0.2	0.5	
Total DiBDEs	0.007	0.022	0.08	0.26	0.03	0.09	
Total TriBDEs	0.02	0.06	0.1	0.4	0.06	0.19	
Total TeBDEs	0.02	0.08	0.2	0.5	0.07	0.22	
Total PeBDEs	0.03	0.09	0.1	0.5	0.1	0.3	
Total HxBDEs	0.02	0.08	0.2	0.7	0.08	0.28	
Total HpBDEs	0.03	0.08	0.3	0.9	0.1	0.4	
Total OcBDEs	0.01	0.05	0.1	0.4	0.1	0.4	
Total NoBDEs	0.00006	0.0002	0.8	2.7	0.2	0.8	
DeBDE	0.2	0.5	2	6	0.9	3.1	

コプラナーポリハロゲン化ビフェニルの標準的な検出下限、定量下限を表-31に示した。

表-31. コプラナーポリハロゲン化ビフェニルの検出下限・定量下限

	水生生物(pg/g-wet)		
	検出 定量		
	下限	下限	
4'-MoB-2,3',4,5-TeCB(#118)	0.04	0.12	
4'-MoB-2,3,3',4-TeCB(#105)	0.04	0.12	
4'-MoB-3,3',4,5-TeCB(#126)	0.04	0.12	
4'-MoB-2,3,3',4,5-PeCB(#156)	0.04	0.12	
4'-MoB-3,3',4,5,5'-PeCB(#169)	0.03	0.10	
3',4',5'-TrB-3,4-DiCB(#126)	0.04	0.15	

4. 調査結果

各調査試料の測定結果を以下に示した。ポリ臭素化ダイオキシン類およびポリ塩素化ダイオキシン類については 実測濃度とともにその毒性等量(TEQ)も並記した(ポリ臭素化ダイオキシン類の毒性等価係数にはハロゲン置換位置 が同じポリ塩素化ダイオキシン類のものを用いた)。

TEQ 算出のための毒性等価係数(TEF)はWHO-2006 を用いた。

4.1. 環境大気

環境大気試料の測定結果を表-32~表-35に示した。

表-32. ポリ臭素化ダイオキシン類測定結果(環境大気)

(単位:pg/m³、TEQはpg-TEQ/m³)

			14		10	S3		
			<u>S1</u>	~	52			
	TEF	実測濃度	TEQ	実測濃度	TEQ	実測濃度	TEQ	
2,3,7,8-TeBDD	1	< 0.0002	0.0001	0.0006	0.0006	[0.0003]	0.0003	
TeBDDs	-	1.6	-	0.040	-	0.91	-	
1,2,3,7,8-PeBDD	1	< 0.0003	0.00015	< 0.0003	0.00015	< 0.0003	0.00015	
PeBDDs	-	0.0020	-	0.0078	=	0.0029	-	
1,2,3,4,7,8/1,2,3,6,7,8-HxBDD	0.1	< 0.0004	0.00002	< 0.0004	0.00002	< 0.0004	0.00002	
1,2,3,7,8,9-HxBDD	0.1	< 0.0003	0.000015	[0.0005]	0.00005	< 0.0003	0.000015	
HxBDDs	0.1	0.0034	-	0.011	-	0.0034	-	
1,2,3,4,6,7,8-HpBDD	0.01	[0.0008]	0.000008	0.0016	0.000016	0.0011	0.000011	
HpBDDs	-	[0.0008]	-	0.0016	=	0.0011	-	
OBDD	0.00003	[0.001]	0.0000003	0.003	0.0000009	0.003	0.0000009	
Total PBDDs	-	1.6	-	0.063	-	0.92	-	
2,3,7,8-TeBDF	0.1	0.0023	0.0023	0.012	0.012	0.0030	0.003	
TeBDFs	-	0.34	-	1.3	-	0.16	-	
1,2,3,7,8-PeBDF	0.03	0.0019	0.000057	0.0084	0.000252	0.0026	0.000078	
2,3,4,7,8-PeBDF	0.3	0.0020	0.0006	0.0081	0.00243	0.0024	0.00072	
PeBDFs	-	0.20	-	1.2	=	0.25	=	
1,2,3,4,7,8-HxBDF	0.1	0.012	0.0012	0.041	0.0041	0.012	0.0012	
HxBDFs		0.21	-	0.88	-	0.26	-	
1,2,3,4,6,7,8-HpBDF	0.01	0.036	0.00036	0.078	0.00078	0.035	0.00035	
HpBDFs		0.036	-	0.078	=	0.055	=	
OBDF	0.0003	0.074	0.0000222	0.088	0.0000264	0.081	0.0000243	
Total PBDFs	-	0.86		3.5		0.81		
Total(PBDDs+PBDFs)	-	2.5		3.6		1.7		
TEQ								
(検出下限未満の値は+1/2)			0.0048		0.020		0.0059	
(検出下限未満の値は0)			0.0045		0.020		0.0057	

実測濃度が検出下限以上定量下限未満の場合は括弧付きで、検出下限未満の場合"<(検出下限)"と表示

表-33. モノ臭素化ポリ塩素化ダイオキシン類測定結果(環境大気)

(単位:pg/m³)

	S1	S2	S3
2-MoB-3,7,8-TrCDD	< 0.00007	< 0.00007	< 0.00007
1-MoB-2,3,7,8-TeCDD	< 0.0002	< 0.0002	< 0.0002
2-MoB-3,6,7,8,9-PeCDD	< 0.0001	< 0.0001	< 0.0001
1-MoB-2,3,6,7,8,9-HxCDD	0.0019	0.0031	0.0035
1-MoB-2,3,4,6,7,8,9-HpCDD	0.0039	0.0047	0.0063
3-MoB-6,7,8-TrCDF	< 0.00009	< 0.00009	< 0.00009
1-MoB-2,3,7,8-TeCDF	< 0.0001	< 0.0001	< 0.0001

実測濃度が検出下限以上定量下限未満の場合は括弧付きで、検出下限未満の場合"<(検出下限)"と表示

表-34. ポリ塩素化ダイオキシン類測定結果(環境大気)

(単位:pg/m³、TEQ はpg-TEQ/m³)

