Chapter 3 Results of the Environmental Monitoring in FY2023

1. Purpose of the monitoring

Environmental Monitoring provides annual surveys of the environmental persistence of target chemicals as listed in the Stockholm Convention, chemicals that while undesignated are still subject to review for potential risk, and/or highly persistent chemicals annotated as Specified Chemical Substances and Monitored Chemical Substances under the Law Concerning the Examination and Regulation of Manufacture, etc. of Chemical Substances (aka, the Chemical Substances Control Law), all target chemicals whose year to year changes in persistence in the environment must be understood.

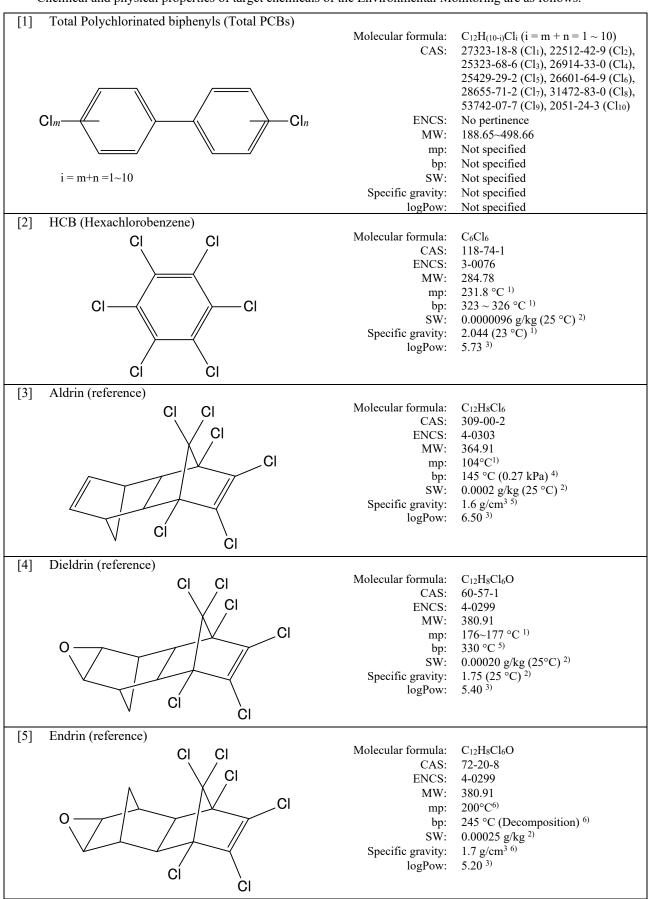
*POPs: persistent organic pollutants

2. Target chemicals

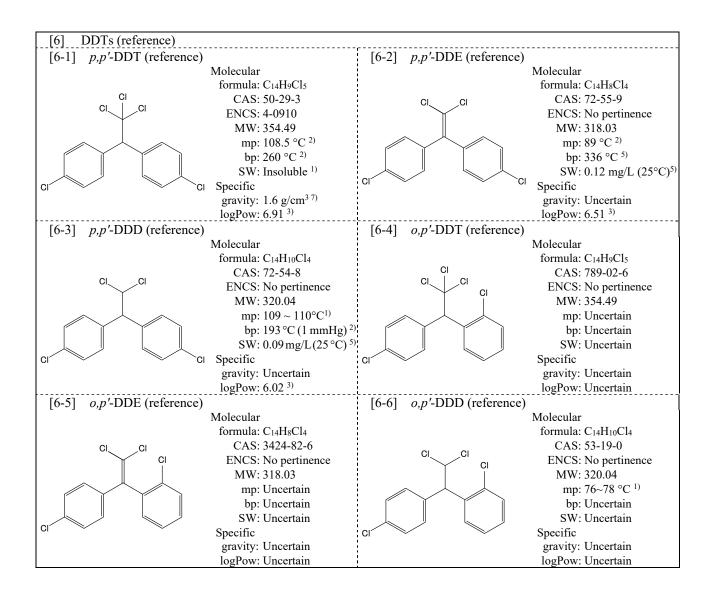
In the FY2023 Environmental Monitoring, 11 chemicals (groups) were designated as target chemical.

2 of the target chemicals (groups) were Polychlorinated biphenyls (PCBs) and Hexachlorobenzene, which were listed as Persistent Organic Pollutants (POPs) initially in the Stockholm Convention in 2004¹. 2 of them were Perfluorooctane sulfonic acid (PFOS)² and Pentachlorobenzene, which were adopted to be the POPs at fourth meeting of the Conference of the Parties (COP) held 2009. 1 of them was Hexachlorobuta-1,3-diene, which were adopted to be the POPs at seventh meeting of COP held 2015. 1 of them was Short-chain chlorinated paraffins³, which was adopted to be the POPs at eighth meeting of COP held 2017. 1 was Perfluorooctanoic acid (PFOA)⁴, which was adopted to be the POPs at ninth meeting of COP held 2019. 1 was Perfluorohexane sulfonic acid (PFHxS)⁵, which was adopted to be the POPs at tenth meeting of COP held 2021 and 2022. Other were Methoxychlor, Dechlorane pluses and UV-328, which were adopted to be the POPs at eleventh meeting of COP held 2023.

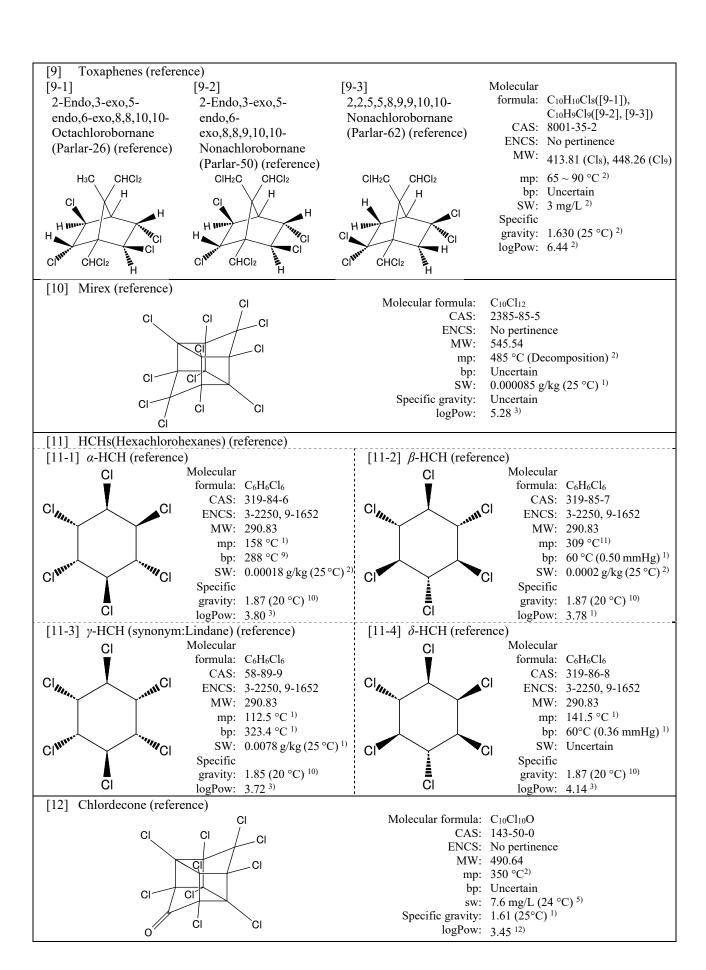
The combinations of target chemicals and the monitoring media are given below.

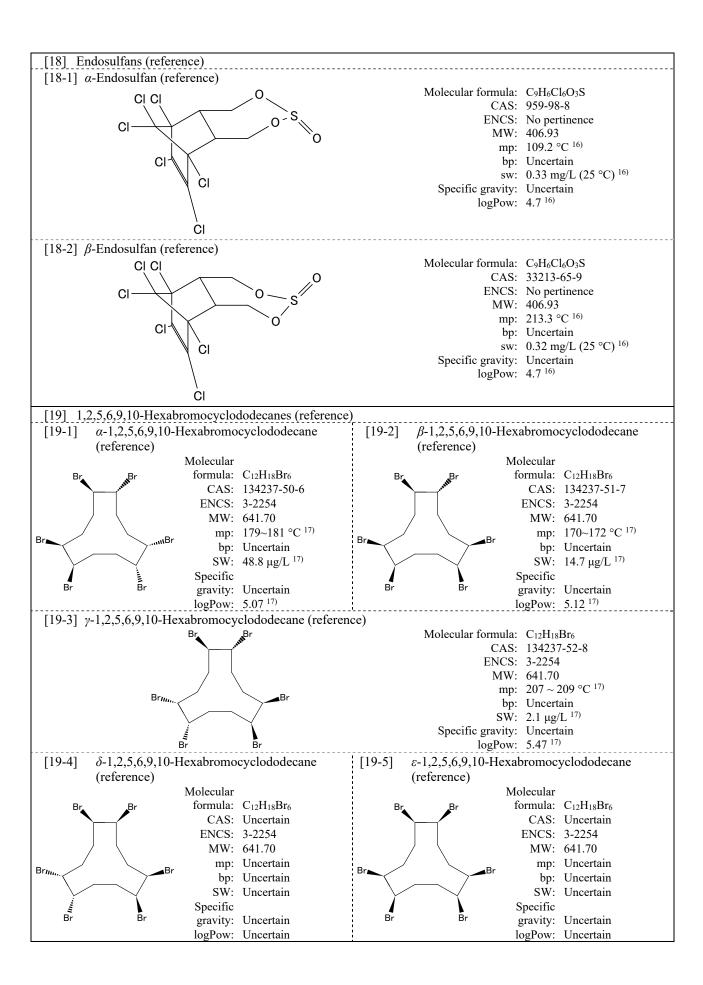

- (Note 1) Up to FY2009, the 11 target chemicals (groups) were monitored each fiscal year. 10 out of the 11 target chemicals (groups) were exceptions of Polychlorinated dibenzo-p-dioxin (PCDDs) and Polychlorinated dibenzofurans (PCDFs) from 12 chemicals (groups) listed as the POPs initially in the Stockholm Convention. Another was HCHs (Hexachlorohexanes) ⁶. As of FY2010, chemicals (groups) adopted or considerd to be the POPs in the convention have been monitored too, and adjustments made to implementation frequency. In FY2023, 11 chemicals (groups) that have been designated as target chemicals (groups) in this Environmental Monitoring were not moniterd. They were Aldrin, Dieldrin, Endrin, DDTs⁷, Chlordanes⁸, Heptachlors⁹, Toxaphenes¹⁰, Mirex, Chlordecone, HCHs (Hexachlorohexanes), Hexabromobiphenyls, Polybromodiphenyl ethers (Br₄~Br₁₀)¹¹, Endosulfans, 1,2,5,6,9,10-Hexabromocyclododecanes¹², Polychlorinated Naphthalenes¹³ Pentachlorophenol and its salts and esters¹⁴ and Dicofol. Up to the latest results of the 17 chemicals (groups) have been included in this report for purpose of reference.
- (Note 2) Perfluorooctane sulfonic acid (PFOS), its salts and Perfluorooctane sulfonyl fluoride were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants. The survey of the Perfluorooctane sulfonic acid (PFOS) only monitored linear octyl Perfluorooctane sulfonic acid (PFOS).
- (Note 3) Chlorinated paraffins ($C_{10}\sim C_{13}$) was adopted as target chemicals at the COP8 of the Stockholm convention on Persistent Organic Pollutants. In the survey, Chlorinated paraffins with 5~9 chlorines are target chemicals in surface water, sediment and wildlife, and Chlorinated paraffins with 4~7 chlorines are target chemicals in air.
- (Note 4) Perfluorooctanoic acid (PFOA), its salts and PFOA-related compounds were adopted as target chemicals at the COP9 of the Stockholm convention on Persistent Organic Pollutants. The survey of the Perfluorooctanoic acid

- (PFOA) only monitored linear octyl Perfluorooctanoic acid (PFOA).
- (Note 5) Perfluorohexane sulfonic acid (PFHxS), its salts and PFHxS-related compounds were adopted as target chemicals at the COP9 of the Stockholm convention on Persistent Organic Pollutants. The survey of the Perfluorohexane sulfonic acid (PFHxS) only monitored linear hexyl Perfluorohexane sulfonic acid (PFHxS).
- (Note 6) In the COP4, α -HCH, β -HCH and γ -HCH (synonym: Lindane) were adopted to be POPs among HCHs, but in this Environmental Monitoring, HCHs which were able to include δ -HCH were designated as target chemicals.
- (Note 7) p,p'-DDT and o,p'-DDT were adopted as target chemicals of the Stockholm convention on Persistent Organic Pollutants. In the survey, DDTs including environmental degraded products p,p'-DDT, o,p'-DDT, p,p'-DDD and o,p'-DDD were target chemicals.
- (Note 8) *cis*-Chlordane and *trans*-Chlordane were adopted as target chemical of the Stockholm convention on Persistent Organic Pollutants. In the survey, Chlordanes including *cis*-Chlordane, *trans*-Chlordane Oxychlordane, *cis*-Nonachlor and *trans*-Nonachlor are target chemicals.
- (Note 9) Heptachlor was adopted as target chemical of the Stockholm convention on Persistent Organic Pollutants. In the survey, Heptachlors including *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide are target chemicals.
- (Note 10) Chlorobornane and Chlorocamphene of industrial blended material (about 16,000 congeners or isomer) were adopted as target chemicals of the Stockholm convention on Persistent Organic Pollutants. In the survey, 2-endo,3-exo,5-endo,6-exo,8,8,10,10-octachlorobornane (Parlar-26), 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-nonachlorobornane (Parlar-50) and 2,2,5,5,8,9,9,10,10-Nonachlorobornane (Parlar-62) are target chemicals.
- (Note 11) Tetrabromodiphenyl ethers, Pentabromodiphenyl ethers, Hexabromodiphenyl ethers, and Heptabromodiphenyl ethers were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants. Decabromodiphenyl ether was adopted as target chemicals at the COP8 of the Stockholm convention on Persistent Organic Pollutants. In the survey, Polybromodiphenyl ethers including those from 4 to 10 bromines are target chemicals.
- (Note 12) α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane and γ -1,2,5,6,9,10-Hexabromocyclododecane were adopted as target chemicals at the COP6 of the Stockholm convention on Persistent Organic Pollutants. In the survey, 1,2,5,6,9,10-Hexabromocyclododecanes including δ -1,2,5,6,9,10-Hexabromocyclododecane are target chemicals.
- (Note 13) PCNs (Cl₂~Cl₈) was adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants. In the survey, PCNs including those with one (1) chlorine are target chemicals.
- (Note 14) Pentachlorophenol and its salts and esters were adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants, the survey monitored Pentachlorophenol and Pentachloroanisole.


Total Polychlorinated biphenyls (Total PCBs) Total PCBs represents the sum of the PCB congeners listed in the table below. "Total PCBs" only indicates the total amount in the following pages, and the measured values of the individual congeners and coplanar PCBs are listed on the website.		ed media	Monitore			
Total Polychlorinated biphenyls (Total PCBs)	Air				Name	No
3 Aldrin (reference)	0	0	0	0	Total PCBs represents the sum of the PCB congeners listed in the table below. "Total PCBs" only indicates the total amount in the following pages, and the measured values of the individual congeners and coplanar PCBs are listed on the website. [1-1] Monochlorobiphenyls [1-2] Dichlorobiphenyls [1-3] Trichlorobiphenyls [1-4] Tetrachlorobiphenyl (#77) [1-4-1] 3,3',4,4'-Tetrachlorobiphenyl (#81) [1-5] Pentachlorobiphenyls [1-5-1] 2,3,3',4,4'-Pentachlorobiphenyl (#105) [1-5-2] 2,3,4,4',5-Pentachlorobiphenyl (#118) [1-5-3] 2,3',4,4'-5-Pentachlorobiphenyl (#118) [1-5-4] 2',3,4,4',5-Pentachlorobiphenyl (#123) [1-5-5] 3,3',4,4',5-Pentachlorobiphenyl (#126) [1-6] Hexachlorobiphenyls [1-6-1] 2,3,3',4,4',5-Hexachlorobiphenyl (#156) [1-6-2] 2,3,3',4,4',5-Hexachlorobiphenyl (#157) [1-6-3] 2,3',4,4',5,5'-Hexachlorobiphenyl (#167) [1-6-4] 3,3',4,4',5,5'-Hexachlorobiphenyl (#169) [1-7-1] 2,2',3,3',4,4',5,5'-Heptachlorobiphenyl (#180) [1-7-2] 2,2',3,4,4',5,5'-Heptachlorobiphenyl (#189) [1-8] Octachlorobiphenyls [1-9] Nonachlorobiphenyls [1-10] Decachlorobiphenyl	
[3] Aldrin (reference)	0	0	0	0		[2]
Endrin (reference) DDTs (reference)					Aldrin (reference)	[3]
DDTs (reference) [6-1]	<u> </u>					
[7-1] cis-Chlordane (reference) [7-2] trans-Chlordane (reference) [7-3] Oxychlordane (reference) [7-4] cis-Nonachlor (reference) [7-5] trans-Nonachlor (reference) [7-5] trans-Nonachlor (reference) [8-1] Heptachlors (reference) [8-2] cis-Heptachlor epoxide (reference) [8-3] trans-Heptachlor epoxide (reference) [8-3] trans-Heptachlor epoxide (reference) [9-1] 2-endo,3-exo,5-endo,6-exo,8,8,10,10-Octachlorobornane (Parlar-26) (reference) [9-2] 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-Nonachlorobornane (Parlar-50) (reference) [9-3] 2,2,5,5,8,9,9,10,10-Nonachlorobornane (Parlar-62) (reference) HCHs (Hexachlorohexanes) [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH (synonym: Lindane) [11-4] δ-HCH					DDTs (reference) [6-1] p,p'-DDT (reference) [6-2] p,p'-DDE (reference) [6-3] p,p'-DDD (reference) [6-4] o,p'-DDT (reference) [6-5] o,p'-DDE (reference) [6-6] o,p'-DDD (reference)	
[8-2] cis-Heptachlor epoxide (reference) [8-3] trans-Heptachlor epoxide (reference) Toxaphenes (reference) [9-1] 2-endo,3-exo,5-endo,6-exo,8,8,10,10-Octachlorobornane (Parlar-26) (reference) [9-2] 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-Nonachlorobornane (Parlar-50) (reference) [9-3] 2,2,5,5,8,9,9,10,10-Nonachlorobornane (Parlar-62) (reference) [10] Mirex (reference) HCHs (Hexachlorohexanes) [11-1] α-HCH [11] [11-2] β-HCH [11-3] γ-HCH (synonym: Lindane) [11-4] δ-HCH					[7-1] cis-Chlordane (reference) [7-2] trans-Chlordane (reference) [7-3] Oxychlordane (reference) [7-4] cis-Nonachlor (reference) [7-5] trans-Nonachlor (reference) Heptachlors (reference)	[7]
[9]					[8-2] cis-Heptachlor epoxide (reference) [8-3] trans-Heptachlor epoxide (reference) Toxaphenes (reference)	[8]
HCHs (Hexachlorohexanes) [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH (synonym: Lindane) [11-4] δ-HCH					[9-2] (reference) 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-Nonachlorobornane (Parlar-50) (reference) [9-3] 2,2,5,5,8,9,9,10,10-Nonachlorobornane (Parlar-62) (reference)	
[11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH (synonym: Lindane) [11-4] δ-HCH					Mirex (reference)	[10]
[13] Hexabromobiphenyls (reference)					[11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH (synonym: Lindane) [11-4] δ-HCH [Chlordecone (reference)	[12]

			Monitore	ed media	
No	Name	Surface water	Sediment	Wildlife	Air
	Polybromodiphenyl ethers(Br ₄ ~Br ₁₀)				
	[14-1] Tetrabromodiphenyl ethers				
	[14-1-1] 2,2',4,4'-Tetrabromodiphenyl ether (#47)				
	[14-2] Pentabromodiphenyl ethers				
	[14-2-1] 2,2',4,4',5-Pentabromodiphenyl ether (#99)				
	[14-3] Hexabromodiphenyl ethers				
	[14 2 1] 2 2' 4 4' 5 5' Pontobromo dinhanyl ather (#152)				
[14]	[14-3-2] 2,2',4,4',5,6'-Pentabromodiphenyl ether (#154)				
	[14-4] Heptabromodiphenyl ethers				
	[14-4-1] 2,2',3,3',4,5',6'-Pentabromodiphenyl ether (#175)				
	[14-4-2] 2,2',3,4,4',5',6'-Pentabromodiphenyl ether (#183)				
	[14-5] Octabromodiphenyl ethers				
	[14-6] Nonabromodiphenyl ethers				
	[14-0] Nonabromodiphenyl ether				
F1.57					
[15]		0	0	0	0
[16] [17]		0	0	0	0
[1/]	Endosulfans (reference)			U	0
[18]	,				
[10]	[18-2] β -Endosulfan (reference)				
	1,2,5,6,9,10-Hexabromocyclododecanes				
	[19-1] α -1,2,5,6,9,10-Hexabromocyclododecane				
	[10.2] 0.12.5.6.0.10 Hayahaanaayaladadaana				
[19]	[19-3] γ -1,2,5,6,9,10-Hexabromocyclododecane				
	[19-4] δ -1,2,5,6,9,10-Hexabromocyclododecane [19-5] ε -1,2,5,6,9,10-Hexabromocyclododecane				
	Total Polychlorinated naphthalenes (reference)				
	Total Dalvahlaringtod non-thalanga namaganta the grown of the Dalvahlaringtod				
[20]	naphthalenes congeners. The measured values of the individual congeners are listed				
	on the website.				
[21]	Hexachlorobuta-1,3-diene				0
	Pentachlorophenol and its salts and esters (reference)				0
[22]					
[22]	[22-1] Tentachiotophenor (reference)				
	Short-chain chlorinated paraffins				
	[23-1] Chlorinated decanes				
[23]				0	0
	[23-3] Chlorinated dodecanes				Ŭ
	[23-4] Chlorinated tridecanes				
[24]	Dicofol (reference)				
	Perfluorohexane sulfonic acid (PFHxS)	0	0	0	0
[26]	, ,	0	0		<u> </u>
120]	Dechlorane pluses				
[27]		0	0		
[-/]	[27-2] syn-Dechlorane plus				
[28]		0	0		
[20]	0.4-320	J	\cup		


Chemical and physical properties of target chemicals of the Environmental Monitoring are as follows.


(Abbreviations) CAS: CAS registry number, ENCS: registry number in the Existing and New Chemical Substances List, MW: molecular weight, mp: melting point, bp: boiling point, SW: solubility in water, logPow: *n*-octanol-water partition coefficient, kPa: kilopascal (1 atom approximately equal to 101.3kPa).

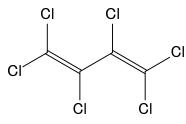
Chlordanes (reference) The following data are for both [7-1] and cis-Chlordane (reference) [7-2] *trans*-Chlordane (reference) [7-1] Molecular formula: $C_{10}H_6Cl_8$ 5103-71-9 (cis), CAS: 5103-74-2 (trans) CI CI ENCS: 4-637 409.78 MW: ···III Ω 106 °C 1) mp: CI 175 °C (1 mmHg) 1) bp: SW: 0.0006 g/kg (25 °C) 1 Ē H H 1.59~1.63 (25 °C) ²⁾ Specific gravity: ĈΙ $6.16^{3)}$ logPow: Oxychlordane (reference) [7-4] cis-Nonachlor (reference) Molecular Molecular CI formula: $C_{10}H_4Cl_8O$ formula: $C_{10}H_5Cl_9$ CI CI Н CAS: 26880-48-8 CAS: 5103-73-1 CI ENCS: No pertinence ENCS: No pertinence CI MW: 423.76 444.22 MW: 100 °C 1) Uncertain mp: mp: Uncertain Uncertain С bp: CI bp: Cl SW: Uncertain SW: Uncertain CI. Specific Ē Specific Η Uncertain gravity: Uncertain gravity: logPow: 4.76^{3} logPow: 5.21^{3} [7-5] trans-Nonachlor (reference) Molecular formula: $C_{10}H_5Cl_9$ 39765-80-5 CAS: No pertinence ENCS: CI 444.22 MW: Uncertain mp: ••••• <u>Ω</u> Uncertain bp: CI SW: Uncertain Uncertain Specific gravity: H logPow: 5.08 3) [8] Heptachlors (reference) [8-1] Heptachlor (reference) Molecular formula: C₁₀H₅Cl₇ CAS: 76-44-8 Н 4-637, 9-1646 ENCS: 373.32 MW: $95 \sim 96 \, ^{\circ}\text{C}^{2)}$ mp: Uncertain bp: SW: 0.00018 g/kg (25 °C) 1) i H Specific gravity: 1.57 (9 °C) 1) 6.10^{3} logPow: [8-2] cis-Heptachlor epoxide [8-3] trans-Heptachlor epoxide The following data are for both [8-2] and (reference) (reference) Molecular formula: $C_{10}H_5Cl_7O$ CAS: 1024-57-3 ENCS: No pertinence 389.32 MW: 160 °C 1) mp: Uncertain bp: / <u>|</u> SW: Uncertain Cl Specific gravity: Uncertain $5.40^{3)}$ logPow:

[13] Hexabromobiphenyls (reference) Molecular formula: C₁₂H₄Br₆ CAS: 36355-01-8 ENCS: No pertinence MW: 627.58 mp: Not specified bp: Not specified sw: Not specified Specific gravity: Not specified logPow: Not specified m+n=6[14] Polybromodiphenyl ethers (Br₄~Br₁₀) (reference) Molecular formula: $C_{12}H_{(10-i)}Br_iO$ ($i = m + n = 4 \sim 10$) CAS: 40088-47-9 (Br₄), 32534-81-9 (Br₅), 36483-60-0 (Br₆), 68928-80-3 (Br₇), 0 32536-52-0 (Br₈), 63936-56-1 (Br₉), 1163-19-5 (Br₁₀) ENCS: 3-61 (Br₄), 3-2845 (Br₆) Br_m Br_n MW: 485.79~959.17 mp: Not specified bp: Not specified sw: Not specified Specific gravity: Not specified $i = m+n = 4\sim 10$ logPow: Not specified [15] Perfluorooctane sulfonic acid (PFOS) Molecular formula: C₈HF₁₇O₃S CAS: 1763-23-1 ENCS: 2-1595 OH MW: 500.13 mp: >400 °C (Potassium salt) 13) bp: Uncertain sw: 519 mg/L (20 °C, Potassium salt) $^{13)}$ Specific gravity: Uncertain 0 logPow: Uncertain [16] Perfluorooctanoic acid (PFOA) Molecular formula: C₈HF₁₅O₂ 0 CAS: 335-67-1 ENCS: 2-1182, 2-2659 MW: 414.07 mp: 54.3 °C 1) OH bp: 192.4 °C 1) sw: $9.5 \text{ g/L} (20 \,^{\circ}\text{C})^{14)}$ Specific gravity: 1.79 g/cm³ 15) logPow: 6.3 15) [17] Pentachlorobenzene Molecular formula: C₆HCl₅ CI CAS: 608-93-5 ENCS: 3-76 CI MW: 250.34 mp: 86 °C 1) bp: 277 °C 1) sw: 0.00050 g/kg (25 °C) 1) Specific gravity: 1.8342 g/cm³ (16 °C) ¹⁾ CI CI logPow: 5.17³⁾ CI

[20] Total Polychlorinated Naphthalenes (reference)

 CI_m $i = m+n = 1 \sim 8$

Molecular formula: $C_{10}H_{(8-i)}Cl_i$ ($i = m+n = 1 \sim 8$)


CAS: 25586-43-0(Cl₁), 28699-88-9(Cl₂), 1321-65-9(Cl₃), 1335-88-2(Cl₄), 1321-64-8(Cl₅), 1335-87-1(Cl₆),

32241-08-0(Cl₇), 2234-13-1(Cl₈)

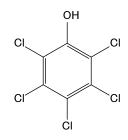
ENCS: No pertinence
MW: 162.6~403.7
mp: Not specified
bp: Not specified
sw: Not specified

Specific gravity: Not specified logPow: Not specified

[21] Hexachlorobuta-1,3-diene

Molecular formula: C₄Cl₆

CAS:


ENCS: 2-121 MW: 260.76 mp: -21 °C ²⁾ bp: 215 °C ²⁾

sw: $0.0005 \% (20 \degree C)^{2}$ Specific gravity: $1.682 (20 / 4 \degree C)^{2}$

logPow: 4.9 18)

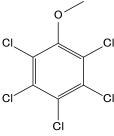
[22] Pentachlorophenol and its salts and esters (reference)

[22-1] Pentachlorophenol (reference)

Molecular formula: C₆HCl₅O

CAS: 87-86-5 ENCS: 3-2850 MW: 266.35

mp: 174 °C (Monohydrate), 191 °C (Anhydrous) 19)

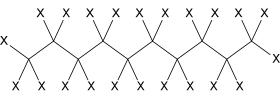

bp: $309 \sim 310$ °C (Decomposition) ²⁾

sw: 14 mg/L (26.7 °C) ²⁰⁾

Specific gravity: 1.978 (22 °C) 2)

logPow: 5.12²¹⁾

[22-2] Pentachloroanisole (reference)


Molecular formula: C₇H₃Cl₅O

CAS: 1825-21-4 ENCS: No pertinence MW: 280.36 mp: 233.9 °C ¹⁾ bp: Uncertain sw: < 1 mg/L ²²⁾

Specific gravity: Uncertain logPow: 5.45 ²²⁾

[23] Short-chain chlorinated paraffins

[23-1] Chlorinated decanes

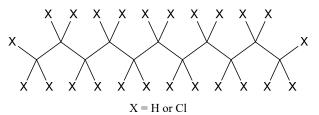
X = H or Cl

 $Molecular \ formula: \ C_{10}H_{(22\text{-}i)}Cl_i \ (i=1\sim 22)$

CAS: Uncertain ENCS: 2-68

MW: 176.73 ~ 900.07

mp: Not specified


bp: Not specified

sw: Not specified

Specific gravity: Not specified

logPow: Not specified

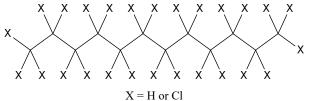
[23-2] Chlorinated undecanes

Molecular formula: $C_{11}H_{(24-i)}Cl_i$ ($i = 1 \sim 24$)

CAS: Uncertain ENCS: 2-68

MW: 190.75 ~ 982.99

mp: Not specified


bp: Not specified

sw: Not specified

Specific gravity: Not specified

logPow: Not specified

[23-3] Chlorinated dodecanes

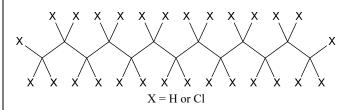
X - II of Ci

 $Molecular\ formula:\ C_{12}H_{(26\text{-}i)}Cl_i\ (i=1\sim26)$

CAS: Uncertain ENCS: 2-68

MW: 204.78 ~ 1065.91

mp: Not specified

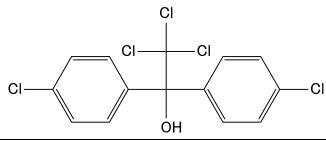

bp: Not specified

sw: Not specified

Specific gravity: Not specified

logPow: Not specified

[23-4] Chlorinated tridecanes

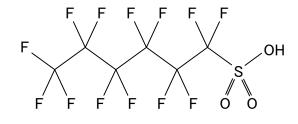

 $Molecular\ formula:\ C_{13}H_{(28\text{-}i)}Cl_i\ (i=1\sim28)$

CAS: Uncertain ENCS: 2-68

MW: 218.81~1,148.82 mp: Not specified bp: Not specified sw: Not specified

Specific gravity: Not specified logPow: Not specified

[24] Dicofol (reference)


Molecular formula: C₁₄H₉Cl₅O

CAS: 115-32-2 ENCS: 4-226 MW: 370.49

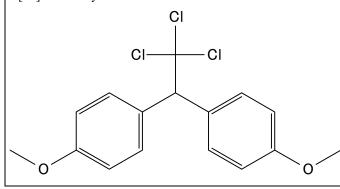
mp: $77.5 \sim 79.5 \,^{\circ}\text{C}^{23)}$ bp: $180 \sim 225 \,^{\circ}\text{C}^{23)}$ sw: $0.8 \sim 1.32 \,^{\circ}\text{mg/L} (25 \,^{\circ}\text{C})^{23)}$

Specific gravity: $1.4 \text{ 5g/cm}^{3 \text{ 23}}$ logPow: $3.8 \sim 6.06^{23}$

[25] Perfluorohexane sulfonic acid (PFHxS)

Molecular formula: C₆HF₁₃O₃S

CAS: 355-46-4 ENCS: No pertinence MW: 400.11 mp: 41 °C²⁴) bp: 238 ~ 239°C²⁴)


sw: $1.4 \text{ g/L} (20 \sim 25 \text{ °C}, \text{Potassium salt}),$

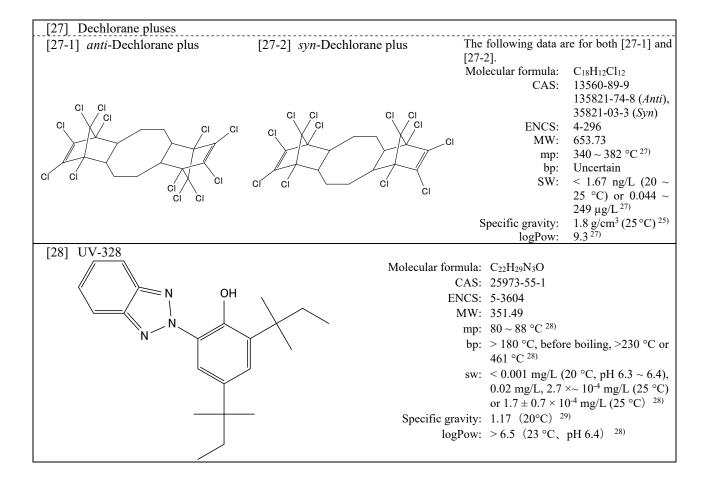
2.3 g/L (Non-dissociation)²⁴⁾

Specific gravity: 1.841 g/cm³ 25)

logPow: 5.17²⁴⁾

[26] Methoxychlor

 $Molecular\ formula:\ C_{16}H_{15}Cl_3O_2$


CAS: 72-43-5 ENCS: No pertinence MW: 345.65 mp: 87 °C ²⁶⁾ bp: 346 °C ²⁶⁾

sw: 0.040 mg/L (24 °C) or 0.12 mg/L

(25 °C) ²⁶⁾

Specific gravity: 1.4 g/cm³ (25 °C) ²⁵⁾

logPow: 5.08 ²⁶⁾

References

- 1) John R. Rumble, CRC Handbook of Chemistry and Physics, 98th Edition, CRC Press LLC (2017)
- 2) O'Neil, The Merck Index An Encyclopedia of Chemicals, Drugs, and Biologicals 15th Edition, Merck Co. Inc. (2013)
- 3) Hansch et al., Exploring QSAR Hydrophobic, Electronic and Steric Constants, American Chemical Society (1995)
- 4) IPCS, International Chemical Safety Cards, Aldrin, ICSC0774 (1998)
- 5) Howard et al., Handbook of Physical Properties of Organic Chemicals, CRC Press Inc. (1996)
- 6) IPCS, International Chemical Safety Cards, Endrin, ICSC1023 (2000)
- 7) IPCS, International Chemical Safety Cards, DDT, ICSC0034 (2004)
- 8) Biggar et al., Apparent solubility of organochlorine insecticides in water at various temperatures, Hilgardia, 42, 383-391 (1974)
- 9) IPCS, International Chemical Safety Cards, alpha-Hexachlorocyclohexane, ICSC0795 (1998)
- 10) ATSDR, Toxicological Profile for alpha-, beta-, gamma- and delta-Hexachlorocyclohexane (2005)
- 11) IPCS, International Chemical Safety Cards, beta-Hexachlorocyclohexane, ICSC0796 (1998)
- 12) IPCS, International Chemical Safety Cards, Chlordecone ICSC1432 (2003)
- 13) United Nations Environment Programme (UNEP), Risk profile on perfluorooctane sulfonate, Report of the Persistent Organic Pollutants Review Committee on the work of its second meeting (2006)
- 14) OECD, Perfluorooctanoic Acid & Ammonium Perfluorooctanoate, SIDS Initial Assessment Profile for 26th SIAM (2008)
- 15) IPCS, International Chemical Safety Cards, Perfkuorooctanoic acid, ICSC1613 (2005)
- 16) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on endosulfan, Report of the Persistent Organic Pollutants Review Committee on the work of its fifth meeting (2009)
- 17) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on hexabromocyclododecane, Report of the Persistent Organic Pollutants Review Committee on the work of its sixth meeting (2010)
- 18) IPCS, International Chemical Safety Cards, Hexachlorobutadiene ICSC0896 (1997)
- International Agency for Research on Cancer(IARC), IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man(1972)
- 20) Yalkowsky et al., Aquasol Database of Aqueous Solubility Version 5, College of Pharmacy, University of Arizona(1992)
- 21) Hansch et al., Exploring QSAR Hydrophobic, Electronic and Steric Constants, American Chemical Society (1995)
- 22) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on pentachlorophenol and its salts and esters, Report of the Persistent Organic Pollutants Review Committee on the work of its ninth meeting (2013)
- 23) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on dicofol, Report of the Persistent Organic Pollutants Review Committee on the work of its twelfth meeting (2016)
- 24) UNEP, Stockholm Convention on Persistent Organic Pollutants, Persistent Organic Pollutants Review Committee, Perfluorohexane sulfonic acid (PFHxS), its salts and PFHxS related compounds, Draft risk management evaluation (2019)
- 25) U.S. National Library of Medicine, PubChem (https://pubchem.ncbi.nlm.nih.gov/)
- 26) UNEP, Stockholm Convention on Persistent Organic Pollutants, Persistent Organic Pollutants Review Committee, Risk profile for Methoxychlor (2021)

- UNEP, Stockholm Convention on Persistent Organic Pollutants, Persistent Organic Pollutants Review Committee, Risk profile for Dechlorane Plus (2022)
 UNEP, Stockholm Convention on Persistent Organic Pollutants, Persistent Organic Pollutants Review Committee, Risk
- profile for UV-328 (2022)
- 29) European Chemicals Agency (ECHA), REACH registered substance factsheets (https://echa.europa.eu/)

3. Monitored site and procedure

In the Environmental Monitoring (of surface water, sediment, wildlife, and air), the sampling of specimens was entrusted to prefectural governments and government-designated cities across Japan and the specimens sampled were analysed by private analytical laboratories.

(1) Organisations responsible for sampling

Local			Monitor	red media	
communities	Organisations responsible for sampling *1	Surface water	Sedi- ment	Wildlife	Air
Hokkaido	Recycling-based Society Promotion Division, Environment and Lifestyle Department, Environmental Conservation Bureau, Hokkaido Prefectural Government and Research Institute of Energy, Environment and Geology, Hokkaido Research Organization	0	0	0	0
Sapporo City	Sapporo City Institute of Public Health				0
Iwate Pref.	Research Institute for Environmental Sciences and Public Health of Iwate Prefecture	0	0	0	0
Miyagi Pref.	Miyagi Prefectural Institute of Public Health and Environment	0	0	0	0
Sendai City	Sendai City Institute of Public Health		0		
Akita Pref.	Akita Research Center for Public Health and Environment	0	0		
Yamagata Pref.	Yamagata Environmental Science Research Center	0	0		0
Fukushima Pref.	Fukushima Prefectural Environmental Center	0	0		
Ibaraki Pref.	Ibaraki Kasumigaura Environmental Science Center	0	0	0	0
Tochigi Pref.	Tochigi Prefectural Institute of Public Health and Environmental Science	0	0		
Gunma Pref.	Gunma Prefectural Institute of Public Health and Environmental Sciences	0			
Saitama Pref.	Center for Environmental Science in Saitama	0			
Chiba Pref.	Chiba Prefectural Environmental Research Center		0		
Tokyo Met.	Environmental Improvement Division, Bureau of Environment, Tokyo Metropolitan Government and Tokyo Metropolitan Research Institute for Environmental Protection	0	0	0	0
Kanagawa Pref.	Kanagawa Environmental Research Center				0
Yokohama City	Yokohama Environmental Science Research Institute	0	0		0
Kawasaki City	Kawasaki Environment Research Institute	0	0	0	
Niigata Pref.	Niigata Prefectural Institute of Public Health and Environmental Sciences	0	0		0
Toyama Pref.	Environment Preservation Division, Living Environmental and Cultural Affairs Department, Toyama Prefectural Government and Toyama Prefectural Environmental Science Research Center	0	0		0
Ishikawa Pref.	Ishikawa Prefectural Institute of Public Health and Environmental Science	0	0	0	0
Fukui Pref.	Fukui Prefectural Institute of Public Health and Environmental Science	0	0		
Yamanashi Pref.	Yamanashi Institute for Public Health and Environment		0		0
Nagano Pref.	Nagano Environmental Conservation Research Institute	0	0		0
Gifu Pref.	Gifu Prefectural Research Institute for Health and Environmental Sciences				0
Shizuoka Pref.	Shizuoka Institute of Environment and Hygiene	0	0		-
Aichi Pref.	Aichi Environmental Research Center	0	0		
Nagoya City	Nagoya City Environmental Science Research Center, Regional Environmental measures Division, Environmental Bureau, Nagoya city			0	0
Mie Pref.	Mie Prefecture Health and Environment Research Institute	0	0		0
Shiga Pref.	Lake Biwa Environmental Research Institute	0	0	0	
Kyoto Pref.	Kyoto Prefectural Institute of Public Health and Environment	0	0		0
Kyoto City	Kyoto City Institute of Health and Environmental Sciences	0	0		
Osaka Pref.	Environment Preservation Division, Environment Management Office, Department of Environment, Agriculture, Forestry and Fisheries, Osaka Prefectural Government	0	0	0	0
Osaka City	Osaka City Institute of Public Health and Environmental Sciences	0	0		
Hyogo Pref.	Water and Air Division, Environment Department, Hyogo Prefectural Government and Hyogo Prefectural Institute of Environmental Sciences, Hyogo Environmental Advancement Association	0	0	0	0
	Water and Air Division, Environment Department, Hyogo Prefectural Government and Green and Nature Section, Urban Transportation Department, Itami City			o*2	
Kobe City	Environmental Conservation Division, Environment Bureau, Kobe City and Kobe City Institute of Health and Environmental Science	0	0		0
Nara Pref.	Nara Prefecture Landscape and Environment Center		0		0
Wakayama Pref.	Wakayama Prefectural Research Center of Environment and Public Health	0	0		

Consupublic Shimane Pref. Shima and O Okayama Pref. Okayama Pref. Hiros Hiroshima Pref. Hiros Envir Hiroshima City Hiros Yamaguchi Pref. Envir Depan Prefect Tokushima Pref. Tokus Scien Kagawa Pref. Kagav Public Ehime Pref. Ehim Kochi Pref. Koch Kitakyushu City Kitak Fukuoka City Fukuc Saga Pref. Sagav	hima Prefectural Technology Research Institute Health and onment Center hima City Institute of Public Health onmental Policy Division, Public Environmental Affairs rtment, Yamaguchi Prefectural Government and Yamaguchi ctural Institute of Public Health and Environment	Surface water o o	Sedi- ment	Wildlife	Air
Consupublic Shimane Pref. Shima and O Okayama Pref. Okayama Pref. Hiros Hiroshima Pref. Hiros Envir Hiroshima City Hiros Yamaguchi Pref. Envir Depan Prefect Tokushima Pref. Tokus Scien Kagawa Pref. Kagar Public Ehime Pref. Ehim Kochi Pref. Koch Kitakyushu City Kitak Fukuoka City Fukuo Saga Pref. Sagar	umer Affairs, Tottori Prefecture and Tottori Prefectural Institute of the Health and Environmental Science and Prefectural Institute of Public Health and Environmental Science oki Public Health Center ama Prefectural Institute for Environmental Science and Public holima Prefectural Technology Research Institute Health and comment Center hima City Institute of Public Health commental Policy Division, Public Environmental Affairs retment, Yamaguchi Prefectural Government and Yamaguchi ctural Institute of Public Health and Environment	0	0		
and O Okayama Pref. Okaya Healti Hiroshima Pref. Hiros Envir Hiroshima City Hiros Yamaguchi Pref. Envir Depar Prefec Tokushima Pref. Tokus Scien Kagawa Pref. Kagav Public Ehime Pref. Ehim Kochi Pref. Koch Kitakyushu City Kitak Fukuoka City Fukuc Saga Pref. Saga	Oki Public Health Center ama Prefectural Institute for Environmental Science and Public h hima Prefectural Technology Research Institute Health and comment Center hima City Institute of Public Health conmental Policy Division, Public Environmental Affairs rtment, Yamaguchi Prefectural Government and Yamaguchi ctural Institute of Public Health and Environment	0	0		
Healti Hiroshima Pref. Hiros Envir Hiroshima City Hiros Yamaguchi Pref. Envir Depan Prefec Tokushima Pref. Tokus Scien Kagawa Pref. Kagaw Public Ehime Pref. Ehime Kochi Pref. Koch Kitakyushu City Kitak Fukuoka City Fukuc Saga Pref. Saga	hima Prefectural Technology Research Institute Health and onment Center hima City Institute of Public Health onmental Policy Division, Public Environmental Affairs rtment, Yamaguchi Prefectural Government and Yamaguchi ctural Institute of Public Health and Environment	0	0		
Hiroshima City Hiros Yamaguchi Pref. Envir Depan Prefec Tokushima Pref. Scien Kagawa Pref. Kagaw Public Ehime Pref. Ehime Kochi Pref. Koch Kitakyushu City Kitak Fukuoka City Saga Pref. Saga	onment Center hima City Institute of Public Health onmental Policy Division, Public Environmental Affairs rtment, Yamaguchi Prefectural Government and Yamaguchi ctural Institute of Public Health and Environment				
Yamaguchi Pref. Envir Depai Prefect Tokushima Pref. Tokus Scien Kagawa Pref. Kagawa Public Ehime Pref. Ehime Kochi Pref. Kochi Kitakyushu City Kitak Fukuoka City Saga Pref. Saga	onmental Policy Division, Public Environmental Affairs rtment, Yamaguchi Prefectural Government and Yamaguchi ctural Institute of Public Health and Environment	0	0		
Depar Prefect Tokushima Pref. Tokus Scien Kagawa Pref. Kagawa Public Ehime Pref. Ehime Kochi Pref. Koch Kitakyushu City Kitak Fukuoka City Fukuc Saga Pref. Saga	rtment, Yamaguchi Prefectural Government and Yamaguchi ctural Institute of Public Health and Environment	0	0	U	0
Kagawa Pref. Kagawa Public Ehime Pref. Ehime Kochi Pref. Kochi Kitakyushu City Kitak Fukuoka City Saga Pref. Saga			Ü		0
Public Ehime Pref. Ehime Kochi Pref. Kochi Kitakyushu City Kitak Fukuoka City Fukuo Saga Pref. Saga	shima Prefectural Public Health, Pharmaceutical and Environmental ces Center	0	0		0
Kochi Pref. Koch Kitakyushu City Kitak Fukuoka City Fukuo Saga Pref. Saga	wa Prefectural Research Institute for Environmental Sciences and c Health	0	0	0	0
Kitakyushu City Kitak Fukuoka City Fukuo Saga Pref. Saga	e Prefectural Institute of Public Health and Environmental Science		0		0
Fukuoka City Fukuo Saga Pref. Saga	i Prefectural Environmental Research Center	0	0	0	
Saga Pref. Saga	yushu City Institute of Health and Environmental Sciences	0	0		
	oka City Institute for Hygiene and the Environment		0		
	Prefectural Environmental Research Center	0	0		0
Nagasaki Pref. Prefec	ctural Living Environment Division, Environment Bureau, Nagasaki cture	0	0		
Kumamoto Pref. Kuma Scien	amoto Prefectural Institute of Public-Health and Environmental ce	0			0
Prefec Envir	onment Preservation Division, Department of Environment, Oita ctural Government and Oita Prefectural Institute of Health and onment		0	0	
Miyazaki Pref. Miyaz	zaki Prefectural Institute for Public Health and Environment	0	0		0
Kagoshima Pref. Kagos Healt	shima Prefectural Institute for Environmental Research and Public	0	0	0	0
Okinawa Pref. Okina		0	0	0	0

(Note 1) *1: Organisations responsible for sampling are described by their official names in FY2023

(Note 2) *2: Because there were the examples of survey that obtained the eggs in other countries, the eggs of great cormorants were taken in this survey by Water and Air Division, Environment Department, Hyogo Prefectural Government and Green and Nature Section, Urban Transportation Department, Itami City. The results were treated as the reference values.

(2) Monitored sites (areas)

In the Environmental Monitoring (of surface water, sediment, wildlife, and air), the sampling of specimens was entrusted to prefectural governments and government-designated cities across Japan and the specimens sampled were analysed by private analytical laboratories.

The monitored sites (areas) are shown in Table 3-1-1 and Figure 3-1-1 for surface water, Table 3-1-2 and Figure 3-1-2 for sediment, Table 3-1-3 and Figure 3-1-3 for wildlife and Table 3-1-4 and Figure 3-1-4 for air. The breakdown is summarized as follows.

Monitored	Numbers of local	Numbers of target	Numbers of monitored	Numbers of samples at a
media	communities	chemicals (groups)	sites (or areas)	monitored site (or area)
Surface water	42	11	47	1
Sediment	46	11	60	1*1
Wildlife (bivalves)	2	11	2	1*2
Wildlife (fish)	17	11	18	1* ²
Wildlife (birds)	3*3	11	3*3	1*2
Air (warm season)	33	11	36	1 or 3*4
All media	56	11	120*3	

(Note 1) *1: For sediment, at each monitoring point, three (3) specimen samples were collected. The target substances were analysed for each place with one (1) specimen sample that is a mixture of equal parts of the three (3) specimen samples.

(3) Sampling method of specimens

The sampling of specimens and the preparation of samples were carried out following the "Guidelines on Conducting of Environmental Surveys and Monitoring of Chemicals" (published on March 2021) by the Environment Health and Safety Division, Environmental Health Department, Ministry of the Environment of Japan (MOE).

(4) Target species

The species to be monitored among the wildlife media were selected considering the possibility of international comparison, as well as their significance and practicality as indicators: 1 bivalve (blue mussel), 9 fishes (predominantly sea bass), and 1 bird (Great Cormorant), namely, 11 species in total.

The properties of the species determined as targets in the FY2023 monitoring are shown in Table 3-2. Moreover, Table 3-1-3 summarizes the outline of the samples used for analysis.

⁽Note 2) *2: For wildlife species, at each monitoring point, three (3) specimen samples were collected. The target substances were analysed for each place with one (1) specimen sample that is a mixture of equal parts of the three (3) specimen samples.

⁽Note 3) *3: Samples obtained in 1 site of the birds as wildlife eggs of Great Cormorant, and the sample was measured each the egg yolk and the egg white, the results were treated as a reference values.

⁽Note 4) *4: The target substances other than [21] Hexachlorobuta-1,3-diene were analysed with one (1) sample for each sit. The target substance [21] Hexachlorobuta-1,3-diene was analysed with the three (3) specimen samples for each site.

Γable 3-1-1 List of	f monitored sites (surface water) in the Environmental Monitoring in FY	Y2023
Local communities	Monitored sites	Sampling dates
Hokkaido	Ishikarikakokyo Bridge, Mouth of Riv. Ishikari (Ishikari City)	November 16, 2023
wate Pref.	Toyosawa-bashi Bridge, Riv. Toyosawa (Hanamaki City)	November 8, 2023
Miyagi Pref.	Sendai Bay (Matsushima Bay)	October 16, 2023
Akita Pref.	Lake Hachiro	September 26, 2023
Yamagata Pref.	Mouth of Riv. Mogami (Sakata City)	October 20, 2023
Fukushima Pref.	Onahama Port	November 14, 2023
baraki Pref.	Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City)	November 16, 2023
Госhigi Pref.	Yajikka-bashi Bridge, Riv. Tagawa (Shimono City)	January 10, 2024
Gunma Pref.	Tone-ozeki Weir, Riv. Tone (Chiyoda Town)	November 15, 2023
Saitama Pref.	Akigase-shusuizeki Weir, Riv. Arakawa (Shiki City)	November 24, 2023
Гокуо Met.	Mouth of Riv. Arakawa (Koto Ward)	November 30, 2023
	Mouth of Riv. Sumida (Minato Ward)	November 30, 2023
Yokohama City	Yokohama Port	November 6, 2023
Kawasaki City	Front of Ougi Town, Keihin Canal, Port of Kawasaki	November 13, 2023
Niigata Pref.	Lower Riv. Shinano (Niigata City)	November 15, 2023
Гоуата Pref.	Hagiura-bashi Bridge, Mouth of Riv. Jintsu (Toyama City)	October 18, 2023
Ishikawa Pref.	Mouth of Riv. Sai (Kanazawa City)	October 18, 2023
Fukui Pref.	Mishima-bashi Bridge, Riv. Shono (Tsuruga City)	October 19, 2023
Nagano Pref.	Lake Suwa (center)	November 14, 2023
Shizuoka Pref.	Kaketsuka-bashi Bridge, Riv. Tenryu (Iwata City)	November 7, 2023
Aichi Pref.	Nagoya Port	November 8, 2023
Mie Pref.	Yokkaichi Port	December 12, 2023
Shiga Pref.	Lake Biwa (center, offshore of Karasaki)	November 29, 2023
Kyoto Pref.	Miyazu Port	January 10, 2024
Kyoto City	Miyamae-bashi Bridge, Riv. Katsura (Kyoto City)	November 16, 2023
Osaka Pref.	Mouth of Riv. Yamato (Sakai City)	December 6, 2023
Osaka City	Osaka Port	October 31, 2023
Hyogo Pref.	Offshore of Himeji	November 16, 2023
Kobe City	Kobe Port (center)	November 21, 2023
Wakayama Pref.	Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)	November 30, 2023
Okayama Pref.	Offshore of Mizushima	November 8, 2023
Hiroshima Pref.	Kure Port	November 7, 2023
111105111111111111111111111111111111111	Hiroshima Bay	November 7, 2023
Yamaguchi Pref.	Tokuyama Bay	October 19, 2023
r amagaem r ren.	Offshore of Ube	October 19, 2023
	Offshore of Hagi	
Tokushima Pref.	Mouth of Riv. Yoshino (Tokushima City)	October 12, 2023 October 26, 2023
Kagawa Pref.	Takamatsu Port	·
Kochi Pref.	Mouth of Riv. Shimanto (Shimanto City)	November 21, 2023
Kitakyushu City	Dokai Bay	October 13, 2023
Saga Pref.	Imari Bay	November 28, 2023
	Omura Bay	November 21, 2023
Nagasaki Pref.	-	November 2, 2023
Kumamoto Pref.	Hiraki-bashi Bridge, Riv. Midori (Uto City)	November 21, 2023
Miyazaki Pref.	Mouth of Riv. Oyodo (Miyazaki City)	October 27, 2023
Kagoshima Pref.	Shinkawa-bashi Bridge, Riv. Amori (Kirishima City)	October 23, 2023
01: 7.0	Gotanda-bashi Bridge, Riv. Gotanda (Ichikikushikino City)	November 1, 2023
Okinawa Pref.	Naha Port	November 8, 2023

Figure 3-1-1 Monitored sites (surface water) in the Environmental Monitoring in FY2023

Table 3-1-2 List of monitored sites (sediment) in the Environmental Monitoring in FY2023

Local communities	Monitored sites	Sampling dates
Hokkaido	Ishikarikakokyo Bridge, Mouth of Riv. Ishikari (Ishikari City)	November 16, 2023
	Tomakomai Port	September 13, 2023
wate Pref.	Toyosawa-bashi Bridge, Riv. Toyosawa (Hanamaki City)	November 8, 2023
Miyagi Pref.	Sendai Bay (Matsushima Bay)	October 16, 2023
Sendai City	Hirose-ohashi Bridge, Riv. Hirose (Sendai City)	November 6, 2023
Akita Pref.	Lake Hachiro	September 26, 2023
amagata Pref.	Mouth of Riv. Mogami (Sakata City)	October 20, 2023
Fukushima Pref.	Onahama Port	November 14, 2023
baraki Pref.	Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City)	November 16, 2023
Tochigi Pref.	Yajikka-bashi Bridge, Riv. Tagawa (Shimono City)	January 10, 2024
Chiba Pref.	Coast of Ichihara and Anegasaki	November 29, 2023
Tokyo Met.	Mouth of Riv. Arakawa (Koto Ward)	November 30, 2023
J	Mouth of Riv. Sumida (Minato Ward)	November 30, 2023
Yokohama City	Yokohama Port	November 6, 2023
Kawasaki City	Mouth of Riv. Tama (Kawasaki City)	November 13, 2023
	Front of Ougi Town, Keihin Canal, Port of Kawasaki	November 13, 2023
Niigata Pref.	Lower Riv. Shinano (Niigata City)	November 21, 2023
Toyama Pref.	Hagiura-bashi Bridge, Mouth of Riv. Jintsu (Toyama City)	October 18, 2023
shikawa Pref.	Mouth of Riv. Sai (Kanazawa City)	October 18, 2023
Fukui Pref.	Mishima-bashi Bridge, Riv. Shono (Tsuruga City)	October 19, 2023
Yamanashi Pref.	Senshu-bashi Bridge, Riv. Arakawa (Kofu City)	October 19, 2023
Nagano Pref.	Lake Suwa (center)	November 14, 2023
Shizuoka Pref.	Shimizu Port	November 27, 2023
Silizuoka Fici.	Kaketsuka-bashi Bridge, Riv. Tenryu (Iwata City)	November 7, 2023
Aichi Pref.	Kinuura Port	November 8, 2023
Alcili Piel.		
T. D. C	Nagoya Port	November 8, 2023
Mie Pref.	Yokkaichi Port	December 12, 2023
21: D C	Toba Port	November 13, 2023
Shiga Pref.	Lake Biwa (center, offshore of Minamihira)	November 29, 2023
V . D . C	Lake Biwa (center, offshore of Karasaki)	November 29, 2023
Kyoto Pref.	Miyazu Port	January 10, 2024
Kyoto City	Miyamae-bashi Bridge,Riv. Katsura (Kyoto City)	November 16, 2023
Osaka Pref.	Mouth of Riv. Yamato (Sakai City)	December 6, 2023
Osaka City	Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)	October 31, 2023
	Mouth of Riv. Yodo (Osaka City)	October 31, 2023
	Osaka Port	October 31, 2023
	Outside Osaka Port	October 31, 2023
Hyogo Pref.	Offshore of Himeji	November 16, 2023
Kobe City	Kobe Port (center)	November 21, 2023
Nara Pref.	Taisho-bashi Bridge, Riv. Yamato (Oji Town)	November 28, 2023
Wakayama Pref.	Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)	November 30, 2023
Okayama Pref.	Offshore of Mizushima	November 8, 2023
Hiroshima Pref.	Kure Port	November 7, 2023
	Hiroshima Bay	November 7, 2023
Yamaguchi Pref.	Tokuyama Bay	October 19, 2023
C	Offshore of Ube	October 19, 2023
	Offshore of Hagi	October 12, 2023
Tokushima Pref.	Mouth of Riv. Yoshino (Tokushima City)	October 26, 2023
Kagawa Pref.	Takamatsu Port	November 21, 2023
Ehime Pref.	Niihama Port	November 9, 2023
Kochi Pref.	Mouth of Riv. Shimanto (Shimanto City)	October 13, 2023
Kitakyushu City	Dokai Bay	November 28, 2023
Tukuoka City	Hakata Bay	November 16, 2023
Saga Pref.	Imari Bay	November 21, 2023
Nagasaki Pref.	Omura Bay	November 2, 2023
oita Pref.	Mouth of Riv. Oita (Oita City)	November 22, 2023
Miyazaki Pref.	Mouth of Riv. Oyodo (Miyazaki City) Riv. Amori (Kirishima City)	October 27, 2023 October 23, 2023
Zacashi D C		1 1000ber /3 /11/3
Kagoshima Pref.	Riv. Gotanda (Ichikikushikino City)	November 1, 2023

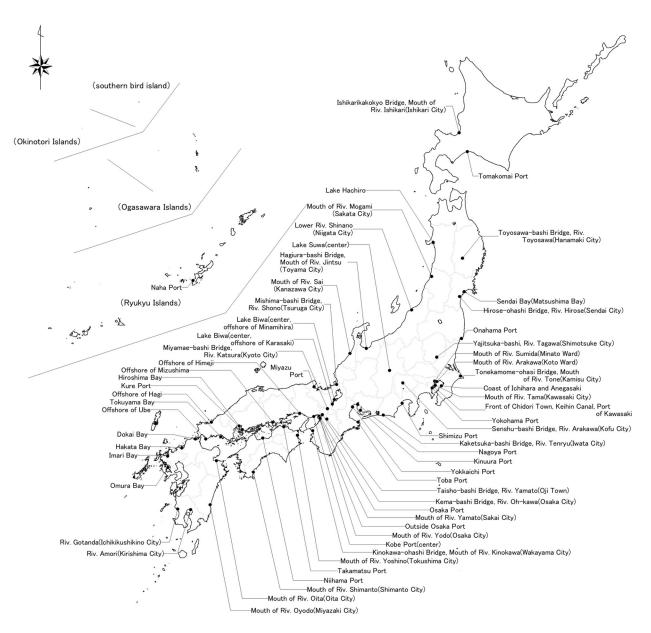


Figure 3-1-2 Monitored sites (sediment) in the Environmental Monitoring in FY2023

Table 3-1-3 List of monitored areas (wildlife) in the Environmental Monitoring in FY2023

Local communities	Monitored sites	Sampling dates		Wildlife species
Hokkaido	Offshore of Kushiro	October 19, 2023	Fish	Rock greenling (Hexagrammos lagocephalus)
		October 18, 2023	Fish	Chum salmon (Oncorhynchus keta)
Iwate Pref.	Yamada Bay	October 23, 2023	Bibalves	Blue mussel (Mytilus galloprovincialis)
		November 6, 2023	Fish	Greenling (Hexagrammos otakii)
Miyagi Pref.	Sendai Bay (Matsushima Bay)	November 27, 2023	Fish	Greenling (Hexagrammos otakii)
Ibaraki Pref.	Offshore of Joban	December 12, 2023	Fish	Chub mackerel (Scomber japonicus)
Tokyo Met.	Tokyo Bay	October 3, 2023	Fish	Sea bass (Lateolabrax japonicus)
Kawasaki City	Offshore of Ogishima Island, Port of Kawasaki	September 19, 2023	Fish	Sea bass (Lateolabrax japonicus)
Ishikawa Pref.	Coast of Noto Peninsula	August 21, 2023	Bibalves	Blue mussel (Mytilus galloprovincialis)
Nagoya City	Nagoya Port	September 5, 2023	Fish	Striped mullet (Mugil cephalus)
Shiga Pref.	Tikubushima Island, Lake Biwa	July 31, 2023	Birds	Great Cormorant (Phalacrocorax carbo)
	Lake Biwa, Riv. Ado (Takashima City)	April 5, 2023	Fish	Dace (Tribolodon hakonensis)
Osaka Pref.	Osaka Bay	October 25, 2023	Fish	Sea bass (Lateolabrax japonicus)
Hyogo Pref.	Offshore of Himeji	December 11, 2023	Fish	Sea bass (Lateolabrax japonicus)
Tottori Pref.	Riv.Tenjin (Kurayoshi City)	April 15 and 20, 2023	Birds	Great Cormorant (Phalacrocorax carbo)
	Nakaumi	November 1, 2023	Fish	Sea bass (Lateolabrax japonicus)
Hiroshima City	Hiroshima Bay	November 13, 2023	Fish	Sea bass (Lateolabrax japonicus)
Kagawa Pref.	Takamatsu Port	August 26, 2023	Fish	Striped mullet (Mugil cephalus)
Kochi Pref.	Mouth of Riv. Shimanto (Shimanto City)	November 7 8 10 11 14 and 26, 2023	Fish	Sea bass (Lateolabrax japonicas)
Oita Pref.	Mouth of Riv. Oita (Oita City)	February 5, 2024	Fish	Spanish mackerel (Scomberomorus niphonius)
Kagoshima Pref.	West Coast of Satsuma Peninsula	November 24, 2023	Fish	Sea bass (Lateolabrax japonicas)
Okinawa Pref.	Nakagusuku Bay	January 23, 2024	Fish	Okinawa seabeam (Acanthopagrus sivicolus)

Figure 3-1-3 Monitored areas (wildlife) in the Environmental Monitoring in FY2023

Local	Monitored sites	Sampling dates
communities		(Warm season)
Hokkaido	Kushiro General Subprefectural Bureau (Kushiro City)	November $7 \sim 14**$ or November $7 \sim 10$ 2023
Sapporo City	Sapporo Art Park (Sapporo City)	Octorber 24 ~ 27, 2023
Iwate Pref.	Sugo Air Quality Monitoring Station (Takizawa City)	Octorber 23 ~ 26, 2023
Miyagi Pref.	Miyagi Prefectural Institute of Public Health and Environment (Sendai City)	November $27 \sim \text{December } 4^{**} \text{ or November } 27 \sim 30^{*}, 2023$
Yamagata Pref.	Yamagata Institute of Environmental Sciences (Murayama City)	November $6 \sim 13**$ or November $6 \sim 9*$, 202
Ibaraki Pref.	Ibaraki Kasumigaura Environmental Science Center (Tsuchiura City)	November $7 \sim 14**$ or November $7 \sim 10$ 2023
Tokyo Met.	Tokyo Metropolitan Research Institute for Environmental Protection (Koto Ward)	November $6 \sim 13**$ or November $6 \sim 9*$, 202
	Chichijima Island (Ogasawara Village)	November $8 \sim 15**$ or November $11 \sim 14$ 2023
Kanagawa Pref.	Kanagawa Environmental Research Center (Hiratsuka City)	Octorber 23 ~ 26, 2023
Yokohama City	Yokohama Environmental Science Research Institute (Yokohama City)	November 13 ~ 20** or November 13 ~ 16 2023
Niigata Pref.	Oyama Air Quality Monitoring Station (Niigata City)	Octorber 30 ~ November 2, 2023
Toyama Pref.	Tonami Air Quality Monitoring Station (Tonami City)	Octorber 23 ~ 26, 2023
Ishikawa Pref.	Ishikawa Prefectural Institute of Public Health and Environmental Science (Kanazawa City)	Octorber 23 ~ 26, 2023
Yamanashi Pref.	Yamanashi Prefectural Institute of Public Health and Environment (Kofu City)	Octorber 23 ~ 26, 2023
Nagano Pref.	Nagano Environmental Conservation Research Institute (Nagano City)	November $6 \sim 13**$ or November $6 \sim 9*$, 20
Gifu Pref.	Gifu Prefectural Research Institute for Health and Environmental Sciences (Kakamigahara City)	November 27 ~ 30, 2023
Nagoya City	Chikusa Ward Heiwa Park (Nagoya City)	November $7 \sim 14**$ or November $7 \sim 10$ 2023
Mie Pref.	Mie Prefecture Health and Environment Research Institute (Yokkaichi City)	November 13 ~ 16, 2023
Kyoto Prif.	Kyoto Prefecture Joyo Senior High School (Joyo City)	November 13 ~ 16, 2023
Osaka Pref.	Osaka Joint Prefectural Government Building, Building 2 Annex (Osaka City)	November 13 ~ 16, 2023
Hyogo Pref.	Hyogo Prefectural Environmental Research Center (Kobe City)	Octorber 30 ~ November 2, 2023
Kobe City	Kobe City Institute of Health and Environmental Sciences (Kobe City)	November 14 ~ 17, 2023
Nara Pref.	Tenri Air Quality Monitoring Station (Tenri City)	November 27 ~ 30, 2023
Shimane Pref.	Oki National Acid Rain Observatory (Okinoshima Town)	Octorber $17 \sim 20, 2023$
Hiroshima City	Hiroshima City Kokutaiji Junior High School (Hiroshima City)	Octorber 23 ~ 26, 2023
Yamaguchi Pref.	Yamaguchi Prefectural Institute of Public Health and Environment (Yamaguchi City)	Octorber $17 \sim 24**$ or Octorber $17 \sim 20*$, 20
	Hagi Health and Welfare Center (Hagi City)	Octorber $17 \sim 24**$ or Octorber $17 \sim 20*$, 20
Tokushima Pref.	Tokushima Prefectural Public Health, Pharmaceutical and Environmental Sciences Center (Tokushima City)	November 27 ~ 30, 2023
Kagawa Pref.	Kagawa Prefectural Research Institute for Environmental Sciences and Public Health (Takamatsu City)	November $6 \sim 13**$ or November $6 \sim 9*$, 20
Ehime Pref.	Ehime Prefectural Government Nanyo Regional Office (Uwajima City)	Octorber 30 ~ November 2, 2023
Saga Pref.	Saga Prefectural Environmental Research Center (Saga City)	Octorber 30 ~ November 6** or Octorber 30 November 2*, 2023
Kumamoto Pref.	Kumamoto Prefectural Institute of Public Health and Environmental Science (Udo City)	Octorber 23 ~ 26, 2023
Miyazaki Pref.	Miyazaki Prefectural Institute for Public Healthand Environment (Miyazaki City)	November $7 \sim 14**$ or November $7 \sim 10^{\circ}$ 2023
Kagoshima Pref.	Kagoshima Prefectural Institute for Environmental Research and Public Health (Kagoshima City)	Octorber 30 ~ November 2, 2023
Okinawa Pref.	Cape Hedo (Kunigami Village)	Octorber 30 ~ November 2, 2023

(Note) " * " means sampling except [21] Hexachlorobuta-1,3-diene. " ** " means sampling [21] Hexachlorobuta-1,3-diene.

Figure 3-1-4 Monitored sites (air) in the Environmental Monitoring in FY2023

Table 3-2 Properties of target species

	Species	Properties	Monitored areas	Aim of monitoring	Notes
Bibalves	Blue mussel (Mytilus galloprovincialis)	Distributed worldwide, excluding tropical zones Adheres to rocks in inner bays and to bridge piers	Yamada bay Coast of Noto Peninsula	Follow-up of the environmental fate and persistency in specific areas	Monitored in the 2 areas with different levels of persistency
	Greenling (Hexagrammos otakki)	Distributed from Hokkaido to southern Japan, the Korean Peninsula, and China Lives in shallow seas of 5-50 m depth from sea level	Yamada bay Sendai Bay	Follow-up of the environmental fate and persistency in specific areas	
	Chum salmon (Oncorhynchus keta)	Distributed in northern Pacific Ocean, Sea of Japan, Bering Sea, Sea of Okhotsk, the whole of the Gulf of Alaska, and part of the Arctic Ocean Runs the Tone River on the Pacific Ocean side and rivers in Yamaguchi Prefecture and northward on the Sea of Japan side in Japan Bioaccumulation of chemicals is said to be moderate	Offshore of Kushiro	Follow-up of the environmental fate and persistency on a global scale	
	Dace (Tribolodon hakonensis)	Distributed widely in freshwater environments throughout Japan Preys mainly on insects	• Lake Biwa, Riv. Ado (Takashima City)	Follow-up of the environmental fate and persistency in specific areas	
	Spanish mackerel (Scomberomorus niphonius)	Distributed in subtropical and temperate zones of East Asia Lives in coastal surface layer from spring to autumn and in deeper water in winter	Mouth of Riv. Oita (Oita City)		
Fish	Rock greenling (Hexagrammos lagocephalus)	Lives in cold-current areas of Hidaka and eastward (Hokkaido) Larger than the greenling and eats fish smaller than its mouth size at the sea bottom	Offshore of Kushiro	Follow-up of the environmental fate and persistency in specific areas	
	Sea bass (Lateolabrax japonicus)	Distributed around the shores of various areas in Japan, the Korean Peninsula, and the coastal areas of China Sometimes lives in a freshwater environment and brackish-water regions during its life cycle Bioaccumulation of chemicals is said to be high	 Tokyo Bay Offshore of Ogishima Island, Port of Kawasaki Osaka Bay Offshore of Himeji Nakaumi Hiroshima Bay Mouth of Riv. Shimanto West Coast of Satsuma Peninsula 	Follow-up of the environmental fate and persistency in specific areas	Monitored in the 8 areas with different levels of persistency
	Striped mullet (Mugil cephalus)	Distributed widely in the worldwide tropical zones and subtropical zones Sometimes lives in a freshwater environment and brackish-water regions during its life cycle	Nagoya Port Offshore of Joban	Follow-up of the environmental fate and persistency in specific areas	
	Chub mackerel (Scomber japonicus)	Ddistributed widely in subtropical zones and temperate zones around the world. Seasonal migration occurs with a northward migration in spring and a southward migration in autumn.	Offshore of Joban	Follow-up of the environmental fate and persistency in specific areas	
	Okinawa seabeam (Acanthopagrus sivicolus)	Distributed around Nansei Shoto (Ryukyu Islands) Lives in coral reefs and in bays into which rivers flow	Nakagusuku Bay	Follow-up of the environmental fate and persistency in specific areas	
Birds	Great Cormorant (immature)* (Phalacrocorax carbo)	Distributed widely throughout Japan Eats primarily fish Bioaccumulation of chemicals is said to be high	Tikubushima Island, Lake Biwa Riv.Tenjin (Kurayoshi City)	Follow-up of the concentrations of chemicals in top predators	

^{*} Because there were the examples of survey that obtained the eggs in other countries, the eggs of great cormorants were taken at ather area in this survey. The results were treated as the reference values.

