Chapter 3 Results of the Environmental Monitoring in FY2021

1. Purpose of the monitoring

Environmental Monitoring provides annual surveys of the environmental persistence of target chemicals as listed in the Stockholm Convention, chemicals that while undesignated are still subject to review for potential risk, and/or highly persistent chemicals annotated as Specified Chemical Substances and Monitored Chemical Substances under the Law Concerning the Examination and Regulation of Manufacture, etc. of Chemical Substances (aka, the Chemical Substances Control Law), all target chemicals whose year to year changes in persistence in the environment must be understood.

*POPs: persistent organic pollutants

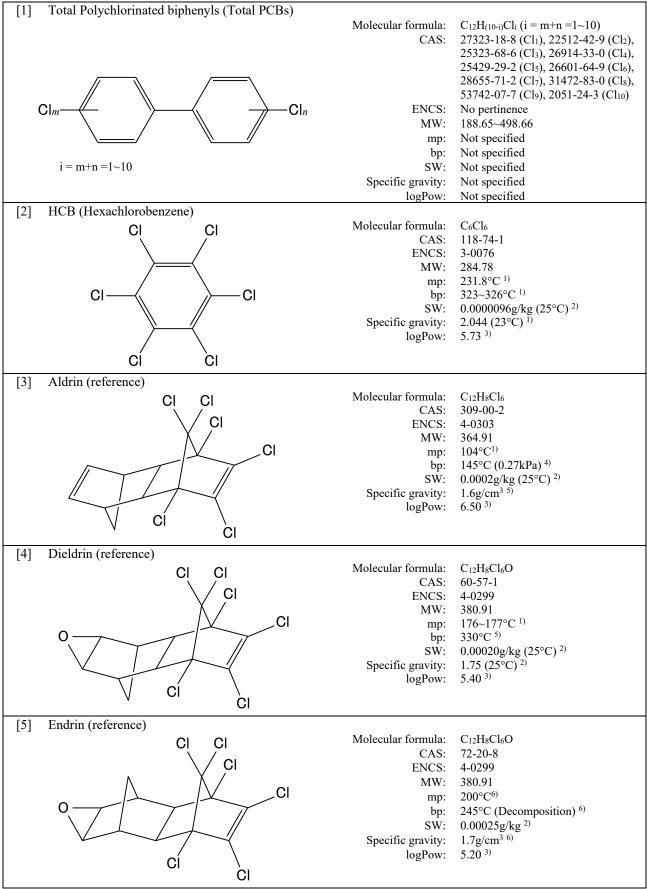
2. Target chemicals

In the FY2021 Environmental Monitoring, 11 chemicals (groups) were designated as target chemical.

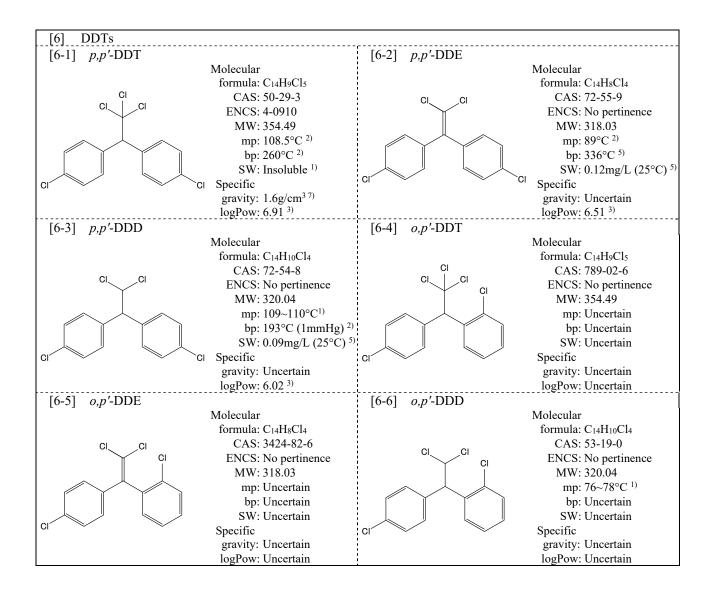
3 of the target chemicals (groups) were Polychlorinated biphenyls (PCBs), Hexachlorobenzene¹ and DDTs², which were listed as Persistent Organic Pollutants (POPs) initially in the Stockholm Convention in 2004³. 2 of them were Perfluorooctane sulfonic acid (PFOS)⁴ and Pentachlorobenzene, which were adopted to be the POPs at fourth meeting of the Conference of the Parties (COP) held 2009. 1 of them was Endosulfans, which was adopted to be the POPs at fifth meeting of COP held 2011. 2 of them were Polychlorinated Naphthalenes⁵ and Hexachlorobuta-1,3-diene, which were adopted to be the POPs at seventh meeting of COP held 2015. 1 of them was Short-chain chlorinated paraffins⁶, which was adopted to be the POPs at eighth meeting of COP held 2017. 1 was Perfluorooctanoic acid (PFOA)⁷, which was adopted to be the POPs at ninth meeting of COP held 2019. Another was Perfluorohexane sulfonic acid (PFHxS)⁸, which was adopted to be the POPs at tenth meeting of COP held 2021 and 2022.

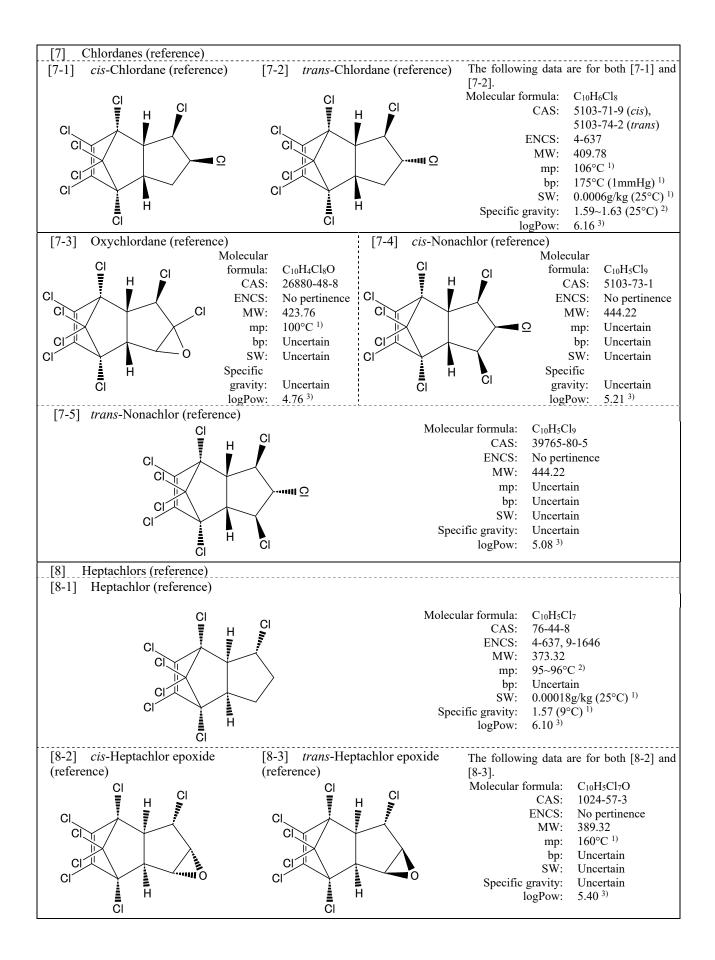
The combinations of target chemicals and the monitoring media are given below.

- (Note 1) cis-Chlordane and trans-Chlordane were adopted as target chemical of the Stockholm convention on Persistent Organic Pollutants. In the survey, Chlordanes including cis-Chlordane, trans-Chlordane Oxychlordane, cis-Nonachlor and trans-Nonachlor are target chemicals.
- (Note 2) p,p'-DDT and o,p'-DDT were adopted as target chemicals of the Stockholm convention on Persistent Organic Pollutants. In the survey, DDTs including environmental degraded products p,p'-DDT, o,p'-DDT, p,p'-DDD and o,p'-DDD were target chemicals.
- (Note 3) Up to FY2009, the 11 target chemicals (groups) were monitored each fiscal year. 10 out of the 11 target chemicals (groups) were exceptions of Polychlorinated dibenzo-p-dioxin (PCDDs) and Polychlorinated dibenzofurans (PCDFs) from 12 chemicals (groups) listed as the POPs initially in the Stockholm Convention. Another was HCHs (Hexachlorohexanes). As of FY2010, chemicals (groups) adopted or considerd to be the POPs in the convention have been monitored too, and adjustments made to implementation frequency. In FY2021, 11 chemicals (groups) that have been designated as target chemicals (groups) in this Environmental Monitoring were not moniterd. They were Aldrin, Dieldrin, Endrin, Chlordanes⁹, Heptachlors, Toxaphenes¹⁰, Mirex, HCHs (Hexachlorohexanes)¹¹, Chlordecone, Hexabromobiphenyls, Polybromodiphenyl ethers (Br₄~Br₁₀)¹², 1,2,5,6,9,10-Hexabromocyclododecanes¹³, Pentachlorophenol and its salts and esters¹⁴ and Dicofol. Up to the latest results of the 14 chemicals (groups) have been included in this report for purpose of reference.
- (Note 4) Perfluorooctane sulfonic acid (PFOS), its salts and Perfluorooctane sulfonyl fluoride were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants. The survey of the

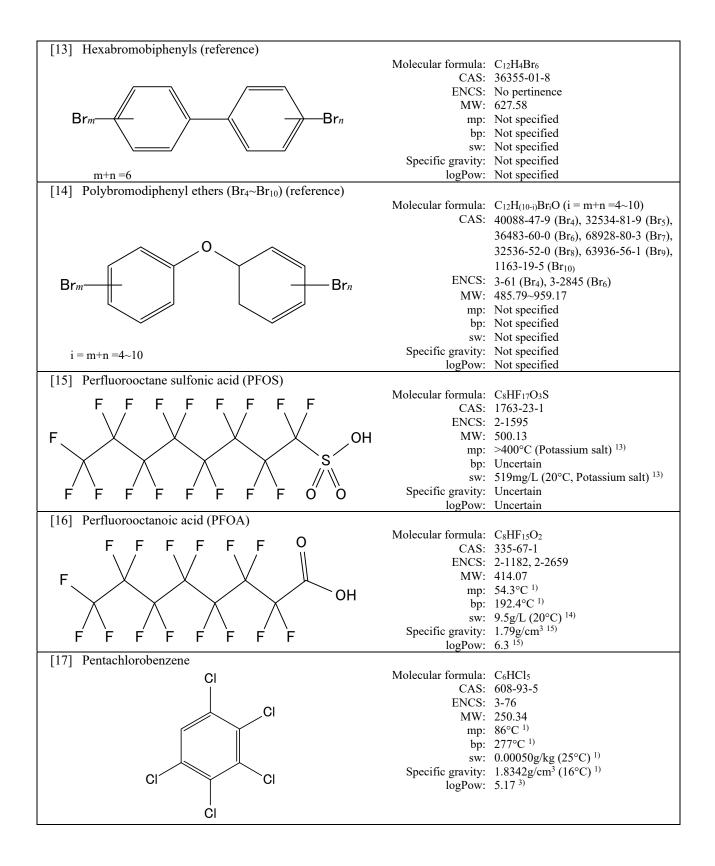

Perfluorooctane sulfonic acid (PFOS) only monitored linear octyl Perfluorooctane sulfonic acid (PFOS).

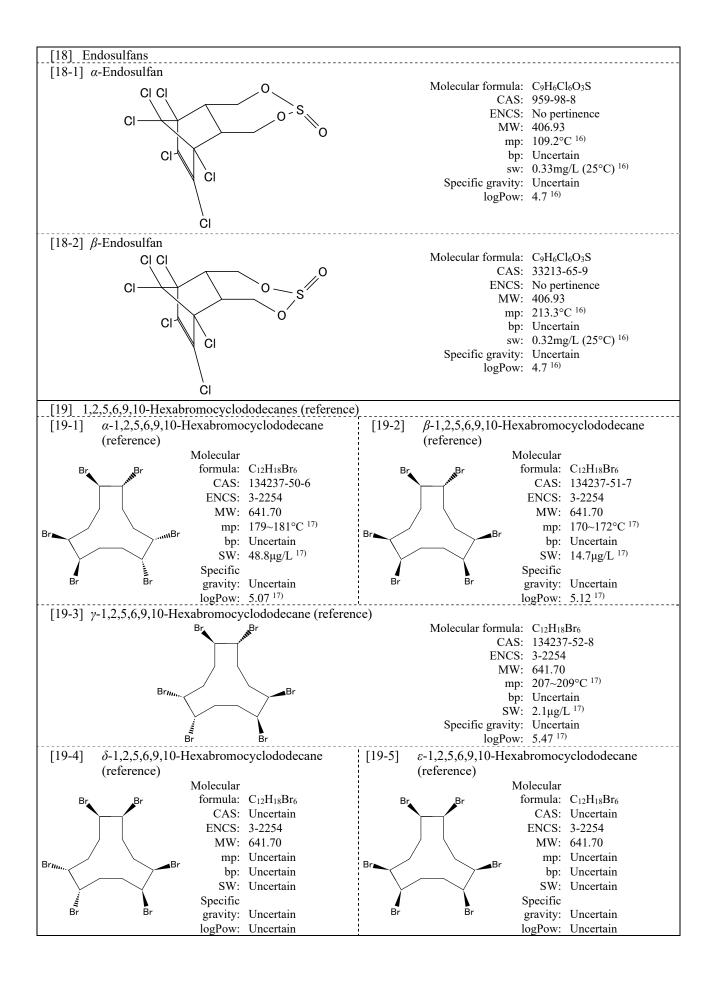
- (Note 5) PCNs (Cl₂~Cl₈) was adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants. In the survey, PCNs including those with one (1) chlorine are target chemicals.
- (Note 6) Chlorinated paraffins (C₁₀~C₁₃) was adopted as target chemicals at the COP8 of the Stockholm convention on Persistent Organic Pollutants. In the survey, Chlorinated paraffins with 5~9 chlorines are target chemicals in surface water, sediment and wildlife, and Chlorinated paraffins with 4~7 chlorines are target chemicals in air.
- (Note 7) Perfluorooctanoic acid (PFOA), its salts and PFOA-related compounds were adopted as target chemicals at the COP9 of the Stockholm convention on Persistent Organic Pollutants. The survey of the Perfluorooctanoic acid (PFOA) only monitored linear octyl Perfluorooctanoic acid (PFOA).
- (Note 8) Perfluorohexane sulfonic acid (PFHxS), its salts and PFHxS-related compounds were adopted as target chemicals at the COP9 of the Stockholm convention on Persistent Organic Pollutants. The survey of the Perfluorohexane sulfonic acid (PFHxS) only monitored linear hexyl Perfluorohexane sulfonic acid (PFHxS).
- (Note 9) Heptachlor was adopted as target chemical of the Stockholm convention on Persistent Organic Pollutants. In the survey, Heptachlors including *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide are target chemicals.
- (Note 10) Chlorobornane and Chlorocamphene of industrial blended material (about 16,000 congeners or isomer) were adopted as target chemicals of the Stockholm convention on Persistent Organic Pollutants. In the survey, 2endo,3-exo,5-endo,6-exo,8,8,10,10-octachlorobornane (Parlar-26), 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10nonachlorobornane (Parlar-50) and 2,2,5,5,8,9,9,10,10-Nonachlorobornane (Parlar-62) are target chemicals.
- (Note 11) In the COP4, α -HCH, β -HCH and γ -HCH (synonym: Lindane) were adopted to be POPs among HCHs, but in this Environmental Monitoring, HCHs which were able to include δ -HCH were designated as target chemicals.
- (Note 12) Tetrabromodiphenyl ethers, Pentabromodiphenyl ethers, Hexabromodiphenyl ethers, and Heptabromodiphenyl ethers were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants. Decabromodiphenyl ether was adopted as target chemicals at the COP8 of the Stockholm convention on Persistent Organic Pollutants.In the survey, Polybromodiphenyl ethers including those from 4 to 10 bromines are target chemicals.
- (Note 13) α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane and γ -1,2,5,6,9,10-Hexabromocyclododecane were adopted as target chemicals at the COP6 of the Stockholm convention on Persistent Organic Pollutants. In the survey, 1,2,5,6,9,10-Hexabromocyclododecanes including δ -1,2,5,6,9,10-Hexabromocyclododecane are target chemicals.
- (Note 14) Pentachlorophenol and its salts and esters were adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants, the survey monitored Pentachlorophenol and Pentachloroanisole.

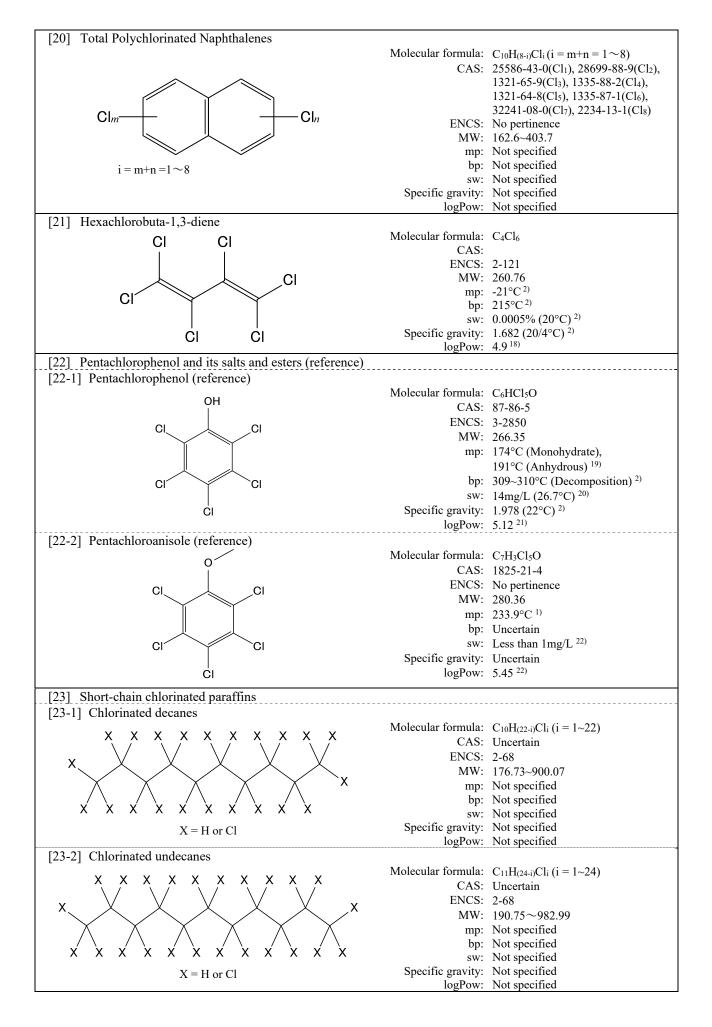

		Monitored media			
No	Name	Surface water	Sediment	Wildlife	Air
[1]	 Total Polychlorinated biphenyls (Total PCBs) Total PCBs represents the sum of the PCB congeners listed in the table below. "Total PCBs" only indicates the total amount in the following pages, and the measured values of the individual congeners and coplanar PCBs are listed on the website. [1-1] Monochlorobiphenyls [1-2] Dichlorobiphenyls [1-3] Trichlorobiphenyls [1-4.1] 3,3',4,4'-Tetrachlorobiphenyl (#77) [1-4-2] 3,4,4',5-Tetrachlorobiphenyl (#81) [1-5] Pentachlorobiphenyls [1-5-1] 2,3,3',4,4'-Pentachlorobiphenyl (#105) [1-5-2] 2,3,4,4',5-Pentachlorobiphenyl (#105) [1-5-3] 2,3',4,4'-5-Pentachlorobiphenyl (#118) [1-5-4] 2',3,4,4',5-Pentachlorobiphenyl (#123) [1-5-5] 3,3',4,4',5-Pentachlorobiphenyl (#126) [1-6-1] 2,3,3',4,4',5-Pentachlorobiphenyl (#156) [1-6-2] 2,3,3',4,4',5'-Hexachlorobiphenyl (#157) [1-6-3] 2,3',4,4',5,5'-Hexachlorobiphenyl (#167) [1-6-4] 3,3',4,4',5,5'-Hexachlorobiphenyl (#169) [1-7] Heptachlorobiphenyls [1-7.1] 2,2',3,3',4,4',5'-Heptachlorobiphenyl (#180) [1-7.2] 2,2',3,4,4',5,5'-Heptachlorobiphenyl (#180) [1-7.3] 2,3',4,4',5'-Heptachlorobiphenyl (#180) [1-7.4] 2,3,3',4,4',5'-Heptachlorobiphenyl (#180) [1-7.4] 2,3,3',4,4',5'-Heptachlorobiphenyl (#180) [1-7.4] 2,3,3',4,4',5'-Heptachlorobiphenyl (#180) [1-7.3] 2,3,3',4,4',5'-Heptachlorobiphenyl (#180) [1-7.4] 2,3,3',4,4',5'-Heptachlorobiphenyl (#180) [1-7.4] 2,3,3',4,4',5'-Heptachlorobiphenyl (#180) [1-7.4] 2,3,3',4,4',5'-Heptachlorobiphenyl (#180) [1-7.3] 2,3,3',4,4',5'-Heptachlorobiphenyl (#180) [1-7.4] 2,3,3',4,4',5'-Heptachlorobiphenyl (#180) [1-7.4] 2,3,3',4,4',5'-Heptachlorobiphenyl (#180) [1-7.4] 2,3,3',4,4',5'-Heptachlorobiphenyl (#180) [1-7.5] 1.2,3',3,4,4',5'-Heptachlorobiphenyl (#180) [1-7.4] 2,3,3',4,4',5'-Heptachlorobiphenyl (#180)<	0	0	0	Ο
[0]					
[2]	Hexachlorobenzene Aldrin (reference)	0	0	0	0
[4]	Dieldrin (reference)				
[5]	Endrin (reference)				
[6]	DDTs [6-1] p,p'-DDT [6-2] p,p'-DDE [6-3] p,p'-DDD [6-4] o,p'-DDT [6-5] o,p'-DDE [6-6] o,p'-DDD	0	0	0	0
[7]	Chlordanes (reference) [7-1] cis-Chlordane (reference) [7-2] trans-Chlordane (reference) [7-3] Oxychlordane (reference) [7-4] cis-Nonachlor (reference) [7-5] trans-Nonachlor (reference)				
[8]	Heptachlors (reference) [8-1] Heptachlor (reference) [8-2] cis-Heptachlor epoxide (reference) [8-3] trans-Heptachlor epoxide (reference)				
[9]	Toxaphenes (reference) [9-1] 2-endo,3-exo,5-endo,6-exo,8,8,10,10-octachlorobornane (Parlar-26) (reference) [9-2] 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-nonachlorobornane (Parlar-50) (reference) [9-3] 2,2,5,5,8,9,9,10,10-Nonachlorobornane (Parlar-62) (reference)				
[10]	Mirex (reference)				
[11]	HCHs (Hexachlorohexanes) (reference) [11-1] α -HCH (reference) [11-2] β -HCH (reference) [11-3] γ -HCH (synonym: Lindane) (reference) [11-4] δ -HCH (reference)				
[12]					
[[13]	Hexabromobiphenyls (reference)				

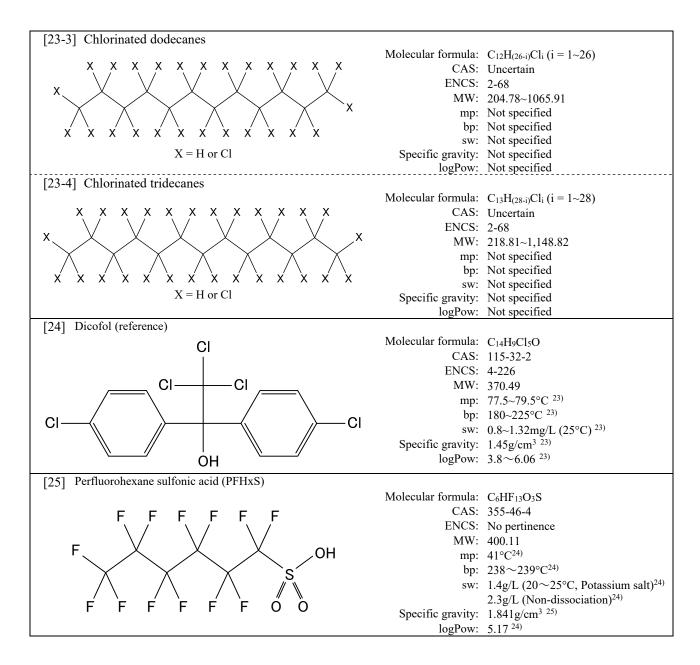

	Name		Monitored media				
No			Sediment	Wildlife	Air		
[14]	Polybromodiphenyl ethers(Br ₄ ~Br ₁₀) (reference)[14-1]Tetrabromodiphenyl ethers (reference)[14-1]2,2',4,4'-Tetrabromodiphenyl ether (#47) (reference)[14-2]Pentabromodiphenyl ethers (reference)[14-2.1]2,2',4,4',5-Pentabromodiphenyl ether (#99) (reference)[14-3]Hexabromodiphenyl ethers (reference)[14-3]12,2',4,4',5,5'-Pentabromodiphenyl ether (#153) (reference)[14-3-1]2,2',4,4',5,5'-Pentabromodiphenyl ether (#154) (reference)[14-3-2]2,2',4,4',5,6'-Pentabromodiphenyl ether (#154) (reference)[14-4]Heptabromodiphenyl ethers (reference)[14-4]2,2,3,3',4,5',6'-Pentabromodiphenyl ether (#175) (reference)[14-4]2,2,2',3,4,4',5',6'-Pentabromodiphenyl ether (#183) (reference)[14-4]0ctabromodiphenyl ethers (reference)[14-5]Octabromodiphenyl ethers (reference)[14-6]Nonabromodiphenyl ethers (reference)[14-7]Decabromodiphenyl ether (reference)						
	Perfluorooctane sulfonic acid (PFOS)	0	0	0	0		
	Perfluorooctanoic acid (PFOA)	0	0	0	0		
[17]	Pentachlorobenzene	0	0	0	0		
[18]	Endosulfans [18-1] α -Endosulfan [18-2] β - Endosulfan	0	0	0	0		
[19]	1,2,5,6,9,10-Hexabromocyclododecanes (reference)[19-1] α -1,2,5,6,9,10-Hexabromocyclododecane (reference)[19-2] β -1,2,5,6,9,10-Hexabromocyclododecane (reference)[19-3] γ -1,2,5,6,9,10-Hexabromocyclododecane (reference)[19-4] δ -1,2,5,6,9,10-Hexabromocyclododecane (reference)[19-5] ε -1,2,5,6,9,10-Hexabromocyclododecane (reference)						
[20]	Total Polychlorinated naphthalenes Total Polychlorinated naphthalenes represents the sum of the Polychlorinated naphthalenes congeners. The measured values of the individual congeners are listed on the website.	0	0	0	0		
[21]	Hexachlorobuta-1,3-diene	0	0	0	0		
[22]	Pentachlorophenol and its salts and esters (reference) [22-1] Pentachlorophenol (reference) [22-2] Pentachloroanisole (reference)						
[23]	Short-chain chlorinated paraffins[23-1]Chlorinated decanes[23-2]Chlorinated undecanes[23-3]Chlorinated dodecanes[23-4]Chlorinated tridecanes	0	0	0	0		
	Dicofol (reference)						
[25]	Perfluorohexane sulfonic acid (PFHxS)	0	0	0	0		


Chemical and physical	properties of targe	et chemicals of the Environmental	Monitoring are as follows.




(Abbreviations) CAS: CAS registry number, ENCS: registry number in the Existing and New Chemical Substances List, MW: molecular weight, mp: melting point, bp: boiling point, SW: solubility in water, logPow: *n*-octanol-water partition coefficient, kPa: kilopascal (1 atom approximately equal to 101.3kPa).





References

- 1) John R. Rumble, CRC Handbook of Chemistry and Physics, 98th Edition, CRC Press LLC (2017)
- 2) O'Neil, The Merck Index An Encyclopedia of Chemicals, Drugs, and Biologicals 15th Edition, Merck Co. Inc. (2013)
- 3) Hansch et al., Exploring QSAR Hydrophobic, Electronic and Steric Constants, American Chemical Society (1995)
- 4) IPCS, International Chemical Safety Cards, Aldrin, ICSC0774 (1998)
- 5) Howard et al., Handbook of Physical Properties of Organic Chemicals, CRC Press Inc. (1996)
- 6) IPCS, International Chemical Safety Cards, Endrin, ICSC1023 (2000)
- 7) IPCS, International Chemical Safety Cards, DDT, ICSC0034 (2004)
- Biggar et al., Apparent solubility of organochlorine insecticides in water at various temperatures, Hilgardia, 42, 383-391 (1974)
- 9) IPCS, International Chemical Safety Cards, alpha-Hexachlorocyclohexane, ICSC0795 (1998)
- 10) ATSDR, Toxicological Profile for alpha-, beta-, gamma- and delta-Hexachlorocyclohexane (2005)
- 11) IPCS, International Chemical Safety Cards, beta-Hexachlorocyclohexane, ICSC0796 (1998)
- 12) IPCS, International Chemical Safety Cards, Chlordecone ICSC1432 (2003)
- 13) United Nations Environment Programme (UNEP), Risk profile on perfluorooctane sulfonate, Report of the Persistent Organic Pollutants Review Committee on the work of its second meeting (2006)
- 14) OECD, Perfluorooctanoic Acid & Ammonium Perfluorooctanoate, SIDS Initial Assessment Profile for 26th SIAM (2008)
- 15) IPCS, International Chemical Safety Cards, Perfkuorooctanoic acid, ICSC1613 (2005)
- 16) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on endosulfan, Report of the Persistent Organic Pollutants Review Committee on the work of its fifth meeting (2009)
- 17) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on hexabromocyclododecane, Report of the Persistent Organic Pollutants Review Committee on the work of its sixth meeting (2010)
- 18) IPCS, International Chemical Safety Cards, Hexachlorobutadiene ICSC0896 (1997)
- 19) International Agency for Research on Cancer(IARC), IARC Monographs on the Evaluation of the Carcinogenic Risk of

Chemicals to Man(1972)

- 20) Yalkowsky et al., Aquasol Database of Aqueous Solubility Version 5, College of Pharmacy, University of Arizona(1992)
- 21) Hansch et al., Exploring QSAR Hydrophobic, Electronic and Steric Constants, American Chemical Society (1995)
- 22) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on pentachlorophenol and its salts and esters, Report of the Persistent Organic Pollutants Review Committee on the work of its ninth meeting (2013)
- 23) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on dicofol, Report of the Persistent Organic Pollutants Review Committee on the work of its twelfth meeting (2016)
- 24) UNEP, Stockholm Convention on Persistent Organic Pollutants, Persistent Organic Pollutants Review Committee, Perfluorohexane sulfonic acid (PFHxS), its salts and PFHxS related compounds, Draft risk management evaluation (2019)
- 25) U.S. National Library of Medicine, PubChem (https://pubchem.ncbi.nlm.nih.gov/)

3. Monitored site and procedure

In the Environmental Monitoring (of surface water, sediment, wildlife, and air), the sampling of specimens was entrusted to prefectural governments and government-designated cities across Japan and the specimens sampled were analysed by private analytical laboratories.

(1) Organisations responsible for sampling

Local		Monitored media				
communities	Organisations responsible for sampling * ¹	Surface water	Sedimen t	Wildlife	Air	
Hokkaido	Environmental Promotion Section, Environment Division, Department of Environment and Lifestyle, Hokkaido Prefectural Government and Research Institute of Energy, Environment and Geology, Hokkaido Research Organization	0	0	0	0	
Sapporo City	Sapporo City Institute of Public Health				0	
Iwate Pref.	Research Institute for Environmental Sciences and Public Health of Iwate Prefecture	0	0	0	0	
Miyagi Pref.	Miyagi Prefectural Institute of Public Health and Environment	0	0	0	0	
Sendai City	Sendai City Institute of Public Health		0			
Akita Pref.	Akita Research Center for Public Health and Environment	0	0			
Yamagata Pref.	Yamagata Environmental Science Research Center	0	0		0	
Fukushima Pref.	Fukushima Prefectural Environmental Center	0	0			
Ibaraki Pref.	Ibaraki Kasumigaura Environmental Science Center	0	0	0	0	
Tochigi Pref.	Tochigi Prefectural Institute of Public Health and Environmental Science	0	0			
Gunma Pref.	Gunma Prefectural Institute of Public Health and Environmental Sciences	0				
Saitama Pref.	Center for Environmental Science in Saitama	0				
Chiba Pref.	Chiba Prefectural Environmental Research Center		0			
Chiba City	Chiba City Institute of Health and Environment	0	0			
Tokyo Met.	Environmental Improvement Division, Bureau of Environment, Tokyo Metropolitan Government and Tokyo Metropolitan Research Institute for Environmental Protection	0	0	0	0	
Kanagawa Pref.	Kanagawa Environmental Research Center				0	
Yokohama City	Yokohama Environmental Science Research Institute	0	0	0	0	
Kawasaki City	Kawasaki Environment Research Institute	0	0	0		
Niigata Pref.	Niigata Prefectural Institute of Public Health and Environmental Sciences	0	0		0	
Toyama Pref.	Environment Preservation Division, Living Environmental and Cultural Affairs Department, Toyama Prefectural Government and Toyama Prefectural Environmental Science Research Center	0	0		0	
Ishikawa Pref.	Ishikawa Prefectural Institute of Public Health and Environmental Science	0	0	0	0	
Fukui Pref.	Fukui Prefectural Institute of Public Health and Environmental Science	0	0			
Yamanashi Pref.	Yamanashi Institute for Public Health and Environment		0		0	
Nagano Pref.	Nagano Environmental Conservation Research Institute	0	0		0	
Gifu Pref.	Gifu Prefectural Research Institute for Health and Environmental Sciences				0	
Shizuoka Pref.	Shizuoka Institute of Environment and Hygiene	0	0			
Aichi Pref.	Aichi Environmental Research Center	0	0			
Nagoya City	Nagoya City Environmental Science Research Center, Regional			0	0	
	Environmental measures Division, Environmental Bureau, Nagoya city					
Mie Pref.	Mie Prefecture Health and Environment Research Institute	0	0		0	
Shiga Pref.	Lake Biwa Environmental Research Institute	0	0	0		
Kyoto City	Kyoto City Institute of Health and Environmental Sciences	0	0			
Osaka Pref.	Environment Preservation Division, Environment Management Office, Department of Environment, Agriculture, Forestry and Fisheries, Osaka Prefectural Government and Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture	0	0	0	0	
Osaka City	Osaka City Institute of Public Health and Environmental Sciences	0	0			
Hyogo Pref.	Water and Air Quality Control Division, Environmental Management Bureau, Agricultural and Environmental Affairs Department, Hyogo Prefectural Government and Hyogo Prefectural Institute of Environmental Sciences, Hyogo Environmental Advancement Association	0	0	0	0	
	Water and Air Quality Control Division, Environmental Management Bureau, Agricultural and Environmental Affairs Department, Hyogo Prefectural Government and Green Nature Division, Environmental Policy Office, Department of Citizen Autonomy, Itami City			°*2		

			Monitor	ed media	
Local communities	Organisations responsible for sampling *1	Surface water	Sedimen t	Wildlife	Air
Kobe City	Natural Environmental Symbiotic Division, Environmental Preservation	0	0		0
	Branch, Environment Bureau, Kobe City and Kobe City Institute of Health				
	and Environmental Science	1			
Nara Pref.	Nara Prefecture Landscape and Environment Center		0		0
Wakayama Pref.	Wakayama Prefectural Research Center of Environment and Public Health	0	0		
Tottori Pref.	Environmental Policy Division, Department of Environment and Consumer Affairs, Tottori Prefecture and Tottori Prefectural Institute of			0	
	Public Health and Environmental Science				
Shimane Pref.	Shimane Prefectural Institute of Public Health and Environmental Science and Oki Public Health Center				0
Okayama Pref.	Okayama Prefectural Institute for Environmental Science and Public Health	0	0		
Hiroshima Pref.	Hiroshima Prefectural Technology Research Institute Health and Environment Center	0	0		
Hiroshima City	Hiroshima City Institute of Public Health			0	0
Yamaguchi Pref.	Environmental Policy Division, Public Environmental Affairs Department, Yamaguchi Prefectural Government and Yamaguchi Prefectural Institute of Public Health and Environment	0	0		0
Tokushima Pref.	Tokushima Prefectural Pablic Health, Pharmaceutical and Environmental Sciences Center	0	0		0
Kagawa Pref.	Kagawa Prefectural Research Institute for Environmental Sciences and Public Health	0	0	0	0
Ehime Pref.	Ehime Prefectural Institute of Public Health and Environmental Science		0		0
Kochi Pref.	Kochi Prefectural Environmental Research Center	0	0	0	
Fukuoka Pref.	Fukuoka Institute of Health and Environmental Sciences				°*3
Kitakyushu City	Kitakyushu City Institute of Health and Environmental Sciences	0	0		
Fukuoka City	Fukuoka City Institute for Hygiene and the Environment		0		
Saga Pref.	Saga Prefectural Environmental Research Center	0	0		0
Nagasaki Pref.	Prefectural Living Environment Division, Environment Bureau, Nagasaki Prefecture	0	0		
Kumamoto Pref.	Kumamoto Prefectural Institute of Public-Health and Environmental Science	0			0
Oita Pref.	Environment Preservation Division, Department of Environment, Oita Prefectural Government and Oita Prefectural Institute of Health and Environment		0	0	
Miyazaki Pref.	Miyazaki Prefectural Institute for Public Health and Environment	0	0		0
Kagoshima Pref.	Kagoshima Prefectural Institute for Environmental Research and Public Health	0	0	0	0
Okinawa Pref.	Okinawa Prefectural Institute of Health and Environment	0	0	0	0

(Note 1) *1: Organisations responsible for sampling are described by their official names in FY2021 (Note 2) *2: Because there were the examples of survey that obtained the eggs in other countries, the eggs of great cormorants were taken in this survey by Water and Air Quality Control Division, Environmental Management Bureau, Agricultural and Environmental Affairs Department, Hyogo Prefectural Government and Green Nature Division, Environmental Policy Office, Department of Citizen Autonomy, Itami City. The results were treated as the reference values. (Note 3) *3: That organization cooperated with a private analytical laboratory in sampling specimens

(2) Monitored sites (areas)

In the Environmental Monitoring (of surface water, sediment, wildlife, and air), the sampling of specimens was entrusted to prefectural governments and government-designated cities across Japan and the specimens sampled were analysed by private analytical laboratories.

The monitored sites (areas) are shown in Table 3-1-1 and Figure 3-1-1 for surface water, Table 3-1-2 and Figure 3-1-2 for sediment, Table 3-1-3 and Figure 3-1-3 for wildlife and Table 3-1-4 and Figure 3-1-4 for air. The breakdown is summarized as follows.

Monitored media	Numbers of local communities	Numbers of target chemicals (groups)	Numbers of monitored sites (or areas)	Numbers of samples at a monitored site (or area)
Surface water	42	11	47	1
Sediment	46	11	60	1^{*1}
Wildlife (bivalves)	3	11	3	1*2
Wildlife (fish)	17	11	18	1*2
Wildlife (birds)	3*3	11	3*3	1*2
Air (warm season)	33*4	11	35	1 or 3*5
All media	57	11	121*3	

(Note 1) *1: For sediment, at each monitoring point, three (3) specimen samples were collected. The target substances were analysed for each place with one (1) specimen sample that is a mixture of equal parts of the three (3) specimen samples.

(Note 2) *2: For wildlife species, at each monitoring point, three (3) specimen samples were collected. The target substances were analysed for each place with one (1) specimen sample that is a mixture of equal parts of the three (3) specimen samples.

(Note 3) *3: Samples obtained in 1 site of the birds as wildlife eggs of Great Cormorant, and the sample was measured each the egg yolk and the egg white, the results were treated as a reference values.

(Note 4) *4: For 1 of the 33 organizations, it was cooperated with a private analytical laboratory in sampling specimens.

(Note 5) *5: The target substances other than [21] Hexachlorobuta-1,3-diene were analysed with one (1) sample for each sit. The target substance [21] Hexachlorobuta-1,3-diene was analysed with the three (3) specimen samples for each site.

(3) Sampling method of specimens

The sampling of specimens and the preparation of samples were carried out following the "Guidelines on Conducting of Environmental Surveys and Monitoring of Chemicals" (published on March 2021) by the Environment Health and Safety Division, Environmental Health Department, Ministry of the Environment of Japan (MOE).

(4) Target species

The species to be monitored among the wildlife media were selected considering the possibility of international comparison, as well as their significance and practicality as indicators: 1 bivalve (blue mussel), 7 fishes (predominantly sea bass), and 1 bird, namely, 9 species in total.

The properties of the species determined as targets in the FY2021 monitoring are shown in Table 3-2. Moreover, Table 3-1-3 summarizes the outline of the samples used for analysis.

Local communities	Monitored sites	Sampling dates
Hokkaido	Ishikarikakokyo Bridge, Mouth of Riv. Ishikari (Ishikari City)	November 15, 2021
Iwate Pref.	Toyosawa-bashi Bridge, Riv. Toyosawa (Hanamaki City)	November 17, 2021
Miyagi Pref.	Sendai Bay (Matsushima Bay)	October 18, 2021
Akita Pref.	Lake Hachiro	September 28, 2021
Yamagata Pref.	Mouth of Riv. Mogami (Sakata City)	November 9, 2021
Fukushima Pref.	Onahama Port	October 25, 2021
Ibaraki Pref.	Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City)	November 6, 2021
Tochigi Pref.	Tagawa Kyubun Area Head Works (Utsunomiya City)	November 18, 2021
Gunma Pref.	Tone-ozeki Weir, Riv. Tone (Chiyoda Town)	September 24, 2021
Saitama Pref.	Akigase-shusuizeki Weir, Riv. Arakawa (Shiki City)	November 4, 2021
Chiba City	Mouth of Riv. Hanami (Chiba City)	November 1, 2021
Tokyo Met.	Mouth of Riv. Arakawa (Koto Ward)	November 26, 2021
	Mouth of Riv. Sumida (Minato Ward)	November 26, 2021
Yokohama City	Yokohama Port	November 4, 2021
Kawasaki City	Front of Ougi Town, Keihin Canal, Port of Kawasaki	November 8, 2021
Niigata Pref.	Lower Riv. Shinano (Niigata City)	December 1, 2021
Toyama Pref.	Hagiura-bashi Bridge, Mouth of Riv. Jintsu (Toyama City)	October 20, 2021
Ishikawa Pref.	Mouth of Riv. Sai (Kanazawa City)	November 4, 2021
Fukui Pref.	Mishima-bashi Bridge, Riv. Shono (Tsuruga City)	October 22, 2021
Nagano Pref.	Lake Suwa (center)	November 15, 2021
Shizuoka Pref.	Kaketsuka-bashi Bridge, Riv. Tenryu (Iwata City)	November 24, 2021
Aichi Pref.	Nagoya Port	November 10, 2021
Mie Pref.	Yokkaichi Port	November 18, 2021
Shiga Pref.	Lake Biwa (center, offshore of Karasaki)	November 30, 2021
Kyoto City	Miyamae-bashi Bridge, Riv. Katsura (Kyoto City)	November 10, 2021
Osaka Pref.	Mouth of Riv. Yamato (Sakai City)	October 26, 2021
Osaka City	Osaka Port	October 29, 2021
Hyogo Pref.	Offshore of Himeji	November 15, 2021
Kobe City	Kobe Port (center)	December 7, 2021
Wakayama Pref.	Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)	November 25, 2021
Okayama Pref.	Offshore of Mizushima	November 16, 2021
Hiroshima Pref.	Kure Port	November 10, 2021
	Hiroshima Bay	November 10, 2021
Yamaguchi Pref.	Tokuyama Bay	November 5, 2021
	Offshore of Ube	November 5, 2021
	Offshore of Hagi	November 18, 2021
Tokushima Pref.	Mouth of Riv. Yoshino (Tokushima City)	October 7, 2021
Kagawa Pref.	Takamatsu Port	November 16, 2021
Kochi Pref.	Mouth of Riv. Shimanto (Shimanto City)	October 5, 2021
Kitakyushu City	Dokai Bay	November 26, 2021
Saga Pref.	Imari Bay	November 16, 2021
Nagasaki Pref.	Omura Bay	October 28, 2021
Kumamoto Pref.	Hiraki-bashi Bridge, Riv. Midori (Uto City)	November 17, 2021
Miyazaki Pref.	Mouth of Riv. Oyodo (Miyazaki City)	October 4, 2021
Kagoshima Pref.	Shinkawa-bashi Bridge, Riv. Amori (Kirishima City)	October 12, 2021
	Gotanda-bashi Bridge, Riv. Gotanda (Ichikikushikino City)	September 21, 2021
Okinawa Pref.	Naha Port	November 2, 2021

Table 3-1-1 List of monitored sites (surface water) in the Environmental Monitoring in FY2021

Figure 3-1-1 Monitored sites (surface water) in the Environmental Monitoring in FY2021

1Iwate Pref.1Miyagi Pref.Sendai CityFAkita Pref.IYamagata Pref.MFukushima Pref.CIbaraki Pref.TTochigi Pref.TChiba Pref.CChiba CityN	Monitored sites Ishikarikakokyo Bridge, Mouth of Riv. Ishikari (Ishikari City) Tomakomai Port Toyosawa-bashi Bridge, Riv. Toyosawa (Hanamaki City) Sendai Bay (Matsushima Bay) Hirose-ohashi Bridge, Riv. Hirose (Sendai City) Lake Hachiro Mouth of Riv. Mogami (Sakata City)	Sampling dates November 15, 2021 September 7, 2021 November 17, 2021 October 18, 2021 November 15, 2021 September 28, 2021
HokkaidoIIwate Pref.TMiyagi Pref.SSendai CityFAkita Pref.IYamagata Pref.MFukushima Pref.CIbaraki Pref.TTochigi Pref.TChiba Pref.CChiba CityM	Tomakomai Port Toyosawa-bashi Bridge, Riv. Toyosawa (Hanamaki City) Sendai Bay (Matsushima Bay) Hirose-ohashi Bridge, Riv. Hirose (Sendai City) Lake Hachiro	September 7, 2021 November 17, 2021 October 18, 2021 November 15, 2021
1Iwate Pref.1Miyagi Pref.Sendai CityFAkita Pref.IYamagata Pref.MFukushima Pref.CIbaraki Pref.1Tochigi Pref.1Chiba Pref.CChiba CityN	Tomakomai Port Toyosawa-bashi Bridge, Riv. Toyosawa (Hanamaki City) Sendai Bay (Matsushima Bay) Hirose-ohashi Bridge, Riv. Hirose (Sendai City) Lake Hachiro	September 7, 2021 November 17, 2021 October 18, 2021 November 15, 2021
Iwate Pref.TMiyagi Pref.SSendai CityHAkita Pref.LYamagata Pref.MFukushima Pref.CIbaraki Pref.TTochigi Pref.TChiba Pref.CChiba CityM	Toyosawa-bashi Bridge, Riv. Toyosawa (Hanamaki City) Sendai Bay (Matsushima Bay) Hirose-ohashi Bridge, Riv. Hirose (Sendai City) Lake Hachiro	November 17, 2021 October 18, 2021 November 15, 2021
Miyagi Pref.SSendai CityHAkita Pref.LYamagata Pref.MFukushima Pref.CIbaraki Pref.TTochigi Pref.TChiba Pref.CChiba CityM	Sendai Bay (Matsushima Bay) Hirose-ohashi Bridge, Riv. Hirose (Sendai City) Lake Hachiro	October 18, 2021 November 15, 2021
Sendai CityHAkita Pref.LYamagata Pref.MFukushima Pref.CIbaraki Pref.TTochigi Pref.TChiba Pref.CChiba CityM	Hirose-ohashi Bridge, Riv. Hirose (Sendai City) Lake Hachiro	November 15, 2021
Akita Pref.IYamagata Pref.MFukushima Pref.CIbaraki Pref.TTochigi Pref.TChiba Pref.CChiba CityM	Lake Hachiro	
Yamagata Pref.MFukushima Pref.CIbaraki Pref.TTochigi Pref.TChiba Pref.CChiba CityM		
Fukushima Pref.CIbaraki Pref.TTochigi Pref.TChiba Pref.CChiba CityM		November 9, 2021
Ibaraki Pref.TTochigi Pref.TChiba Pref.CChiba CityN	Onahama Port	October 25, 2021
Tochigi Pref.TChiba Pref.CChiba CityM	Fonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City)	November 6, 2021
Chiba Pref. C Chiba City M	Tagawa Kyubun Area Head Works (Utsunomiya City)	November 18, 2021
Chiba City N	Coast of Ichihara and Anegasaki	November 30, 2021
	Mouth of Riv. Hanami (Chiba City)	November 1, 2021
Tokyo Met. N	Mouth of Riv. Arakawa (Koto Ward)	November 26, 2021
	Mouth of Riv. Sumida (Minato Ward)	November 26, 2021
	Yokohama Port	November 4, 2021
	Mouth of Riv. Tama (Kawasaki City)	November 8, 2021
	Front of Ougi Town, Keihin Canal, Port of Kawasaki	November 8, 2021
	Lower Riv. Shinano (Niigata City)	November 17, 2021
	Hagiura-bashi Bridge, Mouth of Riv. Jintsu (Toyama City)	October 20, 2021
	Mouth of Riv. Sai (Kanazawa City)	November 4, 2021
	Mishima-bashi Bridge, Riv. Shono (Tsuruga City)	October 22, 2021
	Senshu-bashi Bridge, Riv. Arakawa (Kofu City)	October 11, 2021
	Lake Suwa (center)	November 15, 2021
0	Shimizu Port	December 9, 2021
	Kaketsuka-bashi Bridge, Riv. Tenryu (Iwata City)	November 24, 2021
	Kinuura Port	November 10, 2021
	Nagoya Port	November 10, 2021
	Yokkaichi Port	November 18, 2021
	Toba Port	November 16, 2021
	Lake Biwa (center, offshore of Minamihira)	November 16, 2021
	Lake Biwa (center, offshore of Karasaki)	November 30, 2021
	Miyamae-bashi Bridge, Riv. Katsura (Kyoto City)	November 10, 2021
	Mouth of Riv. Yamato (Sakai City)	October 26, 2021
	Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)	October 28, 2021
	Mouth of Riv. Yodo (Osaka City)	October 29, 2021
	Osaka Port	October 29, 2021
	Outside Osaka Port	October 29, 2021
	Offshore of Himeji	November 15, 2021
	Kobe Port (center)	December 7, 2021
	Taisho-bashi Bridge, Riv. Yamato (Oji Town)	November 24, 2021
Wakayama Pref. K	Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)	November 25, 2021
	Offshore of Mizushima	November 16, 2021
	Kure Port	November 10, 2021
	Hiroshima Bay	November 10, 2021
Yamaguchi Pref. 7	Fokuyama Bay	November 5, 2021
	Offshore of Ube	November 5, 2021
(Offshore of Hagi	November 18, 2021
Tokushima Pref. N	Mouth of Riv. Yoshino (Tokushima City)	October 7, 2021
	Takamatsu Port	November 16, 2021
Ehime Pref. N	Niihama Port	November 30, 2021
	Mouth of Riv. Shimanto (Shimanto City)	October 5, 2021
Kitakyushu City I	Dokai Bay	November 26, 2021
	Hakata Bay	November 9, 2021
	Imari Bay	November 16, 2021
	Omura Bay	October 28, 2021
	Mouth of Riv. Oita (Oita City)	November 15, 2021
	Mouth of Riv. Oyodo (Miyazaki City)	October 4, 2021
	Riv. Amori (Kirishima City)	October 12, 2021
	Riv. Gotanda (Ichikikushikino City)	September 21, 2021
	Naha Port	November 2, 2021

Figure 3-1-2 Monitored sites (sediment) in the Environmental Monitoring in FY2021

Local communities	Monitored sites	Sampling dates		Wildlife species
Hokkaido	Offshore of Kushiro	October 30, 2021	Fish	Rock greenling (Hexagrammos lagocephalus)
		October 30, 2021	Fish	Chum salmon (Oncorhynchus keta)
Iwate Pref.	Yamada Bay	October 24, 2021	Bibalves	Blue mussel (Mytilus galloprovincialis)
		October 24, 2021	Fish	Greenling (Hexagrammos otakii)
Miyagi Pref.	Sendai Bay (Matsushima Bay)	November 24, 2021	Fish	Greenling (Hexagrammos otakii)
Ibaraki Pref.	Offshore of Joban	November 30, 2021	Fish	Chub mackerel (Scomber japonicus)
Tokyo Met.	Tokyo Bay	July 19, 2021	Fish	Sea bass (Lateolabrax japonicus)
Yokohama City	Yokohama Port	October 4, 2021	Bibalves	Green mussel (Perna viridis)
Kawasaki City	Offshore of Ogishima Island, Port of Kawasaki	September 13, 2021	Fish	Sea bass (Lateolabrax japonicus)
Ishikawa Pref.	Coast of Noto Peninsula	August 23, 2021	Bibalves	Blue mussel (Mytilus galloprovincialis)
Nagoya City	Nagoya Port	September 6, 2021	Fish	Striped mullet (<i>Mugil cephalus</i>)
Shiga Pref.	Tikubushima Island, Lake Biwa	August 11, 2021	Birds	Great Cormorant (<i>Phalacrocorax carbo</i>)
	Lake Biwa, Riv. Ado (Takashima City)	April 2, 2021	Fish	Dace (Tribolodon hakonensis)
Osaka Pref.	Osaka Bay	October 30, 2021	Fish	Sea bass (Lateolabrax japonicus)
Hyogo Pref.	Offshore of Himeji	December 20, 2021	Fish	(Lateolabrax japonicus) (Lateolabrax japonicus)
Tottori Pref.	Riv.Tenjin (Kurayoshi City)	May 3 and 14, 2021	Birds	Great Cormorant (<i>Phalacrocorax carbo</i>)
	Nakaumi	November 3, 2021	Fish	Sea bass (Lateolabrax japonicus)
Hiroshima City	Hiroshima Bay	November 15 and 21, 2021	Fish	Sea bass (<i>Lateolabrax japonicus</i>)
Kagawa Pref.	Takamatsu Port	August 26, 2021	Fish	Striped mullet (Mugil cephalus)
Kochi Pref.	Mouth of Riv. Shimanto (Shimanto City)	September ~ November, 2021*	Fish	Sea bass (<i>Lateolabrax japonicas</i>)
Oita Pref.	Mouth of Riv. Oita (Oita City)	February 3, 2022	Fish	Spanish mackerel (Scomberomorus niphonius)
Kagoshima Pref.	West Coast of Satsuma Peninsula	December 22, 2021	Fish	Sea bass (<i>Lateolabrax japonicas</i>)
Okinawa Pref.	Nakagusuku Bay	January 27, 2022	Fish	Okinawa seabeam (Acanthopagrus sivicolus)

Table 3-1-3 List of monitored areas (wildlife) in the Environmental Monitoring in FY2021

(Note) "*" means details of the sampling date unknown.

Figure 3-1-3 Monitored areas (wildlife) in the Environmental Monitoring in FY2021

Local communities	Monitored sites	Sampling dates (Warm season)
Hokkaido	Oshima General Subprefectural Bureau (Hakodate City)	Octorber $19 \sim 26^{**}$ or $19 \sim 22^{*}$, 2021
Sapporo City	Sapporo Art Park (Sapporo City)	Octorber 18 $\sim 21, 2021$
Iwate Pref.	Sugo Air Quality Monitoring Station (Takizawa City)	Octorber $11 \sim 14, 2021$
Miyagi Pref.	Miyagi Prefectural Institute of Public Health and Environment (Sendai City)	Octorber 26 ~ November 2** or Octorber 26 ~ 29*, 2021
Yamagata Pref.	Yamagata Institute of Environmental Sciences (Murayama City)	Octorber 8 ~ 15** or 12 ~ 15*, 2021
Ibaraki Pref.	Ibaraki Kasumigaura Environmental Science Center (Tsuchiura City)	Octorber 12 ~ 19** or 12 ~ 15*, 2021
Tokyo Met.	Tokyo Metropolitan Research Institute for Environmental Protection (Koto Ward)	Octorber 19 ~ 26** or 19 ~ 22*, 2021
	Chichijima Island (Ogasawara Village)	November 7 ~ 14** or 7 ~ 10*, 2021
Kanagawa Pref.	Kanagawa Environmental Research Center (Hiratsuka City)	November 8 ~ 11, 2021
Yokohama City	Yokohama Environmental Science Research Institute (Yokohama City)	Octorber 25 ~ November 1** or Octorber 25 ~ 28*, 2021
Niigata Pref.	Oyama Air Quality Monitoring Station (Niigata City)	Octorber 11 ~ 14, 2021
Toyama Pref.	Tonami Air Quality Monitoring Station (Tonami City)	Octorber 11 ~ 14, 2021
Ishikawa Pref.	Ishikawa Prefectural Institute of Public Health and Environmental Science (Kanazawa City)	September 27 ~ 30, 2021
Yamanashi Pref.	Yamanashi Prefectural Institute of Public Health and Environment (Kofu City)	September 27 ~ 30, 2021
Nagano Pref.	Nagano Environmental Conservation Research Institute (Nagano City)	Octorber 25 ~ November 1** or Octorber 25 28*, 2021
Gifu Pref.	Gifu Prefectural Research Institute for Health and Environmental Sciences (Kakamigahara City)	November 8 ~ 11, 2021
Nagoya City	Chikusa Ward Heiwa Park (Nagoya City)	Octorber 19 ~ 26** or 19 ~ 22*, 2021
Mie Pref.	Mie Prefecture Health and Environment Research Institute (Yokkaichi City)	Octorber 18 ~ 21, 2021
Osaka Pref.	Osaka Joint Prefectural Government Building, Building 2 Annex (Osaka City)	Octorber 25 ~ 28, 2021
Hyogo Pref.	Hyogo Prefectural Environmental Research Center (Kobe City)	Octorber 26 ~ 29, 2021
Kobe City	Kobe City Institute of Health and Environmental Sciences (Kobe City)	Octorber 18 ~ 21, 2021
Nara Pref.	Tenri Air Quality Monitoring Station (Tenri City)	November 15 ~ 18, 2021
Shimane Pref.	Oki National Acid Rain Observatory (Okinoshima Town)	November 16 ~ 19, 2021
Hiroshima City	Hiroshima City Kokutaiji Junior High School (Hiroshima City)	Octorber 26 ~ 29, 2021
Yamaguchi Pref.	Yamaguchi Prefectural Institute of Public Health and Environment (Yamaguchi City)	Octorber 1 ~ 8** or 5 ~ 8*, 2021
	Hagi Health and Welfare Center (Hagi City)	Octorber $1 \sim 8^{**}$ or $5 \sim 8^{*}$, 2021
Tokushima	Tokushima Prefectural Public Health, Pharmaceutical and	November 8 ~ 11, 2021
Pref. Kagawa Pref.	Environmental Sciences Center (Tokushima City) Kagawa Prefectural Research Institute for Environmental	November 12 ~ 19** or 15 ~ 18*, 2021
Ehime Pref.	Sciences and Public Health (Takamatsu City) Ehime Prefectural Government Nanyo Regional Office	November 15 ~ 18, 2021
	(Uwajima City)	
Fukuoka Pref.	Omuta City Government Building (Omuta City)	November 16 ~ 19, 2021
Saga Pref.	Saga Prefectural Environmental Research Center (Saga City)	Octorber 1 ~ 8** or 4 ~ 7*, 2021
Kumamoto Pref.	Kumamoto Prefectural Institute of Public Health and Environmental Science (Udo City)	November 15 ~ 18, 2021
Miyazaki Pref.	Miyazaki Prefectural Institute for Public Healthand Environment (Miyazaki City)	Octorber 25 ~ November 1** or Octorber 25 28*, 2021
Kagoshima Pref.	Kagoshima Prefectural Institute for Environmental Research and Public Health (Kagoshima City)	November 15 ~ 18, 2021
Okinawa Pref.	Cape Hedo (Kunigami Village)	September 27 ~ 30, 2021

Table 3-1-4 List of monitored sites (air) in the Environmental Monitoring in FY2021

(Note) " * " means sampling except [21] Hexachlorobuta-1,3-diene. " ** " means sampling [21] Hexachlorobuta-1,3-diene.

Figure 3-1-4 Monitored sites (air) in the Environmental Monitoring in FY2021

Table 3-2 Properties	of target species	

	Species	Properties	Monitored areas	Aim of monitoring	Notes
	Green mussel	Distributed throughout Japan south of	 Yokohama port 	Follow-up of the	
	(Perna viridis)	southern Honshu		environmental fate	
es		Adheres to rocks in inner bays and to		and persistency in	
alv		bridge piers		specific areas	
Bibalves	Blue mussel	Distributed worldwide, excluding	• Yamada bay	Follow-up of the	
Ε	(Mytilus	tropical zones	Coast of Noto Peninsula	environmental fate	
	galloprovincialis)	Adheres to rocks in inner bays and to		and persistency in	
		bridge piers		specific areas	
	Greenling	Distributed from Hokkaido to southern	• Yamada bay	Follow-up of the	
	(Hexagrammos	Japan, the Korean Peninsula, and China	• Sendai Bay	environmental fate	
	otakki)	Lives in shallow seas of 5-50 m depth from sea level		and persistency in	
	Chum salmon	Distributed in northern Pacific Ocean, Sea		specific areas Follow-up of the	
	(Oncorhynchus	of Japan, Bering Sea, Sea of Okhotsk, the	Offshore of Kushiro	environmental fate	
	(Oncornynenus keta)	whole of the Gulf of Alaska, and part of the		and persistency on	
	κειά)	Arctic Ocean		a global scale	
		Runs the Tone River on the Pacific Ocean		a giobal scale	
		side and rivers in Yamaguchi Prefecture and			
		northward on the Sea of Japan side in Japan			
		Bioaccumulation of chemicals is said to be			
		moderate			
	Dace	Distributed widely in freshwater	• Lake Biwa, Riv. Ado	Follow-up of the	
	(Tribolodon	environments throughout Japan	(Takashima City)	environmental fate	
	hakonensis)	Preys mainly on insects		and persistency in	
				specific areas	
	Spanish mackerel	Distributed in subtropical and temperate	• Mouth of Riv. Oita (Oita	Follow-up of the	
	(Scomberomorus	zones of East Asia	City)	environmental fate	
	niphonius)	Lives in coastal surface layer from		and persistency in	
		spring to autumn and in deeper water in		specific areas	
		winter			
	Rock greenling	Lives in cold-current areas of Hidaka	 Offshore of Kushiro 	Follow-up of the	
	(Hexagrammos	and eastward (Hokkaido)		environmental fate	
T	lagocephalus)	Larger than the greenling and eats fish smaller than its mouth size at the sea		and persistency in	
Fish		bottom		specific areas	
I	Sea bass	Distributed around the shores of various	• Tokyo Bay	Follow-up of the	Monitored
	(Lateolabrax	areas in Japan, the Korean Peninsula, and	Offshore of Ogishima	environmental fate	in the 8
	japonicus)	the coastal areas of China	Island, Port of Kawasaki	and persistency in	areas with
	jupomensj	Sometimes lives in a freshwater	• Osaka Bay	specific areas	different
		environment and brackish-water regions		1	levels of
		during its life cycle	Offshore of Himeji		persistency
		Bioaccumulation of chemicals is said to	• Nakaumi		-
		be high	 Hiroshima Bay 		
			• Mouth of Riv. Shimanto		
			 West Coast of Satsuma 		
			Peninsula		
	Striped mullet	Distributed widely in the worldwide	• Nagoya Port	Follow-up of the	
	(Mugil cephalus)	tropical zones and subtropical zones	 Offshore of Joban 	environmental fate	
		Sometimes lives in a freshwater		and persistency in	
		environment and brackish-water regions		specific areas	
	Chub mackerel	during its life cycle	Offehans of I-1	Follow-up of the	
	(Scomber	Ddistributed widely in subtropical zones and temperate zones around the world.	 Offshore of Joban 	environmental fate	
	(Scomber			and persistency in	
	ianonicus)	Seasonal migration occurs with a	1		
	japonicus)	Seasonal migration occurs with a northward migration in spring and a		specific areas	
	japonicus)	northward migration in spring and a		specific areas	
		northward migration in spring and a southward migration in autumn.	• Nakaousuku Bay		
	Okinawa seabeam	northward migration in spring and a southward migration in autumn. Distributed around Nansei Shoto	• Nakagusuku Bay	Follow-up of the	
		northward migration in spring and a southward migration in autumn. Distributed around Nansei Shoto (Ryukyu Islands)	• Nakagusuku Bay	Follow-up of the environmental fate	
	Okinawa seabeam (Acanthopagrus	northward migration in spring and a southward migration in autumn. Distributed around Nansei Shoto	• Nakagusuku Bay	Follow-up of the environmental fate and persistency in	
	Okinawa seabeam (Acanthopagrus sivicolus)	northward migration in spring and a southward migration in autumn. Distributed around Nansei Shoto (Ryukyu Islands) Lives in coral reefs and in bays into which rivers flow		Follow-up of the environmental fate and persistency in specific areas	
ds	Okinawa seabeam (Acanthopagrus sivicolus) Great Cormorant	northward migration in spring and a southward migration in autumn. Distributed around Nansei Shoto (Ryukyu Islands) Lives in coral reefs and in bays into which rivers flow Distributed widely throughout Japan	• Tikubushima Island,	Follow-up of the environmental fate and persistency in	
Birds	Okinawa seabeam (Acanthopagrus sivicolus)	northward migration in spring and a southward migration in autumn. Distributed around Nansei Shoto (Ryukyu Islands) Lives in coral reefs and in bays into which rivers flow		Follow-up of the environmental fate and persistency in specific areas Follow-up of the	

* Because there were the examples of survey that obtained the eggs in other countries, the eggs of great cormorants were taken at ather area in this survey. The results were treated as the reference values.

Table 3-3-1 Basic data of st	pecimens (bivalves as	wildlife) in the Environm	nental Monitoring in FY 2021

Bivalve species and Area	No.	Sampling month	Sex	Number of animals		ength (cm) Average)			/eight (g) Average)		Water content %	Lipid content %
Blue mussel	1	October,	Uncertain	133	7.7 ~	8.8 (8.0)	19.6 ~	68.1 (40.4)	80.5	1.8
(Mytilus galloprovincialis)	2	2021	Uncertain	217	7.0 ~	8.2 (7.6)	18.7 ~	48.1 (32.3)	79.5	1.9
Yamada Bay	3		Uncertain	510	6.7 ~	7.6 (7.1)	15.4 ~	42.8 (27.8)	79.2	2.0
Green mussel	1	October,	Mixed	155	3.1 ~	3.8 (3.4)	2.4 ~	5.0 (3.6)	85.0	1.1
(Perna viridis)	2	2021	Mixed	184	2.9 ~	3.9 (3.3)	2.4 ~	4.4 (3.3)	85.0	1.1
Yokohama Port	3		Mixed	143	3.0 ~	3.7 (3.5)	2.8 ~	4.7 (3.7)	84.0	1.2
Blue mussel	1	August,	Uncertain	30	13.6 ~	16.3 (14.9)	169 ~	319 (209)	76.9	2.5
(Mytilus galloprovincialis)	2	2021	Uncertain	41	13.2 ~	14.7 (14.0)	146 ~	244 (175)	77.6	2.7
Coast of Noto Peninsula	3		Uncertain	53	8.5 ~	13.3 (11.0)	51.5 ~	197 (104)	77.9	2.4

Table 3-3-2 Basic data of specimens (fish as wildlife) in the Environmental Monitoring in FY 2021

Fish species and Area	No.	Sampling	Sex	Number of animals		Le	ength (cm) Average)			Weight (g (Average))	Water content %	Lipid content %
Rock greenling (Hexagrammos	1	October.	Mixed	4	40.0	~	41.0 (40.3)	1,500 ~	1,670 (1,590) 78.8	1.5
lagocephalus)	2	2021	Mixed	4		~	44.0 (39.0	1,100 ~	1,700 (1,330) 79.1	1.4
Offshore of Kushiro	3	-	Mixed	5	39.0	\sim	41.0 (40.2)	1,340 ~	1,600 (1,500) 78.6	0.7
Chum salmon	1	October,	Male	1			64.0	,		3,400		71.9	3.5
(Oncorhynchus keta)	2	2021	Male	1			66.0			3,400		73.6	3.2
Offshore of Kushiro	3		Female	2	64.0	\sim	67.0 (65.5)	3,440 ~	3,550 (3,500) 71.5	1.5
Greenling	1	October,	Uncertain	6	36.0	~	40.0 (37.9)	1229 ~	1334 (1,278) 69.0	5.5
(Hexagrammos otakii)	2	2021	Uncertain	7	35.5	\sim	38.5 (37.0)	1016 ~	1212 (1,098) 70.4	3.9
Yamada Bay	3		Uncertain	10	25.0	\sim	36.5 (31.3	288 ~	999 (671) 71.0	4.7
Greenling	1	December,	Mixed	6	34.0	2	41.0 (37.7)	438 ~	991 (690) 73.7	1.1
(Hexagrammos otakii)	2	2021	Mixed	10	28.5	\sim	33.5 (30.2)	288 ~	634 (368.) 73.8	1.5
Sendai Bay (Matsushima Bay)	3		Mixed	19	19.5	~	27.0 (23.7)	94.9 ~	250 (182) 75.3	1.3
Chub mackerel	1	December,	Uncertain	14	29.5	2	33.6 (31.5)	329 ~	520 (439) 43.4	6.9
(Scomber japonicus)		2021	Uncertain	12	26.5	\sim	29.5 (28.5)	269 ~	322 (295) 37.2	5.9
Offshore of Joban	3		Uncertain	10	26.0	~	27.5 (27.3)	213 ~	269 (254) 47.0	4.6
Sea bass	1	July,	Mixed	4	49.5	2	52.6 (50.4)	1,590 ~	2,120 (1,760) 77.6	1.9
(Lateolabrax japonicus)	2	2021	Mixed	5		~	48.8 (46.4)	1,120 ~	1,360 (1,280) 77.6	1.6
Tokyo Bay	3		Mixed	7	38.3	~	45.0 (41.6)	720 ~	1,090 (981) 79.0	1.1
Sea bass	1	September,	Male	12	25.9	\sim	38.5 (31.5)	264 ~	772 (484) 70.3	22.7
(Lateolabrax japonicus)		2021	Female	6	- • • •	\sim	28.8 (27.9)	280 ~	352 (330) 61.8	10.1
Offshore of Ogishima Island,	3		Female	6	30.1	\sim	37.4 (33.1)	378 ~	700 (518) 65.3	28.1
Port of Kawasaki													
Striped mullet		September,	Uncertain	5		\sim	53.0 (52.0)	1,256 ~	1,572 (1,393) 73.9	2.9
(Mugil cephalus)	2	2020	Uncertain	5		\sim	52.0 (50.7)	1,216 ~	1,403 (1,325)	
Nagoya Port	3		Uncertain	5	48.5	~	58.5 (51.8)	1,095 ~	1,794 (1,386)	
Dace		April,	Male	30		\sim	26.5 (24.3)	142 ~	282 (205) 74.5	3.2
(Tribolodon hakonensis)	2	2021	Female	30		\sim	29.8 (25.3)	188 ~	389 (238) 74.8	3.4
Lake Biwa, Riv. Ado	3		Male	30	22.0	\sim	25.8 (23.8)	140 ~	232 (188) 74.3	3.7
(Takashima City)													
Sea bass	1	October,	Uncertain	7	39.7	\sim	55.9 (46.4)	593 ~	1,582 (933) 60.1	5.6
(Lateolabrax japonicus)		2021	Uncertain	6	40.3	\sim	55.2 (45.3)	514 ~	1,425 (804) 70.3	6.0
Osaka Bay	3		Uncertain	6	42.5	\sim	53.8 (46.5)	729 ~	1,305 (923) 70.5	6.2
Sea bass	1	December,	Female	1			70.0			2,716		78.5	1.5
(Lateolabrax japonicus)		2021	Female	1			62.5			1,925		74.8	2.1
Offshore of Himeji	3		Female	1			67.5		60.0	2,087		79.4	0.5
Sea bass	1	November,	Mixed	10	37.0	~	43.5 (39.5)	690 ~	915 (796) 79.8	1.3
(Lateolabrax japonicus)		2021	Mixed	12		~	37.0 (34.7)	396 ~	715 (572) 78.9	1.2
Nakaumi	3		Mixed	12		~	35.5 (33.4)	412 ~	572 (487) 78.6	1.3
Sea bass	1	November,	Mixed	3	43.5	~	51.0 (47.2)	1,246 ~	1,843 (1,463) 76.0	1.6
(Lateolabrax japonicus)		2021	Female	2		\sim	57.0 (54.0)	1,718 ~	2,402 (2,060) 77.0	
Hiroshima Bay	3		Mixed	3	45.5	~	48.0 (47.0)	1,422 ~	1,539 (1,484) 75.0	2.5
Striped mullet	1	August,	Uncertain	2	58	~	66 (62)	1,000 ~	1,400 (1,200) 66.3	3.7
(Mugil cephalus)	2	2021	Uncertain	2	61	\sim	62 (62)	1,100 ~	1,200 (1,200) 64.6	4.1
Takamatsu Port	3	a	Uncertain	2	0.2	~	63 (62)	- , - 0 0	1,300 (1,200) 65.7	3.4
Sea bass	1	September ~	Uncertain		22.8	~	31.0 (25.1)		476 (312		1.3
(Lateolabrax japonicus)		November,	Uncertain	22	16.8		23.2 (19.5)		290 (162) 76.0	0.5
Mouth of Riv. Shimanto	3	2021	Uncertain	49	13.9	~	17.7 (15.9)	53.9 ~	109 (82.5) 77.3	1.5
(Shimanto City)	1	F 1	F 1	1			71.0			2 000		(5.1	10
Spanish mackerel	1	February,	Fermale	1			71.0			3,000		65.1	4.2
(Scomberomorus niphonius)		2022	Fermale	1			67.0			2,860		69.8	3.2
Mouth of Riv. Oita (Oita City)	3	Decementeri	Fermale	1	40.0		65.0	16.2	6(1	2,600	1 202	69.6	2.5
Sea bass		December,	Mixed	3	40.0		55.0 (46.3)	661 ~	2,003 (1,203) 79.0	0.6
(Lateolabrax japonicus)		2021	Mixed	4	39.0		49.0 (43.4)	757 ~	1,988 (· · ·) 76.0	1.5
West Coast of Satsuma	3		Mixed	4	40.0	~	48.0 (44.1)	671 _~	1,272 (948) 77.0	1.4
Peninsula)		×	F 1		40.0		41.7	40.5.3	1.255	1 (10	1 1 1 2) (2.2	
Okinawa seabeam		January,	Female	3	40.0		41.5 (40.5)	1,355 ~	1,610 (1,463) 63.9	1.5
(Acanthopagrus sivicolus)		2022	Male	3	34.5		38.5 (37.1)	845 ~	965 (918) 69.3	2.4
Nakagusuku Bay	3		Female	3	35.0	~	38.0 (36.0)	900 ~	975 (938) 72.2	1.9

Bird species (Area)	No.	Sampling month	Sex	Number of animals	Length (cm)	Weight (g)	Water content %	Lipid content %
Great Cormorant	1	August,	Female	1	123.5	2,060	68.7	4.2
(Phalacrocorax carbo)	2	2021	Female	1	119.0	1,721		
Lake Biwa(Lake Kita,	3		Male	1	130.0	2,412		
offshore of Tikubushima								
Island)								
Great Cormorant	1	May,	Female	1	108.0	1,735	67.2	3.5
(Phalacrocorax carbo)	2	2021	Female	1	110.0	1,805		
Riv.Tenjin (Kurayoshi City)								

Table 3-3-3 Basic data of specimens (birds as wildlife) in the Environmental Monitoring in FY 2021

(Note 1) The great cormorants (immature) killed as harmful birds were used as specimens.

(Note 2) For Great Cormorant, at Riv.Tenjin (Kurayoshi City), two (2) specimen samples were collected. The target substances were analysed for each place with one (1) specimen sample that is a mixture of equal parts of the two (2) specimen samples.

4. Method for regression analysis and testing

The analysis procedure and the evaluation for the analysis result shown in Fig.2 were carried out by the following method.

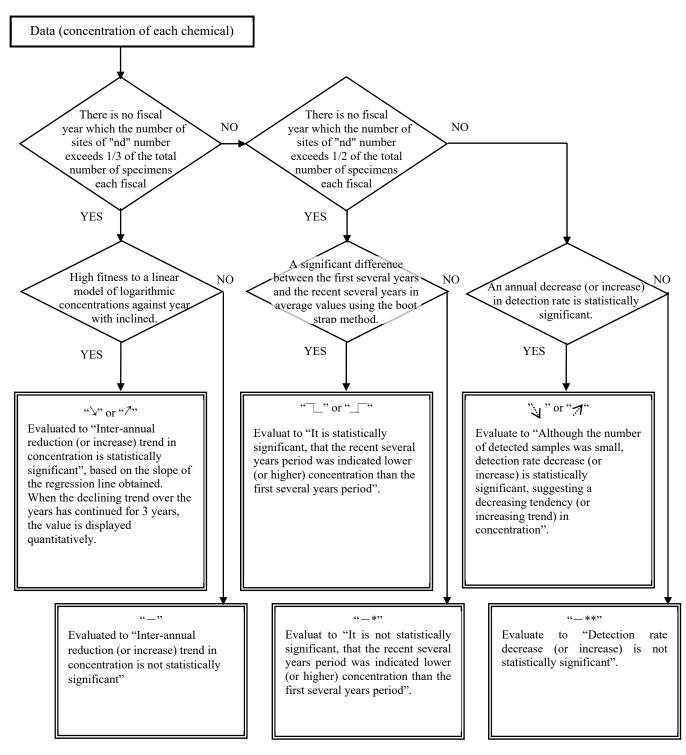


Figure 2 Method for regression analysis and testing

5. Summary of monitoring results

The detection ranges are shown in Table 3-4, and the detection limits are shown in Table 3-5.

The substances which were moniterd FY2021 and past years on the same media, were statistically analysed in order to detect inter-annual trends of increase or decrease. The results of the analyses are shown in Table 3-6

OData were carefully handled on the basis of following points.

• For sediment

At each monitoring point, three (3) specimen samples were collected. And the substances were analysed for each place with one specimen sample that is a mixture of equal parts of the three (3) specimen samples.

• For wildlife

At each monitoring point, three (3) specimen samples were collected in principle. And the substances were analysed for each place with one specimen sample that is a mixture of equal parts of the three (3) specimen samples. • For air

At each monitored site, the sampling was for the monitoring in the warm season (September 27, 2021 \sim November 19, 2021).

1 40	le 3-4-1 List of the detection	-	vater (pg/L)		(pg/g-dry)
No.	Target chemicals	Range	Av.	Range	Av.
		(Frepuency)	AV.	(Frepuency)	AV.
[1]	Total PCBs	nd ~ 5,900 (45/47)	100	33 ~ 450,000 (60/60)	4,900
[2]	НСВ	1.6 ~ 180 (47/47)	6.8	2.5 ~ 12,000 (60/60)	56
[3]	Aldrin				
[4]	Dieldrin				
[5]	Endrin				
	DDTs				
	[6-1] <i>p</i> , <i>p</i> '-DDT	nd ~ 190 (42/47)	2.6	3.8 ~ 17,000 (60/60)	110
	[6-2] <i>p,p</i> '-DDE	0.9 ~ 170 (47/47)	9.2	8.7 ~ 25,000 (60/60)	350
[6]	[6-3] <i>p</i> , <i>p</i> '-DDD	$0.9 \sim 87$ (47/47)	6.3	$1.9 \sim 8,600$ (60/60)	210
	[6-4] <i>o,p</i> '-DDT	nd ~ 33 (30/47)	tr(0.6)	nd ~ 3,200 (58/60)	19
	[6-5] <i>o</i> , <i>p</i> '-DDE	nd ~ 92 (32/47)	tr(0.5)	nd ~ 16,000 (59/60)	19
	[6-6] <i>o</i> , <i>p</i> '-DDD	$tr(0.3) \sim 54$ (47/47)	3.5	$0.4 \sim 2,500$ (60/60)	64
	Chlordanes				
	[7-1] <i>cis</i> -chlordane				
	[7-2] trans-chlordane				
[7]	[7-3] Oxychlordane				
	[7-4] cis-Nonachlor				
	[7-5] trans-Nonachlor				
	Heptachlors		<u> </u>		
	[8-1] Heptachlor				
[8]	[8-2] cis-Heptachlor epoxide				
	[8-3] <i>trans</i> -Heptachlor epoxide				
	Toxaphenes [9-1] Parlar-26				
[9]	[9-2] Parlar-50		 		
	[9-3] Parlar-62				
[10]	Mirex				
د · ۱	HCHs				
	[11-1] α-HCH				
[11]	[11-2] <i>β</i> -HCH				
[1]	[11-3] y-HCH (synonym:Lindane)				
	[11-4] δ-HCH				
[12]	Chlordecone				
[13]	Hexabromobiphenyls				

Table 3-4-1 List of the detection ranges in the Environmental Monitoring in FY2021 (I	Part 1)	

[13] Hexabromobiphenyls
(Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.
(Note 2) "

(Note 3) "tr(X)" indicates that X was below the quantification limit and over the detection limit.

		Surface wa	ter (pg/L)	Sediment (pg/g-dry)			
No.	Target chemicals	Range (Frepuency)	Av.	Range (Frepuency)	Av.		
	Polybromodiphenyl ethers $(Br_4 - Br_{10})$						
	[14-1] Tetrabromodiphenyl ethers						
	[14-2] Pentabromodiphenyl ethers						
[14]	[14-3] Hexabromodiphenyl ethers						
[14]	[14-4] Heptabromodiphenyl ethers						
	[14-5] Octabromodiphenyl ethers						
	[14-6] Nonabromodiphenyl ethers						
	[14-7] Decabromodiphenyl ether	(20) 2 700		(5) (20)			
[15]	Perfluorooctane sulfonic acid (PFOS)	tr(30) ~ 3,700 (47/47)	330	tr(5) ~ 620 (60/60)	52		
[16]	Perfluorooctanoic acid (PFOA)	230 ~ 23,000 (47/47)	1,100	nd ~ 260 (58/60)	24		
[17]	Pentachlorobenzene	1.2 ~ 140 (47/47)	4.8	tr(0.8) ~ 2,300 (60/60)	28		
	Endosulfans	nd ~ 580		nd ~ 53			
[10]	[18-1] α-Endosulfan	(17/47) nd ~ 250	nd	(50/60) nd ~ 57	1.7		
	[18-2] β -Endosulfan	(11/47)	nd	(12/60)	nd		
	1,2,5,6,9,10-Hexabromo cyclododecanes						
	[19-1] <i>α</i> -1,2,5,6,9,10-						
ľ	Hexabromo cyclododecane [19-2] β -1,2,5,6,9,10-						
[19]	Hexabromo cyclododecane [19-3] γ -1,2,5,6,9,10-						
	Hexabromo cyclododecane						
	[19-4] δ-1,2,5,6,9,10- Hexabromo cyclododecane						
	[19-5] <i>ɛ</i> -1,2,5,6,9,10-						
	Hexabromo cyclododecane Total Polychlorinated	nd ~ 170		nd ~ 14,000			
	Naphthalenes	nd ~ 170 (29/47) nd	tr(9)	$nd \sim 14,000$ (59/60) $nd \sim 170$	400		
[21]	Hexachlorobuta-1,3-diene	nd (0/47)	nd	$nd \sim 170$ (3/60)	nd		
	Pentachlorophenol and its salts and esters						
[22]	[22-1] Pentachlorophenol						
	[22-2] Pentachloroanisole						
	Short-chain chlorinated paraffins						
	[23-1] Chlorinated decanes	nd ~ 1,100 (42/47)	tr(500)	nd ~ 4,300 (30/60)	tr(400)		
[23]	[23-2] Chlorinated undecanes	nd ~ 1,200 (26/47)	tr(300)	nd ~ 7,000 (28/60)	tr(500)		
	[23-3] Chlorinated dodecanes	nd ~ 4,900 (13/47)	nd	nd ~ 12,000 (44/60)	tr(900)		
	[23-4] Chlorinated tridecanes	nd ~ 8,600 (7/47)	nd	nd ~ 31,000 (47/60)	1,200		
	Dicofol						
[25]	Perfluorohexane sulfonic acid (PFHxS)	nd ~ 2,300 (44/47)	160	nd ~ 15 (19/60)	nd		

Table 3-4-2 List of the detection ranges in the Environmental Mon	itoring in FY2021 (Part 2)

(Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the

(Note 1) 'Av. Indicates the geometric mean calculated by assuming itd (below the detection limit) to be harf the value of the detection limit.
(Note 2) 'D' means the medium was not monitored.
(Note 3) 'tr(X)' indicates that X was below the quantification limit and over the detection limit.
(Note 4) Chlorinated paraffins with 5 ~ 9 chlorines are target chemicals. The results of short-chain chlorinated paraffins are tentative values obtained in trials among various problems in the measurement method.

		D.1		Wildlife (pg/g-wet) Fish H				Air (pg/m ³)	
No.	Target chemicals	Biba Range	Av.	Range	Av.	Bibal	ves Av.	Range	Av.
		(Frepuency)	Av.	(Frepuency) 800 ~	Av.	(Frepuency) 110,000 ~	Av.	(Frepuency)	Av.
[1]	Total PCBs	490 ~ 7,200 (3/3)	1,500	130,000 (18/18)	13,000	210,000 (2/2)	150,000	17 ~ 340 (35/35)	71
[2]	НСВ	$tr(2) \sim 26$ (3/3)	11	24~950 (18/18)	160	$2,800 \sim 4,200$ (2/2)	3,400	66 ~ 140 (35/35)	96
[3]	Aldrin								
[4]	Dieldrin								
[5]	Endrin								
	DDTs								
	[6-1] <i>p,p</i> '-DDT	28 ~ 420 (3/3)	70	nd ~ 1,500 (17/18)	120	29 ~ 120 (2/2)	59	0.16 ~ 6.3 (35/35)	0.80
	[6-2] <i>p</i> , <i>p</i> '-DDE	88 ~ 960 (3/3)	240	230 ~ 8,500 (18/18)	2,000	64,000 ~ 100,000 (2/2)	80,000	0.43 ~ 21 (35/35)	1.6
[6]	[6-3] <i>p,p</i> '-DDD	5.2 ~ 840 (3/3)	69	26~2,700 (18/18)	320	120 ~ 140 (2/2)	130	nd ~ 0.18 (18/35)	tr(0.05)
	[6-4] <i>o,p</i> '-DDT	8 ~ 93 (3/3)	20	tr(1) ~ 70 (18/18)	24	$tr(1) \sim 3$ (2/2)	tr(2)	0.11 ~ 3.0 (35/35)	0.50
	[6-5] <i>o,p</i> '-DDE	$tr(2) \sim 110$ (3/3)	12	nd ~ 1,600 (17/18)	32	tr(1) (2/2)	tr(1)	nd ~ 0.55 (34/35)	0.17
	[6-6] <i>o,p</i> '-DDD	$tr(2) \sim 760$ (3/3)	33	nd ~ 380 (17/18)	39	$\frac{\operatorname{tr}(4) \sim 8}{(2/2)}$	6	nd ~ 0.16 (27/35)	tr(0.05)
	Chlordanes								
	[7-1] cis-chlordane								
	[7-2] trans-chlordane								
[7]	[7-3] Oxychlordane								
	[7-4] cis-Nonachlor								
	[7-5] trans-Nonachlor								
	Heptachlors								
	[8-1] Heptachlor								
	[8-2] cis-Heptachlor epoxide								
	[8-3] <i>trans</i> -Heptachlor epoxide								
	Toxaphenes								
	[9-1] Parlar-26								
[9]	[9-2] Parlar-50								
	[9-3] Parlar-62								
	Mirex								
	<u>HCHs</u> [11-1] α-HCH								
[1.1.7	[11-2] <i>β</i> -HCH								
[11]	[11-3] y-HCH (synonym:Lindane)								
	[11-4] δ-HCH								
[12]	Chlordecone								

(Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.
(Note 2) "_____"" means the medium was not monitored.
(Note 3) "tr(X)" indicates that X was below the quantification limit and over the detection limit.

