
第4章

防護の考え方

放射線防護の枠組み、線量限度、線量低減について説明します。

放射線による影響から人の健康を守る上での原則や、被ばく線量を低減するための方法についての知識を身につけることができます。東京電力福島第一原子力発電所の事故後の食品の出荷制限や避難指示区域設定の基準値の根拠となった線量限度の考え方について理解したい場合や、放射線防護の考え方を知りたい場合にご参照ください。

毎年、世界の研究者から、放射線の線源や影響に関する研究が多数発表されます。 原子放射線の影響に関する国連科学委員会(UNSCEAR)は、幅広い研究結果を 包括的に評価し、国際的な科学コンセンサスを政治的に中立の立場からまとめ、定期 的に報告書の形で見解を発表しています。

民間独立の国際学術組織である国際放射線防護委員会(ICRP)は、UNSCEARの報告等を参考にしながら、専門家の立場から放射線防護の枠組みに関する勧告を行っています。ICRPの勧告や、国際原子力機関(IAEA)が策定した国際的な合意形成による基本安全基準を踏まえ、日本でも放射線防護に関する法令や指針等が定められています。

本資料への収録日:2013年3月31日

防護の原則

国際放射線防護委員会(ICRP)

国際放射線防護委員会(ICRP)

放射線防護の基本的な枠組みと防護基準を勧告することを目的とする。 主委員会と4つの専門委員会(放射線影響、線量概念、医療被ばくに 対する防護、勧告の適用)で構成されている。

(参考) ICRPの勧告より、線量限度について抜粋

	1977年 勧告	1990年 勧告	2007年 勧告	2007年
線量限度 (職業人)	50mSv/年	100mSv/5年 かつ 50mSv/年	100mSv/5年 かつ 50mSv/年	勧告 1990年 勧告
線量限度 (一般公衆)	5 mSv/年	1 mSv/年	1 mSv/年	1977年 勧告

mSv: ミリシーベルト

1928年、医療従事者を放射線の障害から防ぐために国際 X 線ラジウム防護委員会が設立されました。1950年に、国際 X 線ラジウム防護委員会は、国際放射線防護委員会 (ICRP) に改組され、放射線防護の基本的な枠組みと防護基準を勧告する機関という重要な役割を担うことになりました。近年では1977年、1990年、2007年に勧告を行っています(上巻 P159「勧告の目的」)。ICRP が勧告を発表すると、多くの国では放射線防護関係の法令の見直しが行われます(上巻 P173「国際放射線防護委員会 (ICRP) 勧告と我が国の対応」)。

ICRPの勧告の骨格は、原爆被爆者の疫学調査を始めとする広範な科学的知見を基にしており、1990年以降、確定的影響(組織反応)と確率的リスクの総合的な推定値は基本的には変わらないとして、これまでの防護体系がほぼ踏襲されています。

本資料への収録日:2013年3月31日

勧告の目的

勧告の目的(国際放射線防護委員会(ICRP) 2007年勧告)

1)人の健康を防護する

・ 放射線による被ばくを管理し、制御することにより、確定的影響(組織反応)を防止し、確率的影響のリスクを合理的に達成できる程度に減少させる

2) 環境を防護する

・ 有害な放射線影響の発生の防止、又は頻度の低減

出典: ICRP Publication 103「国際放射線防護委員会の2007年勧告」The International Commission on Radiological Protection(国際放射線防護委員会)、2007より作成

国際放射線防護委員会(ICRP)の勧告の目的は、「放射線被ばくに関連して、望ましい人間の努力及び行動を不当に制限せずに、放射線被ばくによる有害な影響から人間と環境を守るための適正な水準の防護に寄与すること」とされています。

この目的達成には、「放射線被ばくとその健康影響に関する科学的知見は必要な前提条件ではあるが、防護の社会的・経済的側面にも考慮しなければならず、この点は、危険の管理に関する他の分野と異なるものではない」と、2007年勧告には記載されています。

勧告の主目的は、人の健康の防護にありますが、2007年勧告では、新たに環境を 防護するという目的が追加されました。

本資料への収録日:2013年3月31日

被ばく状況と防護対策

放射線による人の被ばく状況

計画被ばく状況

被ばくが生じる前に防護 対策を計画でき、被ばく の大きさと範囲を合理的 に予測できる状況

線量限度

(一般公衆)1mSv/年 (職業人)100mSv/5年 かつ50mSv/年

対策

放射性廃棄物処分、長 寿命放射性廃棄物処分 の管理等

現存被ばく状況

管理についての決定が なされる時点で既に被ば くが発生している状況

参考レベル

1~20mSv/年のうち低 線量域、

長期目標は1mSv/年

対策

自助努力による放射線 防護や放射線防護の文 化の形成等

緊急時被ばく状況

急を要するかつ、長期的 な防護対策も要求される かもしれない不測の状況

参考レベル。

20~100mSv/年の範囲

対策

避難、屋外退避、放射線 状況の分析・把握、モニ タリングの整備、健康調 査、食品管理等

出典: ICRP Publication 103「国際放射線防護委員会の2007年勧告」The International Commission on Radiological Protection(国際放射線防護委員会)、2007より作成

国際放射線防護委員会(ICRP)は人の被ばく状況を、計画的に管理できる平常時(計画被ばく状況)、事故や核テロ等の非常事態(緊急時被ばく状況)、事故後の回復や復旧の時期等(現存被ばく状況)の3つの状況に分けて、防護の基準を定めています。

平常時には、身体的障害を起こす可能性のある被ばくがないようにした上で、将来起こるかもしれないがんのリスクの増加もできるだけ低く抑えるように防護の対策を行うこととされています。そのため、放射線や放射性物質を扱う場所の管理をすることで、一般公衆の線量限度が年間1ミリシーベルト以下になるように定めています。また、放射線を扱う職業人には、5年間に100ミリシーベルトという線量限度が定められています。

一方、放射線事故のような非常事態が起こった場合(緊急時被ばく状況)、平常時には起こり得ない身体的障害の可能性があることから、平常時の対策(将来起こるかもしれないがんのリスクの増加を抑えること)よりも、重大な身体的障害を防ぐための対策を優先することとされています。このため、線量限度は適用せず、一般公衆の場合、年間20~100ミリシーベルトの間の参考レベルを定め、被ばく低減を進めることが定められています。緊急措置や人命救助に従事する人の場合、状況に応じて1,000または500ミリシーベルトを制限の目安とすることもあるとされています。