Table 3-3-1 Basic data of specimens (bivalves as wildlife) in the Environmental Monitoring in FY 2023

		1	(9 : -									
Bivalve species and Area	No.	Sampling month	Sex	Number of animals			ength (cm) Average)		Weight (g) (Average)			Water content %	Lipid content %	
Blue mussel	1	October,	Uncertain	130	9.3	~	10.8 (10.0)	53.0	~	117.6 (80.2)	78.4	2.1
(Mytilus galloprovincialis)	2	2023	Uncertain	180	7.8	~	8.9 (8.2)	31.0	~	64.9 (45.7)	77.7	2.1
Yamada Bay	3		Uncertain	267	6.6	~	7.5 (7.0	19.5	~	40.9 (28.6	76.7	2.3
Blue mussel	1	August,	Uncertain	35	14.2	~	16.4 (15.2)	237	}	523 (323)	73.4	2.2
(Mytilus galloprovincialis)	2	2023	Uncertain	50	12.5	~	15.0 (14.0	168	~	348 (243)	71.9	2.3
Coast of Noto Peninsula	3		Uncertain	65	10.0	~	13.3 (11.4	93	~	208 (140)	71.9	2.2

Table 3-3-2 Basic data of specimens (fish as wildlife) in the Environmental Monitoring in FY 2023

Secondarian 1	Table 3-3-2 Basic data of specimens (fish as wildlife) in the Environmental Monitoring in FY 2023																
Pish pspecies and Area No. month Sex minimal (Average) (Average) Content conte			Compling		Number		La	math (an	<i>~)</i>			7	Voight ((~)		Water	Lipid
Rock greenling (Herogrammo 2 Detober, Single 2 48.0	Fish species and Area	No.		Sex	of			2	,				_			content	content
Description 1	_		month		animals		(,	Average)				Averag	(e)		%	%
Diffshore of Kisahine	Rock greenling (Hexagrammos	1	October,	Mixed	2	48.0	~	48.5	(48.3)	1,580 ~	1,820	(1,700	77.7	2.1
Claim salmon Chooping state 1 October, Female 1 0.00 0.0	lagocephalus)	2	2023	Mixed	2	44.0	~	50.0	(47.0)	1,250 ~	1,450	(1,350	77.7	2.4
Oncordynchia Kestai	Offshore of Kushiro	3		Mixed	2	50.0	~	59.0	(54.5)	1,300 ~	2,150	(1,725	78.1	1.6
OBlishoe of Kisahino	Chum salmon	1	October,	Female	1	70.0						3,200				73.3	2.6
Circenting 1 November Uncertain 10 26.9 33.3 28.9 423 606 492 37.3 74.9 32.4	(Oncorhynchus keta)	2	2023	Female	1	69.0						3,100				74.5	1.6
	Offshore of Kushiro	3		Male	1	68.0						2,900				72.4	3.2
Varnasida Bay 3	Greenling	1	November,	Uncertain	10	26.9	~	33.3	(28.9)	423 ~	606	(492	77.1	3.2
1	(Hexagrammos otakii)	2	2023	Uncertain	15	24.5	~	26.6	(25.6)	342 ~	399	(373	74.9	3.4
	Yamada Bay	3		Uncertain	18	22.7	~	24.6	(23.7)	185 ~	327	(277	74.7	3.4
Sendai Bay (Matsushima Bay 3	Greenling	1	November,	Uncertain	19	19.0	~	25.8	(23.1)	142 ~	254	(206	80.2	0.7
Chub mackerel December Uncertain 21 25.0 ~ 31.0 (26.7) 23.5 ~ 389 (270) 33.9 1.7	(Hexagrammos otakii)	2	2023	Uncertain	11	25.5	~	30.0	(27.5)	257 ~	500	(353)	
Discreting promicus 2 2023 Uncertain 27 23.0 ~ 30.0 (24.8) 18.3 ~ 23.5 (204) 31.7 1.3 Discreting promicus 2 2023 Mixed 3 20.0 ~ 20.0 (22.2) 10.7 ~ 17.8 (15.3) 28.3 1.3 Lateolabrax/apomicus 2 2023 Mixed 3 48.9 ~ 53.0 (50.5) 24.76 ~ 3.544 (3.010) 78.1 1.3 Lateolabrax/apomicus 2 2023 Mixed 4 44.3 ~ 46.7 (45.6) 966 ~ 1.175 (1.089) 78.9 1.1 Sea bass 1 September, Male 21 27.0 ~ 32.5 (29.4) 290 ~ 503 (384) 74.7 1.1 Sea bass 2023 Female 14 29.5 ~ 33.0 (30.4) 33.4 ~ 513 (416) 69.7 1.2 Striped mullet 1 September, Uncertain 9 25.5 ~ 29.8 (27.8) 52.7 ~ 739 (622) 78.8 2.9 Maggl ceptahas 2 2023 Uncertain 9 25.5 ~ 29.8 (27.8) 52.7 ~ 739 (622) 78.8 2.9 Maggl ceptahas 2 2023 Uncertain 9 25.5 ~ 29.8 (27.8) 52.7 ~ 739 (622) 78.8 2.9 Maggl ceptahas 2 2023 Uncertain 9 25.5 ~ 29.8 (27.8) 52.7 ~ 739 (622) 78.8 2.9 Maggl ceptahas 2 2023 Uncertain 9 25.5 ~ 29.8 (27.8) 52.7 ~ 739 (622) 78.8 2.9 Maggl ceptahas 2 2023 Uncertain 9 25.5 ~ 28.8 2.9 2.0 2.0 2.0 2.0 2.0 Takashima City 3 Cotober, Mixed 4 34.2 ~ 47.5 (38.7) 560 ~ 1.40 (80.5) 75.0 3.5 Takashima City 3 Cotober, Mixed 4 34.2 ~ 47.5 (38.7) 560 ~ 1.40 (80.5) 77.5 2.0 Lateolabrax (apomicus 2 2023 Uncertain 1 60.2 2.780 Dishore of Himeij 3 Cotober, Mixed 4 34.2 ~ 47.5 (38.7) 560 ~ 1.40 (80.5) 77.8 Sea bass 1 November, Mixed 2 49.3 ~ 49.4 (49.4) 1.44 ~ 826 (58.0) 80.1 77.8 Sea bass 1 November, Mixed 2 2023 Uncertain 1 60.2 2.780 Dishored filmenis 3 Uncertain 1 60.2 2.780 Dishored filmenis 3 November, Mixed 2 2023 Uncertain 1 60.0 2.840 Sea bass 1 November, Mixed 2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 20.2 2	Sendai Bay (Matsushima Bay)	3		Uncertain	6	30.6	~	38.7	(33.1)	501 ~	892	(638)	
Dishbore of Johan 3	Chub mackerel	1	December,	Uncertain	21	25.0	~	31.0	(26.7)	235 ~	389	(270	33.9	1.7
Sea bass 1 October, Mixed 2 55.5 70.0 62.8 2.476 3.544 3.010 78.1 1.3 1.3 1.3 1.4 1.4 1.4 1.9 1.5 1.0 1.5 1.0 1.3 1.3 1.3 1.4 1.4 1.4 1.9 1.4 1.4 1.9 1.4 1.9 1.3 1.3 1.3 1.3 1.4 1.4 1.9 1.4 1.9 1.4 1.9 1.3 1.3 1.3 1.3 1.4 1.4 1.9 1.4 1.9 1.4 1.9 1.3	(Scomber japonicus)	2	2023	Uncertain	27	23.0	~	30.0	(24.8)	183 ~	235	(204	31.7	1.3
Lateolabrax (aponicus) 2 2023 Mixed 3 48,9 - 53.0 (50.5 1,474 - 1,968 1,1665 77.8 1.9 Takoya Bay 3 Nixed 4 44.3 - 46.7 (45.6 96.6 - 1,175 (1,089) 78.9 1.1 Sea bass 1 September, Male 21 27.0 - 32.5 (29.4) 290 - 503 (38.4) 74.7 1.1 Lateolabrax (aponicus) 3 September, Male 21 27.0 - 32.5 (29.4) 290 - 503 (38.4) 74.7 1.1 Lateolabrax (aponicus) 3 September, Male 21 27.0 - 32.5 (29.4) 290 - 503 (38.4) 74.7 1.1 Lateolabrax (aponicus) 3 September, Male 21 27.0 - 32.5 (29.4) 290 - 503 (38.4) 74.7 1.1 Lateolabrax (aponicus) 3 September, Male 21 27.0 - 32.5 (29.4) 290 - 503 (38.4) 74.7 1.1 Lateolabrax (aponicus) 2 2023 September, Male 25 22.5 - 29.8 (27.8) 527 - 739 (622) 75.8 2.9 Magl cephalus 2 2023 Uncertain 9 25.5 - 32.2 (28.6 519 - 876 (665) Lateolabrax (aponicus) 2 2023 Female 25 22.2 - 26.9 (24.9) 133 - 257 (204) 73.8 3.5 Lateolabrax (aponicus) 3 September, Mixed 4 34.2 - 47.5 (38.7) 560 - 1,400 (80.5) 77.5 2.0 Lateolabrax (aponicus) 2 2023 Female 2 45.8 - 33.4 (44.9) 1,440 - 1,720 (1,580) Sea bass 1 December, Uncertain 1 60.5 2,500 Lateolabrax (aponicus) 2 2023 Mixed 10 30.5 - 41.5 (38.7) 560 - 1,400 (80.5) 77.5 2.0 Caleolabrax (aponicus) 3 November, 1 60.2 2,780	Offshore of Joban	3		Uncertain	36	20.0	~	29.0	(22.6)	107 ~	178	(153	28.3	1.2
Tokyo Bay	Sea bass	1	October,	Mixed	2	55.5	~	70.0	(62.8)	2,476 ~	3,544	(3,010	78.1	1.3
See bass Lateolabrax (aponicus) Control of the properties Control of the prope	(Lateolabrax japonicus)	2	2023	Mixed	3	48.9	~		(50.5)	1,474 ~	1,968	(1,665	77.8	1.9
Lateolabrax japonicus April Pemale 17 26.5 29.5 28.0 293 390 353 73.6 1.3	Tokyo Bay	3		Mixed	4	44.3	~	46.7	(45.6)	966 ~	1,175	(1,089	78.9	1.1
Dribloro of Ogishima Island Pertinate 14 29.5 29.8 (28.0) (28.0) (29.5) (29.0) (29.5) (39.4) (33.4) (34	Sea bass	1	September,	Male	21	27.0	~	32.5	(29.4)	290 ~	503	(384	74.7	1.1
Offshore of Ogishima Island Pernale 14 29.5 33.0 30.4 33.4 33.4 513 (416) 69.7 1.2	(Lateolabrax japonicus)	2	2023	Female	17	26.5	~.	29.5	ì	28.0	ĺ	203 ~	390	ì	353	73.6	1.3
Striped mullet	Offshore of Ogishima Island,				-				(1			(´	
Muglet cephalus 2 2023 Uncertain 9 25.5 22.2 28.6 51.9 27.7 53.9 29.1 64.2	Port of Kawasaki	3		Female	14	29.5	~	33.0	(30.4)	334 ~	513	(416	69.7	1.2
Nagoya Port 3	Striped mullet	1	September,	Uncertain	9	25.5	~	29.8	(27.8)	527 ~	739	(622	75.8	2.9
Nagoya Port 3	(Mugil cephalus)	2	2023	Uncertain	9	25.5	~	32.2	(28.6)	519 ~	876	(665)	
Crribolodon hakonensis 2 2023	Nagoya Port	3		Uncertain	9	25.8	~	32.0	(27.7)	539 ~	911	(642)	
Lake Biwa, Riv. Ado Takashima City) 3 Female 25 22.3 ~ 22.3 ~ 22.5 (22.2) 1.50 ~ 2.91 (2.04 73.0 73.8 3.8 Takashima City) 3 Female 25 24.3 ~ 32.5 (26.1 151 ~ 500 (221) 73.8 3.8 Sea bass 1 October, Mixed 4 34.2 ~ 47.5 (38.7) 560 ~ 1,400 (805) 77.5 2.0 Lateolabrax japonicus) 2 2023 Female 2 49.3 ~ 49.4 (49.4) 1,440 ~ 1,720 (1,580) Sea bass 1 December, Uncertain 1 60.5 (40.5) 1,260 ~ 2,220 (1,740) Lateolabrax japonicus) 2 2023 Uncertain 1 60.2 (2,780) Lateolabrax japonicus) 2 2023 Mixed 10 30.5 ~ 48.9 (43.8) 765 ~ 1245 (1,010) 80.2 1.0 Lateolabrax japonicus) 2 2023 Mixed 10 30.5 ~ 41.5 (34.3) 414 ~ 826 (580) 80.1 1.0 Lateolabrax japonicus) 2 2023 Mixed 11 27.0 ~ 31.5 (29.6) 269 ~ 406 (347) 79.6 Lateolabrax japonicus) 2 2023 Mixed 11 27.0 ~ 31.5 (29.6) 269 ~ 406 (347) 79.6 Lateolabrax japonicus) 2 2023 Mixed 11 27.0 ~ 31.5 (29.6) 269 ~ 406 (347) 79.6 Lateolabrax japonicus) 2 2023 Mixed 2 33.5 ~ 56.8 (55.2) 1,400 ~ 1,850 (1,625) 77.8 Etriped mullet 1 August, Uncertain 1 58.0 (1,625) 77.8 Etriped mullet 1 August, Uncertain 1 57.0 (1,950) (1,713) 75.9 Etriped mullet 1 November, Uncertain 1 57.0 (1,950) (1,713) 75.9 Etakassas 1 November, Uncertain 1 56.0 (1,950) (1,950) (1,713) 75.9 Etakassas 1 November, Uncertain 1 56.0 (1,950) (1,950) (1,713) 75.9 Etakassas 1 November, Uncertain 1 56.0 (1,950) (1,950) (1,713) 75.9 Etakassas 1 November, Uncertain 1 57.0 (1,950) (1,950) (1,950) (1,950) (1,950) (1,950) (1,950) (1,950) (1,950) (1,950) (1,950) (1,950)	Dace	1	April,	Male	25	22.2	~	26.9	(24.9)	133 ~	257	(204	73.8	3.5
Lake Biwa, Riv. Ado Sea bass 1 October, Mixed 4 34.2 ~ 47.5 (38.7) 560 ~ 1,400 (805) 77.5 2.0 Lateolabrar, japonicus 2 2023 Female 2 49.3 ~ 49.4 (49.4) 1,440 ~ 1,720 (1,580) Sea bass 1 December, Uncertain 1 60.5 2,520 2,780 Lateolabrar, japonicus 2 2023 Uncertain 1 60.2 2,840 Lateolabrar, japonicus 2 2023 Uncertain 1 60.2 2,840 Lateolabrar, japonicus 2 2023 Uncertain 1 60.0 2,840 Lateolabrar, japonicus 2 2023 Mixed 10 30.5 ~ 41.5 (34.3) 414 ~ 826 (580) 80.1 1.0 Lateolabrar, japonicus 2 2023 Mixed 10 30.5 ~ 41.5 (34.3) 414 ~ 826 (580) 80.1 1.0 Lateolabrar, japonicus 2 2023 Mixed 10 30.5 ~ 41.5 (34.3) 414 ~ 826 (580) 80.1 1.0 Lateolabrar, japonicus 2 2023 Mixed 10 30.5 ~ 40.5 (5.2) 40.0 (3.47) 79.6 0.9 Striped mullet 1 August, Uncertain 1 56.0	(Tribolodon hakonensis)	2	2023	Female	25	22.5	~	28.3		25.2	`	126 ~	291	(204	75.0	3.5
Catesimina City Cotober Catesimina City C	Lake Biwa, Riv. Ado				-				(1			`		,	
Cateolabrax japonicus 2 2023	(Takashima City)	3		Female	25		~		()		500	(3.8
December	Sea bass	1		Mixed	4		~	47.5	(38.7)	560 ~	1,400	(805	77.5	2.0
Sea bass	(Lateolabrax japonicus)		2023	Female		49.3	~	49.4	()			()	
Uncertain 1 60.2 2,780 2,840	Osaka Bay	3		Female	2		~	53.4	(49.6)		2,220	(1,740)	
Offshore of Himeji 3	Sea bass	1	December,	Uncertain	1	60.5						2,520				80.8	0.9
November	(Lateolabrax japonicus)	2	2023	Uncertain	1	60.2						2,780					
Lateolabrax japonicus 2 2023 Mixed 10 30.5 ~ 41.5 (Offshore of Himeji	3		Uncertain		60.0						2,840					
Nakaumi 3	Sea bass	1	November,	Mixed	9	38.5	~	48.9	(43.8)	765 ~	1245	(1,010	80.2	1.0
Sea bass 1 November, Male 3 46.1 ~ 46.9 ((Lateolabrax japonicus)	2	2023	Mixed	10	30.5	~	41.5	(34.3)	414 ~	826	(580	80.1	1.0
Clateolabrax japonicus 2 2023	Nakaumi	3		Mixed	11	27.0	~	31.5	(29.6)	269 ~	406	(347		0.9
Hiroshima Bay 3 Female 2 47.2 ~ 49.1 (Sea bass	1	November,	Male	3	46.1	~	46.9	(46.4)	1,286 ~	1,468	(1,395	74.6	1.0
Striped mullet 1 August, Uncertain 1 58.0 2,100 69.5 3.8 (Mugil cephalus) 2 2023 Uncertain 1 57.0 1,950 70.0 4.7 4.8 (Mugil cephalus) 7 2.7 3.2 2.7 2.7 2.7 3.2 2.7 2.7 3.2 2.7 3.7 3.8 3.8 (Mugil cephalus) 3 4.5 4.8	(Lateolabrax japonicus)	2	2023	Mixed	2	53.5	~	56.8	(55.2)	1,400 ~	1,850	(1,625		
Mugil cephalus 2 2023 Uncertain 1 57.0 1,950 70.0 4.7	Hiroshima Bay	3		Female	2	47.2	~	49.1	(48.2)	1,627 ~	1,799	(1,713	75.9	
Takamatsu Port 3	Striped mullet	1	August,	Uncertain	1	58.0						2,100				69.5	3.8
November Clateolabrax japonicus Clateola	(Mugil cephalus)	2	2023	Uncertain	1	57.0						1,950				70.0	4.7
(Lateolabrax japonicus) 2 2023 Uncertain 7 27.2 ~ 31.0 (29.1) 376 ~ 577 (475) 70.5 (475) 1.1 Mouth of Riv. Shimanto (Shimanto City) 3 Uncertain 8 20.2 ~ 30.2 (26.5) 207 ~ 515 (378) 72.9 (0.9) Spanish mackerel (Scomberomorus niphonius) 1 February, Uncertain 1 (1 79.5) 4,401 (440) 40.9 (44.8) 9.7 (46.8) Mouth of Riv. Oita (Oita City) 3 Uncertain 1 79.5 (44.5 ~ 48.5 (46.8) 1,208 ~ 1,462 (1,361) 75.3 (2.5) 2.5 (44.8) 1,208 ~ 1,462 (1,361) 75.3 (2.5) 2.5 (44.8) 1.2 (47.3) 1,213 ~ 1,589 (1,402) 76.2 (1.7) 1.7 (47.8) 1.5 (47.8) 1.2 (47.	Takamatsu Port	3		Uncertain	1	56.0						1,950				67.7	4.8
Mouth of Riv. Shimanto (Shimanto City) 2 Uncertain 7 27.2 × 31.0 (25.1) 370 × 377 (473) 70.3 (11) Spanish mackerel (Scomberomorus niphonius) 1 February, Uncertain 1 81.5 (20.2 × 30.2 (26.5)) 4,919 (4,401) 40.9 (9.7 (4.8 (20.2)) 9.7 (4.8 (20.2)) 40.9 (9.7 (4.8 (20.2)) 9.7 (4.8 (20.2)) 40.9 (1.3 (20.2)) 9.7 (4.8 (20.2)) 40.9 (1.3 (20.2)) 9.7 (4.8 (20.2)) 40.9 (1.3 (20.2)) 9.7 (4.8 (20.2)) 40.9 (1.3 (20.2)) 9.7 (4.8 (20.2)) 40.9 (1.3 (20.2)) 9.7 (4.8 (20.2)) 10.0 (4.8 (20.2))	Sea bass	1	November,	Uncertain	4	27.3	~	48.0	(33.6)	370 ~	1,652	(731	73.9	1.0
Mouth of Riv. Shimanto (Shimanto (Shimanto City) 3 Uncertain 8 20.2 ~ 30.2 (26.5) 207 ~ 515 (378) 72.9 (0.9) Spanish mackerel (Scomberomorus niphonius) 1 February, (Uncertain 1 79.5) 4,919 (4,401) 40.9 (9.7) Mouth of Riv. Oita (Oita (City) 3 3 Uncertain 1 79.5 (9.5) 44.5 (46.8) 1,208 ~ 1,462 (1,361) 75.3 (2.5) Sea bass (Lateolabrax japonicus) (West Coast of Satsuma Peninsula) 3 47.5 ~ 50.5 (49.2) 1,237 ~ 1,589 (1,402) 76.2 (1.7) Okinawa seabeam (Acanthopagrus sivicolus) 1 January, Female 3 29.5 ~ 41.0 (34.2) 525 ~ 1,365 (830) 76.3 (1.4) (Acanthopagrus sivicolus) 2 2024 (Male) 3 26.5 ~ 33.0 (30.3) 505 ~ 645 (570) 78.4 (1.2)	(Lateolabrax japonicus)	2	2023	Uncertain	7	27.2	~	31.0	(29 1	١	376 ∼	577	(475	70.5	1.1
Spanish mackere 1 February, Uncertain 1 81.5 4,919 4,401 46.8 10.0	Mouth of Riv. Shimanto								`		^ I						
Scomberomorus niphonius 2 2024 Uncertain 1 79.5 4,401 46.8 10.0	(Shimanto City)			Uncertain	8	20.2	~	30.2	(26.5)		313	(3/8	/2.9	0.9
Mouth of Riv. Oita (Oita City) 3 Uncertain 3 44.5 ~ 48.5 (46.8) 1,208 ~ 1,462 (1,361) 75.3 2.5 Sea bass (Lateolabrax japonicus) 1 November, Male 3 47.5 ~ 50.5 (49.2) 1,237 ~ 1,589 (1,402) 76.2 1.7 West Coast of Satsuma Peninsula) 3 Mixed 3 45.0 ~ 51.0 (47.3) 1,213 ~ 1,500 (1,386) 76.5 1.5 Okinawa seabeam (Acanthopagrus sivicolus) 1 January, Female (Acanthopagrus sivicolus) 3 29.5 ~ 41.0 (34.2) 525 ~ 1,365 (830) 76.3 1.4	Spanish mackerel			Uncertain	1											40.9	9.7
Sea bass (Lateolabrax japonicus) 1 November, (Lateolabrax japonicus) Male 3 47.5 ~ 50.5 (49.2) 1,237 ~ 1,589 (1,402) 76.2 1.7 (1.7 ((Scomberomorus niphonius)	2	2024	Uncertain	1	79.5						4,401				46.8	10.0
(Lateolabrax japonicus) 2 2023 Mixed 3 45.0 ~ 51.0 (47.3) 1,213 ~ 1,500 (1,386) 76.5 1.5 West Coast of Satsuma Peninsula) 3 Mixed 3 36.0 ~ 40.0 (37.8) 855 ~ 1,150 (988) 78.7 0.9 Okinawa seabeam (Acanthopagrus sivicolus) 1 January, Female January, Acanthopagrus sivicolus) 2 2024 Male January, Acanthopagrus sivicolus) 3 29.5 ~ 41.0 (34.2) 525 ~ 1,365 (830) 76.3 1.4	Mouth of Riv. Oita (Oita City)	3		Uncertain	3	44.5	~	48.5	(46.8)	1,208 ~	1,462	(1,361	75.3	2.5
West Coast of Satsuma Peninsula) 3 Mixed 3 36.0 ~ 40.0 (37.8) 855 ~ 1,150 (988) 78.7 0.9 Okinawa seabeam (Acanthopagrus sivicolus) 1 January, Female 3 29.5 ~ 41.0 (34.2) 525 ~ 1,365 (830) 76.3 1.4 (76.3)	Sea bass	1	November,	Male	3	47.5	~	50.5	(49.2)	1,237 ~	1,589	(1,402	76.2	1.7
West Coast of Satsuma Peninsula) 3 Mixed 3 36.0 ~ 40.0 (37.8) 855 ~ 1,150 (988) 78.7 0.9 Okinawa seabeam (Acanthopagrus sivicolus) 1 January, Female 3 29.5 ~ 41.0 (34.2) 525 ~ 1,365 (830) 76.3 1.4 (76.3)	(Lateolabrax japonicus)	2	2023	Mixed	3	45.0	~	51.0		47 3	٦	1 213 ~	1 500	ì	1 386	76.5	1.5
Okinawa seabeam 1 January, Female 3 29.5 ~ 41.0 (34.2) 525 ~ 1,365 (830) 76.3 1.4 (Acanthopagrus sivicolus) 2 2024 Male 3 26.5 ~ 33.0 (30.3) 505 ~ 645 (570) 78.4 1.2	West Coast of Satsuma								`		1			-			
(Acanthopagrus sivicolus) 2 2024 Male 3 26.5 \sim 33.0 (30.3) 505 \sim 645 (570) 78.4 1.2	Peninsula)	3		Mixed	3	36.0	~	40.0	(37.8)	855 ~	1,150	(988	78.7	0.9
(Acanthopagrus sivicolus) 2 2024 Male 3 26.5 \sim 33.0 (30.3) 505 \sim 645 (570) 78.4 1.2	Okinawa seabeam	1	January,	Female	3	29.5	~	41.0	(34.2)	525 ~	1,365	(830	76.3	1.4
Nakagusuku Bay 3 Female 4 27.3 ~ 48.0 (33.6) 370 ~ 1,652 (731) 73.9 1.0	(Acanthopagrus sivicolus)	2	2024	Male	3			33.0	(30.3)	505 ~	645	(570	78.4	1.2
	Nakagusuku Bay	3		Female	4	27.3	~	48.0	(33.6)	370 ~	1,652	(731	73.9	1.0

Table 3-3-3 Basic data of specimens (birds as wildlife) in the Environmental Monitoring in FY 2023

		Perminens	(011 00 00		, iii iii 211 i 110 iii ii i	6		
Bird species (Area)	No.	Sampling month	Sex	Number of animals	Length (cm)	Weight (g)	Water content %	Lipid content %
Great Cormorant	1	August,	Male	1	111	2,560	70.5	5.0
(Phalacrocorax carbo) Lake Biwa(Lake Kita, offshore of Tikubushima Island)	2 3	2023	Male Male	1	108 105	2,300 1,700		
Great Cormorant	1	April, 2023	Male	1	109	2,000	69.3	3.7
(Phalacrocorax carbo)	2		Male	1	108	2,080		
Riv.Tenjin (Kurayoshi City)								

⁽Note 1) The great cormorants (immature) killed as harmful birds were used as specimens.

⁽Note 2) For Great Cormorant, at Riv.Tenjin (Kurayoshi City), two (2) specimen samples were collected. The target substances were analysed for each place with one (1) specimen sample that is a mixture of equal parts of the two (2) specimen samples.

4. Method for regression analysis and testing

The analysis procedure and the evaluation for the analysis result shown in Fig.2 were carried out by the following method.

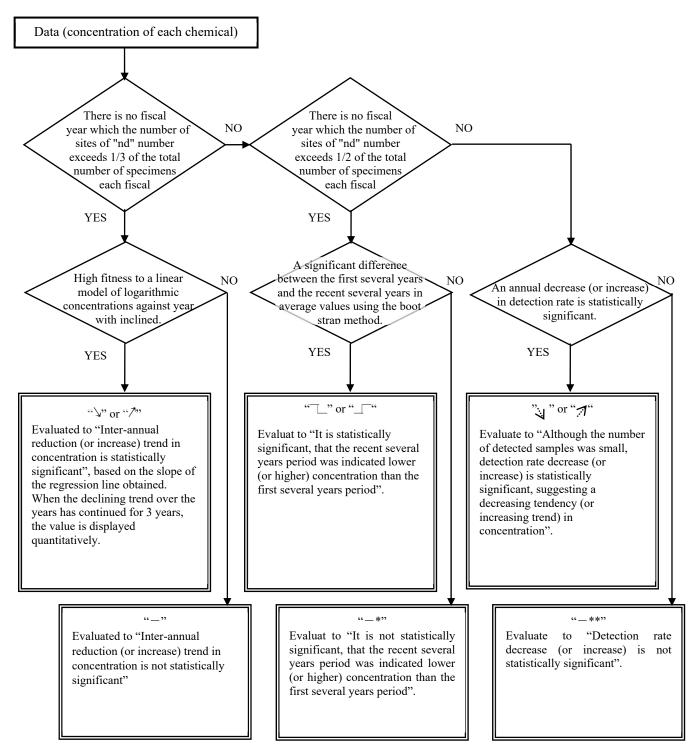


Figure 2 Method for regression analysis and testing

5. Summary of monitoring results

The detection ranges are shown in Table 3-4, and the detection limits are shown in Table 3-5.

The substances which were moniterd FY2023 and past years on the same media, were statistically analysed in order to detect inter-annual trends of increase or decrease. The results of the analyses are shown in Table 3-6

OData were carefully handled on the basis of following points.

· For sediment

At each monitoring point, three (3) specimen samples were collected. And the substances were analysed for each place with one specimen sample that is a mixture of equal parts of the three (3) specimen samples.

· For wildlife

At each monitoring point, three (3) specimen samples were collected in principle. And the substances were analysed for each place with one specimen sample that is a mixture of equal parts of the three (3) specimen samples.

• For air

At each monitored site, the sampling was for the monitoring in the warm season (October $17 \sim$ December 4, 2023).

Table 3-4-1 List of the detection ranges in the Environmental Monitoring in FY2023 (Part 1)

			water (pg/L)	Sediment (og/g-dry)
No.	Target chemicals	Range (Frepuency)	Av.	Range (Frepuency)	Av.
[1]	Total PCBs	10 ~ 4,500 (47/47)	120	14 ~ 300,000 (60/60)	4,200
	НСВ	1.4 ~ 190 (47/47)	6.1	2.4 ~ 5,200 (60/60)	50
[3]	Aldrin				
	Dieldrin				
[5]	Endrin				
[6]	DDTs [6-1] p,p'-DDT [6-2] p,p'-DDE [6-3] p,p'-DDD [6-4] o,p'-DDT [6-5] o,p'-DDE [6-6] o,p'-DDD				
[7]	Chlordanes [7-1] cis-chlordane [7-2] trans-chlordane [7-3] Oxychlordane [7-4] cis-Nonachlor [7-5] trans-Nonachlor				
	Heptachlors [8-1] Heptachlor [8-2] cis-Heptachlor epoxide [8-3] trans-Heptachlor epoxide				
[9]	Toxaphenes [9-1] Parlar-26 [9-2] Parlar-50 [9-3] Parlar-62				
[10]	Mirex HCHs				
	[11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH (synonym:Lindane) [11-4] δ-HCH				
	Chlordecone				
	Hexabromobiphenyls				
	Polybromodiphenyl ethers (Br ₄ - Br ₁₀) [14-1] Tetrabromodiphenyl ethers [14-2] Pentabromodiphenyl ethers [14-3] Hexabromodiphenyl ethers [14-4] Heptabromodiphenyl ethers [14-5] Octabromodiphenyl ethers [14-6] Nonabromodiphenyl ethers [14-6] Nonabromodiphenyl ethers [14-7] Decabromodiphenyl ethers				
[15]	Perfluorooctane sulfonic acid (PFOS)	nd ~ 4,100 (43/47)	230	nd ~ 660 (58/60)	46
[16]	Perfluorooctanoic acid (PFOA)	$140 \sim 11,000$ $(47/47)$	990	nd ~ 410 (57/60)	22
[17]	Pentachlorobenzene				
[18]	Endosulfans [18-1] α -Endosulfan [18-2] β -Endosulfan				

(Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.
(Note 2) " means the medium was not monitored.
(Note 3) "tr(X)" indicates that X was below the quantification limit and over the detection limit.

Table 3-4-2 List of the detection ranges in the Environmental Monitoring in FY2023 (Part 2)

		Surface w	ater (pg/L)	Sediment	(pg/g-dry)
No.	Target chemicals	Range (Frepuency)	Av.	Range (Frepuency)	Av.
	1,2,5,6,9,10-Hexabromo cyclododecanes [19-1] <i>a</i> -1,2,5,6,9,10- Hexabromo cyclododecane				
[19]	[19-2] β-1,2,5,6,9,10- Hexabromo cyclododecane [19-3] γ-1,2,5,6,9,10-				
	Hexabromo cyclododecane [19-4] δ -1,2,5,6,9,10- Hexabromo cyclododecane [19-5] ε -1,2,5,6,9,10-				
[20]	Hexabromo cyclododecane Total Polychlorinated Naphthalenes				
[21]	Hexachlorobuta-1,3-diene				
[22]	[22-1] Pentachtorophenoi				
[23]	[22-2] Pentachloroanisole Short-chain chlorinated paraffins [23-1] Chlorinated decanes [23-2] Chlorinated undecanes [23-3] Chlorinated dodecanes [23-4] Chlorinated tridecanes				
[24]	Dicofol				
[25]	Perfluorohexane sulfonic acid (PFHxS)	nd ~ 2,200 (38/47)	110	nd ~ 20 (19/60)	nd
[26]	Methoxychlor	nd (0/47)	nd	nd (0/60)	nd
	Dechlorane pluses				
[27]	[27-1] <i>anti-</i> Dechlorane pluse	nd ~ 410 (44/47)	6.8	nd ~ 7,300 (53/60)	150
	[27-2] syn-Dechlorane plus	nd ~ 1,100 (36/47)	3.8	nd ~ 2,000 (57/60)	59
[28]	UV-328	nd ~ 540 (36/47)	tr(50)	tr(12) ~ 71,000 (60/60)	1,400

⁽Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

⁽Note 2) "means the medium was not monitored.
(Note 3) "tr(X)" indicates that X was below the quantification limit and over the detection limit.
(Note 4) Chlorinated paraffins with 5 ~ 9 chlorines are target chemicals. The results of short-chain chlorinated paraffins are tentative values obtained in trials among various problems in the measurement method.

Table 3-4-3 List of the detection ranges in the Environmental Monitoring in FY2023 (Part 3)

				Wildlife (. 2:
No.	Target chemicals	Biba	lves	Fis		Biba	lves	Air (p	g/m ³)
NO.	1 aiget chemicais	Range (Frepuency)	Av.	Range (Frepuency)	Av.	Range (Frepuency)	Av.	Range (Frepuency)	Av.
[1]	Total PCBs	240 ~ 1,900 (2/2)	680	720 ~ 83,000 (18/18)	7,700	63,000 ~ 380,000 (2/2)	150,000	24 ~ 190 (35/35)	60
[2]	НСВ	$9.3 \sim 21$ (2/2)	14	21 ~ 560 (18/18)	76	$2,100 \sim 4,200$ (2/2)	3,000	$70 \sim 140$ (35/35)	94
	Aldrin								
	Dieldrin								
[5]	Endrin								
[6]	DDTs [6-1] p,p'-DDT [6-2] p,p'-DDE [6-3] p,p'-DDD [6-4] o,p'-DDT [6-5] o,p'-DDE [6-6] o,p'-DDD								
[7]	Chlordanes [7-1] cis-chlordane [7-2] trans-chlordane [7-3] Oxychlordane [7-4] cis-Nonachlor [7-5] trans-Nonachlor								
	Heptachlors [8-1] Heptachlor [8-2] <i>cis</i> -Heptachlor epoxide [8-3] <i>trans</i> -Heptachlor epoxide								
[9]	Toxaphenes [9-1] Parlar-26 [9-2] Parlar-50 [9-3] Parlar-62								
[10]	Mirex								
[11]	HCHs [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH (synonym:Lindane) [11-4] δ-HCH								
	Chlordecone								
	Hexabromobiphenyls Polybromodiphenyl ethers (Br ₄ - Br ₁₀) [14-1] Tetrabromodiphenyl ethers [14-2] Pentabromodiphenyl ethers [14-3] Hexabromodiphenyl ethers [14-4] Heptabromodiphenyl ethers [14-4] Octabromodiphenyl ethers [14-5] Octabromodiphenyl ethers [14-6] Nonabromodiphenyl ethers [14-7] Decabromodiphenyl ethers					1.400			
[15]	Perfluorooctane sulfonic acid (PFOS)	$nd \sim tr(5)$ $(1/2)$	nd	nd ~ 4,900 (17/18)	180	1,400 ~ 100,000 (2/2)	12,000	1.0 ~ 6.8 (35/35)	3.5
[16]	Perfluorooctanoic acid (PFOA)	nd ~ 13 (1/2)	tr(4)	nd ~ 29 (11/18)	tr(5)	66 ~ 2,000 (2/2)	360	4.0 ~ 65 (35/35)	11
[17]	Pentachlorobenzene	6.0 ~ 6.1 (2/2)	6.0	3.4 ~ 150 (18/18)	14	220 ~ 380 (2/2)	290	36 ~ 170 (35/35)	59
	Endosulfans [18-1] α-Endosulfan [18-2] β-Endosulfan [18-2] β-indicates the αs		1 1	1 1	1.4.1		1	1 1 10 1	1 0 3

(Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

(Note 2) "

"means the medium was not monitored.

(Note 3) "tr(X)" indicates that X was below the quantification limit and over the detection limit.

Table 3-4-3 List of the detection ranges in the Environmental Monitoring in FY2023 (Part 4)

				Wildlife (ng/g-wet)		·		
		Biba	lves	Fis		Biba	lves	Air (p	g/m ³)
No.	Target chemicals	Range (Frepuency)	Av.	Range (Frepuency)	Av.	Range (Frepuency)	Av.	Range (Frepuency)	Av.
	1,2,5,6,9,10-Hexabromo								
	cyclododecanes								
	[19-1] α-1,2,5,6,9,10-								
	Hexabromo cyclododecane								
	[19-2] <i>β</i> -1,2,5,6,9,10-								
[19]	Hexabromo cyclododecane								
	[19-3] γ-1,2,5,6,9,10-								
	Hexabromo cyclododecane							ļ	
	[19-4] δ -1,2,5,6,9,10-								
	Hexabromo cyclododecane								
	[19-5] ε-1,2,5,6,9,10-								
<u> </u>	Hexabromo cyclododecane								
[20]	Total Polychlorinated								
F - 3	Naphthalenes							2.100 (.500	
[21]	Hexachlorobuta-1,3-diene							$2,100 \sim 6,500$ $(35/35)$	3,100
-	(reference) Pentachlorophenol and its							(33/33)	
	salts and esters								
[22]	[22-1] Pentachlorophenol					-		ł	
	[22-2] Pentachloroanisole			 				 	
-	Short-chain chlorinated paraffins								
	Short-chain chiormated parannis	nd ~ tr(150)		nd ~ tr(270)		tr(410) ~ 610		tr(80) ~ 940	
	[23-1] Chlorinated decanes	(1/2)	nd	(6/18)	nd	(2/2)	500	(35/35)	210
	[23-2] Chlorinated undecanes	nd (0/2)	nd	nd (0/18)	nd	$nd \sim tr(1,200)$ (1/2)	tr(550)	nd ~ 1,300 (33/35)	tr(320)
[23]	[23-3] Chlorinated dodecanes	tr(360) ~ 1,000 (2/2)	tr(600)	nd ~ 730 (13/18)	tr(350)	700 ~ 1,300 (2/2)	950	nd ~ tr(520) (18/35)	nd
	[23-4] Chlorinated tridecanes	$nd \sim tr(740)$ (1/2)	nd	$nd \sim tr(730)$ (7/18)	nd	$nd \sim 1,700$ (1/2)	tr(650)	$nd \sim tr(250)$ (15/35)	nd
[24]	Dicofol								
[25]	Perfluorohexane sulfonic acid (PFHxS)	nd (0/2)	nd	nd ~ 34 (7/18)	tr(3)	$56 \sim 230$ (2/2)	110	$0.8 \sim 5.6$ (35/35)	2.4
[26]	Methoxychlor								
	Dechlorane pluses								
[27]	[27-1] anti-Dechlorane pluse								
	[27-2] syn-Dechlorane plus								
[28]	UV-328								
	1) ((4 19 1 11 1 11						41 1 1	4 40 4	1 2 1

(Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

detection limit.

(Note 2) "means the medium was not monitored.

(Note 3) "tr(X)" indicates that X was below the quantification limit and over the detection limit.

(Note 4) Hexachlorobuta-1,3-diene in air was analysed with the three(3) specimen samples for each place. "Range" is based on the concentrations of the samples and "Frequency" is based on the number of sites or areas.

(Note 5) Chlorinated paraffins with 5 ~ 9 chlorines are target chemicals in wildlife, and Chlorinated paraffins with 4 ~ 7 chlorines are target chemicals in air. The results of short-chain chlorinated paraffins are tentative values obtained in trials among various problems in the measurement method. problems in the measurement method.

	le 3-5-1 List of the quantit	fication [detection] lim	nits in the Environment	tal Monitoring in FY202	
No.	Target chemicals	Surface water (pg/L)	Sediment (pg/g-dry)	Wildlife (pg/g-wet)	Air (pg/m³)
[1]	Total PCBs	9 [4]	8 [3]	12 [5]	2.4 [0.8]
[2]	НСВ	0.8	0.9	2.1 [0.8]	0.4
[3]	Aldrin				
	Dieldrin				
[5]	Endrin				
	DDTs				
	[6-1] p,p'-DDT				
[6]	[6-2] <i>p,p</i> '-DDE [6-3] <i>p,p</i> '-DDD			1	
[O]	[6-4] <i>o,p</i> '-DDT				
	[6-5] <i>o,p</i> '-DDE] 	
	[6-6] <i>o,p</i> '-DDD				
	Chlordanes				
	[7-1] cis-chlordane				
[7]	[7-2] trans-chlordane			ļ	
5.3	[7-3] Oxychlordane				
	[7-4] <i>cis</i> -Nonachlor [7-5] <i>trans</i> -Nonachlor				
	[/-5] trans-Nonachlor Heptachlors				
	[8-1] Heptachlor				
[8]	[8-2] cis-Heptachlor epoxide				
	[8-3] trans-Heptachlor				
	epoxide				
	Toxaphenes			ļ	
[9]	[9-1] Parlar-26				
	[9-2] Parlar-50				
[10]	[9-3] Parlar-62 Mirex				
[10]	HCHs				
	[11-1] α-HCH				
[11]	[11 2] 0 [[C]]				
[11]	[11-3] γ-HCH				
	(synonym:Lindane)				
[12]	[11-4] δ-HCH Chlordecone				
	Hexabromobiphenyls				
[13]	Polybromodiphenyl ethers				
	$(Br_4 \sim Br_{10})$				
	[14-1] Tetrabromodiphenyl				
	ethers [14-2] Pentabromodiphenyl				
	ethers				
	[14-3] Hexabromodiphenyl				
[14]	ethers			ļ	
[, 1]	[14-4] Heptabromodiphenyl				
	ethers [14-5] Octabromodiphenyl				
	ethers				
	[14-6] Nonabromodiphenyl				
	ethers				
	[14-7] Decabromodiphenyl ether				
	Perfluorooctane sulfonic acid	80	9	6	0.5
[15]	(PFOS)	[30]	[4]	[3]	[0.2]
[16]	Perfluorooctanoic acid	90	7	8	0.5
	(PFOA)	[30]	[3]	[3]	0.2]
[17]	Pentachlorobenzene			[0.2]	[0.08]
	Endosulfans				<u> </u>
[18]	[18-1] α-Endosulfan				
(NT -	[18-2] β-Endosulfan	t in alcorrer -1 41	room and in = [1-4, 4' 1'	:+1	
Not	e 1) Each quantification limi	t is shown above the corn	responding [detection lim	itl.	

⁽Note 1) Each quantification limit is shown above the corresponding [detection limit].
(Note 2) "*" means the quantification [detection] limit is the sum value of congeners.
(Note 3) The same quantification [detection] limit was employed for bivalves, fish and birds as wildlife for each target chemical.
(Note 4) "
"means the medium was not monitored.

Table 3-5-2 List of the quantification [detection] limits in the Environmental Monitoring in FY2023 (Part 2)

No.	Target chemicals	Surface water (pg/L)	Sediment (pg/g-dry)	Wildlife (pg/g-wet)	Air (pg/m ³)
	1,2,5,6,9,10-Hexabromo				
	cyclododecanes				
	[19-1] α-1,2,5,6,9,10-				
	Hexabromo cyclododecane			<u> </u>	
	$[19-2] \beta$ -1,2,5,6,9,10-				
19]	Hexabromo cyclododecane				
1	[19-3] γ-1,2,5,6,9,10-				
	Hexabromo cyclododecane		ļ		
	[19-4] δ-1,2,5,6,9,10-				
	Hexabromo cyclododecane			ļ	
	[19-5] ε-1,2,5,6,9,10-				
	Hexabromo cyclododecane Total Polychlorinated				
	Naphthalenes				
					50
21]	Hexachlorobuta-1,3-diene				[20]
	Pentachlorophenol and its				[20]
	salts and esters				
22]	[22-1] Pentachlorophenol				
	[22, 2] D				
	[22-2] Pentachloroanisole				
	Short-chain chlorinated paraffins				
	[23-1] Chlorinated decanes			450	140
				[150]	[40]
	[23-2] Chlorinated undecanes			1,500	550
23]				[500]	[190]
	[23-3] Chlorinated dodecanes			700	630
				[300] 1,200	[210] 400
	[23-4] Chlorinated tridecanes			[500]	[130]
24]	Dicofol			[500]	[130]
	Perfluorohexane sulfonic acid	70	6	7	0.5
25]	(PFHxS)	[30]	[3]	[3]	[0.2]
2.0	` ′	80	10	f _e 1	[0.2]
26]	Methoxychlor	[30]	[4]		
	Dechlorane pluses	• •			
		1.7	16		
27]	[27-1] <i>anti</i> -Dechlorane pluse	[0.7]	[6]		
	[27-2] syn-Dechlorane plus	2.2	3		
	[27-2] syn-Decilioralie plus	[0.9]	[1]		
	UV-328	60	21		
281		[20]	[8]		

Table 3-6-1 Results of inter-annual trend analysis from FY2002 to FY2023 (Surface water)

No	Name	Surface water				
110	ivame		River area	Lake area	Mouth area	Sea area
		7	7	7	7	
[1]	Total PCBs	Half-life: 9 years [7 ~ 12 years]	Half-life: 8 years [7 ~ 11 years]	Half-life: 8 years [6 ~ 13 years]	Half-life: 14 years [13 ~ 16 years]	-
		7	7	7	7	_
[2]	HCB	Half-life: 10 years [9 ~ 12 years]	Half-life: 11 years [9 ~ 14 years]	Half-life: 12 years [8 ~ 23 years]	Half-life: 9 years [7 ~ 11 years]	lacksquare
[3]	Aldrin					
[4]	Dieldrin					
[5]	Endrin					
	DDTs	1				
	[6-1] p,p'-DDT					
[7]	[6-2] p,p'-DDE					
[6]	[6-3] <i>p,p'</i> -DDD [6-4] <i>o,p'</i> -DDT					
	[6-5] <i>o,p'</i> -DDE [6-6] <i>o,p'</i> -DDD					
	[6-6] 0,p-DDD Chlordanes					
	[7-1] <i>cis</i> -chlordane					
	[7-2] trans-chlordane					
[7]	[7-3] Oxychlordane					
	[7-4] <i>cis</i> -Nonachlor					
	[7-5] <i>trans</i> -Nonachlor					
	Heptachlors					
	[8-1] Heptachlor		_			
[8]	[8-2] <i>cis</i> -Heptachlor epoxide					
	[8-3] <i>trans</i> -Heptachlor epoxide				·	
	Toxaphenes				i	
	[9-1] Parlar-26	1				
[9]	[9-2] Parlar-50					
	[9-3] Parlar-62					
[10]	Mirex					
	HCHs	•			•	
	[11-1] α-HCH					
[11]	[11-2] <i>β</i> -HCH					
	[11-3] γ-HCH (synonym:Lindane)					
	[11-4] δ-HCH					
	Polybromodiphenyl ethers $(Br_4 \sim Br_{10})$					
	[14-1] Tetrabromodiphenyl ethers					
	[14-2] Pentabromodiphenyl ethers					
[14]	[14-3] Hexabromodiphenyl ether					
[14]	[14-4] Heptabromodiphenyl ethers					
	[14-5] Octabromodiphenyl ethers					
	[14-6] Nonabromodiphenyl ethers					
	[14-7] Decabromodiphenyl ether					
[15]	Perfluorooctane sulfonic acid (PFOS)	Half-life: 11 years [8 ~ 18 years]	-	Half-life : 15 years [11 ~ 25 years]	-	7
[16]	Perfluorooctanoic acid (PFOA)	Half-life: 11 years [9 ~ 17 years]	Half-life: 11 years [8 ~ 17 years]	Half-life: 12 years [8 ~ 23 years]	Half-life: 9 years [6 ~ 16 years]	-
	Pentachlorobenzene					

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

- (Note 2) "An inter-annual trend of decrease was found.
 "An inter-annual trend of decrease was found.
 "Statistically significant differences between the first several years and the recent several years were found.
 - ": Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency.
 - "-": An inter-annual trend was not found.
 - "-*": In case of using the bootstrap methods, there was not a significant difference between the first several years and the recent several
 - "-**": The detection rate was not decreased, there was not a reduction tendency.
- (Note 3) "": The inter-annual trend analysis was not analysed because not conducted the survey in FY2023.
- (Note 4) The half-life describes the half-life in the environment based on the survey results when the decrease tendency continues for 3 years or more by the maximum likelihood estimation that does not assume parametric residual distribution. The results in [] indicate that the values in the 95% confidence interval.
- (Note 5) The classification of monitored sites with area are shown in Table 3-7
- (Note 6) Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA): the results of the inter-annual trend analysis from FY2009.

Table 3-6-2 Results of inter-annual trend analysis from FY2002 to FY2023 (Sediment)

Nο	Nome	Sediment				
No	Name		River area	Lake area	Mouth area	Sea area
[1]	Total PCBs	Half-life: 18 years [14 ~ 27 years]	Half-life : 14 years [10 ~ 20 years]	٧	٧	Half-life: 18 years [14 ~ 25 years]
[2]	НСВ	Half-life : 12 years [9 ~ 17 years]	Half-life : 10 years [8 ~ 15 years]	-	7	7
[3]	Aldrin					
[4]	Dieldrin					
[5]	Endrin					
[6]	DDTs [6-1] p,p'-DDT [6-2] p,p'-DDE [6-3] p,p'-DDD [6-4] o,p'-DDT [6-5] o,p'-DDE [6-6] o,p'-DDD					
[7]	Chlordanes [7-1] cis-chlordane [7-2] trans-chlordane [7-3] Oxychlordane [7-4] cis-Nonachlor [7-5] trans-Nonachlor					
[8]	Heptachlors [8-1] Heptachlor [8-2] cis-Heptachlor epoxide [8-3] trans-Heptachlor epoxide					
[9]	Toxaphenes [9-1] Parlar-26 [9-2] Parlar-50 [9-3] Parlar-62					
[10]	Mirex HCHs					İ
[11]	[11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH (synonym:Lindane) [11-4] δ-HCH					
[14]	$\begin{tabular}{ll} Polybromodiphenyl ethers (Br_4 \sim Br_{10}) \\ [14-1] Tetrabromodiphenyl ethers \\ [14-2] Pentabromodiphenyl ethers \\ [14-3] Hexabromodiphenyl ether \\ [14-4] Heptabromodiphenyl ethers \\ [14-5] Octabromodiphenyl ethers \\ [14-6] Nonabromodiphenyl ethers \\ \end{tabular}$					
	[14-7] Decabromodiphenyl ether	\			\	\
[15]	Perfluorooctane sulfonic acid (PFOS)	Half-life: 13 years [9 ~ 20 years]	-	<u>-</u>	Half-life : 9 years [6 ~ 20 years]	Half-life: 12 years [9 ~ 20 years]
[16]	Perfluorooctanoic acid (PFOA)	Half-life : 12 years [9 ~ 18 years]	-	-	Half-life : 7 years [5 ~ 10 years]	-
[17]	Pentachlorobenzene 1) When the posteriori probability from A					

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

- (Note 2) "An inter-annual trend of decrease was found.
 " Statistically significant differences between the first several years and the recent several years were found.
 - "'u": Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency.
 - "-": An inter-annual trend was not found.
 - "-*": In case of using the bootstrap methods, there was not a significant difference between the first several years and the recent several
 - "-**": The detection rate was not decreased, there was not a reduction tendency.
- (Note 3) "T": The inter-annual trend analysis was not analysed because not conducted the survey in FY2023.
- (Note 4) The half-life describes the half-life in the environment based on the survey results when the decrease tendency continues for 3 years or more by the maximum likelihood estimation that does not assume parametric residual distribution. The results in [] indicate that the values in the 95% confidence interval.
- (Note 5) The classification of monitored sites with area are shown in Table 3-7
- (Note 6) Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA): the results of the inter-annual trend analysis from FY2009.

Table 3-6-3 Results of inter-annual trend analysis from FY2002 to FY2023 (Wildlife)

No	Name	Bivalves	Fish
		¥	7
[1]	Total PCBs	Half-life : 11 years [8 ~ 19 years]	Half-life: 23 years [18 ~ 33 years]
[2]	НСВ	[0 17 years]	
[3]	Aldrin		
[4]	Dieldrin		
[5]	Endrin		
	DDTs		·
	[6-1] <i>p,p'</i> -DDT		
	[6-2] <i>p,p'</i> -DDE		
[6]	[6-3] <i>p,p'</i> -DDD		
	[6-4] <i>o,p'</i> -DDT		
	[6-5] <i>o,p'</i> -DDE		
	[6-6] <i>o,p'</i> -DDD		
	Chlordanes		
	[7-1] <i>cis</i> -chlordane		
[7]	[7-2] <i>trans</i> -chlordane [7-3] Oxychlordane		
	[7-3] Oxychlordane [7-4] <i>cis</i> -Nonachlor		
	[7-5] trans-Nonachlor		
	Heptachlors		
	[8-1] Heptachlor		
[8]	[8-2] cis-Heptachlor epoxide		
	[8-3] trans-Heptachlor epoxide		
	Toxaphenes		
[9]	[9-1] Parlar-26		
[2]	[9-2] Parlar-50		
	[9-3] Parlar-62		
[10]	Mirex		
	HCHs		
[11]	[11-1] α-HCH [11-2] β-HCH		
[11]	[11-3] γ -HCH (synonym:Lindane)		
	[11-4] δ-HCH		
	Polybromodiphenyl ethers(Br ₄ \sim Br ₁₀)		
	[14-1] Tetrabromodiphenyl ethers		
	[14-2] Pentabromodiphenyl ethers		
[1 47	[14-3] Hexabromodiphenyl ether		
[14]	[14-4] Heptabromodiphenyl ethers		
	[14-5] Octabromodiphenyl ethers		
	[14-6] Nonabromodiphenyl ethers		
	[14-7] Decabromodiphenyl ether	υ υ	
[15]	Perfluorooctane sulfonic acid (PFOS)	_**	-
[16]	Perfluorooctanoic acid (PFOA)	_**	<u> </u>
[17]	Pentachlorobenzene	Ä	_*
	1,2,5,6,9,10-Hexabromo cyclododecanes		
	[19-1] α -1,2,5,6,9,10-Hexabromo		
1	cyclododecane		
[19]	[19-2] β -1,2,5,6,9,10-Hexabromo		
	cyclododecane		
	[19-3] γ -1,2,5,6,9,10-Hexabromo cyclododecane		
(Note		ICa was more than 05% the measurement result	ts were deemed to be in agreement with the simple

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.
(Note 2) " An inter-annual trend of decrease was found.

- ": Statistically significant differences between the first several years and the recent several years were found.
- ": Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency.
 "-": An inter-annual trend was not found.
- "-*": In case of using the bootstrap methods, there was not a significant difference between the values of the first several years and the recent several years.
- "-**": The detection rate was not decreased, there was not a reduction tendency.
- (Note 3) ": The inter-annual trend analysis was not analysed because not conducted the survey in FY2023.
- (Note 4) The half-life describes the half-life in the environment based on the survey results when the decrease tendency continues for 3 years or more by the maximum likelihood estimation that does not assume parametric residual distribution. The results in [] indicate that the values in the 95% confidence interval.
- (Note 5) Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA): the results of the inter-annual trend analysis from FY2009. Pentachlorobenzene: the results of the inter-annual trend analysis from FY2010.

Table 3-6-4 Results of inter-annual trend analysis from FY2003 to FY2022 (Air)

		A:
No	Name	Air
		Warm season
F13	T . I DOD	7
[1]	Total PCBs	Half-life : 12 years [10 ~ 17 years]
[2]	HCB	-
[3]	Aldrin	
[4]	Dieldrin	
[5]	Endrin	
	DDTs	
	[6-1] <i>p,p'</i> -DDT	
	[6-2] <i>p,p'</i> -DDE	
[6]	[6-3] <i>p,p'</i> -DDD	
	[6-4] <i>o,p'</i> -DDT	
	[6-5] <i>o,p'</i> -DDE	
	[6-6] <i>o,p'</i> -DDD	
	Chlordanes [7-1] <i>cis-</i> chlordane	
	[7-1] cis-chlordane	
[7]	[7-3] Oxychlordane	
	[7-4] cis-Nonachlor	
	[7-5] trans-Nonachlor	
	Heptachlors	
503	[8-1] Heptachlor	
[8]	[8-2] cis-Heptachlor epoxide	
	[8-3] trans-Heptachlor epoxide	
	Toxaphenes	
[9]	[9-1] Parlar-26	
[2]	[9-2] Parlar-50	
	[9-3] Parlar-62	
[10]	Mirex	
	HCHs [11-1] α-HCH	
[11]	[11-1] β-HCH [11-2] β-HCH	
[11]	[11-3] γ -HCH (synonym:Lindane)	
	[11-4] δ-HCH	
	Polybromodiphenyl ethers($Br_4 \sim Br_{10}$)	
	[14-1] Tetrabromodiphenyl ethers	
	[14-2] Pentabromodiphenyl ethers	
[1.47	[14-3] Hexabromodiphenyl ether	
[14]	[14-4] Heptabromodiphenyl ethers	
	[14-5] Octabromodiphenyl ethers	
	[14-6] Nonabromodiphenyl ethers	
	[14-7] Decabromodiphenyl ether	
[15]	Portlyaragetane sulfamic said (PEGS)	\
[15]	Perfluorooctane sulfonic acid (PFOS)	Half-life : 27 years [20 ~ 18 years]
		7
[16]	Perfluorooctanoic acid (PFOA)	Half-life : 13 years
		[9 ~ 20 years]
[17]	Pentachlorobenzene	-
	1,2,5,6,9,10-Hexabromo cyclododecanes	
	[19-1] α -1,2,5,6,9,10-Hexabromo cyclododecane	
[19]	[19-2] β -1,2,5,6,9,10-Hexabromo	
	cyclododecane [19-3] <i>γ</i> -1,2,5,6,9,10-Hexabromo	
	cyclododecane	
[21]	Hexachlorobuta-1,3-diene	7 (−) ⁶
(Note	II when the posteriori probability from A	AICs was more than 95%, the measurement results were deemed to be in agreement with the simple

⁽Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

⁽Note 2) "V" or "\": An inter-annual trend of increase or decrease was found.

"\subset ": Statistically significant differences between the first several years and the recent several years were found.

[&]quot;\(\frac{1}{2}\)": Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency.

"-": An inter-annual trend was not found.

[&]quot;-*": In case of using the bootstrap methods, there was not a significant difference between the values of the first several years and the recent several years.

[&]quot;-**": The detection rate was not decreased, there was not a reduction tendency.

- (Note 3) "T: The inter-annual trend analysis was not analysed because not conducted the survey in FY2023.
- (Note 4) The half-life describes the half-life in the environment based on the survey results when the decrease tendency continues for 3 years or more by the maximum likelihood estimation that does not assume parametric residual distribution. The results in [] indicate that the values in the 95% confidence interval.
- (Note 5) Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA): the results of the inter-annual trend analysis from FY2010. Pentachlorobenzene: the result of the inter-annual trend analysis from FY2007. Hexachlorobuta-1,3-diene: the result of the inter-annual trend analysis from FY2015.
- (Note 6) Hexachlorobuta-1,3-diene was listed under Annex A (prohibit and/or eliminate) of the Stockholm convention in 2015 and Annex C (reduce or eliminate releases from unintentionally produced) in 2017. As a result of the inter-annual trend analysis from FY2015 to FY2023, an increasing tendency in specimens was identified as statistically significant. But an inter-annual trend was not found, as the result from FY2017 to FY2023.

Table 3-7 The classification of monitored sites with area at inter-annual trend analysis from FY2002 to FY2023

Classification	Local	Monitored sites	Monitore	
	Communities		Surface water	Sedimen
River area	Hokkaido	Suzuran-ohashi Bridge, Riv Tokachi(Obihiro City)	0	
	I . D C	Ishikarikakokyo Bridge, Mouth of Riv. Ishikari(Ishikari City)	0	0
	Iwate Pref.	Riv. Toyosawa(Hanamaki City)	0	0
	Sendai City	Hirose-ohashi Bridge, Riv. Hirose(Sendai City)		0
	Yamagata Pref.	Mouth of Riv. Mogami(Sakata City)	0	0
	Ibaraki Pref.	Tonekamome-ohasi Bridge, Mouth of Riv. Tone(Kamisu City)	0	0
	Tochigi Pref.	Kyubun Area Head Works, Riv. Tagawa (Utsunomiya City)	0	0
	G 70 0	Yajikka-bashi Bridge, Riv. Tagawa (Shimono City)	0	0
	Gunma Pref.	Tone-ozeki Weir, Riv. Tone (Chiyoda Town)	0	
	Saitama Pref.	Akigaseshusui of Riv. Arakawa	0	
	Niigata Pref.	Lower Riv. Shinano(Niigata City)	0	0
	Toyama Pref.	Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City)	0	0
	Fukui Pref.	Mishima-bashi Bridge, Riv. Shono(Tsuruga City)	0	0
	Yamanashi Pref.	Senshu-bashi Bridge, Riv. Arakawa(Kofu City)		0
	Shizuoka Pref.	Riv. Tenryu(Iwata City)	0	0
	Kyoto City	Miyamae-bashi Bridge, Riv. Katsura(Kyoto City)	0	0
	Osaka City	Osaka Port	0	0
		Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)		0
	Nara Pref.	Riv. Yamato(Oji Town)		0
	Wakayama Pref.	Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City)	0	0
	Kochi Pref.	Mouth of Riv. Shimanto(Shimanto City)	0	0
	Kumamoto Pref.	Hiraki-bashi Bridge, Riv. Midori(Uto City)	0	
	Miyazaki Pref.	Mouth of Riv. Oyodo(Miyazaki City)	0	0
	Kagoshima Pref.	Riv. Amori(Kirishima City)	0	0
		Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City)	0	0
Lake area	Akita Pref.	Lake Hachiro	0	0
Lunio urou	Nagano Pref.	Lake Suwa(center)	0	0
	Shiga Pref.	Lake Biwa(center, offshore of Minamihira)		0
	Singu i ici.	Lake Biwa(center, offshore of Karasaki)	0	0
River	Chiba City	Mouth of Riv. Hanami(Chiba City)	0	0
nouth area	Tokyo Met.	Mouth of Riv. Arakawa(Koto Ward)	0	0
noum area	Tokyo Met.	Mouth of Riv. Arakawa(Roto Ward) Mouth of Riv. Sumida(Minato Ward)	0	
	V Cit-	,	O	0
	Kawasaki City Ishikawa Pref.	Mouth of Riv. Tama (Kawasaki City)		0
		Mouth of Riv. Sai(Kanazawa City)	0	0
	Aichi Pref.	Kinuura Port		0
	Mie Pref.	Toba Port		0
	Osaka Pref.	Mouth of Riv. Yamato(Sakai City)	0	0
	Osaka City	Mouth of Riv. Yodo(Osaka City)		0
	Tokushima Pref.	Mouth of Riv. Yoshino(Tokushima City)	0	0
	Kagawa Pref.	Takamatsu Port	0	0
	Kitakyushu City	Dokai Bay	0	0
	Oita Pref.	Mouth of Riv. Oita(Oita City)		0
	Okinawa Pref.	Naha Port	0	0
Sea area	Hokkaido	Tomakomai Port		0
	Miyagi Pref.	Sendai Bay(Matsushima Bay)	0	0
	Fukushima Pref.	Onahama Port	0	0
	Chiba Pref.	Coast of Ichihara and Anegasaki		0
	Yokohama City	Yokohama Port	0	0
	Kawasaki City	Front of Ougi Town, Keihin Canal, Port of Kawasaki	0	0
	Shizuoka Pref.	Shimizu Port		0
	Aichi Pref.	Nagoya Port	0	0
	Mie Pref.	Yokkaichi Port	0	0
	Osaka City	Outside Osaka Port		0
	Hyogo Pref.	Offshore of Himeji	0	0
	Kobe City	Kobe Port(center)	0	0
	Okayama Pref.	Offshore of Mizushima	0	0
	Hiroshima Pref.	Kure Port	0	0
	111105111111111111111111111111111111111	Hiroshima Bay	0	0
	Yamaguchi Pref.	Tokuyama Bay	0	0
	i amaguem Fiel.	Offshore of Ube	0	0
			1	
	Ehima Du-f	Offshore of Hagi	0	0
	Ehime Pref.	Niihama Port		0
	Fukuoka City	Hakata Bay		0
	Saga Pref.	Imari Bay	0	0

(Note) There are monitored sites which were classified in the area unlike these names by the situations.

In the wake of the monitoring surveys of FY2002 \sim 2023, high-sensitivity analysis of PCBs, and HCB were conducted. All these chemicals were detected in all media.

High-sensitivity analysis of Perfluorooctane sulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) and Perfluorohexane sulfonic acid (PFHxS) in all media, Pentachlorobenzene and Short-chain chlorinated paraffins in wildlife (bivalves fish and birs) and air, Hexachlorobuta-1,3-diene in air, and Methoxychlor Dechlorane pluses and UV-328 in surface water and sediment were also conducted in FY2023.

Except for cases of undetected Chlorinated undecanes in wildlife (bivalves and fish), Perfluorohexane sulfonic acid (PFHxS) in wildlife (bivalves) and Methoxychlor in surface water and sediment, all other chemicals were detected.

The monitoring results for each chemical (group) are described below.

[1] Total PCBs

· History and state of monitoring

Polychlorinated biphenyls (PCBs) were used in industry as heat exchange fluids, etc. and were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in June 1974, since the substances are persistent, highly accumulative in living organisms, and chronically toxic. Also the substances are one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series, the substances were monitored in wildlife (bivalves, fish and birds) during the period of FY1978 \sim 2001 under the framework of "the Wildlife Monitoring." Under the framework of "The Follow-up Survey of the Status of Pollution by Unintentionally Formed Chemicals," sediment and wildlife (fish) were the monitored media in FY1996 and FY1997, and surface water, sediment, wildlife (fish) and air were the monitored media in FY2000 and FY2001.

Under the framework of the Environmental Monitoring, the substances in surface water sediment wildlife (bivalves, fish and birds) and air have been monitored since FY2002.

Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 4 pg/L, and the detection range was $10 \sim 4,500$ pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2023, reduction tendencies in specimens from river areas, lake areas and river mouth areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

Stocktaking of the detection of Total PCBs (total amount) in surface water during FY2002 ~ 2023

Total PCBs	Monitored	Geometric				Quantification	Detection l	Frequency
(total amount)	year	mean*1	Median	Maximum	Minimum	[Detection]	Sample	Site
()						Limit*2		
	2002	470	330	11,000	60	7.4 [2.5]	114/114	38/38
	2003	530	450	3,100	230	9.4 [2.5]	36/36	36/36
	2004	630	540	4,400	140	14 [5.0]	38/38	38/38
	2005	520	370	7,800	140	10 [3.2]	47/47	47/47
	2006	240	200	4,300	15	9 [3]	48/48	48/48
	2007	180	140	2,700	12	7.6 [2.9]	48/48	48/48
	2008	260	250	4,300	27	7.8 [3.0]	48/48	48/48
	2009	210	170	3,900	14	10 [4]	48/48	48/48
	2010	120	99	2,200	nd	73 [24]	41/49	41/49
	2011	150	130	2,100	16	4.5 [1.7]	49/49	49/49
Surface water	2012	400	280	6,500	72	44 [15]	48/48	48/48
(pg/L)	2013	140	110	2,600	tr(13)	25 [8]	48/48	48/48
	2014	150	120	4,800	16	8.2 [2.9]	48/48	48/48
	2015	200	160	4,200	34	21 [7.3]	48/48	48/48
	2016	140	120	3,100	tr(7.2)	8.4 [2.8]	48/48	48/48
	2017	84	79	2,400	nd	16 [5.5]	46/47	46/47
	2018	150	140	2,600	tr(11)	14 [5]	47/47	47/47
	2019	120	90	3,400	tr(6.6)	12 [4.7]	48/48	48/48
	2020	99	90	8,000	nd	19 [6]	43/46	43/46
	2021	100	81	5,900	nd	16 [6]	45/47	45/47
	2022	110	88	3,900	nd	13 [5]	46/48	46/48
	2023	120	85	4,500	10	9 [4]	47/47	47/47

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) *2: The sum value of the Quantification [Detection] limits of each congener

<Sediment>

The presence of the substance in sediment was monitored at 60 sites, and it was detected at all 60 valid sites adopting the detection limit of 3 pg/g-dry, and the detection range was $14 \sim 300,000$ pg/g-dry.

As results of the inter-annual trend analysis from FY2002 to FY2023, reduction tendencies in specimens from river areas, lake areas, river mouth areas and sea areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

Stocktaking of the detection of Total PCBs (total amount) in sediment during FY2002 ~ 2023

Total DCDs	Manitanad	Caamatria		,		Quantification	Detection l	Frequency
Total PCBs (total amount)	Monitored year	Geometric mean*1	Median	Maximum	Minimum	[Detection]	Sample	Site
(total alliount)						Limit*2	Sample	
	2002	11,000	11,000	630,000	39	10 [3.5]	189/189	63/63
	2003	9,400	9,500	5,600,000	39	10 [3.2]	186/186	62/62
	2004	8,400	7,600	1,300,000	38	7.9 [2.6]	189/189	63/63
	2005	8,600	7,100	690,000	42	6.3 [2.1]	189/189	63/63
	2006	8,800	6,600	690,000	36	4 [1]	192/192	64/64
	2007	7,400	6,800	820,000	19	4.7 [1.5]	192/192	64/64
	2008	8,700	8,900	630,000	22	3.3 [1.2]	192/192	64/64
	2009	7,600	7,100	1,700,000	17	5.1 [2.1]	192/192	64/64
	2010	6,500	7,800	710,000	nd	660 [220]	56/64	56/64
	2011	6,300	7,400	950,000	24	12 [4.5]	64/64	64/64
Sediment	2012	5,700	6,700	640,000	tr(32)	51 [18]	63/63	63/63
(pg/g-dry)	2013	6,200	8,000	650,000	tr(43)	44 [13]	62/62	62/62
	2014	4,900	5,500	440,000	tr(35)	61 [21]	63/63	63/63
	2015	6,400	7,500	1,100,000	nd	62 [22]	61/62	61/62
	2016	5,300	5,300	770,000	tr(21)	53 [18]	62/62	62/62
	2017	4,600	6,200	610,000	nd	14 [5.0]	61/62	61/62
	2018	5,900	6,500	720,000	nd	170 [55]	58/61	58/61
	2019	5,700	7,900	640,000	37	8.5 [3.3]	61/61	61/61
	2020	4,600	6,200	400,000	30	8.2 [3.1]	58/58	58/58
	2021	4,900	4,800	450,000	33	7.8 [2.9]	60/60	60/60
	2022	4,600	4,800	340,000	20	7 [3]	61/61	61/61
	2023	4,200	4,900	300,000	14	8 [3]	60/60	60/60

(Note 1) *1 : Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002 ~ 2009.

(Note 2) 2: The sum value of the Quantification [Detection] limits of each congener

<Wildlife>

The presence of the substance in bivalves was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 5 pg/g-wet, and the detected concentrations were 240 pg/g-wet and 1,900 pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 5 pg/g-wet, and the detection range was 720 ~ 83,000 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 5 pg/g-wet, and the detected concentrations were 63,000 pg/g-wet and 380,000 pg/g-wet.

As results of the inter-annual trend analysis from FY2002 to FY2023, reduction tendencies in specimens from bivalves and fish were identified as statistically significant.

Stocktaking of the detection of Total PCBs (total amount) in wildlife (bivalves, fish and birds) during FY2002 \sim 2023

Total PCBs	Monitored	Geometric	3.6.32) (° ·	Quantification	Detection 1	Frequenc
(total amount)	year	mean*1	Median	Maximum	Minimum	[Detection] Limit*2	Sample	Site
	2002	8,800	28,000	160,000	200	25 [8.4]	38/38	8/8
	2003	11,000	9,600	130,000	1,000	50 [17]	30/30	6/6
	2004	11,000	11,000	150,000	1,500	85 [29]	31/31	7/7
	2005	11,000	13,000	85,000	920	69 [23]	31/31	7/7
	2006	8,500	8,600	77,000	690	42 [14]	31/31	7/7
	2007	9,000	11,000	66,000	980	46 [18]	31/31	7/7
	2008	8,600	8,600	69,000	870	47 [17]	31/31	7/7
	2009	8,700	11,000	62,000	780	32 [11]	31/31	7/7
	2010	9,200	11,000	46,000	1,500	52 [20]	6/6	6/6
D' 1	2011	8,900	17,000	65,000	820	220 [74]	4/4	4/4
Bivalves	2012 2013	6,600 5,200	12,000 7,800	34,000 44,000	680 730	34 [11]	5/5 5/5	5/5 5/5
(pg/g-wet)	2013	2,900	2,600	15,000	600	44 [14] 95 [31]	3/3	3/3
	2014	2,400	2,500	9,600	580	52 [17]	3/3	3/3
	2015	2,300	2,300	12,000	420	60 [20]	3/3	3/3
	2017	2,500	1,600	19,000	500	68 [23]	3/3	3/3
	2018	2,000	900	12,000	740	63 [21]	3/3	3/3
	2019	2,200	1,900	17,000	350	33 [11]	3/3	3/3
	2020	1,700	1,100	9,900	470	31 [11]	3/3	3/3
	2021	1,500	980	7,200	490	33 [10]	3/3	3/3
	2022	1,000	490	10,000	230	13 [5]	3/3	3/3
	2023	680		1,900	240	12 [5]	2/2	2/2
	2002	17,000	8,100	550,000	1,500	25 [8.4]	70/70	14/14
	2003	11,000	9,600	150,000	870	50 [17]	70/70	14/14
	2004	15,000	10,000	540,000	990	85 [29]	70/70	14/14
	2005	14,000	8,600	540,000	800	69 [23]	80/80	16/16
	2006	13,000	9,000	310,000	990	42 [14]	80/80	16/16
	2007	11,000	6,200	530,000	790	46 [18]	80/80	16/16
	2008	12,000	9,100	330,000	1,200	47 [17]	85/85	17/17
	2009	12,000	12,000	290,000	840	32 [11]	90/90	18/18
	2010	13,000	10,000	260,000	880	52 [20]	18/18	18/18
	2011	14,000	12,000	250,000	900	220 [74]	18/18	18/18
Fish	2012	13,000	14,000	130,000	920	34 [11]	19/19	19/19
(pg/g-wet)	2013	14,000	13,000	270,000	1,000	44 [14]	19/19	19/19
	2014	13,000	10,000	230,000	940	95 [31]	19/19	19/19
	2015	11,000	7,700	180,000	1,300	52 [17]	19/19	19/19
	2016	11,000	8,400	150,000	1,200	60 [20]	19/19	19/19
	2017	10,000	8,300	160,000	860	68 [23]	19/19	19/19
	2018	12,000	12,000	280,000	1,200	63 [21]	18/18	18/18
	2019	12,000	12,000	160,000	1,000	33 [11]	16/16	16/16
	2020	9,300	12,000	85,000	690	31 [11]	18/18	18/18
	2021	13,000	16,000	130,000	800	33 [10]	18/18	18/18
	2022	9,200	7,100	150,000	600	13 [5]	18/18	18/18
	2023	7,700	7,200	83,000	720	12 [5]	18/18	18/18
	2002	12,000	14,000	22,000	4,800	25 [8.4]	10/10	2/2
	2003	19,000	22,000	42,000	6,800	50 [17]	10/10	2/2
	2004	9,000	9,400	13,000	5,900	85 [29]	10/10	2/2
	2005	10,000	9,700	19,000	5,600	69 [23]	10/10	2/2
	2006	12,000	9,800	48,000	5,600	42 [14]	10/10	2/2
	2007	7,600	7,800	15,000	3,900	46 [18]	10/10	2/2
	2008	9,700	7,400 5,700	56,000	3,000	47 [17]	10/10	2/2
	2009	5,900	5,700	9,500	3,900	32 [11] 52 [20]	10/10	2/2
	2010	7,700		9,100	6,600 5,400	52 [20]	2/2	2/2
Birds *3	2011	5,900		5,400 6,200	5,400 5,600	220 [74]	1/1	1/1
	2012	360,000				34 [11]	<u>2/2</u> 2/2	2/2 2/2
(pg/g-wet)	2013 2014	46,000		510,000 140,000	250,000 15,000	44 [14] 95 [31]	2/2	2/2
	2014	40,000			5,000			1/1
	2015	31,000		5,000	5,000 9,800	52 [17] 60 [20]	1/1 2/2	2/2
	2016	31,000		100,000 380,000	9,800 4,000	60 [20]	2/2 2/2	2/2
	2017	39,000 110,000		130,000	4,000 85,000	68 [23] 63 [21]	2/2	2/2
	2018							1/1
				190,000	190,000	33 [11]	1/1	
				74.000	74.000	21 11 1	1 / 1	
	2020	150,000		74,000	74,000	31 [11]	1/1	1/1
		150,000 190,000	 	74,000 210,000 200,000	74,000 110,000 190,000	31 [11] 33 [10] 13 [5]	1/1 2/2 2/2	1/1 2/2 2/2

- (Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002 \sim 2009.
- (Note 2) *2: The sum value of the Quantification [Detection] limits of each congener
- (Note 3) *3: There is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

<Air>

The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.8 pg/m^3 , and the detection range was $24 \sim 190 \text{ pg/m}^3$.

As a result of the inter-annual trend analysis from FY2003 to FY2023, a reduction tendency in specimens was identified as statistically significant.

Stocktaking of the detection of Total PCBs (total amount) in air during $FY2002 \sim 2023$

Total PCBs		Geometric				Quantification	Detection I	Frequency
(total amount)	Monitored year	mean*1	Median	Maximum	Minimum	[Detection] Limit*2	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 24/24 22/22 22/22 36/36 34/34 34/34 35/35	Site
	2002**	100	100	880	16	99 [33]	102/102	34/34
	2003 Warm season	260	340	2,600	36	6.6 [2.2]	35/35	35/35
	2003 Cold season	110	120	630	17	0.0 [2.2]	34/34	34/34
	2004 Warm season	240	250	3,300	25	2.9 [0.98]	37/37	37/37
	2004 Cold season	130	130	1,500	20	2.9 [0.96]	37/37	37/37
	2005 Warm season	190	210	1,500	23	0.38 [0.14]	37/37	37/37
	2005 Cold season	66	64	380	20	0.36 [0.14]	37/37	37/37
	2006 Warm season	170	180	1,500	21	0.8 [0.3]	37/37	37/37
	2006 Cold season	82	90	450	19	0.8 [0.3]	37/37	37/37
	2007 Warm season	250	290	980	37	0.37 [0.13]		24/24
	2007 Cold season	72	76	230	25	0.57 [0.15]	22/22	22/22
	2008 Warm season	200	170	960	52	0.8 [0.3]	22/22	22/22
	2008 Cold season	93	86	1,500	21	0.8 [0.3]	36/36	36/36
	2009 Warm season	200	190	1,400	43	0.75 [0.26]	34/34	34/34
	2009 Cold season	85	78	380	20	0.73 [0.26]	34/34	34/34
Air	2010 Warm season	160	150	970	36	7.3 [2.5]	35/35	35/35
(pg/m^3)	2010 Cold season	84	86	630	19	/.3 [2.3]	35/35	35/35
(pg/III)	2011 Warm season	150	160	660	32	18 [5.9]	35/35	35/35
	2011 Cold season	76	66	320	tr(17)		37/37	37/37
	2012 Warm season	130	130	840	27	26 [0 5]	35/35	35/35
	2012 Cold season	54	62	280	tr(16)	26 [8.5]	35/35	35/35
	2013 Warm season	140	130	1,100	24	20.56.51	35/35	35/35
	2013 Cold season	57	55	300	tr(19)	20 [6.5]	35/35	35/35
	2014 Warm season	140	150	1,300	28	4.1 [1.4]	36/36	36/36
	2015 Warm season	98	110	950	17	5.9 [2.0]	35/35	35/35
	2016 Warm season	130	140	1,300	16	7.8 [2.7]	37/37	37/37
	2017 Warm season	120	110	3,300	26	7.0 [2.3]	37/37	37/37
	2018 Warm season	110	100	750	20	2.4 [0.8]	37/37	37/37
	2019 Warm season	89	90	340	27	2.1 [0.8]	36/36	36/36
	2020 Warm season	82	82	360	21	1.8 [0.6]	37/37	37/37
	2021 Warm season	71	70	340	17	2.4 [0.8]	35/35	35/35
	2022 Warm season	78	82	190	18	0.9 [0.3]	36/36	36/36
	2023 Warm season	60	58	190	24	2.4 [0.8]	35/35	35/35

(Note 1) *1: The sum value of the Quantification [Detection] limits of each congener

(Note 2) *2: In 2002, there was a technical problem in the measuring method for lowly chlorinated congeners, and therefore the values are shown just as reference.

[2] Hexachlorobenzene

· History and state of monitoring

Hexachlorobenzene was used as pesticidal material and was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in August 1979. Also the substance is one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY1978 \sim 1996 and in FY1998, FY2000 and FY2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," the substance in surface water and sediment was monitored during the period of FY1986 \sim 1998 and FY1986 \sim 2001, respectively.

Under the framework of the Environmental Monitoring, the substance in surface water sediment wildlife (bivalves, fish and birds) and air has been monitored since FY2002.

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 0.3 pg/L, and the detection range was $1.4 \sim 190$ pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2023, reduction tendencies in specimens from river areas, lake areas and river mouth areas were identified as statistically significant. The recent 7 years period was indicated lower concentration than the first 7 years period in specimens from sea areas as statistically significant. And a reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant

Stocktaking of the detection of Hexachlorobenzene in surface water during FY2002 ~ 2023

	Monitored	Geometric				Quantification	Detection l	Frequency
НСВ	year	mean *	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	37	28	1,400	9.8	0.6 [0.2]	114/114	38/38
	2003	29	24	340	11	5 [2]	36/36	36/36
	2004	30	tr(29)	180	tr(11)	30 [8]	38/38	38/38
	2005	21	17	210	tr(6)	15 [5]	47/47	47/47
	2006	16	tr(12)	190	nd	16 [5]	46/48	46/48
	2007	17	14	190	tr(4)	8 [3]	48/48	48/48
	2008	16	13	480	4	3 [1]	48/48	48/48
	2009	15	17	180	2.4	0.5 [0.2]	49/49	49/49
	2010	tr(10)	tr(8)	120	nd	13 [4]	39/49	39/49
	2011	13	12	140	tr(3)	5 [2]	49/49	49/49
Surface water	2012	29	23	330	8.1	2.2 [0.7]	48/48	48/48
(pg/L)	2013	14	11	260	tr(4)	7 [2]	48/48	48/48
	2014	12	9.7	200	2.7	0.9 [0.4]	48/48	48/48
	2015	15	13	140	4.2	1.8 [0.6]	48/48	48/48
	2016	13	11	130	4.2	0.9 [0.3]	48/48	48/48
	2017	12	10	180	2.9	2.1 [0.8]	47/47	47/47
	2018	16	11	380	4.0	1.5 [0.6]	47/47	47/47
	2019	10	10	630	nd	8 [3]	46/48	46/48
	2020	7.9	6.1	600	2.7	2.0 [0.8]	46/46	46/46
	2021	6.8	5.5	180	1.6	1.0 [0.4]	47/47	47/47
	2022	5.3	4.0	70	1.6	0.8 [0.3]	48/48	48/48
	2023	6.1	5.3	190	1.4	0.8 [0.3]	47/47	47/47

(Note) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

The presence of the substance in sediment was monitored at 60 sites, and it was detected at all 60 valid sites adopting the detection limit of 0.4 pg/g-dry, and the detection range was $2.4 \sim 5,200 \text{ pg/g-dry}$.

As results of the inter-annual trend analysis from FY2002 to FY2023, reduction tendencies in specimens from river areas, river mouth areas and sea areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

Stocktaking of the detection of Hexachlorobenzene in sediment during FY2002 \sim 2023

	Monitored	Geometric				Quantification	Detection l	Frequency
HCB		mean *	Median	Maximum	Minimum	[Detection]	Sample	Site
	year	IIICali				limit	Sample	
	2002	240	200	19,000	7.6	0.9 [0.3]	189/189	63/63
	2003	160	120	42,000	5	4 [2]	186/186	62/62
	2004	140	100	25,000	tr(6)	7 [3]	189/189	63/63
	2005	170	130	22,000	13	3 [1]	189/189	63/63
	2006	180	120	19,000	10	2.9 [1.0]	192/192	64/64
	2007	140	110	65,000	nd	5 [2]	191/192	64/64
	2008	160	97	29,000	4.4	2.0 [0.8]	192/192	64/64
	2009	150	120	34,000	nd	1.8 [0.7]	190/192	64/64
	2010	130	96	21,000	4	3 [1]	64/64	64/64
	2011	150	110	35,000	11	7 [3]	64/64	64/64
Sediment	2012	100	110	12,000	3	3 [1]	63/63	63/63
(pg/g-dry)	2013	120	91	6,600	7.2	5.3 [1.8]	63/63	63/63
	2014	95	85	5,600	tr(4)	6 [2]	63/63	63/63
	2015	100	90	17,000	4	3 [1]	62/62	62/62
	2016	84	74	6,400	4	3 [1]	62/62	62/62
	2017	82	65	11,000	3	3 [1]	62/62	62/62
	2018	100	79	8,900	3.1	1.3 [0.5]	61/61	61/61
	2019	88	85	10,000	4.5	0.9 [0.4]	61/61	61/61
	2020	85	78	9,800	3.9	1.3 [0.5]	58/58	58/58
	2021	56	56	12,000	2.5	1.3 [0.5]	60/60	60/60
	2022	42	36	4,800	1.6	0.8 [0.3]	61/61	61/61
	2023	50	42	5,200	2.4	0.9 [0.4]	60/60	60/60

(Note) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~ 2009.

<Wildlife>

The presence of the substance in bivalves was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 0.8 pg/g-wet, and the detected concentrations were 9.3 pg/g-wet and 21 pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 0.8 pg/g-wet, and the detection range was $21 \sim 560 \text{ pg/g-wet}$. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 0.8 pg/g-wet, and the detected concentrations were 2,100 pg/g-wet and 4,200 pg/g-wet.

Stocktaking of the detection of Hexachlorobenzene in wildlife (bivalves, fish and birds) during FY2002 ~ 2023

ПС Р	Monitored	Geometric	Mad:	Morrim	Minim	Quantification	Detection l	requency
HCB	year	mean*	Median	Maximum	Minimum	[Detection] Limit	Sample	Site
	2002	21	22	330	2.4	0.18 [0.06]	38/38	8/8
	2003	44	27	660	tr(21)	23 [7.5]	30/30	6/6
	2004	32	31	80	14	14 [4.6]	31/31	7/7
	2005	51	28	450	19	11 [3.8]	31/31	7/7
	2006	46	28	340	11	3 [1]	31/31	7/7
	2007 2008	37 38	22 24	400 240	11 13	7 [3]	31/31 31/31	7/7 7/7
	2008	36 34	32	200	13	7 [3] 4 [2]	31/31	7/7
	2010	34	48	210	tr(4)	5 [2]	6/6	6/6
	2011	45	34	920	4	4[1]	4/4	4/4
Bivalves	2012	39	38	340	10	8.4 [2.8]	5/5	5/5
(pg/g-wet)	2013	32	39	250	nd	31 [10]	4/5	4/5
	2014	34	26	100	15	10 [3]	3/3	3/3
	2015 2016	35 38	26 22	120 150	tr(14)	20 [6.5]	3/3 3/3	3/3
	2016	38 41	26	99	17 26	8.1 [2.7] 3.9 [1.3]	3/3	3/3 3/3
	2017	21	23	28	14	3.3 [1.1]	3/3	3/3
	2019	23	16	65	12	3 [1]	3/3	3/3
	2020	9	14	30	tr(2)	3 [1]	3/3	3/3
	2021	11	26	26	tr(2)	3 [1]	3/3	3/3
	2022	8.4	8.5	9.1	7.6	2.1 [0.8]	3/3	3/3
	2023	14	100	21	9.3	2.1 [0.8]	2/2	2/2
	2002 2003	140 180	180 170	910 1,500	19 28	0.18 [0.06] 23 [7.5]	70/70 70/70	14/14 14/14
	2003	230	210	1,800	26	14 [4.6]	70/70	14/14
	2005	180	160	1,700	29	11 [3.8]	80/80	16/16
	2006	180	220	1,400	25	3 [1]	80/80	16/16
	2007	160	140	1,500	17	7 [3]	80/80	16/16
	2008	170	210	1,500	25	7 [3]	85/85	17/17
	2009	210	180	30,000	29	4 [2]	90/90	18/18
	2010 2011	240 260	280 320	1,700 1,500	36 34	5 [2] 4 [1]	18/18 18/18	18/18 18/18
Fish	2011	200	300	1,100	33	8.4 [2.8]	19/19	19/19
(pg/g-wet)	2013	240	220	1,500	36	31 [10]	19/19	19/19
(188)	2014	280	340	1,900	37	10 [3]	19/19	19/19
	2015	170	150	1,700	43	20 [6.5]	19/19	19/19
	2016	150	150	1,300	24	8.1 [2.7]	19/19	19/19
	2017	190	180	1,100	33	3.9 [1.3]	19/19	19/19
	2018 2019	140 100	150 99	900 1,100	25 12	3.3 [1.1]	18/18 16/16	18/18 16/16
	2019	110	58	1,100	15	3 [1] 3 [1]	18/18	18/18
	2021	160	160	950	24	3 [1]	18/18	18/18
	2022	110	88	710	16	2.1 [0.8]	18/18	18/18
	2023	76	64	560	21	2.1 [0.8]	18/18	18/18
	2002	1,000	1,200	1,600	560	0.18 [0.06]	10/10	2/2
	2003 2004	1,800 980	2,000 1,300	4,700 2,200	790 410	23 [7.5] 14 [4.6]	10/10 10/10	2/2 2/2
	2004	1,000	1,100	2,200	400	11 [3.8]	10/10	2/2
	2006	970	1,100	2,100	490	3 [1]	10/10	2/2
	2007	960	1,100	2,000	420	7 [3]	10/10	2/2
	2008	880	1,100	2,500	240	7 [3]	10/10	2/2
	2009	850	910	1,500	400	4 [2]	10/10	2/2
	2010	970		1,900	500	5 [2]	2/2	2/2
D:1 - *?	2011	940		460 1.500	460	4 [1]	1/1	1/1
Birds *2 (pg/g-wet)	2012 2013	3,900		1,500 5,200	2,900	8.4 [2.8] 31 [10]	<u>2/2</u> 2/2	2/2 2/2
(hg/g-wei)	2013	420		5,600	32	10 [3]	2/2	2/2
	2015			760	760	20 [6.5]	1/1	1/1
	2016	1,700		5,300	550	8.1 [2.7]	2/2	2/2
	2017	1,100		4,900	230	3.9 [1.3]	2/2	2/2
	2018	2,800		3,100	2,600	3.3 [1.1]	2/2	2/2
				3,200	3,200	3 [1]	1/1	1/1
	2019							
	2020			2,900	2,900	3 [1]	1/1	1/1

- (Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 \sim 2009.
- (Note 2) *2: There is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

<Air>

The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.1 pg/m^3 , and the detection range was $70 \sim 140 \text{ pg/m}^3$.

