自動車に係る排出量

自動車から排出されるものとして、排気管からの排出ガス、ガソリンタンク等からの燃料蒸発ガス、タイヤ・ブレーキ等が摩耗して飛散する粒子状物質等があり、いずれも対象化学物質を含んでいる。

このうち、排気管からの排出ガスについては、触媒が十分に加熱した状態(以下「ホットスタート」という。)での排気管からの排出、コールドスタート時(冷始動時)にエンジン始動直後で燃料噴射量が増え、排気後処理装置の触媒が低温で活性状態にないこと等によって増加する化学物質排出量(以下「コールドスタート時の増分」という。)を推計対象とした。また、冷凍冷蔵車や長距離走行用のトラック・バス等の車種の一部には、走行用のエンジンのほかに、冷凍機やクーラーの動力源として専用のエンジン(以下「サブエンジン式機器」という。)を搭載しているものもあり、その排気管からも排出ガスが生じる。

燃料蒸発ガスは、ガソリンスタンド等における給油時の排出と、給油後の走行中や駐車中等の排出に 大別される。前者については、事業者からの届出の対象となるため、ここでは推計を行わず、後者について届出外排出量として推計を行った。

タイヤ・ブレーキ等の摩耗については、推計に必要なデータが現時点では得られていないため、推計の対象としない。

このため、自動車に係る排出量については、排気管からの排出ガス等について、ホットスタート、コールドスタート時の増分、給油後の走行中や駐車中等の排出(以下「燃料蒸発ガス」という。)、サブエンジン式機器の4つに区分して推計を行った。

推計 備考 排出区分 対象 暖機状態からの排出 \bigcirc 「 I ホットスタート」 エンジン コールドスタート時 \bigcirc 「Ⅱコールドスタート時の増分」 燃焼 (冷始動時)の増分 冷凍機・クーラー用の \bigcirc 「IVサブエンジン式機器」 サブエンジン式機器からの排出 給油時の排出 原則として届出対象 蒸発 給油後の排出(走行中、駐車中等) \bigcirc 「Ⅲ燃料蒸発ガス」 現時点では必要なデータが得られて 摩耗 タイヤ・ブレーキ等の摩耗 いない

表1 自動車に係る届出外排出量の推計の対象とする排出区分

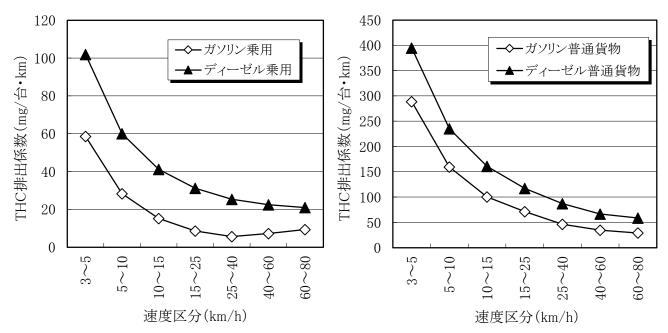
注:自動車の推計対象である特種用途車のうち高所作業車のエンジン排出については、本推計項目では公道の走行 時及び始動時における排出量を対象に推計を行っているが、建設現場等における作業時のエンジン排出につい ては、推計方法の特性上、【参考13】(特殊自動車)において推計を行っている。

I ホットスタート

1. 届出外排出量と考えられる排出

公道を走行するガソリン・LPG 車(以下「ガソリン車」という。)及びディーゼル車が燃料を消費しながら 走行し、走行時の排気管からの排出ガス中に対象化学物質が含まれている。これらはすべて届出外排 出量となり、ここではホットスタートによる排出を推計対象とする。

2. 推計を行う対象化学物質


対象化学物質のうち、ホットスタートでの排出が報告され、データが利用可能なアクロレイン(物質番号:10)、アセトアルデヒド(12)、エチルベンゼン(53)、キシレン(80)、スチレン(240)、1, 2, 4ートリメチルベンゼン(296)、1, 3, 5ートリメチルベンゼン(297)、トルエン(300)、1, 3ーブタジエン(351)、ノルマルーへキサン(392)、ベンズアルデヒド(399)、ベンゼン(400)、ホルムアルデヒド(411)の 13 物質について推計を行った。ただし、1, 2, 4ートリメチルベンゼン、ノルマルーへキサンについては、ディーゼル自動車の排出ガスに含まれる濃度を測定した結果、検出下限値未満であったため、ディーゼル自動車の推計の対象とせず、濃度データが得られているガソリン自動車のみを推計の対象とした。また、クメン(83)についてはガソリン自動車・ディーゼル自動車ともに測定結果が検出下限値未満であったため、推計の対象としていない。なお、ダイオキシン類(243)の排出については、別途「ダイオキシン類」として【参考19】にて推計を行っているため、本項では記載していない。

3. 推計方法

自動車の走行量(km/年)に対し、走行量当たりの排出係数(mg/km)を乗じることにより、排出量(kg/年)を推計するのが基本的な考え方である。具体的には、車種別*・旅行速度(停止中も含めた道路走行時の平均速度)・初度登録年度別に全炭化水素(Total Hydro-Carbon。以下「THC」という。)の排出係数を設定し、それに対応する走行量データを車種別・旅行速度別・初度登録年別に設定した。排出係数の設定に当たっては、排出ガス規制の強化による排出量の変化(同一車種では新しい車ほど THCの排出量が少ない)及び規制対応車の車種別・初度登録年別の普及率を考慮した。