その後、回復・復旧の時期(現存被ばく状況)に入ると、緊急時の参考レベルよりは低く平常時の線量限度よりは高い、年間1~20ミリシーベルトの間に設定されるべきとされています。

(関連ページ:上巻 P173 「国際放射線防護委員会 (ICRP) 勧告と我が国の対応 ()

本資料への収録日:2013年3月31日

防護の原則

生物学的側面

放射線の健康影響には、 確定的影響(組織反応)と確率的影響がある

- ・約100ミリグレイまでの吸収線量域では、どの組織も臨床的 に意味のある機能障害を示すとは判断されない
- ・約100ミリシーベルトを下回る線量域では、確率的影響の 発生率は臓器や組織の等価線量の増加に比例して増加する と仮定する (直線しきい値なしモデル=LNTモデルの採用)
- ・ 固形がんに対する線量・線量率効果係数は「2」
- ・低線量において、直線的反応を仮定すると、がんと遺伝性 影響による致死リスクは1シーベルト当たり約5%

出典: ICRP Publication 103「国際放射線防護委員会の2007年勧告」The International Commission on Radiological Protection(国際放射線防護委員会)、2007より作成

国際放射線防護委員会 (ICRP) の勧告の目的の一つは、放射線に対する防護体系を構築するための考察や仮定を与えることによって、確定的影響 (組織反応) の発生を防止することにあります。そこで、しきい値の最小値である100ミリグレイ (=100ミリシーベルト) 近くまで年間線量が増加した場合には、防護対策を導入すべきと考えられています。

年間およそ100ミリシーベルトを下回る場合は、確率的影響の発生の増加は低い確率であり、バックグラウンド線量を超えた放射線量の増加に比例すると仮定する「直線しきい値なし(LNT)モデル」が、低線量・低線量率での放射線防護の管理に実用的で、予防原則の観点からもふさわしいとされています。

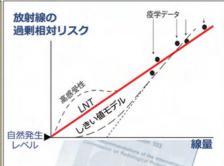
ICRP が根拠としている原爆被爆者のデータは、1回の被ばくである一方で、管理すべき被ばくのほとんどは、長期間の少しずつの被ばくです。そのため、低線量・低線量率による影響軽減分の補正が行われています。動物実験やヒトの細胞における染色体異常や突然変異誘発の結果等から、様々な数値が報告されていますが、防護のためには係数として2を使うと定められています(上巻 P116「低線量率被ばくの発がんへの影響」)。つまり1回被ばくに比べ、少しずつの被ばくでは、同じ総線量を受けた場合の影響の出方が半分になるということです。

こうした補正を行った結果、致死的ながんリスクの増加は、低線量や低線量率の場合1シーベルト当たり約5%になると考えられています。

(関連ページ:上巻 P86「確定的影響(組織反応)と確率的影響」)

本資料への収録日:2013年3月31日

防護の原則


LNTモデルをめぐる論争

○支持:

全米科学アカデミー(2006) 放射線被ばくには「これ以下なら 安全」と言える量はない

○批判的:

- フランス医学・科学アカデミー (2005)
 - 一定の線量より低い放射線被ばくでは、がん、白血病等は実際には生じず、LNTモデルは現実に合わない過大評価

⇒国際放射線防護委員会 (ICRP) は、放射線防護の目的上、単純かつ合理的な仮定として、直線しきい値なし (LNT) モデルを採用

科学的な議論としては、100ミリシーベルト以下の確率的影響のリスク評価に直線しきい値なし(LNT)モデルが妥当であるかどうかということについての決着はついてはいません。例えば、全米科学アカデミー(NAS)では、2006年にLNTモデルは科学的にも妥当との見解を発表しました。100ミリシーベルト以下でもがんリスク上昇が見られる疫学的証拠があるとしています。

一方、フランスの医学アカデミーと科学アカデミーは共同で、一定の線量より低い被ばくでは、がん、白血病等は実際には生じず、LNTモデルは現実に合わない過大評価である、という見解を2005年に発表しています。ここでは、インドや中国の高自然放射線地域の住民のデータに発がんリスクの増加が見えないこと、低線量放射線に特異的な防御的生物反応が次々と見つかったことが根拠となっています。

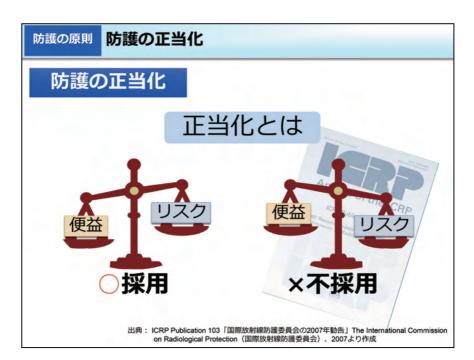
国際放射線防護委員会(ICRP)の勧告では、LNTモデルと線量・線量率効果係数の2を用いることで、放射線防護の実用的目的、すなわち、低線量被ばくのリスクの管理においてより単純かつ合理的な仮定を提供するとしています。一方で同勧告では、「低線量における不確実性を考慮すると多数の人々がごく小さい線量を長期間受けることによるがんまたは遺伝性疾患の仮想的な症例数を計算することは、公衆の健康を計画する目的には適切ではないと判断する」ともしています。

(関連ページ:上巻 P86「確定的影響(組織反応)と確率的影響」)

44.44

- The National Academy of Sciences, "Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2", 2006.
- Aurengo, A. et al., "Dose-effect relationships and estimation of the carcinogenic effects of low doses of ionizing radiation", Académie des Sciences - Académie nationale de Médecine, 2005.
- ICRP Publication 103 「国際放射線防護委員会の2007年勧告」, ICRP, 2007.

