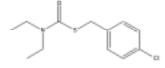
[39]チオベンカルブ

1.物質に関する基本的事項

(1)分子式・分子量・構造式


物質名:チオベンカルブ

(別の呼称:ベンチオカーブ)

CAS 番号: 28249-77-6 分子式: C₁₂H₁₆CINOS

分子量:257.8

構造式:

(2)物理化学的性状

本物質は黄白色から茶色がかった黄色の液体である1)。

融点	3.3 1)
沸点	$126 \sim 129 (0.008 \text{mmHg})^{2}$
比重	$1.145 \sim 1.180(20)^{1}$
蒸気圧	2.2×10^{-5} mmHg(25)
n-オクタノール/水分配係数 (log Pow)	3.421)
水溶性	28.0mg/L(25) ³⁾

(3)環境運命に関する基礎的事項

本物質の分解性及び濃縮性は次のとおりである。

分解性

好気的:半減期は12日との報告がある4)。

嫌気的:40 日以上で分解しなかったとの報告がある4)。

非生物的:

(OH ラジカルとの反応性): 大気中での速度定数を 2.25 x 10⁻¹¹cm³/分子・sec(25)、OH ラジカル濃度 5 x 10⁵分子/cm³ とした時の半減期は約 15 時間と計算される ⁵⁾。

生物濃縮係数 (BCF): $170(モツゴ)^{6}$ 、 $66(willow shiner)^{7}$ 、 $209(オイカワ)^{8}$ 、 $523(アユ)^{8}$ 、 $68(オイカワ)^{9}$ 、 $56(アユ)^{9}$ 、 $248(カワムツ)^{9}$ 、 $65(willow shiner)^{9}$ 、 $170(モツゴ)^{9}$ 、 $382(メダカ)^{9}$ 、 $714(black silver carp、<math>88\mu mol/L)^{10}$ 、 $1,772(black silver carp、<math>9\mu mol/L)^{10}$

(4) 製造輸入量及び用途

生産量・輸入量等

本物質の平成 12 農薬年度の国内生産量は乳剤が 33.9kL であり、輸出量は原体が 2,312.0t、 製剤が 139.2kL である ¹¹⁾。

用途

本物質の用途は除草剤である11)。

2. 暴露評価

環境リスクの初期評価のため、水生生物の生存・生育を確保する観点から、実測データを もとに基本的には特定の排出源の影響を受けていない一般環境等からの暴露を評価すること とし、安全側に立った評価の観点からその大部分がカバーされる高濃度側のデータによって 暴露量の評価を行った。原則として統計的検定の実施を含めデータの信頼性を確認した上で 最大濃度を評価に用いている。なお、多数のデータが得られている場合は、95 パーセンタイ ル値を参考として併記している。

(1) 環境中分布の予測

チオベンカルブの環境中の分布について、各環境媒体間への移行量の比率を EUSES モデル を用いて算出した結果を表 2.1 に示す。なお、モデル計算においては、面積 2,400km²、人口 約800万人のモデル地域を設定して予測を行った1)。

,	コペンパルンひ	
		分布量(%)
大	気	0.0
大水	質	1.4
土	壌	70.1
底	質	28.5

表2.1 チオベンカルブの各媒体間の分布予測結果

(2) 各媒体中の存在量の概要

チオベンカルブの水質及び底質中の濃度について情報の整理を行った。各媒体ごとにデー 夕の信頼性が確認された調査例のうち、より広範囲の地域で調査が実施されたものを抽出し た結果を表 2.2 に示す。