環境省及び地方自治体の実測データに基づく THC 排出係数の一例を図1に示す。ガソリン車及びディーゼル車については、車種・初度登録年別の触媒の経年的な劣化を考慮した補正を行い(図 2)、図 1 は劣化補正の後、車種別・初度登録年別の台数に応じて加重平均を行った値を示している。さらに、THC に対する対象化学物質排出量の比率(環境省及び東京都の実測データに基づき設定。以下「対THC 比率」という。)を図 3 に示す。THC としての排出係数は、いずれの車種でも旅行速度が低い場合に大きな値となっている(図 1)ため、同じ走行量であっても速度の低い(例:渋滞の激しい)地域において排出量が大きくなると考えられる。地域ごとの旅行速度分布の例を図 4 に示す。

※: 車種は、軽乗用車、乗用車、バス、軽貨物車、小型貨物車、普通貨物車、特種用途車の7区分とした。

出典:令和3年度自動車排出ガス原単位及び総量算定検討調査(環境省、令和4年3月)注:ガソリン車は触媒の劣化を考慮した補正を行った。

図1 車種別・速度区分別の THC 排出係数の例(令和3年度)

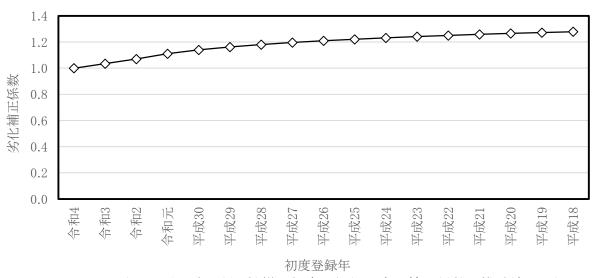
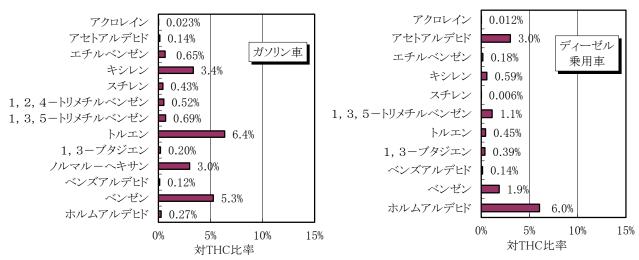
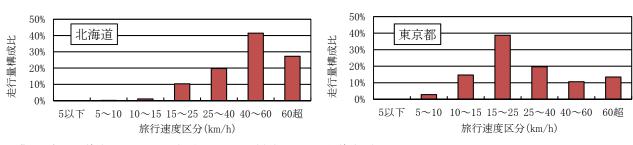




図 2 ガソリン乗用車に係る触媒の初度登録年別劣化補正係数の推計結果の例

出典:環境省環境管理技術室調べ(平成15年)及び東京都(平成22年)

図3 自動車排出ガス(ホットスタート)に係る対象化学物質排出量の対 THC 比率の例

出典:平成27年道路交通センサス(一般交通量調査)(国土交通省道路局)

図4 幹線道路における地域ごとの旅行速度分布(混雑時)の例

走行量データは、道路区間別の幹線道路の走行量が平成 27 年道路交通センサス(一般交通量調査 **1)により、道路全体の走行量が平成 27 年度分の自動車燃料消費量統計年報より得られ、両者の差が細街路における走行量と考えられる。ただし、幹線道路の走行量は2車種区分**2のデータであることから、排出係数の区分に合わせるため、平成 27 年道路交通センサス(一般交通量調査)の OD 調査**3(自動車起終点調査)のデータを用いて7車種区分へ細分化した。また、道路全体の走行量は車籍地ごとに集計したものであり、それと道路区間別の幹線道路の走行量との比率を地域別に推計するため、OD 調査による車籍地別・出発地別・目的地別のトリップ数**4等を使って車籍地別の走行量を実際の走行場所に換算した(表 2)。道路全体の走行量に対する幹線道路走行量のカバー率を推計した結果は、車種別にも地域別にも異なっている(図 5)。これらを用いて設定した平成 27 年度の車種別・旅行速度別走行量を自動車輸送統計年報の年間走行量の伸び率で年次補正し、令和3年度における初度登録年別保有台数と使用係数に応じて按分することにより、令和3年度の車種別・旅行速度別・初度登録年別の走行量を算出した。