		1	~ .			III 、 IEQ (
			S1		S2		S3		
	TEF	実測濃度	TEQ	実測濃度	TEQ	実測濃度	TEQ		
1,3,6,8-TeCDD	-	0.20	-	0.25	-	0.24	-		
1,3,7,9-TeCDD	-	0.088	-	0.10	-	0.10	-		
2,3,7,8-TeCDD	1	0.00094	0.00094	0.0011	0.0011	0.0011	0.0011		
TeCDDs	-	0.37	-	0.44	-	0.44	-		
1,2,3,7,8-PeCDD	1	0.0037	0.0037	0.0044	0.0044	0.0041	0.0041		
PeCDDs	-	0.19	-	0.19	-	0.19	-		
1,2,3,4,7,8-HxCDD	0.1	0.0045	0.00045	0.0047	0.00047	0.005	0.0005		
1,2,3,6,7,8-HxCDD	0.1	0.0088	0.00088	0.011	0.0011	0.010	0.0010		
1,2,3,7,8,9-HxCDD	0.1	0.0065	0.00065	0.007	0.0007	0.0075	0.00075		
HxCDDs	-	0.21	-	0.2	-	0.21	-		
1,2,3,4,6,7,8-HpCDD	0.01	0.065	0.00065	0.085	0.00085	0.11	0.0011		
HpCDDs	-	0.14	-	0.17	-	0.22	_		
OCDD	0.0003	0.13	0.000039	0.19	0.000057	0.22	0.000066		
Total PCDDs	-	1.0	-	1.2	-	1.3	-		
1,2,7,8-TeCDF	-	0.032	_	0.045	_	0.047	_		
2,3,7,8-TeCDF	0.1	0.013	0.0013	0.018	0.0018	0.023	0.0023		
TeCDFs	_	0.75	_	1.1	_	1.0	_		
1,2,3,7,8-PeCDF	0.03	0.014	0.00042	0.019	0.00057	0.02	0.0006		
2,3,4,7,8-PeCDF	0.3	0.02	0.006	0.025	0.0075	0.026	0.0078		
PeCDFs	-	0.43	-	0.6	-	0.55	-		
1,2,3,4,7,8-HxCDF	0.1	0.024	0.0024	0.026	0.0026	0.034	0.0034		
1,2,3,6,7,8-HxCDF	0.1	0.025	0.0025	0.03	0.003	0.035	0.0035		
1,2,3,7,8,9-HxCDF	0.1	0.0026	0.00026	0.0028	0.00028	0.0031	0.00031		
2,3,4,6,7,8-HxCDF	0.1	0.034	0.0034	0.036	0.0036	0.049	0.0049		
HxCDFs	-	0.29	-	0.34	-	0.38	-		
1,2,3,4,6,7,8-HpCDF	0.01	0.10	0.0010	0.12	0.0012	0.19	0.0019		
1,2,3,4,7,8,9-HpCDF	0.01	0.02	0.0002	0.021	0.00021	0.035	0.00035		
HpCDFs	-	0.18	-	0.21	-	0.33	-		
OCDF	0.0003	0.077	0.0000231	0.14	0.000042	0.17	0.000051		
Total PCDFs	-	1.7	-	2.4	-	2.4	-		
Total (PCDDs+PCDFs)	_	2.8	_	3.6	-	3.7	_		
3,3',4,4'-TeCB(#77)	0.0001	0.34	0.000034	1.5	0.00015	0.64	0.000064		
3,4,4',5-TeCB(#81)	0.0003	0.05	0.000015	0.098	0.0000294	0.063	0.0000189		
3,3',4,4',5-PeCB(#126)	0.1	0.036	0.0036	0.092	0.0092	0.05	0.005		
3,3',4,4',5,5'-HxCB(#169)	0.03	0.0062	0.000186	0.0077	0.000231	0.0079	0.000237		
Total non-ortho PCBs	-	0.43	-	1.7	-	0.76	-		
2,3,3',4,4'-PeCB(#105)	0.00003	0.58	0.0000174	4.8	0.000144	1.4	0.000042		
2,3,4,4',5-PeCB(#114)	0.00003	0.059	0.00000177	0.41	0.0000111	0.12	0.0000036		
2,3',4,4',5-PeCB(#118)	0.00003	1.7	0.000051	16	0.00048	3.7	0.000111		
2',3,4,4',5-PeCB(#123)	0.00003	0.045	0.00000135	0.29	0.0000087	0.088	0.00000264		
2,3,3',4,4',5-HxCB(#156)	0.00003	0.043	0.00000133	0.62	0.0000186	0.24	0.00000204		
2,3,3',4,4',5'-HxCB(#157)	0.00003	0.028	0.00000033	0.14	0.0000042	0.057	0.00000171		
2,3',4,4',5,5'-HxCB(#167)	0.00003	0.050	0.0000015	0.32	0.0000096	0.11	0.00000171		
2,3,3',4,4',5,5'-HpCB(#189)	0.00003	0.030	0.00000039	0.018	0.00000054	0.02	0.00000035		
Total mono- <i>ortho</i> PCBs	-	2.6	-	23	-	5.7	-		
Total DL-PCBs	_	3.0	_	24	_	6.5	_		
1000101010	<u> </u>	3.0				0.0			
TEQ(PCDDs/PCDFs+Co-PC	'Bs)		0.029		0.040		0.039		
12Q(1 CDD)(1 CD1)(1 CO1)	20)	l	0.02)	1	0.010	l	0.037		
PCDDs/PCDFs O TEQ									
rCDDs/rCDFs 07 TEQ (検出下限未満の値は+1/2	2)		0.025		0.029		0.034		
,	<i>-</i>)								
(検出下限未満の値は0)			0.025		0.029		0.034		

表-35. ポリ臭素化ジフェニルエーテル測定結果(環境大気)

(単位:pg/m³)

