Chapter 3 Results of the Environmental Monitoring in FY2020

1. Purpose of the monitoring

Environmental Monitoring provides annual surveys of the environmental persistence of target chemicals as listed in the Stockholm Convention, chemicals that while undesignated are still subject to review for potential risk, and/or highly persistent chemicals annotated as Specified Chemical Substances and Monitored Chemical Substances under the Law Concerning the Examination and Regulation of Manufacture, etc. of Chemical Substances (aka, the Chemical Substances Control Law), all target chemicals whose year to year changes in persistence in the environment must be understood.

*POPs: persistent organic pollutants

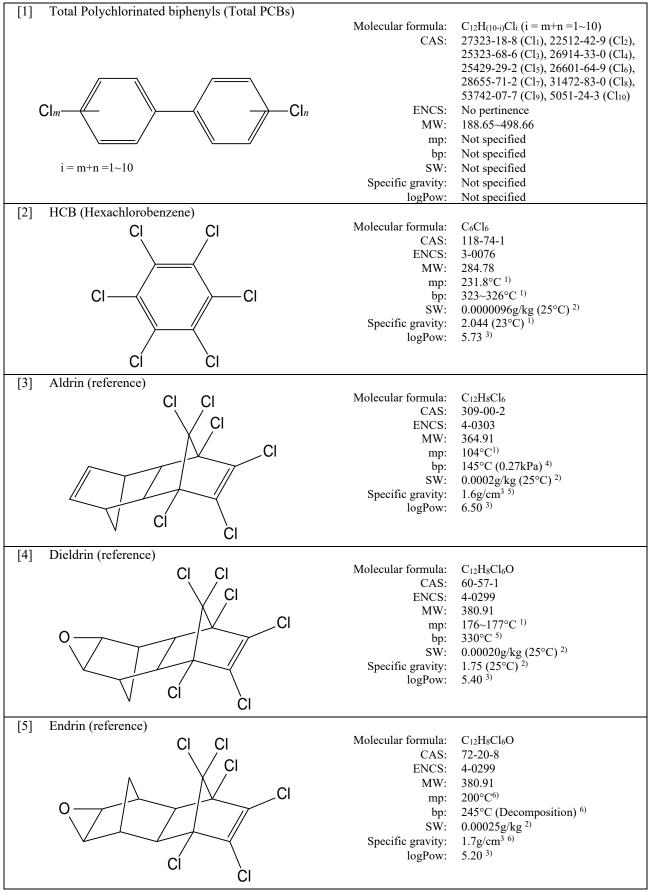
2. Target chemicals

In the FY2020 Environmental Monitoring, 11 chemicals (groups) were designated as target chemical.

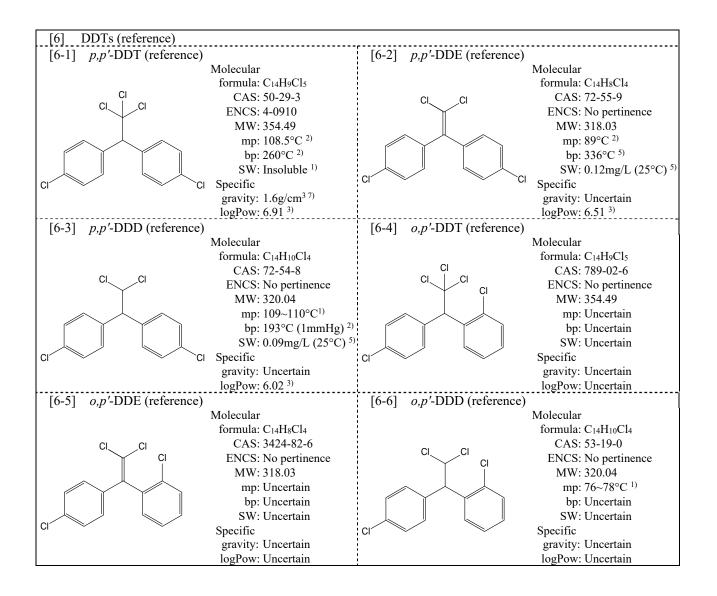
4 of the target chemicals (groups) were Polychlorinated biphenyls (Total PCBs), Hexachlorobenzene¹., Chlordanes²., and Heptachlors, which were listed as Persistent Organic Pollutants (POPs) initially in the Stockholm Convention in 2004³. 2 of them were Perfluorooctane sulfonic acid (PFOS)⁴ and Pentachlorobenzene, which were adopted to be the POPs at fourth meeting of the Conference of the Parties (COP) held 2009. 1 of them was Hexachlorobuta-1,3-diene, which was adopted to be the POPs at seventh meeting of COP held 2015. 1 of them was Short-chain chlorinated paraffins⁵, which was adopted to be the POPs at eighth meeting of COP held 2017. 2 were Dicofol and Perfluorooctanoic acid (PFOA)⁶, which were adopted to be the POPs at ninth meeting of COP held 2019. Another was Perfluorohexane sulfonic acid (PFHxS), which was decided to recommend to the COP that it consider listing as POPs at fifteenth meeting of the persistent organic pollutants review committee (POPRC) held 2019.

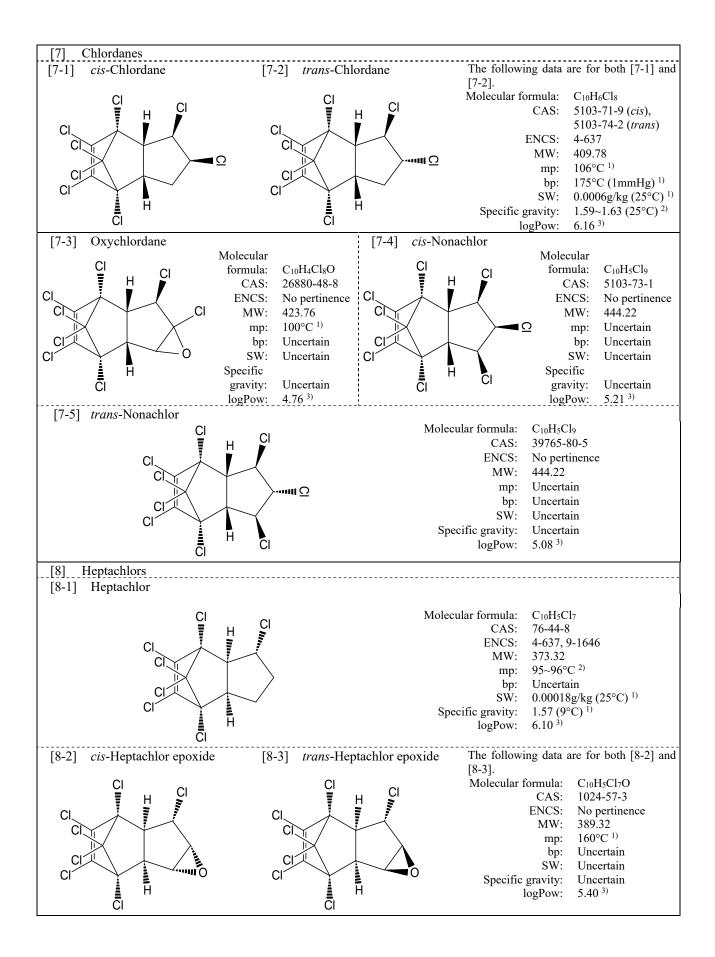
The combinations of target chemicals and the monitoring media are given below.

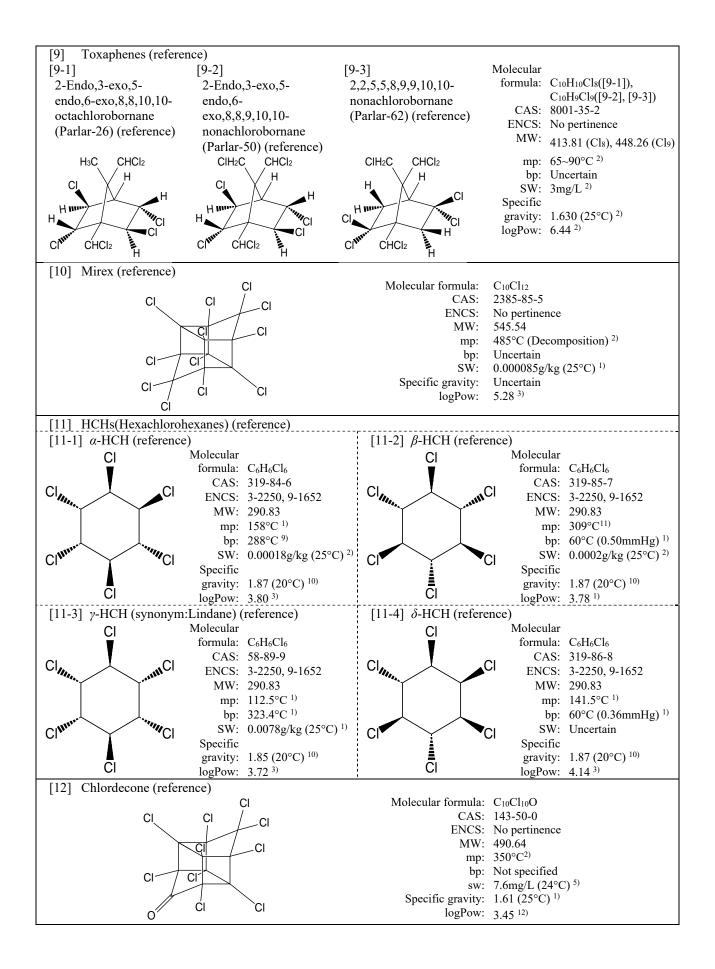
- (Note 1) cis-Chlordane and trans-Chlordane were adopted as target chemical of the Stockholm convention on Persistent Organic Pollutants. In the survey, Chlordanes including cis-Chlordane, trans-Chlordane Oxychlordane, cis-Nonachlor and trans-Nonachlor are target chemicals.
- (Note 2) Heptachlor was adopted as target chemical of the Stockholm convention on Persistent Organic Pollutants. In the survey, Heptachlors including *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide are target chemicals.
- (Note 3) Up to FY2009, the 11 target chemicals (groups) were monitored each fiscal year. 10 out of the 11 target chemicals (groups) were exceptions of Polychlorinated dibenzo-p-dioxin (PCDDs) and Polychlorinated dibenzofurans (PCDFs) from 12 chemicals (groups) listed as the POPs initially in the Stockholm Convention. Another was HCHs (Hexachlorohexanes). As of FY2010, chemicals (groups) adopted or considerd to be the POPs in the convention have been monitored too, and adjustments made to implementation frequency. In FY2020, 11 chemicals (groups) that have been designated as target chemicals (groups) in this Environmental Monitoring were not moniterd. They were Aldrin, Dieldrin, Endrin, DDTs^{8,} Toxaphenes⁹, Mirex, HCHs (Hexachlorohexanes)¹⁰, Chlordecone, Polybromodiphenyl ethers Hexabromobiphenyls, $(Br_4 \sim Br_{10})^{11}$, Endosulfans, 1.2.5.6.9.10-Hexabromocyclododecanes¹², Polychlorinated Naphthalenes¹³, and Pentachlorophenol and its salts and esters¹⁴. Up to the latest results of the 14 chemicals (groups) have been included in this report for purpose of reference.
- (Note 4) Perfluorooctane sulfonic acid (PFOS), its salts and Perfluorooctane sulfonyl fluoride were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants. The survey of the

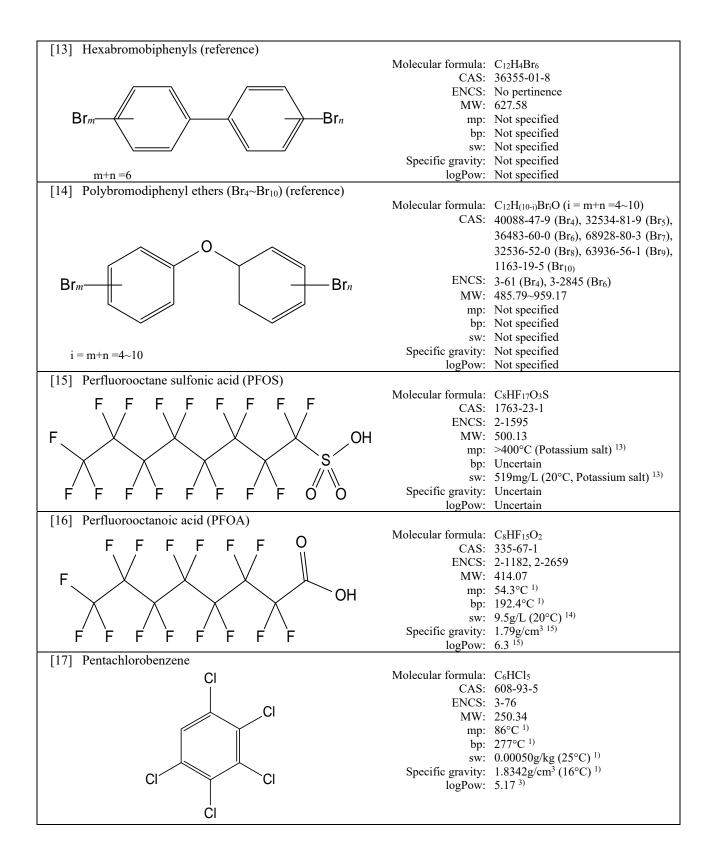

Perfluorooctane sulfonic acid (PFOS) only monitored linear octyl Perfluorooctane sulfonic acid (PFOS).

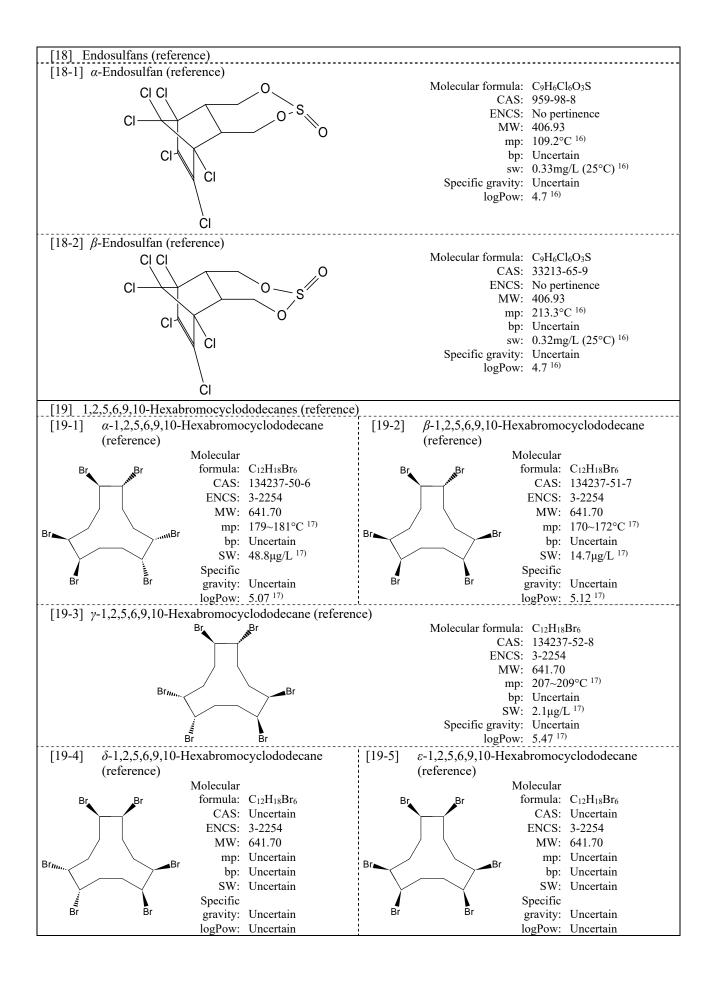
- (Note 5) Chlorinated paraffins (C₁₀~C₁₃) was adopted as target chemicals at the COP8 of the Stockholm convention on Persistent Organic Pollutants. In the survey, Chlorinated paraffins with 5~9 chlorines are target chemicals in surface water, sediment and wildlife, and Chlorinated paraffins with 4~7 chlorines are target chemicals in air.
- (Note 6) Perfluorooctanoic acid (PFOA), its salts and PFOA-related compounds were adopted as target chemicals at the COP9 of the Stockholm convention on Persistent Organic Pollutants. The survey of the Perfluorooctanoic acid (PFOA) only monitored linear octyl Perfluorooctanoic acid (PFOA).
- (Note 7) Perfluorohexane sulfonic acid (PFHxS), its salts and PFHxS-related compounds were decided to recommend to the COP that it consider listing as POPs at POPRC15. The survey of the Perfluorohexane sulfonic acid (PFHxS) only monitored linear hexyl Perfluorohexane sulfonic acid (PFHxS).
- (Note 8) p,p'-DDT and o,p'-DDT were adopted as target chemicals of the Stockholm convention on Persistent Organic Pollutants. In the survey, DDTs including environmental degraded products p,p'-DDT, o,p'-DDT, p,p'-DDD and o,p'-DDD were target chemicals.
- (Note 9) Chlorobornane and Chlorocamphene of industrial blended material (about 16,000 congeners or isomer) were adopted as target chemicals of the Stockholm convention on Persistent Organic Pollutants. In the survey, 2endo,3-exo,5-endo,6-exo,8,8,10,10-octachlorobornane (Parlar-26), 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10nonachlorobornane (Parlar-50) and 2,2,5,5,8,9,9,10,10-Nonachlorobornane (Parlar-62) are target chemicals.
- (Note 10) In the COP4, α -HCH, β -HCH and γ -HCH (synonym: Lindane) were adopted to be POPs among HCHs, but in this Environmental Monitoring, HCHs which were able to include δ -HCH were designated as target chemicals.
- (Note 11) Tetrabromodiphenyl ethers, Pentabromodiphenyl ethers, Hexabromodiphenyl ethers, and Heptabromodiphenyl ethers were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants. Decabromodiphenyl ether was adopted as target chemicals at the COP8 of the Stockholm convention on Persistent Organic Pollutants.In the survey, Polybromodiphenyl ethers including those from 4 to 10 bromines are target chemicals.
- (Note 12) α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane and γ -1,2,5,6,9,10-Hexabromocyclododecane were adopted as target chemicals at the COP6 of the Stockholm convention on Persistent Organic Pollutants. In the survey, 1,2,5,6,9,10-Hexabromocyclododecanes including δ -1,2,5,6,9,10-Hexabromocyclododecane are target chemicals.
- (Note 13) PCNs (Cl₂~Cl₈) was adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants. In the survey, PCNs including those with one (1) chlorine are target chemicals.
- (Note 14) Pentachlorophenol and its salts and esters were adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants, the survey monitored Pentachlorophenol and Pentachloroanisole.

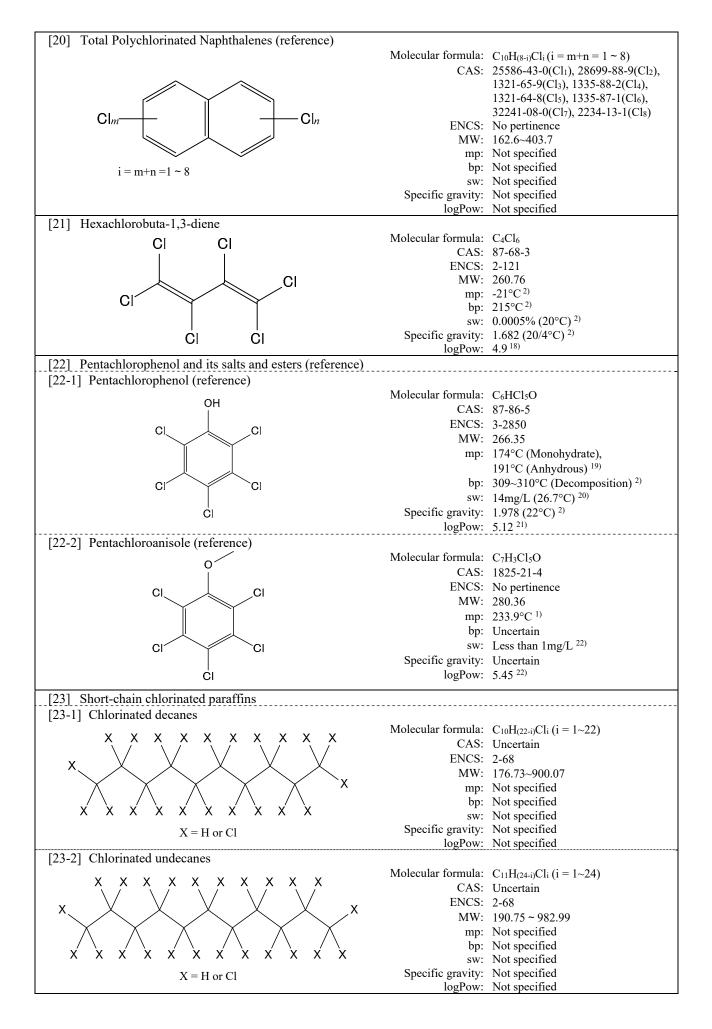

			Monitored media				
No	Name	Surface water	Sediment	Wildlife	Air		
[1]	 Total Polychlorinated biphenyls (Total PCBs) Total PCBs represents the sum of the PCB congeners listed in the table below. "Total PCBs" only indicates the total amount in the following pages, and the measured values of the individual congeners and coplanar PCBs are listed on the website. [1-1] Monochlorobiphenyls [1-2] Dichlorobiphenyls [1-3] Trichlorobiphenyls [1-4.1] 3,3',4,4'-Tetrachlorobiphenyl (#77) [1-4.2] 3,4,4',5-Tetrachlorobiphenyl (#81) [1-5] Pentachlorobiphenyls [1-5.1] 2,3,3',4,4'-Pentachlorobiphenyl (#105) [1-5.2] 2,3,4,4',5-Pentachlorobiphenyl (#114) [1-5.3] 2,3',4,4',5-Pentachlorobiphenyl (#118) [1-5.4] 2',3,4,4',5-Pentachlorobiphenyl (#126) [1-6] Hexachlorobiphenyls [1-6.1] 2,3,3',4,4',5-Hexachlorobiphenyl (#157) [1-6.2] 2,3',4,4',5,5'-Hexachlorobiphenyl (#167) [1-6.4] 3,3',4,4',5,5'-Hexachlorobiphenyl (#167) [1-6.4] 3,3',4,4',5,5'-Hexachlorobiphenyl (#169) [1-7.1] 2,2',3,3',4,4',5,5'-Hexachlorobiphenyl (#180) [1-7.2] 2,2',3,4,4',5,5'-Heptachlorobiphenyl (#180) [1-7.3] 2,3',4,4',5,5'-Heptachlorobiphenyl (#180) [1-7.4] 2,3,3',4,4',5,5'-Heptachlorobiphenyl (#180) [1-7.3] 2,3',4,4',5,5'-Heptachlorobiphenyl (#180) [1-7.4] 0-cachlorobiphenyls 	0	0	Ο	Ο		
[2]	[1-10] Decachlorobiphenyl Hexachlorobenzene		-				
[2]	Aldrin (reference)	0	0	0	0		
[4]	Dieldrin (reference)						
[5]	Endrin (reference)						
[6]	DDTs (reference) [6-1] p,p' -DDT (reference) [6-2] p,p' -DDE (reference) [6-3] p,p' -DDD (reference) [6-4] o,p' -DDT (reference) [6-5] o,p' -DDE (reference) [6-6] o,p' -DDD (reference)						
[7]	Chlordanes [7-1] cis-Chlordane [7-2] trans-Chlordane [7-3] Oxychlordane [7-4] cis-Nonachlor [7-5] trans-Nonachlor	0	0	0	0		
[8]	Heptachlors [8-1] Heptachlor [8-2] cis-Heptachlor epoxide [8-3] trans-Heptachlor epoxide	0	0	0	0		
[9]	Toxaphenes (reference)[9-1]2-endo,3-exo,5-endo,6-exo,8,8,10,10-octachlorobornane (Parlar-26) (reference)[9-2]2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-nonachlorobornane (Parlar-50) (reference)[9-3]2,2,5,5,8,9,9,10,10-Nonachlorobornane (Parlar-62) (reference)						
[10]	Mirex (reference)						
[11]	HCHs (Hexachlorohexanes) (reference) [11-1] α -HCH (reference) [11-2] β -HCH (reference) [11-3] γ -HCH (synonym: Lindane) (reference) [11-4] δ -HCH (reference)						
	Chlordecone (reference)						
[13]	Hexabromobiphenyls (reference)						

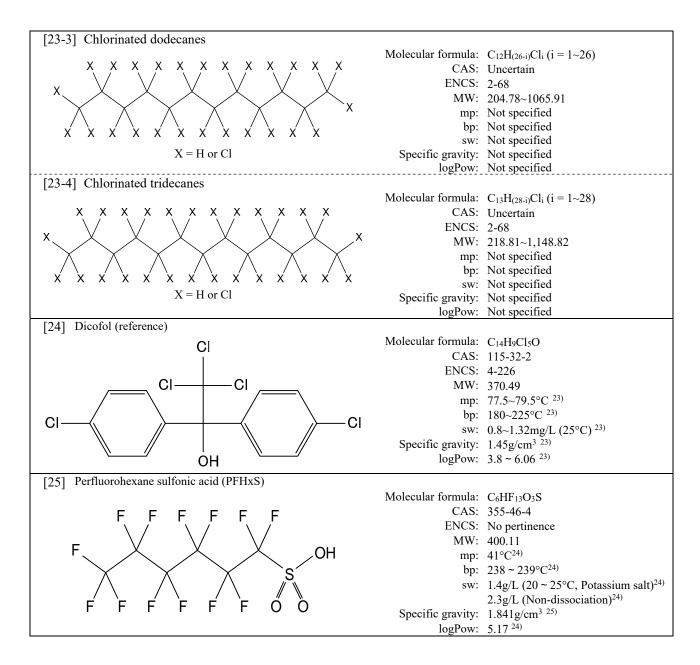

			Monitored media				
No	Name	Surface water	Sediment	Wildlife	Air		
[14]	Polybromodiphenyl ethers(Br ₄ ~Br ₁₀) (reference)[14-1]Tetrabromodiphenyl ethers (reference)[14-1-1]2,2',4,4'-Tetrabromodiphenyl ether (#47) (reference)[14-2]Pentabromodiphenyl ethers (reference)[14-2-1]2,2',4,4',5-Pentabromodiphenyl ether (#99) (reference)[14-3]Hexabromodiphenyl ethers (reference)[14-3-1]2,2',4,4',5,5'-Pentabromodiphenyl ether (#153) (reference)[14-3-2]2,2',4,4',5,6'-Pentabromodiphenyl ether (#154) (reference)[14-4]Heptabromodiphenyl ethers (reference)[14-4]2,2',3,3',4,5',6'-Pentabromodiphenyl ether (#175) (reference)[14-4-1]2,2',3,4,4',5',6'-Pentabromodiphenyl ether (#183) (reference)[14-4]14-4-2[14-4]2,2',3,4,4',5',6'-Pentabromodiphenyl ether (#183) (reference)[14-5]Octabromodiphenyl ethers (reference)[14-6]Nonabromodiphenyl ethers (reference)[14-7]Decabromodiphenyl ether (reference)						
	Perfluorooctane sulfonic acid (PFOS)		0	0	0		
		0	0	0	0		
[17]	Pentachlorobenzene		0	0	0		
[18]	Endosulfans (reference) [18-1] α-Endosulfan (reference) [18-2] β- Endosulfan (reference)						
[19]	1,2,5,6,9,10-Hexabromocyclododecanes (reference)[19-1] α -1,2,5,6,9,10-Hexabromocyclododecane (reference)[19-2] β -1,2,5,6,9,10-Hexabromocyclododecane (reference)[19-3] γ -1,2,5,6,9,10-Hexabromocyclododecane (reference)[19-4] δ -1,2,5,6,9,10-Hexabromocyclododecane (reference)[19-5] ε -1,2,5,6,9,10-Hexabromocyclododecane (reference)						
[20]	Total Polychlorinated naphthalenes (reference) Total Polychlorinated naphthalenes represents the sum of the Polychlorinated naphthalenes congeners. The measured values of the individual congeners are listed on the website.						
[21]		0	0	0	0		
[22]	Pentachlorophenol and its salts and esters (reference) [22-1] Pentachlorophenol (reference) [22-2] Pentachloroanisole (reference)						
[23]	Short-chain chlorinated paraffins[23-1]Chlorinated decanes[23-2]Chlorinated undecanes[23-3]Chlorinated dodecanes[23-4]Chlorinated tridecanes	0	0	0	0		
[24]	Dicofol	0	0	0	0		
[25]	Perfluorohexane sulfonic acid (PFHxS)	0	0	0	0		


Chemical and physical	properties of targ	et chemicals of the Environmental	Monitoring are as follows.




(Abbreviations) CAS: CAS registry number, ENCS: registry number in the Existing and New Chemical Substances List, MW: molecular weight, mp: melting point, bp: boiling point, SW: solubility in water, logPow: *n*-octanol-water partition coefficient, kPa: kilopascal (1 atom approximately equal to 101.3kPa).





References

- 1) John R. Rumble, CRC Handbook of Chemistry and Physics, 98th Edition, CRC Press LLC (2017)
- 2) O'Neil, The Merck Index An Encyclopedia of Chemicals, Drugs, and Biologicals 15th Edition, Merck Co. Inc. (2013)
- 3) Hansch et al., Exploring QSAR Hydrophobic, Electronic and Steric Constants, American Chemical Society (1995)
- 4) IPCS, International Chemical Safety Cards, Aldrin, ICSC0774 (1998)
- 5) Howard et al., Handbook of Physical Properties of Organic Chemicals, CRC Press Inc. (1996)
- 6) IPCS, International Chemical Safety Cards, Endrin, ICSC1023 (2000)
- 7) IPCS, International Chemical Safety Cards, DDT, ICSC0034 (2004)
- Biggar et al., Apparent solubility of organochlorine insecticides in water at various temperatures, Hilgardia, 42, 383-391 (1974)
- 9) IPCS, International Chemical Safety Cards, alpha-Hexachlorocyclohexane, ICSC0795 (1998)
- 10) ATSDR, Toxicological Profile for alpha-, beta-, gamma- and delta-Hexachlorocyclohexane (2005)
- 11) IPCS, International Chemical Safety Cards, beta-Hexachlorocyclohexane, ICSC0796 (1998)
- 12) IPCS, International Chemical Safety Cards, Chlordecone ICSC1432 (2003)
- 13) United Nations Environment Programme (UNEP), Risk profile on perfluorooctane sulfonate, Report of the Persistent Organic Pollutants Review Committee on the work of its second meeting (2006)
- 14) OECD, Perfluorooctanoic Acid & Ammonium Perfluorooctanoate, SIDS Initial Assessment Profile for 26th SIAM (2008)
- 15) IPCS, International Chemical Safety Cards, Perfkuorooctanoic acid, ICSC1613 (2005)
- 16) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on endosulfan, Report of the Persistent Organic Pollutants Review Committee on the work of its fifth meeting (2009)
- 17) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on hexabromocyclododecane, Report of the Persistent Organic Pollutants Review Committee on the work of its sixth meeting (2010)
- 18) IPCS, International Chemical Safety Cards, Hexachlorobutadiene ICSC0896 (1997)
- 19) International Agency for Research on Cancer(IARC), IARC Monographs on the Evaluation of the Carcinogenic Risk of

Chemicals to Man(1972)

- 20) Yalkowsky et al., Aquasol Database of Aqueous Solubility Version 5, College of Pharmacy, University of Arizona(1992)
- 21) Hansch et al., Exploring QSAR Hydrophobic, Electronic and Steric Constants, American Chemical Society (1995)
- 22) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on pentachlorophenol and its salts and esters, Report of the Persistent Organic Pollutants Review Committee on the work of its ninth meeting (2013)
- 23) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on dicofol, Report of the Persistent Organic Pollutants Review Committee on the work of its twelfth meeting (2016)
- 24) UNEP, Stockholm Convention on Persistent Organic Pollutants, Persistent Organic Pollutants Review Committee, Perfluorohexane sulfonic acid (PFHxS), its salts and PFHxS related compounds, Draft risk management evaluation (2019)
- U.S. National Library of Medicine, Hazardous Substances Data Bank (HSDB) (https://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB)

3. Monitored site and procedure

In the Environmental Monitoring (of surface water, sediment, wildlife, and air), the sampling of specimens was entrusted to prefectural governments and government-designated cities across Japan and the specimens sampled were analysed by private analytical laboratories.

(1) Organisations responsible for sampling

Local	Organizations regransible for someting		Monitore	ed media	
communities	Organisations responsible for sampling	Surface water	Sediment	Wildlife	Air
Hokkaido	Environmental Promotion Section, Environment Division, Department				
	of Environment and Lifestyle, Hokkaido Prefectural Government and				
	Research Institute of Energy, Environment and Geology, Hokkaido	0	0	0	0
	Research Organization				
Sapporo City	Sapporo City Institute of Public Health				0
Iwate Pref.	Research Institute for Environmental Sciences and Public Health of				
	Iwate Prefecture	0	0	0	0
Miyagi Pref.	Miyagi Prefectural Institute of Public Health and Environment	0	0	0	0
Sendai City	Sendai City Institute of Public Health		0		
Akita Pref.	Akita Research Center for Public Health and Environment	0	0		
Yamagata Pref.	Yamagata Environmental Science Research Center	0	0		0
Fukushima Pref.	Fukushima Prefectural Environmental Center	0	0		
Ibaraki Pref.	Ibaraki Kasumigaura Environmental Science Center	0	0	0	0
Tochigi Pref.	Tochigi Prefectural Institute of Public Health and Environmental				-
i o e ingritteri	Science	0	0		
Gunma Pref.	Gunma Prefectural Institute of Public Health and Environmental				
	Sciences	0			
Saitama Pref.	Center for Environmental Science in Saitama	0			
	Chiba Pref. Chiba Prefectural Environmental Research Center		0		0
Chiba City Chiba City Institute of Health and Environment		0	0		-
Tokyo Met.	Environmental Improvement Division, Bureau of Environment, Tokyo	Ŭ			
Tokyo Met.	Metropolitan Government and Tokyo Metropolitan Research Institute	0	0	0	0
	for Environmental Protection	-	-	-	-
Kanagawa Pref.	Kanagawa Environmental Research Center				0
Yokohama City	Yokohama Environmental Science Research Institute	0	0	0	0
Kawasaki City	Kawasaki Environment Research Institute	Ŭ	Ŭ	0	Ŭ
Niigata Pref.	Niigata Prefectural Institute of Public Health and Environmental			Ű	
Tungata 1 Ion.	Sciences	0	0		0
Toyama Pref.	Environment Preservation Division, Living Environmental and				
royunia riei.	Cultural Affairs Department, Toyama Prefectural Government and	0	0		0
	Toyama Prefectural Environmental Science Research Center	-	-		-
Ishikawa Pref.	Ishikawa Prefectural Institute of Public Health and Environmental				
Ishina wa 11en	Science	0	0	0	0
Fukui Pref.	Fukui Prefectural Institute of Public Health and Environmental Science	0	0		
Yamanashi Pref.	Yamanashi Institute for Public Health and Environment		0	0	0
Nagano Pref.	Nagano Environmental Conservation Research Institute	0	0		0
Gifu Pref.	Gifu Prefectural Research Institute for Health and Environmental				
	Sciences				0
Shizuoka Pref.	Shizuoka Institute of Environment and Hygiene	0	0		
Aichi Pref.	Aichi Environmental Research Center	0	0		
Nagoya City	Nagoya City Environmental Science Research Center, Regional				
	Environmental measures Division, Environmental Bureau, Nagoya city			0	0
Mie Pref.	Mie Prefecture Health and Environment Research Institute	0	0		0
Shiga Pref.	Lake Biwa Environmental Research Institute	0	0	0	-
Kyoto City	Kyoto City Institute of Health and Environmental Sciences	0	0	Ű	
Osaka Pref.	Environment Preservation Division, Environment Management Office,			\vdash	
0.5aka 1 101.	Department of Environment, Agriculture, Forestry and Fisheries,				
	Osaka Prefectural Government and Research Institute of Environment,	0	0	0	0
	Agriculture and Fisheries, Osaka Prefecture				
Osaka City	Osaka City Institute of Public Health and Environmental Sciences	0	0		
Hyogo Pref.	Water and Air Quality Control Division, Environmental Management			\vdash	
1190g0 1 101.	Bureau, Agricultural and Environmental Affairs Department, Hyogo				
	Prefectural Government and Hyogo Prefectural Institute of	0	_	0	0
	Environmental Sciences, Hyogo Environmental Advancement	0	0	U	0
			•		

Local			Monitored media				
communities	Organisations responsible for sampling	Surface water	Sediment	Wildlife	Air		
Hyogo Pref.	Water and Air Quality Control Division, Environmental Management Bureau, Agricultural and Environmental Affairs Department, Hyogo Prefectural Government and Green Nature Division, Environmental Policy Office, Department of Citizen Autonomy, Itami City			o *			
Kobe City	Natural Environmental Symbiotic Division, Environmental Preservation Branch, Environment Bureau, Kobe City and Kobe Institute of Health, Welfare Bureau, Health Division, Health	0	0		0		
Nara Pref.	Nara Prefecture Landscape and Environment Center		0		0		
Wakayama Pref.	Wakayama Prefectural Research Center of Environment and Public Health	0	0				
Tottori Pref.	Tottori Prefectural Institute of Public Health and Environmental Science			0			
Shimane Pref.	Shimane Prefectural Institute of Public Health and Environmental Science and Oki Public Health Center				0		
Okayama Pref.	Okayama Prefectural Institute for Environmental Science and Public Health	0	0				
Hiroshima Pref.	Hiroshima Prefectural Technology Research Institute Health and Environment Center	0	0				
Hiroshima City	Hiroshima City Institute of Public Health			0	0		
Yamaguchi Pref.	Environmental Policy Division, Public Environmental Affairs Department, Yamaguchi Prefectural Government and Yamaguchi Prefectural Institute of Public Health and Environment	0	0		0		
Tokushima Pref.	Tokushima Prefectural Pablic Health, Pharmaceutical and Environmental Sciences Center	0	0		0		
Kagawa Pref.	Kagawa Prefectural Research Institute for Environmental Sciences and Public Health	0	0		0		
Ehime Pref.	Ehime Prefectural Institute of Public Health and Environmental Science		0		0		
Kochi Pref.	Kochi Prefectural Environmental Research Center	0	0	0			
Fukuoka Pref.	Fukuoka Institute of Health and Environmental Sciences				0		
Kitakyushu City	Kitakyushu City Institute of Health and Environmental Sciences	0	0				
Fukuoka City	Fukuoka City Institute for Hygiene and the Environment		0				
Saga Pref.	Saga Prefectural Environmental Research Center	0	0		0		
Nagasaki Pref.	Prefectural Living Environment Division, Environment Bureau, Nagasaki Prefecture	0	0				
Kumamoto Pref.	Kumamoto Prefectural Institute of Public-Health and Environmental Science	0			0		
Oita Pref.	Environment Preservation Division, Department of Environment, Oita Prefectural Government and Oita Prefectural Institute of Health and Environment		0	0			
Miyazaki Pref.	Miyazaki Prefectural Institute for Public Health and Environment	0	0		0		
Kagoshima Pref.	Kagoshima Prefectural Institute for Environmental Research and Public Health	0	0	0	0		
Okinawa Pref.	Okinawa Prefectural Institute of Health and Environment	0	0	0	0		

(Note 1) Organisations responsible for sampling are described by their official names in FY2019

(Note 2) *: Because there were the examples of survey that obtained the eggs in other countries, the eggs of great cormorants were taken in this survey by Yamanashi Prefectural Fisheries Technology Center and Water and Air Quality Control Division, Environmental Management Bureau, Agricultural and Environmental Affairs Department, Hyogo Prefectural Government and Green Nature Division, Environmental Policy Office, Department of Citizen Autonomy, Itami City. The results were treated as the reference values.

(2) Monitored sites (areas)

In the Environmental Monitoring (of surface water, sediment, wildlife, and air), the sampling of specimens was entrusted to prefectural governments and government-designated cities across Japan and the specimens sampled were analysed by private analytical laboratories.

The monitored sites (areas) are shown in Table 3-1-1 and Figure 3-1-1 for surface water, Table 3-1-2 and Figure 3-1-2 for sediment, Table 3-1-3 and Figure 3-1-3 for wildlife and Table 3-1-4 and Figure 3-1-4 for air. The breakdown is summarized as follows.

Monitored	Numbers of local	Numbers of target	Numbers of monitored	Numbers of samples at a
media	communities	chemicals (groups)	sites (or areas)	monitored site (or area)
Surface water	41	11	46	1
Sediment	45	11	58	1*
Wildlife (bivalves)	3	11	3	1**
Wildlife (fish)	17	11	18	1**
Wildlife (birds)	2***	11	2***	1**
Air (warm season)	34	11	37	1 or 3****
All media	57	11	118***	

(Note 1) "*": For sediment, at each monitoring point, three (3) specimen samples were collected. The target substances were analysed for each place with one(1) specimen sample that is a mixture of equal parts of the three (3) specimen samples.

(Note 2) "**": For wildlife species, at each monitoring point, three (3) specimen samples were collected. The target substance group Total Polychlorinated Naphthalenes were analysed with the three (3) specimen samples for each place. The other substances were analysed for each place with one (1) specimen sample that is a mixture of equal parts of the three (3) specimen samples.
 (Note 3) "***": Samples obtained in 1 site of the birds as wildlife eggs of Great Cormorant, and the sample was measured each the egg yolk and the

(Note 3) "***": Samples obtained in 1 site of the birds as wildlife eggs of Great Cormorant, and the sample was measured each the egg yolk and the egg white, the results were treated as a reference values.
 (Note 4) "****": The target substances other than [21] Hexachlorobuta-1,3-diene were analysed withe one (1) sample for each sit. The target substance

(Note 4) "****": The target substances other than [21] Hexachlorobuta-1,3-diene were analysed with one (1) sample for each sit. The target substance [21] Hexachlorobuta-1,3-diene was analysed with the three (3) specimen samples for each site.

(3) Sampling method of specimens

The sampling of specimens and the preparation of samples were carried out following the "Guidelines on Conducting of Environmental Surveys and Monitoring of Chemicals" (published on March 2021) by the Environment Health and Safety Division, Environmental Health Department, Ministry of the Environment of Japan (MOE).

(4) Target species

The species to be monitored among the wildlife media were selected considering the possibility of international comparison, as well as their significance and practicality as indicators: 1 bivalve (blue mussel), 7 fishes (predominantly sea bass), and 1 bird, namely, 9 species in total.

The properties of the species determined as targets in the FY2019 monitoring are shown in Table 3-2. Moreover, Table 3-1-3 summarizes the outline of the samples used for analysis.

Local communities	Monitored sites	Sampling dates
Hokkaido	Ishikarikakokyo Bridge, Mouth of Riv. Ishikari (Ishikari City)	November 24, 2020
Iwate Pref.	Toyosawa Bridge, Riv. Toyosawa (Hanamaki City)	November 4, 2020
Miyagi Pref.	Sendai Bay (Matsushima Bay)	October 19, 2020
Akita Pref.	Lake Hachiro	September 29, 2020
Yamagata Pref.	Mouth of Riv. Mogami (Sakata City)	October 9, 2020
Fukushima Pref.	Onahama Port	October 16, 2020
Ibaraki Pref.	Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City)	November 12, 2020
Tochigi Pref.	Tagawa Kyubun Area Head Works (Utsunomiya City)	October 27, 2020
Gunma Pref.	Tone-ozeki Weir, Riv. Tone (Chiyoda Town)	September 18, 2020
Saitama Pref.	Akigase-shusuizeki Weir, Riv. Arakawa (Shiki City)	November 4, 2020
Chiba City	Mouth of Riv. Hanami (Chiba City)	November 10, 2020
Tokyo Met.	Mouth of Riv. Arakawa (Koto Ward)	November 20, 2020
	Mouth of Riv. Sumida (Minato Ward)	November 20, 2020
Yokohama City	Yokohama Port	November 18, 2020
Niigata Pref.	Lower Riv. Shinano (Niigata City)	November 19, 2020
Toyama Pref.	Hagiura-bashi Bridge, Mouth of Riv. Jintsu (Toyama City)	October 15, 2020
Ishikawa Pref.	Mouth of Riv. Sai (Kanazawa City)	November 6, 2020
Fukui Pref.	Mishima-bashi Bridge, Riv. Shono (Tsuruga City)	October 22, 2020
Nagano Pref.	Lake Suwa (center)	October 19, 2020
Shizuoka Pref.	Kaketsuka-bashi Bridge, Riv. Tenryu (Iwata City)	November 12, 2020
Aichi Pref.	Nagoya Port	November 10, 2020
Mie Pref.	Yokkaichi Port	October 28, 2020
Shiga Pref.	Lake Biwa (center, offshore of Karasaki)	October 28, 2020
Kyoto City	Miyamae-bashi Bridge, Riv. Katsura (Kyoto City)	October 28, 2020
Osaka Pref.	Mouth of Riv. Yamato (Sakai City)	November 25, 2020
Osaka City	Osaka Port	October 27, 2020
Hyogo Pref.	Offshore of Himeji	October 28, 2020
Kobe City	Kobe Port (center)	November 17, 2020
Wakayama Pref.	Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)	November 6, 2020
Okayama Pref.	Offshore of Mizushima	October 26, 2020
Hiroshima Pref.	Kure Port	November 11, 2020
	Hiroshima Bay	November 11, 2020
Yamaguchi Pref.	Tokuyama Bay	October 26, 2020
	Offshore of Ube	October 12, 2020
	Offshore of Hagi	November 13, 2020
Tokushima Pref.	Mouth of Riv. Yoshino (Tokushima City)	October 15, 2020
Kagawa Pref.	Takamatsu Port	October 27, 2020
Kochi Pref.	Mouth of Riv. Shimanto (Shimanto City)	October 2, 2020
Kitakyushu City	Dokai Bay	November 18, 2020
Saga Pref.	Imari Bay	October 28, 2020
Nagasaki Pref.	Omura Bay	October 30, 2020
Kumamoto Pref.	Hiraki-bashi Bridge, Riv. Midori (Uto City)	October 13, 2020
Miyazaki Pref.	Mouth of Riv. Oyodo (Miyazaki City)	October 28, 2020
Kagoshima Pref.	Shinkawa-bashi Bridge, Riv. Amori (Kirishima City)	September 29, 2020
	Gotanda-bashi Bridge, Riv. Gotanda (Ichikikushikino City)	October 12, 2020
Okinawa Pref.	Naha Port	October 14, 2020

Table 3-1-1 List of monitored sites (surface water) in the Environmental Monitoring in FY2020