Stocktaking of the detection of Hexachlorobenzene in air during FY2002 ~ 2023

		Geometric				Quantification	Detection I	requenc
HCB	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	99	93	3,000	57	0.9 [0.3]	102/102	34/34
	2003 Warm season	150	130	430	81	2.3 [0.78]	35/35	35/35
	2003 Cold season	94	90	320	64	2.3 [0.76]	34/34	34/34
	2004 Warm season	130	130	430	47	1 1 [0 27]	37/37	37/37
	2004 Cold season	98	89	390	51	1.1 [0.37]	37/37	37/37
	2005 Warm season	88	90	250	27	0.14 [0.024]	37/37	37/37
	2005 Cold season	77	68	180	44	0.14 [0.034]	37/37	37/37
	2006 Warm season	83	89	210	23	0.21 [0.07]	37/37	37/37
	2006 Cold season	65	74	170	8.2	0.21 [0.07]	37/37	37/37
	2007 Warm season	110	100	230	72	0.00.00.021	24/24	24/24
	2007 Cold season	77	72	120	55	0.09 [0.03]	22/22	22/22
	2008 Warm season	120	110	260	78	0.22 [0.00]	22/22	22/22
	2008 Cold season	87	83	160	58	0.22 [0.08]	36/36	36/36
	2009 Warm season	110	110	210	78	0.6 [0.2]	34/34	34/34
	2009 Cold season	87	87	150	59		34/34	34/34
۸.	2010 Warm season	120	120	160	73	1.8 [0.7]	37/37	37/37
Air	2010 Cold season	100	96	380	56		37/37	37/37
(pg/m^3)	2011 Warm season	120	110	180	87		35/35	35/35
	2011 Cold season	96	96	160	75	2.3 [0.75]	37/37	37/37
	2012 Warm season	120	110	150	84	4.2.51.43	36/36	36/36
	2012 Cold season	97	95	150	68	4.3 [1.4]	36/36	36/36
	2013 Warm season	110	110	180	52	2.0.51.23	36/36	36/36
	2013 Cold season	97	97	180	73	3.8 [1.3]	36/36	36/36
	2014 Warm season	150	160	240	84	1.4 [0.5]	36/36	36/36
	2015 Warm season	120	130	170	74	0.5 [0.2]	35/35	35/35
	2016 Warm season	130	130	220	79	0.8 [0.3]	37/37	37/37
	2017 Warm season	130	120	550	73	0.5 [0.2]	37/37	37/37
	2018 Warm season	100	100	140	72	0.4 [0.2]	37/37	37/37
	2019 Warm season	96	99	130	67	0.14 [0.06]	36/36	36/36
	2020 Warm season	100	94	370	63	0.3 [0.1]	37/37	37/37
	2021 Warm season	96	96	140	66	0.11 [0.04]	35/35	35/35
	2022 Warm season	100	99	140	71	0.09 [0.04]	36/36	36/36
	2023 Warm season	94	93	140	70	0.4 [0.1]	35/35	35/35

[3] Aldrin (references)

· History and state of monitoring

Aldrin had been used as a soil insecticide until FY1971 when the application of the substance was substantially stopped. Its registration under the Agricultural Chemicals Regulation Law was expired in FY1975. It was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Also the substance is the initial POPs under the Stockholm Convention since 2004.

In previous monitoring series until FY2001, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY1978 ~ 1989, FY1991 and FY1993 under the framework of "the Wildlife Monitoring."

Under the framework of the Environmental Monitoring, the substance has been monitored in surface water sediment wildlife (bivalves, fish and birds) and air in FY2002 \sim 2009, in wildlife (bivalves, fish and birds) and air in FY2014, and in sediment in FY2018.

No monitoring was conducted after FY2019. For reference, the monitoring results up to FY2018 are given below.

· Monitoring results until FY2018

<Surface Water>

Stocktaking of the detection of Aldrin in surface water during FY2002 ~ 2009

	Monitored	Geometric				Quantification	Detection	Frequency
Aldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.8	0.9	18	nd	0.6 [0.2]	93/114	37/38
	2003	0.9	0.9	3.8	nd	0.6 [0.2]	34/36	34/36
	2004	tr(1.5)	tr(1.8)	13	nd	2 [0.4]	33/38	33/38
Surface Water	2005	tr(0.6)	tr(0.7)	5.7	nd	0.9 [0.3]	32/47	32/47
(pg/L)	2006	nd	nd	4.4	nd	1.7 [0.6]	18/48	18/48
	2007	tr(0.6)	tr(0.6)	9.5	nd	1.0 [0.3]	34/48	34/48
	2008	tr(0.8)	tr(0.7)	21	nd	1.4 [0.6]	26/48	26/48
	2009	0.7	0.9	22	nd	0.7 [0.3]	32/49	32/49

(Note) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Stocktaking of the detection of Aldrin in sediment during FY2002 ~ 2018

	Monitored	Geometric			. Minimum	Quantification	Detection l	Frequency
Aldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	14	12	570	nd	6 [2]	149/189	56/63
	2003	19	18	1,000	nd	2 [0.6]	178/186	60/62
	2004	10	10	390	nd	2 [0.6]	170/189	62/63
Sediment	2005	8.4	7.1	500	nd	1.4 [0.5]	173/189	62/63
	2006	10	9.3	330	nd	1.9 [0.6]	184/192	64/64
(pg/g-dry)	2007	7.5	6.7	330	nd	1.8 [0.6]	172/192	60/64
	2008	6	6	370	nd	3 [1]	153/192	56/64
	2009	8.9	7.8	540	nd	0.5 [0.2]	180/192	64/64
	2018	3.7	3.8	270	nd	1.6 [0.6]	50/61	50/61

⁽Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 \sim 2009.

(Note 2) No monitoring was conducted in FY2010 $\,\sim$ 2017.

<Wildlife>

Stocktaking of the detection of Aldrin in wildlife (bivalves, fish and birds) during $FY2002 \sim 2014$

	Monitored	Geometric	`	· · · · · · · · · · · · · · · · · · ·		Quantification	Detection Sample 12/38 15/30 16/31 11/31 5/31 5/31 5/31 16/31 0/3 1/70	Frequency
Aldrin	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(1.6)	nd	34	nd	4.2 [1.4]	12/38	4/8
	2003	tr(1.7)	tr(0.85)	51	nd	2.5 [0.84]	15/30	3/6
	2004	tr(2.5)	tr(1.6)	46	nd	4.0 [1.3]	16/31	4/7
Bivalves	2005	tr(1.8)	nd	84	nd	3.5 [1.2]	11/31	3/7
	2006	tr(2)	nd	19	nd	4 [2]	11/31	3/7
(pg/g-wet)	2007	tr(2)	nd	26	nd	5 [2]	5/31	2/7
	2008	tr(2)	nd	20	nd	5 [2]	5/31	3/7
	2009	tr(1.6)	tr(0.8)	89	nd	2.1 [0.8]	16/31	6/7
	2014	nd	nd	nd	nd	1.8 [0.7]	0/3	0/3
	2002	nd	nd	tr(2.0)	nd	4.2 [1.4]	1/70	1/14
	2003	nd	nd	tr(1.9)	nd	2.5 [0.84]	16/70	7/14
	2004	nd	nd	tr(2.4)	nd	4.0 [1.3]	5/70	2/14
Fish	2005	nd	nd	6.4	nd	3.5 [1.2]	11/80	5/16
	2006	nd	nd	tr(2)	nd	4 [2]	2/80	2/16
(pg/g-wet)	2007	nd	nd	tr(2)	nd	5 [2]	2/80	2/16
	2008	nd	nd	tr(2)	nd	5 [2]	1/85	1/17
	2009	nd	nd	3.1	nd	2.1 [0.8]	22/90	7/18
	2014	nd	nd	2.4	nd	1.8 [0.7]	4/19	4/19
	2002	nd	nd	nd	nd	4.2 [1.4]	0/10	0/2
	2003	nd	nd	nd	nd	2.5 [0.84]	0/10	0/2
	2004	nd	nd	nd	nd	4.0 [1.3]	0/10	0/2
Birds *2	2005	nd	nd	nd	nd	3.5 [1.2]	0/10	0/2
	2006	nd	nd	nd	nd	4 [2]	0/10	0/2
(pg/g-wet)	2007	nd	nd	nd	nd	5 [2]	0/10	0/2
	2008	nd	nd	nd	nd	5 [2]	0/10	0/2
	2009	nd	nd	nd	nd	2.1 [0.8]	0/10	0/2
	2014	nd		nd	nd	1.8 [0.7]	0/2	0/2

⁽Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~ 2009.

(Note 3) No monitoring was conducted during FY2010 ~ 2013.

<Air>

Stocktaking of the detection of Aldrin in air during $FY2002 \sim 2014$

		Geometric				Quantification	Detection l	requency
Aldrin	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(0.030)	nd	3.2	nd	0.060 [0.020]	41/102	19/34
	2003 Warm season	1.5	1.9	28	nd	0.022 [0.0077]	34/35	34/35
	2003 Cold season	0.55	0.44	6.9	0.030	0.023 [0.0077]	34/34	34/34
	2004 Warm season	tr(0.12)	nd	14	nd	0.15 [0.05]	15/37	15/37
	2004 Cold season	tr(0.08)	nd	13	nd		14/37	14/37
	2005 Warm season	0.33	0.56	10	nd	0.08 [0.03]	29/37	29/37
	2005 Cold season	tr(0.04)	nd	1.8	nd		9/37	9/37
Air	2006 Warm season	0.30	0.35	8.5	nd	0.14 [0.05]	31/37	31/37
(pg/m^3)	2006 Cold season	tr(0.05)	nd	1.1	nd		16/37	16/37
	2007 Warm season	0.58	0.48	19	nd	0.05.00.021	35/36	35/36
	2007 Cold season	0.14	0.15	2.1	nd	0.05 [0.02]	34/36	34/36
	2008 Warm season	0.27	0.30	9.4	tr(0.02)	0.04.50.021	25/25	25/25
	2008 Cold season	0.09	0.08	1.3	nd	0.04 [0.02]	22/25	22/25
	2009 Warm season	0.07	nd	10	nd	0.04.50.023	10/25	10/25
	2009 Cold season	tr(0.03)	nd	1.8	nd	0.04 [0.02]	8/24	8/24
	2014 Warm season	nd	nd	17	nd	12 [4]	6/34	6/34

(Note) No monitoring was conducted during FY2010 ~ 2013.

⁽Note 2) *2: There is no consistency between the results of the ornithological survey in FY2014 and those in previous years because of the changes in the survey sites and target species.

[4] Dieldrin (references)

· History and state of monitoring

Dieldrin was used as a pesticide and its application culminated during the period of 1955 ~ 1964. The substance had been used as termitecides as a Soil-Residue-Prone Pesticide under the Agricultural Chemicals Regulation Law in 1971, but its registration under the Agricultural Chemicals Regulation Law was expired in FY1975. It had been used for termite control and was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Also the substance is one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series until FY2001, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY1978 \sim 1996, FY1998, FY2000 and FY2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," the substance in surface water and sediment was monitored during the period of FY1986 \sim 1998 and FY1986 \sim 2001, respectively.

Under the framework of the Environmental Monitoring, the substance has been monitored in surface water sediment wildlife (bivalves, fish and birds) and air in $FY2002 \sim 2009$ and FY2011, in surface water wildlife (bivalves, fish and birds) and air in FY2014, and in sediment in FY2018.

No monitoring was conducted after FY2019. For reference, the monitoring results up to FY2018 are given below.

· Monitoring results until FY2018

<Surface Water>

Stocktaking of the detection of Dieldrin in surface water during FY2002 ~ 2014

	Monitored	Geometric	· · · · · · · · · · · · · · · · · · ·		Detection l	requency		
Dieldrin	year	mean*	41 57 51 49	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	42	41	940	3.3	1.8 [0.6]	114/114	38/38
	2003	57	57	510	9.7	0.7 [0.3]	36/36	36/36
	2004	55	51	430	9	2 [0.5]	38/38	38/38
	2005	39	49	630	4.5	1.0 [0.34]	47/47	47/47
Surface Water	2006	36	32	800	6	3 [1]	48/48	48/48
(pg/L)	2007	38	36	750	3.1	2.1 [0.7]	48/48	48/48
	2008	36	37	450	3.6	1.5 [0.6]	48/48	48/48
	2009	36	32	650	2.7	0.6 [0.2]	49/49	49/49
	2011	33	38	300	2.1	1.6 [0.6]	49/49	49/49
	2014	28	27	200	2.7	0.5 [0.2]	48/48	48/48

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Stocktaking of the detection of Dieldrin in sediment during FY2002 ~ 2018

	Monitored	Geometric			M	Quantification	Detection I	Frequency
Dieldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	70	51	2,300	4	3 [1]	189/189	63/63
	2003	66	56	9,100	nd	4 [2]	184/186	62/62
	2004	65	62	3,700	tr(1.9)	3 [0.9]	189/189	63/63
	2005	61	55	4,200	tr(2)	3 [1]	189/189	63/63
Sediment	2006	61	54	1,500	tr(1.7)	2.9 [1.0]	192/192	64/64
(pg/g-dry)	2007	49	40	2,700	tr(1.2)	2.7 [0.9]	192/192	64/64
	2008	48	43	2,900	tr(0.7)	1.2 [0.5]	192/192	64/64
	2009	51	47	3,000	1.1	0.8 [0.3]	192/192	64/64
	2011	47	44	2,200	2	5 [2]	64/64	64/64
	2018	33	33	860	nd	1.6 [0.6]	60/61	60/61

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 \sim 2009.

⁽Note 2) No monitoring was conducted in FY2010, FY2012 and FY2013.

⁽Note 2) No monitoring was conducted in FY2010.

<Wildlife>

Stocktaking of the detection of Dieldrin in wildlife (bivalves, fish and birds) during $FY2002 \sim 2014$

	Monitored	Geometric				Quantification	Detection l	Frequency
Dieldrin	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	440	390	190,000	tr(7)	12 [4]	38/38	8/8
	2003	440	160	78,000	46	4.8 [1.6]	30/30	6/6
	2004	630	270	69,000	42	31 [10]	31/31	7/7
	2005	500	140	39,000	34	9.4 [3.4]	31/31	7/7
Bivalves	2006	450	120	47,000	30	7 [3]	31/31	7/7
(pg/g-wet)	2007	380	110	77,000	37	9 [3]	31/31	7/7
	2008	430	150	24,000	47	9 [3]	31/31	7/7
	2009	490	230	28,000	48	7 [2]	31/31	7/7
	2011	390	690	3,800	16	3 [1]	4/4	4/4
	2014	180	300	490	41	3 [1]	3/3	3/3
	2002	290	270	2,400	46	12 [4]	70/70	14/14
	2003	220	200	1,000	29	4.8 [1.6]	70/70	14/14
	2004	250	230	2,800	tr(23)	31 [10]	70/70	14/14
	2005	230	250	1,400	21	9.4 [3.4]	80/80	16/16
Fish	2006	230	220	1,400	19	7 [3]	80/80	16/16
(pg/g-wet)	2007	250	210	1,900	23	9 [3]	80/80	16/16
	2008	240	240	1,300	15	9 [3]	85/85	17/17
	2009	240	190	1,400	29	7 [2]	90/90	18/18
	2011	270	340	1,100	17	3 [1]	18/18	18/18
	2014	270	310	1,000	27	3 [1]	19/19	19/19
	2002	1,100	1,100	1,700	820	12 [4]	10/10	2/2
	2003	1,300	1,400	2,200	790	4.8 [1.6]	10/10	2/2
	2004	600	610	960	370	31 [10]	10/10	2/2
	2005	830	740	1,800	500	9.4 [3.4]	10/10	2/2
Birds *2	2006	700	690	1,300	440	7 [3]	10/10	2/2
(pg/g-wet)	2007	710	710	910	560	9 [3]	10/10	2/2
/	2008	680	620	1,300	260	9 [3]	10/10	2/2
	2009	470	420	890	330	7 [2]	10/10	2/2
	2011			770	770	3 [1]	1/1	1/1
	2014	320		530	190	3 [1]	2/2	2/2

⁽Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~ 2009.

<Air>

Stocktaking of the detection of Dieldrin in air during $FY2002 \sim 2014$

		Geometric				Quantification	Detection I	requency
Dieldrin	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.6	5.4	110	0.73	0.60 [0.20]	102/102	34/34
	2003 Warm season	19	22	260	2.1	2 1 [0 70]	35/35	35/35
	2003 Cold season	5.7	5.2	110	tr(0.82)	2.1 [0.70]	34/34	34/34
	2004 Warm season	17	22	280	1.1	0.22 [0.11]	37/37	37/37
	2004 Cold season	5.5	6.9	76	0.81	0.33 [0.11]	37/37	37/37
	2005 Warm season	14	12	200	1.5	0.54.50.241	37/37	37/37
	2005 Cold season	3.9	3.6	50	0.88	0.54 [0.24]	37/37	37/37
	2006 Warm season	15	14	290	1.5	0.2 [0.1]	37/37	37/37
Air	2006 Cold season	4.5	4.2	250	0.7	0.3 [0.1]	37/37	37/37
(pg/m^3)	2007 Warm season	19	22	310	1.3	0.19 [0.07]	36/36	36/36
	2007 Cold season	4.5	3.7	75	0.96	0.18 [0.07]	36/36	36/36
	2008 Warm season	14	16	220	1.6	0.24 [0.09]	37/37	37/37
	2008 Cold season	4.9	3.8	72	0.68	0.24 [0.09]	37/37	37/37
	2009 Warm season	13	13	150	0.91	0.06.00.021	37/37	37/37
	2009 Cold season	4.5	4.0	80	0.52	0.06 [0.02]	37/37	37/37
	2011 Warm season	12	15	230	0.80	0.42 [0.14]	35/35	35/35
	2011 Cold season	4.3	4.9	96	0.52	0.42 [0.14]	37/37	37/37
	2014 Warm season	11	9.9	160	0.89	0.34 [0.11]	36/36	36/36

(Note) No monitoring was conducted in FY2010, FY2012 and FY2013.

⁽Note 2) *2: There is no consistency between the results of the ornithological survey in FY2014 and those in previous years because of the changes in the survey sites and target species.

⁽Note 3) No monitoring was conducted in FY2010, FY2012 and FY2013.

[5] Endrin (references)

· History and state of monitoring

Endrin was used as an insecticide and a rodenticide, but its registration under the Agricultural Chemicals Regulation Law was expired in FY1975. It was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Also the substance is one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series until FY2001, the substance was monitored in wildlife (bivalves, fish and birds) during the periods of FY1978 \sim 1989 and FY1991 \sim 1993 under the framework of "the Wildlife Monitoring".

Under the framework of the Environmental Monitoring, the substance has been monitored in surface water sediment wildlife (bivalves, fish and birds) and air in $FY2002 \sim 2009$ and FY2011, in surface water wildlife (bivalves, fish and birds) and air in FY2014, and in sediment in FY2018.

No monitoring was conducted after FY2019. For reference, the monitoring results up to FY2018 are given below.

· Monitoring results until FY2018

<Surface Water>

Stocktaking of the detection of Endrin in surface water during FY2002 ~ 2014

	Monitored	Geometric				Quantification	Detection l	Frequency
Endrin	year	mean*	Median tr(5.5) 6.0 7 4.5 3.5 3.4 4	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(4.8)	tr(5.5)	31	nd	6.0 [2.0]	101/114	36/38
	2003	5.7	6.0	78	0.7	0.7 [0.3]	36/36	36/36
	2004	7	7	100	tr(0.7)	2 [0.5]	38/38	38/38
	2005	4.0	4.5	120	nd	1.1 [0.4]	45/47	45/47
Surface Water	2006	3.1	3.5	26	nd	1.3 [0.4]	44/48	44/48
(pg/L)	2007	3.5	3.4	25	nd	1.9 [0.6]	46/48	46/48
	2008	3	4	20	nd	3 [1]	45/48	45/48
	2009	2.0	2.3	67	nd	0.7 [0.3]	39/49	39/49
	2011	3.8	4.6	71	nd	1.6 [0.6]	47/49	47/49
	2014	2.5	2.2	25	tr(0.4)	0.5 [0.2]	48/48	48/48

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Stocktaking of the detection of Endrin in sediment during FY2002 ~ 2018

- 11	Monitored	Geometric		M. P. M.		Quantification	Detection Frequency	
Endrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	10	10	19,000	nd	6 [2]	141/189	54/63
	2003	12	11	29,000	nd	5 [2]	150/186	53/62
	2004	15	13	6,900	nd	3 [0.9]	182/189	63/63
	2005	12	11	19,000	nd	2.6 [0.9]	170/189	61/63
Sediment	2006	12	10	61,000	nd	4 [1]	178/192	63/64
(pg/g-dry)	2007	11	9	61,000	nd	5 [2]	151/192	55/64
	2008	11	11	38,000	nd	1.9 [0.7]	168/192	61/64
	2009	9.6	8.4	11,000	nd	1.6 [0.6]	168/192	63/64
	2011	8.8	14	1,100	nd	1.1 [0.4]	59/64	59/64
-	2018	6.4	5.9	7,500	nd	2.4 [0.9]	48/61	48/61

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during $FY2002 \sim 2009$.

⁽Note 2) No monitoring was conducted in FY2010, FY2012 and FY2013.

⁽Note 2) No monitoring was conducted in FY2010, FY2012 ~ 2017.

<Wildlife>

Stocktaking of the detection of Endrin in wildlife (bivalves, fish and birds) during $FY2002 \sim 2014$

	Monitored	Geometric	`		,	Quantification	Detection l	Frequency
Endrin	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	42	27	12,000	nd	18 [6]	35/38	7/8
	2003	38	21	5,000	6.3	4.8 [1.6]	30/30	6/6
	2004	65	25	4,600	tr(5.7)	12 [4.2]	31/31	7/7
	2005	39	19	2,100	nd	17 [5.5]	27/31	7/7
Bivalves	2006	40	15	3,100	tr(5)	11 [4]	31/31	7/7
(pg/g-wet)	2007	28	12	3,000	tr(6)	9 [3]	31/31	7/7
	2008	30	10	1,500	tr(6)	8 [3]	31/31	7/7
	2009	38	19	1,400	tr(5)	7 [3]	31/31	7/7
	2011	33	62	110	tr(3)	4 [2]	4/4	4/4
	2014	23	17	84	8	3 [1]	3/3	3/3
	2002	20	24	180	nd	18 [6]	54/70	13/14
	2003	14	10	180	nd	4.8 [1.6]	67/70	14/14
	2004	18	24	220	nd	12 [4.2]	57/70	13/14
	2005	19	tr(16)	2,100	nd	17 [5.5]	58/80	12/16
Fish	2006	13	tr(10)	150	nd	11 [4]	66/80	16/16
(pg/g-wet)	2007	13	12	170	nd	9 [3]	69/80	15/16
	2008	11	10	200	nd	8 [3]	63/85	14/17
	2009	17	12	270	nd	7 [3]	86/90	18/18
	2011	18	19	160	nd	4 [2]	16/18	16/18
	2014	16	16	140	nd	3 [1]	18/19	18/19
	2002	28	52	99	nd	18 [6]	7/10	2/2
	2003	22	30	96	5.4	4.8 [1.6]	10/10	2/2
	2004	tr(11)	25	62	nd	12 [4.2]	5/10	1/2
	2005	18	28	64	nd	17 [5.5]	7/10	2/2
Birds *2	2006	16	23	57	tr(4)	11 [4]	10/10	2/2
(pg/g-wet)	2007	17	28	55	nd	9 [3]	9/10	2/2
	2008	10	26	83	nd	8 [3]	5/10	1/2
	2009	11	17	43	tr(3)	7 [3]	10/10	2/2
	2011			tr(3)	tr(3)	4 [2]	1/1	1/1
	2014	4		5	4	3 [1]	2/2	2/2

⁽Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~ 2009.

<Air>

Stocktaking of the detection of Endrin in air during FY2002 \sim 2014

		Geometric				Quantification	Detection Frequency	
Endrin	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.22	0.28	2.5	nd	0.090 [0.030]	90/102	32/34
	2003 Warm season	0.74	0.95	6.2	0.081	0.042 [0.014]	35/35	35/35
	2003 Cold season	0.23	0.20	2.1	0.042	0.042 [0.014]	34/34	34/34
	2004 Warm season	0.64	0.68	6.5	tr(0.054)	0.14 [0.049]	37/37	37/37
	2004 Cold season	0.23	0.26	1.9	nd	0.14 [0.048]	36/37	36/37
	2005 Warm season	tr(0.4)	tr(0.3)	2.9	nd	0.510.21	27/37	27/37
	2005 Cold season	nd	nd	0.7	nd	0.5 [0.2]	8/37	8/37
	2006 Warm season	0.31	0.32	5.4	nd	0.30 [0.10]	32/37	32/37
Air	2006 Cold season	nd	nd	5.0	nd	0.30 [0.10]	7/37	7/37
(pg/m^3)	2007 Warm season	0.69	0.73	6.3	tr(0.06)	0.00.00.041	36/36	36/36
	2007 Cold season	0.16	0.13	1.5	nd	0.09 [0.04]	33/36	33/36
	2008 Warm season	0.53	0.68	4.6	tr(0.06)	0.10 [0.04]	37/37	37/37
	2008 Cold season	0.18	0.18	1.8	nd	0.10 [0.04]	35/37	35/37
	2009 Warm season	0.49	0.51	3.4	nd	0.09 [0.04]	36/37	36/37
	2009 Cold season	0.17	0.15	1.8	nd	0.09 [0.04]	36/37	36/37
	2011 Warm season	0.46	0.62	5.1	nd	0.09 [0.04]	34/35	34/35
	2011 Cold season	0.16	0.16	1.8	nd		33/37	33/37
	2014 Warm season	0.39	0.48	2.9	nd	0.20 [0.07]	32/36	32/36
(3.1 .) 3.1		. 1 ' EXZOCIO	- ET/2012	1 5372012				

(Note) No monitoring was conducted in FY2010, FY2012 and FY2013.

⁽Note 2) *2: There is no consistency between the results of the ornithological survey in FY2014 and those in previous years because of the changes in the survey sites and target species.

⁽Note 3) No monitoring was conducted in FY2010, FY2012 and FY2013.

[6] DDTs (references)

· History and state of monitoring

DDT, along with hexachlorocyclohexanes (HCHs) and drins, was used as insecticides in high volume. Its registration under the Agricultural Chemicals Regulation Law was expired in FY1971. *p,p'*-DDT was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Also the substances are one of the original twelve POPs covered by the Stockholm Convention.

Among several DDT isomers with chlorine at various positions on the aromatic ring, not only p,p'-DDT and o,p'-DDT as active substances but also p,p'-DDE, o,p'-DDE, p,p'-DDD and o,p'-DDD as the environmentally degraded products of DDTs have been the target chemicals in monitoring series since FY1978.

In previous monitoring series, p,p'-DDT, p,p'-DDE and p,p'-DDD had been monitored in wildlife (bivalves, fish and birds) during the period of FY1978 ~ 2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," surface water and sediment had been the monitored media during the period of FY1986 ~ 1998 and FY1986 ~ 2001, respectively. Similarly, o,p'-DDT, o,p'-DDE and o,p'-DDD had been monitored in wildlife (bivalves, fish and birds) during the period of FY1978 ~ 1996 and in FY1998, FY2000 and FY2001 under the framework of "the Wildlife Monitoring."

Under the framework of the Environmental Monitoring, p,p'-DDT p,p'-DDE p,p'-DDD o,p'-DDT o,p'-DDE and o,p'-DDD have been monitored in surface water and sediment in FY2002 \sim 2010 FY2014 and FY2021, in wildlife (bivalves, fish and birds) in FY2002 \sim 2010 FY2013 FY2018 and FY2021, and air in FY2002 \sim 2010 FY2013 FY2015 FY2018 and FY2021.

No monitoring was conducted after FY2022. For reference, the monitoring results up to FY2021 are given below.

- Monitoring results until FY2021
- \bigcirc p,p'-DDT, p,p'-DDE and p,p'-DDD
- <Surface Water>

Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in surface water during FY2002 ~ 2021

	Monitored	Geometric		•		Quantification	Detection	Frequency
p,p'-DDT	year	mean *	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	13	11	440	0.25	0.6[0.2]	114/114	38/38
	2003	14	12	740	tr(2.8)	3 [0.9]	36/36	36/36
	2004	15	14	310	nd	6 [2]	36/38	36/38
	2005	8	9	110	1	4 [1]	47/47	47/47
Surface Water	2006	9.1	9.2	170	tr(1.6)	1.9 [0.6]	48/48	48/48
	2007	7.3	9.1	670	nd	1.7 [0.6]	46/48	46/48
(pg/L)	2008	11	11	1,200	nd	1.2 [0.5]	47/48	47/48
	2009	9.2	8.4	440	0.81	0.15 [0.06]	49/49	49/49
	2010	8.5	7.6	7,500	tr(1.0)	2.4 [0.8]	49/49	49/49
	2014	4.4	3.9	380	nd	0.4 [0.1]	47/48	47/48
	2021	2.6	2.7	190	nd	0.8 [0.3]	42/47	42/47
	Monitored	Geometric				Quantification	Detection :	Frequency
p,p'-DDE	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	25	26	760	1.3	0.6 [0.2]	114/114	38/38
	2003	26	22	380	5	4 [2]	36/36	36/36
	2004	36	34	680	tr(6)	8 [3]	38/38	38/38
	2005	26	24	410	4	6 [2]	47/47	47/47
Surface Water	2006	24	24	170	tr(4)	7 [2]	48/48	48/48
(pg/L)	2007	22	23	440	tr(2)	4 [2]	48/48	48/48
(pg/L)	2008	27	28	350	2.5	1.1 [0.4]	48/48	48/48
	2009	23	23	240	3.4	1.1 [0.4]	49/49	49/49
	2010	14	12	1,600	2.4	2.3 [0.8]	49/49	49/49
	2014	16	17	610	1.9	0.5 [0.2]	48/48	48/48
	2021	9.2	8.0	170	0.9	0.3 [0.1]	47/47	47/47

	Monitored	Geometric				Quantification	Detection I	Detection Frequency	
p,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site	
	2002	16	18	190	0.57	0.24 [0.08]	114/114	38/38	
	2003	19	18	410	4	2 [0.5]	36/36	36/36	
	2004	19	18	740	tr(2.4)	3 [0.8]	38/38	38/38	
	2005	17	16	130	tr(1.8)	1.9 [0.64]	47/47	47/47	
Surface Water	2006	16	17	99	2.0	1.6 [0.5]	48/48	48/48	
	2007	15	12	150	tr(1.5)	1.7 [0.6]	48/48	48/48	
(pg/L)	2008	22	20	850	2.0	0.6 [0.2]	48/48	48/48	
	2009	14	13	140	1.4	0.4 [0.2]	49/49	49/49	
	2010	12	10	970	1.6	0.20 [0.08]	49/49	49/49	
	2014	9.0	8.7	87	1.0	1.0 [0.4]	48/48	48/48	
	2021	6.3	6.1	87	0.9	0.8 [0.3]	47/47	47/47	

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in sediment during FY2002 \sim 2021

Stocktaking of the detection of p,p' -DDT, p,p' -DDE and p,p' -DDD in sediment during FY2002 ~ 2021 Quantification Detection Frequency								Frequency
p,p'-DDT	Monitored year	Geometric mean *	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	380	240	97,000	tr(5)	6 [2]	189/189	63/63
	2003	290	220	55,000	3	2 [0.4]	186/186	62/62
	2004	460	230	98,000	7	2 [0.5]	189/189	63/63
	2005	360	230	1,700,000	5.1	1.0 [0.34]	189/189	63/63
Sediment	2006	310	240	130,000	4.5	1.4 [0.5]	192/192	64/64
	2007	210	150	130,000	3	1.3 [0.5]	192/192	64/64
(pg/g-dry)	2008	270	180	1,400,000	4.8	1.2 [0.5]	192/192	64/64
	2009	250	170	2,100,000	1.9	1.0 [0.4]	192/192	64/64
	2010	230	200	220,000	9.3	2.8 [0.9]	64/64	64/64
	2014	140	140	12,000	tr(0.2)	0.4 [0.2]	63/63	63/63
	2021	110	100	17,000	3.8	0.4 [0.2]	60/60	60/60
	Monitored	Geometric				Quantification	Detection 1	Frequency
p,p'-DDE	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
						limit		
	2002	780	630	23,000	8.4	2.7 [0.9]	189/189	63/63
	2003	790	780	80,000	9.5	0.9 [0.3]	186/186	62/62
Sediment	2004	720	700	39,000	8	3 [0.8]	189/189	63/63
	2005	710	730	64,000	8.4	2.7 [0.94]	189/189	63/63
	2006	710	820	49,000	5.8	1.0 [0.3]	192/192	64/64
(pg/g-dry)	2007	670	900	61,000	3.2	1.1 [0.4]	192/192	64/64
(pg/g-ury)	2008	920	940	96,000	9.0	1.7 [0.7]	192/192	64/64
	2009	700	660	50,000	6.7	0.8 [0.3]	192/192	64/64
	2010	680	790	40,000	11	5 [2]	64/64	64/64
	2014	530	610	64,000	11	1.8 [0.6]	63/63	63/63
	2021	350	360	25,000	8.7	0.7 [0.3]	60/60	60/60
	Monitored	Geometric				Quantification	Detection 1	Frequency
p,p'-DDD		mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	year					limit		
	2002	640	690	51,000	tr(2.2)	2.4 [0.8]	189/189	63/63
	2003	670	580	32,000	3.7	0.9 [0.3]	186/186	62/62
	2004	650	550	75,000	4	2 [0.7]	189/189	63/63
	2005	600	570	210,000	5.2	1.7 [0.64]	189/189	63/63
Sediment	2006	560	540	53,000	2.2	0.7 [0.2]	192/192	64/64
(pg/g-dry)	2007	520	550	80,000	3.5	1.0 [0.4]	192/192	64/64
(Pg/g-ury)	2008	740	660	300,000	2.8	1.0 [0.4]	192/192	64/64
	2009	540	560	300,000	3.9	0.4 [0.2]	192/192	64/64
	2010	510	510	78,000	4.4	1.4 [0.5]	64/64	64/64
	2014	330	410	21,000	4.9	4.2 [1.4]	63/63	63/63
	2021	210	240	8,600	1.9	0.5 [0.2]	60/60	60/60

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during $FY2002 \sim 2009$.

⁽Note 2) No monitoring was conducted during FY2011 ~ 2013 and FY2015 $\sim 2020.$

⁽Note 2) No monitoring was conducted during FY2011 \sim 2013 and FY2015 \sim 2020.

<Wildlife>
Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in wildlife (bivalves, fish and birds) during $FY2002 \sim 2021$

2002 2021	Monitored	Geometric				Quantification	Detection I	Frequency
p,p'-DDT	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	200	200	1,200	38	4.2 [1.4]	38/38	8/8
	2003	290	290	1,800	49	11 [3.5]	30/30	6/6
	2004	360	340	2,600	48	3.2 [1.1]	31/31	7/7
	2005	240	170	1,300	66	5.1 [1.7]	31/31	7/7
	2006	250	220	1,100	56	6 [2]	31/31	7/7
Bivalves	2007	240	150	1,200	49	5 [2]	31/31	7/7
(pg/g-wet)	2008	160	100	1,400	12	5 [2]	31/31	7/7
400	2009	240	170	9,600	46	3 [1]	31/31	7/7
	2010	180	280	470	43	3 [1]	6/6	6/6
	2013	190	210	890	46	3.3 [1.1]	5/5	5/5
	2018	70	39	280	32	3 [1]	3/3	3/3
	2021	70	29	420	28	6 [2]	3/3	3/3
	2002	430	450	24,000	6.8	4.2 [1.4]	70/70	14/14
	2003	220	400	1,900	tr(3.7)	11 [3.5]	70/70	14/14
	2004	410	330	53,000	5.5	3.2 [1.1]	70/70	14/14
	2005	280	330	8,400	tr(3.8)	5.1 [1.7]	80/80	16/16
	2006	300	340	3,000	tr(5)	6 [2]	80/80	16/16
Fish	2007	260	320	1,800	9	5 [2]	80/80	16/16
(pg/g-wet)	2008	280	310	2,900	7	5 [2]	85/85	17/17
(188)	2009	250	300	2,000	4	3 [1]	90/90	18/18
	2010	240	280	2,100	7	3 [1]	18/18	18/18
	2013	280	250	3,300	5.2	3.3 [1.1]	19/19	19/19
	2015	150	150	4,800	tr (2)	3 [1]	18/18	18/18
	2018	120	170	1,500	nd	6 [2]	17/18	17/18
	2002	440	510	1,300	76	4.2 [1.4]	10/10	2/2
	2003	610	620	1,400	180	11 [3.5]	10/10	2/2
	2004	340	320	700	160	3.2 [1.1]	10/10	2/2
	2005	430	550	900	180	5.1 [1.7]	10/10	2/2
	2006	580	490	1,800	110	6 [2]	10/10	2/2
Birds *2	2007	480	350	1,900	160	5 [2]	10/10	2/2
(pg/g-wet)	2008	160	170	270	56	5 [2]	10/10	2/2
(188)	2009	300	190	2,900	85	3 [1]	10/10	2/2
	2010	3		15	nd	3 [1]	1/2	1/2
	2013	14		46	4.3	3.3 [1.1]	2/2	2/2
	2018	43		63	29	3[1]	2/2	2/2
	2021	59		120	29	6 [2]	2/2	2/2
				120		Quantification	Detection I	
p,p'-DDE	Monitored year	Geometric mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	1,000	1,700	6,000	140	2.4 [0.8]	38/38	8/8
	2003	1,200	1,000	6,500	190	5.7 [1.9]	30/30	6/6
	2004	1,300	1,400	8,400	220	8.2 [2.7]	31/31	7/7
	2005	1,200	1,600	6,600	230	8.5 [2.8]	31/31	7/7
	2006	1,000	1,200	6,000	160	1.9 [0.7]	31/31	7/7
Bivalves	2007	1,100	1,200	5,600	180	3 [1]	31/31	7/7
(pg/g-wet)	2008	900	1,100	5,800	120	3 [1]	31/31	7/7
	2009	940	1,100	6,400	150	4 [1]	31/31	7/7
	2010	1,100	1,300	6,300	230	3 [1]	6/6	6/6
	2013	790	1,600	3,000	170	4.3 [1.4]	5/5	5/5
	2018	420	230	2,200	150	3 [1]	3/3	3/3
	2021	240	160	960	88	3 [1]	3/3	3/3

	Monitored	Geometric				Quantification	Detection	Frequency
p,p'-DDE	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2,900	2,200	98,000	510	2.4 [0.8]	70/70	14/14
	2003	2,000	2,200	12,000	180	5.7 [1.9]	70/70	14/14
	2004	3,000	2,100	52,000	390	8.2 [2.7]	70/70	14/14
	2005	2,400	2,400	73,000	230	8.5 [2.8]	80/80	16/16
	2006	2,200	2,600	28,000	280	1.9 [0.7]	80/80	16/16
Fish	2007	2,200	2,000	22,000	160	3 [1]	80/80	16/16
(pg/g-wet)	2008	2,500	2,000	53,000	320	3 [1]	85/85	17/17
	2009	2,300	2,100	20,000	260	4 [1]	90/90	18/18
	2010	2,300	2,100	13,000	260	3 [1]	18/18	18/18
	2013	2,900	2,800	16,000	430	4.3 [1.4]	19/19	19/19
	2018	1,900	1,700	16,000	290	3 [1]	18/18	18/18
	2021	2,000	2,600	8,500	230	3 [1]	18/18	18/18
	2002	36,000	60,000	170,000	8,100	2.4 [0.8]	10/10	2/2
	2003	66,000	76,000	240,000	18,000	5.7 [1.9]	10/10	2/2
	2004	34,000	65,000	200,000	6,800	8.2 [2.7]	10/10	2/2
	2005	44,000	86,000	300,000	7,100	8.5 [2.8]	10/10	2/2
	2006	38,000	57,000	160,000	5,900	1.9 [0.7]	10/10	2/2
Birds *2	2007	40,000	56,000	320,000	6,700	3 [1]	10/10	2/2
(pg/g-wet)	2008	51,000	79,000	160,000	7,500	3 [1]	10/10	2/2
	2009	30,000	64,000	220,000	4,300	4 [1]	10/10	2/2
	2010	32,000		160,000	6,300	3 [1]	2/2	2/2
	2013	170,000		170,000	170,000	4.3 [1.4]	2/2	2/2
	2018	80,000		290,000	22,000	3 [1]	2/2	2/2
	2021	80,000		100,000	64,000	3 [1]	2/2	2/2
	Monitored	Geometric				Quantification	Detection	Frequency
p,p'-DDD	year	mean *1	Median	Maximum	Minimum	[Detection]	Sample	Site
			71 0	2.200		limit		
	2002	340	710	3,200	11	5.4 [1.8]	38/38	8/8
	2003	390	640	2,600	tr(7.5)	9.9 [3.3]	30/30	6/6
	2004	440	240	8,900	7.8	2.2 [0.70]	31/31	7/7
	2005	370	800	1,700	13	2.9 [0.97]	31/31	7/7
D: 1	2006	300	480	1,400	7.3	2.4 [0.9]	31/31	7/7
Bivalves	2007	310	360	1,500	7	3 [1]	31/31	7/7
(pg/g-wet)	2008	280	280	1,300	6	3 [1]	31/31	7/7
	2009	220	170	2,400	5.8	2.4 [0.9]	31/31	7/7
	2010	180	330	960	11	1.3 [0.5]	6/6	6/6
	2013	270	520	1,300	19	1.9 [0.7]	5/5	5/5
	2018	110	93	830	17	1.4 [0.6]	3/3	3/3
	2021	69	75	840	5.2	2.2 [0.9]	3/3	3/3
	2002	750 510	680	14,000	80	5.4 [1.8]	70/70	14/14
	2003	510	520	3,700	43	9.9 [3.3]	70/70	14/14
	2004	770	510	9,700	56	2.2 [0.70]	70/70	14/14
	2005	510	650	6,700	29	2.9 [0.97]	80/80	16/16
P: 1	2006	520	580	4,300	60	2.4 [0.9]	80/80	16/16
Fish	2007	470	490	4,100	36	3 [1]	80/80	16/16
(pg/g-wet)	2008	460	440	4,100	33	3 [1]	85/85	17/17
	2009	440	460	2,500	57	2.4 [0.9]	90/90	18/18
	2010	560	610	2,900	57	1.3 [0.5]	18/18	18/18
	2013	500	500	4,700	68	1.9 [0.7]	19/19	19/19
	2018	280	250	3,100	40	1.4 [0.6]	18/18	18/18
	2021	320	390	2,700	26	2.2 [0.9]	18/18	18/18
	2002	580	740	3,900	140	5.4 [1.8]	10/10	2/2
	2003	640	860	3,900	110	9.9 [3.3]	10/10	2/2
	2004	330	520	1,400	52	2.2 [0.70]	10/10	2/2
	2005	310	540	1,400	45	2.9 [0.97]	10/10	2/2
	2006	410	740	1,800	55	2.4 [0.9]	10/10	2/2
Birds *2	2007	440	780	2,300	70	3 [1]	10/10	2/2
(pg/g-wet)	2008	240	490	1,100	35	3 [1]	10/10	2/2
	2009	280	430	3,400	31	2.4 [0.9]	10/10	2/2
	2010	440		1,600	120	1.3 [0.5]	2/2	2/2
	2013	140		270	70	1.9 [0.7]	2/2	2/2
	2018	230		260	210	1.4 [0.6]	2/2	2/2
	2021	130		140	120	2.2 [0.9]	2/2	2/2

- (Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 \sim 2009.
- (Note 2) *2: There is no consistency between the results of the ornithological survey in FY2013 and those in previous years because of the changes in the survey sites and target species.

 (Note 3) No monitoring was conducted in FY2011, FY2012, FY2014 ~ 2017, FY2019 and FY2020.

<Air>

Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in air during FY2002 ~ 2021

" "/ DDT	Manita 1	Geometric	Mad:	Manimum	Mini	Quantification	Detection 1	Frequenc
p,p'-DDT	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	1.9	1.8	22	0.25	0.24 [0.08]	102/102	34/34
	2003 Warm season	5.8	6.6	24	0.75	0.14 [0.046]	35/35	35/35
	2003 Cold season	1.7	1.6	11	0.31		34/34	34/34
	2004 Warm season	4.7	5.1	37	0.41	0.22 [0.074]	37/37	37/37
	2004 Cold season	1.8	1.7	13	0.29	0.22 [0.074]	37/37	37/37
	2005 Warm season	4.1	4.2	31	0.44	0.16 [0.054]	37/37	37/37
	2005 Cold season	1.1	0.99	4.8	0.25	0.10 [0.034]	37/37	37/37
	2006 Warm season	4.2	3.8	51	0.35	0.17 [0.06]	37/37	37/37
	2006 Cold season	1.4	1.2	7.3	0.29	0.17 [0.06]	37/37	37/37
	2007 Warm season	4.9	5.2	30	0.6	0.07.50.023	36/36	36/36
Air	2007 Cold season	1.2	1.2	8.8	0.23	0.07 [0.03]	36/36	36/36
(pg/m^3)	2008 Warm season	3.6	3.0	27	0.76	0.07.50.023	37/37	37/37
40 /	2008 Cold season	1.2	1.0	15	0.22	0.07 [0.03]	37/37	37/37
	2009 Warm season	3.6	3.6	28	0.44	0.07.50.003	37/37	37/37
	2009 Cold season	1.1	1.0	8.0	0.20	0.07 [0.03]	37/37	37/37
	2010 Warm season	3.5	3.1	56	0.28		37/37	37/37
	2010 Cold season	1.3	0.89	16	0.30	0.10 [0.03]	37/37	37/37
	2013 Warm season	2.8	3.6	17	0.20		36/36	36/36
	2013 Cold season	0.65	0.53	4.5	0.18	0.11 [0.04]	36/36	36/36
	2015 Warm season	1.5	1.8	13	0.18	0.15 [0.05]	35/35	35/35
	2018 Warm season	1.6	2	14	0.15	0.03 [0.01]	37/37	37/37
	2021 Warm season	0.80	0.67	6.3	0.16	0.15 [0.06]	35/35	35/35
2021	2021 Wallii Scasoli		0.07	0.5	0.10	Quantification	Detection 1	
p,p'-DDE	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.8	2.7	28	0.56	0.09 [0.03]	102/102	34/34
	2003 Warm season	7.2	7.0	51	1.2		35/35	35/35
	2003 Cold season	2.8	2.4	22	1.1	0.40 [0.13]	34/34	34/34
	2004 Warm season	6.1	6.3	95	0.62	0.40.50.0003	37/37	37/37
	2004 Cold season	2.9	2.6	43	0.85	0.12 [0.039]	37/37	37/37
	2005 Warm season	5.0	5.7	42	1.2		37/37	37/37
	2005 Cold season	1.7	1.5	9.9	0.76	0.14 [0.034]	37/37	37/37
	2006 Warm season	5.0	4.7	49	1.7		37/37	37/37
	2006 Cold season	1.9	1.7	9.5	0.52	0.10 [0.03]	37/37	37/37
	2007 Warm season	6.4	6.1	120	0.54		36/36	36/36
Air	2007 Cold season	2.1	1.9	39	0.73	0.04[0.02]	36/36	36/36
(pg/m^3)	2008 Warm season	4.8	4.4	96	0.98		37/37	37/37
(Pg/III)	2008 Cold season	2.2	2.0	22	0.89	0.04 [0.02]	37/37	37/37
	2009 Warm season	4.9	4.8	130	0.87		37/37	37/37
						0.08 [0.03]		
	2009 Cold season	2.1	1.9	100	0.60	-	37/37	37/37
	2010 Warm season	4.9	4.1	200	tr(0.41)	0.62 [0.21]	37/37	37/37
	2010 Cold season	2.2	1.8	28	tr(0.47)		37/37	37/37
	2013 Warm season	4.1	4.3	37	0.2	0.10 [0.03]	36/36	36/36
	2013 Cold season	1.6	1.5	11	0.6		36/36	36/36
	2015 Warm season	2.4	2.6	34	0.31	0.12 [0.04]	35/35	35/35
	2018 Warm season 2021 Warm season	2.6	2.5	49 21	$\frac{0.31}{0.43}$	0.03 [0.01] 0.13 [0.05]	37/37 35/35	37/37 35/35

	M '4 1	Geometric				Quantification	Detection Frequency	
p,p'-DDD	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.12	0.13	0.76	nd	0.018 [0.006]	101/102	34/34
	2003 Warm season	0.30	0.35	1.4	0.063	0.054 [0.018]	35/35	35/35
	2003 Cold season	0.13	0.14	0.52	tr(0.037)	0.034 [0.018]	34/34	34/34
	2004 Warm season	0.24	0.27	1.4	tr(0.036)	0.053 [0.018]	37/37	37/37
	2004 Cold season	0.12	0.12	0.91	tr(0.025)	0.033 [0.018]	37/37	37/37
	2005 Warm season	0.24	0.26	1.3	tr(0.07)	0.16 [0.05]	37/37	37/37
	2005 Cold season	tr(0.06)	tr(0.07)	0.29	nd	0.10 [0.03]	28/37	28/37
	2006 Warm season	0.28	0.32	1.3	nd	0.1310.041	36/37	36/37
	2006 Cold season	0.14	tr(0.12)	0.99	nd	0.13 [0.04]	36/37	36/37
	2007 Warm season	0.26	0.27	1.4	0.046	0.011 [0.004]	36/36	36/36
Air	2007 Cold season	0.093	0.087	0.5	0.026		36/36	36/36
(pg/m^3)	2008 Warm season	0.17	0.17	1.1	0.037	0.025 [0.000]	37/37	37/37
	2008 Cold season	0.091	0.081	0.31	0.036	0.025 [0.009]	37/37	37/37
	2009 Warm season	0.17	0.18	0.82	0.03	0.02 [0.01]	37/37	37/37
	2009 Cold season	0.08	0.08	0.35	tr(0.02)	0.03 [0.01]	37/37	37/37
	2010 Warm season	0.20	0.17	1.7	0.04	0.02 [0.01]	37/37	37/37
	2010 Cold season	0.10	0.09	0.41	0.02	0.02 [0.01]	37/37	37/37
	2013 Warm season	0.16	0.18	0.80	0.027	0.019 [0.007]	36/36	36/36
	2013 Cold season	0.056	0.054	0.14	tr(0.015)	0.018 [0.007]	36/36	36/36
	2015 Warm season	nd	nd	tr(0.31)	nd	0.33 [0.11]	17/35	17/35
	2018 Warm season	0.13	0.16	0.72	nd	0.07 [0.03]	36/37	36/37
	2021 Warm season	tr(0.05)	tr(0.05)	0.18	nd	0.13 [0.05]	18/35	18/35

(Note) No monitoring was conducted in FY2011, FY2012, FY2014, FY2016, FY2017, FY2019 and FY2020.

$\bigcirc p,p'\text{-DDT}, p,p'\text{-DDE} \text{ and } p,p'\text{-DDD}$

<Surface Water>

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in surface water during FY2002 ~ 2021

Ouantification Detection Frequency

o,p'-DDT Work year mean* mean* mean* Median mean* mean* Maximum mean* minimum mean* IDetection limit minimum mean* Sample limit Site 2002 5.4 4.6 77 0.19 1.2 [0.4] 114/114 38/38 2003 6 5 100 tr(1.5) 3 [0.7] 36/36 36/36 2004 tr(4.5) 5 85 nd 5 [2] 29/38 29/38 2005 3 3 39 nd 3 [1] 42/47 42/47 2006 2.8 2.4 52 0.51 2.3 [0.8] 48/48 48/48 2007 tr(1.1) tr(2.2) 86 nd 2.5 [0.8] 38/48 38/48 (pg/L) 2008 3.1 3.0 230 nd 1.4 [0.5] 44/48 44/48 2009 2.4 2.4 100 0.43 0.16 [0.06] 49/49 49/49 2014 1.0 1.0 63 nd 0.9 [0.3] 30/47		Monitored	Geometric				Quantification	Detection l	Frequency
Surface Water (pg/L)	o,p'-DDT			Median	Maximum	Minimum		Sample	Site
Surface Water (pg/L)		2002	5.4	4.6	77	0.19	1.2 [0.4]	114/114	38/38
Surface Water (pg/L)		2003	6	5	100	tr(1.5)	3 [0.7]	36/36	36/36
Surface Water (pg/L) 2006 2.8 2.4 52 0.51 2.3 [0.8] 48/48 48/48 (pg/L) 2007 tr(2.1) tr(2.2) 86 nd 2.5 [0.8] 38/48 38/48 2008 3.1 3.0 230 nd 1.4 [0.5] 44/48 44/48 2009 2.4 2.4 100 0.43 0.16 [0.06] 49/49 49/49 2010 1.5 tr(1.2) 700 nd 1.5 [0.5] 43/49 43/49 2014 1.0 1.0 63 nd 0.4 [0.2] 42/48 42/48 2021 tr(0.6) tr(0.5) 33 nd 0.9 [0.3] 30/47 30/47 o,p'-DDE Monitored year Geometric mean* Median Maximum Minimum Detection Junification Detection 530/47 30/47 30/47 30/47 30/47 30/47 30/47 30/47 30/47 30/47 30/47 30/47 30/47 30/47		2004	tr(4.5)	5	85	nd	5 [2]	29/38	29/38
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2005	3	3	39	nd	3 [1]	42/47	42/47
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cumfo ao Watan	2006	2.8	2.4	52	0.51	2.3 [0.8]	48/48	48/48
2009 2.4 2.4 100 0.43 0.16 [0.06] 49/49 49/49 2010 1.5 tr(1.2) 700 nd 1.5 [0.5] 43/49 43/49 43/49 2014 1.0 1.0 63 nd 0.4 [0.2] 42/48 42/48 2021 tr(0.6) tr(0.5) 33 nd 0.9 [0.3] 30/47		2007	tr(2.1)	tr(2.2)	86	nd	2.5 [0.8]	38/48	38/48
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(pg/L)	2008	3.1	3.0	230	nd	1.4 [0.5]	44/48	44/48
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2009	2.4	2.4	100	0.43	0.16 [0.06]	49/49	49/49
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2010	1.5	tr(1.2)	700	nd	1.5 [0.5]	43/49	43/49
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2014	1.0	1.0	63	nd	0.4 [0.2]	42/48	42/48
o,p'-DDE Monitored year Geometric mean* Median mean* Maximum Minimum limit [Detection] limit Sample Site 2002 2.4 2.1 680 nd 0.9 [0.3] 113/114 38/38 2003 2.2 2.0 170 tr(0.42) 0.8 [0.3] 36/36 36/36 2004 3 2 170 tr(0.6) 2 [0.5] 38/38 38/38 2005 2.5 2.1 410 0.4 1.2 [0.4] 47/47 47/47 Surface Water (pg/L) 2006 tr(1.6) tr(1.4) 210 nd 2.6 [0.9] 28/48 28/48 2007 tr(1.5) tr(1.1) 210 nd 2.3 [0.8] 29/48 29/48 2008 1.5 1.8 260 nd 0.7 [0.3] 39/48 39/48 2009 1.3 1.1 140 nd 0.22 [0.09] 47/49 47/49 2010 0.97 0.65 180 tr(0.13) 0.24 [0.09		2021	tr(0.6)	tr(0.5)	33	nd	0.9 [0.3]	30/47	30/47
o,p'-DDE year mean* Median Maximum Minimum [Detection] limit Sample Site 2002 2.4 2.1 680 nd 0.9 [0.3] 113/114 38/38 2003 2.2 2.0 170 tr(0.42) 0.8 [0.3] 36/36 36/36 2004 3 2 170 tr(0.6) 2 [0.5] 38/38 38/38 2005 2.5 2.1 410 0.4 1.2 [0.4] 47/47 47/47 Surface Water (pg/L) 2006 tr(1.6) tr(1.4) 210 nd 2.6 [0.9] 28/48 28/48 2007 tr(1.5) tr(1.1) 210 nd 2.3 [0.8] 29/48 29/48 2008 1.5 1.8 260 nd 0.7 [0.3] 39/48 39/48 2009 1.3 1.1 140 nd 0.22 [0.09] 47/49 47/49 2010 0.97 0.65 180 tr(0.13) 0.24 [0.09]		Monitored	Geometric				Quantification	Detection l	Frequency
Surface Water (pg/L) 2003 2.2 2.0 170 tr(0.42) 0.8 [0.3] 36/36 36/36 36/36 2004 3 2 170 tr(0.6) 2 [0.5] 38/38 38/38 38/38 2005 2.5 2.1 410 0.4 1.2 [0.4] 47/47 47/47 47/47 2006 tr(1.6) tr(1.4) 210 nd 2.6 [0.9] 28/48 28/48 29/48 2007 tr(1.5) tr(1.1) 210 nd 2.3 [0.8] 29/48 29/48 29/48 2009 1.3 1.1 140 nd 0.22 [0.09] 47/49 47/49 2010 0.97 0.65 180 tr(0.13) 0.24 [0.09] 49/49 49/49 2014 0.6 0.6 560 nd 0.3 [0.1] 36/48 36/36	o,p'-DDE			Median	Maximum	Minimum		Sample	Site
Surface Water (pg/L) Surface Water (2008 1.5 1.8 260 nd 0.7 [0.3] 38/38 38/38 2009 1.3 1.1 140 nd 0.22 [0.09] 47/49 47/49 2010 0.97 0.65 180 tr(0.13) 0.24 [0.09] 49/49 49/49 2014 0.6 0.6 560 nd 0.3 [0.1] 36/48 36/48		2002	2.4	2.1	680	nd	0.9 [0.3]	113/114	38/38
Surface Water (pg/L)		2003	2.2	2.0	170	tr(0.42)	0.8 [0.3]	36/36	36/36
Surface Water (pg/L) 2006 tr(1.6) tr(1.4) tr(1.4) 210 nd 2.6 [0.9] 28/48 28/48 28/48 2007 tr(1.5) tr(1.1) 210 nd 2.3 [0.8] 29/48 29/48 2008 1.5 1.8 260 nd 0.7 [0.3] 39/48 39/48 2009 1.3 1.1 140 nd 0.22 [0.09] 47/49 47/49 2010 0.97 0.65 180 tr(0.13) 0.24 [0.09] 49/49 49/49 2014 0.6 0.6 560 nd 0.3 [0.1] 36/48 36/48		2004	3	2	170	tr(0.6)	2 [0.5]	38/38	38/38
Surface water (pg/L) 2007 tr(1.5) tr(1.1) 210 nd 2.3 [0.8] 29/48 29/48 29/48 2008 1.5 1.8 260 nd 0.7 [0.3] 39/48 39/48 2009 1.3 1.1 140 nd 0.22 [0.09] 47/49 47/49 2010 0.97 0.65 180 tr(0.13) 0.24 [0.09] 49/49 49/49 2014 0.6 0.6 560 nd 0.3 [0.1] 36/48 36/48		2005	2.5	2.1	410	0.4	1.2 [0.4]	47/47	47/47
(pg/L) 2007 tr(1.5) tr(1.1) 210 nd 2.3 [0.8] 29/48 29/48 29/48 2008 1.5 1.8 260 nd 0.7 [0.3] 39/48 39/48 2009 1.3 1.1 140 nd 0.22 [0.09] 47/49 47/49 2010 0.97 0.65 180 tr(0.13) 0.24 [0.09] 49/49 49/49 2014 0.6 0.6 560 nd 0.3 [0.1] 36/48 36/48	Surface Water	2006	tr(1.6)	tr(1.4)	210	nd	2.6 [0.9]	28/48	28/48
2008 1.5 1.8 260 nd 0.7 [0.3] 39/48 39/48 2009 1.3 1.1 140 nd 0.22 [0.09] 47/49 47/49 2010 0.97 0.65 180 tr(0.13) 0.24 [0.09] 49/49 49/49 2014 0.6 0.6 560 nd 0.3 [0.1] 36/48 36/48		2007	tr(1.5)	tr(1.1)	210	nd	2.3 [0.8]	29/48	29/48
2010 0.97 0.65 180 tr(0.13) 0.24 [0.09] 49/49 49/49 2014 0.6 0.6 560 nd 0.3 [0.1] 36/48 36/48	(pg/L)	2008	1.5	1.8	260	nd	0.7 [0.3]	39/48	39/48
2014 0.6 0.6 560 nd 0.3 [0.1] 36/48 36/48		2009	1.3	1.1	140	nd	0.22 [0.09]	47/49	47/49
						(0.40)			40/40
2021 tr(0.5) tr(0.4) 92 nd 0.6 [0.2] 32/47 32/47			0.97	0.65	180	tr(0.13)	0.24 [0.09]	49/49	49/49
		2010							

	Monitored	Geometric				Quantification	Detection l	Frequency
o,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.6	6.0	110	nd	0.60 [0.20]	113/114	38/38
	2003	7.1	5.0	160	1.1	0.8 [0.3]	36/36	36/36
	2004	6	5	81	tr(0.7)	2 [0.5]	38/38	38/38
	2005	5.2	5.4	51	tr(0.5)	1.2 [0.4]	47/47	47/47
Surface Water	2006	2.5	3.3	39	nd	0.8 [0.3]	40/48	40/48
	2007	4.6	3.9	41	tr(0.3)	0.8 [0.3]	48/48	48/48
(pg/L)	2008	6.7	7.2	170	nd	0.8 [0.3]	47/48	47/48
	2009	4.4	3.8	41	0.44	0.22 [0.09]	49/49	49/49
	2010	4.6	3.8	170	tr(0.5)	0.6 [0.2]	49/49	49/49
	2014	3.7	3.2	38	0.33	0.20 [0.08]	48/48	48/48
	2021	3.5	3.7	54	tr(0.3)	0.5 [0.2]	47/47	47/47

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in sediment during FY2002 ~ 2021

Stocktaking of the detection of o,p' -DDT, o,p' -DDE and o,p' -DDD in sediment during FY2002 ~ 2021									
	Monitored	Geometric				Quantification	Detection	Frequency	
o,p'-DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site	
	2002	76	47	27,000	nd	6 [2]	183/189	62/63	
	2003	50	43	3,200	nd	0.8 [0.3]	185/186	62/62	
	2004	69	50	17,000	tr(1.1)	2 [0.6]	189/189	63/63	
	2005	58	46	160,000	0.8	0.8 [0.3]	189/189	63/63	
Sediment	2006	57	52	18,000	tr(0.8)	1.2 [0.4]	192/192	64/64	
	2007	38	31	27,000	nd	1.8 [0.6]	186/192	63/64	
(pg/g-dry)	2008	51	40	140,000	tr(0.7)	1.5 [0.6]	192/192	64/64	
	2009	44	30	100,000	nd	1.2 [0.5]	190/192	64/64	
	2010	40	33	13,000	1.4	1.1 [0.4]	64/64	64/64	
	2014	26	24	2,400	nd	0.4 [0.2]	62/63	62/63	
	2021	19	20	3,200	nd	0.4 [0.2]	58/60	58/60	
	M '4 1	C				Quantification	Detection	Frequency	
o,p'-DDE	Monitored	Geometric	Median	Maximum	Minimum	[Detection]	Comm10	Cita	
	year	mean*				limit	Sample	Site	
	2002	54	37	16,000	nd	3 [1]	188/189	63/63	
	2003	48	39	24,000	tr(0.5)	0.6 [0.2]	186/186	62/62	
	2004	40	34	28,000	nd	3 [0.8]	184/189	63/63	
	2005	40	32	31,000	nd	2.6 [0.9]	181/189	62/63	
Sediment	2006	42	40	27,000	tr(0.4)	1.1 [0.4]	192/192	64/64	
(pg/g-dry)	2007	37	41	25,000	nd	1.2 [0.4]	186/192	63/64	
(pg/g-ury)	2008	50	48	37,000	nd	1.4 [0.6]	186/192	63/64	
	2009	37	31	33,000	nd	0.6 [0.2]	191/192	64/64	
	2010	37	32	25,000	tr(0.7)	1.2 [0.5]	64/64	64/64	
	2014	30	32	41,000	tr(0.5)	0.8 [0.3]	63/63	63/63	
	2021	19	14	16,000	nd	0.5 [0.2]	59/60	59/60	
	Monitored	Coomotnio				Quantification	Detection	Frequency	
o,p'-DDD		Geometric mean *	Median	Maximum	Minimum	[Detection]	Sample	Site	
	year					limit			
	2002	160	150	14,000	nd	6 [2]	184/189	62/63	
	2003	160	130	8,800	tr(1.0)	2 [0.5]	186/186	62/62	
	2004	140	120	16,000	tr(0.7)	2 [0.5]	189/189	63/63	
	2005	130	110	32,000	tr(0.8)	1.0 [0.3]	189/189	63/63	
Sediment	2006	120	110	13,000	tr(0.3)	0.5 [0.2]	192/192	64/64	
(pg/g-dry)	2007	110	130	21,000	tr(0.5)	1.0 [0.4]	192/192	64/64	
(pg/g-ury)	2008	170	150	50,000	0.5	0.3 [0.1]	192/192	64/64	
	2009	120	120	24,000	0.5	0.5 [0.2]	192/192	64/64	
	2010	130	130	6,900	tr(0.8)	0.9[0.4]	64/64	64/64	
	2014	74	85	3,200	tr(0.7)	1.2 [0.5]	63/63	63/63	
	2021	64	66	2,500	0.4	0.4 [0.2]	60/60	60/60	
(NI-4- 1) *. A.::41	1		.4. 1 C1		1-1-1-41	, · • •	1 £11	• ,	

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~ 2009.

⁽Note 2) No monitoring was conducted during FY2011 ~ 2013 and FY2015 $\sim 2020.$

⁽Note 2) No monitoring was conducted during FY2011 \sim 2013 and FY2015 \sim 2020.

<Wildlife> Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in wildlife (bivalves, fish and birds) during FY2002 ~ 2021

	Monitored	Geometric		Mori		Quantification	Detection l	Frequency
o,p'-DDT	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	110	83	480	22	12 [4]	38/38	8/8
	2003	130	120	480	35	2.9 [0.97]	30/30	6/6
	2004	160	140	910	20	1.8 [0.61]	31/31	7/7
	2005	98	57	440	29	2.6 [0.86]	31/31	7/7
	2006	92	79	380	24	3 [1]	31/31	7/7
Bivalves	2007	79	52	350	20	3 [1]	31/31	7/7
(pg/g-wet)	2008	58	37	330	5	3 [1]	31/31	7/7
	2009	74	48	2,500	17	2.2 [0.8]	31/31	7/7
	2010	51	67	160	15	3 [1]	6/6	6/6
	2013	49	51	180	12	3 [1]	5/5	5/5
	2018	24	12	120	10	2.7 [0.9]	3/3	3/3
	2021	20	10	93	8	3 [1]	3/3	3/3
	2002	130	130	2,300	tr(6)	12 [4]	70/70	14/14
	2003	85	120	520	2.9	2.9 [0.97]	70/70	14/14
	2004	160	140	1,800	3.7	1.8 [0.61]	70/70	14/14
	2005	100	110	1,500	5.8	2.6 [0.86]	80/80	16/16
	2006	100	110	700	6	3 [1]	80/80	16/16
Fish	2007	69	90	430	3	3 [1]	80/80	16/16
(pg/g-wet)	2008	72	92	720	3	3 [1]	85/85	17/17
(188)	2009	61	73	470	2.4	2.2 [0.8]	90/90	18/18
	2010	58	71	550	5	3 [1]	18/18	18/18
	2013	58	76	310	4	3 [1]	19/19	19/19
	2018	34	34	1,500	tr(1.1)	2.7 [0.9]	18/18	18/18
	2021	24	32	70	tr(1)	3 [1]	18/18	18/18
	2002	12	tr(10)	58	nd	12 [4]	8/10	2/2
	2003	24	16	66	8.3	2.9 [0.97]	10/10	2/2
	2004	8.5	13	43	tr(0.87)	1.8 [0.61]	10/10	2/2
	2005	11	14	24	3.4	2.6 [0.86]	10/10	2/2
	2006	14	10	120	3	3 [1]	10/10	2/2
Birds *2	2007	9	9	26	tr(2)	3 [1]	10/10	2/2
(pg/g-wet)	2008	4	6	16	nd	3 [1]	8/10	2/2
(188)	2009	6.3	7.6	12	tr(1.4)	2.2 [0.8]	10/10	2/2
	2010	nd		nd	nd	3 [1]	0/2	0/2
	2013	nd		tr(1)	nd	3 [1]	1/2	1/2
	2018	tr(1.1)		tr(2.5)	nd	2.7 [0.9]	1/2	1/2
	2021	tr(2)		3	tr(1)	3 [1]	2/2	2/2
					u(1)	Quantification	Detection 1	
o,p'-DDE	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		
- <i>T</i>	year	mean *1				limit	Sample	Site
-	2002	83	66	1,100	13	3.6 [1.2]	38/38	8/8
	2003	85	100	460	17	3.6 [1.2]	30/30	6/6
	2004	86	69	360	19	2.1 [0.69]	31/31	7/7
	2005	70	89	470	12	3.4 [1.1]	31/31	7/7
	2006	62	81	340	12	3 [1]	31/31	7/7
Bivalves	2007	56	69	410	8.9	2.3 [0.9]	31/31	7/7
(pg/g-wet)	2008	49	52	390	8	3 [1]	31/31	7/7
(1 6 6 ····)	2009	46	58	310	8	3 [1]	31/31	7/7
	2010	46	58	160	7.8	1.5 [0.6]	6/6	6/6
	2013	28	31	260	4	4 [1]	5/5	5/5
	2018	20	15	250	tr(2)	3 [1]	3/3	3/3
	2013	12	8	110	tr(2)	3 [1]	3/3	3/3
	2021	14	U	110	11(2)		313	513

	Monitored	Geometric				Quantification	Detection 1	Frequency
o,p'-DDE	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	91	50	13,000	3.6	3.6 [1.2]	70/70	14/14
	2003	51	54	2,500	nd	3.6 [1.2]	67/70	14/14
	2004	76	48	5,800	tr(0.89)	2.1 [0.69]	70/70	14/14
	2005	54	45	12,000	tr(1.4)	3.4 [1.1]	80/80	16/16
	2006	56	43	4,800	tr(1)	3 [1]	80/80	16/16
Fish	2007	45	29	4,400	nd	2.3 [0.9]	79/80	16/16
(pg/g-wet)	2008	50	37	13,000	tr(1)	3 [1]	85/85	17/17
	2009	46	33	4,300	tr(1)	3 [1]	90/90	18/18
	2010	47	37	2,800	tr(1.2)	1.5 [0.6]	18/18	18/18
	2013	51	40	3,000	tr(1)	4 [1]	19/19	19/19
	2018	32	27	2,000	nd	3 [1]	17/18	17/18
	2021	32	32	1,600	nd	3 [1]	17/18	17/18
	2002	28	26	49	20	3.6 [1.2]	10/10	2/2
	2003	tr(2.3)	tr(2.0)	4.2	nd	3.6 [1.2]	9/10	2/2
	2004	tr(1.0)	tr(1.1)	3.7	nd	2.1 [0.69]	5/10	1/2
	2005	tr(1.2)	tr(1.9)	tr(2.9)	nd	3.4 [1.1]	7/10	2/2
	2006	tr(1)	tr(2)	3	tr(1)	3 [1]	10/10	2/2
Birds *2	2007	tr(1.0)	tr(1.4)	2.8	nd	2.3 [0.9]	6/10	2/2
(pg/g-wet)	2008	tr(1)	nd	3	nd	3 [1]	5/10	1/2
	2009	nd	tr(1)	tr(2)	nd	3 [1]	6/10	2/2
	2010	tr(1.1)		3.7	nd	1.5 [0.6]	1/2	1/2
	2013	nd		tr(1)	nd	4 [1]	1/2	1/2
	2018	tr(1)		tr(1)	tr(1)	3 [1]	2/2	2/2
	2021	tr(1)		tr(1)	tr(1)	3 [1]	2/2	2/2
	Monitored	Geometric				Quantification	Detection 1	Frequency
o,p'-DDD	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	120	190	2,900	tr(9)	12 [4]	38/38	8/8
	2003	200	220	1,900	6.5	6.0 [2.0]	30/30	6/6
	2004	220	130	2,800	6.0	5.7 [1.9]	31/31	7/7
	2005	170	280	1,800	10	3.3 [1.1]	31/31	7/7
	2006	150	200	1,000	7	4 [1]	31/31	7/7
Bivalves	2007	150	200	1,200		2 [1]	21/21	7/7
(pg/g-wet)	• • • •			1,200	6	3 [1]	31/31	
	2008	130	140	1,100	5	4 [2]	31/31 31/31	7/7
	2009	95	140 51	1,100 1,000	5 5	4 [2] 3 [1]	31/31 31/31	7/7 7/7
	2009 2010	95 57	140 51 50	1,100	5 5 5.8	4 [2] 3 [1] 0.6 [0.2]	31/31 31/31 6/6	7/7 7/7 6/6
	2009 2010 2013	95 57 100	140 51 50 74	1,100 1,000 400 1,800	5 5 5.8 7.8	4 [2] 3 [1]	31/31 31/31 6/6 5/5	7/7 7/7 6/6 5/5
	2009 2010 2013 2018	95 57 100 46	140 51 50 74 27	1,100 1,000 400 1,800 720	5 5 5.8 7.8 4.9	4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 2.4 [0.9]	31/31 31/31 6/6 5/5 3/3	7/7 7/7 6/6 5/5 3/3
	2009 2010 2013 2018 2021	95 57 100 46 33	140 51 50 74 27 23	1,100 1,000 400 1,800 720 760	5 5.8 7.8 4.9 tr(2)	4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 2.4 [0.9] 5 [2]	31/31 31/31 6/6 5/5 3/3 3/3	7/7 7/7 6/6 5/5 3/3 3/3
	2009 2010 2013 2018 2021 2002	95 57 100 46 33 95	140 51 50 74 27 23	1,100 1,000 400 1,800 720 760	5 5 5.8 7.8 4.9	4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 2.4 [0.9] 5 [2] 12 [4]	31/31 31/31 6/6 5/5 3/3 3/3 66/70	7/7 7/7 6/6 5/5 3/3 3/3 14/14
	2009 2010 2013 2018 2021 2002 2003	95 57 100 46 33 95 75	140 51 50 74 27 23 90 96	1,100 1,000 400 1,800 720 760 1,100 920	5 5 5.8 7.8 4.9 tr(2) nd nd	4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 2.4 [0.9] 5 [2] 12 [4] 6.0 [2.0]	31/31 31/31 6/6 5/5 3/3 3/3 66/70 66/70	7/7 7/7 6/6 5/5 3/3 3/3 14/14 14/14
	2009 2010 2013 2018 2021 2002 2003 2004	95 57 100 46 33 95 75 120	140 51 50 74 27 23 90 96 96	1,100 1,000 400 1,800 720 760 1,100 920 1,700	5 5 5.8 7.8 4.9 tr(2) nd nd	4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 2.4 [0.9] 5 [2] 12 [4] 6.0 [2.0] 5.7 [1.9]	31/31 31/31 6/6 5/5 3/3 3/3 66/70 66/70 68/70	7/7 7/7 6/6 5/5 3/3 3/3 14/14 14/14 14/14
	2009 2010 2013 2018 2021 2002 2003 2004 2005	95 57 100 46 33 95 75 120 83	140 51 50 74 27 23 90 96 96 81	1,100 1,000 400 1,800 720 760 1,100 920 1,700 1,400	5 5 5.8 7.8 4.9 tr(2) nd nd nd	4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 2.4 [0.9] 5 [2] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1]	31/31 31/31 6/6 5/5 3/3 3/3 66/70 66/70 68/70 79/80	7/7 7/7 6/6 5/5 3/3 3/3 14/14 14/14 14/14 16/16
	2009 2010 2013 2018 2021 2002 2003 2004 2005 2006	95 57 100 46 33 95 75 120 83 80	140 51 50 74 27 23 90 96 96 81 86	1,100 1,000 400 1,800 720 760 1,100 920 1,700 1,400 1,100	5 5 5.8 7.8 4.9 tr(2) nd nd nd nd tr(1)	4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 2.4 [0.9] 5 [2] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1]	31/31 31/31 6/6 5/5 3/3 3/3 66/70 66/70 68/70 79/80 80/80	7/7 7/7 6/6 5/5 3/3 3/3 14/14 14/14 14/14 16/16 16/16
Fish	2009 2010 2013 2018 2021 2002 2003 2004 2005 2006 2007	95 57 100 46 33 95 75 120 83 80 66	140 51 50 74 27 23 90 96 96 96 81 86 62	1,100 1,000 400 1,800 720 760 1,100 920 1,700 1,400 1,100 1,300	5 5 5.8 7.8 4.9 tr(2) nd nd nd tr(1) nd	4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 2.4 [0.9] 5 [2] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1]	31/31 31/31 6/6 5/5 3/3 3/3 66/70 66/70 68/70 79/80 80/80 78/80	7/7 7/7 6/6 5/5 3/3 3/3 14/14 14/14 14/14 16/16 16/16
Fish (pg/g-wet)	2009 2010 2013 2018 2021 2002 2003 2004 2005 2006 2007 2008	95 57 100 46 33 95 75 120 83 80 66 65	140 51 50 74 27 23 90 96 96 81 86 62 74	1,100 1,000 400 1,800 720 760 1,100 920 1,700 1,400 1,100 1,300 1,000	5 5 5.8 7.8 4.9 tr(2) nd nd nd tr(1) nd nd	4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 2.4 [0.9] 5 [2] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2]	31/31 31/31 6/6 5/5 3/3 3/3 66/70 66/70 68/70 79/80 80/80 78/80 80/85	7/7 7/7 6/6 5/5 3/3 3/3 14/14 14/14 14/14 16/16 16/16 16/16
	2009 2010 2013 2018 2021 2002 2003 2004 2005 2006 2007 2008 2009	95 57 100 46 33 95 75 120 83 80 66 65 63	140 51 50 74 27 23 90 96 96 81 86 62 74 64	1,100 1,000 400 1,800 720 760 1,100 920 1,700 1,400 1,100 1,300 1,000 760	5 5 5.8 7.8 4.9 tr(2) nd nd nd tr(1) nd nd	4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 2.4 [0.9] 5 [2] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1]	31/31 31/31 6/6 5/5 3/3 3/3 66/70 66/70 68/70 79/80 80/80 78/80 80/85 87/90	7/7 7/7 6/6 5/5 3/3 3/3 14/14 14/14 14/14 16/16 16/16 16/17 18/18
	2009 2010 2013 2018 2021 2002 2003 2004 2005 2006 2007 2008 2009 2010	95 57 100 46 33 95 75 120 83 80 66 65 63 75	140 51 50 74 27 23 90 96 96 81 86 62 74 64 99	1,100 1,000 400 1,800 720 760 1,100 920 1,700 1,400 1,100 1,300 1,000 760 700	5 5 5.8 7.8 4.9 tr(2) nd nd nd tr(1) nd nd and tr(1)	4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 2.4 [0.9] 5 [2] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2]	31/31 31/31 6/6 5/5 3/3 3/3 66/70 66/70 68/70 79/80 80/80 78/80 80/85 87/90 18/18	7/7 7/7 6/6 5/5 3/3 3/3 14/14 14/14 14/14 16/16 16/16 16/17 18/18 18/18
	2009 2010 2013 2018 2021 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013	95 57 100 46 33 95 75 120 83 80 66 65 63 75 70	140 51 50 74 27 23 90 96 96 81 86 62 74 64 99 85	1,100 1,000 400 1,800 720 760 1,100 920 1,700 1,400 1,100 1,300 1,000 760 700 940	5 5 5.8 7.8 4.9 tr(2) nd nd nd tr(1) nd nd and tr(1) nd nd	4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 2.4 [0.9] 5 [2] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7]	31/31 31/31 6/6 5/5 3/3 3/3 66/70 66/70 68/70 79/80 80/80 78/80 80/85 87/90 18/18 18/19	7/7 7/7 6/6 5/5 3/3 3/3 14/14 14/14 14/14 16/16 16/16 16/17 18/18 18/18
	2009 2010 2013 2018 2021 2002 2003 2004 2005 2006 2007 2008 2009 2010	95 57 100 46 33 95 75 120 83 80 66 65 63 75	140 51 50 74 27 23 90 96 96 81 86 62 74 64 99	1,100 1,000 400 1,800 720 760 1,100 920 1,700 1,400 1,100 1,300 1,000 760 700	5 5 5.8 7.8 4.9 tr(2) nd nd nd tr(1) nd nd and tr(1)	4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 2.4 [0.9] 5 [2] 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2]	31/31 31/31 6/6 5/5 3/3 3/3 66/70 66/70 68/70 79/80 80/80 78/80 80/85 87/90 18/18	7/7 7/7 6/6 5/5 3/3 3/3 14/14 14/14 14/14 16/16 16/16 16/17 18/18 18/18

	Monitored	onitored Geometric year mean*1			Minimum	Quantification	Detection I	Frequency
o,p'-DDD			Median	Maximum		[Detection] limit	Sample	Site
	2002	15	15	23	tr(8)	12 [4]	10/10	2/2
	2003	15	14	36	tr(5.0)	6.0 [2.0]	10/10	2/2
	2004	6.1	5.7	25	nd	5.7 [1.9]	9/10	2/2
	2005	7.3	7.5	9.7	4.7	3.3 [1.1]	10/10	2/2
	2006	8	8	19	5	4[1]	10/10	2/2
Birds *2	2007	7	7	10	5	3 [1]	10/10	2/2
(pg/g-wet)	2008	4	tr(3)	14	tr(2)	4 [2]	10/10	2/2
	2009	6	5	13	3	3 [1]	10/10	2/2
	2010	6.3		11	3.6	0.6 [0.2]	2/2	2/2
	2013	5.4		12	2.4	1.8 [0.7]	2/2	2/2
	2018	6.1		9.9	3.7	2.4 [0.9]	2/2	2/2
	2021	6		8	tr(4)	5 [2]	2/2	2/2

⁽Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 \sim 2009.

