[7] セリウム及びその化合物

1. 物質に関する基本的事項

(1) 分子式・分子量・構造式

物質名:セリウム CAS 番号:7440-45-1 化管法政令番号: 元素記号:Ce

原子量:140.116

換算係数: 1 ppm = 5.83 mg/m^3 (気体、 25° C)

主なセリウム化合物は以下の通りである。

No	物質名	CAS No.	化審法官報 公示整理番号	RTECS 番号	分子量	化学式
1)	酸化セリウム (IV)	1306-38-3	1-627	FK6310000	172.11	CeO ₂
2)	炭酸セリウム	537-01-9	1-602		460.26	$Ce_2(CO_3)_3$
3)	硝酸セリウム	10108-73-3	1-626	FK6280000	329.15	Ce (NO ₃) ₃
4)	水酸化セリウム (Ⅲ)	15785-09-8	1-625		191.14	Ce(OH) ₃
5)	水酸化セリウム (IV)	12014-56-1	1-625		208.15	Ce(OH) ₄
6)	塩化セリウム	7790-86-5	1-622	FK5075000	246.48	CeCl ₃

(2) 物理化学的性状

主なセリウム化合物の性状は以下の通りである。

No	化学式	性 状
1)	CeO ₂	高純度酸化セリウムは淡黄白色粉末、工業品は灰黄色である ¹⁾ 。桃色、赤褐色のものもある ¹⁾ 。
2)	$Ce_2(CO_3)_3$	銀光沢のある結晶である ²⁾ 。粉末にすると黄灰色となる ²⁾ 。
3)	Ce (NO ₃) ₃	無色板状で潮解性の結晶である ²⁾ 。水、エタノールに溶けやすい。酸に可溶。 硫酸上で結晶水を失う。100℃で水 3 分子失う。 ²⁾
4)	Ce(OH) ₃	白色のゲル状の沈殿であり、空気中で酸化されて灰、黄などの色を呈する ²⁾ 。
5)	Ce(OH) ₄	1.5 水和物は黄色ゲル状沈殿、2 水和物は明黄色である ²⁾ 。
6)	CeCl ₃	白色の潮解性結晶である ³⁾ 。

No	化学式	融点	沸点	密 度
1)	CeO ₂	$2400^{\circ}\text{C}^{4)}$, $2600^{\circ}\text{C}^{3)}$		7.65 g/cm^{3}
2)	$Ce_2(CO_3)_3$			
3)	Ce (NO ₃) ₃		200℃(分解) ²⁾	
4)	Ce(OH) ₃			
5)	Ce(OH) ₄			
6)	CeCl ₃	807°C ⁴⁾	1725°C⁴)	3.97 g/cm ^{3 4)}

No	化学式	蒸気圧	log Kow	解離定数
1)	CeO ₂			
2)	$Ce_2(CO_3)_3$			
3)	Ce (NO ₃) ₃			
4)	Ce(OH) ₃			
5)	Ce(OH) ₄			
6)	CeCl ₃			

No	化学式	水溶性(水溶解度)
1)	CeO ₂	水に不溶 ²⁾
2)	2(3/3	水に不溶 ²⁾
3)	Ce (NO ₃) ₃	水に溶けやすい ²⁾
4)	Ce(OH) ₃	
5)	Ce(OH) ₄	
6)	CeCl ₃	水に可溶 ³⁾

(3) 環境運命に関する基礎的事項

希土類元素は主に 3 価の酸化物あるいはイオンとして存在するが、セリウムは通常 4 価が安定である。

①大 気

大気中の希土類元素の主な供給源は地殻であるが、微粒子中の希土類元素は産業活動により排出されたものと考えられている⁵⁾。

②水 域

希土類元素の水圏への主な供給源は地殻で、雨水、河川水、地下水の土壌や岩石との接触により供給される⁵⁾。河川水中の希土類は、大部分が懸濁粒子に存在するが、河川水に有機物を多量に含む場合には有機物と安定な錯体を形成して溶解する場合があり、溶存態が占める割合は原子番号の増加に伴い増加する⁵⁾。

深層水では、3 価のセリウムが酸化されて4 価($(Ce(OH)_4)$ の粒子態となり、海水から除去されるとの報告がある 6 。

(4) 製造輸入量及び用途

① 生産量等

セリウムは、希土類(レアアース)の一つで軽希土に分類されている。我が国ではレアアース鉱石・原料は生産されず、すべて輸入されている⁷⁾。

セリウム及びその化合物の「化学物質の製造・輸入量に関する実態調査」における製造(出荷)及び輸入量を表 1.1~表 1.3 に示す 8,9,10 。

表 1.1 平成 13 年度における製造(出荷)及び輸入量

物質名称	製造(出荷)及び輸入量
酸化セリウム	1,000~10,000t/年未満
炭酸セリウム	1,000~10,000t/年未満
硝酸セリウム	100~1,000t/年未満

表 1.2 平成 16 年度における製造(出荷)及び輸入量

物質名称	製造(出荷)及び輸入量
酸化セリウム	1,000~10,000t/年未満
炭酸セリウム	1,000~10,000t/年未満
硝酸セリウム	100~1,000t/年未満
水酸化セリウム	100~1,000t/年未満

表 1.3 平成 19 年度における製造(出荷)及び輸入量

物質名称	製造(出荷)及び輸入量
酸化セリウム	1,000~10,000t/年未満
炭酸セリウム	1,000~10,000t/年未満

注:値は官報公示整理番号ごとに集計されたものを示す

用途別の消費量を表 1.4 に示す。化学反応触媒およびブラウン管以外の用途では、リサイクルされていない 7 。

表 1.4 用途別需要量

用 途	需要量[酸化物 t]
研磨剤	5,500
紫外線吸収ガラス添加剤(自動車フロントガラス等)	1,490
排ガス浄化三元触媒 (自動車)	1,300
蛍光体(蛍光灯、CRT)	850*
化学反応触媒	731
ブラウン管(TV ブラウン管)	450

^{*:}Y(イットリウム)、Eu(ユウロピウム)、Gd(ガドリニウム) 込み

② 輸入量

セリウム化合物の輸入量の推移を表 1.5 に示す11)。

表	1.	5	輸入	量0	D推移
1		•	ナロリノト	ᆂᄬ	ノコエコン

平成(年)	11	12	13	14	15
輸入量(t) ^{a)}	8,757	10,537	8,266	10,385	10,850
平成(年)	16	17	18	19	20
輸入量(t) ^{a)}	10,559	13,363	20,558	19,027	16,806

a) 普通貿易統計(少額貨物(1品目が20万円以下)、見本品等を除く)品別国別表より集計

③ 輸出量

セリウム化合物の輸入量の推移を表 1.6 に示す11)。

表 1.6 輸出量の推移

平成(年)	11	12	13	14	15
輸入量(t) ^{a)}	1,230	1,429	1,745	2,371	3,089
平成(年)	16	17	18	19	20
輸入量(t) ^{a)}	3,226	5,136	7,388	7,119	6,313

a) 普通貿易統計(少額貨物(1品目が20万円以下)、見本品等を除く)品別国別表より集計

④ 用途

セリウムの主な用途は、ガラス研磨剤、触媒、UV カットガラス、ガラス消色剤である⁷⁾。酸化セリウムの主な用途は、板ガラス研磨、レンズ消色、ブラウン管研磨、光学ガラス研磨、自動車排ガス触媒とされている¹⁾。酸化セリウムは、CRT(ブラウン管)に添加されている⁷⁾。

塩化セリウムの主な用途は、ミッシュメタル、希土類化合物の原料、セリウム化合物の原料とされている¹⁾。

(5) 環境施策上の位置付け

本物質は有害大気汚染物質に該当する可能性がある物質に選定されている。

2. ばく露評価

環境リスクの初期評価のため、わが国の一般的な国民の健康や水生生物の生存・生育を確保する観点から、実測データをもとに基本的には化学物質の環境からのばく露を中心に評価することとし、データの信頼性を確認した上で安全側に立った評価の観点から原則として最大濃度により評価を行っている。

(1) 環境中への排出量

本物質は化学物質排出把握管理促進法(化管法)第一種指定化学物質ではないため、排出量及び移動量は得られなかった。

(2) 媒体別分配割合の予測

環境中におけるセリウム及びその化合物の化学形態は明らかでないため、媒体別分配割合の 予測を行うことは適切ではない。したがって、セリウム及びその化合物の媒体別分配割合の予 測は行わなかった。