Figure 3-1-1 Monitored sites (surface water) in the Environmental Monitoring in FY2020

communities	Monitored sites	Sampling dates
Hokkaido	Ishikarikakokyo Bridge, Mouth of Riv. Ishikari (Ishikari City)	November 24, 2020
	Tomakomai Port	September 9, 2020
wate Pref.	Toyosawa Bridge, Riv. Toyosawa (Hanamaki City)	November 4, 2020
Miyagi Pref.	Sendai Bay (Matsushima Bay)	October 19, 2020
Sendai City	Hirose-ohashi Bridge, Riv. Hirose (Sendai City)	November 10, 2020
Akita Pref.	Lake Hachiro	September 29, 2020
Yamagata Pref.	Mouth of Riv. Mogami (Sakata City)	October 9, 2020
Fukushima Pref.	Onahama Port	October 16, 2020
Ibaraki Pref.	Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City)	November 12, 2020
Tochigi Pref.	Tagawa Kyubun Area Head Works (Utsunomiya City)	October 27, 2020
Chiba Pref.	Coast of Ichihara and Anegasaki	October 27, 2020
Chiba City	Mouth of Riv. Hanami (Chiba City)	November 10, 2020
		November 10, 2020
Tokyo Met.	Mouth of Riv. Arakawa (Koto Ward)	
	Mouth of Riv. Sumida (Minato Ward)	November 20, 2020
Yokohama City	Yokohama Port	November 18, 2020
Niigata Pref.	Lower Riv. Shinano (Niigata City)	December 3, 2020
Toyama Pref.	Hagiura-bashi Bridge, Mouth of Riv. Jintsu (Toyama City)	October 13, 2020
Ishikawa Pref.	Mouth of Riv. Sai (Kanazawa City)	November 6, 2020
Fukui Pref.	Mishima-bashi Bridge, Riv. Shono (Tsuruga City)	October 22, 2020
Yamanashi Pref.	Senshu-bashi Bridge, Riv. Arakawa (Kofu City)	October 27, 2020
Nagano Pref.	Lake Suwa (center)	October 19, 2020
Shizuoka Pref.	Shimizu Port	October 22, 2020
	Kaketsuka-bashi Bridge, Riv. Tenryu (Iwata City)	November 12, 2020
Aichi Pref.	Kinuura Port	November 10, 2020
	Nagoya Port	November 10, 2020
Mie Pref.	Yokkaichi Port	October 28, 2020
	Toba Port	October 20, 2020
Shiga Pref.	Lake Biwa (center, offshore of Minamihira)	October 28, 2020
Shiga i ici.	Lake Biwa (center, offshore of Karasaki)	October 28, 2020
Kyoto City	Miyamae-bashi Bridge,Riv. Katsura (Kyoto City)	October 28, 2020
Osaka Pref.	Mouth of Riv. Yamato (Sakai City)	November 25, 2020
Osaka City	Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)	October 28, 2020
	Mouth of Riv. Yodo (Osaka City)	October 27, 2020
	Osaka Port	October 27, 2020
	Outside Osaka Port	October 27, 2020
Hyogo Pref.	Offshore of Himeji	
		October 28, 2020
	Kobe Port (center)	November 17, 2020
Kobe City Nara Pref.	Taisho-bashi Bridge, Riv. Yamato (Oji Town)	November 17, 2020 October 21, 2020
Nara Pref.		November 17, 2020
Nara Pref. Wakayama Pref.	Taisho-bashi Bridge, Riv. Yamato (Oji Town)	November 17, 2020 October 21, 2020 November 6, 2020 October 26, 2020
Nara Pref. Wakayama Pref. Okayama Pref.	Taisho-bashi Bridge, Riv. Yamato (Oji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)	November 17, 2020 October 21, 2020 November 6, 2020
Nara Pref. Wakayama Pref. Okayama Pref.	Taisho-bashi Bridge, Riv. Yamato (Oji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City) Offshore of Mizushima	November 17, 2020 October 21, 2020 November 6, 2020 October 26, 2020
Nara Pref. Wakayama Pref. Okayama Pref. Hiroshima Pref.	Taisho-bashi Bridge, Riv. Yamato (Oji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City) Offshore of Mizushima Kure Port	November 17, 2020 October 21, 2020 November 6, 2020 October 26, 2020 November 11, 2020
Nara Pref. Wakayama Pref. Okayama Pref. Hiroshima Pref.	Taisho-bashi Bridge, Riv. Yamato (Oji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City) Offshore of Mizushima Kure Port Hiroshima Bay	November 17, 2020 October 21, 2020 November 6, 2020 October 26, 2020 November 11, 2020 November 11, 2020
Nara Pref. Wakayama Pref. Okayama Pref. Hiroshima Pref.	Taisho-bashi Bridge, Riv. Yamato (Oji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City) Offshore of Mizushima Kure Port Hiroshima Bay Tokuyama Bay	November 17, 2020 October 21, 2020 November 6, 2020 October 26, 2020 November 11, 2020 November 11, 2020 October 26, 2020
Nara Pref. Wakayama Pref. Okayama Pref. Hiroshima Pref. Yamaguchi Pref.	Taisho-bashi Bridge, Riv. Yamato (Oji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City) Offshore of Mizushima Kure Port Hiroshima Bay Tokuyama Bay Offshore of Ube Offshore of Hagi	November 17, 2020 October 21, 2020 November 6, 2020 October 26, 2020 November 11, 2020 November 11, 2020 October 26, 2020 October 12, 2020 October 12, 2020 November 13, 2020
Nara Pref. Wakayama Pref. Okayama Pref. Hiroshima Pref. Yamaguchi Pref. Tokushima Pref.	Taisho-bashi Bridge, Riv. Yamato (Oji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City) Offshore of Mizushima Kure Port Hiroshima Bay Tokuyama Bay Offshore of Ube Offshore of Hagi Mouth of Riv. Yoshino (Tokushima City)	November 17, 2020 October 21, 2020 November 6, 2020 October 26, 2020 November 11, 2020 November 11, 2020 October 26, 2020 October 26, 2020 October 12, 2020 November 13, 2020 October 15, 2020
Nara Pref. Wakayama Pref. Okayama Pref. Hiroshima Pref. Yamaguchi Pref. Fokushima Pref. Kagawa Pref.	Taisho-bashi Bridge, Riv. Yamato (Oji Town)Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)Offshore of MizushimaKure PortHiroshima BayTokuyama BayOffshore of UbeOffshore of HagiMouth of Riv. Yoshino (Tokushima City)Takamatsu Port	November 17, 2020 October 21, 2020 November 6, 2020 October 26, 2020 November 11, 2020 November 11, 2020 October 26, 2020 October 26, 2020 October 12, 2020 November 13, 2020 October 15, 2020 October 27, 2020
Nara Pref. Wakayama Pref. Okayama Pref. Hiroshima Pref. Yamaguchi Pref. Yamaguchi Pref. Cokushima Pref. Ehime Pref.	Taisho-bashi Bridge, Riv. Yamato (Oji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City) Offshore of Mizushima Kure Port Hiroshima Bay Tokuyama Bay Offshore of Hagi Mouth of Riv. Yoshino (Tokushima City) Takamatsu Port Niihama Port	November 17, 2020 October 21, 2020 November 6, 2020 October 26, 2020 November 11, 2020 November 11, 2020 October 26, 2020 October 26, 2020 October 12, 2020 November 13, 2020 October 15, 2020 October 27, 2020 October 27, 2020
Nara Pref. Wakayama Pref. Okayama Pref. Hiroshima Pref. Yamaguchi Pref. Yamaguchi Pref. Kagawa Pref. Ehime Pref. Kochi Pref.	Taisho-bashi Bridge, Riv. Yamato (Oji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City) Offshore of Mizushima Kure Port Hiroshima Bay Tokuyama Bay Offshore of Ube Offshore of Hagi Mouth of Riv. Yoshino (Tokushima City) Takamatsu Port Niihama Port Mouth of Riv. Shimanto (Shimanto City)	November 17, 2020 October 21, 2020 November 6, 2020 October 26, 2020 November 11, 2020 November 12, 2020 October 26, 2020 October 26, 2020 October 12, 2020 November 13, 2020 October 15, 2020 October 27, 2020 October 27, 2020 October 27, 2020 October 2, 2020
Nara Pref. Wakayama Pref. Okayama Pref. Hiroshima Pref. Yamaguchi Pref. Yamaguchi Pref. Kagawa Pref. Ehime Pref. Kochi Pref. Kitakyushu City	Taisho-bashi Bridge, Riv. Yamato (Oji Town)Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)Offshore of MizushimaKure PortHiroshima BayTokuyama BayOffshore of UbeOffshore of HagiMouth of Riv. Yoshino (Tokushima City)Takamatsu PortNiihama PortMouth of Riv. Shimanto (Shimanto City)Dokai Bay	November 17, 2020 October 21, 2020 November 6, 2020 October 26, 2020 November 11, 2020 November 11, 2020 October 26, 2020 October 26, 2020 October 12, 2020 November 13, 2020 October 15, 2020 October 27, 2020 October 27, 2020 October 2, 2020 Notember 18, 2020
Nara Pref. Wakayama Pref. Okayama Pref. Hiroshima Pref. Yamaguchi Pref. Yamaguchi Pref. Kagawa Pref. Ehime Pref. Kochi Pref. Kitakyushu City Fukuoka City	Taisho-bashi Bridge, Riv. Yamato (Oji Town)Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)Offshore of MizushimaKure PortHiroshima BayTokuyama BayOffshore of UbeOffshore of HagiMouth of Riv. Yoshino (Tokushima City)Takamatsu PortNiihama PortMouth of Riv. Shimanto (Shimanto City)Dokai BayHakata Bay	November 17, 2020 October 21, 2020 November 6, 2020 October 26, 2020 November 11, 2020 November 11, 2020 October 26, 2020 October 26, 2020 October 12, 2020 October 13, 2020 October 15, 2020 October 27, 2020 October 27, 2020 October 2, 2020 October 18, 2020 October 2, 2020 October 2, 2020
Nara Pref. Wakayama Pref. Okayama Pref. Hiroshima Pref. Yamaguchi Pref. Yamaguchi Pref. Kagawa Pref. Ehime Pref. Kochi Pref. Kitakyushu City Fukuoka City Saga Pref.	Taisho-bashi Bridge, Riv. Yamato (Oji Town)Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)Offshore of MizushimaKure PortHiroshima BayTokuyama BayOffshore of UbeOffshore of HagiMouth of Riv. Yoshino (Tokushima City)Takamatsu PortNiihama PortMouth of Riv. Shimanto (Shimanto City)Dokai BayHakata Bay	November 17, 2020 October 21, 2020 November 6, 2020 October 26, 2020 November 11, 2020 November 11, 2020 October 26, 2020 October 26, 2020 October 12, 2020 October 13, 2020 October 15, 2020 October 27, 2020 October 27, 2020 October 2, 2020 October 2, 2020 October 2, 2020 October 28, 2020
Nara Pref. Wakayama Pref. Okayama Pref. Hiroshima Pref. Yamaguchi Pref. Yamaguchi Pref. Kagawa Pref. Ehime Pref. Kochi Pref. Kitakyushu City Fukuoka City Saga Pref. Nagasaki Pref.	Taisho-bashi Bridge, Riv. Yamato (Oji Town)Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)Offshore of MizushimaKure PortHiroshima BayTokuyama BayOffshore of UbeOffshore of HagiMouth of Riv. Yoshino (Tokushima City)Takamatsu PortNiihama PortMouth of Riv. Shimanto (Shimanto City)Dokai BayHakata BayImari BayOmura Bay	November 17, 2020 October 21, 2020 November 6, 2020 October 26, 2020 November 11, 2020 November 11, 2020 October 26, 2020 October 26, 2020 October 12, 2020 October 13, 2020 October 15, 2020 October 27, 2020 October 27, 2020 October 2, 2020 October 2, 2020 October 28, 2020 November 18, 2020 October 28, 2020 November 5, 2020
Nara Pref. Wakayama Pref. Okayama Pref. Hiroshima Pref. Yamaguchi Pref. Yamaguchi Pref. Kagawa Pref. Ehime Pref. Kochi Pref. Kitakyushu City Fukuoka City Saga Pref. Nagasaki Pref. Oita Pref.	Taisho-bashi Bridge, Riv. Yamato (Oji Town)Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)Offshore of MizushimaKure PortHiroshima BayTokuyama BayOffshore of UbeOffshore of HagiMouth of Riv. Yoshino (Tokushima City)Takamatsu PortNiihama PortMouth of Riv. Shimanto (Shimanto City)Dokai BayImari BayOmura BayOmura BayMouth of Riv. Oita (Oita City)	November 17, 2020 October 21, 2020 November 6, 2020 October 26, 2020 November 11, 2020 November 11, 2020 October 26, 2020 October 26, 2020 October 12, 2020 October 13, 2020 October 15, 2020 October 27, 2020 October 27, 2020 October 2, 2020 October 2, 2020 October 28, 2020 November 18, 2020 October 28, 2020 November 5, 2020
Nara Pref. Wakayama Pref. Okayama Pref. Hiroshima Pref. Yamaguchi Pref. Yamaguchi Pref. Kagawa Pref. Ehime Pref. Kochi Pref. Kitakyushu City Fukuoka City Saga Pref. Nagasaki Pref. Oita Pref. Miyazaki Pref.	Taisho-bashi Bridge, Riv. Yamato (Oji Town)Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)Offshore of MizushimaKure PortHiroshima BayTokuyama BayOffshore of UbeOffshore of HagiMouth of Riv. Yoshino (Tokushima City)Takamatsu PortNiihama PortMouth of Riv. Shimanto (Shimanto City)Dokai BayImari BayOmura BayMouth of Riv. Oita (Oita City)Mouth of Riv. Oita (Oita City)Mouth of Riv. Oyodo (Miyazaki City)	November 17, 2020 October 21, 2020 November 6, 2020 October 26, 2020 November 11, 2020 November 11, 2020 October 26, 2020 October 26, 2020 October 12, 2020 October 12, 2020 October 15, 2020 October 27, 2020 October 27, 2020 October 2, 2020 October 2, 2020 October 20, 2020 October 28, 2020 November 18, 2020 October 28, 2020 November 5, 2020 October 26, 2020 October 28, 2020
Nara Pref.	Taisho-bashi Bridge, Riv. Yamato (Oji Town)Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)Offshore of MizushimaKure PortHiroshima BayTokuyama BayOffshore of UbeOffshore of HagiMouth of Riv. Yoshino (Tokushima City)Takamatsu PortNiihama PortMouth of Riv. Shimanto (Shimanto City)Dokai BayImari BayOmura BayOmura BayMouth of Riv. Oita (Oita City)	November 17, 2020 October 21, 2020 November 6, 2020 October 26, 2020 November 11, 2020 November 11, 2020 October 26, 2020 October 26, 2020 October 12, 2020 October 13, 2020 October 15, 2020 October 27, 2020 October 27, 2020 October 2, 2020 October 2, 2020 October 28, 2020 November 18, 2020 October 28, 2020 November 5, 2020

Table 3-1-2 List of monitored sites (sediment) in the Environmental Monitoring in FY2020

(Note) *: "Keihin Canal, Port of Kawasaki" of Environmental Monitoring and "Keihin Canal, Port of Kawasaki (front of Ogimachi)" of Detailed Environmental Survey are the same point each.

Figure 3-1-2 Monitored sites (sediment) in the Environmental Monitoring in FY2020

Local communities	Monitored sites	Sampling dates		Wildlife species
Hokkaido	Offshore of Kushiro	September 24, 2020	Fish	Rock greenling (Hexagrammos lagocephalus)
		September 22, 2020	Fish	Chum salmon (Oncorhynchus keta)
Iwate Pref.	Yamada Bay	October 26, 2020	Bibalves	Blue mussel (<i>Mytilus galloprovincialis</i>)
		October 19, 2020	Fish	Greenling (Hexagrammos otakii)
Miyagi Pref.	Sendai Bay (Matsushima Bay)	December 16, 2020	Fish	Greenling (Hexagrammos otakii)
Ibaraki Pref.	Offshore of Joban	December 10, 2020	Fish	Chub mackerel (Scomber japonicus)
Tokyo Met.	Tokyo Bay	September 28, 2020	Fish	Sea bass (Lateolabrax japonicus)
Yokohama City	Yokohama Port	October 14, 2020	Bibalves	Green mussel (Perna viridis)
Kawasaki City	Offshore of Ogishima Island, Port of Kawasaki	September 14, 2020	Fish	Sea bass (Lateolabrax japonicus)
Ishikawa Pref.	Coast of Noto Peninsula	August 24, 2020	Bibalves	Blue mussel (Mytilus galloprovincialis)
Nagoya City	Nagoya Port	August 25, 2020	Fish	Striped mullet (<i>Mugil cephalus</i>)
Shiga Pref.	Lake Biwa(Lake Kita, offshore of Tikubushima Island)	July 31, 2020	Birds	Great Cormorant (<i>Phalacrocorax carbo</i>)
	Lake Biwa, Riv. Ado (Takashima City)	April 2, 2020	Fish	Dace (Tribolodon hakonensis)
Osaka Pref.	Osaka Bay	October 23, 2020	Fish	Sea bass (Lateolabrax japonicus)
Hyogo Pref.	Offshore of Himeji	December 23, 2020	Fish	Sea bass (Lateolabrax japonicus)
Tottori Pref.	Nakaumi	October 15, 2020	Fish	Sea bass (Lateolabrax japonicus)
Hiroshima City	Hiroshima Bay	October 29, 2020	Fish	Sea bass (Lateolabrax japonicus)
Kagawa Pref.	Takamatsu Port	August 26, 2020	Fish	Striped mullet (<i>Mugil cephalus</i>)
Kochi Pref.	Mouth of Riv. Shimanto (Shimanto City)	September ~ November, 2020*	Fish	Sea bass (Lateolabrax japonicas)
Oita Pref.	Mouth of Riv. Oita (Oita City)	January 22, 2021	Fish	Sea bass (Lateolabrax japonicas)
Kagoshima Pref.	West Coast of Satsuma Peninsula	October 22, 2020	Fish	Sea bass (Lateolabrax japonicas)
Okinawa Pref.	Nakagusuku Bay	February 2, 2021	Fish	Okinawa seabeam (Acanthopagrus sivicolus)

Table 3-1-3 List of monitored areas (wildlife) in the Environmental Monitoring in FY2020

(Note) "*" means details of the sampling date unknown.

Figure 3-1-3 Monitored areas (wildlife) in the Environmental Monitoring in FY2020

	f monitored sites (air) in the Environmental Monitoring in F	
Local communities	Monitored sites	Sampling dates (Warm season)
Hokkaido	Kushiro General Subprefectural Bureau (Kushiro City)	October $2 \sim 9^{**}$ or October $5 \sim 8^*$, 2020
Sapporo City	Sapporo Art Park (Sapporo City)	September $28 \sim \text{October } 1,2020$
Iwate Pref.	Sugo Air Quality Monitoring Station (Takizawa City)	September 28 ~ October 1, 2020
Miyagi Pref.	Miyagi Prefectural Institute of Public Health and Environment (Sendai City)	October $16 \sim 23^{**}$ or October $19 \sim 22^{*}$, 2020
Yamagata Pref.	Yamagata Institute of Environmental Sciences (Murayama City)	September 25 ~ October 2** or September 29 ~ October 2*, 2020
Ibaraki Pref.	Ibaraki Kasumigaura Environmental Science Center (Tsuchiura City)	September 29 ~ October 6** or September 30 ~ October 3*, 2020
Chiba Pref.	Ichihara-Matsuzaki Air Quality Monitoring Station (Ichihara City)	October 5 ~ 12** or October 5 ~ 8*, 2020
Tokyo Met.	Tokyo Metropolitan Research Institute for Environmental Protection (Koto Ward)	October 16 ~ 23** or October 20 ~ 23*, 2020
	Chichijima Island (Ogasawara Village)	October $4 \sim 11^{**}$ or October $4 \sim 7^*$, 2020
Kanagawa Pref.	Kanagawa Environmental Research Center (Hiratsuka City)	October 5 ~ 8, 2020
Yokohama City	Yokohama Environmental Science Research Institute (Yokohama City)	October 19 ~ 26** or October 19 ~ 22*, 2020
Niigata Pref.	Oyama Air Quality Monitoring Station (Niigata City)	September 14 ~ 17, 2020
Toyama Pref.	Tonami Air Quality Monitoring Station (Tonami City)	September 15 ~ 18, 2020
Ishikawa Pref.	Ishikawa Prefectural Institute of Public Health and Environmental Science (Kanazawa City)	September 14 ~ 17, 2020
Yamanashi Pref.	Yamanashi Prefectural Institute of Public Health and Environment (Kofu City)	September 14 ~ 17, 2020
Nagano Pref.	Nagano Environmental Conservation Research Institute (Nagano City)	October 20 ~ 27** or October 20 ~ 22 and 2. ~ 24*, 2020
Gifu Pref.	Gifu Prefectural Research Institute for Health and Environmental Sciences (Kakamigahara City)	October 12 ~ 15, 2020
Nagoya City	Chikusa Ward Heiwa Park (Nagoya City)	September 8 ~ 15** or September 8 ~ 11* 2020
Mie Pref.	Mie Prefecture Health and Environment Research Institute (Yokkaichi City)	September 14 ~ 17, 2020
Osaka Pref.	Osaka Joint Prefectural Government Building, Building 2 Annex (Osaka City)	October 12 ~ 15, 2020
Hyogo Pref.	Hyogo Prefectural Environmental Research Center (Kobe City)	September 28 ~ October 1, 2020
Kobe City	Kobe Institute of Health (Kobe City)	October 26 ~ 29, 2020
Nara Pref.	Tenri Air Quality Monitoring Station (Tenri City)	October 26 ~ 29, 2020
Shimane Pref.	Oki National Acid Rain Observatory (Okinoshima Town)	October 19 ~ 22, 2020
Hiroshima City	Hiroshima City Kokutaiji Junior High School (Hiroshima City)	October 19 ~ 22, 2020
Yamaguchi Pref.	Yamaguchi Prefectural Institute of Public Health and Environment (Yamaguchi City)	September 8 ~ 15** or September 8 ~ 11* 2020
	Hagi Health and Welfare Center (Hagi City)	November 20 ~ 27** or November 24 ~ 27* 2020
Tokushima Pref.	Tokushima Prefectural Public Health, Pharmaceutical and Environmental Sciences Center (Tokushima City)	October 19 ~ 22, 2020
Kagawa Pref.	Kagawa Prefectural Research Institute for Environmental Sciences and Public Health (Takamatsu City)	October 14 ~ 21** or October 14 ~ 17*, 2020
	Kagawa Prefectural Public Swimming Pool (Takamatsu City)	October 14 ~ 21** or October 14 ~ 17*, 2020
Ehime Pref.	Ehime Prefectural Government Nanyo Regional Office (Uwajima City)	October 5 ~ 8, 2020
Fukuoka Pref.	Omuta City Government Building (Omuta City)	October 20 ~ 23, 2020
Saga Pref.	Saga Prefectural Environmental Research Center (Saga City)	September $9 \sim 16^{**}$ or September $9 \sim 12^{*}$ 2020
Kumamoto Pref.	Kumamoto Prefectural Institute of Public Health and Environmental Science (Udo City)	October 26 ~ 29, 2020
Miyazaki Pref.	Miyazaki Prefectural Institute for Public Healthand Environment (Miyazaki City)	October 5 ~ 12** or October 5 ~ 8*, 2020
Kagoshima Pref.	Kagoshima Prefectural Institute for Environmental Research and Public Health (Kagoshima City)	October 19 ~ 22, 2020
Okinawa Pref.	Cape Hedo (Kunigami Village)	September 28 ~ October 1, 2020
		anline [21] Here althematicate 1.2 diama

Table 3-1-4 List of monitored sites (air) in the Environmental Monitoring in FY2020

(Note) " * " means sampling except [21] Hexachlorobuta-1,3-diene. " ** " means sampling [21] Hexachlorobuta-1,3-diene.

Figure 3-1-4 Monitored sites (air) in the Environmental Monitoring in FY2019

Table 3-2 Properties	of target species	

	Species	Properties	Monitored areas	Aim of monitoring	Notes
	Blue mussel	Distributed worldwide, excluding tropical zones	• Yamada bay	Follow-up of the environmental fate	
	(Mytilus	Adheres to rocks in inner bays and	 Coast of Noto Peninsula 	and persistency in	
Bibalves	galloprovincialis)	to bridge piers		specific areas	
balv	Greenling	Distributed in the worldwide, except	· V-lh	Follow-up of the	
Bil	(Hexagrammos	in the tropical zones.	 Yokohama port 	environmental fate	
	otakii)	Adheres to rocks and bridge piers in		and persistency in	
	θιακίι)	inner bays		specific areas	
	Greenling	Distributed from Hokkaido to	Offshore of Iwanai	Follow-up of the	
	(Hexagrammos	southern Japan, the Korean Peninsula,	• Yamada bay	environmental fate	
	otakki)	and China	• Sendai Bay	and persistency in	
	,	Lives in shallow seas of 5-50 m	• Sendar Bay	specific areas	
		depth from sea level		1	
	Chum salmon	Distributed in northern Pacific Ocean,	Offshore of Kushiro	Follow-up of the	
	(Oncorhynchus	Sea of Japan, Bering Sea, Sea of		environmental fate	
	keta)	Okhotsk, the whole of the Gulf of		and persistency on	
		Alaska, and part of the Arctic Ocean		a global scale	
		Runs the Tone River on the Pacific			
		Ocean side and rivers in Yamaguchi			
		Prefecture and northward on the Sea of			
		Japan side in Japan			
		Bioaccumulation of chemicals is said to			
	Deals machting	be moderate Lives in cold-current areas of		Follow-up of the	
	Rock greenling		 Offshore of Kushiro 	environmental fate	
	(Hexagrammos lagocephalus)	Hidaka and eastward (Hokkaido) Larger than the greenling and eats		and persistency in	
	(agocepnaius)	fish smaller than its mouth size at the		specific areas	
		sea bottom		specific areas	
	Chub mackerel	Ddistributed widely in subtropical	 Offshore of Joban 	Follow-up of the	
	(Scomber	zones and temperate zones around the	Offshore of Joban	environmental fate	
	japonicus)	world.		and persistency in	
	J-F =	Seasonal migration occurs with a		specific areas	
		northward migration in spring and a		1	
Fish		southward migration in autumn.			
Ц	Sea bass	Distributed around the shores of	• Tokyo Bay	Follow-up of the	Monitored
	(Lateolabrax	various areas in Japan, the Korean	• Offshore of Ogishima Island,	environmental fate	in the 9
	japonicus)	Peninsula, and the coastal areas of	Port of Kawasaki	and persistency in	areas with
		China	• Osaka Bay	specific areas	different
		Sometimes lives in a freshwater	Offshore of Himeji		levels of
		environment and brackish-water	• Nakaumi		persistency
		regions during its life cycle Bioaccumulation of chemicals is	 Hiroshima Bay 		
		said to be high	Mouth of Riv. Shimanto		
		said to be high	Mouth of Riv. Oita		
			West Coast of Satsuma		
			Peninsula		
	Striped mullet	Distributed widely in the worldwide	Nagoya Port	Follow-up of the	
	(Mugil cephalus)	tropical zones and subtropical zones	- Nagoya Folt	environmental fate	
	(Mugii cephaias)	Sometimes lives in a freshwater		and persistency in	
		environment and brackish-water		specific areas	
		regions during its life cycle		1	
	Okinawa seabeam	Distributed around Nansei Shoto	 Nakagusuku Bay 	Follow-up of the	
	(Acanthopagrus	(Ryukyu Islands)		environmental fate	
	sivicolus)	Lives in coral reefs and in bays into		and persistency in	
		which rivers flow		specific areas	
	Dace	Distributed widely in freshwater	• Lake Biwa, Riv. Ado	Follow-up of the	
	(Tribolodon	environments throughout Japan	(Takashima City)	environmental fate	
	hakonensis)	Preys mainly on insects		and persistency in	
	,			specific areas	
	Great Cormorant	Distributed widely throughout Japan	• Lake Biwa, Riv. Ado	Follow-up of the	
Birds	(immature)*	Eats primarily fish	(Takashima City)	concentrations of	
Bi	(Phalacrocorax	Bioaccumulation of chemicals is		chemicals in top	
	carbo)	said to be high	1	predators	1

* Because there were the examples of survey that obtained the eggs in other countries, the eggs of great cormorants were taken at tow another areas in this survey. The results were treated as the reference values.

Table 3-3-1 Basic data of speci	imens (bivalves as wildlife)	e) in the Environmental Monitoring in FY 2020

Bivalve species and Area	No.	Sampling month	Sex	Number of animals		Length (cm) (Average)			1	Weight (g) (Average)			Water ontent %	Lipid content %
Blue mussel	1	October,	Uncertain	106	9.3 ~	13.5 (10.4)	56.6	2	173.2 (97.1)	79	1.7
(Mytilus galloprovincialis)	2	2020	Uncertain	144	8.4 ~	9.0 (8.6)	25.1	\sim	80.9 (55.4)	80	1.7
Yamada Bay	3		Uncertain	246	7.0 ~	7.9 (7.4)	25.1	\sim	49.7 (36.7)	78	1.8
Green mussel	1	October,	Mixed	41	2.5 ~	3.5 (2.9)	1.88	\sim	4.74 (2.65)	81	1.3
(Perna viridis)	2	2020	Mixed	45	2.3 ~	3.3 (2.8)	1.42	\sim	3.65 (2.41)	82	1.2
Yokohama Port	3		Mixed	43	2.3 ~	3.8 (2.9)	1.36	~	4.01 (2.53)	81	1.2
Blue mussel	1	August,	Uncertain	39	12.4 ~	15.3 (13.8)	161	\sim	258 (196)	77	2.0
(Mytilus galloprovincialis)	2	2020	Uncertain	46	11.8 ~	13.8 (12.9)	126	\sim	206 (157)	77	1.9
Coast of Noto Peninsula	3		Uncertain	50	8.4 ~	13.0 (10.6)	67.2	~	147 (109)	76	2.1

Table 3-3-2 Basic data of specimens (fish as wildlife) in the Environmental Monitoring in FY 2020

Fish species and Area	No.	Sampling	Sex	Number of		L	ength (cm)			,	Weight ((Averag	(g)	<u>,</u>		Water content	Lipid content
Rock greenling (Hexagrammos	1		Mixed	animals 3	38.0		41.0 (39.6)	1,060		1,180	(1,080)	% 74	% 2.3
kock greening (Hexagrammos lagocephalus)	2	September, 2020	Mixed	3		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	41.0 (39.0) 42.3)	1,060	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1,180	$\left\{ \right.$	1,080	$\frac{1}{2}$	74 76	2.3
Offshore of Kushiro	3	2020	Mixed	3	41.0		44.0 (43.0	1,250		1,360	\hat{i}	1,340	3	75	3.0
Chum salmon	1	September,	Female	1	41.0		76.0	ч <i>э</i> .0)	1,550		4,300	(1,500	_	70	4.8
(Oncorhynchus keta)	2	2020	Female	2	58.0	~	68.0 (63.0)	3,600	~	4,780	(4,190)	70	4.1
Offshore of Kushiro	3	2020	Male	1	50.0		74.0	05.0)	5,000		4,700	(4,190	'	70	2.2
Greenling	1	October,	Uncertain	4	47.0	~	51.5 (49.2)	1,462	~	1,957	(1,681)	63	9.8
(Hexagrammos otakii)	2	2020	Uncertain	5	44.0		46.2 (45.2	1,402	~	1,498	ì	1,401	Ś	69	6.1
Yamada Bay	3	2020	Uncertain	6		~	45.5 (43.2	1,056	~	1,236	è	1,130	Ś	67	6.6
Greenling		December,	Mixed	7		~	31.8 (30.2	291.2	~		$\overline{(}$	317	$\frac{1}{1}$	78	0.2
(Hexagrammos otakii)		2020	Mixed	13		~	29.5 (24.0	89.6	~		è	166	ś	78	0.5
Sendai Bay (Matsushima Bay)	3	2020	Mixed	28	17.0		20.5 (19.0		~		è	82.0	ś	79	0.3
Chub mackerel	1	December,	Uncertain	10	30.0		32.0 (30.6	377	~	470	$\overline{(}$	413	$\frac{1}{1}$	47	11.1
(Scomber japonicus)		2020	Uncertain	11		~	30.0 (29.5	321	~	372	ì	353	Ś	25	17.0
Offshore of Joban	3	2020	Uncertain	12	25.0		29.0 (27.7)	214		315	è	270	ś	41	5.4
Sea bass	-	September,	Mixed	2	48.2	~	48.5 (48.4	1.581	~	1.671	$\overline{(}$	1,626	Ń	77	1.5
(Lateolabrax japonicus)	2	2020	Mixed	2		~	46.3 (46.0	1,204	~	1,305	è	1,255	í	79	1.3
Tokyo Bay	3		Mixed	3		~	43.0 (39.5	679	~	1,077	è	874	ś	78	1.6
Sea bass		September,	Male	17		~	36.1 (34.0	305	~	421	(368)	67	0.9
(Lateolabrax japonicus)		2020	Female	7		~	33.2 (32.3		~	412	è	343	ś	66	0.6
Offshore of Ogishima Island,			Female	7		~	35.3 (34.6		~		è	390	ś	72	1.1
Port of Kawasaki							(•)				(<i>′</i>	. –	
Striped mullet	1	August,	Uncertain	6	43.8	~	49.0 (45.2)	755	~	1,140	(894)	74	2.3
(Mugil cephalus)	2	2020	Uncertain	6	44.6	\sim	45.9 (45.5	813	~	977	È	896	Ś		
Nagoya Port	3		Uncertain	6	42.0	\sim	45.5 (44.1	742	\sim	888	Ì	811)		
Dace	1	April,	Male	25	22.5	~	25.4 (24.0	155	~	283	(198)	75	3.2
(Tribolodon hakonensis)	2	2020	Female	25	21.9	\sim	28.6 (24.9)	147	~	326	Ì	214	Ś	76	2.6
Lake Biwa, Riv. Ado	3		Male	25	22.2	\sim	25.6 (24.4)	142	~	255	È	198)	75	2.8
(Takashima City)							,	,				Ì		ĺ		
Sea bass	1	October,	Uncertain	10	42.0	\sim	47.8 (45.1)	773	~	973	(882)	64	3.8
(Lateolabrax japonicus)	2	2020	Uncertain	10	43.5	\sim	49.4 (46.3	693	~	1,077	(910)	69	3.5
Osaka Bay	3		Uncertain	10	42.2	\sim	50.5 (45.5)	650	~	1,043	(847)	60	4.9
Sea bass	1	December,	Male	1			60.0				1,642				78	0.7
(Lateolabrax japonicus)	2	2020	Female	1			62.0				2,467					
Offshore of Himeji	3		Female	1			63.5				2,153					
Sea bass	1	October,	Mixed	10	40.5	~	44.5 (42.5	829	~	1,030	(885)	77	1.0
(Lateolabrax japonicus)	-	2020	Mixed	10		~	41.8 (38.6	588	~	866	à	671	Ś	77	0.8
Nakaumi	3	_0_0	Mixed	13		~	38.3 (34.1		~	616	è	459	ś	77	0.7
Sea bass	1	October,	Mixed	5		~	43.0 (40.6	873	~	1,096	$\overline{(}$	981	Ń	72	-
(Lateolabrax japonicus)	2	2020	Female	4		~	41.0 (40.8	963	~	984	è	977	ś	73	_
Hiroshima Bay	3		Female	3		~	42.5 (41.8	1,043	~	1,192	è	1,097	ś	73	-
Striped mullet	1	August,	Uncertain	2	60.0	~	62.0 (61)	1.100	~	1.300	(1.200)	57	2.8
(Mugil cephalus)	2	2020	Uncertain	2		\sim	65.0 (62.0	1,000	~	1,400	è	1,200	Ś	60	1.1
Takamatsu Port	3		Uncertain	2	60.0	\sim	62.0 (61.0	1,100	~	1,200	Ì	1,150	Ś	42	1.9
Sea bass	1	September ~	Uncertain	23	14.0	~	31.0 (18.3	49.0	~	551.0	(143.9)	72	1.1
(Lateolabrax japonicus)		November,	Uncertain	23	13.0		31.0 (18.0			520.7	Ì			69	1.0
Mouth of Riv. Shimanto		2020	Uncertain	24	13.0	\sim	28.0 (17.8		~	396.1	Ì	139.3		70	1.6
(Shimanto City)							,							ĺ		
Sea bass	1	January,	Fermale	2	51.5	~	53.0 (52.3)	2,020	~	1,640	(1,830)	79	0.9
(Lateolabrax japonicus)		2021	Mixed	2	55.0		54.5 (54.8)	1,860		1,880	Ì	1,870)	80	0.7
Mouth of Riv. Oita (Oita City)	3		Mixed	2	57.0	~	50.0 (53.5)	1,640	~	1,920	Ì	1,780)	80	0.8
Sea bass	1	October,	Mixed	10	26.5	~	29.0 (27.6)	284	~	382	(336)	78	1.2
(Lateolabrax japonicus)	2	2020	Mixed	11	26.5	~	29.0 (27.5 Ĵ	294	~	397	Ì	335)	78	1.2
West Coast of Satsuma	•	1	Mixed	11	26.5	~	29.0 (27.8)	298	\sim	364	Ì	331		78	1.2
Hest Coust of Suburna	3															
Peninsula)	3															
		February,	Female	3	34.5	~	36.5 (35.3)	1,277	~	1,542	(1,399)	70	2.1
Peninsula)	1	February, 2021					36.5 (31.0 (35.3) 30.2)	-		1,542 878	(1,399 795)	70 63	2.1 1.6

Bird species (Area)	No.	Sampling month	Sex	Number of animals		Length (cm)			,	Weight ((g)			Water content %	Lipid content %
Great Cormorant	1	July,	Male	3	113 ~	125 (120)	1,933	~	2,287	(2,065)	68	3.4
(Phalacrocorax carbo)	2	2020	Female	5	110 ~	120 (116)	1,595	i ~	1,999	(1,804)		
Lake Biwa(Lake Kita,	3		Male	2	112 ~	120 (116)	1,650) ~	2,039	(1,844)		
offshore of Tikubushima															
Island)															

Table 3-3-3 Basic data of specimens (birds as wildlife) in the Environmental Monitoring in FY 2020

(Note) The great cormorants (immature) killed as harmful birds were used as specimens.

4. Method for regression analysis and testing

The analysis procedure and the evaluation for the analysis result shown in Fig.2 were carried out by the following method.

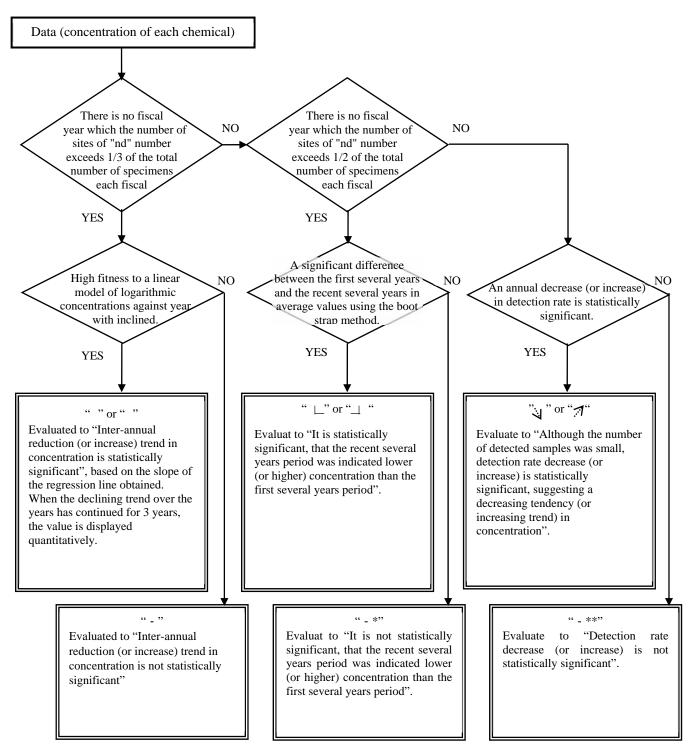


Figure 2 Method for regression analysis and testing

5. Summary of monitoring results

The detection ranges are shown in Table 3-4, and the detection limits are shown in Table 3-5.

The substances which were moniterd FY2020 and past years on the same media, were statistically analysed in order to detect inter-annual trends of increase or decrease. The results of the analyses are shown in Table 3-6

Data were carefully handled on the basis of following points.

• For sediment

At each monitoring point, three (3) specimen samples were collected. And the substances were analysed for each place with one specimen sample that is a mixture of equal parts of the three (3) specimen samples.

• For wildlife

At each monitoring point, three (3) specimen samples were collected in principle. And the substances were analysed for each place with one specimen sample that is a mixture of equal parts of the three (3) specimen samples. • For air

At each monitored site, the sampling was for the monitoring in the warm season (September 8, 2020 \sim November 27, 2020).

	le 3-4-1 List of the detection	Surface w	vater (pg/L)	Sediment (p	Sediment (pg/g-dry)				
No.	Target chemicals	Range (Frepuency)	Av.	Range (Frepuency)	Av.				
[1]	Total PCBs	nd ~ 8,000 (43/46)	99	30 ~ 400,000 (58/58)	4,600				
[2]	НСВ	2.7 ~ 600 (46/46)	7.9	3.9 ~ 9,800 (58/58)	85				
[3]	Aldrin								
[4]	Dieldrin								
[5]	Endrin								
	DDTs								
	[6-1] <i>p,p</i> '-DDT								
	[6-2] <i>p</i> , <i>p</i> '-DDE								
[6]	[6-3] <i>p</i> , <i>p</i> '-DDD								
	[6-4] <i>o</i> , <i>p</i> '-DDT								
	[6-5] <i>o,p</i> '-DDE								
	[6-6] <i>o</i> , <i>p</i> '-DDD								
	Chlordanes								
	[7-1] <i>cis</i> -chlordane	tr(2) ~ 120 (46/46)	12	tr(1.1) ~ 4,200 (58/58)	42				
	[7-2] trans-chlordane	tr(3) ~ 98 (46/46)	11	1.4 ~ 4,500 (58/58)	47				
[7]	[7-3] Oxychlordane	nd ~ 8 (21/46)	tr(1)	nd ~ 39 (34/58)	tr(1.1)				
	[7-4] <i>cis</i> -Nonachlor	tr(0.6) ~ 39 (46/46)	3.8	tr(0.7) ~ 2,100 (58/58)	31				
	[7-5] trans-Nonachlor	nd ~ 95 (45/46)	9	1.9 ~ 3,800 (58/58)	48				
	Heptachlors								
	[8-1] Heptachlor	nd ~ tr(2) (5/46)	nd	nd ~ 52 (43/58)	0.7				
[8]	[8-2] <i>cis</i> -Heptachlor epoxide	nd ~ 36 (44/46)	4	nd ~ 110 (40/58)	tr(1.5)				
	[8-3] trans-Heptachlor epoxide	nd (0/46)	nd	nd ~ 1.4 (1/58)	nd				
	Toxaphenes								
	[9-1] Parlar-26								
[9]	[9-2] Parlar-50								
	[9-3] Parlar-62								
[10]	Mirex								
	HCHs								
	[11-1] α-HCH								
[11]	[11-2] β-HCH								
	[11-3] γ-HCH (synonym:Lindane)								
	[11-4] δ-HCH								
[12]	Chlordecone								
[13]	Hexabromobiphenyls								

 [13] Hexabromobiphenyls
 Image: Constraint of the second secon

			ater (pg/L)	Sediment (j	pg/g-dry)
No.	Target chemicals	Range (Frepuency)	Av.	Range (Frepuency)	Av.
	Polybromodiphenyl ethers (Br ₄ - Br ₁₀)				
	[14-1] Tetrabromodiphenyl ethers				
	[14-2] Pentabromodiphenyl ethers				
F1 41	[14-3] Hexabromodiphenyl ethers				
	[14-4] Heptabromodiphenyl ethers				
	[14-5] Octabromodiphenyl ethers				
	[14-6] Nonabromodiphenyl ethers				
	[14-7] Decabromodiphenyl ether				
[13]	Perfluorooctane sulfonic acid (PFOS)	tr(52) ~ 3,700 (46/46)	330	tr(3) ~ 450 (58/58)	40
	Perfluorooctanoic acid (PFOA)	220 ~ 16,000 (46/46)	1,100	nd ~ 190 (57/58)	21
	Pentachlorobenzene	tr(2) ~ 500 (46/46)	7	1.8 ~ 2,900 (58/58)	63
	Endosulfans [18-1] α-Endosulfan				
[18]	[18-2] β-Endosulfan				
[19]	1,2,5,6,9,10-Hexabromo cyclododecanes [19-1] α-1,2,5,6,9,10- Hexabromo cyclododecane [19-2] β-1,2,5,6,9,10- Hexabromo cyclododecane [19-3] γ-1,2,5,6,9,10- Hexabromo cyclododecane [19-4] δ-1,2,5,6,9,10- Hexabromo cyclododecane [19-5] ε-1,2,5,6,9,10- Hexabromo cyclododecane [19-5] ε-1,2,5,6,9,10- Hexabromo cyclododecane [19-5] ε-1,2,5,6,9,10- Hexabromo cyclododecane				
	Total Polychlorinated Naphthalenes	1 400		1 100	
	Hexachlorobuta-1,3-diene Pentachlorophenol and its	nd ~ 490 (1/46)	nd	nd ~ 180 (2/58)	nd
	salts and esters				
	[22-1] Pentachlorophenol				
	[22-2] Pentachloroanisole				
Ī	Short-chain chlorinated paraffins	nd ~ 1,800		nd ~ 6,000	
,	[23-1] Chlorinated decanes	(16/46)	nd	(21/58)	nd
[23]	[23-2] Chlorinated undecanes	nd ~ 2,400 (4/46)	nd	nd ~ 6,900 (25/58)	tr(600)
	[23-3] Chlorinated dodecanes	nd ~ 2,600 (4/46)	nd	nd ~ 18,000 (31/58)	tr(1,300)
	[23-4] Chlorinated tridecanes	nd ~ 2,000 (8/46)	nd	nd ~ 26,000 (40/58)	1,400
	Dicofol	nd ~ 30 (1/46)	nd	nd ~ 77 (23/58)	tr(5)
[25]	Perfluorohexane sulfonic acid	nd ~ 1,500	160	nd ~ 10	nd

(PFHS) (44/40) (15/38)
 (Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.
 (Note 2) " means the medium was not monitored.
 (Note 3) "tr(X)" indicates that X was below the quantification limit and over the detection limit.
 (Note 4) Chlorinated paraffins with 5 - 9 chlorines are target chemicals. The results of short-chain chlorinated paraffins are tentative values obtained in trials among various problems in the measurement method.

		יוית	100	1	Air (pg				
No.	Target chemicals	Bibal Range		Fisl Range	Biba Range		Fish Range		
		(Frepuency)	Av.	(Frepuency)	Av.	(Frepuency)	Av.	(Frepuency)	Av.
[1]	Total PCBs	470 ~ 9,900 (3/3)	1,700	690 ~ 85,000 (18/18)	9,300	74,000 (1/1)		21 ~ 360 (37/37)	82
[2]	НСВ	tr(2) ~ 30 (3/3)	9	15 ~ 1,100 (18/18)	110	2,900 (1/1)		63 ~ 370 (37/37)	100
[3]	Aldrin								
[4]	Dieldrin								
[5]	Endrin								
	DDTs			<u> </u>					
	[6-1] <i>p,p</i> '-DDT								
	[6-2] <i>p,p</i> '-DDE								
[6]	[6-3] <i>p,p</i> '-DDD								
	[6-4] <i>o,p</i> '-DDT								
	[6-5] <i>o,p</i> '-DDE								
	[6-6] <i>o,p</i> '-DDD								
	Chlordanes								
	[7-1] <i>cis</i> -chlordane	41 ~ 590 (3/3)	200	39 ~ 2,200 (18/18)	290	83 (1/1)		1.5 ~ 200 (37/37)	32
	[7-2] trans-chlordane	25 ~ 430 (3/3)	100	11 ~ 780 (18/18)	90	34 (1/1)		1.5 ~ 230 (37/37)	35
[7]	[7-3] Oxychlordane	5 ~ 59 (3/3)	24	24 ~ 2,100 (18/18)	75	820 (1/1)		0.15 ~ 2.6 (37/37)	0.79
	[7-4] cis-Nonachlor	20 ~ 200 (3/3)	53	26 ~ 1,600 (18/18)	230	480 (1/1)		0.13 ~ 24 (37/37)	3.1
	[7-5] trans-Nonachlor	47 ~ 480 (3/3)	140	95 ~ 5,700 (18/18)	530	81 (1/1)		1.0 ~ 140 (37/37)	23
	Heptachlors								
	[8-1] Heptachlor	nd ~ tr(2) (1/3)	nd	nd ~ 6 (6/18)	nd	nd (0/1)		0.69 ~ 35 (37/37)	7.6
[8]	[8-2] <i>cis</i> -Heptachlor epoxide	(1/3) 5 ~ 96 (3/3)	28	$tr(2) \sim 320$ (18/18)	24	270 (1/1)		0.23 ~ 2.9 (37/37)	1.1
	[8-3] <i>trans</i> -Heptachlor epoxide	nd (0/3)	nd	nd (0/18)	nd	nd (0/1)		nd (0/37)	nd
	Toxaphenes	(0/3)		(0/10)		(0/1)		(0,37)	
	[9-1] Parlar-26								
[9]	[9-2] Parlar-50								
	[9-3] Parlar-62								
101	Mirex								
-01	HCHs								
	[11-1] <i>α</i> -HCH								
[11]	[11-2] β-HCH								
-	[11-3] γ-HCH (synonym:Lindane)								
	[11-4] δ-HCH								
12]	Chlordecone								
	Hexabromobiphenyls								

(Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.
(Note 2) "_____"" means the medium was not monitored.
(Note 3) "tr(X)" indicates that X was below the quantification limit and over the detection limit.

		D.1		Wildlife (51		Air (p	
No.	Target chemicals	Biba Range		Fi Range		Biba Range	lves	Fis	
		(Frepuency)	Av.	(Frepuency)	Av.	(Frepuency)	Av.	(Frepuency)	Av.
	Polybromodiphenyl ethers								
	$\frac{(Br_4 - Br_{10})}{[14-1]}$ Tetrabromodiphenyl								
	ethers								
	[14-2] Pentabromodiphenyl ethers								
	[14-3] Hexabromodiphenyl						•••••		
[14]	ethers [14-4] Heptabromodiphenyl								
	ethers								
	[14-5] Octabromodiphenyl								
	ethers [14-6] Nonabromodiphenyl								
	ethers								
	[14-7] Decabromodiphenyl ether								
[15]	Perfluorooctane sulfonic acid		16	5 ~ 3,000	76	8,500		1.1 ~ 7.2	3.4
	(PFOS) Perfluorooctanoic acid	(3/3) tr(3) ~ 14		(18/18) nd ~ 49		(1/1) 280		(37/37) 4.9 ~ 55	5.4
[16]	(PFOA)	(3/3)	6	(12/18)	tr(4)	(1/1)		(37/37)	13
[17]	Pentachlorobenzene	8 ~ 9 (3/3)	9	nd ~ 120 (14/18)	11	390 (1/1)		35 ~ 180 (37/37)	69
	Endosulfans	·····						·····	
[18]	[18-1] α -Endosulfan								
	[18-2] β-Endosulfan								
	1,2,5,6,9,10-Hexabromo								
	cyclododecanes [19-1] α-1,2,5,6,9,10-								
	Hexabromo cyclododecane								
	[19-2] β -1,2,5,6,9,10- Hexabromo cyclododecane								
[19]	[19-3] y-1,2,5,6,9,10-								
	Hexabromo cyclododecane [19-4] δ -1,2,5,6,9,10-								
	Hexabromo cyclododecane								
	[19-5] ε-1,2,5,6,9,10- Hexabromo cyclododecane								
[20]	Total Polychlorinated								
[20]	Naphthalenes Hexachlorobuta-1,3-diene	nd ~ tr(7)		nd 10		nd		1,500 ~ 9,800	
[21]	(reference)	(1/3)	nd	nd ~ 19 (8/18)	nd	nd (0/1)		(37/37)	2,500
	Pentachlorophenol and its salts and esters								
[22]	[22-1] Pentachlorophenol								
	[22-2] Pentachloroanisole								
	Short-chain chlorinated paraffins			1					
	[23-1] Chlorinated decanes	nd ~ tr(700) (2/3)	tr(400)	nd ~ tr(500) (3/18)	nd	nd (0/1)		tr(60) ~ 560 (37/37)	170
[23]	[23-2] Chlorinated undecanes	nd ~ 1,800 (2/3)	tr(700)	nd ~ 1,400 (4/18)	nd	1,100 (1/1)		tr(50) ~ 1,900 (37/37)	220
[23]	[23-3] Chlorinated dodecanes	nd ~ 700 (2/3)	tr(300)	nd ~ 1,400 (2/18)	nd	nd (0/1)		nd ~ 640 (29/37)	tr(80)
	[23-4] Chlorinated tridecanes	nd ~ 1,700 (2/3)	tr(400)	nd ~ 1,900 (2/18)	nd	tr(300) (1/1)		nd ~ 360 (23/37)	tr(40)
[24]	Dicofol	nd ~ tr(20) (1/3)	nd	nd ~ 330 (8/18)	tr(10)	nd (0/1)		nd ~ tr(0.3) (3/37)	nd
[25]	Perfluorohexane sulfonic acid (PFHxS)	nd ~ tr(3) (2/3)	tr(2)	nd ~ 18 (10/18)	tr(3)	190 (1/1)		0.7 ~ 6.1 (37/37)	2.5

(Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.
(Note 2) "

(Note 3) "tr(X)" indicates that X was below the quantification limit and over the detection limit.
(Note 3) "tr(X)" indicates that X was below the quantification limit and over the detection limit.
(Note 4) Hexachlorobuta-1,3-diene in air was analysed with the three(3) specimen samples for each place. "Range" is based on the concentrations of the samples and "Frequency" is based on the number of sites or areas.
(Note 5) Chlorinated paraffins with 5 - 9 chlorines are target chemicals in wildlife, and Chlorinated paraffins with 4 - 7 chlorines are target chemicals in air. The results of short-chain chlorinated paraffins are tentative values obtained in trials among various problems in the measurement method.