※1:一般交通量調査は交通量・旅行速度等の実測を行う調査。

※2:2車種区分は、小型車、大型車に対応する。

※3:OD 調査はアンケート調査等により地域間の自動車の動きを把握する調査。

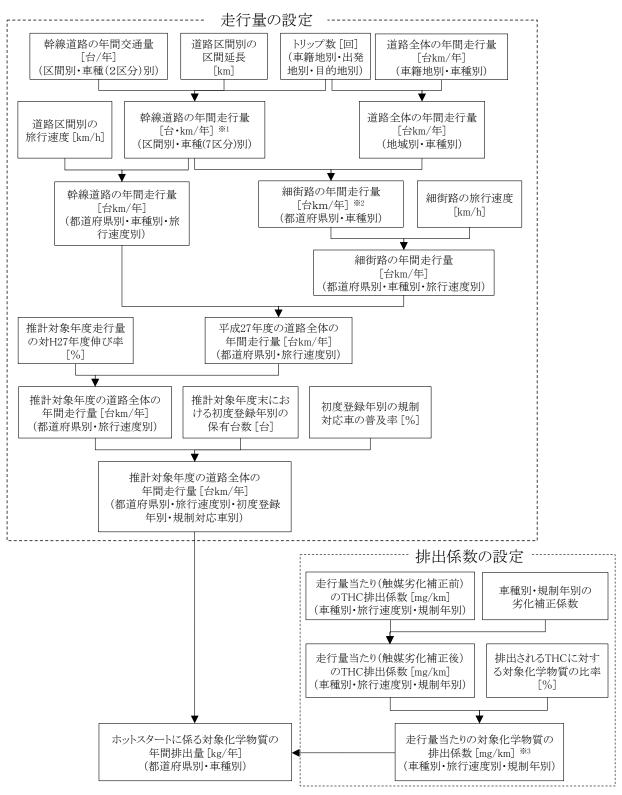
※4:トリップ数とはある地点からある地点に移動することの単位。地点が異なるごとにトリップ数が増える。


表 2 車籍地別走行量の走行する都道府県別構成比の推計結果 (普通貨物車に係る構成比の一部地域における抜粋)

			(1		, , ,,,,	7111/4/47			4017 01	<i>></i>			
`;	3.1日十フ					Ē	直籍地の	都道府県	Ļ				
	通過する	1	2	3	4	5	6	7	8	9	10	11	12
自	邓道府県	北海道	青森県	岩手県	宮城県	秋田県	山形県	福島県	茨城県	栃木県	群馬県	埼玉県	千葉県
1	北海道	95.8%	0.4%	0.2%	0.3%	0.1%	0.2%	0.3%	0.3%				0.2%
2	青森県	0.3%	62.3%	2.9%	0.4%	0.8%	0.1%	0.3%	0.2%			0.0%	0.2%
3	岩手県	0.5%	16.1%	56.9%	6.8%	11.6%	1.7%	1.1%	1.0%	0.2%	0.0%	0.2%	0.1%
4	宮城県	0.5%	6.6%	14.3%	56.8%	12.8%	16.2%	8.2%	1.6%	1.5%	0.1%	0.5%	0.4%
5	秋田県	0.1%	6.4%	4.2%	1.2%	47.6%	0.8%	0.2%	0.1%	0.1%		0.0%	0.0%
6	山形県	0.0%	0.1%	0.1%	1.4%	0.4%	45.1%	0.4%	0.0%	0.1%	0.0%	0.0%	0.0%
7	福島県	0.4%	3.2%	7.0%	14.8%	9.7%	13.4%	52.9%	6.0%	5.7%	1.2%	2.0%	0.9%
8	茨城県	0.3%	1.7%	3.2%	3.4%	4.0%	1.3%	2.9%	50.4%	6.8%	2.0%	5.1%	7.0%
9	栃木県	0.2%	0.9%	2.5%	4.9%	3.3%	7.6%	11.1%	6.2%	51.9%	8.6%	4.5%	2.0%
10	群馬県	0.0%	0.1%	0.3%	0.6%	0.4%	0.7%	1.1%	1.7%	5.1%	36.0%	2.9%	1.1%
11	埼玉県	0.2%	0.6%	1.4%	2.2%	1.6%	3.6%	4.6%	6.4%	14.6%	23.4%	43.1%	10.5%
12	千葉県	0.1%	0.2%	0.5%	0.7%	0.5%	0.4%	1.1%	6.7%	2.1%	1.3%	6.2%	55.1%
13	東京都	0.3%	0.4%	0.7%	1.1%	0.9%	1.4%	1.7%	5.1%	4.2%	5.3%	18.0%	10.4%
(以	下、省略)												
	合計	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

出典:平成27年道路交通センサス(自動車起終点調査)(国土交通省)及び日本道路公団資料等に基づき作成

注1:構成比は走行量ベースの値として推計した。


注2:車籍地と同じ都道府県の値を太枠で囲んで示す。

注:道路全体(平成27年度分自動車燃料消費量統計年報)に対する幹線道路(平成27年度道路交通センサス(一般交通量調査))の割合としてカバー率を定義した。

図 5 自動車走行量に係る幹線道路カバー率の推計例(平成27年度)

以上の推計方法をフローとして図 6 に示す。走行量を設定する部分と排出係数を設定する部分から構成されており、それらを組み合わせて排出量が推計される。

※1:区間ごとの交通量(台/年)に区間延長(km)を乗じて走行量(台km/年)が算出される。

※2:道路全体の走行量から幹線道路の走行量を差し引いて細街路の走行量が算出される。

※3:THCの排出係数にベンゼン等の比率(対THC比率)を乗じて対象化学物質の排出係数が算出される。

図6 自動車(ホットスタート)に係る排出量の推計フロー

4. 推計結果

以上の方法に従って推計した対象化学物質別の全国排出量を表 3、図 7、表 4 に示す。前年度推計時には走行量が約 11%減少(令和元年度と令和2年度の比較)したことによる影響が大きく表れたが、令和2年度から令和3年度の走行量の変化は約2%の減少に留まったため、自動車のホットスタート時の排出ガスに係る排出量の合計は約 4.4 千 t (うち、貨物車類*が約 3.4 千 t)と推計され、令和2年度の約 4.6 千 t (うち、貨物車類が約 3.5 千 t)から4%減少(貨物車類は3%減少)した。