(3) 各媒体中の存在量の概要

本物質の環境中等の濃度について情報の整理を行った。媒体ごとにデータの信頼性が確認された調査例のうち、より広範囲の地域で調査が実施されたものを抽出した結果を表 2.1 に示す。

表 2. 1 谷媒体中の存在状況									
	幾何 平均値	算術 平均値	最小値	最大値	検出 下限値	検出率	調査地域	測定年度	文献
μg/m ³	0.00075 0.0010 0.0012 0.0014 0.0015 0.0012 0.001	0.00076 0.0012 0.0017 0.0019 0.0017 0.0016 0.001	0.00055 0.00044 0.00053 0.00061 0.00072 0.00032 0.00073	0.0011 0.0027 0.0078 0.0084 0.0049 0.0062 0.0013	_a) _a) _a) _a) _a) _a) _a) _a) _a) 0.3	7/7 12/12 12/12 14/14 13/13 15/15 3/3	全全全全全是縣新福国国国国界県県	2008 2007 2006 2005 2004 2003 1999	1) 2) 3) 4) 5) 6) 7)
μg/m³									
μg/g									
μg/L									
μg/L									
μg/g	-	52 b)	1.0 b)	150 b)	-	- /78	全国	-	8)
μg/L	0.0095 0.0027 0.011 15 0.0000057	0.014 0.0059 0.014 21 0.0000096	0.0003 0.00004 0.0029 5.5 0.0000016	0.021 0.012 0.032 62 0.000042	_c) 0.00008 0.00008 0.00008 _c)	9/9 5/6 6/6 6/6 8/8	茨 東 東 東 京 京 都 東 京 京 都	2003 2002 2002 2002 1998~2000	9) ^{d)} 10) ^{e)} 10) ^{f)} 10) ^{g)} 11) ^{h)}
	μg/m³ μg/g μg/L μg/L μg/g	平均値 µg/m³ 0.00075 0.0010 0.0012 0.0014 0.0015 0.0012 0.001 µg/m³ µg/g µg/L µg/L µg/L µg/L µg/L 0.0095 0.0027 0.011 15	幾何 平均値 第称 平均値 μg/m³ 0.00075 0.00076 0.0012 0.0012 0.0012 0.0017 0.0014 0.0019 0.0015 0.0017 0.0012 0.0016 0.0014 0.0027 0.0059 0.011 0.014 15 21	幾何 平均値 第術 平均値 最小値 µg/m³ 0.00075 0.00076 0.00055 0.0012 0.00044 0.0012 0.0014 0.0019 0.00061 0.0015 0.0017 0.00072 0.0012 0.0012 0.0016 0.00032 0.001 0.001 0.00073 µg/m³ µg/g µg/L µg/L µg/L 0.0095 0.014 0.0003 0.00073 0.0017 0.00073 0.0017 0.00073 0.0017 0.0014 0.0003 0.0027 0.0014 0.0003 0.00004 0.011 0.014 0.0029 1.5 21 5.5	幾何 平均値 第	幾何 平均値	機何 平均値 第 最小値 最小値 最大値 検出 検出 下限値 検出率 2 12/12 0.0010 0.0012 0.00044 0.0027 -a) 12/12 0.0014 0.0015 0.0017 0.00053 0.0078 -a) 12/12 0.0014 0.0019 0.00061 0.0084 -a) 14/14 0.0015 0.0017 0.00072 0.0049 -a) 13/13 0.0012 0.0016 0.00032 0.0062 -a) 15/15 0.001 0.001 0.00073 0.0013 0.3 3/3 14/14 14/14 15/15/15/15/15/15/15/15/15/15/15/15/15/1	操列	接向 算術 表小値 最小値 最大値 下限値 検出率 調査地域 測定年度

表 2.1 各媒体中の存在状況

媒体	幾何 平均値	算術 平均値	最小値	最大値	検出 下限値	検出率	調査地域	測定年度	文献
	0.000095	0.00019	0.000012	0.00066	_c)	8/8	東京都	1998~2000	11) i)
	0.0000086	0.000015	0.00000079	0.000041	_c)	8/8	東京都	1998~2000	11) ^{j)}
公共用水域・海水 μg/L									
底質(公共用水域・淡水) μg/g									
底質(公共用水域・海水) μg/g									
魚類(公共用水域・淡水) μg/g									
魚類(公共用水域・海水) μg/g									
貝類(公共用水域・淡水) µg/g									
貝類(公共用水域・海水) μg/g									

- 注:a) 公表されていない
 - b) 原著の値を転記。濃度データは各調査地点(78地点)の平均値による集計値ではなく、各サンプル(514検体)の 濃度データを集計したもの。調査地点は、森林が最も多いが、農地も含まれている。
 - c) 報告されていない
 - d) 0.2 μmフィルターろ過水
 - e) 0.45 μmフィルターろ過水
 - f) 0.45 μmフィルターろ過水を酸処理し、加熱処理した試料
 - g) 0.45 µmフィルター捕集物を酸処理し、マイクロ波分解装置で処理した試料
 - h) 0.40 μmフィルターろ過水
 - i) 0.40 μmフィルター捕集物を酸処理した試料
 - j) 0.40 μmフィルターろ過水を酸処理した試料

(4) 人に対するばく露量の推定(一日ばく露量の予測最大量)

一般環境大気及び土壌の実測値を用いて、人に対するばく露の推定を行った(表 2.2)。化学物質の人による一日ばく露量の算出に際しては、人の一日の呼吸量、飲水量、食事量及び土壌をそれぞれ 15 m^3 、2 L、2,000 g 及び 0.15 g と仮定し、体重を 50 kg と仮定している。

表 2.2 各媒体中の濃度と一日ばく露量

		スニュ ロボドーの版文C Fio	、胡圭
	媒体	農度	一日ばく露量
	大 気 一般環境大気 室内空気	0.0012 μg/m³ 程度 (2006) データは得られなかった	0.00036 μg/kg/day 程度 データは得られなかった
平	水 質飲料水地下水	データは得られなかった データは得られなかった	データは得られなかった データは得られなかった
- 均 	公共用水域・淡水 食 物	データは得られなかったデータは得られなかった	データは得られなかったデータは得られなかった
		52 μg/g 程度(算術平均値)	0.16 μg/kg/day 程度(算術平均値)
最	大 気 一般環境大気 室内空気	0.0078 μg/m³ 程度 (2006) データは得られなかった	0.0023 μg/kg/day 程度 データは得られなかった

	媒 体	濃度	一 日 ば く 露 量
大			データは得られなかった データは得られなかった
値	公共用水域・淡水	データは得られなかった	データは得られなかった
	食 物	データは得られなかった	データは得られなかった
	土壤	150 μg/g 程度	0.45 μg/kg/day 程度

人の一日ばく露量の集計結果を表 2.3 に示す。

吸入ばく露の予測最大ばく露濃度は、一般環境大気のデータから $0.0078~\mu g/m^3$ 程度となった。 経口ばく露の予測最大ばく露量は、土壌のデータから算定すると $0.45~\mu g/k g/day$ 程度であった。

媒体 平均ばく露量(μg/kg/day) 予測最大ばく露量(µg/kg/day) 0.00036 0.0023 一般環境大気 大 気 室内空気 飲料水 水 質 地下水 公共用水域・淡水 食物 0.16 (算術平均値) 0.45 土壌 0.16 0.45 経口ばく露量合計 総ばく露量 0.16036 0.4523

表 2.3 人の一日ばく露量

(5) 水生生物に対するばく露の推定 (水質に係る予測環境中濃度: PEC)

本物質の水生生物に対するばく露の推定の観点から、水質中濃度を表 2.4 のように整理した。水質のデータは得られなかった。

 水 域
 平 均
 最 大 値

 淡 水
 データは得られなかった
 データは得られなかった

 海 水
 データは得られなかった
 データは得られなかった

表 2.4 公共用水域濃度

注:淡水は、河川河口域を含む

3. 健康リスクの初期評価

健康リスクの初期評価として、ヒトに対する化学物質の影響についてのリスク評価を行った。 なお、セリウム及びその化合物の化学形態や水溶性、不溶性等で分けた評価はせず、セリウ ムとして評価した。