	0.1	CO	G2
434 DDT(((0)	S1	S2	S3
4-MoBDE(#3)	<0.002	[0.005]	[0.007]
2,4-DiBDE(#7)	0.25	0.12	0.14
4,4-DiBDE(#15)	0.46	0.52	0.55
2,2',4-TriBDE(#17)	0.51	0.34	0.20
2,4,4'-TriBDE(#28)	0.63	0.76	0.56
2,2',4,4'-TeBDE(#47)	1.3	1.5	0.84
2,2',4,5'-TeBDE(#49)	1.1	0.95	0.24
2,3',4,4'-TeBDE(#66)	0.54	0.48	0.13
2,3',4',6-TeBDE(#71)	0.15	0.11	0.011
3,3',4,4'-TeBDE(#77)	0.045	0.044	0.011
2,2',3,4,4'-PeBDE(#85)	0.016	0.032	0.011
2,2',4,4',5-PeBDE(#99)	0.27	0.53	0.20
2,2',4,4',6-PeBDE(#100)	0.045	0.099	0.044
2,3',4,4',6-PeBDE(#119)	0.019	0.051	0.014
3,3',4,4',5-PeBDE(#126)	< 0.001	0.006	0.004
2,2',3,4,4',5'-HxBDE(#138)	0.030	0.055	0.014
2,2',4,4',5,5'-HxBDE(#153)	0.046	0.14	0.073
2,2',4,4',5,6'-HxBDE(#154)	0.044	0.21	0.046
2,3,3',4,4',5-HxBDE(#156)	0.007	0.026	0.009
2,2',3,4,4',5',6-HpBDE(#183)	0.13	0.31	0.24
2,2',3,4,4',6,6'-HpBDE(#184)	0.068	0.046	0.014
2,3,3',4,4',5',6-HpBDE(#191)	< 0.0007	0.076	0.019
2,2',3,3'4,4',5,6'-OcBDE(#196)	0.18	0.23	0.12
2,2',3,3'4,4',6,6'-OcBDE(#197)	0.11	0.22	0.12
2,2',3,4,4',5,5',6-OcBDE(#203)	0.14	0.20	0.10
2,3,3',4,4',5,5',6-OcBDE (#205)	0.014	0.014	0.0074
2,2',3,3'4,4'5,5',6-NoBDE(#206)	1.6	1.1	1.1
2,2',3,3'4,4'5,6,6'-NoBDE(#207)	1.0	0.81	0.79
DeBDE(#209)	8.1	7.7	9.5
Total MoBDEs	0.028	[0.005]	[0.007]
Total DiBDEs	1.5	1.4	1.5
Total TriBDEs	2.6	2.3	0.98
Total TeBDEs	4.5	4.1	1.4
Total PeBDEs	1.1	1.7	0.45
Total HxBDEs	0.26	1.3	0.30
Total HpBDEs	0.19	1.0	0.40
Total-OcBDEs	0.60	1.1	0.53
Total NoBDEs	3.5	2.6	2.6
DeBDE	8.1	7.7	9.5
Total PBDEs	22	23	18

実測濃度が検出下限以上定量下限未満の場合は括弧付きで、検出下限未満の場合"<検出下限)"と表示

4.2. 室内空気

室内空気試料の測定結果を表-36~表-39に示した。

表-36. 臭素化ダイオキシン類測定結果(室内空気)

(単位:pg/m³、TEQはpg-TEQ/m³)

		S	1	S	32	S	13
	TEF	実測濃度	TEQ	実測濃度	TEQ	実測濃度	TEQ
2,3,7,8-TeBDD	1	< 0.002	0.001	< 0.002	0.001	< 0.002	0.001
TeBDDs	-	0.42	-	0.041	-	0.61	-
1,2,3,7,8-PeBDD	1	< 0.003	0.0015	< 0.003	0.0015	< 0.003	0.0015
PeBDDs	-	< 0.003	-	[0.004]	-	< 0.003	-
1,2,3,4,7,8/1,2,3,6,7,8-HxBDD	0.1	< 0.004	0.0002	< 0.004	0.0002	< 0.004	0.0002
1,2,3,7,8,9-HxBDD	0.1	< 0.004	0.0002	< 0.003	0.00015	< 0.003	0.00015
HxBDDs	0.1	[0.01]	-	< 0.004	-	< 0.004	-
1,2,3,4,6,7,8-HpBDD	0.01	< 0.003	0.000015	[0.006]	0.00006	[0.007]	0.00007
HpBDDs	-	< 0.003	-	[0.006]	-	[0.007]	-
OBDD	0.00003	< 0.01	0.0000015	< 0.01	0.0000015	< 0.01	0.0000015
Total PBDDs	-	0.43	-	0.051	-	0.62	-
2,3,7,8-TeBDF	0.1	[0.003]	0.003	0.008	0.008	< 0.002	0.001
TeBDFs		0.20	-	1.0	-	0.17	-
1,2,3,7,8-PeBDF	0.03	< 0.002	0.00003	0.007	0.00021	< 0.002	0.00003
2,3,4,7,8-PeBDF	0.3	< 0.003	0.00045	[0.006]	0.0018	< 0.003	0.00045
PeBDFs		0.20	-	1.3	-	0.21	-
1,2,3,4,7,8-HxBDF	0.1	[0.009]	0.0009	0.040	0.004	0.011	0.0011
HxBDFs		0.21	-	0.83	-	0.20	-
1,2,3,4,6,7,8-HpBDF	0.01	0.032	0.00032	0.074	0.00074	0.031	0.00031
HpBDFs		0.032	-	0.074	-	0.031	-
OBDF	0.0003	0.12	0.000036	0.13	0.000039	[0.05]	0.000015
Total PBDFs	-	0.76		3.3		0.66	
Total(PBDDs+PBDFs)	-	1.2		3.4		1.3	
TEQ		_		_		_	
(検出下限未満の値は+1/2)			0.0077		0.018		0.0058
(検出下限未満の値は0)			0.0043		0.015		0.0015

実測膿度が検出下限以上定量下限未満の場合は括弧付きで、検出下限未満の場合"<(検出下限)"と表示

表-37. モノ臭素化ポリ塩素化ダイオキシン類測定結果(室内空気)

(単位:pg/m³)

	S1	S2	S3
2-MoB-3,7,8-TrCDD	< 0.0008	< 0.0008	< 0.0008
1-MoB-2,3,7,8-TeCDD	< 0.002	< 0.002	< 0.002
2-MoB-3,6,7,8,9-PeCDD	< 0.002	< 0.002	< 0.002
1-MoB-2,3,6,7,8,9-HxCDD	< 0.003	< 0.003	[0.003]
1-MoB-2,3,4,6,7,8,9-HpCDD	< 0.003	< 0.003	[0.007]
3-MoB-6,7,8-TrCDF	< 0.001	[0.001]	< 0.001
1-MoB-2,3,7,8-TeCDF	< 0.002	< 0.001	< 0.001