		Dile	1	Wildlife (j	00 /	Dila		Air (pg/m ³)		
No.	Target chemicals	Biba Range	Av.	Fis Range	Av.	Biba Range	Av.	Range	Av.	
	Polybromodiphenyl ethers	(Frepuency)		(Frepuency)		(Frepuency)		(Frepuency)		
	$(Br_4 - Br_{10})$									
	[14-1] Tetrabromodiphenyl ethers									
	[14-2] Pentabromodiphenyl ethers									
	[14-3] Hexabromodiphenyl									
[14]	ethers [14-4] Heptabromodiphenyl ethers									
	[14-5] Octabromodiphenyl ethers									
	[14-6] Nonabromodiphenyl ethers									
	[14-7] Decabromodiphenyl ether			. (2) 4 500		500 15 000		0.70		
	Perfluorooctane sulfonic acid (PFOS)	$tr(2) \sim 250$ (3/3)	14	tr(2) ~ 4,500 (18/18)	81	590 ~ 15,000 (2/2)	3,000	$0.70 \sim 6.5$ (35/35)	2.8	
[16]	Perfluorooctanoic acid (PFOA)	nd ~ 16 (2/3)	6	nd ~ 40 (14/18)	tr(4)	46 ~ 410 (2/2)	140	2.6 ~ 42 (35/35)	8.3	
[17]	Pentachlorobenzene	$4 \sim 15$ (3/3)	9	nd ~ 150 (16/18)	21	$300 \sim 470$ (2/2)	380	36 ~ 130 (35/35)	61	
	Endosulfans	```´		(10.10)		(/				
181	[18-1] α-Endosulfan	nd (0/3)	nd	nd (0/18)	nd	nd (0/2)	nd	$0.4 \sim 6.0$ (35/35)	1.4	
10]	[18-2] β-Endosulfan	nd (0/3)	nd	nd (0/18)	nd	nd (0/2)	nd	$nd \sim tr(0.5)$ (5/35)	nd	
	1,2,5,6,9,10-Hexabromo cyclododecanes									
	[19-1] α-1,2,5,6,9,10-									
	Hexabromo cyclododecane [19-2] β -1,2,5,6,9,10-									
19]	Hexabromo cyclododecane [19-3] γ-1,2,5,6,9,10-									
	Hexabromo cyclododecane [19-4] δ-1,2,5,6,9,10-									
	Hexabromo cyclododecane									
	[19-5] ε-1,2,5,6,9,10- Hexabromo cyclododecane									
201	Total Polychlorinated	nd ~ 600	(2	tr(14) ~ 360	((250~330	200	5.3 ~ 1,000	80	
20]	Naphthalenes	(2/3)	62	(18/18)	66	(2/2)	290	(35/35)	80	
	Hexachlorobuta-1,3-diene (reference)	nd ~ tr(5) (1/3)	nd	nd ~ 24 (14/18)	tr(7)	nd (0/2)	nd	1,400 ~ 11,000 (35/35)	2,400	
	Pentachlorophenol and its salts and esters									
22]	[22-1] Pentachlorophenol									
	[22-2] Pentachloroanisole									
	Short-chain chlorinated paraffins	1 (200)		1 700		(200) (00)		(100) 000		
	[23-1] Chlorinated decanes	nd ~ tr(500) (2/3)	tr(200)	nd ~ 700 (4/18)	nd	$tr(300) \sim 600$ (2/2)	tr(400)	tr(100) ~ 900 (35/35)	300	
23]	[23-2] Chlorinated undecanes	nd ~ 800 (1/3)	nd	nd ~ 1,000 (4/18)	nd	$tr(400) \sim 2,300$ (2/2)	1,000	nd ~ 850 (34/35)	290	
-	[23-3] Chlorinated dodecanes	nd ~ 400 (1/3)	nd	$nd \sim tr(300)$ (3/18)	nd	nd ~ 1,000 (1/2)	tr(300)	nd ~ 370 (27/35)	tr(110)	
	[23-4] Chlorinated tridecanes	nd ~ 900 (1/3)	tr(200)	nd ~ 7,000 (2/18)	nd	500 ~ 900 (2/2)	700	$nd \sim tr(200)$ (26/35)	nd	
24]	Dicofol Perfluorohexane sulfonic acid	$nd \sim tr(3)$				10~40				
_				nd ~ 16				$0.46 \sim 6.6$		

Table 3-4-3 List of the detection ranges in the Environmental Monitoring in FY2021	(Part 4)

(Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.
(Note 2) "

(Note 3) "tr(X)" indicates that X was below the quantification limit and over the detection limit.
(Note 3) "tr(X)" indicates that X was below the quantification limit and over the detection limit.
(Note 4) Hexachlorobuta-1,3-diene in air was analysed with the three(3) specimen samples for each place. "Range" is based on the concentrations of the samples and "Frequency" is based on the number of sites or areas.
(Note 5) Chlorinated paraffins with 5 ~ 9 chlorines are target chemicals in wildlife, and Chlorinated paraffins with 4 ~ 7 chlorines are target chemicals in air. The results of short-chain chlorinated paraffins are tentative values obtained in trials among various problems in the measurement method. problems in the measurement method.

	le 3-5-1 List of the quantif			al Monitoring in FY202	
No.	Target chemicals	Surface water (pg/L) 16	Sediment (pg/g-dry) 7.8	Wildlife (pg/g-wet) 33	Air (pg/m ³) 2.4
[1]	Total PCBs	[6]	[2.9]	[10]	[0.8]
[2]	НСВ	1.0 [0.4]	1.3 [0.5]	3 [1]	0.11 [0.04]
[3]	Aldrin				
[4]	Dieldrin				
[5]	Endrin				
	DDTs				
	[6-1] <i>p,p</i> '-DDT	0.8 [0.3]	0.4 [0.2]	6 [2]	0.15 [0.06]
	[6-2] <i>p,p</i> '-DDE	0.3 [0.1]	0.7 [0.3]	3 [1]	0.13 [0.05]
[6]	[6-3] <i>p,p</i> '-DDD	0.8 [0.3]	0.5 [0.2]	2.2 [0.9]	0.13 [0.05]
	[6-4] <i>o,p</i> '-DDT	0.9 [0.3]	0.4 [0.2]	3 [1]	0.08 [0.03]
	[6-5] <i>o,p</i> '-DDE	0.6 [0.2]	0.5 [0.2]	3 [1]	0.10 [0.04]
	[6-6] <i>o,p</i> '-DDD	0.5 [0.2]	0.4 [0.2]	5 [2]	0.10 [0.04]
	Chlordanes				
	[7-1] <i>cis</i> -chlordane				
	[7-2] trans-chlordane				
[7]	[7-3] Oxychlordane				
	[7-4] cis-Nonachlor				
	[7-5] trans-Nonachlor				
	Heptachlors				
	[8-1] Heptachlor				
[8]	[8-2] cis-Heptachlor epoxide				
	[8-3] <i>trans</i> -Heptachlor epoxide				
	Toxaphenes				
	[9-1] Parlar-26				
[9]	[9-2] Parlar-50				
	[9-3] Parlar-62				
[10]	Mirex				
	HCHs				
	[11-1] α-HCH				
[11]	[11-2] <i>β</i> -HCH				
	[11-3] γ-HCH (synonym:Lindane)				
	[11-4] δ-HCH				
[12]	Chlordecone				
[13]	Hexabromobiphenyls				

(Note 1) Each quantification limit is shown above the corresponding [detection limit].
(Note 2) "*" means the quantification [detection] limit is the sum value of congeners.
(Note 3) The same quantification [detection] limit was employed for bivalves, fish and birds as wildlife for each target chemical.
(Note 4) " " means the medium was not monitored.

	le 3-5-2 List of the quantif				
No.	Target chemicals	Surface water (pg/L)	Sediment (pg/g-dry)	Wildlife (pg/g-wet)	Air (pg/m ³)
	Polybromodiphenyl ethers				
	$\frac{(\mathrm{Br}_{4}\sim\mathrm{Br}_{10})}{(\mathrm{Br}_{4}\sim\mathrm{Br}_{10})}$				
	[14-1] Tetrabromodiphenyl				
	ethers [14-2] Pentabromodiphenyl				
	ethers				
	[14-3] Hexabromodiphenyl		l		
	ethers				
[14]	[14-4] Heptabromodiphenyl				
	ethers				
	[14-5] Octabromodiphenyl				
	ethers				
	[14-6] Nonabromodiphenyl		· · · · · · · · · · · · · · · · · · ·		
	ethers				
	[14-7] Decabromodiphenyl				
	ether				
157	Perfluorooctane sulfonic acid	80	6	5	0.18
15]	(PFOS)	[30]	[3]	[2]	[0.07]
161	Perfluorooctanoic acid	90	9	6	0.7
10]	Perfluorooctanoic acid (PFOA)	[40]	[4]	[2]	[0.3]
	Pentachlorobenzene	1.1	0.9	4	0.13
• ']		[0.4]	[0.3]	[1]	[0.05]
	Endosulfans		ļ		
1.07	[18-1] α-Endosulfan	90	1.4	60	0.4
18]		[40]	[0.6]	[20]	[0.2]
	[18-2] β-Endosulfan	30	2.2	18	0.7
		[10]	[0.9]	[6]	[0.3]
	1,2,5,6,9,10-Hexabromo				
	cyclododecanes				
	[19-1] <i>α</i> -1,2,5,6,9,10- Hexabromo cyclododecane				
	[19-2] β -1,2,5,6,9,10-				
	Hexabromo cyclododecane				
19]	[19-3] y-1,2,5,6,9,10-		L		
	Hexabromo cyclododecane				
	[19-4] δ-1,2,5,6,9,10-		·····		
	Hexabromo cyclododecane				
	[19-5] <i>ɛ</i> -1,2,5,6,9,10-				
	Hexabromo cyclododecane				
_	Total Polychlorinated	15	9.7	37	0.7
20]	Naphthalenes	[6]	[3.6]	[13]	[0.3]
	Hexachlorobuta-1,3-diene	180	30	14	40
21]	(reference)	[70]	[10]	[5]	[20]
	Pentachlorophenol and its				
	salts and esters				
221	[22-1] Pentachlorophenol				
<u>[</u> ∠∠	[22-1] remachiorophenol				
	[22-2] Pentachloroanisole				
	Short-chain chlorinated paraffins	7 0 ^	0.00		
	[23-1] Chlorinated decanes	700	800	600	300
		[300]	[300]	[200]	[100]
721	[23-2] Chlorinated undecanes	900 [300]	1,200 [400]	800 [300]	210 [80]
[23]		1,200	1,000	400	220
	[23-3] Chlorinated dodecanes	[500]	[400]	[200]	[80]
		2,000	1,000	500	300
	[23-4] Chlorinated tridecanes	[800]	[400]	[200]	[100]
	D: 01	[000]	[.30]	[===]	[100]
24]	Dicofol				
		70	(5	0.19
25]	Perfluorohexane sulfonic acid	70	6	5	0.18

Table 3-5-2 List of the quantification [detection] limits in the Environmental Monitoring in EV2021 (Part 2)

(Note 1) Each quantification limit is shown above the corresponding [detection limit].
(Note 2) "*" means the quantification [detection] limit is the sum value of congeners.
(Note 3) The same quantification [detection] limit was employed for bivalves, fish and birds as wildlife for each target chemical.
(Note 4) " " means the medium was not monitored.

N	N	Surface water					
No	Name		River area	Lake area	Mouth area	Sea area	
[1]	Total PCBs	Half-life : 7 years [6 ~ 10 years]	Half-life : 7 years [6 ~ 9 years]	Half-life : 7 years [5 ~ 11 years]	Half-life : 11 years [8 ~ 16 years]	-	
[2]	HCB	Half-life : 11 years [9 ~ 14 years]	Half-life : 12 years [9 ~ 16 years]	Ż	Half-life : 9 years [7 ~ 11 years]	7_	
[3]	Aldrin						
[4]	Dieldrin						
[5]	Endrin						
	DDTs						
	[6-1] <i>p,p'</i> -DDT	7	-	Half-life : 5 years [4 ~ 8 years]	۲	7	
	[6-2] <i>p,p'</i> -DDE	7	Ъ	-	-	У	
[6]	[6-3] <i>p,p'</i> -DDD	7	У	7	7	-	
	[6-4] <i>o,p'</i> -DDT	Half-life : 5 years [4 ~ 7 years]	Half-life : 6 years [4 ~ 10 years]	ÿ	Half-life : 5 years [4 ~ 10 years]		
	[6-5] <i>o,p'</i> -DDE		<u>لا</u>	7	7		
	[6-6] <i>o,p'</i> -DDD	-	-	_	_	-	
	Chlordanes						
	[7-1] cis-chlordane						
	[7-2] trans-chlordane	-					
[7]	[7-3] Oxychlordane	-					
	[7-4] cis-Nonachlor	•					
	[7-5] trans-Nonachlor						
	Heptachlors	-	·	·			
503	[8-1] Heptachlor						
[8]	[8-2] cis-Heptachlor epoxide						
	[8-3] trans-Heptachlor epoxide						
	Toxaphenes						
[0]	[9-1] Parlar-26						
[9]	[9-2] Parlar-50	•					
	[9-3] Parlar-62						
[10]	Mirex						
	HCHs						
	[11-1] α-HCH						
[11]	[11-2] β-HCH						
	[11-3] y-HCH (synonym:Lindane)						
	[11-4] <i>δ</i> -HCH						

Table 3-6-1 Results of inter-annual trend analysis from FY2002 to FY2021 (Surface water)

N	News	Surface water						
No	Name		River area	Lake area	Mouth area	Sea area		
	Polybromodiphenyl ethers(Br ₄ ~Br ₁₀)							
[14]	[14-1] Tetrabromodiphenyl ethers							
	[14-2] Pentabromodiphenyl ethers							
	[14-3] Hexabromodiphenyl ether							
	[14-4] Heptabromodiphenyl ethers							
	[14-5] Octabromodiphenyl ethers			ļ				
	[14-6] Nonabromodiphenyl ethers							
	[14-7] Decabromodiphenyl ether							
[15]	Perfluorooctane sulfonic acid (PFOS)	У	-	Half-life : 14 years [9 ~ 25 years]	-	-		
[16]	Perfluorooctanoic acid (PFOA)	Half-life : 10 years [8 ~ 17 years]	7	У	Half-life : 10 years [8 ~ 17 years]	-		
[17]	Pentachlorobenzene	-	Ż	-	-	-		

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 2) " $\underbrace{\checkmark}$ ": An inter-annual trend of decrease was found.

" \sim ": Statistically significant differences between the first several years and the recent several years were found.

": Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency.

"-": An inter-annual trend was not found.

"-*": In case of using the bootstrap methods, there was not a significant difference between the first several years and the recent several years.

"_**": The detection rate was not decreased, there was not a reduction tendency.

(Note 3) "": The inter-annual trend analysis was not analysed because not conducted the survey in FY2021.

(Note 4) The half-life describes the half-life in the environment based on the survey results when the decrease tendency continues for 3 years or more by the maximum likelihood estimation that does not assume parametric residual distribution. The results in [] indicate that the values in the 95% confidence interval.

(Note 5) The classification of monitored sites with area are shown in Table 3-7

(Note 6) Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA): the results of the inter-annual trend analysis from FY2009 to FY2021. Pentachlorobenzene: the results of the inter-annual trend analysis from FY2010 to FY2021

No	Name	Sediment						
INO	Iname		River area	Lake area	Mouth area	Sea area		
[1]	Total PCBs	Half-life : 21 years [14 ~ 38 years]	Half-life : 14 years [10 ~ 23 years]	-	-	Half-life : 20 years [14 ~ 33 years]		
[2]	НСВ	Half-life : 16 years [12 ~ 27 years]	Half-life : 12 years [8 ~ 20 years]	7	-	-		
[3]	Aldrin							
[4]	Dieldrin							
[5]	Endrin							
	DDTs	•••••						
	[6-1] <i>p,p'</i> -DDT	7	-	-	-			
	[6-2] <i>p,p'</i> -DDE	-	-	-	_	_		
[6]	[6-3] <i>p,p'</i> -DDD	7	-	-	-	7		
	[6-4] <i>o,p'</i> -DDT	7	7	-	-	-		
	[6-5] <i>o,p'</i> -DDE	-	-	-	-	-		
	[6-6] <i>o,p'</i> -DDD	-	7	-	-	-		
	Chlordanes							
	[7-1] cis-chlordane							
[7]	[7-2] trans-chlordane							
[7]	[7-3] Oxychlordane							
	[7-4] cis-Nonachlor							
	[7-5] trans-Nonachlor							
	Heptachlors							
101	[8-1] Heptachlor							
[8]	[8-2] cis-Heptachlor epoxide							
	[8-3] trans-Heptachlor epoxide							
	Toxaphenes							
[0]	[9-1] Parlar-26							
[9]	[9-2] Parlar-50							
	[9-2] Parlar-50 [9-3] Parlar-62							
[10]	Mirex							
[10]	HCHs							
	[11-1] α-HCH							
[11]	[11-2] β-HCH							
	[11-3] y-HCH (synonym:Lindane)							
	[11-4] δ-HCH							

Table 3-6-2 Results of inter-annual trend analysis from FY2002 to FY2021 (Sediment)

N	N	Sediment				
No	Name		River area	Lake area	Mouth area	Sea area
	Polybromodiphenyl ethers(Br ₄ ~Br ₁₀)					
[14]	[14-1] Tetrabromodiphenyl ethers					
	[14-2] Pentabromodiphenyl ethers					
	[14-3] Hexabromodiphenyl ether					
	[14-4] Heptabromodiphenyl ethers					
	[14-5] Octabromodiphenyl ethers					
	[14-6] Nonabromodiphenyl ethers					
	[14-7] Decabromodiphenyl ether					
[15]	Perfluorooctane sulfonic acid (PFOS)	Half-life : 10 years [7 ~ 18 years]	-	-	Half-life : 8 years [5 ~ 14 years]	Half-life : 9 years [7 ~ 14 years]
[16]	Perfluorooctanoic acid (PFOA)	Ŕ	7	-	Half-life : 5 years [4 ~ 6 years]	-
[17]	Pentachlorobenzene	-	-	-	-	7

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 2) " $\overline{4}$ ": An inter-annual trend of decrease was found.

" \Box ": Statistically significant differences between the first several years and the recent several years were found.

": Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency.

"-": An inter-annual trend was not found.

"-*": In case of using the bootstrap methods, there was not a significant difference between the first several years and the recent several years "-**": The detection rate was not decreased, there was not a reduction tendency.

(Note 3) "": The inter-annual trend analysis was not analysed because not conducted the survey in FY2021.

(Note 4) The half-life describes the half-life in the environment based on the survey results when the decrease tendency continues for 3 years or more by the maximum likelihood estimation that does not assume parametric residual distribution. The results in [] indicate that the values in the 95% confidence interval.

(Note 5) The classification of monitored sites with area are shown in Table 3-7

(Note 6) Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA): the results of the inter-annual trend analysis from FY2009 to FY2021. Pentachlorobenzene: the results of the inter-annual trend analysis from FY2010 to FY2021.

No	Name	Bivalves	Fish
[1]	Total PCBs	Half-life : 14 years [10~27 years]	4
[2]	НСВ	-	-
[3]	Aldrin		
[4]	Dieldrin		
[5]	Endrin		
	DDTs		
	[6-1] <i>p,p'</i> -DDT	<u> </u>	<u> </u>
	[6-2] <i>p,p'</i> -DDE	<u>۲</u>	-
	[6-3] <i>p,p'</i> -DDD	<u>۲</u>	7
[6]	[6-4] <i>o,p'</i> -DDT	7	Half-life : 7 years [6 ~ 8 years]
	[6-5] <i>o,p'-</i> DDE	Half-life : 7 years [5 ~ 11 years]	Half-life : 11 years [8 ~ 16 years]
	[6-6] <i>o</i> , <i>p</i> '-DDD	<u>ک</u>	-
	Chlordanes		
	[7-1] cis-chlordane		
[7]	[7-2] trans-chlordane		
[7]	[7-3] Oxychlordane		
	[7-4] cis-Nonachlor		
	[7-5] trans-Nonachlor		
	Heptachlors		
[8]	[8-1] Heptachlor		
[0]	[8-2] cis-Heptachlor epoxide		
	[8-3] trans-Heptachlor epoxide		
	Toxaphenes		
[0]	[9-1] Parlar-26		
[9]	[9-2] Parlar-50	_	
	[9-3] Parlar-62		
[10]	Mirex		
	HCHs		
[9]	[11-1] α-HCH		
[11]	[11-2] <i>β</i> -HCH		
	[11-3] y-HCH (synonym:Lindane)		
	[11-4] δ-HCH		

Table 3-6-3 Results of inter-annual trend analysis from FY2002 to FY2021 (Wildlife)

No	Name	Bivalves	Fish
	Polybromodiphenyl ethers(Br ₄ ~Br ₁₀)		
	[14-1] Tetrabromodiphenyl ethers		
	[14-2] Pentabromodiphenyl ethers		
[14]	[14-3] Hexabromodiphenyl ether		
[14]	[14-4] Heptabromodiphenyl ethers		
	[14-5] Octabromodiphenyl ethers		
	[14-6] Nonabromodiphenyl ethers		
	[14-7] Decabromodiphenyl ether		
[15]	Perfluorooctane sulfonic acid (PFOS)	ين لا	-
[16]	Perfluorooctanoic acid (PFOA)	N.	Ň
[17]	Pentachlorobenzene	Ň	_*
	1,2,5,6,9,10-Hexabromo cyclododecanes		
	[19-1] α-1,2,5,6,9,10- Hexabromo cyclododecane		
[15] [16] [17] [19] -	[19-2] <i>β</i> -1,2,5,6,9,10- Hexabromo cyclododecane		
	[19-3] γ-1,2,5,6,9,10- Hexabromo cyclododecane		

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 2) " ↓ ": An inter-annual trend of decrease was found. " ¬ ": Statistically significant differences between the first several years and the recent several years were found.

": Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency.

"-": An inter-annual trend was not found.

"-*": In case of using the bootstrap methods, there was not a significant difference between the values of the first several years and the recent several years.

"-**": The detection rate was not decreased, there was not a reduction tendency.

(Note 3) "": The inter-annual trend analysis was not analysed because not conducted the survey in FY2021.

(Note 4) The half-life describes the half-life in the environment based on the survey results when the decrease tendency continues for 3 years or more by the maximum likelihood estimation that does not assume parametric residual distribution. The results in [] indicate that the values in the 95% confidence interval.

(Note 5) Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA): the results of the inter-annual trend analysis from FY2009 to FY2021. Pentachlorobenzene: the results of the inter-annual trend analysis from FY2010 to FY2021.

NoName[1]Total PCBs[1]Total PCBs[2]HCB[3]Aldrin[4]Dieldrin[5]EndrinDDTs[6-1] $p.p'$ -DDT[6-2] $p.p'$ -DDE[6-3] $p.p'$ -DDD[6-4] $a.p'$ -DDT[6-4] $a.p'$ -DDT	Air n season
[1] Total PCBs Half-life [2] HCB [3] Aldrin [4] Dieldrin [5] Endrin DDTs [6-1] p,p' -DDT [6-2] p,p' -DDE [6] [6-3] [6-4] o,p' -DDT Half-life [6 - 1] [6-4] o,p' -DDT	ע : :13 years : :22 years] -
[1] Total PCBs Half-life [2] HCB [3] Aldrin [4] Dieldrin [5] Endrin DDTs [6-1] p,p' -DDT [6-2] p,p' -DDE [6-3] p,p' -DDT [6-4] o,p' -DDT [6-4] o,p' -DDT	22 years 22 years] - - × × s : 6 years 8 years] × × i : 8 years 0 years] · ·
[3] Aldrin [4] Dieldrin [5] Endrin DDTs $[6-1] p, p'-DDT$ [6-2] $p, p'-DDE$ $[6-3] p, p'-DDE$ [6] [6-3] $p, p'-DDD$ [6-4] $o, p'-DDT$ Half-lift [6] [6-4] $o, p'-DDT$	ie : 6 years 8 years] ie : 8 years 0 years] ju
[4] Dieldrin [5] Endrin DDTs $[6-1] p, p'-DDT$ [6-1] $p, p'-DDT$ [6-2] $p, p'-DDE$ [6] [6-3] [6] [6-4] $o, p'-DDT$ Half-lift [6] [6-4] $o, p'-DDT$	ie : 6 years 8 years] ie : 8 years 0 years] ju
[5] Endrin DDTs [6-1] p,p' -DDT Half-lift [5 ~ 3] p,p' -DDE [6 - 3] p,p' -DDD [6 - 4] o,p' -DDT Half-lift [5 ~ 4] p,p' -DDD Half-lift [6 ~ 1] p,p' -DDD Half-lift [6 ~ 1] p,p' -DDD Half-lift [6 ~ 1] p,p' -DDD Half-lift [6 ~ 1] p,p' -DDT Half-lift [6 ~ 1] p,p' -DT Half-lift [6 ~ 1] p,p' -DT Half-lift [6 ~ 1] p,p' -DT [6 ~ 1] p,p' -DT [6 ~ 1] p,p' -DT [7 ~ 1] $p,$	ie : 6 years 8 years] ie : 8 years 0 years] ju
DDTs [6-1] p,p'-DDT [6-2] p,p'-DDE [6-3] p,p'-DDD [6] [6-4] o,p'-DDT Half-lift [6] [6-4] o,p'-DDT	ie : 6 years 8 years] ie : 8 years 0 years] ju
[6-1] <i>p</i> , <i>p</i> '-DDT [6-2] <i>p</i> , <i>p</i> '-DDE [6] [6-3] <i>p</i> , <i>p</i> '-DDD [6-4] <i>o</i> , <i>p</i> '-DDT Half-lift	ie : 6 years 8 years] ie : 8 years 0 years] ju
$\begin{bmatrix} [6-1] p,p'-DDT \\ \\ [6-2] p,p'-DDE \\ \\ [6] \begin{bmatrix} [6-3] p,p'-DDD \\ \\ \\ [6-4] o,p'-DDT \\ \\ \end{bmatrix} \begin{bmatrix} [6-4] o,p'-DDT \\ \\ \\ \\ \\ \end{bmatrix} \begin{bmatrix} [6-4] o,p'-DDT \\ \\ \\ \\ \\ \end{bmatrix} \begin{bmatrix} [6-4] o,p'-DDT \\ \\ \\ \\ \\ \end{bmatrix} \begin{bmatrix} [6-4] o,p'-DDT \\ \\ \\ \\ \\ \\ \end{bmatrix} \begin{bmatrix} [6-4] o,p'-DDT \\ \\ \\ \\ \\ \\ \\ \end{bmatrix} \begin{bmatrix} [6-4] o,p'-DDT \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	ie : 6 years 8 years] ie : 8 years 0 years] ju
[6-2] <i>p,p'</i> -DDE Half-lifi [6-1] [6-3] <i>p,p'</i> -DDD [6-4] <i>o,p'</i> -DDT Half-lifi	ie : 8 years 0 years]
[6-4] <i>o,p'</i> -DDT	
[6-4] o,p'-DDT Half-life	
[4~	ie : 5 years 7 years]
[6-5] <i>o</i> , <i>p</i> '-DDE Half-lift [5~0	∑ è : 5 years 6 years]
[6-6] <i>o,p'</i> -DDD	7
Chlordanes	
[7-1] cis-chlordane	
[7-2] trans-chlordane	
[7] [7-3] Oxychlordane	
[7-4] cis-Nonachlor	
[7-5] trans-Nonachlor	
Heptachlors	
[8-1] Heptachlor	
[8] [8-2] <i>cis</i> -Heptachlor epoxide	
[8-3] trans-Heptachlor epoxide	
Toxaphenes	
[9-1] Parlar-26	
[9] [9-2] Parlar-50	
[9-3] Parlar-62	
[10] Mirex	
HCHs	
[11-1] α-HCH	
[11] [11-2] β-HCH	
[11-3] y-HCH (synonym:Lindane)	
[11-4] δ-HCH	

Table 3-6-4 Results of inter-annual trend analysis from FY2003 to FY2021 (Air)

N	N	Air
No	Name	Warm season
	Polybromodiphenyl ethers(Br ₄ ~Br ₁₀)	
	[14-1] Tetrabromodiphenyl ethers	
	[14-2] Pentabromodiphenyl ethers	
[14]	[14-3] Hexabromodiphenyl ether	
[14]	[14-4] Heptabromodiphenyl ethers	
	[14-5] Octabromodiphenyl ethers	
	[14-6] Nonabromodiphenyl ethers	
	[14-7] Decabromodiphenyl ether	
[15]	Perfluorooctane sulfonic acid (PFOS)	Half-life : 18 years [14~27 years]
[16]	Perfluorooctanoic acid (PFOA)	7
[17]	Pentachlorobenzene	-

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple (Note 1) Whith the performing producting from Prices was more than 55%, the measurement results were deemed to be in a log-linear regression model.
 (Note 2) " ↘ ": An inter-annual trend of decrease was found.
 " ↘ ": Statistically significant differences between the first several years and the recent several years were found.

": ": Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency. "- ": An inter-annual trend was not found.

"-*": In case of using the bootstrap methods, there was not a significant difference between the values of the first several years and the recent several years.

"-**": The detection rate was not decreased, there was not a reduction tendency.

(Note 3) "": The inter-annual trend analysis was not analysed because not conducted the survey in FY2021.

(Note 4) The half-life describes the half-life in the environment based on the survey results when the decrease tendency continues for 3 years or more by the maximum likelihood estimation that does not assume parametric residual distribution. The results in [] indicate that the values in the 95% confidence interval.

(Note 5) Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA): the results of the inter-annual trend analysis from FY2010 to FY2021. Pentachlorobenzene: the results of the inter-annual trend analysis from FY2007 to FY2021.

Classification	Local	Monitored sites	Monitored media		
	Communities Interference Hokkaido Suzuran-ohashi Bridge, Riv Tokachi(Obihiro City)		Surface water	Sedimen	
River area	Hokkaido		0		
	Iwate Pref.	Ishikarikakokyo Bridge, Mouth of Riv. Ishikari(Ishikari City) Riv. Toyosawa(Hanamaki City)	0	0	
	Sendai City	Hirose-ohashi Bridge, Riv. Hirose(Sendai City)	0	0	
	Yamagata Pref.	Mouth of Riv. Mogami(Sakata City)	0	0	
	Ibaraki Pref.	Tonekamome-ohasi Bridge, Mouth of Riv. Tone(Kamisu City)	0	0	
	Tochigi Pref.	Riv. Tagawa(Utsunomiya City)	0	0	
	Saitama Pref.	Akigaseshusui of Riv. Arakawa	0	0	
	Niigata Pref.	Lower Riv. Shinano(Niigata City)	0	0	
	Toyama Pref.	Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City)	0	0	
	Fukui Pref.	Mishima-bashi Bridge, Riv. Shono(Tsuruga City)	0	0	
	Yamanashi Pref.	Senshu-bashi Bridge, Riv. Arakawa(Kofu City)	0	0	
	Shizuoka Pref.	Riv. Tenryu(Iwata City)	0	0	
	Kyoto City	Miyamae-bashi Bridge, Riv. Katsura(Kyoto City)	0	0	
	Osaka City	Osaka Port	0	0	
	Osaka Ony	Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)	0	0	
	Nara Pref.	Riv. Yamato(Oji Town)		0	
	Wakayama Pref.	Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City)	0	0	
	Kochi Pref.	Mouth of Riv. Shimanto(Shimanto City)	0	0	
	Kumamoto Pref.	Hiraki-bashi Bridge, Riv. Midori(Uto City)	0	U	
	Miyazaki Pref.	Mouth of Riv. Oyodo(Miyazaki City)	0	0	
	Kagoshima Pref.	Riv. Amori(Kirishima City)	0	0	
	Ragosinina i rei.	Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City)	0	0	
Lake area	Akita Pref.	Lake Hachiro	0	0	
Eure area	Nagano Pref.	Lake Suwa(center)	0	0	
	Shiga Pref.	Lake Biwa(center)	Ŭ	0	
	Shiga Hel.	Lake Biwa(center, offshore of Karasaki)	0	0	
River	Chiba City	Mouth of Riv. Hanami(Chiba City)	0	0	
nouth area	Tokyo Met.	Mouth of Riv. Arakawa(Koto Ward)	0	0	
noutil area	ronyo met.	Mouth of Riv. Sumida(Minato Ward)	0	0	
	Kawasaki City	Mouth of Riv. Tama (Kawasaki City)	Ŭ	0	
	Ishikawa Pref.	Mouth of Riv. Sai(Kanazawa City)	0	0	
	Aichi Pref.	Kinuura Port	Ű	0	
	Mie Pref.	Toba Port		0	
	Osaka Pref.	Mouth of Riv. Yamato(Sakai City)	0	0	
	Osaka City	Mouth of Riv. Yodo(Osaka City)	Ŭ	0	
	Tokushima Pref.	Mouth of Riv. Yoshino(Tokushima City)	0	0	
	Kagawa Pref.	Takamatsu Port	0	0	
	Kitakyushu City	Dokai Bay	0	0	
	Oita Pref.	Mouth of Riv. Oita(Oita City)	Ű	0	
	Okinawa Pref.	Naha Port	0	0	
Sea area	Hokkaido	Tomakomai Port	Ŭ	0	
Seaturea	Miyagi Pref.	Sendai Bay(Matsushima Bay)	0	0	
	Fukushima Pref.	Onahama Port	0	0	
	Chiba Pref.	Coast of Ichihara and Anegasaki		0	
	Yokohama City	Yokohama Port	0	0	
	Kawasaki City	Front of Ougi Town, Keihin Canal, Port of Kawasaki	0	0	
	Shizuoka Pref.	Shimizu Port	1	0	
	Aichi Pref.	Nagoya Port	0	0	
	Mie Pref.	Yokkaichi Port	0	0	
	Osaka City	Outside Osaka Port		0	
	Hyogo Pref.	Offshore of Himeji	0	0	
	Kobe City	Kobe Port(center)	0	0	
	Okayama Pref.	Offshore of Mizushima	0	0	
	Hiroshima Pref.	Kure Port	0	0	
		Hiroshima Bay	0	0	
	Yamaguchi Pref.	Tokuyama Bay	0	0	
		Offshore of Ube	0	0	
		Offshore of Hagi	0	0	
	Ehime Pref.	Niihama Port		0	
	Fukuoka City	Hakata Bay		0	
	Saga Pref.	Imari Bay	0	0	
	Nagasaki Pref.	Omura Bay	0	0	

(Note) There are monitored sites which were classified in the area unlike these names by the situations.

In the wake of the monitoring surveys of FY2002~2021, high-sensitivity analysis of PCBs, and HCB were conducted. All these chemicals were detected.

High-sensitivity analysis of DDTs, Perfluorooctane sulfonic acid (PFOS), Perfluorooctanoic acid (PFOA), Pentachlorobenzene, Endosulfans, Polychlorinated Naphthalenes, Hexachlorobuta-1,3-diene, Short-chain chlorinated paraffins and Perfluorohexane sulfonic acid (PFHxS) were also conducted in FY2021.

Except for cases of undetected Endosulfans in wildlife and Hexachlorobuta-1,3-diene in surface water and wildlife (birs), all chemicals were detected.

The monitoring results for each chemical (group) are described below.

[1] Total PCBs

· History and state of monitoring

Polychlorinated biphenyls (PCBs) were used in industry as heat exchange fluids, etc. and were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in June 1974, since the substances are persistent, highly accumulative in living organisms, and chronically toxic. Also the substances are one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series, the substances were monitored in wildlife (bivalves, fish and birds) during the period of FY1978~2001 under the framework of "the Wildlife Monitoring." Under the framework of "The Follow-up Survey of the Status of Pollution by Unintentionally Formed Chemicals," sediment and wildlife (fish) were the monitored media in FY1996 and FY1997, and surface water, sediment, wildlife (fish) and air were the monitored media in FY2000 and FY2001.

Under the framework of the Environmental Monitoring, the substances in surface water, sediment, wildlife (bivalves, fish and birds) and air have been monitored since FY2002.

· Monitoring results

<Surface Water>

The presence of the substances in surface water was monitored at 47 sites, and it was detected at 45 of the 47 valid sites adopting the detection limit of 6pg/L, and the detection range was up to 5,900pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2021, reduction tendencies in specimens from river areas, lake areas and river mouth areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

Total PCBs	Monitored	Geometric				Quantification	Detection	Frequency
(total amount)	year	mean*1	Median	Maximum	Minimum	[Detection] Limit ^{*2}	Sample	Site
	2002	470	330	11,000	60	7.4 [2.5]	114/114	38/38
	2003	530	450	3,100	230	9.4 [2.5]	36/36	36/36
	2004	630	540	4,400	140	14 [5.0]	38/38	38/38
	2005	520	370	7,800	140	10 [3.2]	47/47	47/47
	2006	240	200	4,300	15	9 [3]	48/48	48/48
	2007	180	140	2,700	12	7.6 [2.9]	48/48	48/48
	2008	260	250	4,300	27	7.8 [3.0]	48/48	48/48
	2009	210	170	3,900	14	10 [4]	48/48	48/48
	2010	120	99	2,200	nd	73 [24]	41/49	41/49
Surface water	2011	150	130	2,100	16	4.5 [1.7]	49/49	49/49
(pg/L)	2012	400	280	6,500	72	44 [15]	48/48	48/48
	2013	140	110	2,600	tr(13)	25 [8]	48/48	48/48
	2014	150	120	4,800	16	8.2 [2.9]	48/48	48/48
	2015	200	160	4,200	34	21 [7.3]	48/48	48/48
	2016	140	120	3,100	tr(7.2)	8.4 [2.8]	48/48	48/48
	2017	84	79	2,400	nd	16 [5.5]	46/47	46/47
	2018	150	140	2,600	tr(11)	14 [5]	47/47	47/47
	2019	120	90	3,400	tr(6.6)	12 [4.7]	48/48	48/48
	2020	99	90	8,000	nd	19 [6]	43/46	43/46
	2021	100	81	5,900	nd	16 [6]	45/47	45/47

Stocktaking of the detection of Total PCBs (total amount) in surface water during FY2002~2021

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) *2: The sum value of the Quantification [Detection] limits of each congener

<Sediment>

The presence of the substances in sediment was monitored at 60 sites, and it was detected at all 60 valid sites adopting the detection limit of 2.9 pg/g-dry, and the detection range was $33 \sim 450,000 \text{pg/g-dry}$.

As results of the inter-annual trend analysis from FY2002 to FY2021, reduction tendencies in specimens from river areas and sea areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

Total PCBs	Monitored	Geometric		,	0	Quantification	Detection I	Frequency
(total amount)	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] Limit ^{*2}	Sample	Site
	2002	11,000	11,000	630,000	39	10 [3.5]	189/189	63/63
	2003	9,400	9,500	5,600,000	39	10 [3.2]	186/186	62/62
	2004	8,400	7,600	1,300,000	38	7.9 [2.6]	189/189	63/63
	2005	8,600	7,100	690,000	42	6.3 [2.1]	189/189	63/63
	2006	8,800	6,600	690,000	36	4 [1]	192/192	64/64
	2007	7,400	6,800	820,000	19	4.7 [1.5]	192/192	64/64
	2008	8,700	8,900	630,000	22	3.3 [1.2]	192/192	64/64
	2009	7,600	7,100	1,700,000	17	5.1 [2.1]	192/192	64/64
	2010	6,500	7,800	710,000	nd	660 [220]	56/64	56/64
Sediment	2011	6,300	7,400	950,000	24	12 [4.5]	64/64	64/64
(pg/g-dry)	2012	5,700	6,700	640,000	tr(32)	51 [18]	63/63	63/63
	2013	6,200	8,000	650,000	tr(43)	44 [13]	62/62	62/62
	2014	4,900	5,500	440,000	tr(35)	61 [21]	63/63	63/63
	2015	6,400	7,500	1,100,000	nd	62 [22]	61/62	61/62
	2016	5,300	5,300	770,000	tr(21)	53 [18]	62/62	62/62
	2017	4,600	6,200	610,000	nd	14 [5.0]	61/62	61/62
	2018	5,900	6,500	720,000	nd	170 [55]	58/61	58/61
	2019	5,700	7,900	640,000	37	8.5 [3.3]	61/61	61/61
	2020	4,600	6,200	400,000	30	8.2 [3.1]	58/58	58/58
	2021	4,900	4,800	450,000	33	7.8 [2.9]	60/60	60/60

Stocktaking of the detection of Total PCBs (total amount) in sediment during FY2002~2021

(Note 1) *1 : Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002~2009.

(Note 2) 2: The sum value of the Quantification [Detection] limits of each congener

<Wildlife>

The presence of the substances in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 10pg/g-wet, and the detection range was $490 \sim 7,200pg/g$ -wet. For fish, the presence of the substances was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 10pg/g-wet, and the detection range was $800 \sim 130,000pg/g$ -wet. For birds, the presence of the substances was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 10pg/g-wet, and the detection areas adopting the detection limit of 10pg/g-wet, and the detected at both valid areas adopting the detection limit of 10pg/g-wet, and the detection range was $110,000 \sim 210,000pg/g$ -wet.

As results of the inter-annual trend analysis from FY2002 to FY2021, reduction tendencies in specimens from bivalves and fish were identified as statistically significant.

Total PCBs (total amount)	year 2002 2003	Geometric mean ^{*1} 8,800	Median	Maximum	Minimum	[Detection]	Sample	Site
	2003	8 800				Limit ^{*2}		Site
	2003		28,000	160,000	200	25 [8.4]	38/38	8/8
		11,000	20,000 9,600	130,000	1,000	50 [17]	30/30	6/6
	2004	11,000	11,000	150,000	1,500	85 [29]	31/31	7/7
	2005	11,000	13,000	85,000	920	69 [23]	31/31	7/7
	2006	8,500	8,600	77,000	690	42 [14]	31/31	7/7
	2007	9,000	11,000	66,000	980	46 [18]	31/31	7/7
	2008	8,600	8,600	69,000	870	47 [17]	31/31	7/7
	2009	8,700	11,000	62,000	780	32 [11]	31/31	7/7
	2010	9,200	11,000	46,000	1,500	52 [20]	6/6	6/6
Bivalves	2011	8,900	17,000	65,000	820	220 [74]	4/4	4/4
(pg/g-wet)	2012	6,600	12,000	34,000	680	34 [11]	5/5	5/5
488 /	2013	5,200	7,800	44,000	730	44 [14]	5/5	5/5
	2014	2,900	2,600	15,000	600	95 [31]	3/3	3/3
	2015	2,400	2,500	9,600	580	52 [17]	3/3	3/3
	2016	2,300	2,300	12,000	420	60 [20]	3/3	3/3
	2017	2,500	1,600	19,000	500	68 [23]	3/3	3/3
	2018	2,000	900	12,000	740	63 [21]	3/3	3/3
	2019	2,200	1,900	17,000	350	33 [11]	3/3	3/3
	2020	1,700	1,100	9,900	470	31 [11]	3/3	3/3
	2021	1,500	980	7,200	490	33 [10]	3/3	3/3
	2002	17,000	8,100	550,000	1,500	25 [8.4]	70/70	14/14
	2003	11,000	9,600	150,000	870	50 [17]	70/70	14/1
	2004	15,000	10,000	540,000	990	85 [29]	70/70	14/1
	2005	14,000	8,600	540,000	800	69 [23]	80/80	16/1
	2006	13,000	9,000	310,000	990	42 [14]	80/80	16/1
	2007	11,000	6,200	530,000	790	46 [18]	80/80	16/1
	2008	12,000	9,100	330,000	1,200	47 [17]	85/85	17/1
	2009	12,000	12,000	290,000	840	32 [11]	90/90	18/1
	2010	13,000	10,000	260,000	880	52 [20]	18/18	18/1
Fish	2011	14,000	12,000	250,000	900	220 [74]	18/18	18/1
(pg/g-wet)	2012	13,000	14,000	130,000	920	34 [11]	19/19	19/1
	2013	14,000	13,000	270,000	1,000	44 [14]	19/19	19/1
	2014	13,000	10,000	230,000	940	95 [31]	19/19	19/1
	2015	11,000	7,700	180,000	1,300	52 [17]	19/19	19/1
	2016	11,000	8,400	150,000	1,200	60 [20]	19/19	19/1
	2017	10,000	8,300	160,000	860	68 [23]	19/19	19/1
	2018	12,000	12,000	280,000	1,200	63 [21]	18/18	18/1
	2019	12,000	12,000	160,000	1,000	33 [11]	16/16	16/1
	2020	9,300	12,000	85,000	690	31 [11]	18/18	18/1
	2021	13,000	16,000	130,000	800	33 [10]	18/18	18/1
	2002	12,000	14,000	22,000	4,800	25 [8.4]	10/10	2/2
	2003	19,000	22,000	42,000	6,800	50 [17]	10/10	2/2
	2004	9,000	9,400	13,000	5,900	85 [29]	10/10	2/2
	2005	10,000	9,700	19,000	5,600	69 [23]	10/10	2/2
	2006	12,000	9,800 7,800	48,000	5,600	42 [14]	10/10	2/2
	2007	7,600	7,800	15,000	3,900	46 [18]	10/10	2/2
	2008	9,700 5,000	7,400	56,000	3,000	47 [17]	10/10	2/2
	2009	5,900 7,700	5,700	9,500	3,900	32 [11]	10/10	2/2
Birds *3	2010	7,700		9,100 5,400	6,600 5,400	52 [20]	2/2	2/2
	2011 2012	5 000		5,400 6,200	5,400 5,600	220 [74]	1/1	1/1
(pg/g-wet)		5,900		6,200	5,600	34 [11]	2/2	2/2
	2013	360,000		510,000	250,000	44 [14]	2/2	2/2
	2014	46,000		140,000	15,000	95 [31] 52 [17]	2/2	2/2
	2015	21 000		5,000	5,000	52 [17]	1/1	1/1
	2016	31,000		100,000	9,800	60 [20]	2/2	2/2
	2017	39,000		380,000	4,000	68 [23]	2/2	2/2
	2018	110,000		130,000	85,000	63 [21]	2/2	2/2
	2019			190,000	190,000	33 [11]	1/1	1/1
	2020 2021	150,000		74,000 210,000	74,000 110,000	31 [11] 33 [10]	1/1 2/2	1/1 2/2

Stocktaking of the detection of Total PCBs (total amount) in wildlife (bivalves, fish and birds) during FV2002~2021

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002~2009.

(Note 2) *2: The sum value of the Quantification [Detection] limits of each congener
 (Note 3) *3: There is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

<Air>

The presence of the substances in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of $0.8 pg/m^3$, and the detection range was $17 \sim 340 pg/m^3$.

As a result of the inter-annual trend analysis from FY2003 to FY2021, a reduction tendency in specimens from warm season was identified as statistically significant.

Total PCBs		Geometric				Quantification	Detection I	Frequency
(total amount)	Monitored year	mean ^{*1}	Median	Maximum	Minimum	[Detection] Limit ^{*2}	Sample	Site
	2002**	100	100	880	16	99 [33]	102/102	34/34
	2003 Warm season	260	340	2,600	36	6 6 [2 2]	35/35	35/35
	2003 Cold season	110	120	630	17	6.6 [2.2]	34/34	34/34
	2004 Warm season	240	250	3,300	25	2.9 [0.98]	37/37	37/37
	2004 Cold season	130	130	1,500	20	2.9 [0.98]	37/37	37/37
	2005 Warm season	190	210	1,500	23	0 28 [0 14]	37/37	37/37
	2005 Cold season	66	64	380	20	0.38 [0.14]	37/37	37/37
	2006 Warm season	170	180	1,500	21	0.8 [0.3]	37/37	37/37
	2006 Cold season	82	90	450	19	0.8 [0.3]	37/37	37/37
	2007 Warm season	250	290	980	37	0.37 [0.13]	24/24	24/24
	2007 Cold season	72	76	230	25	0.37[0.13]	22/22	22/22
	2008 Warm season	200	170	960	52	0 8 [0 2]	22/22	22/22
	2008 Cold season	93	86	1,500	21	0.8 [0.3]	36/36	36/36
	2009 Warm season	200	190	1,400	43	0.75 [0.26]	34/34	34/34
Air (pg/m³)	2009 Cold season	85	78	380	20	0.75 [0.26]	34/34	34/34
	2010 Warm season	160	150	970	36	7 2 [2 5]	35/35	35/35
	2010 Cold season	84	86	630	19	7.3 [2.5]	35/35	35/35
	2011 Warm season	150	160	660	32	18 [5.9]	35/35	35/35
	2011 Cold season	76	66	320	tr(17)	10[5.5]	37/37	37/37
	2012 Warm season	130	130	840	27	26 [9 5]	35/35	35/35
	2012 Cold season	54	62	280	tr(16)	26 [8.5]	35/35	35/35
	2013 Warm season	140	130	1,100	24	20 [(5]	35/35	35/35
	2013 Cold season	57	55	300	tr(19)	20 [6.5]	35/35	35/35
	2014 Warm season	140	150	1,300	28	4.1 [1.4]	36/36	36/36
	2015 Warm season	98	110	950	17	5.9 [2.0]	35/35	35/35
	2016 Warm season	130	140	1,300	16	7.8 [2.7]	37/37	37/37
	2017 Warm season	120	110	3,300	26	7.0 [2.3]	37/37	37/37
	2018 Warm season	110	100	750	20	2.4 [0.8]	37/37	37/37
	2019 Warm season	89	90	340	27	2.1 [0.8]	36/36	36/36
	2020 Warm season	82	82	360	21	1.8 [0.6]	37/37	37/37
	2021 Warm season	71	70	340	17	2.4 [0.8]	35/35	35/35

Stocktaking of the detection of Total PCBs (total amount) in air during FY2002~2021

(Note 1) *1: The sum value of the Quantification [Detection] limits of each congener (Note 2) *2: In 2002, there was a technical problem in the measuring method for lowly chlorinated congeners, and therefore the values are shown just as reference.

[2] Hexachlorobenzene

· History and state of monitoring

Hexachlorobenzene was used as pesticidal material and was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in August 1979. Also the substance is one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1996 and in FY1998, FY2000 and FY2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," the substance in surface water and sediment was monitored during the period of FY1986~1998 and FY1986~2001, respectively.

Under the framework of the Environmental Monitoring, the substance in surface water, sediment, wildlife (bivalves, fish and birds) and air has been monitored since FY2002.

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 0.4 pg/L, and the detection range was $1.6 \sim 180$ pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2021, reduction tendencies in specimens from river areas, lake areas and river mouth areas were identified as statistically significant. The recent 6 years period was indicated lower concentration than the first 6 years period in specimens from sea areas as statistically significant. And a reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

	Monitored	Geometric				Quantification	Detection 1	Frequency
HCB	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	37	28	1,400	9.8	0.6 [0.2]	114/114	38/38
	2003	29	24	340	11	5 [2]	36/36	36/36
	2004	30	tr(29)	180	tr(11)	30 [8]	38/38	38/38
	2005	21	17	210	tr(6)	15 [5]	47/47	47/47
	2006	16	tr(12)	190	nd	16 [5]	46/48	46/48
	2007	17	14	190	tr(4)	8 [3]	48/48	48/48
	2008	16	13	480	4	3 [1]	48/48	48/48
	2009	15	17	180	2.4	0.5 [0.2]	49/49	49/49
Surface water (pg/L)	2010	tr(10)	tr(8)	120	nd	13 [4]	39/49	39/49
	2011	13	12	140	tr(3)	5 [2]	49/49	49/49
	2012	29	23	330	8.1	2.2 [0.7]	48/48	48/48
	2013	14	11	260	tr(4)	7 [2]	48/48	48/48
	2014	12	9.7	200	2.7	0.9 [0.4]	48/48	48/48
	2015	15	13	140	4.2	1.8 [0.6]	48/48	48/48
	2016	13	11	130	4.2	0.9 [0.3]	48/48	48/48
	2017	12	10	180	2.9	2.1 [0.8]	47/47	47/47
	2018	16	11	380	4.0	1.5 [0.6]	47/47	47/47
	2019	10	10	630	nd	8 [3]	46/48	46/48
	2020	7.9	6.1	600	2.7	2.0 [0.8]	46/46	46/46
	2021	6.8	5.5	180	1.6	1.0 [0.4]	47/47	47/47

Stocktaking of the detection of Hexachlorobenzene in surface water during FY2002~2021

(Note) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

The presence of the substance in sediment was monitored at 60 sites, and it was detected at all 60 valid sites adopting the detection limit of 0.5 pg/g-dry, and the detection range was $2.5 \sim 12,000 \text{ pg/g-dry}$.

As results of the inter-annual trend analysis from FY2002 to FY2021, reduction tendencies in specimens from river areas and lake areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

	Monitored	Geometric				Quantification	Detection l	Frequency
HCB	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	240	200	19,000	7.6	0.9 [0.3]	189/189	63/63
	2003	160	120	42,000	5	4 [2]	186/186	62/62
	2004	140	100	25,000	tr(6)	7 [3]	189/189	63/63
	2005	170	130	22,000	13	3 [1]	189/189	63/63
	2006	180	120	19,000	10	2.9 [1.0]	192/192	64/64
	2007	140	110	65,000	nd	5 [2]	191/192	64/64
	2008	160	97	29,000	4.4	2.0 [0.8]	192/192	64/64
	2009	150	120	34,000	nd	1.8 [0.7]	190/192	64/64
	2010	130	96	21,000	4	3 [1]	64/64	64/64
Sediment	2011	150	110	35,000	11	7 [3]	64/64	64/64
(pg/g-dry)	2012	100	110	12,000	3	3 [1]	63/63	63/63
	2013	120	91	6,600	7.2	5.3 [1.8]	63/63	63/63
	2014	95	85	5,600	tr(4)	6 [2]	63/63	63/63
	2015	100	90	17,000	4	3 [1]	62/62	62/62
	2016	84	74	6,400	4	3 [1]	62/62	62/62
	2017	82	65	11,000	3	3 [1]	62/62	62/62
	2018	100	79	8,900	3.1	1.3 [0.5]	61/61	61/61
	2019	88	85	10,000	4.5	0.9 [0.4]	61/61	61/61
	2020	85	78	9,800	3.9	1.3 [0.5]	58/58	58/58
	2021	56	56	12,000	2.5	1.3 [0.5]	60/60	60/60

Stocktaking of the detection of Hexachlorobenzene in sediment during FY2002~2021

(Note) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $tr(2) \sim 26pg/g$ -wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was 24 ~ 950pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 1pg/g-wet, and the detection range was 2,800 ~ 4,200pg/g-wet.

Stocktaking of the	e detection of I	Hexachlorob	enzene in	wildlife	(bivalves,	fish and birds)) during	FY2002~2021
	Monitored	Geometric				Quantif	ication	Detection Frequence

HCB Bivalves (pg/g-wet) Fish	year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2002 2003 2004 2005 2006 2007 2008	Geometric mean* 21 44 32 51 46 37 38 34 34 45 39 32 34 45 39 32 34 35 38 41 21 23 9 11 140 180 230 180 180 160 170	Median 22 27 31 28 22 24 32 48 34 38 39 26 22 26 23 16 14 26 180 170 210 160 220 140	Maximum 330 660 80 450 340 400 240 200 210 920 340 250 100 120 150 99 28 65 30 26 910 1,500 1,800 1,700 1,400	Minimum 2.4 tr(21) 14 19 11 11 13 12 tr(4) 4 10 nd 15 tr(14) 17 26 14 12 tr(2) tr(2) 19 28 26 29 25	[Detection] Limit 0.18 [0.06] 23 [7.5] 14 [4.6] 11 [3.8] 3 [1] 7 [3] 7 [3] 4 [2] 5 [2] 4 [1] 8.4 [2.8] 31 [10] 10 [3] 20 [6.5] 8.1 [2.7] 3.9 [1.3] 3.3 [1.1] 3 [1] 3 [1] 0.18 [0.06] 23 [7.5] 14 [4.6] 11 [3.8] 3 [1] 7 [2]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 3/31 3/3 3/3	Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7
(pg/g-wet) Fish	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2002 2003 2004 2005 2006 2007 2008	$\begin{array}{c} 44\\ 32\\ 51\\ 46\\ 37\\ 38\\ 34\\ 45\\ 39\\ 32\\ 34\\ 45\\ 39\\ 32\\ 34\\ 35\\ 38\\ 41\\ 21\\ 23\\ 9\\ 11\\ 140\\ 180\\ 230\\ 180\\ 180\\ 180\\ 160\\ \end{array}$	$\begin{array}{c} 27\\ 31\\ 28\\ 28\\ 22\\ 24\\ 32\\ 48\\ 34\\ 38\\ 39\\ 26\\ 26\\ 22\\ 26\\ 23\\ 16\\ 14\\ 26\\ 180\\ 170\\ 210\\ 160\\ 220\\ \end{array}$	$\begin{array}{c} 660\\ 80\\ 450\\ 340\\ 400\\ 240\\ 200\\ 210\\ 920\\ 340\\ 250\\ 100\\ 120\\ 150\\ 99\\ 28\\ 65\\ 30\\ 26\\ \hline 910\\ 1,500\\ 1,800\\ 1,700\\ 1,400\\ \end{array}$	$\begin{array}{c} {\rm tr}(21)\\ 14\\ 19\\ 11\\ 11\\ 13\\ 12\\ {\rm tr}(4)\\ 4\\ 10\\ {\rm nd}\\ 15\\ {\rm tr}(14)\\ 17\\ 26\\ 14\\ 12\\ {\rm tr}(2)\\ {\rm tr}(2)\\ {\rm tr}(2)\\ 19\\ 28\\ 26\\ 29\\ 25\\ \end{array}$	$\begin{array}{c} 23 \ [7.5] \\ 14 \ [4.6] \\ 11 \ [3.8] \\ 3 \ [1] \\ 7 \ [3] \\ 7 \ [3] \\ 4 \ [2] \\ 5 \ [2] \\ 4 \ [1] \\ 8.4 \ [2.8] \\ 31 \ [10] \\ 10 \ [3] \\ 20 \ [6.5] \\ 8.1 \ [2.7] \\ 3.9 \ [1.3] \\ 3.3 \ [1.1] \\ 3 \ [1] \ [1$	30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 4/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3	6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 4/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3
(pg/g-wet) Fish	2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2002 2003 2004 2005 2006 2007 2008	$\begin{array}{c} 32\\ 51\\ 46\\ 37\\ 38\\ 34\\ 45\\ 39\\ 32\\ 34\\ 45\\ 39\\ 32\\ 34\\ 35\\ 38\\ 41\\ 21\\ 23\\ 9\\ 11\\ 140\\ 180\\ 230\\ 180\\ 180\\ 160\\ \end{array}$	$\begin{array}{c} 31\\ 28\\ 28\\ 22\\ 24\\ 32\\ 48\\ 34\\ 38\\ 39\\ 26\\ 26\\ 26\\ 22\\ 26\\ 23\\ 16\\ 14\\ 26\\ 180\\ 170\\ 210\\ 160\\ 220\\ \end{array}$	$\begin{array}{c} 80\\ 450\\ 340\\ 400\\ 240\\ 200\\ 210\\ 920\\ 340\\ 250\\ 100\\ 120\\ 150\\ 99\\ 28\\ 65\\ 30\\ 26\\ \hline 910\\ 1,500\\ 1,800\\ 1,700\\ 1,400\\ \end{array}$	$\begin{array}{c} 14\\ 19\\ 11\\ 11\\ 13\\ 12\\ tr(4)\\ 4\\ 10\\ nd\\ 15\\ tr(14)\\ 17\\ 26\\ 14\\ 12\\ tr(2)\\ tr(2)\\ tr(2)\\ 19\\ 28\\ 26\\ 29\\ 25\\ \end{array}$	$\begin{array}{c} 14 \ [4.6] \\ 11 \ [3.8] \\ 3 \ [1] \\ 7 \ [3] \\ 7 \ [3] \\ 4 \ [2] \\ 5 \ [2] \\ 4 \ [1] \\ 8.4 \ [2.8] \\ 31 \ [10] \\ 10 \ [3] \\ 20 \ [6.5] \\ 8.1 \ [2.7] \\ 3.9 \ [1.3] \\ 3.3 \ [1.1] \\ 3 \ [1] \ [1] \$	31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 4/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3	7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 4/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3
(pg/g-wet) Fish	2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2002 2003 2004 2005 2006 2007 2008	51 46 37 38 34 45 39 32 34 35 38 41 21 23 9 11 140 180 230 180 180 160	$\begin{array}{c} 28\\ 28\\ 22\\ 24\\ 32\\ 48\\ 34\\ 38\\ 39\\ 26\\ 26\\ 22\\ 26\\ 23\\ 16\\ 14\\ 26\\ 180\\ 170\\ 210\\ 160\\ 220\\ \end{array}$	$\begin{array}{c} 450\\ 340\\ 400\\ 240\\ 200\\ 210\\ 920\\ 340\\ 250\\ 100\\ 120\\ 150\\ 99\\ 28\\ 65\\ 30\\ 26\\ \hline 910\\ 1,500\\ 1,800\\ 1,700\\ 1,400\\ \end{array}$	$ \begin{array}{c} 19\\ 11\\ 11\\ 13\\ 12\\ tr(4)\\ 4\\ 10\\ nd\\ 15\\ tr(14)\\ 17\\ 26\\ 14\\ 12\\ tr(2)\\ tr(2)\\ tr(2)\\ 19\\ 28\\ 26\\ 29\\ 25\\ \end{array} $	$\begin{array}{c} 11 \ [3.8] \\ 3 \ [1] \\ 7 \ [3] \\ 7 \ [3] \\ 4 \ [2] \\ 5 \ [2] \\ 4 \ [1] \\ 8.4 \ [2.8] \\ 31 \ [10] \\ 10 \ [3] \\ 20 \ [6.5] \\ 8.1 \ [2.7] \\ 3.9 \ [1.3] \\ 3.3 \ [1.1] \\ 3 \ [1] \ [1$	31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 4/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3	7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 4/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3
(pg/g-wet) Fish	2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2002 2003 2004 2005 2006 2007 2008	$\begin{array}{r} 46\\ 37\\ 38\\ 34\\ 34\\ 45\\ 39\\ 32\\ 34\\ 35\\ 38\\ 41\\ 21\\ 23\\ 9\\ 11\\ 140\\ 180\\ 230\\ 180\\ 180\\ 160\\ \end{array}$	$\begin{array}{c} 28\\ 22\\ 24\\ 32\\ 48\\ 34\\ 38\\ 39\\ 26\\ 26\\ 22\\ 26\\ 23\\ 16\\ 14\\ 26\\ 180\\ 170\\ 210\\ 160\\ 220\\ \end{array}$	$\begin{array}{c} 340\\ 400\\ 240\\ 200\\ 210\\ 920\\ 340\\ 250\\ 100\\ 120\\ 150\\ 99\\ 28\\ 65\\ 30\\ 26\\ \hline 910\\ 1,500\\ 1,800\\ 1,700\\ 1,400\\ \end{array}$	$\begin{array}{c} 11\\ 11\\ 13\\ 12\\ tr(4)\\ 4\\ 10\\ nd\\ 15\\ tr(14)\\ 17\\ 26\\ 14\\ 12\\ tr(2)\\ tr(2)\\ 19\\ 28\\ 26\\ 29\\ 25\\ \end{array}$	$\begin{array}{c} 3 \ [1] \\ 7 \ [3] \\ 7 \ [3] \\ 4 \ [2] \\ 5 \ [2] \\ 4 \ [1] \\ 8.4 \ [2.8] \\ 31 \ [10] \\ 10 \ [3] \\ 20 \ [6.5] \\ 8.1 \ [2.7] \\ 3.9 \ [1.3] \\ 3.3 \ [1.1] \\ 3 \ [1] \\ 3 \ [1] \\ 3 \ [1] \\ 0.18 \ [0.06] \\ 23 \ [7.5] \\ 14 \ [4.6] \\ 11 \ [3.8] \\ 3 \ [1] \end{array}$	31/31 31/31 31/31 31/31 6/6 4/4 5/5 4/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3	7/7 7/7 7/7 6/6 4/4 5/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
(pg/g-wet) Fish	2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2002 2003 2004 2005 2006 2007 2008	$\begin{array}{c} 37\\ 38\\ 34\\ 34\\ 45\\ 39\\ 32\\ 34\\ 35\\ 38\\ 41\\ 21\\ 23\\ 9\\ 11\\ 140\\ 180\\ 230\\ 180\\ 180\\ 160\\ \end{array}$	$\begin{array}{c} 22\\ 24\\ 32\\ 48\\ 34\\ 38\\ 39\\ 26\\ 26\\ 26\\ 22\\ 26\\ 23\\ 16\\ 14\\ 26\\ 180\\ 170\\ 210\\ 160\\ 220\\ \end{array}$	$\begin{array}{c} 400\\ 240\\ 200\\ 210\\ 920\\ 340\\ 250\\ 100\\ 120\\ 150\\ 99\\ 28\\ 65\\ 30\\ 26\\ \hline 910\\ 1,500\\ 1,800\\ 1,700\\ 1,400\\ \hline \end{array}$	$\begin{array}{c} 11\\ 13\\ 12\\ tr(4)\\ 4\\ 10\\ nd\\ 15\\ tr(14)\\ 17\\ 26\\ 14\\ 12\\ tr(2)\\ tr(2)\\ 19\\ 28\\ 26\\ 29\\ 25\\ \end{array}$	$\begin{array}{c} 7 \ [3] \\ 7 \ [3] \\ 4 \ [2] \\ 5 \ [2] \\ 4 \ [1] \\ 8.4 \ [2.8] \\ 31 \ [10] \\ 10 \ [3] \\ 20 \ [6.5] \\ 8.1 \ [2.7] \\ 3.9 \ [1.3] \\ 3.3 \ [1.1] \\ 3 \ [1] \\ 3 \ [1] \\ \hline 0.18 \ [0.06] \\ 23 \ [7.5] \\ 14 \ [4.6] \\ 11 \ [3.8] \\ 3 \ [1] \end{array}$	31/31 31/31 31/31 6/6 4/4 5/5 4/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3	7/7 7/7 7/7 6/6 4/4 5/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
(pg/g-wet) Fish	2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2002 2003 2004 2005 2006 2007 2008	$\begin{array}{c} 38\\ 34\\ 34\\ 45\\ 39\\ 32\\ 34\\ 35\\ 38\\ 41\\ 21\\ 23\\ 9\\ 11\\ 140\\ 180\\ 230\\ 180\\ 180\\ 160\\ \end{array}$	$\begin{array}{c} 24\\ 32\\ 48\\ 34\\ 38\\ 39\\ 26\\ 26\\ 22\\ 26\\ 23\\ 16\\ 14\\ 26\\ 180\\ 170\\ 210\\ 160\\ 220\\ \end{array}$	$\begin{array}{c} 240\\ 200\\ 210\\ 920\\ 340\\ 250\\ 100\\ 120\\ 150\\ 99\\ 28\\ 65\\ 30\\ 26\\ \hline 910\\ 1,500\\ 1,800\\ 1,700\\ 1,400\\ \end{array}$	$\begin{array}{c} 13\\ 12\\ tr(4)\\ 4\\ 10\\ nd\\ 15\\ tr(14)\\ 17\\ 26\\ 14\\ 12\\ tr(2)\\ tr(2)\\ 19\\ 28\\ 26\\ 29\\ 25\\ \end{array}$	$\begin{array}{c} 7 \ [3] \\ 4 \ [2] \\ 5 \ [2] \\ 4 \ [1] \\ 8.4 \ [2.8] \\ 31 \ [10] \\ 10 \ [3] \\ 20 \ [6.5] \\ 8.1 \ [2.7] \\ 3.9 \ [1.3] \\ 3.3 \ [1.1] \\ 3 \ [1] \\ 3 \ [1] \\ \hline 0.18 \ [0.06] \\ 23 \ [7.5] \\ 14 \ [4.6] \\ 11 \ [3.8] \\ 3 \ [1] \end{array}$	31/31 31/31 6/6 4/4 5/5 4/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3	7/7 7/7 6/6 4/4 5/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
(pg/g-wet) Fish	2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2002 2003 2004 2005 2006 2007 2008	$\begin{array}{r} 34\\ 34\\ 45\\ 39\\ 32\\ 34\\ 35\\ 38\\ 41\\ 21\\ 23\\ 9\\ 11\\ 140\\ 180\\ 230\\ 180\\ 180\\ 180\\ 160\\ \end{array}$	$\begin{array}{c} 32 \\ 48 \\ 34 \\ 38 \\ 39 \\ 26 \\ 26 \\ 22 \\ 26 \\ 23 \\ 16 \\ 14 \\ 26 \\ 180 \\ 170 \\ 210 \\ 160 \\ 220 \\ \end{array}$	$\begin{array}{c} 200\\ 210\\ 920\\ 340\\ 250\\ 100\\ 120\\ 150\\ 99\\ 28\\ 65\\ 30\\ 26\\ \hline 910\\ 1,500\\ 1,800\\ 1,700\\ 1,400\\ \end{array}$	$\begin{array}{c} 12 \\ tr(4) \\ 4 \\ 10 \\ nd \\ 15 \\ tr(14) \\ 17 \\ 26 \\ 14 \\ 12 \\ tr(2) \\ tr(2) \\ tr(2) \\ 19 \\ 28 \\ 26 \\ 29 \\ 25 \end{array}$	$\begin{array}{c} 4 \ [2] \\ 5 \ [2] \\ 4 \ [1] \\ 8.4 \ [2.8] \\ 31 \ [10] \\ 10 \ [3] \\ 20 \ [6.5] \\ 8.1 \ [2.7] \\ 3.9 \ [1.3] \\ 3.3 \ [1.1] \\ 3 \ [1] \\ 3 \ [1] \\ \hline 0.18 \ [0.06] \\ 23 \ [7.5] \\ 14 \ [4.6] \\ 11 \ [3.8] \\ 3 \ [1] \end{array}$	31/31 6/6 4/4 5/5 4/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3	7/7 6/6 4/4 5/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
(pg/g-wet) Fish	2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2002 2003 2004 2005 2006 2007 2008	34 45 39 32 34 35 38 41 21 23 9 11 140 180 230 180 180 160	$\begin{array}{r} 48\\ 34\\ 38\\ 39\\ 26\\ 26\\ 22\\ 26\\ 23\\ 16\\ 14\\ 26\\ 180\\ 170\\ 210\\ 160\\ 220\\ \end{array}$	21092034025010012015099286530269101,5001,8001,7001,400	$\begin{array}{c} {\rm tr}(4) \\ 4 \\ 10 \\ {\rm nd} \\ 15 \\ {\rm tr}(14) \\ 17 \\ 26 \\ 14 \\ 12 \\ {\rm tr}(2) \\ {\rm tr}(2) \\ {\rm tr}(2) \\ 19 \\ 28 \\ 26 \\ 29 \\ 25 \end{array}$	$\begin{array}{c} 5 \ [2] \\ 4 \ [1] \\ 8.4 \ [2.8] \\ 31 \ [10] \\ 10 \ [3] \\ 20 \ [6.5] \\ 8.1 \ [2.7] \\ 3.9 \ [1.3] \\ 3.3 \ [1.1] \\ 3 \ [1] \\ 3 \ [1] \\ \hline 0.18 \ [0.06] \\ 23 \ [7.5] \\ 14 \ [4.6] \\ 11 \ [3.8] \\ 3 \ [1] \end{array}$	6/6 4/4 5/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3	6/6 4/4 5/5 4/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3
(pg/g-wet) Fish	2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2002 2003 2004 2005 2006 2007 2008	45 39 32 34 35 38 41 21 23 9 11 140 180 230 180 180 160	34 38 39 26 26 22 26 23 16 14 26 180 170 210 160 220	$\begin{array}{r} 920\\ 340\\ 250\\ 100\\ 120\\ 150\\ 99\\ 28\\ 65\\ 30\\ 26\\ \hline 910\\ 1,500\\ 1,800\\ 1,700\\ 1,400\\ \end{array}$	$\begin{array}{c} 4\\ 10\\ nd\\ 15\\ tr(14)\\ 17\\ 26\\ 14\\ 12\\ tr(2)\\ tr(2)\\ 19\\ 28\\ 26\\ 29\\ 25\\ \end{array}$	$\begin{array}{c} 4 \ [1] \\ 8.4 \ [2.8] \\ 31 \ [10] \\ 10 \ [3] \\ 20 \ [6.5] \\ 8.1 \ [2.7] \\ 3.9 \ [1.3] \\ 3.3 \ [1.1] \\ 3 \ [1] \\ 3 \ [1] \\ \hline 0.18 \ [0.06] \\ 23 \ [7.5] \\ 14 \ [4.6] \\ 11 \ [3.8] \\ 3 \ [1] \end{array}$	4/4 5/5 4/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 70/70 70/70 70/70 70/70 80/80 80/80	4/4 5/5 4/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 14/14 14/14 14/14 16/16 16/16
(pg/g-wet) Fish	2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2002 2003 2004 2005 2006 2007 2008	39 32 34 35 38 41 21 23 9 11 140 180 230 180 180 160	38 39 26 26 22 26 23 16 14 26 180 170 210 160 220	$\begin{array}{r} 340\\ 250\\ 100\\ 120\\ 150\\ 99\\ 28\\ 65\\ 30\\ 26\\ \hline 910\\ 1,500\\ 1,800\\ 1,700\\ 1,400\\ \end{array}$	$ \begin{array}{r} 10 \\ nd \\ 15 \\ tr(14) \\ 17 \\ 26 \\ 14 \\ 12 \\ tr(2) \\ tr(2) \\ 19 \\ 28 \\ 26 \\ 29 \\ 25 \\ \end{array} $	$\begin{array}{c} 8.4 \ [2.8] \\ 31 \ [10] \\ 10 \ [3] \\ 20 \ [6.5] \\ 8.1 \ [2.7] \\ 3.9 \ [1.3] \\ 3.3 \ [1.1] \\ 3 \ [1] \\ 3 \ [1] \\ \hline 0.18 \ [0.06] \\ 23 \ [7.5] \\ 14 \ [4.6] \\ 11 \ [3.8] \\ 3 \ [1] \end{array}$	5/5 4/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 70/70 70/70 70/70 70/70 80/80 80/80	5/5 4/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 14/14 14/14 14/14 14/14 16/16 16/16
Fish	2013 2014 2015 2016 2017 2018 2019 2020 2021 2002 2003 2004 2005 2006 2007 2008	$\begin{array}{r} 32\\ 34\\ 35\\ 38\\ 41\\ 21\\ 23\\ 9\\ 11\\ 140\\ 180\\ 230\\ 180\\ 180\\ 160\\ \end{array}$	39 26 26 22 26 23 16 14 26 180 170 210 160 220	$\begin{array}{c} 250 \\ 100 \\ 120 \\ 150 \\ 99 \\ 28 \\ 65 \\ 30 \\ 26 \\ \hline 910 \\ 1,500 \\ 1,800 \\ 1,700 \\ 1,400 \\ \end{array}$	nd 15 tr(14) 17 26 14 12 tr(2) tr(2) 19 28 26 29 25	$\begin{array}{c} 31 \ [10] \\ 10 \ [3] \\ 20 \ [6.5] \\ 8.1 \ [2.7] \\ 3.9 \ [1.3] \\ 3.3 \ [1.1] \\ 3 \ [1] \\ 3 \ [1] \\ \hline 0.18 \ [0.06] \\ 23 \ [7.5] \\ 14 \ [4.6] \\ 11 \ [3.8] \\ 3 \ [1] \end{array}$	4/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 70/70 70/70 70/70 70/70 80/80 80/80	4/5 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 14/14 14/14 14/14 14/14 16/16 16/16
	2014 2015 2016 2017 2018 2019 2020 2021 2002 2003 2004 2005 2006 2007 2008	34 35 38 41 21 23 9 11 140 180 230 180 180 160	$ \begin{array}{r} 26\\ 26\\ 22\\ 26\\ 23\\ 16\\ 14\\ 26\\ 180\\ 170\\ 210\\ 160\\ 220\\ \end{array} $	$ \begin{array}{r} 100\\ 120\\ 150\\ 99\\ 28\\ 65\\ 30\\ 26\\ 910\\ 1,500\\ 1,800\\ 1,700\\ 1,400\\ \end{array} $	$ \begin{array}{r} 15\\ tr(14)\\ 17\\ 26\\ 14\\ 12\\ tr(2)\\ tr(2)\\ 19\\ 28\\ 26\\ 29\\ 25\\ \end{array} $	$\begin{array}{c} 10 \ [3] \\ 20 \ [6.5] \\ 8.1 \ [2.7] \\ 3.9 \ [1.3] \\ 3.3 \ [1.1] \\ 3 \ [1] \\ 3 \ [1] \\ \hline 0.18 \ [0.06] \\ 23 \ [7.5] \\ 14 \ [4.6] \\ 11 \ [3.8] \\ 3 \ [1] \end{array}$	3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 70/70 70/70 70/70 70/70 80/80 80/80	3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 14/14 14/14 14/14 14/14 16/16 16/16
	2015 2016 2017 2018 2019 2020 2021 2002 2003 2004 2005 2006 2007 2008	35 38 41 21 23 9 11 140 180 230 180 180 180 160	26 22 26 23 16 14 26 180 170 210 160 220	$ \begin{array}{r} 120\\ 150\\ 99\\ 28\\ 65\\ 30\\ 26\\ 910\\ 1,500\\ 1,800\\ 1,700\\ 1,400\\ \end{array} $	$\begin{array}{c} tr(14) \\ 17 \\ 26 \\ 14 \\ 12 \\ tr(2) \\ tr(2) \\ 19 \\ 28 \\ 26 \\ 29 \\ 25 \\ \end{array}$	$\begin{array}{c} 20 \ [6.5] \\ 8.1 \ [2.7] \\ 3.9 \ [1.3] \\ 3.3 \ [1.1] \\ 3 \ [1] \\ 3 \ [1] \\ \hline 0.18 \ [0.06] \\ 23 \ [7.5] \\ 14 \ [4.6] \\ 11 \ [3.8] \\ 3 \ [1] \end{array}$	3/3 3/3 3/3 3/3 3/3 3/3 3/3 70/70 70/70 70/70 70/70 80/80 80/80	3/3 3/3 3/3 3/3 3/3 3/3 3/3 14/14 14/14 14/14 14/14 16/16 16/16
	2016 2017 2018 2019 2020 2021 2002 2003 2004 2005 2006 2007 2008	38 41 21 23 9 11 140 180 230 180 180 180 160	22 26 23 16 14 26 180 170 210 160 220	$ \begin{array}{r} 150 \\ 99 \\ 28 \\ 65 \\ 30 \\ 26 \\ \hline 910 \\ 1,500 \\ 1,800 \\ 1,700 \\ 1,400 \\ \end{array} $	17 26 14 12 tr(2) tr(2) 19 28 26 29 25	8.1 [2.7] 3.9 [1.3] 3.3 [1.1] 3 [1] 3 [1] 0.18 [0.06] 23 [7.5] 14 [4.6] 11 [3.8] 3 [1]	3/3 3/3 3/3 3/3 3/3 3/3 70/70 70/70 70/70 70/70 80/80 80/80	3/3 3/3 3/3 3/3 3/3 3/3 14/14 14/14 14/14 16/16 16/16
	2017 2018 2019 2020 2021 2002 2003 2004 2005 2006 2007 2008	41 21 23 9 11 140 180 230 180 180 180 160	26 23 16 14 26 180 170 210 160 220	99 28 65 30 26 910 1,500 1,800 1,700 1,400	26 14 12 tr(2) tr(2) 19 28 26 29 25	3.9 [1.3] 3.3 [1.1] 3 [1] 3 [1] 0.18 [0.06] 23 [7.5] 14 [4.6] 11 [3.8] 3 [1]	3/3 3/3 3/3 3/3 70/70 70/70 70/70 70/70 80/80 80/80	3/3 3/3 3/3 3/3 3/3 14/14 14/14 14/14 16/16 16/16
	2018 2019 2020 2021 2002 2003 2004 2005 2006 2007 2008	21 23 9 11 140 180 230 180 180 160	23 16 14 26 180 170 210 160 220	28 65 30 26 910 1,500 1,800 1,700 1,400	14 12 tr(2) tr(2) 19 28 26 29 25	3.9 [1.3] 3.3 [1.1] 3 [1] 3 [1] 0.18 [0.06] 23 [7.5] 14 [4.6] 11 [3.8] 3 [1]	3/3 3/3 3/3 70/70 70/70 70/70 80/80 80/80	3/3 3/3 3/3 3/3 14/14 14/14 14/14 16/16 16/16
	2019 2020 2021 2002 2003 2004 2005 2006 2007 2008	23 9 11 140 180 230 180 180 160	16 14 26 180 170 210 160 220	65 30 26 910 1,500 1,800 1,700 1,400	12 tr(2) tr(2) 19 28 26 29 25	3 [1] 3 [1] 3 [1] 0.18 [0.06] 23 [7.5] 14 [4.6] 11 [3.8] 3 [1]	3/3 3/3 70/70 70/70 70/70 80/80 80/80	3/3 3/3 3/3 14/14 14/14 14/14 16/16 16/16
	2020 2021 2002 2003 2004 2005 2006 2007 2008	9 11 140 180 230 180 180 180 160	14 26 180 170 210 160 220	30 26 910 1,500 1,800 1,700 1,400	tr(2) tr(2) 19 28 26 29 25	3 [1] 3 [1] 3 [1] 0.18 [0.06] 23 [7.5] 14 [4.6] 11 [3.8] 3 [1]	3/3 3/3 70/70 70/70 70/70 80/80 80/80	3/3 3/3 3/3 14/14 14/14 14/14 16/16 16/16
	2021 2002 2003 2004 2005 2006 2007 2008	11 140 180 230 180 180 180 160	26 180 170 210 160 220	26 910 1,500 1,800 1,700 1,400	tr(2) 19 28 26 29 25	3 [1] 3 [1] 0.18 [0.06] 23 [7.5] 14 [4.6] 11 [3.8] 3 [1]	3/3 70/70 70/70 70/70 80/80 80/80	3/3 14/14 14/14 14/14 16/16 16/16
	2021 2002 2003 2004 2005 2006 2007 2008	11 140 180 230 180 180 180 160	26 180 170 210 160 220	26 910 1,500 1,800 1,700 1,400	tr(2) 19 28 26 29 25	3 [1] 0.18 [0.06] 23 [7.5] 14 [4.6] 11 [3.8] 3 [1]	3/3 70/70 70/70 70/70 80/80 80/80	3/3 14/14 14/14 14/14 16/16 16/16
	2003 2004 2005 2006 2007 2008	180 230 180 180 160	180 170 210 160 220	1,500 1,800 1,700 1,400	19 28 26 29 25	0.18 [0.06] 23 [7.5] 14 [4.6] 11 [3.8] 3 [1]	70/70 70/70 80/80 80/80	14/14 14/14 14/14 16/16 16/16
	2003 2004 2005 2006 2007 2008	230 180 180 160	170 210 160 220	1,800 1,700 1,400	28 26 29 25	23 [7.5] 14 [4.6] 11 [3.8] 3 [1]	70/70 80/80 80/80	14/14 14/14 16/16 16/16
	2004 2005 2006 2007 2008	230 180 180 160	210 160 220	1,800 1,700 1,400	26 29 25	14 [4.6] 11 [3.8] 3 [1]	70/70 80/80 80/80	14/14 16/16 16/16
	2005 2006 2007 2008	180 180 160	160 220	1,700 1,400	29 25	11 [3.8] 3 [1]	80/80 80/80	16/16
	2006 2007 2008	180 160	220	1,400	25	3 [1]	80/80	16/16
	2007 2008	160						
	2008		110	1,500	17	7 [3]	80/80	10/10
		1/0	210	1,500	25	7 [3]	85/85	17/17
	2009	210	180	30,000	29	4 [2]	90/90	18/18
	2010	240	280	1,700	36	5 [2]	18/18	18/18
	2011	260	320	1,500	34	4 [1]	18/18	18/18
(pg/g-wet)	2012	200	300	1,100	33	8.4 [2.8]	19/19	19/19
	2013	240	220	1,500	36	31 [10]	19/19	19/19
	2014	280	340	1,900	37	10[3]	19/19	19/19
	2015	170	150	1,700	43	20 [6.5]	19/19	19/19
	2016	150	150	1,300	24	8.1 [2.7]	19/19	19/19
	2017	190	180	1,100	33	3.9 [1.3]	19/19	19/19
	2018	140	150	900	25	3.3 [1.1]	18/18	18/18
	2019	100	99	1,100	12	3 [1]	16/16	16/16
	2020	110	58	1,100	15	3 [1]	18/18	18/18
	2021	160	160	950	24	3 [1]	18/18	18/18
	2002	1,000	1,200	1,600	560	0.18 [0.06]	10/10	2/2
	2003	1,800	2,000	4,700	790	23 [7.5]	10/10	2/2
	2004	980	1,300	2,200	410	14 [4.6]	10/10	2/2
	2005	1,000	1,100	2,500	400	11 [3.8]	10/10	2/2
	2006	970	1,100	2,100	490	3 [1]	10/10	2/2
	2007	960	1,100	2,000	420	7 [3]	10/10	2/2
	2008	880	1,100	2,500	240	7 [3]	10/10	2/2
	2009	850	910	1,500	400	4 [2]	10/10	2/2
	2010	970		1,900	500	5 [2]	2/2	2/2
Birds *2	2011			460	460	4 [1]	1/1	1/1
(pg/g-wet)	2012	840		1,500	470	8.4 [2.8]	2/2	2/2
	2012	3,900		5,200	2,900	31 [10]	2/2	2/2
	2013	420		5,600	32	10 [3]	2/2	2/2
	2014			760	760	20 [6.5]	1/1	1/1
	2015	1,700		5,300	550	8.1 [2.7]	2/2	2/2
	2010	1,700		4,900	230	3.9 [1.3]	2/2	2/2
	2017	2,800		3,100	2,600	3.3 [1.1]	2/2	2/2
	2018	2,800		3,200	3,200	3 [1]	1/1	1/1
	2019			2,900	2,900	3 [1]	1/1	1/1
	2020	3,400		4,200	2,900	3 [1]	2/2	2/2

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) *2: There is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

<Air>

The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.04 pg/m³, and the detection range was $66 \sim 140$ pg/m³.