Table 3-5-1 List of the quanti	ification [detection] limits in the Env	ironmental Monitoring in FY2019 (Part 1)

Target chemicals	Surface water (pg/L)	Sediment (pg/g-dry)	Wildlife (pg/g-wet)	$\frac{1}{\text{Air (pg/m^3)}}$
Total PCBs	19 [6]	8.2	31	1.8 [0.6]
НСВ	2.0	1.3	3	0.3 [0.1]
Aldrin				
Dieldrin				
Endrin				
DDTs				
[6-1] <i>p,p</i> '-DDT				
[6-2] <i>p,p</i> '-DDE				
[6-3] <i>p,p</i> '-DDD				
[6-4] <i>o,p</i> '-DDT				
[6-5] <i>o,p</i> '-DDE				
[6-6] <i>o,p</i> '-DDD				
Chlordanes				
[7-1] cis-chlordane	5 [2]	1.2 [0.5]	3 [1]	0.09 [0.03]
[7-2] trans-chlordane	4 [2]	0.2 [0.1]	6 [2]	0.16 [0.06]
[7-3] Oxychlordane	3 [1]	1.8 [0.7]	3 [1]	0.10 [0.04]
[7-4] cis-Nonachlor	1.3 [0.5]	0.8 [0.3]	3 [1]	0.09 [0.04]
[7-5] trans-Nonachlor	5 [2]	0.5 [0.2]	4 [2]	0.10 [0.04]
Heptachlors				
[8-1] Heptachlor	[1]	[0.2]	[1]	0.10 [0.04]
[8-2] cis-Heptachlor epoxide				0.11 [0.04]
[8-3] <i>trans</i> -Heptachlor epoxide	1.9 [0.7]	1.0 [0.4]	9	0.13 [0.05]
Toxaphenes				
[9-1] Parlar-26				
[9-2] Parlar-50				
[9-3] Parlar-62				
Mirex				
HCHs				
[11-1] α-HCH				
[11-2] β-HCH				
[11-3] γ-HCH (synonym:Lindane)				
Chlordecone				
Hexabromobiphenyls				
	Target chemicalsTotal PCBsHCBAldrinDieldrinEndrinDDTs $[6-1] p,p'-DDT$ $[6-2] p,p'-DDE$ $[6-3] p,p'-DDD$ $[6-3] p,p'-DDD$ $[6-4] o,p'-DDT$ $[6-5] o,p'-DDE$ $[6-6] o,p'-DDD$ Chlordanes $[7-1] cis$ -chlordane $[7-2] trans$ -chlordane $[7-3] Oxychlordane$ $[7-4] cis$ -Nonachlor $[7-5] trans$ -NonachlorHeptachlors $[8-1]$ Heptachlor epoxide $[8-2] cis$ -Heptachlor epoxide $[8-3]$ trans-Heptachlor $[9-2]$ Parlar-26 $[9-2]$ Parlar-50 $[9-3]$ Parlar-62MirexHCHs $[11-1] a$ -HCH $[11-2] \beta$ -HCH $[11-3] \gamma$ -HCH	Target chemicalsSurface water (pg/L)Total PCBs19 [6]HCB2.0 [0.8]Aldrin2.0 [0.8]Dieldrin1Endrin1DDT's1[6-1] p , p' -DDT1[6-2] p , p' -DDE1[6-3] p , p' -DDD1[6-4] o , p' -DDT1[6-5] o , p' -DDE1[6-6] o , p' -DDE1[6-7] r , p' -DDE1[6-8] o , p' -DDD1[6-9] o , p' -DDE1[6-9] o , p' -DDE1[7-1] cis-chlordane5 [2][7-2] trans-chlordane1.3 [0.5][7-5] trans-Nonachlor5 [2]Heptachlors3 [0.9][8-1] Heptachlor1.9 [0.9][8-3] trans-Heptachlor1.9 [0.9][9-1] Parlar-261[9-2] Parlar-501[9-2] Parlar-501[11-1] a -HCH1[11-2] β -HCH1[11-4] δ -HCH1[11-4] δ -HCH1Chlordecone0	Target chemicals Surface water (pg/L) Sediment (pg/g-dry) Total PCBs 19 8.2 160 $(3.1]$ RCB $[0.3]$ HCB $[0.8]$ $[0.3]$ $[0.5]$ Aldrin $[0.4]$ $[0.5]$ Dicktrin $[0.4]$ $[0.5]$ DDTs $[0.5]$ $[6-1] \rho p'-DDT$ $[0.5]$ $[6-3] \rho p'-DDE$ $[0.5]$ $[6-4] \alpha p'-DDT$ $[0.5]$ $[6-5] o p'-DDE$ $[0.5]$ $[6-6] \alpha p'-DDT$ $[0.5]$ $[6-6] \alpha p'-DDD$ $[0.5]$ Chlordanes $[0.5]$ $[7-1] cis-chlordane [2] [0.5] [0.5] [7-3] 0xychlordane [3] 1.8 [1] [7-3] rans-Nonachlor [0.5] [0.3] [0.3] [7-5] rans-Nonachlor [0.3] [0.4]$	Total PCBs 19 [6] 8.2 [3.1] 31 [11] HCB 2.0 [0.8] 1.3 [0.5] 3 Akin 0 0.5 [1] Dakkin 1 1.3 [1] 3 Dakkin 1 1.3 [1] 3 DDTs 1 1.0 [6.1] ρg^{1} DDT 1 1.0 [6.1] ρg^{1} DDT [6.4] ρg^{1} DDT 1 1.0 [6.4] ρg^{1} DDT 1 1.0 [6.4] ρg^{2} DDT [6.4] ρg^{1} DDT 1 1.0 [6.5] ρg^{2} DDE 1.0 [6.6] ρg^{1} DDT 1.0 [7.1] ρg^{1} Chordane 1.1 [7.2] ρg^{1} Chordane 1.2 [2.1] 3 [1.1] [7.2] ρg^{1} DDT 1.3 [7.3] ρg^{1} DA 3 [7.1] 1.1 [7.3] ρg^{1} DA 3 [7.1] [7.4] ρg^{1} Chordane 5 [0.5] 0.5 [0.3] 1[1] [7.4] ρg^{1} Chordane 5 [0.5] 0.5 [0.3] 1[1] [7.4] ρg^{1} Chordane 1.1 [7.5] ρg^{1} Chordane 1.0

(Note 1) Each quantification limit is shown above the corresponding [detection limit].
(Note 2) "*" means the quantification [detection] limit is the sum value of congeners.
(Note 3) The same quantification [detection] limit was employed for bivalves, fish and birds as wildlife for each target chemical.
(Note 4) " means the medium was not monitored.

	le 3-5-2 List of the quantit				· · · ·
No.	Target chemicals	Surface water (pg/L)	Sediment (pg/g-dry)	Wildlife (pg/g-wet)	Air (pg/m ³)
	Polybromodiphenyl ethers				
	$\frac{(Br_4 \sim Br_{10})}{[14-1]}$ Tetrabromodiphenyl				
	ethers				
	[14-2] Pentabromodiphenyl				
	ethers				
	[14-3] Hexabromodiphenyl				
	ethers				
[14]	[14-4] Heptabromodiphenyl				
	ethers				
	[14-5] Octabromodiphenyl				
	ethers				
	[14-6] Nonabromodiphenyl				
	ethers				
	[14-7] Decabromodiphenyl				
	ether Perfluorooctane sulfonic acid	20	E	5	0.2
[15]	(PFOS)	80 [30]	5 [2]	5 [2]	0.3 [0.1]
	Perfluorooctanoic acid	90	8	6	0.8
	(PFOA)	[30]	[3]	[2]	[0.3]
		3	0.4	3	0.17
[17]	Pentachlorobenzene	[1]	[0.2]	[1]	[0.07]
-	Endosulfans				
	[18-1] α-Endosulfan				
[18]					
	[18-2] β -Endosulfan				
	1,2,5,6,9,10-Hexabromo				
	cyclododecanes [19-1] α -1,2,5,6,9,10-				
	[19-1] α-1,2,5,6,9,10- Hexabromo cyclododecane				
	[19-2] β -1,2,5,6,9,10-				
	Hexabromo cyclododecane				
[19]	[19-3] γ -1,2,5,6,9,10-				
	Hexabromo cyclododecane				
	[19-4] δ -1,2,5,6,9,10-				
	Hexabromo cyclododecane				
	[19-5] ε-1,2,5,6,9,10-				
	Hexabromo cyclododecane				
[20]	Total Polychlorinated				
[20]	Naphthalenes				
[21]	Hexachlorobuta-1,3-diene	100	30	13	30
	(reference)	[40]	[10]	[5]	[10]
	Pentachlorophenol and its				
	salts and esters				
[22]	[22-1] Pentachlorophenol				
	[22-2] Pentachloroanisole				
	Short-chain chlorinated paraffins				
	[23-1] Chlorinated decanes	400	900	900	120
		[200]	[400]	[300]	[50]
	[23-2] Chlorinated undecanes	900	1,200	800	120
[23]		[300]	[500]	[300]	[50]
	[23-3] Chlorinated dodecanes	700 [300]	2,000	600 [200]	140
		500	[800] 1,200	[200] 500	[50] 100
	[23-4] Chlorinated tridecanes	[200]	[500]	[200]	[40]
		13	13	30	0.5
[24]	Dicofol	[5]	[5]	[10]	[0.2]
[25]	Perfluorohexane sulfonic acid (PFHxS)	60	6	5	0.3

Table 3-5-2 List of the quantification [detection] limits in the Environmental Monitoring in FY2019 (Part 2)

(Note 1) Each quantification limit is shown above the corresponding [detection limit].

(Note 2) "*" means the quantification [detection] limit is the sum value of congeners. (Note 3) The same quantification [detection] limit was employed for bivalves, fish and birds as wildlife for each target chemical. (Note 4) "____" means the medium was not monitored.

No	Nama	Surface water				
INO	Name		River area	Lake area	Mouth area	Sea area
[1]	Total PCBs	Half-life : 7 years [6 ~ 9 years]	Half-life : 6 years [5 ~ 9 years]	Half-life : 7 years [5 ~ 10 years]	Half-life : 11 years [8 ~ 18 years]	-
[2]	НСВ	Half-life : 12 years [10 ~ 16 years]		-	Half-life : 9 years [7 ~ 11 years]	
[3]	Aldrin					
[4]	Dieldrin					
[5]	Endrin					
	DDTs	.		-		-
	[6-1] <i>p,p'</i> -DDT					
	[6-2] <i>p,p'</i> -DDE					
[6]	[6-3] <i>p,p'</i> -DDD					
	[6-4] <i>o,p'</i> -DDT					
	[6-5] <i>o,p'</i> -DDE					
	[6-6] <i>o,p'-</i> DDD					
	Chlordanes					
	[7-1] cis-chlordane	Half-life : 8 years [6 ~ 13 years]	Half-life : 7 years [5 ~ 12 years]	-		Half-life : 7 years [6 ~ 9 years]
[7]	[7-2] trans-chlordane		-	-	-	-
[7]	[7-3] Oxychlordane	_**		_**	-	_**
	[7-4] cis-Nonachlor	-		-	-	-
	[7-5] trans-Nonachlor		Half-life : 11 years [7 ~ 27 years]	-	-	-
	Heptachlors					<u>.</u>
101	[8-1] Heptachlor	<u>ن</u>	_**	_**	_**	_**
[8]	[8-2] <i>cis</i> -Heptachlor epoxide			-	-	
	[8-3] trans-Heptachlor epoxide	_**	_**	_**	_**	_**
	Toxaphenes					
101	[9-1] Parlar-26					
[9]	[9-2] Parlar-50					
	[9-3] Parlar-62					
[10]	Mirex					
	HCHs					
[11]	[11-1] α-HCH					
	[11-2] <i>β</i> -HCH					
	[11-3] γ -HCH (synonym:Lindane)					
	[11-4] δ-HCH					
L						

Table 3-6-1 Results of inter-annual trend analysis from FY2002 to FY2020 (Surface water)

No	Name	Surface water				
	name		River area	Lake area	Mouth area	Sea area
	Polybromodiphenyl ethers(Br ₄ ~Br ₁₀)					
	[14-1] Tetrabromodiphenyl ethers					
	[14-2] Pentabromodiphenyl ethers					
	[14-3] Hexabromodiphenyl ether					
[14]	[14-4] Heptabromodiphenyl ethers					
	[14-5] Octabromodiphenyl ethers					
	[14-6] Nonabromodiphenyl ethers					
	[14-7] Decabromodiphenyl ether					
[15]	Perfluorooctane sulfonic acid (PFOS)	-	-	Half-life : 13 years [8 ~ 25 years]	-	-
[16]	Perfluorooctanoic acid (PFOA)		-	-	Half-life : 7 years [5 ~ 13 years]	-
[17]	Pentachlorobenzene	-	-	-	-	-

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 2) " 🍹 ": An inter-annual trend of decrease was found.

" \Box ": Statistically significant differences between the first several years and the recent several years were found.

": ": Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency. " - ": An inter-annual trend was not found.

"-*": In case of using the bootstrap methods, there was not a significant difference between the first several years and the recent several years.

"-**": The detection rate was not decreased, there was not a reduction tendency.

(Note 3) "": The inter-annual trend analysis was not analysed because not conducted the survey in FY2020.

(Note 4) The half-life describes the half-life in the environment based on the survey results when the decrease tendency continues for 3 years or more by the maximum likelihood estimation that does not assume parametric residual distribution. The results in [] indicate that the values in the 95% confidence interval.

(Note 5) The classification of monitored sites with area are shown in Table 3-7

(Note 6) cis-Heptachlor epoxide and trans-Heptachlor epoxide: the results of the inter-annual trend analysis from FY2003 to FY2020. Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA): the results of the inter-annual trend analysis from FY2009 to FY2020. Pentachlorobenzene: the results of the inter-annual trend analysis from FY2010 to FY2020

N	Norma	Sediment				
No	Name		River area	Lake area	Mouth area	Sea area
[1]	Total PCBs	Half-life : 19 years [14 ~ 35 years]	Half-life : 15 years [10 ~ 25 years]	-	-	Half-life : 21 years [15 ~ 33 years]
[2]	НСВ	Half-life : 19 years [13 ~ 33 years]	Half-life : 12 years [8 ~ 20 years]	-	-	-
[3]	Aldrin					
[4]	Dieldrin					
[5]	Endrin					
	DDTs			¢		e
	[6-1] <i>p</i> , <i>p</i> '-DDT					
	[6-2] <i>p</i> , <i>p</i> '-DDE					
[6]	[6-3] <i>p,p'</i> -DDD					
	[6-4] <i>o,p'</i> -DDT					
	[6-5] <i>o,p'</i> -DDE					
	[6-6] <i>o</i> , <i>p</i> ′-DDD					
	Chlordanes		x	······	·8	•
	[7-1] cis-chlordane	Half-life : 9 years [7 ~ 13 years]	Half-life : 8 years [6 ~ 12 years]	-	Half-life : 8 years [6 ~ 13 years]	Half-life : 9 years [7 ~ 13 years]
[7]	[7-2] trans-chlordane	Half-life : 13 years [10~19 years]	Half-life : 10 years [8 ~ 15 years]	-		
[7]	[7-3] Oxychlordane		-	_**		_**
	[7-4] cis-Nonachlor	Half-life : 17 years [13 ~ 27 years]	Half-life : 11 years [9 ~ 16 years]	-	-	Half-life : 18 years [14 ~ 25 years]
	[7-5] trans-Nonachlor	Half-life : 13 years [10 ~ 19 years]	Half-life : 12 years [9 ~ 20 years]	-	Half-life : 11 years [8 ~ 18 years]	Half-life : 13 years [9 ~ 22 years]
	Heptachlors					
[8]	[8-1] Heptachlor	<u>.</u>		_**		_**
[0]	[8-2] <i>cis</i> -Heptachlor epoxide			_*	_	<u>ن</u>
	[8-3] <i>trans</i> -Heptachlor epoxide	_**	_**	_**	_**	_**
	Toxaphenes				•	•
[9]	[9-1] Parlar-26					
[9]	[9-2] Parlar-50					
	[9-3] Parlar-62					
[10]	Mirex					
	HCHs					
	[11-1] α-HCH					
[11]	[11-2] β-HCH					
	[11-3] y-HCH (synonym:Lindane)					
	[11-4] δ-HCH					

Table 3-6-2 Results of inter-annual trend analysis from FY2002 to FY2020 (Sediment)

No	News	Sediment				
NO	Name		River area	Lake area	Mouth area	Sea area
	Polybromodiphenyl ethers(Br ₄ ~Br ₁₀)	ç	~~	۶		
	[14-1] Tetrabromodiphenyl ethers					
	[14-2] Pentabromodiphenyl ethers					
	[14-3] Hexabromodiphenyl ether					
[14]	[14-4] Heptabromodiphenyl ethers					
	[14-5] Octabromodiphenyl ethers					
	[14-6] Nonabromodiphenyl ethers					
	[14-7] Decabromodiphenyl ether					
[15]	Perfluorooctane sulfonic acid (PFOS)		-	-		Half-life : 8 years [6 ~ 13 years]
[16]	Perfluorooctanoic acid (PFOA)			-	Half-life : 5 years [4 ~ 6 years]	-
[17]	Pentachlorobenzene	_	-	-	-	

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 2) " 🎽 ": An inter-annual trend of decrease was found.

" \square ": Statistically significant differences between the first several years and the recent several years were found.

":" Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency. "-": An inter-annual trend was not found.

"-*": In case of using the bootstrap methods, there was not a significant difference between the first several years and the recent several years

"-**": The detection rate was not decreased, there was not a reduction tendency.

(Note 3) "": The inter-annual trend analysis was not analysed because not conducted the survey in FY2020.

(Note 4) The half-life describes the half-life in the environment based on the survey results when the decrease tendency continues for 3 years or more by the maximum likelihood estimation that does not assume parametric residual distribution. The results in [] indicate that the values in the 95% confidence interval.

(Note 5) The classification of monitored sites with area are shown in Table 3-7

(Note 6) cis-Heptachlor epoxide and trans-Heptachlor epoxide: the results of the inter-annual trend analysis from FY2003 to FY2020. Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA): the results of the inter-annual trend analysis from FY2009 to FY2020. Pentachlorobenzene: the results of the inter-annual trend analysis from FY2010 to FY2020.

No	Name	Bivalves	Fish
[1]	Total PCBs	Half-life : 15 years [9 ~ 33 years]	
[2]	НСВ	-	-
[3]	Aldrin		
[4]	Dieldrin		
[5]	Endrin		
	DDTs		
	[6-1] <i>p,p'</i> -DDT		
	[6-2] <i>p,p</i> '-DDE		
[6]	[6-3] <i>p,p</i> '-DDD		
	[6-4] <i>o,p'</i> -DDT		
	[6-5] <i>o,p'</i> -DDE		
	[6-6] <i>o,p'</i> -DDD		
	Chlordanes	· · · · ·	
	[7-1] cis-chlordane		-
	[7-2] trans-chlordane	_	-
[7]	[7-3] Oxychlordane	-	
	[7-4] cis-Nonachlor		-
	[7-5] trans-Nonachlor		-
	Heptachlors		
101	[8-1] Heptachlor	_**	
[8]	[8-2] <i>cis</i> -Heptachlor epoxide	-	-
	[8-3] trans-Heptachlor epoxide	_**	_**
	Toxaphenes		
[0]	[9-1] Parlar-26		
[9]	[9-2] Parlar-50		
	[9-3] Parlar-62		
[10]	Mirex		
	HCHs	•	
	[11-1] α-HCH		
[11]	[11-2] β-HCH		
	[11-3] y-HCH (synonym:Lindane)		
	[11-4] δ-HCH		

Table 3-6-3 Results of inter-annual trend analysis from FY2002 to FY2020 (Wildlife)

No	Name	Bivalves	Fish
	Polybromodiphenyl ethers(Br ₄ ~Br ₁₀)		
	[14-1] Tetrabromodiphenyl ethers		
	[14-2] Pentabromodiphenyl ethers		
11.41	[14-3] Hexabromodiphenyl ether		
[14]	[14-4] Heptabromodiphenyl ethers		
	[14-5] Octabromodiphenyl ethers		
	[14-6] Nonabromodiphenyl ethers		
	[14-7] Decabromodiphenyl ether		
[15]	Perfluorooctane sulfonic acid (PFOS)		-
[16]	Perfluorooctanoic acid (PFOA)		
[17]	Pentachlorobenzene		_*
	1,2,5,6,9,10-Hexabromo cyclododecanes		
	[19-1] α-1,2,5,6,9,10- Hexabromo		
	cyclododecane		
[19]	[19-2] β -1,2,5,6,9,10- Hexabromo		
	cyclododecane		
	[19-3] <i>γ</i> -1,2,5,6,9,10- Hexabromo		
	cyclododecane		

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 2) " Y ": An inter-annual trend of decrease was found.

" \Box ": Statistically significant differences between the first several years and the recent several years were found.

": Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency.

"-": An inter-annual trend was not found.

"-*": In case of using the bootstrap methods, there was not a significant difference between the values of the first several years and the recent several years.

"-**": The detection rate was not decreased, there was not a reduction tendency.

(Note 3) "": The inter-annual trend analysis was not analysed because not conducted the survey in FY2020.

(Note 4) The half-life describes the half-life in the environment based on the survey results when the decrease tendency continues for 3 years or more by the maximum likelihood estimation that does not assume parametric residual distribution. The results in [] indicate that the values in the 95% confidence interval.

(Note 5) *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide: the results of the inter-annual trend analysis from FY2003 to FY2020. Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA): the results of the inter-annual trend analysis from FY2009 to FY2020. Pentachlorobenzene: the results of the inter-annual trend analysis from FY2010 to FY2020.

		1
No	Name	Air Warm season
		Walin Scason
[1]	Total PCBs	Half-life : 14 years [10 ~ 23 years]
[2]	НСВ	-
[3]	Aldrin	
[4]	Dieldrin	
[5]	Endrin	
,	DDTs	
	[6-1] <i>p,p'</i> -DDT	
	[6-2] <i>p</i> , <i>p</i> '-DDE	
[6]	[6-3] <i>p</i> , <i>p</i> ′-DDD	
	[6-4] <i>o,p'</i> -DDT	
	[6-5] <i>o,p'</i> -DDE	
ļ	[6-6] <i>o,p'</i> -DDD	
,	Chlordanes	
	[7-1] <i>cis</i> -chlordane	Half-life : 12 years [10 ~ 14 years]
	[7-2] trans-chlordane	
[7]	[7-3] Oxychlordane	Half-life : 16 years [12 ~ 25 years]
	[7-4] cis-Nonachlor	
	[7-5] trans-Nonachlor	Half-life : 13 years [10 ~ 18 years]
	Heptachlors	
[8]	[8-1] Heptachlor	Half-life : 9 years [7 ~ 11 years]
رە]	[8-2] <i>cis</i> -Heptachlor epoxide	Half-life : 16 years [14 ~ 19 years]
	[8-3] trans-Heptachlor epoxide	<u>ن</u>
	Toxaphenes	
[9]	[9-1] Parlar-26	
[9]	[9-2] Parlar-50	
	[9-3] Parlar-62	
[10]	Mirex	
	HCHs	
	[11-1] α-HCH	
[11]	[11-2] <i>β</i> -HCH	
	[11-3] y-HCH (synonym:Lindane)	
	[11-4] δ-HCH	
·	L	

Table 3-6-4 Results of inter-annual trend analysis from FY2002 to FY2020 (Air)

No	Name	Air
NO	Name	Warm season
	Polybromodiphenyl ethers(Br ₄ ~Br ₁₀)	
	[14-1] Tetrabromodiphenyl ethers	
	[14-2] Pentabromodiphenyl ethers	
	[14-3] Hexabromodiphenyl ether	
[14]	[14-4] Heptabromodiphenyl ethers	
	[14-5] Octabromodiphenyl ethers	
	[14-6] Nonabromodiphenyl ethers	
	[14-7] Decabromodiphenyl ether	
[15]	Perfluorooctane sulfonic acid (PFOS)	Half-life : 22 years [15 ~ 38 years]
[16]	Perfluorooctanoic acid (PFOA)	-
[17]	Pentachlorobenzene	_

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 2) " 🎽 ": An inter-annual trend of decrease was found.

" \Box ": Statistically significant differences between the first several years and the recent several years were found.

": Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency.

"-": An inter-annual trend was not found.

"-*": In case of using the bootstrap methods, there was not a significant difference between the values of the first several years and the recent several years.

"**": The detection rate was not decreased, there was not a reduction tendency.

(Note 3) "": The inter-annual trend analysis was not analysed because not conducted the survey in FY2020.

(Note 4) The half-life describes the half-life in the environment based on the survey results when the decrease tendency continues for 3 years or more by the maximum likelihood estimation that does not assume parametric residual distribution. The results in [] indicate that the values in the 95% confidence interval.

(Note 5) cis-Heptachlor epoxide and trans-Heptachlor epoxide: the results of the inter-annual trend analysis from FY2003 to FY2020. Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA): the results of the inter-annual trend analysis from FY2010 to FY2020. Pentachlorobenzene: the results of the inter-annual trend analysis from FY2007 to FY2020.

Classification	Local	Monitored sites	Monitored media			
	Communities		Surface water	Sediment		
River area	Hokkaido	Suzuran-ohashi Bridge, Riv Tokachi(Obihiro City)				
	L · D C	Ishikarikakokyo Bridge, Mouth of Riv. Ishikari(Ishikari City)				
	Iwate Pref.	Riv. Toyosawa(Hanamaki City) Hirose-ohashi Bridge, Riv. Hirose(Sendai City)				
	Sendai City Yamagata Pref.	Mouth of Riv. Mogami(Sakata City)				
	Ibaraki Pref.	Tonekamome-ohasi Bridge, Mouth of Riv. Tone(Kamisu City)				
	Tochigi Pref.	Riv. Tagawa(Utsunomiya City)				
	Saitama Pref.	Akigaseshusui of Riv. Arakawa				
	Niigata Pref.	Lower Riv. Shinano(Niigata City)				
	Toyama Pref.	Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City)				
	Fukui Pref.	Mishima-bashi Bridge, Riv. Shono(Tsuruga City)				
	Yamanashi Pref.	Senshu-bashi Bridge, Riv. Arakawa(Kofu City)				
	Shizuoka Pref.	Riv. Tenryu(Iwata City)				
	Kyoto City	Miyamae-bashi Bridge, Riv. Katsura(Kyoto City)				
	Osaka City	Osaka Port				
	, i i i i i i i i i i i i i i i i i i i	Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)				
	Nara Pref.	Riv. Yamato(Oji Town)	1			
	Wakayama Pref.	Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City)				
	Kochi Pref.	Mouth of Riv. Shimanto(Shimanto City)				
	Kumamoto Pref.	Hiraki-bashi Bridge, Riv. Midori(Uto City)				
	Miyazaki Pref.	Mouth of Riv. Oyodo(Miyazaki City)				
	Kagoshima Pref.	Riv. Amori(Kirishima City)				
		Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City)				
Lake area	Akita Pref.	Lake Hachiro				
	Nagano Pref.	Lake Suwa(center)				
	Shiga Pref.	Lake Biwa(center, offshore of Minamihira)				
		Lake Biwa(center, offshore of Karasaki)				
River	Chiba City	Mouth of Riv. Hanami(Chiba City)				
mouth area	Tokyo Met.	Mouth of Riv. Arakawa(Koto Ward)				
		Mouth of Riv. Sumida(Minato Ward)				
	Ishikawa Pref.	Mouth of Riv. Sai(Kanazawa City)				
	Aichi Pref.	Kinuura Port				
	Mie Pref.	Toba Port				
	Osaka Pref.	Mouth of Riv. Yamato(Sakai City)				
	Osaka City	Mouth of Riv. Yodo(Osaka City)				
	Tokushima Pref.	Mouth of Riv. Yoshino(Tokushima City)				
	Kagawa Pref.	Takamatsu Port				
	Kitakyushu City	Dokai Bay				
	Oita Pref.	Mouth of Riv. Oita(Oita City)				
0	Okinawa Pref.	Naha Port	+			
Sea area	Hokkaido	Tomakomai Port	<u> </u>			
	Miyagi Pref.	Sendai Bay(Matsushima Bay)	<u> </u>			
	Fukushima Pref.	Onahama Port	+			
	Chiba Pref. Yokohama City	Coast of Ichihara and Anegasaki	+			
	Yokohama City Shizuoka Pref.	Yokohama Port Shimizu Port				
	Aichi Pref.	Shimizu Port Nagoya Port	+ +			
	Mie Pref.	Yokkaichi Port	+ +			
	Osaka City	Outside Osaka Port	+ +			
	Hyogo Pref.	Offshore of Himeji				
	Kobe City	Kobe Port(center)	+ +			
	Okayama Pref.	Offshore of Mizushima	+ +			
	Hiroshima Pref.	Kure Port	+ +			
	initioninia i içi.	Hiroshima Bay	+ +			
	Yamaguchi Pref.	Tokuyama Bay	+ +			
	i amagacini i ici.	Offshore of Ube	+ +			
		Offshore of Hagi	+ +			
	Ehime Pref.	Niihama Port				
	Fukuoka City	Hakata Bay	+ +			
	Saga Pref.	Imari Bay	1			
	Nagasaki Pref.	Omura Bay	+			

(Note) There are monitored sites which were classified in the area unlike these names by the situations.

In the wake of the monitoring surveys of FY2002~2020, high-sensitivity analysis of PCBs, and HCB were conducted. All these chemicals were detected.

High-sensitivity analysis of Chlordanes, Heptachlors, Perfluorooctane sulfonic acid (PFOS), Perfluorooctanoic acid (PFOA), Pentachlorobenzene, Hexachlorobuta-1,3-diene, Short-chain chlorinated paraffins, Dicofol and Perfluorohexane sulfonic acid (PFHxS) were also conducted in FY2020.

Except for cases of undetected Heptachlor in wildlife (birs), *trans*-Heptachlor epoxide in surface water wildlife (bivalves, fish and birs) and air, Hexachlorobuta 1,3-diene in wildlife (birs), Chlorinated decanes and Chlorinated dodecanes in wildlife (birds), Dicofol in wildlife (birds), in all chemicals were detected.

The monitoring results for each chemical (group) are described below.

[1] Total PCBs

· History and state of monitoring

Polychlorinated biphenyls (PCBs) were used in industry as heat exchange fluids, etc. and were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in June 1974, since the substances are persistent, highly accumulative in living organisms, and chronically toxic. Also the substances are one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series, the substances were monitored in wildlife (bivalves, fish and birds) during the period of FY1978~2001 under the framework of "the Wildlife Monitoring." Under the framework of "The Follow-up Survey of the Status of Pollution by Unintentionally Formed Chemicals," sediment and wildlife (fish) were the monitored media in FY1996 and FY1997, and surface water, sediment, wildlife (fish) and air were the monitored media in FY2000 and FY2001.

Under the framework of the Environmental Monitoring, the substances in surface water, sediment, wildlife (bivalves, fish and birds) and air have been monitored since FY2002.

· Monitoring results

<Surface Water>

The presence of the substances in surface water was monitored at 46 sites, and it was detected at 43 of the 46 valid sites adopting the detection limit of 6pg/L, and the detection range was up to 8,000pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2020, reduction tendencies in specimens from river areas, lake areas and river mouth areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

Total PCBs	Monitored	Geometric				Quantification	Detection 1	Frequency
(total amount)	year	mean*	Median	Maximum	Minimum	[Detection] Limit**	Sample	Site
	2002	470	330	11,000	60	7.4 [2.5]	114/114	38/38
	2003	530	450	3,100	230	9.4 [2.5]	36/36	36/36
	2004	630	540	4,400	140	14 [5.0]	38/38	38/38
	2005	520	370	7,800	140	10 [3.2]	47/47	47/47
	2006	240	200	4,300	15	9 [3]	48/48	48/48
	2007	180	140	2,700	12	7.6 [2.9]	48/48	48/48
	2008	260	250	4,300	27	7.8 [3.0]	48/48	48/48
	2009	210	170	3,900	14	10 [4]	48/48	48/48
Surface water	2010	120	99	2,200	nd	73 [24]	41/49	41/49
Surface water	2011	150	130	2,100	16	4.5 [1.7]	49/49	49/49
(pg/L)	2012	400	280	6,500	72	44 [15]	48/48	48/48
	2013	140	110	2,600	tr(13)	25 [8]	48/48	48/48
	2014	150	120	4,800	16	8.2 [2.9]	48/48	48/48
	2015	200	160	4,200	34	21 [7.3]	48/48	48/48
	2016	140	120	3,100	tr(7.2)	8.4 [2.8]	48/48	48/48
	2017	84	79	2,400	nd	16 [5.5]	46/47	46/47
	2018	150	140	2,600	tr(11)	14 [5]	47/47	47/47
	2019	120	90	3,400	tr(6.6)	12 [4.7]	48/48	48/48
	2020	99	90	8,000	nd	19 [6]	43/46	43/46

Stocktaking of the detection of Total PCBs (total amount) in surface water during FY2002~2020

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) "**" indicates the sum value of the Quantification [Detection] limits of each congener.

<Sediment>

The presence of the substances in sediment was monitored at 58 sites, and it was detected at all 58 valid sites adopting the detection limit of 3.1pg/g-dry, and the detection range was $30 \sim 400,000pg/g$ -dry.

As results of the inter-annual trend analysis from FY2002 to FY2020, reduction tendencies in specimens from river areas and sea areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

Total PCBs	Monitored	Geometric				Quantification	Detection I	Frequency
(total amount)	year	mean*	Median	Maximum	Minimum	[Detection] Limit**	Sample	Site
	2002	11,000	11,000	630,000	39	10 [3.5]	189/189	63/63
	2003	9,400	9,500	5,600,000	39	10 [3.2]	186/186	62/62
	2004	8,400	7,600	1,300,000	38	7.9 [2.6]	189/189	63/63
	2005	8,600	7,100	690,000	42	6.3 [2.1]	189/189	63/63
	2006	8,800	6,600	690,000	36	4 [1]	192/192	64/64
	2007	7,400	6,800	820,000	19	4.7 [1.5]	192/192	64/64
	2008	8,700	8,900	630,000	22	3.3 [1.2]	192/192	64/64
	2009	7,600	7,100	1,700,000	17	5.1 [2.1]	192/192	64/64
C - 1:	2010	6,500	7,800	710,000	nd	660 [220]	56/64	56/64
Sediment	2011	6,300	7,400	950,000	24	12 [4.5]	64/64	64/64
(pg/g-dry)	2012	5,700	6,700	640,000	tr(32)	51 [18]	63/63	63/63
	2013	6,200	8,000	650,000	tr(43)	44 [13]	62/62	62/62
	2014	4,900	5,500	440,000	tr(35)	61 [21]	63/63	63/63
	2015	6,400	7,500	1,100,000	nd	62 [22]	61/62	61/62
	2016	5,300	5,300	770,000	tr(21)	53 [18]	62/62	62/62
	2017	4,600	6,200	610,000	nd	14 [5.0]	61/62	61/62
	2018	5,900	6,500	720,000	nd	170 [55]	58/61	58/61
	2019	5,700	7,900	640,000	37	8.5 [3.3]	61/61	61/61
	2020	4,600	6,200	400,000	30	8.2 [3.1]	58/58	58/58

Stocktaking of the detection of Total PCBs (total amount) in sediment during FY2002~2020

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002~2009.

(Note 2) " ** " indicates the sum value of the Quantification [Detection] limits of each congener.

<Wildlife>

The presence of the substances in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 11pg/g-wet, and the detection range was $470 \sim 9,900pg/g$ -wet. For fish, the presence of the substances was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 11pg/g-wet, and the detection range was $690 \sim 85,000pg/g$ -wet. For birds, the presence of the substances was monitored in 1 area, and detected in the area adopting the detection limit of 11pg/g-wet, and the detected in the area adopting the detection limit of 11pg/g-wet, and the detected in the area adopting the detection limit of 11pg/g-wet, and the detected in the area adopting the detection limit of 11pg/g-wet, and the detected concentration was 74,000pg/g-wet.

As results of the inter-annual trend analysis from FY2002 to FY2020 reduction tendencies in specimens from bivalves and fish were identified as statistically significant.

Total PCBs	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection I	Frequenc
(total amount)	year	mean*				Limit**	Sample	Site
	2002	8,800	28,000	160,000	200	25 [8.4]	38/38	8/8
	2003	11,000	9,600	130,000	1,000	50 [17]	30/30	6/6
	2004	11,000	11,000	150,000	1,500	85 [29]	31/31	7/7
	2005	11,000	13,000	85,000	920	69 [23]	31/31	7/7
	2006	8,500	8,600	77,000	690	42 [14]	31/31	7/7
	2007	9,000	11,000	66,000	980	46 [18]	31/31	7/7
	2008	8,600	8,600	69,000	870	47 [17]	31/31	7/7
	2009	8,700	11,000	62,000	780	32 [11]	31/31	7/7
Bivalves	2010	9,200	11,000	46,000	1,500	52 [20]	6/6	6/6
(pg/g-wet)	2011	8,900	17,000	65,000	820	220 [74]	4/4	4/4
(pg/g-wet)	2012	6,600	12,000	34,000	680	34 [11]	5/5	5/5
	2013	5,200	7,800	44,000	730	44 [14]	5/5	5/5
	2014	2,900	2,600	15,000	600	95 [31]	3/3	3/3
	2015	2,400	2,500	9,600	580	52 [17]	3/3	3/3
	2016	2,300	2,300	12,000	420	60 [20]	3/3	3/3
	2017	2,500	1,600	19,000	500	68 [23]	3/3	3/3
	2018	2,000	900	12,000	740	63 [21]	3/3	3/3
	2019	2,200	1,900	17,000	350	33 [11]	3/3	3/3
	2020	1,700	1,100	9,900	470	31 [11]	3/3	3/3
	2002	17,000	8,100	550,000	1,500	25 [8.4]	70/70	14/14
	2003	11,000	9,600	150,000	870	50 [17]	70/70	14/14
	2004	15,000	10,000	540,000	990	85 [29]	70/70	14/14
	2005	14,000	8,600	540,000	800	69 [23]	80/80	16/16
	2006	13,000	9,000	310,000	990	42 [14]	80/80	16/16
	2007	11,000	6,200	530,000	790	46 [18]	80/80	16/16
	2008	12,000	9,100	330,000	1,200	47 [17]	85/85	17/17
	2009	12,000	12,000	290,000	840	32 [11]	90/90	18/18
	2010	13,000	10,000	260,000	880	52 [20]	18/18	18/18
Fish	2011	14,000	12,000	250,000	900	220 [74]	18/18	18/18
(pg/g-wet)	2012	13,000	14,000	130,000	920	34 [11]	19/19	19/19
	2013	14,000	13,000	270,000	1,000	44 [14]	19/19	19/19
	2014	13,000	10,000	230,000	940	95 [31]	19/19	19/19
	2015	11,000	7,700	180,000	1,300	52 [17]	19/19	19/19
	2016	11,000	8,400	150,000	1,200	60 [20]	19/19	19/19
	2017	10,000	8,300	160,000	860	68 [23]	19/19	19/19
	2018	12,000	12,000	280,000	1,200	63 [21]	18/18	18/18
	2019	12,000	12,000	160,000	1,000	33 [11]	16/16	16/16
	2020	9,300	12,000	85.000	690	31 [11]	18/18	18/18
	2002	12,000	14,000	22,000	4,800	25 [8.4]	10/10	2/2
	2002	19,000	22,000	42,000	6,800	50 [17]	10/10	2/2
	2003	9,000	9,400	13,000	5,900	85 [29]	10/10	2/2
	2004	10,000	9,700	19,000	5,600	69 [23]	10/10	2/2
	2005	12,000	9,700 9,800	48,000	5,600	42 [14]	10/10	2/2
	2000	7,600	7,800	15,000	3,900	46 [18]	10/10	2/2
	2007	9,700	7,400	56,000	3,000	47 [17]	10/10	2/2
	2008	5,900	5,700	9,500	3,900	32 [11]	10/10	2/2
	2009	7,700	5,700	9,100	6,600	52 [20]	2/2	2/2
Birds***	2010			5,400	5,400	220 [74]	1/1	1/1
(pg/g-wet)	2011	5,900		6,200	5,600	34 [11]	2/2	2/2
	2012	360,000	 	510,000	250,000	44 [14]	2/2	2/2
	2013	46,000		140,000	230,000	44 [14] 95 [31]	2/2	2/2
	2014							
				5,000	5,000	52 [17]	1/1	1/1
	2016	31,000		100,000	9,800	60 [20]	2/2	2/2
	2017	39,000		380,000	4,000	68 [23]	2/2	2/2
	2018	110,000		130,000	85,000	63 [21]	2/2	2/2
	2019			190,000	190,000	33 [11]	1/1	1/1
	2020			74,000	74,000	31 [11]	1/1	1/1

Stocktaking of the detection of Total PCRs (total amount) in wildlife (bively vos fish and birds) during EV2002, 2020

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002~2009.

(Note 2) "**" indicates the sum value of the Quantification [Detection] limits of each congener. (Note 3) "***" indicates there is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

<Air>

The presence of the substances in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of $0.6pg/m^3$, and the detection range was $21 \sim 360pg/m^3$.

As results of the inter-annual trend analysis from FY2003 to FY2020, a reduction tendency in specimens from warm season was identified as statistically significant.

Total PCBs		Geometric		,	Minimum	Quantification	Detection I	Frequency
(total amount)	Monitored year	mean	Median	Median Maximum		[Detection] limit*	Sample	Site
	2002**	100	100	880	16	99 [33]	102/102	34/34
	2003 Warm season	260	340	2,600	36	6 6 [2 2]	35/35	35/35
	2003 Cold season	110	120	630	17	6.6 [2.2]	34/34	34/34
	2004 Warm season	240	250	3,300	25	2.9 [0.98]	37/37	37/37
	2004 Cold season	130	130	1,500	20	2.9 [0.98]	37/37	37/37
	2005 Warm season	190	210	1,500	23	0.28 [0.14]	37/37	37/37
	2005 Cold season	66	64	380	20	0.38 [0.14]	37/37	37/37
	2006 Warm season	170	180	1,500	21	0.8 [0.3]	37/37	37/37
	2006 Cold season	82	90	450	19	0.8 [0.5]	37/37	37/37
	2007 Warm season	250	290	980	37	0 27 [0 12]	24/24	24/24
	2007 Cold season	72	76	230	25	0.37 [0.13]	22/22	22/22
	2008 Warm season	200	170	960	52	0.8 [0.3]	22/22	22/22
	2008 Cold season	93	86	1,500	21		36/36	36/36
	2009 Warm season	200	190	1,400	43	0.75 [0.26]	34/34	34/34
Air	2009 Cold season	85	78	380	20	0.73 [0.26]	34/34	34/34
(pg/m^3)	2010 Warm season	160	150	970	36	7.3 [2.5]	35/35	35/35
	2010 Cold season	84	86	630	19	7.3 [2.3]	35/35	35/35
	2011 Warm season	150	160	660	32	18 [5.9]	35/35	35/35
	2011 Cold season	76	66	320	tr(17)		37/37	37/37
	2012 Warm season	130	130	840	27	26 [0 5]	35/35	35/35
	2012 Cold season	54	62	280	tr(16)	26 [8.5]	35/35	35/35
	2013 Warm season	140	130	1,100	24	20 [6.5]	35/35	35/35
	2013 Cold season	57	55	300	tr(19)	20 [0.3]	35/35	35/35
	2014 Warm season	140	150	1,300	28	4.1 [1.4]	36/36	36/36
	2015 Warm season	98	110	950	17	5.9 [2.0]	35/35	35/35
	2016 Warm season	130	140	1,300	16	7.8 [2.7]	37/37	37/37
	2017 Warm season	120	110	3,300	26	7.0 [2.3]	37/37	37/37
	2018 Warm season	110	100	750	20	2.4 [0.8]	37/37	37/37
	2019 Warm season	89	90	340	27	2.1 [0.8]	36/36	36/36
	2020 Warm season	82	82	360	21	1.8 [0.6]	37/37	37/37

Stocktaking of the detection of Total PCBs (total amount) in air during FY2002~2019

(Note 1) "*" :The sum value of the Quantification [Detection] limits of each congener. (Note 2) "**" :In 2002, there was a technical problem in the measuring method for lowly chlorinated congeners, and therefore the values are shown just as reference.

[2] Hexachlorobenzene

· History and state of monitoring

Hexachlorobenzene was used as pesticidal material and was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in August 1979. Also the substance is one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1996 and in FY1998, FY2000 and FY2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," the substance in surface water and sediment was monitored during the period of FY1986~1998 and FY1986~2001, respectively.

Under the framework of the Environmental Monitoring, the substance in surface water, sediment, wildlife (bivalves, fish and birds) and air has been monitored since FY2002.

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 46 sites, and it was detected at all 46 valid sites adopting the detection limit of 0.8 pg/L, and the detection range was $2.7 \sim 600 \text{ pg/L}$.

As results of the inter-annual trend analysis from FY2002 to FY2020, reduction tendencies in specimens from river areas and river mouth areas were identified as statistically significant, and the recent 6 years period was indicated lower concentration than the first 6 years period in specimens from sea areas in surface water as statistically significant. And a reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

	Monitored	Geometric				Quantification	Detection I	Frequency
HCB	year me	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	37	28	1,400	9.8	0.6 [0.2]	114/114	38/38
	2003	29	24	340	11	5 [2]	36/36	36/36
	2004	30	tr(29)	180	tr(11)	30 [8]	38/38	38/38
	2005	21	17	210	tr(6)	15 [5]	47/47	47/47
	2006	16	tr(12)	190	nd	16 [5]	46/48	46/48
	2007	17	14	190	tr(4)	8 [3]	48/48	48/48
	2008	16	13	480	4	3 [1]	48/48	48/48
	2009	15	17	180	2.4	0.5 [0.2]	49/49	49/49
Surface water	2010	tr(10)	tr(8)	120	nd	13 [4]	39/49	39/49
	2011	13	12	140	tr(3)	5 [2]	49/49	49/49
(pg/L)	2012	29	23	330	8.1	2.2 [0.7]	48/48	48/48
	2013	14	11	260	tr(4)	7 [2]	48/48	48/48
	2014	12	9.7	200	2.7	0.9 [0.4]	48/48	48/48
	2015	15	13	140	4.2	1.8 [0.6]	48/48	48/48
	2016	13	11	130	4.2	0.9 [0.3]	48/48	48/48
	2017	12	10	180	2.9	2.1 [0.8]	47/47	47/47
	2018	16	11	380	4.0	1.5 [0.6]	47/47	47/47
	2019	10	10	630	nd	8 [3]	46/48	46/48
	2020	7.9	6.1	600	2.7	2.0 [0.8]	46/46	46/46

1.1. . . 1 1 FI/2002 2020

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

The presence of the substance in sediment was monitored at 58 sites, and it was detected at all 58 valid sites adopting the detection limit of 0.5pg/g-dry, and the detection range was 3.9 ~ 9,800pg/g-dry.

As results of the inter-annual trend analysis from FY2002 to FY2020, a reduction tendency in specimens from river areas was identified as statistically significant and a reduction tendency in specimens from the overall areas in sediment water was also identified as statistically significant.

	Monitored	Geometric				Quantification	Detection I	Frequency
HCB	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	240	200	19,000	7.6	0.9 [0.3]	189/189	63/63
	2003	160	120	42,000	5	4 [2]	186/186	62/62
	2004	140	100	25,000	tr(6)	7 [3]	189/189	63/63
	2005	170	130	22,000	13	3 [1]	189/189	63/63
	2006	180	120	19,000	10	2.9 [1.0]	192/192	64/64
	2007	140	110	65,000	nd	5 [2]	191/192	64/64
	2008	160	97	29,000	4.4	2.0 [0.8]	192/192	64/64
	2009	150	120	34,000	nd	1.8 [0.7]	190/192	64/64
C - 1:	2010	130	96	21,000	4	3 [1]	64/64	64/64
Sediment	2011	150	110	35,000	11	7 [3]	64/64	64/64
(pg/g-dry)	2012	100	110	12,000	3	3 [1]	63/63	63/63
	2013	120	91	6,600	7.2	5.3 [1.8]	63/63	63/63
	2014	95	85	5,600	tr(4)	6 [2]	63/63	63/63
	2015	100	90	17,000	4	3 [1]	62/62	62/62
	2016	84	74	6,400	4	3 [1]	62/62	62/62
	2017	82	65	11,000	3	3 [1]	62/62	62/62
	2018	100	79	8,900	3.1	1.3 [0.5]	61/61	61/61
	2019	88	85	10,000	4.5	0.9 [0.4]	61/61	61/61
	2020	85	78	9,800	3.9	1.3 [0.5]	58/58	58/58

Stocktaking of the detection of Hexachlorobenzene in sediment during FY2002~2020

(Note) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $tr(2) \sim 30pg/g$ -wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $15 \sim 1,100pg/g$ -wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 1pg/g-wet, and the detected concentration was 2,900pg/g-wet.