本資料への収録日:2013年3月31日


国際放射線防護委員会(ICRP)の防護の三原則

- ・正当化
- ・防護の最適化
- ・線量限度の適用

出典: ICRP Publication 103「国際放射線防護委員会の2007年勧告」The International Commission on Radiological Protection(国際放射線防護委員会)、2007より作成

がんや遺伝性影響では、影響の現れ方が確率的です。また現在の放射線防護では、低線量域でも直線しきい値なし(LNT)モデルを適用していますので(上巻 P166 [LNT モデルをめぐる論争」)、安全と危険を明確に区分することはできません。そこで、どんなに小さくとも有限のリスクがあるものとして、「リスクを容認できる」ことを基準に、防護のレベルが考えられています。これが放射線防護の原則として「正当化」「防護の最適化」「線量限度の適用」が重要であると考えられる基盤になっています(上巻 P168 「防護の正当化」、上巻 P169 「防護の最適化」、上巻 P171 「線量限度の適用」)。

本資料への収録日:2013年3月31日

放射線防護の原則の1つ目は正当化です。放射線を使う行為は、もたらされる便益 (ベネフィット、メリット)が放射線のリスクを上回る場合のみ認められるという大 原則です。

正当化は「放射線を扱う行為」に対してのみ適用されるものではなく、被ばくの変化をもたらす活動全てが対象となります。別の言い方をすれば、計画被ばく状況だけではなく、緊急時被ばく状況及び現存被ばく状況にも適用されます。例えば、汚染地域の除染を検討する場合にも、正当化が求められます。

(関連ページ:上巻 P98「放射線健康影響におけるリスク」)

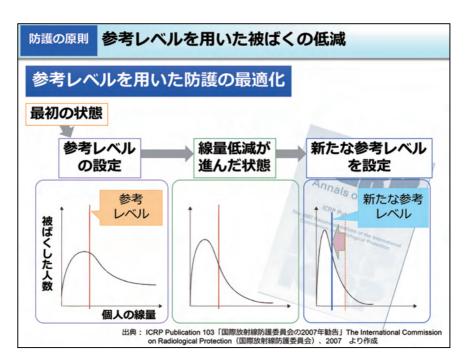
本資料への収録日:2013年3月31日

防護の最適化

防護の最適化

個人の被ばく線量や人数を、 経済的及び社会的要因を考慮に入れた上、 合理的に達成できる限り低く保つことである。

この原則をALARA (As Low As Reasonably Achievable) アララの原則という



出典: ICRP Publication 103「国際放射線防護委員会の2007年勧告」The International Commission on Radiological Protection(国際放射線防護委員会)、2007より作成

放射線防護の原則の2つ目は防護の最適化です。放射線を伴う行為のメリットが放射線のリスクを上回る場合は、合理的に達成可能な限り被ばく量を減らして、放射線を利用します。この原則は、英語の頭文字から「ALARA(アララ)の原則」と呼ばれています。防護の最適化とは、社会・経済的なバランスも考慮しつつ、できるだけ被ばくを少なくするよう努力するということで、必ずしも被ばくを最小化するということではありません。

防護の最適化を進めるために利用されるのが、線量拘束値や参考レベルです。例えば、除染等によって特定の線源からの個人に対する線量を制限する際の目安として、参考レベルが用いられています。

本資料への収録日:2013年3月31日

原子力発電所事故等による被ばくを合理的に低減する方策を進めるときには、国際放射線防護委員会(ICRP)の2007年勧告における参考レベルという概念が用いられています。事故や核テロのような非常事態が起こった場合には、緊急時被ばく状況として、重大な身体的障害を防ぐことに主眼をおいて対応します。このため、線量限度(計画被ばく状況における全ての規制された線源からの被ばくに対するもの)は適用せず、一般人の場合で年間20~100ミリシーベルトの間に参考レベルを定め、それ以下に被ばくを抑えるように防護活動を実施します。平常時には起こり得ない身体的障害が、非常時には起こり得ます。そこで、その防護対策が、平常時の対策(将来起こるかもしれないがんのリスクの増加を抑えること)より優先して行われます。その後、回復・復旧の時期(現存被ばく状況)には、一般人の場合で年間1~20ミリシーベルトの間に参考レベルが定められ、防護の最適化が行われます。

一人一人が受ける線量がばらついている状況において、不当に高い被ばくを受ける人がいないようにすることが参考レベルの目的です。全体の防護のための方策を考える際に、参考レベルを超えて被ばくするおそれのある人がいる場合には、それらの人々に重点的に対策を講じます。その結果、集団内の線量分布が改善し、参考レベルよりも高い線量を受ける人がほとんどいない状況が達成されたときには、必要に応じて、さらに低い参考レベルを設定して線量低減を進めます。このように、状況に合わせて適切なレベルを設定することで、被ばく低減を効率的に進めることができます。

本資料への収録日:2013年3月31日

防護の原則

線量限度の適用

線量限度は計画被ばく状況に適用される

○職業人 (実効線量)

1年間 50 ミリシーベルト 5年間 100 ミリシーベルト

○一般公衆 (実効線量)

1年間 1 ミリシーベルト

(例外) 医療被ばくには適用しない

- ・個々のケースで正当化
- ・防護の最適化が重要

出典: ICRP Publication 103「国際放射線防護委員会の2007年勧告」The International Commission on Radiological Protection(国際放射線防護委員会)、2007より作成

かつ

Annals of the ICRP

放射線防護の原則の3つ目は、線量限度の適用です。国際放射線防護委員会 (ICRP) の2007年勧告では、放射線作業 (緊急時の作業を除く)を行う職業人の実 効線量の限度は5年間で100ミリシーベルト、特定の1年間に50ミリシーベルトと 定められています。

一般公衆の場合、実効線量限度が年間1ミリシーベルトと定められています。

線量限度は、管理の対象となるあらゆる放射線源からの被ばくの合計が、その値を 超えないように管理するための基準値です。線量限度を超えなければそれでよいので はなく、防護の最適化によってさらに被ばくを下げる努力が求められます。このこと から、線量限度はそこまで被ばくしてよいという値ではなく、安全と危険の境界を示 す線量でもありません。

また、健康診断の際や、医療において患者が受ける医療被ばくには線量限度を適用しません。これは、医療被ばくに線量限度を適用すると、必要な検査や治療を受けられないケースが生じ、患者の便益を損なうおそれがあるからです。そのため、3つのレベル(医療における放射線の利用は患者に害よりも便益を多く与えること、特定の症状の患者に対する特定の手法の適用、個々の患者に対する個々の手法の適用)についての正当化と、診断参考レベルの適用等による線量の最適化を行うこととされています。