		Geometric				Quantification	Detection I	Frequency
HCB	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	99	93	3,000	57	0.9 [0.3]	102/102	34/34
	2003 Warm season	150	130	430	81	2 2 [0 79]	35/35	35/35
	2003 Cold season	94	90	320	64	2.3 [0.78]	34/34	34/34
	2004 Warm season	130	130	430	47	1 1 [0 27]	37/37	37/37
	2004 Cold season	98	89	390	51	1.1 [0.37]	37/37	37/37
	2005 Warm season	88	90	250	27	0 14 [0 024]	37/37	37/37
	2005 Cold season	77	68	180	44	0.14 [0.034]	37/37	37/37
	2006 Warm season	83	89	210	23	0.21 [0.07]	37/37	37/37
	2006 Cold season	65	74	170	8.2	0.21 [0.07]	37/37	37/37
	2007 Warm season	110	100	230	72	0.09 [0.03]	24/24	24/24
	2007 Cold season	77	72	120	55	0.09 [0.03]	22/22	22/22
	2008 Warm season	120	110	260	78	0.22 [0.08]	22/22	22/22
	2008 Cold season	87	83	160	58	0.22 [0.08]	36/36	36/36
	2009 Warm season	110	110	210	78	0.6 [0.2]	34/34	34/34
Air	2009 Cold season	87	87	150	59	0.0 [0.2]	34/34	34/34
(pg/m^3)	2010 Warm season	120	120	160	73	1 8 [0 7]	37/37	37/37
(pg/m)	2010 Cold season	100	96	380	56	1.8 [0.7] 2.3 [0.75]	37/37	37/37
	2011 Warm season	120	110	180	87		35/35	35/35
	2011 Cold season	96	96	160	75		37/37	37/37
	2012 Warm season	120	110	150	84	4 2 [1 4]	36/36	36/36
	2012 Cold season	97	95	150	68	4.3 [1.4]	36/36	36/36
	2013 Warm season	110	110	180	52	2 0 11 21	36/36	36/36
	2013 Cold season	97	97	180	73	3.8 [1.3]	36/36	36/36
	2014 Warm season	150	160	240	84	1.4 [0.5]	36/36	36/36
	2015 Warm season	120	130	170	74	0.5 [0.2]	35/35	35/35
	2016 Warm season	130	130	220	79	0.8 [0.3]	37/37	37/37
	2017 Warm season	130	120	550	73	0.5 [0.2]	37/37	37/37
	2018 Warm season	100	100	140	72	0.4 [0.2]	37/37	37/37
	2019 Warm season	96	99	130	67	0.14 [0.06]	36/36	36/36
	2020 Warm season	100	94	370	63	0.3 [0.1]	37/37	37/37
	2021 Warm season	96	96	140	66	0.11 [0.04]	35/35	35/35

Stocktaking of the detection of Hexachlorobenzene in air during FY2002~2021

[3] Aldrin (references)

· History and state of monitoring

Aldrin had been used as a soil insecticide until FY1971 when the application of the substance was substantially stopped. Its registration under the Agricultural Chemicals Regulation Law was expired in FY1975. It was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Also the substance is the initial POPs under the Stockholm Convention since 2004.

In previous monitoring series until FY2001, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1989, FY1991 and FY1993 under the framework of "the Wildlife Monitoring."

Under the framework of the Environmental Monitoring, the substance had been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002 to FY2009, in wildlife (bivalves, fish and birds) and air in FY2014, in sediment in FY2018.

No monitoring was conducted after FY2019. For reference, the monitoring results up to FY2018 are given below.

Monitoring results until FY2018

<Surface Water>

Stocktaking of the detection of Aldrin in surface water during FY2002~2009

	Monitored	Geometric				Quantification	Detection	Frequency
Aldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.8	0.9	18	nd	0.6 [0.2]	93/114	37/38
	2003	0.9	0.9	3.8	nd	0.6 [0.2]	34/36	34/36
	2004	tr(1.5)	tr(1.8)	13	nd	2 [0.4]	33/38	33/38
Surface Water	2005	tr(0.6)	tr(0.7)	5.7	nd	0.9 [0.3]	32/47	32/47
(pg/L)	2006	nd	nd	4.4	nd	1.7 [0.6]	18/48	18/48
	2007	tr(0.6)	tr(0.6)	9.5	nd	1.0 [0.3]	34/48	34/48
	2008	tr(0.8)	tr(0.7)	21	nd	1.4 [0.6]	26/48	26/48
	2009	0.7	0.9	22	nd	0.7 [0.3]	32/49	32/49

(Note) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Stocktaking of the detection of Aldrin in sediment during FY2002~2018

	Monitored	Geometric				Quantification	Detection I	Frequency
Aldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	14	12	570	nd	6 [2]	149/189	56/63
	2003	19	18	1,000	nd	2 [0.6]	178/186	60/62
	2004	10	10	390	nd	2 [0.6]	170/189	62/63
Sediment	2005	8.4	7.1	500	nd	1.4 [0.5]	173/189	62/63
	2006	10	9.3	330	nd	1.9 [0.6]	184/192	64/64
(pg/g-dry)	2007	7.5	6.7	330	nd	1.8 [0.6]	172/192	60/64
	2008	6	6	370	nd	3 [1]	153/192	56/64
	2009	8.9	7.8	540	nd	0.5 [0.2]	180/192	64/64
	2018	3.7	3.8	270	nd	1.6 [0.6]	50/61	50/61

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted in FY2010 ~2017.

	Monitored	Geometric				Quantification	Detection I	Frequency
Aldrin	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(1.6)	nd	34	nd	4.2 [1.4]	12/38	4/8
	2003	tr(1.7)	tr(0.85)	51	nd	2.5 [0.84]	15/30	3/6
	2004	tr(2.5)	tr(1.6)	46	nd	4.0 [1.3]	16/31	4/7
D' 1	2005	tr(1.8)	nd	84	nd	3.5 [1.2]	11/31	3/7
Bivalves	2006	tr(2)	nd	19	nd	4 [2]	11/31	3/7
(pg/g-wet)	2007	tr(2)	nd	26	nd	5 [2]	5/31	2/7
	2008	tr(2)	nd	20	nd	5 [2]	5/31	3/7
	2009	tr(1.6)	tr(0.8)	89	nd	2.1 [0.8]	16/31	6/7
	2014	nd	nd	nd	nd	1.8 [0.7]	0/3	0/3
	2002	nd	nd	tr(2.0)	nd	4.2 [1.4]	1/70	1/14
	2003	nd	nd	tr(1.9)	nd	2.5 [0.84]	16/70	7/14
	2004	nd	nd	tr(2.4)	nd	4.0 [1.3]	5/70	2/14
Fish (pg/g-wet)	2005	nd	nd	6.4	nd	3.5 [1.2]	11/80	5/16
	2006	nd	nd	tr(2)	nd	4 [2]	2/80	2/16
	2007	nd	nd	tr(2)	nd	5 [2]	2/80	2/16
	2008	nd	nd	tr(2)	nd	5 [2]	1/85	1/17
	2009	nd	nd	3.1	nd	2.1 [0.8]	22/90	7/18
	2014	nd	nd	2.4	nd	1.8 [0.7]	4/19	4/19
	2002	nd	nd	nd	nd	4.2 [1.4]	0/10	0/2
	2003	nd	nd	nd	nd	2.5 [0.84]	0/10	0/2
	2004	nd	nd	nd	nd	4.0 [1.3]	0/10	0/2
D:1- *2	2005	nd	nd	nd	nd	3.5 [1.2]	0/10	0/2
Birds *2	2006	nd	nd	nd	nd	4 [2]	0/10	0/2
(pg/g-wet)	2007	nd	nd	nd	nd	5 [2]	0/10	0/2
	2008	nd	nd	nd	nd	5 [2]	0/10	0/2
	2009	nd	nd	nd	nd	2.1 [0.8]	0/10	0/2
	2014	nd		nd	nd	1.8 [0.7]	0/2	0/2

<Wildlife>

Stocktaking of the detection of Aldrin in wildlife (bivalves, fish and birds) during FY2002~2014

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009. (Note 2) *2: There is no consistency between the results of the ornithological survey in FY2014 and those in previous years

because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted during FY2010~2013.

<Air>

Stocktaking of the detection of Aldrin in air during FY2002~2014
--

		Geometric				Quantification	Detection l	Frequency
Aldrin	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(0.030)	nd	3.2	nd	0.060 [0.020]	41/102	19/34
	2003 Warm season	1.5	1.9	28	nd	0 022 [0 0077]	34/35	34/35
	2003 Cold season	0.55	0.44	6.9	0.030	0.023 [0.0077]	34/34	34/34
	2004 Warm season	tr(0.12)	nd	14	nd	0 15 [0 05]	15/37	15/37
	2004 Cold season	tr(0.08)	nd	13	nd	0.15 [0.05]	14/37	14/37
	2005 Warm season	0.33	0.56	10	nd	0.00.00.021	29/37	29/37
	2005 Cold season	tr(0.04)	nd	1.8	nd	0.08 [0.03]	9/37	9/37
Air	2006 Warm season	0.30	0.35	8.5	nd	0.14 [0.05]	31/37	31/37
(pg/m^3)	2006 Cold season	tr(0.05)	nd	1.1	nd		16/37	16/37
	2007 Warm season	0.58	0.48	19	nd	0.05 [0.02]	35/36	35/36
	2007 Cold season	0.14	0.15	2.1	nd	0.05 [0.02]	34/36	34/36
	2008 Warm season	0.27	0.30	9.4	tr(0.02)	0.04.00.021	25/25	25/25
	2008 Cold season	0.09	0.08	1.3	nd	0.04 [0.02]	22/25	22/25
	2009 Warm season	0.07	nd	10	nd	0.04.00.021	10/25	10/25
	2009 Cold season	tr(0.03)	nd	1.8	nd	0.04 [0.02]	8/24	8/24
	2014 Warm season	nd	nd	17	nd	12 [4]	6/34	6/34

(Note) No monitoring was conducted during FY2010~2013.

[4] Dieldrin (references)

· History and state of monitoring

Dieldrin was used as a pesticide and its application culminated during the period of 1955~1964. The substance had been used as termitecides as a Soil-Residue-Prone Pesticide under the Agricultural Chemicals Regulation Law in 1971, but its registration under the Agricultural Chemicals Regulation Law was expired in FY1975. It had been used for termite control and was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Also the substance is one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series until FY2001, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1996, FY1998, FY2000 and FY2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," the substance in surface water and sediment was monitored during the period of FY1986~1998 and FY1986~2001, respectively.

Under the framework of the Environmental Monitoring, the substance had been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002 to FY2009 and in FY2011 and in surface water, wildlife (bivalves, fish and birds) and air in FY2014, in sediment in FY2018.

No monitoring was conducted after FY2019. For reference, the monitoring results up to FY2018 are given below.

Monitoring results until FY2018

<Surface Water>

Stocktaking of the detection of Dieldrin in surface water during FY2002~2014

	Monitored	Geometric				Quantification	Detection l	Frequency
Dieldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	42	41	940	3.3	1.8 [0.6]	114/114	38/38
	2003	57	57	510	9.7	0.7 [0.3]	36/36	36/36
	2004	55	51	430	9	2 [0.5]	38/38	38/38
	2005	39	49	630	4.5	1.0 [0.34]	47/47	47/47
Surface Water	2006	36	32	800	6	3 [1]	48/48	48/48
(pg/L)	2007	38	36	750	3.1	2.1 [0.7]	48/48	48/48
	2008	36	37	450	3.6	1.5 [0.6]	48/48	48/48
	2009	36	32	650	2.7	0.6 [0.2]	49/49	49/49
	2011	33	38	300	2.1	1.6 [0.6]	49/49	49/49
	2014	28	27	200	2.7	0.5 [0.2]	48/48	48/48

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted in FY2010, FY2012 and FY2013.

<Sediment>

Stocktaking of the detection of Dieldrin in sediment during FY2002~2018

	Monitored	Geometric				Quantification	Detection l	Frequency
Dieldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	70	51	2,300	4	3 [1]	189/189	63/63
	2003	66	56	9,100	nd	4 [2]	184/186	62/62
	2004	65	62	3,700	tr(1.9)	3 [0.9]	189/189	63/63
	2005	61	55	4,200	tr(2)	3 [1]	189/189	63/63
Sediment	2006	61	54	1,500	tr(1.7)	2.9 [1.0]	192/192	64/64
(pg/g-dry)	2007	49	40	2,700	tr(1.2)	2.7 [0.9]	192/192	64/64
	2008	48	43	2,900	tr(0.7)	1.2 [0.5]	192/192	64/64
	2009	51	47	3,000	1.1	0.8 [0.3]	192/192	64/64
	2011	47	44	2,200	2	5 [2]	64/64	64/64
	2018	33	33	860	nd	1.6 [0.6]	60/61	60/61

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted in FY2010.

	Monitored	Geometric				Quantification	Detection 1	Frequency
Dieldrin	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	440	390	190,000	tr(7)	12 [4]	38/38	8/8
	2003	440	160	78,000	46	4.8 [1.6]	30/30	6/6
	2004	630	270	69,000	42	31 [10]	31/31	7/7
	2005	500	140	39,000	34	9.4 [3.4]	31/31	7/7
Bivalves	2006	450	120	47,000	30	7 [3]	31/31	7/7
(pg/g-wet)	2007	380	110	77,000	37	9 [3]	31/31	7/7
	2008	430	150	24,000	47	9 [3]	31/31	7/7
	2009	490	230	28,000	48	7 [2]	31/31	7/7
	2011	390	690	3,800	16	3 [1]	4/4	4/4
	2014	180	300	490	41	3 [1]	3/3	3/3
	2002	290	270	2,400	46	12 [4]	70/70	14/14
	2003	220	200	1,000	29	4.8 [1.6]	70/70	14/14
	2004	250	230	2,800	tr(23)	31 [10]	70/70	14/14
	2005	230	250	1,400	21	9.4 [3.4]	80/80	16/16
Fish	2006	230	220	1,400	19	7 [3]	80/80	16/16
(pg/g-wet)	2007	250	210	1,900	23	9 [3]	80/80	16/16
	2008	240	240	1,300	15	9 [3]	85/85	17/17
	2009	240	190	1,400	29	7 [2]	90/90	18/18
	2011	270	340	1,100	17	3 [1]	18/18	18/18
	2014	270	310	1,000	27	3 [1]	19/19	19/19
	2002	1,100	1,100	1,700	820	12 [4]	10/10	2/2
	2003	1,300	1,400	2,200	790	4.8 [1.6]	10/10	2/2
	2004	600	610	960	370	31 [10]	10/10	2/2
	2005	830	740	1,800	500	9.4 [3.4]	10/10	2/2
Birds *2	2006	700	690	1,300	440	7 [3]	10/10	2/2
(pg/g-wet)	2007	710	710	910	560	9 [3]	10/10	2/2
	2008	680	620	1,300	260	9 [3]	10/10	2/2
	2009	470	420	890	330	7 [2]	10/10	2/2
	2011			770	770	3 [1]	1/1	1/1
	2014	320		530	190	3 [1]	2/2	2/2

<Wildlife>

Stocktaking of the detection of Dieldrin in wildlife (bivalves, fish and birds) during FY2002~2014

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) *2: There is no consistency between the results of the ornithological survey in FY2014 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2010, FY2012 and FY2013.

<Air>

Stocktaking of the detection of Dieldrin in air during FY2002~2014

		Geometric				Quantification	Detection l	Frequency
Dieldrin	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.6	5.4	110	0.73	0.60 [0.20]	102/102	34/34
	2003 Warm season	19	22	260	2.1	2 1 [0 70]	35/35	35/35
	2003 Cold season	5.7	5.2	110	tr(0.82)	2.1 [0.70]	34/34	34/34
	2004 Warm season	17	22	280	1.1	0 22 [0 11]	37/37	37/37
2004 Cold season	5.5	6.9	76	0.81	0.33 [0.11]	37/37	37/37	
	2005 Warm season	14	12	200	1.5	0 54 [0 24]	37/37	37/37
2005 Cold season	3.9	3.6	50	0.88	0.54 [0.24]	37/37	37/37	
	2006 Warm season	15	14	290	1.5	0 2 [0 1]	37/37	37/37
Air	2006 Cold season	4.5	4.2	250	0.7	0.3 [0.1]	37/37	37/37
(pg/m^3)	2007 Warm season	19	22	310	1.3	0.18 [0.07]	36/36	36/36
	2007 Cold season	4.5	3.7	75	0.96		36/36	36/36
	2008 Warm season	14	16	220	1.6	0.24 [0.09]	37/37	37/37
	2008 Cold season	4.9	3.8	72	0.68	0.24 [0.09]	37/37	37/37
	2009 Warm season	13	13	150	0.91	0.06 [0.02]	37/37	37/37
	2009 Cold season	4.5	4.0	80	0.52	0.00 [0.02]	37/37	37/37
	2011 Warm season	12	15	230	0.80	0.42 [0.14]	35/35	35/35
	2011 Cold season	4.3	4.9	96	0.52	0.42 [0.14]	37/37	37/37
	2014 Warm season	11	9.9	160	0.89	0.34 [0.11]	36/36	36/36

(Note) No monitoring was conducted in FY2010, FY2012 and FY2013.

[5] Endrin (references)

· History and state of monitoring

Endrin was used as an insecticide and a rodenticide, but its registration under the Agricultural Chemicals Regulation Law was expired in FY1975. It was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Also the substance is one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series until FY2001, the substance was monitored in wildlife (bivalves, fish and birds) during the periods of FY1978~1989 and FY1991~1993 under the framework of "the Wildlife Monitoring".

Under the framework of the Environmental Monitoring, the substance has been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002 to FY2009, and in surface water, wildlife (bivalves, fish and birds) and air in FY2014, in sediment in FY2018.

No monitoring was conducted after FY2019. For reference, the monitoring results up to FY2018 are given below.

Monitoring results until FY2018

<Surface Water>

Stocktaking of the detection of Endrin in surface water during FY2002~2014

	Monitored	Geometric				Quantification	Detection l	Frequency
Endrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(4.8)	tr(5.5)	31	nd	6.0 [2.0]	101/114	36/38
	2003	5.7	6.0	78	0.7	0.7 [0.3]	36/36	36/36
	2004	7	7	100	tr(0.7)	2 [0.5]	38/38	38/38
	2005	4.0	4.5	120	nd	1.1 [0.4]	45/47	45/47
Surface Water	2006	3.1	3.5	26	nd	1.3 [0.4]	44/48	44/48
(pg/L)	2007	3.5	3.4	25	nd	1.9 [0.6]	46/48	46/48
	2008	3	4	20	nd	3 [1]	45/48	45/48
	2009	2.0	2.3	67	nd	0.7 [0.3]	39/49	39/49
	2011	3.8	4.6	71	nd	1.6 [0.6]	47/49	47/49
	2014	2.5	2.2	25	tr(0.4)	0.5 [0.2]	48/48	48/48

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted in FY2010, FY2012 and FY2013.

<Sediment>

Stocktaking of the detection of Endrin in sediment during FY2002~2018

	Monitored	Geometric		•		Detection l	Frequency	
Endrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	10	10	19,000	nd	6 [2]	141/189	54/63
	2003	12	11	29,000	nd	5 [2]	150/186	53/62
	2004	15	13	6,900	nd	3 [0.9]	182/189	63/63
	2005	12	11	19,000	nd	2.6 [0.9]	170/189	61/63
Sediment	2006	12	10	61,000	nd	4 [1]	178/192	63/64
(pg/g-dry)	2007	11	9	61,000	nd	5 [2]	151/192	55/64
	2008	11	11	38,000	nd	1.9 [0.7]	168/192	61/64
	2009	9.6	8.4	11,000	nd	1.6 [0.6]	168/192	63/64
	2011	8.8	14	1,100	nd	1.1 [0.4]	59/64	59/64
	2018	6.4	5.9	7,500	nd	2.4 [0.9]	48/61	48/61

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted in FY2010, FY2012~2017.

	Monitored	Geometric				Quantification	Detection	Frequency
Endrin	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	42	27	12,000	nd	18 [6]	35/38	7/8
	2003	38	21	5,000	6.3	4.8 [1.6]	30/30	6/6
	2004	65	25	4,600	tr(5.7)	12 [4.2]	31/31	7/7
	2005	39	19	2,100	nd	17 [5.5]	27/31	7/7
Bivalves	2006	40	15	3,100	tr(5)	11 [4]	31/31	7/7
(pg/g-wet)	2007	28	12	3,000	tr(6)	9 [3]	31/31	7/7
	2008	30	10	1,500	tr(6)	8 [3]	31/31	7/7
	2009	38	19	1,400	tr(5)	7 [3]	31/31	7/7
	2011	33	62	110	tr(3)	4 [2]	4/4	4/4
	2014	23	17	84	8	3 [1]	3/3	3/3
	2002	20	24	180	nd	18 [6]	54/70	13/14
	2003	14	10	180	nd	4.8 [1.6]	67/70	14/14
	2004	18	24	220	nd	12 [4.2]	57/70	13/14
	2005	19	tr(16)	2,100	nd	17 [5.5]	58/80	12/16
Fish	2006	13	tr(10)	150	nd	11 [4]	66/80	16/16
(pg/g-wet)	2007	13	12	170	nd	9 [3]	69/80	15/16
	2008	11	10	200	nd	8 [3]	63/85	14/17
	2009	17	12	270	nd	7 [3]	86/90	18/18
	2011	18	19	160	nd	4 [2]	16/18	16/18
	2014	16	16	140	nd	3 [1]	18/19	18/19
	2002	28	52	99	nd	18 [6]	7/10	2/2
	2003	22	30	96	5.4	4.8 [1.6]	10/10	2/2
	2004	tr(11)	25	62	nd	12 [4.2]	5/10	1/2
	2005	18	28	64	nd	17 [5.5]	7/10	2/2
Birds *2	2006	16	23	57	tr(4)	11 [4]	10/10	2/2
(pg/g-wet)	2007	17	28	55	nd	9 [3]	9/10	2/2
	2008	10	26	83	nd	8 [3]	5/10	1/2
	2009	11	17	43	tr(3)	7 [3]	10/10	2/2
	2011			tr(3)	tr(3)	4 [2]	1/1	1/1
	2014	4		5	4	3 [1]	2/2	2/2

<Wildlife>

Stocktaking of the detection of Endrin in wildlife (bivalves, fish and birds) during FY2002~2014

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) *2: There is no consistency between the results of the ornithological survey in FY2014 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2010, FY2012 and FY2013.

<Air>

Stocktaking of the detection of Endrin in air during FY2002~2014

	Endrin Monitored year					Quantification	Detection 1	Frequency
Endrin	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.22	0.28	2.5	nd	0.090 [0.030]	90/102	32/34
	2003 Warm season	0.74	0.95	6.2	0.081	0.042 [0.014]	35/35	35/35
	2003 Cold season	0.23	0.20	2.1	0.042	0.042 [0.014]	34/34	34/34
	2004 Warm season	0.64	0.68	6.5	tr(0.054)	0.14 [0.048]	37/37	37/37
	2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season	0.23	0.26	1.9	nd		36/37	36/37
		tr(0.4)	tr(0.3)	2.9	nd	0.5.[0.2]	27/37	27/37
		nd	nd	0.7	nd	0.5 [0.2] 0.30 [0.10] 0.09 [0.04]	8/37	8/37
		0.31	0.32	5.4	nd	0.20 [0.10]	32/37	32/37
Air	2006 Cold season	nd	nd	5.0	nd	0.30 [0.10]	7/37	7/37
(pg/m^3)	2007 Warm season	0.69	0.73	6.3	tr(0.06)	0.00.00.041	36/36	36/36
	2007 Cold season	0.16	0.13	1.5	nd	0.09 [0.04]	33/36	33/36
	2008 Warm season	0.53	0.68	4.6	tr(0.06)	0 10 [0 04]	37/37	37/37
	2008 Cold season	0.18	0.18	1.8	nd	0.10 [0.04]	35/37	35/37
	2009 Warm season	0.49	0.51	3.4	nd	0.00.00.041	36/37	36/37
	2009 Cold season	0.17	0.15	1.8	nd	0.09 [0.04]	36/37	36/37
	2011 Warm season	0.46	0.62	5.1	nd	0.00.00.11	34/35	34/35
	2011 Cold season	0.16	0.16	1.8	nd	0.09 [0.04]	33/37	33/37
	2014 Warm season	0.39	0.48	2.9	nd	0.20 [0.07]	32/36	32/36

(Note) No monitoring was conducted in FY2010, FY2012 and FY2013.

[6] DDTs

· History and state of monitoring

DDT, along with hexachlorocyclohexanes (HCHs) and drins, was used as insecticides in high volume. Its registration under the Agricultural Chemicals Regulation Law was expired in FY1971. *p,p'*-DDT was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Also the substances are one of the original twelve POPs covered by the Stockholm Convention.

Among several DDT isomers with chlorine at various positions on the aromatic ring, not only p,p'-DDT and o,p'-DDT as active substances but also p,p'-DDE, o,p'-DDE, p,p'-DDD and o,p'-DDD as the environmentally degraded products of DDTs have been the target chemicals in monitoring series since FY1978.

In previous monitoring series, *p,p'*-DDT, *p,p'*-DDE and *p,p'*-DDD had been monitored in wildlife (bivalves, fish and birds) during the period of FY1978~2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," surface water and sediment had been the monitored media during the period of FY1986~1998 and FY1986~2001, respectively. Similarly, *o,p'*-DDT, *o,p'*-DDE and *o,p'*-DDD had been monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1998, FY2000 and FY2001 under the framework of "the Wildlife Monitoring."

Under the framework of the Environmental Monitoring, *p*,*p*'-DDT, *p*,*p*'-DDE, *p*,*p*'-DDD, *o*,*p*'-DDT, *o*,*p*'-DDE and *o*,*p*'-DDD have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002 to FY2010, wildlife (bivalves, fish and birds) and air in FY2013, surface water and sediment in FY2014 and air in FY2015, wildlife (bivalves, fish and birds) and air in FY2018, water, sediment, wildlife (bivalves, fish and birds) and air in FY2018, water, sediment, wildlife (bivalves, fish and birds) and air in FY2018, water, sediment, wildlife (bivalves, fish and birds) and air in FY2018, water, sediment, wildlife (bivalves, fish and birds) and air in FY2018, water, sediment, wildlife (bivalves, fish and birds) and air in FY2018, water, sediment, wildlife (bivalves, fish and birds) and air in FY2018, water, sediment, wildlife (bivalves, fish and birds) and air in FY2018, water, sediment, wildlife (bivalves, fish and birds) and air in FY2018, water, sediment, wildlife (bivalves, fish and birds) and air in FY2018, water, sediment, wildlife (bivalves, fish and birds) and air in FY2018, water, sediment, wildlife (bivalves, fish and birds) and air in FY2021.

Monitoring results

\bigcirc *p,p'*-DDT, *p,p'*-DDE and *p,p'*-DDD

<Surface Water>

p,p'-DDT: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 42 of the 47 valid sites adopting the detection limit of 0.3pg/L, and the detection range was up to 190pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2021, reduction tendencies in specimens from lake areas, river mouth areas and sea areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

p,p'-DDE: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 0.1 pg/L, and the detection range was $0.9 \sim 170$ pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2021, reduction tendencies in specimens from river areas and sea areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

p,p'-DDD: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 0.3 pg/L, and the detection range was $0.9 \sim 87$ pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2021, reduction tendencies in specimens from river areas, lake areas and river mouth areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

	Monitored	Geometric				Quantification	Detection I	Frequency
<i>p,p'</i> -DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	13	11	440	0.25	0.6 [0.2]	114/114	38/38
	2003	14	12	740	tr(2.8)	3 [0.9]	36/36	36/36
	2004	15	14	310	nd	6 [2]	36/38	36/38
	2005	8	9	110	1	4 [1]	47/47	47/47
Surface Water	2006	9.1	9.2	170	tr(1.6)	1.9 [0.6]	48/48	48/48
	2007	7.3	9.1	670	nd	1.7 [0.6]	46/48	46/48
(pg/L)	2008	11	11	1,200	nd	1.2 [0.5]	47/48	47/48
	2009	9.2	8.4	440	0.81	0.15 [0.06]	49/49	49/49
	2010	8.5	7.6	7,500	tr(1.0)	2.4 [0.8]	49/49	49/49
	2014	4.4	3.9	380	nd	0.4 [0.1]	47/48	47/48
	2021	2.6	2.7	190	nd	0.8 [0.3]	42/47	42/47
	Monitored	Geometric				Quantification	Detection l	Frequenc
<i>p,p'</i> -DDE	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	25	26	760	1.3	0.6 [0.2]	114/114	38/38
	2003	26	22	380	5	4 [2]	36/36	36/36
Saufa - Watar	2004	36	34	680	tr(6)	8 [3]	38/38	38/38
	2005	26	24	410	4	6 [2]	47/47	47/47
	2006	24	24	170	tr(4)	7 [2]	48/48	48/48
Surface Water	2007	22	23	440	tr(2)	4 [2]	48/48	48/48
(pg/L)	2008	27	28	350	2.5	1.1 [0.4]	48/48	48/48
	2009	23	23	240	3.4	1.1 [0.4]	49/49	49/49
	2010	14	12	1,600	2.4	2.3 [0.8]	49/49	49/49
	2014	16	17	610	1.9	0.5 [0.2]	48/48	48/48
	2021	9.2	8.0	170	0.9	0.3 [0.1]	47/47	47/47
		<u> </u>				Quantification	Detection l	Frequenc
<i>p,p'</i> -DDD	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	16	18	190	0.57	0.24 [0.08]	114/114	38/38
	2003	19	18	410	4	2 [0.5]	36/36	36/36
	2004	19	18	740	tr(2.4)	3 [0.8]	38/38	38/38
	2005	17	16	130	tr(1.8)	1.9 [0.64]	47/47	47/47
a a w	2006	16	17	99	2.0	1.6 [0.5]	48/48	48/48
Surface Water	2007	15	12	150	tr(1.5)	1.7 0.6	48/48	48/48
(pg/L)	2008	22	20	850	2.0	0.6 [0.2]	48/48	48/48
	2009	14	13	140	1.4	0.4 [0.2]	49/49	49/49
	2010	12	10	970	1.6	0.20 [0.08]	49/49	49/49
	2014	9.0	8.7	87	1.0	1.0 [0.4]	48/48	48/48
	2021	6.3	6.1	87	0.9	0.8 [0.3]	47/47	47/47

(D D D . EX2002 2021

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted during FY2011~2013 and FY2015~2020.

<Sediment>

p,p'-DDT: The presence of the substance in sediment was monitored at 60 sites, and it was detected at all 60 valid sites adopting the detection limit of 0.2pg/g-dry, and the detection range was $3.8 \sim 17,000pg/g$ -dry.

As a result of the inter-annual trend analysis from FY2002 to FY2021, a reduction tendency in specimens from the overall areas in sediment was identified as statistically significant.

p,p'-DDE: The presence of the substance in sediment was monitored at 60 sites, and it was detected at all 60 valid sites adopting the detection limit of 0.3 pg/g-dry, and the detection range was $8.7 \sim 25,000 \text{ pg/g-dry}$.

p,p'-DDD: The presence of the substance in sediment was monitored at 60 sites, and it was detected at all 60 valid sites adopting the detection limit of 0.2 pg/g-dry, and the detection range was $1.9 \sim 8,600$ pg/g-dry.

As results of the inter-annual trend analysis from FY2002 to FY2021, a reduction tendency in specimens from sea areas was identified as statistically significant and a reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

		Geometric				Quantification	Detection 1	Frequency
<i>p,p'</i> -DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	380	240	97,000	tr(5)	6 [2]	189/189	63/63
	2003	290	220	55,000	3	2 [0.4]	186/186	62/62
	2004	460	230	98,000	7	2 [0.5]	189/189	63/63
	2005	360	230	1,700,000	5.1	1.0 [0.34]	189/189	63/63
Sediment	2006	310	240	130,000	4.5	1.4 [0.5]	192/192	64/64
	2007	210	150	130,000	3	1.3 [0.5]	192/192	64/64
(pg/g-dry)	2008	270	180	1,400,000	4.8	1.2 [0.5]	192/192	64/64
	2009	250	170	2,100,000	1.9	1.0 [0.4]	192/192	64/64
	2010	230	200	220,000	9.3	2.8 [0.9]	64/64	64/64
	2014	140	140	12,000	tr(0.2)	0.4 [0.2]	63/63	63/63
	2021	110	100	17,000	3.8	0.4 [0.2]	60/60	60/60
				,		Quantification	Detection 1	
<i>p,p'</i> -DDE	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		
	year	mean*				limit	Sample	Site
	2002	780	630	23,000	8.4	2.7 [0.9]	189/189	63/63
	2003	790	780	80,000	9.5	0.9 [0.3]	186/186	62/62
S. J. J. S.	2004	720	700	39,000	8	3 [0.8]	189/189	63/63
	2005	710	730	64,000	8.4	2.7 [0.94]	189/189	63/63
	2006	710	820	49,000	5.8	1.0 [0.3]	192/192	64/64
Sediment	2007	670	900	61,000	3.2	1.1 [0.4]	192/192	64/64
(pg/g-dry)	2008	920	940	96,000	9.0	1.7 [0.7]	192/192	64/64
	2009	700	660	50,000	6.7	0.8 0.3	192/192	64/64
	2010	680	790	40,000	11	5 [2]	64/64	64/64
	2014	530	610	64,000	11	1.8 [0.6]	63/63	63/63
	2021	350	360	25,000	8.7	0.7 [0.3]	60/60	60/60
				-)		Quantification	Detection	
<i>p,p'</i> -DDD	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		
1.4	year	mean*				limit	Sample	Site
	2002	640	690	51,000	tr(2.2)	2.4 [0.8]	189/189	63/63
	2003	670	580	32,000	3.7	0.9 [0.3]	186/186	62/62
	2004	650	550	75,000	4	2 [0.7]	189/189	63/63
	2005	600	570	210,000	5.2	1.7 [0.64]	189/189	63/63
	2006	560	540	53,000	2.2	0.7 [0.2]	192/192	64/64
Sediment	2007	520	550	80,000	3.5	1.0 [0.4]	192/192	64/64
(pg/g-dry)	2008	740	660	300,000	2.8	1.0 [0.4]	192/192	64/64
	2009	540	560	300,000	3.9	0.4 [0.2]	192/192	64/64
	2010	510	510	78,000	4.4	1.4 10.51	64/64	64/64
	2010 2014	510 330	510 410	78,000 21,000	4.4 4.9	1.4 [0.5] 4.2 [1.4]	64/64 63/63	64/64 63/63

Stocktaking of the detection of p, p'-DDT, p, p'-DDE and p, p'-DDD in sediment during FY2002~2021

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted during FY2011~2013 and FY2015~2020.

<Wildlife>

p,p'-DDT: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was $28 \sim 420$ pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 17 of the 18 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was up to 1,500pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 2pg/g-wet, and the detection range was 29 ~ 120pg/g-wet.

As results of the inter-annual trend analysis from FY2002 to FY2021, reduction tendencies in specimens from bivalves and fish were identified as statistically significant.

p,p'-DDE: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was 88 ~ 960pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of

1pg/g-wet, and the detection range was $230 \sim 8,500pg/g$ -wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $64,000 \sim 100,000pg/g$ -wet.

As a result of the inter-annual trend analysis from FY2002 to FY2021, a reduction tendency in specimens from bivalves was identified as statistically significant.

p,p'-DDD: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 0.9pg/g-wet, and the detection range was $5.2 \sim 840$ pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 0.9pg/g-wet, and the detection range was $26 \sim 2,700$ pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 0.9pg/g-wet, and the detection range was $26 \sim 2,700$ pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 0.9pg/g-wet, and the detection range was $120 \sim 140$ pg/g-wet.

As results of the inter-annual trend analysis from FY2002 to FY2021, reduction tendencies in specimens from bivalves and fish were identified as statistically significant.

	Monitored	Geometric				Quantification	Detection 1	Frequency
<i>p,p'</i> -DDT	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	200	200	1,200	38	4.2 [1.4]	38/38	8/8
	2003	290	290	1,800	49	11 [3.5]	30/30	6/6
	2004	360	340	2,600	48	3.2 [1.1]	31/31	7/7
	2005	240	170	1,300	66	5.1 [1.7]	31/31	7/7
	2006	250	220	1,100	56	6 [2]	31/31	7/7
Bivalves	2007	240	150	1,200	49	5 [2]	31/31	7/7
(pg/g-wet)	2008	160	100	1,400	12	5 [2]	31/31	7/7
400 /	2009	240	170	9,600	46	3 [1]	31/31	7/7
	2010	180	280	470	43	3 [1]	6/6	6/6
	2013	190	210	890	46	3.3 [1.1]	5/5	5/5
	2018	70	39	280	32	3 [1]	3/3	3/3
	2021	70	29	420	28	6 [2]	3/3	3/3
	2002	430	450	24,000	6.8	4.2 [1.4]	70/70	14/14
	2003	220	400	1,900	tr(3.7)	11 [3.5]	70/70	14/14
	2004	410	330	53,000	5.5	3.2 [1.1]	70/70	14/14
	2005	280	330	8,400	tr(3.8)	5.1 [1.7]	80/80	16/16
	2006	300	340	3,000	tr(5)	6 [2]	80/80	16/16
Fish	2007	260	320	1,800	9	5 [2]	80/80	16/16
(pg/g-wet)	2008	280	310	2,900	7	5 [2]	85/85	17/17
	2009	250	300	2,000	4	3 [1]	90/90	18/18
	2010	240	280	2,100	7	3 [1]	18/18	18/18
	2013	280	250	3,300	5.2	3.3 [1.1]	19/19	19/19
		150	150	4,800	tr (2)	3 [1]	18/18	18/18
	2018	120	170	1,500	nd	6 2	17/18	17/18
	2002	440	510	1,300	76	4.2 [1.4]	10/10	2/2
	2003	610	620	1,400	180	11 [3.5]	10/10	2/2
	2004	340	320	700	160	3.2 [1.1]	10/10	2/2
	2005	430	550	900	180	5.1 [1.7]	10/10	2/2
	2006	580	490	1,800	110	6 [2]	10/10	2/2
Birds *2	2007	480	350	1,900	160	5 [2]	10/10	2/2
(pg/g-wet)	2008	160	170	270	56	5 [2]	10/10	2/2
/	2009	300	190	2,900	85	3 [1]	10/10	2/2
	2010	3		15	nd	3 [1]	1/2	1/2
	2013	14		46	4.3	3.3 [1.1]	2/2	2/2
	2018	43		63	29	3[1]	2/2	2/2
	2021	59		120	29	6 [2]	2/2	2/2

Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in wildlife (bivalves, fish and birds) during FY2002~2021

<i>p,p'</i> -DDE	Monitored year	Geometric mean *1	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
	2002	1,000	1,700	6,000	140	2.4 [0.8]	38/38	8/8
	2002	1,000	1,000	6,500	140	5.7 [1.9]	30/30	6/6
	2003	1,200	1,400	8,400	220	8.2 [2.7]	31/31	7/7
	2005	1,200	1,600	6,600	230	8.5 [2.8]	31/31	7/7
	2006	1,000	1,200	6,000	160	1.9 [0.7]	31/31	7/7
Bivalves	2007	1,100	1,200	5,600	180	3 [1]	31/31	7/7
(pg/g-wet)	2008	900	1,100	5,800	120	3 [1]	31/31	7/7
100 /	2009	940	1,100	6,400	150	4 [1]	31/31	7/7
	2010	1,100	1,300	6,300	230	3 [1]	6/6	6/6
	2013	790	1,600	3,000	170	4.3 [1.4]	5/5	5/5
	2018	420	230	2,200	150	3 [1]	3/3	3/3
	2021	240	160	960	88	3 [1]	3/3	3/3
	2002	2,900	2,200	98,000	510	2.4 [0.8]	70/70	14/14
	2003	2,000	2,200	12,000	180	5.7 [1.9]	70/70	14/14
	2004	3,000	2,100	52,000	390	8.2 [2.7]	70/70	14/14
	2005	2,400	2,400	73,000	230	8.5 [2.8]	80/80	16/16
	2006	2,200	2,600	28,000	280	1.9 [0.7]	80/80	16/16
Fish	2007	2,200	2,000	22,000	160	3 [1]	80/80	16/16
(pg/g-wet)	2008	2,500	2,000	53,000	320	3 [1]	85/85	17/17
	2009	2,300	2,100	20,000	260	4 [1]	90/90	18/18
	2010	2,300	2,100	13,000	260	3 [1]	18/18	18/18
	2013	2,900	2,800	16,000	430	4.3 [1.4]	19/19	19/19
	2018	1,900	1,700	16,000	290	3 [1]	18/18	18/18
	2021	2,000	2,600	8,500	230	3 [1]	18/18	18/18
	2002	36,000	60,000	170,000	8,100	2.4 [0.8]	10/10	2/2
	2003	66,000	76,000	240,000	18,000	5.7 [1.9]	10/10	2/2
	2004	34,000	65,000	200,000	6,800	8.2 [2.7]	10/10	2/2
	2005	44,000	86,000	300,000	7,100	8.5 [2.8]	10/10	2/2
	2006	38,000	57,000	160,000	5,900	1.9 [0.7]	10/10	2/2
Birds *2 (pg/g-wet)	2007	40,000	56,000	320,000	6,700	3 [1]	10/10	2/2
	2008	51,000	79,000	160,000	7,500	3 [1]	10/10	2/2
	2009	30,000	64,000	220,000	4,300	4 [1]	10/10	2/2
	2010	32,000		160,000	6,300	3 [1]	2/2	2/2
	2013	170,000		170,000	170,000	4.3 [1.4]	2/2	2/2
	2018	80,000		290,000	22,000	3 [1]	2/2	2/2
	2021	80,000		100,000	64,000	3 [1]	2/2	2/2
	2021	· · · · · ·						
						Quantification	Detection 1	Frequency
<i>p,p'</i> -DDD	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		
<i>p,p'</i> -DDD	Monitored year	Geometric mean ^{*1}				[Detection] limit	Sample	Site
<i>p,p'</i> -DDD	Monitored year 2002	Geometric mean ^{*1} 340	710	3,200	11	[Detection] limit 5.4 [1.8]	Sample 38/38	Site 8/8
<i>p,p'</i> -DDD	Monitored year 2002 2003	Geometric mean ^{*1} 340 390	710 640	3,200 2,600	11 tr(7.5)	[Detection] limit 5.4 [1.8] 9.9 [3.3]	Sample 38/38 30/30	Site 8/8 6/6
<i>p,p'</i> -DDD	Monitored year 2002 2003 2004	Geometric mean ^{*1} 340 390 440	710 640 240	3,200 2,600 8,900	11 tr(7.5) 7.8	[Detection] limit 5.4 [1.8] 9.9 [3.3] 2.2 [0.70]	Sample 38/38 30/30 31/31	Site 8/8 6/6 7/7
<i>p,p'-</i> DDD	Monitored year 2002 2003 2004 2005	Geometric mean *1 340 390 440 370	710 640 240 800	3,200 2,600 8,900 1,700	11 tr(7.5) 7.8 13	[Detection] limit 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97]	Sample 38/38 30/30 31/31 31/31	Site 8/8 6/6 7/7 7/7
	Monitored year 2002 2003 2004 2005 2006	Geometric mean *1 340 390 440 370 300	710 640 240 800 480	3,200 2,600 8,900 1,700 1,400	11 tr(7.5) 7.8 13 7.3	[Detection] limit 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9]	Sample 38/38 30/30 31/31 31/31 31/31	Site 8/8 6/6 7/7 7/7 7/7
Bivalves	Monitored year 2002 2003 2004 2005 2006 2007	Geometric mean *1 340 390 440 370 300 310	710 640 240 800 480 360	3,200 2,600 8,900 1,700 1,400 1,500	11 tr(7.5) 7.8 13 7.3 7	[Detection] limit 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1]	Sample 38/38 30/30 31/31 31/31 31/31 31/31	Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7
	Monitored year 2002 2003 2004 2005 2006 2007 2008	Geometric mean *1 340 390 440 370 300 310 280	710 640 240 800 480 360 280	3,200 2,600 8,900 1,700 1,400 1,500 1,300	11 tr(7.5) 7.8 13 7.3 7 6	[Detection] limit 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1] 3 [1]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31	Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7
Bivalves	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009	Geometric mean *1 340 390 440 370 300 310 280 220	710 640 240 800 480 360 280 170	3,200 2,600 8,900 1,700 1,400 1,500 1,300 2,400	11 tr(7.5) 7.8 13 7.3 7 6 5.8	[Detection] limit 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1] 3 [1] 2.4 [0.9]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31	Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010	Geometric mean *1 340 390 440 370 300 310 280 220 180	710 640 240 800 480 360 280 170 330	3,200 2,600 8,900 1,700 1,400 1,500 1,300 2,400 960	11 tr(7.5) 7.8 13 7.3 7 6 5.8 11	[Detection] limit 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1] 3 [1] 2.4 [0.9] 1.3 [0.5]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6	Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013	Geometric mean *1 340 390 440 370 300 310 280 220 180 270	710 640 240 800 480 360 280 170 330 520	3,200 2,600 8,900 1,700 1,400 1,500 1,300 2,400 960 1,300	11 tr(7.5) 7.8 13 7.3 7 6 5.8 11 19	[Detection] limit 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1] 3 [1] 2.4 [0.9] 1.3 [0.5] 1.9 [0.7]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5	Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2010 2013 2018	Geometric mean *1 340 390 440 370 300 310 280 220 180 270 110	710 640 240 800 480 360 280 170 330 520 93	3,200 2,600 8,900 1,700 1,400 1,500 1,300 2,400 960 1,300 830	11 tr(7.5) 7.8 13 7.3 7 6 5.8 11 19 17	[Detection] limit 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1] 3 [1] 2.4 [0.9] 1.3 [0.5] 1.9 [0.7] 1.4 [0.6]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3	Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2021	Geometric mean *1 340 390 440 370 300 310 280 220 180 270 110 69	710 640 240 800 480 360 280 170 330 520 93 75	3,200 2,600 8,900 1,700 1,400 1,500 1,300 2,400 960 1,300 830 840	11 tr(7.5) 7.8 13 7.3 7 6 5.8 11 19 17 5.2	[Detection] limit 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1] 3 [1] 2.4 [0.9] 1.3 [0.5] 1.9 [0.7] 1.4 [0.6] 2.2 [0.9]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 3/3	Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 3/3 3/3
Bivalves	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2021 2002	Geometric mean *1 340 390 440 370 300 310 280 220 180 270 110 69 750	710 640 240 800 480 360 280 170 330 520 93 75 680	3,200 2,600 8,900 1,700 1,400 1,500 1,300 2,400 960 1,300 830 840 14,000	11 tr(7.5) 7.8 13 7.3 7 6 5.8 11 19 17 5.2 80	[Detection] limit 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1] 3 [1] 2.4 [0.9] 1.3 [0.5] 1.9 [0.7] 1.4 [0.6] 2.2 [0.9] 5.4 [1.8]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 3/3 70/70	Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2021 2002 2003	Geometric mean *1 340 390 440 370 300 310 280 220 180 270 110 69 750 510	710 640 240 800 480 360 280 170 330 520 93 75 680 520	3,200 2,600 8,900 1,700 1,400 1,500 1,300 2,400 960 1,300 830 840 14,000 3,700	11 tr(7.5) 7.8 13 7.3 7 6 5.8 11 19 17 5.2 80 43	[Detection] limit 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1] 3 [1] 2.4 [0.9] 1.3 [0.5] 1.9 [0.7] 1.4 [0.6] 2.2 [0.9] 5.4 [1.8] 9.9 [3.3]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 3/3 70/70 70/70	Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2021 2002 2003 2004	Geometric mean *1 340 390 440 370 300 310 280 220 180 270 110 69 750 510 770	710 640 240 800 480 360 280 170 330 520 93 75 680 520 510	3,200 2,600 8,900 1,700 1,400 1,500 1,300 2,400 960 1,300 830 840 14,000 3,700 9,700	11 tr(7.5) 7.8 13 7.3 7 6 5.8 11 19 17 5.2 80 43 56	[Detection] limit 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1] 3 [1] 2.4 [0.9] 1.3 [0.5] 1.9 [0.7] 1.4 [0.6] 2.2 [0.9] 5.4 [1.8] 9.9 [3.3] 2.2 [0.70]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 3/3 70/70 70/70 70/70	Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 3/3 3/3 14/14 14/14 14/14
Bivalves	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2021 2002 2003 2004 2005	Geometric mean *1 340 390 440 370 300 310 280 220 180 270 110 69 750 510 770 510	710 640 240 800 480 360 280 170 330 520 93 75 680 520 510 650	3,200 2,600 8,900 1,700 1,400 1,500 1,300 2,400 960 1,300 830 840 14,000 3,700 9,700 6,700	11 tr(7.5) 7.8 13 7.3 7 6 5.8 11 19 17 5.2 80 43 56 29	[Detection] limit 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1] 3 [1] 2.4 [0.9] 1.3 [0.5] 1.9 [0.7] 1.4 [0.6] 2.2 [0.9] 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 3/3 70/70 70/70 70/70 80/80	Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 3/3 3/3 14/14 14/14 14/14 14/16
Bivalves (pg/g-wet)	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2021 2002 2003 2004 2005 2006	Geometric mean *1 340 390 440 370 300 310 280 220 180 270 110 69 750 510 770 510 520	710 640 240 800 480 360 280 170 330 520 93 75 680 520 510 650 580	$\begin{array}{r} 3,200\\ 2,600\\ 8,900\\ 1,700\\ 1,400\\ 1,500\\ 1,300\\ 2,400\\ 960\\ 1,300\\ 830\\ 840\\ \hline 14,000\\ 3,700\\ 9,700\\ 6,700\\ 4,300\\ \end{array}$	$ \begin{array}{r} 11\\ \text{tr}(7.5)\\ 7.8\\ 13\\ 7.3\\ 7\\ 6\\ 5.8\\ 11\\ 19\\ 17\\ 5.2\\ 80\\ 43\\ 56\\ 29\\ 60\\ \end{array} $	[Detection] limit 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1] 3 [1] 2.4 [0.9] 1.3 [0.5] 1.9 [0.7] 1.4 [0.6] 2.2 [0.9] 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 3/3 70/70 70/70 70/70 80/80 80/80	Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves (pg/g-wet) Fish	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2021 2002 2003 2004 2005 2006 2007	Geometric mean *1 340 390 440 370 300 310 280 220 180 270 110 69 750 510 770 510 520 470	710 640 240 800 480 360 280 170 330 520 93 75 680 520 510 650 580 490	$\begin{array}{r} 3,200\\ 2,600\\ 8,900\\ 1,700\\ 1,400\\ 1,500\\ 1,300\\ 2,400\\ 960\\ 1,300\\ 830\\ 840\\ \hline 14,000\\ 3,700\\ 9,700\\ 6,700\\ 4,300\\ 4,100\\ \end{array}$	$ \begin{array}{r} 11\\ \text{tr}(7.5)\\ 7.8\\ 13\\ 7.3\\ 7\\ 6\\ 5.8\\ 11\\ 19\\ 17\\ 5.2\\ 80\\ 43\\ 56\\ 29\\ 60\\ 36\\ \end{array} $	[Detection] limit 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1] 3 [1] 2.4 [0.9] 1.3 [0.5] 1.9 [0.7] 1.4 [0.6] 2.2 [0.9] 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 3/3 70/70 70/70 70/70 80/80 80/80 80/80	Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 3/3 3/3 14/14 14/14 14/14 14/16
Bivalves (pg/g-wet)	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2021 2002 2003 2004 2005 2006 2007 2008	Geometric mean *1 340 390 440 370 300 310 280 220 180 270 110 69 750 510 770 510 770 510 520 470 460	710 640 240 800 480 360 280 170 330 520 93 75 680 520 510 650 580 490 440	$\begin{array}{r} 3,200\\ 2,600\\ 8,900\\ 1,700\\ 1,400\\ 1,500\\ 1,300\\ 2,400\\ 960\\ 1,300\\ 830\\ 840\\ \hline 14,000\\ 3,700\\ 9,700\\ 6,700\\ 4,300\\ 4,100\\ 4,100\\ \hline \end{array}$	$ \begin{array}{r} 11\\ \text{tr}(7.5)\\ 7.8\\ 13\\ 7.3\\ 7\\ 6\\ 5.8\\ 11\\ 19\\ 17\\ 5.2\\ 80\\ 43\\ 56\\ 29\\ 60\\ 36\\ 33\\ \end{array} $	[Detection] limit 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1] 3 [1] 2.4 [0.9] 1.3 [0.5] 1.9 [0.7] 1.4 [0.6] 2.2 [0.9] 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1] 3 [1] 3 [1]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 3/3 70/70 70/70 70/70 70/70 80/80 80/80 80/80 85/85	Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves (pg/g-wet) Fish	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2021 2002 2003 2004 2005 2006 2007	Geometric mean *1 340 390 440 370 300 310 280 220 180 270 110 69 750 510 770 510 520 470	710 640 240 800 480 360 280 170 330 520 93 75 680 520 510 650 580 490	$\begin{array}{r} 3,200\\ 2,600\\ 8,900\\ 1,700\\ 1,400\\ 1,500\\ 1,300\\ 2,400\\ 960\\ 1,300\\ 830\\ 840\\ \hline 14,000\\ 3,700\\ 9,700\\ 6,700\\ 4,300\\ 4,100\\ \end{array}$	$ \begin{array}{r} 11\\ \text{tr}(7.5)\\ 7.8\\ 13\\ 7.3\\ 7\\ 6\\ 5.8\\ 11\\ 19\\ 17\\ 5.2\\ 80\\ 43\\ 56\\ 29\\ 60\\ 36\\ \end{array} $	[Detection] limit 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1] 3 [1] 2.4 [0.9] 1.3 [0.5] 1.9 [0.7] 1.4 [0.6] 2.2 [0.9] 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 3/3 70/70 70/70 70/70 80/80 80/80 80/80	Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves (pg/g-wet) Fish	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2021 2002 2003 2004 2005 2006 2007 2008	Geometric mean *1 340 390 440 370 300 310 280 220 180 270 110 69 750 510 770 510 770 510 520 470 460	710 640 240 800 480 360 280 170 330 520 93 75 680 520 510 650 580 490 440	$\begin{array}{r} 3,200\\ 2,600\\ 8,900\\ 1,700\\ 1,400\\ 1,500\\ 1,300\\ 2,400\\ 960\\ 1,300\\ 830\\ 840\\ \hline 14,000\\ 3,700\\ 9,700\\ 6,700\\ 4,300\\ 4,100\\ 4,100\\ \hline \end{array}$	$ \begin{array}{r} 11\\ \text{tr}(7.5)\\ 7.8\\ 13\\ 7.3\\ 7\\ 6\\ 5.8\\ 11\\ 19\\ 17\\ 5.2\\ 80\\ 43\\ 56\\ 29\\ 60\\ 36\\ 33\\ \end{array} $	[Detection] limit 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1] 3 [1] 2.4 [0.9] 1.3 [0.5] 1.9 [0.7] 1.4 [0.6] 2.2 [0.9] 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1] 3 [1] 3 [1]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 3/3 70/70 70/70 70/70 70/70 80/80 80/80 80/80 85/85	Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves (pg/g-wet) Fish	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2021 2002 2003 2004 2005 2006 2007 2008 2009	Geometric mean *1 340 390 440 370 300 310 280 220 180 270 110 69 750 510 770 510 510 520 470 460 440	$\begin{array}{c} 710\\ 640\\ 240\\ 800\\ 480\\ 360\\ 280\\ 170\\ 330\\ 520\\ 93\\ 75\\ 680\\ 520\\ 510\\ 650\\ 580\\ 490\\ 440\\ 460\\ \end{array}$	$\begin{array}{r} 3,200\\ 2,600\\ 8,900\\ 1,700\\ 1,400\\ 1,500\\ 1,300\\ 2,400\\ 960\\ 1,300\\ 830\\ 840\\ \hline 14,000\\ 3,700\\ 9,700\\ 6,700\\ 4,300\\ 4,100\\ 4,100\\ 2,500\\ \end{array}$	$ \begin{array}{r} 11\\ \text{tr}(7.5)\\ 7.8\\ 13\\ 7.3\\ 7\\ 6\\ 5.8\\ 11\\ 19\\ 17\\ 5.2\\ 80\\ 43\\ 56\\ 29\\ 60\\ 36\\ 33\\ 57\\ \end{array} $	[Detection] limit 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1] 3 [1] 2.4 [0.9] 1.3 [0.5] 1.9 [0.7] 1.4 [0.6] 2.2 [0.9] 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1] 3 [1] 2.4 [0.9] 3 [1] 3 [1] 2.4 [0.9] 3 [1] 3 [1] 2.4 [0.9] 3 [1] 3 [1	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 3/3 70/70 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90	Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 3/3 3/3 14/14 14/14 14/14 14/14 14/14 16/16 16/16 16/16 17/17 18/18
Bivalves (pg/g-wet) Fish	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2021 2002 2003 2004 2005 2006 2007 2008 2009 2010	Geometric mean *1 340 390 440 370 300 310 280 220 180 270 110 69 750 510 770 510 770 510 520 470 460 440 560	$\begin{array}{c} 710\\ 640\\ 240\\ 800\\ 480\\ 360\\ 280\\ 170\\ 330\\ 520\\ 93\\ 75\\ \hline 680\\ 520\\ 510\\ 650\\ 580\\ 490\\ 440\\ 460\\ 610\\ \end{array}$	$\begin{array}{c} 3,200\\ 2,600\\ 8,900\\ 1,700\\ 1,400\\ 1,500\\ 1,300\\ 2,400\\ 960\\ 1,300\\ 830\\ 840\\ \hline 14,000\\ 3,700\\ 9,700\\ 6,700\\ 4,300\\ 4,100\\ 4,100\\ 2,500\\ 2,900\\ \end{array}$	$ \begin{array}{c} 11\\ \text{tr}(7.5)\\ 7.8\\ 13\\ 7.3\\ 7\\ 6\\ 5.8\\ 11\\ 19\\ 17\\ 5.2\\ 80\\ 43\\ 56\\ 29\\ 60\\ 36\\ 33\\ 57\\ 57\\ 57\\ 57\\ \end{array} $	[Detection] limit 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1] 3 [1] 2.4 [0.9] 1.3 [0.5] 1.9 [0.7] 1.4 [0.6] 2.2 [0.9] 5.4 [1.8] 9.9 [3.3] 2.2 [0.70] 2.9 [0.97] 2.4 [0.9] 3 [1] 3 [1] 2.4 [0.9] 1.3 [0.5] 1.3 [0.5]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 3/3 70/70 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85 90/90 18/18	Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7

	Monitored	Geometric				Quantification	Detection I	Frequency
<i>p,p'</i> -DDD	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	580	740	3,900	140	5.4 [1.8]	10/10	2/2
	2003	640	860	3,900	110	9.9 [3.3]	10/10	2/2
	2004	330	520	1,400	52	2.2 [0.70]	10/10	2/2
	2005	310	540	1,400	45	2.9 [0.97]	10/10	2/2
	2006	410	740	1,800	55	2.4 [0.9]	10/10	2/2
Birds *2	2007	440	780	2,300	70	3 [1]	10/10	2/2
(pg/g-wet)	2008	240	490	1,100	35	3 [1]	10/10	2/2
	2009	280	430	3,400	31	2.4 [0.9]	10/10	2/2
	2010	440		1,600	120	1.3 [0.5]	2/2	2/2
	2013	140		270	70	1.9 [0.7]	2/2	2/2
	2018	230		260	210	1.4 [0.6]	2/2	2/2
	2021	130		140	120	2.2 [0.9]	2/2	2/2

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) *2: There is no consistency between the results of the ornithological survey in FY2013 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2011, FY2012, FY2014~2017, FY2019 and FY2020.

<Air>

p,p'-DDT: The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.06pg/m^3 , and the detection range was $0.16 \sim 6.3 \text{pg/m}^3$.

As a result of the inter-annual trend analysis from FY2003 to FY2021, a reduction tendency in specimens from warm season was identified as statistically significant.

p,p'-DDE: The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.05 pg/m³, and the detection range was $0.43 \sim 21$ pg/m³.

As a result of the inter-annual trend analysis from FY2003 to FY2021, a reduction tendency in specimens from warm season was identified as statistically significant.

p,p'-DDD: The presence of the substance in air was monitored at 35 sites, and it was detected at 18 of the 35 valid sites adopting the detection limit of 0.05 pg/m³, and the detection range was up to 0.18 pg/m³.

As a result of the inter-annual trend analysis from FY2003 to FY2021, although the number of detections was small, the detection rate of specimens from warm season was decreased, it suggested a reduction tendency of the concentrations.

	Manita 1	Geometric	M. 1	Mani	Mini	Quantification	Detection F	Frequen
<i>p,p'</i> -DDT	Monitored year	mean	Median	Maximum	Minimum	limit	Sample	Site
	2002	1.9	1.8	22	0.25	0.24 [0.08]	102/102	34/34
	2003 Warm season	5.8	6.6	24	0.75	0 14 [0 046]	35/35	35/35
	2003 Cold season	1.7	1.6	11	0.31	0.14 [0.040]	34/34	34/34
	2004 Warm season	4.7	5.1	37	0.41	0.22 [0.074]	37/37	37/37
	2004 Cold season	1.8	1.7	13	0.29	0.22 [0.0/4]	37/37	37/37
	2005 Warm season	4.1	4.2	31		0.16.50.05.41		37/37
	$\frac{2005 \text{ Cold season}}{2006 \text{ Warm season}} 4.2 \qquad 3.8 \qquad 51 \qquad 0.35 \qquad 0.17 \text{ [0.06]}$		0.16 [0.054]		37/37			
			37/31					
	2006 Cold season	1.4		7.3		0.17 [0.06]		37/37
	2007 Warm season	4.9		Median Maximum Minimum [Detection] limit Sample Sit 1.8 22 0.25 0.24 [0.08] 102/102 34/3 6.6 24 0.75 0.14 [0.046] 35/35 35/37 37/37 1.7 13 0.29 0.22 [0.074] 37/37 37/37 4.2 31 0.44 0.16 [0.054] 37/37 37/7 9.9 4.8 0.25 0.17 [0.06] 37/37 37/7 3.8 51 0.35 0.37 37/37 37/7 5.2 30 0.6 0.07 [0.03] 36/36 36/36 3.0 27 0.76 0.07 [0.03] 37/37 37/7 3.6 28 0.44 0.07 [0.03] 37/37 37/7 3.1 56 0.28 0.10 [0.03] 37/37 37/7 3.6 17 0.20 0.07 [0.03] 37/37 37/7 0.67 6.3 0.16 0.15 [0.06] 35/35	36/30			
Air	2007 Cold season	1.2			Minimum [Detection] limit Sample Sample	36/3		
(pg/m^3)	2008 Warm season	3.6					ationDetection Fion]Sample 08 $102/102$ 046 $35/35$ $34/34$ $37/37$ 074 $37/37$ $37/37$ $37/37$ 054 $37/37$ 06 $37/37$ 03 $36/36$ 03 $36/36$ 03 $36/36$ 03 $37/37$ 03 $36/36$ 03 $37/37$ 03 $37/37$ 03 $37/37$ 03 $37/37$ 03 $37/37$ 03 $37/37$ 03 $37/37$ 04 $36/36$ 05 $35/35$ 01 $37/37$ 03 $37/37$ $36/36$ $36/36$ 03 $102/102$ 13 $34/34$ 39 $37/37$ 03 $37/37$ $37/37$ $37/37$ 03 $37/37$ $37/37$ $37/37$ 31 $36/36$ 02 $37/37$ 33 $37/37$ 33 $37/37$ 33 $37/37$ 33 $37/37$ 33 $36/36$ 02 $36/36$ 03 $36/36$ 03 $36/36$ 03 $36/36$ 03 $36/36$ 03 $36/36$ 03 $36/36$ 04 $35/35$ 01 $37/37$	37/3
(18)	2008 Cold season	1.2				0.07 [0.03]		37/3
	2009 Warm season	3.6						37/3
	2009 Cold season	1.1				0.07 [0.03]		
	2010 Warm season	3.5						
	2010 Wahn season 2010 Cold season	1.3				0.10 [0.03]	37/37 37/37 36/36	
	2010 Cold season 2013 Warm season	2.8						
	2013 Valin season 2013 Cold season	0.65				0.11 [0.04]		
	2015 Cold season 2015 Warm season	1.5				0 15 [0 05]		
		1.5						
	2018 Warm season	0.80						
	2021 Warm season	0.80	0.07	0.5	0.10			
<i>p,p'</i> -DDE	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection]		Site
	2002	2.8	2.7	28	0.56		102/102	34/34
	2003 Warm season	7.2	7.0					35/3
	2003 Cold season	2.8				0.40 [0.13]		34/34
	2004 Warm season	6.1						37/3
	2004 Cold season	2.9				0.12 [0.039]		37/3
	2005 Warm season	5.0						37/3
	2005 Cold season	1.7				0.14 [0.034]		37/3
	2006 Warm season	5.0						37/3
	2006 Cold season	1.9				0.10 [0.03]		37/3
	2007 Warm season	6.4						36/3
Air	2007 Wallin season 2007 Cold season	2.1				0.04 [0.02]		
(pg/m^3)	2007 Cold season 2008 Warm season	4.8						
(P6/11)	2008 Walli season 2008 Cold season	2.2				0.04 [0.02]		
	2009 Warm season	4.9						
	2009 Warm season 2009 Cold season	4.9 2.1	4.8 1.9	130		0.08 [0.03]		37/3
		4.9	4.1					
	2010 Warm season			200		0.62 [0.21]		37/3
	2010 Cold season	2.2	1.8	28		-		37/3
	2013 Warm season	4.1	4.3	37		0.10 [0.03]		36/3
	2013 Cold season	1.6	1.5	11				36/3
	2015 Warm season	2.4	2.6	34				35/3
	2018 Warm season	2.6	2.5	49				37/37
	2021 Warm season	1.6	1.4	21				

Stocktaking of the detection of *p*,*p*'-DDT, *p*,*p*'-DDE and *p*,*p*'-DDD in air during FY2002~2021

		Geometric				Quantification	Detection I	Frequency
<i>p,p'</i> -DDD	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Detection Sample 101/102 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37	Site
	2002	0.12	0.13	0.76	nd	0.018 [0.006]	101/102	34/34
	2003 Warm season	0.30	0.35	1.4	0.063	0.054 [0.018]	35/35	35/35
	2003 Cold season	0.13	0.14	0.52	tr(0.037)	0.034 [0.018]	34/34	34/34
	2004 Warm season	0.24	0.27	1.4	tr(0.036)	0.053 [0.018]	37/37	37/37
	2004 Cold season	0.12	0.12	0.91	tr(0.025)	0.033 [0.018]	37/37	37/37
	2005 Warm season	0.24	0.26	1.3	tr(0.07)	0.16 [0.05]	37/37	37/37
	2005 Cold season	tr(0.06)	tr(0.07)	0.29	nd	0.10[0.03]	28/37	28/37
	2006 Warm season	0.28	0.32	1.3	nd	0.13 [0.04]	36/37	36/37
	2006 Cold season	0.14	tr(0.12)	0.99	nd		36/37	36/37
	2007 Warm season	0.26	0.27	1.4	0.046	0.011 [0.004]	36/36	36/36
Air	2007 Cold season	0.093	0.087	0.5	0.026		36/36	36/36
(pg/m^3)	2008 Warm season	0.17	0.17	1.1	0.037	0.025 [0.000]	37/37	37/37
	2008 Cold season	0.091	0.081	0.31	0.036	0.025 [0.009]	37/37	37/37
	2009 Warm season	0.17	0.18	0.82	0.03	0.02 [0.01]	37/37	37/37
	2009 Cold season	0.08	0.08	0.35	tr(0.02)	0.03 [0.01]	37/37	37/37
	2010 Warm season	0.20	0.17	1.7	0.04	0.02 [0.01]	37/37	37/37
	2010 Cold season	0.10	0.09	0.41	0.02	0.02 [0.01]	37/37	37/37
	2013 Warm season	0.16	0.18	0.80	0.027	0.010 [0.007]	36/36	36/36
	2013 Cold season	0.056	0.054	0.14	tr(0.015)	0.018 [0.007]	36/36	36/36
	2015 Warm season	nd	nd	tr(0.31)	nd	0.33 [0.11]	17/35	17/35
	2018 Warm season	0.13	0.16	0.72	nd	0.07 [0.03]	36/37	36/37
	2021 Warm season	tr(0.05)	tr(0.05)	0.18	nd	0.13 [0.05]	18/35	18/35

(Note) No monitoring was conducted in FY2011, FY2012, FY2014, FY2016, FY2017, FY2019 and FY2020.

\bigcirc *p,p'*-DDT, *p,p'*-DDE and *p,p'*-DDD

<Surface Water>

o,p'-DDT: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 30 of the 47 valid sites adopting the detection limit of 0.3pg/L, and the detection range was up to 33pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2021, reduction tendencies in specimens from river areas and river mouth areas were identified as statistically significant. The recent 6 years period was indicated lower concentration than the first 6 years period in specimens from sea areas as statistically significant. Although the number of detections was small, the detection rate of specimens from lake areas was decreased, it suggested a reduction tendency of the concentrations. And a reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

o,p'-DDE: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 32 of the 47 valid sites adopting the detection limit of 0.2pg/L, and the detection range was up to 92pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2021, reduction tendencies in specimens from lake areas and river mouth areas were identified as statistically significant. The recent 6 years period was indicated lower concentration than the first 6 years period in specimens from sea areas as statistically significant. Although the number of detections was small, the detection rate of specimens from river areas was decreased, it suggested a reduction tendency of the concentrations. And the recent 6 years period was also indicated lower concentration than the first 6 years period was also indicated lower concentration than the first 6 years period was also indicated lower concentration than the first 6 years period in specimens from sea areas as statistically significant.

o,p'-DDD: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 0.2pg/L, and the detection range was tr(0.3) ~ 54pg/L.

cktaking of the d	Monitored					Quantification	Detection I	Frequency
<i>o,p'</i> - DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.4	4.6	77	0.19	1.2 [0.4]	114/114	38/38
	2003	6	5	100	tr(1.5)	3 [0.7]	36/36	36/36
	2004	tr(4.5)	5	85	nd	5 [2]	29/38	29/38
	2005	3	3	39	nd	3 [1]	42/47	42/47
	2006	2.8	2.4	52	0.51	2.3 [0.8]	48/48	48/48
Surface Water	2007	tr(2.1)	tr(2.2)	86	nd	2.5 [0.8]	38/48	38/48
(pg/L)	2008	3.1	3.0	230	nd	1.4 [0.5]	44/48	44/48
	2009	2.4	2.4	100	0.43	0.16 [0.06]	49/49	49/49
	2010	1.5	tr(1.2)	700	nd	1.5 [0.5]	43/49	43/49
	2014	1.0	1.0	63	nd	0.4 [0.2]	42/48	42/48
	2021	tr(0.6)	tr(0.5)	33	nd	0.9 [0.3]	30/47	30/47
			(0.0)			Quantification	Detection I	
<i>o,p'</i> -DDE	Monitored year	Geometric mean *	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.4	2.1	680	nd	0.9 [0.3]	113/114	38/38
	2003	2.2	2.0	170	tr(0.42)	0.8 0.3	36/36	36/36
	2004	3	2	170	tr(0.6)	2 [0.5]	38/38	38/38
	2005	2.5	2.1	410	0.4	1.2 [0.4]	47/47	47/47
a 0	2006	tr(1.6)	tr(1.4)	210	nd	2.6 0.9	28/48	28/48
Surface Water	2007	tr(1.5)	tr(1.1)	210	nd	2.3 0.8	29/48	29/48
(pg/L)	2008	1.5	1.8	260	nd	0.7 0.3	39/48	39/48
	2009	1.3	1.1	140	nd	0.22 [0.09]	47/49	47/49
	2010	0.97	0.65	180	tr(0.13)	0.24 [0.09]	49/49	49/49
	2014	0.6	0.6	560	nd	0.3 [0.1]	36/48	36/48
	2021	tr(0.5)	tr(0.4)	92	nd	0.6 [0.2]	32/47	32/47
						Quantification	Detection I	
o,p'-DDD	Monitored year	Geometric mean *	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.6	6.0	110	nd	0.60 [0.20]	113/114	38/38
	2003	7.1	5.0	160	1.1	0.8 0.3	36/36	36/36
	2004	6	5	81	tr(0.7)	2 [0.5]	38/38	38/38
	2005	5.2	5.4	51	tr(0.5)	1.2 [0.4]	47/47	47/47
	2006	2.5	3.3	39	nd	0.8 [0.3]	40/48	40/48
Surface Water	2007	4.6	3.9	41	tr(0.3)	0.8 [0.3]	48/48	48/48
(pg/L)	2008	6.7	7.2	170	nd	0.8 [0.3]	47/48	47/48
	2009	4.4	3.8	41	0.44	0.22 [0.09]	49/49	49/49
								49/49
	2010	4.6	3.8	1/0	tr(0.5)	0.6 [0.2]	49/49	49/49
	2010 2014	4.6 3.7	3.8 3.2	170 38	tr(0.5) 0.33	0.6 [0.2] 0.20 [0.08]	49/49 48/48	49/49

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in surface water during FY2002~2021

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted during FY2011~2013 and FY2015~2020.

<Sediment>

o,p'-DDT: The presence of the substance in sediment was monitored at 60 sites, and it was detected at 58 of the 60 valid sites adopting the detection limit of 0.2pg/g-dry, and the detection range was up to 3,200pg/g-dry.

As results of the inter-annual trend analysis from FY2002 to FY2021, a reduction tendency in specimens from river areas was identified as statistically significant and a reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

o,p'-DDE: The presence of the substance in sediment was monitored at 60 sites, and it was detected at 59 of the 60 valid sites adopting the detection limit of 0.2pg/g-dry, and the detection range was up to 16,000pg/g-dry.

o,p'-DDD: The presence of the substance in sediment was monitored at 60 sites, and it was detected at all 60 valid sites adopting the detection limit of 0.2pg/g-dry, and the detection range was $0.4 \sim 2,500$ pg/g-dry.

As results of the inter-annual trend analysis from FY2002 to FY2021, a reduction tendency in specimens from river areas was identified as statistically significant.

ocktaking of the		Geometric				Quantification	Detection	Frequency
<i>o,p'</i> -DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	76	47	27,000	nd	6 [2]	183/189	62/63
	2003	50	43	3,200	nd	0.8 [0.3]	185/186	62/62
	2004	69	50	17,000	tr(1.1)	2 [0.6]	189/189	63/63
	2005	58	46	160,000	0.8	0.8 [0.3]	189/189	63/63
Sediment	2006	57	52	18,000	tr(0.8)	1.2 [0.4]	192/192	64/64
(pg/g-dry)	2007	38	31	27,000	nd	1.8 [0.6]	186/192	63/64
(pg/g-ury)	2008	51	40	140,000	tr(0.7)	1.5 [0.6]	192/192	64/64
	2009	44	30	100,000	nd	1.2 [0.5]	190/192	64/64
	2010	40	33	13,000	1.4	1.1 [0.4]	64/64	64/64
	2014	26	24	2,400	nd	0.4 [0.2]	62/63	62/63
	2021	19	20	3,200	nd	0.4 [0.2]	58/60	58/60
	Manitanal	Constantia				Quantification	Detection	Frequency
<i>o,p'</i> -DDE	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		
-	year	mean *				limit	183/189 183/189 185/186 189/189 192/192 186/192 192/192 190/192 64/64 62/63 58/60 Detection Sample 188/189 186/186 184/189 186/192 191/192 64/64 63/63 59/60 Detection Sample 188/189 186/192 186/192 186/192 186/192 186/192 186/192 186/192 186/192 186/192 191/192 64/64 63/63 59/60 Detection Sample 184/189 186/186 189/189 192/192 192/192 192/192 192/192 192/192	Site
	2002	54	37	16,000	nd	3 [1]	188/189	63/63
	2003	48	39	24,000	tr(0.5)	0.6 [0.2]	186/186	62/62
	2004	40	34	28,000	nd	3 [0.8]	184/189	63/63
	2005	40	32	31,000	nd	2.6 [0.9]	181/189	62/63
G 1' (2006	42	40	27,000	tr(0.4)	1.1 [0.4]	192/192	64/64
Sediment	2007	37	41	25,000	nd	1.2 [0.4]	186/192	63/64
(pg/g-dry)	2008	50	48	37,000	nd	1.4 [0.6]	186/192	63/64
	2009	37	31	33,000	nd	0.6 [0.2]	191/192	64/64
	2010	37	32	25,000	tr(0.7)	1.2 [0.5]	64/64	64/64
	2014	30	32	41,000	tr(0.5)	0.8 [0.3]	63/63	63/63
	2021	19	14	16,000	nd	0.5 [0.2]	59/60	59/60
		G				Quantification	Detection	Frequency
o,p'-DDD	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		
- -	year	mean*				limit	_	Site
	2002	160	150	14,000	nd	6 [2]	184/189	62/63
	2003	160	130	8,800	tr(1.0)	2 [0.5]	186/186	62/62
	2004	140	120	16,000	tr(0.7)	2 [0.5]	189/189	63/63
	2005	130	110	32,000	tr(0.8)	1.0 [0.3]	189/189	63/63
	2006	120	110	13,000	tr(0.3)	0.5 [0.2]	192/192	64/64
Sediment	2007	110	130	21,000	tr(0.5)	1.0 [0.4]	192/192	64/64
(pg/g-dry)	2008	170	150	50,000	0.5	0.3 [0.1]	192/192	64/64
	2009	120	120	24,000	0.5	0.5 [0.2]	192/192	64/64
	2010	130	130	6,900	tr(0.8)	0.9 [0.4]	64/64	64/64
	2014	74	85	3,200	tr(0.7)	1.2 [0.5]	63/63	63/63
	2021	64	66	2,500	0.4	0.4 [0.2]	60/60	60/60

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in sediment during FY2002~2021

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted during FY2011~2013 and FY2015~2020.

<Wildlife>

o,p'-DDT: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $8 \sim 93$ pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was tr(1) ~ 70pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 1pg/g-wet, and the detection range was tr(1) ~ 70pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 1pg/g-wet, and the detection range was tr(1) ~ 3pg/g-wet.

As results of the inter-annual trend analysis from FY2002 to FY2021, reduction tendencies in specimens from bivalves and fish were identified as statistically significant.

o,p'-DDE: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was tr(2) ~ 110pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 17 of the 18 valid areas adopting the detection limit

of 1pg/g-wet, and the detection range was up to 1,600pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $tr(1) \sim tr(1)pg/g$ -wet.

As results of the inter-annual trend analysis from FY2002 to FY2021, reduction tendencies in specimens from bivalves and fish were identified as statistically significant.

o,p'-DDD: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was tr(2) ~ 760pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 17 of the 18 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was up to 380pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 2pg/g-wet, and the detection range was tr(4) ~ 8pg/g-wet.

As results of the inter-annual trend analysis from FY2002 to FY2021, a reduction tendency in specimens from bivalves was identified as statistically significant.