Stocktaking of the detection of	f Hexachlorobenzene in wildlife ((bivalves, fish and birds) during FY2002~2020

	Monitored	Geometric				Quantification	Detection I	Frequency
HCB	year	mean*	Median	Maximum	Minimum	[Detection] Limit**	Sample	Site
	2002	21	22	330	2.4	0.18 [0.06]	38/38	8/8
	2003	44	27	660	tr(21)	23 [7.5]	30/30	6/6
	2004	32	31	80	14	14 [4.6]	31/31	7/7
	2005	51	28	450	19	11 [3.8]	31/31	7/7
	2006	46	28	340	11	3 [1]	31/31	7/7
	2007	37	22	400	11	7 [3]	31/31	7/7
	2008	38	24	240	13	7 [3]	31/31	7/7
	2009	34	32	200	12	4 [2]	31/31	7/7
D' 1	2010	34	48	210	tr(4)	5 [2]	6/6	6/6
Bivalves	2011	45	34	920	4	4 [1]	4/4	4/4
(pg/g-wet)	2012	39	38	340	10	8.4 [2.8]	5/5	5/5
	2013	32	39	250	nd	31 [10]	4/5	4/5
	2014	34	26	100	15	10 [3]	3/3	3/3
	2015	35	26	120	tr(14)	20 [6.5]	3/3	3/3
	2016	38	22	150	17	8.1 [2.7]	3/3	3/3
	2017	41	26	99	26	3.9 [1.3]	3/3	3/3
	2018	21	23	28	14	3.3 [1.1]	3/3	3/3
	2019	23	16	65	12	3 [1]	3/3	3/3
	2020	9	14	30	tr(2)	3 [1]	3/3	3/3

	Monitored	Geometric				Quantification	Detection Freque	
HCB	year	mean*	Median	Maximum	Minimum	[Detection] Limit**	Sample	Site
	2002	140	180	910	19	0.18 [0.06]	70/70	14/14
	2003	180	170	1,500	28	23 [7.5]	70/70	14/14
	2004	230	210	1,800	26	14 [4.6]	70/70	14/14
	2005	180	160	1,700	29	11 [3.8]	80/80	16/16
	2006	180	220	1,400	25	3 [1]	80/80	16/16
	2007	160	140	1,500	17	7 [3]	80/80	16/16
	2008	170	210	1,500	25	7 [3]	85/85	17/17
	2009	210	180	30,000	29	4 [2]	90/90	18/18
	2010	240	280	1,700	36	5 [2]	18/18	18/18
Fish (pg/g-wet)	2011	260	320	1,500	34	4 [1]	18/18	18/18
	2012	200	300	1,100	33	8.4 [2.8]	19/19	19/19
	2013	240	220	1,500	36	31 [10]	19/19	19/19
	2014	280	340	1,900	37	10 [3]	19/19	19/19
	2015	170	150	1,700	43	20 [6.5]	19/19	19/19
	2016	150	150	1,300	24	8.1 [2.7]	19/19	19/19
	2017	190	180	1,100	33	3.9 [1.3]	19/19	19/19
	2018	140	150	900	25	3.3 [1.1]	18/18	18/18
	2019	100	99	1,100	12	3 [1]	16/16	16/16
	2020	110	58	1,100	15	3 [1]	18/18	18/18
	2002	1,000	1,200	1,600	560	0.18 [0.06]	10/10	2/2
	2003	1,800	2,000	4,700	790	23 [7.5]	10/10	2/2
	2004	980	1,300	2,200	410	14 [4.6]	10/10	2/2
	2005	1,000	1,100	2,500	400	11 [3.8]	10/10	2/2
	2006	970	1,100	2,100	490	3 [1]	10/10	2/2
	2007	960	1,100	2,000	420	7 [3]	10/10	2/2
	2008	880	1,100	2,500	240	7 [3]	10/10	2/2
	2009	850	910	1,500	400	4 [2]	10/10	2/2
	2010	970		1,900	500	5 [2]	2/2	2/2
Birds**	2011			460	460	4 [1]	1/1	1/1
(pg/g-wet)	2012	840		1,500	470	8.4 [2.8]	2/2	2/2
	2013	3,900		5,200	2,900	31 [10]	2/2	2/2
	2014	420		5,600	32	10 [3]	2/2	2/2
	2015			760	760	20 [6.5]	1/1	1/1
	2016	1,700		5,300	550	8.1 [2.7]	2/2	2/2
	2017	1,100		4,900	230	3.9 [1.3]	2/2	2/2
	2018	2,800		3,100	2,600	3.3 [1.1]	2/2	2/2
	2019	2,000		3,200	3,200	3 [1]	1/1	1/1
	2019			2,900	2,900	3 [1]	1/1	1/1

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) " ** " indicates there is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

<Air>

The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.1 pg/m^3 , and the detection range was $63 \sim 370 \text{ pg/m}^3$.

Stocktaking of the detection	of Hexachlorobenzene	e in air during FY2002~2020

		Geometric				Quantification	Detection I	Frequency
HCB	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	99	93	3,000	57	0.9 [0.3]	102/102	34/34
	2003 Warm season	150	130	430	81	2.3 [0.78]	35/35	35/35
	2003 Cold season	94	90	320	64	2.3 [0.78]	34/34	34/34
	2004 Warm season	130	130	430	47	1.1 [0.37]	37/37	37/37
	2004 Cold season	98	89	390	51	1.1 [0.37]	37/37	37/37
	2005 Warm season	88	90	250	27	0.14 [0.034]	37/37	37/37
	2005 Cold season	77	68	180	44	0.14 [0.034]	37/37	37/37
	2006 Warm season	83	89	210	23	0.21 [0.07]	37/37	37/37
	2006 Cold season	65	74	170	8.2	0.21 [0.07]	37/37	37/37
	2007 Warm season	110	100	230	72	0.00 [0.02]	24/24	24/24
	2007 Cold season	77	72	120	55	0.09 [0.03]	22/22	22/22
	2008 Warm season	120	110	260	78	0.00 10.001	22/22	22/22
	2008 Cold season	87	83	160	58	0.22 [0.08]	36/36	36/36
2009 Wat	2009 Warm season	110	110	210	78	0 ([0 0]	34/34	34/34
Air	2009 Cold season	87	87	150	59		34/34	34/34
pg/m^3)	2010 Warm season	120	120	160	73		37/37	37/37
	2010 Cold season	100	96	380	56	1.8 [0.7]	37/37	37/37
	2011 Warm season	120	110	180	87	2 2 [0 75]	35/35	35/35
	2011 Cold season	96	96	160	75	2.3 [0.75]	37/37	37/37
	2012 Warm season	120	110	150	84	4.2.[1.4]	36/36	36/36
	2012 Cold season	97	95	150	68	4.3 [1.4]	36/36	36/36
	2013 Warm season	110	110	180	52	2.0.[1.2]	36/36	36/36
	2013 Cold season	97	97	180	73	3.8 [1.3]	36/36	36/36
	2014 Warm season	150	160	240	84	1.4 [0.5]	36/36	36/36
	2015 Warm season	120	130	170	74	0.5 [0.2]	35/35	35/35
	2016 Warm season	130	130	220	79	0.8 [0.3]	37/37	37/37
	2017 Warm season	130	120	550	73	0.5 [0.2]	37/37	37/37
	2018 Warm season	100	100	140	72	0.4 [0.2]	37/37	37/37
	2019 Warm season	96	99	130	67	0.14 [0.06]	36/36	36/36
	2020 Warm season	100	94	370	63	0.3 [0.1]	37/37	37/37

[3] Aldrin (references)

· History and state of monitoring

Aldrin had been used as a soil insecticide until FY1971 when the application of the substance was substantially stopped. Its registration under the Agricultural Chemicals Regulation Law was expired in FY1975. It was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Also the substance is the initial POPs under the Stockholm Convention since 2004.

In previous monitoring series until FY2001, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1989, FY1991 and FY1993 under the framework of "the Wildlife Monitoring."

Under the framework of the Environmental Monitoring, the substance had been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002 to FY2009, in wildlife (bivalves, fish and birds) and air in FY2014, in sediment in FY2018.

No monitoring was conducted in FY2019. For reference, the monitoring results up to FY2018 are given below.

• Monitoring results until FY2018

<Surface Water>

Stocktaking of the detection of Aldrin in surface water during FY2002~2009

	Monitored year	Geometric mean*		Maximum	Minimum	Quantification	Detection Frequency	
Aldrin			Median			[Detection] limit	Sample	Site
	2002	0.8	0.9	18	nd	0.6 [0.2]	93/114	37/38
	2003	0.9	0.9	3.8	nd	0.6 [0.2]	34/36	34/36
	2004	tr(1.5)	tr(1.8)	13	nd	2 [0.4]	33/38	33/38
Surface Water	2005	tr(0.6)	tr(0.7)	5.7	nd	0.9 [0.3]	32/47	32/47
(pg/L)	2006	nd	nd	4.4	nd	1.7 [0.6]	18/48	18/48
	2007	tr(0.6)	tr(0.6)	9.5	nd	1.0 [0.3]	34/48	34/48
	2008	tr(0.8)	tr(0.7)	21	nd	1.4 [0.6]	26/48	26/48
	2009	0.7	0.9	22	nd	0.7 [0.3]	32/49	32/49

(Note) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Stocktaking of the detection of Aldrin in sediment during FY2002~2018

	Monitored		Median			Quantification	Detection I	Frequency
Aldrin	year			Maximum	Minimum	[Detection] limit	Sample	Site
	2002	14	12	570	nd	6 [2]	149/189	56/63
	2003	19	18	1,000	nd	2 [0.6]	178/186	60/62
	2004	10	10	390	nd	2 [0.6]	170/189	62/63
Sediment	2005	8.4	7.1	500	nd	1.4 [0.5]	173/189	62/63
	2006	10	9.3	330	nd	1.9 [0.6]	184/192	64/64
(pg/g-dry)	2007	7.5	6.7	330	nd	1.8 [0.6]	172/192	60/64
	2008	6	6	370	nd	3 [1]	153/192	56/64
	2009	8.9	7.8	540	nd	0.5 [0.2]	180/192	64/64
	2018	3.7	3.8	270	nd	1.6 [0.6]	50/61	50/61

(Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted in FY2010 ~2017.

	Monitored	Geometric				Quantification	Detection I	Frequency
Aldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(1.6)	nd	34	nd	4.2 [1.4]	12/38	4/8
	2003	tr(1.7)	tr(0.85)	51	nd	2.5 [0.84]	15/30	3/6
	2004	tr(2.5)	tr(1.6)	46	nd	4.0 [1.3]	16/31	4/7
D' 1	2005	tr(1.8)	nd	84	nd	3.5 [1.2]	11/31	3/7
Bivalves	2006	tr(2)	nd	19	nd	4 [2]	11/31	3/7
(pg/g-wet)	2007	tr(2)	nd	26	nd	5 [2]	5/31	2/7
	2008	tr(2)	nd	20	nd	5 [2]	5/31	3/7
	2009	tr(1.6)	tr(0.8)	89	nd	2.1 [0.8]	16/31	6/7
	2014	nd	nd	nd	nd	1.8 [0.7]	0/3	0/3
	2002	nd	nd	tr(2.0)	nd	4.2 [1.4]	1/70	1/14
	2003	nd	nd	tr(1.9)	nd	2.5 [0.84]	16/70	7/14
	2004	nd	nd	tr(2.4)	nd	4.0 [1.3]	5/70	2/14
E' 1	2005	nd	nd	6.4	nd	3.5 [1.2]	11/80	5/16
Fish	2006	nd	nd	tr(2)	nd	4 [2]	2/80	2/16
(pg/g-wet)	2007	nd	nd	tr(2)	nd	5 [2]	2/80	2/16
	2008	nd	nd	tr(2)	nd	5 [2]	1/85	1/17
	2009	nd	nd	3.1	nd	2.1 [0.8]	22/90	7/18
	2014	nd	nd	2.4	nd	1.8 [0.7]	2/80 1/85	4/19
	2002	nd	nd	nd	nd	4.2 [1.4]	0/10	0/2
	2003	nd	nd	nd	nd	2.5 [0.84]	0/10	0/2
	2004	nd	nd	nd	nd	4.0 [1.3]	0/10	0/2
D. 1 **	2005	nd	nd	nd	nd	3.5 [1.2]	0/10	0/2
Birds**	2006	nd	nd	nd	nd	4 [2]	0/10	0/2
(pg/g-wet)	2007	nd	nd	nd	nd	5 [2]	0/10	0/2
	2008	nd	nd	nd	nd	5 [2]	0/10	0/2
	2009	nd	nd	nd	nd	2.1 [0.8]	0/10	0/2

<Wildlife>

Stocktaking of the detection of Aldrin in wildlife (bivalves, fish and birds) during FY2002~2014

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009. (Note 2) " ** " indicates there is no consistency between the results of the ornithological survey in FY2014 and those in

previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted during FY2010~2013.

<Air>

		Geometric				Quantification	Detection 1	Frequency
Aldrin	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(0.030)	nd	3.2	nd	0.060 [0.020]	41/102	19/34
	2003 Warm season	1.5	1.9	28	nd	0 022 [0 0077]	34/35	34/35
	2003 Cold season	0.55	0.44	6.9	0.030	0.023 [0.0077]	34/34	34/34
	2004 Warm season	tr(0.12)	nd	14	nd	0 15 [0 05]	15/37	15/37
	2004 Cold season	tr(0.08)	nd	13	nd	0.15 [0.05]	14/37	14/37
	2005 Warm season	0.33	0.56	10	nd	0.00 [0.02]	29/37	29/37
	2005 Cold season	tr(0.04)	nd	1.8	nd	0.08 [0.03]	9/37	9/37
Air	2006 Warm season	0.30	0.35	8.5	nd	0 14 [0 05]	31/37	31/37
(pg/m^3)	2006 Cold season	tr(0.05)	nd	1.1	nd	0.14 [0.05]	16/37	16/37
	2007 Warm season	0.58	0.48	19	nd	0.05 [0.02]	35/36	35/36
	2007 Cold season	0.14	0.15	2.1	nd	0.05 [0.02]	34/36	34/36
	2008 Warm season	0.27	0.30	9.4	tr(0.02)	0.04.00.021	25/25	25/25
	2008 Cold season	0.09	0.08	1.3	nd	0.04 [0.02]	22/25	22/25
	2009 Warm season	0.07	nd	10	nd	0.04.00.021	10/25	10/25
	2009 Cold season	tr(0.03)	nd	1.8	nd	0.04 [0.02]	8/24	8/24
	2014 Warm season	nd	nd	17	nd	12 [4]	6/34	6/34

(Note) No monitoring was conducted during FY2010~2013.

[4] Dieldrin (references)

· History and state of monitoring

Dieldrin was used as a pesticide and its application culminated during the period of 1955~1964. The substance had been used as termitecides as a Soil-Residue-Prone Pesticide under the Agricultural Chemicals Regulation Law in 1971, but its registration under the Agricultural Chemicals Regulation Law was expired in FY1975. It had been used for termite control and was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Also the substance is one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series until FY2001, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1996, FY1998, FY2000 and FY2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," the substance in surface water and sediment was monitored during the period of FY1986~1998 and FY1986~2001, respectively.

Under the framework of the Environmental Monitoring, the substance had been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002 to FY2009 and in FY2011 and in surface water, wildlife (bivalves, fish and birds) and air in FY2014, in sediment in FY2018.

No monitoring was conducted after FY2019. For reference, the monitoring results up to FY2018 are given below.

• Monitoring results until FY2018

<Surface Water>

Stocktaking of the detection of Dieldrin in surface water during FY2002~2014

	Monitored	Geometric				Quantification	Detection I	Frequency
Dieldrin	year	mean*	Median		Minimum	[Detection] limit	Sample	Site
	2002	42	41	940	3.3	1.8 [0.6]	114/114	38/38
	2003	57	57	510	9.7	0.7 [0.3]	36/36	36/36
	2004	55	51	430	9	2 [0.5]	38/38	38/38
	2005	39	49	630	4.5	1.0 [0.34]	47/47	47/47
Surface Water	2006	36	32	800	6	3 [1]	48/48	48/48
(pg/L)	2007	38	36	750	3.1	2.1 [0.7]	48/48	48/48
	2008	36	37	450	3.6	1.5 [0.6]	48/48	48/48
	2009	36	32	650	2.7	0.6 [0.2]	49/49	49/49
	2011	33	38	300	2.1	1.6 [0.6]	49/49	49/49
	2014	28	27	200	2.7	0.5 [0.2]	48/48	48/48

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted in FY2010, FY2012 and FY2013.

<Sediment>

Stocktaking of the detection of Dieldrin in sediment during FY2002~2018

	Monitored	Geometric				Quantification	Detection I	Frequency
Dieldrin	year	mean*	Median Maximum		Minimum	[Detection] limit	Sample	Site
	2002	70	51	2,300	4	3 [1]	189/189	63/63
	2003	66	56	9,100	nd	4 [2]	184/186	62/62
	2004	65	62	3,700	tr(1.9)	3 [0.9]	189/189	63/63
	2005	61	55	4,200	tr(2)	3 [1]	189/189	63/63
Sediment	2006	61	54	1,500	tr(1.7)	2.9 [1.0]	192/192	64/64
(pg/g-dry)	2007	49	40	2,700	tr(1.2)	2.7 [0.9]	192/192	64/64
	2008	48	43	2,900	tr(0.7)	1.2 [0.5]	192/192	64/64
	2009	51	47	3,000	1.1	0.8 [0.3]	192/192	64/64
	2011	47	44	2,200	2	5 [2]	64/64	64/64
	2018	33	33	860	nd	1.6 [0.6]	60/61	60/61

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009. (Note 2) No monitoring was conducted in FY2010.

<Wildlife>

Stocktaking of the detection of	Dieldrin in wildlife	(bivalves, fish and bir	ds) during FY2002~2014

	Monitored	Geometric	·			Quantification	Detection 1	Frequency
Dieldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	440	390	190,000	tr(7)	12 [4]	38/38	8/8
	2003	440	160	78,000	46	4.8 [1.6]	30/30	6/6
	2004	630	270	69,000	42	31 [10]	31/31	7/7
	2005	500	140	39,000	34	9.4 [3.4]	31/31	7/7
Bivalves	2006	450	120	47,000	30	7 [3]	31/31	7/7
(pg/g-wet)	2007	380	110	77,000	37	9 [3]	31/31	7/7
	2008	430	150	24,000	47	9 [3]	31/31	7/7
	2009	490	230	28,000	48	7 [2]	31/31	7/7
	2011	390	690	3,800	16	3 [1]	4/4	4/4
	2014	180	300	490	41	3 [1]	3/3	3/3
	2002	290	270	2,400	46	12 [4]	70/70	14/14
	2003	220	200	1,000	29	4.8 [1.6]	70/70	14/14
	2004	250	230	2,800	tr(23)	31 [10]	70/70	14/14
Fish	2005	230	250	1,400		80/80	16/16	
	2006	230	220	1,400	19	7 [3]	80/80	16/16
(pg/g-wet)	2007	250	210	1,900	23	9 [3]	80/80	16/16
	2008	240	240	1,300	15	15 9 [3] 85	85/85	17/17
	2009	240	190	1,400	29	7 [2]	90/90	18/18
	2011	270	340	1,100	17	3 [1]	18/18	18/18
	2014	270	310	1,000	27	3 [1]	19/19	19/19
	2002	1,100	1,100	1,700	820	12 [4]	10/10	2/2
	2003	1,300	1,400	2,200	790	4.8 [1.6]	10/10	2/2
	2004	600	610	960	370	31 [10]	10/10	2/2
	2005	830	740	1,800	500	9.4 [3.4]	10/10	2/2
Birds**	2006	700	690	1,300	440	7 [3]	10/10	2/2
(pg/g-wet)	2007	710	710	910	560	9 [3]	10/10	2/2
	2008	680	620	1,300	260	9 [3]	10/10	2/2
	2009	470	420	890	330	7 [2]	10/10	2/2
	2011			770	770	3 [1]	1/1	1/1
	2014	320		530	190	3 [1]	2/2	2/2

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) " ** " indicates there is no consistency between the results of the ornithological survey in FY2014 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2010, FY2012 and FY2013.

<Air>

Sto	ktaking of t	he detection of	Dieldrin in a	air during F	Y2002~2014
-----	--------------	-----------------	---------------	--------------	------------

		Geometric				Quantification	Detection I	Frequency
Dieldrin	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.6	5.4	110	0.73	0.60 [0.20]	102/102	34/34
	2003 Warm season	19	22	260	2.1	2.1 [0.70]	35/35	35/35
	2003 Cold season	5.7	5.2	110	tr(0.82)	2.1 [0.70]	34/34	34/34
	2004 Warm season	17	22	280	1.1	0.33 [0.11]	37/37	37/37
	2004 Cold season	5.5	6.9	76	0.81	0.33 [0.11]	37/37	37/37
	2005 Warm season	14	12	200	1.5	0.54 [0.24]	37/37	37/37
	2005 Cold season	3.9	3.6	50	0.88	0.34 [0.24]	37/37	37/37
	2006 Warm season	15	14	290	1.5	0.2 [0.1]	37/37	37/37
Air	2006 Cold season	4.5	4.2	250	0.7	0.3 [0.1]	37/37	37/37
(pg/m^3)	2007 Warm season	19	22	310	1.3	0 19 [0 07]	36/36	36/36
	2007 Cold season	4.5	3.7	75	0.96	0.18 [0.07]	36/36	36/36
	2008 Warm season	14	16	220	1.6	0.24 [0.00]	37/37	37/37
	2008 Cold season	4.9	3.8	72	0.68	0.24 [0.09]	37/37	37/37
	2009 Warm season	13	13	150	0.91	0.06 [0.02]	37/37	37/37
	2009 Cold season	4.5	4.0	80	0.52	0.00 [0.02]	37/37	37/37
	2011 Warm season	12	15	230	0.80	0.42 [0.14]	35/35	35/35
	2011 Cold season	4.3	4.9	96	0.52	0.42 [0.14]	37/37	37/37
	2014 Warm season	11	9.9	160	0.89	0.34 [0.11]	36/36	36/36

(Note) No monitoring was conducted in FY2010, FY2012 and FY2013.

[5] Endrin (references)

· History and state of monitoring

Endrin was used as an insecticide and a rodenticide, but its registration under the Agricultural Chemicals Regulation Law was expired in FY1975. It was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Also the substance is one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series until FY2001, the substance was monitored in wildlife (bivalves, fish and birds) during the periods of FY1978~1989 and FY1991~1993 under the framework of "the Wildlife Monitoring".

Under the framework of the Environmental Monitoring, the substance has been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002 to FY2009, and in surface water, wildlife (bivalves, fish and birds) and air in FY2014, in sediment in FY2018.

No monitoring was conducted after FY2019. For reference, the monitoring results up to FY2018 are given below.

Monitoring results until FY2018

<Surface Water>

Stocktaking of the detection of Endrin in surface water during FY2002~2014

	Monitored	Geometric				Quantification	Detection I	Frequency
Endrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(4.8)	tr(5.5)	31	nd	6.0 [2.0]	101/114	36/38
	2003	5.7	6.0	78	0.7	0.7 [0.3]	36/36	36/36
	2004	7		100	tr(0.7)	2 [0.5]	38/38	38/38
	2005	4.0	4.5	120	nd	1.1 [0.4]	45/47	45/47
Surface Water	2006	3.1	3.5	26	nd	1.3 [0.4]	44/48	44/48
(pg/L)	2007	3.5	3.4	25	nd	1.9 [0.6]	46/48	46/48
	2008	3	4	20	nd	3 [1]	45/48	45/48
	2009	2.0	2.3	67	nd	0.7 [0.3]	39/49	39/49
	2011	3.8	4.6	71	nd	1.6 [0.6]	47/49	47/49
	2014	2.5	2.2	25	tr(0.4)	0.5 [0.2]	48/48	48/48

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted in FY2010, FY2012 and FY2013.

<Sediment>

Stocktaking of the detection of Endrin in sediment during FY2002~2018

	Monitored	Geometric				Quantification	Detection 1	Frequency
Endrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	10	10	19,000	nd	6 [2]	141/189	54/63
	2003	12	11	29,000	nd	5 [2]	150/186	53/62
	2004	15	13	6,900	nd	3 [0.9]	182/189	63/63
Sediment	2005	12	11	19,000	nd	2.6 [0.9]	170/189	61/63
	2006	12	10	61,000	nd	4 [1]	178/192	63/64
(pg/g-dry)	2007	11	9	61,000	nd	5 [2]	151/192	55/64
	2008	11	11	38,000	nd	1.9 [0.7]	168/192	61/64
	2009	9.6	8.4	11,000	nd	1.6 [0.6]	168/192	63/64
	2011	8.8	14	1,100	nd	1.1 [0.4]	59/64	59/64
	2018	6.4	5.9	7,500	nd	2.4 [0.9]	48/61	48/61

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted in FY2010, FY2012~2017.

	Monitored	Geometric				Quantification	Detection 1	Frequency
Endrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	42	27	12,000	nd	18 [6]	35/38	7/8
	2003	38	21	5,000	6.3	4.8 [1.6]	30/30	6/6
	2004	65	25	4,600	tr(5.7)	12 [4.2]	31/31	7/7
	2005	39	19	2,100	nd	17 [5.5]	27/31	7/7
Bivalves	2006	40	15	3,100	tr(5)	11 [4]	31/31	7/7
(pg/g-wet)	2007	28	12	3,000	tr(6)	9 [3]	31/31	7/7
	2008	30	10	1,500	tr(6)	8 [3]	31/31	7/7
	2009	38	19	1,400	tr(5)	7 [3]	31/31	7/7
	2011	33	62	110	tr(3)	4 [2]	4/4	4/4
	2014	23	17	84	8	3 [1]	3/3	3/3
	2002	20	24	180	nd	18 [6]	54/70	13/14
	2003	14	10	180	nd	4.8 [1.6]	67/70	14/14
	2004	18	24	220	nd	12 [4.2]	57/70	13/14
	2005	19	tr(16)	2,100	nd	17 [5.5]	58/80	12/16
Fish	2006	13	tr(10)	150	nd	11 [4]	66/80	16/16
(pg/g-wet)	2007	13	12	170	nd	9 [3]	69/80	15/16
	2008	11	10	200	nd	8 [3]	63/85	14/17
	2009	17	12	270	nd	7 [3]	86/90	18/18
	2011	18	19	160	nd	4 [2]	16/18	16/18
	2014	16	16	140	nd	3 [1]	18/19	18/19
	2002	28	52	99	nd	18 [6]	7/10	2/2
	2003	22	30	96	5.4	4.8 [1.6]	10/10	2/2
	2004	tr(11)	25	62	nd	12 [4.2]	5/10	1/2
	2005	18	28	64	nd	17 [5.5]	7/10	2/2
Birds**	2006	16	23	57	tr(4)	11 [4]	10/10	2/2
(pg/g-wet)	2007	17	28	55	nd	9 [3]	9/10	2/2
	2008	10	26	83	nd	8 [3]	5/10	1/2
	2009	11	17	43	tr(3)	7 [3]	10/10	2/2
	2011			tr(3)	tr(3)	4 [2]	1/1	1/1
	2014	4		5	4	3 [1]	2/2	2/2

<Wildlife>

Stocktaking of the detection of Endrin in wildlife (bivalves, fish and birds) during FY2002~2014

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) " ** " indicates there is no consistency between the results of the ornithological survey in FY2014 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2010, FY2012 and FY2013.

<Air>

Stocktaking of the detection of Endrin in air during FY2002~2014

		Geometric				Quantification	Detection 1	Frequency
Endrin	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.22	0.28	2.5	nd	0.090 [0.030]	90/102	32/34
	2003 Warm season	0.74	0.95	6.2	0.081	0.042 [0.014]	35/35	35/35
	2003 Cold season	0.23	0.20	2.1	0.042	0.042 [0.014]	34/34	34/34
	2004 Warm season	0.64	0.68	6.5	tr(0.054)	0.14 [0.049]	37/37	37/37
	2004 Cold season	0.23	0.26	1.9	nd	0.14 [0.048]	36/37	36/37
	2005 Warm season	tr(0.4)	tr(0.3)	2.9	nd	0.5 [0.2]	27/37	27/37
	2005 Cold season	nd	nd	0.7	nd	0.5 [0.2]	8/37	8/37
	2006 Warm season	0.31	0.32	5.4	nd	0.30 [0.10]	32/37	32/37
Air	2006 Cold season	nd	nd	5.0	nd	0.30 [0.10]	7/37	7/37
(pg/m^3)	2007 Warm season	0.69	0.73	6.3	tr(0.06)	0.09 [0.04]	36/36	36/36
	2007 Cold season	0.16	0.13	1.5	nd	0.09 [0.04]	33/36	33/36
	2008 Warm season	0.53	0.68	4.6	tr(0.06)	0 10 [0 04]	37/37	37/37
	2008 Cold season	0.18	0.18	1.8	nd	0.10 [0.04]	35/37	35/37
	2009 Warm season	0.49	0.51	3.4	nd	0.00 [0.04]	36/37	36/37
	2009 Cold season	0.17	0.15	1.8	nd	0.09 [0.04]	36/37	36/37
	2011 Warm season	0.46	0.62	5.1	nd	0.00 [0.04]	34/35	34/35
	2011 Cold season	0.16	0.16	1.8	nd	0.09 [0.04]	33/37	33/37
	2014 Warm season	0.39	0.48	2.9	nd	0.20 [0.07]	32/36	32/36

(Note) No monitoring was conducted in FY2010, FY2012 and FY2013.

[6] DDTs (references)

· History and state of monitoring

DDT, along with hexachlorocyclohexanes (HCHs) and drins, was used as insecticides in high volume. Its registration under the Agricultural Chemicals Regulation Law was expired in FY1971. *p*,*p*'-DDT was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Also the substances are one of the original twelve POPs covered by the Stockholm Convention.

Among several DDT isomers with chlorine at various positions on the aromatic ring, not only p,p'-DDT and o,p'-DDT as active substances but also p,p'-DDE, o,p'-DDE, p,p'-DDD and o,p'-DDD as the environmentally degraded products of DDTs have been the target chemicals in monitoring series since FY1978.

In previous monitoring series, *p,p'*-DDT, *p,p'*-DDE and *p,p'*-DDD had been monitored in wildlife (bivalves, fish and birds) during the period of FY1978~2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," surface water and sediment had been the monitored media during the period of FY1986~1998 and FY1986~2001, respectively. Similarly, *o,p'*-DDT, *o,p'*-DDE and *o,p'*-DDD had been monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1998, FY2000 and FY2001 under the framework of "the Wildlife Monitoring."

Under the framework of the Environmental Monitoring, p,p'-DDT, p,p'-DDE, p,p'-DDD, o,p'-DDT, o,p'-DDE and o,p'-DDD have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002 to FY2010, wildlife (bivalves, fish and birds) and air in FY2013, surface water and sediment in FY2014 and air in FY2015, wildlife (bivalves, fish and birds) and air in FY2018.

No monitoring was conducted after FY2019. For reference, the monitoring results up to FY2018 are given below.

Monitoring results until FY2018

p,*p*'-DDT, *p*,*p*'-DDE and *p*,*p*'-DDD

<Surface Water>

Stocktaking of the detection of	p_{i}	v'-DDT.	p.	p'-DDE and	p	p'-DDD	in	surface water	during	FY2002~20	14

	Monitored	Geometric				Quantification	Detection	Frequency
<i>p,p'</i> -DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	13	11	440	0.25	0.6 [0.2]	114/114	38/38
	2003	14	12	740	tr(2.8)	3 [0.9]	36/36	36/36
	2004	15	14	310	nd	6 [2]	36/38	36/38
	2005	8	9	110	1	4 [1]	47/47	47/47
Surface Water	2006	9.1	9.2	170	tr(1.6)	1.9 [0.6]	48/48	48/48
(pg/L)	2007	7.3	9.1	670	nd	1.7 [0.6]	46/48	46/48
	2008	11	11	1,200	nd	1.2 [0.5]	47/48	47/48
	2009	9.2	8.4	440	0.81	0.15 [0.06]	49/49	49/49
	2010	8.5	7.6	7,500	tr(1.0)	2.4 [0.8]	49/49	49/49
	2014	4.4	3.9	380	nd	0.4 [0.1]	47/48	47/48
	Monitored	Geometric				Quantification	Detection	Frequency
<i>p,p'</i> -DDE	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	25	26	760	1.3	0.6 [0.2]	114/114	38/38
	2003	26	22	380	5	4 [2]	36/36	36/36
	2004	36	34	680	tr(6)	8 [3]	38/38	38/38
	2005	26	24	410	4	6 [2]	47/47	47/47
Surface Water	2006	24	24	170	tr(4)	7 [2]	48/48	48/48
(pg/L)	2007	22	23	440	tr(2)	4 [2]	48/48	48/48
	2008	27	28	350	2.5	1.1 [0.4]	48/48	48/48
	2009	23	23	240	3.4	1.1 [0.4]	49/49	49/49
	2010	14	12	1,600	2.4	2.3 [0.8]	49/49	49/49
	2014	16	17	610	1.9	0.5 [0.2]	48/48	48/48

	Monitored	Geometric				Quantification	Detection I	Frequency
<i>p,p'</i> -DDD	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	16	18	190	0.57	0.24 [0.08]	114/114	38/38
	2003	19	18	410	4	2 [0.5]	36/36	36/36
	2004	19	18	740	tr(2.4)	3 [0.8]	38/38	38/38
	2005	17	16	130	tr(1.8)	1.9 [0.64]	47/47	47/47
Surface Water	2006	16	17	99	2.0	1.6 [0.5]	48/48	48/48
(pg/L)	2007	15	12	150	tr(1.5)	1.7 [0.6]	48/48	48/48
	2008	22	20	850	2.0	0.6 [0.2]	48/48	48/48
	2009	14	13	140	1.4	0.4 [0.2]	49/49	49/49
	2010	12	10	970	1.6	0.20 [0.08]	49/49	49/49
	2014	9.0	8.7	87	1.0	1.0 [0.4]	48/48	48/48

(Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted during FY2011~2013.

<Sediment>

Stocktaking of the detection of *p*,*p*'-DDT, *p*,*p*'-DDE and *p*,*p*'-DDD in sediment during FY2002~2014

	Monitored	Geometric		1 1		Quantification	Detection	Frequency
<i>p,p'</i> -DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	380	240	97,000	tr(5)	6 [2]	189/189	63/63
	2003	290	220	55,000	3	2 [0.4]	186/186	62/62
	2004	460	230	98,000	7	2 [0.5]	189/189	63/63
	2005	360	230	1,700,000	5.1	1.0 [0.34]	189/189	63/63
Sediment	2006	310	240	130,000	4.5	1.4 [0.5]	192/192	64/64
(pg/g-dry)	2007	210	150	130,000	3	1.3 [0.5]	192/192	64/64
	2008	270	180	1,400,000	4.8	1.2 [0.5]	192/192	64/64
	2009	250	170	2,100,000	1.9	1.0 [0.4]	192/192	64/64
	2010	230	200	220,000	9.3	2.8 [0.9]	64/64	64/64
	2014	140	140	12,000	tr(0.2)	0.4 [0.2]	63/63	63/63
	Monitored	Geometric				Quantification	Detection	Frequency
<i>p,p'</i> -DDE	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	•					limit		
	2002	780	630	23,000	8.4	2.7 [0.9]	189/189	63/63
	2003	790	780	80,000	9.5	0.9 [0.3]	186/186	62/62
	2004	720	700	39,000	8	3 [0.8]	189/189	63/63
	2005	710	730	64,000	8.4	2.7 [0.94]	189/189	63/63
Sediment	2006	710	820	49,000	5.8	1.0 [0.3]	192/192	64/64
(pg/g-dry)	2007	670	900	61,000	3.2	1.1 [0.4]	192/192	64/64
	2008	920	940	96,000	9.0	1.7 [0.7]	192/192	64/64
	2009	700	660	50,000	6.7	0.8 [0.3]	192/192	64/64
	2010	680	790	40,000	11	5 [2]	64/64	64/64
	2014	530	610	64,000	11	1.8 [0.6]	63/63	63/63
	Monitored	Geometric				Quantification	Detection	Frequency
<i>p,p′</i> -DDD	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	•					limit		
	2002	640	690	51,000	tr(2.2)	2.4 [0.8]	189/189	63/63
	2003	670	580	32,000	3.7	0.9 [0.3]	186/186	62/62
	2004	650	550	75,000	4	2 [0.7]	189/189	63/63
	2005	600	570	210,000	5.2	1.7 [0.64]	189/189	63/63
Sediment	2006	560	540	53,000	2.2	0.7 [0.2]	192/192	64/64
(pg/g-dry)	2007	520	550	80,000	3.5	1.0 [0.4]	192/192	64/64
	2008	740	660	300,000	2.8	1.0 [0.4]	192/192	64/64
	2009	540	560	300,000	3.9	0.4 [0.2]	192/192	64/64
	2010	510	510	78,000	4.4	1.4 [0.5]	64/64	64/64
	2014	330	410	21,000	4.9	4.2 [1.4]	63/63	63/63

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted during FY2011~2013.

<Wildlife>

Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in wildlife (bivalves, fish and birds) during FY2002~2018

100-	Monitored	Geometric			N <i>C</i> ¹ · ·	Quantification	Detection l	Frequenc
<i>p,p'</i> -DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	200	200	1,200	38	4.2 [1.4]	38/38	8/8
	2003	290	290	1,800	49	11 [3.5]	30/30	6/6
	2004	360	340	2,600	48	3.2 [1.1]	31/31	7/7
	2005	240	170	1,300	66	5.1 [1.7]	31/31	7/7
Bivalves	2006	250	220	1,100	56	6 [2]	31/31	7/7
	2007	240	150	1,200	49	5 [2]	31/31	7/7
(pg/g-wet)	2008	160	100	1,400	12	5 [2]	31/31	7/7
	2009	240	170	9,600	46	3 [1]	31/31	7/7
	2010	180	280	470	43	3 [1]	6/6	6/6
	2013	190	210	890	46	3.3 [1.1]	5/5	5/5
	2018	70	39	280	32	3 [1]	3/3	3/3
	2002	430	450	24,000	6.8	4.2 [1.4]	70/70	14/14
	2003	220	400	1,900	tr(3.7)	11 [3.5]	70/70	14/14
	2004	410	330	53,000	5.5	3.2 [1.1]	70/70	14/14
	2005	280	330	8,400	tr(3.8)	5.1 [1.7]	80/80	16/16
	2005	300	340	3,000	tr(5)	6 [2]	80/80	16/16
Fish	2000	260	320	1,800	9	5 [2]	80/80	16/16
(pg/g-wet)	2007	280	310	2,900	7	5 [2]	85/85	17/17
	2008	230 250	300	2,900	4	3 [1]	90/90	18/18
	2009	230 240	280		4 7		18/18	18/18
				2,100		3 [1]		
	2013	280	250	3,300	5.2	3.3 [1.1]	19/19	19/19
	2018	150	150	4,800	tr (2)	3[1]	18/18	18/18
Birds** (pg/g-wet)	2002	440	510	1,300	76	4.2 [1.4]	10/10	2/2
	2003	610	620	1,400	180	11 [3.5]	10/10	2/2
	2004	340	320	700	160	3.2 [1.1]	10/10	2/2
	2005	430	550	900	180	5.1 [1.7]	10/10	2/2
	2006	580	490	1,800	110	6 [2]	10/10	2/2
	2007	480	350	1,900	160	5 [2]	10/10	2/2
(196) 6 (100)	2008	160	170	270	56	5 [2]	10/10	2/2
	2009	300	190	2,900	85	3 [1]	10/10	2/2
	2010	3			nd	3 [1]	1/2	1/2
	2013	14		46	4.3	3.3 [1.1]	2/2	2/2
	2018	43		63	29	3[1]	2/2	2/2
	Monitored	Geometric				Quantification	Detection l	Frequen
<i>p,p'</i> -DDE	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	1,000	1,700	6,000	140	2.4 [0.8]	38/38	8/8
	2003	1,200	1,000	6,500	190	5.7 [1.9]	30/30	6/6
	2003 2004			6,500 8,400			30/30 31/31	6/6 7/7
		1,200	1,000		190	5.7 [1.9] 8.2 [2.7]		
D: 1	2004 2005	1,200 1,300 1,200	1,000 1,400 1,600	8,400 6,600	190 220 230	5.7 [1.9] 8.2 [2.7] 8.5 [2.8]	31/31 31/31	7/7 7/7
Bivalves	2004 2005 2006	1,200 1,300 1,200 1,000	1,000 1,400 1,600 1,200	8,400 6,600 6,000	190 220 230 160	5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7]	31/31 31/31 31/31	7/7 7/7 7/7
Bivalves (pg/g-wet)	2004 2005 2006 2007	1,200 1,300 1,200 1,000 1,100	1,000 1,400 1,600 1,200 1,200	8,400 6,600 6,000 5,600	190 220 230 160 180	5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1]	31/31 31/31 31/31 31/31	7/7 7/7 7/7 7/7
	2004 2005 2006 2007 2008	1,200 1,300 1,200 1,000 1,100 900	1,000 1,400 1,600 1,200 1,200 1,100	8,400 6,600 6,000 5,600 5,800	190 220 230 160 180 120	5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1]	31/31 31/31 31/31 31/31 31/31	7/7 7/7 7/7 7/7 7/7
	2004 2005 2006 2007 2008 2009	1,200 1,300 1,200 1,000 1,100 900 940	$\begin{array}{c} 1,000\\ 1,400\\ 1,600\\ 1,200\\ 1,200\\ 1,100\\ 1,100\\ 1,100\end{array}$	8,400 6,600 6,000 5,600 5,800 6,400	190 220 230 160 180 120 150	5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1]	31/31 31/31 31/31 31/31 31/31 31/31	7/7 7/7 7/7 7/7 7/7 7/7
	2004 2005 2006 2007 2008 2009 2010	1,200 1,300 1,200 1,000 1,100 900 940 1,100	$\begin{array}{c} 1,000\\ 1,400\\ 1,600\\ 1,200\\ 1,200\\ 1,100\\ 1,100\\ 1,300 \end{array}$	8,400 6,600 6,000 5,600 5,800 6,400 6,300	190 220 230 160 180 120 150 230	5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1]	31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6	7/7 7/7 7/7 7/7 7/7 7/7 6/6
	2004 2005 2006 2007 2008 2009 2010 2013	$\begin{array}{c} 1,200\\ 1,300\\ 1,200\\ 1,000\\ 1,100\\ 900\\ 940\\ 1,100\\ 790 \end{array}$	1,000 1,400 1,600 1,200 1,200 1,100 1,100 1,300 1,600	8,400 6,600 5,600 5,800 6,400 6,300 3,000	190 220 230 160 180 120 150 230 170	5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1] 4.3 [1.4]	31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5	7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5
	2004 2005 2006 2007 2008 2009 2010 2013 2018	$\begin{array}{c} 1,200\\ 1,300\\ 1,200\\ 1,000\\ 1,100\\ 900\\ 940\\ 1,100\\ 790\\ 420 \end{array}$	$\begin{array}{c} 1,000\\ 1,400\\ 1,600\\ 1,200\\ 1,200\\ 1,100\\ 1,100\\ 1,300\\ 1,600\\ 230\end{array}$	8,400 6,600 5,600 5,800 6,400 6,300 3,000 2,200	190 220 230 160 180 120 150 230 170 150	5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1] 4 [1] 3 [1] 4.3 [1.4] 3 [1]	31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3	7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 3/3
	2004 2005 2006 2007 2008 2009 2010 2013 2018 2002	1,200 1,300 1,200 1,000 1,100 900 940 1,100 790 420 2,900	$\begin{array}{r} 1,000\\ 1,400\\ 1,600\\ 1,200\\ 1,200\\ 1,100\\ 1,100\\ 1,300\\ 1,600\\ \underline{230}\\ 2,200\\ \end{array}$	8,400 6,600 5,600 5,800 6,400 6,300 3,000 2,200 98,000	190 220 230 160 180 120 150 230 170 150 510	5.7 [1.9] $8.2 [2.7]$ $8.5 [2.8]$ $1.9 [0.7]$ $3 [1]$ $4 [1]$ $3 [1]$ $4 .3 [1.4]$ $3 [1]$ $2.4 [0.8]$	31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 <u>3/3</u> 70/70	7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 3/3 14/14
	2004 2005 2006 2007 2008 2009 2010 2013 2018 2002 2003	$\begin{array}{c} 1,200\\ 1,300\\ 1,200\\ 1,000\\ 1,100\\ 900\\ 940\\ 1,100\\ 790\\ \underline{420}\\ 2,900\\ 2,000\end{array}$	$\begin{array}{c} 1,000\\ 1,400\\ 1,600\\ 1,200\\ 1,200\\ 1,100\\ 1,100\\ 1,300\\ 1,600\\ \underline{230}\\ 2,200\\ 2,200\\ 2,200\end{array}$	8,400 6,600 5,600 5,800 6,400 6,300 3,000 2,200 98,000 12,000	190 220 230 160 180 120 150 230 170 150 510 180	5.7 [1.9] $8.2 [2.7]$ $8.5 [2.8]$ $1.9 [0.7]$ $3 [1]$ $4 [1]$ $3 [1]$ $4 [1]$ $3 [1]$ $4.3 [1.4]$ $3 [1]$ $2.4 [0.8]$ $5.7 [1.9]$	31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 70/70	7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 <u>3/3</u> 14/14 14/14
	2004 2005 2006 2007 2008 2009 2010 2013 2018 2002 2003 2004	$\begin{array}{c} 1,200\\ 1,300\\ 1,200\\ 1,000\\ 1,100\\ 900\\ 940\\ 1,100\\ 790\\ \underline{420}\\ 2,900\\ 2,000\\ 3,000\\ \end{array}$	$\begin{array}{c} 1,000\\ 1,400\\ 1,600\\ 1,200\\ 1,200\\ 1,100\\ 1,100\\ 1,300\\ 1,600\\ \underline{230}\\ 2,200\\ 2,200\\ 2,200\\ 2,100 \end{array}$	8,400 6,600 5,600 5,800 6,400 6,300 3,000 2,200 98,000 12,000 52,000	190 220 230 160 180 120 150 230 170 150 510 180 390	5.7 [1.9] $8.2 [2.7]$ $8.5 [2.8]$ $1.9 [0.7]$ $3 [1]$ $4 [1]$ $3 [1]$ $4 [1]$ $3 [1]$ $4.3 [1.4]$ $3 [1]$ $2.4 [0.8]$ $5.7 [1.9]$ $8.2 [2.7]$	31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 70/70 70/70	7/7 7/7 7/7 7/7 7/7 6/6 5/5 <u>3/3</u> 14/14 14/14
	2004 2005 2006 2007 2008 2009 2010 2013 2018 2002 2003 2004 2005	$\begin{array}{c} 1,200\\ 1,300\\ 1,200\\ 1,000\\ 1,100\\ 900\\ 940\\ 1,100\\ 790\\ \underline{420}\\ 2,900\\ 2,000\\ 3,000\\ 2,400\\ \end{array}$	$\begin{array}{c} 1,000\\ 1,400\\ 1,600\\ 1,200\\ 1,200\\ 1,100\\ 1,100\\ 1,100\\ 1,300\\ 1,600\\ \underline{230}\\ 2,200\\ 2,200\\ 2,200\\ 2,200\\ 2,100\\ 2,400 \end{array}$	8,400 6,600 5,600 5,800 6,400 6,300 3,000 2,200 98,000 12,000 52,000 73,000	190 220 230 160 180 120 150 230 170 150 510 180 390 230	5.7 [1.9] $8.2 [2.7]$ $8.5 [2.8]$ $1.9 [0.7]$ $3 [1]$ $4 [1]$ $3 [1]$ $4 [1]$ $3 [1]$ $4.3 [1.4]$ $3 [1]$ $2.4 [0.8]$ $5.7 [1.9]$ $8.2 [2.7]$ $8.5 [2.8]$	31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 70/70 70/70 70/70 80/80	7/7 7/7 7/7 7/7 7/7 6/6 5/5 <u>3/3</u> 14/14 14/14 14/14
(pg/g-wet)	2004 2005 2006 2007 2008 2009 2010 2013 2018 2002 2003 2004 2005 2006	$\begin{array}{c} 1,200\\ 1,300\\ 1,200\\ 1,000\\ 1,100\\ 900\\ 940\\ 1,100\\ 790\\ \underline{420}\\ 2,900\\ 2,000\\ 3,000\\ 2,400\\ 2,200\\ \end{array}$	$\begin{array}{c} 1,000\\ 1,400\\ 1,600\\ 1,200\\ 1,200\\ 1,100\\ 1,100\\ 1,100\\ 1,300\\ 1,600\\ \underline{230}\\ 2,200\\ 2,200\\ 2,200\\ 2,200\\ 2,100\\ 2,400\\ 2,600\\ \end{array}$	8,400 6,600 5,600 5,800 6,400 6,300 3,000 2,200 98,000 12,000 52,000 73,000 28,000	190 220 230 160 180 120 150 230 170 150 510 180 390 230 230 280 280	5.7 [1.9] $8.2 [2.7]$ $8.5 [2.8]$ $1.9 [0.7]$ $3 [1]$ $4 [1]$ $3 [1]$ $4 [1]$ $3 [1]$ $4.3 [1.4]$ $3 [1]$ $2.4 [0.8]$ $5.7 [1.9]$ $8.2 [2.7]$ $8.5 [2.8]$ $1.9 [0.7]$	31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 70/70 70/70 70/70 80/80 80/80	7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 3/3 14/14 14/14 14/14 16/16 16/16
(pg/g-wet) Fish	2004 2005 2006 2007 2008 2009 2010 2013 2013 2018 2002 2003 2004 2005 2006 2007	$\begin{array}{c} 1,200\\ 1,300\\ 1,200\\ 1,000\\ 1,100\\ 900\\ 940\\ 1,100\\ 790\\ 420\\ 2,900\\ 2,000\\ 3,000\\ 2,400\\ 2,200\\ 2,200\\ 2,200\\ 2,200\\ \end{array}$	$\begin{array}{c} 1,000\\ 1,400\\ 1,600\\ 1,200\\ 1,200\\ 1,100\\ 1,100\\ 1,300\\ 1,600\\ 230\\ 2,200\\ 2,200\\ 2,200\\ 2,200\\ 2,200\\ 2,000\\ 2,600\\ 2,000\\ 2,000\\ \end{array}$	8,400 6,600 5,600 5,800 6,400 6,300 3,000 2,200 98,000 12,000 52,000 73,000 28,000 22,000	190 220 230 160 180 120 150 230 170 150 510 180 390 230 280 160 160 190 190 210	5.7 [1.9] $8.2 [2.7]$ $8.5 [2.8]$ $1.9 [0.7]$ $3 [1]$ $4 [1]$ $3 [1]$ $4 [1]$ $3 [1]$ $4.3 [1.4]$ $3 [1]$ $2.4 [0.8]$ $5.7 [1.9]$ $8.2 [2.7]$ $8.5 [2.8]$ $1.9 [0.7]$ $3 [1]$	31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 70/70 70/70 70/70 80/80 80/80 80/80	7/7 7/7 7/7 7/7 7/7 6/6 5/5 3/3 14/14 14/14 14/14 16/16 16/16
(pg/g-wet)	2004 2005 2006 2007 2008 2009 2010 2013 2013 2018 2002 2003 2004 2005 2006 2007 2008	$\begin{array}{c} 1,200\\ 1,300\\ 1,200\\ 1,000\\ 1,100\\ 900\\ 940\\ 1,100\\ 790\\ 420\\ 2,900\\ 2,000\\ 3,000\\ 2,400\\ 2,200\\ 2,200\\ 2,200\\ 2,500\\ \end{array}$	$\begin{array}{c} 1,000\\ 1,400\\ 1,600\\ 1,200\\ 1,200\\ 1,100\\ 1,100\\ 1,100\\ 1,300\\ 1,600\\ 230\\ 2,200\\ 2,200\\ 2,200\\ 2,200\\ 2,00$	8,400 6,600 5,600 5,800 6,400 6,300 3,000 2,200 98,000 12,000 52,000 73,000 28,000 22,000 53,000	190 220 230 160 180 120 150 230 170 150 510 180 390 230 280 160 320	5.7 [1.9] $8.2 [2.7]$ $8.5 [2.8]$ $1.9 [0.7]$ $3 [1]$ $4 [1]$ $3 [1]$ $4 [1]$ $3 [1]$ $4.3 [1.4]$ $3 [1]$ $2.4 [0.8]$ $5.7 [1.9]$ $8.2 [2.7]$ $8.5 [2.8]$ $1.9 [0.7]$ $3 [1]$ $3 [1]$	31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85	7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 <u>3/3</u> 14/14 14/14 16/16 16/16 16/16 16/16
(pg/g-wet) Fish	2004 2005 2006 2007 2008 2009 2010 2013 2018 2002 2003 2004 2005 2006 2007 2008 2009	$\begin{array}{c} 1,200\\ 1,300\\ 1,200\\ 1,000\\ 1,100\\ 900\\ 940\\ 1,100\\ 790\\ 420\\ 2,900\\ 2,000\\ 3,000\\ 2,400\\ 2,200\\ 2,200\\ 2,200\\ 2,200\\ 2,500\\ 2,300\\ \end{array}$	$\begin{array}{c} 1,000\\ 1,400\\ 1,600\\ 1,200\\ 1,200\\ 1,100\\ 1,100\\ 1,100\\ 1,300\\ 1,600\\ 230\\ 2,200\\ 2,200\\ 2,200\\ 2,200\\ 2,000\\ 2,000\\ 2,000\\ 2,000\\ 2,000\\ 2,100\\ \end{array}$	8,400 6,600 5,600 5,800 6,400 6,300 3,000 2,200 98,000 12,000 52,000 73,000 28,000 22,000 53,000 20,000	190 220 230 160 180 120 150 230 170 150 510 180 390 230 280 160 160 190 190 210	5.7 [1.9] $8.2 [2.7]$ $8.5 [2.8]$ $1.9 [0.7]$ $3 [1]$ $4 [1]$ $3 [1]$ $4 [1]$ $3 [1]$ $4.3 [1.4]$ $3 [1]$ $2.4 [0.8]$ $5.7 [1.9]$ $8.2 [2.7]$ $8.5 [2.8]$ $1.9 [0.7]$ $3 [1]$ $3 [1]$ $4 [1]$	31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 70/70 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85 90/90	7/7 7/7 7/7 7/7 7/7 6/6 5/5 <u>3/3</u> 14/14 14/14 14/14 16/16 16/16 16/16 16/16
(pg/g-wet) Fish	2004 2005 2006 2007 2008 2009 2010 2013 2013 2018 2002 2003 2004 2005 2006 2007 2008	$\begin{array}{c} 1,200\\ 1,300\\ 1,200\\ 1,000\\ 1,100\\ 900\\ 940\\ 1,100\\ 790\\ 420\\ 2,900\\ 2,000\\ 3,000\\ 2,400\\ 2,200\\ 2,200\\ 2,200\\ 2,500\\ \end{array}$	$\begin{array}{c} 1,000\\ 1,400\\ 1,600\\ 1,200\\ 1,200\\ 1,100\\ 1,100\\ 1,100\\ 1,300\\ 1,600\\ 230\\ 2,200\\ 2,200\\ 2,200\\ 2,200\\ 2,00$	8,400 6,600 5,600 5,800 6,400 6,300 3,000 2,200 98,000 12,000 52,000 73,000 28,000 22,000 53,000	190 220 230 160 180 120 150 230 170 150 510 180 390 230 280 160 320	5.7 [1.9] $8.2 [2.7]$ $8.5 [2.8]$ $1.9 [0.7]$ $3 [1]$ $4 [1]$ $3 [1]$ $4 [1]$ $3 [1]$ $4.3 [1.4]$ $3 [1]$ $2.4 [0.8]$ $5.7 [1.9]$ $8.2 [2.7]$ $8.5 [2.8]$ $1.9 [0.7]$ $3 [1]$ $3 [1]$	31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85	7/7 7/7 7/7 7/7 7/7 6/6 5/5 <u>3/3</u> 14/14 14/14 14/14 16/16 16/16 16/16 16/16
(pg/g-wet) Fish	2004 2005 2006 2007 2008 2009 2010 2013 2018 2002 2003 2004 2005 2006 2007 2008 2009	$\begin{array}{c} 1,200\\ 1,300\\ 1,200\\ 1,000\\ 1,100\\ 900\\ 940\\ 1,100\\ 790\\ 420\\ 2,900\\ 2,000\\ 3,000\\ 2,400\\ 2,200\\ 2,200\\ 2,200\\ 2,200\\ 2,500\\ 2,300\\ \end{array}$	$\begin{array}{c} 1,000\\ 1,400\\ 1,600\\ 1,200\\ 1,200\\ 1,100\\ 1,100\\ 1,100\\ 1,300\\ 1,600\\ 230\\ 2,200\\ 2,200\\ 2,200\\ 2,200\\ 2,000\\ 2,000\\ 2,000\\ 2,000\\ 2,000\\ 2,100\\ \end{array}$	8,400 6,600 5,600 5,800 6,400 6,300 3,000 2,200 98,000 12,000 52,000 73,000 28,000 22,000 53,000 20,000	190 220 230 160 180 120 150 230 170 150 510 180 390 230 280 160 320 260 260	5.7 [1.9] $8.2 [2.7]$ $8.5 [2.8]$ $1.9 [0.7]$ $3 [1]$ $4 [1]$ $3 [1]$ $4 [1]$ $3 [1]$ $4.3 [1.4]$ $3 [1]$ $2.4 [0.8]$ $5.7 [1.9]$ $8.2 [2.7]$ $8.5 [2.8]$ $1.9 [0.7]$ $3 [1]$ $3 [1]$ $4 [1]$	31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 70/70 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85 90/90	7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5