本資料への収録日:2013年3月31日

		職業	被ばく	公衆	公衆被ばく	
		国際放射線 防護委員会 (ICRP) 2007年勧告	放射線障害の防止に 関する法令 (日本) 2012年3月時点	国際放射線 防護委員会 (ICRP) 2007年勧告	放射線障害の防止 に関する法令 (日本) 2012年3月時点	
実効線量阿	泉量の 限度	定められた 5 年間 の平均が20mSv いかなる 1 年も 50mSv を超えるべ きでない	勧告に同じ	1mSv/年(例外 的に5年間の平均 が年当たり1mSv を超えなければ、 単一年に限度を超 えることが許され る場合がある)	線量限度の規定は ない(事業所境界 の線量限度、排気 排水の基準は1 mSv/年を基に設 定している)	
40等	眼水晶体	150mSv/年	150mSv/年	15mSv/年	_	
禁価 編	皮膚	500mSv/年	500mSv/年	50mSv/年	-	
量限度の	手先、足先	500mSv/年	_	_	-	
職業人	の場合)	妊娠の申告後、残りの妊娠期間に胚 /胎児への実効線 量が1mSvを超えないようにする	5mSv/3か月 妊娠の事実を知った 後、出産まで 腹部表面の等価線量 限度2mSv 内部被ばく1mSv		_	

日本の現行法令には、まだ、国際放射線防護委員会(ICRP)の2007年勧告の取り入れは行われていませんが、線量限度については、2007年勧告と1990年勧告に大きな違いはないため、ほぼ2007年勧告と合致しています。なお、職業人女性の線量限度(5ミリシーベルト/3か月)のように、日本特有の線量限度も存在します。

本資料への収録日:2013年3月31日

改訂日:2020年3月31日

国際放射線防	護委員会 (ICRP)勧告と我が国の対応
		東京電力福島第一原子力 発電所事故での対応
救命活動 (情報を知らされ た志願者)	他の者への利益が 救命者のリスクを 上回る場合は線量 制限なし	厚生労働省電離放射線障害防止規則の特例 緊急時被ばく限度を従来の100 mSvから250 mSvに一時的に
他の緊急救助活動	1,000または 500 mSv	引き上げ (2011年3月14日から同年12 月16日まで) 電離放射線障害防止規則の一 部を改正し、特例緊急被ばく の上限を 250mSv とした (2016年4月1日から施行)
緊急被ばく状況	20~100 mSv /年の 範囲で決める	例 計画避難地域での避難の基準: 20 mSv/年
復旧時 (現存被ばく状況)	1~20mSv /年の範 囲で決める	例 長期的に目標とする追加被ば く線量: 1 mSv/年
	国際放射線防護 2007 救命活動 (情報を知らされた志願者) 他の緊急救助活動 緊急被ばく状況 復旧時	双命活動 (情報を知らされ た志願者)

国際放射線防護委員会(ICRP)の2007年勧告の国内法令取り入れの審議中に、東京電力福島第一原子力発電所事故が起こりました。

事故によって被ばく状況が変わり、公衆被ばくについては、日本の法令にはない参考レベルの考え方が採用されました。参考レベルを用いた被ばく線量の線量管理においては、第一に、ICRP2007年勧告の被ばく状況に応じた線量目安を参考に、不当に高い被ばくを受ける人がいないように参考レベルを設定し、第二に、その参考レベルよりも高い線量を受ける人がほとんどいない状況が達成されたら、必要に応じて、さらに低い参考レベルを設定することで、線量低減を効率的に進めていくこととされています。

一方、職業被ばくについては、東京電力福島第一原子力発電所での災害拡大防止のために、特にやむを得ない場合として、緊急時の職業被ばくの線量限度については、一時的に特例として100ミリシーベルトから250ミリシーベルトに変更して対応されました。その後、原子炉が安定的な冷温停止状態を達成するための工程が完了したことを踏まえて、この特例も廃止されました。

また、今後、仮に原子力施設において原子力緊急事態等が発生した場合に備え、緊急作業期間中における放射線障害の防止に関する規定を整備する必要があり、あらかじめ、特例的な緊急時被ばく限度等に関する基準として250ミリシーベルトを上限とするよう電離放射線障害防止規則の一部が改正され、2016年4月1日から施行されることになりました。

(関連ページ:上巻 P170「参考レベルを用いた被ばくの低減」)

本資料への収録日:2013年3月31日

線量限度

食品中の放射性物質に関する指標

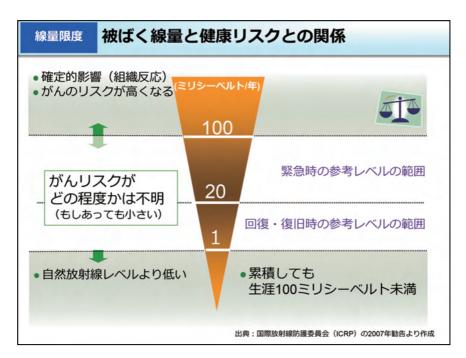
核種	日本	コーデックス	EU	米国
放射性 セシウム (単位: Bq/kg)	牛乳 50 乳児用食品 50 一般食品 100	乳児用食品 1,000 一般食品 1,000	乳製品 1,000 乳児用食品 400 一般食品 1,250	全ての食品 1,200
追加線量の 上限設定値	1mSv	1mSv	1mSv	5mSv
放射性物質を 含む食品の 割合の仮定値	50%	10%	10%	30%

- ※ コーデックス委員会は、消費者の健康の保護、食品の公正な貿易の確保等を目的として、 1963年に国際連合食糧農業機関(FAO)及び世界保健機関(WHO)により設置された 国際的な政府間機関であり、国際食品規格の策定を行っています。
- ※ 基準値は食品の摂取量や放射性物質を含む食品の割合の仮定値等の影響を考慮してありますので、数値だけを比べることはできません。
- ※ 飲料水の基準は、WHO放射性物質のガイダンスレベルを示し各国において参照されていること、各国の放射性物質の基準値は、想定する前提が異なるため、数値だけを比べることはできません。

出典:消費者庁「食品と放射能Q&A」より改変

我が国では2012年4月1日より、新たに食品中の放射性物質について「基準値」が設定されました。新しい基準値では食品を4項目に分類し、最も摂取頻度の高い「飲料水」については10ベクレル/kgと設定されました。

また、「一般食品」全てについては100ベクレル/kgという値が設定されました。 ただし、乳児が食べる「乳児用食品」と乳幼児の摂取量が多い「牛乳」については 50ベクレル/kgとされました。


一般食品として全部を一括りにした背景には、個々人の食習慣の違いから来る追加 被ばく線量の差を最小限にするという考えがありました。どんな食品を食べても、それらが基準値内であれば安全は確保できるという十分余裕を持った値として設定されました。

なお、各国の規制値が異なる理由は、規制値を設定する際に仮定した1年間の被ばく限度や、食品中の汚染率等が、それぞれの国等によって異なるためです(日本:被ばく限度は年間1ミリシーベルトまで。安全側に立ち一般食品は50%、牛乳・乳製品と乳児用食品は100%が汚染されていると仮定。コーデックス委員会:被ばく限度は年間1ミリシーベルトまで。食品中の10%が汚染されていると仮定)。