	Monitored	Geometric				Quantification	Detection I	Frequency
<i>o,p'</i> -DDT	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	110	83	480	22	12 [4]	38/38	8/8
	2003	130	120	480	35	2.9 [0.97]	30/30	6/6
	2004	160	140	910	20	1.8 [0.61]	31/31	7/7
	2005	98	57	440	29	2.6 [0.86]	31/31	7/7
	2006	92	79	380	24	3 [1]	31/31	7/7
Bivalves	2007	79	52	350	20	3 [1]	31/31	7/7
(pg/g-wet)	2008	58	37	330	5	3 [1]	31/31	7/7
	2009	74	48	2,500	17	2.2 [0.8]	31/31	7/7
	2010	51	67	160	15	3 [1]	6/6	6/6
	2013	49	51	180	12	3 [1]	5/5	5/5
	2018	24	12	120	10	2.7 [0.9]	3/3	3/3
	2021	20	10	93	8	3 [1]	30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 3/3 70/70 70/70 70/70 70/70 80/80 80/181 18/18 19/19 18/18 18/18 10/10 10/10 10/10 10/10 10/10	3/3
	2002	130	130	2,300	tr(6)	12 [4]	70/70	14/14
	2003	85	120	520	2.9	2.9 [0.97]	70/70	14/14
	2004	160	140	1,800	3.7	1.8 [0.61]	70/70	14/14
	2005	100	110	1,500	5.8	2.6 [0.86]	80/80	16/16
	2006	100	110	700	6	3 [1]	80/80	16/16
Fish	2007	69	90	430	3	3 [1]	80/80	16/16
(pg/g-wet)	2008	72	92	720	3	3 [1]	85/85	17/17
	2009	61	73	470	2.4	2.2 [0.8]	90/90	18/18
	2010	58	71	550	5	3 [1]	18/18	18/18
	2013	58	76	310	4	3 [1]	19/19	19/19
	2018	34	34	1,500	tr(1.1)	2.7 [0.9]	18/18	18/18
	2021	24	32	70	tr(1)	3 [1]	18/18	18/18
	2002	12	tr(10)	58	nd	12 [4]	8/10	2/2
	2003	24	16	66	8.3	2.9 [0.97]	10/10	2/2
	2004	8.5	13	43	tr(0.87)	1.8 [0.61]	10/10	2/2
	2005	11	14	24	3.4	2.6 [0.86]	10/10	2/2
	2006	14	10	120	3	3 [1]	10/10	2/2
Birds *2	2007	9	9	26	tr(2)	3 [1]	10/10	2/2
(pg/g-wet)	2008	4	6	16	nd	3 [1]	8/10	2/2
	2009	6.3	7.6	12	tr(1.4)	2.2 [0.8]	10/10	2/2
	2010	nd		nd	nd	3 [1]	0/2	0/2
	2013	nd		tr(1)	nd	3 [1]	1/2	1/2
	2018	tr(1.1)		tr(2.5)	nd	2.7 [0.9]	1/2	1/2
	2021	tr(2)		3	tr(1)	3 [1]	2/2	2/2

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in wildlife (bivalves, fish and birds) during FY2002~2021

(555	Monitored	Geometric				Quantification	Detection	Frequency
<i>o,p'</i> -DDE	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	83	66	1,100	13	3.6 [1.2]	38/38	8/8
	2003	85	100	460	17	3.6 [1.2]	30/30	6/6
	2004	86	69	360	19	2.1 [0.69]	31/31	7/7
	2005	70	89	470	12	3.4 [1.1]	31/31	7/7
	2006	62	81	340	12	3 [1]	31/31	7/7
Bivalves	2007	56	69	410	8.9	2.3 [0.9]	31/31	7/7
(pg/g-wet)	2008	49	52	390	8	3 [1]	31/31	7/7
	2009	46	58	310	8	3 [1]	31/31	7/7
	2010	46	58	160	7.8	1.5 [0.6]	6/6	6/6
	2013	28	31	260	4	4 [1]	5/5	5/5
	2018	20	15	250	tr(2)	3 [1]	3/3	3/3
	2021	12	8	110	tr(2)	3 [1]	3/3	3/3
	2002	91	50	13,000	3.6	3.6 [1.2]	70/70	14/14
	2003	51	54	2,500	nd	3.6 [1.2]	67/70	14/14
	2004	76	48	5,800	tr(0.89)	2.1 [0.69]	70/70	14/14
	2005	54	45	12,000	tr(1.4)	3.4 [1.1]	80/80	16/16
	2006	56	43	4,800	tr(1)	3 [1]	80/80	16/16
Fish	2007	45	29	4,400	nd	2.3 [0.9]	79/80	16/16
(pg/g-wet)	2008	50	37	13,000	tr(1)	3 [1]	85/85	17/17
	2009	46	33	4,300	tr(1)	3 [1]	90/90	18/18
	2010	47	37	2,800	tr(1.2)	1.5 [0.6]	18/18	18/18
	2013	51	40	3,000	tr(1)	4 [1]	19/19	19/19
	2018	32	27	2,000	nd	3 [1]	17/18	17/18
	2021	32	32	1,600	nd	3 [1]	17/18	17/18
	2002	28	26	49	20	3.6 [1.2]	10/10	2/2
	2003	tr(2.3)	tr(2.0)	4.2	nd	3.6 [1.2]	9/10	2/2
	2004	tr(1.0)	tr(1.1)	3.7	nd	2.1 [0.69]	5/10	1/2
	2005	tr(1.2)	tr(1.9)	tr(2.9)	nd	3.4 [1.1]	7/10	2/2
	2006	tr(1)	tr(2)	3	tr(1)	3 [1]	10/10	2/2
Birds *2	2007	tr(1.0)	tr(1.4)	2.8	nd	2.3 [0.9]	6/10	2/2
(pg/g-wet)	2008	tr(1)	nd	3	nd	3 [1]	5/10	1/2
	2009	nd	tr(1)	tr(2)	nd	3 [1]	6/10	2/2
	2010	tr(1.1)		3.7	nd	1.5 [0.6]	1/2	1/2
				4 (1)				
	2013	nd		tr(1)	nd	4 [1]	1/2	1/2
	2013 2018			tr(1) tr(1)	nd tr(1)	3 [1]	2/2	2/2
	2013	nd				3 [1] 3 [1]	2/2 2/2	2/2 2/2
	2013 2018 2021	nd tr(1) tr(1)		tr(1) tr(1)	tr(1) tr(1)	3 [1] 3 [1] Quantification	2/2	2/2 2/2
o,p'-DDD	2013 2018	nd tr(1) tr(1)		tr(1)	tr(1)	3 [1] 3 [1] Quantification [Detection]	2/2 2/2	2/2 2/2
o,p'-DDD	2013 2018 2021 Monitored year	nd tr(1) tr(1) Geometric mean *1	 Median	tr(1) tr(1) Maximum	tr(1) tr(1) Minimum	3 [1] 3 [1] Quantification [Detection] limit	2/2 2/2 Detection I Sample	2/2 2/2 Frequency Site
o,p'-DDD	2013 2018 2021 Monitored year 2002	nd tr(1) tr(1) Geometric mean *1 120	 Median 190	tr(1) tr(1) Maximum 2,900	tr(1) tr(1) Minimum tr(9)	3 [1] 3 [1] Quantification [Detection] limit 12 [4]	$ \frac{2/2}{2/2} $ Detection I Sample 38/38	2/2 2/2 Frequency Site 8/8
<i>o,p'</i> -DDD	2013 2018 2021 Monitored year 2002 2003	nd tr(1) tr(1) Geometric mean *1 120 200	 Median 190 220	tr(1) tr(1) Maximum 2,900 1,900	tr(1) tr(1) Minimum tr(9) 6.5	3 [1] 3 [1] Quantification [Detection] limit 12 [4] 6.0 [2.0]	2/2 2/2 Detection 1 Sample 38/38 30/30	2/2 2/2 Frequency Site 8/8 6/6
<i>o,p'-</i> DDD	2013 2018 2021 Monitored year 2002 2003 2004	nd tr(1) tr(1) Geometric mean *1 120 200 220	 Median 190 220 130	tr(1) tr(1) Maximum 2,900 1,900 2,800	tr(1) tr(1) Minimum tr(9) 6.5 6.0	3 [1] 3 [1] Quantification [Detection] limit 12 [4] 6.0 [2.0] 5.7 [1.9]	2/2 2/2 Detection 1 Sample 38/38 30/30 31/31	2/2 2/2 Frequency Site 8/8 6/6 7/7
<i>o,p'-</i> DDD	2013 2018 2021 Monitored year 2002 2003 2004 2005	nd tr(1) tr(1) Geometric mean *1 120 200 220 170	 Median 190 220 130 280	tr(1) tr(1) Maximum 2,900 1,900 2,800 1,800	tr(1) tr(1) Minimum tr(9) 6.5 6.0 10	3 [1] 3 [1] Quantification [Detection] limit 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1]	2/2 2/2 Detection 1 Sample 38/38 30/30 31/31 31/31	2/2 2/2 Frequency Site 8/8 6/6 7/7 7/7
	2013 2018 2021 Monitored year 2002 2003 2004 2005 2006	nd tr(1) tr(1) Geometric mean *1 120 200 220 170 150	 Median 190 220 130 280 200	tr(1) tr(1) Maximum 2,900 1,900 2,800 1,800 1,000	tr(1) tr(1) Minimum tr(9) 6.5 6.0 10 7	3 [1] 3 [1] Quantification [Detection] limit 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1]	2/2 2/2 Detection 1 38/38 30/30 31/31 31/31 31/31	2/2 2/2 Frequency Site 8/8 6/6 7/7 7/7 7/7
Bivalves	2013 2018 2021 Monitored year 2002 2003 2004 2005 2006 2007	nd tr(1) tr(1) Geometric mean *1 120 200 220 170 150 150	 Median 190 220 130 280 200 200	tr(1) tr(1) Maximum 2,900 1,900 2,800 1,800 1,000 1,200	tr(1) tr(1) Minimum tr(9) 6.5 6.0 10 7 6	3 [1] 3 [1] Quantification [Detection] limit 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1]	2/2 2/2 Detection 1 38/38 30/30 31/31 31/31 31/31 31/31	2/2 2/2 Frequency Site 8/8 6/6 7/7 7/7 7/7 7/7
	2013 2018 2021 Monitored year 2002 2003 2004 2005 2006 2007 2008	nd tr(1) tr(1) Geometric mean *1 120 200 220 170 150 150 150 130	 Median 190 220 130 280 200 200 200 140	tr(1) tr(1) Maximum 2,900 1,900 2,800 1,800 1,800 1,000 1,200 1,100	tr(1) tr(1) Minimum tr(9) 6.5 6.0 10 7 6 5	3 [1] 3 [1] Quantification [Detection] limit 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2]	2/2 2/2 Detection 1 38/38 30/30 31/31 31/31 31/31 31/31 31/31	2/2 2/2 Frequency Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves	2013 2018 2021 Monitored year 2002 2003 2004 2005 2006 2007 2008 2009	nd tr(1) tr(1) Geometric mean *1 120 200 220 170 150 150 150 130 95	 Median 190 220 130 280 200 200 140 51	tr(1) tr(1) Maximum 2,900 1,900 2,800 1,800 1,000 1,200 1,100 1,000	tr(1) tr(1) Minimum tr(9) 6.5 6.0 10 7 6 5 5 5	3 [1] 3 [1] Quantification [Detection] limit 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1]	2/2 2/2 Detection 1 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31	2/2 2/2 Frequency Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves	2013 2018 2021 Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010	nd tr(1) tr(1) Geometric mean *1 120 200 220 170 150 150 150 130 95 57	 Median 190 220 130 280 200 200 140 51 50	tr(1) tr(1) Maximum 2,900 1,900 2,800 1,800 1,000 1,200 1,100 1,000 400	tr(1) tr(1) Minimum tr(9) 6.5 6.0 10 7 6 5 5 5 5.8	3 [1] 3 [1] Quantification [Detection] limit 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2]	2/2 2/2 Detection 1 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6	2/2 2/2 Frequency Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6
Bivalves	2013 2018 2021 Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013	nd tr(1) tr(1) Geometric mean *1 120 200 220 170 150 150 150 150 130 95 57 100	 Median 190 220 130 280 200 200 140 51 50 74	tr(1) tr(1) Maximum 2,900 1,900 2,800 1,800 1,000 1,200 1,100 1,000 400 1,800	tr(1) tr(1) Minimum tr(9) 6.5 6.0 10 7 6 5 5 5 5 5 8 7.8	3 [1] 3 [1] Quantification [Detection] limit 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7]	2/2 2/2 Detection 1 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5	2/2 2/2 Frequency Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5
Bivalves	2013 2018 2021 Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018	nd tr(1) tr(1) Geometric mean *1 120 200 220 170 150 150 150 150 150 150 150 150 130 95 57 100 46	 Median 190 220 130 280 200 200 140 51 50 74 27	tr(1) tr(1) Maximum 2,900 1,900 2,800 1,800 1,000 1,200 1,100 1,000 400 1,800 720	tr(1) tr(1) Minimum tr(9) 6.5 6.0 10 7 6 5 5 5 5 5 8 7.8 4.9	$\begin{array}{c} 3 \ [1] \\ 3 \ [1] \\ \hline 3 \ [1] \\ \hline 0 \ [Detection] \\ limit \\ \hline 12 \ [4] \\ 6.0 \ [2.0] \\ 5.7 \ [1.9] \\ 3.3 \ [1.1] \\ 4 \ [1] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 0.6 \ [0.2] \\ 1.8 \ [0.7] \\ 2.4 \ [0.9] \\ \end{array}$	2/2 2/2 Detection 1 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3	2/2 2/2 Frequency Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 3/3
Bivalves	2013 2018 2021 Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2021	nd tr(1) tr(1) Geometric mean *1 120 200 220 170 150 150 150 150 130 95 57 100 46 33	 Median 190 220 130 280 200 200 140 51 50 74 27 23	tr(1) tr(1) 2,900 1,900 2,800 1,900 2,800 1,800 1,200 1,100 1,000 400 1,800 720 760	tr(1) tr(1) Minimum tr(9) 6.5 6.0 10 7 6 5 5 5 5 5 5 5 5 8 7.8 4.9 tr(2)	3 [1] 3 [1] Quantification [Detection] limit 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 2.4 [0.9] 5 [2]	2/2 2/2 Detection 1 38/38 30/30 31/31 31/3	2/2 2/2 Frequency Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves	2013 2018 2021 Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2021 2002	nd tr(1) tr(1) Geometric mean *1 120 200 220 170 150 150 150 150 130 95 57 100 46 33 95	 Median 190 220 130 280 200 200 140 51 50 74 27 23 90	tr(1) tr(1) Maximum 2,900 1,900 2,800 1,900 2,800 1,800 1,200 1,100 1,000 400 1,800 720 760 1,100	tr(1) tr(1) Minimum tr(9) 6.5 6.0 10 7 6 5 5 5 5 5 5 5 5 8 7.8 4.9 tr(2) nd	3 [1] 3 [1] Quantification [Detection] limit 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 2.4 [0.9] 5 [2] 12 [4]	2/2 2/2 Detection 1 38/38 30/30 31/31 31/3	2/2 2/2 Frequency Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves	2013 2018 2021 Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2021 2002 2003	nd tr(1) tr(1) Geometric mean *1 120 200 220 170 150 150 150 150 130 95 57 100 46 33 95 75	 Median 190 220 130 280 200 200 140 51 50 74 27 23 90 90 96	tr(1) tr(1) Maximum 2,900 1,900 2,800 1,900 2,800 1,800 1,200 1,100 1,000 400 1,800 720 760 1,100 920	tr(1) tr(1) Minimum tr(9) 6.5 6.0 10 7 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 [1] 3 [1] Quantification [Detection] limit 12 [4] 6.0 [2.0] 5.7 [1.9] 3.3 [1.1] 4 [1] 3 [1] 4 [2] 3 [1] 0.6 [0.2] 1.8 [0.7] 2.4 [0.9] 5 [2] 12 [4] 6.0 [2.0]	2/2 2/2 Detection 1 38/38 30/30 31/31 31/3	2/2 2/2 Frequenc 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves	2013 2018 2021 Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2021 2002 2003 2004	nd tr(1) tr(1) Geometric mean *1 120 200 220 170 150 150 150 150 150 150 130 95 57 100 46 33 95 75 120	 Median 190 220 130 280 200 200 140 51 50 74 27 23 90 96 96	tr(1) tr(1) tr(1) Maximum 2,900 1,900 2,800 1,900 1,200 1,100 1,000 400 1,800 720 760 1,100 920 1,700	tr(1) tr(1) Minimum tr(9) 6.5 6.0 10 7 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 8 7.8 4.9 tr(2) nd nd nd	$\begin{array}{c} 3 \ [1] \\ 3 \ [1] \\ \hline 3 \ [1] \\ \hline 0 \ [Detection] \\ limit \\ \hline 12 \ [4] \\ 6.0 \ [2.0] \\ 5.7 \ [1.9] \\ 3.3 \ [1.1] \\ 4 \ [1] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 0.6 \ [0.2] \\ 1.8 \ [0.7] \\ 2.4 \ [0.9] \\ 5 \ [2] \\ \hline 12 \ [4] \\ 6.0 \ [2.0] \\ 5.7 \ [1.9] \\ \end{array}$	2/2 2/2 Detection 1 38/38 30/30 31/31 31/3	2/2 2/2 Frequenc: Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves	2013 2018 2021 Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2021 2002 2003 2004 2005	nd tr(1) tr(1) Geometric mean *1 120 200 220 170 150 150 150 150 150 130 95 57 100 46 33 95 75 120 83	 Median 190 220 130 280 200 200 140 51 50 74 27 23 90 96 96 81	tr(1) tr(1) tr(1) Maximum 2,900 1,900 2,800 1,800 1,000 1,200 1,100 1,000 400 1,800 720 760 1,100 920 1,700 1,400	tr(1) tr(1) Minimum tr(9) 6.5 6.0 10 7 6 5 5 5 5 5 5 5 5 5 5 5 8 7.8 4.9 tr(2) nd nd nd nd	$\begin{array}{c} 3 \ [1] \\ 3 \ [1] \\ \hline 3 \ [1] \\ \hline 0 \ [Detection] \\ limit \\ \hline 12 \ [4] \\ 6.0 \ [2.0] \\ 5.7 \ [1.9] \\ 3.3 \ [1.1] \\ 4 \ [1] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 0.6 \ [0.2] \\ 1.8 \ [0.7] \\ 2.4 \ [0.9] \\ 5 \ [2] \\ \hline 12 \ [4] \\ 6.0 \ [2.0] \\ 5.7 \ [1.9] \\ 3.3 \ [1.1] \end{array}$	2/2 2/2 Detection 1 38/38 30/30 31/31 31/3	2/2 2/2 Frequenc 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves (pg/g-wet)	2013 2018 2021 Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2009 2010 2013 2018 2021 2002 2003 2004 2005 2006	nd tr(1) tr(1) Geometric mean *1 120 200 220 170 150 150 150 150 150 130 95 57 100 46 33 95 75 120 83 80	 Median 190 220 130 280 200 200 140 51 50 74 27 23 90 96 96 81 86	tr(1) tr(1) tr(1) Maximum 2,900 1,900 2,800 1,800 1,000 1,200 1,100 1,000 400 1,800 720 760 1,100 920 1,700 1,400 1,100	tr(1) tr(1) Minimum tr(9) 6.5 6.0 10 7 6 5 5 5 5 5 5 5 5 8 7.8 4.9 tr(2) nd nd nd tr(1)	$\begin{array}{c} 3 \ [1] \\ 3 \ [1] \\ \hline 3 \ [1] \\ \hline 2 \ [2] \\ \hline 0 \\ \hline 0 \\ \hline 12 \ [4] \\ \hline 6.0 \ [2.0] \\ \hline 5.7 \ [1.9] \\ \hline 3.3 \ [1.1] \\ 4 \ [1] \\ \hline 3 \ [1] \\ 4 \ [2] \\ \hline 3 \ [1] \\ \hline 0.6 \ [0.2] \\ \hline 1.8 \ [0.7] \\ \hline 2.4 \ [0.9] \\ \hline 5 \ [2] \\ \hline 12 \ [4] \\ \hline 6.0 \ [2.0] \\ \hline 5.7 \ [1.9] \\ \hline 3.3 \ [1.1] \\ 4 \ [1] \end{array}$	2/2 2/2 Detection 1 38/38 30/30 31/31 30/30 30 30 30 30 30 30 30 30 30 30 30 30 3	2/2 2/2 Frequenc 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves (pg/g-wet) Fish	2013 2018 2021 Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2009 2010 2013 2018 2021 2002 2003 2004 2005 2006 2007	nd tr(1) tr(1) Geometric mean *1 120 200 220 170 150 150 150 150 150 130 95 57 100 46 33 95 75 120 83 80 66	 Median 190 220 130 280 200 200 140 51 50 74 27 23 90 96 96 81 86 62	tr(1) tr(1) tr(1) Maximum 2,900 1,900 2,800 1,800 1,000 1,200 1,100 1,000 400 1,800 720 760 1,100 920 1,700 1,400 1,100 1,300	tr(1) tr(1) Minimum tr(9) 6.5 6.0 10 7 6 5 5 5 5 5 8 7.8 4.9 tr(2) nd nd nd nd tr(1) nd	$\begin{array}{c} 3 \ [1] \\ 3 \ [1] \\ \hline 3 \ [1] \\ \hline 2 \ [2] \\ \hline 0 \\ 12 \ [4] \\ 6.0 \ [2.0] \\ 5.7 \ [1.9] \\ 3.3 \ [1.1] \\ 4 \ [1] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 0.6 \ [0.2] \\ 1.8 \ [0.7] \\ 2.4 \ [0.9] \\ 5 \ [2] \\ \hline 12 \ [4] \\ 6.0 \ [2.0] \\ 5.7 \ [1.9] \\ 3.3 \ [1.1] \\ 4 \ [1] \\ 3 \ [1] \end{array}$	2/2 2/2 Detection 1 38/38 30/30 31/31 31/3	2/2 2/2 Frequence 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves (pg/g-wet)	2013 2018 2021 Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2009 2010 2013 2018 2021 2002 2003 2004 2005 2006 2007 2008	nd tr(1) tr(1) Geometric mean *1 120 200 220 170 150 150 150 150 130 95 57 100 46 33 95 75 120 83 80 66 65	 Median 190 220 130 280 200 200 140 51 50 74 27 23 90 96 96 81 86 62 74	tr(1) tr(1) tr(1) Maximum 2,900 1,900 2,800 1,800 1,000 1,200 1,100 1,000 400 1,800 720 760 1,100 920 1,700 1,400 1,100 1,300 1,000	tr(1) tr(1) Minimum tr(9) 6.5 6.0 10 7 6 5 5 5.8 7.8 4.9 tr(2) nd nd nd nd tr(1) nd nd tr(1) nd	$\begin{array}{c} 3 \ [1] \\ 3 \ [1] \\ \hline 3 \ [1] \\ \hline 2 \ [2] \\ \hline 0 \\ \hline 0 \\ \hline 12 \ [4] \\ \hline 6.0 \ [2.0] \\ \hline 5.7 \ [1.9] \\ \hline 3.3 \ [1.1] \\ 4 \ [1] \\ \hline 3 \ [1] \\ 4 \ [2] \\ \hline 3 \ [1] \\ \hline 0.6 \ [0.2] \\ \hline 1.8 \ [0.7] \\ \hline 2.4 \ [0.9] \\ \hline 5 \ [2] \\ \hline 12 \ [4] \\ \hline 6.0 \ [2.0] \\ \hline 5.7 \ [1.9] \\ \hline 3.3 \ [1.1] \\ 4 \ [1] \\ \hline 3 \ [1] \\ 4 \ [2] \\ \end{array}$	2/2 2/2 Detection 1 38/38 30/30 31/31 31/3	2/2 2/2 Frequenc 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves (pg/g-wet) Fish	2013 2018 2021 Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2009 2010 2013 2018 2021 2002 2003 2004 2005 2006 2007 2008 2009	nd tr(1) tr(1) Geometric mean *1 120 200 220 170 150 150 150 150 150 150 130 95 57 100 46 33 95 75 120 83 80 66 65 63	 Median 190 220 130 280 200 200 140 51 50 74 27 23 90 96 96 96 81 86 62 74 64	tr(1) tr(1) tr(1) Maximum 2,900 1,900 2,800 1,800 1,000 1,200 1,100 1,000 400 1,800 720 760 1,100 920 1,700 1,400 1,100 1,300 1,000 760	tr(1) tr(1) Minimum tr(9) 6.5 6.0 10 7 6 5 5 5 5 8 7.8 4.9 tr(2) nd nd nd rd tr(1) nd nd nd nd	$\begin{array}{c} 3 \ [1] \\ 3 \ [1] \\ \hline 3 \ [1] \\ \hline 2 \ [2] \\ \hline 0 \\ 12 \ [4] \\ 6.0 \ [2.0] \\ 5.7 \ [1.9] \\ 3.3 \ [1.1] \\ 4 \ [1] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 0.6 \ [0.2] \\ 1.8 \ [0.7] \\ 2.4 \ [0.9] \\ 5 \ [2] \\ \hline 12 \ [4] \\ 6.0 \ [2.0] \\ 5.7 \ [1.9] \\ 3.3 \ [1.1] \\ 4 \ [1] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ \end{array}$	2/2 2/2 Detection 1 38/38 30/30 31/31 31/3	2/2 2/2 Frequenc 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves (pg/g-wet) Fish	2013 2018 2021 Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2009 2010 2013 2018 2002 2003 2004 2005 2006 2007 2008 2009 2010	nd tr(1) tr(1) Geometric mean*1 120 200 220 170 150 150 150 150 130 95 57 100 46 33 95 75 120 83 80 66 65 63 75	 Median 190 220 130 280 200 200 140 51 50 74 27 23 90 96 96 81 86 62 74 64 99	tr(1) tr(1) tr(1) Maximum 2,900 1,900 2,800 1,800 1,000 1,000 1,000 1,000 1,000 1,000 1,000 720 760 1,100 920 1,700 1,400 1,100 1,300 1,000 760 760 700	tr(1) tr(1) Minimum tr(9) 6.5 6.0 10 7 6 5 5 5.8 7.8 4.9 tr(2) nd nd nd nd tr(1) nd nd nd tr(1) nd nd 2.6	$\begin{array}{c} 3 \ [1] \\ 3 \ [1] \\ \hline 3 \ [1] \\ \hline 2 \ [2] \\ \hline 0 \\ 12 \ [4] \\ 6.0 \ [2.0] \\ 5.7 \ [1.9] \\ 3.3 \ [1.1] \\ 4 \ [1] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 0.6 \ [0.2] \\ 1.8 \ [0.7] \\ 2.4 \ [0.9] \\ 5 \ [2] \\ \hline 12 \ [4] \\ 6.0 \ [2.0] \\ 5.7 \ [1.9] \\ 3.3 \ [1.1] \\ 4 \ [1] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 0.6 \ [0.2] \\ \hline \end{array}$	2/2 2/2 Detection 1 38/38 30/30 31/31 31/3	2/2 2/2 Frequenc 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves (pg/g-wet) Fish	2013 2018 2021 Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2002 2003 2004 2003 2004 2005 2006 2007 2008 2009 2010 2010 2013	nd tr(1) tr(1) deometric mean*1 120 200 220 170 150 150 150 150 150 130 95 57 100 46 33 95 75 120 83 80 66 65 63 75 70	 Median 190 220 130 280 200 200 140 51 50 74 27 23 90 96 96 81 86 62 74 64 99 85	tr(1) tr(1) tr(1) Maximum 2,900 1,900 2,800 1,800 1,000 1,000 1,000 1,000 1,000 1,000 1,800 720 760 1,100 920 1,700 1,400 1,100 1,300 1,000 760 760 700 940	tr(1) tr(1) Minimum tr(9) 6.5 6.0 10 7 6 5 5 5.8 7.8 4.9 tr(2) nd nd nd nd tr(1) nd nd tr(1) nd nd cf f f f f f f f f f f f f f f f f f f	$\begin{array}{c} 3 \ [1] \\ 3 \ [1] \\ \hline \\ 2 \ [Detection] \\ limit \\ \hline \\ 12 \ [4] \\ 6.0 \ [2.0] \\ 5.7 \ [1.9] \\ 3.3 \ [1.1] \\ 4 \ [1] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 0.6 \ [0.2] \\ 1.8 \ [0.7] \\ 2.4 \ [0.9] \\ 5 \ [2] \\ \hline \\ 12 \ [4] \\ 6.0 \ [2.0] \\ 5.7 \ [1.9] \\ 3.3 \ [1.1] \\ 4 \ [1] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 0.6 \ [0.2] \\ 1.8 \ [0.7] \\ \hline \end{array}$	2/2 2/2 Detection 1 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 3/3 66/70 66/70 66/70 66/70 66/70 66/70 66/70 68/70 79/80 80/80 78/80 80/85 87/90 18/18 18/19	2/2 2/2 Frequenc 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves (pg/g-wet) Fish	2013 2018 2021 Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2009 2010 2013 2018 2002 2003 2004 2005 2006 2007 2008 2009 2010	nd tr(1) tr(1) Geometric mean*1 120 200 220 170 150 150 150 150 130 95 57 100 46 33 95 75 120 83 80 66 65 63 75	 Median 190 220 130 280 200 200 140 51 50 74 27 23 90 96 96 81 86 62 74 64 99	tr(1) tr(1) tr(1) Maximum 2,900 1,900 2,800 1,800 1,000 1,000 1,000 1,000 1,000 1,000 1,000 720 760 1,100 920 1,700 1,400 1,100 1,300 1,000 760 760 700	tr(1) tr(1) Minimum tr(9) 6.5 6.0 10 7 6 5 5 5.8 7.8 4.9 tr(2) nd nd nd nd tr(1) nd nd nd tr(1) nd nd 2.6	$\begin{array}{c} 3 \ [1] \\ 3 \ [1] \\ \hline 3 \ [1] \\ \hline 2 \ [2] \\ \hline 0 \\ 12 \ [4] \\ 6.0 \ [2.0] \\ 5.7 \ [1.9] \\ 3.3 \ [1.1] \\ 4 \ [1] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 0.6 \ [0.2] \\ 1.8 \ [0.7] \\ 2.4 \ [0.9] \\ 5 \ [2] \\ \hline 12 \ [4] \\ 6.0 \ [2.0] \\ 5.7 \ [1.9] \\ 3.3 \ [1.1] \\ 4 \ [1] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 0.6 \ [0.2] \\ \hline \end{array}$	2/2 2/2 Detection 1 38/38 30/30 31/31 31/3	2/2 2/2 Frequency Site 8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7

	Monitored	Geometric				Quantification	Detection I	Frequency
o,p'-DDD	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Detection F Sample 10/10 10/10 9/10 10/10 10/10 10/10 10/10 2/2 2/2 2/2	Site
	2002	15	15	23	tr(8)	12 [4]	10/10	2/2
	2003	15	14	36	tr(5.0)	6.0 [2.0]	10/10	2/2
	2004	6.1	5.7	25	nd	5.7 [1.9]	9/10	2/2
	2005	7.3	7.5	9.7	4.7	3.3 [1.1]	10/10	2/2
	2006	8	8	19	5	4 [1]	10/10	2/2
Birds *2	2007	7	7	10	5	3 [1]	10/10	2/2
(pg/g-wet)	2008	4	tr(3)	14	tr(2)	4 [2]	10/10	2/2
	2009	6	5	13	3	3 [1]	10/10	2/2
	2010	6.3		11	3.6	0.6 [0.2]	2/2	2/2
	2013	5.4		12	2.4	1.8 [0.7]	2/2	2/2
	2018	6.1		9.9	3.7	2.4 [0.9]	2/2	2/2
	2021	6		8	tr(4)	5 [2]	2/2	2/2

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note2) *2: There is no consistency between the results of the ornithological survey in FY2013 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2011, FY2012, FY2014~2017, FY2019 and 2020.

<Air>

o,p'-DDT: The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.03pg/m³, and the detection range was $0.11 \sim 3.0$ pg/m³.

As results of the inter-annual trend analysis from FY2003 to FY2021, a reduction tendency in specimens from warm season was identified as statistically significant.

o,p'-DDE: The presence of the substance in air was monitored at 35 sites, and it was detected at 34 of the 35 valid sites adopting the detection limit of 0.04 pg/m³, and the detection range was up to 0.55 pg/m³.

As results of the inter-annual trend analysis from FY2003 to FY2021, a reduction tendency in specimens from warm season was identified as statistically significant.

o,p'-DDD: The presence of the substance in air was monitored at 35 sites, and it was detected at 27 of the 35 valid sites adopting the detection limit of 0.04 pg/m³, and the detection range was up to 0.16 pg/m³.

As results of the inter-annual trend analysis from FY2003 to FY2021, the recent 6 years period was indicated lower concentration than the first 6 years period in specimens from warm season as statistically significant.

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in air during FY2002~2021

		Geometric				Quantification	Detection I	Frequency
<i>o,p'</i> -DDT	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37	Site
	2002	2.2	2.0	40	0.41	0.15 [0.05]	102/102	34/34
	2003 Warm season	6.9	7.7	38	0.61	0 12 [0 040]	35/35	35/35
	2003 Cold season	1.6	1.4	6.4	0.43	0.12 [0.040]	34/34	34/34
	2004 Warm season	5.1	5.4	22	0.54	0.002 [0.021]	37/37	37/37
	2004 Cold season	1.5	1.4	9.4	0.35	0.093 [0.031]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37	37/37
	2005 Warm season	3.0	3.1	14	0.67	0 10 [0 024]	37/37	37/37
	2005 Cold season	0.76	0.67	3.0	0.32	0.10 [0.034]		37/37
	2006 Warm season	2.5	2.4	20	0.55	0.00.00.21	37/37	37/37
	2006 Cold season	0.90	0.79	3.9	0.37	0.09 [0.03]	37/37	37/37
	2007 Warm season	2.9	2.6	19	0.24	0.03 [0.01]	36/36	36/36
Air	2007 Cold season	0.77	0.63	3.4	0.31		36/36	36/36
(pg/m^3)	2008 Warm season	2.3	2.1	18	0.33	0.03 [0.01]	37/37	37/37
	2008 Cold season	0.80	0.62	6.5	0.32	0.03 [0.01]	102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 35/35 37/37	37/37
	2009 Warm season	2.3	2.2	14	0.33	0 010 [0 009]	37/37	37/37
	2009 Cold season	0.80	0.71	3.7	0.20	0.019 [0.008]	37/37	37/37
	2010 Warm season	2.2	1.9	26	0.19	0 14 [0 05]	37/37	37/37
	2010 Cold season	0.81	0.69	5.5	0.22	0.14 [0.05]	37/37	37/37
	2013 Warm season	1.7	1.7	12	0.15	0.054 [0.019]	36/36	36/36
	2013 Cold season	0.47	0.44	2.4	0.20	0.054 [0.018]	36/36	36/36
	2015 Warm season	0.99	1.2	6.8	0.14	0.12 [0.04]	35/35	35/35
	2018 Warm season	1.0	1.1	6.3	0.08	0.03 [0.01]	37/37	37/37
	2021 Warm season	0.50	0.47	3.0	0.11	0.08 [0.03]	35/35	35/35

		Geometric				Quantification	Detection	Frequenc
<i>o,p'</i> -DDE	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.60	0.56	8.5	0.11	0.03 [0.01]	102/102	34/34
	2003 Warm season	1.4	1.5	7.5	0.17	0.020 [0.0068]	35/35	35/35
	2003 Cold season	0.50	0.47	1.7	0.18	0.020 [0.0008]	34/34	34/34
	2004 Warm season	1.1	1.2	8.9	0.14	0.027.[0.012]	37/37	37/37
	2004 Cold season	0.53	0.49	3.9	0.14	0.037 [0.012]	37/37	37/37
	2005 Warm season	1.6	1.5	7.9	0.33	0.074 [0.024]	37/37	37/37
	2005 Cold season	0.62	0.59	2.0	0.24	0.074 [0.024]	37/37	37/37
	2006 Warm season	1.1	1.1	7.4	nd	0.00.00.000	36/37	36/37
	2006 Cold season	0.65	0.56	2.6	0.19	0.09 [0.03]	37/37	37/37
	2007 Warm season	0.66	0.67	7	0.096		36/36	36/36
Air	2007 Cold season	0.3	0.29	3.7	0.12	0.017 [0.007]	36/36	36/36
(pg/m^3)	2008 Warm season	0.48	0.52	5.0	0.11		37/37	37/37
(18)	2008 Cold season	0.30	0.24	1.1	0.15	0.025 [0.009]	37/37	37/37
	2009 Warm season	0.51	0.46	6.7	0.098		37/37	37/37
	2009 Cold season	0.27	0.24	23	0.072	0.016 [0.006]	37/37	37/37
	2010 Warm season	0.49	0.41	9.0	0.09		37/37	37/37
	2010 Cold season	0.27	0.23	2.3	0.08	0.04 [0.01]	37/37	37/37
	2010 Cold Season 2013 Warm season	0.38	0.25	3.3	0.051		36/36	36/36
	2013 Cold season	0.21	0.19	0.65	0.097	0.023 [0.009]	36/36	36/36
	2015 Warm season	0.21	0.19	1.1		0.18 [0.06]	34/35	34/35
	2013 Warm season 2018 Warm season	0.23	0.24	1.1	tr(0.04)	0.05 [0.02]	37/37	37/37
	2018 Warm season 2021 Warm season	0.17	0.20	0.55	nd	0.10 [0.04]	34/35	34/35
		0.17	0.10	0.55	IId	Ouantification	Detection	
o,p'-DDD	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.14	0.18	0.85	nd	0.021 [0.007]	97/102	33/34
	2003 Warm season	0.37	0.42	1.3	0.059		35/35	35/35
	2003 Cold season	0.15	0.14	0.42	0.062	0.042 [0.014]	34/34	34/34
	2004 Warm season	0.31	0.33	2.6	tr(0.052)	0.1450.0403	37/37	37/37
	2004 Cold season	0.14	tr(0.13)	0.86	nd	0.14 [0.048]	35/37	35/37
	2005 Warm season	0.22	0.19	0.90	tr(0.07)	0.10.50.023	37/37	37/37
	2005 Cold season	tr(0.07)	tr(0.07)	0.21	nd	0.10 [0.03]	35/37	35/37
	2006 Warm season	0.28	0.28	1.4	tr(0.05)		37/37	37/37
	2006 Cold season	0.12	0.11	0.79	nd	0.10 [0.03]	34/37	34/37
	2007 Warm season	0.28	0.29	1.9	0.05		36/36	36/36
Air	2007 Cold season	0.095	0.09	0.33	tr(0.03)	0.05 [0.02]	36/36	36/36
(pg/m^3)	2008 Warm season	0.19	0.16	1.6	0.05		37/37	37/37
(rom)	2008 Cold season	0.10	0.09	0.26	0.05	0.04 [0.01]	37/37	37/37
	2009 Warm season	0.10	0.09	0.20	0.04		37/37	37/37
	2009 Cold season	0.08	0.08	0.28	tr(0.02)	0.03 [0.01]	37/37	37/37
	2009 Cold season 2010 Warm season	0.08	0.08	1.8	0.04		37/37	37/37
	2010 Wallin season 2010 Cold season	0.21	0.19	0.48	tr(0.02)	0.03 [0.01]	37/37	37/37
	2010 Cold season 2013 Warm season		0.09	1.2	$\frac{tr(0.02)}{tr(0.03)}$		36/36	36/36
		0.17				0.05 [0.02]		
	2013 Cold season		$\frac{0.06}{tr(0,10)}$	0.17	nd	0.20 [0.07]	35/36	35/36
	2015 Warm season	tr(0.09)	tr(0.10)	0.37	nd		25/35	25/35
	2018 Warm season	0.10	0.11	0.38	nd	0.07 [0.03]	36/37	36/37
	2021 Warm season	tr(0.05)	tr(0.06)	0.16	nd	0.10 [0.04]	27/35	27/35

(Note) No monitoring was conducted in FY2011, FY2012, FY2014, FY2016, FY2017, FY2019 and FY2020.

[7] Chlordanes (references)

· History and state of monitoring

Chlordane was used as insecticides on a range of agricultural crops, but the registration of Chlordanes under the Agricultural Chemicals Regulation Law was expired in FY1968. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 1986 because of its properties such as persistency, since it had been used as termitecides for wood products such as primary processed timber, plywood and house. Also, *cis*-Chlordane and *trans*-Chlordane are one of the original twelve POPs covered by the Stockholm Convention.

Although manufactured Chlordanes have complicated compositions, Heptachlor, γ-Chlordane, Heptachlor epoxide, *cis*-Chlordane, *trans*-Chlordane, Oxychlordane (as a chlordane metabolite), *cis*-Nonachlor (not registrated as an Agricultural Chemical) and *trans*-Nonachlor (not registrated as an Agricultural Chemical) were the original target chemicals in monitoring series. Since FY1983, 5 of those 8 chemicals (*cis*-Chlordane, *trans*-Chlordane, Oxychlordane, *cis*-Nonachlor and *trans*-Nonachlor) have been the target chemicals owning to their high detection frequency in the FY1982 High-Precision Environmental Survey.

In previous monitoring series, Chlordanes had been monitored in wildlife (bivalves, fish and birds) during the period of FY1978~2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring", *cis*-Chlordane, *trans*-Chlordane, *cis*-Nonachlor and *trans*-Nonachlor in surface water and sediment have been the monitored during the period of FY1986~1998 and FY1986~2001, respectively.

Under the framework of the Environmental Monitoring, *cis*-Chlordane, *trans*-Chlordane, Oxychlordane (as a Chlordane metabolite), *cis*-Nonachlor (not registrated as an Agricultural Chemical) and *trans*-Nonachlor have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002~2013, FY2016, FY2017 and FY2020.

No monitoring was conducted in FY2021. For reference, the monitoring results up to FY2020 are given below.

Monitoring results until FY2020

○ *cis*-Chlordane and *trans*-Chlordane

<Surface Water>

Stocktaking of the detection of cis-Chlordane and trans-Chlordane in surface water FY2002~2020

	Monitored	Geometric				Quantification	Detection l	Detection Frequency	
cis-Chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site	
	2002	42	32	880	2.5	0.9 [0.3]	114/114	38/38	
	2003	69	51	920	12	3 [0.9]	36/36	36/36	
	2004	92	87	1,900	10	6 [2]	38/38	38/38	
	2005	53	54	510	6	4 [1]	47/47	47/47	
	2006	31	26	440	5	5 [2]	48/48	48/48	
	2007	23	22	680	nd	4 [2]	47/48	47/48	
Surface Water	2008	29	29	480	2.9	1.6 [0.6]	48/48	48/48	
(pg/L)	2009	29	26	710	4.4	1.1 [0.4]	49/49	49/49	
	2010	19	14	170	nd	11 [4]	47/49	47/49	
	2011	20	16	500	3.8	1.4 [0.6]	49/49	49/49	
	2012	43	37	350	10	1.6 [0.6]	48/48	48/48	
	2013	18	16	260	2.9	2.7 [0.9]	48/48	48/48	
	2017	19	19	210	2	2 [1]	47/47	47/47	
	2020	12	10	120	tr(2)	5 [2]	46/46	46/46	

	Monitored year	Geometric			Minimum	Quantification	Detection	Frequency
trans-Chlordane		mean*	Median	Maximum		[Detection] limit	Sample	Site
	2002	33	24	780	3.1	1.5 [0.5]	114/114	38/38
	2003	34	30	410	6	5 [2]	36/36	36/36
	2004	32	26	1,200	5	5 [2]	38/38	38/38
	2005	25	21	200	3	4 [1]	47/47	47/47
	2006	24	16	330	tr(4)	7 [2]	48/48	48/48
	2007	16	20	580	nd	2.4 [0.8]	47/48	47/48
Surface Water	2008	23	22	420	3	3 [1]	48/48	48/48
(pg/L)	2009	23	18	690	3.0	0.8 [0.3]	49/49	49/49
	2010	15	tr(11)	310	nd	13 [4]	44/49	44/49
	2011	16	13	470	3.2	1.0 [0.4]	49/49	49/49
	2012	41	33	300	12	2.5 [0.8]	48/48	48/48
	2013	15	13	200	3	3 [1]	48/48	48/48
	2017	15	15	150	tr(2)	3 [1]	47/47	47/47
	2020	11	8	98	tr(3)	4 [2]	46/46	46/46

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted during FY2014~2016, FY2018 and Fy2019.

<Sediment>

Stocktaking of the detection	of <i>cis</i> -Chlordane and	trans-Chlordane	in sediment	t FY2002~2020

	Monitored	Geometric				Quantification	Detection	Frequenc
cis-Chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	140	98	18,000	1.8	0.9 [0.3]	189/189	63/63
	2003	190	140	19,000	tr(3.6)	4 [2]	186/186	62/62
	2004	160	97	36,000	4	4 [2]	189/189	63/63
	2005	150	100	44,000	3.3	1.9 [0.64]	189/189	63/63
	2006	100	70	13,000	tr(0.9)	2.4 [0.8]	192/192	64/64
	2007	82	55	7,500	nd	5 [2]	191/192	64/64
Sediment	2008	100	63	11,000	tr(2.3)	2.4 [0.9]	192/192	64/64
(pg/g-dry)	2009	84	61	8,600	2.0	0.7 [0.3]	192/192	64/64
	2010	82	62	7,200	tr(4)	6 [2]	64/64	64/64
	2011	70	58	4,500	1.7	1.1 [0.4]	64/64	64/64
	2012	69	61	11,000	tr(2.6)	2.9 [1.0]	63/63	63/63
	2013	65	55	5,400	tr(1.9)	2.0 [0.8]	63/63	63/63
	2017	47	36	2,800	nd	4.8 [1.6]	61/62	61/62
	2020	42	38	4,200	tr(1.1)	1.2 [0.5]	58/58	58/58
	Monitored	ed Geometric mean*		Maximum		Quantification	Detection	Frequenc
trans-Chlordane	year		Median		Minimum	[Detection] limit	Sample	Site
	2002	150	110	16,000	2.1	1.8 [0.6]	189/189	63/63
	2002	130	100	13,000	$\frac{2.1}{tr(2.4)}$		189/189	62/62
					r(2.4)	4 [2]	180/180	
	2004 2005	110	80 81	26,000	-	3 [0.9]	189/189	63/63
	2003	110		32,000	3.4	2.3 [0.84]		63/63
		110	76	12,000	2.2	1.1 [0.4]	192/192	64/64
	2007	82	58	7,500	nd	2.2 [0.8]	191/192	64/64
Sediment	2008	110	66	10,000	2.4	2.0 [0.8]	192/192	64/64
(pg/g-dry)	2009	91	68	8,300	2.1	1.7 [0.7]	192/192	64/64
	2010	95	69	8,000	tr(4)	11 [4]	64/64	64/64
	2011	73	64	4,300	3.2	1.3 [0.5]	64/64	64/64
	2012	80	71	13,000	tr(2.9)	4.0 [1.3]	63/63	63/63
	2013	74	65	5,600	2.5	1.8 [0.7]	63/63	63/63
	2017	53	41	3,000	tr(1)	4 [1]	62/62	62/62
	2020	47	44	4,500	1.4	0.2 [0.1]	58/58	58/58

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted during FY2014~2016, FY2018 and Fy2019.

<Wildlife>

Stocktaking of the detection of *cis*-Chlordane and *trans*-Chlordane in wildlife (bivalves, fish and birds) FY2002~2020

2002~2020	Monitored	Geometric				Quantification	Detection	Frequency
cis-Chlordane	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	730	1,200	26,000	24	2.4 [0.8]	38/38	8/8
	2003	1,100	1,400	14,000	110	3.9 [1.3]	30/30	6/6
	2004	1,300	1,600	14,000	91	18 [5.8]	31/31	7/7
	2005	1,000	960	13,000	78	12 [3.9]	31/31	7/7
	2006	970	1,100	18,000	67	4 [1]	31/31	7/7
	2007	870	590	19,000	59	5 [2]	31/31	7/7
Bivalves	2008	750	560	11,000	85	5 [2]	31/31	7/7
(pg/g-wet)	2009	1,200	1,100	16,000	83	4 [2]	31/31	7/7
	2010	1,600	2,300	15,000	67	4 [2]	6/6	6/6
	2011	790	880	3,400	160	3 [1]	4/4	4/4
	2012	710	500	3,500	180	5 [2]	5/5	5/5
	2013	410	410	2,000	75	13 [4]	5/5	5/5
	2016	220	260	500	80	3 [1]	3/3	3/3
	2020	200	310	590	41	3 [1]	3/3	3/3
	2002	610	550	6,900	57	2.4 [0.8]	70/70	14/14
	2003	510	400	4,400	43	3.9 [1.3]	70/70	14/14
	2004	620	490	9,800	68	18 5.8	70/70	14/14
	2005	520	600	8,000	42	12 [3.9]	80/80	16/16
	2006	520	420	4,900	56	4[1]	80/80	16/16
	2007	430	360	5,200	30	5 [2]	80/80	16/16
Fish	2008	430	340	3,500	36	5 [2]	85/85	17/17
(pg/g-wet)	2009	430	450	3,200	41	4 [2]	90/90	18/18
(188)	2010	450	630	3,400	51	4 [2]	18/18	18/18
	2011	580	660	3,800	79	3 [1]	18/18	18/18
	2012	580	550	3,100	98	5 [2]	19/19	19/19
	2012	540	450	5,700	65	13 [4]	19/19	19/19
	2015	340	440	2,200	67	3 [1]	19/19	19/19
	2020	290	310	2,200	39	3 [1]	18/18	18/18
	2002	67	180	450	10	2.4 [0.8]	10/10	2/2
	2002	47	120	370	6.8	3.9 [1.3]	10/10	2/2
	2003	39	110	240	tr(5.8)	18 [5.8]	10/10	2/2
	2001	53	120	340	tr(5.8)	12 [3.9]	10/10	2/2
	2005	32	83	250	u(5.6) 5	4 [1]	10/10	2/2
	2000	29	83	230	tr(4)	5 [2]	10/10	2/2
Birds *2	2007	29	87	230	tr(4)	5 [2]	10/10	2/2
(pg/g-wet)	2008	24	48	130	4	4 [2]	10/10	2/2
(pg/g-wet)	2007	27		180	4	4 [2]	2/2	2/2
	2010			6	4	3 [1]	1/1	1/1
	2011	23		110	5		2/2	2/2
	2012	37		110		5 [2]	2/2	2/2
	2013	37			()	13 [4]	2/2	
	2010			110	13	3 [1] 3 [1]		2/2
	2020			83	83	6 1	1/1 Detection 1	1/1
turne Chilendere	Monitored		Mallan	M	M:	Quantification	Detection	Frequenc
trans-Chlordane	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	390	840	2,300	33	2.4 [0.8]	38/38	8/8
	2003	550	840	2,800	69	7.2 [2.4]	30/30	6/6
	2004	560	770	2,800	53	48 [16]	31/31	7/7
	2005	470	660	2,400	40	10 [3.5]	31/31	7/7
	2006	470	580	2,800	41	4 [2]	31/31	7/7
	2007	440	460	1,500	34	6 [2]	31/31	7/7
Bivalves	2008	360	410	1,300	52	7 [3]	31/31	7/7
(pg/g-wet)	2008	540	560	16,000	48	4 [1]	31/31	7/7
488	2007	520	640	5,500	31	3 [1]	6/6	6/6
	2010	490	470	2,900	150	4 [1]	4/4	4/4
	2011	490 390	310	1,300	130	7 [2]	4/4 5/5	5/5
								5/5 5/5
	2012	200						
	2013	280	230	1,700	58 56	16 [5.2]	5/5	
	2013 2016 2020	280 120 100	230 99 97	1,700 330 430	58 56 25	6 [2] 6 [2]	3/3 3/3	3/3 3/3

	Monitored	Geometric				Quantification	Detection l	Frequency
trans-Chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	190	160	2,700	20	2.4 [0.8]	70/70	14/14
	2003	160	120	1,800	9.6	7.2 [2.4]	70/70	14/14
	2004	200	130	5,200	tr(17)	48 [16]	70/70	14/14
	2005	160	180	3,100	tr(9.8)	10 [3.5]	76/80	16/16
	2006	150	120	2,000	14	4 [2]	80/80	16/16
	2007	130	100	2,100	8	6 [2]	80/80	16/16
Fish	2008	120	71	1,300	14	7 [3]	85/85	17/17
(pg/g-wet)	2009	130	140	1,300	10	4 [1]	90/90	18/18
	2010	120	170	1,100	9	3 [1]	18/18	18/18
	2011	180	240	1,300	20	4 [1]	18/18	18/18
	2012	170	140	1,100	19	7 [2]	19/19	19/19
	2013	160	170	2,700	tr(14)	16 [5.2]	19/19	19/19
	2016	100	110	800	12	6 [2]	19/19	19/19
	2020	90	110	780	11	6 [2]	18/18	18/18
	2002	14	14	26	8.9	2.4 [0.8]	10/10	2/2
	2003	11	12	27	tr(5.9)	7.2 [2.4]	10/10	2/2
	2004	nd	nd	tr(26)	nd	48 [16]	5/10	1/2
	2005	11	12	30	tr(4.5)	10 [3.5]	10/10	2/2
	2006	7	8	17	tr(3)	4 [2]	10/10	2/2
	2007	7	8	19	tr(3)	6 [2]	10/10	2/2
Birds *2	2008	tr(5)	9	27	nd	7 [3]	7/10	2/2
(pg/g-wet)	2009	6	7	13	tr(3)	4 [1]	10/10	2/2
	2010	4		10	tr(2)	3 [1]	2/2	2/2
	2011			5	5	4 [1]	1/1	1/1
	2012	tr(6)		10	tr(4)	7 [2]	2/2	2/2
	2013	26		68	tr(10)	16 [5.2]	2/2	2/2
	2016	18		46	7	6 [2]	2/2	2/2
	2020			34	34	6 [2]	1/1	1/1

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.
(Note 2) *2: There is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.
(Note 3) No monitoring was conducted during FY2014, 2015 and FY2017~2019.

<Air>

		Geometric				Quantification	Detection l	Frequency
cis-Chlordane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	31	40	670	0.86	0.60 [0.20]	102/102	34/34
	2003 Warm season	110	120	1,600	6.4	0.51 [0.17]	35/35	35/35
	2003 Cold season	30	38	220	2.5	0.31 [0.17]	34/34	34/34
	2004 Warm season	92	160	1,000	2.3	0 57 [0 10]	37/37	37/37
	2004 Cold season	29	49	290	1.2	0.57 [0.19]	37/37	37/37
	2005 Warm season	92	120	1,000	3.4	0.16 [0.054]	37/37	37/37
	2005 Cold season	16	19	260	1.4	0.10 [0.034]	37/37	37/37
	2006 Warm season	82	110	760	2.9	0 12 [0 04]	37/37	37/37
	2006 Cold season	19	19	280	2.0	0.13 [0.04]	37/37	37/37
	2007 Warm season	90	120	1,100	3.3	0.10 [0.04]	36/36	36/36
	2007 Cold season	17	20	230	1.4	0.10 [0.04]	36/36	36/36
A :	2008 Warm season	75	120	790	1.9	0 14 [0 05]	37/37	37/37
Air $(n\alpha/m^3)$	2008 Cold season	21	34	200	1.5	0.14 [0.05]	37/37	37/37
(pg/m^3)	2009 Warm season	67	110	790	2.7	0 16 [0 06]	37/37	37/37
	2009 Cold season	19	22	180	0.65	0.16 [0.06]	37/37	37/37
	2010 Warm season	68	100	700	2.2	0.0.[0.2]	37/37	37/37
	2010 Cold season	20	27	130	tr(0.8)	0.9 [0.3]	37/37	37/37
	2011 Warm season	66	95	700	1.5	1.3 [0.42]	35/35	35/35
	2011 Cold season	20	31	240	tr(0.88)	1.5 [0.42]	37/37	37/37
	2012 Warm season	61	98	650	2.9	1 5 [0 51]	36/36	36/36
	2012 Cold season	10	14	74	nd	1.5 [0.51]	35/36	35/36
	2013 Warm season	58	97	580	1.5	0.7[0.2]	36/36	36/36
	2013 Cold season	11	15	86	tr(0.5)	0.7 [0.2]	36/36	36/36
	2016 Warm season	53	86	810	0.9	0.9 [0.3]	37/37	37/37
	2020 Warm season	32	37	200	1.5	0.09 [0.03]	37/37	37/37

trans-		Geometric				Quantification	Detection Frequency	
Chlordane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	36	48	820	0.62	0.60 [0.20]	102/102	34/34
	2003 Warm season	130	150	2,000	6.5	0.96 [0.20]	35/35	35/35
	2003 Cold season	37	44	290	2.5	0.86 [0.29]	34/34	34/34
	2004 Warm season	110	190	1,300	2.2	0 60 [0 22]	37/37	37/37
	2004 Cold season	35	60	360	1.5	0.69 [0.23]	37/37	37/37
	2005 Warm season	100	130	1,300	3.2	0 24 50 141	37/37	37/37
	2005 Cold season	19	23	310	1.9	0.34 [0.14]	37/37	37/37
	2006 Warm season	96	140	1,200	3.4	0.17 [0.06]	37/37	37/37
	2006 Cold season	22	21	350	2.0		37/37	37/37
	2007 Warm season	100	140	1,300	3.8		36/36	36/36
	2007 Cold season	20	24	300	1.5		36/36	36/36
A *	2008 Warm season	87	130	990	2.5		37/37	37/37
Air $(m \alpha/m^3)$	2008 Cold season	25	41	250	1.8	0.17 [0.06]	37/37	37/37
(pg/m^3)	2009 Warm season	79	120	960	2.6	0 12 [0 05]	37/37	37/37
	2009 Cold season	23	30	210	0.68	0.12 [0.05]	37/37	37/37
	2010 Warm season	79	120	820	2.0	1 2 [0 4]	37/37	37/37
	2010 Cold season	24	34	150	tr(1.0)	1.2 [0.4]	37/37	37/37
	2011 Warm season	76	110	810	tr(1.4)	1 ([0 52]	35/35	35/35
	2011 Cold season	24	37	290	tr(0.70)	1.6 [0.53]	37/37	37/37
	2012 Warm season	70	120	780	2.8	2.1 [0.7]	36/36	36/36
	2012 Cold season	12	18	95	nd		35/36	35/36
	2013 Warm season	64	120	690	1.7	0 8 [0 2]	36/36	36/36
	2013 Cold season	13	18	110	tr(0.4)	0.8 [0.3]	36/36	36/36
	2016 Warm season	61	95	1,100	tr(0.7)	1.0 [0.3]	37/37	37/37
	2020 Warm season	35	42	230	1.5	0.16 [0.06]	37/37	37/37

(Note) No monitoring was conducted in FY2014, 2015 and FY2017~2019.

O Oxychlordane, *cis*-Nonachlor and *trans*-Nonachlor

<Surface Water>

Owyshia	Monitored	Geometric	Median	Manimum	Minimum	Quantification	Detection 1	Frequenc
Oxychlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.7	3.5	41	nd	1.2 [0.4]	96/114	35/38
	2003	3	2	39	tr(0.6)	2 [0.5]	36/36	36/36
	2004	3.2	2.9	47	tr(0.7)	2 [0.5]	38/38	38/38
	2005	2.6	2.1	19	nd	1.1 [0.4]	46/47	46/47
	2006	tr(2.5)	tr(2.4)	18	nd	2.8 [0.9]	43/48	43/48
	2007	tr(2)	nd	41	nd	6 [2]	25/48	25/48
Surface Water	2008	1.9	1.9	14	nd	1.9 [0.7]	40/48	40/48
(pg/L)	2009	2.0	1.9	19	nd	1.1 [0.4]	45/49	45/49
	2010	1.5	1.3	45	nd	0.7 [0.3]	47/49	47/49
	2011	1.9	1.8	34	nd	1.3 [0.5]	44/49	44/49
	2012	2.2	2.3	17	nd	0.9 0.4	44/48	44/48
	2013	1.8	1.8	12	nd	0.9 0.4	41/48	41/48
	2017	nd	nd	12	nd	4 [2]	19/47	19/47
	2020	tr(1)	nd	8	nd	3 [1]	21/46	21/46
			114	0	114	Quantification	Detection 1	
cis-Nonachlor	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		-
	year	mean*				limit	Sample	Site
	2002	7.9	6.7	250	0.23	1.8 [0.6]	114/114	38/38
	2003	8.0	7.0	130	1.3	0.3 [0.1]	36/36	36/36
	2004	7.5	6.3	340	0.8	0.6 [0.2]	38/38	38/38
	2005	6.0	5.9	43	0.9	0.5 [0.2]	47/47	47/47
	2006	6.6	5.6	83	1.0	0.8 [0.3]	48/48	48/48
	2007	5.9	6.1	210	nd	2.4 [0.8]	43/48	43/48
Surface Water	2008	6.5	5.9	130	0.9	0.9 [0.3]	48/48	48/48
(pg/L)	2000	7.1	5.5	210	1.4	0.3 [0.1]	49/49	49/49
(Pg/L)	2009	5.4	3.9	40	tr(0.9)	1.3 [0.4]	49/49	49/49
	2010	5.0	4.3	130	0.8	0.6 [0.2]	49/49	49/49
	2011	5.0 6.4	5.9	58	1.1	0.8 [0.3]	48/48	48/48
	2012	5.1	4.6	58 74	tr(0.7)	0.8 [0.3]	48/48	48/48
	2013	4.6	4.6	36	tr(0.7)	1.5 [0.6]	40/40	47/47
	2020	3.8	2.8	39	tr(0.6)	1.3 [0.5]	46/46	46/46
tuana Nov1-1-	Monitored	Geometric	Mad:	Manimum	Minimu	Quantification	Detection 1	requent
trans-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	30	24	780	1.8	1.2 [0.4]	114/114	38/38
	2003	26	20	450	4	2 [0.5]	36/36	36/36
	2004	25	19	1,100	tr(3)	4 [2]	38/38	38/38
	2005	20	17	150	2.6	2.5 [0.84]	47/47	47/47
	2006	21	16	310	3.2	3.0 [1.0]	48/48	48/48
	2007	17	17	540	tr(2)	5 [2]	48/48	48/48
Surface Water	2008	18	17	340	1.9	1.6 [0.6]	48/48	48/48
(pg/L)	2009	20	17	530	2.7	1.0 [0.4]	49/49	49/49
(10-2)	2010	12	11	93	nd	8 [3]	45/49	45/49
		12	11	480	2.6	1.3 [0.5]	49/49	49/49
	/011			-00	2.0	1.5 [0.5]	77/77	コノコフ
	2011			210	70	1 5 [0 6]	48/48	48/18
	2012	30	26	210 170	7.9	1.5 [0.6]	48/48 48/48	48/48
				210 170 120	7.9 2.3 tr(2)	1.5 [0.6] 1.5 [0.6] 3 [1]	48/48 48/48 47/47	48/48 48/48 47/47

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted in FY2014~2016, FY2018 and 2019.

	Monitored	Geometric				Quantification	Detection I	Frequenc
Oxychlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.7	1.7	120	nd	1.5 [0.5]	153/189	59/63
	2003	2	2	85	nd	1 [0.4 <u>]</u>	158/186	57/62
	2004	tr(2.1)	tr(1.3)	140	nd	3 [0.8]	129/189	54/63
	2005	2.3	tr(1.9)	160	nd	2.0 [0.7]	133/189	51/63
	2006	tr(2.5)	tr(1.7)	280	nd	2.9 [1.0]	141/192	54/64
	2007	tr(2.1)	tr(1.5)	76	nd	2.5 [0.9]	117/192	46/64
Sediment	2008	tr(2)	tr(1)	340	nd	3 [1]	110/192	48/64
(pg/g-dry)	2009	2	tr(1)	150	nd	2 [1]	97/192	45/64
	2010	1.7	1.2	60	nd	1.0 [0.4]	56/64	56/64
	2011	tr(1.6)	tr(1.2)	83	nd	2.2 [0.9]	36/64	36/64
	2012	tr(1.4)	tr(1.0)	75	nd	1.7 [0.7]	38/63	38/63
	2013	1.5	1.3	54	nd	1.3 [0.5]	50/63	50/63
	2017	tr(1)	tr(1)	78	nd	3 [1]	41/62	41/62
	2020	tr(1.1)	tr(1.0)	39	nd	1.8 [0.7]	34/58	34/58
						Quantification	Detection I	
cis-Nonachlor	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		-
	year	mean*				limit	Sample	Site
	2002	76	66	7,800	nd	2.1 [0.7]	188/189	63/63
	2003	66	50	6,500	nd	3 [0.9]	184/186	62/62
	2004	53	34	9,400	tr(0.8)	2 [0.6]	189/189	63/63
	2005	56	42	9,900	tr(1.1)	1.9 [0.64]	189/189	63/63
	2006	58	48	5,800	tr(0.6)	1.2 [0.4]	192/192	64/64
	2007	48	35	4,200	nd	1.6 [0.6]	191/192	64/64
Sediment	2008	57	42	5,100	1.1	0.6 [0.2]	192/192	64/64
(pg/g-dry)	2009	53	38	4,700	1.4	1.0 [0.4]	192/192	64/64
(188	2010	53	45	3,600	2.3	0.9 [0.3]	64/64	64/64
	2010	41	38	2,900	nd	1.1 [0.4]	63/64	63/64
	2011	44	35	4,900	tr(1)	3 [1]	63/63	63/63
	2012	41	31	3,100	tr(0.6)	0.7 [0.3]	63/63	63/63
	2013	31	25	1,500	nd	1.7 [0.7]	61/62	61/62
	2017	31	23 24	2,100	tr(0.7)	0.8 [0.3]	58/58	58/58
	2020	51	24	2,100	u(0.7)	Quantification	Detection I	
trans-Nonachlor	Monitored	Geometric	Median	Maximum	Minimum	[Detection]	Detection	
<i>ir uns</i> -nonaemor	year	mean*	Iviculati	Iviaxiiiuiii	Willing	limit	Sample	Site
	2002	130	83	13,000	3.1	1.5 [0.5]	189/189	63/63
	2003	110	78	11,000	2	2 [0.6]	186/186	62/62
	2004	94	63	23,000	3	2 [0.6]	189/189	63/63
	2005	99	72	24,000	2.4	1.5 [0.54]	189/189	63/63
	2006	100	65	10,000	3.4	1.2 [0.4]	192/192	64/64
	2007	78	55	8,400	tr(1.6)	1.7 [0.6]	192/192	64/64
Sediment	2008	91	53	8,400	tr(1.6)	2.2 0.8	192/192	64/64
(pg/g-dry)	2009	85	58	7,800	2.0	0.9 [0.3]	192/192	64/64
400 57	2010	80	65	6,200	tr(3)	6 [2]	64/64	64/64
	2010	68	52	4,500	1.7	0.8 [0.3]	64/64	64/64
		69	62	10,000	2.5	2.4 [0.8]	63/63	63/63
	2012							00/02
	2012							
	2012 2013 2017	67 47	54 39	4,700 2,600	2.2 nd	1.2 [0.4] 6 [2]	63/63 61/62	63/63 61/62

Stocktaking of the detection of Oxychlordane, cis-Nonachlor and trans-Nonachlor in sediment FY2002~2020

<Sediment>

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted in FY2014~2016, FY2018 and 2019.

<Wildlife>

Stocktaking of the detection of Oxychlordane, *cis*-Nonachlor and *trans*-Nonachlor in wildlife (bivalves, fish and birds) FY2002~2020

18) F 1 2002~202	Monitored	Geometric			/	Quantification	Detection I	Frequenc
Oxychlordane	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	71	83	5,600	nd	3.6 [1.2]	37/38	8/8
	2003	93	62	1,900	11	8.4 [2.8]	30/30	6/6
	2004	110	100	1,700	14	9.2 [3.1]	31/31	7/7
	2005	99	79	1,400	12	9.3 [3.1]	31/31	7/7
	2006	91	90	2,400	7	7 [3]	31/31	7/7
	2007	70	43	2,200	8	6 [2]	31/31	7/7
Bivalves	2008	64	55	1,100	7	7 [2]	31/31	7/7
(pg/g-wet)	2009	100	89	820	10	4 [1]	31/31	7/7
488 /	2010	240	390	3,300	11	8 [3]	6/6	6/6
	2011	68	100	260	8	3 [1]	4/4	4/4
	2012	66	80	450	12	3 [1]	5/5	5/5
	2013	42	44	210	8	3 [1]	5/5	5/5
	2016	27	40	43	11	3 [1]	3/3	3/3
	2020	24	45	59	5	3 [1]	3/3	3/3
	2002	170	140	3,900	16	3.6 [1.2]	70/70	14/14
	2002	150	160	820	30	8.4 [2.8]	70/70	14/14
	2003	160	140	1,500	25	9.2 [3.1]	70/70	14/14
	2004	150	140	1,900	20	9.3 [3.1]	80/80	16/16
	2005	150	120	3,000	28	7 [3]	80/80	16/16
	2000	120	120	1,900	17	6 [2]	80/80	16/16
Fish	2007	120	130	2,200	15	7 [2]	85/85	17/17
(pg/g-wet)	2008	130	99	2,200 2,400	23	4 [1]	90/90	18/18
(pg/g-wet)	2009	120	140	2,400 1,000	33	8 [3]	18/18	18/18
	2010	120	140	2,300	33		18/18	18/18
	2011	140	130	2,300	28	3 [1]	18/18	19/19
						3 [1]		
	2013	130	130	560	31	3 [1]	19/19	19/19
	2016	96 75	80	950 2 100	31	3 [1]	19/19	19/19
	2020	75	60	2,100	24	3[1]	18/18	18/18
	2002	640	630	890	470	3.6 [1.2]	10/10	2/2
	2003	760	700	1,300	610	8.4 [2.8]	10/10	2/2
	2004	460	450	730	320	9.2 [3.1]	10/10	2/2
	2005	610	660	860	390	9.3 [3.1]	10/10	2/2
	2006	510	560	720	270	7 [3]	10/10	2/2
*0	2007	440	400	740	290	6 [2]	10/10	2/2
Birds *2	2008	560	530	960	290	7 [2]	10/10	2/2
(pg/g-wet)	2009	300	290	540	190	4 [1]	10/10	2/2
	2010	400		510	320	8 [3]	2/2	2/2
	2011			590	590	3 [1]	1/1	1/1
	2012	250		360	170	3 [1]	2/2	2/2
	2013	2,500		3,400	1,900	3 [1]	2/2	2/2
	2016	580		1,400	240	3 [1]	2/2	2/2
	2020			820	820	3 [1]	1/1	1/1
	Monitored	Geometric				Quantification	Detection l	Frequenc
cis-Nonachlor	year	mean *1	Median	Maximum	Minimum	[Detection]	Sample	Site
			200	0.50		limit		
	2002	170	300	870	8.6	1.2 [0.4]	38/38	8/8
	2003	290	260	1,800	48	4.8 [1.6]	30/30	6/6
	2004	320	380	1,800	43	3.4 [1.1]	31/31	7/7
	2005	270	220	1,300	27	4.5 [1.5]	31/31	7/7
	2006	270	180	1,500	31	3 [1]	31/31	7/7
	2007	250	250	1,000	26	3 [1]	31/31	7/7
	2007			790	33	4 [1]	31/31	7/7
Bivalves	2008	210	210	780		.[.]		
Bivalves (pg/g-wet)			210 310	10,000	31	3 [1]	31/31	7/7
	2008	210						7/7 6/6
	2008 2009	210 300	310	10,000	31	3 [1] 3 [1]	31/31	
	2008 2009 2010	210 300 280	310 310	10,000 1,300	31 35	3 [1] 3 [1] 1.8 [0.7]	31/31 6/6	6/6 4/4
	2008 2009 2010 2011 2012	210 300 280 250 200	310 310 280 190	10,000 1,300 1,300 670	31 35 77 52	3 [1] 3 [1] 1.8 [0.7] 2 [1]	31/31 6/6 4/4 5/5	6/6 4/4 5/5
	2008 2009 2010 2011	210 300 280 250	310 310 280	10,000 1,300 1,300	31 35 77	3 [1] 3 [1] 1.8 [0.7]	31/31 6/6 4/4	6/6 4/4

	Monitored	Geometric				Quantification	Detection l	Frequenc
cis-Nonachlor	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	460	420	5,100	46	1.2 [0.4]	70/70	14/14
	2003	360	360	2,600	19	4.8 [1.6]	70/70	14/14
	2004	430	310	10,000	48	3.4 [1.1]	70/70	14/14
	2005	380	360	6,200	27	4.5 [1.5]	80/80	16/16
	2006	370	330	3,300	33	3 [1]	80/80	16/16
	2007	320	280	3,700	16	3 [1]	80/80	16/16
Fish	2008	350	300	3,200	46	4 [1]	85/85	17/17
(pg/g-wet)	2009	340	340	2,600	27	3 [1]	90/90	18/18
	2010	320	370	2,200	23	3 [1]	18/18	18/18
	2011	440	450	2,900	45	1.8 [0.7]	18/18	18/18
	2012	420	450	2,200	33	2 [1]	19/19	19/19
	2013	430	420	3,000	34	2.2 [0.7]	19/19	19/19
	2016	300	170	1,900	53	1.4 [0.6]	19/19	19/19
	2020	230	250	1,600	26	3 [1]	18/18	18/18
	2002	200	240	450	68	1.2 [0.4]	10/10	2/2
	2003	200	260	660	68	4.8 [1.6]	10/10	2/2
	2004	140	150	240	73	3.4 [1.1]	10/10	2/2
	2005	160	180	370	86	4.5 [1.5]	10/10	2/2
	2006	120	130	270	60	3 [1]	10/10	2/2
	2007	130	140	300	42	3 [1]	10/10	2/2
Birds *2	2008	140	150	410	37	4 [1]	10/10	2/2
(pg/g-wet)	2009	81	85	160	44	3 [1]	10/10	2/2
	2010	100		190	57	3 [1]	2/2	2/2
	2011			76	76	1.8 [0.7]	1/1	1/1
	2012	75		100	56	2 [1]	2/2	2/2
	2013	270		970	74	2.2 [0.7]	2/2	2/2
	2016	240		770	74	1.4 [0.6]	2/2	2/2
	2020			480	480	3 [1]	1/1	1/1
	Monitored	Geometric				Quantification	Detection I	Frequenc
trans-Nonachlor		mean *1	Median	Maximum	Minimum	[Detection]	Sample	Site
	year	mean				limit	Sample	one
	•		1 100	1 800	21	limit		
	2002	450	1,100	1,800	21	2.4 [0.8]	38/38	8/8
	2002 2003	450 800	700	3,800	140	2.4 [0.8] 3.6 [1.2]	38/38 30/30	8/8 6/6
	2002 2003 2004	450 800 780	700 870	3,800 3,400	140 110	2.4 [0.8] 3.6 [1.2] 13 [4.2]	38/38 30/30 31/31	8/8 6/6 7/7
	2002 2003 2004 2005	450 800 780 700	700 870 650	3,800 3,400 3,400	140 110 72	2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1]	38/38 30/30 31/31 31/31	8/8 6/6 7/7 7/7
	2002 2003 2004 2005 2006	450 800 780 700 660	700 870 650 610	3,800 3,400 3,400 3,200	140 110 72 85	2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1]	38/38 30/30 31/31 31/31 31/31	8/8 6/6 7/7 7/7 7/7
Pinaluas	2002 2003 2004 2005 2006 2007	450 800 780 700 660 640	700 870 650 610 610	3,800 3,400 3,400 3,200 2,400	140 110 72 85 71	2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3]	38/38 30/30 31/31 31/31 31/31 31/31	8/8 6/6 7/7 7/7 7/7 7/7
Bivalves	2002 2003 2004 2005 2006 2007 2008	450 800 780 700 660 640 510	700 870 650 610 610 510	3,800 3,400 3,400 3,200 2,400 2,000	140 110 72 85 71 94	2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31	8/8 6/6 7/7 7/7 7/7 7/7 7/7
Bivalves (pg/g-wet)	2002 2003 2004 2005 2006 2007 2008 2009	450 800 780 700 660 640 510 780	700 870 650 610 610 510 680	3,800 3,400 3,200 2,400 2,000 33,000	140 110 72 85 71 94 79	2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7
	2002 2003 2004 2005 2006 2007 2008 2009 2010	450 800 780 700 660 640 510 780 790	700 870 650 610 610 510 680 870	3,800 3,400 3,200 2,400 2,000 33,000 6,000	140 110 72 85 71 94 79 84	$\begin{array}{c} 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \end{array}$	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6
	2002 2003 2004 2005 2006 2007 2008 2009 2010 2011	$\begin{array}{c} 450 \\ 800 \\ 780 \\ 700 \\ 660 \\ 640 \\ 510 \\ 780 \\ 790 \\ 640 \end{array}$	700 870 650 610 610 510 680 870 680	3,800 3,400 3,200 2,400 2,000 33,000 6,000 3,000	140 110 72 85 71 94 79 84 200	$\begin{array}{c} 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \end{array}$	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4
	2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012	$\begin{array}{c} 450 \\ 800 \\ 780 \\ 700 \\ 660 \\ 640 \\ 510 \\ 780 \\ 790 \\ 640 \\ 530 \end{array}$	700 870 650 610 610 510 680 870 680 400	3,800 3,400 3,200 2,400 2,000 33,000 6,000 3,000 1,800	140 110 72 85 71 94 79 84 200 190	$\begin{array}{c} 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [1] \end{array}$	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5
	2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013	450 800 780 700 660 640 510 780 790 640 530 380	700 870 650 610 610 510 680 870 680 400 370	3,800 3,400 3,200 2,400 2,000 33,000 6,000 3,000 1,800 2,000	140 110 72 85 71 94 79 84 200 190 98	$\begin{array}{c} 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [1] \\ 10 \ [3.4] \end{array}$	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5
	2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2016	$\begin{array}{c} 450\\ 800\\ 780\\ 700\\ 660\\ 640\\ 510\\ 780\\ 790\\ 640\\ 530\\ 380\\ 200\\ \end{array}$	$\begin{array}{c} 700 \\ 870 \\ 650 \\ 610 \\ 610 \\ 510 \\ 680 \\ 870 \\ 680 \\ 400 \\ 370 \\ 150 \end{array}$	3,800 3,400 3,200 2,400 2,000 33,000 6,000 3,000 1,800 2,000 520	140 110 72 85 71 94 79 84 200 190 98 97	$\begin{array}{c} 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [1] \\ 10 \ [3.4] \\ 3 \ [1] \end{array}$	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7
	2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2016 2020	$\begin{array}{c} 450\\ 800\\ 780\\ 700\\ 660\\ 640\\ 510\\ 780\\ 790\\ 640\\ 530\\ 380\\ 200\\ 140\\ \end{array}$	$\begin{array}{c} 700\\ 870\\ 650\\ 610\\ 610\\ 510\\ 680\\ 870\\ 680\\ 400\\ 370\\ 150\\ 130\\ \end{array}$	$\begin{array}{c} 3,800\\ 3,400\\ 3,400\\ 3,200\\ 2,400\\ 2,000\\ 33,000\\ 6,000\\ 3,000\\ 1,800\\ 2,000\\ 520\\ 480\end{array}$	140 110 72 85 71 94 79 84 200 190 98 97 47	$\begin{array}{c} 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [1] \\ 10 \ [3.4] \\ 3 \ [1] \\ 4 \ [2] \end{array}$	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7
	2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002	$\begin{array}{r} 450\\ 800\\ 780\\ 700\\ 660\\ 640\\ 510\\ 780\\ 790\\ 640\\ 530\\ 380\\ 200\\ 140\\ 1,000\\ \end{array}$	700 870 650 610 610 510 680 870 680 400 370 150 130 900	3,800 3,400 3,200 2,400 2,000 33,000 6,000 3,000 1,800 2,000 520 480 8,300	140 110 72 85 71 94 79 84 200 190 98 97 47 98	$\begin{array}{c} 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [1] \\ 10 \ [3.4] \\ 3 \ [1] \\ 4 \ [2] \\ 2.4 \ [0.8] \end{array}$	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7
	2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2002 2003	$\begin{array}{c} 450\\ 800\\ 780\\ 700\\ 660\\ 640\\ 510\\ 780\\ 790\\ 640\\ 530\\ 380\\ 200\\ 140\\ 1,000\\ 920\\ \end{array}$	700 870 650 610 610 510 680 870 680 400 370 150 130 900 840	$\begin{array}{r} 3,800\\ 3,400\\ 3,400\\ 3,200\\ 2,400\\ 2,000\\ 33,000\\ 6,000\\ 3,000\\ 1,800\\ 2,000\\ 520\\ 480\\ 8,300\\ 5,800\\ \end{array}$	140 110 72 85 71 94 79 84 200 190 98 97 47 98 85	$\begin{array}{c} 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [1] \\ 10 \ [3.4] \\ 3 \ [1] \\ 4 \ [2] \\ 2.4 \ [0.8] \\ 3.6 \ [1.2] \end{array}$	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 3/3 14/14 14/14
	2002 2003 2004 2005 2006 2007 2008 2009 2010 2010 2011 2012 2013 2016 2020 2002 2003 2004	$\begin{array}{r} 450\\ 800\\ 780\\ 700\\ 660\\ 640\\ 510\\ 780\\ 790\\ 640\\ 530\\ 380\\ 200\\ 140\\ 1,000\\ 920\\ 1,100\\ \end{array}$	700 870 650 610 510 680 870 680 400 370 150 130 900 840 760	$\begin{array}{c} 3,800\\ 3,400\\ 3,400\\ 3,200\\ 2,400\\ 2,000\\ 33,000\\ 6,000\\ 3,000\\ 1,800\\ 2,000\\ 520\\ 480\\ 8,300\\ 5,800\\ 21,000\\ \end{array}$	140 110 72 85 71 94 79 84 200 190 98 97 47 98 85 140	$\begin{array}{c} 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [1] \\ 10 \ [3.4] \\ 3 \ [1] \\ 4 \ [2] \\ 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \end{array}$	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70 70/70 70/70	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7
	2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2002 2003 2004 2005	$\begin{array}{c} 450\\ 800\\ 780\\ 700\\ 660\\ 640\\ 510\\ 780\\ 790\\ 640\\ 530\\ 380\\ 200\\ 140\\ 1,000\\ 920\\ 1,100\\ 970\\ \end{array}$	700 870 650 610 610 510 680 870 680 400 370 150 130 900 840 760 750	$\begin{array}{c} 3,800\\ 3,400\\ 3,400\\ 3,200\\ 2,400\\ 2,000\\ 33,000\\ 6,000\\ 3,000\\ 1,800\\ 2,000\\ 520\\ 480\\ \hline 8,300\\ 5,800\\ 21,000\\ 13,000\\ \end{array}$	140 110 72 85 71 94 79 84 200 190 98 97 47 98 85 140 80	$\begin{array}{c} 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \end{array}$	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70 70/70 70/70 80/80	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 3/3 14/14 14/14 14/14
	2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2003 2004 2005 2006	$\begin{array}{c} 450\\ 800\\ 780\\ 700\\ 660\\ 640\\ 510\\ 780\\ 790\\ 640\\ 530\\ 380\\ 200\\ 140\\ 1,000\\ 920\\ 1,100\\ 970\\ 940\\ \end{array}$	$\begin{array}{c} 700\\ 870\\ 650\\ 610\\ 610\\ 510\\ 680\\ 870\\ 680\\ 400\\ 370\\ 150\\ 130\\ \hline 900\\ 840\\ 760\\ 750\\ 680\\ \hline \end{array}$	$\begin{array}{c} 3,800\\ 3,400\\ 3,400\\ 3,200\\ 2,400\\ 2,000\\ 33,000\\ 6,000\\ 3,000\\ 1,800\\ 2,000\\ 520\\ 480\\ \hline 8,300\\ 5,800\\ 21,000\\ 13,000\\ 6,900\\ \end{array}$	140 110 72 85 71 94 79 84 200 190 98 97 47 98 85 140 80 120	$\begin{array}{c} 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \end{array}$	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70 70/70 70/70 80/80 80/80	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7
(pg/g-wet)	2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2003 2004 2005 2006 2007	$\begin{array}{c} 450\\ 800\\ 780\\ 700\\ 660\\ 640\\ 510\\ 780\\ 790\\ 640\\ 530\\ 380\\ 200\\ 140\\ 1,000\\ 920\\ 1,100\\ 970\\ 940\\ 800\\ \end{array}$	$\begin{array}{c} 700\\ 870\\ 650\\ 610\\ 610\\ 510\\ 680\\ 870\\ 680\\ 400\\ 370\\ 150\\ 130\\ \hline 900\\ 840\\ 760\\ 750\\ 680\\ 680\\ 680\\ \hline \end{array}$	$\begin{array}{c} 3,800\\ 3,400\\ 3,400\\ 3,200\\ 2,400\\ 2,000\\ 33,000\\ 6,000\\ 3,000\\ 1,800\\ 2,000\\ 520\\ 480\\ \hline 8,300\\ 5,800\\ 21,000\\ 13,000\\ 6,900\\ 7,900\\ \end{array}$	140 110 72 85 71 94 79 84 200 190 98 97 47 98 85 140 80 120 71	$\begin{array}{c} 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \end{array}$	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 5/5 3/3 3/3 70/70 70/70 70/70 70/70 80/80 80/80 80/80	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 3/3 14/14 14/14 14/14 16/16 16/16
(pg/g-wet) Fish	2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2003 2004 2005 2006 2007 2008	$\begin{array}{c} 450\\ 800\\ 780\\ 700\\ 660\\ 640\\ 510\\ 780\\ 790\\ 640\\ 530\\ 380\\ 200\\ 140\\ 1,000\\ 920\\ 1,100\\ 970\\ 940\\ 800\\ 860\\ 860\\ \end{array}$	$\begin{array}{c} 700\\ 870\\ 650\\ 610\\ 610\\ 510\\ 680\\ 870\\ 680\\ 400\\ 370\\ 150\\ 130\\ \hline 900\\ 840\\ 760\\ 750\\ 680\\ 680\\ 680\\ 750\\ \hline \end{array}$	$\begin{array}{c} 3,800\\ 3,400\\ 3,400\\ 3,200\\ 2,400\\ 2,000\\ 33,000\\ 6,000\\ 3,000\\ 1,800\\ 2,000\\ 520\\ 480\\ \hline 8,300\\ 5,800\\ 21,000\\ 13,000\\ 6,900\\ 7,900\\ 6,900\\ \hline \end{array}$	140 110 72 85 71 94 79 84 200 190 98 97 47 98 85 140 80 120 71 87	$\begin{array}{c} 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \end{array}$	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70 70/70 70/70 80/80 80/80 80/80 85/85	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 3/3 14/14 14/14 14/14 16/16 16/16 16/16
(pg/g-wet)	2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2003 2004 2005 2006 2007 2008 2009	$\begin{array}{c} 450\\ 800\\ 780\\ 700\\ 660\\ 640\\ 510\\ 780\\ 790\\ 640\\ 530\\ 380\\ 200\\ 140\\ 1,000\\ 920\\ 1,100\\ 970\\ 940\\ 800\\ 860\\ 810\\ \end{array}$	$\begin{array}{c} 700\\ 870\\ 650\\ 610\\ 610\\ 510\\ 680\\ 870\\ 680\\ 400\\ 370\\ 150\\ 130\\ 900\\ 840\\ 760\\ 750\\ 680\\ 680\\ 680\\ 750\\ 720\\ \end{array}$	$\begin{array}{c} 3,800\\ 3,400\\ 3,400\\ 3,200\\ 2,400\\ 2,000\\ 33,000\\ 6,000\\ 3,000\\ 1,800\\ 2,000\\ 520\\ 480\\ \hline 8,300\\ 5,800\\ 21,000\\ 13,000\\ 6,900\\ 7,900\\ 6,900\\ 7,400\\ \end{array}$	$ \begin{array}{r} 140\\ 110\\ 72\\ 85\\ 71\\ 94\\ 79\\ 84\\ 200\\ 190\\ 98\\ 97\\ 47\\ 98\\ 85\\ 140\\ 80\\ 120\\ 71\\ 87\\ 68\\ \end{array} $	$\begin{array}{c} 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ \hline 3 \ [1] \\ 4 \ [2] \\ \hline 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \end{array}$	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 3/3 14/14 14/14 14/14 16/16 16/16 16/16 16/16
(pg/g-wet) Fish	2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2003 2004 2005 2006 2007 2008 2009 2010	$\begin{array}{c} 450\\ 800\\ 780\\ 700\\ 660\\ 640\\ 510\\ 780\\ 790\\ 640\\ 530\\ 380\\ 200\\ 140\\ \hline 1,000\\ 920\\ 1,100\\ 920\\ 1,100\\ 970\\ 940\\ 800\\ 860\\ 810\\ 800\\ \end{array}$	$\begin{array}{c} 700\\ 870\\ 650\\ 610\\ 610\\ 510\\ 680\\ 870\\ 680\\ 400\\ 370\\ 150\\ 130\\ 900\\ 840\\ 760\\ 750\\ 680\\ 680\\ 750\\ 720\\ 1,000\\ \end{array}$	$\begin{array}{c} 3,800\\ 3,400\\ 3,400\\ 3,200\\ 2,400\\ 2,000\\ 33,000\\ 6,000\\ 3,000\\ 1,800\\ 2,000\\ 520\\ 480\\ \hline 8,300\\ 5,800\\ 21,000\\ 13,000\\ 6,900\\ 7,900\\ 6,900\\ 7,400\\ 4,700\\ \hline \end{array}$	$ \begin{array}{r} 140\\ 110\\ 72\\ 85\\ 71\\ 94\\ 79\\ 84\\ 200\\ 190\\ 98\\ 97\\ 47\\ 98\\ 85\\ 140\\ 80\\ 120\\ 71\\ 87\\ 68\\ 110\\ \end{array} $	$\begin{array}{c} 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ \hline 3 \ [1] \\ 4 \ [2] \\ \hline 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ \hline \end{array}$	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85 90/90 18/18	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 3/3 14/14 14/14 14/14 16/16 16/16 16/16 16/16 16/17 18/18 18/18
(pg/g-wet) Fish	2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2003 2004 2005 2006 2007 2008 2009 2010 2010 2011	$\begin{array}{c} 450\\ 800\\ 780\\ 700\\ 660\\ 640\\ 510\\ 780\\ 790\\ 640\\ 530\\ 380\\ 200\\ 140\\ 1,000\\ 920\\ 1,100\\ 970\\ 940\\ 800\\ 860\\ 810\\ 800\\ 1,100\\ \end{array}$	$\begin{array}{c} 700\\ 870\\ 650\\ 610\\ 610\\ 510\\ 680\\ 870\\ 680\\ 400\\ 370\\ 150\\ 130\\ 900\\ 840\\ 760\\ 750\\ 680\\ 680\\ 750\\ 680\\ 680\\ 750\\ 720\\ 1,000\\ 1,000\\ 1,000\\ \end{array}$	$\begin{array}{c} 3,800\\ 3,400\\ 3,400\\ 3,400\\ 2,400\\ 2,000\\ 33,000\\ 6,000\\ 3,000\\ 1,800\\ 2,000\\ 520\\ 480\\ 8,300\\ 5,800\\ 21,000\\ 13,000\\ 6,900\\ 7,900\\ 6,900\\ 7,400\\ 4,700\\ 5,000\\ \end{array}$	$ \begin{array}{c} 140\\ 110\\ 72\\ 85\\ 71\\ 94\\ 79\\ 84\\ 200\\ 190\\ 98\\ 97\\ 47\\ 98\\ 85\\ 140\\ 80\\ 120\\ 71\\ 87\\ 68\\ 110\\ 190\\ \end{array} $	$\begin{array}{c} 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 4 \ [2] \ [2] \\ 4 \ [2] \$	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85 90/90 18/18 18/18	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7
(pg/g-wet) Fish	2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2003 2004 2005 2006 2007 2008 2006 2007 2008 2009 2010 2010 2011 2012	$\begin{array}{c} 450\\ 800\\ 780\\ 700\\ 660\\ 640\\ 510\\ 780\\ 790\\ 640\\ 530\\ 380\\ 200\\ 140\\ 1,000\\ 920\\ 1,100\\ 970\\ 940\\ 800\\ 860\\ 810\\ 800\\ 1,100\\ 1,100\\ 1,100\\ 1,100\\ 1,100\\ \end{array}$	$\begin{array}{c} 700\\ 870\\ 650\\ 610\\ 610\\ 510\\ 680\\ 870\\ 680\\ 400\\ 370\\ 150\\ 130\\ 900\\ 840\\ 760\\ 750\\ 680\\ 680\\ 750\\ 680\\ 680\\ 750\\ 720\\ 1,000\\ 1,000\\ 1,300\\ \end{array}$	$\begin{array}{c} 3,800\\ 3,400\\ 3,400\\ 3,200\\ 2,400\\ 2,000\\ 33,000\\ 6,000\\ 3,000\\ 1,800\\ 2,000\\ 520\\ 480\\ \hline 8,300\\ 5,800\\ 21,000\\ 13,000\\ 6,900\\ 7,900\\ 6,900\\ 7,900\\ 6,900\\ 7,400\\ 4,700\\ 5,000\\ 4,200\\ \hline \end{array}$	$ \begin{array}{c} 140\\ 110\\ 72\\ 85\\ 71\\ 94\\ 79\\ 84\\ 200\\ 190\\ 98\\ 97\\ 47\\ 98\\ 85\\ 140\\ 80\\ 120\\ 71\\ 87\\ 68\\ 110\\ 190\\ 140\\ \end{array} $	$\begin{array}{c} 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [1] \\ 10 \ [3.4] \\ 3 \ [1] \\ 4 \ [2] \\ 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [1] \end{array}$	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70 70/70 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85 90/90 18/18 18/18 18/18 19/19	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 3/3 14/14 14/14 14/14 14/14 16/16 16/16 16/16 16/16 16/16 16/17 18/18 18/18 18/18 19/19
(pg/g-wet) Fish	2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2003 2004 2005 2006 2007 2008 2009 2010 2007 2008 2009 2010 2011 2012 2013	$\begin{array}{c} 450\\ 800\\ 780\\ 700\\ 660\\ 640\\ 510\\ 780\\ 790\\ 640\\ 530\\ 380\\ 200\\ 140\\ 1,000\\ 920\\ 1,100\\ 970\\ 940\\ 800\\ 860\\ 810\\ 800\\ 1,100\\ 1,$	$\begin{array}{c} 700\\ 870\\ 650\\ 610\\ 610\\ 510\\ 680\\ 870\\ 680\\ 400\\ 370\\ 150\\ 130\\ 900\\ 840\\ 760\\ 750\\ 680\\ 680\\ 750\\ 720\\ 1,000\\ 1,000\\ 1,300\\ 1,100\\ \end{array}$	3,800 3,400 3,400 3,200 2,400 2,000 33,000 6,000 3,000 1,800 2,000 520 480 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700 5,000 4,200 7,800	$ \begin{array}{c} 140\\ 110\\ 72\\ 85\\ 71\\ 94\\ 79\\ 84\\ 200\\ 190\\ 98\\ 97\\ 47\\ 98\\ 85\\ 140\\ 80\\ 120\\ 71\\ 87\\ 68\\ 110\\ 190\\ 140\\ 150\\ \end{array} $	$\begin{array}{c} 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [1] \\ 10 \ [3.4] \\ 3 \ [1] \\ 4 \ [2] \\ 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [1] \\ 10 \ [3.4] \\ \end{array}$	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70 70/70 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85 90/90 18/18 18/18 18/18 19/19 19/19	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 4/4 5/5 5/5 3/3 3/3 14/14 14/14 14/14 14/14 16/16 16/16 16/16 16/16 16/16 16/16 16/17 18/18 18/18 18/18 18/18 19/19 19/19
(pg/g-wet) Fish	2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2016 2020 2002 2003 2004 2005 2006 2007 2008 2009 2010 2007 2008 2009 2010 2011 2012	$\begin{array}{c} 450\\ 800\\ 780\\ 700\\ 660\\ 640\\ 510\\ 780\\ 790\\ 640\\ 530\\ 380\\ 200\\ 140\\ 1,000\\ 920\\ 1,100\\ 970\\ 940\\ 800\\ 860\\ 810\\ 800\\ 1,100\\ 1,100\\ 1,100\\ 1,100\\ 1,100\\ \end{array}$	$\begin{array}{c} 700\\ 870\\ 650\\ 610\\ 610\\ 510\\ 680\\ 870\\ 680\\ 400\\ 370\\ 150\\ 130\\ 900\\ 840\\ 760\\ 750\\ 680\\ 680\\ 750\\ 680\\ 680\\ 750\\ 720\\ 1,000\\ 1,000\\ 1,300\\ \end{array}$	$\begin{array}{c} 3,800\\ 3,400\\ 3,400\\ 3,200\\ 2,400\\ 2,000\\ 33,000\\ 6,000\\ 3,000\\ 1,800\\ 2,000\\ 520\\ 480\\ \hline 8,300\\ 5,800\\ 21,000\\ 13,000\\ 6,900\\ 7,900\\ 6,900\\ 7,900\\ 6,900\\ 7,400\\ 4,700\\ 5,000\\ 4,200\\ \hline \end{array}$	$ \begin{array}{c} 140\\ 110\\ 72\\ 85\\ 71\\ 94\\ 79\\ 84\\ 200\\ 190\\ 98\\ 97\\ 47\\ 98\\ 85\\ 140\\ 80\\ 120\\ 71\\ 87\\ 68\\ 110\\ 190\\ 140\\ \end{array} $	$\begin{array}{c} 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [1] \\ 10 \ [3.4] \\ 3 \ [1] \\ 4 \ [2] \\ 2.4 \ [0.8] \\ 3.6 \ [1.2] \\ 13 \ [4.2] \\ 6.2 \ [2.1] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [2] \\ 3 \ [1] \\ 4 \ [1] \end{array}$	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 3/3 70/70 70/70 70/70 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85 90/90 18/18 18/18 18/18 19/19	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7

	Monitored	Geometric				Quantification	Detection I	Frequency
trans-Nonachlor	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	890	980	1,900	350	2.4 [0.8]	10/10	2/2
	2003	1,100	1,400	3,700	350	3.6 [1.2]	10/10	2/2
	2004	690	780	1,200	390	13 [4.2]	10/10	2/2
	2005	870	880	2,000	440	6.2 [2.1]	10/10	2/2
	2006	650	620	1,500	310	3 [1]	10/10	2/2
	2007	590	680	1,400	200	7 [3]	10/10	2/2
Birds *2	2008	740	850	2,600	180	6 [2]	10/10	2/2
(pg/g-wet)	2009	400	430	730	220	3 [1]	10/10	2/2
	2010	510		880	290	4 [2]	2/2	2/2
	2011			400	400	3 [1]	1/1	1/1
	2012	360		480	270	4 [1]	2/2	2/2
	2013	55		170	18	10 [3.4]	2/2	2/2
	2016	60		130	28	3 [1]	2/2	2/2
	2020			81	81	4 [2]	1/1	1/1

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) *2: There is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.
 (Note 3) No monitoring was conducted during FY2014, 2015 and FY2017~2019.