(055	Monitored	Geometric				Quantification	Detection I	Frequence
<i>p,p'</i> -DDE	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	36,000	60,000	170,000	8,100	2.4 [0.8]	10/10	2/2
	2003	66,000	76,000	240,000	18,000	5.7 [1.9]	10/10	2/2
	2004	34,000	65,000	200,000	6,800	8.2 [2.7]	10/10	2/2
	2005	44,000	86,000	300,000	7,100	8.5 [2.8]	10/10	2/2
D' 1 **	2006	38,000	57,000	160,000	5,900	1.9 [0.7]	10/10	2/2
Birds**	2007	40,000	56,000	320,000	6,700	3 [1]	10/10	2/2
(pg/g-wet)	2008	51,000	79,000	160,000	7,500	3 [1]	10/10	2/2
	2009	30,000	64,000	220,000	4,300	4 [1]	10/10	2/2
	2010	32,000		160,000	6,300	3 [1]	2/2	2/2
	2013	170,000		170,000	170,000	4.3 [1.4]	2/2	2/2
	2018	80,000		290,000	22,000	3 [1]	2/2	2/2
	Monitored	Geometric				Quantification	Detection I	Frequen
<i>p,p'</i> -DDD	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	-					limit	-	
	2002	340	710	3,200	11	5.4 [1.8]	38/38	8/8
	2003	390	640	2,600	tr(7.5)	9.9 [3.3]	30/30	6/6
	2004	440	240	8,900	7.8	2.2 [0.70]	31/31	7/7
	2005	370	800	1,700	13	2.9 [0.97]	31/31	7/7
Bivalves	2006	300	480	1,400	7.3	2.4 [0.9]	31/31	7/7
(pg/g-wet)	2007	310	360	1,500	7	3 [1]	31/31	7/7
(pg/g-wei)	2008	280	280	1,300	6	3 [1]	31/31	7/7
	2009	220	170	2,400	5.8	2.4 [0.9]	31/31	7/7
	2010	180	330	960	11	1.3 [0.5]	6/6	6/6
	2013	270	520	1,300	19	1.9 [0.7]	5/5	5/5
	2018	110	93	830	17	1.4 [0.6]	3/3	3/3
	2002	750	680	14,000	80	5.4 [1.8]	70/70	14/14
	2003	510	520	3,700	43	9.9 [3.3]	70/70	14/14
	2004	770	510	9,700	56	2.2 [0.70]	70/70	14/14
	2005	510	650	6,700	29	2.9 [0.97]	80/80	16/16
	2006	520	580	4,300	60	2.4 [0.9]	80/80	16/16
Fish	2007	470	490	4,100	36	3 [1]	80/80	16/16
(pg/g-wet)	2008	460	440	4,100	33	3 [1]	85/85	17/17
	2009	440	460	2,500	57	2.4 [0.9]	90/90	18/18
	2010	560	610	2,900	57	1.3 [0.5]	18/18	18/18
	2013	500	500	4,700	68	1.9 [0.7]	19/19	19/19
	2018	280	250	3,100	40	1.4 [0.6]	18/18	18/18
	2002	580	740	3,900	140	5.4 [1.8]	10/10	2/2
	2002	640	860	3,900	110	9.9 [3.3]	10/10	2/2
	2003	330	520	1,400	52	2.2 [0.70]	10/10	2/2
	2004	310	540	1,400	45	2.9 [0.97]	10/10	2/2
	2005	410	540 740	1,400	4 <i>5</i> 55	2.9 [0.97]	10/10	2/2
Birds**	2000	440	740	2,300	55 70	3 [1]	10/10	2/2
(pg/g-wet)	2007 2008	240 240	490	2,300	70 35	3 [1]	10/10	2/2
	2008 2009	240 280						
			430	3,400	31	2.4 [0.9]	10/10	2/2
	2010	440		1,600	120	1.3 [0.5]	2/2	2/2
	2013	140		270	70	1.9 [0.7]	2/2	2/2
	2018	230		260	210	1.4 [0.6] peometric mean y	2/2	2/2

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.
(Note 2) "**" There is no consistency between the results of the ornithological survey in FY2013 and those in previous years because of the changes in the survey sites and target species.
(Note 3) No monitoring was conducted in FY2011, FY2012, FY2014~2017.

<i>p,p'</i> -DDT	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequer Site
	2002	1.9	1.8	22	0.25	0.24 [0.08]	102/102	34/34
	2003 Warm season	5.8	6.6	24	0.75		35/35	35/3
	2003 Cold season	1.7	1.6	11	0.31	0.14 [0.046]	34/34	34/3
	2004 Warm season	4.7	5.1	37	0.41		37/37	37/3
	2004 Cold season	1.8	1.7	13	0.29	0.22 [0.074]	37/37	37/3
	2005 Warm season	4.1	4.2	31	0.44		37/37	37/3
	2005 Cold season	1.1	0.99	4.8	0.25	0.16 [0.054]	37/37	37/3
	2006 Warm season	4.2	3.8	51	0.35		37/37	37/3
	2006 Cold season	1.4	1.2	7.3	0.29	0.17 [0.06]	37/37	37/3
	2007 Warm season	4.9	5.2	30	0.6		36/36	36/3
Air	2007 Cold season	1.2	1.2	8.8	0.23	0.07 [0.03]	36/36	36/3
(pg/m^3)	2008 Warm season	3.6	3.0	27	0.76		37/37	37/3
	2008 Cold season	1.2	1.0	15	0.22	0.07 [0.03]	37/37	37/3
	2009 Warm season	3.6	3.6	28	0.44		37/37	37/3
	2009 Cold season	1.1	1.0	8.0	0.20	0.07 [0.03]	37/37	37/3
	2010 Warm season	3.5	3.1	56	0.28		37/37	37/3
	2010 Cold season	1.3	0.89	16	0.20		37/37	37/3
	2013 Warm season	2.8	3.6	10	0.20		36/36	36/3
	2013 Cold season	0.65	0.53	4.5	0.18	0.11 [0.04]	36/36	36/3
	2015 Warm season	1.5	1.8	13	0.18	0.15 [0.05]	35/35	35/3
	2018 Warm season	1.6	2	13	0.15	0.03 [0.01]	37/37	37/3
	2010 Wulli Seuson		2	11	0.15	Quantification	Detection I	
<i>p,p'</i> -DDE	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.8	2.7	28	0.56	0.09 [0.03]	102/102	34/3
	2002 111	7.0	7.0	51	1.2			35/3
	2003 Warm season	7.2	7.0	51		0 40 [0 12]	35/35	
						0.40 [0.13]		34/3
	2003 Warm season 2003 Cold season 2004 Warm season	2.8	7.0 2.4 6.3	<u>22</u> 95	1.1		34/34	
	2003 Cold season 2004 Warm season	<u>2.8</u> 6.1	<u>2.4</u> 6.3	<u>22</u> 95	<u>1.1</u> 0.62	0.40 [0.13]	<u> </u>	37/3
	2003 Cold season	2.8	2.4	22	1.1	0.12 [0.039]	34/34	37/3 37/3
	2003 Cold season 2004 Warm season 2004 Cold season	2.8 6.1 2.9	2.4 6.3 2.6	22 95 43	1.1 0.62 0.85		<u>34/34</u> 37/37 <u>37/37</u> 37/37	37/3 37/3 37/3
	2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season	2.8 6.1 2.9 5.0	2.4 6.3 2.6 5.7	22 95 43 42	1.1 0.62 0.85 1.2	0.12 [0.039]	<u>34/34</u> 37/37 37/37	37/3 37/3 37/3 37/3 37/3
	2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season	2.8 6.1 2.9 5.0 1.7	2.4 6.3 2.6 5.7 1.5	22 95 43 42 9.9	1.1 0.62 0.85 1.2 0.76	0.12 [0.039]	34/34 37/37 37/37 37/37 37/37	37/3 37/3 37/3 37/3 37/3 37/3
	2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season	2.8 6.1 2.9 5.0 1.7 5.0 1.9	2.4 6.3 2.6 5.7 1.5 4.7	22 95 43 42 9.9 49	$ \begin{array}{r} 1.1 \\ 0.62 \\ 0.85 \\ 1.2 \\ 0.76 \\ 1.7 \\ 0.52 \\ \end{array} $	0.12 [0.039] 0.14 [0.034] 0.10 [0.03]	34/34 37/37 37/37 37/37 37/37 37/37 37/37 37/37	37/3 37/3 37/3 37/3 37/3 37/3 37/3
Air	2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season	2.8 6.1 2.9 5.0 1.7 5.0	2.4 6.3 2.6 5.7 1.5 4.7 1.7	22 95 43 42 9.9 49 9.5	1.1 0.62 0.85 1.2 0.76 1.7	0.12 [0.039]	34/34 37/37 37/37 37/37 37/37 37/37 37/37	37/3 37/3 37/3 37/3 37/3 37/3 37/3 36/3
Air (pg/m ³)	2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Warm season	2.8 6.1 2.9 5.0 1.7 5.0 1.9 6.4	2.4 6.3 2.6 5.7 1.5 4.7 1.7 6.1	22 95 43 42 9.9 49 9.5 120	1.1 0.62 0.85 1.2 0.76 1.7 0.52 0.54	0.12 [0.039] 0.14 [0.034] 0.10 [0.03] 0.04 [0.02]	34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36	37/3 37/3 37/3 37/3 37/3 37/3 37/3 36/3 36
	2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Warm season2007 Cold season	$ \begin{array}{r} 2.8 \\ 6.1 \\ 2.9 \\ 5.0 \\ 1.7 \\ 5.0 \\ 1.9 \\ 6.4 \\ 2.1 \\ \end{array} $	2.4 6.3 2.6 5.7 1.5 4.7 1.7 6.1 1.9	22 95 43 42 9.9 49 9.5 120 39	$ \begin{array}{r} 1.1\\ 0.62\\ 0.85\\ 1.2\\ 0.76\\ 1.7\\ 0.52\\ 0.54\\ 0.73\\ \end{array} $	0.12 [0.039] 0.14 [0.034] 0.10 [0.03]	34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36	37/3 37/3 37/3 37/3 37/3 37/3 37/3 36/3 36
	2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Warm season2007 Cold season2008 Warm season	$ \begin{array}{r} 2.8\\ 6.1\\ 2.9\\ 5.0\\ 1.7\\ 5.0\\ 1.9\\ 6.4\\ 2.1\\ 4.8\\ 2.2\\ \end{array} $	$ \begin{array}{r} 2.4 \\ 6.3 \\ 2.6 \\ 5.7 \\ 1.5 \\ 4.7 \\ 1.7 \\ 6.1 \\ 1.9 \\ 4.4 \\ 2.0 \\ \end{array} $	22 95 43 42 9.9 49 9.5 120 39 96 22	$ \begin{array}{r} 1.1\\ 0.62\\ 0.85\\ 1.2\\ 0.76\\ 1.7\\ 0.52\\ 0.54\\ 0.73\\ 0.98\\ 0.89\end{array} $	0.12 [0.039] 0.14 [0.034] 0.10 [0.03] 0.04 [0.02] 0.04 [0.02]	34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37	37/3 37/3 37/3 37/3 37/3 37/3 37/3 36/3 36
	2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Warm season2007 Cold season2008 Warm season2008 Warm season2008 Cold season	$ \begin{array}{r} 2.8 \\ 6.1 \\ 2.9 \\ 5.0 \\ 1.7 \\ 5.0 \\ 1.9 \\ 6.4 \\ 2.1 \\ 4.8 \\ 2.2 \\ 4.9 \\ \end{array} $	$ \begin{array}{r} 2.4 \\ 6.3 \\ 2.6 \\ 5.7 \\ 1.5 \\ 4.7 \\ 1.7 \\ 6.1 \\ 1.9 \\ 4.4 \\ 2.0 \\ 4.8 \\ \end{array} $	22 95 43 42 9.9 49 9.5 120 39 96 22 130	$ \begin{array}{r} 1.1\\ 0.62\\ 0.85\\ 1.2\\ 0.76\\ 1.7\\ 0.52\\ 0.54\\ 0.73\\ 0.98\\ \end{array} $	0.12 [0.039] 0.14 [0.034] 0.10 [0.03] 0.04 [0.02]	34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37	34/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3
	2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Warm season2007 Cold season2008 Warm season2008 Warm season2009 Warm season2009 Warm season2009 Cold season	$ \begin{array}{r} 2.8 \\ 6.1 \\ 2.9 \\ 5.0 \\ 1.7 \\ 5.0 \\ 1.9 \\ 6.4 \\ 2.1 \\ 4.8 \\ 2.2 \\ 4.9 \\ 2.1 \\ \end{array} $	$ \begin{array}{r} 2.4 \\ 6.3 \\ 2.6 \\ 5.7 \\ 1.5 \\ 4.7 \\ 1.7 \\ 6.1 \\ 1.9 \\ 4.4 \\ 2.0 \\ \end{array} $	22 95 43 42 9.9 49 9.5 120 39 96 22 130 100	$ \begin{array}{r} 1.1\\ 0.62\\ 0.85\\ 1.2\\ 0.76\\ 1.7\\ 0.52\\ 0.54\\ 0.73\\ 0.98\\ 0.89\\ 0.87\\ 0.60\\ \end{array} $	0.12 [0.039] 0.14 [0.034] 0.10 [0.03] 0.04 [0.02] 0.04 [0.02] 0.08 [0.03]	34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37	37/3 37/3 37/3 37/3 37/3 37/3 36/3 36/3
	2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Warm season2007 Cold season2008 Warm season2008 Warm season2009 Warm season2009 Warm season2009 Cold season2010 Warm season	$ \begin{array}{r} 2.8 \\ 6.1 \\ 2.9 \\ 5.0 \\ 1.7 \\ 5.0 \\ 1.9 \\ 6.4 \\ 2.1 \\ 4.8 \\ 2.2 \\ 4.9 \\ 2.1 \\ 4.9 \\ 2.1 \\ 4.9 \end{array} $	$ \begin{array}{r} 2.4 \\ 6.3 \\ 2.6 \\ 5.7 \\ 1.5 \\ 4.7 \\ 1.7 \\ 6.1 \\ 1.9 \\ 4.4 \\ 2.0 \\ 4.8 \\ 1.9 \\ 4.1 \\ \end{array} $	$\begin{array}{r} 22\\ 95\\ 43\\ 42\\ 9.9\\ 49\\ 9.5\\ 120\\ 39\\ 96\\ 22\\ 130\\ 100\\ 200\\ \end{array}$	1.1 0.62 0.85 1.2 0.76 1.7 0.52 0.54 0.73 0.98 0.89 0.87 0.60 tr(0.41)	0.12 [0.039] 0.14 [0.034] 0.10 [0.03] 0.04 [0.02] 0.04 [0.02]	34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37	37/3 37/3 37/3 37/3 37/3 37/3 37/3 36/3 37/3 37
	2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Warm season2007 Cold season2008 Warm season2008 Cold season2009 Warm season2009 Cold season2010 Warm season2010 Cold season2010 Cold season	$ \begin{array}{r} 2.8 \\ 6.1 \\ 2.9 \\ 5.0 \\ 1.7 \\ 5.0 \\ 1.9 \\ 6.4 \\ 2.1 \\ 4.8 \\ 2.2 \\ 4.9 \\ 2.1 \\ 4.9 \\ 2.1 \\ 4.9 \\ 2.2 \\ \end{array} $	$\begin{array}{r} 2.4 \\ 6.3 \\ 2.6 \\ 5.7 \\ 1.5 \\ 4.7 \\ 1.7 \\ 6.1 \\ 1.9 \\ 4.4 \\ 2.0 \\ 4.8 \\ 1.9 \\ 4.1 \\ 1.8 \end{array}$	$\begin{array}{r} 22\\ 95\\ 43\\ 42\\ 9.9\\ 49\\ 9.5\\ 120\\ 39\\ 96\\ 22\\ 130\\ 100\\ 200\\ 28\end{array}$	$\begin{array}{c} 1.1\\ 0.62\\ 0.85\\ 1.2\\ 0.76\\ 1.7\\ 0.52\\ 0.54\\ 0.73\\ 0.98\\ 0.89\\ 0.87\\ 0.60\\ tr(0.41)\\ tr(0.47)\end{array}$	0.12 [0.039] 0.14 [0.034] 0.10 [0.03] 0.04 [0.02] 0.04 [0.02] 0.08 [0.03] 0.62 [0.21]	34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37	37/3 37/3 37/3 37/3 37/3 37/3 37/3 36/3 37/3 37
	2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Warm season2007 Cold season2008 Warm season2008 Warm season2009 Warm season2009 Cold season2010 Warm season2010 Cold season2011 Warm season2013 Warm season	$ \begin{array}{r} 2.8 \\ 6.1 \\ 2.9 \\ 5.0 \\ 1.7 \\ 5.0 \\ 1.9 \\ 6.4 \\ 2.1 \\ 4.8 \\ 2.2 \\ 4.9 \\ 2.1 \\ 4.9 \\ 2.2 \\ 4.1 \\ \end{array} $	$\begin{array}{c} 2.4 \\ 6.3 \\ 2.6 \\ 5.7 \\ 1.5 \\ 4.7 \\ 1.7 \\ 6.1 \\ 1.9 \\ 4.4 \\ 2.0 \\ 4.8 \\ 1.9 \\ 4.1 \\ 1.8 \\ 4.3 \end{array}$	$\begin{array}{r} 22\\ 95\\ 43\\ 42\\ 9.9\\ 49\\ 9.5\\ 120\\ 39\\ 96\\ 22\\ 130\\ 100\\ 200\\ 28\\ 37\\ \end{array}$	$\begin{array}{c} 1.1\\ 0.62\\ 0.85\\ 1.2\\ 0.76\\ 1.7\\ 0.52\\ 0.54\\ 0.73\\ 0.98\\ 0.89\\ 0.87\\ 0.60\\ tr(0.41)\\ tr(0.47)\\ 0.2\\ \end{array}$	0.12 [0.039] 0.14 [0.034] 0.10 [0.03] 0.04 [0.02] 0.04 [0.02] 0.08 [0.03]	34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37	37/3 37/3 37/3 37/3 37/3 37/3 36/3 37/3 37
	2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Warm season2007 Cold season2008 Warm season2008 Cold season2009 Warm season2009 Cold season2010 Warm season2010 Cold season2010 Cold season	$ \begin{array}{r} 2.8 \\ 6.1 \\ 2.9 \\ 5.0 \\ 1.7 \\ 5.0 \\ 1.9 \\ 6.4 \\ 2.1 \\ 4.8 \\ 2.2 \\ 4.9 \\ 2.1 \\ 4.9 \\ 2.1 \\ 4.9 \\ 2.2 \\ \end{array} $	$\begin{array}{r} 2.4 \\ 6.3 \\ 2.6 \\ 5.7 \\ 1.5 \\ 4.7 \\ 1.7 \\ 6.1 \\ 1.9 \\ 4.4 \\ 2.0 \\ 4.8 \\ 1.9 \\ 4.1 \\ 1.8 \end{array}$	$\begin{array}{r} 22\\ 95\\ 43\\ 42\\ 9.9\\ 49\\ 9.5\\ 120\\ 39\\ 96\\ 22\\ 130\\ 100\\ 200\\ 28\end{array}$	$\begin{array}{c} 1.1\\ 0.62\\ 0.85\\ 1.2\\ 0.76\\ 1.7\\ 0.52\\ 0.54\\ 0.73\\ 0.98\\ 0.89\\ 0.87\\ 0.60\\ tr(0.41)\\ tr(0.47)\end{array}$	0.12 [0.039] 0.14 [0.034] 0.10 [0.03] 0.04 [0.02] 0.04 [0.02] 0.08 [0.03] 0.62 [0.21]	34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37	37/3 37/3 37/3 37/3 37/3 37/3 37/3 36/3 37/3 37

<Air>

Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in air during FY2002~2018

		Geometric				Quantification	Detection I	Frequency
<i>p,p'</i> -DDD	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.12	0.13	0.76	nd	0.018 [0.006]	101/102	34/34
	2003 Warm season	0.30	0.35	1.4	0.063	0.054 [0.018]	35/35	35/35
	2003 Cold season	0.13	0.14	0.52	tr(0.037)	0.034 [0.018]	34/34	34/34
	2004 Warm season	0.24	0.27	1.4	tr(0.036)	0.053 [0.018]	37/37	37/37
	2004 Cold season	0.12	0.12	0.91	tr(0.025)	0.033 [0.018]	37/37	37/37
	2005 Warm season	0.24	0.26	1.3	tr(0.07)	0.16 [0.05]	37/37	37/37
	2005 Cold season	tr(0.06)	tr(0.07)	0.29	nd	0.10 [0.03]	28/37	28/37
	2006 Warm season	0.28	0.32	1.3	nd	0.13 [0.04]	36/37	36/37
	2006 Cold season	0.14	tr(0.12)	0.99	nd	0.13 [0.04]	36/37	36/37
A :	2007 Warm season	0.26	0.27	1.4	0.046	0.011 [0.004]	36/36	36/36
Air $(n\alpha/m^3)$	2007 Cold season	0.093	0.087	0.5	0.026	0.011 [0.004]	36/36	36/36
(pg/m ³)	2008 Warm season	0.17	0.17	1.1	0.037	0.025 [0.000]	37/37	37/37
	2008 Cold season	0.091	0.081	0.31	0.036	0.025 [0.009]	37/37	37/37
	2009 Warm season	0.17	0.18	0.82	0.03	0.02 [0.01]	37/37	37/37
	2009 Cold season	0.08	0.08	0.35	tr(0.02)	0.03 [0.01]	37/37	37/37
	2010 Warm season	0.20	0.17	1.7	0.04	0.02 [0.01]	37/37	37/37
	2010 Cold season	0.10	0.09	0.41	0.02	0.02 [0.01]	37/37	37/37
	2013 Warm season	0.16	0.18	0.80	0.027	0.019 [0.007]	36/36	36/36
	2013 Cold season	0.056	0.054	0.14	tr(0.015)	0.018 [0.007]	36/36	36/36
	2015 Warm season	nd	nd	tr(0.31)	nd	0.33 [0.11]	17/35	17/35
	2018 Warm season	0.13	0.16	0.72	nd	0.07 [0.03]	36/37	36/37

(Note) No monitoring was conducted in FY2011, FY2012, FY2014, FY2016 and FY2017.

p,*p*'-DDT, *p*,*p*'-DDE and *p*,*p*'-DDD

<Surface Water>

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in surface water during FY2002~2014

	Monitored	Geometric				Quantification	Detection I	Frequency
o,p'-DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.4	4.6	77	0.19	1.2 [0.4]	114/114	38/38
	2003	6	5	100	tr(1.5)	3 [0.7]	36/36	36/36
	2004	tr(4.5)	5	85	nd	5 [2]	29/38	29/38
	2005	3	3	39	nd	3 [1]	42/47	42/47
Surface Water	2006	2.8	2.4	52	0.51	2.3 [0.8]	48/48	48/48
(pg/L)	2007	tr(2.1)	tr(2.2)	86	nd	2.5 [0.8]	38/48	38/48
	2008	3.1	3.0	230	nd	1.4 [0.5]	44/48	44/48
	2009	2.4	2.4	100	0.43	0.16 [0.06]	49/49	49/49
	2010	1.5	tr(1.2)	700	nd	1.5 [0.5]	43/49	43/49
	2014	1.0	1.0	63	nd	0.4 [0.2]	42/48	42/48
	Monitored	Geometric				Quantification	Detection I	Frequency
o,p'-DDE	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.4	2.1	680	nd	0.9 [0.3]	113/114	38/38
	2003	2.2	2.0	170	tr(0.42)	0.8 [0.3]	36/36	36/36
	2004	3	2	170	tr(0.6)	2 [0.5]	38/38	38/38
	2005	2.5	2.1	410	0.4	1.2 [0.4]	47/47	47/47
Surface Water	2006	tr(1.6)	tr(1.4)	210	nd	2.6 [0.9]	28/48	28/48
(pg/L)	2007	tr(1.5)	tr(1.1)	210	nd	2.3 [0.8]	29/48	29/48
	2008	1.5	1.8	260	nd	0.7 [0.3]	39/48	39/48
	2009	1.3	1.1	140	nd	0.22 [0.09]	47/49	47/49
	2010	0.97	0.65	180	tr(0.13)	0.24 [0.09]	49/49	49/49
		0.6				0.3 [0.1]	36/48	36/48

	Monitored	Geometric				Quantification	Detection 1	Frequency
o,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.6	6.0	110	nd	0.60 [0.20]	113/114	38/38
	2003	7.1	5.0	160	1.1	0.8 [0.3]	36/36	36/36
	2004	6	5	81	tr(0.7)	2 [0.5]	38/38	38/38
	2005	5.2	5.4	51	tr(0.5)	1.2 [0.4]	47/47	47/47
Surface Water	2006	2.5	3.3	39	nd	0.8 [0.3]	40/48	40/48
(pg/L)	2007	4.6	3.9	41	tr(0.3)	0.8 [0.3]	48/48	48/48
	2008	6.7	7.2	170	nd	0.8 [0.3]	47/48	47/48
	2009	4.4	3.8	41	0.44	0.22 [0.09]	49/49	49/49
	2010	4.6	3.8	170	tr(0.5)	0.6 [0.2]	49/49	49/49
	2014	3.7	3.2	38	0.33	0.20 [0.08]	48/48	48/48

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted during FY2011~2013.

<Sediment>

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in sediment during FY2002~2014

	Monitored	Geometric		1		Quantification	Detection	Frequency
<i>o,p'</i> -DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	76	47	27,000	nd	6 [2]	183/189	62/63
	2003	50	43	3,200	nd	0.8 [0.3]	185/186	62/62
	2004	69	50	17,000	tr(1.1)	2 [0.6]	189/189	63/63
	2005	58	46	160,000	0.8	0.8 [0.3]	189/189	63/63
Sediment	2006	57	52	18,000	tr(0.8)	1.2 [0.4]	192/192	64/64
(pg/g-dry)	2007	38	31	27,000	nd	1.8 [0.6]	186/192	63/64
	2008	51	40	140,000	tr(0.7)	1.5 [0.6]	192/192	64/64
	2009	44	30	100,000	nd	1.2 [0.5]	190/192	64/64
	2010	40	33	13,000	1.4	1.1 [0.4]	64/64	64/64
	2014	26	24	2,400	nd	0.4 [0.2]	62/63	62/63
	Monitored	Geometric				Quantification	Detection	Frequency
<i>o,p'</i> -DDE	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	•					limit	-	
	2002	54	37	16,000	nd	3 [1]	188/189	63/63
	2003	48	39	24,000	tr(0.5)	0.6 [0.2]	186/186	62/62
	2004	40	34	28,000	nd	3 [0.8]	184/189	63/63
	2005	40	32	31,000	nd	2.6 [0.9]	181/189	62/63
Sediment	2006	42	40	27,000	tr(0.4)	1.1 [0.4]	192/192	64/64
(pg/g-dry)	2007	37	41	25,000	nd	1.2 [0.4]	186/192	63/64
	2008	50	48	37,000	nd	1.4 [0.6]	186/192	63/64
	2009	37	31	33,000	nd	0.6 [0.2]	191/192	64/64
	2010	37	32	25,000	tr(0.7)	1.2 [0.5]	64/64	64/64
	2014	30	32	41,000	tr(0.5)	0.8 [0.3]	63/63	63/63
	Monitored	Geometric				Quantification	Detection	Frequency
o,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	•					limit	-	
	2002	160	150	14,000	nd	6 [2]	184/189	62/63
	2003	160	130	8,800	tr(1.0)	2 [0.5]	186/186	62/62
	2004	140	120	16,000	tr(0.7)	2 [0.5]	189/189	63/63
	2005	130	110	32,000	tr(0.8)	1.0 [0.3]	189/189	63/63
Sediment	2006	120	110	13,000	tr(0.3)	0.5 [0.2]	192/192	64/64
(pg/g-dry)	2007	110	130	21,000	tr(0.5)	1.0 [0.4]	192/192	64/64
	2008	170	150	50,000	0.5	0.3 [0.1]	192/192	64/64
	2009	120	120	24,000	0.5	0.5 [0.2]	192/192	64/64
	2010	130	130	6,900	tr(0.8)	0.9 [0.4]	64/64	64/64
	2014	74	85	3,200	tr(0.7)	1.2 [0.5]	63/63	63/63

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted during FY2011~2013.

<Wildlife>

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in wildlife (bivalves, fish and birds) during FY2002~2018

o,p'-DDT	Monitored	Geometric	M. 1	Maat	M::	Quantification	Detection I	Frequency
<i>o,p'</i> -DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	110	83	480	22	12 [4]	38/38	8/8
	2003	130	120	480	35	2.9 [0.97]	30/30	6/6
	2004	160	140	910	20	1.8 [0.61]	31/31	7/7
	2005	98	57	440	29	2.6 [0.86]	31/31	7/7
Bivalves	2006	92	79	380	24	3 [1]	31/31	7/7
(pg/g-wet)	2007	79	52	350	20	3 [1]	31/31	7/7
(18/8)	2008	58	37	330	5	3 [1]	31/31	7/7
	2009	74	48	2,500	17	2.2 [0.8]	31/31	7/7
	2010	51	67	160	15	3 [1]	6/6	6/6
	2013	49	51	180	12	3 [1]	5/5	5/5
	2018	24	12	120	10	2.7 [0.9]	3/3	3/3
	2002	130	130	2,300	tr(6)	12 [4]	70/70	14/14
	2003	85	120	520	2.9	2.9 [0.97]	70/70	14/14
	2004	160	140	1,800	3.7	1.8 [0.61]	70/70	14/14
	2005	100	110	1,500	5.8	2.6 [0.86]	80/80	16/16
Fish	2006	100	110	700	6	3 [1]	80/80	16/16
(pg/g-wet)	2007	69	90	430	3	3 [1]	80/80	16/16
(P8/8 1100)	2008	72	92	720	3	3 [1]	85/85	17/17
	2009	61	73	470	2.4	2.2 [0.8]	90/90	18/18
	2010	58	71	550	5	3 [1]	18/18	18/18
	2013	58	76	310	4	3 [1]	19/19	19/19
	2018	34	34	1,500	tr(1.1)	2.7 [0.9]	18/18	18/18
	2002	12	tr(10)	58	nd	12 [4]	8/10	2/2
	2003	24	16	66	8.3	2.9 [0.97]	10/10	2/2
	2004	8.5	13	43	tr(0.87)	1.8 [0.61]	10/10	2/2
	2005	11	14	24	3.4	2.6 [0.86]	10/10	2/2
Birds**	2006	14	10	120	3	3 [1]	10/10	2/2
(pg/g-wet)	2007	9	9	26	tr(2)	3 [1]	10/10	2/2
(pg/g-wet)	2008	4	6	16	nd	3 [1]	8/10	2/2
	2009	6.3	7.6	12	tr(1.4)	2.2 [0.8]	10/10	2/2
	2010	nd		nd	nd	3 [1]	0/2	0/2
	2013	nd		tr(1)	nd	3 [1]	1/2	1/2
	2018	tr(1.1)		tr(2.5)	nd	2.7 [0.9]	1/2	1/2
						Quantification	Detection I	Frequenc
(555		Geometric			A 61 - 1		Detection	
o,p'-DDE	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
o,p'-DDE	Monitored year 2002	mean* 83	66	1,100	13	[Detection] limit 3.6 [1.2]	Sample 38/38	8/8
<i>o,p'</i> -DDE	Monitored year 2002 2003	mean* 83 85	66 100	1,100 460	13 17	[Detection] limit 3.6 [1.2] 3.6 [1.2]	Sample 38/38 30/30	8/8 6/6
<i>o,p'</i> -DDE	Monitored year 2002 2003 2004	mean* 83 85 86	66 100 69	1,100 460 360	13 17 19	[Detection] limit 3.6 [1.2] 3.6 [1.2] 2.1 [0.69]	Sample 38/38 30/30 31/31	8/8 6/6 7/7
o,p'-DDE	Monitored year 2002 2003 2004 2005	mean* 83 85 86 70	66 100 69 89	1,100 460 360 470	13 17 19 12	[Detection] limit 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1]	Sample 38/38 30/30 31/31 31/31	8/8 6/6 7/7 7/7
	Monitored year 2002 2003 2004 2005 2006	mean* 83 85 86 70 62	66 100 69 89 81	1,100 460 360 470 340	13 17 19 12 12	[Detection] limit 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1]	Sample 38/38 30/30 31/31 31/31 31/31	8/8 6/6 7/7 7/7 7/7
Bivalves	Monitored year 2002 2003 2004 2005 2006 2007	mean* 83 85 86 70 62 56	66 100 69 89 81 69	$ 1,100 \\ 460 \\ 360 \\ 470 \\ 340 \\ 410 $	13 17 19 12 12 8.9	[Detection] limit 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9]	Sample 38/38 30/30 31/31 31/31 31/31 31/31	8/8 6/6 7/7 7/7 7/7 7/7
	Monitored year 2002 2003 2004 2005 2006 2007 2008	mean* 83 85 86 70 62 56 49	66 100 69 89 81 69 52	1,100 460 360 470 340 410 390	13 17 19 12 12 8.9 8	[Detection] limit 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31	8/8 6/6 7/7 7/7 7/7 7/7 7/7
Bivalves	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009	mean* 83 85 86 70 62 56 49 46	66 100 69 89 81 69 52 58	1,100 460 360 470 340 410 390 310	13 17 19 12 12 8.9 8 8 8	[Detection] limit 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 3 [1]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010	mean* 83 85 86 70 62 56 49 46 46	66 100 69 89 81 69 52 58 58	$ \begin{array}{r} 1,100\\ 460\\ 360\\ 470\\ 340\\ 410\\ 390\\ 310\\ 160\\ \end{array} $	13 17 19 12 12 8.9 8 8 8 7.8	[Detection] limit 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 3 [1] 1.5 [0.6]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6
Bivalves	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013	mean* 83 85 86 70 62 56 49 46 46 28	66 100 69 89 81 69 52 58 58 58 31	$ \begin{array}{r} 1,100\\ 460\\ 360\\ 470\\ 340\\ 410\\ 390\\ 310\\ 160\\ 260\\ \end{array} $	13 17 19 12 12 8.9 8 8 8 7.8 4	[Detection] limit 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 3 [1] 1.5 [0.6] 4 [1]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5
Bivalves	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018	mean* 83 85 86 70 62 56 49 46 46 28 20	66 100 69 89 81 69 52 58 58 58 31 15	$ \begin{array}{r} 1,100\\ 460\\ 360\\ 470\\ 340\\ 410\\ 390\\ 310\\ 160\\ 260\\ 250\\ \end{array} $	13 17 19 12 12 8.9 8 8 7.8 4 tr(2)	[Detection] limit 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 3 [1] 1.5 [0.6] 4 [1] 3 [1]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 3/3
Bivalves	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2002	mean* 83 85 86 70 62 56 49 46 46 28 20 91	66 100 69 89 81 69 52 58 58 31 15 50	$ \begin{array}{r} 1,100\\ 460\\ 360\\ 470\\ 340\\ 410\\ 390\\ 310\\ 160\\ 260\\ 250\\ 13,000\\ \end{array} $	13 17 19 12 12 8.9 8 8 7.8 4 tr(2) 3.6	[Detection] limit 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 3 [1] 1.5 [0.6] 4 [1] 3 [1] 3.6 [1.2]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 3/3 14/14
Bivalves	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2002 2003	mean* 83 85 86 70 62 56 49 46 46 28 20 91 51	66 100 69 89 81 69 52 58 58 31 15 50 54	$ \begin{array}{r} 1,100\\ 460\\ 360\\ 470\\ 340\\ 410\\ 390\\ 310\\ 160\\ 260\\ 250\\ 13,000\\ 2,500\\ \end{array} $	13 17 19 12 12 8.9 8 8 7.8 4 tr(2) 3.6 nd	[Detection] limit 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 3 [1] 1.5 [0.6] 4 [1] 3 [1] 3.6 [1.2] 3.6 [1.2]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 67/70	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 3/3 14/14 14/14
Bivalves	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2002 2003 2004	mean* 83 85 86 70 62 56 49 46 46 28 20 91 51 76	66 100 69 89 81 69 52 58 58 31 15 50 54 48	$ \begin{array}{r} 1,100\\ 460\\ 360\\ 470\\ 340\\ 410\\ 390\\ 310\\ 160\\ 260\\ 250\\ 13,000\\ 2,500\\ 5,800\\ \end{array} $	13 17 19 12 12 8.9 8 8 7.8 4 tr(2) 3.6 nd tr(0.89)	[Detection] limit 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 3 [1] 1.5 [0.6] 4 [1] 3 [1] 3.6 [1.2] 3.6 [1.2] 2.1 [0.69]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 67/70 70/70	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 3/3 14/14 14/14
Bivalves (pg/g-wet)	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2002 2003 2004 2005	mean* 83 85 86 70 62 56 49 46 46 28 20 91 51 76 54	66 100 69 89 81 69 52 58 58 31 15 50 54 48 45	$ \begin{array}{r} 1,100\\ 460\\ 360\\ 470\\ 340\\ 410\\ 390\\ 310\\ 160\\ 260\\ 250\\ 13,000\\ 2,500\\ 5,800\\ 12,000\\ \end{array} $	13 17 19 12 12 8.9 8 8 7.8 4 tr(2) 3.6 nd tr(0.89) tr(1.4)	[Detection] limit 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 3 [1] 1.5 [0.6] 4 [1] 3 [1] 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 67/70 70/70 80/80	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves (pg/g-wet) Fish	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2002 2003 2004 2005 2006	mean* 83 85 86 70 62 56 49 46 46 28 20 91 51 76 54 56	66 100 69 89 81 69 52 58 58 31 15 50 54 48 45 43	$ \begin{array}{r} 1,100\\ 460\\ 360\\ 470\\ 340\\ 410\\ 390\\ 310\\ 160\\ 260\\ 250\\ 13,000\\ 2,500\\ 5,800\\ 12,000\\ 4,800\\ \end{array} $	13 17 19 12 12 8.9 8 8 7.8 4 tr(2) 3.6 nd tr(0.89) tr(1.4) tr(1)	[Detection] limit 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 3 [1] 1.5 [0.6] 4 [1] 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 67/70 70/70 80/80 80/80	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 5/5 3/3 14/14 14/14 14/14 16/16 16/16
Bivalves (pg/g-wet)	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2002 2003 2004 2005 2006 2007	mean* 83 85 86 70 62 56 49 46 46 28 20 91 51 76 54 56 45	66 100 69 89 81 69 52 58 58 31 15 50 54 48 45 43 29	$ \begin{array}{r} 1,100\\ 460\\ 360\\ 470\\ 340\\ 410\\ 390\\ 310\\ 160\\ 260\\ 250\\ 13,000\\ 2,500\\ 5,800\\ 12,000\\ 4,800\\ 4,400\\ \end{array} $	13 17 19 12 12 8.9 8 8 7.8 4 tr(2) 3.6 nd tr(0.89) tr(1.4) tr(1) nd	[Detection] limit 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 1.5 [0.6] 4 [1] 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 67/70 70/70 80/80 80/80 79/80	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves (pg/g-wet) Fish	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2002 2003 2004 2005 2006 2007 2008	mean* 83 85 86 70 62 56 49 46 46 28 20 91 51 76 54 56 45 50	66 100 69 89 81 69 52 58 58 31 15 50 54 48 45 43 29 37	$ \begin{array}{r} 1,100\\ 460\\ 360\\ 470\\ 340\\ 410\\ 390\\ 310\\ 160\\ 260\\ 250\\ 13,000\\ 2,500\\ 5,800\\ 12,000\\ 4,800\\ 4,400\\ 13,000\\ \end{array} $	13 17 19 12 12 8.9 8 8 7.8 4 tr(2) 3.6 nd tr(0.89) tr(1.4) tr(1) nd tr(1)	[Detection] limit 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 1.5 [0.6] 4 [1] 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 67/70 70/70 80/80 80/80 80/80 79/80 85/85	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves (pg/g-wet) Fish	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2002 2003 2004 2005 2006 2007 2008 2007 2008 2009	mean* 83 85 86 70 62 56 49 46 46 28 20 91 51 76 54 56 45 50 46	66 100 69 89 81 69 52 58 58 31 15 50 54 48 45 43 29 37 33	$ \begin{array}{r} 1,100\\ 460\\ 360\\ 470\\ 340\\ 410\\ 390\\ 310\\ 160\\ 260\\ 250\\ 13,000\\ 2,500\\ 5,800\\ 12,000\\ 4,800\\ 4,400\\ 13,000\\ 4,300\\ \end{array} $	13 17 19 12 12 8.9 8 8 7.8 4 tr(2) 3.6 nd tr(0.89) tr(1.4) tr(1) nd tr(1) tr(1)	[Detection] limit 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 3 [1] 1.5 [0.6] 4 [1] 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 3 [1] 2.3 [0.9] 3 [1] 3	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 67/70 70/70 80/80 80/80 80/80 79/80 85/85 90/90	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7
Bivalves (pg/g-wet) Fish	Monitored year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2013 2018 2002 2003 2004 2005 2006 2007 2008	mean* 83 85 86 70 62 56 49 46 46 28 20 91 51 76 54 56 45 50	66 100 69 89 81 69 52 58 58 31 15 50 54 48 45 43 29 37	$ \begin{array}{r} 1,100\\ 460\\ 360\\ 470\\ 340\\ 410\\ 390\\ 310\\ 160\\ 260\\ 250\\ 13,000\\ 2,500\\ 5,800\\ 12,000\\ 4,800\\ 4,400\\ 13,000\\ \end{array} $	13 17 19 12 12 8.9 8 8 7.8 4 tr(2) 3.6 nd tr(0.89) tr(1.4) tr(1) nd tr(1)	[Detection] limit 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 1.5 [0.6] 4 [1] 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1]	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 5/5 3/3 70/70 67/70 70/70 80/80 80/80 80/80 79/80 85/85	8/8 6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7 7/7

	Monitored	Geometric				Quantification	Detection I	Frequenc
<i>o,p'</i> -DDE	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	28	26	49	20	3.6 [1.2]	10/10	2/2
	2003	tr(2.3)	tr(2.0)	4.2	nd	3.6 [1.2]	9/10	2/2
	2004	tr(1.0)	tr(1.1)	3.7	nd	2.1 [0.69]	5/10	1/2
	2005	tr(1.2)	tr(1.9)	tr(2.9)	nd	3.4 [1.1]	7/10	2/2
D. Lake	2006	tr(1)	tr(2)	3	tr(1)	3 [1]	10/10	2/2
Birds**	2007	tr(1.0)	tr(1.4)	2.8	nd	2.3 [0.9]	6/10	2/2
(pg/g-wet)	2008	tr(1)	nd	3	nd	3 [1]	5/10	1/2
	2009	nd	tr(1)	tr(2)	nd	3 [1]	6/10	2/2
	2010	tr(1.1)		3.7	nd	1.5 [0.6]	1/2	1/2
	2013	nd		tr(1)	nd	4 [1]	1/2	1/2
	2018	tr(1)		tr(1)	tr(1)	3 [1]	2/2	2/2
						Quantification	Detection I	
<i>o,p'</i> -DDD	Monitored	Geometric mean*	Median	Maximum	Minimum	[Detection]	C	C:4-
-	year	mean				limit	Sample	Site
	2002	120	190	2,900	tr(9)	12 [4]	38/38	8/8
	2003	200	220	1,900	6.5	6.0 [2.0]	30/30	6/6
	2004	220	130	2,800	6.0	5.7 [1.9]	31/31	7/7
	2005	170	280	1,800	10	3.3 [1.1]	31/31	7/7
D' 1	2006	150	200	1,000	7	4 [1]	31/31	7/7
Bivalves	2007	150	200	1,200	6	3 [1]	31/31	7/7
(pg/g-wet)	2008	130	140	1,100	5	4 [2]	31/31	7/7
	2009	95	51	1,000	5	3 [1]	31/31	7/7
	2010	57	50	400	5.8	0.6 [0.2]	6/6	6/6
	2013	100	74	1,800	7.8	1.8 [0.7]	5/5	5/5
	2018	46	27	720	4.9	2.4 [0.9]	3/3	3/3
	2002	95	90	1,100	nd	12 [4]	66/70	14/14
	2003	75	96	920	nd	6.0 [2.0]	66/70	14/14
	2004	120	96	1,700	nd	5.7 [1.9]	68/70	14/14
	2005	83	81	1,400	nd	3.3 [1.1]	79/80	16/16
	2006	80	86	1,100	tr(1)	4 [1]	80/80	16/16
Fish	2007	66	62	1,300	nd	3 [1]	78/80	16/16
(pg/g-wet)	2008	65	74	1,000	nd	4 [2]	80/85	16/17
	2009	63	64	760	nd	3 [1]	87/90	18/18
	2010	75	99	700	2.6	0.6 [0.2]	18/18	18/18
	2013	70	85	940	nd	1.8 [0.7]	18/19	18/19
	2018	40	39	1,100	nd	2.4 [0.9]	17/18	17/18
	2002	15	15	23	tr(8)	12 [4]	10/10	2/2
	2003	15	14	36	tr(5.0)	6.0 [2.0]	10/10	2/2
	2004	6.1	5.7	25	nd	5.7 [1.9]	9/10	$\frac{2}{2}$
	2005	7.3	7.5	9.7	4.7	3.3 [1.1]	10/10	$\frac{2}{2}$
	2005	8	8	19	5	4 [1]	10/10	$\frac{2}{2}$
Birds**	2000	7	7	10	5	3 [1]	10/10	$\frac{2}{2}$
(pg/g-wet)	2007	4	tr(3)	10	tr(2)	4 [2]	10/10	2/2
	2008	4 6	u(3) 5	14	u(2) 3	4 [2] 3 [1]	10/10	2/2
	2009							
	2010	62			26	06000	7/7	·) /·)
	<u>2010</u> 2013	<u>6.3</u> 5.4		<u> </u>	3.6	0.6 [0.2] 1.8 [0.7]	<u>2/2</u> 2/2	$\frac{2/2}{2/2}$