※:軽貨物車、小型貨物車、普通貨物車、特殊用途車の4車種を指す。

表 3 自動車(ホットスタート)に係る対象化学物質別の全国排出量の推計結果(令和3年度)

Hon 斤斤			年間排出量(kg/年)								
物質 番号	対象化学物質名	軽乗用	乗用車	バス	軽貨物車	小型 貨物車	普通 貨物車	特種 用途車	合計		
10	アクロレイン	311	611	3,470	1,279	4,501	38,970	8,299	57,441		
12	アセトアルデヒド	1,964	14,735	37,121	8,070	47,774	417,476	94,311	621,452		
53	エチルベンゼン	9,033	17,136	244	37,111	3,042	878	996	68,439		
80	キシレン	46,338	86,657	1,104	190,386	15,414	2,805	4,118	346,823		
240	スチレン	5,906	10,791	141	24,267	1,964	350	394	43,814		
296	1, 2, 4ートリメチル ベンゼン	7,193	13,113	171	29,552	2,391	426	467	53,314		
297	1, 3, 5ートリメチル ベンゼン	9,530	21,603	228	39,157	3,182	684	2,787	77,171		
300	トルエン	87,974	162,057	3,534	361,450	31,082	21,433	9,993	677,522		
351	1, 3ーブタジエン	2,780	6,520	150	11,423	1,035	1,149	1,118	24,176		
392	ノルマルーヘキサン	41,497	75,654	988	170,495	13,797	2,456	2,692	307,578		
399	ベンズアルデヒド	1,674	3,570	40	6,877	558	114	373	13,206		
400	ベンゼン	73,035	140,046	10,997	300,071	36,061	108,643	30,357	699,209		
411	ホルムアルデヒド	3,707	29,058	87,203	15,231	111,942	980,791	219,535	1,447,467		
	合 計	290,942	581,551	145,391	1,195,369	272,744	1,576,174	375,439	4,437,611		

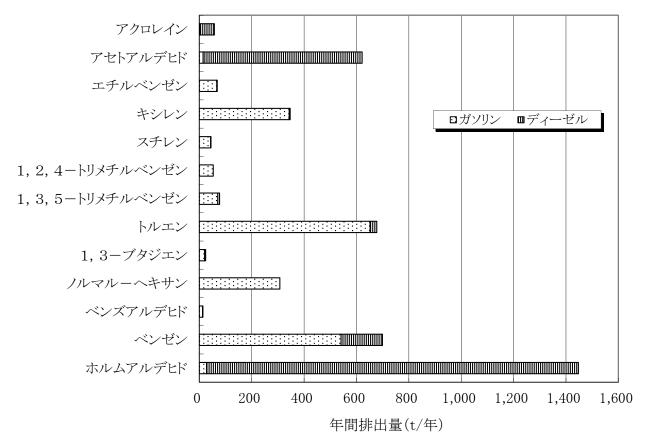
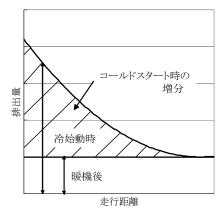


図7 自動車(ホットスタート)に係る対象化学物質別の全国排出量の推計結果(令和3年度)


表 4 自動車(ホットスタート)に係る排出量推計結果(令和3年度:全国)

	対象化学物質	全国の届出外排出量(kg/年)					
物質 番号	物質名	対象 業種	非対象 業種	家庭	移動体	合計	
10	アクロレイン				57,441	57,441	
12	アセトアルデヒド				621,452	621,452	
53	エチルベンゼン				68,439	68,439	
80	キシレン				346,823	346,823	
240	スチレン				43,814	43,814	
296	1, 2, 4ートリメチルベンゼン				53,314	53,314	
297	1, 3, 5ートリメチルベンゼン				77,171	77,171	
300	トルエン				677,522	677,522	
351	1,3ーブタジエン				24,176	24,176	
392	ノルマルーヘキサン				307,578	307,578	
399	ベンズアルデヒド				13,206	13,206	
400	ベンゼン				699,209	699,209	
411	ホルムアルデヒド				1,447,467	1,447,467	
	合 計				4,437,611	4,437,611	

Ⅱ コールドスタート時の増分

1. 届出外排出量と考えられる排出

コールドスタート時(冷始動時)にはホットスタート時に比べて化学物質が多く排出される。通常の暖機状態での走行による排出量は「Iホットスタート」で推計されているため、冷始動から暖機状態に達するまでに走行する際の排出と同距離を暖機後状態で走行する際の排出量の差を「コールドスタート時の増分」と定義する(図 8 参照)。これはすべて届出外排出量となる。ホットスタートの排出量とコールドスタート時の増分の排出量を合計すると、自動車の排気管から走行時に排出される排出ガス量の全体を把握することができる。

(コールドスタート時の増分排出量) =(冷始動時排出量)-(暖機後排出量)

出典: JCAP 技術報告書、大気モデル技術報告書(1)((財)石油産業活性化センター・JCAP 推進室、平成 14 年3月)に 基づき作成

図8 コールドスタート時の増分排出量のイメージ

2. 推計を行う対象化学物質

対象化学物質のうち、コールドスタートでの排出が報告され、データが利用可能なアクロレイン(10)、アセトアルデヒド(12)、エチルベンゼン(53)、キシレン(80)、クメン(83)、スチレン(240)、1, 2, 4ートリメチルベンゼン(296)、1, 3, 5ートリメチルベンゼン(297)、トルエン(300)、1, 3ーブタジエン(351)、ノルマルーへキサン(392)、ベンズアルデヒド(399)、ベンゼン(400)、ホルムアルデヒド(411)の 14 物質について推計を行った。ただし、1, 2, 4ートリメチルベンゼン、ノルマルーへキサン、クメンについては、ディーゼル自動車の排出ガスに含まれる濃度を測定した結果、検出下限値未満だったため、ディーゼル自動車の推計の対象とせず、濃度データが得られているガソリン自動車のみを推計の対象とした。