(1) 体内動態、代謝

¹⁴¹Ce を硝酸セリウムとして 0、7、14、26 日齢のラットに強制経口投与した結果、26 日齢で の投与では体内の放射活性は3日後に投与量の0.04%まで減少した。0日齢で投与した場合には 3日後に95%、16日後も29%が体内に残留しており、それらの99、93%が消化管内にあったが、 24日後には3%に減少して消化管内の割合も17%まで減少した。投与時の日齢が若いほど体内 の放射活性は長く残留したが、固形飼料を摂取するようになった 16 日齢頃を境に体内の放射活 性は急激に減少する傾向にあった。1日齢で投与した場合には、ほぼすべての放射活性が1日で 下部小腸に移行したが、10日後も大部分がそこに残留しており、小腸内では絨毛の上部 2/3 に 偏在していた¹⁾。同様の結果は ¹⁴¹Ce 又は ¹⁴⁴Ce を塩化セリウムとしてラットに強制経口投与し た試験でも得られており $^{2,3)}$ 、成熟したラットでは消化管からの吸収は投与量の0.05%から0.1%未満であったが、授乳期ラットでは 40~98%を吸収し、その割合は日齢が若いほど多か った $^{1\sim3}$ 。 14 Ce を塩化セリウムとして 3 、 5 、 100 日齢のラットに強制経口投与した 40 日後の 体内の放射活性は骨に $85\sim90\%$ 、肝臓に $4\sim8\%$ 、腎臓に $1\sim2\%$ 、回腸に $0.3\sim0.8\%$ が分布して おり、投与時の日齢による差はなかった。1、4 日齢のブタに 144Ce を塩化セリウムとして強制 経口投与した試験では、投与量の2.5~8%が吸収(1日齢の方が3倍多い)され4、0日齢のラ ット、マウス、ブタに強制経口投与した試験では、吸収及び残留はマウス > ラット > ブタの 順で多かった50。なお、小腸に残留したセリウムのほとんどは循環系に移行することはなくり、 小腸での高い残留性は新生仔小腸細胞の高い貪食活性に関連するものと考えられた 2)。

 144 Ce を水酸化セリウム(空気力学的放射能中央径 AMAD: $1.4 \, \mu m$)としてラットに $10 \, \beta$ 間吸入させた結果、吸入した放射活性の 28%が体内に残留したが、その $75\sim95\%$ は 2 週間以内に排泄された。放射活性の分布は 47 日後に肺、肝臓、骨、腎臓で 21、38、35、2.1%であったが、 607 日後には 9.3、4.3、73、2.3%となり、脾臓では 1%を超えることはなかった 6 。

 144 Ce を酸化セリウム(AMAD: $0.9\sim2.2~\mu m$)としてラットに $5\sim50~$ 分間吸入させた結果、1 週間以内に沈着量の 89%が排泄され、肝臓及び骨への移行がみられたが、腎臓や脾臓では定量できるほどの放射活性でなかったことから、肝臓及び骨への移行は粒子の移送ではなく、溶解による結果と考えられた 70 。また、 144 Ce を酸化セリウムの微粒子(AMAD: $0.11~\mu m$)として 30~分間又は超微粒子(AMAD: $0.064~\mu m$)として 45~分間ハムスターに吸入させた結果、微粒子群は 4~日間で約 95%を排泄したが、超微粒子群では 4~日間で 60%、96~日間でも 80%の排泄であった。体内放射活性の分布は5~時間後の微粒子群で肺に3.6%、消化管に76%の割合であったが、3~時間後の超微粒子群では 50%、14%であり、超微粒子群の方が肺に残留する割合が5~0かった。5~0。

¹⁴⁴Ce を塩化セリウム、クエン酸セリウム、溶融粘土 (AMAD: 1.3~2.75 μm) としてマウスに吸入させた結果、4日間で塩化セリウム群では沈着量の58%、クエン酸セリウム群では62%、溶融粘土群では77%が排泄され、122日後にはそれぞれ10、20、2%が残留していたが、その多くが溶融粘土群では肺にあったのに対して塩化セリウム群及びクエン酸セリウム群では肝臓及

び骨にあり、溶解性の違いによる差と考えられた 9 。また、 144 Ce を塩化セリウム(AMAD: 10 0.83 μ m)としてハムスターに 20 分間吸入させた結果、 1 週間で沈着量の 20 80%以上が排泄された 10 。 144 Ce を塩化セリウム(AMAD: $^{1.5}$ ~2.2 μ m)としてイヌに 4 ~ 10 分間吸入させた結果、吸入した放射活性の 20 71%が体内に残留したが、その 20 35~ 20 80%は 20 4 日以内に排泄された。 20 日後には全身の放射活性の 20 42、 20 26、 20 22%が肺、肝臓、骨にあったが、 20 512 日後には 20 1.7、 20 56、 20 36%となってほとんどが肝臓と骨に分布しており、消化管や腎臓、気管等の他の組織への分布は試験期間を通してわずかであった 11 。

 144 Ce を溶融アルミノケイ酸塩(AMAD: $1.5\sim2.4~\mu m$)としてイヌに $2\sim48$ 分間吸入させた結果、 $2\sim3$ 日で沈着量の約 50%が排泄され、気管気管支リンパ節への移行もみられたが、その割合は肝臓や骨の約 1/10 とわずかであった $^{12)}$ 。

このような初期の急激な排泄(速い相)は気道上皮の粘液・線毛輸送によって気道に沈着した粒子が口腔内に輸送され、嚥下された結果と考えられており $^{7, 10, 11, 12)}$ 、いずれの化学形態でも吸入したセリウムの主要な排泄経路は糞中であった。一方、遅い相の実効半減期として約 100日から 144 Ce の半減期(285 日)相当の値が算出されており $^{6, 7, 9\sim 12)}$ 、骨等に吸収されたセリウムの排泄は緩慢であった。

ヒトでは、写真製版技師として 46 年間従事した労働者の肺、リンパ節から 167、5 μ g/g のセリウムが検出され、非ばく露の対照群に比べて肺で 2,400 倍、リンパ節で 53 倍高かった。また、肺の濃度は尿や血液、爪の 2,800~208,000 倍も高かったことから、肺からの移動は少ないと考えられた $^{13\sim15}$ 。

(2) 一般毒性及び生殖・発生毒性

① 急性毒性

表 3.1 急性毒性

【塩化セリウム】

動物種	経路		致死量、中毒量等
ラット	経口	LD_{50}	2,111 mg/kg ¹⁶⁾
ラット	経口	LDLo	5,000 mg/kg(水和物) ¹⁶⁾
マウス	経口	LD_{50}	5,277 mg/kg ¹⁶⁾

【酸化セリウム】

動物種	経路		致死量、中毒量等
ラット	経口	LD_{50}	$1,000 \text{ mg/kg}^{16)}$
マウス	経口	LD_{50}	$> 1,000 \text{ mg/kg}^{17)}$

【硝酸セリウム】

動物種	経路		致死量、中毒量等
マウス	経口	LD ₅₀	1,178 mg/kg ¹⁸⁾
マウス	経口	LD_{50}	4,200 mg/kg(6 水和物) ¹⁷⁾

【フッ化セリウム】

_	動物種	経路		致死量、中毒量等	
-	ラット	経口	LD_{50}	5,000 mg/kg ¹⁶⁾	
_	モルモット	経口	LDLo	5,000 mg/kg ¹⁹⁾	

【硫化セリウム】

動物種	経路		致死量、中毒量等
マウス	経口	LD_{50}	8,600 mg/kg ¹⁶⁾

セリウム化合物はかつて血液抗凝固剤としてひろく利用されたことがあり、静脈内注射に伴う副作用として悪寒、発熱、頭痛、筋肉痛、腹部痙攣、血色素尿などがあった。しかし、セリウム及びその化合物を取り扱う労働者にそのような症状の障害が発生したという報告はない¹⁹⁾。