(関連ページ:下巻 P45「2012年4月からの基準値」、下巻 P51「基準値の計算の考え方(1/2)」、下巻 P52「基準値の計算の考え方(2/2)」)

本資料への収録日:2013年3月31日

改訂日:2020年3月31日

比較的短時間で受ける100~200ミリシーベルト以上の線量に対しては、確定的影響(組織反応)とがんになるリスクが上昇するという科学的証拠が存在します。そこで、放射線事故による緊急時には、まずは重大な身体的障害を防ぐため、年間100ミリシーベルト以上の被ばくをしないように参考レベルを設定します。事故の収束によって、はじめに設定した参考レベルよりも高い線量を受ける人がほとんどいない状況が達成されたときには、将来起こるかもしれないがんのリスクの増加をできるだけ低く抑えるため、さらに低い参考レベル(年間1~20ミリシーベルト等)を設定して、被ばくする線量の低減を進めます(上巻 P164「被ばく状況と防護対策」)。

平常時の基準値としては年間1ミリシーベルトが用いられます。そのため、被ばく量が年間1ミリシーベルトを超えると危険だとか、ここまで被ばくをしてもいいと誤解されることがありますが、線量限度は、安全と危険の境界線ではありません。

他方、1ミリシーベルトまで浴びてもよいわけではなく、諸事情を考慮して現実的 に可能な範囲で、できるだけ低く被ばくを抑えることが原則です。

(関連ページ:上巻 P117 「固形がんによる死亡と線量との関係」)

本資料への収録日:2013年3月31日

外部被ばくの低減三原則 線量低減 ①離れる (距離) ②間に重い物を置く ③近くにいる (遮へい) 時間を短く (時間) 4 離れると (毎時マイクロシーベルト)線量率 厚くすると 毎時マイクロシーベルト)線量率 (マイクロシーベルト) 短くすると 減る 2.0 放射性物質からの距離(m) コンクリートの厚さ(cm) 作業時間(h)

外部被ばくの線量を少なくするためには、3つの方法があります。

1つ目は離れるという方法です。放射性物質で汚染した土を取り除いて、生活の場から離す、という方法がこれに当たります。

2つ目は遮へいです。屋内にいるということや、放射性物質で汚染した土とその下の汚染していない土を入替え、汚染していない土を遮へい材として用いることもこの方法に当てはまります。

3つ目は、空間線量率が高い所にいる時間を短くするという方法です。

(関連ページ: ト巻 P50 「外部被ばく線量の特徴!)

本資料への収録日:2013年3月31日

内部被ばく - 原子力災害直後の対応 -

- 原則は口、鼻、傷口から入らないように
- 基準値以下の微量の放射性物質を過剰に心配して、食物の栄養バランスを崩さないように
- 放射性物質の放出の情報に気を付ける
- 土が身体、靴、服に付けばすぐに洗う

内部被ばくについては、呼吸を介した吸入と食品の摂取からの両方を考える必要があります。例えば、子供たちが空間放射線量が高い所で屋外活動をする場合を想定して線量計算すると、内部被ばくによる線量は2~3%程度であり、被ばくのほとんどは外部からの放射線によるものでした。そこで吸入による被ばくに関してはあまり神経質になることはないのですが、日頃の衛生管理(入浴、散髪、手洗い、掃除、洗濯等)をしっかり行うと一定の効果はあります。

一方、経口による被ばくに関しては、野生の食材のように、放射性セシウムの検出レベルの高い食品には注意することが必要です。特に、シダ類とキノコ類はセシウムを濃縮する性質があることから注意が必要です。食品中の放射性物質濃度は、厚生労働省や農林水産省から公表されています。

内部被ばくに関しては、ホールボディ・カウンタで測定することができます。ホールボディ・カウンタによる内部被ばく検査の機会は、一部の自治体や民間の病院等で提供されています。

本資料への収録日:2013年3月31日

線量低減

食品の調理・加工による放射性セシウムの除去

調理の過程で放射性物質の低減が可能

品目	調理・加工法	除去率 (%)
葉菜 (ほうれん草等)	水洗い-ゆでる	7~78
たけのこ	ゆでる	26~36
大根	皮むき	24~46
なめこ (生)	ゆでる	26~45
果物(葡萄、柿等)	皮むき	11~60
栗	ゆでる-渋皮まで皮むき	11~34
梅	塩漬け	34~43
桜葉	塩漬け	78~87
魚	ワカサギの南蛮漬け	22~32

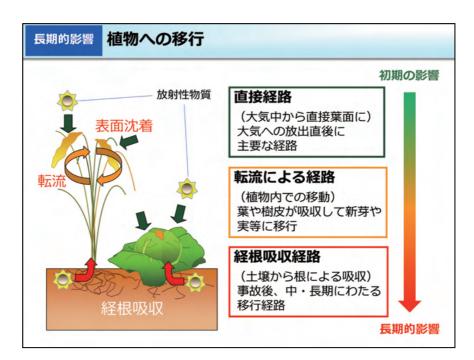
野生のものは大量に食べない

除去率(%) =
$$\left(1-\frac{$$
調理・加工後の食品(調理・加工品)中の放射能総量(Bq) $}$ $\right)$ \times 100

出典:原子力環境整備促進・資金管理センター「環境パラメータ・シリーズ増補版(2013年)食品の調理・加工による放射性核種の除去率 ーわが国の放射性セシウムの除去率データを中心に - 12013年9月より作成

東京電力福島第一原子力発電所事故の直後は、野菜から検出された放射性物質は表面に付いているだけでしたので、表面に付着した放射性物質はある程度洗い流すことができました。

現在では、野菜の表面に付着することはほとんどないのですが、土壌中に含まれる 放射性物質が部分的に根から吸収され野菜などの内部に入ることがあります。根から 吸収されて野菜の中に入ったセシウムも調理や加工するときの工夫によって放射性物質を除去することができます。