<Air>

Stocktaking of the detection of O	xvchlordane. cis-	Nonachlor and trans-	Nonachlor in a	air FY2002~2020

	Monitored year	Geometric				Quantification	Detection I	Frequency
Oxychlordane	Wontored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.96	0.98	8.3	nd	0.024 [0.008]	101/102	34/34
	2003 Warm season	2.5	2.7	12	0.41	0.045 [0.015]	35/35	35/35
	2003 Cold season	0.87	0.88	3.2	0.41	0.045 [0.015]	34/34	34/34
	2004 Warm season	1.9	2.0	7.8	0.41	0.13 [0.042]	37/37	37/37
	2004 Cold season	0.80	0.76	3.9	0.27	0.13 [0.042]	37/37	37/37
	2005 Warm season	1.9	2.0	8.8	0.65	0.16 [0.054]	37/37	37/37
	2005 Cold season	0.55	0.50	2.2	0.27	0.10 [0.034]	37/37	37/37
	2006 Warm season	1.8	1.9	5.7	0.47	0.23 [0.08]	37/37	37/37
	2006 Cold season	0.54	0.56	5.1	tr(0.13)	0.23 [0.08]	37/37	37/37
	2007 Warm season	1.9	1.8	8.6	0.56	0.05 [0.02]	36/36	36/36
	2007 Cold season	0.61	0.63	2.4	0.26	0.05 [0.02]	36/36	36/36
Air	2008 Warm season	1.7	1.7	7.1	0.50	0.04 [0.01]	37/37	37/37
(pg/m^3)	2008 Cold season	0.61	0.63	1.8	0.27	0.04 [0.01]	37/37	37/37
(pg/m [*])	2009 Warm season	1.7	1.8	6.5	0.38	0.04 [0.02]	37/37	37/37
	2009 Cold season	0.65	0.61	2.7	0.24	0.04 [0.02]	37/37	37/37
	2010 Warm season	1.5	1.5	6.2	0.44	0.02 [0.01]	37/37	37/37
	2010 Cold season	0.56	0.55	2.3	0.26	0.03 [0.01]	37/37	37/37
	2011 Warm season	1.5	1.5	5.2	0.28	0.07 [0.03]	35/35	35/35
	2011 Cold season	0.61	0.57	2.6	0.21	0.07 [0.03]	37/37	37/37
	2012 Warm season	1.4	1.6	6.7	0.34	0.09.00.021	36/36	36/36
	2012 Cold season	0.41	0.38	1.0	0.22	0.08 [0.03]	36/36	36/36
	2013 Warm season	1.4	1.5	4.7	0.36	0.02 [0.01]	36/36	36/36
	2013 Cold season	0.43	0.41	1.0	0.20	0.03 [0.01]	36/36	36/36
	2016 Warm season	1.4	1.4	8.9	0.19	0.16 [0.06]	37/37	37/37
	2020 Warm season	0.79	0.8	2.6	0.15	0.10 [0.04]	37/37	37/37

		Geometric				Quantification	Detection I	Frequency
cis-Nonachlor	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	3.1	4.0	62	0.071	0.030 [0.010]	102/102	34/34
	2003 Warm season	12	15	220	0.81	0.026 [0.0088]	35/35	35/35
	2003 Cold season	2.7	3.5	23	0.18	0.020 [0.0088]	34/34	34/34
	2004 Warm season	10	15	130	0.36	0.072 [0.024]	37/37	37/37
	2004 Cold season	2.7	4.4	28	0.087	0.072 [0.024]	37/37	37/37
	2005 Warm season	10	14	160	0.30	0.08 [0.03]	37/37	37/37
	2005 Cold season	1.6	1.6	34	0.08	0.08 [0.05]	37/37	37/37
	2006 Warm season	11	12	170	0.28	0.15 [0.05]	37/37	37/37
	2006 Cold season	2.4	2.0	41	tr(0.14)	0.15 [0.05]	37/37	37/37
	2007 Warm season	10	14	150	0.31	0.03 [0.01]	36/36	36/36
	2007 Cold season	1.6	1.7	22	0.09	0.03 [0.01]	36/36	36/36
Air	2008 Warm season	7.9	12	87	0.18	0.03 [0.01]	37/37	37/37
(pg/m^3)	2008 Cold season	2.0	2.7	19	0.16	0.03 [0.01]	37/37	37/37
(P5/III)	2009 Warm season	7.5	10	110	0.33	0.04 [0.02]	37/37	37/37
	2009 Cold season	1.9	2.1	18	0.07	0.04 [0.02]	37/37	37/37
	2010 Warm season	7.5	10	68	0.23	0.11 [0.04]	37/37	37/37
	2010 Cold season	1.8	2.1	13	tr(0.06)	0.11 [0.04]	37/37	37/37
	2011 Warm season	7.4	8.8	89	0.24	0.15 [0.051]	35/35	35/35
	2011 Cold season	1.9	2.9	28	nd	0.15 [0.051]	36/37	36/37
	2012 Warm season	6.9	11	89	0.29	0.12 [0.05]	36/36	36/36
	2012 Cold season	0.98	1.1	10	tr(0.05)	0.12 [0.05]	36/36	36/36
	2013 Warm season	6.4	10	72	0.15	0.07 [0.02]	36/36	36/36
	2013 Cold season	1.0	1.4	12	tr(0.06)		36/36	36/36
	2016 Warm season	6.1	9.9	120	tr(0.13)	0.14 [0.05]	37/37	37/37
	2020 Warm season	3.1	3.4	24	0.13	0.09 [0.04]	37/37	37/37
<i>trans</i> - Nonachlor	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection]	Detection I Sample	Frequenc Site
	2002	24	20	550	0.64	limit 0.30 [0.10]		34/34
				ערר	0.04	0.5010.101	102/102	34/34
			30			k		
	2003 Warm season	87	100	1,200	5.1	0.35 [0.12]	35/35	35/35
	2003 Warm season 2003 Cold season	87 24	100 28	1,200 180	5.1 2.1		35/35 34/34	35/35 34/34
	2003 Warm season 2003 Cold season 2004 Warm season	87 24 72	100 28 120	1,200 180 870	5.1 2.1 1.9		35/35 34/34 37/37	35/35 34/34 37/37
	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season	87 24 72 23	100 28 120 39	1,200 180 870 240	5.1 2.1 1.9 0.95	0.35 [0.12]	35/35 34/34 37/37 37/37	35/35 34/34 37/37 37/37
	2003 Warm season2003 Cold season2004 Warm season2004 Cold season2005 Warm season	87 24 72 23 75	100 28 120 39 95	1,200 180 870 240 870	5.1 2.1 1.9 0.95 3.1	0.35 [0.12]	35/35 34/34 37/37 <u>37/37</u> 37/37	35/35 34/34 37/37 37/37 37/37
	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season	87 24 72 23 75 13	100 28 120 39 95 16	1,200 180 870 240 870 210	5.1 2.1 1.9 0.95 3.1 1.2	0.35 [0.12]	35/35 34/34 37/37 <u>37/37</u> 37/37 37/37	35/35 34/34 37/37 37/37 37/37 37/37
	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season	87 24 72 23 75 13 68	100 28 120 39 95 16 91	1,200 180 870 240 870 210 800	5.1 2.1 1.9 0.95 3.1 1.2 3.0	0.35 [0.12]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37	35/35 34/34 37/37 37/37 37/37 37/37 37/37
	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season	87 24 72 23 75 13 68 16	100 28 120 39 95 16 91 15	1,200 180 870 240 870 210 800 240	5.1 2.1 1.9 0.95 3.1 1.2 3.0 1.4	0.35 [0.12] 0.48 [0.16] 0.13 [0.044]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 37/37	35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 37/37
	2003 Warm season2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Warm season	87 24 72 23 75 13 68 16 72	100 28 120 39 95 16 91 15 96	1,200 180 870 240 870 210 800 240 940	5.1 2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5	0.35 [0.12] 0.48 [0.16] 0.13 [0.044]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 37/37 36/36	35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36
	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season	87 24 72 23 75 13 68 16 72 13	100 28 120 39 95 16 91 15 96 15	1,200 180 870 240 870 210 800 240 940 190	$5.1 \\ 2.1 \\ 1.9 \\ 0.95 \\ 3.1 \\ 1.2 \\ 3.0 \\ 1.4 \\ 2.5 \\ 1.1 \\ $	0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36	35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36
Air	2003 Warm season2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Warm season2007 Warm season2007 Cold season2008 Warm season	87 24 72 23 75 13 68 16 72 13 59	100 28 120 39 95 16 91 15 96 15 91	$ \begin{array}{r} 1,200\\ 180\\ 870\\ 240\\ 870\\ 210\\ 800\\ 240\\ 940\\ 190\\ 650\\ \end{array} $	$5.1 \\ 2.1 \\ 1.9 \\ 0.95 \\ 3.1 \\ 1.2 \\ 3.0 \\ 1.4 \\ 2.5 \\ 1.1 \\ 1.5 \\ $	0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37	35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36
Air (pg/m ³)	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season	87 24 72 23 75 13 68 16 72 13 59 17	$ \begin{array}{r} 100 \\ 28 \\ 120 \\ 39 \\ 95 \\ 16 \\ 91 \\ 15 \\ 96 \\ 15 \\ 91 \\ 25 \\ \end{array} $	$ \begin{array}{r} 1,200\\ 180\\ 870\\ 240\\ 870\\ 210\\ 800\\ 240\\ 940\\ 190\\ 650\\ 170\\ \end{array} $	$5.1 \\ 2.1 \\ 1.9 \\ 0.95 \\ 3.1 \\ 1.2 \\ 3.0 \\ 1.4 \\ 2.5 \\ 1.1 \\ 1.5 \\ 1.3 \\ $	0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37	35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37
	2003 Warm season2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Warm season2007 Cold season2008 Warm season2008 Warm season2008 Cold season2009 Warm season	87 24 72 23 75 13 68 16 72 13 59 17 54	$ \begin{array}{r} 100\\ 28\\ 120\\ 39\\ 95\\ 16\\ 91\\ 15\\ 96\\ 15\\ 91\\ 25\\ 81\\ \end{array} $	$ \begin{array}{r} 1,200\\ 180\\ 870\\ 240\\ 870\\ 210\\ 800\\ 240\\ 940\\ 190\\ 650\\ 170\\ 630\\ \end{array} $	$5.1 \\ 2.1 \\ 1.9 \\ 0.95 \\ 3.1 \\ 1.2 \\ 3.0 \\ 1.4 \\ 2.5 \\ 1.1 \\ 1.5 \\ 1.3 \\ 2.2 \\ $	0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37	35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37
	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season	$ \begin{array}{r} 87\\ 24\\ 72\\ 23\\ 75\\ 13\\ 68\\ 16\\ 72\\ 13\\ 59\\ 17\\ 54\\ 16\\ \end{array} $	$ \begin{array}{r} 100\\ 28\\ 120\\ 39\\ 95\\ 16\\ 91\\ 15\\ 96\\ 15\\ 91\\ 25\\ 81\\ 19\\ \end{array} $	$ \begin{array}{r} 1,200\\ 180\\ 870\\ 240\\ 870\\ 210\\ 800\\ 240\\ 940\\ 190\\ 650\\ 170\\ 630\\ 140\\ \end{array} $	$5.1 \\ 2.1 \\ 1.9 \\ 0.95 \\ 3.1 \\ 1.2 \\ 3.0 \\ 1.4 \\ 2.5 \\ 1.1 \\ 1.5 \\ 1.3 \\ 2.2 \\ 0.75 \\ 0.75 \\ 0.95 $	0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03] 0.09 [0.03]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37	35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37
	2003 Warm season2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Cold season2007 Cold season2008 Warm season2008 Warm season2009 Cold season2009 Warm season2009 Cold season2010 Warm season2010 Warm season	$ \begin{array}{r} 87\\ 24\\ 72\\ 23\\ 75\\ 13\\ 68\\ 16\\ 72\\ 13\\ 59\\ 17\\ 54\\ 16\\ 52\\ \end{array} $	100 28 120 39 95 16 91 15 96 15 91 25 81 19 78	$ \begin{array}{r} 1,200\\ 180\\ 870\\ 240\\ 870\\ 210\\ 800\\ 240\\ 940\\ 190\\ 650\\ 170\\ 630\\ 140\\ 520\\ \end{array} $	$5.1 \\ 2.1 \\ 1.9 \\ 0.95 \\ 3.1 \\ 1.2 \\ 3.0 \\ 1.4 \\ 2.5 \\ 1.1 \\ 1.5 \\ 1.3 \\ 2.2 \\ 0.75 \\ 1.7 \\ 1.7 \\ 1.7 \\ 1.7 \\ 1.7 \\ 1.9 \\ 1.$	0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03] 0.09 [0.03]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37	35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37
	2003 Warm season2003 Cold season2004 Warm season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Cold season2007 Cold season2008 Warm season2008 Warm season2009 Cold season2009 Warm season2009 Warm season2009 Cold season2010 Warm season2010 Warm season2010 Cold season2010 Cold season2010 Cold season	$ \begin{array}{r} 87\\ 24\\ 72\\ 23\\ 75\\ 13\\ 68\\ 16\\ 72\\ 13\\ 59\\ 17\\ 54\\ 16\\ 52\\ 15\\ \end{array} $	$ \begin{array}{r} 100 \\ 28 \\ 120 \\ 39 \\ 95 \\ 16 \\ 91 \\ 15 \\ 96 \\ 15 \\ 91 \\ 25 \\ 81 \\ 19 \\ 78 \\ 17 \\ \end{array} $	$\begin{array}{c} 1,200\\ 180\\ 870\\ 240\\ 870\\ 210\\ 800\\ 240\\ 940\\ 190\\ 650\\ 170\\ 630\\ 140\\ 520\\ 89\end{array}$	5.1 2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5 1.1 1.5 1.3 2.2 0.75 1.7 tr(0.7)	0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03] 0.09 [0.03] 0.07 [0.03]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37	35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37
	2003 Warm season2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Cold season2007 Cold season2008 Warm season2008 Warm season2009 Cold season2009 Warm season2009 Cold season2010 Warm season2010 Cold season2011 Warm season2011 Warm season	$ \begin{array}{r} 87\\ 24\\ 72\\ 23\\ 75\\ 13\\ 68\\ 16\\ 72\\ 13\\ 59\\ 17\\ 54\\ 16\\ 52\\ 15\\ 53\\ \end{array} $	$ \begin{array}{r} 100\\28\\120\\39\\95\\16\\91\\15\\96\\15\\91\\25\\81\\19\\78\\17\\72\end{array}$	$\begin{array}{c} 1,200\\ 180\\ 870\\ 240\\ 870\\ 210\\ 800\\ 240\\ 940\\ 190\\ 650\\ 170\\ 630\\ 140\\ 520\\ 89\\ 550\\ \end{array}$	$5.1 \\ 2.1 \\ 1.9 \\ 0.95 \\ 3.1 \\ 1.2 \\ 3.0 \\ 1.4 \\ 2.5 \\ 1.1 \\ 1.5 \\ 1.3 \\ 2.2 \\ 0.75 \\ 1.7 \\ tr(0.7) \\ 1.2 \\ 0.12$	0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03] 0.09 [0.03] 0.07 [0.03]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35	35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35
	2003 Warm season2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Warm season2007 Cold season2008 Warm season2008 Cold season2009 Warm season2009 Cold season2009 Cold season2010 Cold season2010 Cold season2011 Warm season2011 Cold season2011 Cold season2011 Cold season2011 Cold season	$\begin{array}{r} 87\\ 24\\ 72\\ 23\\ 75\\ 13\\ 68\\ 16\\ 72\\ 13\\ 59\\ 17\\ 54\\ 16\\ 52\\ 15\\ 53\\ 16\\ \end{array}$	$ \begin{array}{r} 100\\28\\120\\39\\95\\16\\91\\15\\96\\15\\91\\25\\81\\19\\78\\17\\72\\24\end{array}$	$\begin{array}{c} 1,200\\ 180\\ 870\\ 240\\ 870\\ 210\\ 800\\ 240\\ 940\\ 190\\ 650\\ 170\\ 630\\ 140\\ 520\\ 89\\ 550\\ 210\\ \end{array}$	5.1 2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5 1.1 1.5 1.3 2.2 0.75 1.7 tr(0.7) 1.2 tr(0.70)	0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03] 0.09 [0.03] 0.07 [0.03] 0.8 [0.3]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37	35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37
	2003 Warm season2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Warm season2007 Cold season2008 Warm season2008 Cold season2009 Cold season2009 Cold season2009 Cold season2010 Warm season2010 Warm season2011 Warm season2011 Cold season2011 Cold season2011 Warm season2012 Warm season	$\begin{array}{r} 87\\ 24\\ 72\\ 23\\ 75\\ 13\\ 68\\ 16\\ 72\\ 13\\ 59\\ 17\\ 54\\ 16\\ 52\\ 15\\ 53\\ 16\\ 49\\ \end{array}$	$ \begin{array}{r} 100\\ 28\\ 120\\ 39\\ 95\\ 16\\ 91\\ 15\\ 96\\ 15\\ 91\\ 25\\ 81\\ 19\\ 78\\ 17\\ 72\\ 24\\ 79\\ \end{array} $	$\begin{array}{c} 1,200\\ 180\\ 870\\ 240\\ 870\\ 210\\ 800\\ 240\\ 940\\ 190\\ 650\\ 170\\ 630\\ 140\\ 520\\ 89\\ 550\\ 210\\ 510\\ \end{array}$	5.1 2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5 1.1 1.5 1.3 2.2 0.75 1.7 tr(0.7) 1.2 tr(0.70) 2.5	0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03] 0.09 [0.03] 0.07 [0.03] 0.8 [0.3]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36	35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36
	2003 Warm season2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Warm season2007 Cold season2008 Warm season2008 Cold season2009 Cold season2009 Cold season2009 Cold season2010 Warm season2010 Warm season2011 Cold season2011 Cold season2011 Cold season2012 Warm season2012 Warm season	$\begin{array}{r} 87\\ 24\\ 72\\ 23\\ 75\\ 13\\ 68\\ 16\\ 72\\ 13\\ 59\\ 17\\ 54\\ 16\\ 52\\ 15\\ 53\\ 16\\ 49\\ 8.1\\ \end{array}$	$ \begin{array}{r} 100\\28\\120\\39\\95\\16\\91\\15\\96\\15\\91\\25\\81\\19\\78\\17\\72\\24\\79\\10\end{array}$	$\begin{array}{c} 1,200\\ 180\\ 870\\ 240\\ 870\\ 210\\ 800\\ 240\\ 940\\ 190\\ 650\\ 170\\ 630\\ 140\\ 520\\ 89\\ 550\\ 210\\ 510\\ 61\\ \end{array}$	$\begin{array}{c} 5.1 \\ 2.1 \\ 1.9 \\ 0.95 \\ 3.1 \\ 1.2 \\ 3.0 \\ 1.4 \\ 2.5 \\ 1.1 \\ 1.5 \\ 1.3 \\ 2.2 \\ 0.75 \\ 1.7 \\ tr(0.7) \\ 1.2 \\ tr(0.70) \\ 2.5 \\ tr(0.50) \end{array}$	0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03] 0.09 [0.03] 0.07 [0.03] 0.8 [0.3] 1.1 [0.35]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 35/35 37/37 36/36 36/36	35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36
	2003 Warm season2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Warm season2007 Cold season2008 Warm season2008 Cold season2009 Cold season2009 Cold season2009 Cold season2010 Warm season2010 Cold season2011 Warm season2011 Cold season2011 Cold season2012 Warm season2013 Warm season	$\begin{array}{r} 87\\ 24\\ 72\\ 23\\ 75\\ 13\\ 68\\ 16\\ 72\\ 13\\ 59\\ 17\\ 54\\ 16\\ 52\\ 15\\ 53\\ 16\\ 49\\ 8.1\\ 46\\ \end{array}$	$ \begin{array}{r} 100 \\ 28 \\ 120 \\ 39 \\ 95 \\ 16 \\ 91 \\ 15 \\ 96 \\ 15 \\ 91 \\ 25 \\ 81 \\ 19 \\ 78 \\ 17 \\ 72 \\ 24 \\ 79 \\ 10 \\ 78 \\ 78 \\ 77 \\ 72 \\ 24 \\ 79 \\ 10 \\ 78 \\ 78 \\ 78 \\ 77 \\ 72 \\ 24 \\ 79 \\ 10 \\ 78 \\ 78 \\ 78 \\ 79 \\ 10 \\ 78 \\ 78 \\ 78 \\ 79 \\ 10 \\ 78 \\ 78 \\ 78 \\ 79 \\ 10 \\ 78 \\ 78 \\ 78 \\ 79 \\ 78 \\ 78 \\ 79 \\ 78 \\ 78 \\ 79 \\ 78 \\ 78 \\ 79 \\ 78 \\ 78 \\ 78 \\ 79 \\ 78 \\ 78 \\ 79 \\ 78 \\ 78 \\ 79 \\ 78 \\ 78 \\ 79 \\ 78 \\ 78 \\ 78 \\ 79 \\ 78 \\ 78 \\ 79 \\ 78 \\ 78 \\ 79 \\ 78 \\ 78 \\ 79 \\ 78 \\ 78 \\ 78 \\ 79 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78 \\ 79 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78 \\ 79 \\ 78 \\ 78 \\ 79 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78 \\ 79 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78 \\ 78 \\ 79 \\ 78$	$\begin{array}{c} 1,200\\ 180\\ 870\\ 240\\ 870\\ 210\\ 800\\ 240\\ 940\\ 190\\ 650\\ 170\\ 630\\ 140\\ 520\\ 89\\ 550\\ 210\\ 510\\ 61\\ 470\\ \end{array}$	$\begin{array}{c} 5.1 \\ 2.1 \\ 1.9 \\ 0.95 \\ 3.1 \\ 1.2 \\ 3.0 \\ 1.4 \\ 2.5 \\ 1.1 \\ 1.5 \\ 1.3 \\ 2.2 \\ 0.75 \\ 1.7 \\ tr(0.7) \\ 1.2 \\ tr(0.70) \\ 2.5 \\ tr(0.50) \\ 1.2 \end{array}$	0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03] 0.09 [0.03] 0.07 [0.03] 0.8 [0.3] 1.1 [0.35]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 35/35 37/37 36/36 36/36	35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36
	2003 Warm season2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Warm season2007 Cold season2008 Warm season2008 Cold season2009 Cold season2009 Cold season2009 Cold season2010 Warm season2010 Warm season2011 Cold season2011 Cold season2011 Cold season2012 Warm season2012 Warm season	$\begin{array}{r} 87\\ 24\\ 72\\ 23\\ 75\\ 13\\ 68\\ 16\\ 72\\ 13\\ 59\\ 17\\ 54\\ 16\\ 52\\ 15\\ 53\\ 16\\ 49\\ 8.1\\ \end{array}$	$ \begin{array}{r} 100\\28\\120\\39\\95\\16\\91\\15\\96\\15\\91\\25\\81\\19\\78\\17\\72\\24\\79\\10\end{array}$	$\begin{array}{c} 1,200\\ 180\\ 870\\ 240\\ 870\\ 210\\ 800\\ 240\\ 940\\ 190\\ 650\\ 170\\ 630\\ 140\\ 520\\ 89\\ 550\\ 210\\ 510\\ 61\\ \end{array}$	$\begin{array}{c} 5.1 \\ 2.1 \\ 1.9 \\ 0.95 \\ 3.1 \\ 1.2 \\ 3.0 \\ 1.4 \\ 2.5 \\ 1.1 \\ 1.5 \\ 1.3 \\ 2.2 \\ 0.75 \\ 1.7 \\ tr(0.7) \\ 1.2 \\ tr(0.70) \\ 2.5 \\ tr(0.50) \end{array}$	0.35 [0.12] 0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03] 0.09 [0.03] 0.07 [0.03] 0.8 [0.3] 1.1 [0.35] 1.2 [0.41]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 35/35 37/37 36/36 36/36	35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36

(Note) No monitoring was conducted in FY2014, FY2015 and FY2017~2019.

[8] Heptachlors (references)

· History and state of monitoring

Heptachlor and its metabolite, Heptachlor epoxide, used to kill soil insects and termites, heptachlor has also been used more widely to kill cotton insects, grasshoppers, other crop pests, and malaria-carrying mosquitoes. The substances were not registrated under the Agricultural Chemicals Regulation Law in FY1975. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 1986, since it includes the technical chlordane used as a termitecide. Also Heptachlors are one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series before FY2001, Heptachlor and Heptachlor epoxide were measured in FY1982 (in surface water, sediment and fish) and in FY1986 (in air) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Heptachlor in surface water, sediment, wildlife (bibalves, fish and birds) and air had been monitored since FY2002, and *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide had also been monitored since FY2003. After FY2012, the substances has been monitored in sediment, wildlife (bivalves, fish and birds) and air in FY2012, FY2013, FY2015 and FY2016 and in surface water and sediment in FY2014, FY2017 and FY2020.

No monitoring was conducted in FY2021. For reference, the monitoring results up to FY2020 are given below.

• Monitoring results until FY2020

<Surface Water>

	Monitored	Geometric				Quantification	Detection	Frequency
Heptachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(1.2)	tr(1.0)	25	nd	1.5 [0.5]	97/114	38/38
	2003	tr(1.8)	tr(1.6)	7	tr(1.0)	2 [0.5]	36/36	36/36
	2004	nd	nd	29	nd	5 [2]	9/38	9/38
	2005	nd	tr(1)	54	nd	3 [1]	25/47	25/47
	2006	nd	nd	6	nd	5 [2]	5/48	5/48
Surface Water	2007	nd	nd	5.2	nd	2.4 [0.8]	12/48	12/48
	2008	nd	nd	4.6	nd	2.1 [0.8]	19/48	19/48
(pg/L)	2009	tr(0.5)	nd	17	nd	0.8 [0.3]	20/49	20/49
	2010	nd	nd	43	nd	2.2 [0.7]	4/49	4/49
	2011	nd	nd	22	nd	1.3 [0.5]	6/49	6/49
	2014	tr(0.2)	tr(0.2)	1.5	nd	0.5 [0.2]	28/48	28/48
	2017	nd	nd	6	nd	3 [1]	2/47	2/47
	2020	nd	nd	tr(2)	nd	3 [1]	5/46	5/46
oia Hantaahlan	Monitored	Coomotrio				Quantification	Detection	Frequenc
<i>cis</i> -Heptachlor epoxide	year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	9.8	11	170	1.2	0.7 [0.2]	36/36	36/36
	2004	10	10	77	2	2 [0.4]	38/38	38/38
	2005	7.1	6.6	59	1.0	0.7 [0.2]	47/47	47/47
	2006	7.6	6.6	47	1.1	2.0 [0.7]	48/48	48/48
	2007	6.1	5.8	120	tr(0.9)	1.3 [0.4]	48/48	48/48
Surface Water	2008	4.7	5.0	37	nd	0.6 [0.2]	46/48	46/48
(pg/L)	2009	5.5	4.2	72	0.8	0.5 [0.2]	49/49	49/49
	2010	5.9	3.9	710	0.7	0.4 [0.2]	49/49	49/49
	2011	5.8	5.8	160	0.7	0.7 [0.3]	49/49	49/49
	2014	4.9	3.4	56	0.7	0.5 [0.2]	48/48	48/48
	2017	4.7	3.5	83	nd	1.6 [0.6]	46/47	46/47
	2020	4.0	3.4	36	nd	2.3 [0.9]	44/46	44/46

Stocktaking of the detection of Heptachlor, *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide in surface water during FY2002~2020

trans-Heptachlor	Monitored	Geometric				Quantification	Detection I	requency
epoxide	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	2	nd	2 [0.4]	4/36	4/36
	2004	nd	nd	nd	nd	0.9 [0.3]	0/38	0/38
	2005	nd	nd	nd	nd	0.7 [0.2]	0/47	0/47
	2006	nd	nd	nd	nd	1.8 [0.6]	0/48	0/48
	2007	nd	nd	tr(0.9)	nd	2.0 [0.7]	2/48	2/48
Surface Water	2008	nd	nd	nd	nd	1.9 [0.7]	0/48	0/48
(pg/L)	2009	nd	nd	nd	nd	0.7 [0.3]	0/49	0/49
	2010	nd	nd	8.0	nd	1.3 [0.5]	2/49	2/49
	2011	nd	nd	2.8	nd	0.8 [0.3]	3/49	3/49
	2014	nd	nd	nd	nd	0.8 [0.3]	0/48	0/48
	2017	nd	nd	nd	nd	2.3 [0.9]	0/47	0/47
	2020	nd	nd	nd	nd	1.9 [0.7]	0/46	0/46

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted in FY2012, 2013, FY2015, FY2016, FY2018 and FY2019.

<Sediment>

Stocktaking of the detection of Heptachlor, *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide in sediment during FY2002~2020

Thig F 1 2002~202	Monitored	Geometric				Quantification	Detection	Frequenc
Heptachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	4.1	3.2	120	nd	1.8 [0.6]	167/189	60/63
	2003	tr(2.7)	tr(2.2)	160	nd	3 [1.0]	138/186	53/62
	2004	tr(2.8)	tr(2.3)	170	nd	3 [0.9]	134/189	53/63
	2005	3.1	2.8	200	nd	2.5 [0.8]	120/189	48/63
	2006	5.2	3.9	230	nd	1.9 [0.6]	190/192	64/64
Sediment	2007	tr(1.8)	tr(1.5)	110	nd	3.0 [0.7]	143/192	57/64
	2008	tr(1)	nd	85	nd	4 [1]	59/192	27/64
(pg/g-dry)	2009	1.6	1.3	65	nd	1.1 [0.4]	144/192	59/64
	2010	1.2	tr(0.8)	35	nd	1.1 [0.4]	51/64	51/64
	2011	tr(1.3)	tr(1.2)	48	nd	1.8 [0.7]	40/64	40/64
	2014	tr(1.0)	tr(0.9)	49	nd	1.5 [0.5]	38/63	38/63
	2017	1.2	1.1	40	nd	0.9 [0.3]	53/62	53/62
	2020	0.7	0.6	52	nd	0.4 [0.2]	43/58	43/58
cis-Heptachlor	Monitored	Geometric				Quantification	Detection 1	
		mean*	Median	Maximum	Minimum	[Detection]	C	C:4-
epoxide	year	mean				limit	Sample	Site
	2003	4	3	160	nd	3 [1]	153/186	55/62
	2004	tr(5)	tr(3)	230	nd	6 [2]	136/189	52/63
	2005	tr(4)	tr(3)	140	nd	7 [2]	119/189	49/63
	2006	À .Ó	3.2	210	nd	3.0 [1.0]	157/192	58/64
	2007	3	tr(2)	270	nd	3 [1]	141/192	53/64
Sediment	2008	3	Ź	180	nd	2 [1]	130/192	51/64
(pg/g-dry)	2009	2.7	1.9	290	nd	0.7 [0.3]	176/192	63/64
188 57	2010	3.1	2.4	300	nd	0.8 0.3	62/64	62/64
	2011	2.8	2.5	160	nd	0.6 [0.2]	63/64	63/64
	2014	2.1	1.7	310	nd	0.5 [0.2]	59/63	59/63
	2017	1.9	1.6	150	nd	1.2 [0.5]	51/62	51/62
	2020	tr(1.5)	tr(1.2)	110	nd	1.7 [0.7]	40/58	40/58
			••(1.2)	110	110	Quantification	Detection	
trans-Heptachlor	Monitored		Median	Maximum	Minimum	[Detection]		-
epoxide	year	mean *				limit	Sample	Site
	2003	nd	nd	nd	nd	9 [3]	0/186	0/62
	2004	nd	nd	tr(2.5)	nd	4 [2]	1/189	1/63
	2005	nd	nd	nd	nd	5 [2]	0/189	0/63
	2006	nd	nd	19	nd	7 [2]	2/192	2/64
	2007	nd	nd	31	nd	10 [4]	2/192	2/64
Sediment	2008	nd	nd	nd	nd	1.7 [0.7]	0/192	0/64
(pg/g-dry)	2009	nd	nd	nd	nd	1.4 [0.6]	0/192	0/64
(100))	2010	nd	nd	4	nd	3 [1]	1/64	1/64
	2010	nd	nd	2.4	nd	2.3 [0.9]	2/64	2/64
	2014	nd	nd	3.6	nd	0.710.31	1/63	1/61
	2014 2017	nd nd	nd nd	3.6 nd	nd nd	0.7 [0.3] 2.0 [0.8]	1/63 0/62	1/63 0/62

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted in FY2012, 2013, FY2015, FY2016, FY2018 and FY2019.

<Wildlife>

Stocktaking of the detection of Heptachlor, *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide in wildlife (bivalves, fish and birds) during FY2002~2020

	Monitored	Geometric				Quantification	Detection	Frequenc
Heptachlor	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(3.5)	4.6	15	nd	4.2 [1.4]	28/38	6/8
	2003	tr(2.8)	tr(2.4)	14	nd	6.6 [2.2]	16/30	4/6
	2004	tr(3.4)	5.2	16	nd	4.1 [1.4]	23/31	6/7
	2005	tr(2.9)	tr(2.9)	24	nd	6.1 [2.0]	18/31	6/7
	2006	tr(4)	tr(4)	20	nd	6 [2]	23/31	6/7
	2007	tr(3)	tr(3)	12	nd	6 [2]	20/31	6/7
D' 1	2008	tr(2)	nd	9	nd	6 [2]	13/31	5/7
Bivalves	2009	tr(4)	nd	120	nd	5 [2]	14/31	4/7
(pg/g-wet)	2010	3	tr(2)	78	nd	3 [1]	5/6	5/6
	2011	4	4	51	nd	3 [1]	3/4	3/4
	2012	tr(3)	tr(3)	13	nd	4 [1]	4/5	4/5
	2012	3	tr(2)	19	nd	3 [1]	4/5	4/5
	2015	nd	nd	tr(1.7)	nd	3.0 [1.0]	1/3	1/3
	2015	nd	nd	tr(1.4)	nd	2.4 [0.9]	1/3	1/3
	2010	nd	nd	tr(2)	nd	3 [1]	1/3	1/3
	2020	4.2	4.8	20	nd	4.2 [1.4]	57/70	1/3
	2002	4.2 nd	4.8 nd	20 11		6.6 [2.2]	29/70	8/14
					nd			
	2004	tr(2.3)	tr(2.1)	460	nd	4.1 [1.4]	50/70	11/14
	2005	nd	nd	7.6	nd	6.1 [2.0]	32/80	8/16
	2006	tr(2)	nd	8	nd	6 [2]	36/80	8/16
	2007	tr(2)	nd	7	nd	6 [2]	28/80	6/16
Fish	2008	nd	nd	9	nd	6 [2]	25/85	7/17
(pg/g-wet)	2009	tr(2)	nd	8	nd	5 [2]	30/90	11/18
(188)	2010	tr(2)	tr(2)	5	nd	3 [1]	12/18	12/18
	2011	tr(1)	tr(1)	7	nd	3 [1]	13/18	13/18
	2012	nd	tr(1)	5	nd	4 [1]	10/19	10/19
	2013	nd	nd	12	nd	3 [1]	9/19	9/19
	2015	nd	nd	9.2	nd	3.0 [1.0]	9/19	9/19
	2016	nd	nd	5.5	nd	2.4 [0.9]	8/19	8/19
	2020	nd	nd	6	nd	3 [1]	6/18	6/18
	2002	tr(1.7)	tr(2.8)	5.2	nd	4.2 [1.4]	7/10	2/2
	2003	nd	nd	nd	nd	6.6 [2.2]	0/10	0/2
	2004	nd	nd	tr(1.5)	nd	4.1 [1.4]	1/10	1/2
	2005	nd	nd	nd	nd	6.1 [2.0]	0/10	0/2
	2006	nd	nd	nd	nd	6 [2]	0/10	0/2
	2007	nd	nd	nd	nd	6 [2]	0/10	0/2
	2008	nd	nd	nd	nd	6 [2]	0/10	0/2
Birds *2	2009	nd	nd	nd	nd	5 [2]	0/10	0/2
(pg/g-wet)	2010	nd		tr(1)	nd	3 [1]	1/2	1/2
	2011			nd	nd	3 [1]	0/1	0/1
	2011	nd		nd	nd	4 [1]	0/2	0/2
	2012	nd		nd	nd	3 [1]	0/2	0/2
	2015			nd	nd	3.0 [1.0]	0/1	0/1
	2015	nd		nd	nd	2.4 [0.9]	0/2	0/2
	2010			nd	nd	3 [1]	0/2	0/2
	2020			IIu	IIU	Quantification		
cis-Heptachlor	Monitored	Geometric	Median	Mariana	Minimum		Detection	requent
epoxide	year	mean ^{*1}	Median	Maximum	Minimum	[Detection]	Sample	Site
-	2002	4.4	20	000	0.7	limit	-	()(
	2003	44	29	880	9.7	6.9 [2.3]	30/30	6/6
	2004	64	34	840	tr(9.8)	9.9 [3.3]	31/31	7/7
	2005	49	20	590	7.4	3.5 [1.2]	31/31	7/7
	2006	56	23	1,100	8	4 [1]	31/31	7/7
	2007	37	20	1,100	8	4 [1]	31/31	7/7
	2008	37	19	510	8	5 [2]	31/31	7/7
Bivalves	2009	59	33	380	10	3 [1]	31/31	7/7
	2010	170	260	1,800	9.0	2.4 [0.9]	6/6	6/6
(pg/g-wet)		55	110	320	3.9	2.0 0.8	4/4	4/4
	2011	55						
				180	6.2	1.5 [0.6]	5/5	5/5
	2012	48	120	180 110	6.2 4.4	1.5 [0.6] 2.1 [0.8]	5/5 5/5	5/5 5/5
	2012 2013	48 28	120 29	110	4.4	2.1 [0.8]	5/5	5/5
	2012	48	120					

cis-Heptachlor	Monitored	Geometric				Quantification	Detection	Frequency
epoxide	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	43	43	320	7.0	6.9 [2.3]	70/70	14/14
	2004	51	49	620	tr(3.3)	9.9 [3.3]	70/70	14/14
	2005	41	45	390	4.9	3.5 [1.2]	80/80	16/16
	2006	42	48	270	4	4 [1]	80/80	16/16
	2007	43	49	390	4	4 [1]	80/80	16/16
	2008	39	46	350	tr(3)	5 [2]	85/85	17/17
Fish	2009	41	50	310	4	3 [1]	90/90	18/18
(pg/g-wet)	2010	39	49	230	5.0	2.4 [0.9]	18/18	18/18
	2011	50	62	540	3.2	2.0 [0.8]	18/18	18/18
	2012	41	62	120	6.9	1.5 [0.6]	19/19	19/19
	2013	42	46	190	7.3	2.1 [0.8]	19/19	19/19
	2015	33	43	190	3.2	2.1 [0.8]	19/19	19/19
	2016	29	28	130	3.6	1.9 [0.7]	19/19	19/19
	2020	24	32	320	tr(2)	3 [1]	18/18	18/18
	2003	540	510	770	370	6.9 [2.3]	10/10	2/2
	2004	270	270	350	190	9.9 [3.3]	10/10	2/2
	2005	370	340	690	250	3.5 [1.2]	10/10	2/2
	2006	330	310	650 250	240	4 [1]	10/10	2/2
	2007	280	270	350	250	4 [1]	10/10	2/2
D: 1 *)	2008	370	370	560	180	5 [2]	10/10	2/2
Birds *2	2009	220	210	390	160	3 [1]	10/10	2/2
(pg/g-wet)	2010	290		360	240	2.4 [0.9]	2/2	2/2
	2011			410	410	2.0 [0.8]	1/1	1/1
	2012	160		170	150	1.5 [0.6]	2/2	2/2
	2013	300		560	160	2.1 [0.8]	2/2	2/2
	2015			20	20	2.1 [0.8]	1/1	1/1
	2016	01		270	21	1 0 [0 7]	2/2	2/2
	2016	91		270	31	1.9 [0.7]	2/2	2/2
	2016 2020	91 		270 270	31 270	3 [1]	1/1	1/1
		 Geometric		270	270	3 [1] Quantification		1/1
<i>trans-</i> Heptachlor epoxide	2020					3 [1] Quantification [Detection]	1/1	1/1
	2020 Monitored year 2003	 Geometric		270 Maximum 48	270	3 [1] Quantification	$\frac{1/1}{\text{Detection I}}$ $\frac{\text{Sample}}{5/30}$	1/1 Frequency Site 1/6
	2020 Monitored year 2003 2004	Geometric mean ^{*1}	 Median	270 Maximum 48 55	270 Minimum	3 [1] Quantification [Detection] limit	1/1 Detection I Sample	1/1 Frequency Site 1/6 2/7
	2020 Monitored year 2003 2004 2005	Geometric mean ^{*1} nd	 Median nd	270 Maximum 48 55 37	270 Minimum nd	3 [1] Quantification [Detection] limit 13 [4.4]	$\frac{1/1}{\text{Detection I}}$ $\frac{\text{Sample}}{5/30}$	1/1 Frequency Site 1/6 2/7 1/7
	2020 Monitored year 2003 2004 2005 2006	Geometric mean ^{*1} nd nd nd nd nd	 Median nd nd	270 Maximum 48 55 37 45	270 Minimum nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31	1/1 Frequency Site 1/6 2/7 1/7 1/7
	2020 Monitored year 2003 2004 2005	Geometric mean *1 nd nd nd nd nd nd nd	Median nd nd nd	270 Maximum 48 55 37 45 61	270 Minimum nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31 5/31	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7
	2020 Monitored year 2003 2004 2005 2006 2007 2008	Geometric mean ^{*1} nd nd nd nd nd nd nd nd nd	Median nd nd nd nd	270 Maximum 48 55 37 45 61 33	270 Minimum nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 13 [5] 10 [4]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7 1/7 1/7
	2020 Monitored year 2003 2004 2005 2006 2007	Geometric mean *1 nd nd nd nd nd nd nd	Median nd nd nd nd nd	270 Maximum 48 55 37 45 61	270 Minimum nd nd nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 13 [5] 10 [4]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31 5/31	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7
epoxide	2020 Monitored year 2003 2004 2005 2006 2007 2008 2009 2010	Geometric mean ^{*1} nd nd nd nd nd nd nd nd nd	Median nd nd nd nd nd nd nd	270 Maximum 48 55 37 45 61 33	270 Minimum nd nd nd nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31 5/31 5/31 5/31	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7 1/7 1/7
epoxide Bivalves	2020 Monitored year 2003 2004 2005 2006 2007 2008 2009 2010 2011	Geometric mean*1 nd nd nd nd nd tr(3) 3 nd	Median nd nd nd nd nd nd nd nd	270 Maximum 48 55 37 45 61 33 24	270 Minimum nd nd nd nd nd nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4
epoxide Bivalves	2020 Monitored year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2011 2012	Geometric mean*1 nd nd nd nd nd tr(3) 3 nd nd	Median nd nd nd nd nd nd tr(2) nd nd	270 Maximum 48 55 37 45 61 33 24 24 24	270 Minimum nd nd nd nd nd nd nd nd nd nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5
epoxide Bivalves	2020 Monitored year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2011 2012 2013	Geometric mean*1 nd nd nd nd nd tr(3) 3 nd	Median nd nd nd nd nd nd tr(2) nd	270 Maximum 48 55 37 45 61 33 24 24 24 tr(6)	270 Minimum nd nd nd nd nd nd nd nd nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5
epoxide Bivalves	2020 Monitored year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015	Geometric mean*1 nd nd nd nd nd tr(3) 3 nd nd	Median nd nd nd nd nd nd tr(2) nd nd	270 Maximum 48 55 37 45 61 33 24 24 tr(6) tr(4)	270 Minimum nd nd nd nd nd nd nd nd nd nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 7 [3]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7 1/7 1/7 3/6 1/4 1/5 0/5 0/3
epoxide Bivalves	2020 Monitored year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016	Geometric mean *1 nd nd nd nd nd tr(3) 3 nd nd nd nd nd nd nd tr(3) 3 nd nd nd nd nd nd nd nd nd nd nd nd nd	Median nd nd nd nd nd nd tr(2) nd nd nd nd	270 Maximum 48 55 37 45 61 33 24 24 tr(6) tr(4) nd	270 Minimum nd nd nd nd nd nd nd nd nd nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7 1/7 1/7 3/6 1/4 1/5 0/5 0/3 0/3
epoxide Bivalves	2020 Monitored year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2020	Geometric mean *1 nd nd nd nd nd tr(3) 3 nd nd nd nd nd nd nd nd nd nd nd nd nd	Median nd nd nd nd nd nd tr(2) nd nd nd nd nd nd	270 Maximum 48 55 37 45 61 33 24 24 tr(6) tr(4) nd nd	270 Minimum nd nd nd nd nd nd nd nd nd nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 9 [4]	1/1 Detection Sample 5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/3 0/3	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7 1/7 1/7 3/6 1/4 1/5 0/5 0/3 0/3 0/3 0/3
epoxide Bivalves	2020 Monitored year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2020 2003	Geometric mean *1 nd nd nd nd nd tr(3) 3 nd nd nd nd nd nd nd nd nd nd nd nd nd	Median nd nd nd nd nd nd tr(2) nd nd nd nd nd nd nd nd nd nd nd nd nd	270 Maximum 48 55 37 45 61 33 24 24 tr(6) tr(4) nd nd nd nd nd	270 Minimum nd nd nd nd nd nd nd nd nd nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 9 [4] 13 [4.4]	1/1 Detection Sample 5/30 9/31 5/31 5/31 5/31 5/31 3/6 1/4 1/5 0/3 0/3 0/3 0/70	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7 1/7 3/6 1/4 1/5 0/5 0/3 0/3 0/3 0/14
epoxide Bivalves	2020 Monitored year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2020 2003 2004	Geometric mean*1 nd nd nd nd nd tr(3) 3 nd nd nd nd nd nd nd nd nd nd nd nd nd	Median nd nd nd nd nd nd tr(2) nd nd nd nd nd nd nd nd nd nd nd nd nd	270 Maximum 48 55 37 45 61 33 24 24 tr(6) tr(4) nd nd nd nd	270 Minimum nd nd nd nd nd nd nd nd nd nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 9 [4] 13 [4.4] 12 [4.0]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31 5/31 5/31 3/6 1/4 1/5 0/3 0/3 0/3 0/70 2/70	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5 0/3 0/3 0/14 2/14
epoxide Bivalves	2020 Monitored year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2020 2003 2004 2005	Geometric mean*1 nd nd nd nd nd tr(3) 3 nd nd tr(3) 3 nd nd nd nd nd nd nd nd nd nd nd nd nd	Median nd nd nd nd nd nd tr(2) nd nd nd nd nd nd nd nd nd nd nd nd nd	270 Maximum 48 55 37 45 61 33 24 24 tr(6) tr(4) nd nd nd tr(10) nd	270 Minimum nd nd nd nd nd nd nd nd nd nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 9 [4] 13 [4.4] 12 [4.0] 23 [7.5]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/3 0/3 0/3 0/70 2/70 0/80	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5 0/3 0/3 0/14 2/14 0/16
epoxide Bivalves	2020 Monitored year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2020 2003 2004 2005 2006	Geometric mean*1 nd nd nd nd nd tr(3) 3 nd nd tr(3) 3 nd nd nd nd nd nd nd nd nd nd nd nd nd	Median nd nd nd nd nd nd tr(2) nd nd nd nd nd nd nd nd nd nd nd nd nd	270 Maximum 48 55 37 45 61 33 24 24 tr(6) tr(4) nd nd rd(10) nd nd tr(10) nd nd	270 Minimum nd nd nd nd nd nd nd nd nd nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 9 [3] 9 [4] 13 [4.4] 12 [4.0] 23 [7.5] 13 [5]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/3 0/3 0/3 0/70 2/70 0/80 0/80	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5 0/3 0/3 0/14 2/14 0/16 0/16
epoxide Bivalves	2020 Monitored year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2020 2003 2004 2005 2006 2007	Geometric mean*1 nd nd nd nd nd tr(3) 3 nd nd tr(3) 3 nd nd nd nd nd nd nd nd nd nd nd nd nd	Median nd nd nd nd nd nd tr(2) nd nd nd nd nd nd nd nd nd nd nd nd nd	270 Maximum 48 55 37 45 61 33 24 24 tr(6) tr(4) nd nd rd(10) nd nd tr(10) nd nd nd	270 Minimum nd nd nd nd nd nd nd nd nd nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 9 [4] 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/3 0/3 0/3 0/3 0/70 2/70 0/80 0/80 0/80	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5 0/3 0/3 0/14 2/14 0/16 0/16 0/16
epoxide Bivalves (pg/g-wet)	2020 Monitored year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2020 2003 2004 2005 2006 2007 2008	Geometric mean*1 nd nd nd nd nd nd tr(3) 3 nd nd tr(3) 3 nd nd nd nd nd nd nd nd nd nd nd nd nd	Median nd nd nd nd nd nd tr(2) nd nd nd nd nd nd nd nd nd nd	270 Maximum 48 55 37 45 61 33 24 24 tr(6) tr(4) nd nd rd(10) nd nd tr(10) nd nd nd nd	270 Minimum nd nd nd nd nd nd nd nd nd nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 9 [4] 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/3 0/3 0/3 0/3 0/70 2/70 0/80 0/80 0/80 0/85	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5 0/3 0/3 0/14 2/14 0/16 0/16 0/17
epoxide Bivalves (pg/g-wet) Fish	2020 Monitored year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2020 2003 2004 2005 2006 2007 2008 2007 2008 2009	Geometric mean*1 nd nd nd nd nd tr(3) 3 nd nd tr(3) 3 nd nd nd nd nd nd nd nd nd nd nd nd nd	Median nd nd nd nd nd nd tr(2) nd nd nd nd nd nd nd nd nd nd nd nd nd	270 Maximum 48 55 37 45 61 33 24 24 tr(6) tr(4) nd nd rd(10) nd nd tr(10) nd nd nd nd nd nd nd nd nd nd nd	270 Minimum nd nd nd nd nd nd nd nd nd nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 9 [4] 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 13 [5] 10 [4] 8 [3]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31 5/31 3/6 1/4 1/5 0/5 0/3 0/3 0/3 0/3 0/3 0/70 2/70 0/80 0/80 0/80 0/85 0/90	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5 0/3 0/3 0/14 2/14 0/16 0/16 0/17 0/18
epoxide Bivalves (pg/g-wet)	2020 Monitored year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2020 2003 2004 2005 2006 2007 2008 2009 2010	Geometric mean*1 nd nd nd nd nd tr(3) 3 nd nd tr(3) 3 nd nd nd nd nd nd nd nd nd nd nd nd nd	Median nd nd nd nd nd nd tr(2) nd nd nd nd nd nd nd nd nd nd nd nd nd	270 Maximum 48 55 37 45 61 33 24 24 24 tr(6) tr(4) nd nd nd nd tr(10) nd nd nd nd nd nd nd nd nd nd nd nd nd	270 Minimum nd nd nd nd nd nd nd nd nd nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 9 [4] 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31 5/31 3/6 1/4 1/5 0/5 0/3 0/3 0/3 0/3 0/70 2/70 0/80 0/80 0/80 0/80 0/85 0/90 0/18	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5 0/3 0/3 0/14 2/14 0/16 0/16 0/17 0/18 0/18
epoxide Bivalves (pg/g-wet) Fish	2020 Monitored year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2020 2003 2004 2005 2006 2007 2008 2009 2010 2010 2011	Geometric mean*1 nd nd nd nd nd tr(3) 3 nd nd tr(3) 3 nd nd nd nd nd nd nd nd nd nd nd nd nd	Median nd nd nd nd nd nd nd tr(2) nd nd nd nd nd nd nd nd nd nd	270 Maximum 48 55 37 45 61 33 24 24 24 tr(6) tr(4) nd nd nd nd tr(10) nd nd nd nd nd nd nd nd nd nd nd nd nd	270 Minimum nd nd nd nd nd nd nd nd nd nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 9 [4] 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/3 0/3 0/3 0/70 2/70 0/80 0/80 0/80 0/80 0/85 0/90 0/18 0/18	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5 0/3 0/3 0/14 2/14 0/16 0/16 0/17 0/18 0/18 0/18
epoxide Bivalves (pg/g-wet) Fish	2020 Monitored year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2020 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012	Geometric mean*1 nd nd nd nd nd tr(3) 3 nd nd tr(3) 3 nd nd nd nd nd nd nd nd nd nd nd nd nd	Median Median nd nd nd nd nd nd tr(2) nd nd nd nd nd nd nd nd nd nd	270 Maximum 48 55 37 45 61 33 24 24 24 tr(6) tr(4) nd nd nd nd tr(10) nd nd nd nd nd nd nd nd nd nd nd nd nd	270 Minimum nd nd nd nd nd nd nd nd nd nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 9 [4] 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/3 0/3 0/3 0/3 0/70 2/70 0/80 0/80 0/80 0/80 0/85 0/90 0/18 0/19	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5 0/3 0/3 0/14 2/14 0/16 0/16 0/17 0/18 0/18 0/19
epoxide Bivalves (pg/g-wet) Fish	2020 Monitored year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2020 2003 2004 2005 2006 2007 2008 2009 2010 2010 2012 2008 2009 2010 2011 2012 2008	Geometric mean*1 nd nd nd nd nd tr(3) 3 nd nd tr(3) 3 nd nd nd nd nd nd nd nd nd nd nd nd nd	Median Median nd nd nd nd nd nd tr(2) nd nd nd nd nd nd nd nd nd nd	270 Maximum 48 55 37 45 61 33 24 24 24 tr(6) tr(4) nd nd nd nd tr(10) nd nd tr(10) nd nd nd nd nd nd nd nd nd nd nd nd nd	270 Minimum nd nd nd nd nd nd nd nd nd nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 9 [4] 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 7 [3] 8 [3] 7 [3]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/3 0/3 0/3 0/3 0/70 2/70 0/80 0/80 0/80 0/80 0/85 0/90 0/18 0/19 0/19	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5 0/3 0/3 0/3 0/3 0/14 2/14 0/16 0/16 0/17 0/18 0/18 0/19 0/19 0/19
epoxide Bivalves (pg/g-wet) Fish	2020 Monitored year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2020 2003 2004 2005 2006 2007 2008 2009 2010 2010 2011 2012 2008 2009 2010 2015 2016 2020 2017 2018 2019 2010 2011 2012 2013 2015 2016 2020 2017 2018 2019 2010 2011 2012 2013 2015 2016 2020 2010 2011 2015 2016 2020 2010 2011 2015 2016 2020 2010 2011 2015 2016 2020 2010 2010 2011 2015 2016 2020 2010 2010 2011 2015 2016 2020 2010 2010 2010 2011 2012 2013 2015 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2020 2007 2008 2009 2010 2011 2012 2013 2015 2016 2007 2008 2009 2010 2011 2012 2013 2015 2016 2007 2008 2009 2010 2013 2015 2016 2007 2008 2009 2010 2010 2015 2016 2007 2008 2009 2010 2003 2004 2009 2010 2010 2003 2004 2009 2010 2010 2010 2005 2006 2009 2010 2010 2010 2010 2010 2010 2010 2010 2005 2006 2009 2010 2011 2012 2010 2011 2012 2013 2015 2015 2015 2016 2017 2018 2015 2016 2017 2018 2015 2016 2017 2013 2015 2	Geometric mean*1 nd nd nd nd nd tr(3) 3 nd nd tr(3) 3 nd nd nd nd nd nd nd nd nd nd nd nd nd	Median Median nd nd nd nd nd nd tr(2) nd nd nd nd nd nd nd nd nd nd	270 Maximum 48 55 37 45 61 33 24 24 tr(6) tr(4) nd nd nd nd tr(10) nd nd tr(10) nd nd nd nd nd nd nd nd nd nd nd nd nd	270 Minimum nd nd nd nd nd nd nd nd nd nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 9 [4] 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 7 [3] 8 [3] 7 [3]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/3 0/3 0/3 0/3 0/70 2/70 0/80 0/80 0/80 0/80 0/80 0/85 0/90 0/18 0/19 0/19 5/19	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5 0/3 0/3 0/3 0/3 0/14 2/14 0/16 0/16 0/17 0/18 0/18 0/19 0/19 5/19
Bivalves (pg/g-wet) Fish	2020 Monitored year 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2015 2016 2020 2003 2004 2005 2006 2007 2008 2009 2010 2010 2012 2008 2009 2010 2011 2012 2008	Geometric mean*1 nd nd nd nd nd tr(3) 3 nd nd tr(3) 3 nd nd nd nd nd nd nd nd nd nd nd nd nd	Median Median nd nd nd nd nd nd tr(2) nd nd nd nd nd nd nd nd nd nd	270 Maximum 48 55 37 45 61 33 24 24 24 tr(6) tr(4) nd nd nd nd tr(10) nd nd tr(10) nd nd nd nd nd nd nd nd nd nd nd nd nd	270 Minimum nd nd nd nd nd nd nd nd nd nd nd nd nd	3 [1] Quantification [Detection] limit 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 9 [3] 9 [4] 13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3] 3 [1] 7 [3] 8 [3] 7 [3] 7 [3] 8 [3] 7 [3]	1/1 Detection 1 Sample 5/30 9/31 5/31 5/31 5/31 5/31 13/31 3/6 1/4 1/5 0/5 0/3 0/3 0/3 0/3 0/3 0/70 2/70 0/80 0/80 0/80 0/80 0/85 0/90 0/18 0/19 0/19	1/1 Frequency Site 1/6 2/7 1/7 1/7 1/7 1/7 3/7 3/6 1/4 1/5 0/5 0/3 0/3 0/3 0/3 0/14 2/14 0/16 0/16 0/17 0/18 0/18 0/19 0/19 0/19

trans-Heptachlor	Monitored	Geometric				Quantification	Detection I	Frequency
epoxide	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	13 [4.4]	0/10	0/2
	2004	nd	nd	nd	nd	12 [4.0]	0/10	0/2
	2005	nd	nd	nd	nd	23 [7.5]	0/10	0/2
	2006	nd	nd	nd	nd	13 [5]	0/10	0/2
	2007	nd	nd	nd	nd	13 [5]	0/10	0/2
	2008	nd	nd	nd	nd	10 [4]	0/10	0/2
Birds *2	2009	nd	nd	nd	nd	8 [3]	0/10	0/2
(pg/g-wet)	2010	nd		nd	nd	3 [1]	0/2	0/2
	2011			nd	nd	7 [3]	0/1	0/1
	2012	nd		nd	nd	8 [3]	0/2	0/2
	2013	nd		tr(5)	nd	7 [3]	1/2	1/2
	2015			nd	nd	7 [3]	0/1	0/1
	2016	nd		nd	nd	9 [3]	0/2	0/2
	2020			nd	nd	9 [4]	0/1	0/1

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) *2: There is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2014 and FY2017~2019.

<Air>

Stocktaking of the detection of Heptachlor, *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide in air during FY2002~2020

		Geometric				Quantification	Detection l	Frequency
Heptachlor	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	11	14	220	0.20	0.12 [0.04]	102/102	34/34
	2003 Warm season	27	41	240	1.1	0.25 [0.095]	35/35	35/35
	2003 Cold season	10	16	65	0.39	0.25 [0.085]	34/34	34/34
	2004 Warm season	23	36	200	0.46	0.23 [0.078]	37/37	37/37
	2004 Cold season	11	18	100	0.53	0.25 [0.078]	37/37	37/37
	2005 Warm season	25	29	190	1.1	0 16 [0 054]	37/37	37/37
	2005 Cold season	6.5	7.9	61	0.52	0.16 [0.054]	37/37	37/37
	2006 Warm season	20	27	160	0.88	0 11 [0 04]	37/37	37/37
	2006 Cold season	6.8	7.2	56	0.32	0.11 [0.04]	37/37	37/37
	2007 Warm season	22	27	320	1.1	0.07 [0.02]	36/36	36/36
	2007 Cold season	6.3	8.0	74	0.42	າ າ	36/36	36/36
	2008 Warm season	20	31	190	0.92	0.06 [0.02]	37/37	37/37
Air	2008 Cold season	7.5	12	60	0.51		37/37	37/37
(pg/m^3)	2009 Warm season	18	30	110	0.48		37/37	37/37
	2009 Cold season	6.3	7.8	48	0.15	0.04 [0.01]	37/37	37/37
	2010 Warm season	17	26	160	0.69	0 11 [0 04]	37/37	37/37
	2010 Cold season	7.2	9.5	53	0.22	0.11 [0.04]	37/37	37/37
	2011 Warm season	16	25	110	0.73	0.20 [0.000]	35/35	35/35
	2011 Cold season	6.1	10	56	tr(0.13)	0.30 [0.099]	37/37	37/37
	2012 Warm season	13	21	58	0.46	0.41 [0.14]	36/36	36/36
	2012 Cold season	3.2	4.9	20	nd	0.41 [0.14]	35/36	35/36
	2013 Warm season	11	21	43	0.46	0 16 [0 05]	36/36	36/36
	2013 Cold season	3.1	4.6	22	tr(0.10)	0.16 [0.05]	36/36	36/36
	2015 Warm season	8.7	11	49	0.43	0.19 [0.06]	35/35	35/35
	2016 Warm season	12	14	120	tr(0.18)	0.22 [0.08]	37/37	37/37
	2020 Warm season	7.6	9.2	35	0.69	0.10 [0.04]	37/37	37/37

cis-Heptachlor		Geometric				Quantification	Detection I	Frequency
epoxide	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	3.5	3.5	28	0.45	0.015 [0.0048]	35/35	35/35
	2003 Cold season	1.3	1.3	6.6	0.49	0.013 [0.0048]	34/34	34/34
	2004 Warm season	2.8	2.9	9.7	0.65	0.052 [0.017]	37/37	37/37
	2004 Cold season	1.1	1.1	7.0	0.44	0.032 [0.017]	37/37	37/37
	2005 Warm season	1.5	1.7	11	tr(0.10)	0.12 [0.044]	37/37	37/37
	2005 Cold season	0.91	0.81	2.9	0.43	0.12 [0.044]	37/37	37/37
	2006 Warm season	1.7	2.0	6.7	0.13	0.11 [0.04]	37/37	37/37
	2006 Cold season	0.74	0.88	3.2	nd	0.11 [0.04]	36/37	36/37
	2007 Warm season	2.9	2.8	13	0.54	0.03 [0.01]	36/36	36/36
	2007 Cold season	0.93	0.82	3.0	0.41	0.03 [0.01]	36/36	36/36
	2008 Warm season	2.4	2.2	9.9	0.53	0.022 [0.008]	37/37	37/37
Air	2008 Cold season	0.91	0.84	3.0	0.37	0.022 [0.008]	37/37	37/37
(pg/m^3)	2009 Warm season	2.5	2.6	16	0.37	0.02 [0.01]	37/37	37/37
(pg/m ²)	2009 Cold season	1.0	0.91	3.8	0.42	0.03 [0.01]	37/37	37/37
	2010 Warm season	2.3	2.3	10	0.38	0.02.00.011	37/37	37/37
	2010 Cold season	0.93	0.85	4.3	0.33	0.02 [0.01]	37/37	37/37
	2011 Warm season	2.0	2.3	6.0	0.29	0.04.50.013	35/35	35/35
	2011 Cold season	0.90	0.90	2.8	0.35	0.04 [0.01]	37/37	37/37
	2012 Warm season	2.0	2.1	6.3	0.37	0.05.50.001	36/36	36/36
	2012 Cold season	0.62	0.57	1.9	0.30	0.05 [0.02]	36/36	36/36
	2013 Warm season	2.0	2.1	7.7	0.43	0.00.50.013	36/36	36/36
	2013 Cold season	0.66	0.63	1.4	0.32	0.03 [0.01]	36/36	36/36
	2015 Warm season	1.4	1.4	4.7	tr(0.4)	0.5 [0.2]	35/35	35/35
	2016 Warm season	1.9	1.9	9.1	0.30	0.12 [0.05]	37/37	37/37
	2020 Warm season	1.1	1.2	2.9	0.23	0.11 [0.04]	37/37	37/37
					0.20	Quantification	Detection I	
trans-Heptachl or epoxide	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	tr(0.036)	tr(0.038)	0.30	nd		18/35	18/35
	2003 Cold season	nd	nd	tr(0.094)	nd	0.099 [0.033]	3/34	3/34
	2004 Warm season	nd	nd	tr(0.38)	nd	0 ([0 0]	4/37	4/37
	2004 Cold season	nd	nd	nd	nd	0.6 [0.2]	0/37	
	2005 Warm season	tr(0.10)	tr(0.12)	1.0			0/3/	0/37
	2005 Cold season	()		1.2	nd	0 1 6 50 0 51		0/37 27/37
		nd	. ,			0.16 [0.05]	27/37	27/37
		nd	nd	0.32	nd		27/37 3/37	27/37 3/37
	2006 Warm season	nd	nd nd	0.32	nd nd	0.16 [0.05]	27/37 3/37 2/37	27/37 3/37 2/37
	2006 Warm season 2006 Cold season	nd nd	nd nd nd	0.32 0.7 tr(0.1)	nd nd nd	0.3 [0.1]	27/37 3/37 2/37 1/37	27/37 3/37 2/37 1/37
	2006 Warm season 2006 Cold season 2007 Warm season	nd nd nd	nd nd nd nd	0.32 0.7 tr(0.1) 0.16	nd nd nd nd		27/37 3/37 2/37 1/37 8/36	27/37 3/37 2/37 1/37 8/36
	2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season	nd nd nd nd	nd nd nd nd nd	0.32 0.7 tr(0.1) 0.16 tr(0.06)	nd nd nd nd nd	0.3 [0.1]	27/37 3/37 2/37 1/37 8/36 1/36	27/37 3/37 2/37 1/37 8/36 1/36
	2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season	nd nd nd nd nd	nd nd nd nd nd nd	0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17	nd nd nd nd nd nd	0.3 [0.1]	27/37 3/37 2/37 1/37 8/36 1/36 6/37	27/37 3/37 2/37 1/37 8/36 1/36 6/37
Air	2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season	nd nd nd nd nd nd	nd nd nd nd nd nd nd	0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd	nd nd nd nd nd nd nd	0.3 [0.1] 0.14 [0.06] 0.16 [0.06]	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37
Air (pg/m³)	2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season	nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd	0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18	nd nd nd nd nd nd nd nd	0.3 [0.1]	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37
	2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season	nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd	0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06)	nd nd nd nd nd nd nd nd nd	0.3 [0.1] 0.14 [0.06] 0.16 [0.06] 0.14 [0.05]	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37
	2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season 2010 Warm season	nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd	0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06) 0.16	nd nd nd nd nd nd nd nd nd nd nd	0.3 [0.1] 0.14 [0.06] 0.16 [0.06]	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 1/37 6/37	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37
	2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season	nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd	0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06) 0.16 nd	nd nd nd nd nd nd nd nd nd nd nd nd	0.3 [0.1] 0.14 [0.06] 0.16 [0.06] 0.14 [0.05] 0.16 [0.06]	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37
	2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Warm season	nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06) 0.16 nd 0.14	nd nd nd nd nd nd nd nd nd nd nd nd nd n	0.3 [0.1] 0.14 [0.06] 0.16 [0.06] 0.14 [0.05]	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 1/37 1/37 6/37 0/37 1/37 5/35	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35
	2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Warm season 2011 Cold season	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06) 0.16 nd 0.14 nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	0.3 [0.1] 0.14 [0.06] 0.16 [0.06] 0.14 [0.05] 0.16 [0.06] 0.13 [0.05]	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 1/37 6/37 0/37 5/35 0/37	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35 0/37
	2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Warm season 2011 Cold season 2012 Warm season	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06) 0.16 nd 0.14 nd tr(0.08)	nd nd nd nd nd nd nd nd nd nd nd nd nd n	0.3 [0.1] 0.14 [0.06] 0.16 [0.06] 0.14 [0.05] 0.16 [0.06]	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35 0/37 5/35 0/37 8/36	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35 0/37 8/36
	2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Warm season 2011 Cold season 2012 Warm season 2012 Cold season	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06) 0.16 nd 0.14 nd tr(0.08) nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	0.3 [0.1] 0.14 [0.06] 0.16 [0.06] 0.14 [0.05] 0.16 [0.06] 0.13 [0.05]	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35 0/37 5/35 0/37 8/36 0/36	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35 0/37 8/36 0/36
	2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Cold season 2011 Cold season 2012 Warm season 2012 Cold season 2013 Warm season	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06) 0.16 nd 0.14 nd tr(0.08) nd tr(0.11)	nd nd nd nd nd nd nd nd nd nd nd nd nd n	0.3 [0.1] 0.14 [0.06] 0.16 [0.06] 0.14 [0.05] 0.16 [0.06] 0.13 [0.05] 0.12 [0.05]	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35 0/37 5/35 0/37 8/36 0/36	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35 0/37 8/36 0/36
	2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Warm season 2011 Cold season 2012 Warm season 2012 Cold season 2013 Warm season 2013 Cold season	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06) 0.16 nd 0.14 nd tr(0.08) nd tr(0.11) nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	0.3 [0.1] 0.14 [0.06] 0.16 [0.06] 0.14 [0.05] 0.16 [0.06] 0.13 [0.05] 0.12 [0.05]	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35 0/37 5/35 0/37 8/36 0/36 7/36 0/36	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35 0/37 8/36 0/36
	2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Cold season 2011 Cold season 2012 Warm season 2012 Cold season 2013 Warm season 2013 Cold season 2013 Cold season	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06) 0.16 nd 0.14 nd tr(0.08) nd tr(0.11) nd nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	0.3 [0.1] 0.14 [0.06] 0.16 [0.06] 0.14 [0.05] 0.16 [0.06] 0.13 [0.05] 0.12 [0.05] 0.12 [0.05] 0.03 [0.01]	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35 0/37 8/36 0/36 7/36 0/35	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35 0/37 8/36 0/36 7/36 0/35
	2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Warm season 2011 Cold season 2012 Warm season 2012 Cold season 2013 Warm season 2013 Cold season	nd nd nd nd nd nd nd nd nd nd nd nd nd n	nd nd nd nd nd nd nd nd nd nd nd nd nd n	0.32 0.7 tr(0.1) 0.16 tr(0.06) 0.17 nd 0.18 tr(0.06) 0.16 nd 0.14 nd tr(0.08) nd tr(0.11) nd	nd nd nd nd nd nd nd nd nd nd nd nd nd n	0.3 [0.1] 0.14 [0.06] 0.16 [0.06] 0.14 [0.05] 0.16 [0.06] 0.13 [0.05] 0.12 [0.05]	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35 0/37 5/35 0/37 8/36 0/36 7/36 0/36	27/37 3/37 2/37 1/37 8/36 1/36 6/37 0/37 10/37 1/37 6/37 0/37 5/35 0/37 8/36 0/36

(Note) No monitoring was conducted in FY2014 and FY2017~2019.

[9] Toxaphenes (references)

· History and state of monitoring

Toxaphenes are a group of organochlorine insecticides used on cotton, cereal grains, fruits, nuts, and vegetables and also it has also been used to control ticks and mites in livestock. No domestic record of manufacture/import of the substances was reported since those were historically never registrated under the Agricultural Chemicals Regulation Law. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 2002. Also, Toxaphenes are one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series before FY2001, total amount of Toxaphenes was measured in FY1983 (in surface water and sediment) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Parlar-26, Parlar-50 and Parlar-62 have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2003 to FY2009 and in wildlife (bivalves, fish and birds) in FY2015, in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2018.

No monitoring was conducted after FY2019. For reference, the monitoring results up to FY2018 are given below.

Monitoring results until FY2018

<Surface Water>

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in surface water during FY2003~2018

	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-26	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	40 [20]	0/36	0/36
	2004	nd	nd	nd	nd	9 [3]	0/38	0/38
	2005	nd	nd	nd	nd	10 [4]	0/47	0/47
Surface Water	2006	nd	nd	nd	nd	16 [5]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	20 [5]	0/48	0/48
	2008	nd	nd	nd	nd	8 [3]	0/48	0/48
	2009	nd	nd	nd	nd	5 [2]	0/49	0/49
	2018	nd	nd	5	nd	4 [2]	7/47	7/47
	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-50	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	70 [30]	0/36	0/36
	2004	nd	nd	nd	nd	20 [7]	0/38	0/38
	2005	nd	nd	nd	nd	20 [5]	0/47	0/47
Surface Water	2006	nd	nd	nd	nd	16 [5]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	9 [3]	0/48	0/48
	2008	nd	nd	nd	nd	7 [3]	0/48	0/48
	2009	nd	nd	nd	nd	7 [3]	0/49	0/49
	2018	nd	nd	tr(2)	nd	6 [2]	1/47	1/47
	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-62	year	mean	Median	Maximum	Minimum	[Detection]	Sample	Site
	•					limit		
	2003	nd	nd	nd	nd	300 [90]	0/36	0/36
	2004	nd	nd	nd	nd	90 [30]	0/38	0/38
	2005	nd	nd	nd	nd	70 [30]	0/47	0/47
Surface Water	2006	nd	nd	nd	nd	60 [20]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	70 [30]	0/48	0/48
	2008	nd	nd	nd	nd	40 [20]	0/48	0/48
	2009	nd	nd	nd	nd	40 [20]	0/49	0/49
Note) No monitori	2018	nd	nd	nd	nd	40 [20]	0/47	0/47

(Note) No monitoring was conducted in FY2010~2017.

	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-26	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	90 [30]	0/186	0/62
	2004	nd	nd	nd	nd	60 [20]	0/189	0/63
	2005	nd	nd	nd	nd	60 [30]	0/189	0/63
Sediment	2006	nd	nd	nd	nd	12 [4]	0/192	0/64
(pg/g-dry)	2007	nd	nd	nd	nd	7 [3]	0/192	0/64
	2008	nd	nd	nd	nd	12 [5]	0/192	0/64
	2009	nd	nd	nd	nd	10 [4]	0/192	0/64
	2018	nd	nd	nd	nd	8 [3]	0/61	0/61
	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-50	year	mean *	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	200 [50]	0/186	0/62
	2004	nd	nd	nd	nd	60 [20]	0/189	0/63
	2005	nd	nd	nd	nd	90 [40]	0/189	0/63
Sediment	2006	nd	nd	nd	nd	24 [7]	0/192	0/64
(pg/g-dry)	2007	nd	nd	nd	nd	30 [10]	0/192	0/64
	2008	nd	nd	nd	nd	17 [6]	0/192	0/64
	2009	nd	nd	nd	nd	12 [5]	0/192	0/64
	2018	nd	nd	tr(3)	nd	8 [3]	1/61	1/61
	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-62	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	4,000 [2,000]	0/186	0/62
	2004	nd	nd	nd	nd	2,000 [400]	0/189	0/63
	2005	nd	nd	nd	nd	2,000 [700]	0/189	0/63
Sediment	2006	nd	nd	nd	nd	210 [60]	0/192	0/64
(pg/g-dry)	2007	nd	nd	nd	nd	300 [70]	0/192	0/64
	2008	nd	nd	nd	nd	90 [40]	0/192	0/64
	2009	nd	nd	nd	nd	80 [30]	0/192	0/64
	2018	nd	nd	tr(20)	nd	50 [20]	1/61	1/61

<Sediment>

Stocktaking of the detection	of Parlar-26, Parlar-50 and Parlar-62	in sediment during FY2003~2018

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~2009. (Note 2) No monitoring was conducted in FY2010~2017.

<Wildlife>

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in wildlife (bivalves, fish and birds) during FY2003~2018

	Monitored	Geometric				Quantification	Detection l	Frequency
Parlar-26	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	tr(39)	nd	45 [15]	11/30	3/6
	2004	nd	nd	tr(32)	nd	42 [14]	15/31	3/7
	2005	nd	nd	tr(28)	nd	47 [16]	7/31	4/7
Bivalves	2006	tr(9)	tr(12)	25	nd	18 [7]	21/31	5/7
	2007	tr(7)	tr(8)	20	nd	10 [4]	26/31	6/7
(pg/g-wet)	2008	tr(7)	tr(8)	22	nd	9 [3]	27/31	7/7
	2009	9	9	23	nd	7 [3]	27/31	7/7
	2015	tr(10)	tr(15)	tr(17)	nd	23 [9]	2/3	2/3
	2018	tr(10)	tr(15)	tr(15)	nd	21 [8]	2/3	2/3
	2003	tr(28)	tr(24)	810	nd	45 [15]	44/70	11/14
	2004	43	tr(41)	1,000	nd	42 [14]	54/70	13/14
	2005	tr(42)	53	900	nd	47 [16]	50/75	13/16
F:-1	2006	41	44	880	nd	18 [7]	70/80	15/16
Fish	2007	24	32	690	nd	10 [4]	64/80	14/16
(pg/g-wet)	2008	35	33	730	nd	9 [3]	79/85	17/17
	2009	25	20	690	nd	7 [3]	82/90	18/18
	2015	26	28	400	nd	23 [9]	13/19	13/19
	2018	tr(17)	tr(17)	280	nd	21 [8]	12/18	12/18

Deuleu 26	Monitored	Geometric	M - 1'	Maari	Mini	Quantification	Detection I	Frequenc
Parlar-26	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	120	650	2,500	nd	45 [15]	5/10	1/2
	2004	70	340	810	nd	42 [14]	5/10	1/2
	2005	86	380	1,200	nd	47 [16]	5/10	1/2
Birds *2	2006	48	290	750	nd	18 [7]	5/10	1/2
(pg/g-wet)	2007	34	280	650	nd	10 [4]	5/10	1/2
(pg/g-wet)	2008	38	320	1,200	nd	9 [3]	6/10	2/2
	2009	26	200	500	nd	7 [3]	6/10	2/2
	2015			tr(10)	tr(10)	23 [9]	1/1	1/1
	2018	53		54	53	21 [8]	2/2	2/2
	Monitored	Geometric				Quantification	Detection I	Frequenc
Parlar-50	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	tr(12)	tr(12)	58	nd	33 [11]	17/30	4/6
	2004	tr(15)	nd	tr(45)	nd	46 [15]	15/31	3/7
	2005	nd	nd	tr(38)	nd	54 [18]	9/31	4/7
Bivalves	2006	tr(10)	14	32	nd	14 [5]	24/31	6/7
(pg/g-wet)	2007	9	10	37	nd	9 [3]	27/31	7/7
(r6/5)	2008	tr(7)	tr(6)	23	nd	10 [4]	23/31	6/7
	2009	9	9	31	nd	8 [3]	27/31	7/7
	2015	tr(11)	tr(15)	tr(16)	nd	30 [10]	2/3	2/3
	2018	tr(9)	16	17	nd	16 [6]	2/3	2/3
	2003	35	34	1,100	nd	33 [11]	55/70	14/14
	2004	60	61	1,300	nd	46 [15]	59/70	14/14
	2005	tr(52)	66	1,400	nd	54 [18]	55/80	13/16
Fish	2006	56	52	1,300	nd	14 [5]	79/80	16/16
(pg/g-wet)	2007	35	41	1,100	nd	9 [3]	77/80	16/16
	2008	44	45	1,000	nd	10 [4]	77/85	17/17
	2009	30	23	910	nd	8 [3]	85/90	18/18
	2015	tr(25)	tr(13)	640	nd	30 [10]	13/19	13/19
	2018	22	20	300	nd	16 [6]	16/18	16/18
	2003	110	850	3,000	nd	33 [11]	5/10	1/2
	2004	83	440	1,000	nd	46 [15]	5/10	1/2
	2005	100	480	1,500	nd	54 [18]	5/10	1/2
Birds *2	2006	46	380	1,000	nd	14 [5]	5/10	1/2
(pg/g-wet)	2007	34	360	930	nd	9 [3]	5/10	1/2
488 /	2008	49	410	1,600	nd	10 [4]	5/10	1/2
	2009	29	250	620	nd	8[3]	5/10	1/2
	2015			nd	nd	30 [10]	0/1	0/1
	2018	tr(12)		tr(13)	tr(11)	16 [6]	2/2	2/2
D 1 (0	Monitored	Geometric	M P	·	NC -	Quantification	Detection I	requent
Parlar-62	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	120 [40]	0/30	0/6
	2004	nd	nd	nd	nd	98 [33]	0/31	0/7
	2005	nd	nd	nd	nd	100 [34]	0/31	0/7
Bivalves	2006	nd	nd	nd	nd	70 [30]	0/31	0/7
(pg/g-wet)	2007	nd	nd	nd	nd	70 [30]	0/31	0/7
(185 ····)	2008	nd	nd	nd	nd	80 [30]	0/31	0/7
	2009	nd	nd	nd	nd	70 [20]	0/31	0/7
	2015	nd	nd	nd	nd	150 [60]	0/3	0/3
	2018	nd	nd	nd	nd	100 [40]	0/3	0/3
	2003	nd	nd	580	nd	120 [40]	9/70	3/14
	2004	nd	nd	870	nd	98 [33]	24/70	7/14
	2005	nd	nd	830	nd	100 [34]	23/80	8/16
Fish	2006	tr(30)	nd	870	nd	70 [30]	28/80	10/16
(pg/g-wet)	2007	tr(30)	nd	530	nd	70 [30]	22/80	7/16
45'5-Well	2008	tr(30)	nd	590	nd	80 [30]	31/85	8/17
	2009	tr(20)	nd	660	nd	70 [20]	24/90	8/18
	2005	nd	nd	320	nd	150 [60]	2/19	2/19 3/18

	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-62	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	tr(96)	200	530	nd	120 [40]	5/10	1/2
	2004	tr(64)	110	280	nd	98 [33]	5/10	1/2
	2005	tr(78)	130	460	nd	100 [34]	5/10	1/2
Birds *2	2006	70	120	430	nd	70 [30]	5/10	1/2
	2007	tr(60)	100	300	nd	70 [30]	5/10	1/2
(pg/g-wet)	2008	tr(70)	130	360	nd	80 [30]	5/10	1/2
	2009	tr(40)	80	210	nd	70 [20]	5/10	1/2
	2015			nd	nd	150 [60]	0/1	0/1
	2018	nd		nd	nd	100 [40]	0/2	0/2

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~2009. (Note 2) *2: There is no consistency between the results of the ornithological survey after FY2015 and those in previous years

because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2010~2014, FY2016 and FY2017.

<Air>

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in air during FY2003~2018

0		Geometric				Quantification	Detection	Frequency
Parlar-26	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	0.31	0.31	0.77	tr(0.17)	0.20 [0.066]	35/35	35/35
	2003 Cold season	tr(0.17)	tr(0.17)	0.27	tr(0.091)	0.20 [0.066]	34/34	34/34
	2004 Warm season	0.27	0.26	0.46	tr(0.17)	0.20.00.000	37/37	37/37
	2004 Cold season	tr(0.15)	tr(0.15)	0.50	tr(0.094)	0.20 [0.066]	37/37	37/37
	2005 Warm season	nd	nd	nd	nd	0 2 [0 1]	0/37	0/37
	2005 Cold season	nd	nd	nd	nd	0.3 [0.1]	0/37	0/37
Air	2006 Warm season	nd	nd	nd	nd	1 9 50 71	0/37	0/37
(pg/m^3)	2006 Cold season	nd	nd	nd	nd	1.8 [0.6]	0/37	0/37
(pg/m)	2007 Warm season	nd	nd	tr(0.3)	nd	0 ([0 2]	18/36	18/36
	2007 Cold season	nd	nd	nd	nd	0.6 [0.2]	0/36	0/36
	2008 Warm season	tr(0.21)	0.22	0.58	tr(0.12)	0.22 [0.00]	37/37	37/37
	2008 Cold season	tr(0.11)	tr(0.12)	tr(0.20)	nd	0.22 [0.08]	36/37	36/37
	2009 Warm season	tr(0.18)	tr(0.19)	0.26	tr(0.11)	0.22 [0.00]	37/37	37/37
	2009 Cold season	tr(0.12)	tr(0.13)	0.27	nd	0.23 [0.09]	33/37	33/37
	2018 Warm season	nd	nd	tr(0.3)	nd	0.4 [0.2]	12/37	12/37
		Geometric				Quantification	Detection	Frequency
Parlar-50	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	nd	nd	tr(0.37)	nd	0.01 [0.27]	2/35	2/35
	2003 Cold season	nd	nd	nd	nd	0.81 [0.27]	0/34	0/34
	2004 Warm season	nd	nd	nd	nd	1 2 [0 4]	0/37	0/37
	2004 Cold season	nd	nd	nd	nd	1.2 [0.4]	0/37	0/37
	2005 Warm season	nd	nd	nd	nd	0 ([0 2]	0/37	0/37
	2005 Cold season	nd	nd	nd	nd	0.6 [0.2]	0/37	0/37
Air	2006 Warm season	nd	nd	nd	nd	1 ([0 5]	0/37	0/37
(pg/m^3)	2006 Cold season	nd	nd	nd	nd	1.6 [0.5]	0/37	0/37
(pg/m [*])	2007 Warm season	nd	tr(0.1)	tr(0.2)	nd	0.2.[0.1]	29/36	29/36
	2007 Cold season	nd	nd	nd	nd	0.3 [0.1]	0/36	0/36
	2008 Warm season	nd	nd	tr(0.19)	nd	0.25 [0.00]	15/37	15/37
	2008 Cold season	nd	nd	nd	nd	0.25 [0.09]	0/37	0/37
	2009 Warm season	nd	nd	tr(0.1)	nd	0.2 [0.1]	11/37	11/37
	2009 Cold season	nd	nd	tr(0.1)	nd	0.3 [0.1]	1/37	1/37
	2018 Warm season	nd	nd	tr(0.2)	nd	0.5 [0.2]	2/37	2/37

		Geometric				Quantification	Detection I	Frequency
Parlar-62	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	nd	nd	nd	nd	1 6 [0 52]	0/35	0/35
	2003 Cold season	nd	nd	nd	nd	1.6 [0.52]	0/34	0/34
	2004 Warm season	nd	nd	nd	nd	2 4 [0 91]	0/37	0/37
	2004 Cold season	nd	nd	nd	nd	2.4 [0.81]	0/37	0/37
	2005 Warm season	nd	nd	nd	nd	1 2 50 41	0/37	0/37
	2005 Cold season	nd	nd	nd	nd	1.2 [0.4]	0/37	0/37
Air	2006 Warm season	nd	nd	nd	nd	0 [2]	0/37	0/37
(pg/m^3)	2006 Cold season	nd	nd	nd	nd	8 [3]	0/37	0/37
(pg/m)	2007 Warm season	nd	nd	nd	nd	15[06]	0/36	0/36
	2007 Cold season	nd	nd	nd	nd	1.5 [0.6]	0/36	0/36
	2008 Warm season	nd	nd	nd	nd	1 ([0 (]	0/37	0/37
	2008 Cold season	nd	nd	nd	nd	1.6 [0.6]	0/37	0/37
	2009 Warm season	nd	nd	nd	nd	16[06]	0/37	0/37
	2009 Cold season	nd	nd	nd	nd	1.6 [0.6]	0/37	0/37
	2018 Warm season	nd	nd	nd	nd	0.4 [0.2]	0/37	0/37

(Note) No monitoring was conducted in FY2010~2017.