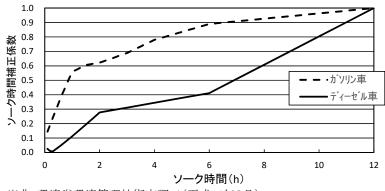
3. 推計方法

コールドスタート時の増分排出量は、JCAP(Japan Clean Air Program: 石油連盟・日本自動車工業会共同研究「大気改善のための自動車燃料等の技術開発プログラム」)の推計方法に準拠し、1年間の始動回数(エンジンを始動させた回数)に、始動1回当たりの排出係数(g/回)を乗じて算出した。図8で示したとおり、排出係数は冷始動時の排出係数から暖機後の排出係数を差し引いた増分として定義した。

コールドスタート時の増分排出量は気温やソーク時間(エンジン停止から次に始動するまでの時間)、 経過年数による触媒の劣化による影響を受けるため、気温 23.9℃のときにソーク時間を十分にとり(触媒を完全に冷え切った状態にして)測定した標準的な排出係数を、気温、ソーク時間等の補正係数として 使用した。考慮した影響因子を表 5 に示す。経過年数による触媒の劣化を補正した排出係数を表 6 に、ソーク時間による補正係数、気温による補正係数を図 9、図 10 に示した。

1年間の始動回数は排出係数の区分と合わせて、車種別・燃料種別・時間帯別・ソーク時間別に設定するとともに、業態(自家用もしくは営業用)による始動回数の違い、都道府県別の保有台数等による違いを反映するよう設定した。具体的には車種及び業態ごとの時間帯別始動回数の構成比(%)(図 11 参照)と車種別・業態別の1日当たりの始動回数を用いることにより全国の始動回数を算出した。さらに、道路交通センサスの OD 調査(自動車起終点調査)と都道府県別の車種別・業態別保有台数を用いて、全国の始動回数を都道府県へ割り振った。

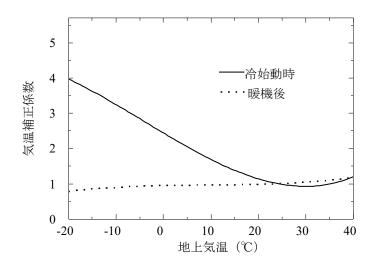
以上の推計方法を推計フローとして図12に示す。


表 5 排出に影響を与える因子

影響因子	影響因子を考慮した理由	考慮の有無		
彩 眷囚丁	必管囚丁を与應しに连由	ガソリン車	ディーゼル車	
経過年数 (積算走行量)	触媒の劣化による排出量の増加	0		
ソーク時間 (図9参照)	エンジン停止後の触媒の余熱による排出量の減少	0	0	
気温 (図 10 参照)	始動時の燃料供給量の増加による排出量の増加 エンジン壁面温度の低下による排出量の増加	0		

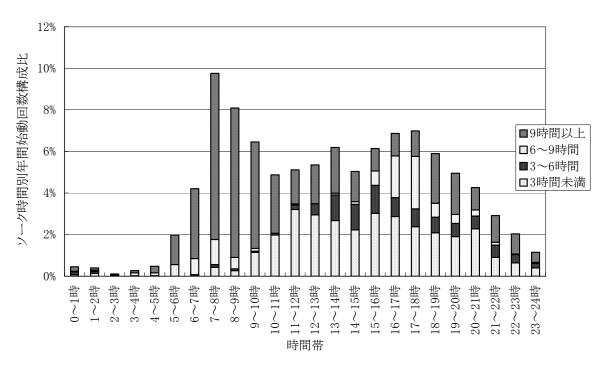
表 6 経過年数による劣化補正*後 THC 排出係数(令和3年度の推計値)

	THC 排出係数(g/回)								
車種	ガソリ	ン車	ディーゼル車						
	冷始動時	暖機後	冷始動時	暖機後					
軽乗用車	0.90	0.03	_	_					
乗用車	0.87	0.03	0.43	0.54					
バス	1.63	0.22	9.06	6.48					
軽貨物車	1.48	0.12	_	_					
小型貨物車	1.10	0.10	9.05	6.47					
普通貨物車	1.70	0.24	9.05	6.47					
特種用途車	1.27	0.14	8.61	6.17					


※:「経過年数による補正」とは触媒の劣化による補正と走行係数の低下に関する補正を示す。

出典:環境省環境管理技術室調べ(平成14年3月)

