参考資料

参考資料 1 地下水汚染シミュレーションの適応と限界について

シミュレーションは、あるシステムの動態を調べる場合に、そのシステムを構成する基本要素 (パラメータ)を抽出して、現実の状態を反映できるモデルを構築し、そのモデルで数値実験を行う手法と定義できる。

土壌・地下水汚染問題では、地域に与える社会的影響が大きいため、すべての箇所で直接野外実験を行い、 その効果を確認することは困難である。こうした場合に、地下水汚染シミュレーションが実施される。地下 水汚染シミュレーションは、モデル上で汚染物質の挙動が観察でき、さらにいろいろな対策を立案したとき、 その効果を具体的に検討できる有効な手法である。

しかし、その一方で、シミュレーション結果の評価については、シミュレーションの持つ特性と限界を十分に考慮して、抽出した構成要素(パラメータ)がシステムの動態をどの程度再現しうるのか慎重に検討する必要がある。

具体的には、モデル化する対象領域がシステムを十分反映できる大きさであるか、得られた結果が観測された現象から逸脱していないか、抽出した構成要素(パラメータ)がシステムを再現するのに十分であるか、などである。

また、これらの検討が十分に行われたとしても、それでも、すべての事象が数量化されモデル化されるわけではないことに留意する必要がある。

茨城県神栖市における地下水汚染問題をシミュレーションで取り扱う場合、地下水流れと汚染物質輸送を 適切にモデル化することになる。

地下水の流れと汚染物質輸送は、降雨、浸透、蒸発、水利用(水田、揚水)などいろいろな条件が相互に 影響しあっている。

シミュレーションは、原理上、これら多くの条件を含めた計算が可能であるが、全ての条件を厳密に数量化して取り込むことは難しく、学術的に許容される範囲内でモデル化(単純化)を行っている。

例えば、対象とする範囲の地盤情報(地質や透水性など)、家庭用・事業用井戸や水田などにおける地下水利用量、水田や裸地からの雨水浸透量などをモデルに組み込むためには合理的な仮定、水田からの地下浸透量は場所によらず一定など、が必要である。

また、今回の地下水汚染シミュレーションでは、汚染源の設定が非常に重要であるが、当初の汚染物質量や濃度については、汚染初期の正確な数値がわからないので、汚染土壌掘削時の観測データを基に予測して使用している。

このような制約がある中で、今回の地下水汚染シミュレーションは、気象、地盤、地下水位、水利用、汚染濃度など、できる限り現場で収集・整理したデータを使用しており、また水文地質学の基本的法則に基づきモデル化した上で、一定の仮定条件の下で計算を行っているものである。また、その結果が現実の事象と矛盾ないかを確認するものである。

参考資料 2 投入されたジフェニルアルシン酸(DPAA)の総量の推計

投入されたジフェニルアルシン酸(DPAA)の総量について、 地下水中に溶出した量、 汚染源掘削調査により撤去したコンクリート様の塊中に含まれていた量、 汚染源掘削調査により撤去した土壌中に含まれていた量、 土壌中に残留している量、をそれぞれ推計し、それらの合計値から算出した。

1) 地下水中に溶出した量

『汚染メカニズム中間報告書』では、地下水中に溶出したジフェニルアルシン酸(DPAA)の量について、地下水モニタリングによるジフェニルアルシン酸(DPAA)平均濃度と汚染地下水の体積から推計している。溶出した量は、既に揚水された量、表示された領域外にある量は含まれないが、最大で114.41kg(ヒ素換算)とされている。