[10] Mirex (references)

· History and state of monitoring

Mirex was developed as an organochlorine insecticide chemical in the United States, and it was also used as a fire retardant in plastics, rubber, and electrical goods. No domestic record of manufacture/import of the substance was reported since it was historically never registrated under the Agricultural Chemicals Regulation Law. The substance was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 2002. Also the substance is one of the original twelve POPs covered by the Stockholm Convention.

Before FY2001, the substance was measured in FY1983 (in surface water and sediment) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Mirex has been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2003~2009, FY2011 and FY2018.

No monitoring was conducted after FY2019. For reference, the monitoring results up to FY2018 are given below.

Monitoring results until FY2018

<Surface Water>

Stocktaking of the detection of Mirex in surface water during FY2003~2018

	Monitored	Geometric				Quantification	Detection	Frequency
Mirex	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	tr(0.13)	tr(0.12)	0.8	nd	0.3 [0.09]	25/36	25/36
	2004	nd	nd	1.1	nd	0.4 [0.2]	18/38	18/38
	2005	nd	nd	1.0	nd	0.4 [0.1]	14/47	14/47
Surface Water	2006	nd	nd	0.07	nd	1.6 [0.5]	1/48	1/48
	2007	nd	nd	tr(0.5)	nd	1.1 [0.4]	2/48	2/48
(pg/L)	2008	nd	nd	0.7	nd	0.6 [0.2]	4/48	4/48
	2009	nd	nd	0.5	nd	0.4 [0.2]	8/49	8/49
	2011	nd	nd	0.8	nd	0.5 [0.2]	3/49	3/49
	2018	nd	nd	1.0	nd	0.7 [0.3]	3/47	3/47

(Note) No monitoring was conducted in FY2010 and FY2012 ~ 2017.

<Sediment>

Stocktaking of the detection of Mirex in sediment during FY2003~2018

–	Monitored	Geometric		~		Quantification	Detection l	Frequency
Mirex	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	2	tr(1.6)	1,500	nd	2 [0.4]	137/186	51/62
	2004	2	tr(1.6)	220	nd	2 [0.5]	153/189	55/63
	2005	1.8	1.2	5,300	nd	0.9 [0.3]	134/189	48/63
Sediment	2006	1.7	1.2	640	nd	0.6 [0.2]	156/192	57/64
(pg/g-dry)	2007	1.5	0.9	200	nd	0.9 [0.3]	147/192	55/64
(pg/g-ury)	2008	1.4	1.1	820	nd	0.7 [0.3]	117/192	48/64
	2009	1.4	1.3	620	nd	1.0 [0.4]	126/192	49/64
	2011	1.2	0.9	1,900	nd	0.9 [0.4]	42/64	42/64
	2018	1.1	0.9	240	nd	0.8 [0.3]	44/61	44/61

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~2009.

(Note 2) No monitoring was conducted in FY2010 and FY2012 ~ 2017.

	Monitored	Geometric				Quantification	Detection 1	Frequency
Mirex	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	4.9	4.2	19	tr(1.6)	2.4 [0.81]	30/30	6/6
	2004	4.4	4.3	12	tr(1.1)	2.5 [0.82]	31/31	7/7
	2005	5.4	5.2	20	tr(1.9)	3.0 [0.99]	31/31	7/7
Bivalves	2006	5	4	19	tr(2)	3 [1]	31/31	7/7
	2007	5	4	18	tr(2)	3 [1]	31/31	7/7
(pg/g-wet)	2008	4	tr(3)	18	tr(2)	4 [1]	31/31	7/7
	2009	5.9	5.2	21	tr(1.7)	2.1 [0.8]	31/31	7/7
	2011	10	7.1	44	5.2	1.9 [0.8]	4/4	4/4
	2018	4.9	3.2	20	1.8	1.4 [0.5]	3/3	3/3
	2003	8.3	9.0	25	tr(1.7)	2.4 [0.81]	70/70	14/14
Fish	2004	13	11	180	3.8	2.5 [0.82]	70/70	14/14
	2005	13	13	78	tr(1.0)	3.0 [0.99]	80/80	16/16
	2006	11	10	53	tr(2)	3 [1]	80/80	16/16
(pg/g-wet)	2007	9	11	36	tr(1)	3 [1]	80/80	16/16
(pg/g-wet)	2008	11	13	48	tr(1)	4 [1]	85/85	17/17
	2009	8.6	9.6	37	tr(0.9)	2.1 [0.8]	90/90	18/18
	2011	12	15	41	tr(1.3)	1.9 [0.8]	18/18	18/18
	2018	8.2	8.4	70	1.9	1.4 [0.5]	18/18	18/18
	2003	120	150	450	31	2.4 [0.81]	10/10	2/2
	2004	61	64	110	33	2.5 [0.82]	10/10	2/2
	2005	77	66	180	41	3.0 [0.99]	10/10	2/2
Birds *2	2006	77	70	280	39	3 [1]	10/10	2/2
	2007	57	59	100	32	3 [1]	10/10	2/2
(pg/g-wet)	2008	74	68	260	27	4 [1]	10/10	2/2
	2009	49	50	79	32	2.1 [0.8]	10/10	2/2
	2011			58	58	1.9 [0.8]	1/1	1/1
	2018	110		260	47	1.4 [0.5]	2/2	2/2

<Wildlife>

Stocktokin fthe detection f Minay in wildlife (hively C 1 d hinda) dunin a EV2002 2019

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was

derived during FY2003~2009. (Note 2) *2: There is no consistency between the results of the ornithological survey in FY2018 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2010 and FY2012~2017.

<Air>

Stocktaking of the detection of Mirex in air during FY2003~2018

		Geometric				Quantification	Detection l	Frequenc
Mirex	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	0.11	0.12	0.19	0.047	0.0084	35/35	35/35
	2003 Cold season	0.044	0.043	0.099	0.024	[0.0028]	34/34	34/34
	2004 Warm season	0.099	0.11	0.16	tr(0.042)	0.05 [0.017]	37/37	37/37
	2004 Cold season	tr(0.046)	tr(0.047)	0.23	tr(0.019)	0.03 [0.017]	37/37	37/37
	2005 Warm season	tr(0.09)	tr(0.09)	0.24	tr(0.05)	0.10 [0.03]	37/37	37/37
	2005 Cold season	tr(0.04)	tr(0.04)	tr(0.08)	nd	0.10 [0.03]	29/37	29/37
	2006 Warm season	tr(0.07)	tr(0.10)	0.22	nd	0 12 [0 04]	29/37	29/37
A :	2006 Cold season	tr(0.07)	tr(0.07)	2.1	nd	0.13 [0.04]	27/37	27/37
Air $(m \approx 1/m^3)$	2007 Warm season	0.11	0.11	0.28	0.04	0.02.00.011	36/36	36/36
(pg/m^3)	2007 Cold season	0.04	0.04	0.09	tr(0.02)	0.03 [0.01]	36/36	36/36
	2008 Warm season	0.09	0.09	0.25	0.03	0.02.00.011	37/37	37/37
	2008 Cold season	0.05	0.04	0.08	0.03	0.03 [0.01]	37/37	37/37
	2009 Warm season	0.12	0.13	0.48	0.049	0.015 [0.00(]	37/37	37/37
	2009 Cold season	0.058	0.054	0.18	0.030	0.015 [0.006]	37/37	37/37
	2011 Warm season	0.14	0.13	0.25	0.08	0.04.00.011	35/35	35/35
	2011 Cold season	0.07	0.07	0.11	tr(0.03)	0.04 [0.01]	37/37	37/37
	2018 Warm season	0.09	0.09	0.20	0.05	0.03 [0.01]	37/37	37/37

(Note) No monitoring was conducted in FY2010 and FY2012~2017.

[11] HCHs (references)

· History and state of monitoring

HCHs were used as pesticides, household insecticides, and termiticides, etc. Even after their registration under the Agricultural Chemicals Regulation Law was expired in FY1971, they continue to be used as termiticides and wood preservatives. α -HCH, β -HCH, and γ -HCH (synonym: Lindane) were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

Among many HCH isomers, α -HCH, β -HCH, γ -HCH (synonym: Lindane) and δ -HCH have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air.

Before FY2001, the substances were measured in FY1974 (in surface water, sediment and fish) under the framework of "the Environmental Survey and Monitoring of Chemicals." α -HCH and β -HCH had been the target chemicals, and surface water and sediment had been the monitored media during the period of FY1986~1998 and FY1986~2001, respectively. Under the framework of the Wildlife Monitoring, the substances were monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1996 and in FY1998, FY2000 and FY2001 (γ -HCH (synonym: Lindane) and δ -HCH had not been monitored since FY1997 and FY1993, respectively.)

Under the framework of the Environmental Monitoring, α -HCH and β -HCH in surface water, sediment, and wildlife (bivalves, fish and birds) have been monitored since FY2002, except FY2018. α -HCH and β -HCH in air and γ -HCH (synonym: Lindane) and δ -HCH in surface water, sediment, wildlife (bivalves, fish and birds) and air have also been monitored since FY2003, except FY2018.

No monitoring was conducted in FY2020. For reference, the monitoring results up to FY2019 are given below.

•	Monitoring	results	until	FY2018
---	------------	---------	-------	--------

<Surface Water>

Stocktaking of the detection of Totala-HCH, β -HCH, γ -HCH(synonym: Lindane) and δ -HCH in surface water during FY2002~2019

	Monitored	Casmatria				Quantification	Detection	Frequency
α-НСН	year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	86	76	6,500	1.9	0.9 [0.3]	114/114	38/38
	2003	120	120	970	13	3 [0.9]	36/36	36/36
	2004	150	145	5,700	13	6 [2]	38/38	38/38
	2005	90	81	660	16	4 [1]	47/47	47/47
	2006	110	90	2,100	25	3 [1]	48/48	48/48
	2007	76	73	720	13	1.9 [0.6]	48/48	48/48
	2008	78	75	1,100	9	4 [2]	48/48	48/48
	2009	74	73	560	14	1.2 [0.4]	49/49	49/49
Surface Water	2010	94	75	1,400	14	4 [1]	49/49	49/49
(pg/L)	2011	67	60	1,000	11	7 [3]	49/49	49/49
	2012	65	56	2,200	9.5	1.4 [0.5]	48/48	48/48
	2013	57	55	1,900	9	7 [2]	48/48	48/48
	2014	47	41	700	7.3	4.5 [1.5]	48/48	48/48
	2015	48	40	610	8.7	1.2 [0.4]	48/48	48/48
	2016	38	36	640	5.1	1.1 [0.4]	48/48	48/48
	2017	47	45	680	3.7	0.9 [0.4]	47/47	47/47
	2019	35	37	640	tr(2)	4 [2]	48/48	48/48

0.11011	Monitored	Geometric				Quantification	Detection	Frequency
β -HCH	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	210	180	1,600	24	0.9 [0.3]	114/114	38/38
	2003	250	240	1,700	14	3 [0.7]	36/36	36/36
	2004	260	250	3,400	31	4 [2]	38/38	38/38
	2005	200	170	2,300	25	2.6 [0.9]	47/47	47/47
	2006	200	160	2,000	42	1.7 [0.6]	48/48	48/48
	2007	170	150	1,300	18	2.7[0.9]	48/48	48/48
	2008	150	150	1,800	15	1.0 [0.4]	48/48	48/48
	2009	150	150	1,100	18	0.6 [0.2]	49/49	49/49
Surface Water	2010	180	160	2,500	33	2.0 [0.7]	49/49	49/49
(pg/L)	2011	130	120	840	28	2.0 [0.8]	49/49	49/49
	2012	150	130	820	17	1.4 [0.5]	48/48	48/48
	2012	130	130	1,100	20	7 [2]	48/48	48/48
	2013	100	110	1,100	11	1.0 [0.4]	48/48	48/48
	2014	130	120	1,100	21	1.2 [0.4]	48/48	48/48
	2015	100	96	1,100	12	1.2 [0.4]	48/48	48/48
	2010	100	90 110	830	12		48/48	
						1.8 [0.7]		47/47
	2019	100	92	570	17	3[1]	48/48	48/48
γ -HCH	Monitored	Geometric	Median	Maximu	Minimum	Quantification [Detection]	Detection	Frequency
(synonym: Lindane)	year	mean*	Weulali	m	wiininuni	limit	Sample	Site
	2003	92	90	370	32	7 [2]	36/36	36/36
	2003	92 91	90 76	8,200	21	20 [7]	38/38	38/38
	2004	48	40	250	tr(8)		47/47	47/47
	2003	40	40	230 460		14 [5]	48/48	
	2008	44 34	43 32		tr(9) 5.2	18 [6]		48/48
				290 240		2.1 [0.7]	48/48	48/48
	2008 2009	34 32	32 26	340 280	4 5.1	3 [1]	48/48 49/49	48/48 49/49
Surface Water	2009	32 26	20	280 190	5.1 tr(5)	0.6 [0.2] 6 [2]	49/49	49/49
	2010	20	20	170	3		49/49	49/49
(pg/L)	2011	23	20			3 [1]		
	2012	22	17	440	3.0	1.3 [0.4]	48/48	48/48
	2013			560 250	3.2	2.7 [0.8]	48/48	48/48
		18	18	350	3.5	1.2 [0.4]	48/48	48/48
	2015	17	15	110	2.6	0.9 [0.3]	48/48	48/48
	2016	14	13	130	1.8	0.8 [0.3]	48/48	48/48
	2017	17	16	190	2.1	1.4 [0.5]	47/47	47/47
	2019	14	12	480	nd	4 [2]	47/48	47/48
S LICH	Monitored	Geometric		Maximu	NC	Quantification	Detection	Frequency
δ -HCH	year	mean*	Median	m	Minimum	[Detection] limit	Sample	Site
	2003	14	14	200	tr(1.1)	2 [0.5]	36/36	36/36
	2004	24	29	670	tr(1.4)	2 [0.7]	38/38	38/38
	2005	1.8	nd	62	nd	1.5 [0.5]	23/47	23/47
	2006	24	18	1,000	2.2	2.0 [0.8]	48/48	48/48
	2007	11	9.7	720	tr(0.7)	1.2 0.4	48/48	48/48
	2008	11	10	1,900	tr(1.1)	2.3 [0.9]	48/48	48/48
	2009	10	11	450	tr(0.7)	0.9 [0.4]	49/49	49/49
Surface Water	2010	16	17	780	0.9	0.8 [0.3]	49/49	49/49
(pg/L)	2011	8.6	8.9	300	0.7	0.4 [0.2]	49/49	49/49
40 /	2012	7.9	6.7	220	tr(0.5)	1.1 [0.4]	48/48	48/48
	2012	8.2	8.9	320	tr(0.6)	1.1 [0.4]	48/48	48/48
	2013	7.1	6.5	590	0.7	0.4 [0.2]	48/48	48/48
	2014	7.1	0.5 7.4	310	0.8	0.3 [0.1]	48/48	48/48
	2015	5.5	6.0	920	tr(0.5)	0.8 [0.3]	48/48	48/48
	2010	8.2	8.2	920 690	tr(0.3)	1.0 [0.4]	48/48	40/40 47/47
	2017	8.2 5.1	8.2 5.3	890				
(NT (1) * A '(1)	2019	3.1	3.3	83	nd	1.0 [0.4]	46/48	46/48

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted in FY2018.

<Sediment>

Stocktaking of the detection of α -HCH, β -HCH, γ -HCH(synonym: Lindane) and δ -HCH in sediment during FY2002~2019

нан	Monitored	Geometric	NG 11	NG -	NC 1	Quantification	Detection	Frequency
α-НСН	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	150	170	8,200	2.0	1.2 [0.4]	189/189	63/63
	2003	160	170	9,500	2	2 [0.5]	186/186	62/62
	2004	160	180	5,700	tr(1.5)	2 [0.6]	189/189	63/63
	2005	140	160	7,000	3.4	1.7 [0.6]	189/189	63/63
	2006	140	160	4,300	tr(2)	5 [2]	192/192	64/64
	2007	140	150	12,000	tr(1.3)	1.8 [0.6]	192/192	64/64
	2008	140	190	5,200	nd	1.6 [0.6]	191/192	64/64
a. 11	2009	120	120	6,300	nd	1.1 [0.4]	191/192	64/64
Sediment	2010	140	140	3,700	3.1	2.0 0.8	64/64	64/64
(pg/g-dry)	2011	120	140	5,100	1.6	1.5 [0.6]	64/64	64/64
	2012	100	100	3,900	tr(1.1)	1.6 [0.5]	63/63	63/63
	2013	94	98	3,200	tr(0.6)	1.5 [0.5]	63/63	63/63
	2013	84	93	4,300	nd	2.4 [0.8]	62/63	62/63
	2015	97	120	9,600	1.1	0.7 [0.3]	62/62	62/62
	2015	64	77	5,000	1.1	0.9 [0.3]	62/62	62/62
	2010	77	86		1.1			
				1,900		0.5 [0.2]	62/62	62/62
	2019	67	83	2,600	1.3	1.1 [0.4]	61/61	61/61
0.11011	Monitored	Geometric				Quantification	Detection	Frequency
β -HCH	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	230	230	11,000	3.9	0.9 [0.3]	189/189	63/63
	2002	250	220	39,000	5	2 [0.7]	186/186	62/62
	2003	240	220	53,000	4	3 [0.8]	189/189	63/63
	2004	200	230	13,000	3.9	2.6 [0.9]	189/189	63/63
	2005	190	220	21,000	2.3	1.3 [0.4]	192/192	64/64
	2000	200	190	59,000	2.3 1.6		192/192	64/64
	2007	190	200			0.9 [0.3]		64/64
	2008	190		8,900 10,000	2.8	0.8 [0.3]	192/192 192/192	64/64
Sediment			170		2.4	1.3 [0.5]		
(pg/g-dry)	2010	230	210	8,200	11	2.4 [0.8]	64/64	64/64
	2011	180	210	14,000	3	3[1]	64/64	64/64
	2012	160	170	8,300	3.7	1.5 [0.6]	63/63	63/63
	2013	160	170	6,900	4.5	0.4 [0.1]	63/63	63/63
	2014	140	140	7,200	2.9	0.9 [0.3]	63/63	63/63
	2015	160	170	5,900	2.5	0.8 [0.3]	62/62	62/62
	2016	130	160	6,000	3.7	0.9 [0.3]	62/62	62/62
	2017	140	110	3,400	5.7	1.5 [0.6]	62/62	62/62
	2019	130	110	4,100	4.0	1.2 [0.5]	61/61	61/61
UCU	Manitanal	Compatible				Quantification	Detection	Frequency
γ-HCH		Geometric	Median	Maximum	Minimum	[Detection]		
(synonym: Lindane)	year	mean				limit	Sample	Site
	2003	51	47	4,000	tr(1.4)	2 [0.4]	186/186	62/62
	2004	53	48	4,100	tr(0.8)	2 [0.5]	189/189	63/63
	2005	49	46	6,400	tr(1.8)	2.0 [0.7]	189/189	63/63
	2005	48	49	3,500	tr(1.4)	2.1 [0.7]	192/192	64/64
	2000	42	41	5,200	tr(0.6)	1.2 [0.4]	192/192	64/64
	2007	40	43	2,200	tr(0.7)	0.9 [0.4]	192/192	64/64
	2008	38	43	3,800	nd	0.6 [0.2]	192/192	64/64
Sediment	2009	38	43 30	2,300	tr(1.5)	2.0 [0.7]	64/64	64/64
	2010	35 35	30 42	2,300 3,500	nd		62/64	62/64
(pg/g-dry)	2011					3 [1]		
		30	29 25	3,500	nd	1.3 [0.4]	61/63	61/63
	2013	33	35	2,100	0.9	0.6 [0.2]	63/63	63/63
	2014	27	30	2,600	nd	2.7 [0.9]	61/63	61/63
	2015	29	35	2,800	tr(0.3)	0.5 [0.2]	62/62	62/62
	2016	20	25	3,100	tr(0.7)	0.8 [0.3]	62/62	62/62
	2017	23	25	1,900	tr(0.4)	1.0 [0.4]	62/62	62/62
	2019	23	27	2,100	tr(0.6)	1.0 [0.4]	61/61	61/61

	Monitored	Geometric				Quantification	Detection 1	Frequency
δ -HCH	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	42	46	5,400	nd	2 [0.7]	180/186	61/62
	2004	55	55	5,500	tr(0.5)	2 [0.5]	189/189	63/63
	2005	52	63	6,200	nd	1.0 [0.3]	188/189	63/63
	2006	45	47	6,000	nd	1.7 [0.6]	189/192	64/64
	2007	26	28	5,400	nd	5 [2]	165/192	60/64
	2008	41	53	3,300	nd	2 [1]	186/192	64/64
	2009	36	37	5,000	nd	1.2 [0.5]	190/192	64/64
Sediment	2010	39	40	3,800	1.3	1.2 [0.5]	64/64	64/64
(pg/g-dry)	2011	37	47	5,000	nd	1.4 [0.5]	63/64	63/64
	2012	28	28	3,100	nd	0.8 [0.3]	62/63	62/63
	2013	31	29	2,500	0.4	0.3 [0.1]	63/63	63/63
	2014	27	26	3,900	0.4	0.4 [0.1]	63/63	63/63
	2015	27	28	2,900	tr(0.4)	0.5 [0.2]	62/62	62/62
	2016	20	24	6,100	nd	0.5 [0.2]	60/62	60/62
	2017	25	22	1,700	tr(0.2)	0.6 [0.2]	62/62	62/62
	2019	22	23	2,500	tr(0.2)	0.5 [0.2]	61/61	61/61

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002~2009.
 (Note 2) No monitoring was conducted in FY2018.

<Wildlife>

Stocktaking of the detection of α -HCH, β -HCH, γ -HCH(synonym: Lindane) and δ -HCH in wildlife (bivalves, fish and birds) during FY2002~2019

	Monitored	Geometric				Quantification	Detection I	Frequency
α-HCH	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	67	64	1,100	12	4.2 [1.4]	38/38	8/8
	2003	45	30	610	9.9	1.8 [0.61]	30/30	6/6
	2004	56	25	1,800	tr(12)	13 [4.3]	31/31	7/7
	2005	38	25	1,100	tr(7.1)	11 [3.6]	31/31	7/7
	2006	30	21	390	6	3 [1]	31/31	7/7
	2007	31	17	1,400	8	7 [2]	31/31	7/7
	2008	26	16	380	7	6 [2]	31/31	7/7
D:1	2009	45	21	2,200	9	5 [2]	31/31	7/7
Bivalves	2010	35	20	730	13	3 [1]	6/6	6/6
(pg/g-wet)	2011	64	33	1,200	13	3 [1]	4/4	4/4
	2012	23	12	340	4.0	3.7 [1.2]	5/5	5/5
	2013	30	25	690	6	3 [1]	5/5	5/5
	2014	16	16	39	7	3 [1]	3/3	3/3
20 20	2015	11	15	25	3.5	3.0 [1.0]	3/3	3/3
	2016	13	20	22	5	3 [1]	3/3	3/3
	2017	15	16	32	6	3 [1]	3/3	3/3
	2019	9	12	14	4	4 [2]	3/3	3/3
	2002	57	56	590	tr(1.9)	4.2 [1.4]	70/70	14/14
	2003	43	58	590	2.6	1.8 [0.61]	70/70	14/14
	2004	57	55	2,900	nd	13 [4.3]	63/70	14/14
	2005	42	43	1,000	nd	11 [3.6]	75/80	16/16
	2006	44	53	360	tr(2)	3 [1]	80/80	16/16
	2007	39	40	730	tr(2)	7 [2]	80/80	16/16
	2008	36	47	410	nd	6 [2]	84/85	17/17
Fish	2009	39	32	830	tr(2)	5 [2]	90/90	18/18
	2010	27	39	250	tr(1)	3 [1]	18/18	18/18
(pg/g-wet)	2011	37	54	690	tr(2)	3 [1]	18/18	18/18
	2012	24	32	170	nd	3.7 [1.2]	18/19	18/19
	2013	32	47	320	tr(2)	3 [1]	19/19	19/19
	2014	26	40	210	nd	3 [1]	18/19	18/19
	2015	18	26	180	tr(1.3)	3.0 [1.0]	19/19	19/19
	2016	15	17	81	nd	3 [1]	18/19	18/19
	2017	20	29	130	nd	3 [1]	18/19	18/19
	2019	8	8	130	nd	4 [2]	12/16	12/16

UCU	Monitored	Geometric	M 1			Quantification	Detection I	Frequency
α-HCH	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	170	130	360	93	4.2 [1.4]	10/10	2/2
	2003	73	74	230	30	1.8 [0.61]	10/10	2/2
	2004	190	80	1,600	58	13 [4.3]	10/10	2/2
	2005	76	77	85	67	11 [3.6]	10/10	2/2
	2006	76	75	100	55	3 [1]	10/10	2/2
	2007	75	59	210	43	7 [2]	10/10	2/2
	2008	48	48	61	32	6 [2]	10/10	2/2
D: 1 *7	2009	43	42	56	34	5 [2]	10/10	2/2
Birds *2	2010	260		430	160	3 [1]	2/2	2/2
(pg/g-wet)	2011			48	48	3 [1]	1/1	1/1
	2012	35		39	32	3.7 [1.2]	2/2	2/2
	2013	46		130	16	3 [1]	2/2	2/2
	2014	61		220	17	3 [1]	2/2	2/2
	2015			13	13	3.0 [1.0]	1/1	1/1
	2016	63		170	23	3 [1]	2/2	2/2
	2010	81		930	23 7	3 [1]	2/2	2/2
	2017			63	63	4 [2]	1/1	1/1
				05	05	Quantification	Detection I	
β -HCH	Monitored		Median	Maximum	Minimum	[Detection]		
<i>p</i> -men	year	mean ^{*1}	Wiedian	Waximum	winningin	limit	Sample	Site
	2002	88	62	1,700	32	12 [4]	38/38	8/8
	2002	78	50	1,100	23	9.9 [3.3]	30/30	6/6
	2003	100	50 74	1,800	23	6.1 [2.0]	31/31	7/7
	2004	85	56	2,000	20	2.2 [0.75]	31/31	7/7
	2005	81	50 70	880	11	3 [1]	31/31	7/7
	2000	79	70 56	1,800	21	7 [3]	31/31	7/7
	2007	73	51	1,300	21	6 [2]	31/31	7/7
	2008	83	55	1,100	23	6 [2]	31/31	7/7
Bivalves	2009	89	56	1,500	27	3 [1]	6/6	6/6
(pg/g-wet)	2010	130	50 68	2,000	39	3 [1]	0/0 4/4	0/0 4/4
	2011	65	37	2,000	15	2.0 [0.8]	4/4 5/5	4/4 5/5
	2012	61	37 47	980 710	13		5/5	5/5 5/5
						2.2 [0.8]		
	2014	40	35	64	28	2.4 [0.9]	3/3	3/3
	2015	34	45	69	13	3.0 [1.0]	3/3	3/3
	2016	37	47	50	21	3 [1]	3/3	3/3
	2017	39	47	60 22	21	3 [1]	3/3	3/3
	2019	23	32	33	11	3[1]	3/3	3/3
	2002	110	120	1,800	tr(5)	12 [4]	70/70	14/14
	2003	81	96	1,100	tr(3.5)	9.9 [3.3]	70/70	14/14
	2004	110	140	1,100	tr(3.9)	6.1 [2.0]	70/70	14/14
	2005	95	110	1,300	6.7	2.2 [0.75]	80/80	16/16
	2006	89	110	1,100	4	3 [1]	80/80	16/16
	2007	110	120	810	7	7 [3]	80/80	16/16
	2008	94	150	750	tr(4)	6 [2]	85/85	17/17
Fish	2009	98	130	970	tr(5)	6 [2]	90/90	18/18
(pg/g-wet)	2010	81	110	760	5	3 [1]	18/18	18/18
W5/5-WCI)	2011	100	140	710	4	3 [1]	18/18	18/18
	2012	72	100	510	6.5	2.0 [0.8]	19/19	19/19
	2013	80	110	420	7.2	2.2 [0.8]	19/19	19/19
	2014	75	140	460	4.4	2.4 [0.9]	19/19	19/19
	2015	56	94	390	6.0	3.0 [1.0]	19/19	19/19
	2013	00						
	2013	41	65	200	5	3 [1]	19/19	19/19
			65 86	200 290	5 4	3 [1] 3 [1]	19/19 19/19	19/19 19/19

A 11611	Monitored	Geometric			NC :	Quantification	Detection 1	Frequency
β -HCH	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	3,000	3,000	7,300	1,600	12 [4]	10/10	2/2
	2003	3,400	3,900	5,900	1,800	9.9 [3.3]	10/10	2/2
	2004	2,300	2,100	4,800	1,100	6.1 [2.0]	10/10	2/2
	2005	2,500	2,800	6,000	930	2.2 [0.75]	10/10	2/2
	2006	2,100	2,400	4,200	1,100	3 [1]	10/10	2/2
	2007	2,000	1,900	3,200	1,400	7 [3]	10/10	2/2
	2008	2,400	2,000	5,600	1,300	6 [2]	10/10	2/2
D' 1 *2	2009	1,600	1,400	4,200	870	6 [2]	10/10	2/2
Birds ^{*2}	2010	1,600		2,800	910	3 [1]	2/2	2/2
(pg/g-wet)	2011			4,500	4,500	3 [1]	1/1	1/1
	2012	1,400		2,600	730	2.0 [0.8]	2/2	2/2
	2013	1,400		3,000	610	2.2 [0.8]	2/2	2/2
	2014	290		3,600	24	2.4 [0.9]	2/2	2/2
	2015			57	57	3.0 [1.0]	1/1	1/1
	2016	1,400		2,600	790	3 [1]	2/2	2/2
	2017	1,000		3,500	300	3 [1]	2/2	2/2
	2019			950	950	3 [1]	1/1	1/1
UCU		C 1 .				Quantification	Detection 1	Frequency
γ-HCH	Monitored	Geometric mean *1	Median	Maximum	Minimum	[Detection]		
(synonym: Lindane)	year	mean ¹				limit	Sample	Site
	2003	19	18	130	5.2	3.3 [1.1]	30/30	6/6
	2004	tr(24)	tr(16)	230	nd	31 [10]	28/31	7/7
	2005	23	13	370	tr(5.7)	8.4 [2.8]	31/31	7/7
	2006	18	12	140	7	4 [2]	31/31	7/7
	2007	16	10	450	tr(4)	9 [3]	31/31	7/7
	2008	12	10	98	tr(3)	9 [3]	31/31	7/7
	2009	14	12	89	tr(3)	7 [3]	31/31	7/7
Bivalves	2010	14	9	150	5	3 [1]	6/6	6/6
(pg/g-wet)	2011	26	17	320	5	3 [1]	4/4	4/4
	2012	8.1	3.5	68	3.0	2.3 [0.9]	5/5	5/5
	2013	7.2	3.9	31	tr(2.1)	2.4 [0.9]	5/5	5/5
	2014	7.4	4.8	18	4.6	2.2 [0.8]	3/3	3/3
	2015	7.3	7.8	14	tr(3.6)	4.8 [1.6]	3/3	3/3
	2016	6	5	11	4	3 [1]	3/3	3/3
	2017	4	3	11	tr(2)	3 [1]	3/3	3/3
	2019	tr(2)	tr(2)	7	nd	4 [1]	2/3	2/3
	2003	16	22	130	tr(1.7)	3.3 [1.1]	70/70	14/14
	2004	tr(28)	tr(24)	660	nd	31 [10]	55/70	11/14
	2005	17	17	230	nd	8.4 [2.8]	78/80	16/16
	2006	19	22	97	tr(2)	4 [2]	80/80	16/16
	2007	15	15	190	nd	9 [3]	71/80	15/16
	2008	13	16	96	nd	9 [3]	70/85	15/17
	2009	14	12	180	nd	7 [3]	81/90	17/18
Fish	2010	9	13	56	tr(1)	3 [1]	18/18	18/18
(pg/g-wet)	2011	12	15	160	tr(1)	3 [1]	18/18	18/18
	2012	7.8	12	43	nd	2.3 [0.9]	18/19	18/19
	2013	8.6	12	81	nd	2.4 [0.9]	17/19	17/19
			14	45	nd	2.2 [0.8]	16/19	16/19
	2014	8.4	17					
	2014 2015	8.4 6.1			nd			
	2015	6.1	7.9	42	nd nd	4.8 [1.6]	14/19	14/19
					nd nd nd			

у-НСН	Monitored	Geometric	M- 1'	Maari	Mini	Quantification	Detection I	Frequency
(synonym: Lindane)	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	14	19	40	3.7	3.3 [1.1]	10/10	2/2
	2004	64	tr(21)	1,200	tr(11)	31 [10]	10/10	2/2
	2005	18	20	32	9.6	8.4 [2.8]	10/10	2/2
	2006	16	17	29	8	4 [2]	10/10	2/2
	2007	21	14	140	tr(8)	9 [3]	10/10	2/2
	2008	12	14	19	tr(5)	9 [3]	10/10	2/2
	2009	11	11	21	tr(6)	7 [3]	10/10	2/2
Birds *2	2010	10		23	4	3 [1]	2/2	2/2
(pg/g-wet)	2011			26	26	3 [1]	1/1	1/1
	2012	11		19	6.3	2.3 [0.9]	2/2	2/2
	2013	6.0		24	tr(1.5)	2.4 [0.9]	2/2	2/2
	2014	10		24	4.4	2.2 [0.8]	2/2	2/2
	2015			nd	nd	4.8 [1.6]	0/1	0/1
	2016	5		14	tr(2)	3 [1]	2/2	2/2
	2017	4		20	tr(1)	3 [1]	2/2	2/2
	2019				7	4 [1]	1/1	1/1
				,	,	Quantification	Detection I	
δ -HCH	Monitored year	Geometric mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	7.4	tr(2.6)	1,300	nd	3.9 [1.3]	29/30	6/6
	2004	6.3	tr(2.1)	1,500	nd	4.6 [1.5]	25/31	6/7
	2005	5.4	tr(2.1)	1,600	nd	5.1 [1.7]	23/31	6/7
	2006	6	tr(2)	890	tr(1)	3 [1]	31/31	7/7
	2007	4	nd	750	nd	4 [2]	12/31	4/7
	2008	tr(3)	nd	610	nd	6 [2]	7/31	3/7
	2009	tr(4)	nd	700	nd	5 [2]	14/31	4/7
Bivalves	2010	4	tr(2)	870	nd	3 [1]	5/6	5/6
(pg/g-wet)	2011	9	tr(2)	1,400	tr(1)	3 [1]	4/4	4/4
(18.8)	2012	3	tr(1)	580	nd	3 [1]	3/5	3/5
	2013	3	tr(1)	230	nd	3 [1]	3/5	3/5
	2013	tr(1)	tr(2)	3	nd	3 [1]	2/3	2/3
	2015	nd	nd	tr(1.5)	nd	2.1 [0.8]	1/3	1/3
	2015	tr(1)	tr(1)	tr(2)	tr(1)	3 [1]	3/3	3/3
	2010	tr(1.7)	tr(1.6)	3.0	tr(1.0)	2.3 [0.9]	3/3	3/3
	2017					2.3 [0.9] 4 [2]	0/3	0/3
	2019	nd tr(3.6)	<u>nd</u> 4.0	nd 16	nd nd	3.9 [1.3]	59/70	13/14
	2003			270			59/70 54/70	13/14
		tr(4.2)	tr(3.5)		nd	4.6 [1.5]		
	2005 2006	tr(3.2)	tr(3.1) 3	32	nd	5.1 [1.7]	55/80 72/80	12/16 16/16
	2008	4		35 31	nd	3 [1]	42/80	
		tr(3)	tr(2)		nd	4 [2]		10/16
	2008	tr(4)	tr(3)	77	nd	6 [2]	54/85	12/17
TP' 1	2009	tr(3)	tr(3)	18	nd	5 [2]	57/90	13/18
Fish	2010	tr(2)	tr(2)	36	nd	3 [1]	13/18	13/18
(pg/g-wet)	2011	3	4	19	nd	3 [1]	14/18	14/18
	2012	tr(2)	tr(2)	12	nd	3 [1]	14/19	14/19
	2013	3	tr(2)	40	nd	3 [1]	14/19	14/19
	2014	tr(2)	tr(2)	23	nd	3 [1]	14/19	14/19
	2015	tr(1.7)	tr(1.8)	17	nd	2.1 [0.8]	12/19	12/19
	2016	tr(2)	tr(2)	10	nd	3 [1]	17/19	17/19
	2017	2.4	2.4	23	nd	2.3 [0.9]	15/19	15/19
	2019	nd	nd	5	nd	4 [2]	6/16	6/16

	Monitored	Geometric				Quantification	Detection Frequency	
δ -HCH	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	19	18	31	12	3.9 [1.3]	10/10	2/2
	2004	30	14	260	6.4	4.6 [1.5]	10/10	2/2
	2005	16	15	30	10	5.1 [1.7]	10/10	2/2
	2006	13	12	21	9	3 [1]	10/10	2/2
	2007	12	10	22	4	4 [2]	10/10	2/2
	2008	9	8	31	tr(3)	6 [2]	10/10	2/2
	2009	5	6	9	tr(3)	5 [2]	10/10	2/2
Birds *2	2010	12		13	11	3 [1]	2/2	2/2
(pg/g-wet)	2011			5	5	3 [1]	1/1	1/1
	2012	4		7	tr(2)	3 [1]	2/2	2/2
	2013	3		4	tr(2)	3 [1]	2/2	2/2
	2014	tr(2)		3	tr(1)	3 [1]	2/2	2/2
	2015			nd	nd	2.1 [0.8]	0/1	0/1
	2016	tr(1)		tr(2)	tr(1)	3 [1]	2/2	2/2
	2017	nd		tr(1.0)	nd	2.3 [0.9]	1/2	1/2
	2019			4	4	4 [2]	1/1	1/1

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002~2009. (Note 2) *2: There is no consistency between the results of the ornithological survey after FY2013 and those in previous years

because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2018.

<Air>

Stocktaking of the detection of α -HCH.	β -HCH. γ -HCH	(svnonvm: Lindane) and δ -HCH in air during FY2002~2019

		Geometric			/	Quantification	Detection Frequency	
α-HCH	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	58	58	340	19	0 12 [0 05]	37/37	37/37
	2009 Cold season	21	18	400	7.8	0.12 [0.05]	37/37	37/37
	2010 Warm season	46	51	280	14	1 4 [0 47]	37/37	37/37
	2010 Cold season	19	16	410	6.8	1.4 [0.47]	37/37	37/37
	2011 Warm season	43	44	410	9.5	2 5 [0 92]	35/35	35/35
	2011 Cold season	18	15	680	6.5	2.5 [0.83]	37/37	37/37
Air	2012 Warm season	37	37	250	15	2 1 [0 7]	36/36	36/36
(pg/m^3)	2012 Cold season	12	11	120	4.4	2.1 [0.7]	36/36	36/36
(pg/m [*])	2013 Warm season	36	39	220	13	5.2 [1.7]	36/36	36/36
	2013 Cold season	10	8.8	75	tr(3.9)	5.2 [1.7]	36/36	36/36
	2014 Warm season	44	40	650	14	0.19 [0.06]	36/36	36/36
	2015 Warm season	33	32	300	8.8	0.17 [0.06]	35/35	35/35
	2016 Warm season	39	35	520	5.4	0.17 [0.07]	37/37	37/37
	2017 Warm season	36	37	700	4.9	0.08 [0.03]	37/37	37/37
	2019 Warm season	21	21	230	6.3	0.12 [0.05]	36/36	36/36
β-ΗCΗ	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection]	Detection l	Frequency
<i>p</i> -mem	Wollitored year		wiculan	Maximum	winnun	Detterion	C 1	<i>a</i> .
		mean				limit	Sample	Site
	2009 Warm season	5.6	5.6	28	0.96		37/37	37/37
	2009 Warm season 2009 Cold season		5.6 1.8	28 24	0.96 0.31	limit 0.09 [0.03]	_	
		5.6				0.09 [0.03]	37/37 37/37 37/37	37/37 37/37 37/37
	2009 Cold season 2010 Warm season 2010 Cold season	5.6 1.8	1.8	24	0.31		37/37 37/37	37/37 37/37 37/37 37/37
	2009 Cold season 2010 Warm season	5.6 1.8 5.6	<u> </u>	<u>24</u> 34	0.31	0.09 [0.03]	37/37 37/37 37/37	37/37 37/37 37/37
	2009 Cold season 2010 Warm season 2010 Cold season	5.6 1.8 5.6 1.7	1.8 6.2 1.7	24 34 29	0.31 0.89 tr(0.26)	0.09 [0.03]	37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37
A in	2009 Cold season 2010 Warm season 2010 Cold season 2011 Warm season	5.6 1.8 5.6 1.7 5.0	1.8 6.2 1.7 5.2	24 34 29 49	0.31 0.89 tr(0.26) 0.84 tr(0.31) 0.65	0.09 [0.03] 0.27 [0.09] 0.39 [0.13]	37/37 37/37 37/37 37/37 35/35	37/37 37/37 37/37 37/37 35/35
Air (rg/m ³)	2009 Cold season2010 Warm season2010 Cold season2011 Warm season2011 Cold season	5.6 1.8 5.6 1.7 5.0 1.7 5.0 0.93	1.8 6.2 1.7 5.2 1.7 5.5 1.1	24 34 29 49 91	0.31 0.89 tr(0.26) 0.84 tr(0.31)	0.09 [0.03]	37/37 37/37 37/37 37/37 35/35 37/37	37/37 37/37 37/37 37/37 35/35 37/37
Air (pg/m³)	2009 Cold season2010 Warm season2010 Cold season2011 Warm season2011 Cold season2012 Warm season	5.6 1.8 5.6 1.7 5.0 1.7 5.0 0.93 4.7	$ \begin{array}{r} 1.8 \\ 6.2 \\ 1.7 \\ 5.2 \\ 1.7 \\ 5.5 \\ 1.1 \\ 5.7 \\ \end{array} $	24 34 29 49 91 32	$\begin{array}{r} 0.31 \\ 0.89 \\ tr(0.26) \\ 0.84 \\ tr(0.31) \\ 0.65 \\ tr(0.26) \\ 0.66 \end{array}$	0.09 [0.03] 0.27 [0.09] 0.39 [0.13] 0.36 [0.12]	37/37 37/37 37/37 35/35 35/35 37/37 36/36 36/36 36/36	37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36 36/36
	2009 Cold season2010 Warm season2010 Cold season2011 Warm season2011 Cold season2012 Warm season2012 Cold season	5.6 1.8 5.6 1.7 5.0 1.7 5.0 0.93	1.8 6.2 1.7 5.2 1.7 5.5 1.1	24 34 29 49 91 32 8.5	0.31 0.89 tr(0.26) 0.84 tr(0.31) 0.65 tr(0.26)	0.09 [0.03] 0.27 [0.09] 0.39 [0.13]	37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36	37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36
	2009 Cold season2010 Warm season2010 Cold season2011 Warm season2011 Cold season2012 Warm season2012 Cold season2013 Warm season	5.6 1.8 5.6 1.7 5.0 1.7 5.0 0.93 4.7	$ \begin{array}{r} 1.8 \\ 6.2 \\ 1.7 \\ 5.2 \\ 1.7 \\ 5.5 \\ 1.1 \\ 5.7 \\ \end{array} $	24 34 29 49 91 32 8.5 37	$\begin{array}{r} 0.31 \\ 0.89 \\ tr(0.26) \\ 0.84 \\ tr(0.31) \\ 0.65 \\ tr(0.26) \\ 0.66 \end{array}$	0.09 [0.03] 0.27 [0.09] 0.39 [0.13] 0.36 [0.12]	37/37 37/37 37/37 35/35 35/35 37/37 36/36 36/36 36/36	37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36 36/36
	2009 Cold season2010 Warm season2010 Cold season2011 Warm season2011 Cold season2012 Warm season2012 Cold season2013 Warm season2013 Cold season	5.6 1.8 5.6 1.7 5.0 1.7 5.0 0.93 4.7 0.97	$ \begin{array}{r} 1.8\\6.2\\1.7\\5.2\\1.7\\5.5\\1.1\\5.7\\0.95\end{array} $	24 34 29 49 91 32 8.5 37 6.7	$\begin{array}{c} 0.31 \\ 0.89 \\ tr(0.26) \\ 0.84 \\ tr(0.31) \\ 0.65 \\ tr(0.26) \\ 0.66 \\ tr(0.17) \end{array}$	0.09 [0.03] 0.27 [0.09] 0.39 [0.13] 0.36 [0.12] 0.21 [0.07]	37/37 37/37 37/37 35/35 37/37 36/36 36/36 36/36 36/36	37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36 36/36 36/36
	2009 Cold season2010 Warm season2010 Cold season2011 Warm season2011 Cold season2012 Warm season2012 Cold season2013 Warm season2013 Cold season2014 Warm season	5.6 1.8 5.6 1.7 5.0 1.7 5.0 0.93 4.7 0.97 5.4	$ \begin{array}{r} 1.8\\6.2\\1.7\\5.2\\1.7\\5.5\\1.1\\5.7\\0.95\\6.8\end{array} $	24 34 29 49 91 32 8.5 37 6.7 74	$\begin{array}{r} 0.31 \\ 0.89 \\ tr(0.26) \\ 0.84 \\ tr(0.31) \\ 0.65 \\ tr(0.26) \\ 0.66 \\ tr(0.17) \\ 0.57 \\ 0.36 \\ 0.3 \\ \end{array}$	0.09 [0.03] 0.27 [0.09] 0.39 [0.13] 0.36 [0.12] 0.21 [0.07] 0.24 [0.08]	37/37 37/37 37/37 35/35 37/37 36/36 36/36 36/36 36/36 36/36	37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36 36/36 36/36 36/36
	2009 Cold season2010 Warm season2010 Cold season2011 Warm season2011 Cold season2012 Warm season2012 Cold season2013 Warm season2013 Cold season2014 Warm season2015 Warm season	5.6 1.8 5.6 1.7 5.0 1.7 5.0 0.93 4.7 0.97 5.4 3.0	$ \begin{array}{r} 1.8\\6.2\\1.7\\5.2\\1.7\\5.5\\1.1\\5.7\\0.95\\6.8\\3.0\end{array} $	24 34 29 49 91 32 8.5 37 6.7 74 34	$\begin{array}{c} 0.31 \\ 0.89 \\ tr(0.26) \\ 0.84 \\ tr(0.31) \\ 0.65 \\ tr(0.26) \\ 0.66 \\ tr(0.17) \\ 0.57 \\ 0.36 \end{array}$	0.09 [0.03] 0.27 [0.09] 0.39 [0.13] 0.36 [0.12] 0.21 [0.07] 0.24 [0.08] 0.25 [0.08]	37/37 37/37 37/37 35/35 35/35 37/37 36/36 36/36 36/36 36/36 36/36 36/36 35/35	37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36 36/36 36/36 36/36 36/36 36/36

ү-НСН		Geometric				Quantification	Detection Frequency	
(synonym: Lindane)	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	17	19	65	2.9	0.06 [0.02]	37/37	37/37
	2009 Cold season	5.6	4.6	55	1.5	0.00 [0.02]	37/37	37/37
	2010 Warm season	14	16	66	2.3	0.35 [0.12]	37/37	37/37
	2010 Cold season	4.8	4.4	60	1.1	0.35 [0.12]	37/37	37/37
	2011 Warm season	14	17	98	2.7	1.6 [0.52]	35/35	35/35
	2011 Cold season	5.1	4.8	67	tr(1.1)	1.0 [0.32]	37/37	37/37
Air	2012 Warm season	13	15	55	2.3	0.95 [0.32]	36/36	36/36
(pg/m^3)	2012 Cold season	3.1	3.2	19	tr(0.63)	0.95 [0.52]	36/36	36/36
(pg/m)	2013 Warm season	12	14	58	tr(2.0)	2.2 [0.7]	36/36	36/36
	2013 Cold season	2.8	3.0	12	nd	2.2 [0.7]	34/36	34/36
	2014 Warm season	14	16	100	1.7	0.17 [0.06]	36/36	36/36
	2015 Warm season	8.3	10	51	1.4	0.19 [0.06]	35/35	35/35
	2016 Warm season	12	13	89	0.79	0.18 [0.07]	37/37	37/37
	2017 Warm season	10	11	93	0.84	0.10 [0.04]	37/37	37/37
	2019 Warm season	6.4	7.0	49	0.88	0.12 [0.05]	36/36	36/36
_		Geometric				Quantification	Detection l	Frequency
δ -HCH	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	1.3	1.3	21	0.09	0.04 [0.02]	37/37	37/37
	2009 Cold season	0.36	0.33	20	0.04	0.04 [0.02]	37/37	37/37
	2010 Warm season	1.4	1.3	25	0.11	0.05 [0.02]	37/37	37/37
	2010 Cold season	0.38	0.35	22	0.05	0.03 [0.02]	37/37	37/37
	2011 Warm season	1.1	1.1	33	0.11	0.063 [0.021]	35/35	35/35
	2011 Cold season	0.35	0.34	26	tr(0.050)	0.003 [0.021]	37/37	37/37
Air	2012 Warm season	1.0	1.3	20	tr(0.06)	0.07.[0.02]	36/36	36/36
	2012 Cold season	0.18	0.19	7.3	nd	0.07 [0.03]	35/36	35/36
(pg/m^3)	2013 Warm season	1.0	1.1	20	tr(0.05)	0.09.00.021	36/36	36/36
	2013 Cold season	0.17	0.17	5.3	nd	0.08 [0.03]	34/36	34/36
	2014 Warm season	1.2	1.3	50	tr(0.07)	0.19 [0.06]	36/36	36/36
	2015 Warm season	0.55	0.71	22	nd	0.15 [0.05]	32/35	32/35
		1.0	1.0	46	nd	0.20 [0.08]	35/37	35/37
	2016 Warm season	1.0	1.2	40	114		00101	
	2016 Warm season 2017 Warm season	0.80	0.92	40	nd	0.08 [0.03]	36/37	36/37

(Note) No monitoring was conducted in FY2018.

[12] Chlordecone (reference)

• History and state of monitoring (reference)

Chlordecone is a synthetic chlorinated organic compound, which was mainly used as an agricultural pesticide. No domestic record of manufacture/import of the substance was reported since it was historically never registrated under the Agricultural Chemicals Regulation Law. Chlordecone was adopted as a target chemical at the Fourth Meeting of the Conference of Parties (COP4) on Stockholm convention on Persistent Organic Pollutants in May 2009 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

As a continuous survey, the first survey was in FY2008. In the Initial Environmental Survey and the Detailed Environmental Survey etc. under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, the substance was monitored in air in FY2003.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY2008, and in surface water, sediment and wildlife (bivalves, fish and birds) air in FY2010 and FY2011.

No monitoring was conducted after FY2012. For reference, the monitoring results up to FY2011 are given below.

Monitoring results until FY2011

<Surface Water>

Stocktaking of the detection of Chlordecone in surface water during FY2008~2011

	Monitored	Geometric				Quantification	Detection	Frequency
Chlordecone	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water (pg/L)	2008	nd	nd	0.76	nd	0.14 [0.05]	13/46	13/46
	2010	tr(0.04)	nd	1.6	nd	0.09 [0.04]	13/49	13/49
	2011	nd	nd	0.70	nd	0.20 [0.05]	15/49	15/49

(Note) No monitoring was conducted in FY2009.

<Sediment>

Stocktaking of the detection of Chlordecone sediment during FY2008~2011

	Monitored	Geometric				Quantification	Detection	Frequency
Chlordecone	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
C a d'an ant	2008	nd	nd	5.8	nd	0.42 [0.16]	23/129	10/49
Sediment	2010	nd	nd	2.8	nd	0.4 [0.2]	9/64	9/64
(pg/g-dry)	2011	nd	nd	1.5	nd	0.40 [0.20]	9/64	9/64

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

(Note 2) No monitoring was conducted in FY2009.

<Wildlife>

	Monitored	Geometric				Quantification	Detection Frequency	
Chlordecone	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
D:1	2008	nd	nd	nd	nd	5.6 [2.2]	0/31	0/7
Bivalves (pg/g-wet)	2010	nd	nd	nd	nd	5.9 [2.3]	0/6	0/6
	2011	nd	nd	nd	nd	0.5 [0.2]	0/4	0/4
Fish	2008	nd	nd	nd	nd	5.6 [2.2]	0/85	0/17
	2010	nd	nd	nd	nd	5.9 [2.3]	0/18	0/18
(pg/g-wet)	2011	nd	nd	nd	nd	0.5 [0.2]	0/18	0/18
D' 1	2008	nd	nd	nd	nd	5.6 [2.2]	0/10	0/2
Birds	2010	nd		nd	nd	5.9 [2.3]	0/2	0/2
(pg/g-wet)	2011			nd	nd	0.5 [0.2]	0/1	0/1

Stocktaking of the detection of Chlordecone in wildlife (bivalves, fish and birds) during FY2002~2014

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

(Note 2) No monitoring was conducted in FY209.

<Air>

Stocktaking of the detection of Chlordecone in air in FY2010 and 2011

	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification	Detection Frequency	
Chlordecone						[Detection] limit	Sample	Site
	2010 Warm season	nd	nd	nd	nd	0.04 [0.02]	0/37	0/37
Air	2010 Cold season	nd	nd	nd	nd		0/37	0/37
(pg/m^3)	2011 Warm season	nd	nd	nd	nd	0.04 [0.02]	0/35	0/35
	2011 Cold season	nd	nd	nd	nd		0/37	0/37

[13] Hexabromobiphenyls (reference)

· History and state of monitoring

Hexabromobiphenyls are industrial chemicals that have been used as flame retardans. Hexabromobiphenyls were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

As a continuous survey, the first survey was in FY2009. Under the framework of the Environmental Survey of Chemical Substances up to FY2001, the substance was monitored in surface water, sediment, wildlife (fish) and air in FY1989. Under the framework of the Initial Environmental Survey and the Detailed Environmental Survey etc. in the Environmental Survey and Monitoring of Chemicals after FY2002, the substance was monitored surface water and sediment in FY2003, in air in FY2004.

Under the framework of the Environmental Monitoring, the substances were monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY2009, in air in FY2010~2011 and in sediment, wildlife (bivalves, fish and birds) and air in FY2015.

No monitoring was conducted after FY2016. For reference, the monitoring results up to FY2015 are given below.

Monitoring results until FY2015

<Surface Water>

Stocktaking of the detection of Hexabromobiphenyls in surface water during FY2009~2011

	Monitored	Geometric				Quantification	Detection I	Frequency
Hexabromobiphenyls	year	mean	Median	Maximum	Minimum	[Detection] limit*	Sample	Site
Saufa a Watan	2009	nd	nd	nd	nd	5.7 [2.2]	0/49	0/49
Surface Water (ng/I)	2010	nd	nd	nd	nd	3 [1]	0/49	0/49
(pg/L)	2011	nd	nd	nd	nd	2.2 [0.9]	0/49	0/49

(Note) "**" indicates the sum value of the Quantification [Detection] limits of each congener in FY2009 and FY2011.

<Sediment>

Stocktaking of the detection of Hexabromobiphenyls in sediment during FY2002~2015

	Monitored	Geometric				Quantification	Detection 1	Frequency
Hexabromobiphenyls	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit *2	Sample	Site
	2009	nd	nd	12	nd	1.1 [0.40]	45/190	21/64
Sediment	2010	nd	nd	18	nd	1.5 [0.6]	10/64	10/64
(pg/g-dry)	2011	nd	nd	6.3	nd	3.6 [1.4]	8/64	8/64
	2015	nd	nd	15	nd	0.8 [0.3]	9/62	9/62

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) *2: The sum value of the Quantification [Detection] limits of each congener in FY2009 and FY2011 (Note 3) No monitoring was conducted during FY2012~2014.

<Wildlife>

	Monitored	Geometric				Quantification	Detection I	Frequency
Hexabromobiphenyls	year	mean *1	Median	Maximum	Minimum	[Detection] limit *2	Sample	Site
	2009	nd	nd	tr(0.53)	nd	1.3 [0.43]	1/31	1/7
Bivalves	2010	nd	nd	nd	nd	24 [10]	0/6	0/6
(pg/g-wet)	2011	nd	nd	nd	nd	3 [1]	0/4	0/4
	2015	nd	nd	nd	nd	14 [5]	0/3	0/3
	2009	tr(0.49)	tr(0.43)	6.0	nd	1.3 [0.43]	46/90	12/18
Fish	2010	nd	nd	nd	nd	24 [10]	0/18	0/18
(pg/g-wet)	2011	nd	nd	3	nd	3 [1]	5/18	5/18
	2015	nd	nd	nd	nd	14 [5]	0/19	0/19
	2009	1.6	1.6	2.1	tr(1.2)	1.3 [0.43]	10/10	2/2
Birds *3	2010	nd		nd	nd	24 [10]	0/2	0/2
(pg/g-wet)	2011			3	3	3 [1]	1/1	1/1
	2015			nd	nd	14 [5]	0/1	0/1

Stocktaking of the detection of Hexabromobiphenyls in wildlife (bivalves, fish and birds) during FY2009~2015

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) *2: The sum value of the Quantification [Detection] limits of each congener in FY2009 and FY2010.

(Note 3) *3: There is no consistency between the results of the ornithological survey in FY2015 and those in previous years because of the changes in the survey sites and target species.

(Note 4) No monitoring was conducted during FY2012~2014.

<Air>

Stocktaking of the detection of Hexabromobiphenyls in air during FY2010~2015

Hexabromo		Geometric				Quantification	Detection I	Frequency
biphenyls	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2010 Warm season	nd	nd	nd	nd	0 2 [0 1]	0/37	0/37
A :	2010 Cold season	nd	nd	nd	nd	0.3 [0.1]	0/37	0/37
Air $(m \alpha/m^3)$	2011 Warm season	nd	nd	nd	nd	0.3 [0.1]	0/35	0/35
(pg/m^3)	2011 Cold season	nd	nd	nd	nd	0.5 [0.1]	0/37	0/37
	2015 Warm season	nd	nd	1.1	nd	0.06 [0.02]	2/35	2/35

(Note) No monitoring was conducted during FY2012~2014.

[14] Polybromodiphenyl ethers (Br₄~Br₁₀) (reference)

· History and state of monitoring

Polybrominated diphenyl ethers have been used as flame retardants for plastics products. Tetrabromodiphenyl ethers, Pentabromodiphenyl ethers, Hexabromodiphenyl ethers, and Heptabromodiphenyl ethers were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010. Also, Decabromodiphenyl ether was adopted as target chemicals at the COP8 of the Stockholm convention on Persistent Organic Pollutants held from late April to early May 2017. The substance was designated as a Class I Specified Chemical Substances Control Law in April 2018.

As a continuous survey, the first survey was in FY2008. Under the framework of the Environmental Survey of Chemical Substances up to FY2001, Decabromodiphenyl ether was monitored in surface water and sediment in FY1977 and FY1996, Polybromodiphenyl ethers (Br_6 , Br_8 and Br_{10}) were monitored in surface water, sediment and wildlife (fish) in FY1987 and FY1988, Polybromodiphenyl ethers ($Br_1 \sim Br_7$) were monitored in air in FY2001. In the Initial Environmental Survey and the Detailed Environmental Survey etc. under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, Decabromodiphenyl ether was monitored in surface water, sediment and wildlife (fish) in FY2002, Polybromodiphenyl ethers (Br_6 , Br_8 and Br_{10}) were monitored in sediment and wildlife (fish) in FY2003, Pentabromodiphenyl ethers were monitored in sediment and Polybromodiphenyl ethers ($Br_1 \sim Br_7$) in air in FY2004, Polybromodiphenyl ethers ($Br_1 \sim Br_7$, Br_9 and Br_{10}) were monitored in surface water in FY2005.

Under the framework of the Environmental Monitoring, Polybromodiphenyl ethers (Br₄~Br₁₀) were monitored in wildlife (bivalves, fish and birds) in FY2008, in surface water, sediment and air in FY2009 and in surface water, sediment and wildlife (bivalves, fish and birds) and air in FY2010~2012, 2014~2019.

No monitoring was conducted after FY2020. For reference, the monitoring results up to FY2019 are given below.

Tetrabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ethers	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	17	16	160	nd	8 [3]	44/49	44/49
	2010	nd	nd	390	nd	9 [3]	17/49	17/49
	2011	11	10	180	nd	4 [2]	48/49	48/49
	2012	tr(3)	tr(3)	22	nd	4 [1]	47/48	47/48
Surface Water	2014	tr(6)	tr(6)	51	tr(4)	8 [3]	48/48	48/48
(pg/L)	2015	4.3	4.1	40	tr(1.2)	3.6 [1.2]	48/48	48/48
	2016	5	tr(5)	47	tr(3)	5 [2]	48/48	48/48
	2017	tr(4)	tr(4)	12	nd	9 [3]	44/47	44/47
	2018	nd	nd	72	nd	13 [5]	22/47	22/47
	2019	tr(6)	tr(6)	320	nd	11 [4]	39/48	39/48
Pentabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ethers	year	mean	Median	Maximum	Minimum	[Detection]	Samula	Site
etiters	year	illeall				limit	Sample	Site
	2009	11	12	87	nd	11 [4]	43/49	43/49
	2010	tr(1)	tr(1)	130	nd	3 [1]	25/49	25/49
	2011	5	4	180	nd	3 [1]	48/49	48/49
	2012	tr(1)	tr(1)	20	nd	2 [1]	32/48	32/48
Surface Water	2014	nd	nd	39	nd	4 [2]	19/48	19/48
(pg/L)	2015	tr(3.0)	tr(3.2)	31	nd	6.3 [2.1]	34/48	34/48
	2016	tr(1.5)	tr(1.3)	36	nd	2.4 [0.9]	39/48	39/48
	2017	nd	tr(1)	8	nd	3 [1]	24/47	24/47
	2018	nd	nd	110	nd	9 [3]	13/47	13/47
	2019	nd	nd	69	nd	6 [2]	19/48	19/48

Monitoring results until FY2019

<Surface Water>

Hexabromodiphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection]	Detection Sample	Frequency Site
	2009	tr(0.9)	tr(0.7)	18	nd	limit 1.4 [0.6]	26/49	26/49
	2009	nd	nd	51	nd	4 [2]	16/49	20/49 16/49
	2010	tr(1)	nd	39	nd	3 [1]	21/49	21/49
	2011	nd	nd	7	nd	3 [1]	6/48	6/48
Surface Water	2012	nd	nd	8	nd	4 [1]	10/48	10/48
(pg/L)	2014	nd	nd	12	nd	1.5 [0.6]	5/48	5/48
(Pg/L)	2015	nd	nd	9.1	nd	2.1 [0.8]	9/48	9/48
	2010	nd	nd	tr(6)	nd	7 [3]	1/47	1/47
	2017	nd	nd	u(0) 54	nd	3 [1]	15/47	15/47
	2010	nd	nd	8	nd	2 [1]	5/48	5/48
			nu	0	IId	Quantification	Detection	
Heptabromodiphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	nd	nd	40	nd	4 [2]	9/49	9/49
	2010	nd	nd	14	nd	3 [1]	17/49	17/49
	2011	nd	nd	14	nd	6 [2]	14/49	14/49
	2012	nd	nd	10	nd	4 [1]	9/48	9/48
Surface Water	2014	nd	nd	8	nd	8 [3]	3/48	3/48
(pg/L)	2015	nd	nd	28	nd	2.0 [0.8]	9/48	9/48
,	2016	nd	nd	11	nd	7 [3]	10/48	10/48
	2017	nd	nd	30	nd	14 [5]	1/47	1/47
	2018	nd	nd	65	nd	8 [3]	3/47	3/47
	2019	nd	nd	6	nd	4 [2]	2/48	2/48
o				¥		Quantification	Detection	
Octabromodiphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	3.0	3.9	56	nd	1.4 [0.6]	37/49	37/49
	2010	tr(2)	tr(2)	69	nd	3 [1]	40/49	40/49
	2011	4	3	98	nd	2 [1]	44/49	44/49
	2012	tr(2)	nd	35	nd	4 [2]	16/48	16/48
Surface Water	2014	2.5	3.7	38	nd	1.6 [0.6]	33/48	33/48
(pg/L)	2015	2.3	3.1	36	nd	1.5 [0.6]	31/48	31/48
	2016	5.8	7.5	230	nd	0.8 [0.3]	44/48	44/48
	2017	tr(2)	nd	33	nd	2 [1]	22/47	22/47
	2018	tr(2)	tr(1)	69	nd	3 [1]	35/47	35/47
	2019	nd	nd	14	nd	3 [1]	12/48	12/48
Nonabromodiphenyl	Monitored		Median	Maximum	Minimum	Quantification [Detection]	Detection	
ethers	year	mean				limit	Sample	Site
	2009	tr(46)	tr(38)	500	nd	91 [30]	32/49	32/49
	2010	tr(17)	tr(13)	620	nd	21 [7]	39/49	39/49
	2011	33	24	920	nd	10 [4]	47/49	47/49
	2012	tr(21)	tr(19)	320	nd	40 [13]	30/48	30/48
Surface Water	2014	37	38	590	nd	6 [2]	47/48	47/48
(pg/L)	2015	36	33	330	nd	6 [2]	47/48	47/48
	2016	43	45	3,900	tr(2)	4 [1]	48/48	48/48
	2017	17	26	460	nd	7 [3]	37/47	37/47
	2018 2019	12 tr(7)	12 8	170 150	nd nd	6 [2] 8 [3]	46/47 27/48	46/47 27/48
			0	150	liu	Quantification	Detection	
Decabromodiphenyl ether	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	tr(310)	tr(220)	3,400	nd	600 [200]	26/49	26/49
	2010	tr(250)	tr(200)	13,000	nd	300 [100]	31/49	31/49
	2011	200	140	58,000	nd	60 [20]	45/49	45/49
	2012	tr(400)	tr(320)	12,000	nd	660 [220]	31/48	31/48
Surface Water	2014	200	230	5,600	tr(14)	22 [9]	48/48	48/48
(pg/L)	2015	720	570	13,000	140	18 [7]	48/48	48/48
	2016	210	160	34,000	tr(12)	14 [6]	48/48	48/48
	2017	150	210	4,100	nd	24 [8]	46/47	46/47
	2018	120	110	2,700	12	11 [4]	47/47	47/47
				2,200				

(Note) No monitoring was conducted in FY2013.

Stocktaking of the d	letection of 1	Polybromodi	phenyl eth	ers (Br ₄ ~Br ₁₀) in sedime	nt during FY200)9~2019	
Tetrabromodiphenyl		Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection	
ethers	year	mean*	1110 01011	1,1,4,1,1,1,4,1,1		limit	Sample	Site
	2009	tr(60)	tr(44)	1,400	nd	69 [23]	131/192	51/64
	2010	35	38	910	nd	6 [2]	57/64	57/64
	2011	32	30	2,600	nd	30 [10]	47/64	47/64
	2012	27	37	4,500	nd	2 [1]	60/63	60/63
Sediment	2014	tr(24)	tr(19)	550	nd	27 [9]	44/63	44/63
(pg/g-dry)	2015	30	28	1,400	nd	21 [7]	44/62	44/62
	2016	tr(21)	tr(16)	390	nd	33 [11]	35/62	35/62
	2017	13	10	570	nd	9 [4]	44/62	44/62
	2018	21	tr(16)	3,100	nd	18 [6]	43/61	43/61
	2019	15	14	710	nd	5 [2]	58/61	58/61
D (1 1' 1 1		G				Quantification	Detection	
Pentabromodiphenyl ethers	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	36	24	1,700	nd	24 [8]	146/192	57/64
	2010	26	23	740	nd	5 [2]	58/64	58/64
	2011	24	18	4,700	nd	5 [2]	62/64	62/64
	2012	21	21	2,900	nd	2.4 [0.9]	62/63	62/63
Sediment	2014	16	14	570	nd	6 [2]	53/63	53/63
(pg/g-dry)	2015	23	20	1,300	nd	18 [6]	44/62	44/62
	2016	13	tr(10)	400	nd	12 [4]	46/62	46/62
	2017	10	tr(5.5)	560	nd	9 [4]	37/62	37/62
	2018	19	24	2,800	nd	4 [2]	53/61	53/61
	2019	9	9	740	nd	3 [1]	52/61	52/61
		Constantin				Quantification	Detection	
Hexabromodiphenyl	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		
ethers	year	mean*				limit	Sample	Site
	2009	21	21	2,600	nd	5 [2]	139/192	53/64
	2010	23	23	770	nd	4 [2]	57/64	57/64
	2011	31	42	2,000	nd	9 [3]	52/64	52/64
	2012	15	19	1,700	nd	3 [1]	48/63	48/63
Sediment	2014	21	27	730	nd	5 [2]	50/63	50/63
(pg/g-dry)	2015	11	15	820	nd	3 [1]	42/62	42/62
	2016	17	19	600	nd	8 [3]	40/62	40/62
	2017	16	24	570	nd	6 [2]	44/62	44/62
	2018	29	37	1,300	nd	3 [1]	52/61	52/61
	2019	14	17	690	nd	4 [2]	41/61	41/61
Heptabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	•					limit		
	2009	30	25	16,000	nd	9 [4]	125/192	51/64
	2010	28	18	930	nd	4 [2]	58/64	58/64
	2011	29	32	2,400	nd	7 [3]	55/64	55/64
	2012	34	32	4,400	nd	4 [2]	48/63	48/63
Sediment	2014	19	tr(14)	680	nd	16 [6]	41/63	41/63
(pg/g-dry)	2015	16	21	1,800	nd	3 [1]	44/62	44/62
	2016	16	17	1,100	nd	6 [2]	44/62	44/62
	2017	18	16	580	nd	15 [6]	36/62	36/62
	2018	44	48	1,900	nd	14 [5]	46/61	46/61
	2019	15	11	1,400	nd	6 [3]	39/61	39/61
Octabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
			07	110.000	1	limit		
	2009	210	96 76	110,000	nd	1.2 [0.5]	182/192	63/64
	2010	71	76	1,800	nd	10 [4]	60/64	60/64
	2011	57	64 74	36,000	nd	10 [4]	55/64	55/64
a i '	2012	78	74	15,000	nd	19 [6]	47/63	47/63
Sediment	2014	52	58	2,000	nd	12 [4]	55/63	55/63
(pg/g-dry)	2015	58	tr(44)	1,400	nd	48 [16]	41/62	41/62
	2016	51	49	1,400	nd	6 [2]	55/62	55/62
	2017	38	58	1,900	nd	5 [2]	48/62	48/62
	2018	100	140	5,500	nd	1.2 [0.5]	57/61	57/61
	2019	33	47	2,000	nd	3 [1]	50/61	50/61

<Sediment>

Nanahramadinhanul	Monitored	Geometric				Quantification	Detection l	Frequency
Nonabromodiphenyl ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	1,100	710	230,000	nd	9 [4]	181/192	64/64
	2010	360	430	26,000	nd	24 [9]	60/64	60/64
	2011	710	630	70,000	nd	23 [9]	62/64	62/64
	2012	360	380	84,000	nd	34 [11]	52/63	52/63
Sediment	2014	470	470	42,000	nd	60 [20]	60/63	60/63
(pg/g-dry)	2015	300	420	11,000	nd	24 [8]	55/62	55/62
	2016	430	390	26,000	nd	27 [9]	60/62	60/62
	2017	400	490	29,000	nd	15 [5]	61/62	61/62
	2018	690	770	56,000	nd	5 [2]	60/61	60/61
	2019	310	420	40,000	nd	5 [2]	59/61	59/61
Decabromodiphenyl	Monitored	Geometric				Quantification	Detection l	Frequency
ether	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	6,000	4,800	880,000	tr(30)	60 [20]	192/192	64/64
	2010	5,100	4,200	700,000	nd	220 [80]	60/64	60/64
	2011	4,200	4,700	700,000	nd	40 [20]	62/64	62/64
	2012	5,700	6,300	760,000	nd	270 [89]	60/63	60/63
Sediment	2014	5,600	5,000	980,000	nd	240 [80]	61/63	61/63
(pg/g-dry)	2015	6,600	7,200	490,000	40	40 [20]	62/62	62/62
	2016	4,700	5,100	940,000	nd	120 [41]	61/62	61/62
	2017	4,600	5,700	580,000	tr(27)	30 [10]	62/62	62/62
	2018	5,100	6,300	520,000	tr(14)	42 [14]	61/61	61/61
	2019	4,400	6,300	560,000	14	4 [2]	61/61	61/61

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) No monitoring was conducted in FY2013.

<Wildlife>

Stocktaking of the detection of Polybromodiphenyl ethers $(Br_4 \sim Br_{10})$ in wildlife (bivalves, fish and birds) during FY2008~2019

Tetrabromodiphenyl	Monitored	Geometric				Quantification	Detection I	Frequency
ethers	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	73	61	380	20	5.9 [2.2]	31/31	7/7
	2010	59	73	310	nd	43 [16]	5/6	5/6
	2011	96	120	490	26	16 [6]	4/4	4/4
	2012	59	44	190	24	19 [7]	5/5	5/5
Bivalves	2014	56	38	140	33	15 [6]	3/3	3/3
(pg/g-wet)	2015	48	38	89	32	15 [6]	3/3	3/3
	2016	42	32	98	23	13 [5]	3/3	3/3
	2017	47	23	200	23	16 [6]	3/3	3/3
	2018	36	26	68	26	14 [5]	3/3	3/3
	2019	26	tr(17)	68	tr(15)	18 [7]	3/3	3/3
	2008	120	110	1,300	9.8	5.9 [2.2]	85/85	17/17
	2010	160	170	740	tr(16)	43 [16]	18/18	18/18
	2011	110	110	860	tr(9)	16 [6]	18/18	18/18
	2012	120	140	650	tr(10)	19 [7]	19/19	19/19
Fish	2014	150	160	1,300	18	15 [6]	19/19	19/19
(pg/g-wet)	2015	90	82	580	tr(14)	15 [6]	19/19	19/19
	2016	76	53	390	tr(10)	13 [5]	19/19	19/19
	2017	80	73	360	tr(7)	16 [6]	19/19	19/19
	2018	79	61	440	tr(13)	14 [5]	18/18	18/18
	2019	57	62	210	tr(10)	18 [7]	16/16	16/16
	2008	170	190	1,200	32	5.9 [2.2]	10/10	2/2
	2010	140		270	72	43 [16]	2/2	2/2
	2011			67	67	16 [6]	1/1	1/1
	2012	73		110	49	19 [7]	2/2	2/2
Birds *2	2014	190		480	78	15 [6]	2/2	2/2
(pg/g-wet)	2015			36	36	15 [6]	1/1	1/1
	2016	170		470	62	13 [5]	2/2	2/2
	2017	130		660	26	16 [6]	2/2	2/2
	2018	290		310	280	14 [5]	2/2	2/2
	2019			210	210	18 [7]	1/1	1/1

Pentabromodiphenyl ethers	Monitored year	Geometric mean ^{*1}	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
	2008	32	27	94	tr(11)	16 [5.9]	31/31	7/7
	2010	32	37	98	tr(9)	14 [6]	6/6	6/6
	2011	51	60	160	tr(12)	15 [6]	4/4	4/4
	2012	28	24	67	tr(8)	18 [6]	5/5	5/5
Bivalves	2014	30	37	41	18	12 [5]	3/3	3/3
(pg/g-wet)	2015	18	19	20	16	13 [5]	3/3	3/3
400 /	2016	11	9	20	tr(8)	9 [4]	3/3	3/3
	2017	18	16	62	tr(6)	12 [5]	3/3	3/3
	2018	13	21	23	tr(5)	11 [4]	3/3	3/3
	2019	12	12	28	tr(5)	10 [4]	3/3	3/3
	2008	30	37	280	nd	16 [5.9]	72/85	16/17
	2010	51	54	200	nd	14 [6]	16/18	16/18
	2011	39	39	300	nd	15 [6]	17/18	17/18
	2012	37	54	180	nd	18 [6]	17/19	17/19
Fish	2014	41	47	570	nd	12 [5]	18/19	18/19
(pg/g-wet)	2015	22	17	140	nd	13 [5]	18/19	18/19
	2016	18	14	87	tr(4)	9 [4]	19/19	19/19
	2017	23	28	87	nd	12 [5]	18/19	18/19
	2018	21	21	100	nd	11 [4]	17/18	17/18
	2019	17	18	58	tr(4)	10 [4]	16/16	16/16
	2008	150	130	440	52	16 [5.9]	10/10	2/2
	2010	150		200	120	14 [6]	2/2	2/2
	2011			110	110	15 [6]	1/1	1/1
**	2012	85		110	66	18 [6]	2/2	2/2
Birds *2	2014	100		320	31	12 [5]	2/2	2/2
(pg/g-wet)	2015			22	22	13 [5]	1/1	1/1
	2016	88		300	26	9 [4]	2/2	2/2
	2017	77		500	12	12 [5]	2/2	2/2
	2018	180		240	140	11 [4]	2/2	2/2
	2019			150	150	10 [4]	1/1 D t t	1/1
Hexabromodiphenyl	Monitored	Geometric	Median	Maximum	Minimum	Quantification	Detection	Frequency
ethers	year	mean ^{*1}	Median	Iviaximum	wiininum	[Detection] limit	Sample	Site
	2008	19	16	82	tr(5.3)	14 [5.0]	31/31	7/7
	2010	8	16	26	nd			4/6
	2010				nu	8 3 1	4/6	
				81		8 [3] 10 [4]	4/6 4/4	
	2011	38 21	41 23	81 130	20	10 [4]	4/6 4/4 5/5	4/4
Bivalves	2011 2012	38	41	130	20 tr(6)	10 [4] 10 [4]	4/4 5/5	4/4 5/5
Bivalves (pg/g-wet)	2011 2012 2014	38 21 23	41 23 21	130 52	20 tr(6) 11	10 [4] 10 [4] 10 [4]	4/4 5/5 3/3	4/4 5/5 3/3
Bivalves (pg/g-wet)	2011 2012 2014 2015	38 21 23 tr(9)	41 23 21 tr(6)	130	20 tr(6)	10 [4] 10 [4] 10 [4] 12 [5]	4/4 5/5 3/3 2/3	4/4 5/5
	2011 2012 2014 2015 2016	38 21 23 tr(9) tr(13)	41 23 21	130 52 41 40	20 tr(6) 11 nd nd	10 [4] 10 [4] 10 [4] 12 [5] 21 [8]	4/4 5/5 3/3	4/4 5/5 3/3 2/3
	2011 2012 2014 2015	38 21 23 tr(9)	41 23 21 tr(6) tr(13) 20	130 52 41	20 tr(6) 11 nd	10 [4] 10 [4] 10 [4] 12 [5]	4/4 5/5 3/3 2/3 2/3	4/4 5/5 3/3 2/3 2/3
	2011 2012 2014 2015 2016 2017	38 21 23 tr(9) tr(13) tr(14)	41 23 21 tr(6) tr(13)	130 52 41 40 36	20 tr(6) 11 nd nd nd	10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7]	4/4 5/5 3/3 2/3 2/3 2/3	4/4 5/5 3/3 2/3 2/3 2/3
	2011 2012 2014 2015 2016 2017 2018 2019 2008	38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46	41 23 21 tr(6) tr(13) 20 tr(12) nd 51	130 52 41 40 36 34	20 tr(6) 11 nd nd nd nd	10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8]	4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 83/85	4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 17/17
	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010	38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39	41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47	130 52 41 40 36 34 24 310 400	20 tr(6) 11 nd nd nd nd nd nd nd nd	10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 21 [8] 14 [5.0] 8 [3]	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18	4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18
	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011	38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53	41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50	130 52 41 40 36 34 24 310 400 430	20 tr(6) 11 nd nd nd nd nd nd nd nd	10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 21 [8] 14 [5.0] 8 [3] 10 [4]	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18	4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18
(pg/g-wet)	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012	38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55	41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71	$ \begin{array}{r} 130 \\ 52 \\ 41 \\ 40 \\ 36 \\ 34 \\ 24 \\ \hline 310 \\ 400 \\ 430 \\ 320 \\ \end{array} $	20 tr(6) 11 nd nd nd nd nd nd nd nd	10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 21 [8] 14 [5.0] 8 [3]	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19	4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19
(pg/g-wet) Fish	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014	38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60	41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61	$ \begin{array}{r} 130 \\ 52 \\ 41 \\ 40 \\ 36 \\ 34 \\ 24 \\ 310 \\ 400 \\ 430 \\ 320 \\ 1,100 \\ \end{array} $	20 tr(6) 11 nd nd nd nd nd nd nd nd	$\begin{array}{c} 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 21 \ [8] \\ 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \end{array}$	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 18/19	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18/19
(pg/g-wet)	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015	38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44	41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61 45	$ \begin{array}{r} 130 \\ 52 \\ 41 \\ 40 \\ 36 \\ 34 \\ 24 \\ 310 \\ 400 \\ 430 \\ 320 \\ 1,100 \\ 250 \\ \end{array} $	20 tr(6) 11 nd nd nd nd nd nd nd nd nd	$\begin{array}{c} 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 21 \ [8] \\ 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \end{array}$	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 18/19 18/19	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18/19 18/19
(pg/g-wet) Fish	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016	38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44 42	41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61 45 36	$ \begin{array}{r} 130 \\ 52 \\ 41 \\ 40 \\ 36 \\ 34 \\ 24 \\ 310 \\ 400 \\ 430 \\ 320 \\ 1,100 \\ 250 \\ 190 \\ \end{array} $	20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd nd	$\begin{array}{c} 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 21 \ [8] \\ \hline 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \end{array}$	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 18/19 18/19 18/19	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18/19 18/19 18/19
(pg/g-wet) Fish	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017	38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44 42 49	41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61 45 36 49	$ \begin{array}{r} 130\\52\\41\\40\\36\\34\\24\\\hline\\310\\400\\430\\320\\1,100\\250\\190\\210\\\end{array} $	20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd nd	$\begin{array}{c} 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 21 \ [8] \\ 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \end{array}$	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 18/19 18/19 18/19	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18/19 18/19 18/19 18/19
(pg/g-wet) Fish	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018	$ \begin{array}{r} 38\\21\\23\\tr(9)\\tr(13)\\tr(14)\\tr(12)\\nd\\46\\39\\53\\55\\60\\44\\42\\49\\44\end{array} $	41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61 45 36 49 48	$ \begin{array}{r} 130\\52\\41\\40\\36\\34\\24\\\hline\\310\\400\\430\\320\\1,100\\250\\190\\210\\190\\\end{array} $	20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd nd	$\begin{array}{c} 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 21 \ [8] \\ \hline 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ \end{array}$	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 18/19
(pg/g-wet) Fish	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019	$\begin{array}{c} 38\\ 21\\ 23\\ tr(9)\\ tr(13)\\ tr(14)\\ tr(12)\\ nd\\ \hline 46\\ 39\\ 53\\ 55\\ 60\\ 44\\ 42\\ 49\\ 44\\ 42\\ 49\\ 44\\ 42\\ \end{array}$	$\begin{array}{c} 41\\ 23\\ 21\\ tr(6)\\ tr(13)\\ 20\\ tr(12)\\ nd\\ 51\\ 47\\ 50\\ 71\\ 61\\ 45\\ 36\\ 49\\ 48\\ 40\\ \end{array}$	$ \begin{array}{r} 130 \\ 52 \\ 41 \\ 40 \\ 36 \\ 34 \\ 24 \\ 310 \\ 400 \\ 430 \\ 320 \\ 1,100 \\ 250 \\ 190 \\ 210 \\ 190 \\ 290 \\ \end{array} $	20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd nd	$\begin{array}{c} 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 21 \ [8] \\ \hline 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 21 \ [8] \\ \hline \end{array}$	4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 18/19 17/18 16/16	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19
(pg/g-wet) Fish	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008	$\begin{array}{r} 38\\ 21\\ 23\\ tr(9)\\ tr(13)\\ tr(14)\\ tr(12)\\ nd\\ \hline 46\\ 39\\ 53\\ 55\\ 60\\ 44\\ 42\\ 49\\ 44\\ 42\\ 49\\ 44\\ 42\\ 140\\ \end{array}$	41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61 45 36 49 48 40 120	$ \begin{array}{r} 130\\52\\41\\40\\36\\34\\24\\\hline\\310\\400\\430\\320\\1,100\\250\\190\\210\\190\\290\\\hline\\380\\\end{array} $	20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd nd	$\begin{array}{c} 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 21 \ [8] \\ 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 14 \ [5.0] \\ \end{array}$	4/4 5/5 3/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 16/16 10/10	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19
(pg/g-wet) Fish	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010	$\begin{array}{r} 38\\ 21\\ 23\\ tr(9)\\ tr(13)\\ tr(14)\\ tr(12)\\ nd\\ \hline 46\\ 39\\ 53\\ 55\\ 60\\ 44\\ 42\\ 49\\ 44\\ 42\\ 49\\ 44\\ 42\\ 140\\ 110\\ \end{array}$	$\begin{array}{c} 41\\ 23\\ 21\\ tr(6)\\ tr(13)\\ 20\\ tr(12)\\ nd\\ 51\\ 47\\ 50\\ 71\\ 61\\ 45\\ 36\\ 49\\ 48\\ 40\\ \end{array}$	$ \begin{array}{r} 130 \\ 52 \\ 41 \\ 40 \\ 36 \\ 34 \\ 24 \\ 310 \\ 400 \\ 430 \\ 320 \\ 1,100 \\ 250 \\ 190 \\ 210 \\ 190 \\ 290 \\ 380 \\ 140 \\ \end{array} $	20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd nd	$\begin{array}{c} 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 21 \ [8] \\ 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 14 \ [5.0] \\ 8 \ [3] \end{array}$	4/4 5/5 3/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 10/10 2/2	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/17 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 16/16 2/2 2/2
(pg/g-wet) Fish	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011	38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44 42 49 44 42 49 44 42 140 110 	41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61 45 36 49 48 40 120	$ \begin{array}{r} 130\\52\\41\\40\\36\\34\\24\\\hline\\310\\400\\430\\320\\1,100\\250\\1,100\\250\\190\\210\\190\\290\\\hline\\380\\140\\96\\\end{array} $	20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd nd	$\begin{array}{c} 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 21 \ [8] \\ 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \end{array}$	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 17/18 16/16 10/10 2/2 1/1	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/17 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19
(pg/g-wet) Fish (pg/g-wet)	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012	$\begin{array}{r} 38\\ 21\\ 23\\ tr(9)\\ tr(13)\\ tr(14)\\ tr(12)\\ nd\\ \hline 46\\ 39\\ 53\\ 55\\ 60\\ 44\\ 42\\ 49\\ 44\\ 42\\ 49\\ 44\\ 42\\ 140\\ 110\\\\ 150\\ \end{array}$	41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61 45 36 49 48 40 120 	$ \begin{array}{r} 130 \\ 52 \\ 41 \\ 40 \\ 36 \\ 34 \\ 24 \\ \hline 310 \\ 400 \\ 430 \\ 320 \\ 1,100 \\ 250 \\ 190 \\ 210 \\ 190 \\ 290 \\ \hline 380 \\ 140 \\ 96 \\ 320 \\ \hline \end{array} $	20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd nd	$\begin{array}{c} 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 21 \ [8] \\ 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \ 10 \ [4] \\ 10 \ [4] \ 10$	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 10/10 2/2 1/1 2/2	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 12/2 2/2
(pg/g-wet) Fish (pg/g-wet) Birds *2	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014	38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44 42 49 44 42 49 44 42 140 110 150 170	41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61 45 36 49 48 40 120 	$ \begin{array}{r} 130 \\ 52 \\ 41 \\ 40 \\ 36 \\ 34 \\ 24 \\ \hline 310 \\ 400 \\ 430 \\ 320 \\ 1,100 \\ 250 \\ 190 \\ 210 \\ 190 \\ 290 \\ \hline 380 \\ 140 \\ 96 \\ 320 \\ \hline 680 \\ \hline \end{array} $	20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd nd	$\begin{array}{c} 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 21 \ [8] \\ 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \ 10 \ [4] \\ 10 \ [4] \ 10$	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 10/10 2/2 1/1 2/2 2/2	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 17/18 16/16 2/2 2/2 1/1 2/2
(pg/g-wet) Fish (pg/g-wet)	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015	38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44 42 49 44 42 49 44 42 140 110 150 170 	41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61 45 36 49 48 40 120 	$ \begin{array}{r} 130\\52\\41\\40\\36\\34\\24\\\hline\\320\\1,100\\250\\190\\210\\190\\290\\\\380\\140\\96\\320\\\\680\\30\\\end{array} $	20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd nd	$\begin{array}{c} 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 21 \ [8] \\ 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \end{array}$	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 17/18 16/16 10/10 2/2 1/1 2/2 1/1 2/2 1/1 1/2 1/2	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 17/18 16/16 2/2 2/2 1/1 2/2 2/2 1/1
(pg/g-wet) Fish (pg/g-wet) Birds *2	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2014 2015 2016	38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44 42 49 44 42 49 44 42 140 110 150 170 220	41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61 47 50 71 61 45 36 49 48 40 120 	$ \begin{array}{r} 130\\52\\41\\40\\36\\34\\24\\\hline\\310\\400\\430\\320\\1,100\\250\\1,100\\250\\190\\210\\190\\210\\190\\290\\\\380\\140\\96\\320\\\\680\\30\\740\\\end{array} $	20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd rd nd rd r(12) 62 86 96 72 42 30 68	$\begin{array}{c} 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \end{array}$	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 12/2 2/2 1/1 2/2	4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 2/2 2/2 1/1 2/2 2/2 1/1 2/2
(pg/g-wet) Fish (pg/g-wet) Birds *2	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017	38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44 42 49 44 42 49 44 42 140 110 150 170 220 230	41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61 47 50 71 61 45 36 49 48 40 120 	$ \begin{array}{c} 130\\52\\41\\40\\36\\34\\24\\\hline\\320\\1,100\\250\\1,100\\250\\190\\210\\190\\290\\\\380\\140\\96\\320\\\\680\\30\\740\\1,000\\\end{array} $	20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd rd nd rd rd 2 86 96 -72 -42 30 68 51	$\begin{array}{c} 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 21 \ [8] \\ 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \end{array}$	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 12/2 2/2 1/1 2/2 2/2	4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 12/2 2/2
(pg/g-wet) Fish (pg/g-wet) Birds *2	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2014 2015 2016	38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44 42 49 44 42 49 44 42 140 110 150 170 220	41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61 47 50 71 61 45 36 49 48 40 120 	$ \begin{array}{r} 130\\52\\41\\40\\36\\34\\24\\\hline\\310\\400\\430\\320\\1,100\\250\\1,100\\250\\190\\210\\190\\210\\190\\290\\\\380\\140\\96\\320\\\\680\\30\\740\\\end{array} $	20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd rd nd rd r(12) 62 86 96 72 42 30 68	$\begin{array}{c} 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \\ 17 \ [7] \\ 21 \ [8] \\ 14 \ [5.0] \\ 8 \ [3] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 10 \ [4] \\ 12 \ [5] \\ 21 \ [8] \end{array}$	4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 12/2 2/2 1/1 2/2	4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 12/2 2/2 1/1 2/2

Heptabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ethers	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	tr(8.5)	tr(7.6)	35	nd	18 [6.7]	20/31	7/7
	2010	nd	nd	tr(10)	nd	30 [10]	1/6	1/6
	2011	14	26	44	nd	11 [4]	3/4	3/4
	2012	tr(8)	tr(6)	59	nd	12 [5]	3/5	3/5
Bivalves	2014	nd	nd	13	nd	12 [5]	1/3	1/3
(pg/g-wet)	2015	nd	nd	tr(11)	nd	12 [5]	1/3	1/3
	2016	nd	nd	tr(8)	nd	13 [5]	1/3	1/3
	2017	nd	nd	tr(9)	nd	22 [8]	1/3	1/3
	2018 2019	nd nd	nd nd	tr(10) tr(18)	nd nd	15 [6] 24 [9]	1/3 1/3	1/3 1/3
	2019	tr(11)	tr(8.1)	<u>u(18)</u> 77	nd	18 [6.7]	44/85	10/17
	2000	nd	nd	40	nd	30 [10]	4/18	4/18
	2011	13	21	130	nd	11 [4]	13/18	13/18
	2012	tr(11)	18	120	nd	12 [5]	11/19	11/19
Fish	2014	tr(10)	13	280	nd	12 5	10/19	10/19
(pg/g-wet)	2015	nd	nd	44	nd	12 [5]	4/19	4/19
	2016	tr(9)	tr(7)	85	nd	13 [5]	11/19	11/19
	2017	tr(11)	tr(12)	55	nd	22 [8]	10/19	10/19
	2018	tr(9)	tr(8)	58	nd	15 [6]	11/18	11/18
	2019	tr(10)	tr(10)	82	nd	24 [9]	9/16	9/16
	2008	35	35	53	19	18 [6.7]	10/10	2/2
	2010	tr(19)		70	nd	30 [10]	1/2	1/2
	2011			44	44	11 [4]	1/1	1/1
	2012	63		280	14	12 [5]	2/2	2/2
Birds *2*	2014	19		150	nd	12 [5]	1/2	1/2
(pg/g-wet)	2015			tr(11)	tr(11)	12 [5]	1/1	1/1
	2016	65		220	19	13 [5]	2/2	2/2
	2017	89		440	tr(18)	22 [8]	2/2	2/2 2/2
	2018	230		480	110	15 [6] 24 [0]	2/2 1/1	2/2 1/1
	2019			260	260	24 [9] Quantification	Detection 1	
0 1 11 1	36 1. 1	<u> </u>				Qualitification	Detection	requency
Octabromodiphenyl	Monitored		Median	Maximum	Minimum			
	Monitored year	mean ^{*1}	Median	Maximum	Minimum	[Detection]	Sample	Site
			Median nd	Maximum 10	Minimum nd	[Detection] limit		
	year	mean ^{*1}				[Detection]	Sample	Site
Octabromodiphenyl ethers	year 2008	mean ^{*1}	nd	10	nd	[Detection] limit 9.6 [3.6]	Sample 15/31	Site 6/7
	year 2008 2010	mean ^{*1} nd nd	nd nd	10 tr(10)	nd nd	[Detection] limit 9.6 [3.6] 11 [4]	Sample 15/31 2/6	Site 6/7 2/6
ethers Bivalves	year 2008 2010 2011 2012 2014	mean ^{*1} nd nd 7	nd nd 9	10 tr(10) 29	nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4]	Sample 15/31 2/6 3/4 4/5 3/3	Site 6/7 2/6 3/4 4/5 3/3
ethers	year 2008 2010 2011 2012	mean *1 nd nd 7 8	nd nd 9 tr(7)	10 tr(10) 29 25	nd nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3]	Sample 15/31 2/6 3/4 4/5	Site 6/7 2/6 3/4 4/5 3/3 0/3
ethers Bivalves	year 2008 2010 2011 2012 2014 2015 2016	mean ^{*1} nd nd 7 8 tr(9.2) nd nd	nd nd 9 tr(7) 11 nd nd	10 tr(10) 29 25 14 nd nd	nd nd nd tr(5) nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6]	Sample 15/31 2/6 3/4 4/5 3/3	Site 6/7 2/6 3/4 4/5 3/3 0/3 0/3 0/3
ethers Bivalves	year 2008 2010 2011 2012 2014 2015 2016 2017	mean*1 nd nd 7 8 tr(9.2) nd nd nd	nd nd 9 tr(7) 11 nd nd nd	10 tr(10) 29 25 14 nd nd tr(9)	nd nd nd tr(5) nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8]	Sample 15/31 2/6 3/4 4/5 3/3 0/3 0/3 1/3	Site 6/7 2/6 3/4 4/5 3/3 0/3 0/3 0/3 1/3
ethers Bivalves	year 2008 2010 2011 2012 2014 2015 2016 2017 2018	mean*1 nd nd 7 8 tr(9.2) nd nd nd nd	nd nd 9 tr(7) 11 nd nd nd nd	10 tr(10) 29 25 14 nd tr(9) nd	nd nd nd tr(5) nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6]	Sample 15/31 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3	Site 6/7 2/6 3/4 4/5 3/3 0/3 0/3 0/3 1/3 0/3
ethers Bivalves	year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019	mean*1 nd nd 7 8 tr(9.2) nd nd nd nd tr(8)	nd nd 9 tr(7) 11 nd nd nd nd nd nd	10 tr(10) 29 25 14 nd nd tr(9) nd 39	nd nd nd tr(5) nd nd nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7]	Sample 15/31 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3	Site 6/7 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3
ethers Bivalves	year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008	mean*1 nd nd 7 8 tr(9.2) nd nd nd nd tr(8) tr(5.7)	nd nd 9 tr(7) 11 nd nd nd nd nd nd nd	10 tr(10) 29 25 14 nd nd tr(9) nd 39 73	nd nd nd tr(5) nd nd nd nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6]	Sample 15/31 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 35/85	Site 6/7 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 7/17
ethers Bivalves	year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010	mean*1 nd nd 7 8 tr(9.2) nd nd nd tr(9.2) nd nd tr(8) tr(5.7) tr(6)	nd nd 9 tr(7) 11 nd nd nd nd nd nd nd nd	10 tr(10) 29 25 14 nd nd tr(9) nd 39 73 100	nd nd nd tr(5) nd nd nd nd nd nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4]	Sample 15/31 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 35/85 8/18	Site 6/7 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 7/17 8/18
Bivalves	year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011	mean*1 nd nd 7 8 tr(9.2) nd nd nd nd tr(8) tr(5.7) tr(6) tr(6)	nd nd 9 tr(7) 11 nd nd nd nd nd nd tr(7)	10 tr(10) 29 25 14 nd nd tr(9) nd 39 73 100 150	nd nd nd tr(5) nd nd nd nd nd nd nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3]	Sample 15/31 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 35/85 8/18 10/18	Site 6/7 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 7/17 8/18 10/18
Bivalves (pg/g-wet)	year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012	mean*1 nd nd 7 8 tr(9.2) nd nd nd nd tr(8) tr(5.7) tr(6) tr(6) tr(7)	nd nd 9 tr(7) 11 nd nd nd nd nd tr(7) 8	10 tr(10) 29 25 14 nd nd tr(9) nd 39 73 100 150 160	nd nd nd tr(5) nd nd nd nd nd nd nd nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3]	Sample 15/31 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 35/85 8/18 10/18 12/19	Site 6/7 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 7/17 8/18 10/18 12/19
Bivalves (pg/g-wet) Fish	year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014	mean*1 nd nd 7 8 tr(9.2) nd nd nd nd tr(8) tr(5.7) tr(6) tr(6) tr(7) 14	nd nd 9 tr(7) 11 nd nd nd nd tr(7) 8 13	10 tr(10) 29 25 14 nd nd tr(9) nd 39 73 100 150 160 540	nd nd nd tr(5) nd nd nd nd nd nd nd nd nd nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4]	Sample 15/31 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 35/85 8/18 10/18 12/19 15/19	Site 6/7 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 7/17 8/18 10/18 12/19 15/19
Bivalves (pg/g-wet)	year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2012 2014 2015	mean*1 nd nd 7 8 tr(9.2) nd nd nd nd tr(8) tr(5.7) tr(6) tr(6) tr(6) tr(7) 14 tr(7)	nd nd 9 tr(7) 11 nd nd nd nd tr(7) 8 13 nd	10 tr(10) 29 25 14 nd nd tr(9) nd 39 73 100 150 160 540 60	nd nd nd tr(5) nd nd nd nd nd nd nd nd nd nd nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5]	Sample 15/31 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 35/85 8/18 10/18 12/19 15/19 9/19	Site 6/7 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 7/17 8/18 10/18 12/19 15/19 9/19
Bivalves (pg/g-wet) Fish	year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2010 2011 2012 2014 2015 2016 2010 2017 2016 2017 2018 2010 2019 2008 2010 2017 2016 2017 2016 2017 2018 2019 2018 2010 2019 2018 2010 2019 2018 2010 2017 2018 2010 2019 2018 2010 2019 2018 2010 2019 2018 2010 2011 2015 2016 2017 2018 2010 2011 2015 2016 2017 2018 2010 2011 2015 2016 2017 2018 2010 2010 2011 2015 2016 2017 2018 2010 2010 2011 2015 2016 2017 2018 2010 2011 2015 2016 2017 2018 2010 2011 2015 2016 2017 2018 2010 2011 2012 2016 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2017 2018 2010 2011 2012 2014 2017 2018 2010 2011 2012 2014 2014 2015 2014 2014 2015 2014 2015 2014 2015 2014 2015 2016 2014 2015 2016 2016 2016 2016 2017 2016 2016 2017 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2016 2017 2016	mean*1 nd nd 7 8 tr(9.2) nd nd nd nd tr(8) tr(5.7) tr(6) tr(6) tr(6) tr(7) 14 tr(7) tr(8)	nd nd 9 tr(7) 11 nd nd nd nd tr(7) 8 13 nd nd	10 tr(10) 29 25 14 nd nd tr(9) nd 39 73 100 150 160 540 60 86	nd nd nd tr(5) nd nd nd nd nd nd nd nd nd nd nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6]	Sample 15/31 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 35/85 8/18 10/18 12/19 15/19 9/19 9/19	Site 6/7 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 7/17 8/18 10/18 12/19 15/19 9/19 9/19
Bivalves (pg/g-wet) Fish	year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2011 2012 2014 2015 2016 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2017 2018 2010 2017 2017 2018 2017 2017 2018 2017 2014 2017 2016 2017 2017 2017 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017	mean*1 nd nd 7 8 tr(9.2) nd nd nd nd tr(8) tr(5.7) tr(6) tr(6) tr(7) 14 tr(7) tr(8) tr(9.7)	nd nd 9 tr(7) 11 nd nd nd nd tr(7) 8 13 nd nd nd nd	10 tr(10) 29 25 14 nd nd tr(9) nd 39 73 100 150 160 540 60 86 88	nd nd nd tr(5) nd nd nd nd nd nd nd nd nd nd nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8]	Sample 15/31 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 35/85 8/18 10/18 12/19 15/19 9/19 9/19 9/19 9/19	Site 6/7 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 7/17 8/18 10/18 12/19 15/19 9/19 9/19 9/19
Bivalves (pg/g-wet) Fish	year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2018 2019 2018 2010 2011 2012 2018 2010 2011 2018 2010 2011 2018 2010 2011 2018 2010 2011 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2014 2015 2016 2017 2016 2017 2018 2016 2017 2018 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2018	mean*1 nd nd 7 8 tr(9.2) nd nd nd nd tr(8) tr(5.7) tr(6) tr(6) tr(7) 14 tr(7) tr(8) tr(9.7) tr(9.7) tr(7)	nd nd 9 tr(7) 11 nd nd nd nd rd tr(7) 8 13 nd nd nd nd nd	10 tr(10) 29 25 14 nd nd tr(9) nd 39 73 100 150 160 540 60 86 88 74	nd nd nd tr(5) nd nd nd nd nd nd nd nd nd nd nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 20 [8] 16 [6]	Sample 15/31 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 35/85 8/18 10/18 12/19 15/19 9/19 9/19 9/19 9/19 8/18	Site 6/7 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 7/17 8/18 10/18 12/19 15/19 9/19 9/19 9/19 8/18
Bivalves (pg/g-wet) Fish	year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019	mean*1 nd nd 7 8 tr(9.2) nd nd nd nd tr(8) tr(5.7) tr(6) tr(6) tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(7) tr(8)	nd nd 9 tr(7) 11 nd nd nd nd tr(7) 8 13 nd nd nd nd nd nd tr(7) 0 8 13 nd nd nd nd nd nd nd nd nd nd nd nd nd	10 tr(10) 29 25 14 nd nd tr(9) nd 39 73 100 150 160 540 60 86 88 74 120	nd nd nd tr(5) nd nd nd nd nd nd nd nd nd nd nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7]	Sample 15/31 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 35/85 8/18 10/18 12/19 15/19 9/19 9/19 9/19 9/19 8/18 8/16	Site 6/7 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 7/17 8/18 10/18 12/19 15/19 9/19 9/19 9/19 9/19 8/18 8/16
Bivalves (pg/g-wet) Fish	year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2018 2019 2008 2010 2018 2019 2008 2019 2008 2019 2008 2019 2008 2019 2008 2019 2008	mean*1 nd nd 7 8 tr(9.2) nd nd nd nd tr(8) tr(5.7) tr(6) tr(7) 14 tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(7) tr(8) tr(9.2)	nd nd 9 tr(7) 11 nd nd nd nd tr(7) 8 13 nd nd tr(7) 8 13 nd nd nd 41	10 tr(10) 29 25 14 nd nd tr(9) nd 39 73 100 150 160 540 60 86 88 74 120 64	nd nd nd tr(5) nd nd nd nd nd nd nd nd nd nd nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 14 [5] 16 [6] 20 [8] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6]	Sample 15/31 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 35/85 8/18 10/18 12/19 15/19 9/19 9/19 9/19 9/19 8/18 8/16 10/10	Site 6/7 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 7/17 8/18 10/18 12/19 15/19 9/19 9/19 9/19 9/19 8/18 8/16 2/2
Bivalves (pg/g-wet) Fish	year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2018 2010 2017 2018 2010 2018 2010 2017 2018 2010 2017 2018 2010 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2011 2012 2014 2017 2018 2010 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2016 2017 2018 2016 2017 2018 2010 2017 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2008 2019 2008 2019 2008 2019 2008 2019 2008 2019 2008 2019 2008 2010 2008 2019 2008 2010 2008 2010 2008 2010 2008 2010 2008 2010 2008 2010 2008 2010 2008 2010 2008 2010 2008 2010 2008 2010 2008 2010 2008 2010 2008 2010	mean*1 nd nd 7 8 tr(9.2) nd nd nd nd tr(8) tr(5.7) tr(6) tr(7) 14 tr(7) tr(8) tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(7) tr(8) tr(9.2)	nd nd 9 tr(7) 11 nd nd nd nd tr(7) 8 13 nd nd tr(7) 8 13 nd nd nd 41 	10 tr(10) 29 25 14 nd nd tr(9) nd 39 73 100 150 160 540 60 86 88 74 120 64 65	nd nd nd rf(5) nd nd nd nd nd nd nd nd nd nd nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4]	Sample 15/31 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 35/85 8/18 10/18 12/19 15/19 9/19 9/19 9/19 9/19 8/18 8/16 10/10 2/2	Site 6/7 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 7/17 8/18 10/18 12/19 15/19 9/19 9/19 9/19 9/19 9/19 8/18 8/16 2/2 2/2
Bivalves (pg/g-wet) Fish	year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2019 2008 2010 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2017 2018 2019 2008 2010 2017 2018 2010 2017 2018 2019 2008 2010 2017 2018 2019 2008 2010 2017 2018 2010 2017 2018 2019 2008 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2019 2010 2017 2018 2019 2018 2019 2018 2019 2018 2019 2008 2019 2008 2019 2008 2019 2008 2019 2008 2019 2008 2010 2010 2010 2010 2010 2011 2012 2018 2019 2008 2010 2011	mean*1 nd nd 7 8 tr(9.2) nd nd nd nd tr(8) tr(5.7) tr(6) tr(7) 14 tr(7) tr(8) tr(7) tr(8) tr(9.7) tr(7) tr(7) tr(8) tr(9.2)	nd nd 9 tr(7) 11 nd nd nd nd tr(7) 8 13 nd nd tr(7) 8 13 nd nd nd 41	10 tr(10) 29 25 14 nd nd tr(9) nd 39 73 100 150 160 540 60 86 88 74 120 64 65 66	nd nd nd rf(5) nd nd nd nd nd nd nd nd nd nd nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3]	Sample 15/31 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 35/85 8/18 10/18 12/19 15/19 9/19 9/19 9/19 9/19 9/19 8/18 8/16 10/10 2/2 1/1	Site 6/7 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 7/17 8/18 10/18 12/19 15/19 9/19 9/19 9/19 9/19 9/19 8/18 8/16 2/2 2/2 1/1
Bivalves (pg/g-wet) Fish (pg/g-wet)	year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2019 2018 2017 2018 2019 2018 2019 2018 2017 2018 2019 2008 2019 2008 2019 2008 2019 2008 2010 2010 2012 2012 2012 2012 2010 2012 2010 2012 2010 2012 2010 2012 2010 2010 2012 2010 2012 2010 2012 2010 2011 2012 2010 2010 2011 2012 2010 2011 2012 2011 2012 2011 2012	mean*1 nd nd 7 8 tr(9.2) nd nd nd nd tr(8) tr(5.7) tr(6) tr(7) 14 tr(7) tr(8) tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(7) tr(8) tr(9.2) a d a d a d a d a d a d a d a d a d a	nd nd 9 tr(7) 11 nd nd nd nd nd tr(7) 8 13 nd nd tr(7) 8 13 nd nd nd 41 	10 tr(10) 29 25 14 nd nd tr(9) nd 39 73 100 150 160 540 60 86 88 74 120 64 65 66 420	nd nd nd nd tr(5) nd nd nd nd nd nd nd nd nd nd nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 8 [3]	Sample 15/31 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 35/85 8/18 10/18 12/19 15/19 9/19 9/19 9/19 9/19 9/19 8/18 8/16 10/10 2/2 1/1 2/2	Site 6/7 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 7/17 8/18 10/18 12/19 15/19 9/19 9/19 9/19 9/19 9/19 8/18 8/16 2/2 2/2 1/1 2/2
Bivalves (pg/g-wet) Fish (pg/g-wet) Birds *2	year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2017 2018 2010 2011 2012 2014 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2017 2018 2019 2010 2017 2018 2019 2008 2010 2017 2018 2019 2008 2019 2008 2010 2017 2018 2019 2008 2010 2012 2014 2019 2008 2010 2010 2010 2010 2010 2012 2010 2011 2012 2014	mean*1 nd nd 7 8 tr(9.2) nd nd nd nd rd tr(9.2) nd nd nd tr(9.2) nd rd rd tr(9.2) nd rd rd tr(9.2) nd rd rd tr(9.2) nd rd rd rd rd rd rd rd rd rd rd rd rd rd	nd nd 9 tr(7) 11 nd nd nd nd rd tr(7) 8 13 nd nd tr(7) 8 13 nd nd nd 41 	10 tr(10) 29 25 14 nd nd tr(9) nd 39 73 100 150 160 540 60 86 88 74 120 64 65 66 420 140	nd nd nd rf(5) nd nd nd nd nd nd nd nd nd nd nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 7 [3] 8 [3] 11 [4]	Sample 15/31 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 35/85 8/18 10/18 12/19 9/19 9/19 9/19 9/19 9/19 9/19 8/18 8/16 10/10 2/2 1/1 2/2 1/2	Site 6/7 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 7/17 8/18 10/18 12/19 15/19 9/19 9/19 9/19 9/19 9/19 8/18 8/16 2/2 2/2 1/1 2/2 1/2
Bivalves (pg/g-wet) Fish (pg/g-wet)	year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2019 2018 2019 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2019 2018 2017 2014 2017 2018 2019 2018 2017 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2008 2010 2010 2012 2014 2010 2011 2012 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2011 2012 2014 2014 2015	mean*1 nd nd 7 8 tr(9.2) nd nd nd nd nd tr(8) tr(5.7) tr(6) tr(6) tr(7) 14 tr(7) 14 tr(7) tr(8) tr(7) tr(8) tr(7,7) tr(8) tr(7,7) tr(8) tr(7,7) tr(8) tr(7,7) tr(8) tr(7,7) tr(8) tr(7,7) tr(7,7) tr(8) tr(7,7	nd nd 9 tr(7) 11 nd nd nd nd nd tr(7) 8 13 nd nd tr(7) 8 13 nd nd nd tr(7) 	10 tr(10) 29 25 14 nd nd tr(9) nd 39 73 100 150 160 540 60 86 88 74 120 64 65 66 420 140 tr(5)	nd nd nd nd tr(5) nd nd nd nd nd nd nd nd nd nd nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 15 [4] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 14 [5] 11 [4] 14 [5] 15 [6] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 17 [7] 9.6 [3.6] 11 [4] 17 [7] 9.6 [3.6] 11 [4] 17 [7] 9.6 [3.6] 11 [4] 14 [5] 15 [6] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 17 [7] 9.6 [3.6] 11 [4] 14 [5] 15 [6] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 17 [7] 9.6 [3.6] 11 [4] 17 [7] 9.6 [3.6] 11 [4] 17 [7] 9.6 [3.6] 11 [4] 11 [4] 12 [5] 11 [4] 12 [5] 12 [5] 12 [5] 12 [5] 12 [5] 13 [5] 13 [5] 13 [5] 13 [5] 13 [5] 14 [5] 15 [5]	Sample 15/31 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 35/85 8/18 10/18 12/19 9/19 9/19 9/19 9/19 9/19 9/19 8/18 8/16 10/10 2/2 1/1 2/2 1/2 1/1	Site 6/7 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 7/17 8/18 10/18 12/19 15/19 9/19 9/19 9/19 9/19 9/19 8/18 8/16 2/2 2/2 1/1 2/2 1/2 1/1
Bivalves (pg/g-wet) Fish (pg/g-wet) Birds *2	year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2019 2018 2019 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2017 2018 2019 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2012 2014 2015 2016 2017 2018 2019 2018 2019 2014 2015 2016 2017 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2008 2010 2010 2012 2014 2015 2010 2011 2012 2016 2010 2011 2012 2016 2010 2011 2012 2014 2015 2016 2016 2016 2017 2016 2014 2015 2016	mean*1 nd nd 7 8 tr(9.2) nd nd nd nd rd tr(9.2) nd nd nd tr(9.2) nd rd rd tr(9.2) tr(7.7) tr(6) tr(6) tr(6) tr(6) tr(7) 14 tr(7) tr(8) tr(7,7) tr(8) tr(7,7) tr(8) tr(7,7) tr(8) tr(7,7) tr(8) tr(7,7) tr(8) tr(7,7) tr(8) tr(7,7) tr(7,7) tr(8) tr(7,7) tr(7,	nd nd 9 tr(7) 11 nd nd nd nd nd tr(7) 8 13 nd nd tr(7) 8 13 nd nd nd tr(7) 	10 tr(10) 29 25 14 nd nd tr(9) nd 39 73 100 150 160 540 60 86 88 74 120 64 65 66 420 140 tr(5) 220	nd nd nd tr(5) nd nd nd nd nd nd nd nd nd nd nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 14 [5] 15 [6] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 14 [5] 15 [6] 17 [7] 9.6 [3.6] 11 [4] 17 [7] 9.6 [3.6] 11 [4] 11 [4] 14 [5] 15 [6] 15 [6] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 14 [5] 15 [6] 15	Sample 15/31 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 35/85 8/18 10/18 12/19 15/19 9/19 9/19 9/19 9/19 9/19 9/19 8/18 8/16 10/10 2/2 1/1 2/2 1/2 1/1 2/2	Site 6/7 2/6 3/4 4/5 3/3 0/3 1/3 0/3 1/3 0/3 1/3 0/3 1/3 7/17 8/18 10/18 12/19 15/19 9/19 9/19 9/19 9/19 9/19 9/19 9/19 9/19 9/19 9/19 9/19 9/19 9/19 8/18 8/16 2/2 2/2 1/1 2/2 1/2 1/1 2/2
Bivalves (pg/g-wet) Fish (pg/g-wet) Birds *2	year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2019 2018 2019 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2019 2018 2017 2014 2017 2018 2019 2018 2017 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2008 2010 2010 2012 2014 2010 2011 2012 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2011 2012 2014 2014 2015	mean*1 nd nd 7 8 tr(9.2) nd nd nd nd nd tr(8) tr(5.7) tr(6) tr(6) tr(7) 14 tr(7) 14 tr(7) tr(8) tr(7) tr(8) tr(9.7) tr(7) tr(8) tr(7) tr(7) tr(8) tr(7) tr(8) tr(7) tr(7) tr(8) tr(7	nd nd 9 tr(7) 11 nd nd nd nd nd tr(7) 8 13 nd nd tr(7) 8 13 nd nd nd tr(7) 	10 tr(10) 29 25 14 nd nd tr(9) nd 39 73 100 150 160 540 60 86 88 74 120 64 65 66 420 140 tr(5)	nd nd nd nd tr(5) nd nd nd nd nd nd nd nd nd nd nd nd nd	[Detection] limit 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 15 [4] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 14 [5] 11 [4] 14 [5] 15 [6] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 17 [7] 9.6 [3.6] 11 [4] 17 [7] 9.6 [3.6] 11 [4] 17 [7] 9.6 [3.6] 11 [4] 14 [5] 15 [6] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 17 [7] 9.6 [3.6] 11 [4] 14 [5] 15 [6] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 17 [7] 9.6 [3.6] 11 [4] 17 [7] 9.6 [3.6] 11 [4] 17 [7] 9.6 [3.6] 11 [4] 11 [4] 12 [5] 11 [4] 12 [5] 12 [5] 12 [5] 12 [5] 12 [5] 13 [5] 13 [5] 13 [5] 13 [5] 13 [5] 14 [5] 15 [5]	Sample 15/31 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 0/3 1/3 35/85 8/18 10/18 12/19 9/19 9/19 9/19 9/19 9/19 9/19 8/18 8/16 10/10 2/2 1/1 2/2 1/2 1/1	Site 6/7 2/6 3/4 4/5 3/3 0/3 0/3 1/3 0/3 1/3 7/17 8/18 10/18 12/19 15/19 9/19 9/19 9/19 9/19 9/19 9/19 9/19 8/18 8/16 2/2 2/2 1/1 2/2 1/2 1/1

Nonabromodiphenyl	Monitored	Geometric	N 1'	м ·		Quantification	Detection I	Frequency
ethers	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	nd	nd	tr(23)	nd	35 [13]	5/31	1/7
	2010	tr(16)	tr(15)	60	nd	30 [10]	5/6	5/6
	2011	tr(12)	tr(11)	40	nd	22 [9]	3/4	3/4
	2012	tr(15)	25	45	nd	24 [9]	3/5	3/5
Bivalves	2014	40	tr(20)	110	tr(20)	30 [10]	3/3	3/3
(pg/g-wet)	2015	nd	nd	tr(11)	nd	23 [9]	1/3	1/3
	2016	nd	nd	nd	nd	36 [14]	0/3	0/3
	2017	nd nd	nd nd	nd	nd	50 [20]	0/3	0/3 0/3
	2018 2019	tr(20)	nd	nd 81	nd nd	40 [20] 50 [20]	0/3 1/3	1/3
	2019	nd	nd	tr(15)	nd	35 [13]	2/85	2/17
	2010	nd	nd	40	nd	30 [10]	3/18	3/18
	2011	nd	nd	tr(15)	nd	22 [9]	5/18	5/18
	2012	nd	nd	54	nd	24 [9]	9/19	9/19
Fish	2014	tr(10)	tr(20)	40	nd	30 [10]	16/19	16/19
(pg/g-wet)	2015	nd	nd	35	nd	23 [9]	6/19	6/19
488	2016	nd	nd	tr(22)	nd	36 [14]	3/19	3/19
	2017	nd	nd	68	nd	50 [20]	1/19	1/19
	2018	nd	nd	nd	nd	40 [20]	0/18	0/18
	2019	nd	nd	nd	nd	50 [20]	0/16	0/16
	2008	tr(21)	tr(20)	tr(33)	nd	35 [13]	9/10	2/2
	2010	32		50	tr(20)	30 [10]	2/2	2/2
	2011			62	62	22 [9]	1/1	1/1
**	2012	100		150	67	24 [9]	2/2	2/2
Birds *2	2014	tr(10)		tr(20)	tr(10)	30 [10]	2/2	2/2
(pg/g-wet)	2015			tr(12)	tr(12)	23 [9]	1/1	1/1
	2016	nd		tr(21)	nd	36 [14]	1/2	1/2
	2017	nd		nd	nd	50 [20]	0/2	0/2
	2018	49		53	46	40 [20]	2/2	2/2
	2019			nd	nd	50 [20]	0/1 Detection 1	0/1
Decabromodiphenyl	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection I	Frequency
ether	year	mean ^{*1}	wiculan	WIAXIIIIUIII	wiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		Sample	Site
	Jean					limit	r	
			nd	tr(170)	nd	limit 220 [74]		
	2008	nd nd	nd nd	tr(170) tr(190)	nd nd	220 [74]	8/31	3/7
	2008 2010	nd	nd nd nd	tr(170) tr(190) 240	nd nd nd			
	2008	nd nd	nd	tr(190)	nd nd nd	220 [74] 270 [97]	8/31 2/6	3/7 2/6
Bivalves	2008 2010 2011	nd nd nd	nd nd 170	tr(190) 240	nd nd nd	220 [74] 270 [97] 230 [80] 120 [50]	8/31 2/6 1/4	3/7 2/6 1/4
Bivalves (pg/g-wet)	2008 2010 2011 2012 2014 2015	nd nd 120 220 nd	nd nd	tr(190) 240 480 570 tr(70)	nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70]	8/31 2/6 1/4 4/5 3/3 1/3	3/7 2/6 1/4 4/5 3/3 1/3
	2008 2010 2011 2012 2014 2015 2016	nd nd 120 220 nd nd	nd nd 170 tr(150) nd nd	tr(190) 240 480 570 tr(70) tr(110)	nd nd tr(120) nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100]	8/31 2/6 1/4 4/5 3/3 1/3 1/3	3/7 2/6 1/4 4/5 3/3 1/3 1/3
	2008 2010 2011 2012 2014 2015 2016 2017	nd nd 120 220 nd nd nd	nd nd 170 tr(150) nd nd nd	tr(190) 240 480 570 tr(70) tr(110) tr(180)	nd nd tr(120) nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80]	8/31 2/6 1/4 4/5 3/3 1/3 1/3 1/3	3/7 2/6 1/4 4/5 3/3 1/3 1/3 1/3
	2008 2010 2011 2012 2014 2015 2016 2017 2018	nd nd 120 220 nd nd nd nd	nd nd 170 tr(150) nd nd nd nd	tr(190) 240 480 570 tr(70) tr(110) tr(180) nd	nd nd tr(120) nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80]	8/31 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3	3/7 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3
	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019	nd nd 120 220 nd nd nd nd nd nd	nd nd 170 tr(150) nd nd nd nd nd	tr(190) 240 480 570 tr(70) tr(110) tr(180) nd tr(180)	nd nd tr(120) nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70]	8/31 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3	3/7 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3
	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008	nd nd 120 220 nd nd nd nd nd nd nd nd	nd nd 170 tr(150) nd nd nd nd nd nd nd	tr(190) 240 480 570 tr(70) tr(10) tr(180) nd tr(180) 230	nd nd tr(120) nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74]	8/31 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 5/76	3/7 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 4/16
	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010	nd nd 120 220 nd nd nd nd nd nd nd nd nd	nd nd 170 tr(150) nd nd nd nd nd nd nd	tr(190) 240 480 570 tr(70) tr(10) tr(180) nd tr(180) 230 tr(150)	nd nd tr(120) nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97]	8/31 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 5/76 2/18	3/7 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18
	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011	nd nd 120 220 nd nd nd nd nd nd nd nd nd nd	nd nd 170 tr(150) nd nd nd nd nd nd nd nd nd	tr(190) 240 480 570 tr(70) tr(10) tr(180) nd tr(180) 230 tr(150) tr(90)	nd nd tr(120) nd nd nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80]	8/31 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 5/76 2/18 2/18	3/7 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18
(pg/g-wet)	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012	nd nd 120 220 nd nd nd nd nd nd nd tr(59)	nd nd 170 tr(150) nd nd nd nd nd nd tr(60)	tr(190) 240 480 570 tr(70) tr(10) tr(180) nd tr(180) 230 tr(150) tr(90) 380	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50]	8/31 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 5/76 2/18 2/18 11/19	3/7 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 11/19
(pg/g-wet) Fish	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014	nd nd 120 220 nd nd nd nd nd rd tr(59) tr(75)	nd nd 170 tr(150) nd nd nd nd nd tr(60) tr(70)	tr(190) 240 480 570 tr(70) tr(10) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60]	8/31 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 5/76 2/18 2/18 2/18 11/19 13/19	3/7 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 11/19 13/19
(pg/g-wet)	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015	nd nd 120 220 nd nd nd nd nd tr(59) tr(75) nd	nd nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd	tr(190) 240 480 570 tr(70) tr(10) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70]	8/31 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 1/3 0/3 1/3 5/76 2/18 2/18 2/18 11/19 13/19 5/19	3/7 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3
(pg/g-wet) Fish	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016	nd nd 120 220 nd nd nd nd nd rd tr(59) tr(75) nd nd	nd nd 170 tr(150) nd nd nd nd nd nd tr(60) tr(70) nd nd	tr(190) 240 480 570 tr(70) tr(10) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190)	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100]	8/31 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 1/3 0/3 1/3 5/76 2/18 2/18 2/18 11/19 13/19 5/19 7/19	3/7 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3
(pg/g-wet) Fish	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017	nd nd 120 220 nd nd nd nd nd nd rd tr(59) tr(75) nd nd nd nd	nd nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd nd	tr(190) 240 480 570 tr(70) tr(10) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190) 2,100	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80]	8/31 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 5/76 2/18 2/18 2/18 11/19 13/19 5/19 7/19 1/19	3/7 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 11/19 13/19 5/19 7/19 1/19
(pg/g-wet) Fish	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2016 2017 2018	nd nd 120 220 nd nd nd nd nd tr(59) tr(75) nd nd nd nd nd nd tr(75) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd nd nd nd	tr(190) 240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(110)	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 230 [80] 120 [50] 170 [60] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80]	8/31 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 5/76 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18	3/7 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18
(pg/g-wet) Fish	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2016 2017 2018 2019	nd nd 120 220 nd nd nd nd nd tr(59) tr(75) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd nd nd nd nd nd nd nd nd nd nd	tr(190) 240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(110) nd	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70]	8/31 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 5/76 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16	3/7 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16
(pg/g-wet) Fish	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2016 2017 2018 2019 2008	nd nd 120 220 nd nd nd nd nd tr(59) tr(75) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd nd nd nd nd nd nd nd nd nd nd	tr(190) 240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(110) nd tr(110)	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74]	8/31 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 5/76 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 4/10	3/7 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2
(pg/g-wet) Fish	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2016 2017 2018 2019 2008 2019	nd nd 120 220 nd nd nd nd nd tr(59) tr(75) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd nd nd nd nd nd nd nd nd nd nd	tr(190) 240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(110) nd tr(110) nd	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 230 [80] 120 [50] 170 [60] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97]	8/31 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 5/76 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 4/10 0/2	3/7 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2 0/2
(pg/g-wet) Fish	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2016 2017 2018 2019 2008 2010 2011	nd nd 120 220 nd nd nd nd nd nd tr(59) tr(75) nd nd nd nd nd nd nd nd nd nd nd 	nd nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd nd nd nd nd nd nd nd nd nd nd	tr(190) 240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(110) nd tr(110) nd tr(110) nd tr(110)	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80]	8/31 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 5/76 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 4/10 0/2 1/1	3/7 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2 0/2 1/1
(pg/g-wet) Fish (pg/g-wet)	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2016 2017 2018 2019 2008 2019 2008 2010 2011	nd nd 120 220 nd nd nd nd nd tr(59) tr(75) nd nd nd nd nd nd nd nd 250	nd nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd nd nd nd nd nd nd nd nd nd nd	tr(190) 240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(110) nd tr(110) nd tr(110) nd tr(110) 2,60	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50]	8/31 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 1/3 5/76 2/18 1/19 3/19 5/19 7/19 1/19 2/18 0/16 4/10 0/2 1/1 2/2	3/7 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2 0/2 1/1 2/2
(pg/g-wet) Fish (pg/g-wet) Birds *2	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2017 2018 2019 2008 2019 2008 2010 2011 2012 2014	nd nd 120 220 nd nd nd nd nd nd tr(59) tr(75) nd nd nd nd nd nd nd nd nd nd nd 	nd nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd nd nd nd nd nd nd nd nd nd 	tr(190) 240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(110) nd tr(110) nd tr(110) nd tr(110) c,100 tr(110) tr(110) tr(110) tr(110) tr(110) tr(110) tr(110) tr(110) tr(120) tr(110) tr(110) tr(120) tr(1	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 240 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60]	8/31 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 5/76 2/18 1/19 13/19 5/19 7/19 1/19 2/18 0/16 4/10 0/2 1/1 2/2 1/2	3/7 2/6 1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 0/3 1/3 4/16 2/18 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2 0/2 1/1 2/2 1/2
(pg/g-wet) Fish (pg/g-wet)	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2017 2018 2019 2008 2010 2011 2012 2014 2015	nd nd 120 220 nd nd nd nd nd nd tr(59) tr(75) nd nd nd nd nd nd nd nd cr(59) tr(75) nd nd nd nd rd 59) tr(75) tr(75) nd nd nd rd cr(59) tr(75) rd nd rd rd rd rd rd rd rd rd rd rd rd rd rd	nd nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd nd nd nd nd nd nd nd nd nd 	tr(190) 240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(110) nd tr(110) nd tr(110) nd tr(110) 2,60	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [60] 170 [60] 170 [60] 170 [70]	8/31 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 1/3 1/3 2/18 2/18 1/19 3/19 5/19 7/19 1/19 2/18 0/16 4/10 0/2 1/1 2/2 1/2 1/1	3/7 2/6 1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 0/3 1/3 4/16 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2 0/2 1/1 2/2 1/2 1/1
(pg/g-wet) Fish (pg/g-wet) Birds *2	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2017 2018 2019 2008 2019 2008 2010 2011 2012 2014	nd nd 120 220 nd nd nd nd nd nd tr(59) tr(75) nd nd nd nd nd nd nd nd cr(59) tr(75) nd nd nd nd r(59) tr(75) tr(75) nd nd nd cr(75) tr(nd nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd nd nd nd nd nd nd nd nd nd 	tr(190) 240 480 570 tr(70) tr(10) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(110) nd tr(110) nd tr(110) nd tr(110) cf(110) tr(100) tr(100) tr(110) tr(120) tr(120) tr(120) tr(120) tr(110) tr(120) tr(nd nd rr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 240 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60]	8/31 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 5/76 2/18 1/19 13/19 5/19 7/19 1/19 2/18 0/16 4/10 0/2 1/1 2/2 1/2	3/7 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2 0/2 1/1 2/2 1/2
(pg/g-wet) Fish (pg/g-wet) Birds *2	2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016	nd nd 120 220 nd nd nd nd nd nd tr(59) tr(75) nd nd nd nd nd nd nd nd cr(59) tr(75) nd nd nd nd rd cr(59) tr(75) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd nd nd nd nd nd nd nd nd nd 	tr(190) 240 480 570 tr(70) tr(10) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(190) 2,100 tr(110) nd tr(110) nd tr(110) nd tr(110) nd	nd nd rr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 220 [74] 270 [97] 230 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [60] 170 [60] 170 [70] 300 [100]	8/31 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 1/3 1/3 2/18 2/18 1/19 3/19 5/19 7/19 1/19 2/18 0/16 4/10 0/2 1/1 2/2 1/1 0/2	3/7 2/6 1/4 4/5 3/3 1/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 1/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2 0/2 1/1 2/2 1/2 1/1 0/2

- (Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.
- (Note 2) *2: There is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species.
 (Note 3) No monitoring was conducted in FY2009 and FY2013.

<Air>

Stocktaking of the detection of Pol	vbromodiphenvl ethers	(Br ₄ ~Br ₁₀) in air during FY2008~2019
Stocktaking of the detection of 1 of	y or official priority reducts	(D14 D110) m an daming 1 1 2000 2017

Tetrabromo		Geometric	1 2	<u> </u>	/	Quantification	Detection I	Frequency
diphenyl ethers	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	0.89	0.80	18	0.11	0.11 [0.04]	37/37	37/37
	2009 Cold season	0.40	0.37	7.1	tr(0.04)	0.11 [0.04]	37/37	37/37
	2010 Warm season	0.79	0.57	50	0.15	0.12 [0.05]	37/37	37/37
	2010 Cold season	0.40	0.35	25	tr(0.09)	0.12 [0.03]	37/37	37/37
	2011 Warm season	0.80	0.72	9.3	tr(0.11)	0.18 [0.07]	35/35	35/35
	2011 Cold season	0.36	0.34	7.0	nd	0.18 [0.07]	35/37	35/37
Air	2012 Warm season	0.7	0.7	5.7	nd	0 2 [0 1]	35/36	35/36
(pg/m^3)	2012 Cold season	tr(0.2)	tr(0.2)	1.7	nd	0.3 [0.1]	25/36	25/36
	2014 Warm season	0.53	0.47	2.3	tr(0.09)	0.28 [0.09]	36/36	36/36
	2015 Warm season	tr(0.3)	tr(0.3)	2.7	nd	0.4 [0.1]	30/35	30/35
	2016 Warm season	0.5	0.4	28	nd	0.4 [0.2]	30/37	30/37
	2017 Warm season	0.39	0.34	4.1	tr(0.06)	0.15 [0.05]	37/37	37/37
	2018 Warm season	0.28	0.26	3.9	0.05	0.05 [0.02]	37/37	37/37
	2019 Warm season	0.25	0.23	5.5	tr(0.03)	0.04 [0.01]	36/36	36/36
D 1		<u> </u>				Quantification	Detection 1	
Pentabromo diphenyl ethers		Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	0.20	0.19	18	nd	0.16 [0.06]	33/37	33/37
	2009 Cold season	0.19	0.16	10	nd	0.10 [0.00]	29/37	29/37
	2010 Warm season	0.20	0.17	45	nd	0 12 [0 05]	35/37	35/37
2 2 2 2 2 2 2 2	2010 Cold season	0.20	0.22	28	nd	0.12 [0.05]	34/37	34/37
	2011 Warm season	0.19	0.17	8.8	nd	0.16.50.061	31/35	31/35
	2011 Cold season	0.16	tr(0.14)	2.6	nd	0.16 [0.06]	31/37	31/37
	2012 Warm season	tr(0.13)	tr(0.12)	2.4	nd	0 14 50 0/1	30/36	30/36
(pg/m^3)	2012 Cold season	tr(0.09)	tr(0.09)	0.77	nd	0.14 [0.06]	26/36	26/36
	2014 Warm season	tr(0.13)	tr(0.14)	0.80	nd	0.28 [0.09]	25/36	25/36
	2015 Warm season	nd	nd	0.9	nd	0.6 [0.2]	6/35	6/35
	2016 Warm season	nd	nd	28	nd	0.4 [0.2]	6/37	6/37
	2017 Warm season	0.11	0.10	3.4	nd	0.10 [0.04]	33/37	33/37
	2018 Warm season	tr(0.08)	nd	4.1	nd	0.20 [0.08]	18/37	18/37
	2019 Warm season	tr(0.10)	tr(0.06)	6.1	nd	0.12 [0.05]	27/36	27/36
TT 1						Quantification	Detection l	
Hexabromo diphenyl ethers		Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	tr(0.11)	tr(0.11)	2.0	nd	0.22 [0.09]	19/37	19/37
	2009 Cold season	tr(0.20)	0.22	27	nd		24/37	24/37
	2010 Warm season	tr(0.14)	tr(0.13)	4.9	nd	0.16 [0.06]	29/37	29/37
	2010 Cold season	0.24	0.27	5.4	nd	0.10 [0.00]	31/37	31/37
	2011 Warm season	tr(0.11)	tr(0.10)	1.2	nd	0.14 [0.05]	28/35	28/35
	2011 Cold season	0.16	0.18	1.7	nd	0.14 [0.03]	30/37	30/37
				3.1	nd	0.2 [0.1]	9/36	9/36
Air	2012 Warm season	nd	nd	5.1	114			
Air (pg/m ³)	2012 Warm season 2012 Cold season	nd tr(0.1)	nd tr(0.1)	0.5	nd	0.3 [0.1]	22/36	22/36
						0.3 [0.1]	<u>22/36</u> 5/36	<u>22/36</u> 5/36
	2012 Cold season	tr(0.1)	tr(0.1)	0.5	nd			
	2012 Cold season 2014 Warm season	tr(0.1) nd	tr(0.1) nd	0.5 0.4	nd nd	0.4 [0.1] 1.1 [0.4]	5/36	5/36
	2012 Cold season 2014 Warm season 2015 Warm season	tr(0.1) nd nd	tr(0.1) nd nd	0.5 0.4 2.0	nd nd nd	0.4 [0.1] 1.1 [0.4] 0.6 [0.2]	5/36 3/35 3/37	5/36 3/35
	2012 Cold season2014 Warm season2015 Warm season2016 Warm season	tr(0.1) nd nd nd	tr(0.1) nd nd nd	0.5 0.4 2.0 2.7	nd nd nd nd	0.4 [0.1] 1.1 [0.4]	5/36 3/35	5/36 3/35 3/37

Heptabromo		Geometric				Quantification	Detection	Frequency
diphenyl ethers		mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	tr(0.1)	nd	1.7	nd	0.3 [0.1]	17/37	17/37
	2009 Cold season	tr(0.2)	0.3	20	nd		25/37	25/37
	2010 Warm season	tr(0.2)	tr(0.1)	1.4	nd	0.3 [0.1]	24/37	24/37
	2010 Cold season	0.3	0.4	11	nd		28/37	28/37
	2011 Warm season	tr(0.1)	tr(0.1)	1.1	nd	0.3 [0.1]	20/35	20/35
Air	2011 Cold season 2012 Warm season	tr(0.2)	tr(0.2)	2.3	nd		<u>25/37</u> 6/36	<u>25/37</u> 6/36
(pg/m^3)	2012 Warm season 2012 Cold season	nd nd	nd nd	1.8 0.7	nd	0.5 [0.2]	8/36	8/36
(pg/m [*])	2012 Cold season 2014 Warm season	nd	nd	tr(0.4)	nd	0.7 [0.2]	2/36	2/36
	2014 Wallin season 2015 Warm season	nd	nd	$\frac{tr(0.4)}{tr(0.6)}$	nd	1.3 [0.4]	2/30	2/35
	2016 Warm season	nd	nd	1.3	nd	1.1 [0.4]	1/37	1/37
	2017 Warm season	nd	nd	3.2	nd	0.4 [0.2]	10/37	10/37
	2018 Warm season	tr(0.09)	nd	1.3	nd	0.20 [0.08]	16/37	16/37
	2019 Warm season	tr(0.1)	tr(0.1)	2.7	nd	0.3 [0.1]	24/36	24/36
0.1			(***)			Quantification	Detection	
Octabromo diphenyl ethers		Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	tr(0.2)	0.3	1.6	nd	0.3 [0.1]	23/37	23/37
	2009 Cold season	0.3	0.4	7.1	nd	0.0 [0.1]	26/37	26/37
	2010 Warm season	0.25	0.30	2.3	nd	0.15 [0.06]	30/37	30/37
	2010 Cold season	0.40	0.52	6.9	nd		32/37	32/37
	2011 Warm season	0.24	0.31	1.9	nd	0.20 [0.08]	27/35	27/35
	2011 Cold season	0.35	0.44	7.0	nd		30/37	30/37
Air	2012 Warm season	tr(0.2)	tr(0.2)	1.2	nd	0.3 [0.1]	29/36	29/36
(pg/m^3)	2012 Cold season	0.3	0.4	1.2	nd		30/36	30/36
	2014 Warm season	tr(0.1)	tr(0.1)	0.7	nd	0.4 [0.1]	22/36	22/36
	2015 Warm season	nd	nd	3.8	nd	1.1 [0.4]	9/35	9/35
	2016 Warm season	nd	nd	1.6	nd	0.6 [0.2]	18/37	18/37
	2017 Warm season	tr(0.19)	0.23	5.7	nd	0.21 [0.07]	28/37	28/37
	2018 Warm season	0.15	$\frac{0.14}{t_{\pi}(0,2)}$	<u> </u>	nd	0.11 [0.04]	34/37	<u>34/37</u> 32/36
	2019 Warm season	tr(0.2)	tr(0.2)	2.0	na	0.3 [0.1] Quantification	32/36 Detection	
Nonabromo diphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	tr(0.7)	tr(0.7)	3.0	nd		22/37	22/37
	2009 Cold season	tr(1.0)	tr(0.8)	3.9	nd	1.8 [0.6]	27/37	27/37
	2010 Warm season	nd	nd	24	nd	2 7 [1 2]	12/37	12/37
	2010 Cold season	tr(1.2)	tr(1.3)	7.1	nd	3.7 [1.2]	22/37	22/37
	2011 Warm season	tr(0.8)	0.9	3.9	nd	0.0.[0.4]	29/35	29/35
	2011 Cold season	1.1	1.1	14	nd	0.9 [0.4]	30/37	30/37
Air	2012 Warm season	tr(0.5)	tr(0.5)	5.1	nd	1.2 [0.4]	24/36	24/36
(pg/m^3)	2012 Cold season	tr(0.9)	tr(1.1)	4.7	nd	1.2 [0.4]	30/36	30/36
	2014 Warm season	nd	nd	tr(3)	nd	4 [1]	7/36	7/36
	2015 Warm season	nd	nd	12	nd	3.2 [1.1]	14/35	14/35
	2016 Warm season	tr(0.9)	tr(0.9)	11	nd	1.4 [0.5]	28/37	28/37
	2017 Warm season	0.8	0.8	40	nd	0.6 [0.2]	31/37	31/37
	2018 Warm season	0.5	0.7	3	nd	0.4 [0.2]	31/37	31/37
	2019 Warm season	0.5	0.7	3.1	nd	0.3 [0.1]	34/36	34/36
Decabromo diphenyl ether	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection Sample	Frequency Site
	2009 Warm season	tr(7)	tr(9)	31	nd		28/37	28/37
	2009 Cold season	tr(10)	tr(11)	45	nd	16 [5]	29/37	29/37
	2010 Warm season	nd	nd	290	nd	05 5 0 45	10/37	10/37
		tr(11)	tr(12)	88	nd	27 [9.1]	21/37	21/37
	2010 Cold season			30	nd	10 [4 0]	31/35	31/35
	2010 Cold season 2011 Warm season		tr(9.0)	50				
		tr(8.2) tr(8.4)	tr(9.0) tr(9.0)	44	nd	12 [4.0]	29/37	29/37
Air	2011 Warm season	tr(8.2)	· · ·		nd nd		<u> </u>	<u>29/37</u> 17/36
Air (pg/m³)	2011 Warm season 2011 Cold season	tr(8.2) tr(8.4)	tr(9.0)	44		12 [4.0]		
	2011 Warm season 2011 Cold season 2012 Warm season	tr(8.2) tr(8.4) nd	tr(9.0) nd	44 31	nd		17/36	17/36
	2011 Warm season2011 Cold season2012 Warm season2012 Cold season	tr(8.2) tr(8.4) nd tr(10)	tr(9.0) nd tr(12)	44 31 73	nd nd	16 [5]	17/36 28/36	17/36 28/36
	2011Warm season2011Cold season2012Warm season2012Cold season2014Warm season	tr(8.2) tr(8.4) nd tr(10) tr(4.7) 4.2 5	tr(9.0) nd tr(12) tr(5.0)	44 31 73 64	nd nd nd	16 [5] 9 [3]	17/36 28/36 24/36	17/36 28/36 24/36
	2011Warm season2011Cold season2012Warm season2012Cold season2014Warm season2015Warm season	tr(8.2) tr(8.4) nd tr(10) tr(4.7) 4.2	tr(9.0) nd tr(12) tr(5.0) 4.3	44 31 73 64 61	nd nd nd nd	16 [5] 9 [3] 2.2 [0.7]	17/36 28/36 24/36 30/35	17/36 28/36 24/36 30/35
	2011 Warm season 2011 Cold season 2012 Warm season 2012 Cold season 2014 Warm season 2015 Warm season 2016 Warm season	tr(8.2) tr(8.4) nd tr(10) tr(4.7) 4.2 5	tr(9.0) nd tr(12) tr(5.0) 4.3 5	44 31 73 64 61 86	nd nd nd nd nd	16 [5] 9 [3] 2.2 [0.7] 3 [1]	17/36 28/36 24/36 30/35 35/37	17/36 28/36 24/36 30/35 35/37

(Note) No monitoring was conducted in FY2013.

[15] Perfluorooctane sulfonic acid (PFOS)

· History and state of monitoring

Perfluorooctane sulfonic acid (PFOS) has been used as electric and electronic parts, fire fighting foam, photo imaging, hydraulic fluids and textiles. Perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonyl fluoride were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009, and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

As a continuous survey, the first survey was in FY2008. Under the framework the Initial Environmental Survey and the Detailed Environmental Survey etc. in the Environmental Survey and Monitoring of Chemicals after FY2002, the substance was monitored in surface water in FY2002, sediment and wildlife (fish) in FY2003, air in FY2004, surface water, sediment and wildlife (bivalves and fish) in FY2005.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water and sediment in FY2009~2012, FY2014~2016, and FY2018~2020, in wildlife (bivalves, fish and birds) in FY2009~2012, FY2014~2017, FY2019 and FY2020, in air in FY2010~2012, FY2014~2017 and FY2019surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2010~2017 and FY2019~2021.

• Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 30 pg/L, and the detection range was tr(30) ~ 3,700 pg/L.

As results of the inter-annual trend analysis from FY2009 to FY2021, a reduction tendency in specimens from lake areas was identified as statistically significant and a reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

Perfluorooctane sulfonic acid	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection	Frequency
(PFOS)	year	mean	Wiedian	Iviaximum	winningin	limit	Sample	Site
	2009	730	580	14,000	tr(26)	37 [14]	49/49	49/49
	2010	490	380	230,000	tr(37)	50 [20]	49/49	49/49
	2011	480	360	10,000	tr(20)	50 [20]	49/49	49/49
	2012	550	510	14,000	39	31 [12]	48/48	48/48
	2014	460	410	7,500	nd	50 [20]	47/48	47/48
Surface Water	2015	630	490	4,700	120	29 [11]	48/48	48/48
(pg/L)	2016	330	300	14,000	tr(23)	50 [20]	48/48	48/48
	2018	310	300	4,100	nd	70 [30]	42/47	42/47
	2019	290	260	2,500	nd	80 [30]	47/48	47/48
	2020	330	260	3,700	tr(52)	80 [30]	46/46	46/46
	2021	330	300	3,700	tr(30)	80 [30]	47/47	47/47

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in surface water during FY2009~2021

(Note) No monitoring was conducted in FY2013 and FY2017.

<Sediment>

The presence of the substance in sediment was monitored at 60 sites, and it was detected at all 60 valid sites adopting the detection limit of 3pg/g-dry, and the detection range was tr(5) ~ 620pg/g-dry.

As results of the inter-annual trend analysis from FY2009 to FY2021, reduction tendencies in specimens from river mouth areas and sea areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in sediment during FY2009~2021

Perfluorooctane sulfonic aci	d Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection	Frequency
(PFOS)	year	mean *	1110 01011			limit	Sample	Site
	2009	78	97	1,900	nd	9.6 [3.7]	180/190	64/64
	2010	82	100	1,700	tr(3)	5 [2]	64/64	64/64
	2011	92	110	1,100	nd	5 [2]	63/64	63/64
	2012	68	84	1,200	tr(7)	9 [4]	63/63	63/63
Sediment	2014	59	79	980	nd	5 [2]	62/63	62/63
	2015	91	88	2,200	7	3 [1]	62/62	62/62
(pg/g-dry)	2016	54	61	690	5	5 [2]	62/62	62/62
	2018	43	57	700	nd	7 [3]	55/61	55/61
	2019	44	46	460	nd	9 [4]	60/61	60/61
	2020	40	48	450	tr(3)	5 [2]	58/58	58/58
	2021	52	62	620	tr(5)	6 [3]	60/60	60/60

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) No monitoring was conducted in FY2013.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was tr(2) ~ 250pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was tr(2) ~ 4,500pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 2pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 2pg/g-wet, and the detection range was 590 ~ 15,000pg/g-wet.

As a result of the inter-annual trend analysis from FY2009 to FY2021, although the number of detections was small, the detection rate of specimens from the bivalves was decreased, it suggested a reduction tendency of the concentrations.

Perfluorooctane sulfonic acid	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection I	Frequenc
(PFOS)	year	mean ^{*1}				limit	Sample	Site
	2009	24	28	640	nd	19 [7.4]	17/31	5/7
	2010	72	85	680	nd	25 [9.6]	5/6	5/6
	2011	38	44	100	16	10 [4]	4/4	4/4
	2012	27	21	160	tr(4)	7 [3]	5/5	5/5
Bivalves	2014	8	6	93	nd	5 [2]	2/3	2/3
(pg/g-wet)	2015	7	tr(2)	210	nd	4 [2]	2/3	2/3
(pg/g-wei)	2016	11	tr(6)	160	nd	9 [3]	2/3	2/3
	2017	22	34	160	nd	12 [4]	2/3	2/3
	2019	10	tr(4)	140	tr(2)	6 [2]	3/3	3/3
	2020	16	8	130	tr(4)	5 [2]	3/3	3/3
	2021	14	5	250	tr(2)	5 [2]	3/3	3/3
	2009	220	230	15,000	nd	19 [7.4]	83/90	17/18
	2010	390	480	15,000	nd	25 [9.6]	17/18	17/18
	2011	82	95	3,200	nd	10 [4]	16/18	16/18
	2012	110	130	7,300	tr(5)	7 [3]	19/19	19/19
F:-1	2014	82	83	4,600	nd	5 [2]	18/19	18/19
Fish	2015	91	90	2,500	nd	4 [2]	18/19	18/19
(pg/g-wet)	2016	79	80	5,200	nd	9 [3]	18/19	18/19
	2017	150	150	11,000	tr(4)	12 [4]	19/19	19/19
	2019	67	80	3,600	tr(3)	6 [2]	16/16	16/16
	2020	76	100	3,000	5	5 [2]	18/18	18/18
	2021	81	130	4,500	tr(2)	5 [2]	18/18	18/18

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in wildlife (bivalves, fish and birds) during FY2009~2021

Perfluorooctane sulfonic acid	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection I	Frequency
(PFOS)	year	mean ^{*1}				limit	Sample	Site
	2009	300	360	890	37	19 [7.4]	10/10	2/2
	2010	1,300		3,000	580	25 [9.6]	2/2	2/2
	2011			110	110	10 [4]	1/1	1/1
	2012	160		410	63	7 [3]	2/2	2/2
Birds *2	2014	4,600		110,000	190	5 [2]	2/2	2/2
	2015			790	790	4 [2]	1/1	1/1
(pg/g-wet)	2016	3,600		9,100	1,400	9 [3]	2/2	2/2
	2017	9,800		32,000	3,000	12 [4]	2/2	2/2
	2019			360	360	6 [2]	1/1	1/1
	2020			8,500	8,500	5 [2]	1/1	1/1
	2021	3,000		15,000	590	5 [2]	2/2	2/2

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) *2: There is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2013 and FY2018.

<Air>

The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.07pg/m^3 , and the detection range was $0.70 \sim 6.5 \text{pg/m}^3$.

As a result of the inter-annual trend analysis from FY2010 to FY2021, a reduction tendency in specimens from warm season was identified as statistically significant.

Perfluorooct ane sulfonic	Monitored year	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection 1	Frequency
acid (PFOS)	Monitored year	mean	Wieulali	Iviaxiiliulii	Willinnun	limit	Sample	Site
	2010 Warm season	5.2	5.9	14	1.6	0.4 [0.1]	37/37	37/37
	2010 Cold season	4.7	4.4	15	1.4	0.4 [0.1]	37/37	37/37
	2011 Warm season	4.4	4.2	10	0.9	0.5.[0.2]	35/35	35/35
	2011 Cold season	3.7	3.8	9.5	1.3	0.5 [0.2]	37/37	37/37
	2012 Warm season	3.6	3.8	8.9	1.3	0.5.[0.2]	36/36	36/36
	2012 Cold season	2.7	3.0	5.9	1.0	0.5 [0.2]	36/36	36/36
Air	2013 Warm season	4.6	5.2	9.6	1.2	0.2 [0.1]	36/36	36/36
	2013 Cold season	3.7	3.9	7.4	1.6	0.3 [0.1]	36/36	36/36
(pg/m^3)	2014 Warm season	3.1	3.2	8.6	0.52	0.17 [0.06]	36/36	36/36
	2015 Warm season	2.8	2.6	8.8	0.59	0.19 [0.06]	35/35	35/35
	2016 Warm season	3.1	2.4	9.3	0.7	0.6 [0.2]	37/37	37/37
	2017 Warm season	2.9	2.7	8.9	1.1	0.3 [0.1]	37/37	37/37
	2019 Warm season	3.8	4.1	7.8	1.3	0.8 [0.3]	36/36	36/36
	2020 Warm season	3.4	4.2	7.2	1.1	0.3 [0.1]	37/37	37/37
	2021 Warm season	2.8	3.1	6.5	0.70	0.18 [0.07]	35/35	35/35

. . . ~ -1 (DEC C) -. . E1/2010 2021 ~ -

(Note) No monitoring was conducted in FY2018.

[16] Perfluorooctanoic acid (PFOA)

· History and state of monitoring

Perfluorooctanoic acids (PFOA) have been used as water repellent agent, oil repellent agent and surface acting agent. PFOA, its salts and PFOA-related compounds were adopted as target chemicals at the COP9 of the Stockholm convention on Persistent Organic Pollutants held from late April to early May 2019. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2021.

As a continuous survey, the first survey was in FY2009. Under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was monitored in surface water in FY2002, sediment and wildlife (fish) in FY2003, air in FY2004, surface water, sediment and wildlife (bivalves and fish) in FY2005.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water and sediment in FY2009~2012, FY2014~2016, and FY2018~2020, in wildlife (bivalves, fish and birds) in FY2009~2012, FY2014~2017, FY2019 and FY2020, in air in FY2010~2012, FY2014~2017 and FY2019surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2010~2017 and FY2019~2021.

• Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 40pg/L, and the detection range was $230 \sim 23,000$ pg/L.

As results of the inter-annual trend analysis from FY2009 to FY2021, reduction tendencies in specimens from river areas, lake areas and river mouth areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

Perfluorooctanoic	Monitored	Geometric				Quantification	Detection 1	Frequency
acid (PFOA)	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	1,600	1,300	31,000	250	59 [23]	49/49	49/49
	2010	2,700	2,400	23,000	190	60 [20]	49/49	49/49
	2011	2,000	1,700	50,000	380	50 [20]	49/49	49/49
	2012	1,400	1,100	26,000	240	170 [55]	48/48	48/48
Surface Water	2014	1,400	1,400	26,000	140	50 [20]	48/48	48/48
	2015	1,400	1,200	17,000	310	56 [22]	48/48	48/48
(pg/L)	2016	1,300	1,200	21,000	260	50 [20]	48/48	48/48
	2018	1,100	1,100	28,000	160	70 [30]	47/47	47/47
	2019	1,000	900	11,000	160	90 [40]	48/48	48/48
	2020	1,100	920	16,000	220	90 [30]	46/46	46/46
	2021	1,100	870	23,000	230	90 [40]	47/47	47/47

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in surface water during FY2009~2021

(Note) No monitoring was conducted in FY2013 and FY2017.

<Sediment>

The presence of the substance in sediment was monitored at 60 sites, and it was detected at 58 of the 60 valid sites adopting the detection limit of 4pg/g-dry, and the detection range was up to 260pg/g-dry.

As results of the inter-annual trend analysis from FY2009 to FY2021, a reduction tendencies in specimens from river mouth areas was identified as statistically significant and a reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in sediment during FY2009~2021

Perfluorooctanoic	Monitored	Geometric				Quantification	Detection l	Frequency
acid (PFOA)	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	27	24	500	nd	8.3 [3.3]	182/190	64/64
	2010	28	33	180	nd	12 [5]	62/64	62/64
	2011	100	93	1,100	22	5 [2]	64/64	64/64
	2012	51	48	280	12	4 [2]	63/63	63/63
C - 1:	2014	44	50	190	tr(6)	11 [5]	63/63	63/63
Sediment	2015	48	48	270	8	3 [1]	62/62	62/62
(pg/g-dry)	2016	27	27	190	nd	9 [4]	61/62	61/62
	2018	23	25	190	nd	9 [4]	58/61	58/61
	2019	21	22	190	tr(3)	5 [2]	61/61	61/61
	2020	21	22	190	nd	8 [3]	57/58	57/58
	2021	24	26	260	nd	9 [4]	58/60	58/60

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) No monitoring was conducted in FY2013 and FY2017.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was up to 16pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 14 of the 18 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was up to 40pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 2pg/g-wet, and the detected at both valid areas adopting the detection limit of 2pg/g-wet, and the detected at both valid areas adopting the detection limit of 2pg/g-wet, and the detection range was $46 \sim 410pg/g$ -wet.

As results of the inter-annual trend analysis from FY2009 to FY2021, although the number of detections was small, the detection rates of specimens from bivalves and fish were decreased, it suggested reduction tendencies of the concentrations.

Perfluorooctanoic	Monitored	Geometric				Quantification	Detection I	requenc
acid (PFOA)	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	tr(20)	tr(21)	94	nd	25 [9.9]	27/31	7/7
	2010	28	33	76	nd	26 [9.9]	5/6	5/6
	2011	tr(19)	tr(22)	tr(40)	nd	41 [14]	3/4	3/4
	2012	tr(21)	tr(23)	46	nd	38 [13]	4/5	4/5
Bivalves	2014	tr(4)	tr(6)	10	nd	10 [3]	2/3	2/3
	2015	tr(6.5)	tr(6.3)	26	nd	10 [3.4]	2/3	2/3
(pg/g-wet)	2016	4	7	9	nd	4 [2]	2/3	2/3
	2017	tr(6)	tr(7)	18	nd	12 [4]	2/3	2/3
	2019	tr(3)	tr(4)	tr(5)	tr(2)	6 [2]	3/3	3/3
	2020	6	tr(5)	14	tr(3)	6 [2]	3/3	3/3
	2021	6	11	16	nd	6 [2]	2/3	2/3
	2009	tr(23)	tr(19)	490	nd	25 [9.9]	74/90	17/18
	2010	tr(13)	tr(11)	95	nd	26 [9.9]	13/18	13/18
	2011	nd	nd	51	nd	41 [14]	7/18	7/18
	2012	tr(35)	tr(32)	86	nd	38 [13]	18/19	18/19
Fish	2014	tr(6)	tr(4)	85	nd	10 [3]	11/19	11/19
(pg/g-wet)	2015	tr(5.7)	tr(5.3)	99	nd	10 [3.4]	11/19	11/19
(PE/E-wet)	2016	4	tr(3)	20	tr(2)	4 [2]	19/19	19/19
	2017	tr(6)	tr(4)	79	nd	12 [4]	12/19	12/19
	2019	tr(3)	tr(3)	18	nd	6 [2]	12/16	12/16
	2020	tr(4)	tr(2)	49	nd	6 [2]	12/18	12/18
	2021	tr(4)	tr(3)	40	nd	6 [2]	14/18	14/18

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in wildlife (bivalves, fish and birds) during FY2009~2021

Perfluorooctanoic	Monitored	Geometric				Quantification	Detection I	Frequency
acid (PFOA)	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	32	29	58	tr(16)	25 [9.9]	10/10	2/2
	2010	38		48	30	26 [9.9]	2/2	2/2
	2011			nd	nd	41 [14]	0/1	0/1
	2012	tr(27)		tr(28)	tr(26)	38 [13]	2/2	2/2
Birds *2	2014	62		2,600	nd	10 [3]	1/2	1/2
	2015			31	31	10 [3.4]	1/1	1/1
(pg/g-wet)	2016	130		320	52	4 [2]	2/2	2/2
	2017	240		680	85	12 [4]	2/2	2/2
	2019			27	27	6 [2]	1/1	1/1
	2020			280	280	6 [2]	1/1	1/1
	2021	140		410	46	6 [2]	2/2	2/2

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) *2: There is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2013 and FY2018.

<Air>

The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.3 pg/m³, and the detection range was $2.6 \sim 42$ pg/m³.

As a result of the inter-annual trend analysis from FY2010 to FY2021, a reduction tendency in specimens from warm season was identified as statistically significant.

Perfluorooct		Geometric			0	Quantification	Detection	Frequency
anoic acid (PFOA)	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2010 Warm season	25	26	210	4.0	0.5 [0.2]	37/37	37/37
	2010 Cold season	14	14	130	2.4	0.3 [0.2]	37/37	37/37
	2011 Warm season	20	18	240	tr(3.5)	5 4 [1 0]	35/35	35/35
	2011 Cold season	12	11	97	nd	5.4 [1.8]	36/37	36/37
	2012 Warm season	11	12	120	1.9	0.7.[0.2]	36/36	36/36
	2012 Cold season	6.9	6.0	48	1.6	0.7 [0.2]	36/36	36/36
Air	2013 Warm season	23	23	190	3.2	1.8 [0.6]	36/36	36/36
-	2013 Cold season	14	14	53	3.0	1.8 [0.0]	36/36	36/36
(pg/m^3)	2014 Warm season	28	29	210	5.4	0.4 [0.1]	36/36	36/36
	2015 Warm season	19	17	260	tr(3.7)	4.2 [1.4]	35/35	35/35
	2016 Warm season	17	15	140	3.2	1.3 [0.4]	37/37	37/37
	2017 Warm season	14	13	150	tr(2.0)	3.3 [1.1]	37/37	37/37
	2019 Warm season	14	14	46	5.5	0.8 [0.3]	36/36	36/36
	2020 Warm season	13	12	55	4.9	0.8 [0.3]	37/37	37/37
	2021 Warm season	8.3	7.5	42	2.6	0.7 [0.3]	35/35	35/35

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in air during FY2010~2021

(Note) No monitoring was conducted in FY2018.

[17] Pentachlorobenzene

· History and state of monitoring

Pentachlorobenzene have been used as used in PCB products, in dyestuff carriers, as a fungicide, a flame retardant and as a chemical intermediate e.g. previously for the production of quintozene. PeCB might still be used as an intermediate. PeCB is also produced unintentionally during combustion, thermal and industrial processes. It also present as impurities in products such as solvents or pesticides. It was historically never registered under the Agricultural Chemicals Regulation Law. The substance is produced as a by-product when agricultural chemicals are produced. In addition, it is generated unintentionally at the time of combustion. The substance was adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

As a continuous survey to FY2001, undert the framework "the Wildlife Monitoring of Chemicals," the substance was monitored in wildlife (bivalves and fish) in FY1980, wildlife (bivalves, fish and birds) from FY1979 to FY1986, in FY1988, FY1990, FY1992, FY1996 and FY1999.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water in FY2007, FY2010~2015 and FY2017~2021, in sediment and wildlife (bivalves, fish and birds) in FY2007 and FY2010~2021, in air in FY2007, FY2009~2021.

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 0.4 pg/L, and the detection range was $1.2 \sim 140$ pg/L.

As a result of the inter-annual trend analysis from FY2010 to FY2021, a reduction tendency in specimens from river areas was identified as statistically significant.

	Monitored	Geometric				Quantification	Detection 1	Frequency
Pentachlorobenzene	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	nd	nd	nd	nd	3,300 [1,300]	0/48	0/48
	2010	8	5	100	tr(1)	4 [1]	49/49	49/49
	2011	11	11	170	2.6	2.4 [0.9]	49/49	49/49
	2012	14	11	170	3	3 [1]	48/48	48/48
	2013	12	10	170	tr(3)	4 [1]	48/48	48/48
Surface Water	2014	10	7.0	180	2.8	0.8 [0.3]	48/48	48/48
(pg/L)	2015	13	11	180	3.0	1.5 [0.5]	48/48	48/48
	2017	8.8	5.9	140	2.0	1.4 [0.6]	47/47	47/47
	2018	12	9.7	320	2.7	1.3 [0.5]	47/47	47/47
	2019	9	7	360	tr(2)	6 [2]	48/48	48/48
	2020	7	5	500	tr(2)	3 [1]	46/46	46/46
	2021	4.8	3.5	140	1.2	1.1 [0.4]	47/47	47/47

Stocktaking of the detection of Pentachlorobenzene in surface water during FY2007~2021

(Note) No monitoring was conducted in FY2008, FY2009 and FY2016.

<Sediment>

The presence of the substance in sediment was monitored at 60 sites, and it was detected at all 60 valid sites adopting the detection limit of 0.3pg/g-dry, and the detection range was tr(0.8) ~ 2,300pg/g-dry.

Stocktaking of the detection of Pentachlorobenzene in sediment during FY2007~2021

	Monitored	Geometric				Quantification	Detection	Frequency
Pentachlorobenzene	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	tr(46)	nd	2,400	nd	86 [33]	79/192	35/64
	2010	90	95	4,200	1.0	0.9 [0.3]	64/64	64/64
	2011	95	76	4,500	3	5 [2]	64/64	64/64
	2012	33	33	1,100	nd	2.5 [0.8]	62/63	62/63
	2013	84	98	3,800	2.2	2.1 [0.7]	63/63	63/63
C - l'm - nt	2014	70	78	3,600	tr(1.2)	2.4 [0.8]	63/63	63/63
Sediment	2015	65	69	2,600	2.4	1.5 [0.5]	62/62	62/62
(pg/g-dry)	2016	62	71	3,700	tr(1.1)	1.8 [0.6]	62/62	62/62
	2017	61	61	2,800	1.3	1.2 [0.5]	62/62	62/62
	2018	72	77	3,400	1.2	0.9 [0.3]	61/61	61/61
	2019	29	27	3,300	1.2	0.9 [0.4]	61/61	61/61
	2020	63	65	2,900	1.8	0.4 [0.2]	58/58	58/58
	2021	28	32	2,300	tr(0.8)	0.9 [0.3]	60/60	60/60

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2007.

(Note 2) No monitoring was conducted in FY2008 and FY2009.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $4 \sim 15$ pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 16 of the 18 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was up to 150pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 1pg/g-wet, and the detection range was 300 ~ 470 pg/g-wet.

As results of the inter-annual trend analysis from FY2010 to FY2021, although the number of detections was small, the detection rate of specimens from the bivalves was decreased, it suggested a reduction tendency of the concentrations.

	Monitored	Geometric				Quantification	Detection l	Frequency
Pentachlorobenzene	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	nd	nd	tr(150)	nd	180 [61]	1/31	1/7
	2010	18	16	110	5.9	1.9 [0.7]	6/6	6/6
	2011	28	16	260	10	4 [1]	4/4	4/4
	2012	16	9.7	110	tr(5.8)	8.1 [2.7]	5/5	5/5
	2013	nd	nd	87	nd	78 [26]	1/5	1/5
D' 1	2014	14	11	23	10	9.3 [3.1]	3/3	3/3
Bivalves	2015	tr(11)	tr(9.7)	18	tr(7.4)	12 [4.0]	3/3	3/3
(pg/g-wet)	2016	tr(13)	tr(12)	15	tr(11)	15 [5.1]	3/3	3/3
	2017	18	19	22	14	4[1]	3/3	3/3
	2018	tr(8)	tr(7)	tr(13)	tr(5)	15 [5]	3/3	3/3
	2019	10	11	14	7	3 [1]	3/3	3/3
	2020	9	9	9	8	3 [1]	3/3	3/3
	2021	9	11	15	4	4 [1]	3/3	3/3
	2007	nd	nd	480	nd	180 [61]	36/80	10/16
	2010	42	37	230	5.6	1.9 [0.7]	18/18	18/18
	2011	36	37	220	5	4 [1]	18/18	18/18
	2012	29	37	190	tr(5.0)	8.1 [2.7]	19/19	19/19
	2013	tr(35)	tr(40)	160	nd	78 [26]	11/19	11/19
Fish	2014	38	51	280	nd	9.3 [3.1]	18/19	18/19
(pg/g-wet)	2015	26	40	230	nd	12 [4.0]	18/19	18/19
(pg/g-wet)	2016	19	22	150	nd	15 [5.1]	16/19	16/19
	2017	29	32	170	4	4 [1]	19/19	19/19
	2018	19	29	70	nd	15 [5]	15/18	15/18
	2019	20	19	280	3	3 [1]	16/16	16/16
	2020	11	19	120	nd	3 [1]	14/18	14/18
	2021	21	33	150	nd	4 [1]	16/18	16/18

Stocktaking of the detection of Pentachlorobenzene in wildlife (bivalves, fish and birds) during FY2007~2021

	Monitored	Geometric				Quantification	Detection I	Frequency
Pentachlorobenzene	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	tr(140)	tr(140)	210	tr(89)	180 [61]	10/10	2/2
	2010	91		170	49	1.9 [0.7]	2/2	2/2
	2011			52	52	4 [1]	1/1	1/1
	2012	77		130	46	8.1 [2.7]	2/2	2/2
	2013	300		390	230	78 [26]	2/2	2/2
Birds *2	2014	56		560	tr(5.6)	9.3 [3.1]	2/2	2/2
	2015			53	53	12 [4.0]	1/1	1/1
(pg/g-wet)	2016	240		570	100	15 [5.1]	2/2	2/2
	2017	130		470	35	4 [1]	2/2	2/2
	2018	370		480	280	15 [5]	2/2	2/2
	2019			470	470	3 [1]	1/1	1/1
	2020			390	390	3 [1]	1/1	1/1
	2021	380		470	300	4 [1]	2/2	2/2

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2007.

(Note 2) *2: There is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2008 and FY2009.

<Air>

The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.05 pg/m^3 , and the detection range was $36 \sim 130 \text{ pg/m}^3$.

Pentachloro		Geometric		- C		Quantification	Detection I	Frequency
benzene	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007 Warm season	85	83	310	18	12 [4 9]	78/78	26/26
	2007 Cold season	60	55	220	27	12 [4.8]	75/75	25/25
	2009 Warm season	63	64	210	20	6 4 [2 5]	111/111	37/37
	2009 Cold season	25	22	120	tr(5.0)	6.4 [2.5]	111/111	37/37
	2010 Warm season	68	73	140	36	1 2 [0 5]	37/37	37/37
	2010 Cold season	70	69	180	37	1.2 [0.5]	37/37	37/37
	2011 Warm season	61	60	140	30	2 1 [0 70]	35/35	35/35
	2011 Cold season	59	57	180	26	2.1 [0.70]	37/37	37/37
	2012 Warm season	58	57	150	31	1 9 [0 4]	36/36	36/36
Air	2012 Cold season	55	55	120	27	1.8 [0.6]	36/36	36/36
(pg/m^3)	2013 Warm season	55	58	160	27	1 7 [0 6]	36/36	36/36
	2013 Cold season	55	52	110	34	1.7 [0.6]	36/36	36/36
	2014 Warm season	83	86	210	39	0.9 [0.3]	36/36	36/36
	2015 Warm season	67	68	170	34	0.6 [0.2]	35/35	35/35
	2016 Warm season	75	75	220	33	0.5 [0.2]	37/37	37/37
	2017 Warm season	71	69	200	32	0.3 [0.1]	37/37	37/37
	2018 Warm season	59	61	100	30	0.22 [0.08]	37/37	37/37
	2019 Warm season	64	64	110	36	0.09 [0.04]	36/36	36/36
	2020 Warm season	69	63	180	35	0.17 [0.07]	37/37	37/37
	2021 Warm season	61	63	130	36	0.13 [0.05]	35/35	35/35

Stocktaking of the detection of Pentachlorobenzene in air during FY2007~2021

(Note) No monitoring was conducted in FY2008.

[18] Endosulfans

· History and state of monitoring

Endosulfans had been used an insecticide that has been used since the 1950s to control crop pests, tsetse flies and ectoparasites of cattle and as a wood preservative. Endosulfans were adopted as target chemicals at the COP5 of the Stockholm convention on Persistent Organic Pollutants in Apri 2011. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in May 2014.

As a continuous survey, the first survey was in FY2011, under the framework of the Environmental Survey of Chemical Substances up to FY2001, the substance was monitored in surface water and sediment in FY1982 and air in FY1996.

Under the framework of the Environmental Monitoring, the substances were monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2011 and FY2012, in wildlife (bivalves, fish and birds) and air in FY2014 and FY2015 and in air in FY2016, in surface water, sediment in FY2018 and in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2021.

Monitoring results

<Surface Water>

 α -Endosulfan: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 17 of the 47 valid sites adopting the detection limit of 40pg/L, and the detection range was up to 580pg/L.

 β -Endosulfan: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 11 of the 47 valid sites adopting the detection limit of 10pg/L, and the detection range was up to 250pg/L.

	Monitored	Geometric				Quantification	Detection l	Frequency
α-Endosulfan	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	nd	nd	180	nd	120 [50]	2/49	2/49
Surface Water	2012	nd	nd	30	nd	27 [10]	3/48	3/48
(pg/L)	2018	nd	nd	tr(50)	nd	120 [40]	1/47	1/47
	2021	nd	nd	580	nd	90 [40]	17/47	17/47
	Monitored	Geometric				Quantification	Detection l	Frequency
β -Endosulfan	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	nd	nd	270	nd	22 [9]	8/49	8/49
Surface Water	2012	nd	nd	tr(12)	nd	24 [9]	1/48	1/48
(pg/L)	2018	nd	nd	tr(20)	nd	30 [10]	3/47	3/47
	2021	nd	nd	250	nd	30 [10]	11/47	11/47

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in surface water during FY2011~2021

(Note) No monitoring was conducted in FY2013~2017, FY2019 and FY2020.

<Sediment>

 α -Endosulfan: The presence of the substance in sediment was monitored at 60 sites, and it was detected at 50 of the 60 valid sites adopting the detection limit of 0.6pg/g-dry, and the detection range was up to 53pg/g-dry.

 β -Endosulfan: The presence of the substance in sediment was monitored at 60 sites, and it was detected at 12 of the 60 valid sites adopting the detection limit of 0.9pg/g-dry, and the detection range was up to 57pg/g-dry.

Stocktaking of the detection of α -Endosulfan and	<i>B</i> -Endosulfan in sediment during FY2011~2021

	Monitored	Geometric				Quantification	Detection 1	Frequency
α-Endosulfan	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	tr(13)	tr(11)	480	nd	30 [10]	35/64	35/64
Sediment	2012	nd	nd	480	nd	13 [5]	19/63	19/63
(pg/g-dry)	2018	nd	nd	30	nd	5 [2]	21/61	21/61
	2021	1.7	1.8	53	nd	1.4 [0.6]	50/60	50/60
β -Endosulfan	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
	2011	tr(5)	tr(4)	240	nd	9 [4]	38/64	38/64
Sediment	2012	nd	nd	250	nd	13 [5]	8/63	8/63
(pg/g-dry)	2018	nd	nd	41	nd	5 [2]	11/61	11/61
	2021	nd	nd	57	nd	2.2 [0.9]	12/60	12/60

(Note) No monitoring was conducted in FY2013~2017, FY2019 and FY2020.

<Wildlife>

 α -Endosulfan: The presence of the substance in bivalves was monitored in 3 areas, and it was not detected at all 3 valid areas adopting the detection limit of 20pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was not detected at all 18 valid areas adopting the detection limit of 20pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was not detected at both valid areas adopting the detection limit of 20pg/g-wet.

 β -Endosulfan: The presence of the substance in bivalves was monitored in 3 areas, and it was not detected at all 3 valid areas adopting the detection limit of 6pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was not detected at all 18 valid areas adopting the detection limit of 6pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was not detected at both valid areas adopting the detection limit of 6pg/g-wet.