<Air>

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in air during FY2002 ~ 2021

		Geometric				Quantification	Detection Frequency	
o,p'-DDT	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.2	2.0	40	0.41	0.15 [0.05]	102/102	34/34
	2003 Warm season	6.9	7.7	38	0.61	0.12 [0.040]	35/35	35/35
	2003 Cold season	1.6	1.4	6.4	0.43	0.12 [0.040]	34/34	34/34
	2004 Warm season	5.1	5.4	22	0.54	0.093 [0.031]	37/37	37/37
	2004 Cold season	1.5	1.4	9.4	0.35	0.093 [0.031]	37/37	37/37
	2005 Warm season	3.0	3.1	14	0.67	0.10 [0.034]	37/37	37/37
	2005 Cold season	0.76	0.67	3.0	0.32		37/37	37/37
	2006 Warm season	2.5	2.4	20	0.55	0.09 [0.03]	37/37	37/37
	2006 Cold season	0.90	0.79	3.9	0.37		37/37	37/37
	2007 Warm season	2.9	2.6	19	0.24	0.03 [0.01]	36/36	36/36
Air	2007 Cold season	0.77	0.63	3.4	0.31	0.03 [0.01]	36/36	36/36
(pg/m^3)	2008 Warm season	2.3	2.1	18	0.33	0.03 [0.01]	37/37	37/37
	2008 Cold season	0.80	0.62	6.5	0.32		37/37	37/37
	2009 Warm season	2.3	2.2	14	0.33	0.019 [0.008]	37/37	37/37
	2009 Cold season	0.80	0.71	3.7	0.20		37/37	37/37
	2010 Warm season	2.2	1.9	26	0.19	0.14 [0.05]	37/37	37/37
	2010 Cold season	0.81	0.69	5.5	0.22	0.14 [0.03]	37/37	37/37
	2013 Warm season	1.7	1.7	12	0.15	0.054 [0.018]	36/36	36/36
	2013 Cold season	0.47	0.44	2.4	0.20	0.034 [0.016]	36/36	36/36
	2015 Warm season	0.99	1.2	6.8	0.14	0.12 [0.04]	35/35	35/35
	2018 Warm season	1.0	1.1	6.3	0.08	0.03 [0.01]	37/37	37/37
	2021 Warm season	0.50	0.47	3.0	0.11	0.08 [0.03]	35/35	35/35

⁽Note2) *2: There is no consistency between the results of the ornithological survey in FY2013 and those in previous years because of the changes in the survey sites and target species. (Note 3) No monitoring was conducted in FY2011, FY2012, FY2014 ~ 2017, FY2019 and 2020.

	Monitored year	Geometric	3.6.11			Quantification	Detection Frequen	
o,p'-DDE	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.60	0.56	8.5	0.11	0.03 [0.01]	102/102	34/34
	2003 Warm season	1.4	1.5	7.5	0.17	0.020 [0.0068]	35/35	35/35
	2003 Cold season	0.50	0.47	1.7	0.18	0.020 [0.0008]	34/34	34/34
	2004 Warm season	1.1	1.2	8.9	0.14	0.037 [0.012]	37/37	37/37
	2004 Cold season	0.53	0.49	3.9	0.14	0.037 [0.012]	37/37	37/37
	2005 Warm season	1.6	1.5	7.9	0.33	0.074 [0.024]	37/37	37/37
	2005 Cold season	0.62	0.59	2.0	0.24	0.074 [0.024]	37/37	37/37
	2006 Warm season	1.1	1.1	7.4	nd	0.09 [0.03]	36/37	36/37
	2006 Cold season	0.65	0.56	2.6	0.19		37/37	37/37
	2007 Warm season	0.66	0.67	7	0.096	0.017 [0.007]	36/36	36/36
Air	2007 Cold season	0.3	0.29	3.7	0.12		36/36	36/36
(pg/m^3)	2008 Warm season	0.48	0.52	5.0	0.11	0.025 [0.009]	37/37	37/37
	2008 Cold season	0.30	0.24	1.1	0.15	13 98	37/37	37/37
	2009 Warm season	0.51	0.46	6.7	0.098	0.016 [0.006]	37/37	37/37
	2009 Cold season	0.27	0.24	23	0.072		37/37	37/37
	2010 Warm season	0.49	0.41	9.0	0.09	0.04 [0.01]	37/37	37/37
	2010 Cold season	0.27	0.23	2.3	0.08	0.04 [0.01]	37/37	37/37
	2013 Warm season	0.38	0.35	3.3	0.051	0.023 [0.009]	36/36	36/36
	2013 Cold season	0.21	0.19	0.65	0.097	0.023 [0.009]	36/36	36/36
	2015 Warm season	0.25	0.24	1.1	nd	0.18 [0.06]	34/35	34/35
	2018 Warm season	0.24	0.26	1.2	tr(0.04)	0.05 [0.02]	37/37	37/37
	2021 Warm season	0.17	0.16	0.55	nd	0.10 [0.04]	34/35	34/35
	2021 Warm season	0.17				Quantification	34/35 Detection l	
o,p'-DDD	2021 Warm season Monitored year		Median	Maximum	nd Minimum	Quantification [Detection] limit	Detection l Sample	Frequency Site
o,p'-DDD	2021 Warm season	0.17 Geometric	Median 0.18	Maximum 0.85		Quantification [Detection]	Sample 97/102	Frequency Site 33/34
o,p'-DDD	2021 Warm season Monitored year	0.17 Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit 0.021 [0.007]	Detection I Sample 97/102 35/35	Frequency Site
o,p'-DDD	2021 Warm season Monitored year 2002	0.17 Geometric mean 0.14 0.37 0.15	Median 0.18	Maximum 0.85	Minimum nd 0.059 0.062	Quantification [Detection] limit	Sample 97/102	Site 33/34 35/35 34/34
o,p'-DDD	2021 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season	0.17 Geometric mean 0.14 0.37	Median 0.18 0.42	Maximum 0.85 1.3	Minimum nd 0.059	Quantification [Detection] limit 0.021 [0.007] 0.042 [0.014]	Detection I Sample 97/102 35/35 34/34 37/37	Site 33/34 35/35
o,p'-DDD	2021 Warm season Monitored year 2002 2003 Warm season 2003 Cold season	0.17 Geometric mean 0.14 0.37 0.15 0.31 0.14	0.18 0.42 0.14 0.33 tr(0.13)	0.85 1.3 0.42 2.6 0.86	Minimum nd 0.059 0.062 tr(0.052) nd	Quantification [Detection] limit 0.021 [0.007]	Detection I Sample 97/102 35/35 34/34	Site 33/34 35/35 34/34
o,p'-DDD	2021 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season	0.17 Geometric mean 0.14 0.37 0.15 0.31	Median 0.18 0.42 0.14 0.33	0.85 1.3 0.42 2.6	Minimum nd 0.059 0.062 tr(0.052)	Quantification [Detection] limit 0.021 [0.007] 0.042 [0.014] 0.14 [0.048]	Detection I Sample 97/102 35/35 34/34 37/37	Site 33/34 35/35 34/34 37/37
o,p'-DDD	2021 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season	0.17 Geometric mean 0.14 0.37 0.15 0.31 0.14 0.22 tr(0.07)	0.18 0.42 0.14 0.33 tr(0.13)	0.85 1.3 0.42 2.6 0.86	Minimum nd 0.059 0.062 tr(0.052) nd	Quantification [Detection] limit 0.021 [0.007] 0.042 [0.014]	Detection I Sample 97/102 35/35 34/34 37/37 35/37	Site 33/34 35/35 34/34 37/37 35/37 37/37 35/37
o,p'-DDD	2021 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season	0.17 Geometric mean 0.14 0.37 0.15 0.31 0.14 0.22 tr(0.07) 0.28	0.18 0.42 0.14 0.33 tr(0.13)	0.85 1.3 0.42 2.6 0.86 0.90	nd 0.059 0.062 tr(0.052) nd tr(0.07)	Quantification [Detection] limit 0.021 [0.007] 0.042 [0.014] 0.14 [0.048] 0.10 [0.03]	Detection I Sample 97/102 35/35 34/34 37/37 35/37 35/37 35/37 37/37	Site 33/34 35/35 34/34 37/37 35/37 37/37 37/37
o,p'-DDD	2021 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season	0.17 Geometric mean 0.14 0.37 0.15 0.31 0.14 0.22 tr(0.07) 0.28 0.12	0.18 0.42 0.14 0.33 tr(0.13) 0.19 tr(0.07)	0.85 1.3 0.42 2.6 0.86 0.90 0.21	nd 0.059 0.062 tr(0.052) nd tr(0.07)	Quantification [Detection] limit 0.021 [0.007] 0.042 [0.014] 0.14 [0.048]	Detection I Sample 97/102 35/35 34/34 37/37 35/37 35/37	Site 33/34 35/35 34/34 37/37 35/37 37/37 37/37 34/37
	2021 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2006 Cold season 2007 Warm season	0.17 Geometric mean 0.14 0.37 0.15 0.31 0.14 0.22 tr(0.07) 0.28 0.12 0.28	Median 0.18 0.42 0.14 0.33 tr(0.13) 0.19 tr(0.07) 0.28 0.11 0.29	0.85 1.3 0.42 2.6 0.86 0.90 0.21	Minimum nd 0.059 0.062 tr(0.052) nd tr(0.07) nd tr(0.05) nd 0.05	Quantification [Detection] limit 0.021 [0.007] 0.042 [0.014] 0.14 [0.048] 0.10 [0.03]	Detection I Sample 97/102 35/35 34/34 37/37 35/37 35/37 37/37 34/37 36/36	Site 33/34 35/35 34/34 37/37 35/37 37/37 35/37 37/37 34/37 36/36
Air	2021 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season	0.17 Geometric mean 0.14 0.37 0.15 0.31 0.14 0.22 tr(0.07) 0.28 0.12 0.28 0.095	Median 0.18 0.42 0.14 0.33 tr(0.13) 0.19 tr(0.07) 0.28 0.11	0.85 1.3 0.42 2.6 0.86 0.90 0.21 1.4 0.79	nd 0.059 0.062 tr(0.052) nd tr(0.07) nd tr(0.05)	Quantification [Detection] limit 0.021 [0.007] 0.042 [0.014] 0.14 [0.048] 0.10 [0.03]	Detection I Sample 97/102 35/35 34/34 37/37 35/37 37/37 35/37 37/37 34/37	Site 33/34 35/35 34/34 37/37 35/37 37/37 35/37 37/37 34/37
	2021 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2006 Cold season 2007 Warm season	0.17 Geometric mean 0.14 0.37 0.15 0.31 0.14 0.22 tr(0.07) 0.28 0.12 0.28	Median 0.18 0.42 0.14 0.33 tr(0.13) 0.19 tr(0.07) 0.28 0.11 0.29	0.85 1.3 0.42 2.6 0.86 0.90 0.21 1.4 0.79	Minimum nd 0.059 0.062 tr(0.052) nd tr(0.07) nd tr(0.05) nd 0.05 tr(0.03)	Quantification [Detection] limit 0.021 [0.007] 0.042 [0.014] 0.14 [0.048] 0.10 [0.03] 0.10 [0.03]	Detection I Sample 97/102 35/35 34/34 37/37 35/37 35/37 37/37 34/37 36/36	Site 33/34 35/35 34/34 37/37 35/37 37/37 35/37 37/37 34/37 36/36
Air	2021 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season	0.17 Geometric mean 0.14 0.37 0.15 0.31 0.14 0.22 tr(0.07) 0.28 0.12 0.28 0.095	Median 0.18 0.42 0.14 0.33 tr(0.13) 0.19 tr(0.07) 0.28 0.11 0.29 0.09	0.85 1.3 0.42 2.6 0.86 0.90 0.21 1.4 0.79 1.9 0.33	nd 0.059 0.062 tr(0.052) nd tr(0.07) nd tr(0.05) nd 0.05 tr(0.03)	Quantification [Detection] limit 0.021 [0.007] 0.042 [0.014] 0.14 [0.048] 0.10 [0.03]	Detection I Sample 97/102 35/35 34/34 37/37 35/37 37/37 35/37 37/37 36/36 36/36 37/37 37/37	Site 33/34 35/35 34/34 37/37 35/37 37/37 35/37 37/37 36/36 36/36
Air	2021 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Warm season 2007 Cold season 2008 Warm season	0.17 Geometric mean 0.14 0.37 0.15 0.31 0.14 0.22 tr(0.07) 0.28 0.12 0.28 0.095 0.19	Median 0.18 0.42 0.14 0.33 tr(0.13) 0.19 tr(0.07) 0.28 0.11 0.29 0.09 0.16	Maximum 0.85 1.3 0.42 2.6 0.86 0.90 0.21 1.4 0.79 1.9 0.33 1.6	Minimum nd 0.059 0.062 tr(0.052) nd tr(0.07) nd tr(0.05) nd 0.05 tr(0.03)	Quantification [Detection] limit 0.021 [0.007] 0.042 [0.014] 0.14 [0.048] 0.10 [0.03] 0.10 [0.03] 0.05 [0.02] 0.04 [0.01]	Detection I Sample 97/102 35/35 34/34 37/37 35/37 35/37 37/37 34/37 36/36 36/36 37/37 37/37 37/37	Site 33/34 35/35 34/34 37/37 35/37 37/37 35/37 36/36 36/36 37/37 37/37 37/37
Air	2021 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Warm season	0.17 Geometric mean 0.14 0.37 0.15 0.31 0.14 0.22 tr(0.07) 0.28 0.12 0.28 0.095 0.19 0.10 0.20 0.08	Median 0.18 0.42 0.14 0.33 tr(0.13) 0.19 tr(0.07) 0.28 0.11 0.29 0.09 0.16 0.09 0.19 0.08	Maximum 0.85 1.3 0.42 2.6 0.86 0.90 0.21 1.4 0.79 1.9 0.33 1.6 0.26 0.90 0.28	nd 0.059 0.062 tr(0.052) nd tr(0.07) nd tr(0.05) nd 0.05 tr(0.03) 0.05 0.04 0.04 tr(0.02)	Quantification [Detection] limit 0.021 [0.007] 0.042 [0.014] 0.14 [0.048] 0.10 [0.03] 0.10 [0.03]	Detection I Sample 97/102 35/35 34/34 37/37 35/37 37/37 35/37 37/37 36/36 36/36 37/37 37/37	Site 33/34 35/35 34/34 37/37 35/37 37/37 35/37 37/37 36/36 36/36 37/37 37/37
Air	2021 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Warm season 2009 Warm season	0.17 Geometric mean 0.14 0.37 0.15 0.31 0.14 0.22 tr(0.07) 0.28 0.12 0.28 0.095 0.19 0.10 0.20 0.08 0.21	Median 0.18 0.42 0.14 0.33 tr(0.13) 0.19 tr(0.07) 0.28 0.11 0.29 0.09 0.16 0.09 0.19 0.08 0.19	Maximum 0.85 1.3 0.42 2.6 0.86 0.90 0.21 1.4 0.79 1.9 0.33 1.6 0.26 0.90	nd 0.059 0.062 tr(0.052) nd tr(0.07) nd tr(0.05) nd 0.05 tr(0.03) 0.05 0.04 tr(0.02)	Quantification [Detection] limit 0.021 [0.007] 0.042 [0.014] 0.14 [0.048] 0.10 [0.03] 0.10 [0.03] 0.05 [0.02] 0.04 [0.01] 0.03 [0.01]	Detection I Sample 97/102 35/35 34/34 37/37 35/37 35/37 37/37 34/37 36/36 36/36 37/37 37/37 37/37	Site 33/34 35/35 34/34 37/37 35/37 37/37 35/37 36/36 36/36 37/37 37/37 37/37
Air	2021 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Warm season 2009 Cold season 2009 Cold season	0.17 Geometric mean 0.14 0.37 0.15 0.31 0.14 0.22 tr(0.07) 0.28 0.12 0.28 0.095 0.19 0.10 0.20 0.08	Median 0.18 0.42 0.14 0.33 tr(0.13) 0.19 tr(0.07) 0.28 0.11 0.29 0.09 0.16 0.09 0.19 0.08	Maximum 0.85 1.3 0.42 2.6 0.86 0.90 0.21 1.4 0.79 1.9 0.33 1.6 0.26 0.90 0.28	nd 0.059 0.062 tr(0.052) nd tr(0.07) nd tr(0.05) nd 0.05 tr(0.03) 0.05 0.04 0.04 tr(0.02)	Quantification [Detection] limit 0.021 [0.007] 0.042 [0.014] 0.14 [0.048] 0.10 [0.03] 0.10 [0.03] 0.05 [0.02] 0.04 [0.01]	Detection I Sample 97/102 35/35 34/34 37/37 35/37 35/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37	Site 33/34 35/35 34/34 37/37 35/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37
Air	2021 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Warm season 2009 Warm season	0.17 Geometric mean 0.14 0.37 0.15 0.31 0.14 0.22 tr(0.07) 0.28 0.12 0.28 0.095 0.19 0.10 0.20 0.08 0.21	Median 0.18 0.42 0.14 0.33 tr(0.13) 0.19 tr(0.07) 0.28 0.11 0.29 0.09 0.16 0.09 0.19 0.08 0.19	Maximum 0.85 1.3 0.42 2.6 0.86 0.90 0.21 1.4 0.79 1.9 0.33 1.6 0.26 0.90 0.28 1.8	nd 0.059 0.062 tr(0.052) nd tr(0.07) nd tr(0.05) nd 0.05 tr(0.03) 0.05 0.04 tr(0.02)	Quantification [Detection] limit 0.021 [0.007] 0.042 [0.014] 0.14 [0.048] 0.10 [0.03] 0.10 [0.03] 0.05 [0.02] 0.04 [0.01] 0.03 [0.01]	Detection I Sample 97/102 35/35 34/34 37/37 35/37 35/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37	Site 33/34 35/35 34/34 37/37 35/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37
Air	2021 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Cold season 2009 Warm season 2010 Warm season 2010 Cold season	0.17 Geometric mean 0.14 0.37 0.15 0.31 0.14 0.22 tr(0.07) 0.28 0.12 0.28 0.095 0.19 0.10 0.20 0.08 0.21 0.10	Median 0.18 0.42 0.14 0.33 tr(0.13) 0.19 tr(0.07) 0.28 0.11 0.29 0.09 0.16 0.09 0.19 0.08 0.19 0.09	Maximum 0.85 1.3 0.42 2.6 0.86 0.90 0.21 1.4 0.79 1.9 0.33 1.6 0.26 0.90 0.28 1.8 0.48	nd 0.059 0.062 tr(0.052) nd tr(0.07) nd tr(0.05) nd 0.05 tr(0.03) 0.05 0.04 tr(0.02)	Quantification [Detection] limit 0.021 [0.007] 0.042 [0.014] 0.14 [0.048] 0.10 [0.03] 0.10 [0.03] 0.05 [0.02] 0.04 [0.01] 0.03 [0.01]	Detection I Sample 97/102 35/35 34/34 37/37 35/37 35/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37	Frequency Site 33/34 35/35 34/34 37/37 35/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37
Air	2021 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Cold season 2005 Cold season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Cold season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Cold season 2009 Warm season 2010 Warm season 2010 Warm season 2010 Warm season 2010 Warm season 2011 Warm season 2011 Cold season 2013 Warm season	0.17 Geometric mean 0.14 0.37 0.15 0.31 0.14 0.22 tr(0.07) 0.28 0.12 0.28 0.095 0.19 0.10 0.20 0.08 0.21 0.10 0.17	Median 0.18 0.42 0.14 0.33 tr(0.13) 0.19 tr(0.07) 0.28 0.11 0.29 0.09 0.16 0.09 0.19 0.08 0.19 0.09 0.18	Maximum 0.85 1.3 0.42 2.6 0.86 0.90 0.21 1.4 0.79 1.9 0.33 1.6 0.26 0.90 0.28 1.8 0.48 1.2	nd 0.059 0.062 tr(0.052) nd tr(0.07) nd 0.05 tr(0.03) 0.05 0.04 tr(0.02) 0.04 tr(0.03)	Quantification [Detection] limit 0.021 [0.007] 0.042 [0.014] 0.14 [0.048] 0.10 [0.03] 0.10 [0.03] 0.05 [0.02] 0.04 [0.01] 0.03 [0.01]	Detection I Sample 97/102 35/35 34/34 37/37 35/37 35/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 36/36	Site 33/34 35/35 34/34 37/37 35/37 37/37 36/36 37/37 37/37 37/37 37/37 37/37 37/37 36/36
Air	2021 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Cold season 2005 Cold season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2007 Cold season 2008 Warm season 2008 Warm season 2009 Cold season 2010 Warm season 2010 Warm season 2010 Warm season 2010 Warm season 2011 Warm season 2011 Cold season 2013 Warm season 2013 Cold season	0.17 Geometric mean 0.14 0.37 0.15 0.31 0.14 0.22 tr(0.07) 0.28 0.12 0.28 0.095 0.19 0.10 0.20 0.08 0.21 0.10 0.17 0.06	Median 0.18 0.42 0.14 0.33 tr(0.13) 0.19 tr(0.07) 0.28 0.11 0.29 0.09 0.16 0.09 0.19 0.08 0.19 0.09 0.18 0.06	Maximum 0.85 1.3 0.42 2.6 0.86 0.90 0.21 1.4 0.79 1.9 0.33 1.6 0.26 0.90 0.28 1.8 0.48 1.2 0.17	Minimum nd 0.059 0.062 tr(0.052) nd tr(0.07) nd tr(0.05) nd 0.05 tr(0.03) 0.05 0.04 tr(0.02) tr(0.02) tr(0.03) nd	Quantification [Detection] limit 0.021 [0.007] 0.042 [0.014] 0.14 [0.048] 0.10 [0.03] 0.10 [0.03] 0.05 [0.02] 0.04 [0.01] 0.03 [0.01] 0.05 [0.02]	Detection I Sample 97/102 35/35 34/34 37/37 35/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 36/36 35/36	Site 33/34 35/35 34/34 37/37 35/37 37/37 35/37 34/37 36/36 37/37 37/37 37/37 37/37 37/37 37/37 36/36 35/36

(Note) No monitoring was conducted in FY2011, FY2012, FY2014, FY2016, FY2017, FY2019 and FY2020.

[7] Chlordanes (references)

· History and state of monitoring

Chlordane was used as insecticides on a range of agricultural crops, but the registration of Chlordanes under the Agricultural Chemicals Regulation Law was expired in FY1968. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 1986 because of its properties such as persistency, since it had been used as termitecides for wood products such as primary processed timber, plywood and house. Also, *cis*-Chlordane and *trans*-Chlordane are one of the original twelve POPs covered by the Stockholm Convention.

Although manufactured Chlordanes have complicated compositions, Heptachlor, γ-Chlordane, Heptachlor epoxide, *cis*-Chlordane, *trans*-Chlordane, Oxychlordane (as a chlordane metabolite), *cis*-Nonachlor (not registrated as an Agricultural Chemical) and *trans*-Nonachlor (not registrated as an Agricultural Chemical) were the original target chemicals in monitoring series. Since FY1983, 5 of those 8 chemicals (*cis*-Chlordane, *trans*-Chlordane, Oxychlordane, *cis*-Nonachlor and *trans*-Nonachlor) have been the target chemicals owning to their high detection frequency in the FY1982 High-Precision Environmental Survey.

In previous monitoring series, Chlordanes had been monitored in wildlife (bivalves, fish and birds) during the period of FY1978 ~ 2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring", *cis*-Chlordane, *trans*-Chlordane, *cis*-Nonachlor and *trans*-Nonachlor in surface water and sediment have been the monitored during the period of FY1986 ~ 1998 and FY1986 ~ 2001, respectively.

Under the framework of the Environmental Monitoring, cis-Chlordane trans-Chlordane Oxychlordane (as a Chlordane metabolite) cis-Nonachlor (not registrated as an Agricultural Chemical) and trans-Nonachlor have been monitored in surface water and sediment in FY2002 \sim 2013 FY2017 and FY2020, and in wildlife (bivalves, fish and birds) and air in FY2002 \sim 2013 FY2016 and FY2020.

No monitoring was conducted after FY2021. For reference, the monitoring results up to FY2020 are given below.

- Monitoring results until FY2020
- O cis-Chlordane and trans-Chlordane

<Surface Water>

Stocktaking of the detection of cis-Chlordane and trans-Chlordane in surface water FY2002 ~ 2020

	Monitored	Geometric		•		Quantification	Detection 1	Frequency
cis-Chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	42	32	880	2.5	0.9 [0.3]	114/114	38/38
	2003	69	51	920	12	3 [0.9]	36/36	36/36
	2004	92	87	1,900	10	6 [2]	38/38	38/38
	2005	53	54	510	6	4 [1]	47/47	47/47
	2006	31	26	440	5	5 [2]	48/48	48/48
	2007	23	22	680	nd	4 [2]	47/48	47/48
Surface Water	2008	29	29	480	2.9	1.6 [0.6]	48/48	48/48
(pg/L)	2009	29	26	710	4.4	1.1 [0.4]	49/49	49/49
40 /	2010	19	14	170	nd	11 [4]	47/49	47/49
	2011	20	16	500	3.8	1.4 [0.6]	49/49	49/49
	2012	43	37	350	10	1.6 [0.6]	48/48	48/48
	2013	18	16	260	2.9	2.7 [0.9]	48/48	48/48
	2017	19	19	210	2	2 [1]	47/47	47/47
	2020	12	10	120	tr(2)	5 [2]	46/46	46/46

	Monitored	Geometric				Quantification	Detection 1	Frequency
trans-Chlordane	year	mean *	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	33	24	780	3.1	1.5 [0.5]	114/114	38/38
	2003	34	30	410	6	5 [2]	36/36	36/36
	2004	32	26	1,200	5	5 [2]	38/38	38/38
	2005	25	21	200	3	4 [1]	47/47	47/47
	2006	24	16	330	tr(4)	7 [2]	48/48	48/48
	2007	16	20	580	nd	2.4 [0.8]	47/48	47/48
Surface Water	2008	23	22	420	3	3 [1]	48/48	48/48
(pg/L)	2009	23	18	690	3.0	0.8 [0.3]	49/49	49/49
	2010	15	tr(11)	310	nd	13 [4]	44/49	44/49
	2011	16	13	470	3.2	1.0 [0.4]	49/49	49/49
	2012	41	33	300	12	2.5 [0.8]	48/48	48/48
	2013	15	13	200	3	3 [1]	48/48	48/48
	2017	15	15	150	tr(2)	3 [1]	47/47	47/47
	2020	11	8	98	tr(3)	4 [2]	46/46	46/46

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Stocktaking of the detection of cis-Chlordane and trans-Chlordane in sediment FY2002 \sim 2020

ocktaking of the		Geometric				Quantification	Detection 1	Frequency
cis-Chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	140	98	18,000	1.8	0.9 [0.3]	189/189	63/63
	2003	190	140	19,000	tr(3.6)	4 [2]	186/186	62/62
	2004	160	97	36,000	4	4 [2]	189/189	63/63
	2005	150	100	44,000	3.3	1.9 [0.64]	189/189	63/63
	2006	100	70	13,000	tr(0.9)	2.4 [0.8]	192/192	64/64
	2007	82	55	7,500	nd	5 [2]	191/192	64/64
Sediment	2008	100	63	11,000	tr(2.3)	2.4 [0.9]	192/192	64/64
(pg/g-dry)	2009	84	61	8,600	2.0	0.7 [0.3]	192/192	64/64
	2010	82	62	7,200	tr(4)	6 [2]	64/64	64/64
	2011	70	58	4,500	1.7	1.1 [0.4]	64/64	64/64
	2012	69	61	11,000	tr(2.6)	2.9 [1.0]	63/63	63/63
	2013	65	55	5,400	tr(1.9)	2.0 [0.8]	63/63	63/63
	2017	47	36	2,800	nd	4.8 [1.6]	61/62	61/62
	2020	42	38	4,200	tr(1.1)	1.2 [0.5]	58/58	58/58
	Monitored	Geometric				Quantification	Detection 1	Frequency
trans-Chlordane	year	mean *	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	150	110	16,000	2.1	1.8 [0.6]	189/189	63/63
	2003	130	100	13,000	tr(2.4)	4 [2]	186/186	62/62
	2004	110	80	26,000	3	3 [0.9]	189/189	63/63
	2005	110	81	32,000	3.4	2.3 [0.84]	189/189	63/63
	2006	110	76	12,000	2.2	1.1 [0.4]	192/192	64/64
	2007	82	58	7,500	nd	2.2 [0.8]	191/192	64/64
Sediment	2008	110	66	10,000	2.4	2.0 [0.8]	192/192	64/64
(pg/g-dry)	2009	91	68	8,300	2.1	1.7 [0.7]	192/192	64/64
	2010	95	69	8,000	tr(4)	11 [4]	64/64	64/64
	2011	73	64	4,300	3.2	1.3 [0.5]	64/64	64/64
	2012	80	71	13,000	tr(2.9)	4.0 [1.3]	63/63	63/63
	2013	74	65	5,600	2.5	1.8 [0.7]	63/63	63/63
	2017	53	41	3,000	tr(1)	4[1]	62/62	62/62
	2020	47	44	4,500	1.4	0.2 [0.1]	58/58	58/58

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~ 2009.

(Note 2) No monitoring was conducted during FY2014 \sim 2016, FY2018 and Fy2019.

⁽Note 2) No monitoring was conducted during FY2014 \sim 2016, FY2018 and Fy2019.

	20	Monitored	Geometric				Quantification	Detection I	requency
	cis-Chlordane			Median	Maximum	Minimum	[Detection] limit	Sample	Site
Bivalves									
Bivalves 2005 1,000 960 13,000 78 12,259 31/31 7.77									
Bivalves 2006 970									
Bivalves 2008 750 590 19,000 59 5 2 31/31 7/7									
Bivalues 2008 750 560 11,000 85 5 2 31/31 7/7 (pg/g-wet) 2009 1,200 1,100 16,000 83 4 4 4 4 4 4 4 4 4									
(pg/g-wet) 2009 1,200 1,100 16,000 83 4 [2] 31/31 77 (2) 1,000 1,000 83 4 [2] 6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/6 6/									
2010									
2011 790 880 3,400 160 3 [1] 4/4 4/5 4/5 2012 710 500 3,500 180 5 [2] 5/5 5/5 5/5 5/5 2013 4/10 4/10 2,000 75 13 [4] 3/3 3/3 3/3 3/2 2000 200 310 590 4/1 3 [1] 3/3 3/	(pg/g-wet)								
2012 710 500 3,500 180 5 2 5/5 5/5 5/5 2016 220 260 500 80 3 11 3/3 3/3 3/3 3/2 2002 200 310 590 41 3 11 3/3 3/3 3/3 3/3 2003 510 400 4,400 43 3,9 1,3 7070 14/14 2004 620 490 9,800 68 18 5,8 7070 14/14 2004 620 490 9,800 68 18 5,8 7070 14/14 2005 520 600 8,000 42 12 3,9 80/80 16/16 2005 520 400 4,900 56 4 11 80/80 16/16 2005 520 420 4,900 56 4 11 80/80 16/16 2005 520 420 4,900 56 4 11 80/80 16/16 2006 3/40 340 3,500 36 5 2 80/80 16/16 2007 430 340 3,500 36 5 2 80/80 16/16 2007 430 450 3,300 36 5 2 80/80 16/16 2007 430 450 3,300 36 5 2 80/80 16/16 2008 430 450 3,300 51 4 2 18/18 18/18 2011 580 660 3,800 59 3 11 18/18 18/18 2012 580 550 3,100 98 5 2 19/19 19/15 2016 340 440 2,200 67 3 11 18/18 18/18 2012 2020 290 310 2,200 39 3 11 18/18 18/18 2020 203 47 120 370 6.8 3.9 1.3 10/10 2/2 2006 32 83 250 5 4 11 10/10 2/2 2006 32 83 250 5 4 11 10/10 2/2 2006 32 83 250 5 4 11 10/10 2/2 2006 32 83 250 5 4 11 10/10 2/2 2006 32 83 250 5 4 11 10/10 2/2 2006 32 83 250 5 4 11 10/10 2/2 2006 32 83 250 5 4 11 10/10 2/2 2006 32 83 250 5 4 11 10/10 2/2 2006 32 83 250 5 4 11 10/10 2/2 2006 32 83 250 5 4 11 10/10 2/2 20/2									
2016 220 260 500 80 3 13 43 3 3 3 3 3 3 3 3									
2016 220 260 500 80 3 1 3/3 3/3 3/3 3/3 2002 200 310 590 41 3 1 3/3 3/3 3/3 3/3 2002 610 550 6,900 57 2,4 0.8 70/70 14/14 2004 620 490 9,800 68 18 5.8 70/70 14/14 2005 520 660 8,000 42 12 3.9 80/80 16/16 2006 520 420 4,900 56 4 1 80/80 16/16 2007 430 360 5,200 30 5 2 80/80 16/16 2007 430 340 3,500 36 5 2 88/80 16/16 2007 430 340 3,500 36 5 2 88/80 16/16 2007 430 340 3,500 36 5 2 88/80 16/16 2008 430 340 3,500 36 5 2 88/80 16/16 2008 430 340 3,500 36 5 2 88/80 16/16 2008 430 450 3,800 79 3 11 18/18 18/18 2012 580 550 3,100 98 5 2 19/19 19/15 2012 580 550 3,100 98 5 2 19/19 19/15 2016 340 440 2,200 67 3 11 18/18 18/18 2012 2002 290 310 2,200 39 3 11 18/18 18/18 2002 2003 47 120 370 6.8 3,9 1.3 10/10 2/2 2005 53 120 340 440 2,200 67 3 11 18/18 18/18 2004 39 110 240 11/5 18/18 18/18 2004 39 110 240 11/5 18/18 18/18 2005 53 120 340 11/5 18/18 18/18 2005 53 120 340 11/5 18/18 18/18 2006 32 83 250 5 4 11 11 10/10 2/2 2006 32 83 250 5 4 11 11 10/10 2/2 2006 32 83 230 11 18/18 18/18 2006 32 33 33 34 4 4 2 10/10 2/2 2006 32 38/3									
2020 200 310 590 41 3 1 3/3 3/3 3/3 3/3 2002 610 550 6,900 57 2,4 0,8 70/70 14/14 2003 510 400 4,400 43 3,9 1.3 70/70 14/14 2005 520 600 8,000 68 18 5,8 70/70 14/14 2005 520 600 8,000 42 12 3,9 80/80 16/16 2006 520 420 4,900 56 4 11 80/80 16/16 2007 430 360 5,200 30 5 2 80/80 16/16 2007 430 340 3,500 36 5 2 88/85 17/17 (pg/g-wet) 2009 430 450 3,200 41 4 21 90/90 18/18 18/18 2011 580 660 3,800 79 31 18/18 18/18 2011 580 660 3,800 79 31 18/18 18/18 2011 580 660 3,800 79 31 18/18 18/18 2013 540 440 2,200 65 13 41 19/19 19/15 2013 540 440 2,200 67 3 11 18/18 18/18 2014 2010 340 440 2,200 39 31 18/18 18/18 2014 2002 290 310 2,200 39 31 18/18 18/18 2014 2002 290 310 2,200 39 31 18/18 18/18 2014 2006 32 83 250 5 4 11 10/10 2/2 2004 39 110 240 14/5.8 18 5.8 10/10 2/2 2006 32 83 250 5 4 11 10/10 2/2 2006 32 83 230 14(4 5 21 21 10/10 2/2 2006 32 83 230 14(4 5 21 21 10/10 2/2 2006 32 83 230 14(4 5 21 21 10/10 2/2 2006 32 83 230 14(4 5 21 21 10/10 2/2 2006 32 83 230 14(4 5 21 21 10/10 2/2 2006 32 83 230 14(4 5 21 21 10/10 2/2 2006 32 83 230 340 14(5.8) 3 13 14 2/2									
2002 610									
2003 510 400 4,400 43 3,9 [1,3] 70,70 14/14									
Part									
Fish 2006 520 420 4,900 56 4 11 80/80 16/16									
Fish 2007									
Fish									
Page	Eigh								
2010									
2011 580 660 3,800 79 3 1 18/18 18/18 2012 580 550 3,100 98 5 2 19/19 19/15 19/19 19/15 2016 340 440 2,200 67 3 1 19/19 19/15 2020 290 310 2,200 39 3 1 18/18 18/18 18/18 2002 67 180 450 10 2,408 10/10 2/2 2003 47 120 370 6.8 3.9 1.3 10/10 2/2 2004 39 110 240 tr(5.8) 18 5.8 10/10 2/2 2005 53 120 340 tr(5.8) 18 5.8 10/10 2/2 2006 32 83 250 5 4 1 10/10 2/2 2006 32 83 250 5 4 1 10/10 2/2	(pg/g-wei)								
2012 580 550 3,100 98 5 2 19/19 19/15 2016 340 440 2,200 67 3 1 2020 290 310 2,200 39 3 1 2002 67 180 450 10 2,4 (0.8) 10/10 2/2 2003 47 120 370 6.8 3.9 1.3 10/10 2/2 2004 39 110 240 tr(5.8) 18 5.8 10/10 2/2 2005 53 120 340 tr(5.8) 18 5.8 10/10 2/2 2006 32 83 250 5 4 1 10/10 2/2 Birds *2 2008 24 87 280 tr(3) 5 2 10/10 2/2 (pg/g-wet) 2009 21 48 130 4 4 2 10/10 2/2 (pg/g-wet) 2010 27 180 4 4 2 10/10 2/2 2011 6 6 6 3 1 1 1/1 1/1 2012 23 110 5 5 2 2 2/2 2/2 2013 37 140 tr(10) 13 4 2/2 2/2 2/2 2013 37 140 tr(10) 13 4 2/2 2/2 2/2 2016 38 110 5 5 2 2 2/2 2/2 2017 2018 38 110 13 3 1 2/2 2/2 2/2 2018 2020 83 83 3 1 1 1 1 1 1 1/1 1/1 1/1 1/1 1/1 1/2 2020 390 840 2,800 69 7.2 2.4 30/30 6/6 2004 560 770 2,800 53 48 16 3 31/3 7/7 2005 470 660 2,400 40 10 3.5 31/3 7/7 2006 470 580 2,800 41 4 2 31/3 7/7 Bivalves 2008 360 410 1,500 34 6 2 31/3 7/7 Bivalves 2008 360 410 1,500 34 6 2 31/3 7/7 Bivalves 2008 360 410 1,500 34 6 2 31/3 7/7 Bivalves 2008 360 410 1,500 34 6 2 31/3 7/7 Bivalves 2008 360 410 1,500 34 6 2 31/3 7/7 2016 2017 2007 440 460 1,500 34 6 2 31/3 7/7 2017 2017 2020 540 560 16,000 48 4 1 31/3 7/7 2018 2020 390 310 1,300 140 7 2 5/5 5/5 2018 2018 2020 300 310 1,300 140 7 2 5/5 5/5 2018 2018 2020 300 310 1,300 140 7 2 5/5 5/5 2016 2016 202 99 330 56 6 6 2 3/3 3/3									
2013 540 450 5,700 65 13 4 19/19 19/15 2016 340 440 2,200 67 3 11 19/19 19/15 2020 290 310 2,200 39 3 11 19/19 19/15 2020 67 180 450 10 2,4 0.8 10/10 2/2 2003 47 120 370 6.8 3.9 1.3 10/10 2/2 2004 39 110 240 tr(5.8) 18 5.8 10/10 2/2 2006 32 83 250 5 4 11 10/10 2/2 2007 29 83 230 tr(4) 5 2 10/10 2/2 2008 24 87 280 tr(3) 5 2 10/10 2/2 (pg/g-wet) 2009 21 48 130 4 4 2 10/10 2/2 2011 6 6 6 3 1 1/1 1/1 2012 23 110 5 5 2 2/2 2/2 2013 37 140 tr(10) 13 4 2/2 2/2 2016 38 110 5 5 2 2/2 2/2 2016 38 110 13 3 3 1 1/1 1/1 trans-Chlordane Monitored Geometric year Median Maximum Minimum Detection Detection Sample Site 2003 350 840 2,800 69 7.2 2.4 30/30 6/6 2004 560 770 2,800 53 48 16 3 31/31 7/7 2005 470 660 2,400 40 10 3.5 31/31 7/7 2006 470 580 2,800 41 4 2 31/31 7/7 2007 440 460 1,500 34 6 2 3 31/31 7/7 Bivalves 2008 360 410 1,500 34 6 2 3 31/31 7/7 Bivalves 2008 360 410 1,500 34 6 2 3 31/31 7/7 2010 520 640 5,500 31 3 11 6/6 6/6 2011 490 470 2,900 150 4 11 4/4 4/4 2012 390 310 1,300 140 7 2 5/5 5/5 2013 280 230 1,700 58 16 5.2 5/5 5/5 2016 2016 2020 99 330 56 6 62 3/3 3/3 3/3									
2016 340 440 2,200 67 3 [1] 19/19 19/15 2020 290 310 2,200 39 3 [1] 18/18 18/18 2002 67 180 450 10 2,4 [0.8] 10/10 2/2 2003 47 120 370 6.8 3.9 [1.3] 10/10 2/2 2004 39 110 240 tr(5.8) 18 [5.8] 10/10 2/2 2005 53 120 340 tr(5.8) 12 [3.9] 10/10 2/2 2006 32 83 250 5 4 [1] 10/10 2/2 2007 29 83 230 tr(4) 5 [2] 10/10 2/2 (pg/g-wet) 2009 21 48 130 4 4 [2] 10/10 2/2 (pg/g-wet) 2009 21 48 130 4 4 [2] 10/10 2/2 2011 6 6 6 3 [1] 1/1 1/1 2012 23 110 5 5 [2] 2/2 2/2 2013 37 140 tr(10) 13 [4] 2/2 2/2 2016 38 110 13 3 [1] 2/2 2/2 2016 38 110 13 3 [1] 2/2 2/2 2016 38 110 13 3 [1] 1/1 1/1 1/1 1070 13 4 2/2 2/2 2016 38 180 4 4 [2] 30/30 6/6 2020 83 83 3 [1] 1/1 1/1 1/1 1070 13 4 2/2 2/2 2016 38 110 13 3 [1] 2/2 2/2 2017 2018 38 38 83 3 [1] 3 [1] 3 2020 83 83 3 [1] 1/1 1/1 1/1 1070 13 4 2/2 2/2 2018 38/38 8/8 2009 540 560 2,400 40 10 [3.5] 31/31 7/7 2005 470 660 2,400 40 10 [3.5] 31/31 7/7 2006 470 580 2,800 41 4 [2] 31/31 7/7 2007 440 460 1,500 34 6 [2] 31/31 7/7 2007 440 460 1,500 34 6 [2] 31/31 7/7 2007 440 460 1,500 34 6 [2] 31/31 7/7 2007 440 460 1,500 34 6 [2] 31/31 7/7 2007 440 460 1,500 34 6 [2] 31/31 7/7 2007 440 460 1,500 34 6 [2] 31/31 7/7 2007 440 460 1,500 34 6 [2] 31/31 7/7 2007 440 460 5,500 31 3 [1] 6/6 6/6 2011 490 470 2,900 150 4 [1] 4/4 4/4 2012 390 310 1,300 140 7 [2] 5/5 5/5 2013 280 230 1,7									
18/18 18/18 18/18 18/18 18/18 2002 67 180 450 10 2.4 [0.8] 10/10 2/2 2003 47 120 370 6.8 3.9 [1.3] 10/10 2/2 2004 39 110 240 tr(5.8) 18 [5.8] 10/10 2/2 2005 53 120 340 tr(5.8) 12 [3.9] 10/10 2/2 2006 32 83 250 5 4 [1] 10/10 2/2 2006 32 83 250 5 4 [1] 10/10 2/2 2007 29 83 230 tr(4) 5 [2] 10/10 2/2									
1010 2/2 2003 47 120 370 6.8 3.9 1.3] 10/10 2/2 2004 39 110 240 tr(5.8) 18 5.8] 10/10 2/2 2005 53 120 340 tr(5.8) 12 3.9] 10/10 2/2 2006 32 83 250 5 4 1] 10/10 2/2 2006 32 83 250 5 4 1] 10/10 2/2 2007 29 83 230 tr(4) 5 2] 10/10 2/2 2/									
100 100									
Record 100 1									
Birds 2005 53 120 340 tr(5.8) 12 [3.9] 10/10 2/2 2006 32 83 250 5 4 [1] 10/10 2/2 2007 29 83 230 tr(4) 5 [2] 10/10 2/2 (pg/g-wet) 2008 24 87 280 tr(3) 5 [2] 10/10 2/2 (pg/g-wet) 2009 21 48 130 4 4 [2] 10/10 2/2 2011 6 6 6 3 [1] 1/1 1/1 1/1 2012 233 110 5 5 [2] 2/2 2/2 2/2 2011 37 140 tr(10) 13 [4] 2/2 2/2 2/2 2016 38 110 13 3 [1] 2/2 2/									
Birds **2 2006 32 83 250 5 4 [1] 10/10 2/2 2007 29 83 230 tr(4) 5 [2] 10/10 2/2 2/2 2008 24 87 280 tr(3) 5 [2] 10/10 2/2									
Birds **2 2008 24 87 280 tr(4) 5 [2] 10/10 2/2									
Birds **2									
(pg/g-wet) 2009 21 48 130 4 4 [2] 10/10 2/2 2010 27 180 4 4 [2] 2/2 2/2 2/2 2011 6 6 6 3 [1] 1/1 1/1 1/1 2012 23 110 5 5 [2] 2/2<	Birds *2								
2010 27									
2011	488								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
2013 37 140 tr(10) 13 [4] 2/2 2/2 2/2 2016 38 110 13 3 [1] 2/2			23		110	5		2/2	
2016 38 110 13 3 [1] 2/2									
$ \frac{2020}{trans-\text{Chlordane}} = \frac{2020}{\text{year}} = {\text{mean}} = {\text{mean}} = {\text{Monitored}} = {\text{mean}} = {\text{mean}} = {\text{Monitored}} = {\text{mean}} = {\text{mean}} = {\text{Monitored}} = {\text{mean}} = {\text{mean}} = {\text{mean}} = {\text{Monitored}} = {\text{mean}} = {me$									
trans-Chlordane year mean*1 mean*1 Median mean*1 Maximum mean*1 Minimum limit [Detection] limit Sample Site 2002 390 840 2,300 33 2.4 [0.8] 38/38 8/8 2003 550 840 2,800 69 7.2 [2.4] 30/30 6/6 2004 560 770 2,800 53 48 [16] 31/31 7/7 2005 470 660 2,400 40 10 [3.5] 31/31 7/7 2006 470 580 2,800 41 4 [2] 31/31 7/7 2006 470 580 2,800 41 4 [2] 31/31 7/7 2007 440 460 1,500 34 6 [2] 31/31 7/7 (pg/g-wet) 2008 360 410 1,300 52 7 [3] 31/31 7/7 (pg/g-wet) 2009 540 560 16,000 48 4 [1] <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
Park		M:41	C				Quantification	Detection I	requency
2002 390 840 2,300 33 2.4 [0.8] 38/38 8/8 2003 550 840 2,800 69 7.2 [2.4] 30/30 6/6 2004 560 770 2,800 53 48 [16] 31/31 7/7 2005 470 660 2,400 40 10 [3.5] 31/31 7/7 2006 470 580 2,800 41 4 [2] 31/31 7/7 2007 440 460 1,500 34 6 [2] 31/31 7/7 2007 440 460 1,500 34 6 [2] 31/31 7/7 2007 440 460 1,500 34 6 [2] 31/31 7/7 2007 440 460 1,500 34 6 [2] 31/31 7/7 2009 540 560 16,000 48 4 [1] 31/31 7/7 2010 520 640 5,500 31 3 [1] 6/6 6/6 6/6 2011 490 470 2,900 150 4 [1] 4/4 4/4 2012 390 310 1,300 140 7 [2] 5/5 5/5 5/5 2013 280 230 1,700 58 16 [5.2] 5/5 5/5 5/5 2016 120 99 330 56 6 [2] 3/3	trans-Chlordane			Median	Maximum	Minimum		Sample	Site
2003 550 840 2,800 69 7.2 [2.4] 30/30 6/6 2004 560 770 2,800 53 48 [16] 31/31 7/7 2005 470 660 2,400 40 10 [3.5] 31/31 7/7 2006 470 580 2,800 41 4 [2] 31/31 7/7 2007 440 460 1,500 34 6 [2] 31/31 7/7 Bivalves 2008 360 410 1,300 52 7 [3] 31/31 7/7 (pg/g-wet) 2009 540 560 16,000 48 4 [1] 31/31 7/7 2010 520 640 5,500 31 3 [1] 6/6 6/6 2011 490 470 2,900 150 4 [1] 4/4 4/4 2012 390 310 1,300 140 7 [2] 5/5 5/5 2013 280 230 1,700 58 16 [5.2] 5/5 5/5 2016 120 99 330 56 6 [2] 3/3		-		0.10					
2004 560 770 2,800 53 48 [16] 31/31 7/7 2005 470 660 2,400 40 10 [3.5] 31/31 7/7 2006 470 580 2,800 41 4 [2] 31/31 7/7 2007 440 460 1,500 34 6 [2] 31/31 7/7 Bivalves 2008 360 410 1,300 52 7 [3] 31/31 7/7 (pg/g-wet) 2009 540 560 16,000 48 4 [1] 31/31 7/7 2010 520 640 5,500 31 3 [1] 6/6 6/6 2011 490 470 2,900 150 4 [1] 4/4 4/4 2012 390 310 1,300 140 7 [2] 5/5 5/5 2013 280 230 1,700 58 16 [5.2] 5/5 5/5 2016 120 99 330 56 6 [2] 3/3 3/3									
2005 470 660 2,400 40 10 [3.5] 31/31 7/7 2006 470 580 2,800 41 4 [2] 31/31 7/7 2007 440 460 1,500 34 6 [2] 31/31 7/7 Bivalves 2008 360 410 1,300 52 7 [3] 31/31 7/7 (pg/g-wet) 2009 540 560 16,000 48 4 [1] 31/31 7/7 2010 520 640 5,500 31 3 [1] 6/6 6/6 2011 490 470 2,900 150 4 [1] 4/4 4/4 2012 390 310 1,300 140 7 [2] 5/5 5/5 2013 280 230 1,700 58 16 [5.2] 5/5 5/5 2016 120 99 330 56 6 [2] 3/3									
2006 470 580 2,800 41 4[2] 31/31 7/7 2007 440 460 1,500 34 6[2] 31/31 7/7 Bivalves 2008 360 410 1,300 52 7[3] 31/31 7/7 (pg/g-wet) 2009 540 560 16,000 48 4[1] 31/31 7/7 2010 520 640 5,500 31 3[1] 6/6 6/6 2011 490 470 2,900 150 4[1] 4/4 4/4 2012 390 310 1,300 140 7[2] 5/5 5/5 2013 280 230 1,700 58 16[5.2] 5/5 5/5 2016 120 99 330 56 6[2] 3/3 3/3									
Bivalves 2008 360 410 1,300 52 7 [3] 31/31 7/7 (pg/g-wet) 2009 540 560 16,000 48 4 [1] 31/31 7/7 2010 520 640 5,500 31 3 [1] 6/6 6/6 2011 490 470 2,900 150 4 [1] 4/4 4/4 2012 390 310 1,300 140 7 [2] 5/5 5/5 2013 280 230 1,700 58 16 [5.2] 5/5 5/5 2016 120 99 330 56 6 [2] 3/3 3/3									
Bivalves 2008 360 410 1,300 52 7 [3] 31/31 7/7 (pg/g-wet) 2009 540 560 16,000 48 4 [1] 31/31 7/7 2010 520 640 5,500 31 3 [1] 6/6 6/6 2011 490 470 2,900 150 4 [1] 4/4 4/4 2012 390 310 1,300 140 7 [2] 5/5 5/5 2013 280 230 1,700 58 16 [5.2] 5/5 5/5 2016 120 99 330 56 6 [2] 3/3 3/3									
(pg/g-wet) 2009 540 560 16,000 48 4 [1] 31/31 7/7 2010 520 640 5,500 31 3 [1] 6/6 6/6 2011 490 470 2,900 150 4 [1] 4/4 4/4 2012 390 310 1,300 140 7 [2] 5/5 5/5 2013 280 230 1,700 58 16 [5.2] 5/5 5/5 2016 120 99 330 56 6 [2] 3/3 3/3	D: 1								
2010 520 640 5,500 31 3 [1] 6/6 6/6 2011 490 470 2,900 150 4 [1] 4/4 4/4 2012 390 310 1,300 140 7 [2] 5/5 5/5 2013 280 230 1,700 58 16 [5.2] 5/5 5/5 2016 120 99 330 56 6 [2] 3/3 3/3									
2011 490 470 2,900 150 4 [1] 4/4 4/4 2012 390 310 1,300 140 7 [2] 5/5 5/5 2013 280 230 1,700 58 16 [5.2] 5/5 5/5 2016 120 99 330 56 6 [2] 3/3 3/3	(pg/g-wet)								
2012 390 310 1,300 140 7 [2] 5/5 5/5 2013 280 230 1,700 58 16 [5.2] 5/5 5/5 2016 120 99 330 56 6 [2] 3/3 3/3									
2013 280 230 1,700 58 16 [5.2] 5/5 5/5 2016 120 99 330 56 6 [2] 3/3 3/3									
2016 120 99 330 56 6 [2] 3/3 3/3									
2020 100 97 430 25 6[2] 3/3 3/3		2020	100	97	430	25	6 [2]	3/3	3/3

	Monitored	Geometric				Quantification	Detection 1	Frequency
trans-Chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	190	160	2,700	20	2.4 [0.8]	70/70	14/14
	2003	160	120	1,800	9.6	7.2 [2.4]	70/70	14/14
	2004	200	130	5,200	tr(17)	48 [16]	70/70	14/14
	2005	160	180	3,100	tr(9.8)	10 [3.5]	76/80	16/16
	2006	150	120	2,000	14	4 [2]	80/80	16/16
	2007	130	100	2,100	8	6 [2]	80/80	16/16
Fish	2008	120	71	1,300	14	7 [3]	85/85	17/17
(pg/g-wet)	2009	130	140	1,300	10	4 [1]	90/90	18/18
	2010	120	170	1,100	9	3 [1]	18/18	18/18
	2011	180	240	1,300	20	4 [1]	18/18	18/18
	2012	170	140	1,100	19	7 [2]	19/19	19/19
	2013	160	170	2,700	tr(14)	16 [5.2]	19/19	19/19
	2016	100	110	800	12	6 [2]	19/19	19/19
	2020	90	110	780	11	6 [2]	18/18	18/18
	2002	14	14	26	8.9	2.4 [0.8]	10/10	2/2
	2003	11	12	27	tr(5.9)	7.2 [2.4]	10/10	2/2
	2004	nd	nd	tr(26)	nd	48 [16]	5/10	1/2
	2005	11	12	30	tr(4.5)	10 [3.5]	10/10	2/2
	2006	7	8	17	tr(3)	4 [2]	10/10	2/2
	2007	7	8	19	tr(3)	6 [2]	10/10	2/2
Birds *2	2008	tr(5)	9	27	nd	7 [3]	7/10	2/2
(pg/g-wet)	2009	6	7	13	tr(3)	4 [1]	10/10	2/2
	2010	4		10	tr(2)	3 [1]	2/2	2/2
	2011			5	5	4[1]	1/1	1/1
	2012	tr(6)		10	tr(4)	7 [2]	2/2	2/2
	2013	26		68	tr(10)	16 [5.2]	2/2	2/2
	2016	18		46	, ź	6[2]	2/2	2/2
	2020			34	34	6 [2]	1/1	1/1

⁽Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~ 2009.

(Note 3) No monitoring was conducted during FY2014, 2015 and FY2017 ~ 2019.

<Air>

Stocktaking of the detection of *cis*-Chlordane and *trans*-Chlordane in air FY2002 ~ 2020

		Geometric				Quantification	Detection Frequenc	
<i>cis-</i> Chlordane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	31	40	670	0.86	0.60 [0.20]	102/102	34/34
	2003 Warm season	110	120	1,600	6.4	0.51.[0.17]	35/35	35/35
	2003 Cold season	30	38	220	2.5	0.51 [0.17]	34/34	34/34
	2004 Warm season	92	160	1,000	2.3	0.57.[0.10]	37/37	37/37
	2004 Cold season	29	49	290	1.2	0.57 [0.19]	37/37	37/37
	2005 Warm season	92	120	1,000	3.4	0.16.50.05.41	37/37	37/37
	2005 Cold season	16	19	260	1.4	0.16 [0.054]	37/37	37/37
	2006 Warm season	82	110	760	2.9	0.12 [0.04]	37/37	37/37
	2006 Cold season	19	19	280	2.0	0.13 [0.04]	37/37	37/37
	2007 Warm season	90	120	1,100	3.3	0.10 [0.04]	36/36	36/36
	2007 Cold season	17	20	230	1.4		36/36	36/36
	2008 Warm season	75	120	790	1.9	0.14 [0.05]	37/37	37/37
Air	2008 Cold season	21	34	200	1.5		37/37	37/37
(pg/m^3)	2009 Warm season	67	110	790	2.7	0.16.50.063	37/37	37/37
	2009 Cold season	19	22	180	0.65	0.16 [0.06]	37/37	37/37
	2010 Warm season	68	100	700	2.2	0.0.50.21	37/37	37/37
	2010 Cold season	20	27	130	tr(0.8)	0.9 [0.3]	37/37	37/37
	2011 Warm season	66	95	700	1.5	1 2 [0 42]	35/35	35/35
	2011 Cold season	20	31	240	tr(0.88)	1.3 [0.42]	37/37	37/37
	2012 Warm season	61	98	650	2.9	1.5.[0.51]	36/36	36/36
	2012 Cold season	10	14	74	nd	1.5 [0.51]	35/36	35/36
	2013 Warm season	58	97	580	1.5	0.7.50.21	36/36	36/36
	2013 Cold season	11	15	86	tr(0.5)	0.7 [0.2]	36/36	36/36
	2016 Warm season	53	86	810	0.9	0.9 [0.3]	37/37	37/37
	2020 Warm season	32	37	200	1.5	0.09 [0.03]	37/37	37/37

⁽Note 2) *2: There is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

trans-		Geometric				Quantification	Detection l	Frequency
Chlordane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	36	48	820	0.62	0.60 [0.20]	102/102	34/34
	2003 Warm season	130	150	2,000	6.5	0.86 [0.29]	35/35	35/35
	2003 Cold season	37	44	290	2.5	0.80 [0.29]	34/34	34/34
	2004 Warm season 110 190 1,30	1,300	2.2	0.60 [0.22]	37/37	37/37		
	2004 Cold season	35	60	360	1.5	0.69 [0.23]	37/37	37/37
	2005 Warm season	100	130	1,300	3.2	0.34 [0.14]	37/37	37/37
	2005 Cold season	19	23	310	1.9	0.34 [0.14]	37/37	37/37
	2006 Warm season	96	140	1,200	3.4	0.17 [0.06]	37/37	37/37
	2006 Cold season	22	21	350	2.0	0.17 [0.06]	37/37	37/37
	2007 Warm season	100	140	1,300	3.8	0.12 [0.05]	36/36	36/36
	2007 Cold season	20	24	300	1.5	0.12 [0.05]	36/36	36/36
A :	2008 Warm season	87	130	990	2.5	0.17 [0.06]	37/37	37/37
Air (pg/m³)	2008 Cold season	25	41	250	1.8	0.17 [0.00]	37/37	37/37
(pg/III [*])	2009 Warm season	79	120	960	2.6	0.12 [0.05]	37/37	37/37
	2009 Cold season	23	30	210	0.68	0.12 [0.05]	37/37	37/37
	2010 Warm season	79	120	820	2.0	1 2 [0 4]	37/37	37/37
	2010 Cold season	24	34	150	tr(1.0)	1.2 [0.4]	37/37	37/37
	2011 Warm season	76	110	810	tr(1.4)	1 ([0 52]	35/35	35/35
	2011 Cold season	24	37	290	tr(0.70)	1.6 [0.53]	37/37	37/37
	2012 Warm season	70	120	780	2.8	2.1.[0.7]	36/36	36/36
	2012 Cold season	12	18	95	nd	2.1 [0.7]	35/36	35/36
	2013 Warm season	64	120	690	1.7	0.8.10.21	36/36	36/36
	2013 Cold season	13	18	110	tr(0.4)	0.8 [0.3]	36/36	36/36
	2016 Warm season	61	95	1,100	tr(0.7)	1.0 [0.3]	37/37	37/37
	2020 Warm season	35	42	230	1.5	0.16 [0.06]	37/37	37/37

(Note) No monitoring was conducted in FY2014, 2015 and FY2017 ~ 2019.

Oxychlordane, cis-Nonachlor and trans-Nonachlor

<Surface Water>

Stocktaking of the detection of Oxy	vchlordane, <i>cis-</i> l	Nonachlor and a	<i>trans-</i> Nonachlor i	n surface water	r FY2002 ~	~ 2020

ocktaking of the C		Geometric				Quantification	Detection l	
Oxychlordane	year	mean *	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.7	3.5	41	nd	1.2 [0.4]	96/114	35/38
	2003	3	2	39	tr(0.6)	2 [0.5]	36/36	36/36
	2004	3.2	2.9	47	tr(0.7)	2 [0.5]	38/38	38/38
	2005	2.6	2.1	19	nd	1.1 [0.4]	46/47	46/47
	2006	tr(2.5)	tr(2.4)	18	nd	2.8 [0.9]	43/48	43/48
	2007	tr(2)	nd	41	nd	6 [2]	25/48	25/48
Surface Water	2008	1.9	1.9	14	nd	1.9 [0.7]	40/48	40/48
(pg/L)	2009	2.0	1.9	19	nd	1.1 [0.4]	45/49	45/49
46)	2010	1.5	1.3	45	nd	0.7 [0.3]	47/49	47/49
	2011	1.9	1.8	34	nd	1.3 [0.5]	44/49	44/49
	2012	2.2	2.3	17	nd	0.9 [0.4]	44/48	44/48
	2013	1.8	1.8	12	nd	0.9 [0.4]	41/48	41/48
	2017	nd	nd	12	nd	4 [2]	19/47	19/47
	2020	tr(1)	nd	8	nd	3 [1]	21/46	21/46
		` _	na	0	iid	Quantification	Detection 1	
cis-Nonachlor	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		-
old I (diladilidi	year	mean *	1/10/01/01	1114111114111		limit	Sample	Site
	2002	7.9	6.7	250	0.23	1.8 [0.6]	114/114	38/38
	2003	8.0	7.0	130	1.3	0.3 [0.1]	36/36	36/36
	2004	7.5	6.3	340	0.8	0.6 [0.2]	38/38	38/38
	2005	6.0	5.9	43	0.9	0.5 [0.2]	47/47	47/47
	2006	6.6	5.6	83	1.0	0.8 [0.3]	48/48	48/48
	2007	5.9	6.1	210	nd	2.4 [0.8]	43/48	43/48
Surface Water	2008	6.5	5.9	130	0.9	0.9 [0.3]	48/48	48/48
(pg/L)	2009	7.1	5.5	210	1.4	0.3 [0.1]	49/49	49/49
(Pg/L)	2010	5.4	3.9	40	tr(0.9)	1.3 [0.4]	49/49	49/49
	2010	5.0	4.3	130	0.8	0.6 [0.2]	49/49	49/49
	2012	6.4	5.9	58	1.1	0.8 [0.3]	48/48	48/48
	2012	5.1	4.6	74	tr(0.7)	0.8 [0.3]	48/48	48/48
	2013	4.6	4.6	36	tr(0.7)		47/47	47/47
				39	. ,	1.5 [0.6]		
	2020	3.8	2.8	39	tr(0.6)	1.3 [0.5]	46/46	46/46
trans-Nonachlor	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection 1	rrequency
trans-Nonacinoi	year	mean*	Median	Maxilliulli	Millillillilli	limit	Sample	Site
	2002	30	24	780	1.8	1.2 [0.4]	114/114	38/38
	2003	26	20	450	4	2 [0.5]	36/36	36/36
	2004	25	19	1,100	tr(3)	4 [2]	38/38	38/38
	2005	20	17	150	2.6	2.5 [0.84]	47/47	47/47
	2006	21	16	310	3.2	3.0 [1.0]	48/48	48/48
	2007	17	17	540	tr(2)	5 [2]	48/48	48/48
Surface Water	2008	18	17	340	1.9	1.6 [0.6]	48/48	48/48
(pg/L)	2009	20	17	530	2.7	1.0 [0.4]	49/49	49/49
~~ /	2010	12	11	93	nd	8 [3]	45/49	45/49
	2011	15	12	480	2.6	1.3 [0.5]	49/49	49/49
	2012	30	26	210	7.9	1.5 [0.6]	48/48	48/48
	2013	14	11	170	2.3	1.5 [0.6]	48/48	48/48
	2017	13	14	120	tr(2)	3 [1]	47/47	47/47

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted in FY2014 \sim 2016, FY2018 and 2019.

<Sediment>

Stocktaking of the detection of Oxychlordane, cis-Nonachlor and trans-Nonachlor in sediment FY2002 ~ 2020

tocktaking of the o	Monitored	Geometric				Quantification	Detection I	
Oxychlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.7	1.7	120	nd	1.5 [0.5]	153/189	59/63
	2003	2	2	85	nd	1 [0.4]	158/186	57/62
	2004	tr(2.1)	tr(1.3)	140	nd	3 [0.8]	129/189	54/63
	2005	2.3	tr(1.9)	160	nd	2.0 [0.7]	133/189	51/63
	2006	tr(2.5)	tr(1.7)	280	nd	2.9 [1.0]	141/192	54/64
	2007	tr(2.1)	tr(1.5)	76	nd	2.5 [0.9]	117/192	46/64
Sediment	2008	tr(2)	tr(1)	340	nd	3 [1]	110/192	48/64
(pg/g-dry)	2009	2	tr(1)	150	nd	2 [1]	97/192	45/64
400 37	2010	1.7	1.2	60	nd	1.0 [0.4]	56/64	56/64
	2011	tr(1.6)	tr(1.2)	83	nd	2.2 [0.9]	36/64	36/64
	2012	tr(1.4)	tr(1.0)	75	nd	1.7 [0.7]	38/63	38/63
	2013	1.5	1.3	54	nd	1.3 [0.5]	50/63	50/63
	2017	tr(1)	tr(1)	78	nd	3 [1]	41/62	41/62
	2020	tr(1.1)	tr(1.0)	39	nd	1.8 [0.7]	34/58	34/58
			11(1.0)		na	Quantification	Detection I	
cis-Nonachlor	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		
	year	mean *	1/10 01011	1,14,1111,4111		limit	Sample	Site
	2002	76	66	7,800	nd	2.1 [0.7]	188/189	63/63
	2003	66	50	6,500	nd	3 [0.9]	184/186	62/62
	2004	53	34	9,400	tr(0.8)	2 [0.6]	189/189	63/63
	2005	56	42	9,900	tr(1.1)	1.9 [0.64]	189/189	63/63
	2006	58	48	5,800	tr(0.6)	1.2 [0.4]	192/192	64/64
	2007	48	35	4,200	nd	1.6 [0.6]	191/192	64/64
Sediment	2008	57	42	5,100	1.1	0.6 [0.2]	192/192	64/64
(pg/g-dry)	2009	53	38	4,700	1.4	1.0 [0.4]	192/192	64/64
(PS S CI)	2010	53	45	3,600	2.3	0.9 [0.3]	64/64	64/64
	2010	41	38	2,900	nd	1.1 [0.4]	63/64	63/64
	2011	44	35	4,900	tr(1)	3 [1]	63/63	63/63
	2012	41	31	3,100	tr(0.6)	0.7 [0.3]	63/63	63/63
	2017	31	25	1,500	nd	1.7 [0.7]	61/62	61/62
	2020	31	24	2,100	tr(0.7)	0.8 [0.3]	58/58	58/58
	2020	31	24	2,100	u(0.7)	Quantification	Detection I	
trans-Nonachlor	Monitored	Geometric	Median	Maximum	Minimum	[Detection]	Detection	requency
trans-Nonacinoi	year	mean *	Median	Maxilliulli	IVIIIIIIIIIIIII	limit	Sample	Site
	2002	130	83	13,000	3.1	1.5 [0.5]	189/189	63/63
	2003	110	78	11,000	2	2 [0.6]	186/186	62/62
	2004	94	63	23,000	3	2 [0.6]	189/189	63/63
	2005	99	72	24,000	2.4	1.5 [0.54]	189/189	63/63
	2006	100	65	10,000	3.4	1.2 [0.4]	192/192	64/64
	2007	78	55	8,400	tr(1.6)	1.7 [0.6]	192/192	64/64
Sediment	2008	91	53	8,400	tr(1.6)	2.2 [0.8]	192/192	64/64
(pg/g-dry)	2009	85	58	7,800	2.0	0.9 [0.3]	192/192	64/64
(roo1)	2010	80	65	6,200	tr(3)	6 [2]	64/64	64/64
	2010	68	52	4,500	1.7	0.8 [0.3]	64/64	64/64
	2011	69	62	10,000	2.5	2.4 [0.8]	63/63	63/63
	2012	67	54	4,700	2.3	1.2 [0.4]	63/63	63/63
	2013	47	39	2,600	nd	6 [2]	61/62	61/62
	4U1/	4/	22	∠,000	IIU	0 [4]	01/02	01/02
	2020	48	40	3,800	1.9	0.5 [0.2]	58/58	58/58

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~ 2009.

⁽Note 2) No monitoring was conducted in FY2014 ~ 2016, FY2018 and 2019.

<Wildlife>

Stocktaking of the detection of Oxychlordane, cis-Nonachlor and trans-Nonachlor in wildlife (bivalves, fish and birds) FY2002 \sim 2020

'ds) F Y 2002 ~ 20		Geometric				Quantification	Detection I	Frequency
Oxychlordane	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	71	83	5,600	nd	3.6 [1.2]	37/38	8/8
	2003	93	62	1,900	11	8.4 [2.8]	30/30	6/6
	2004	110	100	1,700	14	9.2 [3.1]	31/31	7/7
	2005	99	79	1,400	12	9.3 [3.1]	31/31	7/7
	2006	91	90	2,400	7	7 [3]	31/31	7/7
	2007	70	43	2,200	8	6 [2]	31/31	7/7
Bivalves	2008	64	55	1,100	7	7 [2]	31/31	7/7
(pg/g-wet)	2009	100	89	820	10	4 [1]	31/31	7/7
	2010	240	390	3,300	11	8 [3]	6/6	6/6
	2011	68	100	260	8	3 [1]	4/4	4/4
	2012	66	80	450	12	3 [1]	5/5	5/5
	2013	42	44	210	8	3 [1]	5/5	5/5
	2016	27	40	43	11	3 [1]	3/3	3/3
	2020	24	45	59	5	3 [1]	3/3	3/3
	2002	170	140	3,900	16	3.6 [1.2]	70/70	14/14
	2003	150	160	820	30	8.4 [2.8]	70/70	14/14
	2004	160	140	1,500	25	9.2 [3.1]	70/70	14/14
	2005	150	150	1,900	20	9.3 [3.1]	80/80	16/16
	2006	150	120	3,000	28	7 [3]	80/80	16/16
E' 1	2007	120	100	1,900	17	6 [2]	80/80	16/16
Fish (pg/g-wet)	2008 2009	130 120	130 99	2,200	15 23	7 [2]	85/85 90/90	17/17 18/18
(pg/g-wet)	2009	120	140	2,400 1,000	33	4 [1]	18/18	18/18
	2010	140	130	2,300	33	8 [3]	18/18	18/18
	2011	140	180	390	28	3 [1] 3 [1]	19/19	19/19
	2012	130	130	560	31	3 [1]	19/19	19/19
	2016	96	80	950	31	3 [1]	19/19	19/19
	2020	75	60	2,100	24	3 [1]	18/18	18/18
	2002	640	630	890	470	3.6 [1.2]	10/10	2/2
	2003	760	700	1,300	610	8.4 [2.8]	10/10	2/2
	2004	460	450	730	320	9.2 [3.1]	10/10	2/2
	2005	610	660	860	390	9.3 [3.1]	10/10	2/2
	2006	510	560	720	270	7 [3]	10/10	2/2
	2007	440	400	740	290	6 [2]	10/10	2/2
Birds *2	2008	560	530	960	290	7 [2]	10/10	2/2
(pg/g-wet)	2009	300	290	540	190	4 [1]	10/10	2/2
400	2010	400		510	320	8 [3]	2/2	2/2
	2011			590	590	3 [1]	1/1	1/1
	2012	250		360	170	3 [1]	2/2	2/2
	2013	2,500		3,400	1,900	3 [1]	2/2	2/2
	2016	580		1,400	240	3 [1]	2/2	2/2
	2020			820	820	3 [1]	1/1	1/1
	Monitored	Geometric				Quantification	Detection I	requency
cis-Nonachlor	year	mean *1	Median	Maximum	Minimum	[Detection]	Sample	Site
	•					limit		
	2002	170	300	870	8.6	1.2 [0.4]	38/38	8/8
	2003	290	260	1,800	48	4.8 [1.6]	30/30	6/6
	2004	320	380	1,800	43	3.4 [1.1]	31/31	7/7
	2005	270	220	1,300	27	4.5 [1.5]	31/31	7/7
	2006	270	180	1,500	31	3 [1]	31/31	7/7
D' 1	2007	250	250	1,000	26	3 [1]	31/31	7/7
Bivalves	2008	210	210	780	33	4 [1]	31/31	7/7
(pg/g-wet)	2009	300	310	10,000	31	3 [1]	31/31	7/7
	2010	280	310	1,300	35	3 [1]	6/6	6/6
	2011	250	280	1,300	77 52	1.8 [0.7]	4/4 5/5	4/4 5/5
	2012	200	190	670	52	2 [1]	5/5	5/5
	2013	150	140	900	38	2.2 [0.7]	5/5 3/2	5/5
	2016	72 53	46	220	37	1.4 [0.6]	3/3	3/3
	2020	53	38	200	20	3 [1]	3/3	3/3

	Monitored	Geometric				Quantification	Detection l	Frequency
cis-Nonachlor	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	460	420	5,100	46	1.2 [0.4]	70/70	14/14
	2003	360	360	2,600	19	4.8 [1.6]	70/70	14/14
	2004	430	310	10,000	48	3.4 [1.1]	70/70	14/14
	2005	380	360	6,200	27	4.5 [1.5]	80/80	16/16
	2006	370	330	3,300	33	3 [1]	80/80	16/16
	2007	320	280	3,700	16	3 [1]	80/80	16/16
Fish	2008	350	300	3,200	46	4 [1]	85/85	17/17
(pg/g-wet)	2009	340	340	2,600	27	3 [1]	90/90	18/18
	2010	320	370	2,200	23	3 [1]	18/18	18/18
	2011	440	450	2,900	45	1.8 [0.7]	18/18	18/18
	2012	420	450	2,200	33	2 [1]	19/19	19/19
	2013	430	420	3,000	34	2.2 [0.7]	19/19	19/19
	2016	300	170	1,900	53	1.4 [0.6]	19/19	19/19
	2020	230	250	1,600	26	3 [1]	18/18	18/18
	2002	200	240	450	68	1.2 [0.4]	10/10	2/2
	2003	200	260	660	68	4.8 [1.6]	10/10	2/2
	2004	140	150	240	73	3.4 [1.1]	10/10	2/2
	2005	160	180	370	86	4.5 [1.5]	10/10	2/2
	2006	120	130	270	60	3 [1]	10/10	2/2
	2007	130	140	300	42	3 [1]	10/10	2/2
Birds *2	2008	140	150	410	37	4 [1]	10/10	2/2
(pg/g-wet)	2009	81	85	160	44	3 [1]	10/10	2/2
	2010	100		190	57	3 [1]	2/2	2/2
	2011			76	76	1.8 [0.7]	1/1	1/1
	2012	75		100	56	2 [1]	2/2	2/2
	2013	270		970	74	2.2 [0.7]	2/2	2/2
	2016	240		770	74	1.4 [0.6]	2/2	2/2
	2020			480	480	3 [1]	1/1	1/1
	Monitored	Geometric				Quantification	Detection l	Frequency
trans-Nonachlor	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	450	1,100	1,800	21	2.4 [0.8]	38/38	8/8
	2003	800	700	3,800	140	3.6 [1.2]	30/30	6/6
	2004	780	870	3,400	110	13 [4.2]	31/31	7/7
	2005		o	3,400				7/7
	2005	700	650	3, 4 00	72	6.2 [2.1]	31/31	///
	2005 2006	700 660	650 610		72 85	6.2 [2.1] 3 [1]	31/31 31/31	7/7 7/7
	2005 2006 2007	660	610	3,200	85	3 [1]	31/31	7/7
Bivalves	2006 2007	660 640	610 610	3,200 2,400		3 [1] 7 [3]	31/31 31/31	7/7 7/7
Bivalves (pg/g-wet)	2006 2007 2008	660 640 510	610 610 510	3,200 2,400 2,000	85 71 94	3 [1] 7 [3] 6 [2]	31/31 31/31 31/31	7/7 7/7 7/7
Bivalves (pg/g-wet)	2006 2007 2008 2009	660 640 510 780	610 610 510 680	3,200 2,400 2,000 33,000	85 71 94 79	3 [1] 7 [3] 6 [2] 3 [1]	31/31 31/31 31/31 31/31	7/7 7/7 7/7 7/7
	2006 2007 2008 2009 2010	660 640 510 780 790	610 610 510 680 870	3,200 2,400 2,000 33,000 6,000	85 71 94 79 84	3 [1] 7 [3] 6 [2] 3 [1] 4 [2]	31/31 31/31 31/31 31/31 6/6	7/7 7/7 7/7 7/7 6/6
	2006 2007 2008 2009 2010 2011	660 640 510 780 790 640	610 610 510 680 870 680	3,200 2,400 2,000 33,000 6,000 3,000	85 71 94 79 84 200	3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 3 [1]	31/31 31/31 31/31 31/31 6/6 4/4	7/7 7/7 7/7 7/7 6/6 4/4
	2006 2007 2008 2009 2010 2011 2012	660 640 510 780 790 640 530	610 610 510 680 870 680 400	3,200 2,400 2,000 33,000 6,000 3,000 1,800	85 71 94 79 84 200 190	3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 3 [1] 4 [1]	31/31 31/31 31/31 31/31 6/6 4/4 5/5	7/7 7/7 7/7 7/7 6/6 4/4 5/5
	2006 2007 2008 2009 2010 2011 2012 2013	660 640 510 780 790 640 530 380	610 610 510 680 870 680 400 370	3,200 2,400 2,000 33,000 6,000 3,000 1,800 2,000	85 71 94 79 84 200 190 98	3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 3 [1] 4 [1] 10 [3.4]	31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5	7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5
	2006 2007 2008 2009 2010 2011 2012 2013 2016	660 640 510 780 790 640 530 380 200	610 610 510 680 870 680 400 370 150	3,200 2,400 2,000 33,000 6,000 3,000 1,800 2,000 520	85 71 94 79 84 200 190 98	3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 3 [1] 4 [1] 10 [3.4] 3 [1]	31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3	7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3
	2006 2007 2008 2009 2010 2011 2012 2013 2016 2020	660 640 510 780 790 640 530 380 200 140	610 610 510 680 870 680 400 370 150	3,200 2,400 2,000 33,000 6,000 3,000 1,800 2,000 520 480	85 71 94 79 84 200 190 98 97 47	3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 3 [1] 4 [1] 10 [3.4] 3 [1] 4 [2]	31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3	7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 3/3
	2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002	660 640 510 780 790 640 530 380 200 140	610 610 510 680 870 680 400 370 150 130	3,200 2,400 2,000 33,000 6,000 3,000 1,800 2,000 520 480 8,300	85 71 94 79 84 200 190 98 97 47	3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 3 [1] 4 [1] 10 [3.4] 3 [1] 4 [2] 2.4 [0.8]	31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70	7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 3/3 14/14
	2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2003	660 640 510 780 790 640 530 380 200 140 1,000 920	610 610 510 680 870 680 400 370 150 130	3,200 2,400 2,000 33,000 6,000 3,000 1,800 2,000 520 480 8,300 5,800	85 71 94 79 84 200 190 98 97 47	3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 3 [1] 4 [1] 10 [3.4] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2]	31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70	7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 3/3 14/14 14/14
	2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2003 2004	660 640 510 780 790 640 530 380 200 140 1,000 920 1,100	610 610 510 680 870 680 400 370 150 130 900 840 760	3,200 2,400 2,000 33,000 6,000 3,000 1,800 2,000 520 480 8,300 5,800 21,000	85 71 94 79 84 200 190 98 97 47 98 85 140	3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 3 [1] 4 [1] 10 [3.4] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2]	31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70 70/70	7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 3/3 14/14 14/14 14/14
	2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2003 2004 2005	660 640 510 780 790 640 530 380 200 140 1,000 920 1,100 970	610 610 510 680 870 680 400 370 150 130 900 840 760 750	3,200 2,400 2,000 33,000 6,000 3,000 1,800 2,000 520 480 8,300 5,800 21,000 13,000	85 71 94 79 84 200 190 98 97 47 98 85 140 80	3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 3 [1] 4 [1] 10 [3.4] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1]	31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70 70/70 80/80	7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 3/3 14/14 14/14 14/14 16/16
	2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2003 2004 2005 2006	660 640 510 780 790 640 530 380 200 140 1,000 920 1,100 970 940	610 610 510 680 870 680 400 370 150 130 900 840 760 750 680	3,200 2,400 2,000 33,000 6,000 3,000 1,800 2,000 520 480 8,300 5,800 21,000 13,000 6,900	85 71 94 79 84 200 190 98 97 47 98 85 140 80 120	3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 3 [1] 4 [1] 10 [3.4] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1]	31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70 70/70 80/80 80/80	7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 3/3 14/14 14/14 16/16 16/16
(pg/g-wet)	2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2003 2004 2005 2006 2007	660 640 510 780 790 640 530 380 200 140 1,000 920 1,100 970 940 800	610 610 510 680 870 680 400 370 150 130 900 840 760 750 680 680	3,200 2,400 2,000 33,000 6,000 3,000 1,800 2,000 520 480 8,300 5,800 21,000 13,000 6,900 7,900	85 71 94 79 84 200 190 98 97 47 98 85 140 80 120 71	3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 3 [1] 4 [1] 10 [3.4] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3]	31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70 70/70 80/80 80/80 80/80	7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 3/3 14/14 14/14 16/16 16/16
(pg/g-wet)	2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2003 2004 2005 2006 2007 2008	660 640 510 780 790 640 530 380 200 140 1,000 920 1,100 970 940 800 860	610 610 510 680 870 680 400 370 150 130 900 840 760 750 680 680 750	3,200 2,400 2,000 33,000 6,000 3,000 1,800 2,000 520 480 8,300 5,800 21,000 13,000 6,900 7,900 6,900	85 71 94 79 84 200 190 98 97 47 98 85 140 80 120 71 87	3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 3 [1] 4 [1] 10 [3.4] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2]	31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70 70/70 80/80 80/80 80/80 85/85	7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 3/3 14/14 14/14 16/16 16/16 16/16 17/17
(pg/g-wet)	2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2003 2004 2005 2006 2007 2008 2009	660 640 510 780 790 640 530 380 200 140 1,000 920 1,100 970 940 800 860 810	610 610 510 680 870 680 400 370 150 130 900 840 760 750 680 680 750 720	3,200 2,400 2,000 33,000 6,000 3,000 1,800 2,000 520 480 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400	85 71 94 79 84 200 190 98 97 47 98 85 140 80 120 71 87 68	3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 3 [1] 4 [1] 10 [3.4] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1]	31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90	7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 3/3 14/14 14/14 16/16 16/16 16/16 17/17 18/18
(pg/g-wet)	2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2003 2004 2005 2006 2007 2008 2009 2010	660 640 510 780 790 640 530 380 200 140 1,000 920 1,100 970 940 800 860 810 800	610 610 510 680 870 680 400 370 150 130 900 840 760 750 680 680 750 720 1,000	3,200 2,400 2,000 33,000 6,000 3,000 1,800 2,000 520 480 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700	85 71 94 79 84 200 190 98 97 47 98 85 140 80 120 71 87 68 110	3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 3 [1] 4 [1] 10 [3.4] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2]	31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18	7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 3/3 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18
(pg/g-wet)	2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011	660 640 510 780 790 640 530 380 200 140 1,000 920 1,100 970 940 800 860 810 800 1,100	610 610 510 680 870 680 400 370 150 130 900 840 760 750 680 680 750 720 1,000	3,200 2,400 2,000 33,000 6,000 3,000 1,800 2,000 520 480 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700 5,000	85 71 94 79 84 200 190 98 97 47 98 85 140 80 120 71 87 68 110 190	3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 3 [1] 4 [1] 10 [3.4] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 3 [1]	31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 18/18	7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 3/3 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18
(pg/g-wet)	2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012	660 640 510 780 790 640 530 380 200 140 1,000 920 1,100 970 940 800 860 810 800 1,100 1,100	610 610 510 680 870 680 400 370 150 130 900 840 760 750 680 680 750 720 1,000 1,300	3,200 2,400 2,000 33,000 6,000 3,000 1,800 2,000 520 480 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700 5,000 4,200	85 71 94 79 84 200 190 98 97 47 98 85 140 80 120 71 87 68 110 190 140	3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 3 [1] 4 [1] 10 [3.4] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 3 [1] 4 [2] 3 [1] 4 [2] 3 [1] 4 [1]	31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 18/18 19/19	7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 3/3 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18 18/18
(pg/g-wet)	2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011	660 640 510 780 790 640 530 380 200 140 1,000 920 1,100 970 940 800 860 810 800 1,100	610 610 510 680 870 680 400 370 150 130 900 840 760 750 680 680 750 720 1,000	3,200 2,400 2,000 33,000 6,000 3,000 1,800 2,000 520 480 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700 5,000	85 71 94 79 84 200 190 98 97 47 98 85 140 80 120 71 87 68 110 190	3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 3 [1] 4 [1] 10 [3.4] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 3 [1]	31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 18/18	7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 3/3 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18

	Monitored	Geometric				Quantification	Detection I	requency
trans-Nonachlor	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	890	980	1,900	350	2.4 [0.8]	10/10	2/2
	2003	1,100	1,400	3,700	350	3.6 [1.2]	10/10	2/2
	2004	690	780	1,200	390	13 [4.2]	10/10	2/2
	2005	870	880	2,000	440	6.2 [2.1]	10/10	2/2
	2006	650	620	1,500	310	3 [1]	10/10	2/2
	2007	590	680	1,400	200	7 [3]	10/10	2/2
Birds *2	2008	740	850	2,600	180	6 [2]	10/10	2/2
(pg/g-wet)	2009	400	430	730	220	3 [1]	10/10	2/2
	2010	510		880	290	4 [2]	2/2	2/2
	2011			400	400	3 [1]	1/1	1/1
	2012	360		480	270	4[1]	2/2	2/2
	2013	55		170	18	10 [3.4]	2/2	2/2
	2016	60		130	28	3 [1]	2/2	2/2
	2020			81	81	4 [2]	1/1	1/1

⁽Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~ 2009.