② 中・長期毒性

- ア)Wistar ラット雄 6 匹を 1 群として 0、0.2、2、20 mg/kg/day の用量で塩化セリウムを混餌 投与し、赤血球への影響を調べた試験では、40、80 日投与後の 20 mg/kg/day 群でヘモグロビン濃度に増加傾向がみられたものの、有意差のある変化ではなかったが、80 日投与後の 20 mg/kg/day 群では酸素分圧の増加に伴う酸素飽和度の増加が対照群よりも大きかったことから、ヘモグロビンの酸素親和性が増加したと考えられた。なお、2 mg/kg/day 群では 90 日投与後に軽微な酸素親和性の増加がみられただけで、0.2 mg/kg/day 群では 105 日投与後も変化はなかった 200 。
- イ)雌雄の Sprague-Dawley ラットをマグネシウムの通常食又は欠乏食で飼育しながら 0、0.0035%の濃度で飲水に添加した塩化セリウムを 13 ヶ月間投与し、心臓組織への影響を調べた結果、通常食の 0%群 (A 群) 及び 0.0035%群 (B 群)、欠乏食の 0%群 (C 群) 及び 0.0035%群 (D 群) で心臓組織のセリウム濃度は 0.065、0.86、0.18、2.9 ng/mg、マグネシウム濃度は 0.90、0.96、0.83、0.66 ng/mg であり、D 群のセリウム濃度は有意に高く、マグネシウム濃度は有意に低かった。各群のコラーゲン濃度は 7.3、8.4、8.6、9.7 mg/g で B~D 群が有意に高く、心筋の変性 (筋細胞融解や線維化など) は B 群の 3/9 匹、C 群の 2/9 匹、D 群の 4/8 匹にみられ、マグネシウム欠乏とセリウムがラットの心臓で線維化を促進することが示唆された 211。

また、雌雄の New Zealand white ウサギをマグネシウムの通常食又は欠乏食で飼育しながら 0、0.1%の濃度で飲水に添加した塩化セリウムを 6 ヶ月間投与し、心臓組織への影響を調べた結果、欠乏食群ではセリウム投与の有無にかかわらず心臓で線維化がみられ、セリウムの投与でその程度は進行した $^{22)}$ 。

- ウ) ICR マウス雄 8 匹を 1 群とし、0、0.002、0.02%の濃度で塩化セリウムを餌に添加して 12 週間投与した結果、死亡や体重への影響はなく、腎臓や肝臓、肺、脾臓のセリウム濃度は 0.002%群では有意に増加しなかったが、0.02%群ではいずれの臓器でも有意に増加した。 GOT や GPT、コレステロール、トリグリセライドに影響はなかったが、0.002%以上の群では肝臓でメタロチオネイン及びグルタチオンの増加と過酸化脂質の減少、血漿でスーパーオキシドジスムターゼ活性の低下と過酸化脂質の増加が有意差のある変化としてみられ、セリウムによる酸化ストレスの増加に起因したものと考えられた。しかし、腎臓や肝臓、肺、脾臓の組織に影響はなかった ²³⁾。
- エ) 雌雄の Wistar ラットにセリウムを含む希土類元素の硝酸塩混合物を 0、2、20、200、2,000 mg/kg/day の用量で 24 週間混餌投与した結果、一般状態に影響はなかったが、2,000

mg/kg/day 群の雌では 14 週後から体重が増加せず、20 週後の体重は有意に低かった。2,000 mg/kg/day 群の雄で血液中のリンが高く、雌雄で肝臓相対重量が有意に減少した以外には、血液や免疫機能、主要臓器の重量や組織に影響はなかった。また、雌雄各 $20\sim23$ 匹を 1 群として 0、2、60、1,800 mg/kg/day で 2 年間混餌投与した結果、1,800 mg/kg/day 群で体重増加の抑制がみられただけであった。なお、混合物にはセリウム、ランタン、ネオジム、プラセオジム、サマリウムの希土類元素が 35、14、8、0.8、0.2%の割合(残りは硝酸)で含まれていた $^{18)}$ 。これらの試験でみられた毒性がセリウムによるものとは断定できないが、少なくとも 24 週間投与では 200 mg/kg/day(セリウムとして 70 mg/kg/day)以下、2 年間投与では 60 mg/kg/day(同 21 mg/kg/day)以下では毒性がみられないことから、安全側の評価としてこれらをセリウムの NOAEL とする。

- オ) Sprague-Dawley ラット雌雄各 15 匹を 1 群とし、0、5、51、510 mg/m³の酸化セリウム(1.8~2.2 μm)を 13 週間(6 時間/日、5 日/週)吸入させた結果、72 日に 510 mg/m³群の雄 1 匹が死亡したが、その原因はばく露手順に関連したもので、酸化セリウムの影響ではないと考えられた。一般状態の変化や眼、臨床生化学成分、尿、行動及び自発運動量の検査に異常はなかったが、510 mg/m³群の雌雄で軽度の体重増加の抑制や摂餌量の減少、5 mg/m³以上の群の雌及び 51 mg/m³以上の群の雄で分葉好中球数の増加、5 mg/m³以上の群の雌雄で肺重量の増加傾向、510 mg/m³群の雄で脾臟重量の増加がみられた。剖検では 51 mg/m³以上の群の全数で肺の退色、気管支リンパ節の拡張や退色がみられ、気管支リンパ節の変化は 5 mg/m³群でもほぼ全数にあり、縦隔膜の拡張や退色がみられ、気管支リンパ節の変化は 5 mg/m³群でもほぼ全数にあり、縦隔膜の拡張や退色は 5 mg/m³以上の群のほぼ半数でみられた。組織検査では、5 mg/m³以上の群の雌雄の気管支リンパ節でリンパ組織増生及び色素沈着、肺で色素沈着、51 mg/m³以上の群の雌雄の肺で肺胞上皮の過形成、喉頭で化生及び色素沈着、510 mg/m³の群の雌雄の下顎リンパ節で色素沈着の発生率に有意な増加を認め、縦隔膜リンパ節のリンパ組織増生及び色素沈着の発生率も 5 mg/m³以上の群の雌雄で高かった 240。この結果から、LOAEL を 5 mg/m³(ばく露状況で補正: 0.89 mg/m³、セリウムとして 0.72 mg/m³)とする。
- カ)雌雄の Fischr 344 ラットに肺の蓄積線量が 3.5、12、40 Gy となるように 144 Ce 及び安定同位元素の Ce を酸化セリウム(1.4 μ m)として $12\sim52$ 分間吸入させ、 144 Ce の β 線による影響を生涯にわたって検討した試験では、雄 523 匹、雌 541 匹に安定同位元素の酸化セリウムを 25 分間吸入させた群が対照群として設定されており、各群での沈着量は同程度となるようにして実施された。この結果、対照群(CeO_2 群)の生存率や体重、肺の重量などに問題となるような異常はなく、肺の非腫瘍性病変としては炎症が 5.1%、線維化が 5.6%、肺胞上皮の過形成が 4.5%、肺胞マクロファージの増加が 7.1%、肺胞の扁平上皮化生が 0.29%のラットにみられただけであった 25)。
- キ)雌雄の Fischr 344 ラットに肺の生涯蓄積線量が 2.1、9.5、50、250 Gy となるように 144 Ce 及び安定同位元素の Ce を酸化セリウム $(0.9\sim2.2~\mu\mathrm{m})$ として 25 分間の吸入を 60 日毎に 7 回繰り返し、 144 Ce の β 線による影響を生涯にわたって検討した試験では、安定同位元素の酸化セリウムを用いて雌雄各 20 匹に同様の処置を行った $\mathrm{CeO_2}$ 群、雌雄各 38 匹の偽処理群 (Sham 群) がそれぞれ対照群として設定されており、粒子を吸入させた各群では沈着量が同程度となるようにして実施された $^{7,26)}$ 。この試験結果の報告では、安定同位元素の $\mathrm{CeO_2}$ 群と偽処理群 (Sham 群) を区別せずに 1 つの対照群として取り扱われていたことから、両

群で得られた所見に大きな差はなかったものと考えられた。なお、予備試験では吸入した 粒子の約 6%が肺に沈着すると推定され、25 分間の吸入ばく露では 1 回当り約 10 μg が肺 に沈着したものと見積もられていた。