	Monitored	Geometric				Quantification	Detection I	Frequency
α-Endosulfan	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	62	120	330	nd	50 [20]	3/4	3/4
Bivalves	2012	tr(54)	tr(61)	200	nd	71 [24]	4/5	4/5
	2014	tr(20)	nd	130	nd	60 [20]	1/3	1/3
(pg/g-wet)	2015	nd	nd	130	nd	120 [38]	1/3	1/3
	2021	nd	nd	nd	nd	60 [20]	0/3	0/3
	2011	tr(20)	tr(20)	140	nd	50 [20]	10/18	10/18
Fish	2012	nd	nd	tr(54)	nd	71 [24]	6/19	6/19
(pg/g-wet)	2014	nd	nd	tr(30)	nd	60 [20]	1/19	1/19
(pg/g-wet)	2015	nd	nd	tr(49)	nd	120 [38]	1/19	1/19
	2021	nd	nd	nd	nd	60 [20]	0/18	0/18
	2011			nd	nd	50 [20]	0/1	0/1
Birds *	2012	nd		nd	nd	71 [24]	0/2	0/2
(pg/g-wet)	2014	nd		nd	nd	60 [20]	0/2	0/2
(pg/g-wet)	2015			nd	nd	120 [38]	0/1	0/1
	2021	nd		nd	nd	60 [20]	0/2	0/2
	Monitored	Geometric				Quantification	Detection I	Frequency
β -Endosulfan	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	16	26	52	4	11 [4]	4/4	4/4
Bivalves	2012	15	16	43	nd	14 [5]	4/5	4/5
	2014	nd	nd	23	nd	19 [6]	1/3	1/3
(pg/g-wet)	2015	nd	nd	tr(22)	nd	32 [11]	1/3	1/3
	2021	nd	nd	nd	nd	18 [6]	0/3	0/3

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in wildlife (bivalves, fish and birds) during FY2011~2021

	Monitored	Geometric				Quantification	Detection I	Frequency
β -Endosulfan	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	nd	nd	37	nd	11 [4]	9/18	9/18
Fish	2012	nd	nd	15	nd	14 [5]	6/19	6/19
	2014	nd	nd	tr(8)	nd	19 [6]	3/19	3/19
(pg/g-wet)	2015	nd	nd	tr(11)	nd	32 [11]	1/19	1/19
	2021	nd	nd	nd	nd	18 [6]	0/18	0/18
	2011			nd	nd	11 [4]	0/1	0/1
D:1- *	2012	nd		tr(7)	nd	14 [5]	1/2	1/2
Birds*	2014	nd		tr(8)	nd	19 [6]	1/2	1/2
(pg/g-wet)	2015			nd	nd	32 [11]	0/1	0/1
	2021	nd		nd	nd	18 [6]	0/2	0/2

(Note 1) *: There is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species.

(Note 2) No monitoring was conducted in FY2013 and FY2016~2020.

<Air>

 α -Endosulfan: The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.2pg/m³, and the detection range was 0.4 ~ 6.0pg/m³.

 β -Endosulfan: The presence of the substance in air was monitored at 35 sites, and it was detected at 5 of the 35 valid sites adopting the detection limit of 0.3pg/m³, and the detection range was up to tr(0.5)pg/m³.

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in air during FY2011~2021
--

		Geometric				Quantification	Detection	Frequency
α-Endosulfan	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011 Warm season	26	24	190	tr(7.8)	12 [4 0]	35/35	35/35
	2011 Cold season	tr(9.6)	tr(9.8)	45	nd	12 [4.0]	35/37	35/37
	2012 Warm season	23	22	98	tr(6.0)	16 [5 2]	36/36	36/36
大気	2012 Cold season	nd	nd	19	nd	16 [5.3]	15/36	15/36
(pg/m^3)	2014 Warm season	20	23	90	2.6	0.8 [0.3]	36/36	36/36
40	2015 Warm season	10	11	140	1.6	1.0 [0.3]	35/35	35/35
	2016 Warm season	8.9	9.3	46	1.0	0.8 [0.3]	37/37	37/37
	2021 Warm season	1.4	1.3	6.0	0.4	0.4 [0.2]	35/35	35/35
		Commentie				Quantification	Detection	Frequency
β -Endosulfan	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011 Warm season	2.1	1.8	11	nd	1 2 [0 20]	34/35	34/35
	2011 Cold season	tr(0.80)	tr(0.90)	8.3	nd	1.2 [0.39]	31/37	31/37
	2012 Warm season	1.3	1.3	18	nd	1 2 [0 4]	33/36	33/36
大気	2012 Cold season	nd	nd	1.7	nd	1.2 [0.4]	17/36	17/36
(pg/m^3)	2014 Warm season	1.3	1.4	6.1	nd	1.2 [0.4]	33/36	33/36
	2015 Warm season	0.7	0.6	38	nd	0.5 [0.2]	33/35	33/35
	2016 W	0.8	tr(0.7)	3.3	nd	0.8 [0.3]	34/37	34/37
	2016 Warm season	0.8	u(0.7)	5.5	nu	0.0 [0.5]	54/57	54/57

(Note) No monitoring was conducted in FY2013 and FY2016~2020.

[19] 1,2,5,6,9,10-Hexabromocyclododecanes (reference)

· History and state of monitoring

1,2,5,6,9,10-Hexabromocyclododecanes have been used a flame retardant additive, providing fire protection during the service life of vehicles, buildings or articles, as well as protection while stored. α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane and γ -1,2,5,6,9,10-Hexabromocyclododecane were adopted as target chemicals at the COP6 of the Stockholm convention on Persistent Organic Pollutants held from late April to early May 2013, and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in May 2014.

As a continuous survey, the first survey was in FY2011, under the framework of the Environmental Survey of Chemical Substances up to FY2001, the substances were monitored in surface water, sediment and wildlife (fish) in FY1987. In the framework of the Environmental Survey and Monitoring of Chemicals after FY2002 under the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was monitored in surface water and sediment in FY2003, in wildlife (fish) in FY2004.

Under the framework of the Environmental Monitoring, α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane, γ -1,2,5,6,9,10-Hexabromocyclododecane, δ -1,2,5,6,9,10-Hexabromo cyclododecane and ϵ -1,2,5,6,9,10-Hexabromocyclododecan have been monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY2011, in sediment, wildlife (bivalves, fish and birds) and air in FY2012, surface water, wildlife (bivalves, fish and birds) and air in FY2014 and in sediment, wildlife (bivalves, fish and birds) and air in FY2015. And α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane and γ -1,2,5,6,9,10-Hexabromocyclododecane have been monitored in sediment, wildlife (bivalves, fish and birds) and air in FY2016 in wildlife (bivalves, fish and birds) and air in FY2017 in wildlife (bivalves, fish and birds) in FY2018 in wildlife (bivalves, fish and birds) and air in FY2019.

No monitoring was conducted after FY2020. For reference, the monitoring results up to FY2019 are given below.

Monitoring results until FY2019

<Surface Water>

Stocktaking of the d	etection of	1,2,5,6,9,10-1	Hexabromo	ocyclododeca	anes in surfa	ace water in FY2	011 and FY	2014
α-1,2,5,6,9,10-Hexabro	Manitarad	Geometric				Quantification	Detection I	Frequency
mocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	6,300	nd	1,500 [600]	4/47	4/47
(pg/L)	2014	nd	nd	1,600	nd	1,500 [600]	1/48	1/48
ρ 1 2 5 6 0 10 Haushung	Monitored	Casmatria				Quantification	Detection H	requency
β-1,2,5,6,9,10-Hexabro mocyclododecane	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	1,300	nd	1,300 [500]	4/47	4/47
(pg/L)	2014	nd	nd	tr(300)	nd	500 [200]	1/48	1/48
	Monitored	Casmatria				Quantification	Detection H	requency
γ-1,2,5,6,9,10-Hexabrom ocyclododecane	year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	65,000	nd	1,200 [500]	5/47	5/47
(pg/L)	2014	nd	nd	nd	nd	700 [300]	0/48	0/48
δ-1,2,5,6,9,10-Hexabro	Monitored	Geometric				Quantification	Detection H	requency
mocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	nd	nd	790 [300]	0/47	0/47
(pg/L)	2014	nd	nd	nd	nd	600 [200]	0/48	0/48
	Monitored	Casmatria				Quantification	Detection H	requency
ε-1,2,5,6,9,10-Hexabrom ocyclododecane	year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	nd	nd	740 [300]	0/47	0/47
(pg/L)	2014	nd	nd	nd	nd	400 [200]	0/48	0/48

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in surface water in FY2011 and FY2014

<Sediment>

Stocktaking of the d	letection of	1,2,5,6,9,10-	Hexabrom	ocyclododeca	anes in sedii	8		
α-1,2,5,6,9,10-Hexa	Monitored		Median	Maximum	Minimum	Quantification [Detection]	Detection	
bromocyclododecane	year	mean*				limit	Sample	Site
	2011	430	nd	24,000	nd	420 [280]	78/186	35/62
Sediment	2012	310	280	22,000	nd	180 [70]	47/63	47/63
(pg/g-dry)	2015	390	410	27,000	nd	150 [60]	47/62	47/62
	2016	260	210	27,000	nd	130 [60]	43/62	43/62
β-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection	Frequency
bromocyclododecane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	nd	nd	14,000	nd	250 [170]	48/186	21/62
Sediment	2012	tr(93)	nd	8,900	nd	150 [60]	29/63	29/63
(pg/g-dry)	2015	120	92	7,600	nd	150 [60]	33/62	33/62
	2016	tr(87)	nd	7,400	nd	130 [50]	31/62	31/62
y-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection	Frequency
bromocyclododecane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	670	nd	570,000	nd	400 [260]	89/186	36/62
Sediment	2012	420	330	55,000	nd	160 [60]	52/63	52/63
(pg/g-dry)	2015	330	450	60,000	nd	110 [42]	48/62	48/62
	2016	250	190	50,000	nd	150 [60]	42/62	42/62
δ-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection	Frequency
bromocyclododecane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2011	nd	nd	800	nd	350 [250]	11/186	6/62
	2012	nd	nd	680	nd	300 [100]	5/63	5/63
(pg/g-dry)	2015	nd	nd	nd	nd	180 [70]	0/62	0/62
ε-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection	Frequency
bromocyclododecane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2011	nd	nd	tr(260)	nd	280 [210]	2/186	1/62
(pg/g-dry)	2012	nd	nd	310	nd	150 [60]	7/63	7/63
(hava-ma)	2015	nd	nd	nd	nd	130 [51]	0/62	0/62

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in sediment during FY2011~2016

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2011.

(Note 2) No monitoring was conducted in FY2013 and FY2014. No monitoring of δ -1,2,5,6,9,10-Hexabromocyclododecane and ε -1,2,5,6,9,10-Hexabromocyclododecane was conducted in FY2016.

<Wildlife>

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in wildlife (bivalves, fish and birds) during FY2011~2019

α-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection	Frequency
bromocyclododecane	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	1,100	1,200	13,000	tr(86)	170 [70]	10/10	4/4
	2012	530	480	2,500	190	50 [20]	5/5	5/5
	2014	270	270	380	200	30 [10]	3/3	3/3
Bivalves	2015	260	200	560	150	30 [10]	3/3	3/3
(pg/g-wet)	2016	140	140	180	110	22 [9]	3/3	3/3
	2017	190	200	430	86	24 [9]	3/3	3/3
	2018	120	88	270	76	23 [9]	3/3	3/3
	2019	140	150	260	68	24 [9]	3/3	3/3
	2011	770	850	69,000	nd	170 [70]	41/51	16/17
	2012	510	560	8,700	nd	50 [20]	18/19	18/19
	2014	240	290	15,000	nd	30 [10]	18/19	18/19
Fish	2015	160	180	3,000	nd	30 [10]	18/19	18/19
(pg/g-wet)	2016	110	140	1,100	tr(12)	22 [9]	19/19	19/19
	2017	140	140	7,800	tr(9)	24 [9]	19/19	19/19
	2018	89	140	530	nd	23 [9]	17/18	17/18
	2019	79	92	980	nd	24 [9]	15/16	15/16

α-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection F	Frequency
bromocyclododecane	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	200	nd	530	nd	170 [70]	1/3	1/1
	2012	120		1,400	nd	50 [20]	1/2	1/2
D: 1 *)	2014	480		1,800	130	30 [10]	2/2	2/2
Birds *2	2015			80	80	30 [10]	1/1	1/1
(pg/g-wet)	2016	400		1,600	100	22 [9]	2/2	2/2
	2017 2018	330 600		2,200 610	50 590	24 [9]	2/2 2/2	2/2 2/2
	2018 2019			1,100	590 1,100	23 [9] 24 [9]	2/2	2/2 1/1
				1,100	1,100	Quantification	Detection F	
β -1,2,5,6,9,10-Hexa bromocyclododecane	Monitored year	Geometric mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	tr(70)	tr(85)	240	nd	98 [40]	7/10	3/4
	2012	tr(25)	40	90	nd	40 [10]	4/5	4/5
	2014	tr(10)	tr(10)	tr(20)	tr(10)	30 [10]	3/3	3/3
Bivalves	2015	tr(10)	tr(10)	30	nd	30 [10]	2/3	2/3
(pg/g-wet)	2016	nd	tr(8)	tr(9)	nd	21 [8]	2/3	2/3
	2017	tr(9)	nd	36	nd	23 [9]	1/3	1/3
	2018	nd	nd	nd	nd	22 [8]	0/3	0/3
	2019	nd	nd	tr(22)	nd	24 [9]	1/3	1/3
	2011	nd	nd	760	nd	98 [40]	11/51	5/17
	2012	nd	nd	40 30	nd	40 [10]	8/19	8/19 5/10
F:-1	2014	nd	nd		nd	30 [10]	5/19 2/10	5/19 2/10
Fish (pg/g-wet)	2015	nd	nd	tr(20)	nd	30 [10]	2/19	2/19
(pg/g-wet)	2016 2017	nd nd	nd nd	tr(12) tr(12)	nd nd	21 [8]	3/19 2/19	3/19 2/19
	2017	nd	nd	nd	nd	23 [9] 22 [8]	0/18	0/18
	2018	nd	nd	nd	nd	22 [8]	0/18	0/18
	2017	nd	nd	nd	nd	98 [40]	0/3	0/10
	2012	nd		nd	nd	40 [10]	0/2	0/2
	2014	nd		nd	nd	30 [10]	0/2	0/2
Birds *2	2015			nd	nd	30 [10]	0/1	0/1
(pg/g-wet)	2016	nd		nd	nd	21 [8]	0/2	0/2
	2017	nd		nd	nd	23 [9]	0/2	0/2
	2018	nd		nd	nd	22 [8]	0/2	0/2
	2019			nd	nd	24 [9]	0/1	0/1
y-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection F	Frequency
		Geometrie	Median	Maximum	Minimum	[Detection] limit	Sample	Site
bromocyclododecane	year	mean ^{*1}						
bromocyclododecane	year 2011	440	470	3,300	nd	210 [80]	8/10	4/4
bromocyclododecane	year 2011 2012	440 170	180	910	30	210 [80] 30 [10]	5/5	5/5
	year 2011 2012 2014	440 170 60	180 60	910 110	30 30	210 [80] 30 [10] 30 [10]	5/5 3/3	5/5 3/3
Bivalves	year 2011 2012 2014 2015	440 170 60 70	180 60 90	910 110 200	30 30 tr(20)	210 [80] 30 [10] 30 [10] 30 [10]	5/5 3/3 3/3	5/5 3/3 3/3
	year 2011 2012 2014 2015 2016	440 170 60 70 37	180 60 90 39	910 110 200 61	30 30 tr(20) tr(21)	210 [80] 30 [10] 30 [10] 30 [10] 24 [9]	5/5 3/3 3/3 3/3	5/5 3/3 3/3 3/3
Bivalves	year 2011 2012 2014 2015 2016 2017	440 170 60 70 37 49	180 60 90 39 30	910 110 200 61 200	30 30 tr(20) tr(21) tr(20)	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9]	5/5 3/3 3/3 3/3 3/3	5/5 3/3 3/3 3/3 3/3
Bivalves	year 2011 2012 2014 2015 2016 2017 2018	440 170 60 70 37 49 tr(19)	180 60 90 39 30 39	910 110 200 61 200 46	30 30 tr(20) tr(21) tr(20) nd	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8]	5/5 3/3 3/3 3/3 3/3 2/3	5/5 3/3 3/3 3/3 3/3 2/3
Bivalves	year 2011 2012 2014 2015 2016 2017 2018 2019	440 170 60 70 37 49 tr(19) 34	180 60 90 39 30 39 22	910 110 200 61 200 46 140	30 30 tr(20) tr(21) tr(20) nd tr(13)	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8] 22 [9]	5/5 3/3 3/3 3/3 3/3 2/3 3/3	5/5 3/3 3/3 3/3 3/3 2/3 3/3
Bivalves	year 2011 2012 2014 2015 2016 2017 2018 2019 2011	440 170 60 70 37 49 tr(19) 34 210	180 60 90 39 30 39 22 tr(90)	910 110 200 61 200 46 140 50,000	30 30 tr(20) tr(21) tr(20) nd tr(13) nd	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80]	5/5 3/3 3/3 3/3 3/3 2/3 3/3 26/51	5/5 3/3 3/3 3/3 3/3 2/3 3/3 10/17
Bivalves	year 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012	440 170 60 70 37 49 tr(19) 34 210 75	180 60 90 39 30 39 22 tr(90) 80	910 110 200 61 200 46 140 50,000 1,600	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80] 30 [10]	5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19	5/5 3/3 3/3 3/3 3/3 2/3 3/3 10/17 16/19
Bivalves (pg/g-wet)	year 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014	440 170 60 70 37 49 tr(19) 34 210 75 30	180 60 90 39 30 39 22 tr(90) 80 tr(20)	910 110 200 61 200 46 140 50,000 1,600 2,800	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80] 30 [10] 30 [10]	5/5 3/3 3/3 3/3 2/3 3/3 2/3 3/3 26/51 16/19 12/19	5/5 3/3 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19
Bivalves (pg/g-wet) Fish	year 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015	440 170 60 70 37 49 tr(19) 34 210 75 30 tr(20)	180 60 90 39 30 39 22 tr(90) 80 tr(20) tr(10)	910 110 200 61 200 46 140 50,000 1,600 2,800 230	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80] 30 [10] 30 [10] 30 [10]	5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19	5/5 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19
Bivalves (pg/g-wet)	year 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016	440 170 60 70 37 49 tr(19) 34 210 75 30 tr(20) tr(16)	180 60 90 39 30 39 22 tr(90) 80 tr(20) tr(10) tr(13)	$910 \\ 110 \\ 200 \\ 61 \\ 200 \\ 46 \\ 140 \\ 50,000 \\ 1,600 \\ 2,800 \\ 230 \\ 160 \\ 160 \\ 100 \\$	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd nd	$\begin{array}{c} 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \\ 21 \ [8] \\ 22 \ [9] \\ 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \end{array}$	5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19 11/19	5/5 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19 11/19
Bivalves (pg/g-wet) Fish	year 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2014 2015 2016 2017	440 170 60 70 37 49 tr(19) 34 210 75 30 tr(20) tr(16) tr(16)	180 60 90 39 30 39 22 tr(90) 80 tr(20) tr(10) tr(13) tr(18)	910 110 200 61 200 46 140 50,000 1,600 2,800 230 160 120	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd nd nd nd	$\begin{array}{c} 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \\ 21 \ [8] \\ 22 \ [9] \\ 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \end{array}$	5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19 11/19 12/19	5/5 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19 11/19 12/19
Bivalves (pg/g-wet) Fish	year 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2016 2017 2018	440 170 60 70 37 49 tr(19) 34 210 75 30 tr(20) tr(16) tr(16) tr(11)	180 60 90 39 30 39 22 tr(90) 80 tr(20) tr(10) tr(13) tr(18) tr(11)	$\begin{array}{r} 910\\ 110\\ 200\\ 61\\ 200\\ 46\\ 140\\ \hline 50,000\\ 1,600\\ 2,800\\ 230\\ 160\\ 120\\ 130\\ \end{array}$	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd nd nd nd nd nd	$\begin{array}{c} 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \\ 21 \ [8] \\ 22 \ [9] \\ 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \\ 24 \ [9] \\ 21 \ [8] \end{array}$	5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19 11/19 12/19 10/18	5/5 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19 11/19 12/19 10/18
Bivalves (pg/g-wet) Fish	year 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2017 2018 2019 2014 2019 2014 2019 2014 2019 2014 2015 2016 2017 2018 2019 2014 2015 2016 2017 2018 2019 2014 2015 2016 2017 2018 2019 2014 2015 2016 2017 2018 2019 2014 2015 2016 2017 2018 2019 2011 2012 2014 2017 2018 2019 2011 2015 2016 2017 2018 2019 2011 2015 2016 2017 2018 2019 2011 2015 2016 2017 2018 2019 2019 2019 2019 2011 2019 2016 2017 2018 2019 2019 2019 2019 2019 2019 2019 2016 2017 2018 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 2018 2019	440 170 60 70 37 49 tr(19) 34 210 75 30 tr(20) tr(16) tr(16) tr(11) tr(12)	180 60 90 39 30 39 22 tr(90) 80 tr(20) tr(10) tr(13) tr(18) tr(11) tr(11) tr(13)	$\begin{array}{r} 910\\ 110\\ 200\\ 61\\ 200\\ 46\\ 140\\ \hline 50,000\\ 1,600\\ 2,800\\ 230\\ 160\\ 120\\ 130\\ 62\\ \end{array}$	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd nd nd nd nd nd nd nd	$\begin{array}{c} 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \\ 21 \ [8] \\ 22 \ [9] \\ \hline 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \\ 24 \ [9] \\ 21 \ [8] \\ 22 \ [9] \\ \hline \end{array}$	5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19 11/19 12/19 10/18 9/16	5/5 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19 11/19 12/19 10/18 9/16
Bivalves (pg/g-wet) Fish	year 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2014 2015 2016 2017 2018 2019 2011 2014 2015 2016 2017 2018 2019 2011 2014 2015 2016 2017 2018 2019 2011 2012 2014 2017 2018 2019 2011 2017 2018 2017 2018 2019 2011 2017 2018 2019 2011 2015 2016 2017 2018 2019 2011 2018 2019 2011 2018 2019 2011 2018 2019 2011 2018 2019 2011 2018 2019 2011 2016 2017 2018 2019 2011 2016 2017 2018 2019 2011 2015 2016 2017 2018 2019 2011 2015 2016 2017 2018 2019 2011 2012 2014 2017 2018 2019 2011 2012 2014 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2019 2011 2012 2014 2017 2018 2019 2011 2012 2014 2017 2018 2019 2011 2012 2018 2019 2011	$\begin{array}{r} 440\\ 170\\ 60\\ 70\\ 37\\ 49\\ tr(19)\\ 34\\ 210\\ 75\\ 30\\ tr(20)\\ tr(16)\\ tr(16)\\ tr(16)\\ tr(11)\\ tr(12)\\ tr(180)\\ \end{array}$	180 60 90 39 30 39 22 tr(90) 80 tr(20) tr(10) tr(13) tr(13) tr(18) tr(11) tr(13) nd	$\begin{array}{r} 910\\ 110\\ 200\\ 61\\ 200\\ 46\\ 140\\ \hline 50,000\\ 1,600\\ 2,800\\ 230\\ 160\\ 120\\ 130\\ 62\\ \hline 460\\ \end{array}$	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd nd nd nd nd nd nd nd nd	$\begin{array}{c} 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \\ 21 \ [8] \\ 22 \ [9] \\ 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \\ 24 \ [9] \\ 24 \ [9] \\ 21 \ [8] \\ 22 \ [9] \\ 210 \ [80] \end{array}$	5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19 11/19 12/19 10/18 <u>9/16</u> 1/3	5/5 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19 11/19 12/19 10/18 9/16 1/1
Bivalves (pg/g-wet) Fish	year 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2015 2016 2017 2018 2019 2011 2015 2016 2017 2018 2019 2011 2017 2018 2019 2011 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2015 2016 2017 2018 2019 2011 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2019 2012 2014 2012 2014 2012 2014 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012 2011 2012	$\begin{array}{c} 440\\ 170\\ 60\\ 70\\ 37\\ 49\\ tr(19)\\ 34\\ 210\\ 75\\ 30\\ tr(20)\\ tr(16)\\ tr(16)\\ tr(16)\\ tr(11)\\ tr(12)\\ tr(180)\\ 31\\ \end{array}$	180 60 90 39 30 39 22 tr(90) 80 tr(20) tr(10) tr(13) tr(18) tr(11) tr(11) tr(13)	$\begin{array}{r} 910\\ 110\\ 200\\ 61\\ 200\\ 46\\ 140\\ 50,000\\ 1,600\\ 2,800\\ 230\\ 160\\ 120\\ 130\\ 62\\ 460\\ 190\\ \end{array}$	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd nd nd nd nd nd nd nd nd	$\begin{array}{c} 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \\ 21 \ [8] \\ 22 \ [9] \\ 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \\ 24 \ [9] \\ 24 \ [9] \\ 21 \ [8] \\ 22 \ [9] \\ 210 \ [80] \\ 30 \ [10] \\ \end{array}$	5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19 11/19 12/19 10/18 9/16 1/3 1/2	5/5 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19 11/19 12/19 10/18 9/16 1/1 1/2
Bivalves (pg/g-wet) Fish (pg/g-wet)	year 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2015 2016 2017 2018 2019 2011 2012 2014 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2019 2011 2012 2014 2017 2018 2019 2011 2012 2014 2017 2018 2019 2011 2012 2014 2019 2011 2012 2014 2019 2011 2012 2014 2019 2011 2012 2014 2012 2011 2012 2011 2012 2011 2012 2014	$\begin{array}{r} 440\\ 170\\ 60\\ 70\\ 37\\ 49\\ tr(19)\\ 34\\ 210\\ 75\\ 30\\ tr(20)\\ tr(16)\\ tr(16)\\ tr(16)\\ tr(11)\\ tr(12)\\ tr(180)\\ \end{array}$	180 60 90 39 30 39 22 tr(90) 80 tr(20) tr(10) tr(13) tr(13) tr(18) tr(11) tr(13) dr(13)	910 110 200 61 200 46 140 50,000 1,600 2,800 230 160 120 130 62 460 190 tr(10)	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd nd nd nd nd nd rd nd rd rd rd(10)	$\begin{array}{c} 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \\ 21 \ [8] \\ 22 \ [9] \\ 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \\ 24 \ [9] \\ 21 \ [8] \\ 22 \ [9] \\ 210 \ [80] \\ 30 \ [10] \ [10] \$	5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19 11/19 12/19 10/18 <u>9/16</u> 1/3 1/2 2/2	5/5 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19 11/19 12/19 10/18 9/16 1/1 1/2 2/2
Bivalves (pg/g-wet) Fish (pg/g-wet) Birds *2	year 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2014 2015 2016 2017 2018 2019 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2019 2017 2018 2019 2011 2015 2016 2017 2018 2019 2011 2012 2014 2019 2011 2015 2016 2017 2018 2019 2011 2012 2014 2015 2015 2015 2015 2015 2016 2017 2018 2019 2011 2012 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015	440 170 60 70 37 49 tr(19) 34 210 75 30 tr(20) tr(16) tr(16) tr(11) tr(12) tr(180) 31 tr(10) 	180 60 90 39 30 39 22 tr(90) 80 tr(20) tr(10) tr(13) tr(13) tr(18) tr(11) tr(13) 	910 110 200 61 200 46 140 50,000 1,600 2,800 230 160 120 130 62 460 190 tr(10) tr(10)	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd nd nd nd nd nd rd nd rd rd r(10) tr(10) tr(10)	$\begin{array}{c} 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \\ 21 \ [8] \\ 22 \ [9] \\ 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \\ 24 \ [9] \\ 21 \ [8] \\ 22 \ [9] \\ 210 \ [80] \\ 30 \ [10] \ [10]$	5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19 11/19 12/19 10/18 <u>9/16</u> 1/3 1/2 2/2 1/1	5/5 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19 11/19 12/19 10/18 9/16 1/1 1/2 2/2 1/1
Bivalves (pg/g-wet) Fish (pg/g-wet)	year 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2015 2016 2017 2018 2019 2011 2015 2016 2017 2018 2019 2011 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2015 2016 2017 2018 2017 2018 2019 2011 2015 2016 2017 2018 2019 2011 2015 2016 2017 2018 2019 2011 2015 2016 2017 2018 2019 2011 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2016	$\begin{array}{c} 440\\ 170\\ 60\\ 70\\ 37\\ 49\\ tr(19)\\ 34\\ 210\\ 75\\ 30\\ tr(20)\\ tr(16)\\ tr(16)\\ tr(16)\\ tr(11)\\ tr(12)\\ tr(180)\\ 31\\ tr(10)\\\\ tr(10)\\ \end{array}$	180 60 90 39 30 39 22 tr(90) 80 tr(20) tr(10) tr(13) tr(13) tr(18) tr(11) tr(13) 	910 110 200 61 200 46 140 50,000 1,600 2,800 230 160 120 130 62 460 190 tr(10) tr(10) tr(20)	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd nd nd nd nd nd rd tr(10) tr(10) tr(10) nd	$\begin{array}{c} 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \\ 24 \ [9] \\ 21 \ [8] \\ 22 \ [9] \\ 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 21 \ [8] \\ 22 \ [9] \\ 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \end{array}$	5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19 11/19 12/19 10/18 <u>9/16</u> 1/3 1/2 2/2 1/1 1/2	5/5 3/3 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19 11/19 12/19 10/18 9/16 1/1 1/2 2/2 1/1 1/2
Bivalves (pg/g-wet) Fish (pg/g-wet) Birds *2	year 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2014 2015 2016 2017 2018 2019 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2019 2017 2018 2019 2011 2015 2016 2017 2018 2019 2011 2012 2014 2019 2011 2015 2016 2017 2018 2019 2011 2012 2014 2015 2015 2015 2015 2015 2016 2017 2018 2019 2011 2012 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015	440 170 60 70 37 49 tr(19) 34 210 75 30 tr(20) tr(16) tr(16) tr(11) tr(12) tr(180) 31 tr(10) 	180 60 90 39 30 39 22 tr(90) 80 tr(20) tr(10) tr(13) tr(13) tr(18) tr(11) tr(13) 	910 110 200 61 200 46 140 50,000 1,600 2,800 230 160 120 130 62 460 190 tr(10) tr(10)	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd nd nd nd nd nd rd nd rd rd r(10) tr(10) tr(10)	$\begin{array}{c} 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \\ 21 \ [8] \\ 22 \ [9] \\ 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \\ 24 \ [9] \\ 21 \ [8] \\ 22 \ [9] \\ 210 \ [80] \\ 30 \ [10] \ [10]$	5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19 11/19 12/19 10/18 <u>9/16</u> 1/3 1/2 2/2 1/1	5/5 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19 11/19 12/19 10/18 9/16 1/1 1/2 2/2 1/1

δ-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection I	Frequency
bromocyclododecane	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	nd	nd	nd	nd	140 [60]	0/10	0/4
Bivalves	2012	nd	nd	nd	nd	50 [20]	0/5	0/5
(pg/g-wet)	2014	nd	nd	nd	nd	30 [10]	0/3	0/3
	2015	nd	nd	nd	nd	30 [10]	0/3	0/3
	2011	nd	nd	nd	nd	140 [60]	0/51	0/17
Fish	2012	nd	nd	nd	nd	50 [20]	0/19	0/19
(pg/g-wet)	2014	nd	nd	nd	nd	30 [10]	0/19	0/19
	2015	nd	nd	tr(20)	nd	30 [10]	1/19	1/19
	2011	nd	nd	nd	nd	140 [60]	0/3	0/1
Birds *2	2012	nd		nd	nd	50 [20]	0/2	0/2
(pg/g-wet)	2014	nd		nd	nd	30 [10]	0/2	0/2
	2015			nd	nd	30 [10]	0/1	0/1
<i>ε</i> −1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection I	Frequency
bromocyclododecane	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	nd	nd	nd	nd	140 [60]	0/10	0/4
Bivalves	2012	nd	nd	tr(30)	nd	40 [20]	1/5	1/5
(pg/g-wet)	2014	nd	nd	tr(20)	nd	30 [10]	1/3	1/3
	2015	nd	nd	tr(10)	nd	30 [10]	1/3	1/3
	2011	nd	nd	nd	nd	140 [60]	0/51	0/17
Fish	2012	nd	nd	tr(30)	nd	40 [20]	3/19	3/19
(pg/g-wet)	2014	nd	nd	80	nd	30 [10]	3/19	3/19
	2015	nd	nd	tr(10)	nd	30 [10]	1/19	1/19
	2011	nd	nd	nd	nd	140 [60]	0/3	0/1
Birds *2	2012	nd		nd	nd	40 [20]	0/2	0/2
(pg/g-wet)	2014	nd		nd	nd	30 [10]	0/2	0/2
	2015			nd	nd	30 [10]	0/1	0/1

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2011.

(Note 2) *2: There is no consistency between the results of the ornithological survey after FY2014 and those in previous years

because of the changes in the survey sites and target species. (Note 3) No monitoring was conducted in FY2013. No monitoring of δ -1,2,5,6,9,10-Hexabromocyclododecane and ε -1,2,5,6,9,10-Hexabromocyclododecane was conducted after FY2016.

<Air

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in air during	EV2012-2010
Slocklaking of the detection of 1,2,3,0,7,10-mexaptomocyclouodecalles in all during	1 1 2012~2019

U	of the detection of	,2,2,0,9,10	i i chuoronne	o cy cro do do do co	uies in an a	U		
α-1,2,5,6,9,10- Hexabromo cyclododecane	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Site
	2012 Warm season	1.7	2.2	130	nd	0.6 [0.2]	31/36	31/36
	2012 Cold season	2.9	3.0	63	nd	0.0 [0.2]	35/36	35/36
A :	2014 Warm season	tr(0.6)	tr(0.7)	3.1	nd	1.2 [0.4]	25/36	25/36
Air $(n\alpha/m^3)$	2015 Warm season	tr(0.6)	tr(0.7)	30	nd	0.9 [0.3]	26/35	26/35
(pg/m^3)	2016 Warm season	0.5	0.5	2.4	tr(0.1)	0.3 [0.1]	37/37	37/37
	2017 Warm season	0.5	0.5	3.3	nd	0.3 [0.1]	36/37	36/37
	2019 Warm season	0.5	0.5	4.1	nd	0.3 [0.1]	35/36	35/36
β-1,2,5,6,9,10-		Geometric				Quantification	Detection 1	Frequency
Hexabromo cyclododecane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2012 Warm season	0.5	0.5	29	nd	0.2 [0.1]	30/36	30/36
	2012 Cold season	0.8	0.8	18	nd	0.3 [0.1]	35/36	35/36
A :	2014 Warm season	nd	nd	tr(0.8)	nd	1.0 [0.3]	8/36	8/36
Air (r_{2}/r_{2}^{3})	2015 Warm season	nd	nd	3.9	nd	0.8 [0.3]	7/35	7/35
(pg/m^3)	2016 Warm season	tr(0.1)	tr(0.1)	0.7	nd	0.3 [0.1]	21/37	21/37
	2017 Warm season	tr(0.2)	tr(0.1)	0.8	nd	0.3 [0.1]	33/37	33/37
	2019 Warm season	tr(0.13)	tr(0.15)	1.2	nd	0.21 [0.08]	26/36	26/36

γ-1,2,5,6,9,10-		Geometric				Quantification	Detection	Frequency
Hexabromo cyclododecane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2012 Warm season	1.6	1.7	280	nd	0 2 [0 1]	31/36	31/36
	2012 Cold season	2.1	1.8	84	nd	0.3 [0.1]	35/36	35/36
Air	2014 Warm season	nd	nd	tr(1.2)	nd	1.3 [0.4]	4/36	4/36
	2015 Warm season	nd	nd	4.4	nd	0.8 [0.3]	11/35	11/35
(pg/m^3)	2016 Warm season	tr(0.1)	nd	1.4	nd	0.3 [0.1]	16/37	16/37
	2017 Warm season	tr(0.1)	tr(0.1)	0.8	nd	0.3 [0.1]	20/37	20/37
	2019 Warm season	nd	nd	1.5	nd	0.4 [0.2]	15/36	15/36
δ-1,2,5,6,9,10-	1,2,5,6,9,10-					Quantification	Detection Frequency	
Hexabromo cyclododecane	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
•	2012 Warm season	nd	nd	0.8	nd	0 4 [0 2]	1/36	1/36
Air	2012 Cold season	nd	nd	1.1	nd	0.4 [0.2]	1/36	1/36
(pg/m^3)	2014 Warm season	nd	nd	nd	nd	1.8 [0.6]	0/36	0/36
	2015 Warm season	nd	nd	1.9	nd	1.9 [0.6]	1/35	1/35
E-1,2,5,6,9,10-		с ·				Quantification	Detection 1	Frequency
Hexabromo cyclododecane	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2012 Warm season	nd	nd	nd	nd	0 6 [0 2]	0/36	0/36
Air	2012 Cold season	nd	nd	tr(0.5)	nd	0.6 [0.2]	1/36	1/36
(pg/m^3)	2014 Warm season	nd	nd	nd	nd	0.9 [0.3]	0/36	0/36
	2015 Warm season	nd	nd	nd	nd	0.9 [0.3]	0/35	0/35

(Note) No monitoring of α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane and γ -1,2,5,6,9,10-Hexabromocyclododecane was conducted in FY2013 and FY2018. No monitoring of δ -1,2,5,6,9,10-Hexabromocyclododecane and ε -1,2,5,6,9,10-Hexabromocyclododecane was conducted in FY2013 and FY2018.

[20] Total Polychlorinated Naphthalenes (Total PCNs)

· History and results of the monitoring

Polychlorinated Naphthalenes (PCNs) make effective insulating coatings for electrical wires and have been used as wood preservatives, as rubber and plastic additives, for capacitor dielectrics and in lubricants. The substances with over 3 chloric ions were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in August 1979. And PCNs (Cl₂~Cl₈) was adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants in May 2015 and Dichloronaphthalene designated as a Class I Specified Chemical Substance under the Chemical Substance Scontrol Law in August 1979.

In previous monitoring series, Polychlorinated Naphthalenes were monitored in wildlife (bivalves, fish and birds) during the period of FY1980~1985 FY1987 FY 1989 FY 1991 and FY 1993 under the framework of "the Wildlife Monitoring."

Under the framework of "the Environmental Monitoring", Polychlorinated Naphthalenes with over a chloric ions have been monitored in wildlife (bivalves, fish and birds) in FY 2006, in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2008, in air in FY2014, in wildlife (bivalves, fish and birds) in FY2015 and in sediment, wildlife (bivalves, fish and birds) and air in FY2016~2017, in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2018, FY2019 and FY2021.

· Monitoring results

<Surface Water>

The presence of the substances in surface water was monitored at 47 sites, and it was detected at 29 of the 47 valid sites adopting the detection limit of 6pg/L, and the detection range was up to 170pg/L.

Total Polychlorinated	Monitorad	Geometric				Quantification	Detection Frequenc	
Naphthalenes	year	mean	Median	Maximum	Minimum	[Detection] limit *	Sample	Site
	2008	nd	nd	180	nd	85[30]	9/48	9/48
Surface Water	2018	tr(32)	tr(34)	260	nd	35 [12]	39/47	39/47
(pg/L)	2019	tr(14)	tr(12)	260	nd	24 [7.5]	32/48	32/48
	2021	tr(9)	tr(8)	170	nd	15 [6]	29/47	29/47

Stocktaking of the detection of Total Polychlorinated Naphthalenes in surface water during FY2008~2021

(Note 1) *: The sum value of the Quantification [Detection] limits of each congener.

(Note 2) No monitoring was conducted in FY2009~2017 and FY2020.

<Sediment>

The presence of the substances in sediment was monitored at 60 sites, and it was detected at 59 of the 60 valid sites adopting the detection limit of 3.6pg/g-dry, and the detection range was up to 14,000pg/g-dry.

Stocktaking of the detection	of Total Polychlorinated	l Naphthalenes in se	diment during FY2008~2021
8			8

Total Polychlorinate	ad Monitored	d Geometric				Quantification	Detection	Frequency
Naphthalenes	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit *2	Sample	Site
	2008	410	400	28,000	nd	84 [30]	166/189	58/63
	2016	760	870	160,000	nd	59 [20]	59/62	59/62
Sediment	2017	630	800	32,000	tr(16)	27 [9.1]	62/62	62/62
(pg/g-dry)	2018	680	810	34,000	9.9	8.5 [3.2]	61/61	61/61
	2019	600	720	58,000	13	7.3 [2.7]	61/61	61/61
	2021	400	440	14,000	nd	9.7 [3.6]	59/60	59/60

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

(Note 2) *2: The sum value of the Quantification [Detection] limits of each congener.

(Note 3) No monitoring was conducted in FY2009~2015 and FY2020.

<Wildlife>

The presence of the substances in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 13pg/g-wet, and the detection range was up to 600pg/g-wet. For fish, the presence of the substances was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 13pg/g-wet, and the detection range was tr(14) ~ 360pg/g-wet. For birds, the presence of the substances was monitored in 2 areas, and it was detected at adopting the detection range was tr(14) ~ 360pg/g-wet. For birds, the presence of the substances was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 13pg/g-wet, and the detection range was $250 \sim 330pg/g$ -wet.

Fotal Polychlorinate	ad Monitored	Geometric				Quantification	Detection 1	Frequency
Naphthalenes	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit *2	Sample	Site
	2006	98	73	1.2	tr(19)	27 [11]	31/31	7/7
	2008	94	73	1,300	tr(11)	26 [10]	31/31	7/7
	2000	70	67	580	nd	54 [18]	2/3	2/3
Bivalves	2015	70	tr(49)	790	nd	57 [19]	2/3	2/3
(pg/g-wet)	2010	46	68	1,400	nd	33 [12]	2/3	2/3
(1955)	2018	58	tr(22)	700	tr(13)	36 [12]	3/3	3/3
	2019	84	96	820	nd	40 [15]	2/3	2/3
	2021	62	60	600	nd	37 [13]	2/3	2/3
	2006	72	49	2,700	nd	27 [11]	78/80	16/16
	2008	59	40	2,200	nd	26 [10]	79/85	17/17
	2015	tr(50)	85	390	nd	54 [18]	13/19	13/19
Fish	2016	tr(44)	tr(48)	340	nd	57 [19]	13/19	13/19
(pg/g-wet)	2017	32	51	360	nd	33 [12]	17/19	17/19
400 /	2018	41	36	520	nd	36 [12]	16/18	16/18
	2019	46	78	270	nd	40 [15]	12/16	12/16
	2021	66	74	360	tr(14)	37 [13]	18/18	18/18
	2006	tr(17)	tr(18)	27	tr(11)	27 [11]	10/10	2/2
	2008	tr(10)	nd	tr(22)	nd	26 [10]	5/10	1/2
	2015			tr(20)	tr(20)	54 [18]	1/1	1/1
Birds *3	2016	130		320	tr(49)	57 [19]	2/2	2/2
(pg/g-wet)	2017	91		460	tr(18)	33 [12]	2/2	2/2
/	2018	230		250	220	36 [12]	2/2	2/2
	2019			170	170	40 [15]	1/1	1/1
	2021	290		330	250	37 [13]	2/2	2/2

Stocktaking of the detection of Total Polychlorinated Naphthalenes in wildlife (bivalves, fish and birds) during FY2006~2021

(Note 1) *1: Arithmetic mean values were calculated for each point, from which the geometric mean value for all points were derived in FY2006 and FY2008.

(Note 2) * 2: The sum value of the Quantification [Detection] limits of each congener.

(Note 3) *3: There is no consistency between the results of the ornithological survey after FY2015 and those in previous years because of the changes in the survey sites and target species.

(Note 4) No monitoring was conducted in FY2007, FY2009~2014 and FY2020.

<Air>

The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.3 pg/m³, and the detection range was $5.3 \sim 1,000$ pg/m³.

Stocktaking of the detection of Total	Polychlorinated Naphthalene	s in sediment during FY2008~2021
sterning of the acternet of fetal	i orjenneren er aprimarene	

Total		Geometric				Quantification	Detection l	Frequency
Polychlorinated Naphthalenes	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit *	Sample	Site
	2008 Warm season	200	230	660	35	40[12]	22/22	22/22
	2008 Cold season	tr(9.6)	tr(9.8)	45	nd	4.0 [1.3]	36/36	36/36
	2014 Warm season	110	130	1,600	5.4	2.8 [1.0]	36/36	36/36
Air	2016 Warm season	110	130	660	9.0	0.79 [0.28]	37/37	37/37
(pg/m^3)	2017 Warm season	110	120	920	7	0.67 [0.24]	37/37	37/37
	2018 Warm season	86	110	590	5.3	0.5 [0.2]	37/37	37/37
	2019 Warm season	100	130	1,100	6.5	0.6 [0.2]	36/36	36/36
	2021 Warm season	80	72	1,000	5.3	0.7 [0.3]	35/35	35/35

(Note 1) *: The sum value of the Quantification [Detection] limits of each congener.

(Note 2) No monitoring was conducted in FY2009~2013, FY2015 and FY2020.

[21] Hexachlorobuta-1,3-diene

· History and results of the monitoring

Hexachlorobuta-1,3-diene had been used as a solvent for other chlorine-containing compounds. The substance was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law on April 2005. The substance was adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants in May 2015.

As a continuous survey, the first survey was in FY2007, under the framework of the Environmental Survey of Chemical Substances up to FY2002, the substance was monitored in surface wate and sediment in FY1981, under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, in the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was monitored in surface water and sediment in FY2007.

Under the framework of the Environmental Monitoring, the substances have been monitored in surface water sediment and wildlife (bivalves, fish and birds) in FY2007, FY2013, FY2020 and FY2021, and in air in FY2015~2021.

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 47 sites, and it was not detected at all 47 valid sites adopting the detection limit of 70pg/L.

Hexachlorobuta	Monitored	Geometric				Quantification	Detection I	Frequency
1,3-diene	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	nd	nd	nd	nd	870 [340]	0/48	0/48
Surface Water	2013	nd	nd	tr(43)	nd	94 [37]	1/48	1/48
(pg/L)	2020	nd	nd	490	nd	100 [40]	1/46	1/46
	2021	nd	nd	nd	nd	180 [70]	0/47	0/47

Stocktaking of the detection of Hexachlorobuta-1,3-diene in surface water during FY2007~2021

(Note) No monitoring was conducted during FY2008~2012 and FY2013~2019.

<Sediment>

The presence of the substance in sediment was monitored at 60 sites, and it was detected at 3 of the 60 valid sites adopting the detection limit of 10pg/g-dry, and the detection range was up to 170pg/g-dry.

Hexachlorobuta	Monitored	Geometric				Quantification	Detection 1	Frequency
1,3-diene	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	nd	nd	1,300	nd	22 [8.5]	22/192	10/64
Sediment	2013	nd	nd	1,600	nd	9.9 [3.8]	40/189	20/63
(pg/g-dry)	2020	nd	nd	180	nd	30 [10]	2/58	2/58
	2021	nd	nd	170	nd	30 [10]	3/60	3/60

Stocktaking of the detection of Hexachlorobuta-1,3-diene in sediment during FY2007~2021

(Note 1) *: Arithmetic mean values were calculated for each point, from which the geometric mean value for all points were derived in FY2007 and FY2013.

(Note 2) No monitoring was conducted during FY2008~2012 and FY2013~2019.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 5pg/g-wet, and the detected concentration was tr(5)pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 14 of the 18 valid areas adopting the detection limit of 5pg/g-wet, and the detection range was up to 24pg/g-wet. For birds, the presence of the substance was monitored in 2

areas, and it was not detected at both valid areas adopting the detection limit of 5pg/g-wet.

TT	Monitored	Geometric				Quantification	Detection I	Frequency
Hexachlorobuta 1,3-diene	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	nd	nd	nd	nd	36 [12]	0/31	0/7
Bivalves	2013	nd	nd	tr(7.1)	nd	9.4 [3.7]	3/13	1/5
(pg/g-wet)	2020	nd	nd	tr(7)	nd	13 [5]	1/3	1/3
	2021	nd	nd	tr(5)	nd	14 [5]	1/3	1/3
	2007	nd	nd	nd	nd	36 [12]	0/80	0/16
Fish	2013	nd	nd	59	nd	9.4 [3.7]	7/57	4/19
(pg/g-wet)	2020	nd	nd	19	nd	13 [5]	8/18	8/18
	2021	tr(7)	tr(10)	24	nd	14 [5]	14/18	14/18
	2007	nd	nd	nd	nd	36 [12]	0/10	0/2
Birds *2	2013	nd	nd	nd	nd	9.4 [3.7]	0/6	0/2
(pg/g-wet)	2020			nd	nd	13 [5]	0/1	0/1
	2021	nd		nd	nd	14 [5]	0/2	0/2

Stocktaking of the detection of Hexachlorobuta-1,3-diene in wildlife (bivalves, fish and birds) during FY2007~2021

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2007.

(Note 2) *2: There is no consistency between the results of the ornithological survey after FY2013 and FY2007 because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted during FY2008~2012 and FY2013~2019.

<Air>

The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 20pg/m^3 , and the detection range was $1,400 \sim 11,000\text{pg/m}^3$.

Hexachloro		Geometric				Quantification	Detection l	Frequency
buta 1,3-diene	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2015 Warm season	1,100	1,200	3,500	45	29 [11]	102/102	34/34
	2016 Warm season	850	800	4,300	510	60 [20]	111/111	37/37
Air	2017 Warm season	4,200	4,000	23,000	1,100	60 [20]	37/37	37/37
(pg/m^3)	2018 Warm season	3,600	3,500	8,500	150	30 [10]	110/110	37/37
(pg/m ²)	2019 Warm season	1,500	2,600	5,800	nd	50 [20]	104/108	35/36
	2020 Warm season	2,500	2,500	9,800	1,500	30 [10]	110/110	37/37
	2021 Warm season	2,400	2,200	11,000	1,400	40 [20]	105/105	35/35

Stocktaking of the detection of Hexachlorobuta-1,3-diene in air during FY2015~2021

[22] Pentachlorophenol and its salts and esters (reference)

· History and state of monitoring

Pentachlorophenol was used as a herbicide, insecticide, fungicide, algaecide, disinfectant and as an ingredient in antifouling paint. Pentachlorophenol and its salts and esters were adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants in May 2015, and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in Octorber 2016.

As a continuous survey, the first survey of Pentachlorophenol was in FY2015, under the framework of the Environmental Survey of Chemical Substances up to FY2007, the substance was monitored in surface water and sediment in FY1974 and FY1996, and under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, in the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was monitored in surface water in FY2005.

Under the framework of the Environmental Monitoring, Pentachlorophenol was monitored in surface water in FY2015. And Pentachlorophenol and Pentachloroanisole were monitored in wildlife (bivalves, fish and birds) and air in FY2016, in surfacewater, sediment, wildlife (bivalves, fish and birds) and air in FY2017~2019.

No monitoring was conducted after FY2020. For reference, the monitoring results up to FY2019 are given below.

Monitoring results until FY2019

<Surface Water>

Stocktaking of the d	letection of]	Pentachlorop	henol and	Pentachloroa	nisole in su	rface water duri	ng FY2015~	-2019
	Monitored	Geometric				Quantification	Detection 1	Frequency
Pentachlorophenol	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2015	tr(130)	tr(90)	26,000	nd	260 [85]	25/48	25/48
Surface Water	2017	86	110	3,500	nd	30 [10]	43/47	43/47
(pg/L)	2018	50	47	4,400	nd	24 [9]	44/47	44/47
	2019	tr(60)	tr(50)	3,500	nd	60 [20]	32/48	32/48
	Monitored	Geometric				Quantification	Detection 1	Frequency
Pentachloroanisole			Median	Maximum	Minimum	[Detection]	Samula	Site
	year	mean				limit	Sample	Sile
Courfe of Weter	2017	tr(10)	tr(8)	1,000	nd	14 [5]	32/47	32/47
Surface Water	2018	tr(10)	tr(7)	230	nd	16 [6]	30/47	30/47
(pg/L)	2019	tr(10)	nd	210	nd	30 [10]	20/48	20/48

(Note) No monitoring was conducted in FY2016. No monitoring of Pentachloroanisole was conducted in FY2015.

<Sediment>

- 5	Stocktaking of the o	detection of Pentachlor	ophenol and	Pentachloroaniso	le in sediment o	during FY2017~2019

8						0		
	Monitored	Geometric				Quantification	Detection 1	Frequency
Pentachlorophenol	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2017	350	390	7,400	8	4 [2]	62/62	62/62
	2018	220	300	3,900	nd	18 [6]	59/61	59/61
(pg/g-dry)	2019	260	380	6,200	7	6 [2]	61/61	61/61
	Monitored	Geometric				Quantification	Detection	Frequency
Pentachloroanisole	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
			Median 32	Maximum 190	Minimum	[Detection]		1 5
Sediment	year	mean				[Detection] limit	Sample	Site
	year 2017	mean 34	32	190	nd	[Detection] limit 5 [2]	Sample 61/62	Site 61/62

<Wildlife>

Stocktaking of the detection of Pentachlorophenol and Pentachloroanisole in wildlife (bivalves, fish and birds) during FY2016~2019

during 1 12010 201	Monitored	Geometric				Quantification	Detection I	Frequency
Pentachlorophenol	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016	tr(45)	tr(46)	65	tr(30)	63 [21]	3/3	3/3
Bivalves	2017	nd	nd	tr(35)	nd	36 [12]	1/3	1/3
(pg/g-wet)	2018	tr(20)	tr(20)	30	tr(10)	30 [10]	3/3	3/3
	2019	26	26	54	13	10 [4]	3/3	3/3
	2016	100	130	990	nd	63 [21]	18/19	18/19
Fish	2017	tr(15)	tr(15)	110	nd	36 [12]	14/19	14/19
(pg/g-wet)	2018	tr(10)	tr(10)	80	nd	30 [10]	13/18	13/18
	2019	17	22	57	nd	10 [4]	14/16	14/16
	2016	1,200		3,100	440	63 [21]	2/2	2/2
Birds	2017	1,800		11,000	300	36 [12]	2/2	2/2
(pg/g-wet)	2018	460		1,200	180	30 [10]	2/2	2/2
	2019			430	430	10 [4]	1/1	1/1
	Monitored	Geometric				Quantification	Detection 1	Frequency
Pentachloroanisole	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016	7	3	35	3	3 [1]	3/3	3/3
Bivalves	2017	6	tr(3)	36	tr(2)	4 [1]	3/3	3/3
(pg/g-wet)	2018	6	tr(4)	21	tr(2)	6 [2]	3/3	3/3
	2019	4	tr(2)	15	tr(2)	3 [1]	3/3	3/3
	2016	8	6	100	tr(1)	3 [1]	19/19	19/19
T ! 1								
Fish	2017	7	5	120	tr(1)	4 [1]	19/19	19/19
Fish (pg/g-wet)	2017 2018	7 8	5 7	120 73	tr(1) nd	4 [1] 6 [2]	19/19 16/18	19/19 16/18
						4 [1] 6 [2] 3 [1]		
	2018	8	7	73	nd	6 [2]	16/18	16/18
	2018 2019	8 5	7 6	73 59	nd tr(1)	6 [2] 3 [1]	16/18 16/16	16/18 16/16
(pg/g-wet)	2018 2019 2016	8 5 12	7 6	73 59 14	nd tr(1) 10	6 [2] 3 [1] 3 [1]	16/18 16/16 2/2	16/18 16/16 2/2

<Air>

Stocktaking of the detection of Pentachlorophenol and Pentachloroanisole in air during FY2016~2019

Pentachloro		Geometric				Quantification	Detection 1	Frequency
phenol	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016 Warm season	6.3	6.0	25	0.6	0.5 [0.2]	37/37	37/37
A : (2017 Warm season	4.6	4.8	33	0.7	0.6 [0.2]	37/37	37/37
Air (pg/m ³)	2018 Warm season	5.1	5.8	30	0.9	0.5 [0.2]	37/37	37/37
	2019 Warm season	4.1	4.2	22	0.6	0.6 [0.2]	36/36	36/36
Pentachloro		Geometric				Quantification	Detection 1	Frequency
phenol	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016 Warm season	39	42	220	3.4	1.0 [0.4]	37/37	37/37
A : (2017 Warm season	34	36	210	6.0	1.2 [0.5]	37/37	37/37
Air (pg/m ³)	2018 Warm season	34	40	110	4.6	1.1 [0.4]	37/37	37/37
	2019 Warm season	30	32	180	4.3	0.3 [0.1]	36/36	36/36

[23] Short-chain chlorinated paraffins

· History and state of monitoring

Short-chain chlorinated paraffinsare are used primarily in metalworking applications and in polyvinyl chloride (PVC) plastics. Other uses are adhesives and sealants, leather fat liquors, plastics, and as flame retardants in rubber, textiles and polymeric materials. The substances were adopted as target chemicals at the COP8 of the Stockholm convention on Persistent Organic Pollutants in April-May 2017.

Under the framework of the Initial Environmental Survey and the Detailed Environmental Survey etc., the substances were surveied in surface water, sediment and wildlife (fish) in FY2004 and in surface water, sediment and wildlife (bivalves and fish) in FY2005.

Under the framework of the Environmental Monitoring, the substances have been monitored in wildlife (bivalves, fish and birds) and air in FY2016, and in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2017~2021.

The results of short-chain chlorinated paraffins are tentative values obtained in trials among various problems in the measurement method.

· Monitoring results

<Surface water>

Chlorinated decanes: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 42 of the 47 valid sites adopting the detection limit of 300pg/L, and the detection range was up to 1,100pg/L.

Chlorinated undecanes: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 26 of the 47 valid sites adopting the detection limit of 300pg/L, and the detection range was up to 1,200pg/L.

Chlorinated dodecanes: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 13 of the 47 valid sites adopting the detection limit of 500pg/L, and the detection range was up to 4,900pg/L.

Chlorinated tridecanes: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 7 of the 47 valid sites adopting the detection limit of 800pg/L, and the detection range was up to 8,600pg/L.

Chlorinated	Monitored	Geometric				Quantification	Detection	Frequency
decanes	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	tr(1,600)	nd	3,300 [1,100]	1/47	1/47
	2018	nd	nd	1,600	nd	1,000 [400]	8/47	8/47
Surface Water (pg/L)	2019	nd	nd	2,300	nd	600 [200]	17/48	17/48
	2020	nd	nd	1,800	nd	400 [200]	16/46	16/46
	2021	tr(500)	tr(500)	1,100	nd	700 [300]	42/47	42/47
Chlorinated	Monitored	Geometric				Quantification	Detection	Frequency
undecanes	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	3,100	nd	1,500 [500]	13/47	13/47
	2018	nd	nd	3,500	nd	2,000 [800]	6/47	6/47
Surface Water (pg/L)	2019	nd	nd	5,000	nd	1,400 [500]	19/48	19/48
	2020	nd	nd	2,400	nd	900 [300]	4/46	4/46
	2021	tr(300)	tr(300)	1,200	nd	900 [300]	26/47	26/47
Chlorinated	Monitored	Geometric				Quantification	Detection	Frequency
dodecanes	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	10,000	nd	3,300 [1,100]	4/47	4/47
	2018	nd	nd	3,000	nd	3,000 [1,000]	16/47	16/47
Surface Water (pg/L)	2019	nd	nd	34,000	nd	1,000 [400]	20/48	20/48
	2020	nd	nd	2,600	nd	700 [300]	4/46	4/46
	2021	nd	nd	4,900	nd	1,200 [500]	13/47	13/47

Stocktaking of the detection of Chlorinated decanes, Chlorinated undecanes, Chlorinated dodecanes and Chlorinated tridecanes in surface water during FY2017~2021

Chlorinated	Monitored	Geometric				Quantification	Detection	Frequency
tridecanes	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	10,000	nd	3,600 [1,200]	7/47	7/47
	2018	nd	nd	11,000	nd	4,500 [1,500]	18/47	18/47
Surface Water (pg/L)	2019	nd	nd	38,000	nd	1,300 [500]	17/48	17/48
	2020	nd	nd	2,000	nd	500 [200]	8/46	8/46
	2021	nd	nd	8,600	nd	2,000 [800]	7/47	7/47

(Note) Chlorinated paraffins with 5~9 chlorines are target chemicals.

<Sediment>

Chlorinated decanes: The presence of the substance in sediment was monitored at 60 sites, and it was detected at 30 of the 60 valid sites adopting the detection limit of 300pg/g-dry, and the detection range was up to 4,300pg/g-dry.

Chlorinated undecanes: The presence of the substance in sediment was monitored at 60 sites, and it was detected at 28 of the 60 valid sites adopting the detection limit of 400pg/g-dry, and the detection range was up to 7,000pg/g-dry.

Chlorinated dodecanes: The presence of the substance in sediment was monitored at 60 sites, and it was detected at 44 of the 60 valid sites adopting the detection limit of 400pg/g-dry, and the detection range was up to 12,000pg/g-dry.

Chlorinated tridecanes: The presence of the substance in sediment was monitored at 60 sites, and it was detected at 47 of the 60 valid sites adopting the detection limit of 400pg/g-dry, and the detection range was up to 31,000pg/g-dry.

Stocktaking of the detection of Chlorinated decanes, Chlorinated undecanes, Chlorinated dodecanes and Chlorinated tridecanes in sediment during FY2017~2021

Chlorinated	Monitored	Geometric				Quantification	Detection l	Frequency
decanes	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	17,000	nd	10,000 [4,000]	12/62	12/62
Sediment	2018	nd	nd	7,000	nd	6,000 [2,000]	7/61	7/61
(pg/g-dry)	2019	nd	nd	2,600	nd	2,000 [1,000]	8/61	8/61
(pg/g-ury)	2020	nd	nd	6,000	nd	900 [400]	21/58	21/58
	2021	tr(400)	nd	4,300	nd	800 [300]	30/60	30/60
Chlorinated	Monitored	Geometric				Quantification	Detection l	Frequency
undecanes	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	37,000	nd	10,000 [4,000]	19/62	19/62
C - 1'	2018	nd	nd	tr(13,000)	nd	15,000 [5,000]	7/61	7/61
Sediment	2019	nd	nd	5,900	nd	2,000 [1,000]	22/61	22/61
(pg/g-dry)	2020	tr(600)	nd	6,900	nd	1,200 [500]	25/58	25/58
	2021	tr(500)	nd	7,000	nd	1,200 [400]	28/60	28/60
Chlorinated	Monitored	Geometric				Quantification	Detection l	Frequency
dodecanes	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	44,000	nd	11,000 [4,000]	19/62	19/62
Sediment	2018	tr(2,000)	nd	38,000	nd	6,000 [2,000]	28/61	28/61
(pg/g-dry)	2019	tr(1,100)	nd	83,000	nd	2,000 [1,000]	27/61	27/61
(pg/g-ury)	2020	tr(1,300)	tr(1,200)	18,000	nd	2,000 [800]	31/58	31/58
	2021	tr(900)	tr(800)	12,000	nd	1,000 [400]	44/60	44/60
Chlorinated	Monitored	Geometric				Quantification	Detection l	Frequency
tridecanes	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
			1	94,000	nd	12,000 [5,000]	18/62	18/62
	2017	nd	nd	94,000	na	12,000 [5,000]	10/02	10/02
Sadimont	2017 2018	nd nd	nd nd	94,000 36,000	nd	9,000 [3,000]	24/61	24/61
Sediment				,				
Sediment (pg/g-dry)	2018	nd	nd	36,000	nd	9,000 [3,000]	24/61	24/61

(Note) Chlorinated paraffins with 5~9 chlorines are target chemicals.

<Wildlife>

Chlorinated decanes: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 200pg/g-wet, and the detection range was up to tr(500)pg/g-wet.

For fish, the presence of the substance was monitored in 18 areas, and it was detected at 4 of the 18 valid areas adopting the detection limit of 200pg/g-wet, and the detection range was up to 700pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 200pg/g-wet, and the detection range was tr(300) ~ 600pg/g-wet.

Chlorinated undecanes: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 300pg/g-wet, and the detected concentration was 800pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 4 of the 18 valid areas adopting the detection limit of 300pg/g-wet, and the detection range was up to 1,000pg/g-wet. For birds, the presence of the substance was monitored at both valid areas adopting the detection limit of 300pg/g-wet, and it was detected at both valid areas adopting the detection limit of 300pg/g-wet, and the detection range was up to 1,000pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 300pg/g-wet, and the detection range was tr(400) ~ 2,300pg/g-wet.

Chlorinated dodecanes: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 200pg/g-wet, and the detected concentration was 400pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 3 of the 18 valid areas adopting the detection limit of 200pg/g-wet, and the detection range was up to tr(300)pg/g-wet. For birds, the presence of the substance was monitored at 1 of the 2 valid areas adopting the detection limit of 200pg/g-wet, and it was detected at 1 of the 2 valid areas adopting the detection limit of 200pg/g-wet, and it was detected at 1 of the 2 valid areas adopting the detection limit of 200pg/g-wet, and the detected concentration was 1,000pg/g-wet.

Chlorinated tridecanes: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 200pg/g-wet, and the detected concentration was 900pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 2 of the 18 valid areas adopting the detection limit of 200pg/g-wet, and the detection range was up to 7,000pg/g-wet. For birds, the presence of the substance was monitored at both valid areas adopting the detection limit of 200pg/g-wet, and it was detected at both valid areas adopting the detection limit of 200pg/g-wet, and the detection range was $500 \sim 900pg/g$ -wet.

Chlorinated	Monitored	Geometric				Quantification	Detection	Frequency
decanes	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016	tr(700)	tr(700)	2,200	nd	1,300 [500]	2/3	2/3
	2017	700	1,700	1,800	nd	500 [200]	2/3	2/3
Bivalves	2018	nd	tr(400)	tr(400)	nd	1,200 [400]	2/3	2/3
(pg/g-wet)	2019	nd	nd	nd	nd	900 [300]	0/3	0/3
	2020	tr(400)	tr(700)	tr(700)	nd	900 [300]	2/3	2/3
	2021	tr(200)	tr(300)	tr(500)	nd	600 [200]	2/3	2/3
	2016	tr(600)	tr(700)	2,800	nd	1,300 [500]	13/19	13/19
	2017	tr(400)	tr(400)	2,100	nd	500 [200]	16/19	16/19
Fish	2018	nd	nd	tr(800)	nd	1,200 [400]	1/18	1/18
(pg/g-wet)	2019	nd	nd	tr(700)	nd	900 [300]	5/16	5/16
	2020	nd	nd	tr(500)	nd	900 [300]	3/18	3/18
	2021	nd	nd	700	nd	600 [200]	4/18	4/18
	2016	tr(1,000)		1,300	tr(800)	1,300 [500]	2/2	2/2
	2017	tr(400)		1,600	nd	500 [200]	1/2	1/2
Birds	2018	nd		tr(600)	nd	1,200 [400]	1/2	1/2
(pg/g-wet)	2019			tr(600)	tr(600)	900 [300]	1/1	1/1
	2020			nd	nd	900 [300]	0/1	0/1
	2021	tr(400)		600	tr(300)	600 [200]	2/2	2/2

Stocktaking of the detection of Chlorinated decanes, Chlorinated undecanes, Chlorinated dodecanes and Chlorinated tridecanes in wildlife (bivalves, fish and birds) during FY2016~2021

Chlorinated	Monitored	Geometric				Quantification	Detection	Frequency
undecanes	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016	tr(2,900)	tr(2,000)	6,000	tr(2,000)	3,000 [1,000]	3/3	3/3
	2017	2,200	3,400	11,000	tr(300)	800 [300]	3/3	3/3
Bivalves	2018	nd	nd	nd	nd	1,800 [700]	0/3	0/3
(pg/g-wet)	2019	nd	nd	600	nd	500 [200]	1/3	1/3
	2020 2021	tr(700) nd	1,300 nd	$\begin{array}{c}1,800\\800\end{array}$	nd nd	800 [300] 800 [300]	2/3 1/3	2/3 1/3
	2021	tr(2,900)	tr(2,000)	15,000	nd	3,000 [1,000]	1/3	18/19
	2010	1,900	1,100	24,000	nd	800 [300]	16/19	16/19
Fish	2017	nd	nd	tr(700)	nd	1,800 [700]	1/18	1/18
(pg/g-wet)	2019	tr(300)	tr(400)	1,100	nd	500 [200]	11/16	11/16
488 /	2020	nd	nd	1,400	nd	800 [300]	4/18	4/18
	2021	nd	nd	1,000	nd	800 [300]	4/18	4/18
	2016	4,900		8,000	3,000	3,000 [1,000]	2/2	2/2
	2017	5,000		31,000	800	800 [300]	2/2	2/2
Birds	2018	nd		nd	nd	1,800 [700]	0/2	0/2
(pg/g-wet)	2019			1,400	1,400	500 [200]	1/1	1/1
	2020			1,100	1,100	800 [300]	1/1	1/1
	2021	1,000		2,300	tr(400)	800 [300]	2/2	2/2
Chlorinated	Monitored	Geometric				Quantification	Detection	Frequenc
dodecanes	year	mean	Median	Maximum	Minimum	[Detection]	Sample	Site
			(1.500)	(1.000)	(1.100)	limit	-	
	2016 2017	tr(1,400)	tr(1,500) 1,400	tr(1,800) 4,700	tr(1,100) 1,300	2,100 [700]	3/3 3/3	3/3 3/3
Bivalves	2017	2,000 nd	1,400 nd	4,700 nd	1,500 nd	900 [300] 1,500 [600]	3/3 0/3	5/5 0/3
(pg/g-wet)	2018	nd	nd	nd	nd	1,200 [500]	0/3	0/3
(pg/g-wet)	2019	tr(300)	tr(500)	700	nd	600 [200]	2/3	2/3
	2020	nd	nd	400	nd	400 [200]	1/3	1/3
	2016	tr(1,800)	tr(1,800)	8,700	nd	2,100 [700]	17/19	17/19
	2017	2,100	2,100	19,000	nd	900 [300]	18/19	18/19
Fish	2018	nd	nd	nd	nd	1,500 [600]	0/18	0/18
(pg/g-wet)	2019	nd	nd	tr(900)	nd	1,200 [500]	2/16	2/16
	2020	nd	nd	1,400	nd	600 [200]	2/18	2/18
	2021	nd	nd	tr(300)	nd	400 [200]	3/18	3/18
	2016	3,800		6,600	2,200	2,100 [700]	2/2	2/2
	2017	5,500		25,000	1,200	900 [300]	2/2	2/2
Birds	2018	nd		nd	nd	1,500 [600]	0/2	0/2
(pg/g-wet)	2019			tr(500)	tr(500)	1,200 [500]	1/1	1/1
	2020			nd	nd	600 [200]	0/1	0/1
	2021	tr(300)		1,000	nd	400 [200]	1/2	1/2
Chlorinated	Monitored	Geometric	Median	Maximum	Minimum	Quantification	Detection	Frequenc
tridecanes	year	mean	Median	Maximum	Minimum	[Detection] Limit	Sample	Site
	2016	tr(700)	tr(700)	tr(900)	tr(500)	1,100 [400]	3/3	3/3
	2017	900	700	3,100	tr(300)	500 [200]	3/3	3/3
Bivalves	2018	nd	nd	nd	nd	1,400 [500]	0/3	0/3
(pg/g-wet)	2019	500	400	1,100	tr(300)	400 [200]	3/3	3/3
	2020	tr(400)	tr(300)	1,700	nd	500 [200]	2/3	2/3
	2021	tr(200)	nd	900	nd	500 [200]	1/3	1/3
	2016	tr(800)	tr(800)	4,900	nd	1,100 [400]	17/19	17/19
F' 1	2017	tr(300)	nd	4,100	nd	500 [200]	8/19	8/19
Fish	2018	nd	nd	nd	nd	1,400 [500]	0/18	0/18
(pg/g-wet)	2019 2020	tr(200)	tr(200)	1,300	nd	400 [200]	11/16 2/18	11/16 2/18
	2020 2021	nd nd	nd nd	1,900 7,000	nd nd	500 [200] 500 [200]	2/18 2/18	2/18 2/18
	2021	1,400		1,500	1,400	1,100 [400]	2/18	2/18
	2017	900		8,100	nd	500 [200]	1/2	1/2
Birds	2018	nd		nd	nd	1,400 [500]	0/2	0/2
	2019			1,300	1,300	400 [200]	1/1	1/1
(pg/g-wet)								
(pg/g-wet)	2020			tr(300)	tr(300)	500 [200]	1/1	1/1

(Note) Chlorinated paraffins with 5~9 chlorines are target chemicals.

<Air>

Chlorinated decanes: The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 100pg/m^3 , and the detection range was tr(100) ~ 900pg/m^3 .

Chlorinated undecanes: The presence of the substance in air was monitored at 35 sites, and it was detected at 34 of the 35 valid sites adopting the detection limit of 80pg/m³, and the detection range was up to 850pg/m³.

Chlorinated dodecanes: The presence of the substance in air was monitored at 35 sites, and it was detected at 27 of the 35 valid sites adopting the detection limit of 80pg/m³, and the detection range was up to 370pg/m³.

Chlorinated tridecanes: The presence of the substance in air was monitored at 35 sites, and it was detected at 26 of the 35 valid sites adopting the detection limit of 100pg/m³, and the detection range was up to tr(200)pg/m³.

Stocktaking of the detection of Chlorinated decanes, Chlorinated undecanes, Chlorinated dodecanes and Chlorinated
tridecanes in air during FY2016~2021

Chlorinated		Geometric				Quantification	Detection 1	Frequency
decanes	Monitored year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016 Warm season	tr(170)	tr(200)	940	nd	290 [110]	24/37	24/37
	2017 Warm season	370	380	1,500	tr(70)	140 [50]	37/37	37/37
Air	2018 Warm season	370	390	1,700	tr(130)	150 [60]	37/37	37/37
(pg/m^3)	2019 Warm season	400	400	1,500	tr(100)	400 [100]	36/36	36/36
	2020 Warm season	170	170	560	tr(60)	120 [50]	37/37	37/37
	2021 Warm season	300	tr(200)	900	tr(100)	300 [100]	35/35	35/35
Chlorinated		Geometric				Quantification	Detection 1	Frequency
undecanes	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016 Warm season	tr(350)	tr(320)	3,200	nd	610 [240]	20/37	20/37
	2017 Warm season	500	510	2,300	tr(90)	190 [60]	37/37	37/37
Air	2018 Warm season	450	430	2,600	tr(100)	110 [40]	37/37	37/37
(pg/m^3)	2019 Warm season	400	400	2,300	tr(100)	300 [100]	36/36	36/36
	2020 Warm season	220	220	1,900	tr(50)	120 [50]	37/37	37/37
	2021 Warm season	290	310	850	nd	210 [80]	34/35	34/35
Chlorinated		Geometric				Quantification	Detection 1	Frequency
dodecanes	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016 Warm season	nd	nd	740	nd	430 [170]	7/37	7/37
	2017 Warm season	190	190	730	tr(30)	100 [30]	37/37	37/37
Air	2018 Warm season	190	190	880	tr(60)	110 [40]	37/37	37/37
(pg/m^3)	2019 Warm season	tr(140)	tr(170)	1,600	nd	260 [90]	23/36	23/36
	2020 Warm season	tr(80)	tr(70)	640	nd	140 [50]	29/37	29/37
	2021 Warm season	tr(110)	tr(120)	370	nd	220 [80]	27/35	27/35
Chlorinated		Geometric				Quantification	Detection 1	Frequency
tridecanes	Monitored year	mean	Median	Maximum	Minimum	[Detection]	Sample	Site
undecalles		illeall				limit	Sample	Sile
	2016 Warm season	nd	nd	510	nd	320 [120]	13/37	13/37
	2017 Warm season	150	160	1,600	nd	120 [40]	35/37	35/37
Air	2018 Warm season	tr(100)	tr(110)	470	nd	180 [70]	26/37	26/37
(pg/m^3)	2019 Warm season	tr(90)	tr(90)	1,600	nd	250 [80]	19/36	19/36
	2020 Warm season	tr(40)	tr(40)	360	nd	100 [40]	23/37	23/37
	2021 Warm season	nd	tr(100)	tr(200)	nd	300 [100]	26/35	26/35

(Note) In FY2016, Chlorinated decanes with 4~6 chlorines and Chlorinated undecanes, Chlorinated dodecanes and Chlorinated tridecanes with 4~7 chlorines are target chemicals. From FY2017 to FY2019, Chlorinated paraffins with 4~7 chlorines are target chemicals. After FY2020, Chlorinated paraffins with 4~8 chlorines are target chemicals.

[24] Dicofol (references)

· History and state of monitoring

Dicofol was used as insecticides and mites etc., but the registration of Chlordanes under the Agricultural Chemicals Regulation Law was expired in FY2004. The substance was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2005. The substance was adopted as a target chemical at the COP9 of the Stockholm convention on Persistent Organic Pollutants held from late April to early May 2019.

Under the framework of the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was surveied in sediment in FY2004.

Under the framework of the Environmental Monitoring, the substance has been monitored in wildlife (bivalves, fish and birds) in FY2006, in surface water, sediment and wildlife (bivalves, fish and birds) in FY2008, in air in FY2016, in wildlife (bivalves, fish and birds) in FY2018, and in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2019 and FY2020.

No monitoring was conducted in FY2021. For reference, the monitoring results up to FY2020 are given below.

Monitoring results until FY2020

<Surface Water>

Stocktaking of the detection of Dicofol in surface water during FY2008~2020

	Monitored	Geometric				Quantification	Detection	Frequency
Dicofol	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	nd	nd	76	nd	25 [10]	13/48	13/48
Surface Water	2019	nd	nd	40	nd	13 [8]	3/48	3/48
(pg/L)	2020	nd	nd	30	nd	13 [5]	1/46	1/46

(Note) No monitoring was conducted in FY2009~2018.

<Sediment>

Stocktaking of the detection of Dicofol in sediment during FY2008~2020

	Monitored	Geometric				Quantification	Detection	Frequency
Dicofol	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
C a d'ins ant	2008	nd	nd	460	nd	160 [63]	13/63	30/186
Sediment	2019	4	4	84	nd	4 [2]	40/61	40/61
(pg/g-dry)	2020	tr(5)	nd	77	nd	13 [5]	23/58	23/58

(Note 1) *: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

(Note 2) No monitoring was conducted in FY2009~2018.

<Wildlife>

Stocktaking of the detection of Dicofol in wildlife (bivalves, fish and birds) during FY2006~2020

	Monitored	Geometric				Quantification	Detection l	Frequency
Dicofol	year	mean ^{*1}	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2006	tr(58)	tr(70)	240	nd	92 [36]	22/31	5/7
D:1	2008	tr(110)	120	210	nd	120 [48]	28/31	7/7
Bivalves	2018	nd	nd	30	nd	30 [10]	1/3	1/3
(pg/g-wet)	2019	nd	nd	tr(10)	nd	30 [10]	1/3	1/3
	2020	nd	nd	tr(20)	nd	30 [10]	1/3	1/3
	2006	nd	nd	290	nd	92 [36]	5/80	1/16
Fish	2008	tr(62)	tr(77)	270	nd	120 [48]	55/85	14/17
	2018	tr(10)	nd	280	nd	30 [10]	9/18	9/18
(pg/g-wet)	2019	tr(10)	tr(10)	120	nd	30 [10]	12/16	12/16
	2020	tr(10)	nd	330	nd	30 [10]	8/18	8/18

	Monitored	Geometric				Quantification	Detection F	Frequency
Dicofol	year	mean *1	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2006	nd	nd	nd	nd	92 [36]	0/10	0/2
D' 1 *2	2008	nd	nd	300	nd	120 [48]	1/10	1/2
Birds *2	2018	nd		nd	nd	30 [10]	0/2	0/2
(pg/g-wet)	2019			nd	nd	30 [10]	0/1	0/1
	2020			nd	nd	30 [10]	0/1	0/1

(Note 1) *1: Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2006 and FY2008.

(Note 2) *2: There is no consistency between the results of the ornithological survey after FY2018 and those in previous years because of the changes in the survey sites and target species. (Note 3) No monitoring was conducted in FY2007 and FY2009~2017.

<Air>

Stocktaking of the detection of Dicofol in air during FY2016~2020

		Geometric				Quantification	Detection Frequency	
Dicofol	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
A :	2016 Warm season	nd	nd	1.0	nd	0.5 [0.2]	10/37	10/37
Air $(\pi \alpha/m^3)$	2019 Warm season	nd	nd	0.4	nd	0.4 [0.2]	5/36	5/36
(pg/m^3)	2020 Warm season	nd	nd	tr(0.3)	nd	0.5 [0.2]	3/37	3/37

(Note) No monitoring was conducted in FY2017 and FY2018.

[25] Perfluorohexane sulfonic acid (PFHxS)

· History and state of monitoring

Perfluorohexane sulfonic acid (PFHxS) is used as Fluoropolymer processing aid and Surfactant etc. Perfluorohexane sulfonic acid (PFHxS), its salts and PFHxS-related compounds were adopted as target chemicals at the COP10 of the Stockholm convention on Persistent Organic Pollutants in June 2022.

Under the framework of the Environmental Monitoring, the substance has been monitored in surface water, and sediment in FY2018 and FY2019, in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2020 and FY2021.

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 47 sites, and it was detected at 44 of the 47 valid sites adopting the detection limit of 30pg/L, and the detection range was up to 2,300pg/L.

Stocktaking of the detection of Perfluorohexane sulfonic acid (PFHxS) in surface water during FY2018~2021

Perfluorohexane	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification	Detection Frequency	
sulfonic acid (PFHxS)						[Detection] Limit	Sample	Site
	2018	190	130	2,600	nd	120 [50]	44/47	44/47
Surface water	2019	150	120	1,800	nd	60 [30]	45/48	45/48
(pg/L)	2020	160	120	1,500	nd	60 [20]	44/46	44/46
	2021	160	110	2,300	nd	70 [30]	44/47	44/47

<Sediment>

The presence of the substance in sediment was monitored at 60 sites, and it was detected at 19 of the 60 valid sites adopting the detection limit of 3pg/g-dry, and the detection range was up to 15pg/g-dry.

Perfluorohexane	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification	Detection Frequency	
sulfonic acid (PFHxS)						[Detection] Limit	Sample	Site
	2018	nd	nd	27	nd	11 [5]	15/61	15/61
Sediment	2019	nd	nd	15	nd	13 [5]	10/61	10/61
(pg/g-dry)	2020	nd	nd	10	nd	6 [3]	13/58	13/58
	2021	nd	nd	15	nd	6 [3]	19/60	19/60

Stocktaking of the detection of Perfluorohexane sulfonic acid (PFHxS) in sediment during FY2018~2021

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 2pg/g-wet, and the detected concentration was tr(3)pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 7 of the 18 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was up to 16pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at both valid areas adopting the detection limit of 2pg/g-wet, and the detection range was $10 \sim 40pg/g$ -wet.

Perfluorohexane	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification	Detection Frequency	
sulfonic acid (PFHxS)						[Detection] Limit	Sample	Site
Bivalves	2020	tr(2)	tr(3)	tr(3)	nd	5 [2]	2/3	2/3
(pg/g-wet)	2021	nd	nd	tr(3)	nd	5 [2]	1/3	1/3
Fish	2020	tr(3)	tr(2)	18	nd	5 [2]	10/18	10/18
(pg/g-wet)	2021	tr(2)	nd	16	nd	5 [2]	7/18	7/18
Birds	2020			190	190	5 [2]	1/1	1/1
(pg/g-wet)	2021	20		40	10	5 [2]	2/2	2/2

Stocktaking of the detection of Perfluorohexane sulfonic acid (PFHxS) in wildlife (bivalves, fish and birds) in FY2020 and FY2021

<Air>

The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.07pg/m^3 , and the detection range was $0.46 \sim 6.6 \text{pg/m}^3$.

Stocktaking of the detection of Perfluorohexane sulfonic acid (PFHxS) in air in FY2020 and FY2021

Perfluorohexane	Monitored	Geometric mean	Median	Maximum	Minimum	Quantification	Detection Frequency	
sulfonic acid (PFHxS)						[Detection] Limit	Sample	Site
Air	2020	2.5	2.4	6.1	0.7	0.3 [0.1]	37/37	37/37
(pg/m^3)	2021	2.2	2.3	6.6	0.46	0.18 [0.07]	35/35	35/35

References

- i) Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment, "Chemicals in the Environment," the Surface Water/Sediment Monitoring (http://www.env.go.jp/chemi/kurohon/)
- ii) Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment, "Chemicals in the Environment," the Wildlife Monitoring (http://www.env.go.jp/chemi/kurohon/)
- iii) Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment, "Chemicals in the Environment," the Follow-up Survey of the Status of Pollution by Unintentionally Formed Chemicals (http://www.env.go.jp/chemi/kurohon/)
- iv) Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment, "Chemicals in the Environment," the Environmental Survey of Chemical Substances (http://www.env.go.jp/chemi/kurohon/)

Reference: Egg of Great Cormorants (egg yolk and white)

In the FY2021 monitoring survey, eggs of great cormorants were analyzed to check for the presence of 11 chemicals (groups): PCBs, Hexachlorobenzene, DDTs, Perfluorooctane sulfonic acid (PFOS), Perfluorooctanoic acids (PFOA), Pentachlorobenzene, Endosulfans, Polychlorinated Naphthalenes, Hexachlorobuta-1,3-diene, Short-chain chlorinated paraffins and Perfluorohexane sulfonic acid (PFHxS).

The eggs were taken around Koyaike pond*. The results of the analysis in Table 1.

(Note 1) *: The eggs were taken by Water and Air Quality Control Division, Environmental Management Bureau, Agricultural and Environmental Affairs Department, Hyogo Prefectural Government and Green Nature Division, Environmental Policy Office, Department of Citizen Autonomy, Itami City.

		Quantification	Egg of Grea	at Cormorant	(Reposted) Adult of Great Cormorant *2					
No.	Target chemicals	[Detection]	Koyaike pon	d (Itami City)	Tikubushima	Riv.Tenjin				
		Limits	Egg white	Egg yolk	Island, Lake Biwa	(Hokuei Town)				
[1]	Total PCBs ^{*1}	31 [11]	43,000	18,000,000	74,000					
[2]	НСВ	3 [1]	110	32,000	2,900					
	DDTs									
	[6-1] <i>p,p</i> '-DDT	3 [1]	nd	1,100	83					
	[6-2] <i>p,p</i> '-DDE	6 [2]	nd	740	34					
[6]	[6-3] <i>p,p</i> '-DDD	3 [1]	240	51,000	820					
	[6-4] <i>o,p</i> '-DDT	3 [1]	48	25,000	480					
	[6-5] <i>o,p</i> '-DDE									
	[6-6] <i>o,p</i> '-DDD	4 [2]	nd	1,300	81					
[15]	Perfluorooctane sulfonic acid (PFOS)	5 [2]	67	15,000	8,500					
[16]	Perfluorooctanoic acids (PFOA)	6 [2]	14	1,200	280					
[17]	Pentachlorobenzene	3 [1]	22	5,600	390					
	Endosulfans									
[18]	[18-1] α-Endosulfan	3 [1]	nd	1,100	83					
	[18-2] β-Endosulfan	6 [2]	nd	740	34					
[20]	Total Polychlorinated Naphthalenes ^{*1}	30 [10]	nd	30	nd					
[21]	Hexachlorobuta-1,3-diene	13 [5]	nd	29	nd					
	Short-chain chlorinated paraffinsare									
	[23-1] Chlorinated decanes	900 [300]	nd	nd	nd					
[23]	[23-2] Chlorinated undecanes	800 [300]	nd	nd	1,100					
	[23-3] Chlorinated dodecanes	600 [200]	nd	900	nd					
	[23-4] Chlorinated tridecanes	500 [200]	nd	1,000	tr(300)					
[25]	Perfluorohexane sulfonic acid (PFHxS)	5 [2]	9	1,400	190					

Table 1 List of the detection values of egg of Great Cormorant

(Note 1) *1: The Quantification [Detection] limits were the sum of the Quantification [Detection] limits of each congener.

(Note 2) *2: These values are previously mentioned in the main part but are mentioned here again to indicate the stage of life cycle of great cormorants from egg to adult.