実測濃度が検出下限以上定量下限未満の場合は括弧付きで、検出下限未満の場合"ዺ検出下限"と表示

表-38. ポリ塩素化ダイオキシン類測定結果(室内空気)

(単位:pg/m³、TEQはpg-TEQ/m³)

		S1 S		S2 S3			
	TEF	実測濃度	TEQ	実測濃度	TEQ	実測濃度	TEQ
1,3,6,8-TeCDD	-	0.081	ILQ	0.12	TLQ	0.088	ILQ
1,3,7,9-TeCDD	_	0.034	-	0.12	-	0.039	-
2,3,7,8-TeCDD	1	< 0.0007	0.00035	[0.0007]	0.0007	[0.0008]	0.0008
TeCDDs		0.14	0.00033	0.22	0.0007	0.16	0.0008
1,2,3,7,8-PeCDD	1	[0.001]	0.001	[0.001]	0.001	[0.002]	0.002
PeCDDs	_	0.051	0.001	0.07	0.001	0.078	0.002
1,2,3,4,7,8-HxCDD	0.1	[0.002]	0.0002	[0.002]	0.0002	[0.003]	0.0003
1,2,3,6,7,8-HxCDD	0.1	0.002]	0.0002	0.0023	0.0002	0.003	0.0003
1,2,3,7,8,9-HxCDD	0.1	[0.0039	0.00039	[0.0047	0.00047	[0.004]	0.0004
HxCDDs	0.1	0.072	0.0003	0.072	0.0003	0.10	0.0004
	0.01	0.072	0.00039	0.072	0.0004	0.10	0.00064
1,2,3,4,6,7,8-HpCDD	0.01	0.039	0.00039	0.04	0.0004		0.00064
HpCDDs	- 0.0002		0.0000267		0.00002	0.13	0.000045
OCDD	0.0003	0.089	0.0000267	0.1	0.00003	0.15	0.000045
Total PCDDs	-	0.43	-	0.54	=	0.62	-
1,2,7,8-TeCDF	-	0.03	-	0.052	-	0.022	-
2,3,7,8-TeCDF	0.1	0.0091	0.00091	0.015	0.0015	0.01	0.001
TeCDFs	- 0.00	0.43	-	0.84	- 0.00020.4	0.48	-
1,2,3,7,8-PeCDF	0.03	0.0059	0.000177	0.0098	0.000294	0.0083	0.000249
2,3,4,7,8-PeCDF	0.3	0.0082	0.00246	0.011	0.0033	0.011	0.0033
PeCDFs	-	0.15		0.28		0.23	
1,2,3,4,7,8-HxCDF	0.1	0.010	0.001	0.013	0.0013	0.017	0.0017
1,2,3,6,7,8-HxCDF	0.1	0.010	0.001	0.012	0.0012	0.018	0.0018
1,2,3,7,8,9-HxCDF	0.1	[0.002]	0.0002	< 0.002	0.0001	[0.003]	0.0003
2,3,4,6,7,8-HxCDF	0.1	0.016	0.0016	0.015	0.0015	0.024	0.0024
HxCDFs	-	0.12	-	0.15	-	0.18	-
1,2,3,4,6,7,8-HpCDF	0.01	0.058	0.00058	0.053	0.00053	0.11	0.0011
1,2,3,4,7,8,9-HpCDF	0.01	0.014	0.00014	0.0086	0.000086	0.021	0.00021
HpCDFs	-	0.11	-	0.091	-	0.19	_
OCDF	0.0003	0.057	0.0000171	0.058	0.0000174	0.11	0.000033
Total PCDFs	-	0.87	-	1.4	=	1.2	-
Total (PCDDs+PCDFs)	-	1.3	=	2.0	-	1.8	=
3,3',4,4'-TeCB(#77)	0.0001	0.43	0.000043	1.1	0.00011	0.36	0.000036
3,4,4',5-TeCB(#81)	0.0003	0.038	0.0000114	0.082	0.0000246	0.034	0.0000102
3,3',4,4',5-PeCB(#126)	0.1	0.015	0.0015	0.021	0.0021	0.022	0.0022
3,3',4,4',5,5'-HxCB(#169)	0.03	0.0021	0.000063	0.0034	0.000102	0.0028	0.000084
Total non-ortho PCBs	-	0.49	-	1.2	-	0.42	-
2,3,3',4,4'-PeCB(#105)	0.00003	0.49	0.0000147	1.1	0.000033	0.76	0.0000228
2,3,4,4',5-PeCB(#114)	0.00003	0.085	0.00000255	0.18	0.0000054	0.095	0.00000285
2,3',4,4',5-PeCB(#118)	0.00003	1.7	0.000051	3.4	0.000102	2.4	0.000072
2',3,4,4',5-PeCB(#123)	0.00003	0.045	0.00000135	0.08	0.0000024	0.056	0.00000168
2,3,3',4,4',5-HxCB(#156)	0.00003	0.058	0.00000174	0.099	0.00000297	0.13	0.0000039
2,3,3',4,4',5'-HxCB(#157)	0.00003	0.014	0.00000042	0.024	0.00000072	0.03	0.0000009
2,3',4,4',5,5'-HxCB(#167)	0.00003	0.031	0.00000093	0.049	0.00000147	0.06	0.0000018
2,3,3',4,4',5,5'-HpCB(#189)	0.00003	0.004	0.00000012	0.007	0.00000021	0.007	0.00000021
Total mono-ortho PCBs	-	2.4	-	4.9	=	3.5	-
Total DL-PCBs	-	2.9	-	6.1	=	4.0	=
TEQ(PCDDs/PCDFs+Co-PC	(Bs)		0.012		0.015		0.019
PCDDs/PCDFs O TEQ							_
(検出下限未満の値は+1/2)			0.011		0.013		0.017
(検出下限未満の値は0)			0.011		0.013		0.017
(1男口丁四人人(回)/1011年14月11日14月11日14日11月11日14日11日11日1日1日1日1日1日			0.010		0.015		0.01/

実測濃度が検出下限以上定量下限未満の場合は括弧付きで、検出下限未満の場合"<(検出下限)"と表示

表-39. ポリ臭素化ジフェニルエーテル測定結果(室内空気)

(単位:pg/m³)