- ク) Wistar ラット雄 16 匹を 1 群とし、0、10 mg/kg の酸化セリウムを週 2 回、8 週間にわたって気管内投与し、その後 16 週間飼育した結果、体重や肺の相対重量に有意な影響はなかったが、投与期間終了後の肺では酸化セリウム粒子が肺胞腔・肺胞中隔に沈着し、肺胞腔内には肺胞マクロファージが遊出し、その一部は粒子を貪食していた。また、肺胞腔内には肺胞マクロファージの壊死片を含むエオジン好性の浸出液が貯留し、肺胞中隔の粒子沈着部位の周囲で肉芽組織が巣状に増生していた。16 週後にはこれらの変化はやや強く発現しており、肺胞・細気管支では上皮の増生も認められた 27,28)。
- ケ)超微粒子の生体影響については、化学物質の重量濃度の他にも、個数や表面積、形状、 ラジカル発生に係わる表面活性などが関与しているのは明らかであるが、影響評価を行う 上で、どのような用量計量値(dose metrics)を用いるべきかに関しては、未だ議論の途上 にある²⁹⁾。

③ 生殖·発生毒性

- ア)雄マウス 5~8 匹を 1 群とし、0、200、800 mg/kg/day の酸化セリウムを 45 日間混餌投与し、15、30、45 日後に生殖器への影響を調べた結果、体重に影響はなかったが、800 mg/kg/day 群で 15 日後の精巣相対重量が有意に減少し、200、800 mg/kg/day 群で精子の奇形発生率は 30 日後に 17、22%、45 日後に 28、32%増加して有意な差があった。また、200 mg/kg の腹腔内投与では 5、10 日後の血清中テストステロン濃度は有意に低かったが、経口投与ではいずれの群にも変化はなかった 30)。
- イ)Wistar ラット雄 10 匹を 1 群とし、セリウムを含む希土類元素の硝酸塩混合物を 0、55、331 mg/kg 経口投与した結果、精子の奇形発生率に有意な差はなかった。なお、混合物にはセリウム、ランタン、ネオジム、プラセオジム、サマリウムの希土類元素が 35、14、8、0.8、0.2%の割合(残りは硝酸)で含まれていた ¹⁸⁾。
- ウ) 出産直後の ICR マウスに 0、200 mg/kg の塩化セリウムを強制経口投与して仔を哺育させた結果、200 mg/kg 群の 7 日後の仔の肺で出血と血管のうっ血、肝臓で血管のうっ血、気管で出血がみられたが、その他の組織に異常はなかった。なお、仔の全数(40 匹)は成熟期まで生存したが、授乳期までの体は対照群に比べて小さかった 31)。

また、妊娠 11.5 日の ICR マウスに 0、200 mg/kg の塩化セリウムを強制経口投与し、妊娠 14.5 日に屠殺して胎仔への影響を調べた結果、200 mg/kg 群では肺及び肝臓の血管にうっ血 がみられただけであった $^{31)}$ 。

エ)Wistar ラット雄 16 匹を 1 群とし、0、10 mg/kg の酸化セリウムを週 2 回、8 週間にわたって気管内投与し、精巣への影響を調べた結果、重量や精子関連の指標値に有意な変化はなかった。なお、1 匹で精上皮の剥脱が散見されたが、軽微なものであり、投与に伴う精巣障害と断定することはできなかった 32,33)。

④ ヒトへの影響

ア)インド南部のケララ州では風土病として心内膜心筋線維症が知られており、心内膜心筋線維症の患者 9 人の心内膜心筋組織について、同州で代表的な土壌成分である紅土及びモナズ石の主要化学成分濃度を調べた結果、患者群では事故等で死亡した対照群 (6 人) に比べてトリウム、ナトリウム、カルシウムが有意に多く、マグネシウムは有意に少なかった。同州では主食にトリウムが多く含まれていることから、マグネシウム欠乏とトリウム過剰の組み合わせが心内膜心筋線維症の原因である可能性が示唆された 340。その後、モナズ石の主成分の1つであるセリウムはタリウムよりも7~10 倍多く葉菜や塊根(イモなど)に多く含まれていることが明らかになった。このため、未検討であったセリウムについて心内膜心筋線維症の患者 20 人、対照群 13 人の心内膜心筋組織を分析したところ、患者群のセリウム濃度は有意に高かった。線維化組織を多く含む試料よりも筋肉組織を多く含む試料でセリウム濃度は高かった 350。

また、ケララ州南部の7都市では1978年から1994年までの17年間に340人が心内膜心筋線維症と診断されており、このうち7都市に永住していた234人を対象にして高発生(>4/100,000人)地域を地図上にプロットすると、モナズ石鉱床の地理的分布とほぼ一致した。なお、フィラリアの感染や好酸球増加症を原因とした仮説もあるが、それらの発生率の地理的分布との間には関連はなかった 36 。

- イ)ョーロッパ 8 ヶ国とイスラエルの 10 都市で急性心筋梗塞と初めて診断された 70 才以下の男性患者 684 人、年令や居住地等をマッチさせた対照群 724 人による症例-対照研究では、セリウムのばく露は足指の爪中濃度で評価され、平均濃度は患者群で 186 μ g/kg、対照群で 173 μ g/kg であった。爪のセリウム濃度と貧困、喫煙、水銀、亜鉛、スカンジウムとの間には有意な正の関連があり、年令及び都市で調整したセリウム濃度比(患者群/対照群) 1.074 は有意に高く、喫煙や飲酒、肥満度指数 (BMI)、糖尿病、高血圧等の血管危険因子でさらに調整するとセリウム濃度比は 1.085(95% CI: 1.025~1.149)に増加した。また、患者群を喫煙の有無で分類してセリウム濃度の五分位数でそれぞれ 5 群に分け、第 1 五分位群に対する急性心筋梗塞のリスクを求めると、喫煙者群では有意な増加はみられなかった。しかし、非喫煙者群では年令、都市、BMI、高血圧、飲酒、糖尿病、冠動脈心疾患の家族歴、 α -トコフェロール、 β -カロチン、リコペン、セレン、水銀で調整した場合にはリスクは有意に増加しなかったが、さらにスカンジウムで調整すると第 4 五分位群(セリウム濃度の中央値 190 μ g/kg)、第 5 五分位群(同 324 μ g/kg)のリスクはそれぞれ 2.09(95% CI: 1.05~4.16)、2.81(95% CI: 1.21~6.52)と有意に増加し、非喫煙者全体としても有意な増加傾向にあったことから、セリウムと急性心筋梗塞の関連が示唆された 370。
- ウ) 高輝度の光源を必要とする写真製版工場や映画館等ではかつてカーボンアーク灯が使用されており、ランプがガラス等で覆われていなかったことから電極に含まれた希土類元素 (特にセリウム)等が高温下でヒュームとなって揮散していた。このため、長年にわたってヒュームにばく露された労働者の肺ではセリウム等の希土類元素などの蓄積がみられてセリウムじん肺や酸化セリウムじん肺、希土類元素じん肺などと呼ばれており、肺の病変として肉芽腫や気腫、間質の線維化、肺活量の低下が報告されている 38)。