注:12時間以上は触媒が完全に冷えた(ソーク時間補正係数=1.0)とみなした


図9 ソーク時間とソーク時間補正係数の関係

出典: JCAP技術報告書、大気モデル技術報告書(1)((財)石油産業活性化センター・JCAP推進室、平成14年3月)に基づき作成

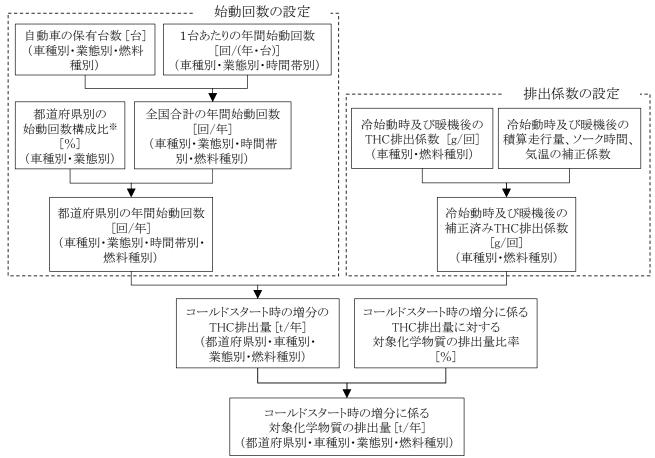

注:計算式で算出された気温補正係数が1を下回った場合と24℃以上のときは1とみなした。

図 10 地上気温と気温補正係数の関係

出典:自動車の使用実態調査報告書((一財) 石油産業活性化センター、平成10年3月)に基づき作成

図 11 全国における時間帯ごとのソーク時間別年間始動回数構成比(自家用乗用車を例示)

※:保有台数及び道路交通センサスの自動車起終点調査より設定した構成比を示す。

図 12 自動車(コールドスタート時の増分)に係る排出量の推計フロー

4. 推計結果

自動車(コールドスタート時の増分)に係る THC 排出量の推計結果を表 7 に示す。表 7 に示す THC 排出量と表 8 に示す THC 排出量に対する対象化学物質の排出量の比率から、コールドスタート時の増分に係る排出量の合計は、約38千 t と推計された(表9、図13、表10参照)。

表 7 自動車(コールドスタート時の増分)に係る THC 排出量の推計結果(令和3年度)

古任		THC 排出量(t/年)	
車種	ガソリン車	ディーゼル車	合計
軽乗用車	30,455	_	30,455
乗用車	33,933	_	33,933
バス	26	87	113
軽貨物車	15,507	_	15,507
小型貨物車	2,109	705	2,814
普通貨物車	243	750	993
特種用途車	406	302	708
合 計	82,679	1,844	84,523

表 8 THC 排出量に対する対象化学物質排出量の比率

	対象化学物質	対 TH	C比率
物質 番号	物質名	ガソリン車	ディーゼル車
10	アクロレイン	0.14%	0.93%
12	アセトアルデヒド	0.45%	4.5%
53	エチルベンゼン	3.0%	0.030%
80	キシレン	12%	0.12%
83	クメン	0.069%	_
240	スチレン	0.58%	0.018%
296	1, 2, 4ートリメチルベンゼン	1.1%	_
297	1, 3, 5ートリメチルベンゼン	0.82%	0.039%
300	トルエン	19%	0.42%
351	1, 3ーブタジエン	0.66%	0.12%
392	ノルマルーヘキサン	3.4%	_
399	ベンズアルデヒド	0.28%	0.020%
400	ベンゼン	3.5%	1.3%
411	ホルムアルデヒド	1.1%	4.4%

出典:環境省環境管理技術室調べ(平成23年)

表 9 自動車(コールドスタート時の増分)に係る燃料種別・対象化学物質別排出量の推計結果 (令和3年度)

	対象化学物質	届是	出外排出量(kg/	年)
物質 番号	物質名	ガソリン車	ディーゼル車	合計
10	アクロレイン	112,444	17,053	129,497
12	アセトアルデヒド	372,884	82,592	455,477
53	エチルベンゼン	2,480,382	559	2,480,940
80	キシレン	9,673,489	2,212	9,675,701
83	クメン	57,049	_	57,049
240	スチレン	477,060	332	477,392
296	1, 2, 4ートリメチルベンゼン	909,473	_	909,473
297	1, 3, 5ートリメチルベンゼン	680,451	726	681,178
300	トルエン	15,543,725	7,688	15,551,413
351	1, 3ーブタジエン	546,511	2,249	548,760
392	ノルマルーヘキサン	2,811,099	_	2,811,099
399	ベンズアルデヒド	234,809	369	235,178
400	ベンゼン	2,860,707	24,151	2,884,858
411	ホルムアルデヒド	926,009	81,486	1,007,495
	合 計	37,686,092	219,418	37,905,510

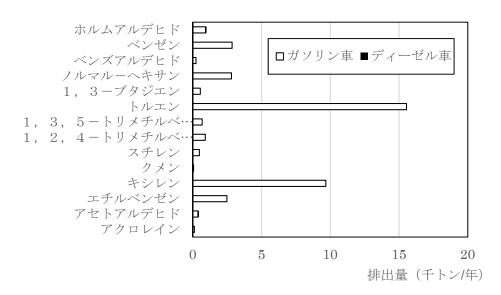


図13 自動車(コールドスタート時の増分)に係る排出量の推計結果(令和3年度)

表 10 自動車(コールドスタート時の増分)に係る排出量の推計結果(令和3年度:全国)