			(+14.)
	S1	S2	S 3
4-MoBDE(#3)	2.3	4.5	2.3
2,4-DiBDE(#7)	1.0	0.86	0.54
4,4-DiBDE(#15)	26	11	3.1
2,2',4-TriBDE(#17)	2.2	4.2	0.78
2,4,4'-TriBDE(#28)	8.8	18	2.7
2,2',4,4'-TeBDE(#47)	4.5	5.5	2.3
2,2',4,5'-TeBDE(#49)	1.6	3.1	0.75
2,3',4,4'-TeBDE(#66)	0.70	1.3	0.33
2,3',4',6-TeBDE(#71)	0.081	0.13	0.040
3,3',4,4'-TeBDE(#77)	0.036	0.066	0.020
2,2',3,4,4'-PeBDE(#85)	0.051	0.057	[0.007]
2,2',4,4',5-PeBDE(#99)	0.78	0.78	0.21
2,2',4,4',6-PeBDE(#100)	0.14	0.14	0.060
2,3',4,4',6-PeBDE(#119)	0.038	0.075	[0.014]
3,3',4,4',5-PeBDE(#126)	< 0.01	< 0.01	< 0.01
2,2',3,4,4',5'-HxBDE(#138)	0.095	0.12	[0.016]
2,2',4,4',5,5'-HxBDE(#153)	0.34	0.37	0.079
2,2',4,4',5,6'-HxBDE(#154)	0.091	0.42	0.047
2,3,3',4,4',5-HxBDE(#156)	< 0.01	0.050	< 0.01
2,2',3,4,4',5',6-HpBDE(#183)	0.38	0.73	0.21
2,2',3,4,4',6,6'-HpBDE(#184)	[0.02]	0.11	< 0.01
2,3,3',4,4',5',6-HpBDE(#191)	0.027	0.14	< 0.007
2,2',3,3'4,4',5,6'-OcBDE(#196)	0.14	0.32	0.091
2,2',3,3'4,4',6,6'-OcBDE(#197)	0.13	0.33	0.097
2,2',3,4,4',5,5',6-OcBDE(#203)	0.11	0.31	0.083
2,3,3',4,4',5,5',6-OcBDE (#205)	< 0.005	[0.013]	< 0.005
2,2',3,3'4,4'5,5',6-NoBDE(#206)	1.0	0.84	0.47
2,2',3,3'4,4'5,6,6'-NoBDE(#207)	0.88	0.85	0.50
DeBDE(#209)	7.8	6.6	4.3
Total MoBDEs	2.3	4.5	3.5
Total DiBDEs	50	20	8.7
Total TriBDEs	20	38	6.1
Total TeBDEs	7.8	12	3.9
Total PeBDEs	1.7	2.2	0.57
Total HxBDEs	0.72	2.4	0.26
Total HpBDEs	0.52	2.0	0.21
Total-OcBDEs	0.56	1.7	0.41
Total NoBDEs	2.6	2.4	1.4
DeBDE	7.8	6.6	4.3
Total PBDEs	94	92	29

実測膿度が検出下限以上定量下限未満の場合は括弧付きで、検出下限未満の場合"<√検出下限)"と表示

4.3. 降下ばいじん

降下ばいじん試料の測定結果を表-40~表-43に示した。

表-40. ポリ臭素化ダイオキシン類測定結果(降下ばいじん)

(単位:pg/m²/day、TEQ はpg-TEQ/m²/day)

		S	ĺ	S	2	S3	3
	TEF	実測濃度	TEQ	実測濃度	TEQ	実測濃度	TEQ
2,3,7,8-TeBDD	1	<0.3	0.15	< 0.2	0.1	<0.3	0.15
TeBDDs	-	35	-	12	-	18	-
1,2,3,7,8-PeBDD	1	< 0.4	0.2	< 0.4	0.2	<0.4	0.2
PeBDDs	-	< 0.4	-	[0.4]	-	<0.4	-
1,2,3,4,7,8/1,2,3,6,7,8-HxBDD	0.1	< 0.6	0.03	< 0.5	0.025	<0.6	0.03
1,2,3,7,8,9-HxBDD	0.1	< 0.5	0.025	< 0.5	0.025	< 0.5	0.025
HxBDDs	0.1	8.9	-	2.3	-	2.4	-
1,2,3,4,6,7,8-HpBDD	0.01	[0.8]	0.008	[0.5]	0.005	[0.5]	0.005
HpBDDs	-	[0.8]	-	[0.5]	=	[0.5]	-
OBDD	0.00003	[1]	0.0003	[2]	0.0006	[1]	0.0003
Total PBDDs	-	46	-	17	-	22	-
2,3,7,8-TeBDF	0.1	1.1	1.1	2.1	2.1	0.8	0.8
TeBDFs	-	100	-	210	-	70	-
1,2,3,7,8-PeBDF	0.03	[0.5]	0.015	1.1	0.033	[0.4]	0.012
2,3,4,7,8-PeBDF	0.3	[0.8]	0.24	1.6	0.48	[0.8]	0.24
PeBDFs	-	82	-	180	-	65	-
1,2,3,4,7,8-HxBDF	0.1	3.3	0.33	5.4	0.54	3.0	0.3
HxBDFs		96	-	130	-	80	-
1,2,3,4,6,7,8-HpBDF	0.01	20	0.2	24	0.24	24	0.24
HpBDFs		20	-	24	=	24	-
OBDF	0.0003	73	0.0219	60	0.018	63	0.0189
Total PBDFs	-	370		600		300	
Total(PBDDs+PBDFs)	-	420		620		320	
TEQ		_					
(検出下限未満の値は1/2)			2.3		3.8		2.0
(検出下限未満の値は0)			1.9		3.4		1.6

実測濃度が検出下限以上定量下限未満の場合は括弧付きで、検出下限未満の場合"<(検出下限)"と表示

表-41. モノ臭素化ポリ塩素化ダイオキシン類測定結果(降下ばいじん)

(単位:pg/m²/day)

	S1	S2	S3
2-MoB-3,7,8-TrCDD	< 0.1	< 0.1	< 0.1
1-MoB-2,3,7,8-TeCDD	< 0.3	< 0.3	< 0.3
2-MoB-3,6,7,8,9-PeCDD	< 0.2	0.7	< 0.2
1-MoB-2,3,6,7,8,9-HxCDD	[0.9]	5.0	[0.8]
1-MoB-2,3,4,6,7,8,9-HpCDD	1.6	7.9	1.8
3-MoB-6,7,8-TrCDF	< 0.1	< 0.1	< 0.1
1-MoB-2,3,7,8-TeCDF	< 0.2	< 0.2	< 0.2