(Note 3) No monitoring was conducted during FY2014, 2015 and FY2017 \sim 2019.

<Air>

Stocktaking of the detection of Oxychlordane, cis-Nonachlor and trans-Nonachlor in air FY2002 ~ 2020

	Monitored year	Geometric				Quantification	Detection l	Frequency
Oxychlordane	Wollitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.96	0.98	8.3	nd	0.024 [0.008]	101/102	34/34
	2003 Warm season	2.5	2.7	12	0.41	0.045 [0.015]	35/35	35/35
	2003 Cold season	0.87	0.88	3.2	0.41	0.043 [0.013]	34/34	34/34
	2004 Warm season	1.9	2.0	7.8	0.41	0.13 [0.042]	37/37	37/37
	2004 Cold season	0.80	0.76	3.9	0.27	0.13 [0.042]	37/37	37/37
	2005 Warm season	1.9	2.0	8.8	0.65	0.16 [0.054]	37/37	37/37
	2005 Cold season	0.55	0.50	2.2	0.27	0.10 [0.034]	37/37	37/37
	2006 Warm season	1.8	1.9	5.7	0.47	0.23 [0.08]	37/37	37/37
	2006 Cold season	0.54	0.56	5.1	tr(0.13)	0.23 [0.06]	37/37	37/37
	2007 Warm season	1.9	1.8	8.6	0.56	0.05 [0.02]	36/36	36/36
	2007 Cold season	0.61	0.63	2.4	0.26	0.05 [0.02]	36/36	36/36
Air	2008 Warm season	1.7	1.7	7.1	0.50	0.04 [0.01]	37/37	37/37
(pg/m^3)	2008 Cold season	0.61	0.63	1.8	0.27	0.04 [0.01]	37/37	37/37
(pg/III)	2009 Warm season	1.7	1.8	6.5	0.38	0.04 [0.02]	37/37	37/37
	2009 Cold season	0.65	0.61	2.7	0.24	0.04 [0.02]	37/37	37/37
	2010 Warm season	1.5	1.5	6.2	0.44	0.02 [0.01]	37/37	37/37
	2010 Cold season	0.56	0.55	2.3	0.26	0.03 [0.01]	37/37	37/37
	2011 Warm season	1.5	1.5	5.2	0.28	0.07 [0.03]	35/35	35/35
	2011 Cold season	0.61	0.57	2.6	0.21	0.07 [0.03]	37/37	37/37
	2012 Warm season	1.4	1.6	6.7	0.34	0.08 [0.03]	36/36	36/36
	2012 Cold season	0.41	0.38	1.0	0.22	0.08 [0.03]	36/36	36/36
	2013 Warm season	1.4	1.5	4.7	0.36	0.03 [0.01]	36/36	36/36
	2013 Cold season	0.43	0.41	1.0	0.20	0.03 [0.01]	36/36	36/36
-	2016 Warm season	1.4	1.4	8.9	0.19	0.16 [0.06]	37/37	37/37
	2020 Warm season	0.79	0.8	2.6	0.15	0.10 [0.04]	37/37	37/37

⁽Note 2) *2: There is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

	36 %	Geometric	3.6 "			Quantification	Detection I	Frequenc
is-Nonachlor	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 36/36 36/36 36/36 36/36 36/36 37/37 37/37 Detection I Sample 102/102 35/35 34/34 37/37	Site
	2002	3.1	4.0	62	0.071	0.030 [0.010]		34/34
	2003 Warm season	12	15	220	0.81	0.026 [0.0088]		35/35
	2003 Cold season	2.7	3.5	23	0.18		34/34	34/34
	2004 Warm season	10	15	130	0.36	0.072 [0.024]		37/37
	2004 Cold season	2.7	4.4	28	0.087		37/37	37/37
	2005 Warm season	10	14	160	0.30	0.08 [0.03]		37/37
	2005 Cold season	1.6	1.6	34	0.08			37/37
	2006 Warm season	11	12	170	0.28	0.15 [0.05]	37/37	37/37
	2006 Cold season	2.4	2.0	41	tr(0.14)			37/37
	2007 Warm season	10	14	150	0.31	0.03 [0.01]		36/36
	2007 Cold season	1.6	1.7	22	0.09	0.03 [0.01]	36/36	36/36
Air	2008 Warm season	7.9	12	87	0.18	0.03 [0.01]		37/37
(pg/m^3)	2008 Cold season	2.0	2.7	19	0.16		37/37	37/37
(pg/III)	2009 Warm season	7.5	10	110	0.33	0.04 [0.02]	37/37	37/37
	2009 Cold season	1.9	2.1	18	0.07	0.04 [0.02]	37/37	37/37
	2010 Warm season	7.5	10	68	0.23	0.11 [0.04]	37/37	37/37
	2010 Cold season	1.8	2.1	13	tr(0.06)		37/37	37/37
	2011 Warm season	7.4	8.8	89	0.24	0.15 [0.051]		35/35
	2011 Cold season	1.9	2.9	28	nd		36/37	36/37
	2012 Warm season	6.9	11	89	0.29	0.12 [0.05]		36/36
	2012 Cold season	0.98	1.1	10	tr(0.05)	0.12 [0.03]	36/36	36/36
	2013 Warm season	6.4	10	72	0.15	0.07 [0.02]		36/36
	2013 Cold season	1.0	1.4	12	tr(0.06)		36/36	36/36
			0.0	100	. (0.10)	0 1 4 50 0 57	27/27	27/27
	2016 Warm season	6.1	9.9	120	tr(0.13)	0.14 [0.05]		
	2016 Warm season 2020 Warm season	3.1	3.4	120 24	0.13	0.09 [0.04]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 36/36 36/36 36/36 36/36 36/36 36/36 36/36 37/37 37/37 Detection Sample 102/102 35/35 34/34 37/37	37/37 37/37
trans- Nonachlor		3.1 Geometric				0.09 [0.04] Quantification [Detection]	37/37 Detection I	37/37 Frequen
	2020 Warm season Monitored year	3.1 Geometric mean	3.4 Median	24 Maximum	0.13 Minimum	0.09 [0.04] Quantification [Detection] limit	37/37 Detection I Sample	37/37 Frequen Site
	2020 Warm season Monitored year 2002	3.1 Geometric mean	3.4 Median	24 Maximum 550	0.13 Minimum 0.64	0.09 [0.04] Quantification [Detection]	37/37 Detection I Sample 102/102	37/37 Frequen Site 34/34
	2020 Warm season Monitored year 2002 2003 Warm season	3.1 Geometric mean 24 87	3.4 Median 30 100	24 Maximum 550 1,200	0.13 Minimum 0.64 5.1	0.09 [0.04] Quantification [Detection] limit	37/37 Detection I Sample 102/102 35/35	37/37 Frequen Site 34/34 35/35
	2020 Warm season Monitored year 2002 2003 Warm season 2003 Cold season	3.1 Geometric mean 24 87 24	3.4 Median 30 100 28	24 Maximum 550 1,200 180	0.13 Minimum 0.64 5.1 2.1	0.09 [0.04] Quantification [Detection] limit 0.30 [0.10]	37/37 Detection I Sample 102/102 35/35 34/34	37/37 Frequen Site 34/34 35/35 34/34
	2020 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season	3.1 Geometric mean 24 87 24 72	3.4 Median 30 100 28 120	24 Maximum 550 1,200 180 870	0.13 Minimum 0.64 5.1 2.1 1.9	0.09 [0.04] Quantification [Detection] limit 0.30 [0.10]	37/37 Detection I Sample 102/102 35/35 34/34 37/37	37/37 Frequen Site 34/34 35/35 34/34 37/37
	2020 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season	3.1 Geometric mean 24 87 24 72 23	3.4 Median 30 100 28 120 39	24 Maximum 550 1,200 180 870 240	0.13 Minimum 0.64 5.1 2.1 1.9 0.95	0.09 [0.04] Quantification [Detection] limit 0.30 [0.10] 0.35 [0.12]	37/37 Detection I Sample 102/102 35/35 34/34 37/37 37/37	37/37 Frequen Site 34/34 35/35 34/34 37/37 37/37
	2020 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season	3.1 Geometric mean 24 87 24 72 23 75	3.4 Median 30 100 28 120 39 95	24 Maximum 550 1,200 180 870 240 870	0.13 Minimum 0.64 5.1 2.1 1.9 0.95 3.1	0.09 [0.04] Quantification [Detection] limit 0.30 [0.10] 0.35 [0.12]	37/37 Detection I Sample 102/102 35/35 34/34 37/37 37/37 37/37	37/37 Frequen Site 34/34 35/35 34/34 37/37 37/37
	2020 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Warm season 2005 Cold season	3.1 Geometric mean 24 87 24 72 23 75 13	3.4 Median 30 100 28 120 39 95 16	24 Maximum 550 1,200 180 870 240 870 210	0.13 Minimum 0.64 5.1 2.1 1.9 0.95 3.1 1.2	0.09 [0.04] Quantification [Detection] limit 0.30 [0.10] 0.35 [0.12] 0.48 [0.16] 0.13 [0.044]	37/37 Detection I Sample 102/102 35/35 34/34 37/37 37/37 37/37	37/37 Frequen Site 34/34 35/35 34/34 37/37 37/37 37/37
	2020 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2005 Cold season 2006 Warm season	3.1 Geometric mean 24 87 24 72 23 75 13 68	3.4 Median 30 100 28 120 39 95 16 91	24 Maximum 550 1,200 180 870 240 870 210 800	0.13 Minimum 0.64 5.1 2.1 1.9 0.95 3.1 1.2 3.0	0.09 [0.04] Quantification [Detection] limit 0.30 [0.10] 0.35 [0.12] 0.48 [0.16]	37/37 Detection I Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37	37/37 Frequen Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37
	2020 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Warm season	3.1 Geometric mean 24 87 24 72 23 75 13 68 16	3.4 Median 30 100 28 120 39 95 16 91 15	24 Maximum 550 1,200 180 870 240 870 210 800 240	0.13 Minimum 0.64 5.1 2.1 1.9 0.95 3.1 1.2 3.0 1.4	0.09 [0.04] Quantification [Detection] limit 0.30 [0.10] 0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03]	37/37 Detection I Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37	37/37 Frequen Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37
	2020 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Warm season 2006 Warm season 2007 Warm season	3.1 Geometric mean 24 87 24 72 23 75 13 68 16 72	3.4 Median 30 100 28 120 39 95 16 91 15 96	24 Maximum 550 1,200 180 870 240 870 210 800 240 940	0.13 Minimum 0.64 5.1 2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5	0.09 [0.04] Quantification [Detection] limit 0.30 [0.10] 0.35 [0.12] 0.48 [0.16] 0.13 [0.044]	37/37 Detection I Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36	37/37 Frequen Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36
	2020 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Warm season	3.1 Geometric mean 24 87 24 72 23 75 13 68 16 72 13	3.4 Median 30 100 28 120 39 95 16 91 15 96 15	24 Maximum 550 1,200 180 870 240 870 210 800 240 940 190	0.13 Minimum 0.64 5.1 2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5 1.1	0.09 [0.04] Quantification [Detection] limit 0.30 [0.10] 0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03]	37/37 Detection I Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36	37/37 Frequen Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36
	2020 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Warm season 2007 Warm season 2007 Warm season 2007 Warm season 2008 Warm season	3.1 Geometric mean 24 87 24 72 23 75 13 68 16 72 13 59	3.4 Median 30 100 28 120 39 95 16 91 15 96 15	24 Maximum 550 1,200 180 870 240 870 210 800 240 940 190 650	0.13 Minimum 0.64 5.1 2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5 1.1 1.5	0.09 [0.04] Quantification [Detection] limit 0.30 [0.10] 0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03]	37/37 Detection I Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37	37/37 Frequen Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37
Nonachlor	2020 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2006 Cold season 2007 Warm season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season	3.1 Geometric mean 24 87 24 72 23 75 13 68 16 72 13 59 17	3.4 Median 30 100 28 120 39 95 16 91 15 96 15 91 25	24 Maximum 550 1,200 180 870 240 870 210 800 240 940 190 650 170	0.13 Minimum 0.64 5.1 2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5 1.1 1.5 1.3	0.09 [0.04] Quantification [Detection] limit 0.30 [0.10] 0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03]	37/37 Detection I Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37	37/37 Frequen Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37
Nonachlor Air	2020 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2006 Warm season 2007 Warm season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Warm season 2008 Warm season 2009 Warm season	3.1 Geometric mean 24 87 24 72 23 75 13 68 16 72 13 59 17	3.4 Median 30 100 28 120 39 95 16 91 15 96 15 91 25 81	24 Maximum 550 1,200 180 870 240 870 210 800 240 940 190 650 170 630	0.13 Minimum 0.64 5.1 2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5 1.1 1.5 1.3 2.2	0.09 [0.04] Quantification [Detection] limit 0.30 [0.10] 0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03]	37/37 Detection I Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37	37/37 Frequen Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37
Nonachlor	2020 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Cold season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Warm season 2009 Warm season 2009 Cold season	3.1 Geometric mean 24 87 24 72 23 75 13 68 16 72 13 59 17 54 16	3.4 Median 30 100 28 120 39 95 16 91 15 96 15 91 25 81	24 Maximum 550 1,200 180 870 240 870 210 800 240 940 190 650 170 630 140	0.13 Minimum 0.64 5.1 2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5 1.1 1.5 1.3 2.2 0.75	0.09 [0.04] Quantification [Detection] limit 0.30 [0.10] 0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03] 0.09 [0.03] 0.07 [0.03]	37/37 Detection I Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37	37/37 Frequen Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37
Nonachlor Air	2020 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Warm season 2009 Cold season 2009 Cold season 2009 Warm season 2009 Warm season 2009 Cold season	3.1 Geometric mean 24 87 24 72 23 75 13 68 16 72 13 59 17 54 16 52	3.4 Median 30 100 28 120 39 95 16 91 15 96 15 91 25 81 19 78	24 Maximum 550 1,200 180 870 240 870 210 800 240 940 190 650 170 630 140 520	0.13 Minimum 0.64 5.1 2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5 1.1 1.5 1.3 2.2 0.75	0.09 [0.04] Quantification [Detection] limit 0.30 [0.10] 0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03]	37/37 Detection I Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37	37/37 Frequen Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 36/36 37/37 37/37 37/37 37/37 37/37 37/37
Nonachlor	2020 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Warm season 2008 Warm season 2008 Warm season 2008 Warm season 2009 Cold season 2009 Warm season 2009 Warm season 2010 Warm season 2010 Warm season	3.1 Geometric mean 24 87 24 72 23 75 13 68 16 72 13 59 17 54 16 52 15	3.4 Median 30 100 28 120 39 95 16 91 15 96 15 91 25 81 19 78	24 Maximum 550 1,200 180 870 240 870 210 800 240 940 190 650 170 630 140 520 89	0.13 Minimum 0.64 5.1 2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5 1.1 1.5 1.3 2.2 0.75 1.7 tr(0.7)	0.09 [0.04] Quantification [Detection] limit 0.30 [0.10] 0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03] 0.09 [0.03] 0.07 [0.03]	37/37 Detection I Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37	37/37 Frequen Site 34/34 35/35 34/34 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37
Nonachlor Air	2020 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2009 Warm season 2009 Cold season 2010 Warm season 2010 Warm season 2010 Warm season 2010 Cold season 2010 Warm season 2010 Cold season	3.1 Geometric mean 24 87 24 72 23 75 13 68 16 72 13 59 17 54 16 52 15 53	3.4 Median 30 100 28 120 39 95 16 91 15 96 15 91 25 81 19 78 17	24 Maximum 550 1,200 180 870 240 870 210 800 240 940 190 650 170 630 140 520 89 550	0.13 Minimum 0.64 5.1 2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5 1.1 1.5 1.3 2.2 0.75 1.7 tr(0.7) 1.2	0.09 [0.04] Quantification [Detection] limit 0.30 [0.10] 0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03] 0.09 [0.03] 0.07 [0.03]	37/37 Detection I Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37	37/37 Frequen Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37
Nonachlor Air	2020 Warm season Monitored year 2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Warm season 2008 Warm season 2008 Warm season 2009 Warm season 2009 Cold season 2009 Warm season 2010 Warm season 2010 Warm season 2010 Warm season 2011 Warm season 2011 Cold season	3.1 Geometric mean 24 87 24 72 23 75 13 68 16 72 13 59 17 54 16 52 15 53 16	3.4 Median 30 100 28 120 39 95 16 91 15 96 15 91 25 81 19 78 17 72 24	24 Maximum 550 1,200 180 870 240 870 210 800 240 940 190 650 170 630 140 520 89 550 210	0.13 Minimum 0.64 5.1 2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5 1.1 1.5 1.3 2.2 0.75 1.7 tr(0.7) 1.2 tr(0.70)	0.09 [0.04] Quantification [Detection] limit 0.30 [0.10] 0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03] 0.09 [0.03] 0.07 [0.03] 0.8 [0.3]	37/37 Detection I Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37	37/37 Frequen Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37
Nonachlor	2020 Warm season Monitored year 2002 2003 Warm season 2004 Cold season 2004 Cold season 2005 Cold season 2006 Warm season 2006 Warm season 2007 Cold season 2007 Warm season 2008 Warm season 2008 Warm season 2009 Cold season 2009 Warm season 2009 Uarm season 2010 Warm season 2010 Warm season 2010 Warm season 2011 Warm season 2011 Cold season 2011 Cold season 2011 Cold season	3.1 Geometric mean 24 87 24 72 23 75 13 68 16 72 13 59 17 54 16 52 15 53 16 49	3.4 Median 30 100 28 120 39 95 16 91 15 96 15 91 25 81 19 78 17 72 24	24 Maximum 550 1,200 180 870 240 870 210 800 240 940 190 650 170 630 140 520 89 550 210 510	0.13 Minimum 0.64 5.1 2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5 1.1 1.5 1.3 2.2 0.75 1.7 tr(0.7) 1.2 tr(0.70) 2.5	0.09 [0.04] Quantification [Detection] limit 0.30 [0.10] 0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03] 0.09 [0.03] 0.07 [0.03] 0.8 [0.3]	37/37 Detection I Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36	37/37 Frequen Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37
Nonachlor	2020 Warm season Monitored year 2002 2003 Warm season 2004 Cold season 2004 Cold season 2005 Cold season 2006 Warm season 2006 Warm season 2007 Cold season 2007 Cold season 2008 Warm season 2008 Warm season 2009 Cold season 2009 Warm season 2010 Warm season 2010 Warm season 2011 Warm season 2011 Cold season 2011 Cold season 2011 Warm season 2011 Cold season 2012 Warm season 2012 Warm season	3.1 Geometric mean 24 87 24 72 23 75 13 68 16 72 13 59 17 54 16 52 15 53 16 49 8.1	3.4 Median 30 100 28 120 39 95 16 91 15 96 15 91 25 81 19 78 17 72 24 79 10	24 Maximum 550 1,200 180 870 240 870 210 800 240 940 190 650 170 630 140 520 89 550 210 61	0.13 Minimum 0.64 5.1 2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5 1.1 1.5 1.3 2.2 0.75 1.7 tr(0.7) 1.2 tr(0.70) 2.5 tr(0.50)	0.09 [0.04] Quantification [Detection] limit 0.30 [0.10] 0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03] 0.09 [0.03] 0.07 [0.03] 0.8 [0.3] 1.1 [0.35]	37/37 Detection I Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36	37/37 Frequen Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36
Nonachlor	2020 Warm season Monitored year 2002 2003 Warm season 2004 Cold season 2004 Cold season 2005 Warm season 2005 Warm season 2006 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2009 Cold season 2010 Warm season 2010 Warm season 2010 Warm season 2011 Cold season 2011 Cold season 2011 Cold season 2012 Warm season 2012 Warm season 2012 Cold season 2012 Warm season 2012 Cold season	3.1 Geometric mean 24 87 24 72 23 75 13 68 16 72 13 59 17 54 16 52 15 53 16 49 8.1 46	3.4 Median 30 100 28 120 39 95 16 91 15 96 15 91 25 81 19 78 17 72 24 79 10 78	24 Maximum 550 1,200 180 870 240 870 210 800 240 940 190 650 170 630 140 520 89 550 210 510 61 470	0.13 Minimum 0.64 5.1 2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5 1.1 1.5 1.3 2.2 0.75 1.7 tr(0.70) 2.5 tr(0.50) 1.2	0.09 [0.04] Quantification [Detection] limit 0.30 [0.10] 0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03] 0.09 [0.03] 0.07 [0.03] 0.8 [0.3] 1.1 [0.35]	37/37 Detection I Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36 36/36	37/37 Frequen Site 34/34 35/35 34/34 37/37 36/36 36/36 36/36
Nonachlor	2020 Warm season Monitored year 2002 2003 Warm season 2004 Cold season 2004 Cold season 2005 Cold season 2006 Warm season 2006 Warm season 2007 Cold season 2007 Cold season 2008 Warm season 2008 Warm season 2009 Cold season 2009 Warm season 2010 Warm season 2010 Warm season 2011 Warm season 2011 Cold season 2011 Cold season 2011 Warm season 2011 Cold season 2012 Warm season 2012 Warm season	3.1 Geometric mean 24 87 24 72 23 75 13 68 16 72 13 59 17 54 16 52 15 53 16 49 8.1	3.4 Median 30 100 28 120 39 95 16 91 15 96 15 91 25 81 19 78 17 72 24 79 10	24 Maximum 550 1,200 180 870 240 870 210 800 240 940 190 650 170 630 140 520 89 550 210 61	0.13 Minimum 0.64 5.1 2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5 1.1 1.5 1.3 2.2 0.75 1.7 tr(0.7) 1.2 tr(0.70) 2.5 tr(0.50)	0.09 [0.04] Quantification [Detection] limit 0.30 [0.10] 0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03] 0.09 [0.03] 0.07 [0.03] 0.8 [0.3] 1.1 [0.35] 1.2 [0.41]	37/37 Detection I Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 36/36 36/36	37/37 Frequen

(Note) No monitoring was conducted in FY2014, FY2015 and FY2017 \sim 2019.

[8] Heptachlors (references)

· History and state of monitoring

Heptachlor and its metabolite, Heptachlor epoxide, used to kill soil insects and termites, heptachlor has also been used more widely to kill cotton insects, grasshoppers, other crop pests, and malaria-carrying mosquitoes. The substances were not registrated under the Agricultural Chemicals Regulation Law in FY1975. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 1986, since it includes the technical chlordane used as a termitecide. Also Heptachlors are one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series before FY2001, Heptachlor and Heptachlor epoxide were measured in FY1982 (in surface water, sediment and fish) and in FY1986 (in air) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Heptachlor in surface water sediment wildlife (bibalves, fish and birds) and air had been monitored since FY2002, and *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide had also been monitored since FY2003, every year through FY2011. After FY2012, the substances have been monitored in surface water and sediment in FY2014 FY2017 and FY2020, and in wildlife (bivalves, fish and birds) and air in FY2012 FY2013 FY2015 FY2016 and FY2020.

No monitoring was conducted after FY2021. For reference, the monitoring results up to FY2020 are given below.

Monitoring results until FY2020

<Surface Water>

Stocktaking of the detection of Heptachlor, *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide in surface water during FY2002 ~ 2020

	Monitored	Geometric				Quantification	Detection 1	Frequency
Heptachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(1.2)	tr(1.0)	25	nd	1.5 [0.5]	97/114	38/38
	2003	tr(1.8)	tr(1.6)	7	tr(1.0)	2 [0.5]	36/36	36/36
	2004	nd	nd	29	nd	5 [2]	9/38	9/38
	2005	nd	tr(1)	54	nd	3 [1]	25/47	25/47
	2006	nd	nd	6	nd	5 [2]	5/48	5/48
Surface Water	2007	nd	nd	5.2	nd	2.4 [0.8]	12/48	12/48
	2008	nd	nd	4.6	nd	2.1 [0.8]	19/48	19/48
(pg/L)	2009	tr(0.5)	nd	17	nd	0.8 [0.3]	20/49	20/49
	2010	nd	nd	43	nd	2.2 [0.7]	4/49	4/49
	2011	nd	nd	22	nd	1.3 [0.5]	6/49	6/49
	2014	tr(0.2)	tr(0.2)	1.5	nd	0.5 [0.2]	28/48	28/48
	2017	nd	nd	6	nd	3 [1]	2/47	2/47
	2020	nd	nd	tr(2)	nd	3 [1]	5/46	5/46
oia Homtooblan	Monitored	Caamatuia				Quantification	Detection	Frequency
cis-Heptachlor epoxide	year	Geometric mean *	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	9.8	11	170	1.2	0.7 [0.2]	36/36	36/36
	2004	10	10	77	2	2 [0.4]	38/38	38/38
	2005	7.1	6.6	59	1.0	0.7 [0.2]	47/47	47/47
	2006	7.6	6.6	47	1.1	2.0 [0.7]	48/48	48/48
	2007	6.1	5.8	120	tr(0.9)	1.3 [0.4]	48/48	48/48
Surface Water	2008	4.7	5.0	37	nd	0.6 [0.2]	46/48	46/48
(pg/L)	2009	5.5	4.2	72	0.8	0.5 [0.2]	49/49	49/49
	2010	5.9	3.9	710	0.7	0.4 [0.2]	49/49	49/49
	2011	5.8	5.8	160	0.7	0.7 [0.3]	49/49	49/49
	2014	4.9	3.4	56	0.7	0.5 [0.2]	48/48	48/48
	2017	4.7	3.5	83	nd	1.6 [0.6]	46/47	46/47
	2020	4.0	3.4	36	nd	2.3 [0.9]	44/46	44/46

trans-Heptachlor	Monitored	Geometric				Quantification	Detection I	requency
epoxide	year	mean *	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	2	nd	2 [0.4]	4/36	4/36
	2004	nd	nd	nd	nd	0.9 [0.3]	0/38	0/38
	2005	nd	nd	nd	nd	0.7 [0.2]	0/47	0/47
	2006	nd	nd	nd	nd	1.8 [0.6]	0/48	0/48
	2007	nd	nd	tr(0.9)	nd	2.0 [0.7]	2/48	2/48
Surface Water	2008	nd	nd	nd	nd	1.9 [0.7]	0/48	0/48
(pg/L)	2009	nd	nd	nd	nd	0.7 [0.3]	0/49	0/49
	2010	nd	nd	8.0	nd	1.3 [0.5]	2/49	2/49
	2011	nd	nd	2.8	nd	0.8 [0.3]	3/49	3/49
	2014	nd	nd	nd	nd	0.8 [0.3]	0/48	0/48
	2017	nd	nd	nd	nd	2.3 [0.9]	0/47	0/47
	2020	nd	nd	nd	nd	1.9 [0.7]	0/46	0/46

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Stocktaking of the detection of Heptachlor, cis-Heptachlor epoxide and trans-Heptachlor epoxide in sediment during FY2002 \sim 2020

uring F Y 2002 ~ 2		Geometric				Quantification	Detection	Frequency
Heptachlor	year	mean *	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	4.1	3.2	120	nd	1.8 [0.6]	167/189	60/63
	2003	tr(2.7)	tr(2.2)	160	nd	3 [1.0]	138/186	53/62
	2004	tr(2.8)	tr(2.3)	170	nd	3 [0.9]	134/189	53/63
	2005	3.1	2.8	200	nd	2.5 [0.8]	120/189	48/63
	2006	5.2	3.9	230	nd	1.9 [0.6]	190/192	64/64
G 1' 4	2007	tr(1.8)	tr(1.5)	110	nd	3.0 [0.7]	143/192	57/64
Sediment	2008	tr(1)	nd	85	nd	4 [1]	59/192	27/64
(pg/g-dry)	2009	1.6	1.3	65	nd	1.1 [0.4]	144/192	59/64
	2010	1.2	tr(0.8)	35	nd	1.1 [0.4]	51/64	51/64
	2011	tr(1.3)	tr(1.2)	48	nd	1.8 [0.7]	40/64	40/64
	2014	tr(1.0)	tr(0.9)	49	nd	1.5 [0.5]	38/63	38/63
	2017	1.2	1.1	40	nd	0.9 [0.3]	53/62	53/62
	2020	0.7	0.6	52	nd	0.4 [0.2]	43/58	43/58
						Quantification	Detection	
cis-Heptachlor	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		
epoxide	year	mean *	Modium	TVI GALIFICATII	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	limit	Sample	Site
	2003	4	3	160	nd	3 [1]	153/186	55/62
	2003	tr(5)	tr(3)	230	nd	6 [2]	136/189	52/63
	2005	tr(4)	tr(3)	140	nd	7 [2]	119/189	49/63
	2006	4.0	3.2	210	nd	3.0 [1.0]	157/192	58/64
	2007	3	tr(2)	270	nd	3 [1]	141/192	53/64
Sediment	2008	3	2	180	nd	2[1]	130/192	51/64
(pg/g-dry)	2009	2.7	1.9	290	nd	0.7 [0.3]	176/192	63/64
(pg/g-dry)	2010	3.1	2.4	300	nd	0.8 [0.3]	62/64	62/64
	2011	2.8	2.5	160	nd	0.6 [0.2]	63/64	63/64
	2014	2.1	1.7	310	nd	0.5 [0.2]	59/63	59/63
	2017	1.9	1.6	150	nd	1.2 [0.5]	51/62	51/62
	2020	tr(1.5)	tr(1.2)	110	nd	1.7 [0.7]	40/58	40/58
	2020	u(1.5)	u(1.2)	110	IIU	Quantification	Detection	
trans-Heptachlor	Monitored	Geometric	Median	Maximum	Minimum	-	Detection	rrequency
epoxide	year	mean *	Median	Maximum	Millimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	9 [3]	0/186	0/62
	2004	nd	nd	tr(2.5)	nd	4 [2]	1/189	1/63
	2005	nd	nd	nď	nd	5 [2]	0/189	0/63
	2006	nd	nd	19	nd	7 [2]	2/192	2/64
	2007	nd	nd	31	nd	10 [4]	2/192	2/64
Sediment	2008	nd	nd	nd	nd	1.7 [0.7]	0/192	0/64
(pg/g-dry)	2009	nd	nd	nd	nd	1.4 [0.6]	0/192	0/64
	2010	nd	nd	4	nd	3 [1]	1/64	1/64
	2011	nd	nd	2.4	nd	2.3 [0.9]	2/64	2/64
	2014	nd	nd	3.6	nd	0.7 [0.3]	1/63	1/63
	2017	nd	nd	nd	nd	2.0 [0.8]	0/62	0/62
	2020	nd	nd	1.4	nd	1.0 [0.4]	1/58	1/58

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~ 2009.

(Note 2) No monitoring was conducted in FY2012, 2013, FY2015, FY2016, FY2018 and FY2019.

⁽Note 2) No monitoring was conducted in FY2012, 2013, FY2015, FY2016, FY2018 and FY2019.

<Wildlife>

Stocktaking of the detection of Heptachlor, cis-Heptachlor epoxide and trans-Heptachlor epoxide in wildlife (bivalves, fish and birds) during FY2002 \sim 2020

varves, fish and		Geometric				Quantification	Detection I	Frequency
Heptachlor	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(3.5)	4.6	15	nd	4.2 [1.4]	28/38	6/8
	2003	tr(2.8)	tr(2.4)	14	nd	6.6 [2.2]	16/30	4/6
	2004	tr(3.4)	5.2	16	nd	4.1 [1.4]	23/31	6/7
	2005	tr(2.9)	tr(2.9)	24	nd	6.1 [2.0]	18/31	6/7
	2006	tr(4)	tr(4)	20	nd	6 [2]	23/31	6/7
	2007	tr(3)	tr(3)	12	nd	6 [2]	20/31	6/7
Bivalves	2008	tr(2)	nd	9	nd	6 [2]	13/31	5/7
(pg/g-wet)	2009	tr(4)	nd	120	nd	5 [2]	14/31	4/7
(188)	2010	3	tr(2)	78	nd	3 [1]	5/6	5/6
	2011	4	4	51	nd	3 [1]	3/4	3/4
	2012	tr(3)	tr(3)	13	nd	4[1]	4/5	4/5
	2013	3	tr(2)	19	nd	3 [1]	4/5	4/5
	2015	nd	nd	tr(1.7)	nd	3.0 [1.0]	1/3	1/3
	2016	nd	nd 1	tr(1.4)	nd 1	2.4 [0.9]	1/3	1/3
	2020	nd 4.2	nd 4 0	tr(2)	nd	3 [1]	1/3	1/3
	2002 2003	4.2 nd	4.8	20 11	nd nd	4.2 [1.4]	57/70 29/70	12/14 8/14
	2003	na tr(2.3)	nd tr(2.1)	460	nd nd	6.6 [2.2]	29/70 50/70	8/14 11/14
	2004	ur(2.3) nd	ır(2.1) nd	7.6	na nd	4.1 [1.4] 6.1 [2.0]	30/70	8/16
	2003	tr(2)	nd	8	nd	6 [2]	36/80	8/16
	2007	tr(2)	nd	8 7	nd	6 [2] 6 [2]	28/80	6/16
	2007	nd	nd	9	nd	6 [2]	25/85	7/17
Fish	2009	tr(2)	nd	8	nd	5 [2]	30/90	11/18
(pg/g-wet)	2010	tr(2)	tr(2)	5	nd	3 [1]	12/18	12/18
	2010	tr(1)	tr(1)	7	nd	3 [1]	13/18	13/18
	2012	nd	tr(1)	5	nd	4[1]	10/19	10/19
	2013	nd	nd	12	nd	3 [1]	9/19	9/19
	2015	nd	nd	9.2	nd	3.0 [1.0]	9/19	9/19
	2016	nd	nd	5.5	nd	2.4 [0.9]	8/19	8/19
	2020	nd	nd	6	nd	3 [1]	6/18	6/18
	2002	tr(1.7)	tr(2.8)	5.2	nd	4.2 [1.4]	7/10	2/2
	2003	nd	nd	nd	nd	6.6 [2.2]	0/10	0/2
	2004	nd	nd	tr(1.5)	nd	4.1 [1.4]	1/10	1/2
	2005	nd	nd	nd	nd	6.1 [2.0]	0/10	0/2
	2006	nd	nd	nd	nd	6 [2]	0/10	0/2
	2007	nd	nd	nd	nd	6 [2]	0/10	0/2
Birds *2	2008	nd	nd	nd	nd	6 [2]	0/10	0/2
(pg/g-wet)	2009	nd	nd	nd	nd	5 [2]	0/10	0/2
(pg/g-wet)	2010	nd		tr(1)	nd	3 [1]	1/2	1/2
	2011			nd	nd	3 [1]	0/1	0/1
	2012	nd		nd	nd	4 [1]	0/2	0/2
	2013	nd		nd	nd	3 [1]	0/2	0/2
	2015			nd	nd	3.0 [1.0]	0/1	0/1
	2016	nd		nd	nd	2.4 [0.9]	0/2	0/2
	2020			nd	nd	3 [1]	0/1	0/1
cis-Heptachlor	Monitored	Geometric	37. 11		3.61	Quantification	Detection I	requency
epoxide	year	mean *1	Median	Maximum	Minimum	[Detection]	Sample	Site
1			20	000	0.7	limit		
	2003	44	29	880	9.7	6.9 [2.3]	30/30	6/6
	2004	64	34	840	tr(9.8)	9.9 [3.3]	31/31	7/7
	2005	49 5.0	20	590	7.4	3.5 [1.2]	31/31	7/7
	2006 2007	56 37	23 20	1,100	8	4 [1]	31/31	7/7 7/7
				1,100	8	4 [1]	31/31	
Divolves	2008 2009	37 59	19 33	510 380	8	5 [2]	31/31	7/7 7/7
Bivalves					10	3 [1]	31/31	
(pg/g-wet)	2010 2011	170 55	260	1,800	9.0 3.9	2.4 [0.9]	6/6 4/4	6/6 4/4
	2011	55 48	110	320		2.0 [0.8]	4/4 5/5	4/4 5/5
	2012	48 28	120 29	180	6.2	1.5 [0.6]		
	2013	28 21	29 14	110 91	4.4	2.1 [0.8]	5/5 3/3	5/5 3/3
	2015	21 23	14	75	7.2 9.4	2.1 [0.8] 1.9 [0.7]	3/3	3/3
	2016	23 28	48	73 96	9.4 5		3/3	3/3
	2020	۷٥	40	90	J	3 [1]	3/3	3/3

cis-Heptachlor	Monitored	Geometric				Quantification	Detection 1	Frequency
epoxide	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	43	43	320	7.0	6.9 [2.3]	70/70	14/14
	2004	51	49	620	tr(3.3)	9.9 [3.3]	70/70	14/14
	2005	41	45	390	4.9	3.5 [1.2]	80/80	16/16
	2006	42	48	270	4	4 [1]	80/80	16/16
	2007	43	49	390	4	4 [1]	80/80	16/16
	2008	39	46	350	tr(3)	5 [2]	85/85	17/17
Fish	2009	41	50	310	4	3 [1]	90/90	18/18
(pg/g-wet)	2010	39	49	230	5.0	2.4 [0.9]	18/18	18/18
	2011	50	62	540	3.2	2.0 [0.8]	18/18	18/18
	2012	41	62	120	6.9	1.5 [0.6]	19/19	19/19
	2013	42	46	190	7.3	2.1 [0.8]	19/19	19/19
	2015	33	43	190	3.2	2.1 [0.8]	19/19	19/19
	2016	29	28	130	3.6	1.9 [0.7]	19/19	19/19
	2020	24	32	320	tr(2)	3 [1]	18/18	18/18
	2003	540	510	770	370	6.9 [2.3]	10/10	2/2
	2004	270	270	350	190	9.9 [3.3]	10/10	2/2
	2005	370	340	690	250	3.5 [1.2]	10/10	2/2
	2006	330	310	650	240	4 [1]	10/10	2/2
	2007	280	270	350	250	4 [1]	10/10	2/2
*2	2008	370	370	560	180	5 [2]	10/10	2/2
Birds *2	2009	220	210	390	160	3 [1]	10/10	2/2
(pg/g-wet)	2010	290		360	240	2.4 [0.9]	2/2	2/2
	2011	1.60		410	410	2.0 [0.8]	1/1	1/1
	2012	160		170	150	1.5 [0.6]	2/2	2/2
	2013	300		560	160	2.1 [0.8]	2/2	2/2
	2015			20	20	2.1 [0.8]	1/1	1/1
	2016	91		270	31	1.9 [0.7]	2/2	2/2
	2020			270	270	3 [1] Quantification	1/1	1/1
trans-Heptachlor	Monitored		Median	Maximum	Minimum	[Detection]	Detection 1	rrequency
epoxide	year	mean *1	Median	Iviaxiiiiuiii	Millimum	limit	Sample	Site
	2003	nd	nd	48	nd	13 [4.4]	5/30	1/6
	2004	nd	nd	55	nd	12 [4.0]	9/31	2/7
	2005	nd	nd	37	nd	23 [7.5]	5/31	1/7
	2006	nd	nd	45	nd	13 [5]	5/31	1/7
	2007	nd	nd	61	nd	13 [5]	5/31	1/7
	2008	nd	nd	33	nd	10 [4]	5/31	1/7
Bivalves	2009	tr(3)	nd	24	nd	8 [3]	13/31	3/7
(pg/g-wet)	2010	3	tr(2)	24	nd	3 [1]	3/6	3/6
	2011	nd	nd	tr(6)	nd	7 [3]	1/4	1/4
	2012	nd	nd	tr(4)	nd	8 [3]	1/5	1/5
	2013	nd	nd	nd	nd	7 [3]	0/5	0/5
	2015	nd	nd	nd	nd	7 [3]	0/3	0/3
	2016	nd	nd	nd	nd	9 [3]	0/3	0/3
		nd	nd	nd	nd	9 [4]	0/3	0/3
	2020							0./1.4
	2003	nd	nd	nd	nd	13 [4.4]	0/70	0/14
	2003 2004	nd nd	nd nd	tr(10)	nd	12 [4.0]	2/70	2/14
	2003 2004 2005	nd nd nd	nd nd nd	tr(10) nd	nd nd	12 [4.0] 23 [7.5]	2/70 0/80	2/14 0/16
	2003 2004 2005 2006	nd nd nd nd	nd nd nd nd	tr(10) nd nd	nd nd nd	12 [4.0] 23 [7.5] 13 [5]	2/70 0/80 0/80	2/14 0/16 0/16
	2003 2004 2005 2006 2007	nd nd nd nd nd	nd nd nd nd nd	tr(10) nd nd nd	nd nd nd nd	12 [4.0] 23 [7.5] 13 [5] 13 [5]	2/70 0/80 0/80 0/80	2/14 0/16 0/16 0/16
T. 1	2003 2004 2005 2006 2007 2008	nd nd nd nd nd nd	nd nd nd nd nd nd	tr(10) nd nd nd nd	nd nd nd nd nd	12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4]	2/70 0/80 0/80 0/80 0/85	2/14 0/16 0/16 0/16 0/17
Fish	2003 2004 2005 2006 2007 2008 2009	nd nd nd nd nd nd	nd nd nd nd nd nd	tr(10) nd nd nd nd	nd nd nd nd nd	12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3]	2/70 0/80 0/80 0/80 0/85 0/90	2/14 0/16 0/16 0/16 0/17 0/18
Fish (pg/g-wet)	2003 2004 2005 2006 2007 2008 2009 2010	nd nd nd nd nd nd nd	nd nd nd nd nd nd nd	tr(10) nd nd nd nd nd	nd nd nd nd nd nd	12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1]	2/70 0/80 0/80 0/80 0/85 0/90 0/18	2/14 0/16 0/16 0/16 0/17 0/18 0/18
	2003 2004 2005 2006 2007 2008 2009 2010 2011	nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd	tr(10) nd nd nd nd nd nd	nd nd nd nd nd nd nd	12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3]	2/70 0/80 0/80 0/80 0/85 0/90 0/18	2/14 0/16 0/16 0/16 0/17 0/18 0/18 0/18
	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012	nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd	tr(10) nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd	12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3]	2/70 0/80 0/80 0/80 0/85 0/90 0/18 0/18	2/14 0/16 0/16 0/16 0/17 0/18 0/18 0/18 0/19
	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013	nd	nd	tr(10) nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd	12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3]	2/70 0/80 0/80 0/80 0/85 0/90 0/18 0/18 0/19	2/14 0/16 0/16 0/16 0/17 0/18 0/18 0/18 0/19 0/19
	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015	nd	nd	tr(10) nd nd nd nd nd nd nd nd nd	nd	12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 7 [3]	2/70 0/80 0/80 0/80 0/85 0/90 0/18 0/18 0/19 0/19 5/19	2/14 0/16 0/16 0/16 0/17 0/18 0/18 0/18 0/19 0/19 5/19
	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013	nd	nd	tr(10) nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd	12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3]	2/70 0/80 0/80 0/80 0/85 0/90 0/18 0/18 0/19	2/14 0/16 0/16 0/16 0/17 0/18 0/18 0/18 0/19 0/19

tuana Hantaahlan	Monitored	Geometric				Quantification	Detection I	requency
trans-Heptachlor epoxide	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	13 [4.4]	0/10	0/2
	2004	nd	nd	nd	nd	12 [4.0]	0/10	0/2
	2005	nd	nd	nd	nd	23 [7.5]	0/10	0/2
	2006	nd	nd	nd	nd	13 [5]	0/10	0/2
	2007	nd	nd	nd	nd	13 [5]	0/10	0/2
	2008	nd	nd	nd	nd	10 [4]	0/10	0/2
Birds *2	2009	nd	nd	nd	nd	8 [3]	0/10	0/2
(pg/g-wet)	2010	nd		nd	nd	3 [1]	0/2	0/2
	2011			nd	nd	7 [3]	0/1	0/1
	2012	nd		nd	nd	8 [3]	0/2	0/2
	2013	nd		tr(5)	nd	7 [3]	1/2	1/2
	2015			nd	nd	7 [3]	0/1	0/1
	2016	nd		nd	nd	9 [3]	0/2	0/2
	2020			nd	nd	9 [4]	0/1	0/1

⁽Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~ 2009.

<Air>

Stocktaking of the detection of Heptachlor, cis-Heptachlor epoxide and trans-Heptachlor epoxide in air during $FY2002 \sim 2020$

		Geometric				Quantification	Detection I	Frequency
Heptachlor	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	11	14	220	0.20	0.12 [0.04]	102/102	34/34
	2003 Warm season	27	41	240	1.1	0.25 [0.095]	35/35	35/35
	2003 Cold season	10	16	65	0.39	0.25 [0.085]	34/34	34/34
	2004 Warm season	23	36	200	0.46	0.23 [0.078]	37/37	37/37
	2004 Cold season	11	18	100	0.53	0.23 [0.078]	37/37	37/37
	2005 Warm season	25	29	190	1.1	0.16 [0.054]	37/37	37/37
	2005 Cold season	6.5	7.9	61	0.52	0.10 [0.034]	37/37	37/37
	2006 Warm season	20	27	160	0.88	0 11 [0 04]	37/37	37/37
	2006 Cold season	6.8	7.2	56	0.32	0.11 [0.04]	37/37	37/37
	2007 Warm season	22	27	320	1.1	0.07.00.021	36/36	36/36
	2007 Cold season	6.3	8.0	74	0.42	0.07 [0.03]	36/36	36/36
	2008 Warm season	20	31	190	0.92	0.06.00.021	37/37	37/37
Air	2008 Cold season	7.5	12	60	0.51	0.06 [0.02]	37/37	37/37
(pg/m^3)	2009 Warm season	18	30	110	0.48	0.04.0.013	37/37	37/37
	2009 Cold season	6.3	7.8	48	0.15	0.04 [0.01]	37/37	37/37
	2010 Warm season	17	26	160	0.69	0.11.50.043	37/37	37/37
	2010 Cold season	7.2	9.5	53	0.22	0.11 [0.04]	37/37	37/37
	2011 Warm season	16	25	110	0.73	0.20 [0.000]	35/35	35/35
	2011 Cold season	6.1	10	56	tr(0.13)	0.30 [0.099]	37/37	37/37
	2012 Warm season	13	21	58	0.46	0.41 [0.14]	36/36	36/36
	2012 Cold season	3.2	4.9	20	nd	0.41 [0.14]	35/36	35/36
	2013 Warm season	11	21	43	0.46	0.16 [0.05]	36/36	36/36
	2013 Cold season	3.1	4.6	22	tr(0.10)	0.10 [0.03]	36/36	36/36
	2015 Warm season	8.7	11	49	0.43	0.19 [0.06]	35/35	35/35
	2016 Warm season	12	14	120	tr(0.18)	0.22 [0.08]	37/37	37/37
	2020 Warm season	7.6	9.2	35	0.69	0.10 [0.04]	37/37	37/37

⁽Note 2) *2: There is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

⁽Note 3) No monitoring was conducted in FY2014 and FY2017 \sim 2019.

is-Heptachlor		Geometric				Quantification	Detection	Frequenc
epoxide	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	3.5	3.5	28	0.45	0.015 [0.0048]	35/35	35/35
	2003 Cold season	1.3	1.3	6.6	0.49		34/34	34/34
	2004 Warm season	2.8	2.9	9.7	0.65	0.052 [0.017]	37/37	37/37
	2004 Cold season	1.1	1.1	7.0	0.44		37/37	37/37
	2005 Warm season	1.5	1.7	11	tr(0.10)	0.12 [0.044]	37/37	37/37
	2005 Cold season	0.91	0.81	2.9	0.43		37/37	37/37
	2006 Warm season	1.7	2.0	6.7	0.13	0.11 [0.04]	37/37	37/37
	2006 Cold season	0.74	0.88	3.2	nd		36/37	36/37
	2007 Warm season	2.9	2.8	13	0.54	0.03 [0.01]	36/36	36/36
	2007 Cold season	0.93	0.82	3.0	0.41		36/36	36/36
	2008 Warm season	2.4	2.2	9.9	0.53	0.022 [0.008]	37/37	37/37
Air	2008 Cold season	0.91	0.84	3.0	0.37		37/37	37/37
(pg/m^3)	2009 Warm season	2.5	2.6	16	0.37	0.03 [0.01]	37/37	37/37
(Pg/III)	2009 Cold season	1.0	0.91	3.8	0.42		37/37	37/37
	2010 Warm season	2.3	2.3	10	0.38	0.02 [0.01]	37/37	37/37
	2010 Cold season	0.93	0.85	4.3	0.33	0.02 [0.01]	37/37	37/37
	2011 Warm season	2.0	2.3	6.0	0.29	0.04 [0.01]	35/35	35/35
	2011 Cold season	0.90	0.90	2.8	0.35	0.04 [0.01]	37/37	37/37
	2012 Warm season	2.0	2.1	6.3	0.37	0.05 [0.02]	36/36	36/36
2	2012 Cold season	0.62	0.57	1.9	0.30	0.05 [0.02]	36/36	36/36
	2013 Warm season	2.0	2.1	7.7	0.43	0.02.50.013	36/36	36/36
	2013 Cold season	0.66	0.63	1.4	0.32	0.03 [0.01]	36/36	36/36
	2015 Warm season	1.4	1.4	4.7	tr(0.4)	0.5 [0.2]	35/35	35/35
- 2	2016 Warm season	1.9	1.9	9.1	0.30	0.12 [0.05]	37/37	37/37
			1./		0.50	0.12 [0.03]		
	2020 Warm season	1.1	1.2	2.9	0.23	0.11 [0.04]	37/37	37/37
rans-Heptachl	2020 Warm season	1.1 Geometric	1.2	2.9	0.23	0.11 [0.04] Quantification	37/37 Detection	37/37 Frequenc
rans-Heptachl or epoxide	2020 Warm season	1.1				0.11 [0.04]	37/37	37/37
	2020 Warm season	1.1 Geometric mean	1.2	2.9	0.23	0.11 [0.04] Quantification [Detection] limit	37/37 Detection	37/37 Frequence Site
	2020 Warm season Monitored year	1.1 Geometric mean	1.2 Median	2.9 Maximum	0.23 Minimum	0.11 [0.04] Quantification [Detection]	37/37 Detection Sample	37/37 Frequence Site
	2020 Warm season Monitored year 2003 Warm season	1.1 Geometric mean tr(0.036)	1.2 Median tr(0.038)	2.9 Maximum 0.30	0.23 Minimum	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033]	37/37 Detection Sample 18/35	37/37 Frequence Site 18/35
	2020 Warm season Monitored year 2003 Warm season 2003 Cold season	1.1 Geometric mean tr(0.036) nd	1.2 Median tr(0.038) nd	2.9 Maximum 0.30 tr(0.094)	0.23 Minimum nd nd	0.11 [0.04] Quantification [Detection] limit	37/37 Detection Sample 18/35 3/34	37/37 Frequence Site 18/35 3/34
	2020 Warm season Monitored year 2003 Warm season 2003 Cold season 2004 Warm season	1.1 Geometric mean tr(0.036) nd nd nd	Median tr(0.038) nd nd nd	2.9 Maximum 0.30 tr(0.094) tr(0.38)	0.23 Minimum nd nd nd nd	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033] 0.6 [0.2]	37/37 Detection Sample 18/35 3/34 4/37	37/37 Frequence Site 18/35 3/34 4/37 0/37
	2020 Warm season Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season	1.1 Geometric mean tr(0.036) nd nd	Median tr(0.038) nd nd	2.9 Maximum 0.30 tr(0.094) tr(0.38) nd	0.23 Minimum nd nd nd nd nd	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033]	37/37 Detection Sample 18/35 3/34 4/37 0/37	37/37 Frequence Site 18/35 3/34 4/37
	2020 Warm season Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season	1.1 Geometric mean tr(0.036) nd nd tr(0.10) nd	1.2 Median tr(0.038) nd nd nd tr(0.12) nd	2.9 Maximum 0.30 tr(0.094) tr(0.38) nd 1.2	0.23 Minimum nd nd nd nd nd nd	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033] 0.6 [0.2] 0.16 [0.05]	37/37 Detection Sample 18/35 3/34 4/37 0/37 27/37 3/37	37/37 Frequence Site 18/35 3/34 4/37 0/37 27/37 3/37
	2020 Warm season Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season	1.1 Geometric mean tr(0.036) nd nd rd tr(0.10) nd nd	1.2 Median tr(0.038) nd nd nd tr(0.12)	2.9 Maximum 0.30 tr(0.094) tr(0.38) nd 1.2 0.32 0.7	0.23 Minimum nd nd nd nd nd nd nd nd nd	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033] 0.6 [0.2]	37/37 Detection Sample 18/35 3/34 4/37 0/37 27/37 3/37 2/37	37/37 Frequence Site 18/35 3/34 4/37 0/37 27/37 3/37 2/37
	2020 Warm season Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season	1.1 Geometric mean tr(0.036) nd nd tr(0.10) nd	Median tr(0.038) nd nd rd tr(0.12) nd nd	2.9 Maximum 0.30 tr(0.094) tr(0.38) nd 1.2 0.32	0.23 Minimum nd nd nd nd nd nd nd nd	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033] 0.6 [0.2] 0.16 [0.05] 0.3 [0.1]	37/37 Detection Sample 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37	37/37 Frequence Site 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37
	2020 Warm season Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season	1.1 Geometric mean tr(0.036) nd nd nd tr(0.10) nd nd nd	1.2 Median tr(0.038) nd nd rd tr(0.12) nd nd nd nd	2.9 Maximum 0.30 tr(0.094) tr(0.38) nd 1.2 0.32 0.7 tr(0.1) 0.16	0.23 Minimum nd	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033] 0.6 [0.2] 0.16 [0.05]	37/37 Detection Sample 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36	37/37 Frequence Site 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36
	2020 Warm season Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Warm season	1.1 Geometric mean tr(0.036) nd nd nd tr(0.10) nd nd nd nd	1.2 Median tr(0.038) nd nd nd tr(0.12) nd nd nd nd	2.9 Maximum 0.30 tr(0.094) tr(0.38) nd 1.2 0.32 0.7 tr(0.1) 0.16 tr(0.06)	0.23 Minimum nd	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033] 0.6 [0.2] 0.16 [0.05] 0.3 [0.1] 0.14 [0.06]	37/37 Detection Sample 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36	37/37 Frequence Site 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36
or epoxide	2020 Warm season Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season	1.1 Geometric mean tr(0.036) nd nd nd tr(0.10) nd nd nd nd nd nd	1.2 Median tr(0.038) nd nd nd tr(0.12) nd nd nd nd nd	2.9 Maximum 0.30 tr(0.094) tr(0.38) nd 1.2 0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17	0.23 Minimum nd	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033] 0.6 [0.2] 0.16 [0.05] 0.3 [0.1]	37/37 Detection Sample 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37	37/37 Frequence Site 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37
or epoxide	2020 Warm season Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Warm season	1.1 Geometric mean tr(0.036) nd nd nd tr(0.10) nd nd nd nd nd nd nd	1.2 Median tr(0.038) nd nd nd tr(0.12) nd nd nd nd nd	2.9 Maximum 0.30 tr(0.094) tr(0.38) nd 1.2 0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd	0.23 Minimum nd	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033] 0.6 [0.2] 0.16 [0.05] 0.3 [0.1] 0.14 [0.06] 0.16 [0.06]	37/37 Detection Sample 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37	37/37 Frequence Site 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37
or epoxide	2020 Warm season Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Warm season 2008 Warm season 2009 Warm season	1.1 Geometric mean tr(0.036) nd nd nd tr(0.10) nd nd nd nd nd nd nd nd	tr(0.038) nd nd nd tr(0.12) nd nd nd nd nd nd nd nd	2.9 Maximum 0.30 tr(0.094) tr(0.38) nd 1.2 0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18	0.23 Minimum nd	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033] 0.6 [0.2] 0.16 [0.05] 0.3 [0.1] 0.14 [0.06]	37/37 Detection Sample 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37	37/37 Frequence Site 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37
or epoxide	2020 Warm season Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Warm season 2009 Warm season 2009 Cold season	1.1 Geometric mean tr(0.036) nd nd nd tr(0.10) nd nd nd nd nd nd nd nd nd	tr(0.038) nd nd nd tr(0.12) nd	2.9 Maximum 0.30 tr(0.094) tr(0.38) nd 1.2 0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06)	0.23 Minimum nd	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033] 0.6 [0.2] 0.16 [0.05] 0.3 [0.1] 0.14 [0.06] 0.16 [0.06] 0.14 [0.05]	37/37 Detection Sample 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37	37/37 Frequence Site 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37
or epoxide	2020 Warm season Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Cold season 2006 Cold season 2006 Cold season 2007 Cold season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Warm season 2009 Cold season 2009 Cold season 2009 Warm season 2009 Cold season	1.1 Geometric mean tr(0.036) nd nd nd tr(0.10) nd	tr(0.038) nd nd nd tr(0.12) nd	2.9 Maximum 0.30 tr(0.094) tr(0.38) nd 1.2 0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06) 0.16	0.23 Minimum nd	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033] 0.6 [0.2] 0.16 [0.05] 0.3 [0.1] 0.14 [0.06] 0.16 [0.06]	37/37 Detection Sample 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37	37/37 Frequence Site 18/35 3/34 4/37 0/37 27/37 3/37 1/37 8/36 1/36 6/37 10/37 1/37 6/37
or epoxide	2020 Warm season Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Cold season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Warm season 2009 Cold season 2009 Warm season 2010 Warm season 2010 Cold season	1.1 Geometric mean tr(0.036) nd nd nd tr(0.10) nd	tr(0.038) nd nd nd tr(0.12) nd	2.9 Maximum 0.30 tr(0.094) tr(0.38) nd 1.2 0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06) 0.16 nd	0.23 Minimum nd	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033] 0.6 [0.2] 0.16 [0.05] 0.3 [0.1] 0.14 [0.06] 0.16 [0.06] 0.16 [0.06]	37/37 Detection Sample 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37	37/37 Frequence Site 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 6/37 0/37 1/37 6/37 0/37
or epoxide	2020 Warm season Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Cold season 2006 Cold season 2006 Cold season 2007 Cold season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Cold season 2009 Cold season 2010 Warm season 2010 Cold season 2010 Warm season 2010 Cold season	1.1 Geometric mean tr(0.036) nd nd nd tr(0.10) nd	tr(0.038) nd nd nd tr(0.12) nd	2.9 Maximum 0.30 tr(0.094) tr(0.38) nd 1.2 0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06) 0.16 nd 0.14	0.23 Minimum nd	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033] 0.6 [0.2] 0.16 [0.05] 0.3 [0.1] 0.14 [0.06] 0.16 [0.06] 0.14 [0.05]	37/37 Detection Sample 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35	37/37 Frequence Site 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 1/37 6/37 0/37 5/35
or epoxide	2020 Warm season Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Cold season 2006 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Cold season 2009 Warm season 2010 Warm season 2010 Cold season 2010 Warm season 2010 Warm season 2011 Warm season 2011 Cold season	1.1 Geometric mean tr(0.036) nd nd nd tr(0.10) nd	tr(0.038) nd nd nd tr(0.12) nd	2.9 Maximum 0.30 tr(0.094) tr(0.38) nd 1.2 0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06) 0.16 nd 0.14 nd	0.23 Minimum nd	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033] 0.6 [0.2] 0.16 [0.05] 0.3 [0.1] 0.14 [0.06] 0.16 [0.06] 0.16 [0.06]	37/37 Detection Sample 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35 0/37	37/37 Frequence Site 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 10/37 1/37 6/37 0/37 5/35 0/37
or epoxide	2020 Warm season Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Cold season 2006 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Cold season 2009 Warm season 2010 Warm season 2010 Warm season 2010 Cold season 2011 Warm season 2011 Cold season 2011 Cold season 2011 Cold season	1.1 Geometric mean tr(0.036) nd nd nd nd tr(0.10) nd	tr(0.038) nd nd nd tr(0.12) nd	2.9 Maximum 0.30 tr(0.094) tr(0.38) nd 1.2 0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06) 0.16 nd 0.14 nd tr(0.08)	0.23 Minimum nd	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033] 0.6 [0.2] 0.16 [0.05] 0.3 [0.1] 0.14 [0.06] 0.16 [0.06] 0.16 [0.06]	37/37 Detection Sample 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35 0/37 8/36	37/37 Frequence Site 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 6/37 0/37 1/37 6/37 0/37 5/35 0/37 8/36
or epoxide	2020 Warm season Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Cold season 2006 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Cold season 2009 Warm season 2010 Warm season 2010 Warm season 2010 Warm season 2011 Warm season 2011 Cold season 2011 Warm season 2011 Cold season 2012 Warm season 2012 Warm season	1.1 Geometric mean tr(0.036) nd nd nd tr(0.10) nd	tr(0.038) nd nd nd tr(0.12) nd	2.9 Maximum 0.30 tr(0.094) tr(0.38) nd 1.2 0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06) 0.16 nd 0.14 nd tr(0.08) nd	0.23 Minimum nd	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033] 0.6 [0.2] 0.16 [0.05] 0.3 [0.1] 0.14 [0.06] 0.16 [0.06] 0.16 [0.06] 0.16 [0.06] 0.17 [0.06]	37/37 Detection Sample 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 10/37 1/37 6/37 0/37 5/35 0/37 8/36 0/36	37/37 Frequence Site 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 6/37 10/37 1/37 6/37 5/35 0/37 8/36 0/36
or epoxide	2020 Warm season Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2006 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2009 Cold season 2009 Warm season 2010 Warm season 2010 Warm season 2011 Warm season 2011 Cold season 2011 Cold season 2012 Warm season 2012 Cold season 2012 Cold season	1.1 Geometric mean tr(0.036) nd nd nd tr(0.10) nd	1.2 Median tr(0.038) nd nd nd rd nd	2.9 Maximum 0.30 tr(0.094) tr(0.38) nd 1.2 0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06) 0.14 nd tr(0.08) nd tr(0.11)	0.23 Minimum nd	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033] 0.6 [0.2] 0.16 [0.05] 0.3 [0.1] 0.14 [0.06] 0.16 [0.06] 0.16 [0.06] 0.17 [0.06] 0.19 [0.06] 0.19 [0.06] 0.19 [0.06]	37/37 Detection Sample 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 10/37 1/37 6/37 0/37 5/35 0/37 8/36 0/36 7/36	37/37 Frequence Site 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 6/37 0/37 10/37 6/37 5/35 0/37 8/36 0/36 7/36
or epoxide	2020 Warm season Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Cold season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Cold season 2009 Warm season 2010 Warm season 2010 Warm season 2010 Cold season 2011 Warm season 2011 Cold season 2011 Cold season 2012 Warm season 2012 Cold season 2013 Warm season 2014 Warm season 2015 Cold season 2016 Cold season 2017 Cold season 2018 Warm season 2019 Cold season 2019 Cold season 2019 Cold season 2010 Cold season	1.1 Geometric mean tr(0.036) nd nd nd nd tr(0.10) nd	1.2 Median tr(0.038) nd nd nd nd tr(0.12) nd	2.9 Maximum 0.30 tr(0.094) tr(0.38) nd 1.2 0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06) 0.14 nd tr(0.08) nd tr(0.11) nd	0.23 Minimum nd	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033] 0.6 [0.2] 0.16 [0.05] 0.3 [0.1] 0.14 [0.06] 0.16 [0.06] 0.16 [0.06] 0.11 [0.05] 0.12 [0.05]	37/37 Detection Sample 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 10/37 1/37 6/37 0/37 5/35 0/37 8/36 0/36 7/36 0/36	37/37 Frequence Site 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35 0/37 8/36 0/36
or epoxide	2020 Warm season Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2009 Warm season 2010 Warm season 2010 Warm season 2010 Cold season 2011 Warm season 2011 Warm season 2012 Cold season 2013 Warm season 2014 Warm season 2015 Warm season 2016 Cold season 2017 Cold season 2018 Warm season 2019 Warm season 2019 Warm season 2010 Cold season 2011 Warm season 2011 Cold season 2012 Cold season 2013 Warm season 2013 Warm season 2013 Cold season 2015 Warm season	1.1 Geometric mean tr(0.036) nd nd nd nd tr(0.10) nd	1.2 Median tr(0.038) nd nd nd rd nd	2.9 Maximum 0.30 tr(0.094) tr(0.38) nd 1.2 0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06) 0.14 nd tr(0.08) nd tr(0.11) nd nd	0.23 Minimum nd	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033] 0.6 [0.2] 0.16 [0.05] 0.3 [0.1] 0.14 [0.06] 0.16 [0.06] 0.16 [0.06] 0.17 [0.06] 0.19 [0.06] 0.19 [0.06] 0.10 [0.06] 0.10 [0.06]	37/37 Detection Sample 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35 0/37 8/36 0/36 0/36 0/35	37/37 Frequence Site 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35 0/37 8/36 0/36 0/36 0/36 0/35
or epoxide	2020 Warm season Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Cold season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Cold season 2009 Warm season 2010 Warm season 2010 Warm season 2010 Cold season 2011 Warm season 2011 Cold season 2011 Cold season 2012 Warm season 2012 Cold season 2013 Warm season 2014 Warm season 2015 Cold season 2016 Cold season 2017 Cold season 2018 Warm season 2019 Cold season 2019 Cold season 2019 Cold season 2010 Cold season	1.1 Geometric mean tr(0.036) nd nd nd nd tr(0.10) nd	1.2 Median tr(0.038) nd nd nd nd tr(0.12) nd	2.9 Maximum 0.30 tr(0.094) tr(0.38) nd 1.2 0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06) 0.14 nd tr(0.08) nd tr(0.11) nd	0.23 Minimum nd	0.11 [0.04] Quantification [Detection] limit 0.099 [0.033] 0.6 [0.2] 0.16 [0.05] 0.3 [0.1] 0.14 [0.06] 0.16 [0.06] 0.16 [0.06] 0.11 [0.05] 0.12 [0.05]	37/37 Detection Sample 18/35 3/34 4/37 0/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 10/37 1/37 6/37 0/37 5/35 0/37 8/36 0/36 7/36 0/36	37/37 Frequence Site 18/35 3/34 4/37 27/37 27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35 0/37 8/36 0/36 7/36 0/36

(Note) No monitoring was conducted in FY2014 and FY2017 ~ 2019.

[9] Toxaphenes (references)

· History and state of monitoring

Toxaphenes are a group of organochlorine insecticides used on cotton, cereal grains, fruits, nuts, and vegetables and also it has also been used to control ticks and mites in livestock. No domestic record of manufacture/import of the substances was reported since those were historically never registrated under the Agricultural Chemicals Regulation Law. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 2002. Also, Toxaphenes are one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series before FY2001, total amount of Toxaphenes was measured in FY1983 (in surface water and sediment) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Parlar-26 Parlar-50 and Parlar-62 have been monitored in surface water sediment and air in FY2003 \sim 2009 and FY2018, and in wildlife (bivalves, fish and birds) in FY2003 \sim 2009 FY2015 and FY2018.

No monitoring was conducted after FY2019. For reference, the monitoring results up to FY2018 are given below.

Monitoring results until FY2018

<Surface Water>

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in surface water during FY2003 ~ 2018

	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-26	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	40 [20]	0/36	0/36
	2004	nd	nd	nd	nd	9 [3]	0/38	0/38
	2005	nd	nd	nd	nd	10 [4]	0/47	0/47
Surface Water	2006	nd	nd	nd	nd	16 [5]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	20 [5]	0/48	0/48
	2008	nd	nd	nd	nd	8 [3]	0/48	0/48
	2009	nd	nd	nd	nd	5 [2]	0/49	0/49
	2018	nd	nd	5	nd	4 [2]	7/47	7/47
	Monitored	Geometric				Quantification	Detection I	requency
Parlar-50	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	70 [30]	0/36	0/36
	2004	nd	nd	nd	nd	20 [7]	0/38	0/38
	2005	nd	nd	nd	nd	20 [5]	0/47	0/47
Surface Water	2006	nd	nd	nd	nd	16 [5]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	9 [3]	0/48	0/48
	2008	nd	nd	nd	nd	7 [3]	0/48	0/48
	2009	nd	nd	nd	nd	7 [3]	0/49	0/49
	2018	nd	nd	tr(2)	nd	6 [2]	1/47	1/47
	Monitored	Geometric				Quantification	Detection I	requency
Parlar-62	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	300 [90]	0/36	0/36
	2004	nd	nd	nd	nd	90 [30]	0/38	0/38
	2005	nd	nd	nd	nd	70 [30]	0/47	0/47
Surface Water	2006	nd	nd	nd	nd	60 [20]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	70 [30]	0/48	0/48
	2008	nd	nd	nd	nd	40 [20]	0/48	0/48
	2009	nd	nd	nd	nd	40 [20]	0/49	0/49
	2018	nd	nd	nd	nd	40 [20]	0/47	0/47

(Note) No monitoring was conducted in FY2010 ~ 2017.

<Sediment>

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in sediment during FY2003 ~ 2018

	Monitored	Geometric				Quantification	Detection I	requency
Parlar-26	year	mean *	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	90 [30]	0/186	0/62
	2004	nd	nd	nd	nd	60 [20]	0/189	0/63
	2005	nd	nd	nd	nd	60 [30]	0/189	0/63
Sediment	2006	nd	nd	nd	nd	12 [4]	0/192	0/64
(pg/g-dry)	2007	nd	nd	nd	nd	7 [3]	0/192	0/64
	2008	nd	nd	nd	nd	12 [5]	0/192	0/64
	2009	nd	nd	nd	nd	10 [4]	0/192	0/64
	2018	nd	nd	nd	nd	8 [3]	0/61	0/61
	Monitored	Geometric				Quantification	Detection I	requency
Parlar-50	year	mean *	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	200 [50]	0/186	0/62
	2004	nd	nd	nd	nd	60 [20]	0/189	0/63
	2005	nd	nd	nd	nd	90 [40]	0/189	0/63
Sediment	2006	nd	nd	nd	nd	24 [7]	0/192	0/64
(pg/g-dry)	2007	nd	nd	nd	nd	30 [10]	0/192	0/64
	2008	nd	nd	nd	nd	17 [6]	0/192	0/64
	2009	nd	nd	nd	nd	12 [5]	0/192	0/64
	2018	nd	nd	tr(3)	nd	8 [3]	1/61	1/61
	Monitored	Geometric				Quantification	Detection I	requency
Parlar-62	year	mean *	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	4,000 [2,000]	0/186	0/62
	2004	nd	nd	nd	nd	2,000 [400]	0/189	0/63
	2005	nd	nd	nd	nd	2,000 [700]	0/189	0/63
Sediment	2006	nd	nd	nd	nd	210 [60]	0/192	0/64
(pg/g-dry)	2007	nd	nd	nd	nd	300 [70]	0/192	0/64
	2008	nd	nd	nd	nd	90 [40]	0/192	0/64
	2009	nd	nd	nd	nd	80 [30]	0/192	0/64
	2018	nd	nd	tr(20)	nd	50 [20]	1/61	1/61

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003 ~ 2009.

<Wildlife>

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in wildlife (bivalves, fish and birds) during FY2003 \sim 2018

	Monitored	Geometric				Quantification	Detection l	Frequency
Parlar-26	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	tr(39)	nd	45 [15]	11/30	3/6
	2004	nd	nd	tr(32)	nd	42 [14]	15/31	3/7
	2005	nd	nd	tr(28)	nd	47 [16]	7/31	4/7
Bivalves	2006	tr(9)	tr(12)	25	nd	18 [7]	21/31	5/7
	2007	tr(7)	tr(8)	20	nd	10 [4]	26/31	6/7
(pg/g-wet)	2008	tr(7)	tr(8)	22	nd	9 [3]	27/31	7/7
	2009	9	9	23	nd	7 [3]	27/31	7/7
	2015	tr(10)	tr(15)	tr(17)	nd	23 [9]	2/3	2/3
	2018	tr(10)	tr(15)	tr(15)	nd	21 [8]	2/3	2/3
	2003	tr(28)	tr(24)	810	nd	45 [15]	44/70	11/14
	2004	43	tr(41)	1,000	nd	42 [14]	54/70	13/14
	2005	tr(42)	53	900	nd	47 [16]	50/75	13/16
Ti ala	2006	41	44	880	nd	18 [7]	70/80	15/16
Fish	2007	24	32	690	nd	10 [4]	64/80	14/16
(pg/g-wet)	2008	35	33	730	nd	9 [3]	79/85	17/17
	2009	25	20	690	nd	7 [3]	82/90	18/18
	2015	26	28	400	nd	23 [9]	13/19	13/19
	2018	tr(17)	tr(17)	280	nd	21 [8]	12/18	12/18

⁽Note 2) No monitoring was conducted in FY2010 \sim 2017.