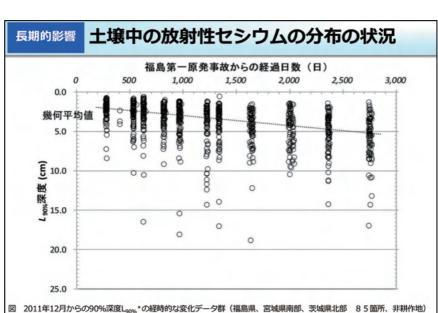

スライドの表は、食品の内部に取り込まれている放射性セシウムの除去率が示されています。

野菜をゆでる場合、ゆで時間が長いほど除去率が大きくなると考えられていますが、これは野菜の細胞に取り込まれていた放射性セシウムが、細胞が壊れることによって出てきてゆで湯に移行するためと考えられています。また、塩漬けの場合も塩漬けの時間が長いほど除去率が高くなるとされていますが、これは塩の成分のナトリウムと野菜の中に含まれている放射性セシウムが入れ替わることによるものと考えられています。

肉や魚も煮る場合は、放射性セシウムが移行した煮汁を捨てることにより、放射性物質の量を半分程度までは減らすことができるとされています。焼くよりも、ゆでたり煮た場合の方が除去率が高いことが分かっています。

データの詳細については、https://www.rwmc.or.jp/library/other/kankyo/を参照してください。

本資料への収録日:2017年3月31日


セシウム137は、半減期が30年と長いため、原子力発電所の事故等によって環境へ放出された場合、影響が長期化すると考えられます。環境中の放射性物質が作物の可食部(食べている所)に移行する経路は、大きく3つに分けられます。

1つ目は、大気中から直接葉等の可食部の表面等に付くものです。東京電力福島第一原子力発電所事故の直後に、野菜から計測された放射性物質は、大気中に放出された放射性物質が直接葉の表面に付いたものでした。

2つ目は、転流を介した経路です。転流とは、植物体内で、吸収した栄養素や光合成でできた栄養やその代謝産物が、ある組織から他の組織へと運搬されることをいいます。放射性物質が葉や樹皮に付着すると、葉や樹皮が放射性物質を吸収し、植物内で新芽や実の部分に移行することがあります。茶葉やタケノコ、ピワや梅等で比較的高濃度の放射性物質が見つかったのは、こうした移行経路によるものであると考えられています。

3つ目は、土壌に含まれている放射性物質が根から吸収される経路です。大気中への放射性物質の放出が終わった後は、農地に降下した放射性物質が根から吸収される経路が主となります。

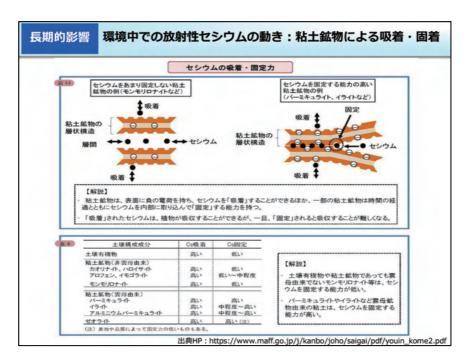
本資料への収録日:2013年3月31日

(参考) 90%深度L_{90%}: 放射性セシウムの沈着量の90%が含まれる地表面からの深度

出典:2018年度原子力規制庁委託事業「東京電力株式会社福島第一原子力発電所事故に伴う放射性物質の 分布データの集約」 成果報告書「土壌における放射性セシウムの分布状況」より作成

今回の東京電力福島第一原子力発電所事故に伴い環境中に放出された放射性セシウムの土壌中の深度分布に関する調査が、2011年度から福島県、宮城県南部、茨城県北部において実施されてきています。

土壌に沈着した放射性セシウムの90%が存在する土壌表面からの深度(90%深度)は、時間の経過と共に僅かずつ地中に浸透しており、その幾何平均値は2018年9月時点で5.1cmでした。


除染や深耕やひび割れなどの土壌の性状により、放射性セシウムの分布状況が変わります。土壌中の粘土質の中には、バーミキュライトを含む粘土鉱物やゼオライトなどはセシウムを強く吸着する性質を持っています。セシウムは、これらの粘土質に吸着され、水に溶けにくくなり、土壌に固定されて土壌の表層付近に長期間とどまります(上巻 P181「環境中での放射性セシウムの動き:粘土鉱物による吸着・固着))。

これにより、放射性セシウムが土壌の表層付近にあることで、地表面よりも深くに根を生やしている植物では、物理的に根と放射性セシウムが隔てられていることになります。

1986年に起こったチェルノブイリ原子力発電所事故の影響調査では、事故後14年経過しても、事故により降ったセシウム137の約80%が、表面から10cm内の所にとどまっていることも分かっています。(国際原子力機関(IAEA)国際チェルノブイリフォーラム報告書(2006年))

本資料への収録日:2017年3月31日

改訂日:2020年3月31日

セシウムはカリウム等と化学的に同じような性質(1 価の正電荷)を持っていることから、表面に負の電荷を持つ粘土鉱物に吸着されやすい性質があります。さらに、一部の粘土鉱物は時間の経過と共に吸着したセシウムを「固定」する能力を持ち、一度固定されたセシウムは水に溶け出しにくいことが分かっています。

今回の事故により環境中に放出された放射性セシウムは、時間の経過と共に土壌中の粘土鉱物による吸着・固定が進み、作物に吸収されにくくなっています。(上図)

なかでも、パーミキュライトやイライト等の雲母鉱物由来の粘土はセシウムを固定する能力が高いことが分かっています。(下表)

これまでの調査研究の結果から、福島県内の河川において、河川水中の放射性セシウム濃度は、徐々に減少する傾向が確認されています。また、森林等から河川に流入する放射性セシウムの濃度も、時間と共に減少する傾向が確認されています¹。

1. 原子力規制庁委託事業「平成26年度東京電力株式会社福島第一原子力発電所事故に伴う放射性物質の分布データの集約及び移行モデルの開発」事業 成果報告書

本資料への収録日:2017年3月31日

環境中での放射性セシウムの動き:水中から植物への移行 長期的影響 請戸川下流域 (請戸川橋) での観測結果 (2014年) 水中のセシウムの形態のイメージ図 60 田面水 50 =>60 um 懸濁物質 中遊聽海衛寶濃度(mg/L ■ 3-60 um 40 **% 1** 固定態Cs ■ 0.45-3 um 懸濁態Cs 30 水稲茎 20 **%2** 10 0 2 (0.6) 11 (1.4) 16 (1.8) 流量(m3/s) (水位 (m)) 高水時の河川水中の浮遊懸濁物質濃度と粒形 水稲根 河川水中の溶存態および懸濁態セシウム濃度 粒子 低水時 2 m3/s 16 m3/s 河川流量 溶存儲137Cs濃度 0.3 Ba/L 0.3 Bg/L 懸濁態¹³⁷Cs濃度 2.2 Bq/L 作土 0.1 Bq/L 溶存態の割合 75% 12% 総134+137Cs濃度 0.6 Ba/L 3.3 Ba/L 出典HP 「懸濁態」放射性物質が土粒子や有機物に吸着・固定された状態。 懸濁態のセシウムは水稲の根や茎から直接吸収されることはほとんどない。 https://www.maff.go.jp/j/kanbo/joho/saigai/pdf/youin_kome2.pdf https://fukushima.jaea.go.jp/report/document/pdf/pdf1702/hokokukai11.pdf 「溶存態」放射性物質が水中に溶け出した状態。 上以作成