実測濃度が検出下限以上定量下限未満の場合は括弧付きで、検出下限未満の場合"ዺ検出下限"と表示

表-42. ポリ塩素化ダイオキシン類測定結果(降下ばいじん)

(単位:pg/m²/day、TEQ はpg-TEQ/m²/day)

			11		ne · pgm/day\		
			51		S2		3
	TEF	実測濃度	TEQ	実測濃度	TEQ	実測濃度	TEQ
1,3,6,8-TeCDD	-	37	-	61	-	28	-
1,3,7,9-TeCDD	-	15	-	27	-	11	-
2,3,7,8-TeCDD	1	0.36	0.36	0.34	0.34	[0.22]	0.22
TeCDDs	-	70	-	110	-	54	-
1,2,3,7,8-PeCDD	1	1.2	1.2	2.0	2.0	1.0	1.0
PeCDDs	-	37	-	83	-	32	_
1,2,3,4,7,8-HxCDD	0.1	1.7	0.17	2.9	0.29	1.3	0.13
1,2,3,6,7,8-HxCDD	0.1	3.1	0.31	6.9	0.69	2.5	0.25
1,2,3,7,8,9-HxCDD	0.1	2.2	0.22	4.6	0.46	2.0	0.20
HxCDDs	-	47	-	110	-	37	-
1,2,3,4,6,7,8-HpCDD	0.01	22	0.22	56	0.56	26	0.26
HpCDDs	0.01	43	-	100	0.50	53	0.20
OCDD	0.0003	81	0.0243	110	0.033	110	0.033
Total PCDDs	0.0003	280		510	0.033	290	
	-		-		-		-
1,2,7,8-TeCDF	0.1	6.7	- 0.42	5.8	- 0.27	4.9	- 0.20
2,3,7,8-TeCDF	0.1	4.2	0.42	3.7	0.37	3.0	0.30
TeCDFs	-	130	- 0.111	140	-	100	-
1,2,3,7,8-PeCDF	0.03	3.7	0.111	3.8	0.114	2.9	0.087
2,3,4,7,8-PeCDF	0.3	5.4	1.62	7.1	2.13	4.4	1.32
PeCDFs	-	87		110	-	72	
1,2,3,4,7,8-HxCDF	0.1	5.5	0.55	7.4	0.74	4.7	0.47
1,2,3,6,7,8-HxCDF	0.1	5.4	0.54	8.2	0.82	4.6	0.46
1,2,3,7,8,9-HxCDF	0.1	[0.4]	0.04	[1.1]	0.11	<1	0.05
2,3,4,6,7,8-HxCDF	0.1	6	0.6	11	1.1	5.2	0.52
HxCDFs	-	58	=	84	-	51	=
1,2,3,4,6,7,8-HpCDF	0.01	21	0.21	34	0.34	20	0.20
1,2,3,4,7,8,9-HpCDF	0.01	3.0	0.030	5.5	0.055	2.6	0.026
HpCDFs	-	34	-	57	-	32	-
OCDF	0.0003	18	0.0054	22	0.0066	14	0.0042
Total PCDFs	-	330	-	410	_	270	_
Total (PCDDs+PCDFs)	_	610	_	930	_	560	
3,3',4,4'-TeCB(#77)	0.0001	77	0.0077	230	0.023	66	0.0066
3,4,4',5-TeCB(#81)	0.0003	6.0	0.0018	9.4	0.00282	5.2	0.00156
3,3',4,4',5-PeCB(#126)	0.0003	7.8	0.78	17	1.7	6.4	0.64
3,3',4,4',5,5'-HxCB(#169)	0.03	1.9	0.057	2.3	0.069	1.9	0.057
Total non-ortho PCBs	0.03	93	0.037	260	0.007	80	0.037
	0.00003	130	0.0039	510	0.0153		0.0033
2,3,3',4,4'-PeCB(#105)						110	0.0033
2,3,4,4',5-PeCB(#114)	0.00003	11	0.00033	32	0.00096 0.042	8.0	0.00024
2,3',4,4',5-PeCB(#118)	0.00003	320	0.0096	1400		250	
2',3,4,4',5-PeCB(#123)	0.00003	6.2	0.000186	21	0.00063	5.3	0.000159
2,3,3',4,4',5-HxCB(#156)	0.00003	34	0.00102	92	0.00276	24	0.00072
2,3,3',4,4',5'-HxCB(#157)	0.00003	8.0	0.00024	23	0.00069	6.3	0.000189
2,3',4,4',5,5'-HxCB(#167)	0.00003	13	0.00039	36	0.00108	9.3	0.000279
2,3,3',4,4',5,5'-HpCB(#189)	0.00003	3.8	0.000114	4.4	0.000132	3.0	0.000090
Total mono-ortho PCBs	-	530	_	2100		420	_
Total DL-PCBs	-	620	-	2400	-	500	-
TEQ(PCDDs/PCDFs+Co-PCBs)		7.5		12		6.2
PCDDs/PCDFs O TEQ							
_					10		
(検出下限未満の値は1/2)			6.6		10		5.5
(検出下限未満の値は0)			6.6		10		5.5

実測濃度が検出下限以上定量下限未満の場合は括弧付きで、検出下限未満の場合"<検出下限)"と表示

表-43. ポリ臭素化ジフェニルエーテル測定結果(降下ばいじん)

(単位:pg/m²/day)