Parlar-26		Monitored	Geometric				Quantification	Detection I	requency
Birds 2004	Parlar-26			Median	Maximum	Minimum		Sample	Site
Birds		2003	120	650	2,500	nd	45 [15]	5/10	1/2
Birds									
Parlar-50									
10 10 10 10 10 10 10 10	Rirds *2								
2008 26 200 20									
Parlar-50	(188)								
Parlar-50			26						
Parlar-50									
Parlar-50		2018	53		54	53			
2003 tr(12) tr(12) 58	Parlar-50			Median	Maximum	Minimum	[Detection]		
Bivalves 2004		2003	tr(12)	tr(12)	58	nd		17/30	4/6
Bivalves 2006 tr(10) 14 32 nd 14 15 24 31 6/7			` ′						
Bivalves						nd			
Silvarves 2007 9 10 37 nd 9 3 27/31 7/7	D' 1			14					
10 10 10 10 10 10 10 10			` ′	10				27/31	
2015 tr(11) tr(15) tr(16) nd 30 10 2/3 2/3 2/3 2003 35 34 1,100 nd 33 11 55/70 14/14 2005 tr(52) 66 1,300 nd 46 15 59/70 14/14 14/14 14/15 2006 56 52 1,300 nd 54 18 55/80 13/16 14/15 79/80 16/16 14/15	(pg/g-wei)	2008	tr(7)	tr(6)	23	nd		23/31	6/7
2018 tr(9) 16		2009	9	9	31	nd		27/31	7/7
2003 35 34 1,100 nd 33 11 55/70 14/14 2005 tr(52) 66 1,400 nd 46 15 59/70 14/14 41/14		2015	tr(11)	tr(15)	tr(16)	nd	30 [10]	2/3	2/3
Fish 2006 66 1,300 nd 46 15 59/70 14/14 2005 tr(52) 66 1,400 nd 54 18 55/80 13/16 16/16 16/18 2006 56 52 1,300 nd 14 15 79/80 16/16 16/16 16/16 16/16 16/16 16/16 16/16 16/16 16/16 16/16 16/16 16/16 16/18 16/16 16/18 16/16 16/18 16/16 16/18 16/16 16/18 16/18 16/16 16/18 16/18 16/16 16/18		2018	tr(9)	16	17	nd	16 [6]	2/3	2/3
Fish 2006 56 52 1,300 nd 54 [18] 55/80 13/16 [7/8] Fish 2006 56 52 1,300 nd 14 [5] 79/80 16/16 [7/8] [7/8] 2007 35 41 1,100 nd 9 [3] 77/80 16/16 [7/8] [7/8] 2008 44 45 1,000 nd 10 [4] 77/85 17/17 2009 30 23 910 nd 8 [3] 85/90 18/18 [7/8] 2015 tr(25) tr(25) tr(13) 640 nd 30 [10] 13/19 13/19 2018 22 20 300 nd 16 [6] 16/18 16/18 [7/8] 2008 11/0 850 3,000 nd 33 [11] 5/10 1/2 2009 2004 83 440 1,000 nd 46 [15] 5/10 1/2 2005 100 480 1,500 nd 54 [18] 5/10 1/2 2005 [7/8] 2006 46 380 1,000 nd 14 [5] 5/10 1/2 [7/8] 2006 46 380 1,000 nd 14 [5] 5/10 1/2 [7/8] [7/8] 2008 49 410 1,600 nd 9 [3] 5/10 1/2 [7/8]									
Fish (pg/g-wet) 2006 56 52 1,300 nd 14 [5] 79/80 16/16 (pg/g-wet) 2007 35 41 1,100 nd 9 [3] 77/80 16/16 2009 30 23 910 nd 8 [3] 85/90 18/18 2015 tr(25) tr(13) 640 nd 30 [10] 13/19 13/19 2018 22 20 300 nd 16 [6] 16/18 16/18 2003 110 850 3,000 nd 33 [11] 5/10 1/2 2004 83 440 1,000 nd 46 [15] 5/10 1/2 2005 100 480 1,500 nd 54 [18] 5/10 1/2 Birds*2 2006 46 380 1,000 nd 14 [5] 5/10 1/2 (pg/g-wet) 2008 49 410 1,600 nd 10 [4] 5/10 1/2									
Prish									
(pg/g-wet)	Fish								
2008									
2015 tr(25) tr(13) 640 nd 30 [10] 13/19 13/19 13/19 2018 22 20 300 nd 16 [6] 16/18 16/18 16/18 2003 110 850 3,000 nd 33 [11] 5/10 1/2 1/2 2004 83 440 1,000 nd 46 [15] 5/10 1/2 1/2 2005 100 480 1,500 nd 54 [18] 5/10 1/2 1/2 1/2 2006 46 380 1,000 nd 14 [5] 5/10 1/2	(188)								
2018 22 20 300 nd 16 6 16 18 16 18									
2003									
Birds *2 2006 46 380 1,500 nd 54 [18] 5/10 1/2									
Birds *2									
Birds *2 2006									
Birds 2 2007 34 360 930 nd 9 3 5/10 1/2									
Parlar-62 2008 49 410 1,600 nd 10 [4] 5/10 1/2	Birds *2								
Parlar-62 2009 29 250 620 nd 8 3 5 10 1/2 Parlar-62 Monitored year mean*1 Median Maximum Minimum Minimum Detection Limit Sample Site Parlar-63 Monitored year mean*1 Median Maximum Minimum Minimum Detection Limit Detection Sample Site Parlar-64 2003 nd nd nd nd nd 120 40 0/30 0/6 2004 nd nd nd nd nd 120 40 0/31 0/7 2005 nd nd nd nd 100 34 0/31 0/7 2006 nd nd nd nd nd 70 30 0/31 0/7 2007 nd nd nd nd 70 30 0/31 0/7 2008 nd nd nd nd 80 30 0/31 0/7 2009 nd nd nd nd 80 30 0/31 0/7 2018 nd nd nd nd 150 60 0/3 0/3 2018 nd nd nd nd 100 40 0/3 0/3 2018 nd nd 870 nd 98 33 24/70 7/14 2005 nd nd 870 nd 98 33 24/70 7/14 2005 nd nd 870 nd 98 33 24/70 7/14 2006 tr(30) nd 870 nd 70 30 28/80 10/16 Fish (pg/g-wet) 2007 tr(30) nd 870 nd 70 30 28/80 10/16 (pg/g-wet) 2008 tr(30) nd 530 nd 70 30 22/80 7/16 2009 tr(20) nd 660 nd 70 20 24/90 8/18 2015 nd nd 320 nd 150 60 2/19 2/19	(pg/g-wet)								
Parlar-62 Monitored year Median Median Maximum Minimum Minimum Detection Frequency Sample Site									
Parlar-62									
Parlar-62 Monitored year Median Maximum Minimum Detection Sample Site									
Parlar-62 Monttored Geometric Median Maximum Minimum [Detection] Ilimit Sample Site					u(13)	u(11)			
Sample Site Sample Sample Site Sample Sam	Parlar-62	Monitored		Median	Maximum	Minimum			
2003	Turiur 02	year	mean *1	Wicalan	Maximum	1411111111111111111		Sample	Site
Bivalves (pg/g-wet)		2003	nd	nd	nd	nd		0/30	0/6
Bivalves (pg/g-wet)									
Bivalves (pg/g-wet)									
Bivalves	D' 1								
(pg/g-wet) 2008						nd			
2009 nd nd nd nd nd 70 [20] 0/31 0/7	(pg/g-wet)		nd	nd	nd	nd			
2015 nd nd nd nd 150 [60] 0/3 0/3 2018 nd nd nd nd 100 [40] 0/3 0/3 2003 nd nd 580 nd 120 [40] 9/70 3/14 2004 nd nd 870 nd 98 [33] 24/70 7/14 2005 nd nd 830 nd 100 [34] 23/80 8/16 Fish 2006 tr(30) nd 870 nd 70 [30] 28/80 10/16 (pg/g-wet) 2008 tr(30) nd 530 nd 70 [30] 22/80 7/16 2008 tr(30) nd 590 nd 80 [30] 31/85 8/17 2009 tr(20) nd 660 nd 70 [20] 24/90 8/18 2015 nd nd 320 nd 150 [60] 2/19 2/19			nd	nd	nd	nd			
Fish (pg/g-wet) 2008 tr(30) nd 870 nd 98 [30] 22/80 7/16 2009 tr(20) nd nd 320 nd 150 [60] 2/19 2/19		2015	nd	nd	nd	nd	150 [60]	0/3	0/3
Fish (pg/g-wet)		2018	nd	nd	nd	nd	100 [40]	0/3	0/3
Fish (pg/g-wet)			nd	nd	580	nd		9/70	
Fish (pg/g-wet)				nd	870	nd	98 [33]	24/70	
Pish (pg/g-wet) 2007 tr(30) nd 530 nd 70 [30] 22/80 7/16 2008 tr(30) nd 590 nd 80 [30] 31/85 8/17 2009 tr(20) nd 660 nd 70 [20] 24/90 8/18 2015 nd nd 320 nd 150 [60] 2/19 2/19			nd	nd	830	nd		23/80	8/16
(pg/g-wet) 2007 tr(30) nd 530 nd 70 [30] 22/80 7/16 2008 tr(30) nd 590 nd 80 [30] 31/85 8/17 2009 tr(20) nd 660 nd 70 [20] 24/90 8/18 2015 nd nd 320 nd 150 [60] 2/19 2/19	Fish			nd	870	nd		28/80	
2008 tr(30) nd 390 nd 80 [30] 31/83 8/17 2009 tr(20) nd 660 nd 70 [20] 24/90 8/18 2015 nd nd 320 nd 150 [60] 2/19 2/19									
2015 nd nd 320 nd 150 [60] 2/19 2/19	(Pg/g-wel)								
2018 nd nd 150 nd 100 [40] 3/18 3/18									
		2018	nd	nd	150	nd	100 [40]	3/18	3/18

	Monitored	Geometric				Quantification	Detection I	requency
Parlar-62	year mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site	
	2003	tr(96)	200	530	nd	120 [40]	5/10	1/2
2004 2005	tr(64)	110	280	nd	98 [33]	5/10	1/2	
	2005	tr(78)	130	460	nd	100 [34]	5/10	1/2
Birds *2	2006	70	120	430	nd	70 [30]	5/10	1/2
	2007	tr(60)	100	300	nd	70 [30]	5/10	1/2
(pg/g-wet)	2008	tr(70)	130	360	nd	80 [30]	5/10	1/2
2009	2009	tr(40)	80	210	nd	70 [20]	5/10	1/2
	2015			nd	nd	150 [60]	0/1	0/1
	2018	nd		nd	nd	100 [40]	0/2	0/2

⁽Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003 ~ 2009.

<Air>

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in air during FY2003 ~ 2018

		Geometric				Quantification	Detection 1	Frequency
Parlar-26	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	0.31	0.31	0.77	tr(0.17)	0.20 [0.066]	35/35	35/35
	2003 Cold season	tr(0.17)	tr(0.17)	0.27	tr(0.091)	0.20 [0.000]	34/34	34/34
	2004 Warm season	0.27	0.26	0.46	tr(0.17)	0.20 [0.066]	37/37	37/37
	2004 Cold season	tr(0.15)	tr(0.15)	0.50	tr(0.094)	0.20 [0.000]	37/37	37/37
	2005 Warm season	nd	nd	nd	nd	0.3 [0.1]	0/37	0/37
	2005 Cold season	nd	nd	nd	nd	0.5 [0.1]	0/37	0/37
Air	2006 Warm season	nd	nd	nd	nd	1 0 [0 4]	0/37	0/37
(pg/m^3)	2006 Cold season	nd	nd	nd	nd	1.8 [0.6]	0/37	0/37
(pg/m/)	2007 Warm season	nd	nd	tr(0.3)	nd	0 6 [0 2]	18/36	18/36
	2007 Cold season	nd	nd	nd	nd	0.6 [0.2]	0/36	0/36
	2008 Warm season	tr(0.21)	0.22	0.58	tr(0.12)	0.22 [0.00]	37/37	37/37
	2008 Cold season	tr(0.11)	tr(0.12)	tr(0.20)	nd	0.22 [0.08]	36/37	36/37
	2009 Warm season	tr(0.18)	tr(0.19)	0.26	tr(0.11)	0.22 [0.00]	37/37	37/37
	2009 Cold season	tr(0.12)	tr(0.13)	0.27	nd	0.23 [0.09]	33/37	33/37
	2018 Warm season	nd	nd	tr(0.3)	nd	0.4 [0.2]	12/37	12/37
Parlar-50		Geometric				Quantification	Detection l	Frequency
1 41141-30	Monitored year	mean	Median	Maximum	Minimum	[Detection]	Sample	Site
1 41141-30		mean				limit		
1 41141-30	2003 Warm season	mean	nd	tr(0.37)	nd	_	2/35	2/35
1 41141-50	2003 Warm season 2003 Cold season	mean nd nd	nd nd	tr(0.37)	nd nd	0.81 [0.27]	2/35 0/34	2/35 0/34
1 anai-30	2003 Warm season 2003 Cold season 2004 Warm season	mean nd nd nd	nd nd nd	tr(0.37) nd nd	nd nd nd	limit	2/35 0/34 0/37	2/35 0/34 0/37
Tariai-30	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season	mean nd nd nd nd	nd nd nd nd	tr(0.37) nd nd nd	nd nd nd nd	limit 0.81 [0.27] 1.2 [0.4]	2/35 0/34 0/37 0/37	2/35 0/34 0/37 0/37
Tariai-30	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season	mean nd nd nd nd nd nd	nd nd nd nd	tr(0.37) nd nd nd nd	nd nd nd nd	0.81 [0.27]	2/35 0/34 0/37 0/37 0/37	2/35 0/34 0/37 0/37 0/37
	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season	mean nd nd nd nd	nd nd nd nd nd	tr(0.37) nd nd nd	nd nd nd nd	1.2 [0.4] 0.6 [0.2]	2/35 0/34 0/37 0/37 0/37 0/37	2/35 0/34 0/37 0/37 0/37 0/37
Air	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season	mean nd nd nd nd nd nd nd nd	nd nd nd nd nd nd	tr(0.37) nd nd nd nd nd nd	nd nd nd nd nd nd	limit 0.81 [0.27] 1.2 [0.4]	2/35 0/34 0/37 0/37 0/37 0/37 0/37	2/35 0/34 0/37 0/37 0/37 0/37 0/37
	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season	mean nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd	tr(0.37) nd nd nd nd nd nd nd	nd nd nd nd nd	limit 0.81 [0.27] 1.2 [0.4] 0.6 [0.2] 1.6 [0.5]	2/35 0/34 0/37 0/37 0/37 0/37 0/37 0/37	2/35 0/34 0/37 0/37 0/37 0/37
Air	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season	mean nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd	tr(0.37) nd nd nd nd nd nd	nd nd nd nd nd nd	1.2 [0.4] 0.6 [0.2]	2/35 0/34 0/37 0/37 0/37 0/37 0/37	2/35 0/34 0/37 0/37 0/37 0/37 0/37 0/37
Air	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season	mean nd n	nd nd nd nd nd nd nd tr(0.1)	tr(0.37) nd nd nd nd nd nd nd tr(0.2) nd	nd nd nd nd nd nd nd nd nd	limit 0.81 [0.27] 1.2 [0.4] 0.6 [0.2] 1.6 [0.5] 0.3 [0.1]	2/35 0/34 0/37 0/37 0/37 0/37 0/37 0/37 29/36	2/35 0/34 0/37 0/37 0/37 0/37 0/37 0/37 0/37 29/36
Air	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season	mean nd n	nd nd nd nd nd nd nd tr(0.1) nd	tr(0.37) nd nd nd nd nd nd tr(0.2)	nd	limit 0.81 [0.27] 1.2 [0.4] 0.6 [0.2] 1.6 [0.5]	2/35 0/34 0/37 0/37 0/37 0/37 0/37 0/37 29/36 0/36	2/35 0/34 0/37 0/37 0/37 0/37 0/37 0/37 29/36 0/36
Air	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season	mean nd n	nd n	tr(0.37) nd nd nd nd nd nd tr(0.2) nd tr(0.19)	nd	limit 0.81 [0.27] 1.2 [0.4] 0.6 [0.2] 1.6 [0.5] 0.3 [0.1] 0.25 [0.09]	2/35 0/34 0/37 0/37 0/37 0/37 0/37 0/37 29/36 0/36 15/37	2/35 0/34 0/37 0/37 0/37 0/37 0/37 0/37 29/36 0/36 15/37
Air	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2007 Cold season 2008 Warm season 2008 Warm season	mean nd n	nd n	tr(0.37) nd nd nd nd nd nd tr(0.2) nd tr(0.19) nd	nd n	limit 0.81 [0.27] 1.2 [0.4] 0.6 [0.2] 1.6 [0.5] 0.3 [0.1]	2/35 0/34 0/37 0/37 0/37 0/37 0/37 0/37 29/36 0/36 15/37 0/37	2/35 0/34 0/37 0/37 0/37 0/37 0/37 0/37 29/36 0/36 15/37 0/37

⁽Note 2) *2: There is no consistency between the results of the ornithological survey after FY2015 and those in previous years because of the changes in the survey sites and target species.

⁽Note 3) No monitoring was conducted in FY2010 \sim 2014, FY2016 and FY2017.

		Geometric				Quantification	Detection Frequency	
Parlar-62	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	nd	nd	nd	nd	1 6 [0 52]	0/35	0/35
	2003 Cold season	nd	nd	nd	nd	1.6 [0.52]	0/34	0/34
	2004 Warm season	nd	nd	nd	nd	2.4.[0.91]	0/37	0/37
	2004 Cold season	nd	nd	nd	nd	2.4 [0.81]	0/37	0/37
	2005 Warm season	nd	nd	nd	nd	1 2 [0 4]	0/37	0/37
	2005 Cold season	nd	nd	nd	nd	1.2 [0.4]	0/37	0/37
Air	2006 Warm season	nd	nd	nd	nd	0 [2]	0/37	0/37
(pg/m^3)	2006 Cold season	nd	nd	nd	nd	8 [3]	0/37	0/37
(pg/III)	2007 Warm season	nd	nd	nd	nd	1.5.[0.6]	0/36	0/36
	2007 Cold season	nd	nd	nd	nd	1.5 [0.6]	0/36	0/36
	2008 Warm season	nd	nd	nd	nd	1 ([0 (]	0/37	0/37
	2008 Cold season 2009 Warm season	nd	nd	nd	nd	1.6 [0.6]	0/37	0/37
		nd	nd	nd	nd	1 6 [0 6]	0/37	0/37
	2009 Cold season	nd	nd	nd	nd	1.6 [0.6]	0/37	0/37
	2018 Warm season	nd	nd	nd	nd	0.4 [0.2]	0/37	0/37

(Note) No monitoring was conducted in FY2010 \sim 2017.

[10] Mirex (references)

· History and state of monitoring

Mirex was developed as an organochlorine insecticide chemical in the United States, and it was also used as a fire retardant in plastics, rubber, and electrical goods. No domestic record of manufacture/import of the substance was reported since it was historically never registrated under the Agricultural Chemicals Regulation Law. The substance was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 2002. Also the substance is one of the original twelve POPs covered by the Stockholm Convention.

Before FY2001, the substance was measured in FY1983 (in surface water and sediment) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Mirex has been monitored in surface water sediment wildlife (bivalves, fish and birds) and air in FY2003 ~ 2009 FY2011 and FY2018.

No monitoring was conducted after FY2019. For reference, the monitoring results up to FY2018 are given below.

· Monitoring results until FY2018

<Surface Water>

Stocktaking of the detection of Mirex in surface water during FY2003 ~ 2018

	Monitored	Geometric		`		Detection l	Frequency	
Mirex	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	tr(0.13)	tr(0.12)	0.8	nd	0.3 [0.09]	25/36	25/36
	2004	nd	nd	1.1	nd	0.4 [0.2]	18/38	18/38
	2005	nd	nd	1.0	nd	0.4 [0.1]	14/47	14/47
Surface Water	2006	nd	nd	0.07	nd	1.6 [0.5]	1/48	1/48
	2007	nd	nd	tr(0.5)	nd	1.1 [0.4]	2/48	2/48
(pg/L)	2008	nd	nd	0.7	nd	0.6 [0.2]	4/48	4/48
	2009	nd	nd	0.5	nd	0.4 [0.2]	8/49	8/49
	2011	nd	nd	0.8	nd	0.5 [0.2]	3/49	3/49
	2018	nd	nd	1.0	nd	0.7 [0.3]	3/47	3/47

(Note) No monitoring was conducted in FY2010 and FY2012 ~ 2017.

<Sediment>

Stocktaking of the detection of Mirex in sediment during FY2003 ~ 2018

-	Monitored	Geometric				Quantification	Detection l	requency
Mirex	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	2	tr(1.6)	1,500	nd	2 [0.4]	137/186	51/62
	2004	2	tr(1.6)	220	nd	2 [0.5]	153/189	55/63
	2005	1.8	1.2	5,300	nd	0.9 [0.3]	134/189	48/63
Sediment	2006	1.7	1.2	640	nd	0.6 [0.2]	156/192	57/64
(pg/g-dry)	2007	1.5	0.9	200	nd	0.9 [0.3]	147/192	55/64
(pg/g-ury)	2008	1.4	1.1	820	nd	0.7 [0.3]	117/192	48/64
	2009	1.4	1.3	620	nd	1.0 [0.4]	126/192	49/64
	2011	1.2	0.9	1,900	nd	0.9 [0.4]	42/64	42/64
	2018	1.1	0.9	240	nd	0.8 [0.3]	44/61	44/61

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003 \sim 2009.

(Note 2) No monitoring was conducted in FY2010 and FY2012 ~ 2017.

<Wildlife>

Stocktaking of the detection of Mirex in wildlife (bivalves, fish and birds) during FY2003 \sim 2018

Mirov	Monitored	Geometric				Quantification	Detection l	Frequency
Mirex	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	4.9	4.2	19	tr(1.6)	2.4 [0.81]	30/30	6/6
	2004	4.4	4.3	12	tr(1.1)	2.5 [0.82]	31/31	7/7
	2005	5.4	5.2	20	tr(1.9)	3.0 [0.99]	31/31	7/7
D:1	2006	5	4	19	tr(2)	3 [1]	31/31	7/7
Bivalves	2007	5	4	18	tr(2)	3 [1]	31/31	7/7
(pg/g-wet)	2008	4	tr(3)	18	tr(2)	4 [1]	31/31	7/7
	2009	5.9	5.2	21	tr(1.7)	2.1 [0.8]	31/31	7/7
	2011	10	7.1	44	5.2	1.9 [0.8]	4/4	4/4
	2018	4.9	3.2	20	1.8	1.4 [0.5]	3/3	3/3
	2003	8.3	9.0	25	tr(1.7)	2.4 [0.81]	70/70	14/14
	2004	13	11	180	3.8	2.5 [0.82]	70/70	14/14
	2005	13	13	78	tr(1.0)	3.0 [0.99]	80/80	16/16
Fish	2006	11	10	53	tr(2)	3 [1]	80/80	16/16
	2007	9	11	36	tr(1)	3 [1]	80/80	16/16
(pg/g-wet)	2008	11	13	48	tr(1)	4 [1]	85/85	17/17
	2009	8.6	9.6	37	tr(0.9)	2.1 [0.8]	90/90	18/18
	2011	12	15	41	tr(1.3)	1.9 [0.8]	18/18	18/18
	2018	8.2	8.4	70	1.9	1.4 [0.5]	18/18	18/18
	2003	120	150	450	31	2.4 [0.81]	10/10	2/2
	2004	61	64	110	33	2.5 [0.82]	10/10	2/2
	2005	77	66	180	41	3.0 [0.99]	10/10	2/2
Birds *2	2006	77	70	280	39	3 [1]	10/10	2/2
	2007	57	59	100	32	3 [1]	10/10	2/2
(pg/g-wet)	2008	74	68	260	27	4 [1]	10/10	2/2
	2009	49	50	79	32	2.1 [0.8]	10/10	2/2
	2011			58	58	1.9 [0.8]	1/1	1/1
	2018	110		260	47	1.4 [0.5]	2/2	2/2

⁽Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003 ~ 2009.

<Air>

Stocktaking of the detection of Mirex in air during $FY2003 \sim 2018$

		Geometric				Quantification	Detection 1	Frequency
Mirex	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	0.11	0.12	0.19	0.047	0.0084	35/35	35/35
	2003 Cold season	0.044	0.043	0.099	0.024	[0.0028]	34/34	34/34
	2004 Warm season	0.099	0.11	0.16	tr(0.042)	0.05 [0.017]	37/37	37/37
	2004 Cold season	tr(0.046)	tr(0.047)	0.23	tr(0.019)	0.03 [0.017]	37/37	37/37
	2005 Warm season	tr(0.09)	tr(0.09)	0.24	tr(0.05)	0.10 [0.03]	37/37	37/37
	2005 Cold season	tr(0.04)	tr(0.04)	tr(0.08)	nd	0.10 [0.03]	29/37	29/37
	2006 Warm season	tr(0.07)	tr(0.10)	0.22	nd	0.12 [0.04]	29/37	29/37
Air	2006 Cold season	tr(0.07)	tr(0.07)	2.1	nd	0.13 [0.04]	27/37	27/37
	2007 Warm season	0.11	0.11	0.28	0.04		36/36	36/36
(pg/m^3)	2007 Cold season	0.04	0.04	0.09	tr(0.02)	0.03 [0.01]	36/36	36/36
	2008 Warm season	0.09	0.09	0.25	0.03	0.02.00.013	37/37	37/37
	2008 Cold season	0.05	0.04	0.08	0.03	0.03 [0.01]	37/37	37/37
	2009 Warm season	0.12	0.13	0.48	0.049	0.015.[0.006]	37/37	37/37
	2009 Cold season	0.058	0.054	0.18	0.030	0.015 [0.006]	37/37	37/37
	2011 Warm season	0.14	0.13	0.25	0.08	0.04.00.013	35/35	35/35
	2011 Cold season	0.07	0.07	0.11	tr(0.03)	0.04 [0.01]	37/37	37/37
	2018 Warm season	0.09	0.09	0.20	0.05	0.03 [0.01]	37/37	37/37
(NT / NT		. 1 ' EXZOO1	0 1 5370010	2017				

(Note) No monitoring was conducted in FY2010 and FY2012 \sim 2017.

⁽Note 2) *2: There is no consistency between the results of the ornithological survey in FY2018 and those in previous years because of the changes in the survey sites and target species.

⁽Note 3) No monitoring was conducted in FY2010 and FY2012 ~ 2017.

[11] HCHs (references)

· History and state of monitoring

HCHs were used as pesticides, household insecticides, and termiticides, etc. Even after their registration under the Agricultural Chemicals Regulation Law was expired in FY1971, they continue to be used as termiticides and wood preservatives. α -HCH, β -HCH, and γ -HCH (synonym: Lindane) were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

Among many HCH isomers, α -HCH, β -HCH, γ -HCH (synonym: Lindane) and δ -HCH have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air.

Before FY2001, the substances were measured in FY1974 (in surface water, sediment and fish) under the framework of "the Environmental Survey and Monitoring of Chemicals." α -HCH and β -HCH had been the target chemicals, and surface water and sediment had been the monitored media during the period of FY1986 ~ 1998 and FY1986 ~ 2001, respectively. Under the framework of the Wildlife Monitoring, the substances were monitored in wildlife (bivalves, fish and birds) during the period of FY1978 ~ 1996 and in FY1998, FY2000 and FY2001 (γ -HCH (synonym: Lindane) and δ -HCH had not been monitored since FY1997 and FY1993, respectively.)

Under the framework of the Environmental Monitoring, α -HCH and β -HCH in surface water sediment and wildlife (bivalves, fish and birds) have been monitored FY2002 ~ FY2017 FY2019 and FY2022. Since FY2003, α -HCH and β -HCH in air and γ -HCH (synonym: Lindane) and δ -HCH in surface water sediment wildlife (bivalves, fish and birds) and air have also been monitored.

No monitoring was conducted in FY2023. For reference, the monitoring results up to FY2022 are given below.

Monitoring results until FY2022

<Surface Water>

Stocktaking of the detection of Total α -HCH, β -HCH, γ -HCH(synonym: Lindane) and δ -HCH in surface water during FY2002 \sim 2022

	Monitored	Geometric				Quantification	Detection 1	requency
α-НСН	year	mean * Median M	Maximum	Minimum	[Detection] limit	Sample	Site	
	2002	86	76	6,500	1.9	0.9 [0.3]	114/114	38/38
	2003	120	120	970	13	3 [0.9]	36/36	36/36
	2004	150	145	5,700	13	6 [2]	38/38	38/38
	2005	90	81	660	16	4 [1]	47/47	47/47
	2006	110	90	2,100	25	3 [1]	48/48	48/48
	2007	76	73	720	13	1.9 [0.6]	48/48	48/48
	2008	78	75	1,100	9	4 [2]	48/48	48/48
	2009	74	73	560	14	1.2 [0.4]	49/49	49/49
Surface Water	2010	94	75	1,400	14	4[1]	49/49	49/49
(pg/L)	2011	67	60	1,000	11	7 [3]	49/49	49/49
	2012	65	56	2,200	9.5	1.4 [0.5]	48/48	48/48
	2013	57	55	1,900	9	7 [2]	48/48	48/48
	2014	47	41	700	7.3	4.5 [1.5]	48/48	48/48
	2015	48	40	610	8.7	1.2 [0.4]	48/48	48/48
	2016	38	36	640	5.1	1.1 [0.4]	48/48	48/48
	2017	47	45	680	3.7	0.9 [0.4]	47/47	47/47
	2019	35	37	640	tr(2)	4 [2]	48/48	48/48
	2022	24	21	430	1.9	1.2 [0.5]	48/48	48/48

0.11011	Monitored	Geometric				Quantification	Detection 1	Frequency
β-НСН	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	210	180	1,600	24	0.9 [0.3]	114/114	38/38
	2003	250	240	1,700	14	3 [0.7]	36/36	36/36
	2004	260	250	3,400	31	4 [2]	38/38	38/38
	2005	200	170	2,300	25	2.6 [0.9]	47/47	47/47
	2006	200	160	2,000	42	1.7 [0.6]	48/48	48/48
	2007	170	150	1,300	18	2.7[0.9]	48/48	48/48
	2008	150	150	1,800	15	1.0 [0.4]	48/48	48/48
	2009	150	150	1,100	18	0.6 [0.2]	49/49	49/49
Surface Water	2010	180	160	2,500	33	2.0 [0.7]	49/49	49/49
(pg/L)	2011	130	120	840	28	2.0 [0.8]	49/49	49/49
	2012	150	130	820	17	1.4 [0.5]	48/48	48/48
	2013	130	130	1,100	20	7 [2]	48/48	48/48
	2014	100	110	1,100	11	1.0 [0.4]	48/48	48/48
	2015	130	120	1,100	21	1.2 [0.4]	48/48	48/48
	2016	100	96	1,100	12	1.2 [0.4]	48/48	48/48
	2017	100	110	830	12	1.8 [0.7]	47/47	47/47
	2019	100	92	570	17	3 [1]	48/48	48/48
	2022	76	69	540	9.5	0.6 [0.2]	48/48	48/48
						Quantification	Detection 1	
γ-HCH (synonym: Lindane)	Monitored year	Geometric mean *	Median	Maximu m	Minimum	[Detection]	Sample	Site
	2003	92	90	370	32	7 [2]	36/36	36/36
	2004	91	76	8,200	21	20 [7]	38/38	38/38
	2005	48	40	250	tr(8)	14 [5]	47/47	47/47
	2006	44	43	460	tr(9)	18 [6]	48/48	48/48
	2007	34	32	290	5.2	2.1 [0.7]	48/48	48/48
	2008	34	32	340	4	3 [1]	48/48	48/48
	2009	32	26	280	5.1	0.6 [0.2]	49/49	49/49
	2010	26	22	190	tr(5)	6 [2]	49/49	49/49
Surface Water	2011	23	20	170	3	3 [1]	49/49	49/49
(pg/L)	2012	22	21	440	3.0	1.3 [0.4]	48/48	48/48
	2013	21	17	560	3.2	2.7 [0.8]	48/48	48/48
	2014	18	18	350	3.5	1.2 [0.4]	48/48	48/48
	2015	17	15	110	2.6	0.9 [0.3]	48/48	48/48
	2016	14	13	130	1.8	0.8 [0.3]	48/48	48/48
	2017	17	16	190	2.1	1.4 [0.5]	47/47	47/47
	2017	14	12	480	nd	4 [2]	47/48	47/48
	2019	9.3	8.0	120	tr(0.6)	0.8 [0.3]	48/48	48/48
	2022	9.3	8.0	120	tr(0.6)			
δ -HCH	Monitored year	Geometric mean *	Median	Maximu m	Minimum	Quantification [Detection]	Detection I Sample	Frequency Site
			1.4		(1.1)	limit		
	2003	14	14	200	tr(1.1)	2 [0.5]	36/36	36/36
	2004	24	29	670	tr(1.4)	2 [0.7]	38/38	38/38
	2005	1.8	nd	62	nd	1.5 [0.5]	23/47	23/47
	2006	24	18	1,000	2.2	2.0 [0.8]	48/48	48/48
	2007	11	9.7	720	tr(0.7)	1.2 [0.4]	48/48	48/48
							48/48	48/48
	2008	11	10	1,900	tr(1.1)	2.3 [0.9]		
	2008 2009	10	11	450	tr(0.7)	0.9 [0.4]	49/49	49/49
Surface Water	2008 2009 2010	10 16	11 17	450 780	tr(0.7) 0.9	0.9 [0.4] 0.8 [0.3]	49/49 49/49	49/49
Surface Water	2008 2009 2010 2011	10 16 8.6	11	450	tr(0.7) 0.9 0.7	0.9 [0.4]	49/49	
Surface Water (pg/L)	2008 2009 2010	10 16	11 17	450 780	tr(0.7) 0.9 0.7 tr(0.5)	0.9 [0.4] 0.8 [0.3]	49/49 49/49	49/49
	2008 2009 2010 2011	10 16 8.6	11 17 8.9	450 780 300	tr(0.7) 0.9 0.7	0.9 [0.4] 0.8 [0.3] 0.4 [0.2]	49/49 49/49 49/49	49/49 49/49
	2008 2009 2010 2011 2012	10 16 8.6 7.9	11 17 8.9 6.7	450 780 300 220	tr(0.7) 0.9 0.7 tr(0.5)	0.9 [0.4] 0.8 [0.3] 0.4 [0.2] 1.1 [0.4]	49/49 49/49 49/49 48/48	49/49 49/49 48/48
	2008 2009 2010 2011 2012 2013	10 16 8.6 7.9 8.2 7.1	11 17 8.9 6.7 8.9	450 780 300 220 320	tr(0.7) 0.9 0.7 tr(0.5) tr(0.6)	0.9 [0.4] 0.8 [0.3] 0.4 [0.2] 1.1 [0.4] 1.1 [0.4] 0.4 [0.2]	49/49 49/49 49/49 48/48 48/48	49/49 49/49 48/48 48/48
	2008 2009 2010 2011 2012 2013 2014 2015	10 16 8.6 7.9 8.2 7.1 7.2	11 17 8.9 6.7 8.9 6.5 7.4	450 780 300 220 320 590 310	tr(0.7) 0.9 0.7 tr(0.5) tr(0.6) 0.7 0.8	0.9 [0.4] 0.8 [0.3] 0.4 [0.2] 1.1 [0.4] 1.1 [0.4] 0.4 [0.2] 0.3 [0.1]	49/49 49/49 49/49 48/48 48/48 48/48	49/49 49/49 48/48 48/48 48/48 48/48
	2008 2009 2010 2011 2012 2013 2014 2015 2016	10 16 8.6 7.9 8.2 7.1 7.2 5.5	11 17 8.9 6.7 8.9 6.5 7.4 6.0	450 780 300 220 320 590 310 920	tr(0.7) 0.9 0.7 tr(0.5) tr(0.6) 0.7 0.8 tr(0.5)	0.9 [0.4] 0.8 [0.3] 0.4 [0.2] 1.1 [0.4] 1.1 [0.4] 0.4 [0.2] 0.3 [0.1] 0.8 [0.3]	49/49 49/49 49/49 48/48 48/48 48/48 48/48	49/49 49/49 48/48 48/48 48/48 48/48
	2008 2009 2010 2011 2012 2013 2014 2015	10 16 8.6 7.9 8.2 7.1 7.2	11 17 8.9 6.7 8.9 6.5 7.4	450 780 300 220 320 590 310	tr(0.7) 0.9 0.7 tr(0.5) tr(0.6) 0.7 0.8	0.9 [0.4] 0.8 [0.3] 0.4 [0.2] 1.1 [0.4] 1.1 [0.4] 0.4 [0.2] 0.3 [0.1]	49/49 49/49 49/49 48/48 48/48 48/48	49/49 49/49 48/48 48/48 48/48 48/48

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted in FY2018 FY2020 and FY2021.

<Sediment> Stocktaking of the detection of α-HCH, β-HCH, γ-HCH(synonym: Lindane) and δ-HCH in sediment during FY2002 \sim 2022

	Monitored	Geometric				Quantification	Detection 1	Frequency
α-НСН	year	mean *	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	150	170	8,200	2.0	1.2 [0.4]	189/189	63/63
	2003	160	170	9,500	2	2 [0.5]	186/186	62/62
	2004	160	180	5,700	tr(1.5)	2 [0.6]	189/189	63/63
	2005	140	160	7,000	3.4	1.7 [0.6]	189/189	63/63
	2006	140	160	4,300	tr(2)	5 [2]	192/192	64/64
	2007	140	150	12,000	tr(1.3)	1.8 [0.6]	192/192	64/64
	2008	140	190	5,200	nd	1.6 [0.6]	191/192	64/64
	2009	120	120	6,300	nd	1.1 [0.4]	191/192	64/64
Sediment	2010	140	140	3,700	3.1	2.0 [0.8]	64/64	64/64
(pg/g-dry)	2011	120	140	5,100	1.6	1.5 [0.6]	64/64	64/64
	2012	100	100	3,900	tr(1.1)	1.6 [0.5]	63/63	63/63
	2013	94	98	3,200	tr(0.6)	1.5 [0.5]	63/63	63/63
	2014	84	93	4,300	nd	2.4 [0.8]	62/63	62/63
	2015	97	120	9,600	1.1	0.7 [0.3]	62/62	62/62
	2016	64	77	5,000	1.1	0.9 [0.3]	62/62	62/62
	2017	77	86	1,900	1.0	0.5 [0.2]	62/62	62/62
	2019	67	83	2,600	1.3	1.1 [0.4]	61/61	61/61
	2022	67	80	2,800	1.2	0.9 [0.3]	61/61	61/61
				7		Quantification	Detection 1	
β -HCH	Monitored	Geometric *	Median	Maximum	Minimum	[Detection]		
<i>p</i>	year	mean *				limit	Sample	Site
	2002	230	230	11,000	3.9	0.9 [0.3]	189/189	63/63
	2003	250	220	39,000	5	2 [0.7]	186/186	62/62
	2004	240	230	53,000	4	3 [0.8]	189/189	63/63
	2005	200	220	13,000	3.9	2.6 [0.9]	189/189	63/63
	2006	190	210	21,000	2.3	1.3 [0.4]	192/192	64/64
	2007	200	190	59,000	1.6	0.9 [0.3]	192/192	64/64
	2008	190	200	8,900	2.8	0.8 [0.3]	192/192	64/64
	2009	180	170	10,000	2.4	1.3 [0.5]	192/192	64/64
Sediment	2010	230	210	8,200	11	2.4 [0.8]	64/64	64/64
(pg/g-dry)	2011	180	210	14,000	3	3 [1]	64/64	64/64
(P8 8 CT)	2012	160	170	8,300	3.7	1.5 [0.6]	63/63	63/63
	2013	160	170	6,900	4.5	0.4 [0.1]	63/63	63/63
	2013	140	140	7,200	2.9	0.9 [0.1]	63/63	63/63
	2015	160	170	5,900	2.5	0.8 [0.3]	62/62	62/62
	2015	130	160	6,000	3.7	0.8 [0.3]	62/62	62/62
	2017	140	110	3,400	5.7	1.5 [0.6]	62/62	62/62
	2019	130	110	4,100	4.0	1.2 [0.5]	61/61	61/61
·	2022	120	100	2,900	2.2	1.6 [0.6]	61/61	61/61
у-НСН	Monitored	Geometric	M - 1!	M:	M::	Quantification	Detection 1	Frequency
(synonym: Lindane)	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
<u> </u>	2003	51	47	4,000	tr(1.4)	2 [0.4]	186/186	62/62
	2004	53	48	4,100	tr(0.8)	2 [0.5]	189/189	63/63
	2005	49	46	6,400	tr(1.8)	2.0 [0.7]	189/189	63/63
	2006	48	49	3,500	tr(1.4)	2.1 [0.7]	192/192	64/64
	2007	42	41	5,200	tr(0.6)	1.2 [0.4]	192/192	64/64
	2008	40	43	2,200	tr(0.7)	0.9 [0.4]	192/192	64/64
	2009	38	43	3,800	nd	0.6 [0.2]	191/192	64/64
	2010	35	30	2,300	tr(1.5)	2.0 [0.7]	64/64	64/64
Sediment	2011	35	42	3,500	nd	3 [1]	62/64	62/64
(pg/g-dry)	2011	30	29	3,500	nd	1.3 [0.4]	61/63	61/63
	2012	33	35	2,100	0.9	0.6 [0.2]	63/63	63/63
	2013	33 27	30	2,100		2.7 [0.9]	61/63	61/63
	2014	29	35		nd tr(0.3)			62/62
				2,800	tr(0.3)	0.5 [0.2]	62/62	
	2016	20	25 25	3,100	tr(0.7)	0.8 [0.3]	62/62	62/62
	2017	23	25	1,900	tr(0.4)	1.0 [0.4]	62/62	62/62
	2019	23	27	2,100	tr(0.6)	1.0 [0.4]	61/61	61/61
	2022	23	29	2,100	tr(0.7)	1.3 [0.5]	61/61	61/61

	Monitored	Geometric				Quantification	Detection 1	Frequency
δ -HCH	year	mean *	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	42	46	5,400	nd	2 [0.7]	180/186	61/62
	2004	55	55	5,500	tr(0.5)	2 [0.5]	189/189	63/63
	2005	52	63	6,200	nd	1.0 [0.3]	188/189	63/63
	2006	45	47	6,000	nd	1.7 [0.6]	189/192	64/64
	2007	26	28	5,400	nd	5 [2]	165/192	60/64
	2008	41	53	3,300	nd	2 [1]	186/192	64/64
	2009	36	37	5,000	nd	1.2 [0.5]	190/192	64/64
C - 1: 4	2010	39	40	3,800	1.3	1.2 [0.5]	64/64	64/64
Sediment	2011	37	47	5,000	nd	1.4 [0.5]	63/64	63/64
(pg/g-dry)	2012	28	28	3,100	nd	0.8 [0.3]	62/63	62/63
	2013	31	29	2,500	0.4	0.3 [0.1]	63/63	63/63
	2014	27	26	3,900	0.4	0.4 [0.1]	63/63	63/63
	2015	27	28	2,900	tr(0.4)	0.5 [0.2]	62/62	62/62
	2016	20	24	6,100	nd	0.5 [0.2]	60/62	60/62
	2017	25	22	1,700	tr(0.2)	0.6 [0.2]	62/62	62/62
	2019	22	23	2,500	tr(0.2)	0.5 [0.2]	61/61	61/61
	2022	21	24	2,300	tr(0.6)	0.7 [0.3]	61/61	61/61

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002 ~ 2009.

<Wildlife>

Stocktaking of the detection of α -HCH, β -HCH, γ -HCH(synonym: Lindane) and δ -HCH in wildlife (bivalves, fish and birds) during FY2002 \sim 2022

	Monitored	Geometric				Quantification	Detection I	requency
α-НСН	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	67	64	1,100	12	4.2 [1.4]	38/38	8/8
	2003	45	30	610	9.9	1.8 [0.61]	30/30	6/6
	2004	56	25	1,800	tr(12)	13 [4.3]	31/31	7/7
	2005	38	25	1,100	tr(7.1)	11 [3.6]	31/31	7/7
	2006	30	21	390	6	3 [1]	31/31	7/7
	2007	31	17	1,400	8	7 [2]	31/31	7/7
	2008	26	16	380	7	6 [2]	31/31	7/7
	2009	45	21	2,200	9	5 [2]	31/31	7/7
Bivalves	2010	35	20	730	13	3 [1]	6/6	6/6
(pg/g-wet)	2011	64	33	1,200	13	3 [1]	4/4	4/4
	2012	23	12	340	4.0	3.7 [1.2]	5/5	5/5
	2013	30	25	690	6	3 [1]	5/5	5/5
	2014	16	16	39	7	3 [1]	3/3	3/3
	2015	11	15	25	3.5	3.0 [1.0]	3/3	3/3
	2016	13	20	22	5	3 [1]	3/3	3/3
	2017	15	16	32	6	3 [1]	3/3	3/3
	2019	9	12	14	4	4 [2]	3/3	3/3
	2022	7.4	10	16	2.5	1.1 [0.4]	3/3	3/3
	2002	57	56	590	tr(1.9)	4.2 [1.4]	70/70	14/14
	2003	43	58	590	2.6	1.8 [0.61]	70/70	14/14
	2004	57	55	2,900	nd	13 [4.3]	63/70	14/14
	2005	42	43	1,000	nd	11 [3.6]	75/80	16/16
	2006	44	53	360	tr(2)	3 [1]	80/80	16/16
	2007	39	40	730	tr(2)	7 [2]	80/80	16/16
	2008	36	47	410	nd	6 [2]	84/85	17/17
	2009	39	32	830	tr(2)	5 [2]	90/90	18/18
Fish	2010	27	39	250	tr(1)	3 [1]	18/18	18/18
(pg/g-wet)	2011	37	54	690	tr(2)	3 [1]	18/18	18/18
	2012	24	32	170	nd	3.7 [1.2]	18/19	18/19
	2013	32	47	320	tr(2)	3 [1]	19/19	19/19
	2014	26	40	210	nd	3 [1]	18/19	18/19
	2015	18	26	180	tr(1.3)	3.0 [1.0]	19/19	19/19
	2016	15	17	81	nd	3 [1]	18/19	18/19
	2017	20	29	130	nd	3 [1]	18/19	18/19
	2019	8	8	130	nd	4 [2]	12/16	12/16
	2022	8.7	6.8	82	nd	1.1 [0.4]	17/18	17/18

⁽Note 2) No monitoring was conducted in FY2018 FY2020 and FY2021.

	Monitored	Geometric				Quantification	Detection I	Frequency
α-НСН	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	170	130	360	93	4.2 [1.4]	10/10	2/2
	2003	73	74	230	30	1.8 [0.61]	10/10	2/2
	2004	190	80	1,600	58	13 [4.3]	10/10	2/2
	2005	76	77	85	67	11 [3.6]	10/10	2/2
	2006	76	75	100	55	3 [1]	10/10	2/2
	2007	75	59	210	43	7 [2]	10/10	2/2
	2008	48	48	61	32	6 [2]	10/10	2/2
	2009	43	42	56	34	5 [2]	10/10	2/2
Birds *2	2010	260		430	160	3 [1]	2/2	2/2
(pg/g-wet)	2011			48	48	3 [1]	1/1	1/1
	2012	35		39	32	3.7 [1.2]	2/2	2/2
	2013	46		130	16	3 [1]	2/2	2/2
	2014	61		220	17	3 [1]	2/2	2/2
	2015			13	13	3.0 [1.0]	1/1	1/1
	2016	63		170	23	3 [1]	2/2	2/2
	2017	81		930	7	3 [1]	2/2	2/2
	2019			63	63	4 [2]	1/1	1/1
	2022	47		63	35	1.1 [0.4]	2/2	2/2
	M:41	C t : -				Quantification	Detection I	requency
β -HCH	Monitored	Geometric mean *1	Median	Maximum	Minimum	[Detection]		-
	year					limit	Sample	Site
	2002	88	62	1,700	32	12 [4]	38/38	8/8
	2003	78	50	1,100	23	9.9 [3.3]	30/30	6/6
	2004	100	74	1,800	22	6.1 [2.0]	31/31	7/7
	2005	85	56	2,000	20	2.2 [0.75]	31/31	7/7
	2006	81	70	880	11	3 [1]	31/31	7/7
	2007	79	56	1,800	21	7 [3]	31/31	7/7
	2008	73	51	1,100	23	6 [2]	31/31	7/7
	2009	83	55	1,600	27	6 [2]	31/31	7/7
Bivalves	2010	89	56	1,500	27	3 [1]	6/6	6/6
(pg/g-wet)	2011	130	68	2,000	39	3 [1]	4/4	4/4
400	2012	65	37	980	15	2.0 [0.8]	5/5	5/5
	2013	61	47	710	17	2.2 [0.8]	5/5	5/5
	2014	40	35	64	28	2.4 [0.9]	3/3	3/3
	2015	34	45	69	13	3.0 [1.0]	3/3	3/3
	2016	37	47	50	21	3 [1]	3/3	3/3
	2017	39	47	60	21	3 [1]	3/3	3/3
	2019	23	32	33	11	3 [1]	3/3	3/3
	2022	18	17	35	10	1.0 [0.4]	3/3	3/3
	2002	110	120	1,800	tr(5)	12 [4]	70/70	14/14
	2003	81	96	1,100	tr(3.5)	9.9 [3.3]	70/70	14/14
	2004	110	140	1,100	tr(3.9)	6.1 [2.0]	70/70	14/14
	2005	95	110	1,300	6.7	2.2 [0.75]	80/80	16/16
	2006	89	110	1,100	4	3 [1]	80/80	16/16
	2007	110	120	810	7	7 [3]	80/80	16/16
	2008	94	150	750	tr(4)	6 [2]	85/85	17/17
	2009	98	130	970	tr(5)	6 [2]	90/90	18/18
Fish	2010	81	110	760	5	3 [1]	18/18	18/18
(pg/g-wet)	2010	100	140	710	4	3 [1]	18/18	18/18
(Pg/g-wei)	2011	72	100	510	6.5	2.0 [0.8]	19/19	19/19
		80		420				
	2013		110		7.2	2.2 [0.8]	19/19	19/19
	2014	75 56	140	460	4.4	2.4 [0.9]	19/19	19/19
	2015	56	94	390	6.0	3.0 [1.0]	19/19	19/19
	2016	41	65	200	5	3 [1]	19/19	19/19
	2017	54	86	290	4	3 [1]	19/19	19/19
	2019	27	35	400	3	3 [1]	16/16	16/16
	2022	32	38	230	2.2	1.0 [0.4]	18/18	18/18

	Monitored	Geometric				Quantification	Detection I	requency
β-НСН	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	3,000	3,000	7,300	1,600	12 [4]	10/10	2/2
	2003	3,400	3,900	5,900	1,800	9.9 [3.3]	10/10	2/2
	2004	2,300	2,100	4,800	1,100	6.1 [2.0]	10/10	2/2
	2005	2,500	2,800	6,000	930	2.2 [0.75]	10/10	2/2
	2006	2,100	2,400	4,200	1,100	3 [1]	10/10	2/2
	2007	2,000	1,900	3,200	1,400	7 [3]	10/10	2/2
	2008	2,400	2,000	5,600	1,300	6 [2]	10/10	2/2
	2009	1,600	1,400	4,200	870	6 [2]	10/10	2/2
Birds *2	2010	1,600		2,800	910	3 [1]	2/2	2/2
(pg/g-wet)	2011			4,500	4,500	3 [1]	1/1	1/1
400	2012	1,400		2,600	730	2.0 [0.8]	2/2	2/2
	2013	1,400		3,000	610	2.2 [0.8]	2/2	2/2
	2014	290		3,600	24	2.4 [0.9]	2/2	2/2
	2015			57	57	3.0 [1.0]	1/1	1/1
	2016	1,400		2,600	790	3 [1]	2/2	2/2
	2017	1,000		3,500	300	3 [1]	2/2	2/2
	2019			950	950	3 [1]	1/1	1/1
	2022	1,100		1,300	970	1.0 [0.4]	2/2	2/2
		·		1,500	210	Quantification	Detection I	
γ-HCH (synonym: Lindane)	Monitored year	Geometric mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	19	18	130	5.2	3.3 [1.1]	30/30	6/6
	2003	tr(24)	tr(16)	230	nd	31 [10]	28/31	7/7
	2005	23	13	370	tr(5.7)	8.4 [2.8]	31/31	7/7
	2006	18	12	140	7	4 [2]	31/31	7/7
	2007	16	10	450	tr(4)	9 [3]	31/31	7/7
	2008	12	10	98	tr(3)	9 [3]	31/31	7/7
	2009	14	12	89	tr(3)	7 [3]	31/31	7/7
Bivalves	2010	14	9	150	5	3 [1]	6/6	6/6
(pg/g-wet)	2011	26	17	320	5	3 [1]	4/4	4/4
(188)	2012	8.1	3.5	68	3.0	2.3 [0.9]	5/5	5/5
	2013	7.2	3.9	31	tr(2.1)	2.4 [0.9]	5/5	5/5
	2014	7.4	4.8	18	4.6	2.2 [0.8]	3/3	3/3
	2015	7.3	7.8	14	tr(3.6)	4.8 [1.6]	3/3	3/3
	2016	6	5	11	4	3 [1]	3/3	3/3
	2017	4	3	11	tr(2)	3 [1]	3/3	3/3
	2019	tr(2)	tr(2)	7	nd	4 [1]	2/3	2/3
	2022	3.5	5.1	8.4	tr(1.0)	1.1 [0.4]	3/3	3/3
	2003	16	22	130	tr(1.7)	3.3 [1.1]	70/70	14/14
	2004	tr(28)	tr(24)	660	nd	31 [10]	55/70	11/14
	2005	17	17	230	nd	8.4 [2.8]	78/80	16/16
	2006	19	22	97	tr(2)	4 [2]	80/80	16/16
	2007	15	15	190	nd	9 [3]	71/80	15/16
	2008	13	16	96	nd	9 [3]	70/85	15/17
	2009	14	12	180	nd	7 [3]	81/90	17/18
Fish	2010	9	13	56	tr(1)	3 [1]	18/18	18/18
(pg/g-wet)	2011	12	15	160	tr(1)	3 [1]	18/18	18/18
(hg/g-wei)	2012	7.8	12	43	nd	2.3 [0.9]	18/19	18/19
	2013	8.6	12	81	nd	2.4 [0.9]	17/19	17/19
	2014	8.4	14	45	nd	2.2 [0.8]	16/19	16/19
	2015	6.1	7.9	42	nd	4.8 [1.6]	14/19	14/19
	2016	5	5	43	nd	3 [1]	18/19	18/19
	2017	6	9	30	nd	3 [1]	16/19	16/19
	2019	tr(3)	tr(3)	34	nd	4[1]	13/16	13/16
	2022	3.0	2.8	24	nd	1.1 [0.4]	17/18	17/18
		2.0	2.0		114	[0.1]	1,,10	17710

у-НСН	Manitarad	Geometric				Quantification	Detection I	Frequency
(synonym: Lindane)	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
-	2003	14	19	40	3.7	3.3 [1.1]	10/10	2/2
	2004	64	tr(21)	1,200	tr(11)	31 [10]	10/10	2/2
	2005	18	20	32	9.6	8.4 [2.8]	10/10	2/2
	2006	16	17	29	8	4 [2]	10/10	2/2
	2007	21	14	140	tr(8)	9 [3]	10/10	2/2
	2008	12	14	19	tr(5)	9 [3]	10/10	2/2
	2009	11	11	21	tr(6)	7 [3]	10/10	2/2
	2010	10		23	4	3 [1]	2/2	2/2
Birds *2	2011			26	26	3 [1]	1/1	1/1
(pg/g-wet)	2012	11		19	6.3	2.3 [0.9]	2/2	2/2
	2013	6.0		24	tr(1.5)	2.4 [0.9]	2/2	2/2
	2014	10		24	4.4	2.2 [0.8]	2/2	2/2
	2015			nd	nd	4.8 [1.6]	0/1	0/1
	2016	5		14	tr(2)	3 [1]	2/2	2/2
	2017	4		20	tr(1)	3 [1]	2/2	2/2
	2019			7	7	4[1]	1/1	1/1
	2022	3.4		6.6	1.8	1.1 [0.4]	2/2	2/2
				0.0	1.0	Quantification	Detection I	
δ -HCH	Monitored		Median	Maximum	Minimum	[Detection]		
0-11011	year	mean *1	Wicalan	Maximum		limit	Sample	Site
	2003	7.4	tr(2.6)	1,300	nd	3.9 [1.3]	29/30	6/6
	2004	6.3	tr(2.1)	1,500	nd	4.6 [1.5]	25/31	6/7
	2005	5.4	tr(2.1)	1,600	nd	5.1 [1.7]	23/31	6/7
	2006	6	tr(2)	890	tr(1)	3 [1]	31/31	7/7
	2007	4	nd	750	nd	4 [2]	12/31	4/7
	2008	tr(3)	nd	610	nd	6 [2]	7/31	3/7
	2009	tr(4)	nd	700	nd	5 [2]	14/31	4/7
	2010	4	tr(2)	870	nd	3 [1]	5/6	5/6
Bivalves	2011	9	tr(2)	1,400	tr(1)	3 [1]	4/4	4/4
(pg/g-wet)	2012	3	tr(1)	580	nd	3 [1]	3/5	3/5
	2013	3	tr(1)	230	nd	3 [1]	3/5	3/5
	2014	tr(1)	tr(2)	3	nd	3 [1]	2/3	2/3
	2015	nd	nd	tr(1.5)	nd	2.1 [0.8]	1/3	1/3
	2016	tr(1)	tr(1)	tr(2)	tr(1)	3 [1]	3/3	3/3
	2017	tr(1.7)	tr(1.6)	3.0	tr(1.0)	2.3 [0.9]	3/3	3/3
	2019	nd	nd	nd	nd	4 [2]	0/3	0/3
	2022	tr(0.7)	tr(0.6)	3.0	nd	1.0 [0.4]	2/3	2/3
	2003	tr(3.6)	4.0	16	nd	3.9 [1.3]	59/70	13/14
	2004	tr(4.2)	tr(3.5)	270	nd	4.6 [1.5]	54/70	11/14
	2005	tr(3.2)	tr(3.1)	32	nd	5.1 [1.7]	55/80	12/16
	2006	4	3	35	nd	3 [1]	72/80	16/16
	2007	tr(3)	tr(2)	31	nd	4 [2]	42/80	10/16
	2008	tr(4)	tr(3)	77	nd	6 [2]	54/85	12/17
	2009	tr(3)	tr(3)	18	nd	5 [2]	57/90	13/18
	2010	tr(2)	tr(2)	36	nd	3 [1]	13/18	13/18
Fish	2011	3	4	19	nd	3 [1]	14/18	14/18
(pg/g-wet)	2012	tr(2)	tr(2)	12	nd	3 [1]	14/19	14/19
	2013	3	tr(2)	40	nd	3 [1]	14/19	14/19
	2014	tr(2)	tr(2)	23	nd	3 [1]	14/19	14/19
	2015	tr(1.7)	tr(1.8)	17	nd	2.1 [0.8]	12/19	12/19
	2016	tr(2)	tr(2)	10	nd	3 [1]	17/19	17/19
	2017	2.4	2.4	23	nd	2.3 [0.9]	15/19	15/19
	2017	nd	nd	5	nd	4 [2]	6/16	6/16
	2017	1.0	1.2	5.5	nd	1.0 [0.4]	13/18	13/18
	2022	1.0	1.2	3.3	114	1.0 [0.1]	13/10	15,10

	Monitored	Geometric				Quantification	Detection	Frequency
δ -HCH	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	19	18	31	12	3.9 [1.3]	10/10	2/2
	2004	30	14	260	6.4	4.6 [1.5]	10/10	2/2
	2005	16	15	30	10	5.1 [1.7]	10/10	2/2
	2006	13	12	21	9	3 [1]	10/10	2/2
	2007	12	10	22	4	4 [2]	10/10	2/2
	2008	9	8	31	tr(3)	6 [2]	10/10	2/2
	2009	5	6	9	tr(3)	5 [2]	10/10	2/2
D: 1 *2	2010	12		13	11	3 [1]	2/2	2/2
Birds *2	2011			5	5	3 [1]	1/1	1/1
(pg/g-wet)	2012	4		7	tr(2)	3 [1]	2/2	2/2
	2013	3		4	tr(2)	3 [1]	2/2	2/2
	2014	tr(2)		3	tr(1)	3 [1]	2/2	2/2
	2015			nd	nd	2.1 [0.8]	0/1	0/1
	2016	tr(1)		tr(2)	tr(1)	3 [1]	2/2	2/2
	2017	nd		tr(1.0)	nd	2.3 [0.9]	1/2	1/2
	2019			4	4	4 [2]	1/1	1/1
	2022	1.6		2.1	1.2	1.0 [0.4]	2/2	2/2

⁽Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002 ~ 2009.

<Air>

Stocktaking of the detection of α -HCH, β -HCH, γ -HCH (synonym: Lindane) and δ -HCH in air during FY2002 \sim 2022

		Geometric				Quantification	Detection 1	Frequency
α-НСН	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	58	58	340	19	0.12 [0.05]	37/37	37/37
	2009 Cold season	21	18	400	7.8	0.12 [0.05]	37/37	37/37
	2010 Warm season	46	51	280	14	1 4 [0 47]	37/37	37/37
	2010 Cold season	19	16	410	6.8	1.4 [0.47]	37/37	37/37
	2011 Warm season	43	44	410	9.5	2.5.[0.92]	35/35	35/35
	2011 Cold season	18	15	680	6.5	2.5 [0.83]	37/37	37/37
	2012 Warm season	37	37	250	15	2.1.[0.7]	36/36	36/36
Air	2012 Cold season	12	11	120	4.4	2.1 [0.7]	36/36	36/36
(pg/m^3)	2013 Warm season	36	39	220	13	5.0.51.73	36/36	36/36
	2013 Cold season	10	8.8	75	tr(3.9)	5.2 [1.7]	36/36	36/36
	2014 Warm season	44	40	650	14	0.19 [0.06]	36/36	36/36
	2015 Warm season	33	32	300	8.8	0.17 [0.06]	35/35	35/35
	2016 Warm season	39	35	520	5.4	0.17 [0.07]	37/37	37/37
	2017 Warm season	36	37	700	4.9	0.08 [0.03]	37/37	37/37
	2019 Warm season	21	21	230	6.3	0.12 [0.05]	36/36	36/36
	2022 Warm season	14	14	100	2.9	0.10 [0.04]	34/34	34/34

⁽Note 2) *2: There is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

⁽Note 3) No monitoring was conducted in FY2018 FY2020 and FY2021.

		Geometric				Quantification	Detection 1	Frequency
β-НСН	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	5.6	5.6	28	0.96	0.09 [0.03]	37/37	37/37
	2009 Cold season	1.8	1.8	24	0.31		37/37	37/37
	2010 Warm season	5.6	6.2	34	0.89	0.27 [0.09]	37/37	37/37
	2010 Cold season	1.7	1.7	29	tr(0.26)	0.27 [0.07]	37/37	37/37
	2011 Warm season	5.0	5.2	49	0.84	0.39 [0.13]	35/35	35/35
	2011 Cold season	1.7	1.7	91	tr(0.31)	0.57 [0.15]	37/37	37/37
	2012 Warm season	5.0	5.5	32	0.65	0.36 [0.12]	36/36	36/36
Air	2012 Cold season	0.93	1.1	8.5	tr(0.26)	0.30 [0.12]	36/36	36/36
(pg/m^3)	2013 Warm season	4.7	5.7	37	0.66	0.21 [0.07]	36/36	36/36
	2013 Cold season	0.97	0.95	6.7	tr(0.17)	0.21 [0.07]	36/36	36/36
	2014 Warm season	5.4	6.8	74	0.57	0.24 [0.08]	36/36	36/36
	2015 Warm season	3.0	3.0	34	0.36	0.25 [0.08]	35/35	35/35
	2016 Warm season	4.8	5.6	64	0.3	0.3 [0.1]	37/37	37/37
	2017 Warm season	4.1	5.1	59	0.67	0.11 [0.04]	37/37	37/37
	2019 Warm season	2.3	2.4	29	0.38	0.06 [0.02]	36/36	36/36
	2022 Warm season	1.8	1.9	14	0.23	0.07 [0.03]	34/34	34/34
у-НСН	2022 Wallin Beason		1.,		0.23	Quantification	Detection 1	
(synonym: Lindane)	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	17	19	65	2.9	0.06.00.021	37/37	37/37
	2009 Cold season	5.6	4.6	55	1.5	0.06 [0.02]	37/37	37/37
	2010 Warm season	14	16	66	2.3	0.25 50 123	37/37	37/37
	2010 Cold season	4.8	4.4	60	1.1	0.35 [0.12]	37/37	37/37
	2011 Warm season	14	17	98	2.7		35/35	35/35
	2011 Cold season	5.1	4.8	67	tr(1.1)	1.6 [0.52]	37/37	37/37
	2012 Warm season	13	15	55	2.3		36/36	36/36
Air	2012 Cold season	3.1	3.2	19	tr(0.63)	0.95 [0.32]	36/36	36/36
	2012 Cold season	12	<u></u>	58	tr(2.0)		36/36	36/36
(pg/III)	2013 Wallin season 2013 Cold season	2.8	3.0	12	nd	2.2 [0.7]	34/36	34/36
	2014 Warm season	14	16	100	1.7	0.17 [0.06]	36/36	36/36
	2014 Warm season	8.3	10	51	1.4	0.17 [0.06]	35/35	35/35
	2016 Warm season	12	13	89	0.79	0.18 [0.07]	37/37	37/37
	2017 Warm season	10	<u>13</u> 11	93	0.79	0.10 [0.04]	37/37	37/37
		6.4	7.0	93 49	0.88		36/36	36/36
	2019 Warm season					0.12 [0.05]		
	2022 Warm season	5.0	5.9	22	0.63	0.09 [0.03]	34/34	34/34
δ -HCH	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
	2009 Warm season	1.3	1.3	21	0.09		37/37	37/37
	2009 Cold season	0.36	0.33	20	0.04	0.04 [0.02]	37/37	37/37
	2010 Warm season	1.4	1.3	25	0.11	0.05.50.000	37/37	37/37
	2010 Cold season	0.38	0.35	22	0.05	0.05 [0.02]	37/37	37/37
	2011 Warm season	1.1	1.1	33	0.11		35/35	35/35
	2011 Cold season	0.35	0.34	26	tr(0.050)	0.063 [0.021]	37/37	37/37
	2012 Warm season	1.0	1.3	20	tr(0.06)		36/36	36/36
Air	2012 Wallii season 2012 Cold season	0.18	0.19	7.3	nd	0.07 [0.03]	35/36	35/36
(pg/m^3)	2012 Cold season 2013 Warm season	1.0	1.1	20	tr(0.05)		36/36	36/36
(hg/III)		0.17	0.17			0.08 [0.03]		
	2013 Cold season			5.3	nd +=(0.07)		34/36	34/36
	2014 Warm season	1.2	1.3	50	tr(0.07)	0.19 [0.06]	36/36	36/36
	2015 Warm season	0.55	0.71	22	nd	0.15 [0.05]	32/35	32/35
	2016 Warm season	1.0	1.2	46	nd	0.20 [0.08]	35/37	35/37
	2017 Warm season	0.80	0.92	46	nd	0.08 [0.03]	36/37	36/37
						0 0 4 50 007		26126
	2019 Warm season 2022 Warm season	0.46 0.57	$\frac{0.51}{0.62}$	19 12	tr(0.02) nd	0.04 [0.02] 0.08 [0.03]	36/36 32/34	36/36 32/34

(Note) No monitoring was conducted in FY2018 FY2020 and FY2021.

[12] Chlordecone (reference)

• History and state of monitoring (reference)

Chlordecone is a synthetic chlorinated organic compound, which was mainly used as an agricultural pesticide. No domestic record of manufacture/import of the substance was reported since it was historically never registrated under the Agricultural Chemicals Regulation Law. Chlordecone was adopted as a target chemical at the Fourth Meeting of the Conference of Parties (COP4) on Stockholm convention on Persistent Organic Pollutants in May 2009 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

As a continuous survey, the first survey was in FY2008. In the Initial Environmental Survey and the Detailed Environmental Survey etc. under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, the substance was monitored in air in FY2003.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water sediment and wildlife (bivalves, fish and birds) in FY2008 FY2010 and FY201, and in air in FY2010 and FY2011.

No monitoring was conducted after FY2012. For reference, the monitoring results up to FY2011 are given below.

· Monitoring results until FY2011

<Surface Water>

Stocktaking of the detection of Chlordecone in surface water during FY2008 ~ 2011

	Monitored	Geometric				Quantification	Detection 1	Frequency
Chlordecone	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2008	nd	nd	0.76	nd	0.14 [0.05]	13/46	13/46
	2010	tr(0.04)	nd	1.6	nd	0.09 [0.04]	13/49	13/49
(pg/L)	2011	nd	nd	0.70	nd	0.20 [0.05]	15/49	15/49

(Note) No monitoring was conducted in FY2009.

<Sediment>

Stocktaking of the detection of Chlordecone sediment during FY2008 ~ 2011

	Monitored	Geometric	Quantification		Detection Frequence			
Chlordecone	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2008	nd	nd	5.8	nd	0.42 [0.16]	23/129	10/49
	2010	nd	nd	2.8	nd	0.4 [0.2]	9/64	9/64
(pg/g-dry)	2011	nd	nd	1.5	nd	0.40 [0.20]	9/64	9/64

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

<Wildlife>

Stocktaking of the detection of Chlordecone in wildlife (bivalves, fish and birds) during FY2002 ~ 2014

	Monitored	Geometric			. Minimum	Quantification	Detection I	requency
Chlordecone	year	mean *	Median	Maximum	Minimum	[Detection]	Sample	Site
	, , , , ,	1110411				limit	ватри	5110
Bivalves	2008	nd	nd	nd	nd	5.6 [2.2]	0/31	0/7
	2010	nd	nd	nd	nd	5.9 [2.3]	0/6	0/6
(pg/g-wet)	2011	nd	nd	nd	nd	0.5 [0.2]	0/4	0/4
Fish	2008	nd	nd	nd	nd	5.6 [2.2]	0/85	0/17
	2010	nd	nd	nd	nd	5.9 [2.3]	0/18	0/18
(pg/g-wet)	2011	nd	nd	nd	nd	0.5 [0.2]	0/18	0/18
Birds	2008	nd	nd	nd	nd	5.6 [2.2]	0/10	0/2
(pg/g-wet)	2010	nd		nd	nd	5.9 [2.3]	0/2	0/2
	2011			nd	nd	0.5 [0.2]	0/1	0/1

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

(Note 2) No monitoring was conducted in FY209.

⁽Note 2) No monitoring was conducted in FY2009.

<Air>

Stocktaking of the detection of Chlordecone in air in FY2010 and 2011

		Geometric mean	Median	Maximum	Minimum	Quantification	Detection Frequency	
Chlordecone	Monitored year					[Detection] limit	Sample	Site
	2010 Warm season	nd	nd	nd	nd	0.04 [0.02]	0/37	0/37
Air	2010 Cold season	nd	nd	nd	nd		0/37	0/37
(pg/m^3)	2011 Warm season	nd	nd	nd	nd	0.04 [0.02]	0/35	0/35
	2011 Cold season	nd	nd	nd	nd		0/37	0/37

[13] Hexabromobiphenyls (reference)

· History and state of monitoring

Hexabromobiphenyls are industrial chemicals that have been used as flame retardans. Hexabromobiphenyls were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

As a continuous survey, the first survey was in FY2009. Under the framework of the Environmental Survey of Chemical Substances up to FY2001, the substance was monitored in surface water, sediment, wildlife (fish) and air in FY1989. Under the framework of the Initial Environmental Survey and the Detailed Environmental Survey etc. in the Environmental Survey and Monitoring of Chemicals after FY2002, the substance was monitored surface water and sediment in FY2003, in air in FY2004.

Under the framework of the Environmental Monitoring, the substances has been monitored in surface water in FY2009 FY2010 and FY2011, in sediment and wildlife (bivalves, fish and birds) in FY2009 FY2010 FY2011 and FY2015, and in air in FY2010 2011 and FY2015.

No monitoring was conducted after FY2016. For reference, the monitoring results up to FY2015 are given below.

Monitoring results until FY2015

<Surface Water>

Stocktaking of the detection of Hexabromobiphenyls in surface water during FY2009 ~ 2011

	Monitored	Geometric		Quantification		Detection Frequenc		
Hexabromobiphenyls	year	mean	Median	Maximum	Minimum	[Detection] limit*	Sample	Site
C	2009	nd	nd	nd	nd	5.7 [2.2]	0/49	0/49
Surface Water (pg/L)	2010	nd	nd	nd	nd	3 [1]	0/49	0/49
	2011	nd	nd	nd	nd	2.2 [0.9]	0/49	0/49

⁽Note) "** " indicates the sum value of the Quantification [Detection] limits of each congener in FY2009 and FY2011.

<Sediment>

Stocktaking of the detection of Hexabromobiphenyls in sediment during FY2002 ~ 2015

** 1 1:1 1	Monitored	Geometric				Quantification	Detection 1	Frequency
Hexabromobiphenyls	year	mean *1	Median	Maximum	Minimum	[Detection] limit *2	Sample	Site
	2009	nd	nd	12	nd	1.1 [0.40]	45/190	21/64
Sediment	2010	nd	nd	18	nd	1.5 [0.6]	10/64	10/64
(pg/g-dry)	2011	nd	nd	6.3	nd	3.6 [1.4]	8/64	8/64
	2015	nd	nd	15	nd	0.8 [0.3]	9/62	9/62

⁽Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

⁽Note 2) *2: The sum value of the Quantification [Detection] limits of each congener in FY2009 and FY2011

⁽Note 3) No monitoring was conducted during FY2012 ~ 2014.

<Wildlife>

Stocktaking of the detection of Hexabromobiphenyls in wildlife (bivalves, fish and birds) during FY2009 ~ 2015

	Monitored	Geometric				Quantification	Detection 1	Frequency
Hexabromobiphenyls	year	mean *1	Median	Maximum	Minimum	[Detection] limit *2	Sample	Site
•	2009	nd	nd	tr(0.53)	nd	1.3 [0.43]	1/31	1/7
Bivalves	2010	nd	nd	nd	nd	24 [10]	0/6	0/6
(pg/g-wet)	2011	nd	nd	nd	nd	3 [1]	0/4	0/4
	2015	nd	nd	nd	nd	14 [5]	0/3	0/3
	2009	tr(0.49)	tr(0.43)	6.0	nd	1.3 [0.43]	46/90	12/18
Fish	2010	nd	nd	nd	nd	24 [10]	0/18	0/18
(pg/g-wet)	2011	nd	nd	3	nd	3 [1]	5/18	5/18
	2015	nd	nd	nd	nd	14 [5]	0/19	0/19
	2009	1.6	1.6	2.1	tr(1.2)	1.3 [0.43]	10/10	2/2
Birds *3	2010	nd		nd	nd	24 [10]	0/2	0/2
(pg/g-wet)	2011			3	3	3 [1]	1/1	1/1
(1887)	2015			nd	nd	14 [5]	0/1	0/1

⁽Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

<Air>

Stocktaking of the detection of Hexabromobiphenyls in air during FY2010 ~ 2015

Hexabromo		Geometric	•			Quantification	Detection I	Frequency
biphenyls	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2010 Warm season	nd	nd	nd	nd	0.2 [0.1]	0/37	0/37
A :	2010 Cold season	nd	nd	nd	nd	0.3 [0.1]	0/37	0/37
Air	2011 Warm season	nd	nd	nd	nd	0.3 [0.1]	0/35	0/35
(pg/m^3)	2011 Cold season	nd	nd	nd	nd		0/37	0/37
	2015 Warm season	nd	nd	1.1	nd	0.06 [0.02]	2/35	2/35

(Note) No monitoring was conducted during FY2012 ~ 2014.

⁽Note 2) *2: The sum value of the Quantification [Detection] limits of each congener in FY2009 and FY2010.

⁽Note 3) *3: There is no consistency between the results of the ornithological survey in FY2015 and those in previous years because of the changes in the survey sites and target species.

⁽Note 4) No monitoring was conducted during FY2012 ~ 2014.

[14] Polybromodiphenyl ethers ($Br_4 \sim Br_{10}$) (reference)

· History and state of monitoring

Polybrominated diphenyl ethers have been used as flame retardants for plastics products. Tetrabromodiphenyl ethers, Pentabromodiphenyl ethers, Hexabromodiphenyl ethers, and Heptabromodiphenyl ethers were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010. Also, Decabromodiphenyl ether was adopted as target chemicals at the COP8 of the Stockholm convention on Persistent Organic Pollutants held from late April to early May 2017. The substance was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2018.

As a continuous survey, the first survey was in FY2008. Under the framework of the Environmental Survey of Chemical Substances up to FY2001, Decabromodiphenyl ether was monitored in surface water and sediment in FY1977 and FY1996, Polybromodiphenyl ethers (Br_6 , Br_8 and Br_{10}) were monitored in surface water, sediment and wildlife (fish) in FY1987 and FY1988, Polybromodiphenyl ethers ($Br_1 \sim Br_7$) were monitored in air in FY2001. In the Initial Environmental Survey and the Detailed Environmental Survey etc. under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, Decabromodiphenyl ether was monitored in surface water, sediment and wildlife (fish) in FY2002, Polybromodiphenyl ethers (Br_6 , Br_8 and Br_{10}) were monitored in sediment and wildlife (fish) in FY2003, Pentabromodiphenyl ethers were monitored in sediment and Polybromodiphenyl ethers ($Br_1 \sim Br_7$) in air in FY2004, Polybromodiphenyl ethers ($Br_1 \sim Br_7$, Br_9 and Br_{10}) were monitored in surface water in FY2005.

Under the framework of the Environmental Monitoring, Polybromodiphenyl ethers (Br₄ \sim Br₁₀) have been monitored in surface water sediment and air in FY2009 \sim 2012 FY2014 \sim 2019 and FY2022, and in wildlife (bivalves, fish and birds) in FY2008 FY2010 \sim 2012 FY2014 \sim 2019 and FY2022.

No monitoring was conducted in FY2023. For reference, the monitoring results up to FY2022 are given below.

Monitoring results until FY2022

<Surface Water>

Stocktaking of the detection of Polybromodiphenyl ethers (Br₄ \sim Br₁₀) in surface water during FY2009 \sim 2022

Tetrabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ethers	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	17	16	160	nd	8 [3]	44/49	44/49
	2010	nd	nd	390	nd	9 [3]	17/49	17/49
	2011	11	10	180	nd	4 [2]	48/49	48/49
	2012	tr(3)	tr(3)	22	nd	4 [1]	47/48	47/48
Surface Water	2014	tr(6)	tr(6)	51	tr(4)	8 [3]	48/48	48/48
	2015	4.3	4.1	40	tr(1.2)	3.6 [1.2]	48/48	48/48
(pg/L)	2016	5	tr(5)	47	tr(3)	5 [2]	48/48	48/48
	2017	tr(4)	tr(4)	12	nd	9 [3]	44/47	44/47
	2018	nd	nd	72	nd	13 [5]	22/47	22/47
	2019	tr(6)	tr(6)	320	nd	11 [4]	39/48	39/48
	2022	tr(4)	tr(3)	140	tr(2)	6 [2]	48/48	48/48

Pentabromodiphenyl	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification	Detection Frequency	
ethers						[Detection] limit	Sample	Site
Surface Water (pg/L)	2009	11	12	87	nd	11 [4]	43/49	43/49
	2010	tr(1)	tr(1)	130	nd	3 [1]	25/49	25/49
	2011	5	4	180	nd	3 [1]	48/49	48/49
	2012	tr(1)	tr(1)	20	nd	2 [1]	32/48	32/48
	2014	nd	nd	39	nd	4 [2]	19/48	19/48
	2015	tr(3.0)	tr(3.2)	31	nd	6.3 [2.1]	34/48	34/48
	2016	tr(1.5)	tr(1.3)	36	nd	2.4 [0.9]	39/48	39/48
	2017	nd	tr(1)	8	nd	3 [1]	24/47	24/47
	2018	nd	nd	110	nd	9 [3]	13/47	13/47
	2019	nd	nd	69	nd	6 [2]	19/48	19/48
	2022	tr(1.7)	tr(1.4)	31	nd	2.4 [0.9]	40/48	40/48
Hexabromodiphenyl	Monitored	Coomotnio				Quantification	Detection 1	Frequency
ethers	year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	tr(0.9)	tr(0.7)	18	nd	1.4 [0.6]	26/49	26/49
	2010	nd	nd	51	nd	4 [2]	16/49	16/49
	2011	tr(1)	nd	39	nd	3 [1]	21/49	21/49
	2012	nd	nd	7	nd	3 [1]	6/48	6/48
C	2014	nd	nd	8	nd	4 [1]	10/48	10/48
Surface Water	2015	nd	nd	12	nd	1.5 [0.6]	5/48	5/48
(pg/L)	2016	nd	nd	9.1	nd	2.1 [0.8]	9/48	9/48
	2017	nd	nd	tr(6)	nd	7 [3]	1/47	1/47
	2018	nd	nd	54	nd	3 [1]	15/47	15/47
	2019	nd	nd	8	nd	2[1]	5/48	5/48
	2022	nd	nd	10	nd	3 [1]	5/48	5/48
Heptabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ethers	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	nd	nd	40	nd	4 [2]	9/49	9/49
	2010	nd	nd	14	nd	3 [1]	17/49	17/49
	2011	nd	nd	14	nd	6 [2]	14/49	14/49
	2012	nd	nd	10	nd	4 [1]	9/48	9/48
Surface Water (pg/L)	2014	nd	nd	8	nd	8 [3]	3/48	3/48
	2015	nd	nd	28	nd	2.0 [0.8]	9/48	9/48
	2016	nd	nd	11	nd	7 [3]	10/48	10/48
	2017	nd	nd	30	nd	14 [5]	1/47	1/47
	2018	nd	nd	65	nd	8 [3]	3/47	3/47
	2019	nd	nd	6	nd	4 [2]	2/48	2/48
	2022	nd	nd	tr(6)	nd	8 [3]	1/48	1/48
0.41 1.1 1				. ,		Quantification	Detection 1	
Octabromodiphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water (pg/L)	2009	3.0	3.9	56	nd	1.4 [0.6]	37/49	37/49
	2010	tr(2)	tr(2)	69	nd	3 [1]	40/49	40/49
	2011	4	3	98	nd	2 [1]	44/49	44/49
	2012	tr(2)	nd	35	nd	4 [2]	16/48	16/48
	2014	2.5	3.7	38	nd	1.6 [0.6]	33/48	33/48
	2015	2.3	3.1	36	nd	1.5 [0.6]	31/48	31/48
	2016	5.8	7.5	230	nd	0.8 [0.3]	44/48	44/48
	2017	tr(2)	nd	33	nd	2 [1]	22/47	22/47
	2017	tr(2)	tr(1)	69	nd	3 [1]	35/47	35/47
	2019	nd	nd	14	nd	3 [1]	12/48	12/48
	2019	tr(0.9)	nd	26	nd	2.0 [0.8]	17/48	17/48
	2022	น(บ.9)	IIG	20	IIU	۷.0 [0.8]	1 //40	1 //40

Nonabromodiphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification	Detection Frequency	
						[Detection] limit	Sample	Site
Surface Water (pg/L)	2009	tr(46)	tr(38)	500	nd	91 [30]	32/49	32/49
	2010	tr(17)	tr(13)	620	nd	21 [7]	39/49	39/49
	2011	33	24	920	nd	10 [4]	47/49	47/49
	2012	tr(21)	tr(19)	320	nd	40 [13]	30/48	30/48
	2014	37	38	590	nd	6 [2]	47/48	47/48
	2015	36	33	330	nd	6 [2]	47/48	47/48
	2016	43	45	3,900	tr(2)	4 [1]	48/48	48/48
	2017	17	26	460	nd	7 [3]	37/47	37/47
	2018	12	12	170	nd	6 [2]	46/47	46/47
	2019	tr(7)	8	150	nd	8 [3]	27/48	27/48
	2022	tr(8)	tr(5)	670	nd	10 [4]	25/48	25/48
Decabromodiphenyl ether	Monitored	Geometric	Median	Maximum	Minimum	Quantification	Detection Frequenc	
	year	mean				[Detection] limit	Sample	Site
Surface Water (pg/L)	2009	tr(310)	tr(220)	3,400	nd	600 [200]	26/49	26/49
	2010	tr(250)	tr(200)	13,000	nd	300 [100]	31/49	31/49
	2011	200	140	58,000	nd	60 [20]	45/49	45/49
	2012	tr(400)	tr(320)	12,000	nd	660 [220]	31/48	31/48
	2014	200	230	5,600	tr(14)	22 [9]	48/48	48/48
	2015	720	570	13,000	140	18 [7]	48/48	48/48
	2016	210	160	34,000	tr(12)	14 [6]	48/48	48/48
	2017	150	210	4,100	nd	24 [8]	46/47	46/47
	2018	120	110	2,700	12	11 [4]	47/47	47/47
	2019	110	99	2,200	tr(10)	14 [6]	48/48	48/48
	2022	89	72	5,600	tr(7)	8 [3]	48/48	48/48

(Note) No monitoring was conducted in FY2013 FY2020 and FY2021.