 2018
 6.1
 -- 9.9
 5.7
 2.4 [0.9]
 2.12
 2.12

 (Note 1) "* ":Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.
 (Note2)"**" There is no consistency between the results of the ornithological survey in FY2013 and those in previous years because of the changes in the survey sites and target species.
 (Note 3) No monitoring was conducted in FY2011, FY2012 and FY2014~2017.

o,p'-DDT	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequen Site
	2002	2.2	2.0	40	0.41	0.15 [0.05]	102/102	34/34
	2003 Warm season	6.9	7.7	38	0.61	0.12 [0.040]	35/35	35/35
	2003 Cold season	1.6	1.4	6.4	0.43		34/34	34/3
	2004 Warm season	5.1	5.4	22	0.54	0.093 [0.031]	37/37	37/3
	2004 Cold season	1.5	1.4	9.4	0.35		37/37	37/3
	2005 Warm season	3.0	3.1	14	0.67	0.10 [0.034]	37/37	37/3
	2005 Cold season	0.76	0.67	3.0	0.32		37/37	37/3
	2006 Warm season	2.5	2.4	20	0.55	0.09 [0.03]	37/37	37/3
	2006 Cold season	0.90	0.79	3.9	0.37		37/37	37/3
	2007 Warm season	2.9	2.6	19	0.24		36/36	36/3
Air	2007 Cold season	0.77	0.63	3.4	0.31	0.03 [0.01]	36/36	36/3
(pg/m ³)	2008 Warm season	2.3	2.1	18	0.33		37/37	37/3
	2008 Cold season	0.80	0.62	6.5	0.32	0.03 [0.01]	37/37	37/3
	2009 Warm season	2.3	2.2	14	0.33		37/37	37/3
	2009 Cold season	0.80	0.71	3.7	0.20	0.019 [0.008]	37/37	37/3
	2010 Warm season	2.2	1.9	26	0.19	0.14 [0.05]	37/37	37/3
	2010 Cold season	0.81	0.69	5.5	0.22		37/37	37/3
	2013 Warm season	1.7	1.7	12	0.15		36/36	36/3
	2013 Cold season	0.47	0.44	2.4	0.20	0.054 [0.018]	36/36	36/3
	2015 Warm season	0.99	1.2	6.8	0.14	0.12 [0.04]	35/35	35/3
	2018 Warm season	1.0	1.1	6.3	0.08	0.03 [0.01]	37/37	37/3
o,p'-DDE	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification	Detection I	
						[Detection] limit	Sample	Site
	2002	0.60	0.56	8.5	0.11	0.03 [0.01]	102/102	34/3
	2003 Warm season	1.4	1.5	7.5	0.17	0.020 [0.0068]	35/35	35/3
	2003 Cold season	0.50	0.47	1.7	0.18		34/34	34/3
	2004 Warm season	1.1	1.2	8.9	0.14	0.037 [0.012]	37/37	37/3
	2004 Cold season	0.53	0.49	3.9	0.14		37/37	37/3
	2005 Warm season	1.6	1.5	7.9	0.33	0.074 [0.024]	37/37	37/3
	2005 Cold season	0.62	0.59	2.0	0.24		37/37	37/3
Air (ng/m^3)	2006 Warm season	1.1	1.1	7.4	nd	0.09 [0.03]	36/37	36/3
	2006 Cold season	0.65	0.56	2.6	0.19		37/37	37/3
	2007 Warm season	0.66	0.67	7	0.096	0.017 [0.007]	36/36	36/3
	2007 Cold season	0.3	0.29	3.7	0.12		36/36	36/3
				5.0	0.11	0 025 [0 009]	37/37	37/3
(pg/m^3)	2008 Warm season	0.48	0.52			0 025 [0 009]		37/3
	2008 Warm season 2008 Cold season	0.30	0.24	1.1	0.15	0.025 [0.009]	37/37	
	2008 Warm season2008 Cold season2009 Warm season	0.30	0.24 0.46	<u>1.1</u> 6.7	0.15		37/37	37/3
	2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season	0.30 0.51 0.27	0.24 0.46 0.24	1.1 6.7 23	0.15 0.098 0.072	0.025 [0.009]	37/37 37/37	37/3 37/3
	2008 Warm season2008 Cold season2009 Warm season2009 Cold season2010 Warm season	0.30 0.51 0.27 0.49	0.24 0.46 0.24 0.41	1.1 6.7 23 9.0	0.15 0.098 0.072 0.09	0.016 [0.006]	37/37 37/37 37/37	37/3 37/3 37/3
	2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season	0.30 0.51 0.27 0.49 0.27	0.24 0.46 0.24 0.41 0.23	1.1 6.7 23 9.0 2.3	0.15 0.098 0.072 0.09 0.08		37/37 37/37 37/37 37/37 37/37	37/3 37/3 37/3 37/3
	2008 Warm season2008 Cold season2009 Warm season2009 Cold season2010 Warm season	0.30 0.51 0.27 0.49 0.27 0.38	0.24 0.46 0.24 0.41 0.23 0.35	1.1 6.7 23 9.0 2.3 3.3	0.15 0.098 0.072 0.09 0.08 0.051	0.016 [0.006]	37/37 37/37 37/37 37/37 37/37 36/36	37/3 37/3 37/3 37/3
	2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season	0.30 0.51 0.27 0.49 0.27	0.24 0.46 0.24 0.41 0.23	1.1 6.7 23 9.0 2.3	0.15 0.098 0.072 0.09 0.08	0.016 [0.006] 0.04 [0.01] 0.023 [0.009]	37/37 37/37 37/37 37/37 37/37	37/3 37/3 37/3 37/3 36/3 36/3
	2008 Warm season2008 Cold season2009 Warm season2009 Cold season2010 Warm season2010 Cold season2013 Warm season	0.30 0.51 0.27 0.49 0.27 0.38	0.24 0.46 0.24 0.41 0.23 0.35	1.1 6.7 23 9.0 2.3 3.3	0.15 0.098 0.072 0.09 0.08 0.051	0.016 [0.006]	37/37 37/37 37/37 37/37 37/37 36/36	37/3 37/3 37/3 37/3 37/3 36/3

<Air>

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in air during FY2002~2018

o,p'-DDD	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification	Detection Frequency	
						[Detection] limit	Sample	Site
	2002	0.14	0.18	0.85	nd	0.021 [0.007]	97/102	33/34
	2003 Warm season	0.37	0.42	1.3	0.059	0.042 [0.014]	35/35	35/35
	2003 Cold season	0.15	0.14	0.42	0.062		34/34	34/34
	2004 Warm season	0.31	0.33	2.6	tr(0.052)	0.14 [0.048]	37/37	37/37
	2004 Cold season	0.14	tr(0.13)	0.86	nd		35/37	35/37
	2005 Warm season	0.22	0.19	0.90	tr(0.07)	0 10 [0 02]	37/37	37/37
	2005 Cold season	tr(0.07)	tr(0.07)	0.21	nd	0.10 [0.03]	35/37	35/37
	2006 Warm season	0.28	0.28	1.4	tr(0.05)	0.10 [0.03]	37/37	37/37
Air	2006 Cold season	0.12	0.11	0.79	nd		34/37	34/37
	2007 Warm season	0.28	0.29	1.9	0.05	0.05 [0.02]	36/36	36/36
_	2007 Cold season	0.095	0.09	0.33	tr(0.03)		36/36	36/36
(pg/m^3)	2008 Warm season	0.19	0.16	1.6	0.05	0.04 [0.01]	37/37	37/37
	2008 Cold season	0.10	0.09	0.26	0.04		37/37	37/37
	2009 Warm season	0.20	0.19	0.90	0.04	0.03 [0.01]	37/37	37/37
	2009 Cold season	0.08	0.08	0.28	tr(0.02)		37/37	37/37
	2010 Warm season	0.21	0.19	1.8	0.04	0.03 [0.01]	37/37	37/37
	2010 Cold season	0.10	0.09	0.48	tr(0.02)		37/37	37/37
	2013 Warm season	0.17	0.18	1.2	tr(0.03)	0.05 [0.02]	36/36	36/36
	2013 Cold season	0.06	0.06	0.17	nd		35/36	35/36
	2015 Warm season	tr(0.09)	tr(0.10)	0.37	nd	0.20 [0.07]	25/35	25/35
	2018 Warm season	0.10	0.11	0.38	nd	0.07 [0.03]	36/37	36/37

(Note) No monitoring was conducted in FY2011, FY2012, FY2014, FY2016 and FY2017.

[7] Chlordanes

· History and state of monitoring

Chlordane was used as insecticides on a range of agricultural crops, but the registration of Chlordanes under the Agricultural Chemicals Regulation Law was expired in FY1968. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 1986 because of its properties such as persistency, since it had been used as termitecides for wood products such as primary processed timber, plywood and house. Also *cis*-Chlordane and *trans*-Chlordane are one of the original twelve POPs covered by the Stockholm Convention.

Although manufactured Chlordanes have complicated compositions, Heptachlor, γ-Chlordane, Heptachlor epoxide, *cis*-Chlordane, *trans*-Chlordane, Oxychlordane (as a chlordane metabolite), *cis*-Nonachlor (not registrated as an Agricultural Chemical) and *trans*-Nonachlor (not registrated as an Agricultural Chemical) and *trans*-Nonachlor (not registrated as an Agricultural Chemical) were the original target chemicals in monitoring series. Since FY1983, 5 of those 8 chemicals (*cis*-Chlordane, *trans*-Chlordane, Oxychlordane, *cis*-Nonachlor and *trans*-Nonachlor) have been the target chemicals owning to their high detection frequency in the FY1982 High-Precision Environmental Survey.

In previous monitoring series, Chlordanes had been monitored in wildlife (bivalves, fish and birds) during the period of FY1978~2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring", *cis*-Chlordane, *trans*-Chlordane, *cis*-Nonachlor and *trans*-Nonachlor in surface water and sediment have been the monitored during the period of FY1986~1998 and FY1986~2001, respectively.

Under the framework of the Environmental Monitoring, *cis*-Chlordane, *trans*-Chlordane, Oxychlordane (as a Chlordane metabolite), *cis*-Nonachlor (not registrated as an Agricultural Chemical) and *trans*-Nonachlor have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002~2013, FY2016, FY2017 and FY2020.

Monitoring results

cis-Chlordane and trans-Chlordane

<Surface Water>

cis-Chlordane: The presence of the substance in surface water was monitored at 46 sites, and it was detected at all 46 valid sites adopting the detection limit of 2pg/L, and the detection range was $tr(2) \sim 120pg/L$.

As results of the inter-annual trend analysis from FY2002 to FY2020, reduction tendencies in specimens from river areas, river mouth areas and sea areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

trans-Chlordane: The presence of the substance in surface water was monitored at 46 sites, and it was detected at all 46 valid sites adopting the detection limit of 2pg/L, and the detection range was tr(3) ~ 98pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2020, a reduction tendency in specimens from the overall areas in surface water was identified as statistically significant.

	Monitored	Geometric				Quantification	Detection I	Frequency
cis-Chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	42	32	880	2.5	0.9 [0.3]	114/114	38/38
	2003	69	51	920	12	3 [0.9]	36/36	36/36
	2004	92	87	1,900	10	6 [2]	38/38	38/38
	2005	53	54	510	6	4 [1]	47/47	47/47
	2006	31	26	440	5	5 [2]	48/48	48/48
	2007	23	22	680	nd	4 [2]	47/48	47/48
Surface Water	2008	29	29	480	2.9	1.6 [0.6]	48/48	48/48
(pg/L)	2009	29	26	710	4.4	1.1 [0.4]	49/49	49/49
	2010	19	14	170	nd	11 [4]	47/49	47/49
	2011	20	16	500	3.8	1.4 [0.6]	49/49	49/49
	2012	43	37	350	10	1.6 [0.6]	48/48	48/48
	2013	18	16	260	2.9	2.7 [0.9]	48/48	48/48
	2017	19	19	210	2	2 [1]	47/47	47/47
	2020	12	10	120	tr(2)	5 [2]	46/46	46/46
	Monitored	Geometric				Quantification	Detection I	Frequenc
trans-Chlordane	Montored		Median	Maximum	Minimum	[Detection]		
	year	mean*			1,1111111111111111	limit	Sample	Site
	year 2002	mean*	24	780	3.1	limit	Sample 114/114	
	•	33	24			limit 1.5 [0.5]	-	Site 38/38 36/36
	2002	33 34	24 30	780 410	3.1	limit 1.5 [0.5] 5 [2]	114/114 36/36	38/38 36/36
	2002 2003 2004	33 34 32	24 30 26	780	3.1 6	limit 1.5 [0.5] 5 [2] 5 [2]	114/114	38/38
	2002 2003 2004 2005	33 34	24 30 26 21	780 410 1,200	3.1 6 5 3	limit 1.5 [0.5] 5 [2] 5 [2] 4 [1]	114/114 36/36 38/38	38/38 36/36 38/38 47/47
	2002 2003 2004	33 34 32 25	24 30 26 21 16	780 410 1,200 200	3.1 6 5	limit 1.5 [0.5] 5 [2] 5 [2] 4 [1] 7 [2]	114/114 36/36 38/38 47/47	38/38 36/36 38/38
Surface Water	2002 2003 2004 2005 2006 2007	33 34 32 25 24 16	24 30 26 21 16 20	780 410 1,200 200 330 580	3.1 6 5 3 tr(4) nd	limit 1.5 [0.5] 5 [2] 5 [2] 4 [1] 7 [2] 2.4 [0.8]	114/114 36/36 38/38 47/47 48/48	38/38 36/36 38/38 47/47 48/48 47/48
Surface Water	2002 2003 2004 2005 2006 2007 2008	33 34 32 25 24 16 23	24 30 26 21 16 20 22	780 410 1,200 200 330 580 420	3.1 6 5 3 tr(4) nd 3	limit 1.5 [0.5] 5 [2] 5 [2] 4 [1] 7 [2] 2.4 [0.8] 3 [1]	114/114 36/36 38/38 47/47 48/48 47/48 48/48	38/38 36/36 38/38 47/47 48/48 47/48 48/48
	2002 2003 2004 2005 2006 2007 2008 2009	33 34 32 25 24 16 23 23	24 30 26 21 16 20 22 18	780 410 1,200 200 330 580 420 690	3.1 6 5 3 tr(4) nd 3 3.0	limit 1.5 [0.5] 5 [2] 5 [2] 4 [1] 7 [2] 2.4 [0.8] 3 [1] 0.8 [0.3]	114/114 36/36 38/38 47/47 48/48 47/48 48/48 49/49	38/38 36/36 38/38 47/47 48/48 47/48 48/48 48/48 49/49
Surface Water	2002 2003 2004 2005 2006 2007 2008 2009 2010	33 34 32 25 24 16 23 23 15	24 30 26 21 16 20 22 18 tr(11)	780 410 1,200 200 330 580 420 690 310	3.1 6 5 3 tr(4) nd 3 3.0 nd	limit 1.5 [0.5] 5 [2] 5 [2] 4 [1] 7 [2] 2.4 [0.8] 3 [1] 0.8 [0.3] 13 [4]	114/114 36/36 38/38 47/47 48/48 47/48 48/48	38/38 36/36 38/38 47/47 48/48 47/48 48/48
Surface Water	2002 2003 2004 2005 2006 2007 2008 2009 2010 2011	33 34 32 25 24 16 23 23 15 16	24 30 26 21 16 20 22 18 tr(11) 13	780 410 1,200 200 330 580 420 690 310 470	3.1 6 5 3 tr(4) nd 3.0 nd 3.2	limit 1.5 [0.5] 5 [2] 4 [1] 7 [2] 2.4 [0.8] 3 [1] 0.8 [0.3] 13 [4] 1.0 [0.4]	114/114 36/36 38/38 47/47 48/48 47/48 48/48 49/49 44/49 49/49	38/38 36/36 38/38 47/47 48/48 47/48 48/48 49/49 44/49 49/49
Surface Water	2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012	33 34 32 25 24 16 23 23 15 16 41	24 30 26 21 16 20 22 18 tr(11) 13 33	780 410 1,200 200 330 580 420 690 310 470 300	3.1 6 5 3 tr(4) nd 3 3.0 nd	limit 1.5 [0.5] 5 [2] 4 [1] 7 [2] 2.4 [0.8] 3 [1] 0.8 [0.3] 13 [4] 1.0 [0.4] 2.5 [0.8]	114/114 36/36 38/38 47/47 48/48 47/48 48/48 49/49 44/49 49/49 48/48	38/38 36/36 38/38 47/47 48/48 47/48 48/48 49/49 44/49 49/49 48/48
Surface Water	2002 2003 2004 2005 2006 2007 2008 2009 2010 2011	33 34 32 25 24 16 23 23 15 16	24 30 26 21 16 20 22 18 tr(11) 13	780 410 1,200 200 330 580 420 690 310 470	3.1 6 5 3 tr(4) nd 3.0 nd 3.2 12	limit 1.5 [0.5] 5 [2] 4 [1] 7 [2] 2.4 [0.8] 3 [1] 0.8 [0.3] 13 [4] 1.0 [0.4]	114/114 36/36 38/38 47/47 48/48 47/48 48/48 49/49 44/49 49/49	38/38 36/36 38/38 47/47 48/48 47/48 48/48 49/49 49/49 49/49

(Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted during FY2014~2016, FY2018 and Fy2019.

<Sediment>

cis-Chlordane: The presence of the substance in sediment was monitored at 58 sites, and it was detected at all 58 valid sites adopting the detection limit of 0.5pg/g-dry, and the detection range was tr(1.1) ~ 4,200pg/g-dry.

As results of the inter-annual trend analysis from FY2002 to FY2020, reduction tendencies in specimens from river areas, river mouth areas and sea areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

trans-Chlordane: The presence of the substance in sediment was monitored at 58 sites, and it was detected at all 58 valid sites adopting the detection limit of 0.1pg/g-dry, and the detection range was $1.4 \sim 4,500$ pg/g-dry.

As results of the inter-annual trend analysis from FY2002 to FY2020, reduction tendencies in specimens from river areas, river mouth areas and sea areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

Stocktaking of the detection of <i>cis</i> -Chlordane and <i>trans</i> -Chlordane in sediment FY2002~202	Stocktaking of the	detection of cis	-Chlordane and	trans-Chlordane in	sediment F	FY2002~2020
--	--------------------	------------------	----------------	--------------------	------------	-------------

	Monitored	Geometric				Quantification	Detection I	Frequenc
cis-Chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	140	98	18,000	1.8	0.9 [0.3]	189/189	63/63
	2003	190	140	19,000	tr(3.6)	4 [2]	186/186	62/62
	2004	160	97	36,000	4	4 [2]	189/189	63/63
	2005	150	100	44,000	3.3	1.9 [0.64]	189/189	63/63
	2006	100	70	13,000	tr(0.9)	2.4 [0.8]	192/192	64/64
	2007	82	55	7,500	nd	5 [2]	191/192	64/64
Sediment	2008	100	63	11,000	tr(2.3)	2.4 [0.9]	192/192	64/64
(pg/g-dry)	2009	84	61	8,600	2.0	0.7 [0.3]	192/192	64/64
	2010	82	62	7,200	tr(4)	6 [2]	64/64	64/64
	2011	70	58	4,500	1.7	1.1 [0.4]	64/64	64/64
	2012	69	61	11,000	tr(2.6)	2.9 [1.0]	63/63	63/63
	2013	65	55	5,400	tr(1.9)	2.0 [0.8]	63/63	63/63
	2017	47	36	2,800	nd	4.8 [1.6]	61/62	61/62
	2020	42	38	4,200	tr(1.1)	1.2 [0.5]	58/58	58/58
	Monitored	Geometric				Quantification	Detection I	Frequenc
trans-Chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	150	110	16,000	2.1	1.8 [0.6]	189/189	63/63
	2003	130	100	13,000	tr(2.4)	4 [2]	186/186	62/62
	2004	110	80	26,000	3	3 [0.9]	189/189	63/63
	2005	110	81	32,000	3.4	2.3 [0.84]	189/189	63/63
	2006	110	76	12,000	2.2	1.1 [0.4]	192/192	64/64
	2007	82	58	7,500	nd	2.2 [0.8]	191/192	64/64
Sediment	2008	110	66	10,000	2.4	2.0 [0.8]	192/192	64/64
(pg/g-dry)	2009	91	68	8,300	2.1	1.7 [0.7]	192/192	64/64
	2010	95	69	8,000	tr(4)	11 [4]	64/64	64/64
	2011	73	64	4,300	3.2	1.3 [0.5]	64/64	64/64
	2012	80	71	13,000	tr(2.9)	4.0 [1.3]	63/63	63/63
	2013	74	65	5,600	2.5	1.8 [0.7]	63/63	63/63
				, -				
	2017	53	41	3,000	tr(1)	4 [1]	62/62	62/62

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted during FY2014~2016, FY2018 and Fy2019.

<Wildlife>

cis-Chlordane: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $41 \sim 590pg/g$ -wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $39 \sim 2,200pg/g$ -wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 1pg/g-wet, and the detected in the area adopting the detection limit of 1pg/g-wet, and the detected in the area adopting the detection limit of 1pg/g-wet, and the detected in the area adopting the detection limit of 1pg/g-wet, and the detected concentration was 83pg/g-wet.

As results of the inter-annual trend analysis from FY2002 to FY2020 a reduction tendency in specimens from bivalves was identified as statistically significant.

trans-Chlordane: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was $25 \sim 430pg/g$ -wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was $11 \sim 780pg/g$ -wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 2pg/g-wet, and the detected in the area adopting the detection limit of 2pg/g-wet, and the detected in the area adopting the detection limit of 2pg/g-wet, and the detected in the area adopting the detection limit of 2pg/g-wet, and the detected concentration was 34pg/g-wet.

cis-Chlordane	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection I	
<i>cis</i> -cinordane	year	mean*	Meulan	Maximum	WIIIIIIII	limit	Sample	Site
	2002	730	1,200	26,000	24	2.4 [0.8]	38/38	8/8
	2003	1,100	1,400	14,000	110	3.9 [1.3]	30/30	6/6
	2004	1,300	1,600	14,000	91	18 [5.8]	31/31	7/7
	2005	1,000	960	13,000	78	12 [3.9]	31/31	7/7
	2006	970	1,100	18,000	67	4 [1]	31/31	7/7
	2007	870	590	19,000	59	5 [2]	31/31	7/7
Bivalves	2008	750	560	11,000	85	5 [2]	31/31	7/7
(pg/g-wet)	2009	1,200	1,100	16,000	83	4 [2]	31/31	7/7
488	2010	1,600	2,300	15,000	67	4 [2]	6/6	6/6
	2011	790	880	3,400	160	3 [1]	4/4	4/4
	2012	710	500	3,500	180	5 [2]	5/5	5/5
	2012	410	410	2,000	75	13 [4]	5/5	5/5
	2015	220	260	500	80	3 [1]	3/3	3/3
	2010	220	310	590			3/3	3/3
					41	3[1]		
	2002	610	550	6,900	57	2.4 [0.8]	70/70	14/14
	2003	510	400	4,400	43	3.9 [1.3]	70/70	14/14
	2004	620	490	9,800	68	18 [5.8]	70/70	14/14
	2005	520	600	8,000	42	12 [3.9]	80/80	16/1
	2006	520	420	4,900	56	4 [1]	80/80	16/10
	2007	430	360	5,200	30	5 [2]	80/80	16/10
Fish	2008	430	340	3,500	36	5 [2]	85/85	17/1
(pg/g-wet)	2009	430	450	3,200	41	4 [2]	90/90	18/1
	2010	450	630	3,400	51	4 [2]	18/18	18/1
	2011	580	660	3,800	79	3 [1]	18/18	18/1
	2012	580	550	3,100	98	5 [2]	19/19	19/19
	2013	540	450	5,700	65	13 [4]	19/19	19/1
	2016	340	440	2,200	67	3 [1]	19/19	19/1
	2020	290	310	2,200	39	3 [1]	18/18	18/1
	2002	67	180	450	10	2.4 [0.8]	10/10	2/2
	2002	47	120	370	6.8	3.9 [1.3]	10/10	2/2
	2003	39	110	240	tr(5.8)	18 [5.8]	10/10	2/2
	2004	53	110	240 340	tr(5.8)	18 [5.8] 12 [3.9]	10/10	2/2
	2003	33	83		u(3.8) 5		10/10	2/2
				250		4 [1]		
D: Labet	2007	29	83	230	tr(4)	5 [2]	10/10	2/2
Birds**	2008	24	87	280	tr(3)	5 [2]	10/10	2/2
(pg/g-wet)	2009	21	48	130	4	4 [2]	10/10	2/2
	2010	27		180	4	4 [2]	2/2	2/2
	2011			6	6	3 [1]	1/1	1/1
	2012	23		110	5	5 [2]	2/2	2/2
	2013	37		140	tr(10)	13 [4]	2/2	2/2
	2016	38		110	13	3 [1]	2/2	2/2
	2020			83	83	3 [1]	1/1	1/1
	Monitored	Geometric				Quantification	Detection I	Frequei
rans-Chlordane	Monitored year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	-		0.40	2 200		limit	-	
	2002	390	840	2,300	33	2.4 [0.8]	38/38	8/8
	2003	550	840	2,800	69	7.2 [2.4]	30/30	6/6
	2004	560	770	2,800	53	48 [16]	31/31	7/7
	2005	470	660	2,400	40	10 [3.5]	31/31	7/7
	2006	470	580	2,800	41	4 [2]	31/31	7/7
	2007	440	460	1,500	34	6 [2]	31/31	7/7
Bivalves	2008	360	410	1,300	52	7 [3]	31/31	7/7
(pg/g-wet)	2009	540	560	16,000	48	4 [1]	31/31	7/7
	2010	520	640	5,500	31	3 [1]	6/6	6/6
	2010	490	470	2,900	150	4 [1]	4/4	4/4
		170						
		300	310	1 300	140	7 1 2 1	5/5	5/5
	2012	390 280	310 230	1,300 1,700	140 58	7 [2] 16 [5 2]	5/5 5/5	
		390 280 120	310 230 99	1,300 1,700 330	140 58 56	7 [2] 16 [5.2] 6 [2]	5/5 5/5 3/3	5/5 5/5 3/3

Stocktaking of the detection of *cis*-Chlordane and *trans*-Chlordane in wildlife (bivalves, fish and birds) FY2002~2020

	Monitored	Geometric				Quantification	Detection 1	Frequency
trans-Chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	190	160	2,700	20	2.4 [0.8]	70/70	14/14
	2003	160	120	1,800	9.6	7.2 [2.4]	70/70	14/14
	2004	200	130	5,200	tr(17)	48 [16]	70/70	14/14
	2005	160	180	3,100	tr(9.8)	10 [3.5]	76/80	16/16
	2006	150	120	2,000	14	4 [2]	80/80	16/16
	2007	130	100	2,100	8	6 [2]	80/80	16/16
Fish	2008	120	71	1,300	14	7 [3]	85/85	17/17
(pg/g-wet)	2009	130	140	1,300	10	4 [1]	90/90	18/18
	2010	120	170	1,100	9	3 [1]	18/18	18/18
	2011	180	240	1,300	20	4 [1]	18/18	18/18
	2012	170	140	1,100	19	7 [2]	19/19	19/19
	2013	160	170	2,700	tr(14)	16 [5.2]	19/19	19/19
	2016	100	110	800	12	6 [2]	19/19	19/19
	2020	90	110	780	11	6 [2]	18/18	18/18
	2002	14	14	26	8.9	2.4 [0.8]	10/10	2/2
	2003	11	12	27	tr(5.9)	7.2 [2.4]	10/10	2/2
	2004	nd	nd	tr(26)	nd	48 [16]	5/10	1/2
	2005	11	12	30	tr(4.5)	10 [3.5]	10/10	2/2
	2006	7	8	17	tr(3)	4 [2]	10/10	2/2
	2007	7	8	19	tr(3)	6 [2]	10/10	2/2
Birds**	2008	tr(5)	9	27	nd	7 [3]	7/10	2/2
(pg/g-wet)	2009	6	7	13	tr(3)	4 [1]	10/10	2/2
	2010	4		10	tr(2)	3 [1]	2/2	2/2
	2011			5	5	4 [1]	1/1	1/1
	2012	tr(6)		10	tr(4)	7 [2]	2/2	2/2
	2013	26		68	tr(10)	16 [5.2]	2/2	2/2
	2016	18		46	7	6 [2]	2/2	2/2
	2020			34	34	6 [2]	1/1	1/1

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.
(Note 2) "**" : There is no consistency between the results of the ornithological survey after FY2013 and those in previous

(Note 2) "**": There is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted during FY2014, 2015 and FY2017~2019.

<Air>

cis-Chlordane: The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.03 pg/m³, and the detection range was $1.5 \sim 200$ pg/m³.

As results of the inter-annual trend analysis from FY2003 to FY2020, a reduction tendency in specimens from warm season was identified as statistically significant.

trans-Chlordane: The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.06pg/m^3 , and the detection range was $1.5 \sim 230 \text{pg/m}^3$.

As results of the inter-annual trend analysis from FY2003 to FY2020, a reduction tendency in specimens from warm season was identified as statistically significant.

Chi i	Manitas	Geometric	Mail	Maar	Mini	Quantification	Detection I	Frequen
cis-Chlordane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	31	40	670	0.86	0.60 [0.20]	102/102	34/34
	2003 Warm season	110	120	1,600	6.4	0.51 [0.17]	35/35	35/35
	2003 Cold season	30	38	220	2.5	0.31 [0.17]	34/34	34/34
	2004 Warm season	92	160	1,000	2.3	0.57 [0.19]	37/37	37/37
	2004 Cold season	29	49	290	1.2	0.37 [0.19]	37/37	37/37
	2005 Warm season	92	120	1,000	3.4	0.16 [0.054]	37/37	37/37
	2005 Cold season	16	19	260	1.4	0.16 [0.034]	37/37	37/37
	2006 Warm season	82	110	760	2.9	0 12 [0 04]	37/37	37/37
	2006 Cold season	19	19	280	2.0	0.13 [0.04]	37/37	37/37
	2007 Warm season	90	120	1,100	3.3	0 10 50 0 41	36/36	36/36
	2007 Cold season	17	20	230	1.4	0.10 [0.04]	36/36	36/36
	2008 Warm season	75	120	790	1.9	0.1450.051	37/37	37/37
Air	2008 Cold season	21	34	200	1.5	0.14 [0.05]	37/37	37/37
(pg/m^3)	2009 Warm season	67	110	790	2.7		37/37	37/37
	2009 Cold season	19	22	180	0.65	0.16 [0.06]	37/37	37/37
	2010 Warm season	68	100	700	2.2		37/37	37/3'
	2010 Cold season	20	27	130	tr(0.8)	0.9 [0.3]	37/37	37/3′
	2011 Warm season	66	95	700	1.5		35/35	35/3
	2011 Cold season	20	31	240	tr(0.88)	1.3 [0.42]	37/37	37/3
	2012 Warm season	61	98	650	2.9		36/36	36/3
	2012 Wahn season 2012 Cold season	10	14	74	nd	1.5 [0.51]	35/36	35/3
	2012 Cold season 2013 Warm season	58	97	580	1.5		36/36	36/3
-		58 11	15	580 86		0.7 [0.2]		
	2013 Cold season	53	86	810	tr(0.5)	0.9 [0.3]	36/36	36/3
	2016 Warm season	33	37		0.9		37/37	<u> </u>
	2020 Warm season	52	57	200	1.5	0.09 [0.03]	37/37	
<i>trans</i> - Chlordane	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Site
	2002	36	48	820	0.62	0.60 [0.20]	102/102	34/34
	2003 Warm season	130	150	2,000	6.5		35/35	35/3
	2003 Cold season	37	44	2,000	2.5	0.86 [0.29]	34/34	34/3
	2004 Warm season	110	190	1,300	2.2		37/37	37/3
	2004 Warm season 2004 Cold season	35	60	360	1.5	0.69 [0.23]	37/37	37/3
	2004 Cold season 2005 Warm season	100	130	1,300	3.2		37/37	37/3
	2005 Warm season 2005 Cold season	100	23	310	3.2 1.9	0.34 [0.14]	37/37	37/3
	2005 Cold season 2006 Warm season	<u>19</u> 96	140	1,200			37/37	37/3
					3.4	0.17 [0.06]		
	2006 Cold season	22	21	350	2.0		37/37	37/3
	2007 Warm season	100	140	1,300	3.8	0.12 [0.05]	36/36	36/3
	2007 Cold season	20	24	300	1.5		36/36	36/3
Air	2008 Warm season	87	130	990	2.5	0.17 [0.06]	37/37	37/3
(pg/m^3)	2008 Cold season	25	41	250	1.8		37/37	37/3
ч <i>д</i> /	2009 Warm season	79	120	960	2.6	0.12 [0.05]	37/37	37/3′
	2009 Cold season	23	30	210	0.68	[0:00]	37/37	37/3
	2010 Warm season	79	120	820	2.0	1.2 [0.4]	37/37	37/3′
	2010 Cold season	24	34	150	tr(1.0)	1.2 [0.7]	37/37	37/3′
	2011 Warm season	76	110	810	tr(1.4)	1.6 [0.53]	35/35	35/3
	2011 Cold season	24	37	290	tr(0.70)	1.0 [0.33]	37/37	37/3
	2012 Warm season	70	120	780	2.8	2 1 [0 7]	36/36	36/3
	2012 Wallin Season		10	95	nd	2.1 [0.7]	35/36	35/3
	2012 Cold season	12	18	,,,		<u>u</u>		
		<u> </u>	18	<i>5</i> 690	1.7	0.0.0.21	36/36	36/3
	2012 Cold season					0.8 [0.3]		36/30 36/30
	2012 Cold season 2013 Warm season	64	120	690	1.7	0.8 [0.3]	36/36	

2020 Warm season3542230(Note) No monitoring was conducted in FY2014, 2015 and FY2017~2019.

Oxychlordane, cis-Nonachlor and trans-Nonachlor

<Surface Water>

Oxychlordane: The presence of the substance in surface water was monitored at 46 sites, and it was detected at 21 of the 46 valid sites adopting the detection limit of 1pg/L, and the detection range was up to 8pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2020, the recent 6 years period was indicated lower concentration than the first 6 years period in specimens from river areas in surface water as statistically significant.

cis-Nonachlor: The presence of the substance in surface water was monitored at 46 sites, and it was detected at all 46 valid sites adopting the detection limit of 0.5 pg/L, and the detection range was tr(0.6) ~ 39 pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2020, a reduction tendency in specimens from river areas was identified as statistically significant.

trans-Nonachlor: The presence of the substance in surface water was monitored at 46 sites, and it was detected at 45 of the 46 valid sites adopting the detection limit of 2pg/L, and the detection range was up to 95pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2020, a reduction tendency in specimens from river areas was identified as statistically significant and a reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

Stocktaking of the	detection of Ox	vchlordane, <i>cis</i> -	Nonachlor and	l <i>trans</i> -Nonachle	or in surface	water FY2002~2020

	Monitored	Geometric				Quantification	Detection 1	Frequency
Oxychlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.7	3.5	41	nd	1.2 [0.4]	96/114	35/38
	2003	3	2	39	tr(0.6)	2 [0.5]	36/36	36/36
	2004	3.2	2.9	47	tr(0.7)	2 [0.5]	38/38	38/38
	2005	2.6	2.1	19	nd	1.1 [0.4]	46/47	46/47
	2006	tr(2.5)	tr(2.4)	18	nd	2.8 [0.9]	43/48	43/48
	2007	tr(2)	nd	41	nd	6 [2]	25/48	25/48
Surface Water	2008	1.9	1.9	14	nd	1.9 [0.7]	40/48	40/48
(pg/L)	2009	2.0	1.9	19	nd	1.1 [0.4]	45/49	45/49
	2010	1.5	1.3	45	nd	0.7 [0.3]	47/49	47/49
	2011	1.9	1.8	34	nd	1.3 [0.5]	44/49	44/49
	2012	2.2	2.3	17	nd	0.9 [0.4]	44/48	44/48
	2013	1.8	1.8	12	nd	0.9 [0.4]	41/48	41/48
	2017	nd	nd	12	nd	4 [2]	19/47	19/47
	2020	tr(1)	nd	8	nd	3 [1]	21/46	21/46
	Monitored	Geometric				Quantification	Detection 1	Frequenc
cis-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	•					limit	-	
	2002	7.9	6.7	250	0.23	1.8 [0.6]	114/114	38/38
	2003	8.0	7.0	130	1.3	0.3 [0.1]	36/36	36/36
	2004	7.5	6.3	340	0.8	0.6 [0.2]	38/38	38/38
	2005	6.0	5.9	43	0.9	0.5 [0.2]	47/47	47/47
	2006	6.6	5.6	83	1.0	0.8 [0.3]	48/48	48/48
	2007	5.9	6.1	210	nd	2.4 [0.8]	43/48	43/48
Surface Water	2008	6.5	5.9	130	0.9	0.9 [0.3]	48/48	48/48
(pg/L)	2009	7.1	5.5	210	1.4	0.3 [0.1]	49/49	49/49
	2010	5.4	3.9	40	tr(0.9)	1.3 [0.4]	49/49	49/49
	2011	5.0	4.3	130	0.8	0.6 [0.2]	49/49	49/49
	2012	6.4	5.9	58	1.1	0.8 [0.3]	48/48	48/48
	2013	5.1	4.6	74	tr(0.7)	0.8 [0.3]	48/48	48/48
	2017	4.6	4.6	36	tr(0.6)	1.5 [0.6]	47/47	47/47
	2017							

	Monitored	Geometric				Quantification	Detection	Frequency
trans-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	30	24	780	1.8	1.2 [0.4]	114/114	38/38
	2003	26	20	450	4	2 [0.5]	36/36	36/36
	2004	25	19	1,100	tr(3)	4 [2]	38/38	38/38
	2005	20	17	150	2.6	2.5 [0.84]	47/47	47/47
	2006	21	16	310	3.2	3.0 [1.0]	48/48	48/48
	2007	17	17	540	tr(2)	5 [2]	48/48	48/48
Surface Water	2008	18	17	340	1.9	1.6 [0.6]	48/48	48/48
(pg/L)	2009	20	17	530	2.7	1.0 [0.4]	49/49	49/49
	2010	12	11	93	nd	8 [3]	45/49	45/49
	2011	15	12	480	2.6	1.3 [0.5]	49/49	49/49
	2012	30	26	210	7.9	1.5 [0.6]	48/48	48/48
	2013	14	11	170	2.3	1.5 [0.6]	48/48	48/48
	2017	13	14	120	tr(2)	3 [1]	47/47	47/47
	2020	9	8	95	nd	5 [2]	45/46	45/46

(Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted in FY2014~2016, FY2018 and 2019.

<Sediment>

Oxychlordane: The presence of the substance in sediment was monitored at 58 sites, and it was detected at 34 of the 58 valid sites adopting the detection limit of 0.7pg/g-dry, and the detection range was up to 39pg/g-dry.

As results of the inter-annual trend analysis from FY2002 to FY2020, the recent 6 years period was indicated lower concentration than the first 6 years period in specimens from river mouth areas and also the overall areas in sediment as statistically significant.

cis-Nonachlor: The presence of the substance in sediment was monitored at 58 sites, and it was detected at all 58 valid sites adopting the detection limit of 0.3pg/g-dry, and the detection range was tr(0.7) ~ 2,100pg/g-dry.

As results of the inter-annual trend analysis from FY2002 to FY2020, reduction tendencies in specimens from river areas and sea areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

trans-Nonachlor: The presence of the substance in sediment was monitored at 58 sites, and it was detected at all 58 valid sites adopting the detection limit of 0.2pg/g-dry, and the detection range was $1.9 \sim 3,800pg/g$ -dry.

As results of the inter-annual trend analysis from FY2002 to FY2020, reduction tendencies in specimens from river areas, river mouth areas and sea areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

Stocktaking of the detection of Oxychlordane, cis-Nonachlor and trans-Nonachlor in sediment FY2002~2020

	Monitored	Geometric				Quantification	Detection I	Frequency
Oxychlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.7	1.7	120	nd	1.5 [0.5]	153/189	59/63
	2003	2	2	85	nd	1 [0.4 <u>]</u>	158/186	57/62
	2004	tr(2.1)	tr(1.3)	140	nd	3 [0.8]	129/189	54/63
	2005	2.3	tr(1.9)	160	nd	2.0 [0.7]	133/189	51/63
	2006	tr(2.5)	tr(1.7)	280	nd	2.9 [1.0]	141/192	54/64
	2007	tr(2.1)	tr(1.5)	76	nd	2.5 [0.9]	117/192	46/64
Sediment	2008	tr(2)	tr(1)	340	nd	3 [1]	110/192	48/64
(pg/g-dry)	2009	2	tr(1)	150	nd	2 [1]	97/192	45/64
	2010	1.7	1.2	60	nd	1.0 [0.4]	56/64	56/64
	2011	tr(1.6)	tr(1.2)	83	nd	2.2 [0.9]	36/64	36/64
	2012	tr(1.4)	tr(1.0)	75	nd	1.7 [0.7]	38/63	38/63
	2013	1.5	1.3	54	nd	1.3 [0.5]	50/63	50/63
	2017	tr(1)	tr(1)	78	nd	3 [1]	41/62	41/62
	2020	tr(1.1)	tr(1.0)	39	nd	1.8 [0.7]	34/58	34/58

	Monitored	Geometric				Quantification	Detection	Frequency
cis-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	76	66	7,800	nd	2.1 [0.7]	188/189	63/63
	2003	66	50	6,500	nd	3 [0.9]	184/186	62/62
	2004	53	34	9,400	tr(0.8)	2 [0.6]	189/189	63/63
	2005	56	42	9,900	tr(1.1)	1.9 [0.64]	189/189	63/63
	2006	58	48	5,800	tr(0.6)	1.2 [0.4]	192/192	64/64
	2007	48	35	4,200	nd	1.6 [0.6]	191/192	64/64
Sediment	2008	57	42	5,100	1.1	0.6 [0.2]	192/192	64/64
(pg/g-dry)	2009	53	38	4,700	1.4	1.0 [0.4]	192/192	64/64
	2010	53	45	3,600	2.3	0.9 [0.3]	64/64	64/64
	2011	41	38	2,900	nd	1.1 [0.4]	63/64	63/64
	2012	44	35	4,900	tr(1)	3 [1]	63/63	63/63
	2013	41	31	3,100	tr(0.6)	0.7 [0.3]	63/63	63/63
	2017	31	25	1,500	nd	1.7 [0.7]	61/62	61/62
	2020	31	24	2,100	tr(0.7)	0.8 [0.3]	58/58	58/58
	Monitored	Geometric				Quantification	Detection 1	Frequency
trans-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	130	83	13,000	3.1	1.5 [0.5]	189/189	63/63
	2003	110	78	11,000	2	2 [0.6]	186/186	62/62
	2004	94	63	23,000	3	2 [0.6]	189/189	63/63
	2005	99	72	24,000	2.4	1.5 [0.54]	189/189	63/63
	2006	100	65	10,000	3.4	1.2 [0.4]	192/192	64/64
	2007	78	55	8,400	tr(1.6)	1.7 [0.6]	192/192	64/64
Sediment	2008	91	53	8,400	tr(1.6)	2.2 [0.8]	192/192	64/64
(pg/g-dry)	2009	85	58	7,800	2.0	0.9 [0.3]	192/192	64/64
	2010	80	65	6,200	tr(3)	6 [2]	64/64	64/64
	2011	68	52	4,500	1.7	0.8 [0.3]	64/64	64/64
	2012	69	62	10,000	2.5	2.4 [0.8]	63/63	63/63
	2013	67	54	4,700	2.2	1.2 [0.4]	63/63	63/63
	2017	47	39	2,600	nd	6 [2]	61/62	61/62
	2020	48	40	3,800	1.9	0.5 [0.2]	58/58	58/58

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted in FY2014~2016, FY2018 and 2019.

<Wildlife>

Oxychlordane: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $5 \sim 59$ pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $24 \sim 2,100$ pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 1pg/g-wet, and the detected in the area adopting the detection limit of 1pg/g-wet, and the detected in the area adopting the detection limit of 1pg/g-wet, and the detected concentration was 820pg/g-wet.

As results of the inter-annual trend analysis from FY2002 to FY2020 a reduction tendency in specimens from fish was identified as statistically significant.

cis-Nonachlor: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $20 \sim 200pg/g$ -wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $26 \sim 1,600pg/g$ -wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 1pg/g-wet, and the detected in the area adopting the detection limit of 1pg/g-wet, and the detected in the area adopting the detection limit of 1pg/g-wet, and the detected in the area adopting the detection limit of 1pg/g-wet, and the detected concentration was 480pg/g-wet.

As results of the inter-annual trend analysis from FY2002 to FY2020 a reduction tendency in specimens from bivalves was identified as statistically significant.

trans-Nonachlor: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3

valid areas adopting the detection limit of 2pg/g-wet, and the detection range was $47 \sim 480pg/g$ -wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was $95 \sim 5,700pg/g$ -wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 2pg/g-wet, and the detected in the area adopting the detection limit of 2pg/g-wet, and the detected in the area adopting the detection limit of 2pg/g-wet, and the detected concentration was 81pg/g-wet.

As results of the inter-annual trend analysis from FY2002 to FY2020 a reduction tendency in specimens from bivalves was identified as statistically significant.

<u> </u>	Monitored	Geometric				Quantification	Detection I	Frequenc
Oxychlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	71	83	5,600	nd	3.6 [1.2]	37/38	8/8
	2003	93	62	1,900	11	8.4 [2.8]	30/30	6/6
	2004	110	100	1,700	14	9.2 [3.1]	31/31	7/7
	2005	99	79	1,400	12	9.3 [3.1]	31/31	7/7
	2006	91	90	2,400	7	7 [3]	31/31	7/7
	2007	70	43	2,200	8	6 [2]	31/31	7/7
Bivalves	2008	64	55	1,100	7	7 [2]	31/31	7/7
(pg/g-wet)	2009	100	89	820	10	4 [1]	31/31	7/7
	2010	240	390	3,300	11	8 [3]	6/6	6/6
	2011	68	100	260	8	3 [1]	4/4	4/4
	2012	66	80	450	12	3 [1]	5/5	5/5
	2013	42	44	210	8	3 [1]	5/5	5/5
	2016	27	40	43	11	3 [1]	3/3	3/3
	2020	24	45	59	5	3 [1]	3/3	3/3
	2002	170	140	3,900	16	3.6 [1.2]	70/70	14/14
	2003	150	160	820	30	8.4 [2.8]	70/70	14/14
	2004	160	140	1,500	25	9.2 [3.1]	70/70	14/14
	2005	150	150	1,900	20	9.3 [3.1]	80/80	16/16
	2006	150	120	3,000	28	7 [3]	80/80	16/16
	2007	120	100	1,900	17	6 [2]	80/80	16/16
Fish	2008	130	130	2,200	15	7 [2]	85/85	17/17
(pg/g-wet)	2009	120	99	2,400	23	4 [1]	90/90	18/18
	2010	120	140	1,000	33	8 [3]	18/18	18/18
	2011	140	130	2,300	33	3 [1]	18/18	18/18
	2012	140	180	390	28	3 [1]	19/19	19/19
	2013	130	130	560	31	3 [1]	19/19	19/19
	2016	96	80	950	31	3 [1]	19/19	19/19
	2020	75	60	2,100	24	3 [1]	18/18	18/18
	2002	640	630	890	470	3.6 [1.2]	10/10	2/2
	2003	760	700	1,300	610	8.4 [2.8]	10/10	2/2
	2004	460	450	730	320	9.2 [3.1]	10/10	2/2
	2005	610	660	860	390	9.3 [3.1]	10/10	2/2
	2006	510	560	720	270	7 [3]	10/10	2/2
	2007	440	400	740	290	6 [2]	10/10	2/2
Birds**	2008	560	530	960	290	7 [2]	10/10	2/2
(pg/g-wet)	2009	300	290	540	190	4 [1]	10/10	2/2
	2010	400		510	320	8 [3]	2/2	2/2
	2011			590	590	3 [1]	1/1	1/1
	2012	250		360	170	3 [1]	2/2	2/2
	2013	2,500		3,400	1,900	3 [1]	2/2	2/2
	2016	580		1,400	240	3 [1]	2/2	2/2
	2020			820	820	3 [1]	1/1	1/1

Stocktaking of the detection of Oxychlordane, *cis*-Nonachlor and *trans*-Nonachlor in wildlife (bivalves, fish and birds) FY2002~2020

	Monitored	Geometric				Quantification	Detection 1	Frequency
cis-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	170	300	870	8.6	1.2 [0.4]	38/38	8/8
	2003	290	260	1,800	48	4.8 [1.6]	30/30	6/6
	2004	320	380	1,800	43	3.4 [1.1]	31/31	7/7
	2005	270	220	1,300	27	4.5 [1.5]	31/31	7/7
	2006	270	180	1,500	31	3 [1]	31/31	7/7
	2007	250	250	1,000	26	3 [1]	31/31	7/7
Bivalves	2008	210	210	780	33	4 [1]	31/31	7/7
(pg/g-wet)	2009	300	310	10,000	31	3 [1]	31/31	7/7
	2010	280	310	1,300	35	3 [1]	6/6	6/6
	2011	250	280	1,300	77	1.8 [0.7]	4/4	4/4
	2012	200	190	670	52	2 [1]	5/5	5/5
	2013	150	140	900	38	2.2 [0.7]	5/5	5/5
	2016	72	46	220	37	1.4 [0.6]	3/3	3/3
	2020	53	38	200	20	3 [1]	3/3	3/3
	2002	460	420	5,100	46	1.2 [0.4]	70/70	14/14
	2003	360	360	2,600	19	4.8 [1.6]	70/70	14/14
	2004	430	310	10,000	48	3.4 [1.1]	70/70	14/14
	2005	380	360	6,200	27	4.5 [1.5]	80/80	16/16
	2006	370	330	3,300	33	3 [1]	80/80	16/16
	2007	320	280	3,700	16	3 [1]	80/80	16/16
Fish	2008	350	300	3,200	46	4 [1]	85/85	17/17
(pg/g-wet)	2009	340	340	2,600	27	3 [1]	90/90	18/18
(188 ····)	2010	320	370	2,200	23	3 [1]	18/18	18/18
	2010	440	450	2,900	45	1.8 [0.7]	18/18	18/18
	2011	420	450	2,200	33	2 [1]	19/19	19/19
	2012	430	420	3,000	34	2.2 [0.7]	19/19	19/19
	2015	300	170	1,900	53	1.4 [0.6]	19/19	19/19
	2010	230	250	1,500	26	3 [1]	18/18	18/18
	2020	200	240	450	<u></u>	1.2 [0.4]	10/10	2/2
	2002	200	240 260	450 660	68	4.8 [1.6]	10/10	2/2
	2003	140	150	240	73	3.4 [1.1]	10/10	2/2
	2004	140	130	240 370	86	4.5 [1.5]	10/10	2/2
	2006	120	130	270	60 42	3 [1]	10/10	2/2
D. 1 **	2007	130	140	300	42	3 [1]	10/10	2/2
Birds**	2008	140	150	410	37	4 [1]	10/10	2/2
(pg/g-wet)	2009	81	85	160	44	3 [1]	10/10	2/2
	2010	100		190	57	3 [1]	2/2	2/2
	2011			76	76	1.8 [0.7]	1/1	1/1
	2012	75		100	56	2 [1]	2/2	2/2
	2013	270		970	74	2.2 [0.7]	2/2	2/2
	2016	240		770	74	1.4 [0.6]	2/2	2/2
	2020			480	480	3 [1]	1/1	1/1
	Monitored	Geometric				Quantification	Detection 1	Frequenc
trans-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	•					limit		
	2002	450	1,100	1,800	21	2.4 [0.8]	38/38	8/8
	2003	800	700	3,800	140	3.6 [1.2]	30/30	6/6
	2004	780	870	3,400	110	13 [4.2]	31/31	7/7
	2005	700	650	3,400	72	6.2 [2.1]	31/31	7/7
	2006	660	610	3,200	85	3 [1]	31/31	7/7
	2007	640	610	2,400	71	7 [3]	31/31	7/7
Bivalves	2008	510	510	2,000	94	6 [2]	31/31	7/7
(pg/g-wet)	2009	780	680	33,000	79	3 [1]	31/31	7/7
	2010	790	870	6,000	84	4 [2]	6/6	6/6
	2011	640	680	3,000	200	3 [1]	4/4	4/4
	2012	530	400	1,800	190	4 [1]	5/5	5/5
	2012	380	370	2,000	98	10 [3.4]	5/5	5/5
	2015	200	150	520	97	3 [1]	3/3	3/3
				540	//	J I I I		5,5
	2020	140	130	480	47	4 [2]	3/3	3/3

	Monitored	Geometric				Quantification	Detection	Frequency
trans-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	1,000	900	8,300	98	2.4 [0.8]	70/70	14/14
	2003	920	840	5,800	85	3.6 [1.2]	70/70	14/14
	2004	1,100	760	21,000	140	13 [4.2]	70/70	14/14
	2005	970	750	13,000	80	6.2 [2.1]	80/80	16/16
	2006	940	680	6,900	120	3 [1]	80/80	16/16
	2007	800	680	7,900	71	7 [3]	80/80	16/16
Fish	2008	860	750	6,900	87	6 [2]	85/85	17/17
(pg/g-wet)	2009	810	720	7,400	68	3 [1]	90/90	18/18
	2010	800	1,000	4,700	110	4 [2]	18/18	18/18
	2011	1,100	1,000	5,000	190	3 [1]	18/18	18/18
	2012	1,100	1,300	4,200	140	4 [1]	19/19	19/19
	2013	1,100	1,100	7,800	150	10 [3.4]	19/19	19/19
	2016	690	410	3,400	170	3 [1]	19/19	19/19
	2020	530	510	5,700	95	4 [2]	18/18	18/18
	2002	890	980	1,900	350	2.4 [0.8]	10/10	2/2
	2003	1,100	1,400	3,700	350	3.6 [1.2]	10/10	2/2
	2004	690	780	1,200	390	13 [4.2]	10/10	2/2
	2005	870	880	2,000	440	6.2 [2.1]	10/10	2/2
	2006	650	620	1,500	310	3 [1]	10/10	2/2
	2007	590	680	1,400	200	7 [3]	10/10	2/2
Birds**	2008	740	850	2,600	180	6 [2]	10/10	2/2
(pg/g-wet)	2009	400	430	730	220	3 [1]	10/10	2/2
	2010	510		880	290	4 [2]	2/2	2/2
	2011			400	400	3 [1]	1/1	1/1
	2012	360		480	270	4 [1]	2/2	2/2
	2013	55		170	18	10 [3.4]	2/2	2/2
	2016	60		130	28	3 [1]	2/2	2/2
	2020			81	81	4 [2]	1/1	1/1

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) " ** " : There is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted during FY2014, 2015 and FY2017~2019.