表2.2 チオベンカルブの水質、底質中の存在状況										
媒体		幾何平均值	算術平均值	最小値	最大値	検出下限 値	検出率	調査地域	測定年	煉文
公共用水域・淡水	μg/L	<2	<2	<0.3	6	0.3~5	26/2946	全国	2000	2
		<2	<2	<0.3	4	0.3~5	38/3059	全国	1999	3
		<2	<2	<0.2	12	0.2~5	21/3022	全国	1998	4
公共用水域・海水	μg/L	<2	<2			0.3~5	0/614	全国	2000	2
		<2	<2			0.3~5	0/671	全国	1999	3
		<2	<2			0.3~5	0/677	全国	1998	4
底質(公共用水域・	淡水)μg/g	<44	<44			44	0/26	全国	1992	5
底質(公共用水域・	海水) μg/g	<44	<44			44	0/30	全国	1992	5

(3) 水生生物に対する暴露の推定(水質に係る予測環境中濃度:PEC)

チオベンカルブの水生生物に対する暴露の推定の観点から、水質中濃度を表 2.3 のように整理した。水質について安全側の評価値として予測環境中濃度 (PEC)を設定すると、公共用水域の淡水域では 6μg/L 程度、同海水域では 5μg/L 未満となった。なお、公共用水域において、1998 年から 2000 年までの間に環境中濃度の著しい変化は認められなかった。

农2.3 小負中のナイベノカルノの底皮											
媒体	平	均	最 大 値 等								
	濃	度	濃 度								
水質											
公共用水域・淡水	2μg/L未満	(2000)	6μg/L程度 [2μg/L未満] (2000)								
			(1998年~2000年の検出最大値とし								
			て12μg/Lが得られている(1998))								
公共用水域・海水	2μg/L未満	(2000)	5μg/L未満 [2μg/L未満] (2000)								

表2.3 水質中のチオベンカルブの濃度

注):1)[]内の数値は、実測値の95パーセンタイル値を示す。

3. 生態リスクの初期評価

生態リスクの初期評価として、水生生物に対する化学物質の影響(内分泌撹乱作用に関するものを除く)についてのリスク評価を行った。

(1) 生態毒性の概要

本物質の水生生物に対する影響濃度に関する知見の収集を行い、その信頼性を確認したものについて生物群、毒性分類別に整理すると表 3.1 のとおりとなる。

生物種	急	慢	毒性値	生物名	エンドポイン	ト 暴露期間	ſ	言頼性	±	Ref.
	性	性	[µg/L]		/影響内容	[日]	a	b	c	No.
藻類			5	Scenedesmus acutus	NOEC BMS	4				17114
			17	Selenastrum capricornutum	NOEC BMS	3				環境庁
			17	Selenastrum capricornutum	NOEC GRO	3				環境庁
			<u>17</u>	Scenedesmus acutus	EC ₅₀ BMS	4				17114
			17.34	Selenastrum capricornutum	EC ₅₀ GRO	3				16019
			20.3	Selenastrum capricornutum	EC ₅₀ BMS	3				8032
			41	Selenastrum capricornutum	EC ₅₀ BMS	3				環境庁
			52	Selenastrum capricornutum	EC ₅₀ GRO	3				環境庁
			327	Skeletonema costatum	EC ₅₀ BMS	4				3644
			370	Pseudoanabena galeata	EC ₅₀ BMS	4				17114
			640	Skeletonema costatum	EC ₅₀ BMS	4				5297
			920	Chlorella saccharophila	NOEC BM	S 4				17114
			3,277	Chlorella vulgaris	EC ₅₀ BMS	3				8032
			4,000	Chlorella saccharophila	EC ₅₀ BMS	4				17114
甲殼類			3.2	Neomysis mercedis	NOEC MO	R 56				13463
			200	Daphnia magna	NOEC REI	21				環境庁
			200	Procambarus clarkii	LC ₅₀ MOR	4				11621