また、酸化セリウム等の希土類元素の酸化物を用いた光学用レンズの研磨作業に従事し

ていた労働者でも肺組織の線維化や肺活量の低下がみられた 38)。

- エ) 1980 年に呼吸困難の診断のために来院した 58 才の男性では、胸郭からの捻髪音や胸膜プラーク、軽度の胸膜肥厚がみられ、肺機能検査では軽度の閉塞があった。男性は同年にガラス製造工場を定年退職していたが、1959~1963 年には精錬部門、~1967 年に研磨部門、~1975 年に輸送部門、~1980 年に塗装部門で作業しており、1951~1964 年には映画の映写技師も兼ねており、気管支肺胞洗浄液(BAL)の検査ではリンやカルシウム、ランタン、セリウム、ケイ素などが検出された。男性の症状はその後比較的安定していたが、1988 年に慢性胸膜炎を発症し、病理検査の結果、慢性肥厚性胸膜炎と診断され、軽度の間質の線維化もみられた。BAL の検査結果は 1980 年当時とほぼ同様であり、肺の生検試料にみられた粒子の約 70%がセリウムを含む粒子であった。男性の職歴調査から、酸化セリウム研磨材のばく露は少なくとも 15 年以上前に終わっていたことが明らかなため、希土類元素が肺に長期間残留することを示す事例と考えられた 390。
- オ)慢性閉塞性肺疾患の評価のために入院した 60 才の男性は 15 才から 27 才までの 13 年間を映写技師として働いていたが、その後は電気技師 (5 年)、セールスマン (20 年)として働いたため線維化を誘発するような粉じんの職業ばく露はなかった。男性は 25 才の時に進行性の呼吸困難を自覚するようになり、その後は咳と粘液状の化膿性痰で種々のクリニックに数回入院しており、50 才の時にび漫性両側性の間質性肺疾患と診断されて退院していた。胸部 X 線検査及び肺機能検査では間質性の肺疾患、気腫、一酸化炭素肺拡散能力の著明な低下を伴った重篤な閉塞性障害がみられ、経気管支生検でび漫性間質性の肺線維症を認めた。また、生検試料からは高濃度の希土類元素が検出され、セリウムが最も高濃度であったことから、映写技師時代のばく露との関連が示唆された 400。
- カ)び漫性肺骨形成と診断された 38 才の男性では、乾性咳嗽が数ヶ月間続いており、肺機能検査で軽度の拡散不全、胸部 X 線検査で全肺野のび漫性網状粒状影を認め、両肺は過度に膨張していた。男性は 20 年前にガラス工場で研磨工として 3 年働いたことがあり、作業場所は地下で換気が悪く、緑がかった研磨剤で非常に汚染されていた。その後は電気機器の組み立て工として 15 年勤務しており、最近の旅行歴や化学物質のばく露、肺疾患の家族歴もなかった。肺の組織からは酸化セリウム、セリウムやランタンのリン酸塩が検出され、多くは 0.1~0.3 μm の微粒子の凝集塊であった。石英や長石、雲母、カオリナイト、ハロイサイト、滑石、二酸化チタンなどの希土類元素以外の鉱物粒子も肺にあったが、稀に検出される程度であったことから、希土類元素じん肺による所見と考えられた 410。

(3) 発がん性

① 主要な機関による発がんの可能性の分類

国際的に主要な機関での評価に基づく本物質の発がんの可能性の分類については、表 3.2 に示すとおりである。

表3.2 主要な機関による発がんの可能性の分類

	機 関 (年)	分 類
WHO	IARC	_
EU	EU	_

	機 関 (年)	分 類
	EPA (2009)	ヒトでの発がん性の可能性を評価するにはデータが不十分
		である*。
USA	ACGIH	_
	NTP	
日本	日本産業衛生学会	_
ドイツ	DFG	_

注: U.S.EPA (2009) は 2005 年のガイドラインに基づくため、分類に対応する記号はない。

② 発がん性の知見

〇 遺伝子傷害性に関する知見

 $in\ vitro\$ 試験系では、酸化セリウムは代謝活性化系(S9)添加の有無にかかわらずネズミチフス菌で遺伝子突然変異 $^{42,\ 43)}$ を、塩化セリウムは S9 無添加の枯草菌で DNA 障害 $^{44)}$ を誘発しなかった。また、超微粒子の酸化セリウムも S9 添加の有無にかかわらずネズミチフス菌で遺伝子突然変異を誘発しなかった $^{43)}$ 。

 $in\ vivo\$ 試験系では、硝酸セリウムはラットの骨髄細胞で染色体切断を誘発し、有糸分裂指数を減少させたが、それらは著明なものではなかった $^{45)}$ 。

なお、セリウムを35%含む希土類元素の硝酸塩混合物は in vitro 試験系のネズミチフス菌で遺伝子突然変異、in vivo 試験系の経口投与したマウスの骨髄細胞で小核、骨髄細胞及び精原細胞で染色体異常、精子の形態異常を誘発しなかった18)。

〇 実験動物に関する発がん性の知見

雌雄の Fischr 344 ラットに肺の蓄積線量が 3.5、12、40 Gy となるように 144 Ce 及び安定同位元素の Ce を酸化セリウム(AMAD: 1.4 μ m)として $12\sim52$ 分間吸入させ、 144 Ce の β 線による影響を生涯にわたって検討した試験では、雄 523 匹、雌 541 匹に安定同位元素の酸化セリウムを 25 分間吸入させた群が対照群として設定されており、各群での沈着量は同程度となるようにして実施された。この結果、対照群(CeO₂ 群)では 6/1,049 匹に腫瘍の発生がみられ、その内訳は腺腫が 1 匹、腺癌が 4 匹、扁平上皮癌が 1 匹、肉腫が 1 匹であり、うち 1 匹には 2 種類の腫瘍の発生があった 250 。

雌雄の Fischr 344 ラットに肺の生涯蓄積線量が 2.1、9.5、50、250 Gy となるように 144 Ce 及び安定同位元素の Ce を酸化セリウム($0.9\sim2.2~\mu m$)として 60 日毎に 25 分間の吸入を 7 回繰り返し、 144 Ce の β 線による影響を生涯にわたって検討した試験では、安定同位元素の酸化セリウムを用いて雌雄各 20 匹に同様の処置を行った CeO₂ 群、雌雄各 38 匹の偽処理群(Sham 群)がそれぞれ対照群として設定されており、粒子を吸入させた各群では沈着量が同程度となるようにして実施された。この結果、偽処理群(Sham 群)の $3/74~\rm E$ 、CeO₂群の $3/40~\rm E$ に肺腫瘍がみられたが、両群で上気道や肝臓での腫瘍の発生はなかった 7,26 。

Wistar ラット雌雄各 $20\sim23$ 匹を 1 群とし、セリウムを含む希土類元素の硝酸塩混合物を 0、2、60、1,800 mg/kg/day の用量で 2 年間混餌投与した結果、2 mg/kg/day 以上の群で腫瘍の発生率は対照群よりも低かった。なお、混合物にはセリウム、ランタン、ネオジム、プ

ラセオジム、サマリウムの希土類元素が 35、14、8、0.8、0.2%の割合(残りは硝酸)で含まれていた $^{18)}$ 。

〇 ヒトに関する発がん性の知見

ヒトでの発がん性に関する情報は得られなかった。

(4) 健康リスクの評価

① 評価に用いる指標の設定

非発がん影響については一般毒性に関する知見が得られているが、生殖・発生毒性については十分な知見が得られていない。また、発がん性についても十分な知見が得られず、ヒトに対する発がん性の有無については判断できない。このため、閾値の存在を前提とする有害性について、非発がん影響に関する知見に基づき無毒性量等を設定することとする。

経口ばく露については、中・長期毒性エ)のラットの試験から得られた希土類元素の硝酸塩混合物のNOAEL 60 mg/kg/day(体重増加の抑制)をセリウムに換算した 21 mg/kg/day が信頼性のある最も低用量の知見と判断し、これを無毒性量等に設定する。

吸入ばく露については、中・長期毒性オ)のラットの試験から得られた酸化セリウムの LOAEL を $5~\text{mg/m}^3$ (気管支リンパ節のリンパ組織増生など)をばく露状況で補正して $0.89~\text{mg/m}^3$ とし、LOAEL であるために 10~で除し、さらに試験期間が短いことから 10~で除した $0.0089~\text{mg/m}^3$ が信頼性のある最も低濃度の知見と判断し、これをセリウムに換算した $0.0072~\text{mg/m}^3$ を無毒性量等に設定する。

② 健康リスクの初期評価結果

表3.3 経口ばく露による健康リスク (MOE の算定)

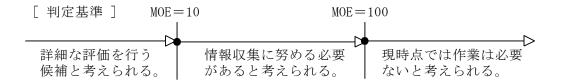
ばく詞	露経路・媒体	平均ばく露量	予測最大ばく露量	無毒性量等	等	MOE
経口	飲料水	_	_	21 mg/kg/day	コット	_
准口	土壌	0.16 μg/kg/day 程度	0.45 μg/kg/day 程度	21 mg/kg/day	ノット	4,700

注:ばく露量及び無毒性量等はセリウムとしての値を示す。

経口ばく露については、土壌を摂取すると仮定した場合、セリウムの平均ばく露量は 0.16 $\mu g/kg/day$ 程度、予測最大ばく露量は 0.45 $\mu g/kg/day$ 程度であった。無毒性量等 21 mg/kg/day と予測最大ばく露量から、動物実験結果より設定された知見であるために 10 で除して求めた MOE(Margin of Exposure)は 4,700 となる。

従って、土壌からの本物質の経口ばく露による健康リスクについては、現時点では作業は必要ないと考えられるが、飲料水等からのばく露量については不明であるため、経口ばく露については情報収集等を行う必要性がある。

表 3.4 吸入ばく露による健康リスク (MOE の算定)