参考表 1 地下水中ジフェニルアルシン酸(DPAA)総量試算結果							
時期	濃度区分	総体積	地下水体積*1	DPAA 重量 *2 kg		平均濃度	
中寸共力	(μg-As/L)	m^3	m³	DPAA として	As として	μg-As/L	
初期	10000 <	489	122	6.00	1.71	14034	
	1000 <	34070	8518	77.51	22.14	2600	
	100 <	190263	47566	112.21	32.05	674	
	10 <	1117956	279489	137.93	39.40	141	
	1 <	2681397	670349	143.12	40.89	61	
	10000 <	8102	2026	143.90	41.11	20299	
	1000 <	50321	12580	260.00	74.28	5905	
夏	100 <	445045	111261	353.98	101.13	909	
	10 <	1881396	470349	395.09	112.88	240	
	1 <	4160435	1040109	400.44	114.41	110	
秋	10000 <	3247	812	44.49	12.71	15659	
	1000 <	90726	22682	311.11	88.88	3919	
	100 <	186878	46720	339.79	97.08	2078	
	10 <	738638	184660	353.53	101.00	547	
	1 <	1699612	424903	356.92	101.97	240	
冬	10000 <	0.018	0				
	1000 <	3449	862	2.60	0.74	862	
	100 <	277258	69315	60.89	17.39	251	
	10 <	915303	228826	84.09	24.02	105	
	1 <	2742727	685682	88.80	25.37	37	
. 地工业体理性,炒体理、左边眼哗啦(0.05)							

参考表 1 地下水中ジフェニルアルシン酸(DPAA)総量試算結果

DPAA としての重量は、262(DPAA 分子量) / 75(A s 分子量) 3.5 より、3.5 x 【As としての重量】 「茨城県神栖町における汚染メカニズム解明調査 中間報告書」5-107 頁

^{*1:}地下水体積は、総体積×有効間隙率(0.25)

^{*2:} DPAA 重量は、総体積×有効間隙率(0.25)×平均濃度

2) 撤去したコンクリート様の塊中に含まれていた量

汚染源掘削調査を実施した後、コンクリート様の塊については、塊あるいは施工区分ブロック毎にフレコンバッグに詰め込んだ際に重量がそれぞれ計測され、蛍光 X 線分析により総ヒ素濃度が推定されている。この結果を用いて、コンクリート様の塊中に含まれていたヒ素量が算出できる。算出の結果、コンクリート様の塊の総重量は約 100.6 トンとなり、塊中に水分量が 20%あると仮定すると、総ヒ素量は約 63kg となった。

なお、コンクリート様の塊の総重量について、『中間報告書追補版』では約 87 トンとされているが、本記載と数値が相違する理由としては、コンクリート様の塊の掘削・撤去を行う際に、塊と近接していた周辺 土壌の一部を一緒に掘削し、フレコンバッグに詰め込んだことが挙げられる。

参考表 2	撤去したコン	クリ) —	ト様の塊の重量と総ヒ素量
-------	--------	----	------------	--------------

	掘削日	合計重量	推定総ヒ素濃度	総ヒ素量
トレンチT4	H17.1.5	(kg) 3,610	(mg/kg) 500	(g) 1,444
トレンチT5	H17.1.7, 11	120	500	48
塊 - 3下部	H17.2.25	5,910	500	2,364
塊周辺	H17.1.14 ~ 15	4,110	500	1,644
本掘削東西1層目(E1、W1)	H17.1.8 ~ 9	690	500	276
本掘削トレンチ東側延長3層目(E3)	H17.1.13	570	500	228
本掘削トレンチ東側延長4、5層目(E4、5)	H17.1.14	630	500	252
本掘削西側2層目(W2)	H17.1.15, 17 ~ 18	5,590	500	2,236
本掘削西側3層目(W3)	H17.1.19 ~ 20	3,780	500	1,512
本掘削西側4層目(W4)	H17.1.27 ~ 28	3,720	500	1,488
本掘削西側5層目(W5)	H17.2.1 ~ 2	3,080	500	1,232
本掘削東側3層目(E3)	H17.1.20 ~ 21	1,500	500	600
本掘削東側4層目(E4)	H17.1.26 ~ 27	2,970	500	1,188
本掘削東側5層目(E5)	H17.1.31 ~ H17.2.1	1,500	500	600
土留め時フレコン土壌	H16.12.25 ~ 27	1,590	500	636
トレンチT2	H16.12.26 ~ 27	160	500	64
トレンチT3	H16.12.28	2,970	500	1,188
塊 - 1	H17.2.25 ~ 26	6,440	510	2,628
塊 -A	H17.7.12 ~ 13	27,760	730	16,212
塊 - 1	H17.2.22 ~ 23	5,600	740	3,315
塊	H17.7.13	6,520	820	4,277
塊 - 1	H17.2.9	970	830	644
ブロック水面下掘削	H17.3.2 ~ 3	780	1000	624
ブロック水面下掘削	H17.3.1	2,140	1000	1,712
塊 - 2	H17.2.23	4,740	1400	5,309
塊 - 3上部	H17.2.23	3,190	4500	11,484
コンクリート様の塊 合計	100,640	628	63,205	