表3.1 生態毒性の概要

²⁾公共用水域・淡水は、河川河口域を含む。

生物種	急	慢	毒性値	生物名	エンドポイント		暴露期間	1	言頼性	ŧ	Ref.
	性	性	[µg/L]		/影	響内容	[日]	a	b	c	No.
			304	Neomysis mercedis	LC_{50}	MOR	4				13463
			330	Mysidopsis bahia	LC_{50}	MOR	4				15639
			470	Procambarus clarkii	LC_{50}	MOR	4				11621
			1,300	Daphnia magna	EC ₅₀	IMM	2				環境庁
魚類			<21	Morone saxatilis	NOEC	GRO	45				15472
			21	Morone saxatilis	NOEC	MOR	45				15472
			28	Oncorhynchus tshawytscha	NOEC	GRO	88				15472
			140	Oncorhynchus tshawytscha	NOEC	MOR	88				15472
			430	Morone saxatilis	LC ₅₀	MOR	4				15472
			760	Oncorhynchus tshawytscha	LC ₅₀	MOR	4				12136
			760	Morone saxatilis	LC ₅₀	MOR	4				12136
			790	Salmo gairdneri	LC ₅₀	MOR	4				12136
			890	Anguilla japonica	LC ₅₀	MOR	2				5016
			1,300	Oryzias latipes	LC ₅₀	MOR	4				環境庁
			1,800	Ictalurus punctatus	LC_{50}	MOR	4				12136
その他			1,200	Cloeon dipterum	TLm	MOR	2				5761
			6,500	Brachionus calyciflorus	LC ₅₀	MOR	1				5096

太字の毒性値は、PNEC 算出の際に参照した知見として本文で言及したもの、下線を付した毒性値は PNEC 算出の根拠として採用されたものを示す。

信頼性) a:毒性値は信頼できる値である、b:ある程度信頼できる値である、c:毒性値の信頼性は低いあるいは不明 エンド・ポークト) EC50 (Median Effective Concentration): 半数影響濃度、LC50 (Median Lethal Concentration): 半数致死濃度、NOEC (No Observed Effect Concentration): 無影響濃度、TLm (Median Tolerance Limit): 半数生存限界濃度

影響内容)BMS(Biomass):現存量、GRO(Growth): 生長(植物) 成長(動物) IMM(Immobilization): 遊泳阻害、MOR(Mortality): 死亡、REP (Reproduction): 繁殖、再生産

(2) 予測無影響濃度 (PNEC) の設定

急性毒性値及び慢性毒性値のそれぞれについて、信頼できる知見のうち生物群ごとに値の最も低いものを整理し、そのうち最も低い値に対して情報量に応じたアセスメント係数を適用することにより、予測無影響濃度(PNEC)を求めた。

急性毒性値については、藻類では Scenedesmus acutus に対する生長阻害の 96 時間半数影響 濃度 (EC_{50}) が $17\mu g/L$ 、甲殻類では Neomysis mercedis に対する 96 時間半数致死濃度 (LC_{50}) が $304\mu g/L$ 、魚類では Morone saxatilis に対する 96 時間半数致死濃度 (LC_{50}) が $430\mu g/L$ 、その他の生物ではカゲロウ類の Cloeon dipterum に対する 48 時間半数生存限界濃度 (TL_m) が $1,200\mu g/L$ であった。急性毒性値について 3 生物群 (藻類、甲殻類及び魚類)及びその他の生物の信頼できる知見が得られたため、アセスメント係数として 100 を用いることとし、上記の毒性値のうちその他の生物を除いた最も低い値 (藻類の $17\mu g/L$) にこれを適用することにより、急性毒性値による PNEC として $0.17\mu g/L$ が得られた。

慢性毒性値については、藻類では Scenedesmus acutus に対する生長阻害の 96 時間無影響濃度 (NOEC)が $5~\mu$ g/L、甲殻類では Neomysis mercedis に対する生残の 56~日間無影響濃度 (NOEC)が $3.2~\mu$ g/L、魚類では Morone saxatilis に対する成長の 45~日間無影響濃度 (NOEC)が $21~\mu$ g/L 未満であった。慢性毒性値について 3~生物群(藻類、甲殻類及び魚類)の信頼できる知見が得られたため、アセスメント係数として 10~を用いることとし、上記の毒性値のうち最も低い値 (甲殻類の $3.2~\mu$ g/L)にこれを適用することにより、慢性毒性値による PNEC として $0.32~\mu$ g/L が得られた。