<Air>

Oxychlordane: The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.04 pg/m^3 , and the detection range was $0.15 \sim 2.6 \text{ pg/m}^3$.

As results of the inter-annual trend analysis from FY2003 to FY2020, a reduction tendency in specimens from warm season was identified as statistically significant.

cis-Nonachlor: The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.04 pg/m³, and the detection range was $0.13 \sim 24$ pg/m³.

As results of the inter-annual trend analysis from FY2003 to FY2020, a reduction tendency in specimens from warm season was identified as statistically significant.

trans-Nonachlor: The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.04 pg/m³, and the detection range was $1.0 \sim 140$ pg/m³.

As results of the inter-annual trend analysis from FY2003 to FY2020, a reduction tendency in specimens from warm season was identified as statistically significant.

Oxychlordane	Monitored year	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection I	requenc
Jxyemoruane		mean	Wiediali	Maximum	Willinnun	limit	Sample	Site
	2002	0.96	0.98	8.3	nd	0.024 [0.008]	101/102	34/34
	2003 Warm season	2.5	2.7	12	0.41	0.045 [0.015]	35/35	35/35
	2003 Cold season	0.87	0.88	3.2	0.41	0.045 [0.015]	34/34	34/34
	2004 Warm season	1.9	2.0	7.8	0.41	0.13 [0.042]	37/37	37/37
	2004 Cold season	0.80	0.76	3.9	0.27	0.13 [0.042]	37/37	37/37
	2005 Warm season	1.9	2.0	8.8	0.65	0 1 6 10 05 41	37/37	37/37
	2005 Cold season	0.55	0.50	2.2	0.27	0.16 [0.054]	37/37	37/37
	2006 Warm season	1.8	1.9	5.7	0.47	0.00 10.001	37/37	37/37
	2006 Cold season	0.54	0.56	5.1	tr(0.13)	0.23 [0.08]	37/37	37/37
	2007 Warm season	1.9	1.8	8.6	0.56	0.05 [0.03]	36/36	36/36
	2007 Cold season	0.61	0.63	2.4	0.26	0.05 [0.02]	36/36	36/36
	2008 Warm season	1.7	1.7	7.1	0.50	0.04.50.013	37/37	37/37
Air	2008 Cold season	0.61	0.63	1.8	0.27	0.04 [0.01]	37/37	37/37
(pg/m^3)	2009 Warm season	1.7	1.8	6.5	0.38		37/37	37/37
	2009 Cold season	0.65	0.61	2.7	0.24	0.04 [0.02]	37/37	37/37
	2010 Warm season	1.5	1.5	6.2	0.44		37/37	37/37
	2010 Cold season	0.56	0.55	2.3	0.26	0.03 [0.01]	37/37	37/37
	2011 Warm season	1.5	1.5	5.2	0.28		35/35	35/35
	2011 Cold season	0.61	0.57	2.6	0.20	0.07 [0.03]	37/37	37/37
	2012 Warm season	1.4	1.6	6.7	0.34		36/36	36/36
	2012 Cold season	0.41	0.38	1.0	0.22	0.08 [0.03]	36/36	36/36
	2012 Cold season 2013 Warm season	1.4	1.5	4.7	0.36		36/36	36/36
	2013 Cold season	0.43	0.41	1.0	0.20	0.03 [0.01]	36/36	36/36
	2015 Cold season 2016 Warm season	1.4	1.4	8.9	0.20	0.16 [0.06]	37/37	37/37
	2020 Warm season	0.79	0.8	2.6	0.15	0.10 [0.04]	37/37	37/37
	2020 Walli Scasoli	0.77	0.8	2.0	0.15	Quantification	Detection I	
is-Nonachlor	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	3.1	4.0	62	0.071	0.030 [0.010]	102/102	34/34
	2003 Warm season	12	15	220	0.81		35/35	35/35
	2003 Cold season	2.7	3.5	220	0.18	0.026 [0.0088]	34/34	34/34
	2004 Warm season	10	15	130	0.36		37/37	37/37
	2004 Warm season 2004 Cold season	2.7	4.4	28	0.087	0.072 [0.024]	37/37	37/37
	2004 Cold season 2005 Warm season	10	14	160	0.30		37/37	37/37
	2005 Cold season	1.6	14	34	0.30	0.08 [0.03]	37/37	37/37
	2006 Warm season	11	12	170	0.28	0.15 [0.05]	37/37	37/37
	2006 Cold season	2.4	2.0	41	tr(0.14)		37/37	37/37
	2007 Warm season	10	14	150	0.31	0.03 [0.01]	36/36	36/36
	2007 Cold season	1.6	1.7	22	0.09		36/36	36/36
Air	2008 Warm season	7.9	12	87	0.18	0.03 [0.01]	37/37	37/37
	2000 C - 1	2.0	27	19	0.16		37/37	37/37
(pg/m^3)	2008 Cold season		2.7					27/27
(pg/m ³)	2009 Warm season	7.5	10	110	0.33	0.04 [0.02]	37/37	
(pg/m ³)	2009 Warm season 2009 Cold season	7.5 1.9	10 2.1	110 18	0.07	0.04 [0.02]	37/37	37/37
(pg/m ³)	2009 Warm season2009 Cold season2010 Warm season	7.5 1.9 7.5	10 2.1 10	110 18 68	0.07		<u> </u>	37/37 37/37
(pg/m ³)	2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season	7.5 1.9 7.5 1.8	10 2.1 10 2.1	110 18 68 13	0.07 0.23 tr(0.06)	0.04 [0.02]	37/37 37/37 37/37	37/37 37/37 37/37
(pg/m ³)	2009 Warm season2009 Cold season2010 Warm season2010 Cold season2011 Warm season	7.5 1.9 7.5 1.8 7.4	10 2.1 10 2.1 8.8	110 18 68 13 89	0.07	0.11 [0.04]	<u>37/37</u> <u>37/37</u> <u>37/37</u> <u>35/35</u>	37/37 37/37 37/37 35/35
(pg/m ³)	2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Warm season 2011 Cold season	7.5 1.9 7.5 1.8 7.4 1.9	10 2.1 10 2.1	110 18 68 13 89 28	0.07 0.23 tr(0.06)		37/37 37/37 37/37	37/37 37/37 37/37 35/35
(pg/m ³)	2009 Warm season2009 Cold season2010 Warm season2010 Cold season2011 Warm season	7.5 1.9 7.5 1.8 7.4	10 2.1 10 2.1 8.8	110 18 68 13 89	0.07 0.23 tr(0.06) 0.24	0.11 [0.04]	<u>37/37</u> <u>37/37</u> <u>37/37</u> <u>35/35</u>	37/37 37/37 37/37 35/35 36/37
(pg/m ³)	2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Warm season 2011 Cold season	7.5 1.9 7.5 1.8 7.4 1.9	10 2.1 10 2.1 8.8 2.9	110 18 68 13 89 28	0.07 0.23 tr(0.06) 0.24 nd	0.11 [0.04]	<u>37/37</u> 37/37 <u>37/37</u> <u>35/35</u> <u>36/37</u>	37/37 37/37 37/37 35/35 36/37 36/36
(pg/m ³)	2009 Warm season2009 Cold season2010 Warm season2010 Cold season2011 Warm season2011 Cold season2012 Warm season	7.5 1.9 7.5 1.8 7.4 1.9 6.9	10 2.1 10 2.1 8.8 2.9 11	110 18 68 13 89 28 89	0.07 0.23 tr(0.06) 0.24 nd 0.29	0.11 [0.04] 0.15 [0.051] 0.12 [0.05]	37/37 37/37 37/37 35/35 36/37 36/36	37/37 37/37 37/37 35/35 36/37 36/36 36/36
(pg/m ³)	2009 Warm season2009 Cold season2010 Warm season2010 Cold season2011 Warm season2011 Cold season2012 Warm season2012 Cold season	7.5 1.9 7.5 1.8 7.4 1.9 6.9 0.98	$ \begin{array}{r} 10\\ 2.1\\ 10\\ 2.1\\ 8.8\\ 2.9\\ 11\\ 1.1 \end{array} $	110 18 68 13 89 28 89 28 89 10	0.07 0.23 tr(0.06) 0.24 nd 0.29 tr(0.05)	0.11 [0.04]	37/37 37/37 35/35 36/37 36/36 36/36	37/37 37/37 37/37 35/35 36/37 36/36 36/36 36/36 36/36
(pg/m ³)	2009 Warm season2009 Cold season2010 Warm season2010 Cold season2011 Cold season2011 Cold season2012 Warm season2012 Warm season2013 Warm season	7.5 1.9 7.5 1.8 7.4 1.9 6.9 0.98 6.4	$ \begin{array}{r} 10\\ 2.1\\ 10\\ 2.1\\ 8.8\\ 2.9\\ 11\\ 1.1\\ 10\\ \end{array} $	110 18 68 13 89 28 89 10 72	0.07 0.23 tr(0.06) 0.24 nd 0.29 tr(0.05) 0.15	0.11 [0.04] 0.15 [0.051] 0.12 [0.05]	37/37 37/37 35/35 36/37 36/36 36/36 36/36	37/37 37/37 37/37 35/35 36/37 36/36 36/36

Stocktaking of the detection of Oxychlordane. <i>cis</i> -Nonachlor and <i>trans</i> -Nonachlor in air FY2002~2020
--

trans-		Geometric				Quantification	Detection I	Frequency
Nonachlor	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	24	30	550	0.64	0.30 [0.10]	102/102	34/34
	2003 Warm season	87	100	1,200	5.1	0.35 [0.12]	35/35	35/35
	2003 Cold season	24	28	180	2.1	0.55 [0.12]	34/34	34/34
	2004 Warm season	72	120	870	1.9	0.49 [0.16]	37/37	37/37
	2004 Cold season	23	39	240	0.95	0.48 [0.16]	37/37	37/37
	2005 Warm season	75	95	870	3.1	0 12 [0 044]	37/37	37/37
	2005 Cold season	13	16	210	1.2	0.13 [0.044]	37/37	37/37
	2006 Warm season	68	91	800	3.0	0.10 [0.03]	37/37	37/37
	2006 Cold season	16	15	240	1.4	0.10 [0.03]	37/37	37/37
	2007 Warm season	72	96	940	2.5	0.00 [0.02]	36/36	36/36
	2007 Cold season	13	15	190	1.1	0.09 [0.03]	36/36	36/36
A :	2008 Warm season	59	91	650	1.5	0.00 [0.02]	37/37	37/37
Air $(n\alpha/m^3)$	2008 Cold season	17	25	170	1.3	0.09 [0.03]	37/37	37/37
(pg/m ³)	2009 Warm season	54	81	630	2.2	0.07 [0.02]	37/37	37/37
	2009 Cold season	16	19	140	0.75	0.07 [0.03]	37/37	37/37
	2010 Warm season	52	78	520	1.7	0.0 [0.2]	37/37	37/37
	2010 Cold season	15	17	89	tr(0.7)	0.8 [0.3]	37/37	37/37
	2011 Warm season	53	72	550	1.2	1 1 [0 25]	35/35	35/35
	2011 Cold season	16	24	210	tr(0.70)	1.1 [0.35]	37/37	37/37
	2012 Warm season	49	79	510	2.5	1 2 [0 41]	36/36	36/36
	2012 Cold season	8.1	10	61	tr(0.50)	1.2 [0.41]	36/36	36/36
	2013 Warm season	46	78	470	1.2	0.5 [0.2]	36/36	36/36
	2013 Cold season	8.5	12	75	0.5	0.5 [0.2]	36/36	36/36
	2016 Warm season	42	69	650	0.8	0.7 [0.2]	37/37	37/37
	2020 Warm season	23	26	140	1.0	0.10 [0.04]	37/37	37/37

(Note) No monitoring was conducted in FY2014, FY2015 and FY2017~2019.

[8] Heptachlors

· History and state of monitoring

Heptachlor and its metabolite, Heptachlor epoxide, used to kill soil insects and termites, heptachlor has also been used more widely to kill cotton insects, grasshoppers, other crop pests, and malaria-carrying mosquitoes. The substances were not registrated under the Agricultural Chemicals Regulation Law in FY1975. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 1986, since it includes the technical chlordane used as a termitecide. Also Heptachlors are one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series before FY2001, Heptachlor and Heptachlor epoxide were measured in FY1982 (in surface water, sediment and fish) and in FY1986 (in air) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Heptachlor in surface water, sediment, wildlife (bibalves, fish and birds) and air had been monitored since FY2002, and *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide had also been monitored since FY2003. After FY2012, the substances has been monitored in sediment, wildlife (bivalves, fish and birds) and air in FY2012, FY2013, FY2015 and FY2016 and in surface water and sediment in FY2014, FY2017 and FY2020.

· Monitoring results

<Surface Water>

Heptachlor: The presence of the substance in surface water was monitored at 46 sites, and it was detected at 5 of the 46 valid sites adopting the detection limit of 1 pg/L, and the detection range was up to tr(2)pg/L.

Although the number of detections was small, the detection rate of specimens from the overall areas in surface water was decreased, it suggested a reduction tendency of the concentrations.

cis-Heptachlor epoxide: The presence of the substance in surface water was monitored at 46 sites, and it was detected at 44 of the 46 valid sites adopting the detection limit of 0.9pg/L, and the detection range was up to 36pg/L.

As results of the inter-annual trend analysis from FY2003 to FY2020, reduction tendencies in specimens from river areas and sea areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

trans-Heptachlor epoxide: The presence of the substance in surface water was monitored at 46 sites, and it was not detected at all 46 valid sites adopting the detection limit of 0.7pg/L.

Stocktaking of the detection of Heptachlor, *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide in surface water during FY2002~2020

	Monitored	Geometric				Quantification	Detection 1	Frequency
Heptachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(1.2)	tr(1.0)	25	nd	1.5 [0.5]	97/114	38/38
	2003	tr(1.8)	tr(1.6)	7	tr(1.0)	2 [0.5]	36/36	36/36
	2004	nd	nd	29	nd	5 [2]	9/38	9/38
	2005	nd	tr(1)	54	nd	3 [1]	25/47	25/47
	2006	nd	nd	6	nd	5 [2]	5/48	5/48
Surface Water	2007	nd	nd	5.2	nd	2.4 [0.8]	12/48	12/48
	2008	nd	nd	4.6	nd	2.1 [0.8]	19/48	19/48
(pg/L)	2009	tr(0.5)	nd	17	nd	0.8 [0.3]	20/49	20/49
	2010	nd	nd	43	nd	2.2 [0.7]	4/49	4/49
	2011	nd	nd	22	nd	1.3 [0.5]	6/49	6/49
	2014	tr(0.2)	tr(0.2)	1.5	nd	0.5 [0.2]	28/48	28/48
	2017	nd	nd	6	nd	3 [1]	2/47	2/47
	2020	nd	nd	tr(2)	nd	3 [1]	5/46	5/46

cis-Heptachlor	Monitored	Geometric				Quantification	Detection	Frequency
epoxide	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	9.8	11	170	1.2	0.7 [0.2]	36/36	36/36
	2004	10	10	77	2	2 [0.4]	38/38	38/38
	2005	7.1	6.6	59	1.0	0.7 [0.2]	47/47	47/47
	2006	7.6	6.6	47	1.1	2.0 [0.7]	48/48	48/48
	2007	6.1	5.8	120	tr(0.9)	1.3 [0.4]	48/48	48/48
Surface Water	2008	4.7	5.0	37	nd	0.6 [0.2]	46/48	46/48
(pg/L)	2009	5.5	4.2	72	0.8	0.5 [0.2]	49/49	49/49
	2010	5.9	3.9	710	0.7	0.4 [0.2]	49/49	49/49
	2011	5.8	5.8	160	0.7	0.7 [0.3]	49/49	49/49
	2014	4.9	3.4	56	0.7	0.5 [0.2]	48/48	48/48
	2017	4.7	3.5	83	nd	1.6 [0.6]	46/47	46/47
	2020	4.0	3.4	36	nd	2.3 [0.9]	44/46	44/46
trans-Heptachlor	Monitored	Geometric				Quantification	Detection	Frequenc
epoxide	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	2	nd	2 [0.4]	4/36	4/36
	2004	nd	nd	nd	nd	0.9 [0.3]	0/38	0/38
	2005	nd	nd	nd	nd	0.7 [0.2]	0/47	0/47
	2006	nd	nd	nd	nd	1.8 [0.6]	0/48	0/48
	2007	nd	nd	tr(0.9)	nd	2.0 [0.7]	2/48	2/48
Surface Water	2008	nd	nd	nd	nd	1.9 [0.7]	0/48	0/48
(pg/L)	2009	nd	nd	nd	nd	0.7 [0.3]	0/49	0/49
	2010	nd	nd	8.0	nd	1.3 [0.5]	2/49	2/49
	2011	nd	nd	2.8	nd	0.8 [0.3]	3/49	3/49
	2014	nd	nd	nd	nd	0.8 [0.3]	0/48	0/48
	2017	nd	nd	nd	nd	2.3 [0.9]	0/47	0/47
	2020	nd	nd	nd	nd	1.9 [0.7]	0/46	0/46

(Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted in FY2012, 2013, FY2015, FY2016, FY2018 and FY2019.

<Sediment>

Heptachlor: The presence of the substance in sediment was monitored at 58 sites, and it was detected at 43 of the 58 valid sites adopting the detection limit of 0.2pg/g-dry, and the detection range was up to 52pg/g-dry.

As results of the inter-annual trend analysis from FY2002 to FY2020, the recent 6 years period was indicated lower concentration than the first 6 years period in specimens from river mouth areas as statistically significant. Although the number of detections was small, the detection rates of specimens from the river areas and also the overall areas in sediment were decreased, it suggested a reduction tendency of the concentrations.

cis-Heptachlor epoxide: The presence of the substance in sediment was monitored at 58 sites, and it was detected at 40 of the 58 valid sites adopting the detection limit of 0.7pg/g-dry, and the detection range was up to 110pg/g-dry.

As results of the inter-annual trend analysis from FY2003 to FY2020, the recent 6 years period was indicated lower concentration than the first 6 years period in specimens from river areas and also the overall areas in sediment as statistically significant. Although the number of detections was small, the detection rate of specimens from the sea areas was decreased, it suggested a reduction tendency of the concentrations.

trans-Heptachlor epoxide: The presence of the substance in sediment was monitored at 58 sites, and it was detected at 1 of the 58 valid sites adopting the detection limit of 0.4pg/g-dry, and the detected concentration was 1.4pg/g-dry.

II	Monitored	Geometric	Madia	M	Minimu	Quantification	Detection I	Frequenc
Heptachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	4.1	3.2	120	nd	1.8 [0.6]	167/189	60/63
	2003	tr(2.7)	tr(2.2)	160	nd	3 [1.0]	138/186	53/62
	2004	tr(2.8)	tr(2.3)	170	nd	3 [0.9]	134/189	53/63
	2005	3.1	2.8	200	nd	2.5 [0.8]	120/189	48/63
	2006	5.2	3.9	230	nd	1.9 [0.6]	190/192	64/64
Sediment	2007	tr(1.8)	tr(1.5)	110	nd	3.0 [0.7]	143/192	57/64
	2008	tr(1)	nd	85	nd	4 [1]	59/192	27/64
(pg/g-dry)	2009	1.6	1.3	65	nd	1.1 [0.4]	144/192	59/64
	2010	1.2	tr(0.8)	35	nd	1.1 [0.4]	51/64	51/64
	2011	tr(1.3)	tr(1.2)	48	nd	1.8 [0.7]	40/64	40/64
	2014	tr(1.0)	tr(0.9)	49	nd	1.5 [0.5]	38/63	38/63
	2017	1.2	1.1	40	nd	0.9 [0.3]	53/62	53/62
	2020	0.7	0.6	52	nd	0.4 [0.2]	43/58	43/58
cis-Heptachlor	Monitored	Geometric				Quantification	Detection I	
			Median	Maximum	Minimum	[Detection]	Samula	C:to
epoxide	year	mean*				limit	Sample	Site
	2003	4	3	160	nd	3 [1]	153/186	55/62
	2004	tr(5)	tr(3)	230	nd	6 [2]	136/189	52/63
	2005	tr(4)	tr(3)	140	nd	7 [2]	119/189	49/63
	2006	4.0	3.2	210	nd	3.0 [1.0]	157/192	58/64
	2007	3	tr(2)	270	nd	3 [1]	141/192	53/64
Sediment	2008	3	2	180	nd	2 [1]	130/192	51/64
(pg/g-dry)	2009	2.7	1.9	290	nd	0.7 [0.3]	176/192	63/64
(188)	2010	3.1	2.4	300	nd	0.8 [0.3]	62/64	62/64
	2011	2.8	2.5	160	nd	0.6 0.2	63/64	63/64
	2014	2.1	1.7	310	nd	0.5 [0.2]	59/63	59/63
	2017	1.9	1.6	150	nd	1.2 [0.5]	51/62	51/62
	2020	tr(1.5)	tr(1.2)	110	nd	1.7 [0.7]	40/58	40/58
			u(1.2)	110	nu	Quantification	Detection I	
trans-Heptachlor	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		-
epoxide	year	mean*	111001011			limit	Sample	Site
	2003	nd	nd	nd	nd	9 [3]	0/186	0/62
	2004	nd	nd	tr(2.5)	nd	4 [2]	1/189	1/63
	2005	nd	nd	nd	nd	5 [2]	0/189	0/63
	2005	nd	nd	19	nd	7 [2]	2/192	2/64
	2007	nd	nd	31	nd	10 [4]	2/192	2/64
G 1' (2008	nd	nd	nd	nd	1.7 [0.7]	0/192	0/64
Segiment			nd	nd	nd	1.4 [0.6]	0/192	0/64
Sediment (pg/g-dry)	2009	na						0,04
(pg/g-dry)	2009 2010	nd nd				3 [1]	1/64	1/64
	2010	nd	nd	4	nd	3 [1]	1/64 2/64	1/64 2/64
	2010 2011	nd nd	nd nd	4 2.4	nd nd	2.3 [0.9]	2/64	2/64
	2010	nd	nd	4	nd			

Stocktaking of the detection of Heptachlor, *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide in sediment during FY2002~2020

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted in FY2012, 2013, FY2015, FY2016, FY2018 and FY2019.

<Wildlife>

Heptachlor: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 1pg/g-wet, and the detected concentration was tr(2)pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 6 of the 18 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was up to 6pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and not detected in the area adopting the detection limit of 1pg/g-wet.

Although the number of detections was small, the detection rate of specimens from the sfish was decreased, it suggested a reduction tendency of the concentrations.

cis-Heptachlor epoxide: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $5 \sim 96$ pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was tr(2) ~ 320pg/g-wet. For birds, the presence of the substance was

monitored in 1 area, and detected in the area adopting the detection limit of 1pg/g-wet, and the detected concentration was 270pg/g-wet.

trans-Heptachlor epoxide: The presence of the substance in bivalves was monitored in 3 areas, and it was not detected at all 3 valid areas adopting the detection limit of 4pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was not detected at all 18 valid areas adopting the detection limit of 4pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and not detected in the area adopting the detection limit of 4pg/g-wet.

II	Monitored	Geometric	M- 1	Maai	Mini	Quantification	Detection I	Frequenc
Heptachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(3.5)	4.6	15	nd	4.2 [1.4]	28/38	6/8
	2003	tr(2.8)	tr(2.4)	14	nd	6.6 [2.2]	16/30	4/6
	2004	tr(3.4)	5.2	16	nd	4.1 [1.4]	23/31	6/7
	2005	tr(2.9)	tr(2.9)	24	nd	6.1 [2.0]	18/31	6/7
	2006	tr(4)	tr(4)	20	nd	6 [2]	23/31	6/7
	2007	tr(3)	tr(3)	12	nd	6 [2]	20/31	6/7
D' 1	2008	tr(2)	nd	9	nd	6 [2]	13/31	5/7
Bivalves	2009	tr(4)	nd	120	nd	5 [2]	14/31	4/7
(pg/g-wet)	2010	3	tr(2)	78	nd	3 [1]	5/6	5/6
	2011	4	4	51	nd	3 [1]	3/4	3/4
	2012	tr(3)	tr(3)	13	nd	4 [1]	4/5	4/5
	2013	3	tr(2)	19	nd	3 [1]	4/5	4/5
	2015	nd	nd	tr(1.7)	nd	3.0 [1.0]	1/3	1/3
	2016	nd	nd	tr(1.4)	nd	2.4 [0.9]	1/3	1/3
	2020	nd	nd	tr(2)	nd	3 [1]	1/3	1/3
	2002	4.2	4.8	20	nd	4.2 [1.4]	57/70	12/14
	2003	nd	nd	11	nd	6.6 [2.2]	29/70	8/14
	2004	tr(2.3)	tr(2.1)	460	nd	4.1 [1.4]	50/70	11/14
	2005	nd	nd	7.6	nd	6.1 [2.0]	32/80	8/16
	2006	tr(2)	nd	8	nd	6 [2]	36/80	8/16
	2007	tr(2)	nd	7	nd	6 [2]	28/80	6/16
F ' 1	2008	nd	nd	9	nd	6 [2]	25/85	7/17
Fish	2009	tr(2)	nd	8	nd	5 [2]	30/90	11/18
(pg/g-wet)	2010	tr(2)	tr(2)	5	nd	3 [1]	12/18	12/18
	2011	tr(1)	tr(1)	7	nd	3 [1]	13/18	13/18
	2012	nd	tr(1)	5	nd	4 [1]	10/19	10/19
	2013	nd	nd	12	nd	3 [1]	9/19	9/19
	2015	nd	nd	9.2	nd	3.0 [1.0]	9/19	9/19
	2016	nd	nd	5.5	nd	2.4 [0.9]	8/19	8/19
	2020	nd	nd	6	nd	3 [1]	6/18	6/18
	2002	tr(1.7)	tr(2.8)	5.2	nd	4.2 [1.4]	7/10	2/2
	2003	nd	nd	nd	nd	6.6 [2.2]	0/10	0/2
	2004	nd	nd	tr(1.5)	nd	4.1 [1.4]	1/10	1/2
	2005	nd	nd	nd	nd	6.1 [2.0]	0/10	0/2
	2006	nd	nd	nd	nd	6 [2]	0/10	0/2
	2007	nd	nd	nd	nd	6 [2]	0/10	0/2
D' Laber	2008	nd	nd	nd	nd	6 [2]	0/10	0/2
Birds**	2009	nd	nd	nd	nd	5 [2]	0/10	0/2
(pg/g-wet)	2010	nd		tr(1)	nd	3 [1]	1/2	1/2
	2011			nd	nd	3 [1]	0/1	0/1
	2012	nd		nd	nd	4 [1]	0/2	0/2
	2013	nd		nd	nd	3 [1]	0/2	0/2
	2015			nd	nd	3.0 [1.0]	0/1	0/1
	2016	nd		nd	nd	2.4 [0.9]	0/2	0/2
	2020			nd	nd	3 [1]	0/1	0/1

Stocktaking of the detection of Heptachlor, *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide in wildlife (bivalves, fish and birds) during FY2002~2020

cis-Heptachlor	Monitored	Geometric				Quantification	Detection I	Frequenc
epoxide	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	44	29	880	9.7	6.9 [2.3]	30/30	6/6
	2004	64	34	840	tr(9.8)	9.9 [3.3]	31/31	7/7
	2005	49	20	590	7.4	3.5 [1.2]	31/31	7/7
	2006	56	23	1,100	8	4 [1]	31/31	7/7
	2007	37	20	1,100	8	4 [1]	31/31	7/7
	2008	37	19	510	8	5 [2]	31/31	7/7
Bivalves	2009	59	33	380	10	3 [1]	31/31	7/7
(pg/g-wet)	2010	170	260	1,800	9.0	2.4 [0.9]	6/6	6/6
	2011	55	110	320	3.9	2.0 [0.8]	4/4	4/4
	2012	48	120	180	6.2	1.5 [0.6]	5/5	5/5
	2013	28	29	110	4.4	2.1 [0.8]	5/5	5/5
	2015	21	14	91	7.2	2.1 [0.8]	3/3	3/3
	2016	23	18	75	9.4	1.9 [0.7]	3/3	3/3
	2020	28	48	96	5	3 [1]	3/3	3/3
	2003	43	43	320	7.0	6.9 [2.3]	70/70	14/14
	2003	51	49	620	tr(3.3)	9.9 [3.3]	70/70	14/14
	2004	41	45	390	u(<i>3.3</i>) 4.9	3.5 [1.2]	80/80	16/16
	2005	41	43	270	4.9	4 [1]	80/80	16/16
	2000	42	48 49	390	4	4 [1]	80/80	16/16
	2007	43 39	49 46	390	4 tr(3)	4 [1] 5 [2]	85/85	17/17
Fish	2008	41	40 50	310	u(3) 4	3 [1]	90/90	18/18
	2009	39	30 49			2.4 [0.9]		18/18
(pg/g-wet)				230	5.0		18/18	
	2011	50	62 62	540 120	3.2	2.0 [0.8]	18/18	18/18
	2012	41	62	120	6.9	1.5 [0.6]	19/19	19/19
	2013	42	46	190	7.3	2.1 [0.8]	19/19	19/19
	2015	33	43	190	3.2	2.1 [0.8]	19/19	19/19
	2016	29	28	130	3.6	1.9 [0.7]	19/19	19/19
	2020	24	32	320	tr(2)	3 [1]	18/18	18/18
	2003	540	510	770	370	6.9 [2.3]	10/10	2/2
	2004	270	270	350	190	9.9 [3.3]	10/10	2/2
	2005	370	340	690	250	3.5 [1.2]	10/10	2/2
	2006	330	310	650	240	4 [1]	10/10	2/2
	2007	280	270	350	250	4 [1]	10/10	2/2
	2008	370	370	560	180	5 [2]	10/10	2/2
Birds**	2009	220	210	390	160	3 [1]	10/10	2/2
(pg/g-wet)	2010	290		360	240	2.4 [0.9]	2/2	2/2
	2011			410	410	2.0 [0.8]	1/1	1/1
	2012	160		170	150	1.5 [0.6]	2/2	2/2
	2013	300		560	160	2.1 [0.8]	2/2	2/2
	2015			20	20	2.1 [0.8]	1/1	1/1
	2016	91		270	31	1.9 [0.7]	2/2	2/2
	2020			270	270	3 [1]	1/1	1/1
·		C				Quantification	Detection I	Frequenc
trans-Heptachlor epoxide	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	48	nd	13 [4.4]	5/30	1/6
	2004	nd	nd	55	nd	12 [4.0]	9/31	2/7
	2005	nd	nd	37	nd	23 [7.5]	5/31	1/7
	2006	nd	nd	45	nd	13 [5]	5/31	1/7
	2000	nd	nd	61	nd	13 [5]	5/31	1/7
	2007	nd	nd	33	nd	10 [4]	5/31	1/7
Bivalves	2008	tr(3)	nd	24	nd	8 [3]	13/31	3/7
(pg/g-wet)	2009	u(3) 3	tr(2)	24 24	nd	3 [1]	3/6	3/6
(pg/g-wel)								
	2011	nd	nd	tr(6)	nd	7 [3]	1/4	1/4
	2012	nd	nd	tr(4)	nd	8 [3]	1/5	1/5
	2013	nd	nd	nd	nd	7 [3]	0/5	0/5
	2015	nd	nd	nd	nd	7 [3]	0/3	0/3
		-						
	2016 2020	nd nd	nd nd	nd nd	nd nd	9 [3] 9 [4]	0/3 0/3	0/3 0/3

rans-Heptachlor	Monitored	Geometric				Quantification	Detection I	Frequency
epoxide	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	13 [4.4]	0/70	0/14
	2004	nd	nd	tr(10)	nd	12 [4.0]	2/70	2/14
	2005	nd	nd	nd	nd	23 [7.5]	0/80	0/16
	2006	nd	nd	nd	nd	13 [5]	0/80	0/16
	2007	nd	nd	nd	nd	13 [5]	0/80	0/16
	2008	nd	nd	nd	nd	10 [4]	0/85	0/17
Fish	2009	nd	nd	nd	nd	8 [3]	0/90	0/18
(pg/g-wet)	2010	nd	nd	nd	nd	3 [1]	0/18	0/18
	2011	nd	nd	nd	nd	7 [3]	0/18	0/18
	2012	nd	nd	nd	nd	8 [3]	0/19	0/19
	2013	nd	nd	nd	nd	7 [3]	0/19	0/19
	2015	nd	nd	10	nd	7 [3]	5/19	5/19
	2016	nd	nd	nd	nd	9 [3]	0/19	0/19
	2020	nd	nd	nd	nd	9 [4]	0/18	0/18
	2003	nd	nd	nd	nd	13 [4.4]	0/10	0/2
	2004	nd	nd	nd	nd	12 [4.0]	0/10	0/2
	2005	nd	nd	nd	nd	23 [7.5]	0/10	0/2
	2006	nd	nd	nd	nd	13 [5]	0/10	0/2
	2007	nd	nd	nd	nd	13 [5]	0/10	0/2
	2008	nd	nd	nd	nd	10 [4]	0/10	0/2
Birds**	2009	nd	nd	nd	nd	8 [3]	0/10	0/2
(pg/g-wet)	2010	nd		nd	nd	3 [1]	0/2	0/2
	2011			nd	nd	7 [3]	0/1	0/1
	2012	nd		nd	nd	8 [3]	0/2	0/2
	2013	nd		tr(5)	nd	7 [3]	1/2	1/2
	2015			nd	nd	7 [3]	0/1	0/1
	2016	nd		nd	nd	9 [3]	0/2	0/2
	2020			nd	nd	9 [4]	0/1	0/1

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) "**": There is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2014 and FY2017~2019.

<Air>

Heptachlor: The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.04 pg/m³, and the detection range was $0.69 \sim 35$ pg/m³.

As results of the inter-annual trend analysis from FY2003 to FY2020, a reduction tendency in specimens from warm season was identified as statistically significant.

cis-Heptachlor epoxide: The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.04 pg/m³, and the detection range was $0.23 \sim 2.9$ pg/m³.

As results of the inter-annual trend analysis from FY2003 to FY2020, a reduction tendency in specimens from warm season was identified as statistically significant.

trans-Heptachlor epoxide: The presence of the substance in air was monitored at 37 sites, and it was not detected at all 37 valid sites adopting the detection limit of 0.05 pg/m^3 .

Although the number of detections was small, the detection rate of specimens from warm season was decreased, it suggested a reduction tendency of the concentrations.

Heptachlor		Geometric	N	м ·	NC -	Quantification	Detection 1	Frequence
Heptachlor	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	11	14	220	0.20	0.12 [0.04]	102/102	34/34
	2003 Warm season	27	41	240	1.1	0.25 [0.085]	35/35	35/35
	2003 Cold season	10	16	65	0.39	0.25 [0.005]	34/34	34/34
	2004 Warm season	23	36	200	0.46	0.23 [0.078]	37/37	37/37
	2004 Cold season	11	18	100	0.53	0.23 [0.078]	37/37	37/37
	2005 Warm season	25	29	190	1.1	0.16 [0.054]	37/37	37/37
	2005 Cold season	6.5	7.9	61	0.52	0.10 [0.034]	37/37	37/37
	2006 Warm season	20	27	160	0.88	0 11 [0 04]	37/37	37/37
	2006 Cold season	6.8	7.2	56	0.32	0.11 [0.04]	37/37	37/37
	2007 Warm season	22	27	320	1.1	0.07.00.021	36/36	36/36
	2007 Cold season	6.3	8.0	74	0.42	0.07 [0.03]	36/36	36/36
	2008 Warm season	20	31	190	0.92	0.06 [0.00]	37/37	37/37
Air	2008 Cold season	7.5	12	60	0.51	0.06 [0.02]	37/37	37/37
(pg/m^3)	2009 Warm season	18	30	110	0.48		37/37	37/37
(1 <i>0</i>)	2009 Cold season	6.3	7.8	48	0.15	0.04 [0.01]	37/37	37/37
	2010 Warm season	17	26	160	0.69		37/37	37/37
	2010 Cold season	7.2	9.5	53	0.22	0.11 [0.04]	37/37	37/37
	2010 Cold Season 2011 Warm season	16	25	110	0.73		35/35	35/3
	2011 Cold season	6.1	10	56	tr(0.13)	0.30 [0.099]	37/37	37/37
	2012 Warm season	13	21	58	0.46		36/36	36/30
	2012 Walth season 2012 Cold season	3.2	4.9	20	0.40 nd	0.41 [0.14]	35/36	35/30
	2012 Cold season 2013 Warm season		21	43				36/30
		11		43 22	0.46	0.16 [0.05]	36/36	
	2013 Cold season	3.1	4.6		tr(0.10)	0.10.0001	36/36	36/3
	2015 Warm season	8.7	11	49	0.43	0.19 [0.06]	35/35	35/3
	2016 Warm season	12	14	120	tr(0.18)	0.22 [0.08]	37/37	
	2016 Warm season 2020 Warm season	7.6	9.2	35	0.69	0.10 [0.04]	37/37	37/3'
s-Heptachlo epoxide	2020 Warm season					0.10 [0.04] Quantification [Detection]		37/3 37/3 Frequer Site
	2020 Warm season ^r Monitored year	7.6 Geometric	9.2 Median	35	0.69	0.10 [0.04] Quantification [Detection] limit	37/37 Detection I	37/3' Frequer Site
	2020 Warm season ^r Monitored year 2003 Warm season	7.6 Geometric mean 3.5	9.2 Median 3.5	35 Maximum 28	0.69 Minimum 0.45	0.10 [0.04] Quantification [Detection]	37/37 Detection I Sample 35/35	37/3 Frequer Site 35/3
	2020 Warm season ^r Monitored year 2003 Warm season 2003 Cold season	7.6 Geometric mean 3.5 1.3	9.2 Median 3.5 1.3	35 Maximum 28 6.6	0.69 Minimum 0.45 0.49	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048]	37/37 Detection I Sample 35/35 34/34	37/3 Frequen Site 35/3 34/3
	2020 Warm season r Monitored year 2003 Warm season 2003 Cold season 2004 Warm season	7.6 Geometric mean 3.5 1.3 2.8	9.2 Median 3.5 1.3 2.9	35 Maximum 28 6.6 9.7	0.69 Minimum 0.45 0.49 0.65	0.10 [0.04] Quantification [Detection] limit	37/37 Detection I Sample 35/35 34/34 37/37	37/3 Frequen Site 35/3 34/3 37/3
	2020 Warm season r Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season	7.6 Geometric mean 3.5 1.3 2.8 1.1	9.2 Median 3.5 1.3 2.9 1.1	35 Maximum 28 6.6 9.7 7.0	0.69 Minimum 0.45 0.49 0.65 0.44	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048] 0.052 [0.017]	37/37 Detection I Sample 35/35 34/34 37/37 37/37	37/3 Frequen Site 35/3 34/3 37/3 37/3
	2020 Warm season r Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season	7.6 Geometric mean 3.5 1.3 2.8 1.1 1.5	9.2 Median 3.5 1.3 2.9 1.1 1.7	35 Maximum 28 6.6 9.7 7.0 11	0.69 Minimum 0.45 0.49 0.65 0.44 tr(0.10)	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048]	37/37 Detection I Sample 35/35 34/34 37/37 37/37 37/37	37/3 Frequen Site 35/3 34/3 37/3 37/3 37/3
	2020 Warm season r Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season	7.6 Geometric mean 3.5 1.3 2.8 1.1 1.5 0.91	9.2 Median 3.5 1.3 2.9 1.1 1.7 0.81	35 Maximum 28 6.6 9.7 7.0 11 2.9	0.69 Minimum 0.45 0.49 0.65 0.44 tr(0.10) 0.43	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048] 0.052 [0.017]	37/37 Detection 1 35/35 34/34 37/37 37/37 37/37 37/37	37/3 Frequer 35/3 34/3 37/3 37/3 37/3 37/3 37/3
	2020 Warm season r Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2005 Warm season 2005 Cold season 2005 Cold season 2006 Warm season	7.6 Geometric mean 3.5 1.3 2.8 1.1 1.5 0.91 1.7	9.2 Median 3.5 1.3 2.9 1.1 1.7 0.81 2.0	35 Maximum 28 6.6 9.7 7.0 11 2.9 6.7	0.69 Minimum 0.45 0.49 0.65 0.44 tr(0.10) 0.43 0.13	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048] 0.052 [0.017]	37/37 Detection 1 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37	37/3 Frequer Site 35/3 34/3 37/3 37/3 37/3 37/3 37/3
	2020 Warm season r Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2005 Warm season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season	7.6 Geometric mean 3.5 1.3 2.8 1.1 1.5 0.91 1.7 0.74	9.2 Median 3.5 1.3 2.9 1.1 1.7 0.81 2.0 0.88	35 Maximum 28 6.6 9.7 7.0 11 2.9 6.7 3.2	0.69 Minimum 0.45 0.49 0.65 0.44 tr(0.10) 0.43 0.13 nd	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048] 0.052 [0.017] 0.12 [0.044] 0.11 [0.04]	37/37 Detection I Sample 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/37	37/3 Frequen 35/3 34/3 37/3 37/3 37/3 37/3 37/3 37/3 36/3
	2020 Warm season r Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2005 Cold season 2005 Cold season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season	7.6 Geometric mean 3.5 1.3 2.8 1.1 1.5 0.91 1.7 0.74 2.9	9.2 Median 3.5 1.3 2.9 1.1 1.7 0.81 2.0 0.88 2.8	35 Maximum 28 6.6 9.7 7.0 11 2.9 6.7 3.2 13	0.69 Minimum 0.45 0.49 0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048] 0.052 [0.017] 0.12 [0.044] 0.11 [0.04]	37/37 Detection I Sample 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/37 36/36	37/3 Frequer Site 35/3 34/3 37/3 37/3 37/3 37/3 37/3 36/3 36/3
	2020 Warm season r Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2005 Cold season 2005 Cold season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season	7.6 Geometric mean 3.5 1.3 2.8 1.1 1.5 0.91 1.7 0.74 2.9 0.93	9.2 Median 3.5 1.3 2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82	35 Maximum 28 6.6 9.7 7.0 11 2.9 6.7 3.2 13 3.0	0.69 Minimum 0.45 0.49 0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048] 0.052 [0.017] 0.12 [0.044]	37/37 Detection I Sample 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36	37/3 Frequen Site 35/3: 34/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3
	2020 Warm season r Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2005 Cold season 2005 Cold season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2007 Warm season 2008 Warm season	7.6 Geometric mean 3.5 1.3 2.8 1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4	9.2 Median 3.5 1.3 2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2	35 Maximum 28 6.6 9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9	0.69 Minimum 0.45 0.49 0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048] 0.052 [0.017] 0.12 [0.044] 0.11 [0.04] 0.03 [0.01]	37/37 Detection I Sample 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36 36/36 37/37	37/3 Frequen Site 35/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3
epoxide	2020 Warm season r Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2005 Cold season 2005 Cold season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Cold season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Warm season	7.6 Geometric mean 3.5 1.3 2.8 1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91	9.2 Median 3.5 1.3 2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84	35 Maximum 28 6.6 9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0	0.69 Minimum 0.45 0.49 0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.54 0.41 0.53 0.37	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048] 0.052 [0.017] 0.12 [0.044] 0.11 [0.04]	37/37 Detection I Sample 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37	37/3 Frequen Site 35/3 34/3 37/3 37/3 37/3 37/3 37/3 37/3 36/3 36
epoxide	2020 Warm seasonrMonitored year2003 Warm season2003 Cold season2004 Warm season2004 Cold season2005 Cold season2005 Cold season2006 Warm season2006 Cold season2007 Cold season2007 Cold season2008 Warm season2008 Warm season2008 Warm season2009 Warm season	7.6 Geometric mean 3.5 1.3 2.8 1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91 2.5	9.2 Median 3.5 1.3 2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84 2.6	35 Maximum 28 6.6 9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0 16	0.69 Minimum 0.45 0.49 0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048] 0.052 [0.017] 0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008]	37/37 Detection I Sample 35/35 34/34 37/37 37/37 37/37 37/37 36/37 36/36 36/36 36/36 36/36 37/37 37/37	37/3 Frequer Site 35/3: 34/3 37/3 37/3 37/3 37/3 36/3 36/3 36/3 36/3 37
epoxide	2020 Warm season r Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2005 Warm season 2005 Cold season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Cold season 2007 Warm season 2008 Warm season 2008 Warm season 2008 Warm season 2009 Warm season 2009 Warm season	7.6 Geometric mean 3.5 1.3 2.8 1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91 2.5 1.0	9.2 Median 3.5 1.3 2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84 2.6 0.91	35 Maximum 28 6.6 9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0 16 3.8	0.69 Minimum 0.45 0.49 0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.42	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048] 0.052 [0.017] 0.12 [0.044] 0.11 [0.04] 0.03 [0.01]	37/37 Detection I Sample 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37	37/3 Frequer Site 35/3 34/3 37/3 37/3 37/3 37/3 36/3 36/3 36/3 36
epoxide	2020 Warm seasonrMonitored year2003 Warm season2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Cold season2006 Cold season2007 Cold season2007 Cold season2008 Warm season2008 Warm season2009 Cold season2010 Warm season	7.6 Geometric mean 3.5 1.3 2.8 1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91 2.5 1.0 2.3	9.2 Median 3.5 1.3 2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84 2.6 0.91 2.3	35 Maximum 28 6.6 9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0 16 3.8 10	0.69 Minimum 0.45 0.49 0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.42 0.38	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048] 0.052 [0.017] 0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01]	37/37 Detection I Sample 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37	37/3 Frequer Site 35/3 37/3 37/3 37/3 37/3 37/3 36/3 36/3 36
epoxide	2020 Warm seasonrMonitored year2003 Warm season2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Cold season2007 Cold season2008 Warm season2008 Warm season2009 Cold season2009 Cold season2009 Cold season2010 Warm season2010 Cold season2010 Cold season2010 Cold season	7.6 Geometric mean 3.5 1.3 2.8 1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91 2.5 1.0 2.3 0.93	9.2 Median 3.5 1.3 2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84 2.6 0.91 2.3 0.85	35 Maximum 28 6.6 9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0 16 3.8 10 4.3	0.69 Minimum 0.45 0.49 0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.37 0.42 0.38 0.33	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048] 0.052 [0.017] 0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008]	37/37 Detection I Sample 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37	37/3 Frequer Site 35/3: 34/3- 37/3' 37/3' 37/3' 37/3' 36/3' 36/3' 36/3' 36/3' 36/3' 36/3' 37/3'
epoxide	2020 Warm seasonrMonitored year2003 Warm season2003 Cold season2004 Warm season2005 Warm season2005 Cold season2005 Cold season2006 Warm season2006 Cold season2007 Cold season2007 Cold season2008 Warm season2008 Warm season2009 Cold season2009 Cold season2009 Cold season2010 Warm season2010 Cold season2011 Warm season2011 Warm season	7.6 Geometric mean 3.5 1.3 2.8 1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91 2.5 1.0 2.3 0.93 2.0	9.2 Median 3.5 1.3 2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84 2.6 0.91 2.3 0.85 2.3	35 Maximum 28 6.6 9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0 16 3.8 10 4.3 6.0	0.69 Minimum 0.45 0.49 0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.37 0.42 0.38 0.33 0.29	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048] 0.052 [0.017] 0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01] 0.02 [0.01]	37/37 Detection I Sample 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37	37/3 Frequer Site 35/3: 34/3- 37/3' 37/3' 37/3' 37/3' 36/3' 36/3' 36/3' 36/3' 36/3' 37/3' 35/3'
epoxide	2020 Warm seasonrMonitored year2003 Warm season2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Cold season2007 Cold season2008 Warm season2008 Warm season2009 Cold season2009 Cold season2009 Cold season2010 Warm season2010 Cold season2010 Cold season2010 Cold season	7.6 Geometric mean 3.5 1.3 2.8 1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91 2.5 1.0 2.3 0.93 2.0 0.90	9.2 Median 3.5 1.3 2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84 2.6 0.91 2.3 0.85 2.3 0.90	35 Maximum 28 6.6 9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0 16 3.8 10 4.3	0.69 Minimum 0.45 0.49 0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.37 0.42 0.38 0.33	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048] 0.052 [0.017] 0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01]	37/37 Detection I Sample 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37	37/3 Frequer Site 35/3 34/3 37/3 37/3 37/3 37/3 36/3 36/3 36/3 36
epoxide	2020 Warm seasonrMonitored year2003 Warm season2003 Cold season2004 Warm season2005 Warm season2005 Cold season2005 Cold season2006 Warm season2006 Cold season2007 Cold season2007 Cold season2008 Warm season2008 Warm season2009 Cold season2009 Cold season2009 Cold season2010 Warm season2010 Cold season2011 Warm season2011 Warm season	7.6 Geometric mean 3.5 1.3 2.8 1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91 2.5 1.0 2.3 0.93 2.0	9.2 Median 3.5 1.3 2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84 2.6 0.91 2.3 0.85 2.3	35 Maximum 28 6.6 9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0 16 3.8 10 4.3 6.0	0.69 Minimum 0.45 0.49 0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.37 0.42 0.38 0.33 0.29	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048] 0.052 [0.017] 0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01] 0.02 [0.01] 0.04 [0.01]	37/37 Detection I Sample 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37	37/3 Frequer Site 35/3 34/3 37/3 37/3 37/3 37/3 36/3 36/3 37/3 37
epoxide	2020 Warm seasonrMonitored year2003 Warm season2003 Cold season2004 Warm season2004 Cold season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Cold season2007 Cold season2008 Warm season2008 Cold season2009 Warm season2009 Cold season2009 Cold season2009 Cold season2010 Cold season2010 Warm season2011 Warm season2011 Cold season2011 Cold season	7.6 Geometric mean 3.5 1.3 2.8 1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91 2.5 1.0 2.3 0.93 2.0 0.90	9.2 Median 3.5 1.3 2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84 2.6 0.91 2.3 0.85 2.3 0.90	35 Maximum 28 6.6 9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0 16 3.8 10 4.3 6.0 2.8	0.69 Minimum 0.45 0.49 0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.37 0.37 0.38 0.33 0.29 0.35	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048] 0.052 [0.017] 0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01] 0.02 [0.01]	37/37 Detection I Sample 35/35 34/34 37/37 37/37 37/37 37/37 36/37 36/36 36/36 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37	37/3 Frequer Site 35/3 34/3 37/3 37/3 37/3 37/3 36/3 37/3 37/3 37
epoxide	2020 Warm seasonrMonitored year2003 Warm season2003 Cold season2004 Warm season2005 Warm season2005 Warm season2005 Cold season2006 Warm season2006 Warm season2007 Cold season2007 Cold season2008 Warm season2009 Warm season2009 Cold season2009 Cold season2009 Cold season2010 Cold season2010 Warm season2011 Warm season2011 Cold season2011 Cold season2012 Warm season	7.6 Geometric mean 3.5 1.3 2.8 1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91 2.5 1.0 2.3 0.93 2.0 0.90 2.0	9.2 Median 3.5 1.3 2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84 2.6 0.91 2.3 0.85 2.3 0.90 2.1	35 Maximum 28 6.6 9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0 16 3.8 10 4.3 6.0 2.8 6.3	0.69 Minimum 0.45 0.49 0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.42 0.38 0.33 0.29 0.35 0.37	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048] 0.052 [0.017] 0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01] 0.02 [0.01] 0.052 [0.01]	37/37 Detection I Sample 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36	37/3 Frequer Site 35/3 34/3 37/3 37/3 37/3 37/3 36/3 36/3 37/3 37
epoxide	2020 Warm seasonrMonitored year2003 Warm season2003 Cold season2004 Warm season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Cold season2007 Cold season2008 Warm season2009 Warm season2009 Cold season2009 Cold season2009 Cold season2009 Cold season2010 Warm season2010 Cold season2011 Cold season2011 Cold season2012 Cold season2013 Warm season	7.6 Geometric mean 3.5 1.3 2.8 1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91 2.5 1.0 2.3 0.93 2.0 0.93 2.0 0.90 2.0 0.62 2.0	9.2 Median 3.5 1.3 2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84 2.6 0.91 2.3 0.85 2.3 0.90 2.1 0.57 2.1	35 Maximum 28 6.6 9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0 16 3.8 10 4.3 6.0 2.8 6.3 1.9 7.7	0.69 Minimum 0.45 0.49 0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.42 0.38 0.33 0.29 0.35 0.37 0.30 0.43	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048] 0.052 [0.017] 0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01] 0.02 [0.01] 0.04 [0.01]	37/37 Detection I Sample 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36 36/36	37/3 Frequer Site 35/3 34/3 37/3 37/3 37/3 37/3 36/3 36/3 37/3 37
epoxide	2020 Warm season r Monitored year 2003 Warm season 2003 Cold season 2004 Warm season 2004 Warm season 2005 Warm season 2005 Warm season 2006 Warm season 2006 Cold season 2007 Warm season 2008 Warm season 2009 Cold season 2009 Cold season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Cold season 2012 Cold season 2012 Warm season 2013 Warm season 2013 Warm season	7.6 Geometric mean 3.5 1.3 2.8 1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91 2.5 1.0 2.3 0.93 2.0 0.62 2.0 0.66	9.2 Median 3.5 1.3 2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84 2.6 0.91 2.3 0.85 2.3 0.90 2.1 0.57 2.1 0.63	35 Maximum 28 6.6 9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0 16 3.8 10 4.3 6.0 2.8 6.3 1.9 7.7 1.4	0.69 Minimum 0.45 0.49 0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.42 0.38 0.33 0.29 0.35 0.37 0.30 0.43 0.32	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048] 0.052 [0.017] 0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01] 0.04 [0.01] 0.05 [0.02] 0.03 [0.01]	37/37 Detection I Sample 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36 36/36	37/3 Frequen Site 35/3: 34/3 37/3 37/3 37/3 37/3 37/3 37/3 36/3 37/3 37
epoxide	2020 Warm seasonrMonitored year2003 Warm season2003 Cold season2004 Warm season2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Cold season2007 Cold season2008 Warm season2009 Warm season2009 Cold season2009 Cold season2009 Cold season2009 Cold season2010 Warm season2010 Cold season2011 Cold season2011 Cold season2012 Cold season2013 Warm season	7.6 Geometric mean 3.5 1.3 2.8 1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91 2.5 1.0 2.3 0.93 2.0 0.93 2.0 0.90 2.0 0.62 2.0	9.2 Median 3.5 1.3 2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84 2.6 0.91 2.3 0.85 2.3 0.90 2.1 0.57 2.1	35 Maximum 28 6.6 9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0 16 3.8 10 4.3 6.0 2.8 6.3 1.9 7.7	0.69 Minimum 0.45 0.49 0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.42 0.38 0.33 0.29 0.35 0.37 0.30 0.43	0.10 [0.04] Quantification [Detection] limit 0.015 [0.0048] 0.052 [0.017] 0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01] 0.02 [0.01] 0.052 [0.01]	37/37 Detection I Sample 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36 36/36	37/3' Frequer