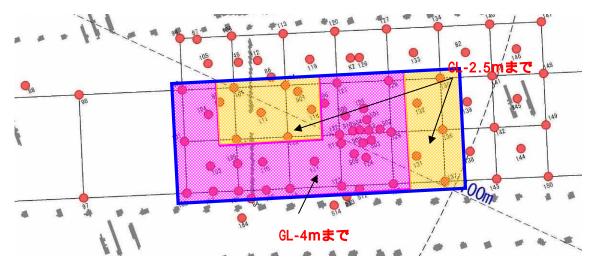
(平成17年度茨城県神栖地区における汚染解明のための調査等業務報告書より一部編集)

総ヒ素量 = 合計重量 x推定総ヒ素濃度 x (1 - 水分含有率(20%))

3) 撤去した土壌中に含まれていた量

汚染源掘削調査により撤去した土壌について、2)と同様に重量と推定総ヒ素濃度から総ヒ素量を算出した 結果、土壌の総重量は約2,001トンとなり、土壌中に水分量が20%あると仮定すると、総ヒ素量は約311kg となった。なお、推定ヒ素濃度は、蛍光X線による分析値である。

参考表3 撤去した土壌の重量と総ヒ素量


	掘削日	合計重量 (kg)	推定総ビ素濃度 (mg/kg)	総ヒ素量 (g)
本掘削東側2層目(E2)	H17.1.12 ~ 13	91,090	16	1,166
本掘削西側2層目(W2)	H17.1.15、17~18	114,400	25	2,288
本掘削東側1層目(E1)	H17.1.8 ~ 9	94,690	25	1,894
ブロック掘削 (-2.5 ~ 3m)	H17.6.29	43,000	31	1,066
トレンチT2	H16.12.26 ~ 27	31,220	32	799
本掘削トレンチ東側延長3層目(E3)	H17.1.13	33,190	32	850
本掘削西側1層目(W1)	H17.1.9 ~ 11	137,560	32	3,522
トレンチT1	H16.12.24 ~ 25	37,140	38	1,129
西上1	H17.7.7 ~ 8	28,610	40	916
西上2	H17.7.7	28,300	40	906
本掘削東側3層目(E3)	H17.1.20 ~ 21	56,100	42	1,885
本掘削西側3層目(W3)	H17.1.19 ~ 20	93,480	43	3,216
西上4	H17.7.6	26,250	50	1,050
ブロック水面下掘削	H17.4.6	73,490	60	3,528
西1(3.1m以深)	H17.7.13	4,190	61	204
西下1	H17.7.12	28,310	61	1,382
西上3	H17.7.6 ~ 7	31,230	90	2,249
土留め時フレコン土壌	H16.12.25 ~ 27	79,130	100	6,330
廃棄フレコン袋(予想)		20,000	100	1,600
本掘削西側4層目(W4)	H17.1.27 ~ 28	112,790	102	9,204
西下4	H17.7.11	17,560	110	1,545
トレンチT3	H16.12.28	27,950	115	2,571
本掘削東側4層目(E4)	H17.1.26 ~ 27	75,100	116	6,969
西下3	H17.7.11	2,520	140	282
本掘削東側5層目(E5)	H17.1.31 ~ H17.2.1	78,010	147	9,174
本掘削西側5層目(W5)	H17.2.1 ~ 2	106,350	153	13,017
ブロック水面下掘削	H17.3.2 ~ 3, H17.4.6	69,260	155	8,588
日物ドラム缶分	H17.7.2 ~ 19	43,600	200	6,976
西下2	H17.7.11 ~ 12	24,930	250	4,986
トレンチT4	H17.1.5	22,860	325	5,944
本掘削トレンチ東側延長4、5層目(E4、5)	H17.1.14	41,850	340	11,383
プロック水面下掘削	H17.3.2 ~ 3	36,650	366	10,731
ブロック(3/2~3) + ブロック(3/24)水面下掘削	H17.3.2 ~ 3、H17.3.24	70,570	449	25,349
ブロック水面下掘削	H17.3.1	38,970	482	15,027
トレンチT5	H17.1.7、11	5,960	713	3,400
鬼 周辺	H17.1.14 ~ 15	77,950	1000	62,360
	H17.2.22 ~ 23	18,020	1000	14,416
塊周辺土壌 	H17.2.23	31,440	1000	25,152
塊周辺土壌 	H17.2.25	6450	1000	5,160
現周辺土壌 ・	H17.2.26	41,070	1000	32,856
		2,001,240	10,081	311,068
		2,001,240	10,001	311,000