本物質の PNEC としては、 藻類の急性毒性値をアセスメント係数 100 で除した $0.17~\mu g/L$ を採用する。

(3) 生態リスクの初期評価結果

表3.2 生態リスクの初期評価結果

媒体		平均濃度	最大値[95 パーセンタイル値]濃度	PNEC	PEC/
			(PEC)		PNEC 比
水質	公共用水域·淡水域	2μg/L未満 (2000)	6μg/L程度 [2μg/L未満] (2000) (1998年 ~ 2000年の検出最大値 として12μg/Lが得られている(1998))	0.1	35 (71)
	公共用水域·海水域	2μg/L未満 (2000)	5μg/L未満 (2000)		<29

- 注):1)環境中濃度での[]内の数値は、実測値の95パーセンタイル値を示す。
 - 2)環境中濃度での()内の数値は測点年を示す。
 - 3)公共用水域・淡水は、河川河口域を含む。
 - 4)PEC/PNEC比()内の数値は1999年~2001年の最大値との比を示す。

本物質の公共用水域における濃度は、平均濃度でみると淡水域・海水域共に 2µg/L 未満で 検出限界値未満であった。安全側の評価値として設定された予測環境中濃度 (PEC) は、淡 水域で 6µg/L 程度、海水域では 5µg/L 未満であった。

予測環境中濃度 (PEC) と予測無影響濃度 (PNEC) の比は、淡水域で 35 となるため、詳細な評価を行う候補と考えられる。海水域ではこの比は 29 未満となるため、現時点では生態リスクの判定はできない。本物質は除草剤であり、大部分は土壌と底質に分布すると予測されている。しかし、PNEC 値は 0.17µg/L と小さい値を示している。したがって、今後は、検出下限値を見直した上で、散布時期や頻度等を考慮して、海水域における環境中濃度の測定を優先的に行う必要があると考えられる。

4. 引用文献等

(1)物質に関する基本的事項

- 1) Tomlin, C.D.S. (ed.). The Pesticide Manual World Compendium, 11 th ed., British Crop Protection Council, Surrey, England 1997 1192. [Hazardous Substances Data Bank (以下、HSDB)]
- 2) Lide, D.R. (ed.). CRC Handbook of Chemistry and Physics. 79th ed. Boca Raton, FL: CRC Press Inc., 1998-1999.,p. 3-320. [HSDB]
- 3) Wauchope RD et al; Rev Environ Contam Toxicol 123: 1-36 (1991). [HSDB]
- 4) Kawamoto K, Urano K; Chemosphere 21: 1141-52 (1990). [HSDB]
- 5) Meylan WM, Howard PH; Chemosphere 26: 2293-99 (1993). [HSDB]
- 6) Kanazawa J; Pestic Sci 12: 417-24 (1981). [HSDB]

- 7) Tsuda T et al; Toxicol EnvironChem 18: 31-6 (1988). [HSDB]
- 8) Tsuda T et al; Toxicol Environ Chem 34: 39-55 (1991). [HSDB]
- 9) Tsuda T et al; Bull Environ Contam Toxicol 57: 442-9 (1996). [HSDB]
- 10) Lin KH et al; Pestic Sci 49: 178-84 (1997). [HSDB]
- 11) 化学工業日報社(2002): 14102 の化学商品