	対象化学物質	全国の届出外排出量(kg/年)					
物質番号	物質名	対象業種	非対象業種	家庭	移動体	合計	
10	アクロレイン				129,497	129,497	
12	アセトアルデヒド				455,477	455,477	
53	エチルベンゼン				2,480,940	2,480,940	
80	キシレン				9,675,701	9,675,701	
83	クメン				57,049	57,049	
240	スチレン				477,392	477,392	
296	1, 2, 4ートリメチルベンゼン				909,473	909,473	
297	1, 3, 5ートリメチルベンゼン				681,178	681,178	
300	トルエン				15,551,413	15,551,413	
351	1, 3ーブタジエン				548,760	548,760	
392	ノルマルーヘキサン				2,811,099	2,811,099	
399	ベンズアルデヒド				235,178	235,178	
400	ベンゼン				2,884,858	2,884,858	
411	ホルムアルデヒド				1,007,495	1,007,495	
	合 計				37,905,510	37,905,510	

Ⅲ 燃料蒸発ガス

1. 届出外排出量と考えられる排出

ガソリンを燃料とする自動車において、気温の変動や走行時の燃料タンク内の温度上昇によってタンク内のガソリン成分が揮発し発生する燃料蒸発ガスに含まれる対象化学物質の排出量について推計を行った。燃料蒸発ガスの種類と概要については表 11 のとおりである。

種類	概 要
ダイアーナル	駐車中に気温の変化等によりガソリンタンクで発生したガソリン蒸気が破
ブリージングロス(DBL)	過*1したキャニスタ*2から大気に放出されることにより発生する蒸発ガス
ホットソークロス(HSL)	エンジン停止後1時間以内に吸気管に付着したガソリンから発生する蒸 発ガス
ランニングロス(RL)	燃料タンク中のガソリンが走行に従って高温になり、キャニスタのパージ *3能力を超えて発生する蒸発ガス

表 11 燃料蒸発ガスの種類と概要

2. 推計を行う対象化学物質

対象化学物質のうち、ガソリン成分であり燃料蒸発ガス中に含まれるエチルベンゼン(53)、キシレン(80)、1, 2, 4ートリメチルベンゼン(296)、1, 3, 5ートリメチルベンゼン(297)、トルエン(300)、ナフタレン(302)、1, 3ーブタジエン(351)、ノルマルーへキサン(392)、ベンゼン(400)の 9 物質に関して推計を行った。

3. 推計方法

過去に、表 11 に示す燃料蒸発ガスの種類ごとの平成 22 年度分の THC の全国排出量について推計が行われている。そのため、この結果及び都道府県別・車種別のガソリン車保有台数等のデータを利用して年次補正を行い、都道府県別の THC 排出量を推計した。さらに、THC 排出量に対する対象化学物質排出量の比率(対 THC 比率:表 12 参照)を用いて、破過前後及び夏ガソリン/冬ガソリンの違いを考慮しつつ対象化学物質の排出量を推計した。推計フローを図 14 に示す。

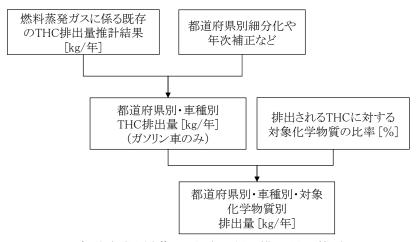


図14 自動車(燃料蒸発ガス)に係る排出量の推計フロー

^{※1:}破過とは、吸着容量を超過したため、吸着されずに被吸着体が通過すること。

^{※2:}キャニスタとはガソリン自動車の燃料系統に蒸発ガスの発生を防止するために装着されている活性炭等が封入された吸着装置を指す。駐車中に蒸発したガスはキャニスタに吸着され、走行中は吸気マニフォルド(多気筒エンジンに空気を供給するための枝別れになっている配管)が負圧となって吸着された蒸発ガスを空気とともに吸気マニフォルドに送られ、キャニスタの吸着能を回復する。

^{※3:}パージとは吸着された蒸発ガスを空気とともに吸気マニフォルドに送られることを示す。

表 12 自動車(燃料蒸発ガス)に係る排出係数の対 THC 比率

4	斗布 小兰州 新新	DBL				HSL		RL	
×	付象化学物質	夏ガ	ソリン	冬ガ	ソリン	H.	SL	K	.L
物質 番号	物質名	破過前	破過後	破過前	破過後	夏ガソリン	冬ガソリン	夏ガソリン	冬ガソリン
53	エチルベンゼン	0.9	0.03	0.5	0.009	1.0	0.8	1.0	0.8
80	キシレン	3.6	0.09	2	0.03	4.8	3.4	4.7	3.3
296	1,2,4-トリメチルベンゼン	1	0.02	0.6	0.005	2.8	6.2	2.2	4.8
297	1,3,5-トリメチルベンゼン	0.3	0.005	0.1	0.002	0.7	1.5	0.3	0.6
300	トルエン	18	0.7	8.8	0.2	16.3	11	12.8	8.6
302	ナフタレン					0.3	0.4		_
351	1,3-ブタジエン	0.03	0.03	0.04	0.02	_	1	_	_
392	ノルマルヘキサン	3	0.3	4	0.2	1.8	1.8	1.9	1.9
400	ベンゼン	1.9	0.09	1.4	0.05	1.2	0.6	0.8	0.4

出典:「平成 26 年度, 平成 27 年度における燃料蒸発ガスに関する試験データ(一般社団法人日本自動車工業会)」及び「JCAP 技術報告書、大気モデル技術報告書(1)(平成 14 年3月、一般財団法人石油産業活性化センター・JCAP 推進室)」に基づき作成

4. 推計結果

燃料蒸発ガスに係る対象化学物質別排出量の推計結果を表 13 に示す。燃料蒸発ガスに係る排出量の合計は約 5.0 千 t と推計された。

表 13 自動車(燃料蒸発ガス)に係る排出量の推計結果(令和3年度:全国)