			(+111.
	S1	S2	S3
4-MoBDE(#3)	<3	<3	<3
2,4-DiBDE(#7)	18	27	26
4,4-DiBDE(#15)	73	62	67
2,2',4-TriBDE(#17)	67	73	80
2,4,4'-TriBDE(#28)	100	100	130
2,2',4,4'-TeBDE(#47)	460	570	430
2,2',4,5'-TeBDE(#49)	99	120	88
2,3',4,4'-TeBDE(#66)	47	64	45
2,3',4',6-TeBDE(#71)	7.3	8.8	6.1
3,3',4,4'-TeBDE(#77)	4.4	5.7	4.9
2,2',3,4,4'-PeBDE(#85)	6.3	9.3	6.8
2,2',4,4',5-PeBDE(#99)	130	170	130
2,2',4,4',6-PeBDE(#100)	31	39	35
2,3',4,4',6-PeBDE(#119)	7.0	9.8	4.8
3,3',4,4',5-PeBDE(#126)	<2	<1	<2
2,2',3,4,4',5'-HxBDE(#138)	11	19	8
2,2',4,4',5,5'-HxBDE(#153)	59	57	35
2,2',4,4',5,6'-HxBDE(#154)	32	67	25
2,3,3',4,4',5-HxBDE(#156)	9	18	8
2,2',3,4,4',5',6-HpBDE(#183)	180	260	83
2,2',3,4,4',6,6'-HpBDE(#184)	11	21	8
2,3,3',4,4',5',6-HpBDE(#191)	24	41	<1
2,2',3,3'4,4',5,6'-OcBDE(#196)	150	150	96
2,2',3,3'4,4',6,6'-OcBDE(#197)	120	120	81
2,2',3,4,4',5,5',6-OcBDE(#203)	150	150	94
2,3,3',4,4',5,5',6-OcBDE (#205)	14	13	6.4
2,2',3,3'4,4'5,5',6-NoBDE(#206)	2200	1800	1100
2,2',3,3'4,4'5,6,6'-NoBDE(#207)	1500	1200	990
DeBDE(#209)	33000	17000	12000
Total MoBDEs	<3	<3	<3
Total DiBDEs	200	240	250
Total TriBDEs	350	350	340
Total TeBDEs	690	860	640
Total PeBDEs	290	400	260
Total HxBDEs	200	380	130
Total HpBDEs	360	650	200
Total-OcBDEs	650	650	470
Total NoBDEs	5000	4000	2900
DeBDE	33000	17000	12000
Total PBDEs	41000	25000	17000

実測膿度が検出下限以上定量下限未満の場合は括弧付きで、検出下限未満の場合"<√検出下限)"と表示

4.4. ハウスダスト

ハウスダスト試料の測定結果を表-44~表-47に示した。

表-44. ポリ臭素化ダイオキシン類測定結果(ハウスダスト)

(単位:pg/g、TEQはpg-TEQ/g)

		S1		S2	2	S3	3
	TEF	実測濃度	TEQ	実測濃度	TEQ	実測濃度	TEQ
2,3,7,8-TeBDD	1	<0.7	0.35	<2	1	<5	2.5
TeBDDs	-	1000	-	250	-	110	-
1,2,3,7,8-PeBDD	1	<0.7	0.35	<2	1	<5	2.5
PeBDDs	-	9.1	-	[4]	-	<5	-
1,2,3,4,7,8/1,2,3,6,7,8-HxBDD	0.1	<3	0.15	<10	0.5	<20	1
1,2,3,7,8,9-HxBDD	0.1	<4	0.2	<10	0.5	<30	1.5
HxBDDs	0.1	48	-	<10	-	<20	-
1,2,3,4,6,7,8-HpBDD	0.01	25	0.25	[14]	0.14	<10	0.05
HpBDDs	-	25	-	[14]	-	<10	-
OBDD	0.00003	160	0.048	200	0.06	<40	0.006
Total PBDDs	-	1200	-	470	-	110	-
2,3,7,8-TeBDF	0.1	22	22	14	14	[7]	7
TeBDFs	-	2000	-	1700	-	410	-
1,2,3,7,8-PeBDF	0.03	28	0.84	19	0.57	[10]	0.3
2,3,4,7,8-PeBDF	0.3	41	12.3	32	9.6	<7	1.05
PeBDFs	-	5100	-	3500	-	960	-
1,2,3,4,7,8-HxBDF	0.1	280	28	230	23	270	27
HxBDFs		9000	-	6400	-	4500	-
1,2,3,4,6,7,8-HpBDF	0.01	1800	18	1800	18	2200	22
HpBDFs		1800	-	1800	-	2200	-
OBDF	0.0003	15000	4.5	3500	1.05	13000	3.9
Total PBDFs	-	33000		17000		21000	
Total(PBDDs+PBDFs)	-	34000		17000		21000	
TEQ							
(検出下限未満の値は1/2)			87		69		69
(検出下限未満の値は0)			86		66		60

実測濃度が検出下限以上定量下限未満の場合は括弧付きで、検出下限未満の場合"<(検出下限)"と表示

表-45. モノ臭素化ポリ塩素化ダイオキシン類測定結果(ハウスダスト)

(単位:pg/g)

	S1	S2	S3
2-MoB-3,7,8-TrCDD	< 0.8	<2	<5
1-MoB-2,3,7,8-TeCDD	< 0.7	<2	<5
2-MoB-3,6,7,8,9-PeCDD	<1	<4	<8
1-MoB-2,3,6,7,8,9-HxCDD	8	[5]	<10
1-MoB-2,3,4,6,7,8,9-HpCDD	25	[14]	[10]
3-MoB-6,7,8-TrCDF	[0.9]	<2	<4
1-MoB-2,3,7,8-TeCDF	<1	<5	<10

実測濃度が検出下限以上定量下限未満の場合は括弧付きで、検出下限未満の場合"<検出下限)"と表示

表-46. ポリ塩素化ダイオキシン類測定結果(ハウスダスト)

(単位:pg/g、TEQはpg-TEQ/g)