<Sediment>

Stocktaking of the detection of Polybromodiphenyl ethers (Br₄ \sim Br₁₀) in sediment during FY2009 \sim 2022

Tetrabromodiphenyl ethers	Monitored	Geometric mean *	Median	Maximum	Minimum	Quantification	Detection Frequency	
	year					[Detection] limit	Sample	Site
	2009	tr(60)	tr(44)	1,400	nd	69 [23]	131/192	51/64
	2010	35	38	910	nd	6 [2]	57/64	57/64
	2011	32	30	2,600	nd	30 [10]	47/64	47/64
	2012	27	37	4,500	nd	2 [1]	60/63	60/63
Sediment	2014	tr(24)	tr(19)	550	nd	27 [9]	44/63	44/63
	2015	30	28	1,400	nd	21 [7]	44/62	44/62
(pg/g-dry)	2016	tr(21)	tr(16)	390	nd	33 [11]	35/62	35/62
	2017	13	10	570	nd	9 [4]	44/62	44/62
	2018	21	tr(16)	3,100	nd	18 [6]	43/61	43/61
	2019	15	14	710	nd	5 [2]	58/61	58/61
	2022	6.9	6.4	1,800	nd	2.4 [0.9]	52/61	52/61
Pentabromodiphenyl ethers	Monitored	Geometric mean*	Median	Maximum	Minimum	Quantification	Detection l	requency
	year					[Detection] limit	Sample	Site
	2009	36	24	1,700	nd	24 [8]	146/192	57/64
Sediment (pg/g-dry)	2010	26	23	740	nd	5 [2]	58/64	58/64
	2011	24	18	4,700	nd	5 [2]	62/64	62/64
	2012	21	21	2,900	nd	2.4 [0.9]	62/63	62/63
	2014	16	14	570	nd	6 [2]	53/63	53/63
	2015	23	20	1,300	nd	18 [6]	44/62	44/62
	2016	13	tr(10)	400	nd	12 [4]	46/62	46/62
	2017	10	tr(5.5)	560	nd	9 [4]	37/62	37/62
	2018	19	24	2,800	nd	4 [2]	53/61	53/61
	2019	9	9	740	nd	3 [1]	52/61	52/61
	2022	5	5	850	nd	4 [1]	45/61	45/61

Hexabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean *	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	21	21	2,600	nd	5 [2]	139/192	53/64
	2010	23	23	770	nd	4 [2]	57/64	57/64
	2011	31	42	2,000	nd	9 [3]	52/64	52/64
	2012	15	19	1,700	nd	3 [1]	48/63	48/63
C - 1' 4	2014	21	27	730	nd	5 [2]	50/63	50/63
Sediment	2015	11	15	820	nd	3 [1]	42/62	42/62
(pg/g-dry)	2016	17	19	600	nd	8 [3]	40/62	40/62
	2017	16	24	570	nd	6 [2]	44/62	44/62
	2018	29	37	1,300	nd	3 [1]	52/61	52/61
	2019	14	17	690	nd	4 [2]	41/61	41/61
	2022	10	14	420	nd	3 [1]	46/61	46/61
Hontohuomo dinhonvil	Manitanad	Coomotnio				Quantification	Detection	Frequency
Heptabromodiphenyl ethers	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	30	25	16,000	nd	9 [4]	125/192	51/64
	2010	28	18	930	nd	4 [2]	58/64	58/64
	2011	29	32	2,400	nd	7 [3]	55/64	55/64
	2012	34	32	4,400	nd	4 [2]	48/63	48/63
G 11	2014	19	tr(14)	680	nd	16 [6]	41/63	41/63
Sediment	2015	16	21	1,800	nd	3 [1]	44/62	44/62
(pg/g-dry)	2016	16	17	1,100	nd	6 [2]	44/62	44/62
	2017	18	16	580	nd	15 [6]	36/62	36/62
	2018	44	48	1,900	nd	14 [5]	46/61	46/61
	2019	15	11	1,400	nd	6 [3]	39/61	39/61
	2022	10	12	940	nd	8 [3]	39/61	39/61
						Quantification	Detection 1	
Octabromodiphenyl ethers	Monitored year	Geometric mean *	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	210	96	110,000	nd	1.2 [0.5]	182/192	63/64
	2010	71	76	1,800	nd	10 [4]	60/64	60/64
	2011	57	64	36,000	nd	10 [4]	55/64	55/64
	2012	78	74	15,000	nd	19 [6]	47/63	47/63
	2014	52	58	2,000	nd	12 [4]	55/63	55/63
Sediment	2015	58	tr(44)	1,400	nd	48 [16]	41/62	41/62
(pg/g-dry)	2016	51	49	1,400	nd	6 [2]	55/62	55/62
	2017	38	58	1,900	nd	5 [2]	48/62	48/62
	2017	100	140	5,500	nd	1.2 [0.5]	57/61	57/61
	2019	33	47	2,000	nd	3 [1]	50/61	50/61
	2019	33	47	1,600		7 [3]	45/61	45/61
	2022	31	49	1,000	nd	Quantification	Detection 1	
Nonabromodiphenyl	Monitored	Geometric	Median	Maximum	Minimum	[Detection]	Detection	rrequency
ethers	year	mean *	Median	Maximum	Millillillilli	limit	Sample	Site
	2009	1,100	710	230,000	nd	9 [4]	181/192	64/64
	2010	360	430	26,000	nd	24 [9]	60/64	60/64
	2010	710	630	70,000	nd		62/64	62/64
						23 [9]	52/63	
	2012	360 470	380	84,000	nd nd	34 [11]		52/63 60/63
Sediment	2014	470	470	42,000	nd nd	60 [20]	60/63 55/62	60/63
(pg/g-dry)	2015	300	420	11,000	nd 1	24 [8]		55/62
400 7/	2016	430	390	26,000	nd	27 [9]	60/62	60/62
	2017	400	490	29,000	nd	15 [5]	61/62	61/62
	2018	690	770	56,000	nd	5 [2]	60/61	60/61
	2019	310	420	40,000	nd	5 [2]	59/61	59/61
	2022	340	510	43,000	nd	14 [5]	56/61	56/61

Decabromodiphenyl	Monitored	Geometric				Quantification	Detection l	Frequency
ether	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	6,000	4,800	880,000	tr(30)	60 [20]	192/192	64/64
	2010	5,100	4,200	700,000	nd	220 [80]	60/64	60/64
	2011	4,200	4,700	700,000	nd	40 [20]	62/64	62/64
	2012	5,700	6,300	760,000	nd	270 [89]	60/63	60/63
C - 1'4	2014	5,600	5,000	980,000	nd	240 [80]	61/63	61/63
Sediment	2015	6,600	7,200	490,000	40	40 [20]	62/62	62/62
(pg/g-dry)	2016	4,700	5,100	940,000	nd	120 [41]	61/62	61/62
	2017	4,600	5,700	580,000	tr(27)	30 [10]	62/62	62/62
	2018	5,100	6,300	520,000	tr(14)	42 [14]	61/61	61/61
	2019	4,400	6,300	560,000	14	4 [2]	61/61	61/61
	2022	3,300	4,100	410,000	tr(17)	21 [8]	61/61	61/61

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

<Wildlife>

Stocktaking of the detection of Polybromodiphenyl ethers (Br $_4 \sim Br_{10}$) in wildlife (bivalves, fish and birds) during FY2008 ~ 2022

Tetrabromodiphenyl	Monitored	Geometric				Quantification	Detection l	Frequency
ethers	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	73	61	380	20	5.9 [2.2]	31/31	7/7
	2010	59	73	310	nd	43 [16]	5/6	5/6
	2011	96	120	490	26	16 [6]	4/4	4/4
	2012	59	44	190	24	19 [7]	5/5	5/5
Bivalves	2014	56	38	140	33	15 [6]	3/3	3/3
	2015	48	38	89	32	15 [6]	3/3	3/3
(pg/g-wet)	2016	42	32	98	23	13 [5]	3/3	3/3
	2017	47	23	200	23	16 [6]	3/3	3/3
	2018	36	26	68	26	14 [5]	3/3	3/3
	2019	26	tr(17)	68	tr(15)	18 [7]	3/3	3/3
	2022	16	tr(7)	94	tr(6)	13 [5]	3/3	3/3
	2008	120	110	1,300	9.8	5.9 [2.2]	85/85	17/17
	2010	160	170	740	tr(16)	43 [16]	18/18	18/18
Eigh	2011	110	110	860	tr(9)	16 [6]	18/18	18/18
	2012	120	140	650	tr(10)	19 [7]	19/19	19/19
	2014	150	160	1,300	18	15 [6]	19/19	19/19
Fish	2015	90	82	580	tr(14)	15 [6]	19/19	19/19
(pg/g-wet)	2016	76	53	390	tr(10)	13 [5]	19/19	19/19
	2017	80	73	360	tr(7)	16 [6]	19/19	19/19
	2018	79	61	440	tr(13)	14 [5]	18/18	18/18
	2019	57	62	210	tr(10)	18 [7]	16/16	16/16
	2022	38	44	230	tr(6)	13 [5]	18/18	18/18
	2008	170	190	1,200	32	5.9 [2.2]	10/10	2/2
	2010	140		270	72	43 [16]	2/2	2/2
	2011			67	67	16 [6]	1/1	1/1
	2012	73		110	49	19 [7]	2/2	2/2
Birds *2	2014	190		480	78	15 [6]	2/2	2/2
	2015			36	36	15 [6]	1/1	1/1
(pg/g-wet)	2016	170		470	62	13 [5]	2/2	2/2
	2017	130		660	26	16 [6]	2/2	2/2
	2018	290		310	280	14 [5]	2/2	2/2
	2019			210	210	18 [7]	1/1	1/1
	2022	210		250	180	13 [5]	2/2	2/2

⁽Note 2) No monitoring was conducted in FY2013 FY2020 and FY2021.

Pentabromodiphenyl	Monitored	Geometric				Quantification	Detection l	Frequency
ethers	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	32	27	94	tr(11)	16 [5.9]	31/31	7/7
	2010	32	37	98	tr(9)	14 [6]	6/6	6/6
	2011	51	60	160	tr(12)	15 [6]	4/4	4/4
	2012	28	24	67	tr(8)	18 [6]	5/5	5/5
D' 1	2014	30	37	41	18	12 [5]	3/3	3/3
Bivalves	2015	18	19	20	16	13 [5]	3/3	3/3
(pg/g-wet)	2016	11	9	20	tr(8)	9 [4]	3/3	3/3
	2017	18	16	62	tr(6)	12 [5]	3/3	3/3
	2018	13	21	23	tr(5)	11 [4]	3/3	3/3
	2019	12	12	28	tr(5)	10 [4]	3/3	3/3
	2022	4	tr(2)	26	nd	4 [2]	2/3	2/3
	2008	30	37	280	nd	16 [5.9]	72/85	16/17
	2010	51	54	200	nd	14 [6]	16/18	16/18
	2011	39	39	300	nd	15 [6]	17/18	17/18
	2012	37	54	180	nd	18 [6]	17/19	17/19
Fish	2014	41	47	570	nd	12 [5]	18/19	18/19
(pg/g-wet)	2015	22	17	140	nd	13 [5]	18/19	18/19
(pg/g-wet)	2016	18	14	87	tr(4)	9 [4]	19/19	19/19
	2017	23	28	87	nd	12 [5]	18/19	18/19
	2018	21	21	100	nd	11 [4]	17/18	17/18
	2019	17	18	58	tr(4)	10 [4]	16/16	16/16
	2022	15	20	82	nd	4 [2]	17/18	17/18
	2008	150	130	440	52	16 [5.9]	10/10	2/2
	2010	150		200	120	14 [6]	2/2	2/2
	2011			110	110	15 [6]	1/1	1/1
	2012	85		110	66	18 [6]	2/2	2/2
Birds *2	2014	100		320	31	12 [5]	2/2	2/2
(pg/g-wet)	2015			22	22	13 [5]	1/1	1/1
(pg/g-wet)	2016	88		300	26	9 [4]	2/2	2/2
	2017	77		500	12	12 [5]	2/2	2/2
	2018	180		240	140	11 [4]	2/2	2/2
	2019			150	150	10 [4]	1/1	1/1
	2022	230		260	200	4 [2]	2/2	2/2
Hexabromodiphenyl	Monitored	Geometric				Quantification	Detection l	Frequency
ethers	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	19	16	82	tr(5.3)	14 [5.0]	31/31	7/7
	2010	8	16	26	nd	8 [3]	4/6	4/6
	2011	38	41	81	20	10 [4]	4/4	4/4
	2012	21	23	130	tr(6)	10 [4]	5/5	5/5
	2014	23	21	52	11	10 [4]	3/3	3/3
Bivalves	2015	tr(9)	tr(6)	41	nd	12 [5]	2/3	2/3
(pg/g-wet)	2016	tr(13)	tr(13)	40	nd	21 [8]	2/3	2/3
	2017	tr(14)	20	36	nd	17 [7]	2/3	2/3
	2018	tr(12)	tr(12)	34	nd	21 [8]	2/3	2/3
	2019	nd	nd	24	nd	21 [8]	1/3	1/3
	2022	tr(2)	nd	5	nd	5 [2]	1/3	1/3
	2008	46	51	310	nd	14 [5.0]	83/85	17/17
	2010	39	47	400	nd	8 [3]	16/18	16/18
	2011	53	50	430	nd	10 [4]	17/18	17/18
	2012	55	71	320	nd	10 [4]	18/19	18/19
	2014	60	61	1,100	nd	10 [4]	18/19	18/19
Fish	2015	44	45	250	nd	12 [5]	18/19	18/19
(pg/g-wet)	2016	42	36	190	nd	21 [8]	18/19	18/19
	2017	49	49	210	nd	17 [7]	18/19	18/19
	2018	44	48	190	nd	21 [8]	17/18	17/18
	2019	42	40	290	tr(12)	21 [8]	16/16	16/16
	2022	20	24	96	nd	5 [2]	17/18	17/18

Hexabromodiphenyl	Monitored	Geometric			n Minimum	Quantification	Detection Frequency		
ethers	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site	
	2008	140	120	380	62	14 [5.0]	10/10	2/2	
	2010	110		140	86	8 [3]	2/2	2/2	
	2011			96	96	10 [4]	1/1	1/1	
	2012	150		320	72	10 [4]	2/2	2/2	
Birds *2	2014	170		680	42	10 [4]	2/2	2/2	
(pg/g-wet)	2015			30	30	12 [5]	1/1	1/1	
(pg/g-wei)	2016	220		740	68	21 [8]	2/2	2/2	
	2017	230		1,000	51	17 [7]	2/2	2/2	
	2018	650		1,300	330	21 [8]	2/2	2/2	
	2019			480	480	21 [8]	1/1	1/1	
	2022	340		480	240	5 [2]	2/2	2/2	
Heptabromodiphenyl ethers	Monitored year	Geometric mean *1	Median	Maximum	Minimum	Quantification [Detection] limit	Detection l Sample	Site	
	2008	tr(8.5)	tr(7.6)	35	nd	18 [6.7]	20/31	7/7	
	2010	nd	nd	tr(10)	nd	30 [10]	1/6	1/6	
	2011	14	26	44	nd	11 [4]	3/4	3/4	
	2012	tr(8)	tr(6)	59	nd	12 [5]	3/5	3/5	
	2014	nd	nd	13	nd	12 [5]	1/3	1/3	
Bivalves	2015	nd	nd	tr(11)	nd	12 [5]	1/3	1/3	
(pg/g-wet)	2016	nd	nd	tr(8)	nd	13 [5]	1/3	1/3	
	2017	nd	nd	tr(9)	nd	22 [8]	1/3	1/3	
	2018	nd	nd	tr(10)	nd	15 [6]	1/3	1/3	
	2019	nd	nd	tr(18)	nd	24 [9]	1/3	1/3	
	2022	nd	nd	nd	nd	10 [4]	0/3	0/3	
	2008	tr(11)	tr(8.1)	77	nd	18 [6.7]	44/85	10/17	
	2010	nd	nd	40	nd	30 [10]	4/18	4/18	
	2011	13	21	130	nd	11 [4]	13/18	13/18	
	2012	tr(11)	18	120	nd	12 [5]	11/19	11/19	
F:-1.	2014	tr(10)	13	280	nd	12 [5]	10/19	10/19	
Fish (pg/g-wet)	2015	nd	nd	44	nd	12 [5]	4/19	4/19	
(pg/g-wet)	2016	tr(9)	tr(7)	85	nd	13 [5]	11/19	11/19	
	2017	tr(11)	tr(12)	55	nd	22 [8]	10/19	10/19	
	2018	tr(9)	tr(8)	58	nd	15 [6]	11/18	11/18	
	2019	tr(10)	tr(10)	82	nd	24 [9]	9/16	9/16	
	2022	nd	nd	tr(8)	nd	10 [4]	4/18	4/18	
	2008	35	35	53	19	18 [6.7]	10/10	2/2	
	2010	tr(19)		70	nd	30 [10]	1/2	1/2	
	2011			44	44	11 [4]	1/1	1/1	
	2012	63		280	14	12 [5]	2/2	2/2	
Birds *2*	2014	19		150	nd	12 [5]	1/2	1/2	
(pg/g-wet)	2015			tr(11)	tr(11)	12 [5]	1/1	1/1	
400	2016	65		220	19	13 [5]	2/2	2/2	
	2017	89		440	tr(18)	22 [8]	2/2	2/2	
	2018	230		480	110	15 [6]	2/2	2/2	
	2019			260	260	24 [9]	1/1	1/1	
	2022	69		96	49	10 [4] Quantification	2/2 Detection I	2/2	
Octabromodiphenyl ethers	Monitored	Geometric mean *1	Median	Maximum	Minimum	[Detection]	Sample	Site	
Cuicis	year					limit			
	2008	nd	nd	10	nd	9.6 [3.6]	15/31	6/7	
	2010	nd	nd	tr(10)	nd	11 [4]	2/6	2/6	
	2011	7	9	29	nd	7 [3]	3/4	3/4	
	2012	8	tr(7)	25	nd	8 [3]	4/5	4/5	
Bivalves	2014	tr(9.2)	11	14	tr(5)	11 [4]	3/3	3/3	
(pg/g-wet)	2015	nd	nd	nd	nd	14 [5]	0/3	0/3	
(100)	2016	nd	nd	nd	nd	16 [6]	0/3	0/3	
	2017	nd	nd	tr(9)	nd	20 [8]	1/3	1/3	
	2018	nd	nd	nd	nd	16 [6]	0/3	0/3	
	2019	tr(8)	nd	39	nd	17 [7]	1/3	1/3	
	2022	nd	nd	tr(1)	nd	2 [1]	1/3	1/3	

Octabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	tr(5.7)	nd	73	nd	9.6 [3.6]	35/85	7/17
	2010	tr(6)	nd	100	nd	11 [4]	8/18	8/18
	2011	tr(6)	tr(7)	150	nd	7 [3]	10/18	10/18
	2012	tr(7)	8	160	nd	8 [3]	12/19	12/19
Fish	2014	14	13	540	nd	11 [4]	15/19	15/19
(pg/g-wet)	2015	tr(7)	nd	60	nd	14 [5]	9/19	9/19
(188)	2016	tr(8)	nd	86	nd	16 [6]	9/19	9/19
	2017	tr(9.7)	nd	88	nd	20 [8]	9/19	9/19
	2018	tr(7)	nd	74	nd	16 [6]	8/18	8/18
	2019	tr(8)	nd	120	nd	17 [7]	8/16	8/16
-	2022 2008	3 42	41	29 64	nd 30	2[1]	13/18	13/18
	2008	42		65	26	9.6 [3.6]	10/10 2/2	2/2 2/2
	2010	41 		66	66	11 [4] 7 [3]	1/1	1/1
	2011	130		420	40	8 [3]	2/2	2/2
	2014	17		140	nd	11 [4]	1/2	1/2
Birds *2	2015			tr(5)	tr(5)	14 [5]	1/1	1/1
(pg/g-wet)	2016	65		220	19	16 [6]	2/2	2/2
	2017	130		720	25	20 [8]	2/2	2/2
	2018	190		580	61	16 [6]	2/2	2/2
	2019			330	330	17 [7]	1/1	1/1
	2022	160		180	150	2 [1]	2/2	2/2
						Quantification	Detection 1	
Nonabromodiphenyl	Monitored		Median	Maximum	Minimum	[Detection]		
ethers	year	mean *1				limit	Sample	Site
	2008	nd	nd	tr(23)	nd	35 [13]	5/31	1/7
	2010	tr(16)	tr(15)	60	nd	30 [10]	5/6	5/6
	2011	tr(12)	tr(11)	40	nd	22 [9]	3/4	3/4
	2012	tr(15)	25	45	nd	24 [9]	3/5	3/5
Bivalves	2014	40	tr(20)	110	tr(20)	30 [10]	3/3	3/3
(pg/g-wet)	2015	nd	nd	tr(11)	nd	23 [9]	1/3	1/3
(188)	2016	nd	nd	nd	nd	36 [14]	0/3	0/3
	2017	nd	nd	nd	nd	50 [20]	0/3	0/3
	2018	nd	nd	nd	nd	40 [20]	0/3	0/3
	2019	tr(20)	nd	81	nd	50 [20]	1/3	1/3
	2022	nd	nd	nd	nd	10 [4]	0/3	0/3
	2008	nd	nd	tr(15)	nd	35 [13]	2/85	2/17
	2010	nd 1	nd 1	40	nd	30 [10]	3/18	3/18
	2011	nd 1	nd	tr(15)	nd 1	22 [9]	5/18	5/18
	2012	nd +=(10)	nd +=(20)	54	nd nd	24 [9]	9/19	9/19
Fish	2014 2015	tr(10)	tr(20)	40 35	nd nd	30 [10]	16/19	16/19 6/19
(pg/g-wet)	2015	nd nd	nd nd		nd nd	23 [9]	6/19 3/19	3/19
	2016	nd nd	nd nd	tr(22) 68	nd nd	36 [14]	3/19 1/19	3/19 1/19
	2017	nd	nd	nd	nd	50 [20] 40 [20]	0/18	0/18
	2019	nd	nd	nd	nd	50 [20]	0/16	0/16
	2019	nd	nd	nd	nd	10 [4]	0/18	0/18
	2008	tr(21)	tr(20)	tr(33)	nd	35 [13]	9/10	2/2
	2010	32		50	tr(20)	30 [10]	2/2	2/2
	2011			62	62	22 [9]	1/1	1/1
	2011	100		150	67	24 [9]	2/2	2/2
	2014	tr(10)		tr(20)	tr(10)	30 [10]	2/2	2/2
Birds *2	2015			tr(12)	tr(12)	23 [9]	1/1	1/1
(pg/g-wet)	2016	nd		tr(21)	nd	36 [14]	1/2	1/2
	2017	nd		nd	nd	50 [20]	0/2	0/2
	2018	49		53	46	40 [20]	2/2	2/2
	2019			nd	nd	50 [20]	0/1	0/1
	2022	tr(4)		10	nd	10 [4]	1/2	1/2
		(1)		10	110	- × [·]		

Decabromodiphenyl	Monitored	Geometric				Quantification	Detection I	Frequency
ether	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	nd	nd	tr(170)	nd	220 [74]	8/31	3/7
	2010	nd	nd	tr(190)	nd	270 [97]	2/6	2/6
	2011	nd	nd	240	nd	230 [80]	1/4	1/4
	2012	120	170	480	nd	120 [50]	4/5	4/5
Bivalves	2014	220	tr(150)	570	tr(120)	170 [60]	3/3	3/3
	2015	nd	nd	tr(70)	nd	170 [70]	1/3	1/3
(pg/g-wet)	2016	nd	nd	tr(110)	nd	300 [100]	1/3	1/3
	2017	nd	nd	tr(180)	nd	210 [80]	1/3	1/3
	2018	nd	nd	nd	nd	240 [80]	0/3	0/3
	2019	nd	nd	tr(180)	nd	190 [70]	1/3	1/3
	2022	tr(5)	nd	15	nd	13 [5]	1/3	1/3
	2008	nd	nd	230	nd	220 [74]	5/76	4/16
	2010	nd	nd	tr(150)	nd	270 [97]	2/18	2/18
Fish	2011	nd	nd	tr(90)	nd	230 [80]	2/18	2/18
	2012	tr(59)	tr(60)	380	nd	120 [50]	11/19	11/19
	2014	tr(75)	tr(70)	300	nd	170 [60]	13/19	13/19
	2015	nd	nd	380	nd	170 [70]	5/19	5/19
(pg/g-wet)	2016	nd	nd	tr(190)	nd	300 [100]	7/19	7/19
	2017	nd	nd	2,100	nd	210 [80]	1/19	1/19
	2018	nd	nd	tr(110)	nd	240 [80]	2/18	2/18
	2019	nd	nd	nd	nd	190 [70]	0/16	0/16
	2022	nd	nd	tr(7)	nd	13 [5]	1/18	1/18
	2008	nd	nd	tr(110)	nd	220 [74]	4/10	1/2
	2010	nd		nd	nd	270 [97]	0/2	0/2
	2011			tr(170)	tr(170)	230 [80]	1/1	1/1
	2012	250		260	240	120 [50]	2/2	2/2
D: 1 *2	2014	tr(65)		tr(140)	nd	170 [60]	1/2	1/2
Birds *2	2015	`		tr(90)	tr(90)	170 [70]	1/1	1/1
(pg/g-wet)	2016	nd		nd	nd	300 [100]	0/2	0/2
	2017	nd		nd	nd	210 [80]	0/2	0/2
	2018	tr(210)		500	tr(90)	240 [80]	2/2	2/2
	2019			nd	nd	190 [70]	0/1	0/1
	2022	tr(5)		tr(9)	nd	13 [5]	1/2	1/2

⁽Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

<Air>

Stocktaking of the detection of Polybromodiphenyl ethers (Br₄ \sim Br₁₀) in air during FY2008 \sim 2022

Tetrabromo		Geometric		•	•	Quantification	Detection 1	Frequency
diphenyl ethers	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	0.89	0.80	18	0.11	0.11.00.041	37/37	37/37
	2009 Cold season	0.40	0.37	7.1	tr(0.04)	0.11 [0.04]	37/37	37/37
	2010 Warm season	0.79	0.57	50	0.15	0.12 [0.05]	37/37	37/37
	2010 Cold season	0.40	0.35	25	tr(0.09)	0.12 [0.05]	37/37	37/37
	2011 Warm season	0.80	0.72	9.3	tr(0.11)	0.18 [0.07]	35/35	35/35
	2011 Cold season	0.36	0.34	7.0	nd	0.18 [0.07]	35/37	35/37
Air	2012 Warm season	0.7	0.7	5.7	nd	0.2 [0.1]	35/36	35/36
	2012 Cold season	tr(0.2)	tr(0.2)	1.7	nd	0.3 [0.1]	25/36	25/36
(pg/m^3)	2014 Warm season	0.53	0.47	2.3	tr(0.09)	0.28 [0.09]	36/36	36/36
	2015 Warm season	tr(0.3)	tr(0.3)	2.7	nd	0.4 [0.1]	30/35	30/35
	2016 Warm season	0.5	0.4	28	nd	0.4 [0.2]	30/37	30/37
	2017 Warm season	0.39	0.34	4.1	tr(0.06)	0.15 [0.05]	37/37	37/37
20	2018 Warm season	0.28	0.26	3.9	0.05	0.05 [0.02]	37/37	37/37
	2019 Warm season	0.25	0.23	5.5	tr(0.03)	0.04 [0.01]	36/36	36/36
	2022 Warm season	tr(0.2)	tr(0.2)	1.1	nd	0.6 [0.2]	20/36	20/36

⁽Note 2) *2: There is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species. (Note 3) No monitoring was conducted in FY2009 FY2013 FY2020 and FY2021.

Pentabromo		Geometric				Quantification	Detection 1	Frequency
diphenyl ethers	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	0.20	0.19	18	nd	0.16 [0.06]	33/37	33/37
	2009 Cold season	0.19	0.16	10	nd .		29/37	29/37
	2010 Warm season	0.20	0.17	45	nd	0.12 [0.05]	35/37	35/37
	2010 Cold season	0.20	0.22	28	nd		34/37	34/37
	2011 Warm season	0.19	0.17	8.8	nd	0.16 [0.06]	31/35	31/35
	2011 Cold season	0.16	tr(0.14)	2.6	nd .		31/37	31/37
Air	2012 Warm season	tr(0.13)	tr(0.12)	2.4	nd	0.14 [0.06]	30/36	30/36
(pg/m^3)	2012 Cold season	tr(0.09)	tr(0.09)	0.77	nd		26/36	26/36
(18)	2014 Warm season	tr(0.13)	tr(0.14)	0.80	nd	0.28 [0.09]	25/36	25/36
	2015 Warm season	nd	nd	0.9	nd	0.6 [0.2]	6/35	6/35
	2016 Warm season	nd	nd	28	nd	0.4 [0.2]	6/37	6/37
	2017 Warm season	0.11	0.10	3.4	nd	0.10 [0.04]	33/37	33/37
	2018 Warm season	tr(0.08)	nd	4.1	nd	0.20 [0.08]	18/37	18/37
	2019 Warm season	tr(0.10)	tr(0.06)	6.1	nd	0.12 [0.05]	27/36	27/36
	2022 Warm season	nd	nd	0.31	nd	0.12 [0.05]	13/36	13/36
Hexabromo		Geometric				Quantification	Detection 1	Frequency
diphenyl ethers		mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	tr(0.11)	tr(0.11)	2.0	nd	0.22 [0.09]	19/37	19/37
	2009 Cold season	tr(0.20)	0.22	27	nd		24/37	24/37
	2010 Warm season	tr(0.14)	tr(0.13)	4.9	nd	0.16 [0.06]	29/37	29/37
	2010 Cold season	0.24	0.27	5.4	nd		31/37	31/37
	2011 Warm season	tr(0.11)	tr(0.10)	1.2	nd	0.14 [0.05]	28/35	28/35
	2011 Cold season	0.16	0.18	1.7	nd	0.14 [0.03]	30/37	30/37
Air $(n\alpha/m^3)$	2012 Warm season	nd	nd	3.1	nd	0.3 [0.1]	9/36	9/36
	2012 Cold season	tr(0.1)	tr(0.1)	0.5	nd	0.3 [0.1]	22/36	22/36
(pg/m/)	2014 Warm season	nd	nd	0.4	nd	0.4 [0.1]	5/36	5/36
	2015 Warm season	nd	nd	2.0	nd	1.1 [0.4]	3/35	3/35
	2016 Warm season	nd	nd	2.7	nd	0.6 [0.2]	3/37	3/37
	2017 Warm season	nd	nd	2.1	nd	0.3 [0.1]	11/37	11/37
	2018 Warm season	nd	nd	1.5	nd	0.17 [0.06]	9/37	9/37
	2019 Warm season	tr(0.05)	nd	0.79	nd	0.13 [0.05]	15/36	15/36
	2022 Warm season	nd	nd	0.6	nd	0.5 [0.2]	1/36	1/36
Heptabromo		Geometric				Quantification	Detection 1	Frequency
diphenyl ethers		mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	tr(0.1)	nd	1.7	nd	0.3 [0.1]	17/37	17/37
	2009 Cold season	tr(0.2)	0.3	20	nd		25/37	25/37
	2010 Warm season	tr(0.2)	tr(0.1)	1.4	nd	0.3 [0.1]	24/37	24/37
	2010 Cold season	0.3	0.4	11	nd		28/37	28/37
	2011 Warm season	tr(0.1)	tr(0.1)	1.1	nd	0.3 [0.1]	20/35	20/35
	2011 Cold season	tr(0.2)	tr(0.2)	2.3	nd		25/37	25/37
Air	2012 Warm season	nd	nd	1.8	nd	0.5 [0.2]	6/36	6/36
(pg/m^3)	2012 Cold season	nd	nd	0.7	nd		8/36	8/36
(Pg/III)	2014 Warm season	nd	nd	tr(0.4)	nd	0.7 [0.2]	2/36	2/36
	2015 Warm season	nd	nd	tr(0.6)	nd	1.3 [0.4]	2/35	2/35
	2016 Warm season	nd	nd	1.3	nd	1.1 [0.4]	1/37	1/37
	2017 Warm season	nd	nd	3.2	nd	0.4 [0.2]	10/37	10/37
	2018 Warm season	tr(0.09)	nd	1.3	nd	0.20 [0.08]	16/37	16/37
	2019 Warm season	tr(0.1)	tr(0.1)	2.7	nd	0.3 [0.1]	24/36	24/36
	2022 Warm season	nd	nd	1.0	nd	0.4 [0.2]	1/36	1/36

Octabromo		Geometric				Quantification	Detection	Frequency
diphenyl ethers	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	tr(0.2)	0.3	1.6	nd	0.3 [0.1]	23/37	23/37
	2009 Cold season	0.3	0.4	7.1	nd		26/37	26/37
	2010 Warm season	0.25	0.30	2.3	nd	0.15 [0.06]	30/37	30/37
	2010 Cold season	0.40	0.52	6.9	nd		32/37	32/37
	2011 Warm season	0.24	0.31	1.9	nd	0.20 [0.08]	27/35	27/35
	2011 Cold season	0.35	0.44	7.0	nd	0.20 [0.08]	30/37	30/37
Air	2012 Warm season	tr(0.2)	tr(0.2)	1.2	nd	0.3 [0.1]	29/36	29/36
(pg/m^3)	2012 Cold season	0.3	0.4	1.2	nd	0.5 [0.1]	30/36	30/36
(pg/m/)	2014 Warm season	tr(0.1)	tr(0.1)	0.7	nd	0.4 [0.1]	22/36	22/36
	2015 Warm season	nd	nd	3.8	nd	1.1 [0.4]	9/35	9/35
	2016 Warm season	nd	nd	1.6	nd	0.6 [0.2]	18/37	18/37
	2017 Warm season	tr(0.19)	0.23	5.7	nd	0.21 [0.07]	28/37	28/37
	2018 Warm season	0.15	0.14	1.3	nd	0.11 [0.04]	34/37	34/37
	2019 Warm season	tr(0.2)	tr(0.2)	2.6	nd	0.3 [0.1]	32/36	32/36
	2022 Warm season	nd	nd	0.4	nd	0.3 [0.1]	12/36	12/36
	•			-		Quantification	Detection 1	
Nonabromo diphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	tr(0.7)	tr(0.7)	3.0	nd	1.8 [0.6]	22/37	22/37
	2009 Cold season	tr(1.0)	tr(0.8)	3.9	nd	1.6 [0.0]	27/37	27/37
	2010 Warm season	nd	nd	24	nd	2.7.[1.2]	12/37	12/37
	2010 Cold season	tr(1.2)	tr(1.3)	7.1	nd	3.7 [1.2]	22/37	22/37
Air	2011 Warm season	tr(0.8)	0.9	3.9	nd	0.0.50.41	29/35	29/35
	2011 Cold season	1.1	1.1	14	nd	0.9 [0.4]	30/37	30/37
	2012 Warm season	tr(0.5)	tr(0.5)	5.1	nd	4.0.50.43	24/36	24/36
	2012 Cold season	tr(0.9)	tr(1.1)	4.7	nd	1.2 [0.4]	30/36	30/36
(pg/m^3)	2014 Warm season	nd	nd	tr(3)	nd	4 [1]	7/36	7/36
	2015 Warm season	nd	nd	12	nd	3.2 [1.1]	14/35	14/35
	2016 Warm season	tr(0.9)	tr(0.9)	11	nd	1.4 [0.5]	28/37	28/37
	2017 Warm season	0.8	0.8	40	nd	0.6 [0.2]	31/37	31/37
	2018 Warm season	0.5	0.7	3	nd	0.4 [0.2]	31/37	31/37
	2019 Warm season	0.5	0.7	3.1	nd	0.3 [0.1]	34/36	34/36
	2022 Warm season	nd	nd	1.0	nd	0.7 [0.3]	15/36	15/36
	2022 Warm Scason		na	1.0	IIG	Quantification	Detection 1	
Decabromo diphenyl ether	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	tr(7)	tr(9)	31	nd	16 [5]	28/37	28/37
	2009 Cold season	tr(10)	tr(11)	45	nd		29/37	29/37
	2010 Warm season	nd	nd	290	nd	27 [9.1]	10/37	10/37
	2010 Cold season	tr(11)	tr(12)	88	nd	ے، ایک ا 	21/37	21/37
	2011 Warm season	tr(8.2)	tr(9.0)	30	nd	12 [4 0]	31/35	31/35
	2011 Cold season	tr(8.4)	tr(9.0)	44	nd	12 [4.0]	29/37	29/37
Air	2012 Warm season	nd	nd	31	nd	16 [5]	17/36	17/36
	2012 Cold season	tr(10)	tr(12)	73	nd	16 [5]	28/36	28/36
(pg/m^3)	2014 Warm season	tr(4.7)	tr(5.0)	64	nd	9 [3]	24/36	24/36
	2015 Warm season	4.2	4.3	61	nd	2.2 [0.7]	30/35	30/35
	2016 Warm season	5	5	86	nd	3 [1]	35/37	35/37
	2017 Warm season	4.2	4.4	140	nd	2.4 [0.8]	34/37	34/37
	2018 Warm season	2.6	3.4	19	nd	2.0 [0.8]	31/37	31/37
	2019 Warm season	1.8	2.6	14	nd	0.3 [0.1]	32/36	32/36
	2022 Warm season	2.0	1.8	16	nd	0.9 [0.3]	33/36	33/36
(Nota) No ma				-4 EV2021	114	0.5 [0.5]	23,30	22.20

(Note) No monitoring was conducted in FY2013 FY2020 and FY2021.

[15] Perfluorooctane sulfonic acid (PFOS)

· History and state of monitoring

Perfluorooctane sulfonic acid (PFOS) has been used as electric and electronic parts, fire fighting foam, photo imaging, hydraulic fluids and textiles. Perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonyl fluoride were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009, and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

As a continuous survey, the first survey was in FY2008. Under the framework the Initial Environmental Survey and the Detailed Environmental Survey etc. in the Environmental Survey and Monitoring of Chemicals after FY2002, the substance was monitored in surface water in FY2002, sediment and wildlife (fish) in FY2003, air in FY2004, surface water, sediment and wildlife (bivalves and fish) in FY2005.

Under the framework of the Environmental Monitoring, the substance has been monitored in surface water and sediment in FY2009 ~ 2012 FY2014 ~ 2016 and FY2018 ~ 2023 , in wildlife (bivalves, fish and birds) in FY2009 ~ 2012 FY2014 ~ 2017 and FY2019 ~ 2023 , and in air in FY2010 ~ 2017 and FY2019 ~ 2023 .

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 47 sites, and it was detected at 43 of the 47 valid sites adopting the detection limit of 30 pg/L, and the detection range was up to 4,100 pg/L.

As results of the inter-annual trend analysis from FY2009 to FY2023, a reduction tendencies in specimens from lake areas and sea areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in surface water during FY2009 ~ 2023

Perfluorooctane sulfonic acid	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection l	Frequency
(PFOS)	year	mean	Wicdian	Waxiiiuiii	William	limit	Sample	Site
	2009	730	580	14,000	tr(26)	37 [14]	49/49	49/49
	2010	490	380	230,000	tr(37)	50 [20]	49/49	49/49
	2011	480	360	10,000	tr(20)	50 [20]	49/49	49/49
	2012	550	510	14,000	39	31 [12]	48/48	48/48
	2014	460	410	7,500	nd	50 [20]	47/48	47/48
Surface Water	2015	630	490	4,700	120	29 [11]	48/48	48/48
	2016	330	300	14,000	tr(23)	50 [20]	48/48	48/48
(pg/L)	2018	310	300	4,100	nd	70 [30]	42/47	42/47
	2019	290	260	2,500	nd	80 [30]	47/48	47/48
	2020	330	260	3,700	tr(52)	80 [30]	46/46	46/46
	2021	330	300	3,700	tr(30)	80 [30]	47/47	47/47
	2022	270	220	3,600	nd	80 [30]	46/48	46/48
	2023	230	250	4,100	nd	80 [30]	43/47	43/47

(Note) No monitoring was conducted in FY2013 and FY2017.

<Sediment>

The presence of the substance in sediment was monitored at 60 sites, and it was detected at 58 of the 60 valid sites adopting the detection limit of 4 pg/g-dry, and the detection range was up to 660 pg/g-dry.

As results of the inter-annual trend analysis from FY2009 to FY2023, reduction tendencies in specimens from river mouth areas and sea areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in sediment during FY2009 ~ 2023

Perfluorooctane sulfonic acid	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection l	Frequency
(PFOS)	year	mean *	1/10 01011	1714711114111	112111111111111111111111111111111111111	limit	Sample	Site
	2009	78	97	1,900	nd	9.6 [3.7]	180/190	64/64
	2010	82	100	1,700	tr(3)	5 [2]	64/64	64/64
	2011	92	110	1,100	nd	5 [2]	63/64	63/64
	2012	68	84	1,200	tr(7)	9 [4]	63/63	63/63
	2014	59	79	980	nd	5 [2]	62/63	62/63
C - 1:4	2015	91	88	2,200	7	3 [1]	62/62	62/62
Sediment	2016	54	61	690	5	5 [2]	62/62	62/62
(pg/g-dry)	2018	43	57	700	nd	7 [3]	55/61	55/61
	2019	44	46	460	nd	9 [4]	60/61	60/61
	2020	40	48	450	tr(3)	5 [2]	58/58	58/58
	2021	52	62	620	tr(5)	6 [3]	60/60	60/60
	2022	55	61	710	tr(5)	9 [4]	61/61	61/61
	2023	46	56	660	nd	9 [4]	58/60	58/60

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

<Wildlife>

The presence of the substance in bivalves was monitored in 2 areas, and it was detected at 1 of the 2 valid areas adopting the detection limit of 3 pg/g-wet, and the detected concentration was tr(5) pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 17 of the 18 valid areas adopting the detection limit of 3 pg/g-wet, and the detection range was up to 4,900 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 3 pg/g-wet, and the detected concentrations were 1,400 pg/g-wet and 100,000 pg/g-wet.

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in wildlife (bivalves, fish and birds) during $FY2009 \sim 2023$

Perfluorooctane sulfonic acid	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection l	Frequency
(PFOS)	year	mean *1	Wicdian	WIAXIIIIUIII	William	limit	Sample	Site
	2009	24	28	640	nd	19 [7.4]	17/31	5/7
	2010	72	85	680	nd	25 [9.6]	5/6	5/6
	2011	38	44	100	16	10 [4]	4/4	4/4
	2012	27	21	160	tr(4)	7 [3]	5/5	5/5
	2014	8	6	93	nd	5 [2]	2/3	2/3
Bivalves	2015	7	tr(2)	210	nd	4 [2]	2/3	2/3
	2016	11	tr(6)	160	nd	9 [3]	2/3	2/3
(pg/g-wet)	2017	22	34	160	nd	12 [4]	2/3	2/3
	2019	10	tr(4)	140	tr(2)	6 [2]	3/3	3/3
	2020	16	8	130	tr(4)	5 [2]	3/3	3/3
	2021	14	5	250	tr(2)	5 [2]	3/3	3/3
	2022	27	13	160	9	6 [3]	3/3	3/3
	2023	nd		tr(5)	nd	6 [3]	1/2	1/2
	2009	220	230	15,000	nd	19 [7.4]	83/90	17/18
	2010	390	480	15,000	nd	25 [9.6]	17/18	17/18
	2011	82	95	3,200	nd	10 [4]	16/18	16/18
	2012	110	130	7,300	tr(5)	7 [3]	19/19	19/19
	2014	82	83	4,600	nd	5 [2]	18/19	18/19
Fish	2015	91	90	2,500	nd	4 [2]	18/19	18/19
	2016	79	80	5,200	nd	9 [3]	18/19	18/19
(pg/g-wet)	2017	150	150	11,000	tr(4)	12 [4]	19/19	19/19
	2019	67	80	3,600	tr(3)	6 [2]	16/16	16/16
	2020	76	100	3,000	5	5 [2]	18/18	18/18
	2021	81	130	4,500	tr(2)	5 [2]	18/18	18/18
	2022	280	360	7,200	9	6 [3]	18/18	18/18
	2023	180	280	4,900	nd	6 [3]	17/18	17/18

⁽Note 2) No monitoring was conducted in FY2013 and FY2017.

Perfluorooctane sulfonic acid	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection From Sample 10/10 2/2 1/1 2/2 2/2	requency
(PFOS)	year	mean *1	Wedian	WithAmmann	William	limit	Sample	Site
	2009	300	360	890	37	19 [7.4]	10/10	2/2
	2010	1,300		3,000	580	25 [9.6]	2/2	2/2
	2011			110	110	10 [4]	1/1	1/1
	2012	160		410	63	7 [3]	2/2	2/2
	2014	4,600		110,000	190	5 [2]	2/2	2/2
Birds *2	2015			790	790	4 [2]	1/1	1/1
	2016	3,600		9,100	1,400	9 [3]	2/2	2/2
(pg/g-wet)	2017	9,800		32,000	3,000	12 [4]	2/2	2/2
	2019			360	360	6 [2]	1/1	1/1
	2020			8,500	8,500	5 [2]	1/1	1/1
	2021	3,000		15,000	590	5 [2]	2/2	2/2
	2022	23,000		100,000	5,200	6 [3]	2/2	2/2
	2023	12,000		100,000	1,400	6 [3]	2/2	2/2

⁽Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

<Air>

The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.2 pg/m^3 , and the detection range was $1.0 \sim 6.8 \text{ pg/m}^3$.

As a result of the inter-annual trend analysis from FY2010 to FY2023, a reduction tendency in specimens was identified as statistically significant.

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in air during FY2010 ~ 2023

Perfluorooct ane sulfonic	Monitored year	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection 1	Frequency
acid (PFOS)		mean				limit	Sample	Site
	2010 Warm season	5.2	5.9	14	1.6	0.4.50.13	37/37	37/37
	2010 Cold season	4.7	4.4	15	1.4	0.4 [0.1]	37/37	37/37
	2011 Warm season	4.4	4.2	10	0.9	0.5.[0.2]	35/35	35/35
	2011 Cold season	3.7	3.8	9.5	1.3	0.5 [0.2]	37/37	37/37
2012 Co	2012 Warm season	3.6	3.8	8.9	1.3	0.5.[0.2]	36/36	36/36
	2012 Cold season	2.7	3.0	5.9	1.0	0.5 [0.2]	36/36	36/36
	2013 Warm season	4.6	5.2	9.6	1.2	0.2.50.13	36/36	36/36
A :	2013 Cold season	3.7	3.9	7.4	1.6	0.3 [0.1]	36/36	36/36
Air	2014 Warm season	3.1	3.2	8.6	0.52	0.17 [0.06]	36/36	36/36
(pg/m^3)	2015 Warm season	2.8	2.6	8.8	0.59	0.19 [0.06]	35/35	35/35
	2016 Warm season	3.1	2.4	9.3	0.7	0.6 [0.2]	37/37	37/37
	2017 Warm season	2.9	2.7	8.9	1.1	0.3 [0.1]	37/37	37/37
	2019 Warm season	3.8	4.1	7.8	1.3	0.8 [0.3]	36/36	36/36
	2020 Warm season	3.4	4.2	7.2	1.1	0.3 [0.1]	37/37	37/37
	2021 Warm season	2.8	3.1	6.5	0.70	0.18 [0.07]	35/35	35/35
	2022 Warm season	9.2	10	17	2.4	0.19 [0.07]	36/36	36/36
	2023 Warm season	3.5	3.7	6.8	1.0	0.5 [0.2]	35/35	35/35

(Note) No monitoring was conducted in FY2018.

⁽Note 2) *2: There is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species.

⁽Note 3) No monitoring was conducted in FY2013 and FY2018.

[16] Perfluorooctanoic acid (PFOA)

· History and state of monitoring

Perfluorooctanoic acids (PFOA) have been used as water repellent agent, oil repellent agent and surface acting agent. PFOA, its salts and PFOA-related compounds were adopted as target chemicals at the COP9 of the Stockholm convention on Persistent Organic Pollutants held from late April to early May 2019. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2021.

As a continuous survey, the first survey was in FY2009. Under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was monitored in surface water in FY2002, sediment and wildlife (fish) in FY2003, air in FY2004, surface water, sediment and wildlife (bivalves and fish) in FY2005.

Under the framework of the Environmental Monitoring, the substance has been monitored in surface water and sediment in FY2009 ~ 2012 FY2014 ~ 2016 and FY2018 ~ 2023 , in wildlife (bivalves, fish and birds) in FY2009 ~ 2012 FY2014 ~ 2017 and FY2019 ~ 2023 , and in air in FY2010 ~ 2017 and FY2019 ~ 2023 .

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 30 pg/L, and the detection range was $140 \sim 11,000 \text{ pg/L}$.

As results of the inter-annual trend analysis from FY2009 to FY2023, reduction tendencies in specimens from river areas, lake areas and river mouth areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in surface water during FY2009 ~ 2023

Perfluorooctanoic	Monitored	Caamatnia				Quantification	Detection	Frequency
acid (PFOA)	year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	1,600	1,300	31,000	250	59 [23]	49/49	49/49
	2010	2,700	2,400	23,000	190	60 [20]	49/49	49/49
	2011	2,000	1,700	50,000	380	50 [20]	49/49	49/49
	2012	1,400	1,100	26,000	240	170 [55]	48/48	48/48
	2014	1,400	1,400	26,000	140	50 [20]	48/48	48/48
C C W	2015	1,400	1,200	17,000	310	56 [22]	48/48	48/48
Surface Water	2016	1,300	1,200	21,000	260	50 [20]	48/48	48/48
(pg/L)	2018	1,100	1,100	28,000	160	70 [30]	47/47	47/47
	2019	1,000	900	11,000	160	90 [40]	48/48	48/48
	2020	1,100	920	16,000	220	90 [30]	46/46	46/46
	2021	1,100	870	23,000	230	90 [40]	47/47	47/47
	2022	1,100	980	14,000	170	90 [30]	48/48	48/48
	2023	990	770	11,000	140	90 [30]	47/47	47/47

(Note) No monitoring was conducted in FY2013 and FY2017.

<Sediment>

The presence of the substance in sediment was monitored at 60 sites, and it was detected at 57 of the 60 valid sites adopting the detection limit of 3 pg/g-dry, and the detection range was up to 410 pg/g-dry.

As results of the inter-annual trend analysis from FY2009 to FY2023, a reduction tendencies in specimens from river mouth areas was identified as statistically significant and a reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in sediment during FY2009 ~ 2023

Perfluorooctanoic	Monitored	Geometric	24 33 93 48			Quantification	Detection l	Frequency
acid (PFOA)	vear	mean *	Median	Maximum	Minimum	[Detection]	Sample	Site
acid (110A)	ycai	IIICaii				limit	Sample	Site
	2009	27	24	500	nd	8.3 [3.3]	182/190	64/64
	2010	28	33	180	nd	12 [5]	62/64	62/64
	2011	100	93	1,100	22	5 [2]	64/64	64/64
	2012	51	48	280	12	4 [2]	63/63	63/63
	2014	44	50	190	tr(6)	11 [5]	63/63	63/63
G 1' 4	2015	48	48	270	8	3 [1]	62/62	62/62
Sediment	2016	27	27	190	nd	9 [4]	61/62	61/62
(pg/g-dry)	2018	23	25	190	nd	9 [4]	58/61	58/61
	2019	21	22	190	tr(3)	5 [2]	61/61	61/61
	2020	21	22	190	nd	8 [3]	57/58	57/58
	2021	24	26	260	nd	9 [4]	58/60	58/60
	2022	29	26	370	tr(5)	7 [3]	61/61	61/61
	2023	22	24	410	nd	7 [3]	57/60	57/60

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

<Wildlife>

The presence of the substance in bivalves was monitored in 2 areas, and it was detected at 1 of the 2 valid areas adopting the detection limit of 3 pg/g-wet, and the detected concentration was 13 pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 11 of the 18 valid areas adopting the detection limit of 3 pg/g-wet, and the detection range was up to 29 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 3 pg/g-wet, and the detected concentrations were 66 pg/g-wet and 2,000 pg/g-wet.

As results of the inter-annual trend analysis from FY2009 to FY2023, although the number of detections was small, the detection rate of specimens from fish was decreased, it suggested a reduction tendency of the concentrations.

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in wildlife (bivalves, fish and birds) during FY2009 ~ 2023

Perfluorooctanoic	Monitored	Geometric				Quantification	Detection I	requency
acid (PFOA)	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	tr(20)	tr(21)	94	nd	25 [9.9]	27/31	7/7
	2010	28	33	76	nd	26 [9.9]	5/6	5/6
	2011	tr(19)	tr(22)	tr(40)	nd	41 [14]	3/4	3/4
201	2012	tr(21)	tr(23)	46	nd	38 [13]	4/5	4/5
	2014	tr(4)	tr(6)	10	nd	10 [3]	2/3	2/3
D:1	2015	tr(6.5)	tr(6.3)	26	nd	10 [3.4]	2/3	2/3
Bivalves	2016	4	7	9	nd	4 [2]	2/3	2/3
(pg/g-wet)	2017	tr(6)	tr(7)	18	nd	12 [4]	2/3	2/3
	2019	tr(3)	tr(4)	tr(5)	tr(2)	6 [2]	3/3	3/3
	2020	6	tr(5)	14	tr(3)	6 [2]	3/3	3/3
	2021	6	11	16	nd	6 [2]	2/3	2/3
	2022	16	22	35	tr(5)	8 [3]	3/3	3/3
	2023	tr(4)		13	nd	8 [3]	1/2	1/2

⁽Note 2) No monitoring was conducted in FY2013 and FY2017.

Perfluorooctanoic	Monitored	Geometric				Quantification	Detection 1	Frequency
acid (PFOA)	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	tr(23)	tr(19)	490	nd	25 [9.9]	74/90	17/18
	2010	tr(13)	tr(11)	95	nd	26 [9.9]	13/18	13/18
	2011	nd	nd	51	nd	41 [14]	7/18	7/18
	2012	tr(35)	tr(32)	86	nd	38 [13]	18/19	18/19
	2014	tr(6)	tr(4)	85	nd	10 [3]	11/19	11/19
Fish	2015	tr(5.7)	tr(5.3)	99	nd	10 [3.4]	11/19	11/19
(pg/g-wet)	2016	4	tr(3)	20	tr(2)	4 [2]	19/19	19/19
(pg/g-wet)	2017	tr(6)	tr(4)	79	nd	12 [4]	12/19	12/19
	2019	tr(3)	tr(3)	18	nd	6 [2]	12/16	12/16
	2020	tr(4)	tr(2)	49	nd	6 [2]	12/18	12/18
	2021	tr(4)	tr(3)	40	nd	6 [2]	14/18	14/18
	2022	11	13	47	nd	8 [3]	17/18	17/18
	2023	tr(5)	tr(7)	29	nd	8 [3]	11/18	11/18
	2009	32	29	58	tr(16)	25 [9.9]	10/10	2/2
	2010	38		48	30	26 [9.9]	2/2	2/2
	2011			nd	nd	41 [14]	0/1	0/1
	2012	tr(27)		tr(28)	tr(26)	38 [13]	2/2	2/2
	2014	62		2,600	nd	10 [3]	1/2	1/2
Birds *2	2015			31	31	10 [3.4]	1/1	1/1
(pg/g-wet)	2016	130		320	52	4 [2]	2/2	2/2
(pg/g-wei)	2017	240		680	85	12 [4]	2/2	2/2
	2019			27	27	6 [2]	1/1	1/1
	2020			280	280	6 [2]	1/1	1/1
	2021	140		410	46	6 [2]	2/2	2/2
	2022	1,100		2,600	470	8 [3]	2/2	2/2
	2023	360		2,000	66	8 [3]	2/2	2/2

⁽Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

<Air>

The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.2 pg/m^3 , and the detection range was $4.0 \sim 65 \text{ pg/m}^3$.

As a result of the inter-annual trend analysis from FY2010 to FY2023, a reduction tendency in specimens was identified as statistically significant.

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in air during FY2010 ~ 2023

Perfluorooct		Geometric				Quantification	Detection 1	Frequency
anoic acid (PFOA)	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2010 Warm season	25	26	210	4.0	0.5.[0.2]	37/37	37/37
	2010 Cold season	14	14	130	2.4	0.5 [0.2]	37/37	37/37
	2011 Warm season	20	18	240	tr(3.5)	<i>5 4</i> [1 0]	35/35	35/35
	2011 Cold season	12	11	97	nd	5.4 [1.8]	36/37	36/37
	2012 Warm season	11	12	120	1.9	0.7.50.21	36/36	36/36
	2012 Cold season	6.9	6.0	48	1.6	0.7 [0.2]	36/36	36/36
	2013 Warm season	23	23	190	3.2	1.8 [0.6]	36/36	36/36
Air	2013 Cold season	14	14	53	3.0		36/36	36/36
	2014 Warm season	28	29	210	5.4	0.4 [0.1]	36/36	36/36
(pg/m^3)	2015 Warm season	19	17	260	tr(3.7)	4.2 [1.4]	35/35	35/35
	2016 Warm season	17	15	140	3.2	1.3 [0.4]	37/37	37/37
	2017 Warm season	14	13	150	tr(2.0)	3.3 [1.1]	37/37	37/37
	2019 Warm season	14	14	46	5.5	0.8 [0.3]	36/36	36/36
	2020 Warm season	13	12	55	4.9	0.8 [0.3]	37/37	37/37
	2021 Warm season	8.3	7.5	42	2.6	0.7 [0.3]	35/35	35/35
	2022 Warm season	22	20	53	8.2	0.5 [0.2]	36/36	36/36
	2023 Warm season	11	10	65	4.0	0.5 [0.2]	35/35	35/35

(Note) No monitoring was conducted in FY2018.

⁽Note 2) *2: There is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species.

⁽Note 3) No monitoring was conducted in FY2013 and FY2018.

[17] Pentachlorobenzene

· History and state of monitoring

Pentachlorobenzene have been used as used in PCB products, in dyestuff carriers, as a fungicide, a flame retardant and as a chemical intermediate e.g. previously for the production of quintozene. PeCB might still be used as an intermediate. PeCB is also produced unintentionally during combustion, thermal and industrial processes. It also present as impurities in products such as solvents or pesticides. It was historically never registered under the Agricultural Chemicals Regulation Law. The substance is produced as a by-product when agricultural chemicals are produced. In addition, it is generated unintentionally at the time of combustion. The substance was adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

As a continuous survey to FY2001, undert the framework "the Wildlife Monitoring of Chemicals," the substance was monitored in wildlife (bivalves and fish) in FY1980, wildlife (bivalves, fish and birds) from FY1979 to FY1986, in FY1988, FY1990, FY1992, FY1996 and FY1999.

Under the framework of the Environmental Monitoring, the substance has been monitored in surface water in FY2007 FY2010 \sim 2015 and FY2017 \sim 2022, in sediment in FY2007 and FY2010 \sim 2022, in sediment and wildlife (bivalves, fish and birds) in FY2007 and FY2010 \sim 2023, and in air in FY2007, FY2009 \sim 2023.

· Monitoring results

<Wildlife>

The presence of the substance in bivalves was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 0.2 pg/g-wet, and the detected concentrations were 6.0 pg/g-wet and 6.1 pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 0.2 pg/g-wet, and the detection range was $3.4 \sim 150$ pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 0.2 pg/g-wet, and the detected concentrations were 220 pg/g-wet and 380 pg/g-wet.

As results of the inter-annual trend analysis from FY2010 to FY2023, although the number of detections was small, the detection rate of specimens from the bivalves was decreased, it suggested a reduction tendency of the concentrations.

Stocktaking of the detection of Pentachlorobenzene in wildlife (bivalves, fish and birds) during FY2007 ~ 2023

	Monitored	Geometric			M: :	Quantification	Detection I	requency
Pentachlorobenzene	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	nd	nd	tr(150)	nd	180 [61]	1/31	1/7
	2010	18	16	110	5.9	1.9 [0.7]	6/6	6/6
	2011	28	16	260	10	4 [1]	4/4	4/4
	2012	16	9.7	110	tr(5.8)	8.1 [2.7]	5/5	5/5
	2013	nd	nd	87	nd	78 [26]	1/5	1/5
	2014	14	11	23	10	9.3 [3.1]	3/3	3/3
Bivalves	2015	tr(11)	tr(9.7)	18	tr(7.4)	12 [4.0]	3/3	3/3
	2016	tr(13)	tr(12)	15	tr(11)	15 [5.1]	3/3	3/3
(pg/g-wet)	2017	18	19	22	14	4 [1]	3/3	3/3
	2018	tr(8)	tr(7)	tr(13)	tr(5)	15 [5]	3/3	3/3
	2019	10	11	14	7	3 [1]	3/3	3/3
	2020	9	9	9	8	3 [1]	3/3	3/3
	2021	9	11	15	4	4 [1]	3/3	3/3
	2022	4.4	4.7	9.8	1.9	0.6 [0.2]	3/3	3/3
	2023	6.0		6.1	6.0	0.6 [0.2]	2/2	2/2

	Monitored	Geometric				Quantification	Detection 1	Frequency
Pentachlorobenzene	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	nd	nd	480	nd	180 [61]	36/80	10/16
	2010	42	37	230	5.6	1.9 [0.7]	18/18	18/18
	2011	36	37	220	5	4 [1]	18/18	18/18
	2012	29	37	190	tr(5.0)	8.1 [2.7]	19/19	19/19
	2013	tr(35)	tr(40)	160	nd	78 [26]	11/19	11/19
	2014	38	51	280	nd	9.3 [3.1]	18/19	18/19
Fish	2015	26	40	230	nd	12 [4.0]	18/19	18/19
(pg/g-wet)	2016	19	22	150	nd	15 [5.1]	16/19	16/19
(pg/g-wet)	2017	29	32	170	4	4 [1]	19/19	19/19
	2018	19	29	70	nd	15 [5]	15/18	15/18
	2019	20	19	280	3	3 [1]	16/16	16/16
	2020	11	19	120	nd	3 [1]	14/18	14/18
	2021	21	33	150	nd	4 [1]	16/18	16/18
	2022	18	21	78	3.6	0.6[0.2]	18/18	18/18
	2023	14	14	150	3.4	0.6 [0.2]	18/18	18/18
	2007	tr(140)	tr(140)	210	tr(89)	180 [61]	10/10	2/2
	2010	91		170	49	1.9 [0.7]	2/2	2/2
	2011			52	52	4 [1]	1/1	1/1
	2012	77		130	46	8.1 [2.7]	2/2	2/2
	2013	300		390	230	78 [26]	2/2	2/2
	2014	56		560	tr(5.6)	9.3 [3.1]	2/2	2/2
Birds *2	2015			53	53	12 [4.0]	1/1	1/1
	2016	240		570	100	15 [5.1]	2/2	2/2
(pg/g-wet)	2017	130		470	35	4 [1]	2/2	2/2
	2018	370		480	280	15 [5]	2/2	2/2
	2019			470	470	3 [1]	1/1	1/1
	2020			390	390	3 [1]	1/1	1/1
	2021	380		470	300	4 [1]	2/2	2/2
	2022	290		330	260	0.6 [0.2]	2/2	2/2
	2023	290		380	220	0.6 [0.2]	2/2	2/2

⁽Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2007.

<Air>

The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of $0.08~pg/m^3$, and the detection range was $36\sim170~pg/m^3$.

⁽Note 2) *2: There is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

⁽Note 3) No monitoring was conducted in FY2008 and FY2009.

Stocktaking of the detection of Pentachlorobenzene in air during FY2007 \sim 2023

Pentachloro		Geometric				Quantification	Detection l	Frequency
benzene	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007 Warm season	85	83	310	18	12 [4.8]	78/78	26/26
	2007 Cold season	60	55	220	27	12 [4.6]	75/75	25/25
	2009 Warm season	63	64	210	20	6.4 [2.5]	111/111	37/37
	2009 Cold season	25	22	120	tr(5.0)	0.4 [2.3]	111/111	37/37
	2010 Warm season	68	73	140	36	1.2 [0.5]	37/37	37/37
	2010 Cold season	70	69	180	37	1.2 [0.3]	37/37	37/37
	2011 Warm season	61	60	140	30	2.1 [0.70]	35/35	35/35
	2011 Cold season	59	57	180	26	2.1 [0.70]	37/37	37/37
	2012 Warm season	58	57	150	31	1.8 [0.6]	36/36	36/36
	2012 Cold season	55	55	120	27	1.6 [0.0]	36/36	36/36
Air	2013 Warm season	55	58	160	27	1.7 [0.6]	36/36	36/36
(pg/m^3)	2013 Cold season	55	52	110	34	1.7 [0.0]	36/36	36/36
	2014 Warm season	83	86	210	39	0.9 [0.3]	36/36	36/36
	2015 Warm season	67	68	170	34	0.6 [0.2]	35/35	35/35
	2016 Warm season	75	75	220	33	0.5 [0.2]	37/37	37/37
	2017 Warm season	71	69	200	32	0.3 [0.1]	37/37	37/37
	2018 Warm season	59	61	100	30	0.22 [0.08]	37/37	37/37
	2019 Warm season	64	64	110	36	0.09 [0.04]	36/36	36/36
	2020 Warm season	69	63	180	35	0.17 [0.07]	37/37	37/37
	2021 Warm season	61	63	130	36	0.13 [0.05]	35/35	35/35
	2022 Warm season	60	60	130	30	0.08 [0.03]	36/36	36/36
	2023 Warm season	59	58	170	36	0.21 [0.08]	35/35	35/35

(Note) No monitoring was conducted in FY2008.

• Monitoring results until FY2022 (references)

Stocktaking of the detection of Pentachlorobenzene in surface water during FY2007 \sim 2022

	Monitored	Geometric				Quantification	Detection 1	Frequency
Pentachlorobenzene	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	nd	nd	nd	nd	3,300 [1,300]	0/48	0/48
	2010	8	5	100	tr(1)	4[1]	49/49	49/49
	2011	11	11	170	2.6	2.4 [0.9]	49/49	49/49
	2012	14	11	170	3	3 [1]	48/48	48/48
	2013	12	10	170	tr(3)	4 [1]	48/48	48/48
C C W	2014	10	7.0	180	2.8	0.8 [0.3]	48/48	48/48
Surface Water	2015	13	11	180	3.0	1.5 [0.5]	48/48	48/48
(pg/L)	2017	8.8	5.9	140	2.0	1.4 [0.6]	47/47	47/47
	2018	12	9.7	320	2.7	1.3 [0.5]	47/47	47/47
	2019	9	7	360	tr(2)	6 [2]	48/48	48/48
	2020	7	5	500	tr(2)	3 [1]	46/46	46/46
	2021	4.8	3.5	140	1.2	1.1 [0.4]	47/47	47/47
	2022	4.5	3.5	51	0.9	0.5 [0.2]	48/48	48/48

(Note) No monitoring was conducted in FY2008, FY2009 and FY2016.

<Surface Water>

<Sediment>

Stocktaking of the detection of Pentachlorobenzene in sediment during FY2007 \sim 2022

					0			
Pentachlorobenzene	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection 1	1 5
	year	mean *				limit	Sample	Site
	2007	tr(46)	nd	2,400	nd	86 [33]	79/192	35/64
	2010	90	95	4,200	1.0	0.9 [0.3]	64/64	64/64
	2011	95	76	4,500	3	5 [2]	64/64	64/64
	2012	33	33	1,100	nd	2.5 [0.8]	62/63	62/63
	2013	84	98	3,800	2.2	2.1 [0.7]	63/63	63/63
	2014	70	78	3,600	tr(1.2)	2.4 [0.8]	63/63	63/63
Sediment	2015	65	69	2,600	2.4	1.5 [0.5]	62/62	62/62
(pg/g-dry)	2016	62	71	3,700	tr(1.1)	1.8 [0.6]	62/62	62/62
	2017	61	61	2,800	1.3	1.2 [0.5]	62/62	62/62
	2018	72	77	3,400	1.2	0.9 [0.3]	61/61	61/61
	2019	29	27	3,300	1.2	0.9 [0.4]	61/61	61/61
	2020	63	65	2,900	1.8	0.4 [0.2]	58/58	58/58
	2021	28	32	2,300	tr(0.8)	0.9 [0.3]	60/60	60/60
	2022	24	25	1,300	tr(0.5)	0.6 [0.2]	61/61	61/61

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2007.

⁽Note 2) No monitoring was conducted in FY2008 and FY2009.

[18] Endosulfans (references)

· History and state of monitoring

Endosulfans had been used an insecticide that has been used since the 1950s to control crop pests, tsetse flies and ectoparasites of cattle and as a wood preservative. Endosulfans were adopted as target chemicals at the COP5 of the Stockholm convention on Persistent Organic Pollutants in Apri 2011. The substances were designated as Class I Specified Chemical Substances under the Chemical Substances Control Law in May 2014.

As a continuous survey, the first survey was in FY2011, under the framework of the Environmental Survey of Chemical Substances up to FY2001, the substance was monitored in surface water and sediment in FY1982 and air in FY1996.

Under the framework of the Environmental Monitoring, the substances have been monitored in surface water and sediment in FY2011 FY2012 FY2018 and FY2021 and wildlife (bivalves, fish and birds) in FY2011 FY2012 FY2014 FY2015 and FY2021, and in air in FY2011 FY2012 FY2014 ~ 2016 and FY2021.

No monitoring was conducted after FY2022. For reference, the monitoring results up to FY2021 are given below.

· Monitoring results until FY2021

<Surface Water>

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in surface water during FY2011 ~ 2021

			,			Quantification	Detection l	requency
lpha-Endosulfan	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection]	Sample	Site
	2011	nd	nd	180	nd	120 [50]	2/49	2/49
Surface Water	2012	nd	nd	30	nd	27 [10]	3/48	3/48
(pg/L)	2018	nd	nd	tr(50)	nd	120 [40]	1/47	1/47
	2021	nd	nd	580	nd	90 [40]	17/47	17/47
	Monitored	Geometric				Quantification	Detection l	requency
β -Endosulfan	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	nd	nd	270	nd	22 [9]	8/49	8/49
Surface Water	2012	nd	nd	tr(12)	nd	24 [9]	1/48	1/48
(pg/L)	2018	nd	nd	tr(20)	nd	30 [10]	3/47	3/47
/	2021	nd	nd	250	nd	30 [10]	11/47	11/47

⁽Note) No monitoring was conducted in FY2013 ~ 2017, FY2019 and FY2020.

<Sediment>

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in sediment during FY2011 \sim 2021

onitored year 2011 2012 2018 2021	Geometric mean tr(13) nd nd 1.7	Median tr(11) nd nd 1.8	480 480 30 53	Minimum nd nd nd	Quantification [Detection] limit 30 [10] 13 [5] 5 [2]	Sample 35/64 19/63 21/61	Site 35/64 19/63 21/61
year 2011 2012 2018	tr(13) nd nd	tr(11) nd nd	480 480 30	nd nd nd	limit 30 [10] 13 [5] 5 [2]	35/64 19/63	35/64 19/63
2012 2018	nd nd	nd nd	480 30	nd nd	13 [5] 5 [2]	19/63	19/63
2018	nd	nd	30	nd	5 [2]		
				_		21/61	21/61
2021	1.7	1.8	53				
			33	nd	1.4 [0.6]	50/60	50/60
nitored	Geometric				Quantification	Detection I	requency
year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
2011	tr(5)	tr(4)	240	nd	9 [4]	38/64	38/64
2012	nd	nd	250	nd	13 [5]	8/63	8/63
2018	nd	nd	41	nd	5 [2]	11/61	11/61
	1	nd	57	nd	2.2 [0.9]	12/60	12/60
2	012 018	012 nd 018 nd	012 nd nd 018 nd nd	012 nd nd 250 018 nd nd 41	012 nd nd 250 nd 018 nd nd 41 nd	012 nd nd 250 nd 13 [5] 018 nd nd 41 nd 5 [2]	012 nd nd 250 nd 13 [5] 8/63 018 nd nd 41 nd 5 [2] 11/61

(Note) No monitoring was conducted in FY2013 \sim 2017, FY2019 and FY2020.

<Wildlife>

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in wildlife (bivalves, fish and birds) during FY2011 \sim 2021

	Monitored	Geometric				Quantification	Detection I	Frequency
α-Endosulfan	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	62	120	330	nd	50 [20]	3/4	3/4
Bivalves	2012	tr(54)	tr(61)	200	nd	71 [24]	4/5	4/5
	2014	tr(20)	nd	130	nd	60 [20]	1/3	1/3
(pg/g-wet)	2015	nd	nd	130	nd	120 [38]	1/3	1/3
	2021	nd	nd	nd	nd	60 [20]	0/3	0/3
	2011	tr(20)	tr(20)	140	nd	50 [20]	10/18	10/18
Fish	2012	nd	nd	tr(54)	nd	71 [24]	6/19	6/19
(pg/g-wet)	2014	nd	nd	tr(30)	nd	60 [20]	1/19	1/19
(pg/g-wet)	2015	nd	nd	tr(49)	nd	120 [38]	1/19	1/19
	2021	nd	nd	nd	nd	60 [20]	0/18	0/18
	2011			nd	nd	50 [20]	0/1	0/1
Birds *	2012	nd		nd	nd	71 [24]	0/2	0/2
(pg/g-wet)	2014	nd		nd	nd	60 [20]	0/2	0/2
(pg/g-wei)	2015			nd	nd	120 [38]	0/1	0/1
	2021	nd		nd	nd	60 [20]	0/2	0/2
	Monitored	Geometric				Quantification	Detection I	Frequency
β -Endosulfan	year	mean	Median	Maximum	Minimum	[Detection]	Sample	Site
						limit		
	2011	16	26	52	4	11 [4]	4/4	4/4
Bivalves	2012	15	16	43	nd	14 [5]	4/5	4/5
(pg/g-wet)	2014	nd	nd	23	nd	19 [6]	1/3	1/3
(pg/g-wet)	2015	nd	nd	tr(22)	nd	32 [11]	1/3	1/3
	2021	nd	nd	nd	nd	18 [6]	0/3	0/3
	2011	nd	nd	37	nd	11 [4]	9/18	9/18
Fish	2012	nd	nd	15	nd	14 [5]	6/19	6/19
(pg/g-wet)	2014	nd	nd	tr(8)	nd	19 [6]	3/19	3/19
(pg/g-wet)	2015	nd	nd	tr(11)	nd	32 [11]	1/19	1/19
	2021	nd	nd	nd	nd	18 [6]	0/18	0/18
	2011			nd	nd	11 [4]	0/1	0/1
Birds *	2012	nd		tr(7)	nd	14 [5]	1/2	1/2
				(0)	1	10.57	1 /0	1/2
	2014	nd		tr(8)	nd	19 [6]	1/2	
(pg/g-wet)	2014 2015 2021	nd 		tr(8) nd	nd nd	19 [6] 32 [11]	0/1 0/2	0/1 0/2

(Note 1) *: There is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species.

(Note 2) No monitoring was conducted in FY2013 and FY2016 \sim 2020.

<Air>

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in air during FY2011 ~ 2021

		Geometric				Quantification	Detection 1	Frequency
α-Endosulfan	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011 Warm season	26	24	190	tr(7.8)	12 [4.0]	35/35	35/35
	2011 Cold season	tr(9.6)	tr(9.8)	45	nd	12 [4.0]	35/37	35/37
	2012 Warm season	23	22	98	tr(6.0)	16 [5 2]	36/36	36/36
大気	2012 Cold season	nd	nd	19	nd	16 [5.3]	15/36	15/36
(pg/m^3)	2014 Warm season	20	23	90	2.6	0.8 [0.3]	36/36	36/36
	2015 Warm season	10	11	140	1.6	1.0 [0.3]	35/35	35/35
	2016 Warm season	8.9	9.3	46	1.0	0.8 [0.3]	37/37	37/37
	2021 Warm season	1.4	1.3	6.0	0.4	0.4 [0.2]	35/35	35/35
β -Endosulfan	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
	2011 Warm season	2.1	1.8	11	nd	1 2 [0 20]	34/35	34/35
	2011 Cold season	tr(0.80)	tr(0.90)	8.3	nd	1.2 [0.39]	31/37	31/37
	2012 Warm season	1.3	1.3	18	nd	1 2 [0 4]	33/36	33/36
大気	2012 Cold season	nd	nd	1.7	nd	1.2 [0.4]	17/36	17/36
(pg/m^3)	2014 Warm season	1.3	1.4	6.1	nd	1.2 [0.4]	33/36	33/36
	2015 Warm season	0.7	0.6	38	nd	0.5 [0.2]	33/35	33/35
	2016 Warm season	0.8	tr(0.7)	3.3	nd	0.8 [0.3]	34/37	34/37
	2021 Warm season	nd	nd	tr(0.5)	nd	0.7 [0.3]	5/35	5/35

(Note) No monitoring was conducted in FY2013 and FY2016 ~ 2020.

[19] 1,2,5,6,9,10-Hexabromocyclododecanes (references)

· History and state of monitoring

1,2,5,6,9,10-Hexabromocyclododecanes have been used a flame retardant additive, providing fire protection during the service life of vehicles, buildings or articles, as well as protection while stored. α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane and γ -1,2,5,6,9,10-Hexabromocyclododecane were adopted as target chemicals at the COP6 of the Stockholm convention on Persistent Organic Pollutants held from late April to early May 2013, and designated as a Class I Specified Chemical Substances under the Chemical Substances Control Law in May 2014.

As a continuous survey, the first survey was in FY2011, under the framework of the Environmental Survey of Chemical Substances up to FY2001, the substances were monitored in surface water, sediment and wildlife (fish) in FY1987. In the framework of the Environmental Survey and Monitoring of Chemicals after FY2002 under the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was monitored in surface water and sediment in FY2003, in wildlife (fish) in FY2004.

Under the framework of the Environmental Monitoring, α -1,2,5,6,9,10-Hexabromocyclododecane β -1,2,5,6,9,10-Hexabromocyclododecane and γ -1,2,5,6,9,10-Hexabromocyclododecane have been monitored in surface water in FY2011 and FY2014, in sediment in FY2011 FY2012 FY2015 FY2016 and FY2022, in wildlife (bivalves, fish and birds) in FY2011 FY2012 FY2014 ~ 2019 and FY2022, and in air in FY2012 FY2014 ~ 2017 FY2019 and FY2022. Until 2015, δ -1,2,5,6,9,10-Hexabromocyclododecane and ε -1,2,5,6,9,10-Hexabromocyclododecan had also been monitored.

No monitoring was conducted in FY2023. For reference, the monitoring results up to FY2022 are given below.

Monitoring results until FY2022

<Surface Water>

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in surface water in FY2011 FY2014 and FY2022

105601011	3.6 % 1	G				Quantification	Detection I	requency
α-1,2,5,6,9,10-Hexa bromocyclododecane	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	6,300	nd	1,500 [600]	4/47	4/47
	2014	nd	nd	1,600	nd	1,500 [600]	1/48	1/48
(pg/L)	2022	nd	nd	nd	nd	600 [200]	0/48	0/48
β-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection I	requency
bromocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
C	2011	nd	nd	1,300	nd	1,300 [500]	4/47	4/47
Surface Water	2014	nd	nd	tr(300)	nd	500 [200]	1/48	1/48
(pg/L)	2022	nd	nd	nd	nd	500 [200]	0/48	0/48
γ-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection I	requency
bromocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
C	2011	nd	nd	65,000	nd	1,200 [500]	5/47	5/47
Surface Water	2014	nd	nd	nd	nd	700 [300]	0/48	0/48
(pg/L)	2022	nd	nd	nd	nd	600 [300]	0/48	0/48
δ-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection I	requency
bromocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Cuafo o a Wat-	2011	nd	nd	nd	nd	790 [300]	0/47	0/47
Surface Water	2014	nd	nd	nd	nd	600 [200]	0/48	0/48
(pg/L)	2022	nd	nd	nd	nd	700 [300]	0/48	0/48

ε-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection I	requency
bromocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	nd	nd	740 [300]	0/47	0/47
	2014	nd	nd	nd	nd	400 [200]	0/48	0/48
(pg/L)	2022	nd	nd	nd	nd	400 [200]	0/48	0/48

<Sediment>

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in sediment during FY2011 ~ 2022

α-1,2,5,6,9,10-Hexa	Monitored	Geometric	riona di cini	•		Quantification	Detection	Frequency
bromocyclododecane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	430	nd	24,000	nd	420 [280]	78/186	35/62
Sediment	2012	310	280	22,000	nd	180 [70]	47/63	47/63
	2015	390	410	27,000	nd	150 [60]	47/62	47/62
(pg/g-dry)	2016	260	210	27,000	nd	130 [60]	43/62	43/62
	2022	230	190	9,600	nd	160 [70]	41/61	41/61
β-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection	Frequency
bromocyclododecane	year	mean *	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	nd	nd	14,000	nd	250 [170]	48/186	21/62
Sediment	2012	tr(93)	nd	8,900	nd	150 [60]	29/63	29/63
	2015	120	92	7,600	nd	150 [60]	33/62	33/62
(pg/g-dry)	2016	tr(87)	nd	7,400	nd	130 [50]	31/62	31/62
	2022	tr(70)	nd	4,000	nd	100 [40]	30/61	30/61
γ-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection	Frequency
bromocyclododecane	year	mean *	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	670	nd	570,000	nd	400 [260]	89/186	36/62
Sediment	2012	420	330	55,000	nd	160 [60]	52/63	52/63
	2015	330	450	60,000	nd	110 [42]	48/62	48/62
(pg/g-dry)	2016	250	190	50,000	nd	150 [60]	42/62	42/62
	2022	170	170	33,000	nd	70 [30]	41/61	41/61
δ-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection	Frequency
bromocyclododecane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	nd	nd	800	nd	350 [250]	11/186	6/62
Sediment	2012	nd	nd	680	nd	300 [100]	5/63	5/63
(pg/g-dry)	2015	nd	nd	nd	nd	180 [70]	0/62	0/62
	2022	nd	nd	tr(70)	nd	110 [50]	1/61	1/61
ε-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection	Frequency
bromocyclododecane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	nd	nd	tr(260)	nd	280 [210]	2/186	1/62
Sediment	2012	nd	nd	310	nd	150 [60]	7/63	7/63
(pg/g-dry)	2015	nd	nd	nd	nd	130 [51]	0/62	0/62
	2022	nd	nd	nd	nd	130 [50]	0/61	0/61

⁽Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2011.

⁽Note 2) No monitoring was conducted in FY2013 FY2014 and FY2017 \sim 2021. No monitoring of δ -1,2,5,6,9,10-Hexabromocyclododecane and ε -1,2,5,6,9,10-Hexabromocyclododecane was conducted in FY2016.