(2)暴露評価

- 1: (財)日本環境衛生センター 平成 13 年度化学物質の暴露評価に関する調査報告書(環境 庁請負業務)
- 2:環境省環境管理局水環境部:平成12年度公共用水域水質測定結果
- 3:環境庁水質保全局水質規制課:平成11年度公共用水域水質測定結果
- 4: (株)富士総合研究所:水質年鑑 2000 年版、平成12年3月
- 5:環境庁保健調査室:平成5年版化学物質と環境
- (3) 生態リスクの初期評価
 - 1)データベース: U.S.EPA「AQUIRE」
 - 2) 引用文献 (Ref. No.: データベースでの引用文献番号)
 - 3644: Borthwick, P.W., and G.E. Walsh (1981): Initial Toxicological Assessment of Ambush, Bolero, Bux, Dursban, Fentrifanil, Larvin, and Pydrin: Static Acute Toxicity Tests with Selected Estuarine. EPA 600/4-81-076, U.S.EPA, Gulf Breeze, FL:9.
 - 5016: Wang, Y.S., C.G. Jaw, H.C. Tang, T.S. Lin, and Y.L. Chen (1992): Accumulation and Release of Herbicides Butachlor, Thiobencarb, and Chlomethoxyfen by Fish, Clam, and Shrimp. Bull.Environ.Contam.Toxicol. 48(3):474-480.
 - 5096: Fernandez-Casalderrey, A., M.D. Ferrando, and E. Andreu-Moliner (1992): Acute Toxicity of Several Pesticides to Rotifer (*Brachionus calyciflorus*). Bull.Environ.Contam.Toxicol. 48(1):14-17.
 - 5297: Walsh, G.E., and S.V. Alexander (1980): A Marine Algal Bioassay Method: Results with Pesticides and Industrial Wastes. Water Air Soil Pollut.13(1):45-55.
 - 5761: Hashimoto, Y., and Y. Nishiuchi (1981): Establishment of Bioassay Methods for the Evaluation of Acute Toxicity of Pesticides to Aquatic Organisms. J.Pestic.Sci.6(2):257-264.
 - 8032 : Kasai, F., and S. Hatakeyama (1993) : Herbicide Susceptibility in Two Green Algae, *Chlorella vulgaris* and *Selenastrum capricornutum*. Chemosphere 27(5):899-904.
 - 11621 : Sommer, T.R. (1983) : Laboratory and Field Studies on the Toxic Effects of Thiobencarb (Bolero) to the Crawfish *Procambarus clarkii*. J.World Maricult.Soc. 14:434-440.
 - 12136: Finlayson, B.J., and G.A. Faggella (1986): Comparison of Laboratory and Field Observations of Fish Exposed to the Herbicides Molinate and Thiobencarb. Trans. Am. Fish. Soc. 115(6):882-890.
 - 13463: Bailey, H.C. (1993): Acute and Chronic Toxicity of the Rice Herbicides Thiobencarb and Molinate to Opossum Shrimp (*Neomysis mercedis*). Mar.Environ.Res. 36(4):197-215.

- 15472: Fujimura, R., B. Finlayson, and G. Chapman (1991): Evaluation of Acute and Chronic Toxicity Tests with Larval Striped Bass. In: M.A.Mayes and M.G.Barron (Eds.), Aquatic Toxicology and Risk Assessment, ASTM STP 1124, Philadelphia, PA 14:193-211.
- 15639: Schimmel, S.C., R.L. Garnas, J.M. PatrickJr., and J.C. Moore (1983): Acute Toxicity, Bioconcentration, and Persistence of AC 222,705, Benthiocarb, Chlorpyrifos, and Fenvalerate, Methyl Parathion, and Permethrin in. J.Agric.Food Chem. 31(1):104-113.
- 16019: Hatakeyama, S., S. Fukushima, F. Kasai, and H. Shiraishi (1994): Assessment of Herbicide Effects on Algal Production in the Kokai River (Japan) Using a Model Stream and *Selenastrum* Bioassay. Ecotoxicology 3(2):143-156.
- 17114: Sabater, C., and J.M. Carrasco (1996): Effects of Thiobencarb on the Growth of Three Species of Phytoplankton. Bull.Environ.Contam.Toxicol. 56(6):977-984.
- 3)環境庁(1998):平成9年度 生態影響試験実施事業報告