ばく露経路・媒体		平均ばく露濃度	予測最大ばく露濃度	無毒性量等		MOE
吸入	環境大気	0.0012 μg/m³程度	0.0078 μg/m³程度	0.0072 mg/m ³	ラット・	92
	室内空気	_	_			_

注:ばく露濃度及び無毒性量等はセリウムとしての値を示す。

吸入ばく露については、一般環境大気中の濃度についてみると、セリウムの平均ばく露濃度は $0.0012~\mu g/m^3$ 程度、予測最大ばく露濃度は $0.0078~\mu g/m^3$ 程度であった。無毒性量等 $0.0072~m g/m^3$ と予測最大ばく露濃度から、動物実験結果より設定された知見であるために 10 で除して求めた MOE は 92 となる。

従って、本物質の一般環境大気の吸入ばく露による健康リスクについては、情報収集に努める必要があると考えられる。

なお、ナノ材料としての酸化セリウムについては、その粒子が極めて小さいために代謝・ 動態や毒性等が異なると考えられることから、ばく露情報等を踏まえ、別途、リスク評価の 必要性について検討する必要がある。

4. 生態リスクの初期評価

本物質については、水生生物に対する毒性値および水質中濃度に関して十分に適切な知見が得られなかったため、次回以降にとりまとめることとした。

5. 引用文献等

(1) 物質に関する基本的事項

- 1) 化学工業日報社(2010): 15710 の化学商品.
- 2) 化学大辞典編集委員(1963): 化学大辞典(縮刷版) 共立出版.
- 3) 越後谷悦郎ら(監訳)(1986): 実用化学辞典 朝倉書店.
- 4) Sidney L. Phillips (1997): Properties of Inorganic Compounds: Version 2.0,Boca Raton, CRC Press. (CD-ROM).
- 5) 農林水産省農業環境技術研究所 (1990): 農業環境研究叢書 第5号 微量元素・化学物質と農業生態系. 養腎堂.
- 6) 隅田隆、中里哲也、田尾博明 (2003): ミニカラム濃縮/誘導結合プラズマ質量分析法による海洋深層水中の微量元素の多元素同時定量. 分析化学. 52(8):619-626.
- 7) (独)石油天然ガス・金属鉱物資源機構(2008):鉱物資源マテリアル・フロー2007. (http://www.jogmec.go.jp/mric_web/jouhou/material_flow_frame.html, 2009.1.16 現在),
- 8) 経済産業省 (2003): 化学物質の製造・輸入量に関する実態調査(平成 13 年度実績)の確報値,(http://www.meti.go.jp/policy/chemical_management/new_page/10/2.htm, 2005.10.現在)
- 9) 経済産業省 (2007): 化学物質の製造・輸入量に関する実態調査(平成 16 年度実績)の確報値(http://www.meti.go.jp/policy/chemical_management/kasinhou/jittaichousa/kakuhou18.html, 2007.4.6 現在)
- 10) 経済産業省(2009): 化学物質の製造・輸入量に関する実態調査(平成 19 年度実績)の確報値,(http://www.meti.go.jp/policy/chemical_management/kasinhou/kakuhou19.html, 2009.12.28 現在).
- 11) 財務省:貿易統計, (http://www.customs.go.jp/toukei/info/, 2009.12.28 現在).

(2) ばく露評価

- 1) 環境省水・大気環境局大気環境課(2009): 平成 20 年度大気汚染状況について(有害大気 汚染物質モニタリング調査結果).
- 2) 環境省水・大気環境局大気環境課(2008): 平成 19 年度地方公共団体等における有害大気 汚染物質モニタリング調査結果について.
- 3) 環境省水・大気環境局大気環境課(2007): 平成 18 年度地方公共団体等における有害大気 汚染物質モニタリング調査結果について.
- 4) 環境省水・大気環境局大気環境課(2006): 平成 17 年度地方公共団体等における有害大気 汚染物質モニタリング調査結果について.
- 5) 環境省水・大気環境局大気環境課(2005): 平成 16 年度地方公共団体等における有害大気 汚染物質モニタリング調査結果について.
- 6) 環境省水・大気環境局大気環境課(2004): 平成 15 年度地方公共団体等における有害大気 汚染物質モニタリング調査結果について.
- 7) 環境省水・大気環境局大気環境課(2000): 平成 11 年度地方公共団体等における有害大気 汚染物質モニタリング調査結果について.

- 8) Akira Takeda, Kazuhiko Kimura and Shin-ichi Yamasaki (2004): Analysis of 57 elements in Japanese soils, with special reference to soil group and agricultural use. Geoderma. 119(3-4):291-307.
- 9) 松永武, 柳瀬信之, 半澤有希子, 都築克紀, 長縄弘親 (2007): 有害性金属元素の降雨時河川流出機構. JAEA-Research 2007-056.
- 10) 水戸誠哉, 大畑昌輝, 古田直樹 (2003): イミノニ酢酸キレート樹脂をカラムとして用いる全自動オンラインカラム誘導結合プラズマ質量分析法による河川水に含まれる希土類元素の定量. 分析化学. 52(8):575-582.
- 11) 赤木右 (2002): 希土類元素群からみた多摩川水系の化学的評価. 財団法人 とうきゅう 環境浄化財団学術研究成果報告書. (研究助成・学術研究 VOL. 30-No.217).

(3) 健康リスクの初期評価

- 1) Inaba, J. and F.W. Lengemann (1972): Intestinal uptake and whole-body retention of ¹⁴¹Ce by suckling rats. Health Phys. 22: 169-175.
- 2) Kostial, K., B. Kargačin, M. Blanuša and M. Landeka (1989): Location of mercury, cerium and cadmium in the gut of suckling and weaned rats. Period. Biol. 91: 321-326.
- 3) Shiraishi,Y. and R. Ichikawa (1972): Absorption and retention of ¹⁴⁴Ce and ⁹⁵Zr- ⁹⁵Nb in newborn, juvenile and adult rats. Health Phys. 22: 373-378.
- 4) Mraz, F.R. and G.R. Eisele (1977): Gastrointestinal absorption and distribution of ¹⁴⁴Ce in the suckling pig. Health Phys. 33: 494-495.
- 5) Eisele, G.R., F.R. Mraz and M.C. Woody (1980): Gastrointestinal uptake of ¹⁴⁴Ce in the neonatal mouse, rat and pig. Health Phys. 39: 185-192.
- 6) Thomas, R.L., J.K. Scott and T.L. Chiffelle (1972): Metabolism and toxicity of inhaled ¹⁴⁴Ce in rats. Radiat. Res. 49: 589-610.
- 7) Lundgren, D.L., F.F. Hahn, J.H. Diel and M.B. Snipes (1992): Repeated inhalation exposure of rats to aerosols of ¹⁴⁴CeO₂. I. Lung, liver, and skeletal dosimetry. Radiat. Res. 132: 312-324.
- 8) Kanapilly, G.M. and R.J. Luna (1975): Deposition and retention of inhaled condensation aerosols of ¹⁴⁴CeO₂ in Syrian hamsters. Annual report of the Inhalation Toxicology Research Institute. Report No. LF-52; pp. 79–83.
- 9) Morgan, B.N., R.G. Thomas and R.O. McClellan (1970): Influence of chemical state of cerium-144 on its metabolism following inhalation by mice. Am. Ind. Hyg. Assoc. J. 31: 479-484.
- 10) Sturbaum, B., A.L. Brooks and R.O. McClellan (1970): Tissue distribution and dosimetry of ¹⁴⁴Ce in Chinese hamsters. Radiat. Res. 44: 359-367.
- 11) Boecker, B.B. and R.G. Cuddihy (1974): Toxicity of ¹⁴⁴Ce inhaled as ¹⁴⁴CeCl₃ by the beagle: metabolism and dosimetry. Radiat. Res. 60: 133-154.
- 12) Hahn, F.F., B.A. Muggenburg, M.B. Snipes and B.B. Boecker (2001): The toxicity of insoluble cerium-144 inhaled by beagle dogs: non-neoplastic effects. Radiat. Res. 155: 95-112.