(平成 17 年度茨城県神栖地区における汚染解明のための調査等業務報告書より一部編集)

総ヒ素量 = 合計重量 x推定総ヒ素濃度 x (1 - 水分含有率(20%))

4) 土壌中に残留している量

土壌中に残留しているヒ素量は、ボーリングコアの土壌分析結果に基づいて推計した。推計対象範囲は A 井戸周辺とし、汚染源掘削調査により既に撤去した土壌は除外した。なお、AB 間、B 地区等については、 ボーリングコアデータ数が少なく、かつ濃度は A 井戸周辺よりも小さいため、推計対象範囲から除外した。

参考図 1 掘削調査における掘削深度区分

土壌の単位体積重量を 18kN/m³ と仮定すると、0.01mg-As/kg 以上の土壌体積は約 103 千 m³ となり、これからジフェニルアルシン酸(DPAA)の量を試算すると、約 73kg(ヒ素換算)となった。

なお、ここでのジフェニルアルシン酸(DPAA)の量は、土壌の間隙水中のジフェニルアルシン酸(DPAA) も含んだ値となる。

参考表 4 濃度別の十壌体積とジフェニルアルシン酸(DPAA)量(ヒ素

濃度区分	土壌体積	平均濃度	DPAA重量
mg-As/kg	m ³	mg-As/kg	kg
200 <	0.00	240.0700	0.00
100 <	0.04	146.9400	0.01
50 <	0.13	92.9930	0.02
20 <	0.34	55.1620	0.03
10 <	73.53	11.7500	1.56
5 <	1,206.16	6.7115	14.57
2 <	4,942.78	3.9195	34.87
1 <	9,794.92	2.7362	48.24
0.5 <	17,122.40	1.8622	57.39
0.2 <	28,921.34	1.2386	64.48
0.1 <	42,845.90	0.8879	68.48
0.05 <	58,764.46	0.6682	70.68
0.02 <	82,040.90	0.4896	72.30
0.01 <	103,316.93	0.3928	73.05

DPAA 重量 = 土壌体積 × 単位体積重量 × 平均濃度

5) 投入されたジフェニルアルシン酸(DPAA)の総量

1) ~ 4)より、投入されたジフェニルアルシン酸(DPAA)の総量を推計すると、 $562 \log ($ ヒ素換算量) となった。

参考表 5 ジフェニルアルシン酸(DPAA)の総量(推計値)

区分		今回試算量(ヒ素換算値)	中間報告書追補版・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		重量	試算対象	(ヒ素換算値)
地下水	地下水中に溶出した量	114kg	DPAA	
土壌	土壌中に残留している量	73kg	DPAA	
上 城 	撤去した土壌中 の量	311kg	総ヒ素	
コンクリー ト様の塊	撤去したコンク リ塊中の量	63kg	総ヒ素	
î	含 計	562kg		290kg (DPAA) 530kg (総ヒ素)

この総量について、『中間報告書追補版』において記載した DPAA 総量 290kg (ヒ素換算値) 総ヒ素総量 530kg (ヒ素換算値)と比較しても概ね整合した値となった。

なお、今回試算した推計値について、ジフェニルアルシン酸(DPAA)を試算対象としたものと、総ヒ素を 試算対象としたものがあるが、個々の数値についてはそれぞれ不確実な要素があるため、ここでは総ヒ素 DPAA と仮定して算出している。