<Wildlife>
Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in wildlife (bivalves, fish and birds) during FY2011 ~ 2022

α-1,2,5,6,9,10-Hexa	Monitored	Geometric	M-4:	M	M:	Quantification	Detection I	Frequency
bromocyclododecane	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	1,100	1,200	13,000	tr(86)	170 [70]	10/10	4/4
	2012	530	480	2,500	190	50 [20]	5/5	5/5
	2014	270	270	380	200	30 [10]	3/3	3/3
Bivalves	2015	260	200	560	150	30 [10]	3/3	3/3
(pg/g-wet)	2016	140	140	180	110	22 [9]	3/3	3/3
400	2017	190	200	430	86	24 [9]	3/3	3/3
	2018 2019	120	88	270	76	23 [9]	3/3 3/3	3/3
	2019	140 150	150 160	260 250	68 80	24 [9] 40 [20]	3/3	3/3 3/3
	2011	770	850	69,000	nd	170 [70]	41/51	16/17
	2012	510	560	8,700	nd	50 [20]	18/19	18/19
	2014	240	290	15,000	nd	30 [10]	18/19	18/19
	2015	160	180	3,000	nd	30 [10]	18/19	18/19
Fish	2016	110	140	1,100	tr(12)	22 [9]	19/19	19/19
(pg/g-wet)	2017	140	140	7,800	tr(9)	24 [9]	19/19	19/19
	2018	89	140	530	nd	23 [9]	17/18	17/18
	2019	79	92	980	nd	24 [9]	15/16	15/16
	2022	70	80	450	nd	40 [20]	14/18	14/18
	2011	200	nd	530	nd	170 [70]	1/3	1/1
	2012	120		1,400	nd	50 [20]	1/2	1/2
	2014	480		1,800	130	30 [10]	2/2	2/2
Birds *2	2015			80	80	30 [10]	1/1	1/1
(pg/g-wet)	2016	400		1,600	100	22 [9]	2/2	2/2
(18.8)	2017	330		2,200	50	24 [9]	2/2	2/2
	2018	600		610	590	23 [9]	2/2	2/2
	2019			1,100	1,100	24 [9]	1/1	1/1
	2022	590		750	460	40 [20]	2/2	2/2
β -1,2,5,6,9,10-Hexa	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection I	requency
bromocyclododecane	year	mean *1	Median	Iviaxiiiiuiii	Millimum	limit	Sample	Site
	2011	tr(70)	tr(85)	240	nd	98 [40]	7/10	3/4
	2012	tr(25)	40	90	nd	40 [10]	4/5	4/5
	2014	tr(10)	tr(10)	tr(20)	tr(10)	30 [10]	2/2	3/3
D: 1							3/3	
Bivalves	2015	tr(10)	tr(10)	30	nd	30 [10]	2/3	2/3
Bivalves (pg/g-wet)	2016	nd	tr(10) tr(8)	30 tr(9)	nd nd	30 [10] 21 [8]	2/3 2/3	2/3
(pg/g-wet)	2016 2017	nd tr(9)	tr(10) tr(8) nd	30 tr(9) 36	nd nd nd	30 [10] 21 [8] 23 [9]	2/3 2/3 1/3	2/3 1/3
	2016 2017 2018	nd tr(9) nd	tr(10) tr(8) nd nd	30 tr(9) 36 nd	nd nd nd nd	30 [10] 21 [8] 23 [9] 22 [8]	2/3 2/3 1/3 0/3	2/3 1/3 0/3
	2016 2017 2018 2019	nd tr(9) nd nd	tr(10) tr(8) nd nd nd	30 tr(9) 36 nd tr(22)	nd nd nd nd	30 [10] 21 [8] 23 [9] 22 [8] 24 [9]	2/3 2/3 1/3 0/3 1/3	2/3 1/3 0/3 1/3
	2016 2017 2018 2019 2022	nd tr(9) nd nd nd	tr(10) tr(8) nd nd nd nd	30 tr(9) 36 nd tr(22) nd	nd nd nd nd nd	30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20]	2/3 2/3 1/3 0/3 1/3 0/3	2/3 1/3 0/3 1/3 0/3
	2016 2017 2018 2019 2022 2011	nd tr(9) nd nd nd	tr(10) tr(8) nd nd nd nd nd	30 tr(9) 36 nd tr(22) nd 760	nd nd nd nd nd nd	30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40]	2/3 2/3 1/3 0/3 1/3 0/3 11/51	2/3 1/3 0/3 1/3 0/3 5/17
	2016 2017 2018 2019 2022 2011 2012	nd tr(9) nd nd nd nd nd	tr(10) tr(8) nd nd nd nd nd	30 tr(9) 36 nd tr(22) nd 760 40	nd nd nd nd nd nd nd	30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40] 40 [10]	2/3 2/3 1/3 0/3 1/3 0/3 11/51 8/19	2/3 1/3 0/3 1/3 0/3 5/17 8/19
(pg/g-wet)	2016 2017 2018 2019 2022 2011 2012 2014	nd tr(9) nd nd nd nd nd	tr(10) tr(8) nd nd nd nd nd nd	30 tr(9) 36 nd tr(22) nd 760 40 30	nd nd nd nd nd nd nd nd nd	30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40] 40 [10] 30 [10]	2/3 2/3 1/3 0/3 1/3 0/3 1/3 0/3 11/51 8/19 5/19	2/3 1/3 0/3 1/3 0/3 5/17 8/19 5/19
(pg/g-wet) Fish	2016 2017 2018 2019 2022 2011 2012 2014 2015	nd tr(9) nd nd nd nd nd nd nd	tr(10) tr(8) nd nd nd nd nd nd nd	30 tr(9) 36 nd tr(22) nd 760 40 30 tr(20)	nd	30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40] 40 [10] 30 [10] 30 [10]	2/3 2/3 1/3 0/3 1/3 0/3 1/3 0/3 11/51 8/19 5/19 2/19	2/3 1/3 0/3 1/3 0/3 5/17 8/19 5/19 2/19
(pg/g-wet)	2016 2017 2018 2019 2022 2011 2012 2014 2015 2016	nd tr(9) nd nd nd nd nd nd nd nd	tr(10) tr(8) nd	30 tr(9) 36 nd tr(22) nd 760 40 30 tr(20) tr(12)	nd	30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40] 40 [10] 30 [10] 30 [10] 21 [8]	2/3 2/3 1/3 0/3 1/3 0/3 11/51 8/19 5/19 2/19 3/19	2/3 1/3 0/3 1/3 0/3 5/17 8/19 5/19 2/19 3/19
(pg/g-wet) Fish	2016 2017 2018 2019 2022 2011 2012 2014 2015 2016 2017	nd tr(9) nd	tr(10) tr(8) nd	30 tr(9) 36 nd tr(22) nd 760 40 30 tr(20) tr(12) tr(12)	nd n	30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40] 40 [10] 30 [10] 30 [10] 21 [8] 23 [9]	2/3 2/3 1/3 0/3 1/3 0/3 11/51 8/19 5/19 2/19 3/19 2/19	2/3 1/3 0/3 1/3 0/3 5/17 8/19 5/19 2/19 3/19 2/19
(pg/g-wet) Fish	2016 2017 2018 2019 2022 2011 2012 2014 2015 2016 2017 2018	nd tr(9) nd	tr(10) tr(8) nd	30 tr(9) 36 nd tr(22) nd 760 40 30 tr(20) tr(12) tr(12) nd	nd n	30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40] 40 [10] 30 [10] 30 [10] 21 [8] 23 [9] 22 [8]	2/3 2/3 1/3 0/3 1/3 0/3 11/51 8/19 5/19 2/19 3/19 2/19 0/18	2/3 1/3 0/3 1/3 0/3 5/17 8/19 5/19 2/19 3/19 2/19 0/18
(pg/g-wet) Fish	2016 2017 2018 2019 2022 2011 2012 2014 2015 2016 2017 2018 2019	nd tr(9) nd	tr(10) tr(8) nd	30 tr(9) 36 nd tr(22) nd 760 40 30 tr(20) tr(12) tr(12) nd nd	nd n	30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40] 40 [10] 30 [10] 30 [10] 21 [8] 23 [9] 22 [8] 24 [9]	2/3 2/3 1/3 0/3 1/3 0/3 11/51 8/19 5/19 2/19 3/19 2/19 0/18 0/16	2/3 1/3 0/3 1/3 0/3 5/17 8/19 5/19 2/19 3/19 2/19 0/18 0/16
(pg/g-wet) Fish	2016 2017 2018 2019 2022 2011 2012 2014 2015 2016 2017 2018	nd tr(9) nd	tr(10) tr(8) nd	30 tr(9) 36 nd tr(22) nd 760 40 30 tr(20) tr(12) tr(12) nd	nd n	30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40] 40 [10] 30 [10] 30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20]	2/3 2/3 1/3 0/3 1/3 0/3 11/51 8/19 5/19 2/19 3/19 2/19 0/18	2/3 1/3 0/3 1/3 0/3 5/17 8/19 5/19 2/19 3/19 2/19 0/18
(pg/g-wet) Fish	2016 2017 2018 2019 2022 2011 2012 2014 2015 2016 2017 2018 2019 2022	nd tr(9) nd	tr(10) tr(8) nd	30 tr(9) 36 nd tr(22) nd 760 40 30 tr(20) tr(12) tr(12) nd nd	nd n	30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40] 40 [10] 30 [10] 30 [10] 21 [8] 23 [9] 22 [8] 24 [9]	2/3 2/3 1/3 0/3 1/3 0/3 11/51 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/18	2/3 1/3 0/3 1/3 0/3 5/17 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/18
(pg/g-wet) Fish	2016 2017 2018 2019 2022 2011 2012 2014 2015 2016 2017 2018 2019 2022 2011	nd tr(9) nd	tr(10) tr(8) nd	30 tr(9) 36 nd tr(22) nd 760 40 30 tr(20) tr(12) tr(12) nd nd nd	nd n	30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40] 40 [10] 30 [10] 31 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40]	2/3 2/3 1/3 0/3 1/3 0/3 11/51 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/18 0/3	2/3 1/3 0/3 1/3 0/3 5/17 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/18
(pg/g-wet) Fish (pg/g-wet)	2016 2017 2018 2019 2022 2011 2012 2014 2015 2016 2017 2018 2019 2022 2011 2012	nd tr(9) nd	tr(10) tr(8) nd	30 tr(9) 36 nd tr(22) nd 760 40 30 tr(20) tr(12) tr(12) nd nd nd	nd n	30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40] 40 [10] 30 [10] 31 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40] 40 [10]	2/3 2/3 1/3 0/3 1/3 0/3 11/51 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/18 0/3 0/2	2/3 1/3 0/3 1/3 0/3 5/17 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/18
(pg/g-wet) Fish (pg/g-wet) Birds *2	2016 2017 2018 2019 2022 2011 2012 2014 2015 2016 2017 2018 2019 2022 2011 2012	nd tr(9) nd	tr(10) tr(8) nd	30 tr(9) 36 nd tr(22) nd 760 40 30 tr(20) tr(12) tr(12) nd nd nd nd nd	nd n	30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40] 40 [10] 30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40] 40 [10] 30 [10]	2/3 2/3 1/3 0/3 1/3 0/3 11/51 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/18 0/3 0/2 0/2	2/3 1/3 0/3 1/3 0/3 5/17 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/18 0/1 0/2 0/2 0/1 0/2
(pg/g-wet) Fish (pg/g-wet)	2016 2017 2018 2019 2022 2011 2012 2014 2015 2016 2017 2018 2019 2022 2011 2012 2014 2015 2016 2017	nd tr(9) nd	tr(10) tr(8) nd	30 tr(9) 36 nd tr(22) nd 760 40 30 tr(20) tr(12) tr(12) nd nd nd nd nd nd	nd n	30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40] 40 [10] 30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40] 40 [10] 30 [10] 30 [10] 30 [10]	2/3 2/3 1/3 0/3 1/3 0/3 11/51 8/19 5/19 2/19 3/19 0/18 0/16 0/18 0/2 0/2 0/1 0/2 0/2	2/3 1/3 0/3 1/3 0/3 5/17 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/18 0/1 0/2 0/2 0/1 0/2 0/2
(pg/g-wet) Fish (pg/g-wet) Birds *2	2016 2017 2018 2019 2022 2011 2012 2014 2015 2016 2017 2018 2019 2022 2011 2012 2014 2015 2016 2017 2018	nd tr(9) nd	tr(10) tr(8) nd	30 tr(9) 36 nd tr(22) nd 760 40 30 tr(20) tr(12) tr(12) nd nd nd nd nd nd	nd n	30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40] 40 [10] 30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40] 40 [10] 30 [10] 30 [10] 31 [10] 32 [18] 32 [9] 42 [8] 43 [9] 44 [10] 36 [10] 37 [10] 38 [10] 39 [10] 31 [10] 31 [10] 32 [18] 32 [9] 32 [8]	2/3 2/3 1/3 0/3 1/3 0/3 11/51 8/19 5/19 2/19 3/19 0/18 0/16 0/18 0/2 0/2 0/1 0/2 0/2 0/2	2/3 1/3 0/3 1/3 0/3 5/17 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/18 0/1 0/2 0/2 0/1 0/2 0/2 0/2 0/2
(pg/g-wet) Fish (pg/g-wet) Birds *2	2016 2017 2018 2019 2022 2011 2012 2014 2015 2016 2017 2018 2019 2022 2011 2012 2014 2015 2016 2017	nd tr(9) nd	tr(10) tr(8) nd	30 tr(9) 36 nd tr(22) nd 760 40 30 tr(20) tr(12) tr(12) nd nd nd nd nd nd nd nd	nd n	30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40] 40 [10] 30 [10] 21 [8] 23 [9] 22 [8] 24 [9] 40 [20] 98 [40] 40 [10] 30 [10] 30 [10] 31 [10] 32 [10] 33 [10] 21 [8] 23 [9]	2/3 2/3 1/3 0/3 1/3 0/3 11/51 8/19 5/19 2/19 3/19 0/18 0/16 0/18 0/2 0/2 0/1 0/2 0/2	2/3 1/3 0/3 1/3 0/3 5/17 8/19 5/19 2/19 3/19 2/19 0/18 0/16 0/18 0/1 0/2 0/2 0/1 0/2 0/2

γ-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection l	Frequency
bromocyclododecane	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	440	470	3,300	nd	210 [80]	8/10	4/4
	2012	170	180	910	30	30 [10]	5/5	5/5
	2014	60	60	110	30	30 [10]	3/3	3/3
Bivalves	2015	70	90	200	tr(20)	30 [10]	3/3	3/3
(pg/g-wet)	2016	37	39	61	tr(21)	24 [9]	3/3	3/3
(188)	2017	49	30	200	tr(20)	24 [9]	3/3	3/3
	2018	tr(19)	39	46	nd	21 [8]	2/3	2/3
	2019	34	22	140	tr(13)	22 [9]	3/3	3/3
	2022	tr(20)	tr(20)	tr(30)	nd	40 [20]	2/3	2/3
	2011	210	tr(90)	50,000	nd	210 [80]	26/51	10/17
	2012	75 20	80	1,600	nd	30 [10]	16/19	16/19
	2014	30	tr(20)	2,800	nd	30 [10]	12/19	12/19
Fish	2015	tr(20)	tr(10)	230	nd	30 [10]	10/19	10/19
(pg/g-wet)	2016	tr(16)	tr(13)	160	nd	24 [9]	11/19	11/19
400	2017	tr(16)	tr(18)	120	nd	24 [9]	12/19	12/19
	2018	tr(11)	tr(11)	130	nd	21 [8]	10/18	10/18
	2019	tr(12)	tr(13)	62	nd	22 [9]	9/16	9/16
	2022	nd	nd 1	tr(30)	nd	40 [20]	8/18	8/18
	2011	tr(180)	nd	460	nd nd	210 [80]	1/3	1/1
	2012	31		190	nd	30 [10]	1/2	1/2
	2014	tr(10)		tr(10)	tr(10)	30 [10]	2/2 1/1	2/2 1/1
Birds *2	2015	tr(10)		tr(10)	tr(10)	30 [10]	1/1	1/1
(pg/g-wet)	2016 2017			tr(20)	nd nd	24 [9]	1/2	1/2
	2017	tr(9)		tr(18)	nd nd	24 [9]	0/2	0/2
	2018	nd 		nd nd	nd nd	21 [8] 22 [9]	0/2	0/2
	2019	nd		nd	nd	40 [20]	0/1	0/1
				iid	na	Quantification	Detection l	
δ -1,2,5,6,9,10-Hexa	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		
bromocyclododecane	year	mean *1	111001011	111411114111		limit	Sample	Site
	2011	nd	nd	nd	nd	140 [60]	0/10	0/4
D: 1	2012	nd	nd	nd	nd	50 [20]	0/5	0/5
Bivalves	2014	nd	nd	nd	nd	30 [10]	0/3	0/3
(pg/g-wet)	2015	nd	nd	nd	nd	30 [10]	0/3	0/3
	2022	nd	nd	nd	nd	50 [20]	0/3	0/3
	2011	nd	nd	nd	nd	140 [60]	0/51	0/17
Fish	2012	nd	nd	nd	nd	50 [20]	0/19	0/19
(pg/g-wet)	2014	nd	nd	nd	nd	30 [10]	0/19	0/19
(pg/g-wet)	2015	nd	nd	tr(20)	nd	30 [10]	1/19	1/19
	2022	nd	nd	nd	nd	50 [20]	0/18	0/18
	2011	nd	nd	nd	nd	140 [60]	0/3	0/1
Birds *2	2012	nd		nd	nd	50 [20]	0/2	0/2
(pg/g-wet)	2014	nd		nd	nd	30 [10]	0/2	0/2
(P8/8 "CI)	2015			nd	nd	30 [10]	0/1	0/1
	2022	nd		nd	nd	50 [20]	0/2	0/2
ε-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection l	Frequency
bromocyclododecane	year	mean *1	Median	Maximum	Minimum	[Detection]	Sample	Site
,			1	1	1	limit		
	2011	nd d	nd 1	nd	nd 4	140 [60]	0/10	0/4
Bivalves	2012	nd nd	nd nd	tr(30)	nd nd	40 [20]	1/5	1/5
(pg/g-wet)	2014	nd nd	nd nd	tr(20)	nd nd	30 [10]	1/3	1/3
/	2015	nd nd	nd nd	tr(10)	nd nd	30 [10]	1/3	1/3
	2022 2011	nd nd	nd nd	nd nd	nd nd	40 [20] 140 [60]	0/3 0/51	0/3
							3/19	3/19
Fish	2012 2014	nd nd	nd nd	tr(30) 80	nd nd	40 [20]	3/19	3/19
(pg/g-wet)	2014	nd nd	nd nd	tr(10)	nd nd	30 [10] 30 [10]	3/19 1/19	3/19 1/19
	2013	na nd	nd nd	ır(10) nd	nd nd	40 [20]	0/18	0/18
	2022	nd	nd	nd	nd	140 [60]	0/18	0/18
	2011	nd	na 	nd nd	nd	40 [20]	0/3	0/1
Birds *2	2012	nd		nd	nd	30 [10]	0/2	0/2
(pg/g-wet)	2014			nd	nd	30 [10]	0/2	0/2
	401.7			IIU	IIU	20 [10]	U/ 1	U/ I
	2022	nd		nd	nd	40 [20]	0/2	0/2

- (Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2011.
- (Note 2) *2: There is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species.
- (Note 3) No monitoring was conducted in FY2013 FY2020 and FY2021. No monitoring of δ -1,2,5,6,9,10-Hexabromocyclododecane and ε -1,2,5,6,9,10-Hexabromocyclododecane was conducted in FY2016 \sim 2019.

<Air

Stocktaking of the detection of 1,2,5,6,9,10-Hexabro	mocyclododecanes in ai	ir during FY2012 ~	- 2022
a 1 2 5 6 0 1 0		Overtification	Datas

α-1,2,5,6,9,10-		Geometric				Quantification	Detection 1	Frequency
Hexabromo cyclododecane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2012 Warm season	1.7	2.2	130	nd	0.6 [0.2]	31/36	31/36
	2012 Cold season	2.9	3.0	63	nd	0.0 [0.2]	35/36	35/36
	2014 Warm season	tr(0.6)	tr(0.7)	3.1	nd	1.2 [0.4]	25/36	25/36
Air	2015 Warm season	tr(0.6)	tr(0.7)	30	nd	0.9 [0.3]	26/35	26/35
(pg/m^3)	2016 Warm season	0.5	0.5	2.4	tr(0.1)	0.3 [0.1]	37/37	37/37
	2017 Warm season	0.5	0.5	3.3	nd	0.3 [0.1]	36/37	36/37
	2019 Warm season	0.5	0.5	4.1	nd	0.3 [0.1]	35/36	35/36
	2022 Warm season	0.29	0.28	19	nd	0.16 [0.06]	35/36	35/36
β -1,2,5,6,9,10- Hexabromo cyclododecane	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
	2012 Warm season	0.5	0.5	29	nd		30/36	30/36
	2012 Cold season	0.8	0.8	18	nd	0.3 [0.1]	35/36	35/36
	2014 Warm season	nd	nd	tr(0.8)	nd	1.0 [0.3]	8/36	8/36
Air	2015 Warm season	nd	nd	3.9	nd	0.8 [0.3]	7/35	7/35
(pg/m^3)	2016 Warm season	tr(0.1)	tr(0.1)	0.7	nd	0.3 [0.1]	21/37	21/37
40 /	2017 Warm season	tr(0.2)	tr(0.1)	0.8	nd	0.3 [0.1]	33/37	33/37
	2019 Warm season	tr(0.13)	tr(0.15)	1.2	nd	0.21 [0.08]	26/36	26/36
	2022 Warm season	tr(0.07)	tr(0.07)	4.1	nd	0.18 [0.07]	19/36	19/36
γ-1,2,5,6,9,10-		•				Quantification	Detection 1	
Hexabromo cyclododecane	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2012 Warm season	1.6	1.7	280	nd	0.2 [0.1]	31/36	31/36
	2012 Cold season	2.1	1.8	84	nd	0.3 [0.1]	35/36	35/36
	2014 Warm season	nd	nd	tr(1.2)	nd	1.3 [0.4]	4/36	4/36
Air	2015 Warm season	nd	nd	4.4	nd	0.8 [0.3]	11/35	11/35
(pg/m^3)	2016 Warm season	tr(0.1)	nd	1.4	nd	0.3 [0.1]	16/37	16/37
	2017 Warm season	tr(0.1)	tr(0.1)	0.8	nd	0.3 [0.1]	20/37	20/37
	2019 Warm season	nd	nd	1.5	nd	0.4 [0.2]	15/36	15/36
	2022 Warm season	0.17	0.16	3.1	nd	0.14 [0.05]	32/36	32/36
δ-1,2,5,6,9,10-		C				Quantification	Detection 1	Frequency
Hexabromo cyclododecane	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2012 Warm season	nd	nd	0.8	nd	0.4 [0.2]	1/36	1/36
Air	2012 Cold season	nd	nd	1.1	nd	0.4 [0.2]	1/36	1/36
(pg/m^3)	2014 Warm season	nd	nd	nd	nd	1.8 [0.6]	0/36	0/36
	2015 Warm season	nd	nd	1.9	nd	1.9 [0.6]	1/35	1/35
ε-1,2,5,6,9,10- Hexabromo	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection]	Detection I Sample	Frequency Site
cyclododecane	2012 W	1	1	1		limit		0/26
	2012 Warm season	nd	nd	nd	nd	0.6 [0.2]	0/36	0/36
Air	2012 Cold season	nd 1	nd	tr(0.5)	nd		1/36	1/36
(pg/m^3)	2014 Warm season	nd 1	nd 1	nd 1	nd	0.9 [0.3]	0/36	0/36
(Note) No	2015 Warm season	nd	in FV20	nd 13 FV2018	nd FV2020	0.9 [0.3] and FV2021	No monito	0/35
LINOTEL NO.	monitoring was	conducted	10 HV/()	1	H V /11/11	and HV/II/I	INO monito	ring of

(Note) No monitoring was conducted in FY2013 FY2018 FY2020 and FY2021. No monitoring of δ -1,2,5,6,9,10-Hexabromocyclododecane and ε -1,2,5,6,9,10-Hexabromocyclododecane was conducted after FY2016.

[20] Total Polychlorinated Naphthalenes (Total PCNs) (references)

· History and results of the monitoring

Polychlorinated Naphthalenes (PCNs) make effective insulating coatings for electrical wires and have been used as wood preservatives, as rubber and plastic additives, for capacitor dielectrics and in lubricants. The substances with over 3 chloric ions were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in August 1979. And PCNs ($Cl_2 \sim Cl_8$) was adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants in May 2015 and Dichloronaphthalenes designated as Class I Specified Chemical Substances under the Chemical Substances Control Law in April 2016.

In previous monitoring series, Polychlorinated Naphthalenes were monitored in wildlife (bivalves, fish and birds) during the period of FY1980 \sim 1985 FY1987 FY 1989 FY 1991 and FY 1993 under the framework of "the Wildlife Monitoring."

Under the framework of "the Environmental Monitoring", Polychlorinated Naphthalenes with over a chloric ions have been monitored in surface water in FY2008 FY2018 FY2019 and FY2021, in sediment in FY2008 FY2016 \sim 2019 and FY2021, in wildlife (bivalves, fish and birds) in FY 2006 FY2008 FY2015 \sim 2019 and FY2021, and in air in FY2008 FY2014 FY2016 \sim 2019 and FY2021.

No monitoring was conducted after FY2022. For reference, the monitoring results up to FY2021 are given below.

· Monitoring results until FY2021

<Surface Water>

Stocktaking of the detection of Total Polychlorinated Naphthalenes in surface water during FY2008 ~ 2021

Total Polychlorinated	Monitored	Geometric		•		Quantification	Detection Frequency		
Naphthalenes	year	mean	Median	Maximum	Minimum	[Detection] limit*	Sample	Site	
	2008	nd	nd	180	nd	85[30]	9/48	9/48	
Surface Water	2018	tr(32)	tr(34)	260	nd	35 [12]	39/47	39/47	
(pg/L)	2019	tr(14)	tr(12)	260	nd	24 [7.5]	32/48	32/48	
	2021	tr(9)	tr(8)	170	nd	15 [6]	29/47	29/47	

⁽Note 1) *: The sum value of the Quantification [Detection] limits of each congener.

<Sediment>

Stocktaking of the detection of Total Polychlorinated Naphthalenes in sediment during FY2008 ~ 2021

Total Polychlorinate	d Monitored	Geometric				Quantification	Detection I	Frequency
Naphthalenes	year	mean *1	Median	Maximum	Minimum	[Detection] limit *2	Sample 166/189 59/62 62/62 61/61 61/61	Site
	2008	410	400	28,000	nd	84 [30]	166/189	58/63
	2016	760	870	160,000	nd	59 [20]	59/62	59/62
Sediment	2017	630	800	32,000	tr(16)	27 [9.1]	62/62	62/62
(pg/g-dry)	2018	680	810	34,000	9.9	8.5 [3.2]	61/61	61/61
(188-37	2019	600	720	58,000	13	7.3 [2.7]	61/61	61/61
	2021	400	440	14,000	nd	9.7 [3.6]	59/60	59/60

⁽Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

⁽Note 2) No monitoring was conducted in FY2009 \sim 2017 and FY2020.

⁽Note 2) *2: The sum value of the Quantification [Detection] limits of each congener.

⁽Note 3) No monitoring was conducted in FY2009 ~ 2015 and FY2020.

<Wildlife>

Stocktaking of the detection of Total Polychlorinated Naphthalenes in wildlife (bivalves, fish and birds) during $FY2006 \sim 2021$

Total Polychlorinated	Monitored	Geometric				Quantification	Detection F	Frequency
Naphthalenes	year	mean *1	Median	Maximum	Minimum	[Detection] limit *2	Sample	Site
	2006	98	73	1.2	tr(19)	27 [11]	31/31	7/7
	2008	94	73	1,300	tr(11)	26 [10]	31/31	7/7
	2015	70	67	580	nd	54 [18]	2/3	2/3
Bivalves	2016	72	tr(49)	790	nd	57 [19]	2/3	2/3
(pg/g-wet)	2017	46	68	1,400	nd	33 [12]	2/3	2/3
	2018	58	tr(22)	700	tr(13)	36 [12]	3/3	3/3
	2019	84	96	820	nd	40 [15]	2/3	2/3
	2021	62	60	600	nd	37 [13]	2/3	2/3
	2006	72	49	2,700	nd	27 [11]	78/80	16/16
	2008	59	40	2,200	nd	26 [10]	79/85	17/17
	2015	tr(50)	85	390	nd	54 [18]	13/19	13/19
Fish	2016	tr(44)	tr(48)	340	nd	57 [19]	13/19	13/19
(pg/g-wet)	2017	32	51	360	nd	33 [12]	17/19	17/19
	2018	41	36	520	nd	36 [12]	16/18	16/18
	2019	46	78	270	nd	40 [15]	12/16	12/16
	2021	66	74	360	tr(14)	37 [13]	18/18	18/18
	2006	tr(17)	tr(18)	27	tr(11)	27 [11]	10/10	2/2
	2008	tr(10)	nd	tr(22)	nd	26 [10]	5/10	1/2
	2015			tr(20)	tr(20)	54 [18]	1/1	1/1
Birds *3	2016	130		320	tr(49)	57 [19]	2/2	2/2
(pg/g-wet)	2017	91		460	tr(18)	33 [12]	2/2	2/2
	2018	230		250	220	36 [12]	2/2	2/2
	2019			170	170	40 [15]	1/1	1/1
	2021	290		330	250	37 [13]	2/2	2/2

⁽Note 1) *1: Arithmetic mean values were calculated for each point, from which the geometric mean value for all points were derived in FY2006 and FY2008.

<Air>

Stocktaking of the detection of Total Polychlorinated Naphthalenes in sediment during FY2008 \sim 2021

Total		Geometric		•		Quantification	Detection l	requency
Polychlorinated Naphthalenes	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit *	Sample	Site
	2008 Warm season	200	230	660	35	4.0 [1.3]	22/22	22/22
	2008 Cold season	tr(9.6)	tr(9.8)	45	nd	4.0 [1.3]	36/36	36/36
	2014 Warm season	110	130	1,600	5.4	2.8 [1.0]	36/36	36/36
Air	2016 Warm season	110	130	660	9.0	0.79 [0.28]	37/37	37/37
(pg/m^3)	2017 Warm season	110	120	920	7	0.67 [0.24]	37/37	37/37
	2018 Warm season	86	110	590	5.3	0.5 [0.2]	37/37	37/37
	2019 Warm season	100	130	1,100	6.5	0.6 [0.2]	36/36	36/36
	2021 Warm season	80	72	1,000	5.3	0.7 [0.3]	35/35	35/35

(Note 1) *: The sum value of the Quantification [Detection] limits of each congener.

(Note 2) No monitoring was conducted in FY2009 ~ 2013, FY2015 and FY2020.

⁽Note 2) * 2: The sum value of the Quantification [Detection] limits of each congener.

⁽Note 3) *3: There is no consistency between the results of the ornithological survey after FY2015 and those in previous years because of the changes in the survey sites and target species.

⁽Note 4) No monitoring was conducted in FY2007, FY2009 ~ 2014 and FY2020.

[21] Hexachlorobuta-1,3-diene

· History and results of the monitoring

Hexachlorobuta-1,3-diene had been used as a solvent for other chlorine-containing compounds. The substance was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law on April 2005. The substance was listed under Annex A (Prohibit and/or eliminate) at the COP7 of the Stockholm convention on Persistent Organic Pollutants in May 2015 and Annex C (Reduce or eliminate releases from unintentionally produced) at the COP8 in April-May 2017

As a continuous survey, the first survey was in FY2007, under the framework of the Environmental Survey of Chemical Substances up to FY2002, the substance was monitored in surface wate and sediment in FY1981, under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, in the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was monitored in surface water and sediment in FY2007.

Under the framework of the Environmental Monitoring, the substance has been monitored in surface water sediment and wildlife (bivalves, fish and birds) in FY2007 FY2013 and FY2020 \sim 2022, and in air in FY2015 \sim 2023.

· Monitoring results

<Air>

The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 20 pg/m³, and the detection range was $2,100 \sim 6,500 \text{ pg/m}^3$.

As results of the inter-annual trend analysis from FY2005 to FY2023, an increasing tendency in specimens was identified as statistically significant. But an inter-annual trend was not found, as the result from FY2017 to FY2023.

Stocktaking of the detection of Hexachlorobuta-1,3-diene in air during FY2015 ~ 2023

Hexachloro		Geometric				Quantification	Detection I	Frequency
buta 1,3-diene	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2015 Warm season	1,100	1,200	3,500	45	29 [11]	102/102	34/34
	2016 Warm season	850	800	4,300	510	60 [20]	111/111	37/37
	2017 Warm season	4,200	4,000	23,000	1,100	60 [20]	111/111	37/37
Air	2018 Warm season	3,600	3,500	8,500	150	30 [10]	110/110	37/37
	2019 Warm season	1,500	2,600	5,800	nd	50 [20]	104/108	35/36
(pg/m^3)	2020 Warm season	2,500	2,500	9,800	1,500	30 [10]	110/110	37/37
	2021 Warm season	2,400	2,200	11,000	1,400	40 [20]	105/105	35/35
=	2022 Warm season	2,400	2,300	5,000	1,700	50 [20]	108/108	36/36
	2023 Warm season	3,100	3,000	6,500	2,100	50 [20]	105/105	35/35

• Monitoring results until FY2022 (references)

<Surface Water>

Stocktaking of the detection of Hexachlorobuta-1,3-diene in surface water during FY2007 ~ 2022

Hexachlorobuta	Monitored	Geometric				Quantification	Detection I	Frequency
1,3-diene	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	nd	nd	nd	nd	870 [340]	0/48	0/48
C	2013	nd	nd	tr(43)	nd	94 [37]	1/48	1/48
Surface Water	2020	nd	nd	490	nd	100 [40]	1/46	1/46
(pg/L)	2021	nd	nd	nd	nd	180 [70]	0/47	0/47
	2022	nd	nd	nd	nd	100 [40]	0/48	0/48

(Note) No monitoring was conducted during FY2008 ~ 2012 and FY2013 ~ 2019.

<Sediment>

Stocktaking of the detection of Hexachlorobuta-1,3-diene in sediment during FY2007 ~ 2022

Hexachlorobuta	Monitored	Geometric	•		Detection 1	Frequency		
1,3-diene	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	nd	nd	1,300	nd	22 [8.5]	22/192	10/64
C - 1: t	2013	nd	nd	1,600	nd	9.9 [3.8]	40/189	20/63
Sediment	2020	nd	nd	180	nd	30 [10]	2/58	2/58
(pg/g-dry)	2021	nd	nd	170	nd	30 [10]	3/60	3/60
	2022	nd	nd	370	nd	30 [10]	4/61	4/61

⁽Note 1) *: Arithmetic mean values were calculated for each point, from which the geometric mean value for all points were derived in FY2007 and FY2013.

<Wildlife>

Stocktaking of the detection of Hexachlorobuta-1,3-diene in wildlife (bivalves, fish and birds) during FY2007 ~ 2022

Hexachlorobuta	Monitored	Geometric				Quantification	Detection l	requency
1,3-diene	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	nd	nd	nd	nd	36 [12]	0/31	0/7
Bivalves	2013	nd	nd	tr(7.1)	nd	9.4 [3.7]	3/13	1/5
	2020	nd	nd	tr(7)	nd	13 [5]	1/3	1/3
(pg/g-wet)	2021	nd	nd	tr(5)	nd	14 [5]	1/3	1/3
	2022	nd	nd	nd	nd	10 [4]	0/3	0/3
	2007	nd	nd	nd	nd	36 [12]	0/80	0/16
Fish	2013	nd	nd	59	nd	9.4 [3.7]	7/57	4/19
	2020	nd	nd	19	nd	13 [5]	8/18	8/18
(pg/g-wet)	2021	tr(7)	tr(10)	24	nd	14 [5]	14/18	14/18
	2022	tr(6)	tr(4)	290	nd	10 [4]	9/18	9/18
	2007	nd	nd	nd	nd	36 [12]	0/10	0/2
Birds *2	2013	nd	nd	nd	nd	9.4 [3.7]	0/6	0/2
	2020			nd	nd	13 [5]	0/1	0/1
(pg/g-wet)	2021	nd		nd	nd	14 [5]	0/2	0/2
	2022	nd		nd	nd	10 [4]	0/2	0/2

⁽Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2007.

⁽Note 2) No monitoring was conducted during FY2008 \sim 2012 and FY2013 \sim 2019.

⁽Note 2) *2: There is no consistency between the results of the ornithological survey after FY2013 and FY2007 because of the changes in the survey sites and target species.

⁽Note 3) No monitoring was conducted during FY2008 ~ 2012 and FY2013 ~ 2019.

[22] Pentachlorophenol and its salts and esters (reference)

· History and state of monitoring

Pentachlorophenol was used as a herbicide, insecticide, fungicide, algaecide, disinfectant and as an ingredient in antifouling paint. Pentachlorophenol and its salts and esters were adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants in May 2015, and designated as Class I Specified Chemical Substances under the Chemical Substances Control Law in October 2016.

As a continuous survey, the first survey of Pentachlorophenol was in FY2015, under the framework of the Environmental Survey of Chemical Substances up to FY2007, the substance was monitored in surface water and sediment in FY1974 and FY1996, and under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, in the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was monitored in surface water in FY2005.

Under the framework of the Environmental Monitoring, Pentachlorophenol was monitored in surface water in FY2015. And Pentachlorophenol and Pentachloroanisole have been monitored in surface water and sediment in FY2017 \sim 2019, and in wildlife (bivalves, fish and birds) and air in FY2016 \sim 2019.

No monitoring was conducted after FY2020. For reference, the monitoring results up to FY2019 are given below.

· Monitoring results until FY2019

<Surface Water>

Stocktaking of the detection of Pentachlorophenol and Pentachloroanisole in surface water during FY2015 ~ 2019

D (11 1 1	Monitored	Geometric	ric ·		Detection	requency		
Pentachlorophenol	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2015	tr(130)	tr(90)	26,000	nd	260 [85]	25/48	25/48
Surface Water	2017	86	110	3,500	nd	30 [10]	43/47	43/47
(pg/L)	2018	50	47	4,400	nd	24 [9]	44/47	44/47
	2019	tr(60)	tr(50)	3,500	nd	60 [20]	32/48	32/48
	Monitored	Geometric				Quantification	Detection 1	Frequency
Pentachloroanisole	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
			Median tr(8)	Maximum 1,000	Minimum	[Detection]		1 3
Surface Water	year	mean				[Detection] limit	Sample	Site
	year 2017	mean tr(10)	tr(8)	1,000	nd	[Detection] limit 14 [5]	Sample 32/47	Site 32/47

⁽Note) No monitoring was conducted in FY2016. No monitoring of Pentachloroanisole was conducted in FY2015.

<Sediment>

Stocktaking of the detection of Pentachlorophenol and Pentachloroanisole in sediment during FY2017 ~ 2019

	Monitored	Geometric				Quantification	Detection 1	Frequency
Pentachlorophenol	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2017	350	390	7,400	8	4 [2]	62/62	62/62
	2018	220	300	3,900	nd	18 [6]	59/61	59/61
(pg/g-dry)	2019	260	380	6,200	7	6 [2]	61/61	61/61
	Monitored	Geometric				Quantification	Detection 1	Frequency
Pentachloroanisole	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2017	34	32	190	nd	5 [2]	61/62	61/62
(pg/g-dry)	2018	tr(23)	tr(25)	160	nd	27 [9]	53/61	53/61
	2019	14	15	140	nd	2.1 [0.8]	60/61	60/61

<Wildlife>

Stocktaking of the detection of Pentachlorophenol and Pentachloroanisole in wildlife (bivalves, fish and birds) during $FY2016 \sim 2019$

	Monitored	Geometric				Quantification	Detection l	Frequency
Pentachlorophenol	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016	tr(45)	tr(46)	65	tr(30)	63 [21]	3/3	3/3
Bivalves	2017	nd	nd	tr(35)	nd	36 [12]	1/3	1/3
(pg/g-wet)	2018	tr(20)	tr(20)	30	tr(10)	30 [10]	3/3	3/3
	2019	26	26	54	13	10 [4]	3/3	3/3
	2016	100	130	990	nd	63 [21]	18/19	18/19
Fish	2017	tr(15)	tr(15)	110	nd	36 [12]	14/19	14/19
(pg/g-wet)	2018	tr(10)	tr(10)	80	nd	30 [10]	13/18	13/18
	2019	17	22	57	nd	10 [4]	14/16	14/16
	2016	1,200		3,100	440	63 [21]	2/2	2/2
Birds	2017	1,800		11,000	300	36 [12]	2/2	2/2
(pg/g-wet)	2018	460		1,200	180	30 [10]	2/2	2/2
	2019			430	430	10 [4]	1/1	1/1
	Monitored	Geometric				Quantification	Detection l	Frequency
Pentachloroanisole	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016	7	3	35	3	3 [1]	3/3	3/3
Bivalves	2017	6	tr(3)	36	tr(2)	4 [1]	3/3	3/3
(pg/g-wet)	2018	6	tr(4)	21	tr(2)	6 [2]	3/3	3/3
	2019	4	tr(2)	15	tr(2)	3 [1]	3/3	3/3
	2016	8	6	100	tr(1)	3 [1]	19/19	19/19
Fish	2017	7	5	120	tr(1)	4 [1]	19/19	19/19
(pg/g-wet)	2018	8	7	73	nd	6 [2]	16/18	16/18
	2019	5	6	59	tr(1)	3 [1]	16/16	16/16
	2016	12		14	10	3 [1]	2/2	2/2
Birds	2017	23		47	11	4 [1]	2/2	2/2
(pg/g-wet)	2018	15		20	11	6 [2]	2/2	2/2
	2019			91	91	3 [1]	1/1	1/1

<Air>

Stocktaking of the detection of Pentachlorophenol and Pentachloroanisole in air during FY2016 \sim 2019

Pentachloro		Geometric				Quantification	Detection	Frequency
phenol	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016 Warm season	6.3	6.0	25	0.6	0.5 [0.2]	37/37	37/37
A in (m ~/m 3)	2017 Warm season	4.6	4.8	33	0.7	0.6 [0.2]	37/37	37/37
Air (pg/m^3)	2018 Warm season	5.1	5.8	30	0.9	0.5 [0.2]	37/37	37/37
	2019 Warm season	4.1	4.2	22	0.6	0.6 [0.2]	36/36	36/36
Pentachloro phenol	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection Sample	Frequency Site
	2016 Warm season	39	42	220	3.4	1.0 [0.4]	37/37	37/37
A in (m ~/m 3)	2017 Warm season	34	36	210	6.0	1.2 [0.5]	37/37	37/37
Air (pg/m ³)	2018 Warm season	34	40	110	4.6	1.1 [0.4]	37/37	37/37
	2019 Warm season	30	32	180	4.3	0.3 [0.1]	36/36	36/36

[23] Short-chain chlorinated paraffins

· History and state of monitoring

Short-chain chlorinated paraffinsare are used primarily in metalworking applications and in polyvinyl chloride (PVC) plastics. Other uses are adhesives and sealants, leather fat liquors, plastics, and as flame retardants in rubber, textiles and polymeric materials. The substances were adopted as target chemicals at the COP8 of the Stockholm convention on Persistent Organic Pollutants in April-May 2017. And the substances whose content of chlorine is more than 48% of the total weight were designated as Class I Specified Chemical Substances under the Chemical Substances Control Law in April 2018.

Under the framework of the Initial Environmental Survey and the Detailed Environmental Survey etc., the substances were surveied in surface water, sediment and wildlife (fish) in FY2004 and in surface water, sediment and wildlife (bivalves and fish) in FY2005.

Under the framework of the Environmental Monitoring, the substances have been monitored in surface water and sediment in FY2017 \sim 2022, in wildlife (bivalves, fish and birds) in FY2016 \sim 2022 and in air in FY2016 \sim 2023.

The results of short-chain chlorinated paraffins are tentative values obtained in trials among various problems in the measurement method.

Monitoring results

<Wildlife>

Chlorinated decanes: The presence of the substance in bivalves was monitored in 2 areas, and it was detected at 1 of the 2 valid areas adopting the detection limit of 150 pg/g-wet, and the detected concentration was tr(150) pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 6 of the 18 valid areas adopting the detection limit of 150 pg/g-wet, and the detection range was up to tr(270) pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 150 pg/g-wet, and the detected concentrations were tr(410) pg/g-wet and 610 pg/g-wet.

Chlorinated undecanes: The presence of the substance in bivalves was monitored in 2 areas, and it was not detected at both valid areas adopting the detection limit of 500 pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was not detected at all 18 valid areas adopting the detection limit of 500 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at 1 of the 2 valid areas adopting the detection limit of 500 pg/g-wet, and the detected concentration was tr(1,200) pg/g-wet.

Chlorinated dodecanes: The presence of the substance in bivalves was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 300 pg/g-wet, and the detected concentrations were tr(360) pg/g-wet and 1,000 pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 13 of the 18 valid areas adopting the detection limit of 300 pg/g-wet, and the detection range was up to 730 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 300 pg/g-wet, and the detected concentrations were 700 pg/g-wet and 1,300 pg/g-wet.

Chlorinated tridecanes: The presence of the substance in bivalves was monitored in 2 areas, and it was detected at 1 of the 2 valid areas adopting the detection limit of 500 pg/g-wet, and the detected concentration was tr(740) pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 7 of the 18 valid areas adopting the detection limit of 500 pg/g-wet, and the detection range was up to tr(730) pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at 1 of the 2 valid areas adopting the detection limit of 500 pg/g-wet, and the detected concentration was 1,700 pg/g-wet.

Stocktaking of the detection of Chlorinated decanes, Chlorinated undecanes, Chlorinated dodecanes and Chlorinated tridecanes in wildlife (bivalves, fish and birds) during FY2016 ~ 2023

Chlorinated	Monitored	Geometric	Madian	Movimum	Minimum	Quantification [Detection]	Detection 1	requen
decanes	year	mean	Median	Maximum	iviinimum	[Detection] limit	Sample	Site
	2016	tr(700)	tr(700)	2,200	nd	1,300 [500]	2/3	2/3
	2017	700	1,700	1,800	nd	500 [200]	2/3	2/3
	2018	nd	tr(400)	tr(400)	nd	1,200 [400]	2/3	2/3
Bivalves	2019	nd	nd	nd	nd	900 [300]	0/3	0/3
(pg/g-wet)	2020	tr(400)	tr(700)	tr(700)	nd	900 [300]	2/3	2/3
400 /	2021	tr(200)	tr(300)	tr(500)	nd	600 [200]	2/3	2/3
	2022	nd	nd	tr(300)	nd	600 [200]	1/3	1/3
	2023	nd		tr(150)	nd	450 [150]	1/2	1/2
	2016	tr(600)	tr(700)	2,800	nd	1,300 [500]	13/19	13/19
	2017	tr(400)	tr(400)	2,100	nd	500 [200]	16/19	16/19
	2018	nd	nd	tr(800)	nd	1,200 [400]	1/18	1/18
Fish	2019	nd	nd	tr(700)	nd	900 [300]	5/16	5/16
(pg/g-wet)	2020	nd	nd	tr(500)	nd	900 [300]	3/18	3/18
(PB/B WCt)	2021	nd	nd	700	nd	600 [200]	4/18	4/18
	2022	nd	nd	tr(400)	nd	600 [200]	6/18	6/18
	2022	nd	nd	tr(270)	nd	450 [150]	6/18	6/18
	2016	tr(1,000)		1,300	tr(800)	1,300 [500]	2/2	2/2
	2016	tr(400)		1,600				
		, ,			nd	500 [200]	1/2	1/2
D' 1	2018	nd		tr(600)	nd	1,200 [400]	1/2	1/2
Birds	2019			tr(600)	tr(600)	900 [300]	1/1	1/1
(pg/g-wet)	2020	. (400)		nd	nd	900 [300]	0/1	0/1
	2021	tr(400)		600	tr(300)	600 [200]	2/2	2/2
	2022	nd		tr(200)	nd	600 [200]	1/2	1/2
	2023	500		610	tr(410)	450 [150]	2/2	2/2
Chlorinated	Monitored	Geometric				Quantification	Detection 1	Frequer
undecanes	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016	tr(2,900)	tr(2,000)	6,000	tr(2,000)	3,000 [1,000]	3/3	3/3
	2017	2,200	3,400	11,000	tr(300)	800 [300]	3/3	3/3
	2018	nd	nd	nd	nd	1,800 [700]	0/3	0/3
Bivalves	2019	nd	nd	600	nd	500 [200]	1/3	1/3
(pg/g-wet)	2020	tr(700)	1,300	1,800	nd	800 [300]	2/3	2/3
	2021	nd	nd	800	nd	800 [300]	1/3	1/3
	2022	nd	nd	tr(500)	nd	900 [300]	1/3	1/3
	2023	nd		nd	nd	1,500 [500]	0/2	0/2
	2016	tr(2,900)	tr(2,000)	15,000	nd	3,000 [1,000]	18/19	18/19
	2017	1,900	1,100	24,000	nd	800 [300]	16/19	16/19
	2018	nd	nd	tr(700)	nd	1,800 [700]	1/18	1/18
Fish	2019	tr(300)	tr(400)	1,100	nd	500 [200]	11/16	11/10
(pg/g-wet)	2020	nd	nd	1,400	nd	800 [300]	4/18	4/18
400	2021	nd	nd	1,000	nd	800 [300]	4/18	4/18
	2022	nd	nd	tr(700)	nd	900 [300]	7/18	7/18
	2023	nd	nd	nd	nd	1,500 [500]	0/18	0/18
	2016	4,900		8,000	3,000	3,000 [1,000]	2/2	2/2
	2017	5,000		31,000	800	800 [300]	2/2	2/2
	2018	nd		nd	nd	1,800 [700]	0/2	0/2
Birds	2019			1,400	1,400	500 [200]	1/1	1/1
(pg/g-wet)	2019			1,100	1,100	800 [300]	1/1	1/1
(pg/g-wei)	2020	1,000		2,300	tr(400)	800 [300]	2/2	2/2
	2021						0/2	0/2
	2022	nd +=(550)		nd +=(1,200)	nd nd	900 [300]		1/2
	2023	tr(550)		tr(1,200)	nd	1,500 [500]	1/2	
Chlorinated	Monitored		Median	Maximum	Minimum	Quantification [Detection]	Detection	
dodecomes	year	mean				limit	Sample	Site
dodecanes		tr(1,400)	tr(1,500)	tr(1,800)	tr(1,100)	2,100 [700]	3/3	3/3
douccanes	2016	**(1 , 1 O O)		4,700	1,300	900 [300]	3/3	3/3
uouccanes	2016 2017		1 400		1,500	700 [200]	515	
douccanes	2017	2,000	1,400		nd	1 500 [600]	0/3	0/2
	2017 2018	2,000 nd	nd	nd	nd nd	1,500 [600]	0/3	0/3
Bivalves	2017 2018 2019	2,000 nd nd	nd nd	nd nd	nd	1,200 [500]	0/3	0/3
	2017 2018 2019 2020	2,000 nd nd tr(300)	nd nd tr(500)	nd nd 700	nd nd	1,200 [500] 600 [200]	0/3 2/3	0/3 2/3
Bivalves	2017 2018 2019 2020 2021	2,000 nd nd tr(300) nd	nd nd tr(500) nd	nd nd 700 400	nd nd nd	1,200 [500] 600 [200] 400 [200]	0/3 2/3 1/3	0/3 2/3 1/3
Bivalves	2017 2018 2019 2020	2,000 nd nd tr(300)	nd nd tr(500)	nd nd 700	nd nd	1,200 [500] 600 [200]	0/3 2/3	0/3 2/3

Chlorinated	Monitored	Geometric				Quantification	Detection 1	Frequency
dodecanes	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016	tr(1,800)	tr(1,800)	8,700	nd	2,100 [700]	17/19	17/19
	2017	2,100	2,100	19,000	nd	900 [300]	18/19	18/19
	2018	nd	nd	nd	nd	1,500 [600]	0/18	0/18
Fish	2019	nd	nd	tr(900)	nd	1,200 [500]	2/16	2/16
(pg/g-wet)	2020	nd	nd	1,400	nd	600 [200]	2/18	2/18
	2021	nd	nd	tr(300)	nd	400 [200]	3/18	3/18
	2022	tr(300)	tr(400)	tr(800)	nd	900 [300]	13/18	13/18
	2023	tr(350)	tr(400)	730	nd	700 [300]	13/18	13/18
	2016	3,800		6,600	2,200	2,100 [700]	2/2	2/2
	2017	5,500		25,000	1,200	900 [300]	2/2	2/2
	2018	nd		nd	nd	1,500 [600]	0/2	0/2
Birds	2019			tr(500)	tr(500)	1,200 [500]	1/1	1/1
(pg/g-wet)	2020			nd	nd	600 [200]	0/1	0/1
	2021	tr(300)		1,000	nd	400 [200]	1/2	1/2
	2022	tr(300)		tr(500)	nd	900 [300]	1/2	1/2
	2023	950		1,300	700	700 [300]	2/2	2/2
Chlorinated	Manitanad	Geometric				Quantification	Detection 1	Frequency
tridecanes	Monitored year	mean	Median	Maximum	Minimum	[Detection] Limit	Sample	Site
	2016	tr(700)	tr(700)	tr(900)	tr(500)	1,100 [400]	3/3	3/3
	2017	900	700	3,100	tr(300)	500 [200]	3/3	3/3
	2018	nd	nd	nd	nd	1,400 [500]	0/3	0/3
Bivalves	2019	500	400	1,100	tr(300)	400 [200]	3/3	3/3
(pg/g-wet)	2020	tr(400)	tr(300)	1,700	nd	500 [200]	2/3	2/3
	2021	tr(200)	nd	900	nd	500 [200]	1/3	1/3
	2022	tr(500)	tr(500)	1,000	nd	900 [400]	2/3	2/3
	2023	nd		tr(740)	nd	1,200 [500]	1/2	1/2
	2016	tr(800)	tr(800)	4,900	nd	1,100 [400]	17/19	17/19
	2017	tr(300)	nd	4,100	nd	500 [200]	8/19	8/19
	2018	nd	nd	nd	nd	1,400 [500]	0/18	0/18
Fish	2019	tr(200)	tr(200)	1,300	nd	400 [200]	11/16	11/16
(pg/g-wet)	2020	nd	nd	1,900	nd	500 [200]	2/18	2/18
	2021	nd	nd	7,000	nd	500 [200]	2/18	2/18
	2022	nd	nd	tr(700)	nd	900 [400]	7/18	7/18
	2023	nd	nd	tr(730)	nd	1,200 [500]	7/18	7/18
	2016	1,400		1,500	1,400	1,100 [400]	2/2	2/2
	2017	900		8,100	nd	500 [200]	1/2	1/2
	2018	nd		nd	nd	1,400 [500]	0/2	0/2
				1,300	1,300	400 [200]	1/1	1/1
Birds	2019							
Birds (pg/g-wet)	2020			tr(300)	tr(300)	500 [200]	1/1	1/1
				tr(300) 900	tr(300) 500	500 [200] 500 [200]	1/1 2/2	1/1 2/2
	2020			, ,				

(Note) Chlorinated paraffins with $5 \sim 9$ chlorines are target chemicals.

<Air>

Chlorinated decanes: The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 40 pg/m 3 , and the detection range was tr(80) \sim 940 pg/m 3 .

Chlorinated undecanes: The presence of the substance in air was monitored at 35 sites, and it was detected at 33 of the 35 valid sites adopting the detection limit of 190 pg/m³, and the detection range was up to 1,300 pg/m³.

Chlorinated dodecanes: The presence of the substance in air was monitored at 35 sites, and it was detected at 18 of the 35 valid sites adopting the detection limit of 210 pg/m^3 , and the detection range was up to $tr(520) \text{ pg/m}^3$.

Chlorinated tridecanes: The presence of the substance in air was monitored at 35 sites, and it was detected at 15 of the 35 valid sites adopting the detection limit of 130 pg/m³, and the detection range was up to tr(250) pg/m³.

Stocktaking of the detection of Chlorinated decanes, Chlorinated undecanes, Chlorinated dodecanes and Chlorinated tridecanes in air during FY2016 \sim 2023

Chlorinated		Geometric				Quantification	Detection 1	Frequency
decanes	Monitored year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016 Warm season	tr(170)	tr(200)	940	nd	290 [110]	24/37	24/37
	2017 Warm season	370	380	1,500	tr(70)	140 [50]	37/37	37/37
	2018 Warm season	370	390	1,700	tr(130)	150 [60]	37/37	37/37
Air	2019 Warm season	400	400	1,500	tr(100)	400 [100]	36/36	36/36
(pg/m^3)	2020 Warm season	170	170	560	tr(60)	120 [50]	37/37	37/37
	2021 Warm season	300	tr(200)	900	tr(100)	300 [100]	35/35	35/35
	2022 Warm season	120	130	490	tr(40)	110 [40]	36/36	36/36
	2023 Warm season	210	190	940	tr(80)	140 [40]	35/35	35/35
C11 : 1		G .:			, ,	Quantification	Detection 1	
Chlorinated undecanes	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016 Warm season	tr(350)	tr(320)	3,200	nd	610 [240]	20/37	20/37
	2017 Warm season	500	510	2,300	tr(90)	190 [60]	37/37	37/37
	2018 Warm season	450	430	2,600	tr(100)	110 [40]	37/37	37/37
Air	2019 Warm season	400	400	2,300	tr(100)	300 [100]	36/36	36/36
(pg/m^3)	2020 Warm season	220	220	1,900	tr(50)	120 [50]	37/37	37/37
48	2021 Warm season	290	310	850	nd	210 [80]	34/35	34/35
	2022 Warm season	tr(130)	tr(120)	2,400	nd	300 [100]	22/36	22/36
	2023 Warm season	tr(320)	tr(290)	1,300	nd	550 [190]	33/35	33/35
	2020	Geometric	(-> +)	-,		Quantification	Detection	
Chlorinated dodecanes	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection]	Sample	Site
	2016 Warm season	nd	nd	740	nd	430 [170]	7/37	7/37
	2017 Warm season	190	190	730	tr(30)	100 [30]	37/37	37/37
	2018 Warm season	190	190	880	tr(60)	110 [40]	37/37	37/37
Air	2019 Warm season	tr(140)	tr(170)	1,600	nd	260 [90]	23/36	23/36
(pg/m^3)	2020 Warm season	tr(80)	tr(70)	640	nd	140 [50]	29/37	29/37
(18.11)	2021 Warm season	tr(110)	tr(120)	370	nd	220 [80]	27/35	27/35
	2022 Warm season	nd	nd	430	nd	360 [120]	11/36	11/36
	2023 Warm season	nd	tr(210)	tr(520)	nd	630 [210]	18/35	18/35
	2023 Wallin Season		11(210)	11(320)	na	Quantification	Detection 1	
Chlorinated tridecanes	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection]	Sample	Site
	2016 Warm season	nd	nd	510	nd	320 [120]	13/37	13/37
	2017 Warm season	150	160	1,600	nd	120 [40]	35/37	35/37
		tr(100)	tr(110)	470	nd	180 [70]	26/37	26/37
	2018 Warm season							
Air		()	tr(90)	1.600	nd	250 [80]	19/36	19/36
Air (pg/m³)	2019 Warm season	tr(90)	tr(90) tr(40)	1,600 360		250 [80] 100 [40]	19/36 23/37	19/36 23/37
Air (pg/m³)	2019 Warm season 2020 Warm season	tr(90) tr(40)	tr(40)	360	nd	100 [40]	23/37	23/37
	2019 Warm season	tr(90)	, ,					

(Note) In FY2016, Chlorinated decanes with $4\sim6$ chlorines and Chlorinated undecanes, Chlorinated dodecanes and Chlorinated tridecanes with $4\sim7$ chlorines are target chemicals. From FY2017 to FY2019, Chlorinated paraffins with $4\sim7$ chlorines are target chemicals. After FY2020, Chlorinated paraffins with $4\sim8$ chlorines are target chemicals.

• Monitoring results until FY2022 (references)

<Surface water>

Stocktaking of the detection of Chlorinated decanes, Chlorinated undecanes, Chlorinated dodecanes and Chlorinated tridecanes in surface water during $FY2017 \sim 2022$

Chlorinated		Geometric			Minimum	Quantification	Detection Frequency	
decanes		mean	Median	Maximum		[Detection] limit	Sample	Site
	2017	nd	nd	tr(1,600)	nd	3,300 [1,100]	1/47	1/47
	2018	nd	nd	1,600	nd	1,000 [400]	8/47	8/47
C	2019	nd	nd	2,300	nd	600 [200]	17/48	17/48
Surface Water (pg/L)	2020	nd	nd	1,800	nd	400 [200]	16/46	16/46
	2021	tr(500)	tr(500)	1,100	nd	700 [300]	42/47	42/47
	2022	tr(200)	tr(200)	1,100	nd	300 [100]	47/48	47/48

Chlorinated	Monitored	Geometric				Quantification	Detection 1	Frequency
undecanes	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	3,100	nd	1,500 [500]	13/47	13/47
	2018	nd	nd	3,500	nd	2,000 [800]	6/47	6/47
Surface Water (pg/L)	2019	nd	nd	5,000	nd	1,400 [500]	19/48	19/48
Surface water (pg/L)	2020	nd	nd	2,400	nd	900 [300]	4/46	4/46
	2021	tr(300)	tr(300)	1,200	nd	900 [300]	26/47	26/47
	2022	tr(400)	tr(400)	2,200	nd	900 [300]	37/48	37/48
Chlorinated	Monitored	Geometric				Quantification	Detection 1	Frequency
dodecanes	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	10,000	nd	3,300 [1,100]	4/47	4/47
	2018	nd	nd	3,000	nd	3,000 [1,000]	16/47	16/47
Cumfo on Water (ma/L)	2019	nd	nd	34,000	nd	1,000 [400]	20/48	20/48
Surface Water (pg/L)	2020	nd	nd	2,600	nd	700 [300]	4/46	4/46
	2021	nd	nd	4,900	nd	1,200 [500]	13/47	13/47
	2022	nd	nd	2,400	nd	900 [300]	17/48	17/48
Chlorinated	Monitored	Geometric				Quantification	Detection 1	Frequency
tridecanes	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	10,000	nd	3,600 [1,200]	7/47	7/47
	2018	nd	nd	11,000	nd	4,500 [1,500]	18/47	18/47
Surface Water (pg/L)	2019	nd	nd	38,000	nd	1,300 [500]	17/48	17/48
Surface water (pg/L)	2020	nd	nd	2,000	nd	500 [200]	8/46	8/46
	2021	nd	nd	8,600	nd	2,000 [800]	7/47	7/47
	2022	tr(400)	tr(400)	3,900	nd	600 [200]	47/48	47/48

(Note) Chlorinated paraffins with $5 \sim 9$ chlorines are target chemicals.

<Sediment>

Stocktaking of the detection of Chlorinated decanes, Chlorinated undecanes, Chlorinated dodecanes and Chlorinated tridecanes in sediment during FY2017 ~ 2022

Chlorinated	Monitored	Geometric			M	Quantification	Detection	Frequency
decanes	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	17,000	nd	10,000 [4,000]	12/62	12/62
	2018	nd	nd	7,000	nd	6,000 [2,000]	7/61	7/61
Sediment	2019	nd	nd	2,600	nd	2,000 [1,000]	8/61	8/61
(pg/g-dry)	2020	nd	nd	6,000	nd	900 [400]	21/58	21/58
	2021	tr(400)	nd	4,300	nd	800 [300]	30/60	30/60
	2022	300	tr(180)	6,500	nd	210 [70]	48/61	48/61
Chlorinated	Monitored	Geometric				Quantification	Detection	Frequency
undecanes	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	37,000	nd	10,000 [4,000]	19/62	19/62
	2018	nd	nd	tr(13,000)	nd	15,000 [5,000]	7/61	7/61
Sediment	2019	nd	nd	5,900	nd	2,000 [1,000]	22/61	22/61
(pg/g-dry)	2020	tr(600)	nd	6,900	nd	1,200 [500]	25/58	25/58
	2021	tr(500)	nd	7,000	nd	1,200 [400]	28/60	28/60
	2022	700	300	16,000	nd	300 [100]	57/61	57/61
Chlorinated	Monitored	Geometric				Quantification	Detection	Frequency
dodecanes	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	44,000	nd	11,000 [4,000]	19/62	19/62
	2018	tr(2,000)	nd	38,000	nd	6,000 [2,000]	28/61	28/61
Sediment	2019	tr(1,100)	nd	83,000	nd	2,000 [1,000]	27/61	27/61
(pg/g-dry)	2020	tr(1,300)	tr(1,200)	18,000	nd	2,000 [800]	31/58	31/58
	2021	tr(900)	tr(800)	12,000	nd	1,000 [400]	44/60	44/60
_	2022	900	500	19,000	nd	400 [200]	53/61	53/61

Chlorinated	Monitored year	Geometric mean				Quantification	Detection 1	Frequency
tridecanes			Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	94,000	nd	12,000 [5,000]	18/62	18/62
	2018	nd	nd	36,000	nd	9,000 [3,000]	24/61	24/61
Sediment	2019	tr(1,700)	tr(1,700)	60,000	nd	2,000 [1,000]	39/61	39/61
(pg/g-dry)	2020	1,400	tr(1,100)	26,000	nd	1,200 [500]	40/58	40/58
	2021	1,200	1,000	31,000	nd	1,000 [400]	47/60	47/60
	2022	1,200	900	28,000	nd	500 [200]	54/61	54/61

(Note) Chlorinated paraffins with $5 \sim 9$ chlorines are target chemicals.

[24] Dicofol (references)

· History and state of monitoring

Dicofol was used as insecticides and mites etc., but the registration of Chlordanes under the Agricultural Chemicals Regulation Law was expired in FY2004. The substance was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2005. The substance was adopted as a target chemical at the COP9 of the Stockholm convention on Persistent Organic Pollutants held from late April to early May 2019.

Under the framework of the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was surveied in sediment in FY2004.

Under the framework of the Environmental Monitoring, the substance has been monitored in surface water and sediment in FY2008 FY2019 and FY2020, in wildlife (bivalves, fish and birds) in FY2006 FY2008 and FY2018 \sim 2020, and in air in FY2016 FY2019 and FY2020.

No monitoring was conducted after FY2021. For reference, the monitoring results up to FY2020 are given below.

Monitoring results until FY2020

<Surface Water>

Stocktaking of the detection of Dicofol in surface water during FY2008 ~ 2020

	Monitored	Geometric	Geometric			Quantification	Detection 1	Frequency
Dicofol	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
C	2008	nd	nd	76	nd	25 [10]	13/48	13/48
Surface Water	2019	nd	nd	40	nd	13 [8]	3/48	3/48
(pg/L)	2020	nd	nd	30	nd	13 [5]	1/46	1/46

(Note) No monitoring was conducted in FY2009 ~ 2018.

<Sediment>

Stocktaking of the detection of Dicofol in sediment during FY2008 \sim 2020

	Monitored	ed Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] limit	Detection Frequenc	
Dicofol	year						Sample	Site
G 1' 4	2008	nd	nd	460	nd	160 [63]	13/63	30/186
Sediment	2019	4	4	84	nd	4 [2]	40/61	40/61
(pg/g-dry)	2020	tr(5)	nd	77	nd	13 [5]	23/58	23/58

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

(Note 2) No monitoring was conducted in FY2009 ~ 2018.

<Wildlife>

Stocktaking of the detection of Dicofol in wildlife (bivalves, fish and birds) during FY2006 ~ 2020

	Monitored	Geometric				Quantification	Detection l	Frequency
Dicofol	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2006	tr(58)	tr(70)	240	nd	92 [36]	22/31	5/7
D:1	2008	tr(110)	120	210	nd	120 [48]	28/31	7/7
Bivalves	2018	nd	nd	30	nd	30 [10]	1/3	1/3
(pg/g-wet)	2019	nd	nd	tr(10)	nd	30 [10]	1/3	1/3
	2020	nd	nd	tr(20)	nd	30 [10]	1/3	1/3
	2006	nd	nd	290	nd	92 [36]	5/80	1/16
T7: -1.	2008	tr(62)	tr(77)	270	nd	120 [48]	55/85	14/17
Fish	2018	tr(10)	nd	280	nd	30 [10]	9/18	9/18
(pg/g-wet)	2019	tr(10)	tr(10)	120	nd	30 [10]	12/16	12/16
	2020	tr(10)	nd	330	nd	30 [10]	8/18	8/18

	Monitored Geometri		ic			Quantification	Detection Frequency	
Dicofol	year	*1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2006	nd	nd	nd	nd	92 [36]	0/10	0/2
D: 1 *2	2008	nd	nd	300	nd	120 [48]	1/10	1/2
Birds *2	2018	nd		nd	nd	30 [10]	0/2	0/2
(pg/g-wet)	2019			nd	nd	30 [10]	0/1	0/1
	2020			nd	nd	30 [10]	0/1	0/1

⁽Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2006 and FY2008.

<Air>

Stocktaking of the detection of Dicofol in air during FY2016 ~ 2020

	Monitored year	Geometric		Maximum	Minimum	Quantification	Detection 1	Frequency
Dicofol		mean	Median			[Detection] limit	Sample	Site
 Λ:	2016 Warm season	nd	nd	1.0	nd	0.5 [0.2]	10/37	10/37
Air	2019 Warm season	nd	nd	0.4	nd	0.4 [0.2]	5/36	5/36
(pg/m ³)	2020 Warm season	nd	nd	tr(0.3)	nd	0.5 [0.2]	3/37	3/37

(Note) No monitoring was conducted in FY2017 and FY2018.

⁽Note 2) *2: There is no consistency between the results of the ornithological survey after FY2018 and those in previous years because of the changes in the survey sites and target species. (Note 3) No monitoring was conducted in FY2007 and FY2009 \sim 2017.

[25] Perfluorohexane sulfonic acid (PFHxS)

· History and state of monitoring

Perfluorohexane sulfonic acid (PFHxS) is used as Fluoropolymer processing aid and Surfactant etc. Perfluorohexane sulfonic acid (PFHxS), its salts and PFHxS-related compounds were adopted as target chemicals at the COP10 of the Stockholm convention on Persistent Organic Pollutants in June 2022. And the substances were designated as Class I Specified Chemical Substances under the Chemical Substances Control Law in December 2023.

Under the framework of the Environmental Survey of Chemical Substances up to FY2001 and in the Initial Environmental Survey and the Detailed Environmental Survey etc. under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, the substance was not monitored.

Under the framework of the Environmental Monitoring, the substance has been monitored in surface water and sediment in FY2018 \sim FY2023, and in wildlife (bivalves, fish and birds) and air in FY2020 \sim 2023.

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 47 sites, and it was detected at 38 of the 47 valid sites adopting the detection limit of 30 pg/L, and the detection range was up to 2,200 pg/L.

Stocktaking of the detection of Perfluorohexane sulfonic acid (PFHxS) in surface water during FY2018 ~ 2023

Perfluorohexane	Monitored	1 Geometric				Quantification	Detection Frequency	
sulfonic acid (PFHxS)		mean	Median	Maximum	Minimum	[Detection] Limit	Sample	Site
	2018	190	130	2,600	nd	120 [50]	44/47	44/47
	2019	150	120	1,800	nd	60 [30]	45/48	45/48
Surface water	2020	160	120	1,500	nd	60 [20]	44/46	44/46
(pg/L)	2021	160	110	2,300	nd	70 [30]	44/47	44/47
	2022	130	120	1,800	nd	70 [30]	42/48	42/48
	2023	110	100	2,200	nd	70 [30]	38/47	38/47

<Sediment>

The presence of the substance in sediment was monitored at 60 sites, and it was detected at 19 of the 60 valid sites adopting the detection limit of 3 pg/g-dry, and the detection range was up to 20 pg/g-dry.

Stocktaking of the detection of Perfluorohexane sulfonic acid (PFHxS) in sediment during FY2018 ~ 2023

					,			
Perfluorohexane	Monitored	Geometric				Quantification	Detection l	Frequency
sulfonic acid (PFHxS)		mean	Median	Maximum	Minimum	[Detection]	Sample	Site
surionic acid (1111x5)	ycai	mean				Limit	Sample	Site
	2018	nd	nd	27	nd	11 [5]	15/61	15/61
	2019	nd	nd	15	nd	13 [5]	10/61	10/61
Sediment	2020	nd	nd	10	nd	6 [3]	13/58	13/58
(pg/g-dry)	2021	nd	nd	15	nd	6 [3]	19/60	19/60
	2022	tr(3)	nd	16	nd	6 [3]	28/61	28/61
	2023	nd	nd	20	nd	6 [3]	19/60	19/60

<Wildlife>

The presence of the substance in bivalves was monitored in 2 areas, and it was not detected at both valid areas adopting the detection limit of 3 pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 7 of the 18 valid areas adopting the detection limit of 3 pg/g-wet, and the detection range was up to 34 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 3 pg/g-wet, and the detected concentrations were 56 pg/g-wet and 230 pg/g-wet.

Stocktaking of the detection of Perfluorohexane sulfonic acid (PFHxS) in wildlife (bivalves, fish and birds) in FY2020 ~ 2023

Perfluorohexane	Monitored	Geometric				Quantification	Detection l	requency
sulfonic acid (PFHxS)		mean	Median	Maximum	Minimum	[Detection] Limit	Sample	Site
	2020	tr(2)	tr(3)	tr(3)	nd	5 [2]	2/3	2/3
Bivalves	2021	nd	nd	tr(3)	nd	5 [2]	1/3	1/3
(pg/g-wet)	2022	nd	nd	nd	nd	7 [3]	0/3	0/3
	2023	nd		nd	nd	7 [3]	0/2	0/2
	2020	tr(3)	tr(2)	18	nd	5 [2]	10/18	10/18
Fish	2021	tr(2)	nd	16	nd	5 [2]	7/18	7/18
(pg/g-wet)	2022	tr(4)	tr(6)	20	nd	7 [3]	10/18	10/18
	2023	tr(3)	nd	34	nd	7 [3]	7/18	7/18
	2020			190	190	5 [2]	1/1	1/1
Birds	2021	20		40	10	5 [2]	2/2	2/2
(pg/g-wet)	2022	400		630	250	7 [3]	2/2	2/2
	2023	110		230	56	7 [3]	2/2	2/2

<Air>

The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of $0.2~pg/m^3$, and the detection range was $0.8\sim5.6~pg/m^3$.

Stocktaking of the detection of Perfluorohexane sulfonic acid (PFHxS) in air in FY2020 ~ 2023

Perfluorohexa	-	Geometric				Quantification	Detection Frequency	
e sulfonic acid (PFHxS)		mean	Median	Maximum	Minimum	[Detection] Limit	Sample	Site
	2020 Warm season	2.5	2.4	6.1	0.7	0.3 [0.1]	37/37	37/37
Air	2021 Warm season	2.2	2.3	6.6	0.46	0.18 [0.07]	35/35	35/35
(pg/m^3)	2022 Warm season	6.1	6.3	14	1.6	0.11 [0.04]	36/36	36/36
	2023 Warm season	2.4	2.1	5.6	0.8	0.5 [0.2]	35/35	35/35

[26] Methoxychlor

· History and state of monitoring

Methoxychlor was used as an insecticide, but its registration under the Agricultural Chemicals Regulation Law was expired in FY1960. The substance was adopted as target chemicals at the COP11 of the Stockholm convention on Persistent Organic Pollutants in May 2023 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in December 2024.

As a continuous survey, the first survey was in FY2023. Under the framework of the Environmental Survey of Chemical Substances up to FY2001, the substance was monitored in surface water and sediment in FY1985. In the Initial Environmental Survey and the Detailed Environmental Survey etc. under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, the substance was monitored in surface water, sediment and wildlife (fish) in FY2005.

Under the framework of the Environmental Monitoring, the substance has been monitored in surface water and sediment in FY2023.

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 47 sites, and it was not detected at all 47 valid sites adopting the detection limit of 30 pg/L.

Stocktaking of the detection of Methoxychlor in surface water in FY2023

	Monitored	Geometric				Quantification	Detection Frequency	
Methoxychlor	year	mean	Median	Maximum	Minimum	[Detection] Limit	Sample	Site
Surface water (pg/L)	2023	nd	nd	nd	nd	80 [30]	0/47	0/47

<Sediment>

The presence of the substance in sediment was monitored at 60 sites, and it was not detected at all 60 valid sites adopting the detection limit of 4 pg/g-dry.

Stocktaking of the detection of Methoxychlor in sediment in FY2023

	Monitored	Geometric				Quantification	Detection Frequency	
Methoxychlor	year	mean	Median	Maximum	Minimum	[Detection] Limit	Sample	Site
Sediment (pg/g-dry)	2023	nd	nd	nd	nd	10 [4]	0/60	0/60

[27] Dechlorane pluses

· History and state of monitoring

Dechlorane pluses were mainly used a flame retardant for electrical and electronic products, resins and rubber. The substances were adopted as target chemicals at the COP11 of the Stockholm convention on Persistent Organic Pollutants in May 2023 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in December 2024.

As a continuous survey, the first survey was in FY2023. Under the framework of the Environmental Survey of Chemical Substances up to FY2001, the substance was monitored in surface water, sediment and wildlife (fish) in FY1976.

Under the framework of the Environmental Monitoring, the substances have been monitored in surface water and sediment in FY2023.

· Monitoring results

<Surface Water>

anti-Dechlorane plus: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 44 of the 47 valid sites adopting the detection limit of 0.7 pg/L, and the detection range was up to 410 pg/L.

syn-Dechlorane plus: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 36 of the 47 valid sites adopting the detection limit of 0.9 pg/L, and the detection range was up to 1,100 pg/L.

Stocktaking of the detection of anti-Dechlorane plus and syn-Dechlorane plus in surface water in FY2023

anti-Dechlorane	Monitored	Geometric				Quantification	Detection	Frequency
plus	year	mean	Median	Maximum	Minimum	[Detection] Limit	Sample	Site
Surface water (pg/L)	2023	6.8	5.0	410	nd	1.7 [0.7]	44/47	44/47
syn-Dechlorane	Monitored	Geometric	3.6.11		3.61.1	Quantification	Detection	Frequency
syn-Dechlorane plus	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] Limit	Detection Sample	Frequency Site

<Sediment>

anti-Dechlorane plus: The presence of the substance in sediment was monitored at 60 sites, and it was detected at 53 of the 60 valid sites adopting the detection limit of 6 pg/g-dry, and the detection range was up to 7,300 pg/g-dry.

syn-Dechlorane plus: The presence of the substance in sediment was monitored at 60 sites, and it was detected at 57 of the 60 valid sites adopting the detection limit of 1 pg/g-dry, and the detection range was up to 2,000 pg/g-dry.

Stocktaking of the detection of anti-Dechlorane plus and syn-Dechlorane plus in sediment in FY2023

anti-Dechlorane	Monitored	Ionitored Geometric Quantification		Detection Frequency				
plus	year	mean	Median	Maximum	Minimum	[Detection] Limit	Sample	Site
Sediment (pg/g-dry)	2023	150	190	7,300	nd	16 [6]	53/60	53/60
syn-Dechlorane	Monitored	Geometric	3.6.11		3.61. 1	Quantification	Detection 1	Frequency
plus	year	mean	Median	Maximum	Minimum	[Detection] Limit	Sample	Site
Sediment (pg/g-dry)	2023	59	60	2,000	nd	3 [1]	57/60	57/60

[28] UV-328

· History and state of monitoring

UV-328 was mainly used as a UV absorber in paints and plastics. The substance was adopted as target chemicals at the COP11 of the Stockholm convention on Persistent Organic Pollutants in May 2023 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in December 2024.

As a continuous survey, the first survey was in FY2023. Under the framework of the Environmental Survey of Chemical Substances up to FY2001 and in the Initial Environmental Survey and the Detailed Environmental Survey etc. under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, the substance was not monitored.

Under the framework of the Environmental Monitoring, the substance has been monitored in surface water and sediment in FY2023.

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 47 sites, and it was detected at 36 of the 47 valid sites adopting the detection limit of 20 pg/L, and the detection range was up to 540 pg/L.

Stocktaking of the detection of UV-328 in surface water in FY2023

	Monitored	Geometric				Quantification	Detection Frequency	
UV-328	year	mean	Median	Maximum	Minimum	[Detection] Limit	Sample	Site
Surface water (pg/L)	2023	tr(50)	tr(40)	540	nd	60 [20]	36/47	36/47

<Sediment>

The presence of the substance in sediment was monitored at 60 sites, and it was detected at all 60 valid sites adopting the detection limit of 8 pg/g-dry, and the detection range was $tr(12) \sim 71,000$ pg/g-dry.

Stocktaking of the detection of UV-328 in sediment in FY2023

	Monitored	Geometric				Quantification	Detection l	Frequency
UV-328	year	mean	Median	Maximum	Minimum	[Detection] Limit	Sample	Site
Sediment (pg/g-dry)	2023	1,400	1,500	71,000	tr(12)	21 [8]	60/60	60/60

References

- i) Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment, "Chemicals in the Environment," the Surface Water/Sediment Monitoring (http://www.env.go.jp/chemi/kurohon/)
- ii) Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment, "Chemicals in the Environment," the Wildlife Monitoring (http://www.env.go.jp/chemi/kurohon/)
- iii) Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment, "Chemicals in the Environment," the Follow-up Survey of the Status of Pollution by Unintentionally Formed Chemicals (http://www.env.go.jp/chemi/kurohon/)
- iv) Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment, "Chemicals in the Environment," the Environmental Survey of Chemical Substances (http://www.env.go.jp/chemi/kurohon/)

Reference: Egg of Great Cormorants (egg yolk and white)

In the FY2023 monitoring survey, eggs of great cormorants were analyzed to check for the presence of 7 chemicals (groups): PCBs, Hexachlorobenzene, Perfluorooctane sulfonic acid (PFOS), Perfluorooctanoic acids (PFOA), Pentachlorobenzene, Short-chain chlorinated paraffins and Perfluorohexane sulfonic acid (PFHxS).

The eggs were taken around Koyaike pond*. The results of the analysis in Table 1.

(Note) *: The eggs were taken by Water and Air Division, Environment Department, Hyogo Prefectural Government and Green and Nature Section, Urban Transportation Department, Itami City.

Table 1 List of the detection values of egg of Great Cormorant

		Quantification	Egg of Grea	nt Cormorant	(Reposted) Adult of Great Cormorant *2	
No.	Target chemicals	[Detection]	Koyaike pon	d (Itami City)	Tikubushima	Riv.Tenjin
		Limits	Egg white	Egg yolk	Island, Lake Biwa	(Hokuei Town)
[1]	Total PCBs *1	12 [5]	16,000	14,000,000	380,000	63,000
[2]	НСВ	2.1 [0.8]	85	43,000	4,200	2,100
[15]	Perfluorooctane sulfonic acid (PFOS)	6 [3]	220	150,000	100,000	1,400
[16]	Perfluorooctanoic acids (PFOA)	8 [3]	20	3,900	2,000	66
[17]	Pentachlorobenzene	0.6 [0.2]	31	13,000	380	220
	Short-chain chlorinated paraffinsare					
	[23-1] Chlorinated decanes	450 [150]	nd	4,100	tr(410)	610
[23]	[23-2] Chlorinated undecanes	1,500 [500]	nd	nd	nd	tr(1,200)
	[23-3] Chlorinated dodecanes	700 [300]	nd	nd	700	1,300
	[23-4] Chlorinated tridecanes	1,200 [500]	nd	nd	nd	1,700
[25]	Perfluorohexane sulfonic acid (PFHxS)	7 [3]	17	5,900	230	56

⁽Note 1) *1: The Quantification [Detection] limits were the sum of the Quantification [Detection] limits of each congener.

⁽Note 2) *2: These values are previously mentioned in the main part but are mentioned here again to indicate the stage of life cycle of great cormorants from egg to adult.