		S	1	S		S	
	TEF		TEQ	実測濃度	TEQ	実測濃度	TEQ
1,3,6,8-TeCDD	1121		IEQ		IEQ		IEQ
	-	62 33	-	50 28	-	29 18	-
1,3,7,9-TeCDD	- 1		- 1		- 1	<2	- 1
2,3,7,8-TeCDD TeCDDs		[1] 130	1	[1] 97	1	64	1
	- 1	5.5	5.5	4	4		2.1
1,2,3,7,8-PeCDD	1	5.5 150	5.5	100	4	2.1 79	2.1
PeCDDs	- 0.1		-		-		- 0.4
1,2,3,4,7,8-HxCDD	0.1	9.9	0.99	6.6	0.66	[4]	0.4
1,2,3,6,7,8-HxCDD	0.1	19	1.9	16	1.6	[7]	0.7
1,2,3,7,8,9-HxCDD	0.1	17	1.7	13	1.3	6	0.6
HxCDDs	- 0.01	330	- 2.5	240	- 2.5	120	-
1,2,3,4,6,7,8-HpCDD	0.01	250	2.5	250	2.5	69	0.69
HpCDDs	- 0.0002	550	- 0.45	530	- 0.42	140	-
OCDD	0.0003	1500	0.45	1400	0.42	310	0.093
Total PCDDs	-	2700	-	2400	-	710	-
1,2,7,8-TeCDF	-	18	-	15	-	10	-
2,3,7,8-TeCDF	0.1	12	1.2	10	1.0	7	0.7
TeCDFs	-	230		170	-	160	
1,2,3,7,8-PeCDF	0.03	14	0.42	11	0.33	9.2	0.276
2,3,4,7,8-PeCDF	0.3	25	7.5	18	5.4	12	3.6
PeCDFs	-	290	-	240	-	190	-
1,2,3,4,7,8-HxCDF	0.1	38	3.8	28	2.8	15	1.5
1,2,3,6,7,8-HxCDF	0.1	42	4.2	38	3.8	16	1.6
1,2,3,7,8,9-HxCDF	0.1	2.7	0.27	[3]	0.3	<3	0.15
2,3,4,6,7,8-HxCDF	0.1	63	6.3	63	6.3	19	1.9
HxCDFs	-	410	-	370	=	150	-
1,2,3,4,6,7,8-HpCDF	0.01	340	3.4	290	2.9	71	0.71
1,2,3,4,7,8,9-HpCDF	0.01	25	0.25	33	0.33	10	0.1
HpCDFs	-	480	-	450	-	110	-
OCDF	0.0003	290	0.087	230	0.069	58	0.0174
Total PCDFs	-	1700	-	1500	-	670	-
Total (PCDDs+PCDFs)	-	4400	-	3800	-	1400	-
3,3',4,4'-TeCB(#77)	0.0001	150	0.015	240	0.024	120	0.012
3,4,4',5-TeCB(#81)	0.0003	7.7	0.00231	14	0.0042	8	0.0024
3,3',4,4',5-PeCB(#126)	0.1	22	2.2	23	2.3	16	1.6
3,3',4,4',5,5'-HxCB(#169)	0.03	6.9	0.207	[7]	0.21	[5]	0.15
Total non-ortho PCBs	-	190	-	280	-	150	-
2,3,3',4,4'-PeCB(#105)	0.00003	210	0.0063	380	0.0114	470	0.0141
2,3,4,4',5-PeCB(#114)	0.00003	18	0.00054	41	0.00123	34	0.00102
2,3',4,4',5-PeCB(#118)	0.00003	450	0.0135	820	0.0246	1000	0.03
2',3,4,4',5-PeCB(#123)	0.00003	12	0.00036	18	0.00054	21	0.00063
2,3,3',4,4',5-HxCB(#156)	0.00003	92	0.00276	120	0.0036	240	0.0072
2,3,3',4,4',5'-HxCB(#157)	0.00003	25	0.00075	31	0.00093	56	0.00168
2,3',4,4',5,5'-HxCB(#167)	0.00003	35	0.00105	47	0.00141	75	0.00225
2,3,3',4,4',5,5'-HpCB(#189)	0.00003	18	0.00054	18	0.00054	19	0.00057
Total mono-ortho PCBs	-	860	-	1500	-	1900	-
Total DL-PCBs	-	1000	-	1800	-	2100	-
				1			
TEQ(PCDDs/PCDFs+Co-PCE	Bs)		44		37		18
PCDDs/PCDFs (7) TEQ							
(検出下限未満の値は+1/2)			41		35		16
· ·							
(検出下限未満の値は0)			41		35		15

実測濃度が検出下限以上定量下限未満の場合は括弧付きで、検出下限未満の場合"<検出下限)"と表示

表-47. ポリ臭素化ジフェニルエーテル測定結果(ハウスダスト)

(単位:pg/g)

	S1	S2	S3
4-MoBDE(#3)	[20]	< 50	<100
2,4-DiBDE(#7)	37	16	[18]
4,4-DiBDE(#15)	890	360	140
2,2',4-TriBDE(#17)	420	560	170
2,4,4'-TriBDE(#28)	1900	3100	620
2,2',4,4'-TeBDE(#47)	7600	13000	2200
2,2',4,5'-TeBDE(#49)	2100	3600	520
2,3',4,4'-TeBDE(#66)	1600	3100	390
2,3',4',6-TeBDE(#71)	95	120	27
3,3',4,4'-TeBDE(#77)	120	240	30
2,2',3,4,4'-PeBDE(#85)	480	420	40
2,2',4,4',5-PeBDE(#99)	7100	8500	640
2,2',4,4',6-PeBDE(#100)	970	1100	110
2,3',4,4',6-PeBDE(#119)	170	210	[20]
3,3',4,4',5-PeBDE(#126)	<2	<6	<10
2,2',3,4,4',5'-HxBDE(#138)	1200	810	130
2,2',4,4',5,5'-HxBDE(#153)	6400	6700	620
2,2',4,4',5,6'-HxBDE(#154)	2400	1500	230
2,3,3',4,4',5-HxBDE(#156)	410	<10	150
2,2',3,4,4',5',6-HpBDE(#183)	24000	58000	5000
2,2',3,4,4',6,6'-HpBDE(#184)	580	490	200
2,3,3',4,4',5',6-HpBDE(#191)	310	310	1200
2,2',3,3'4,4',5,6'-OcBDE(#196)	22000	15000	25000
2,2',3,3'4,4',6,6'-OcBDE(#197)	11000	22000	8200
2,2',3,4,4',5,5',6-OcBDE(#203)	18000	11000	21000
2,3,3',4,4',5,5',6-OcBDE (#205)	690	670	1200
2,2',3,3'4,4'5,5',6-NoBDE(#206)	81000	50000	70000
2,2',3,3'4,4'5,6,6'-NoBDE(#207)	220000	90000	130000
DeBDE(#209)	1400000	690000	1200000
Total MoBDEs	[20]	< 50	<100
Total DiBDEs	1600	620	300
Total TriBDEs	4300	6400	1400
Total TeBDEs	13000	22000	3500
Total PeBDEs	13000	14000	1500
Total HxBDEs	14000	11000	1700
Total HpBDEs	31000	63000	12000
Total-OcBDEs	68000	58000	70000
Total NoBDEs	430000	210000	300000
DeBDE	1400000	690000	1200000
Total PBDEs	2000000	1100000	1600000

実測濃度が検出下限以上定量下限未満の場合は括弧付きで、検出下限未満の場合"<(検出下限)"と表示