田植えの代かきで田に水をはると、セシウムが溶け出した溶存態と土壌粒子などにくっついて浮遊する懸濁態がありますが、土壌に吸着もしくは固定化している状況では、溶存態は極めて少なく、懸濁態の状態では水稲の根や茎から直接吸収されることはありません。(左図)

また、ため池や水路等における水中のセシウムは時間と共に、土壌に吸着もしくは、 固定化されます。このため、福島県内の調査結果では、河川の流量が少なく、濁りが 少ない状態では、大部分の放射性セシウムは溶存態で存在しますが、その濃度は通常 の放射能濃度測定の検出限界(約1ベクレル/L)より低い濃度です。

右の上図に示すように、大雨時など河川の流量が増加(高水時)すると、浮遊懸濁物質の濃度が高くなりますが、この懸濁物質には放射性セシウムが強く吸着されています(懸濁態)。そのため、高水時には溶存態の放射性セシウム濃度はあまり変わらず、懸濁態の放射性セシウム濃度だけが高くなりますが、時間と共に低下します。また、河川の流量の増加に伴い、浮遊懸濁物質の粒径が大きくなり、河川水は濁ります。この濁りはろ過で取り除くことができます。これまでの福島県・請戸川の調査事例では、右下の表に示すように通常時の放射性セシウム濃度は飲料水基準値(10ベクレル/kg)を下回っていますし、高水時でも増加した懸濁態をろ過することにより上澄み水では、放射性セシウムは検出限界(約1ベクレル/L)以下となります。

本資料への収録日:2017年3月31日

長期的影響

環境中での放射性セシウムの動き:森林土壌からの流出

これまでの調査から、森林土壌から1年間に流出する放射性セシウム137の流出率は、 流域の土壌への沈着量の0.02~0.3%程度であることが分かっています。

[表1]流域から河川への放射性Csの流出(流出率)

流域	川俣町			筑波山	丸森町
洲 域	疣石山流域 *1	石平山流域*1	高太石山流域®1	霞ヶ浦流域+2	宇多川上流+2
調査期間		44~45日間*3		21か月間	15か月間
土壌へのCs-137沈着量 (kBq/m)	544	298	916	13	170~230
Cs-137流出量**4 (kBq/m)	0.087	0.026	0.021	0.06	0.22~0.34
土壌へのCs-137沈着量 に対するCs-137流出量	0.016%	0.009%	0.002%	0.5%	0.12~0.15%

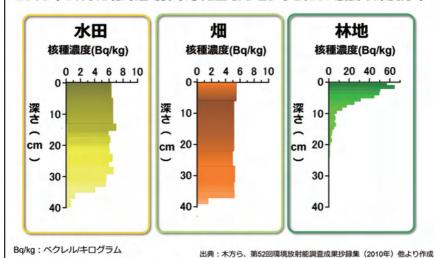
Cs-137の年間流出量^{®®} 0.13% 0.07% 0.02% 0.26% 0.10~0.12%

- ※1:(出典) JAEA:平成24年度放射能測定調査委託事業 [福島第一原子力発電所事故に伴う放射性物質の長期的影響把握手法の確立]成果報告書
- 中2:(出典)国立環境研究所,2012,2013
- ※3:3漁域の比較可能な2012年10月1日~9・10日、10月22日~11月3日、11月29・30日~12月18・19日調査期間(44~45日間)を抽出し合計。
- 並4:○疣石山流域、石平山流域、高太石山流域:渓流水における溶存態、SS(懸濁修物質)、恒大有機物(渓流水中の栗や枝等)のCs-137の合計。 適な幅:2012年8月、10月の平常時における溶な解放動物をかみる過食を浮き水の流出量に向けた。
 - ・SS:SSサンプラーの放射性セシウム遺産を温度計の連続データと連量から得られたSSの連量にがけた
 - ・租大有模物:有模物の放射性センウム濃度をトラップされた全量にかけた。 ○霞ヶ浦流域、宇多川上流:SS由来のCs-137
- ※5:上表のデータより、土壌への沈善量に対する流出率と調査期間から年間流出率に換算(環境省による試算)。
- その際、放射性セシウムの自然崩壊や対象期間内の降雨の状況等は考慮していない。

事故当初樹木の葉、枝等に付着した放射性物質は、時間の経過と共に林床の落葉層や土壌に移行し、現状では8割程度が土壌表層部に滞留しており、鉱質土壌によって強く保持されています(上巻 P181「環境中での放射性セシウムの動き:粘土鉱物による吸着・固着」)。

また、これまでの調査から、森林土壌から1年間に流出する放射性セシウム137の流出率は、流域の土壌への沈着量の0.02~0.3%程度であることが分かっています。

参考資料

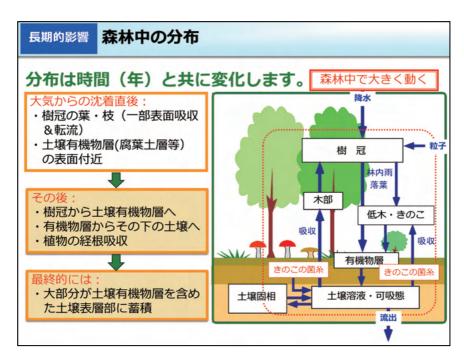

• 第16回環境回復検討会資料

本資料への収録日:2017年3月31日

長期的影響

核実験フォールアウトの影響(日本)

2009年10月に北海道で採取した土壌のセシウム137濃度の深度分布


1950年代後半から1960年代前半をピークに多くの大気中核実験が実施されたことから、これに起因する放射性降下物が地球全域に降り注ぎました。2011年3月11日以前の日本で検出されている放射性セシウムやストロンチウム90はこのフォールアウト由来であると考えられます(上巻 P78「大気圏核実験による放射性降下物の影響」)。