	対象化学物質		全国の届出外排出量(kg/年)					
物質 番号	物質名	対象業 種	非対象 業種	家庭	移動体	合計		
53	エチルベンゼン				163,918	163,918		
80	キシレン				734,629	734,629		
296	1, 2, 4- トリメチルベンゼ ン				570,858	570,858		
297	1, 3, 5- トリメチルベンゼ ン				111,654	111,654		
300	トルエン				2,618,356	2,618,356		
302	ナフタレン				19,440	19,440		
351	1, 3- ブタジエン				3,745	3,745		
392	ノルマルー ヘキサン				569,775	569,775		
400	ベンゼン				233,799	233,799		
-	合 計		_		5,026,173	5,026,173		

IV サブエンジン式機器

1. 届出外排出量と考えられる排出

冷凍冷蔵車や長距離走行用のトラック・バス等には走行用のエンジンのほかに冷凍機やクーラーの動力源としてサブエンジン式機器が搭載されている。サブエンジン式機器は、軽油を燃料として消費し仕事を行う。その際に排出される排出ガスに含まれている対象化学物質を推計の対象とした。また、推計の対象とする機器は冷凍冷蔵車に搭載されているサブエンジン式冷凍機及びバス等に搭載されているサブエンジン式クーラーとした。

2. 推計を行う対象化学物質

サブエンジン式機器から排出される化学物質の種類は、最もエンジンが類似していると考えられる特殊自動車(ディーゼル)と同一と仮定した。具体的には、アクロレイン(10)、アセトアルデヒド(12)、エチルベンゼン(53)、キシレン(80)、スチレン(240)、1,3,5ートリメチルベンゼン(297)、トルエン(300)、1,3ーブタジエン(351)、ベンズアルデヒド(399)、ベンゼン(400)、ホルムアルデヒド(411)の11物質について推計を行った。

3. 推計方法

推計方法は概ね「13. 特殊自動車」と同じであるため、ここでは詳細は省略し、【参考 13】にてまとめて示す。基本的には、機種別・出荷年別の全国合計の年間稼働時間と車種別の平均出力から車種別の全国合計の年間仕事量(GWh/年)を算出し、仕事量当たりの排出係数(g/kWh)を乗じて排出量を推計した(THC 排出量に対する対象化学物質排出量の比率は表 14 参照)。また、全国排出量を都道府県別に割り振るための配分指標は表 15 に示すとおりである。

丰 1/	対象化学物質別排出量の対 THC 比率	Ŝ
11 14	对象11. 于10 良加加田里V/N 1110 比于	-

	対 THC				
物質番号	物質名	比率			
10	アクロレイン	0.39%			
12	アセトアルデヒド	1.6%			
53	エチルベンゼン	0.21%			
80	キシレン	0.72%			
240	スチレン	0.23%			
297	1, 3, 5ートリメチルベンゼン	0.20%			
300	トルエン	0.83%			
351	1, 3ーブタジエン	0.39%			
399	ベンズアルデヒド	0.19%			
100	ベンゼン	1.0%			
411	ホルムアルデヒド	7.4%			

出典:環境省環境管理技術室調べ(平成16年)

注:冷凍機、クーラー共通の対 THC 比率を示す。特殊自動車のディーゼル車と同一と仮定した。

表 15 自動車(サブエンジン式機器)に係る都道府県への配分指標

機種	配分指標	資料名
冷凍機	都道府県別の貨物車合計走行量(台 km/年)	平成22年度道路交通センサス (一般交通量調査)(国土交通省道
クーラー	都道府県別のバス走行量(台 km/年)	(一叔父迪里詢查)(国上父迪有道 路局)等

4. 推計結果

サブエンジン式機器に係る対象化学物質別排出量の推計結果を表 16 及び表 17 に示す。サブエンジン式機器に係る排出量の合計は約 4.9t と推計された。

表 16 自動車(サブエンジン式機器)に係る排出量推計結果 (令和3年度:全国)

	対象化学物質		‡出量(kg/年)
物質 番号	物質名	冷凍機	クーラー	合計
10	アクロレイン	117	28	145
12	アセトアルデヒド	489	117	605
53	エチルベンゼン	63	15	78
80	キシレン	218	52	270
240	スチレン	71	17	88
297	1, 3, 5ートリメチルベンゼン	62	15	76
300	トルエン	251	60	310
351	1, 3ーブタジエン	117	28	145
399	ベンズアルデヒド	58	14	72
400	ベンゼン	303	72	376
411	ホルムアルデヒド	2,240	535	2,774
습 計		3,988	952	4,940

表 17 自動車(サブエンジン式機器)に係る排出量の推計結果(令和3年度:全国)

対象化学物質			全国の届	出外排出量	』(kg/年)	
物質 番号	物質名	対象 業種	非対象 業種	家庭	移動体	合計
10	アクロレイン				145	145
12	アセトアルデヒド				605	605
53	エチルベンゼン				78	78
80	キシレン				270	270
240	スチレン				88	88
297	1, 3, 5ートリメチルベンゼン				76	76
300	トルエン				310	310
351	1, 3ーブタジエン				145	145
399	ベンズアルデヒド				72	72
400	ベンゼン				376	376
411	ホルムアルデヒド				2,774	2,774
	合 計				4,940	4,940