- 13) Sabbioni, E., R. Pietra, P. Gaglione, G. Vocaturo, F. Colombo, M. Zanoni and F. Rodi (1982): Long-term occupational risk of rare-earth pneumoconiosis. A case report as investigated by neutron activation analysis. Sci. Total Environ. 26: 19-32.
- 14) Vocaturo, G., F. Colombo, M. Zanoni, F. Rodi, E. Sabbioni and R. Pietra (1983): Human exposure to heavy metals. Rare earth pneumoconiosis in occupational workers. Chest. 83: 780-783.
- 15) Pietra, R., E. Sabbioni, L. Ubertalli, E. Orvini, G. Vocaturo, F. Colombo and M. Zanoni (1985): Trace elements in tissues of a worker affected by rare earths pneumoconiosis. A study carried out by neutron activation analysis. J. Radioanal. Nucl. Chem. 92: 247-259.
- 16) US National Institute for Occupational Safety and Health, Registry of Toxic Effects of Chemical Substances (RTECS) Database.
- 17) Bruce, D.W., B.E. Hietbrink and K.P. Dubois (1963): The acute mammalian toxicity of rare earth nitrates and oxides. Toxicol. Appl. Pharmacol. 5: 750-759.
- 18) Ji, Y.J. and M.Z. Cui (1988): Toxicological studies on safety of rare earths used in agriculture. Biomed. Environ. Sci. 1: 270-276.
- 19) 後藤稠, 池田正之, 原一郎編 (1981): 産業中毒便覧・増補版. 医歯薬出版.
- 20) Cheng, Y., Y. Li, R. Li, J. Lu and K. Wang (2000): Orally administrated cerium chloride induces the conformational changes of rat hemoglobin, the hydrolysis of 2,3-DPG and the oxidation of heme-Fe(II), leading to changes of oxygen affinity. Chem. Biol. Interact. 125: 191-208.
- 21) Kumar, B.P., K. Shivakumar, C.C. Kartha and K. Rathinam (1996): Magnesium deficiency and cerium promote fibrogenesis in rat heart. Bull. Environ. Contam. Toxicol. 57: 517-524.
- 22) Kartha, C.C., J.T. Eapen, C. Radhakumary, V.R. Kutty, K. Ramani and A.V. Lal (1998): Pattern of cardiac fibrosis in rabbits periodically fed a magnesium-restricted diet and administered rare earth chloride through drinking water. Biol. Trace Elem. Res. 63: 19-30.
- 23) Kawagoe, M., F. Hirasawa, S. Cun Wang, Y. Liu, Y. Ueno and T. Sugiyama (2005): Orally administrated rare earth element cerium induces metallothionein synthesis and increases glutathione in the mouse liver. Life Sci. 77: 922-937.
- 24) Viau, A. (1994): A 13-week inhalation toxicity and neurotoxicity study by nose-only exposure of a dry powder aerosol of ceric oxide in the albino rat. Volume I. Bio-Research Laboratories. NTIS/OTS0556254.
- 25) Lundgren, D.L., F.F. Hahn, W.C. Griffith, A.F. Hubbs, K.J. Nikula, G.J. Newton, R.G. Cuddihy and B.B. Boecker (1996): Pulmonary carcinogenicity of relatively low doses of beta-particle radiation from inhaled ¹⁴⁴CeO₂ in rats. Radiat. Res. 146: 525-535.
- 26) Lundgren, D.L., F.F. Hahn and J.H. Diel (1992): Repeated inhalation exposure of rats to aerosols of ¹⁴⁴CeO₂. II. Effects on survival and lung, liver, and skeletal neoplasms. Radiat. Res. 132: 325-333.
- 27) 田中昭代,大村実,平田美由紀,尾方里香,槇田裕之,井上尚英,篠原厚子,千葉百子 (2001): 希土類元素のラットへの反復経気道性曝露実験-1. 肺毒性-. 日衛誌. 43: 455.
- 28) 田中昭代,大村実,平田美由紀,槇田裕之,井上尚英 (2002): 希土類元素のラットを用いた反復経気道性曝露による生体影響.大気環境学会九州支部総会研究発表会講演要旨集. 23-24.

- 29) 平野靖史郎(2008): ナノ粒子・ナノ材料の健康問題 -その1-「ナノ粒子健康影響の動向」. 日衛誌. 63: 36-41.
- 30) Yu, L., Z. Chen and Y. Wang (2001): Effect of rare earth element cerium (Ce) on abnormality rate of sperm and testosterone secretion in sera of male mice. Nanjing Nongye Daxue Xuebao 24: 77-80. (in Chinese with English abstract).
- 31) Kawagoe, M., K. Ishikawa, S.C. Wang, K. Yoshikawa, S. Arany, X.P. Zhou, J.S. Wang, Y. Ueno, Y. Koizumi, T. Kameda, S. Koyota and T. Sugiyama (2008): Acute effects on the lung and the liver of oral administration of cerium chloride on adult, neonatal and fetal mice. J. Trace Elem. Med. Biol. 22: 59-65.
- 32) 大村実,田中昭代,平田美由紀,尾方里香,槇田裕之,井上尚英 (2000): 希土類元素による精巣障害の検討.日衛誌.42:209.
- 33) 大村実,田中昭代,平田美由紀,尾方里香,槇田裕之,井上尚英,篠原厚子,千葉百子 (2001): 希土類元素のラットへの反復経気道性曝露実験-2. 雄性生殖毒性-. 日衛誌. 43: 456.
- 34) Valiathan, M.S., C.C. Kartha, V.K. Panday, H.S. Dang and C.M. Sunta (1986): A geochemical basis for endomyocardial fibrosis. Cardiovasc. Res. 20: 679-682.
- 35) Valiathan, M.S., C.C. Kartha, J.T. Eapen, H.S. Dang and C.M. Sunta (1989): A geochemical basis for endomyocardial fibrosis. Cardiovasc. Res. 23: 647-648.
- 36) Kutty, V.R., S. Abraham and C.C. Kartha (1996): Geographical distribution of endomyocardial fibrosis in south Kerala. Int. J. Epidemiol. 25: 1202-1207.
- 37) Gómez-Aracena, J., R.A. Riemersma, M. Gutiérrez-Bedmar, P. Bode, J.D. Kark, A. Garcia-Rodríguez, L. Gorgojo, P. Van't Veer, J. Fernández-Crehuet, F.J. Kok and J.M. Martin-Moreno; Heavy Metals and Myocardial Infarction Study Group (2006): Toenail cerium levels and risk of a first acute myocardial infarction: the EURAMIC and heavy metals study. Chemosphere. 64: 112-120.
- 38) McDonald, J.W., A.J. Ghio, C.E. Sheehan, P.F. Bernhardt and V.L. Roggli (1995): Rare earth (cerium oxide) pneumoconiosis: analytical scanning electron microscopy and literature review. Mod. Pathol. 8: 859-865.
- 39) Pairon, J.C., F. Roos, P. Sébastien, B. Chamak, I. Abd-Alsamad, J.F. Bernaudin, J. Bignon and P. Brochard (1995): Biopersistence of cerium in the human respiratory tract and ultrastructural findings. Am. J. Ind. Med. 27: 349-358.
- 40) Porru, S., D. Placidi, C. Quarta, E. Sabbioni, R. Pietra and S. Fortaner (2001): The potencial role of rare earths in the pathogenesis of interstitial lung disease: a case report of movie projectionist as investigated by neutron activation analysis. J. Trace Elem. Med. Biol. 14: 232-236.
- 41) Yoon, H.K., H.S. Moon, S.H. Park, J.S. Song, Y. Lim and N. Kohyama (2005): Dendriform pulmonary ossification in patient with rare earth pneumoconiosis. Thorax. 60: 701-703.
- 42) 清水英佑, 鈴木勇司, 竹村望, 後藤純雄, 松下秀鶴 (1985): 工業化学物質 43 種類の突然変 異原性について. 産業医学. 27: 400-419.

- 43) Park, B., P. Martin, C. Harris, R. Guest, A. Whittingham, P. Jenkinson and J. Handley (2007): Initial *in vitro* screening approach to investigate the potential health and environmental hazards of EnviroxTM a nanoparticulate cerium oxide diesel fuel additive. Part. Fibre Toxicol. 4:12.
- 44) Nishioka, H. (1975): Mutagenic activities of metal compounds in bacteria. Mutat. Res. 31: 185-189.
- 45) Sharma, A., and G. Talukder (1987): Effects of metals on chromosomes of higher organisms. Environ. Mutagen. 9: 191-226.