2009年に北海道で行われた土壌調査の結果、水田や畑のように耕された土壌では、表面から40cm深くまでセシウム137が検出されましたが、耕されていない林地では、表面から20cm内にセシウム137がとどまっていました。

セシウムがどれだけ土壌に強く吸着するかは、土壌の性質にもよりますが、日本の土壌でも、セシウム137が表層にとどまりやすいことが分かっています。

(関連ページ: 上巻 P180「十壌中の放射性セシウムの分布の状況」)

本資料への収録日:2013年3月31日

森林中の放射性物質の分布は年単位の時間経過によって大きく変化すると考えられています。

大気中に含まれる放射性セシウムは葉や枝に付着します。葉や枝はやがて枯れて腐葉土のような有機物を含んだ土壌になります。放射性物質の一部は葉や樹皮から吸収され、植物内で新芽や実の部分に移行することもありますが、これもいずれは土になります。

有機物の多い土壌では、セシウムを吸着する粘土質に乏しいため、セシウムが植物 に吸収されやすい状態にあります。

有機物層にあるセシウムはその下の土壌に徐々に移行し、表層よりも少し深い所に 根を張る植物もセシウムを吸収するようになります。

このように、放射性セシウムも安定なセシウムと同様に、植物と土壌との間を循環する過程で土壌の粘土質に固着され、最終的には土壌表層部に蓄積します。

なお、国立研究開発法人森林総合研究所が渓流水を採取してセシウムを計測したところ大部分の渓流水では、セシウムは検出されませんでした。降雨のあった日の一部の濁り水にセシウムが含まれていましたが、その量はごく僅かでした(下巻 P24「渓流水中の放射性セシウムの観測結果(2012年)」)。

(関連ページ:下巻 P22「森林の空間線量率の変化」、下巻 P23「森林内の放射性セシウムの分布状況の変化」)

本資料への収録日:2013年3月31日

東京電力福島第一原子力発電所事故によって環境中へ放出されたセシウムの分布は時間経過と共に大きく変化しました。事故直後に樹皮や枝葉に付着したセシウムは落葉や降雨等によって林床へと移行し、現在では90%以上が地表から5cmの深さまでにとどまっていることが分かっています。一方で、地表面付近のセシウム減少量が物理減衰による減少よりも大きいことから、僅かに地中方向に移動していることが推測されています。

セシウムは特定の粘土鉱物に強く吸着する性質があり、水中にはほとんど溶け出しません(上巻 P181「環境中での放射性セシウムの動き:粘土鉱物による吸着・固着」)。また、風等による大気中への再飛散も現在ではほとんどないことが分かっています。これらのことから、森林から生活圏へのセシウムの流入は少ないことが予想されています。

上の図は、森林に降下・沈着したセシウムが上流から河口にあるダム湖に流れ込むまでの過程をイラストで示したものです。2つの拡大図は林床とダム湖底質をそれぞれ表しており、どちらもセシウムが土壌表層に堆積していることが分かります。

セシウムは、急流においては土粒子に吸着した状態で下流へと運搬され、緩流においては堆積する傾向にあります。また、上流にダム湖がある場合、セシウムがダム湖によってせき止められるため、下流へのセシウムの流出が少ない傾向にあります。さらに、台風や大雨等によってダム湖水位が高くなった場合においても、ダムの放流口付近の底質の流速が遅いため、堆積土壌の巻き上げはほとんど起こらないことが分かっています。

本資料への収録日:2016年3月31日

東京電力福島第一原子力発電所事故により放出された放射性物質の海洋中の分布は、時間経過によって大きく変化します。放射性物質が海洋に運ばれる経路には、① 発電所からの海洋への直接の流入、②風に乗って運ばれた放射性物質の海洋への降下、③陸に降下した放射性物質の河川や地下水を介した海への運搬の3つのルートが考えられます。ただし、セシウムの場合は、土壌中に強く吸着されることから、地下水と共に移行して海に達することはほとんど考えられません。

海水中の放射性セシウムの濃度は、事故直後急激に上昇しましたが、1~2か月のうちに海流に乗って流されたり、拡散したりすることで下がりました。海産生物の放射性セシウムの濃度は海水中の濃度と関係があり、海水中の濃度の低下と共に海産生物の濃度も低下しました。また、放射性セシウムの一部は海底に沈降したため、海底付近にいる魚類(底魚)への移行が懸念されましたが、調査研究の結果、ヒラメ・マダラ等の底魚の放射性セシウムの濃度は福島沖を含めて低下しています。この理由としては、放射性セシウムが底泥中の粘土に強く吸着されること及び、海底土から底生生物へのセシウム移行率は小さく、粘土に吸着されたセシウムが海産生物の体内に取り込まれにくいことが挙げられます(出典:水産庁、水産物の放射性物質の検査に係る報告書、2015年)。

本資料への収録日:2013年3月31日

長期的影響

海産生物の濃縮係数

濃縮係数=(海産生物中の濃度)/(海水中の濃度)

生物の種類	濃縮係数* (セシウム)
イカ・タコ	9
植物プランクトン	20
動物プランクトン	40
藻類	50
エビ・カニ	50
貝類	60
魚	100
イルカ	300
トド	400

現在の海水セシウム濃度は、事故前と同レベル (0.001~0.01ベクレル/リットル)である。

出典: 国際原子力機関 (IAEA) Sediment Distribution Coefficients and Concentration Factors for Biota in the Marine Environment, 2004より作成

濃縮係数とは、海産生物が一定の濃度の海水に長期間置かれた場合の、海産生物中の濃度と海水中の濃度の比率を表したもので、放射性物質の海産生物への蓄積の度合いを示しています。

セシウムの濃縮係数を比べると、プランクトンより魚、魚よりは魚を捕食する大型 哺乳類のほうが高いことが分かります。

セシウムについても生物濃縮はありますが、水銀やカドミウムのように生物体への 蓄積が続くことはほぼなく、海水中のセシウム濃度が下がれば低下していくと考えられています。

なお、表中の濃縮係数は国際原子力機関(IAEA)による推奨値です。現在、海水中のセシウム濃度は、東京電力福島第一原子力発電所港湾内を除き、事故前とほぼ変わらない濃度(0.001~0.01ベクレル/L)まで下がっています(下巻 P38「海水の放射能濃度の推移」)。

本資料への収録日:2013年3月31日

[※] 濃縮係数は、下記IAEA文献による推奨値