Stocktaking of the detection of Heptachlor, *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide in air during FY2002~2020

trans-Heptachl		Geometric				Quantification	Detection l	Frequency
or epoxide	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	tr(0.036)	tr(0.038)	0.30	nd	0.099 [0.033]	18/35	18/35
	2003 Cold season	nd	nd	tr(0.094)	nd	0.099 [0.055]	3/34	3/34
	2004 Warm season	nd	nd	tr(0.38)	nd	0.6 [0.2]	4/37	4/37
	2004 Cold season	nd	nd	nd	nd	0.0 [0.2]	0/37	0/37
	2005 Warm season	tr(0.10)	tr(0.12)	1.2	nd	0.16 [0.05]	27/37	27/37
	2005 Cold season	nd	nd	0.32	nd		3/37	3/37
	2006 Warm season	nd	nd	0.7	nd	03[01]	2/37	2/37
	2006 Cold season	nd	nd	tr(0.1)	nd	0.3 [0.1]	1/37	1/37
	2007 Warm season	nd	nd	0.16	nd	0.14 [0.06]	8/36	8/36
	2007 Cold season	nd	nd	tr(0.06)	nd	0.14 [0.00]	1/36	1/36
	2008 Warm season	nd	nd	0.17	nd	0 16 [0 06]	6/37	6/37
Air	2008 Cold season	nd	nd	nd	nd	d 0.16 [0.06]	0/37	0/37
(pg/m^3)	2009 Warm season	nd	nd	0.18	nd	0 14 [0 05]	10/37	10/37
(pg/m)	2009 Cold season	nd	nd	tr(0.06)	nd	0.14 [0.05]	1/37	1/37
	2010 Warm season	nd	nd	0.16	nd	0.16 [0.06]	6/37	6/37
	2010 Cold season	nd	nd	nd	nd	0.10 [0.00]	0/37	0/37
	2011 Warm season	nd	nd	0.14	nd	0 12 [0 05]	5/35	5/35
	2011 Cold season	nd	nd	nd	nd	0.13 [0.05]	0/37	0/37
	2012 Warm season	nd	nd	tr(0.08)	nd	0.12 [0.05]	8/36	8/36
	2012 Cold season	nd	nd	nd	nd	0.12 [0.03]	0/36	0/36
	2013 Warm season	nd	nd	tr(0.11)	nd	0.12 [0.05]	7/36	7/36
	2013 Cold season	nd	nd	nd	nd		0/36	0/36
	2015 Warm season	nd	nd	nd	nd	0.03 [0.01]	0/35	0/35
	2016 Warm season	nd	nd	tr(0.2)	nd	0.3 [0.1]	1/37	1/37
	2020 Warm season	nd	nd	nd	nd	0.13 [0.05]	0/37	0/37

(Note) No monitoring was conducted in FY2014 and FY2017~2019.

[9] Toxaphenes (references)

· History and state of monitoring

Toxaphenes are a group of organochlorine insecticides used on cotton, cereal grains, fruits, nuts, and vegetables and also it has also been used to control ticks and mites in livestock. No domestic record of manufacture/import of the substances was reported since those were historically never registrated under the Agricultural Chemicals Regulation Law. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 2002. Also Toxaphenes are one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series before FY2001, total amount of Toxaphenes was measured in FY1983 (in surface water and sediment) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Parlar-26, Parlar-50 and Parlar-62 have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2003 to FY2009 and in wildlife (bivalves, fish and birds) in FY2015, in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2018.

No monitoring was conducted after FY2019. For reference, the monitoring results up to FY2018 are given below.

Monitoring results until FY2018

<Surface Water>

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in surface water during FY2003~2018

	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-26	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	40 [20]	0/36	0/36
	2004	nd	nd	nd	nd	9 [3]	0/38	0/38
	2005	nd	nd	nd	nd	10 [4]	0/47	0/47
Surface Water	2006	nd	nd	nd	nd	16 [5]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	20 [5]	0/48	0/48
	2008	nd	nd	nd	nd	8 [3]	0/48	0/48
	2009	nd	nd	nd	nd	5 [2]	0/49	0/49
	2018	nd	nd	5	nd	4 [2]	7/47	7/47
	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-50	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	70 [30]	0/36	0/36
	2004	nd	nd	nd	nd	20 [7]	0/38	0/38
	2005	nd	nd	nd	nd	20 [5]	0/47	0/47
Surface Water	2006	nd	nd	nd	nd	16 [5]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	9 [3]	0/48	0/48
	2008	nd	nd	nd	nd	7 [3]	0/48	0/48
	2009	nd	nd	nd	nd	7 [3]	0/49	0/49
	2018	nd	nd	tr(2)	nd	6 [2]	1/47	1/47
	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-62	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	300 [90]	0/36	0/36
	2004	nd	nd	nd	nd	90 [30]	0/38	0/38
	2005	nd	nd	nd	nd	70 [30]	0/47	0/47
Surface Water	2006	nd	nd	nd	nd	60 [20]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	70 [30]	0/48	0/48
	2008	nd	nd	nd	nd	40 [20]	0/48	0/48
	2009	nd	nd	nd	nd	40 [20]	0/49	0/49
	2018	nd	nd	nd	nd	40 [20]	0/47	0/47

(Note) No monitoring was conducted in FY2010~2017.

	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-26	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	90 [30]	0/186	0/62
	2004	nd	nd	nd	nd	60 [20]	0/189	0/63
	2005	nd	nd	nd	nd	60 [30]	0/189	0/63
Sediment	2006	nd	nd	nd	nd	12 [4]	0/192	0/64
(pg/g-dry)	2007	nd	nd	nd	nd	7 [3]	0/192	0/64
	2008	nd	nd	nd	nd	12 [5]	0/192	0/64
	2009	nd	nd	nd	nd	10 [4]	0/192	0/64
	2018	nd	nd	nd	nd	8 [3]	0/61	0/61
	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-50	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	200 [50]	0/186	0/62
	2004	nd	nd	nd	nd	60 [20]	0/189	0/63
	2005	nd	nd	nd	nd	90 [40]	0/189	0/63
Sediment	2006	nd	nd	nd	nd	24 [7]	0/192	0/64
(pg/g-dry)	2007	nd	nd	nd	nd	30 [10]	0/192	0/64
	2008	nd	nd	nd	nd	17 [6]	0/192	0/64
	2009	nd	nd	nd	nd	12 [5]	0/192	0/64
	2018	nd	nd	tr(3)	nd	8 [3]	1/61	1/61
	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-62	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	4,000 [2,000]	0/186	0/62
	2004	nd	nd	nd	nd	2,000 [400]	0/189	0/63
	2005	nd	nd	nd	nd	2,000 [700]	0/189	0/63
Sediment	2006	nd	nd	nd	nd	210 [60]	0/192	0/64
(pg/g-dry)	2007	nd	nd	nd	nd	300 [70]	0/192	0/64
	2008	nd	nd	nd	nd	90 [40]	0/192	0/64
	2009	nd	nd	nd	nd	80 [30]	0/192	0/64
	2018	nd	nd	tr(20)	nd	50 [20]	1/61	1/61

<Sediment>

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in sediment during FY2003~2018

(Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~2009.

(Note 2) No monitoring was conducted in FY2010~2017.

<Wildlife>

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in wildlife (bivalves, fish and birds) during FY2003~2018

	Monitored	Geometric			Ç		Detection I	Frequency
Parlar-26	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	tr(39)	nd	45 [15]	11/30	3/6
	2004	nd	nd	tr(32)	nd	42 [14]	15/31	3/7
	2005	nd	nd	tr(28)	nd	47 [16]	7/31	4/7
Bivalves	2006	tr(9)	tr(12)	25	nd	18 [7]	21/31	5/7
	2007	tr(7)	tr(8)	20	nd	10 [4]	26/31	6/7
(pg/g-wet)	2008	tr(7)	tr(8)	22	nd	9 [3]	27/31	7/7
	2009	9	9	23	nd	7 [3]	27/31	7/7
	2015	tr(10)	tr(15)	tr(17)	nd	23 [9]	2/3	2/3
	2018	tr(10)	tr(15)	tr(15)	nd	21 [8]	2/3	2/3
	2003	tr(28)	tr(24)	810	nd	45 [15]	44/70	11/14
	2004	43	tr(41)	1,000	nd	42 [14]	54/70	13/14
	2005	tr(42)	53	900	nd	47 [16]	50/75	13/16
T2:-1-	2006	41	44	880	nd	18 [7]	70/80	15/16
Fish	2007	24	32	690	nd	10 [4]	64/80	14/16
(pg/g-wet)	2008	35	33	730	nd	9 [3]	79/85	17/17
	2009	25	20	690	nd	7 [3]	82/90	18/18
	2015	26	28	400	nd	23 [9]	13/19	13/19
	2018	tr(17)	tr(17)	280	nd	21 [8]	12/18	12/18

	Monitored	Geometric	N	. ·		Quantification	Detection I	Frequency
Parlar-26	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	120	650	2,500	nd	45 [15]	5/10	1/2
	2004	70	340	810	nd	42 [14]	5/10	1/2
	2005	86	380	1,200	nd	47 [16]	5/10	1/2
Birds**	2006	48	290	750	nd	18 [7]	5/10	1/2
(pg/g-wet)	2007	34	280	650	nd	10 [4]	5/10	1/2
(18.8)	2008	38	320	1,200	nd	9 [3]	6/10	2/2
	2009	26	200	500	nd	7 [3]	6/10	2/2
	2015			tr(10)	tr(10)	23 [9]	1/1	1/1
	2018	53		54	53	21 [8]	2/2	2/2
Parlar-50	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection I	-
	year	mean*				limit	Sample	Site
	2003	tr(12)	tr(12)	58	nd	33 [11]	17/30	4/6
	2004	tr(15)	nd	tr(45)	nd	46 [15]	15/31	3/7
	2005	nd	nd	tr(38)	nd	54 [18]	9/31	4/7
Bivalves	2006	tr(10)	14	32	nd	14 [5]	24/31	6/7
(pg/g-wet)	2007	9	10	37	nd	9 [3]	27/31	7/7
400	2008	tr(7)	tr(6)	23	nd	10 [4]	23/31	6/7
	2009	9	9	31	nd	8 [3]	27/31	7/7
	2015	tr(11)	tr(15)	tr(16)	nd	30 [10]	2/3 2/3	2/3
	2018 2003	<u>tr(9)</u> 35	<u> </u>	<u> </u>	nd	16 [6]	<u> </u>	<u> </u>
	2003	55 60	54 61	1,100	nd	33 [11]	59/70	14/14
	2004 2005				nd	46 [15]		
	2003	tr(52)	66 52	1,400	nd	54 [18]	55/80 70/80	13/16 16/16
Fish	2008	56 35	52 41	1,300 1,100	nd nd	14 [5]	79/80 77/80	16/16
(pg/g-wet)	2007	33 44	41 45	1,100	nd	9 [3] 10 [4]	77/85	10/10
	2008	44 30	43 23	910	nd	8 [3]	85/90	18/18
	2009	tr(25)	tr(13)	640	nd	30 [10]	13/19	13/19
	2013	u(23) 22	u(13) 20	300	nd	16 [6]	16/18	16/18
	2018	110	850	3,000	nd	33 [11]	5/10	1/2
	2003	83	440	1,000	nd	46 [15]	5/10	1/2
	2004	100	480	1,500	nd	54 [18]	5/10	1/2
	2005	46	380	1,000	nd	14 [5]	5/10	1/2
Birds**	2000	34	360	930	nd	9 [3]	5/10	1/2
(pg/g-wet)	2008	49	410	1,600	nd	10 [4]	5/10	1/2
	2009	29	250	620	nd	8 [3]	5/10	1/2
	2015			nd	nd nd	30 [10]	0/1	0/1
	2018	tr(12)		tr(13)	tr(11)	16 [6]	2/2	2/2
				u(13)	u(11)	Quantification	Detection I	
Parlar-62	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		-
	year	mean*				limit	Sample	Site
	2003	nd	nd	nd	nd	120 [40]	0/30	0/6
	2004	nd	nd	nd	nd	98 [33]	0/31	0/7
	2005	nd	nd	nd	nd	100 [34]	0/31	0/7
Divelue	2006	nd	nd	nd	nd	70 [30]	0/31	0/7
Bivalves (pg/g-wet)	2007	nd	nd	nd	nd	70 [30]	0/31	0/7
(pg/g-wet)	2008	nd	nd	nd	nd	80 [30]	0/31	0/7
	2009	nd	nd	nd	nd	70 [20]	0/31	0/7
	2015	nd	nd	nd	nd	150 [60]	0/3	0/3
	2018	nd	nd	nd	nd	100 [40]	0/3	0/3
	2003	nd	nd	580	nd	120 [40]	9/70	3/14
	2004	nd	nd	870	nd	98 [33]	24/70	7/14
	2005	nd	nd	830	nd	100 [34]	23/80	8/16
Fish	2006	tr(30)	nd	870	nd	70 [30]	28/80	10/16
	2007	tr(30)	nd	530	nd	70 [30]	22/80	7/16
(pg/g-wet)	2008	tr(30)	nd	590	nd	80 [30]	31/85	8/17
	2009	tr(20)	nd	660	nd	70 [20]	24/90	8/18
	2015	nd	nd	320	nd	150 [60]	2/19	2/19
	2015	nu	nu	520	na	150 [00]	2/1/	2/1/

	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-62	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	tr(96)	200	530	nd	120 [40]	5/10	1/2
	2004	tr(64)	110	280	nd	98 [33]	5/10	1/2
	2005	tr(78)	130	460	nd	100 [34]	5/10	1/2
Birds**	2006	70	120	430	nd	70 [30]	5/10	1/2
	2007	tr(60)	100	300	nd	70 [30]	5/10	1/2
(pg/g-wet)	2008	tr(70)	130	360	nd	80 [30]	5/10	1/2
	2009	tr(40)	80	210	nd	70 [20]	5/10	1/2
	2015			nd	nd	150 [60]	0/1	0/1
	2018	nd		nd	nd	100 [40]	0/2	0/2

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~2009.
 (Note 2) "**": There is no consistency between the results of the ornithological survey in FY2015 and those in previous

years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2010~2014, FY2016 and FY2017.

<Air>

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in air during FY2003~2018

U		Geometric			U	Quantification	Detection I	Frequency
Parlar-26	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	0.31	0.31	0.77	tr(0.17)	0.20 [0.066]	35/35	35/35
	2003 Cold season	tr(0.17)	tr(0.17)	0.27	tr(0.091)	0.20 [0.066]	34/34	34/34
	2004 Warm season	0.27	0.26	0.46	tr(0.17)	0.20.00.000	37/37	37/37
	2004 Cold season	tr(0.15)	tr(0.15)	0.50	tr(0.094)	0.20 [0.066]	37/37	37/37
	2005 Warm season	nd	nd	nd	nd	0 2 [0 1]	0/37	0/37
	2005 Cold season	nd	nd	nd	nd	0.3 [0.1]	0/37	0/37
Air	2006 Warm season	nd	nd	nd	nd	1.0.0.01	0/37	0/37
(pg/m^3)	2006 Cold season	nd	nd	nd	nd	1.8 [0.6]	0/37	0/37
(pg/m)	2007 Warm season	nd	nd	tr(0.3)	nd	0.6 [0.2]	18/36	18/36
	2007 Cold season 2008 Warm season	nd	nd	nd	nd	0.6 [0.2]	0/36	0/36
		tr(0.21)	0.22	0.58	tr(0.12)	0.22 [0.09]	37/37	37/37
	2008 Cold season	tr(0.11)	tr(0.12)	tr(0.20)	nd	0.22 [0.08]	36/37	36/37
	2009 Warm season	tr(0.18)	tr(0.19)	0.26	tr(0.11)	0.23 [0.09]	37/37	37/37
	2009 Cold season	tr(0.12)	tr(0.13)	0.27	nd	0.23 [0.09]	33/37	33/37
	2018 Warm season	nd	nd	tr(0.3)	nd	0.4 [0.2]	12/37	12/37
		Geometric				Quantification	Detection I	Frequency
Parlar-50	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	nd	nd	tr(0.37)	nd	0.01 [0.07]	2/35	2/35
	2003 Cold season	nd	nd	nd	nd	0.81 [0.27]	0/34	0/34
	2004 Warm season	nd	nd	nd	nd		0.40 -	0/27
	2004 Cald			nu	nu	1 2 [0 4]	0/37	0/37
	2004 Cold season	nd	nd	nd	nd	1.2 [0.4]	0/37 0/37	0/37
	2004 Cold season 2005 Warm season	nd nd						
			nd	nd	nd	1.2 [0.4] 0.6 [0.2]	0/37	0/37
A :	2005 Warm season	nd	nd nd	nd nd	nd nd	0.6 [0.2]	<u> </u>	0/37 0/37
Air (pg/m^3)	2005 Warm season 2005 Cold season	nd nd	nd nd nd	nd nd nd	nd nd nd		0/37 0/37 0/37	0/37 0/37 0/37
Air (pg/m ³)	2005 Warm season 2005 Cold season 2006 Warm season	nd nd nd	nd nd nd nd	nd nd nd nd	nd nd nd nd	0.6 [0.2]	0/37 0/37 0/37 0/37	0/37 0/37 0/37 0/37
	2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season	nd nd nd nd	nd nd nd nd nd	nd nd nd nd nd	nd nd nd nd nd	0.6 [0.2]	0/37 0/37 0/37 0/37 0/37	0/37 0/37 0/37 0/37 0/37
	2005 Warm season2005 Cold season2006 Warm season2006 Cold season2007 Warm season	nd nd nd nd nd	nd nd nd nd tr(0.1)	nd nd nd nd tr(0.2)	nd nd nd nd nd nd	0.6 [0.2] 1.6 [0.5] 0.3 [0.1]	0/37 0/37 0/37 0/37 0/37 29/36	0/37 0/37 0/37 0/37 0/37 0/37 29/36
	2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season	nd nd nd nd nd nd	nd nd nd nd tr(0.1) nd	nd nd nd nd tr(0.2) nd	nd nd nd nd nd nd nd	0.6 [0.2]	0/37 0/37 0/37 0/37 0/37 29/36 0/36 15/37 0/37	0/37 0/37 0/37 0/37 0/37 0/37 29/36 0/36
	2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season	nd nd nd nd nd nd nd	nd nd nd nd tr(0.1) nd nd	nd nd nd nd tr(0.2) nd tr(0.19)	nd nd nd nd nd nd nd nd	0.6 [0.2] 1.6 [0.5] 0.3 [0.1] 0.25 [0.09]	0/37 0/37 0/37 0/37 0/37 29/36 0/36 15/37	0/37 0/37 0/37 0/37 0/37 29/36 0/36 15/37
	2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season	nd nd nd nd nd nd nd nd	nd nd nd nd tr(0.1) nd nd nd	nd nd nd nd tr(0.2) nd tr(0.19) nd	nd nd nd nd nd nd nd nd nd	0.6 [0.2] 1.6 [0.5] 0.3 [0.1]	0/37 0/37 0/37 0/37 0/37 29/36 0/36 15/37 0/37	0/37 0/37 0/37 0/37 0/37 29/36 0/36 15/37 0/37

		Geometric				Quantification	Detection I	Frequency
Parlar-62	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	nd	nd	nd	nd	1 6 [0 52]	0/35	0/35
	2003 Cold season	nd	nd	nd	nd	1.6 [0.52]	0/34	0/34
	2004 Warm season	nd	nd	nd	nd	2 4 [0 91]	0/37	0/37
	2004 Cold season	nd	nd	nd	nd	2.4 [0.81]	0/37	0/37
	2005 Warm season	nd	nd	nd	nd	1.2 [0.4]	0/37	0/37
	2005 Cold season	nd	nd	nd	nd		0/37	0/37
Air	2006 Warm season	nd	nd	nd	nd	 ۹ г21	0/37	0/37
(pg/m^3)	2006 Cold season	nd	nd	nd	nd	8 [3]	0/37	0/37
(pg/m)	2007 Warm season	nd	nd	nd	nd	15[06]	0/36	0/36
	2007 Cold season	nd	nd	nd	nd	1.5 [0.6]	0/36	0/36
	2008 Warm season	nd	nd	nd	nd	1 ([0 (]	0/37	0/37
	2008 Cold season	nd	nd	nd	nd	1.6 [0.6]	0/37	0/37
	2009 Warm season	nd	nd	nd	nd	1 6 [0 6]	0/37	0/37
	2009 Cold season	nd	nd	nd	nd	1.6 [0.6]	0/37	0/37
	2018 Warm season	nd	nd	nd	nd	0.4 [0.2]	0/37	0/37

(Note) No monitoring was conducted in FY2010~2017.

[10] Mirex (references)

· History and state of monitoring

Mirex was developed as an organochlorine insecticide chemical in the United States, and it was also used as a fire retardant in plastics, rubber, and electrical goods. No domestic record of manufacture/import of the substance was reported since it was historically never registrated under the Agricultural Chemicals Regulation Law. The substance was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 2002. Also the substance is one of the original twelve POPs covered by the Stockholm Convention.

Before FY2001, the substance was measured in FY1983 (in surface water and sediment) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Mirex has been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2003~2009, FY2011 and FY2018.

No monitoring was conducted after FY2019. For reference, the monitoring results up to FY2018 are given below.

Monitoring results until FY2018

<Surface Water>

Stocktaking of the detection of Mirex in surface water during FY2003~2018

	Monitored	Geometric			m Minimum	Quantification	Detection	Frequency
Mirex	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	tr(0.13)	tr(0.12)	0.8	nd	0.3 [0.09]	25/36	25/36
	2004	nd	nd	1.1	nd	0.4 [0.2]	18/38	18/38
	2005	nd	nd	1.0	nd	0.4 [0.1]	14/47	14/47
Surface Water	2006	nd	nd	0.07	nd	1.6 [0.5]	1/48	1/48
	2007	nd	nd	tr(0.5)	nd	1.1 [0.4]	2/48	2/48
(pg/L)	2008	nd	nd	0.7	nd	0.6 [0.2]	4/48	4/48
	2009	nd	nd	0.5	nd	0.4 [0.2]	8/49	8/49
	2011	nd	nd	0.8	nd	0.5 [0.2]	3/49	3/49
	2018	nd	nd	1.0	nd	0.7 [0.3]	3/47	3/47

(Note) No monitoring was conducted in FY2010 and FY2012 ~ 2017.

<Sediment>

Stocktaking of the detection of Mirex in sediment during FY2003~2018

C	Monitored	Geometric				Quantification	Detection I	Frequency
Mirex	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	2	tr(1.6)	1,500	nd	2 [0.4]	137/186	51/62
	2004	2	tr(1.6)	220	nd	2 [0.5]	153/189	55/63
	2005	1.8	1.2	5,300	nd	0.9 [0.3]	134/189	48/63
Sediment	2006	1.7	1.2	640	nd	0.6 [0.2]	156/192	57/64
	2007	1.5	0.9	200	nd	0.9 [0.3]	147/192	55/64
(pg/g-dry)	2008	1.4	1.1	820	nd	0.7 [0.3]	117/192	48/64
	2009	1.4	1.3	620	nd	1.0 [0.4]	126/192	49/64
	2011	1.2	0.9	1,900	nd	0.9 [0.4]	42/64	42/64
	2018	1.1	0.9	240	nd	0.8 [0.3]	44/61	44/61

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~2009.

(Note 2) No monitoring was conducted in FY2010 and FY2012 ~ 2017.

Stocktaking of the detection of Mirex in wildlife (bivalves, fish and birds) during FY2003~2018 Quantification **Detection Frequency** Monitored Geometric Mirex Median Maximum Minimum [Detection] year mean* Sample Site limit 2003 4.9 19 30/30 4.2 tr(1.6) 2.4 [0.81] 6/6 2004 4.4 4.3 12 tr(1.1) 2.5 [0.82] 31/31 7/7 2005 5.2 5.4 20 tr(1.9) 3.0 [0.99] 31/31 7/7 2006 5 4 19 tr(2) 31/31 7/7 3 [1] **Bivalves** 2007 5 4 7/7 18 tr(2) 3 [1] 31/31 (pg/g-wet) 2008 4 tr(3) 18 tr(2) 4 [1] 31/31 7/7 5.9 2009 21 2.1 [0.8] 31/31 7/7 5.2 tr(1.7) 7.1 1.9 [0.8] 2011 10 44 5.2 4/4 4/4 2018 4.9 3.2 20 1.8 1.4 [0.5] 3/3 3/3 2003 8.3 9.0 25 tr(1.7) 2.4 [0.81] 70/70 14/142004 180 2.5 [0.82] 70/70 14/1413 11 3.8 2005 13 3.0 [0.99] 80/80 16/16 13 78 tr(1.0) 2006 11 10 53 tr(2) 3 [1] 80/80 16/16 Fish 2007 9 11 36 tr(1) 3 [1] 80/80 16/16 (pg/g-wet) 2008 11 13 48 4 [1] 85/85 17/17tr(1) 2009 8.6 9.6 37 2.1 [0.8] 90/90 18/18 tr(0.9) 2011 41 1.9 [0.8] 18/18 18/18 12 15 tr(1.3) 2018 8.2 8.4 70 1.9 1.4 [0.5] 18/1818/182003 120 150 450 31 2.4 [0.81] 10/102/22004 61 64 110 33 2.5 [0.82] 10/10 2/22005 77 66 180 41 3.0 [0.99] 10/10 2/277 2/22006 70 28039 3 [1] 10/10Birds 2007 57 59 100 32 2/23 [1] 10/10(pg/g-wet) 2008 74 68 260 27 4 [1] 10/102/22009 49 50 79 32 2.1 [0.8] 10/10 2/22011 58 58 1.9 [0.8] 1/11/1___ 2018 <u>11</u>0 2/22/2260 47 1.4 [0.5]

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~2009.

(Note 2) No monitoring was conducted in FY2010 and FY2012~2017.

<Air>

<Wildlife>

Stocktaking of	f the detection	of Mirex in	air during	FY2003~2018
DIOCKIAKING O	i une dettection	I OI WINCA III	i an uuring	1 12005 2010

		Geometric				Quantification	Detection l	Frequency
Mirex	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	0.11	0.12	0.19	0.047	0.0084	35/35	35/35
	2003 Cold season	0.044	0.043	0.099	0.024	[0.0028]	34/34	34/34
	2004 Warm season	0.099	0.11	0.16	tr(0.042)	0.05 [0.017]	37/37	37/37
	2004 Cold season	tr(0.046)	tr(0.047)	0.23	tr(0.019)	0.05 [0.017]	37/37	37/37
	2005 Warm season	tr(0.09)	tr(0.09)	0.24	tr(0.05)	0 10 [0 02]	37/37	37/37
	2005 Cold season	tr(0.04)	tr(0.04)	tr(0.08)	nd	0.10 [0.03]	29/37	29/37
	2006 Warm season	tr(0.07)	tr(0.10)	0.22	nd	0 12 [0 04]	29/37	29/37
<u>.</u> .	2006 Cold season	tr(0.07)	tr(0.07)	2.1	nd	0.13 [0.04]	27/37	27/37
Air (ma/m^3)	2007 Warm season	0.11	0.11	0.28	0.04	0.02 [0.01]	36/36	36/36
(pg/m ³)	2007 Cold season	0.04	0.04	0.09	tr(0.02)	0.03 [0.01]	36/36	36/36
	2008 Warm season	0.09	0.09	0.25	0.03	0.02 [0.01]	37/37	37/37
	2008 Cold season	0.05	0.04	0.08	0.03	0.03 [0.01]	37/37	37/37
	2009 Warm season	0.12	0.13	0.48	0.049	0.015 [0.006]	37/37	37/37
	2009 Cold season	0.058	0.054	0.18	0.030	0.015 [0.006]	37/37	37/37
	2011 Warm season	0.14	0.13	0.25	0.08	0.04 [0.01]	35/35	35/35
	2011 Cold season	0.07	0.07	0.11	tr(0.03)	0.04 [0.01]	37/37	37/37
	2018 Warm season	0.09	0.09	0.20	0.05	0.03 [0.01]	37/37	37/37

(Note) No monitoring was conducted in FY2010 and FY2012~2017.

[11] HCHs (references)

· History and state of monitoring

HCHs were used as pesticides, household insecticides, and termiticides, etc. Even after their registration under the Agricultural Chemicals Regulation Law was expired in FY1971, they continue to be used as termiticides and wood preservatives. α -HCH, β -HCH, and γ -HCH (synonym: Lindane) were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

Among many HCH isomers, α -HCH, β -HCH, γ -HCH (synonym: Lindane) and δ -HCH have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air.

Before FY2001, the substances were measured in FY1974 (in surface water, sediment and fish) under the framework of "the Environmental Survey and Monitoring of Chemicals." α -HCH and β -HCH had been the target chemicals, and surface water and sediment had been the monitored media during the period of FY1986~1998 and FY1986~2001, respectively. Under the framework of the Wildlife Monitoring, the substances were monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1996 and in FY1998, FY2000 and FY2001 (γ -HCH (synonym: Lindane) and δ -HCH had not been monitored since FY1997 and FY1993, respectively.)

Under the framework of the Environmental Monitoring, α -HCH and β -HCH in surface water, sediment, and wildlife (bivalves, fish and birds) have been monitored since FY2002, except FY2018. α -HCH and β -HCH in air and γ -HCH (synonym: Lindane) and δ -HCH in surface water, sediment, wildlife (bivalves, fish and birds) and air have also been monitored since FY2003, except FY2018.

No monitoring was conducted in FY2020. For reference, the monitoring results up to FY2019 are given below.

Monitoring results until FY2018

<Surface Water>

Stocktaking of the detection of Totala-HCH, β -HCH, γ -HCH(synonym: Lindane) and δ -HCH in surface water during FY2002~2019

	Monitored	Geometric				Quantification	Detection I	Frequency
α-HCH	year	ar mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	86	76	6,500	1.9	0.9 [0.3]	114/114	38/38
	2003	120	120	970	13	3 [0.9]	36/36	36/36
	2004	150	145	5,700	13	6 [2]	38/38	38/38
	2005	90	81	660	16	4 [1]	47/47	47/47
	2006	110	90	2,100	25	3 [1]	48/48	48/48
	2007	76	73	720	13	1.9 [0.6]	48/48	48/48
	2008	78	75	1,100	9	4 [2]	48/48	48/48
0 C W	2009	74	73	560	14	1.2 [0.4]	49/49	49/49
Surface Water	2010	94	75	1,400	14	4 [1]	49/49	49/49
(pg/L)	2011	67	60	1,000	11	7 [3]	49/49	49/49
	2012	65	56	2,200	9.5	1.4 [0.5]	48/48	48/48
	2013	57	55	1,900	9	7 [2]	48/48	48/48
	2014	47	41	700	7.3	4.5 [1.5]	48/48	48/48
	2015	48	40	610	8.7	1.2 [0.4]	48/48	48/48
	2016	38	36	640	5.1	1.1 [0.4]	48/48	48/48
	2017	47	45	680	3.7	0.9 [0.4]	47/47	47/47
	2019	35	37	640	tr(2)	4 [2]	48/48	48/48

0 11011	Monitored	Geometric	N		NC: -	Quantification	Detection	Frequency
β -HCH	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	210	180	1,600	24	0.9 [0.3]	114/114	38/38
	2003	250	240	1,700	14	3 [0.7]	36/36	36/36
	2004	260	250	3,400	31	4 [2]	38/38	38/38
	2005	200	170	2,300	25	2.6 [0.9]	47/47	47/47
	2006	200	160	2,000	42	1.7 [0.6]	48/48	48/48
	2007	170	150	1,300	18	2.7[0.9]	48/48	48/48
	2008	150	150	1,800	15	1.0 [0.4]	48/48	48/48
	2009	150	150	1,100	18	0.6 [0.2]	49/49	49/49
Surface Water	2010	180	160	2,500	33	2.0 [0.7]	49/49	49/49
(pg/L)	2011	130	120	840	28	2.0 [0.8]	49/49	49/49
	2012	150	130	820	17	1.4 [0.5]	48/48	48/48
	2013	130	130	1,100	20	7 [2]	48/48	48/48
	2014	100	110	1,100	11	1.0 [0.4]	48/48	48/48
	2015	130	120	1,100	21	1.2 [0.4]	48/48	48/48
	2016	100	96	1,100	12	1.2 [0.4]	48/48	48/48
	2010	100	110	830	12	1.8 [0.7]	47/47	47/47
	2017	100	92	570	12	3 [1]	48/48	48/48
			92		17	Quantification	Detection	
у-НСН	Monitored	Geometric	Median	Maximu	Minimum	[Detection]	Detection	
(synonym: Lindane)	year	mean*	Wiedian	m	Willing	limit	Sample	Site
	2003	92	90	370	32	7 [2]	36/36	36/36
	2003	91	76	8,200	21	20 [7]	38/38	38/38
	2005	48	40	250	tr(8)	14 [5]	47/47	47/47
	2005	44	43	460	tr(9)	18 [6]	48/48	48/48
	2000	34	32	290	5.2	2.1 [0.7]	48/48	48/48
	2007	34	32	340	5.2 4	3 [1]	48/48	48/48
	2008	32	26	280	5.1	0.6 [0.2]	49/49	49/49
Surface Water	2009	26	20 22	280 190	tr(5)	6 [2]	49/49	49/49
	2010	20	20	170	3	3 [1]	49/49	49/49
(pg/L)	2011	23 22	20 21					
	2012	22	21 17	440	3.0	1.3 [0.4]	48/48	48/48
	2013			560 250	3.2	2.7 [0.8]	48/48	48/48
		18	18	350	3.5	1.2 [0.4]	48/48	48/48
	2015	17	15	110	2.6	0.9 [0.3]	48/48	48/48
	2016	14	13	130	1.8	0.8 [0.3]	48/48	48/48
	2017	17	16	190	2.1	1.4 [0.5]	47/47	47/47
	2019	14	12	480	nd	4 [2]	47/48	47/48
	Monitored	Geometric		Maximu		Quantification	Detection	Frequency
δ -HCH	year	mean*	Median	m	Minimum	[Detection] limit	Sample	Site
	2003	14	14	200	tr(1.1)	2 [0.5]	36/36	36/36
	2004	24	29	670	tr(1.4)	2 [0.7]	38/38	38/38
	2005	1.8	nd	62	nd	1.5 [0.5]	23/47	23/47
	2006	24	18	1,000	2.2	2.0 [0.8]	48/48	48/48
	2007	11	9.7	720	tr(0.7)	1.2 [0.4]	48/48	48/48
	2008	11	10	1,900	tr(1.1)	2.3 [0.9]	48/48	48/48
	2009	10	11	450	tr(0.7)	0.9 [0.4]	49/49	49/49
Surface Water	2010	16	17	780	0.9	0.8 [0.3]	49/49	49/49
(pg/L)	2011	8.6	8.9	300	0.7	0.4 [0.2]	49/49	49/49
ч <i>с</i> /	2012	7.9	6.7	220	tr(0.5)	1.1 [0.4]	48/48	48/48
	2012	8.2	8.9	320	tr(0.6)	1.1 [0.4]	48/48	48/48
	2013	7.1	6.5	590	0.7	0.4 [0.2]	48/48	48/48
	2014	7.1	0.5 7.4	310	0.8	0.3 [0.1]	48/48	48/48
	2015	5.5	6.0	920	tr(0.5)	0.8 [0.3]	48/48	48/48
	2018	3.3 8.2	8.0					
				690	tr(0.4)	1.0 [0.4]	47/47	47/47
	2019	5.1	5.3	85	nd	1.0 [0.4]	46/48	46/48

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted in FY2018.

<Sediment>

Stocktaking of the detection of α -HCH, β -HCH, γ -HCH(synonym: Lindane) and δ -HCH in sediment during FY2002~2019

	Monitored	Geometric	M ."	м ·	NC -	Quantification	Detection	Frequency
α-HCH	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	150	170	8,200	2.0	1.2 [0.4]	189/189	63/63
	2003	160	170	9,500	2	2 [0.5]	186/186	62/62
	2004	160	180	5,700	tr(1.5)	2 [0.6]	189/189	63/63
	2005	140	160	7,000	3.4	1.7 [0.6]	189/189	63/63
	2006	140	160	4,300	tr(2)	5 [2]	192/192	64/64
	2007	140	150	12,000	tr(1.3)	1.8 [0.6]	192/192	64/64
	2008	140	190	5,200	nd	1.6 [0.6]	191/192	64/64
G 1' (2009	120	120	6,300	nd	1.1 [0.4]	191/192	64/64
Sediment	2010	140	140	3,700	3.1	2.0 [0.8]	64/64	64/64
(pg/g-dry)	2011	120	140	5,100	1.6	1.5 [0.6]	64/64	64/64
	2012	100	100	3,900	tr(1.1)	1.6 [0.5]	63/63	63/63
	2013	94	98	3,200	tr(0.6)	1.5 [0.5]	63/63	63/63
	2014	84	93	4,300	nd	2.4 [0.8]	62/63	62/63
	2015	97	120	9,600	1.1	0.7 [0.3]	62/62	62/62
	2016	64	77	5,000	1.1	0.9 [0.3]	62/62	62/62
	2017	77	86	1,900	1.0	0.5 [0.2]	62/62	62/62
	2019	67	83	2,600	1.3	1.1 [0.4]	61/61	61/61
			05	2,000	1.5	Quantification	Detection	
β -HCH	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	230	230	11,000	3.9	0.9 [0.3]	189/189	63/63
	2002	250	220	39,000	5	2 [0.7]	186/186	62/62
	2003	240	230	53,000	4	3 [0.8]	189/189	63/63
	2005	200	220	13,000	3.9	2.6 [0.9]	189/189	63/63
	2005	190	210	21,000	2.3	1.3 [0.4]	192/192	64/64
	2000	200	190	59,000	1.6	0.9 [0.3]	192/192	64/64
	2007	190	200	8,900	2.8	0.8 [0.3]	192/192	64/64
	2009	180	170	10,000	2.0	1.3 [0.5]	192/192	64/64
Sediment	2009	230	210	8,200	11	2.4 [0.8]	64/64	64/64
(pg/g-dry)	2010	180	210	14,000	3	3 [1]	64/64	64/64
	2012	160	170	8,300	3.7	1.5 [0.6]	63/63	63/63
	2012	160	170	6,900	4.5	0.4 [0.1]	63/63	63/63
	2013	140	140	7,200	2.9	0.9 [0.3]	63/63	63/63
	2014	160	170	5,900	2.5	0.8 [0.3]	62/62	62/62
	2015	130	160	6,000	3.7	0.9 [0.3]	62/62	62/62
	2010	140	110	3,400	5.7	1.5 [0.6]	62/62	62/62
	2017	140	110	4,100	4.0	1.2 [0.5]	61/61	61/61
	2019	150	110	4,100	4.0	Quantification		
γ-HCH	Monitored	Geometric	Median	Maximum	Minimum	[Detection]	Detection	Frequency
(synonym: Lindane)	year	mean*	Weulan	Waximum	wiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		Sample	Site
	2003	51	47	4,000	tr(1.4)	limit 2 [0.4]	186/186	62/62
	2003	53	47 48	4,000 4,100	tr(0.8)	2 [0.4] 2 [0.5]	180/180	62/62 63/63
	2004 2005	33 49	48 46	4,100 6,400	tr(0.8)	2.0 [0.7]	189/189	63/63
	2003	49 48	40 49	8,400 3,500	tr(1.8)	2.0 [0.7]	189/189	64/64
	2006 2007					2.1 [0.7] 1.2 [0.4]	192/192	
	2007 2008	42	41	5,200	tr(0.6) tr(0.7)			64/64
		40	43	2,200		0.9 [0.4]	192/192 191/192	64/64
C - 1	2009	38	43	3,800	nd	0.6 [0.2]		64/64
Sediment	2010	35	30	2,300	tr(1.5)	2.0 [0.7]	64/64	64/64
(pg/g-dry)	2011	35	42	3,500	nd	3[1]	62/64	62/64
	2012	30	29 25	3,500	nd	1.3 [0.4]	61/63	61/63
	2013	33	35	2,100	0.9	0.6 [0.2]	63/63	63/63
	2014	27	30	2,600	nd	2.7 [0.9]	61/63	61/63
	2015	29	35	2,800	tr(0.3)	0.5 [0.2]	62/62	62/62
	2016	20	25	3,100	tr(0.7)	0.8 [0.3]	62/62	62/62
			25	1 000	tr(0.4)	1.0 [0.4]	62/62	62/62
	2017 2019	23 23	25 27	1,900 2,100	tr(0.4)	1.0 [0.4]	61/61	61/61

	Monitored	Geometric				Quantification	Detection I	Frequency
δ -HCH	year	mean* Median	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	42	46	5,400	nd	2 [0.7]	180/186	61/62
	2004	55	55	5,500	tr(0.5)	2 [0.5]	189/189	63/63
	2005	52	63	6,200	nd	1.0 [0.3]	188/189	63/63
	2006	45	47	6,000	nd	1.7 [0.6]	189/192	64/64
	2007	26	28	5,400	nd	5 [2]	165/192	60/64
	2008	41	53	3,300	nd	2 [1]	186/192	64/64
	2009	36	37	5,000	nd	1.2 [0.5]	190/192	64/64
Sediment	2010	39	40	3,800	1.3	1.2 [0.5]	64/64	64/64
(pg/g-dry)	2011	37	47	5,000	nd	1.4 [0.5]	63/64	63/64
	2012	28	28	3,100	nd	0.8 [0.3]	62/63	62/63
	2013	31	29	2,500	0.4	0.3 [0.1]	63/63	63/63
	2014	27	26	3,900	0.4	0.4 [0.1]	63/63	63/63
	2015	27	28	2,900	tr(0.4)	0.5 [0.2]	62/62	62/62
	2016	20	24	6,100	nd	0.5 [0.2]	60/62	60/62
	2017	25	22	1,700	tr(0.2)	0.6 [0.2]	62/62	62/62
	2019	22	23	2,500	tr(0.2)	0.5 [0.2]	61/61	61/61

(Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002~2009.

(Note 2) No monitoring was conducted in FY2018.

<Wildlife>

Stocktaking of the detection of α -HCH, β -HCH, γ -HCH(synonym: Lindane) and δ -HCH in wildlife (bivalves, fish and birds) during FY2002~2019

	Monitored	Geometric				Quantification	Detection I	Frequency
α-HCH	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	67	64	1,100	12	4.2 [1.4]	38/38	8/8
	2003	45	30	610	9.9	1.8 [0.61]	30/30	6/6
	2004	56	25	1,800	tr(12)	13 [4.3]	31/31	7/7
	2005	38	25	1,100	tr(7.1)	11 [3.6]	31/31	7/7
	2006	30	21	390	6	3 [1]	31/31	7/7
	2007	31	17	1,400	8	7 [2]	31/31	7/7
	2008	26	16	380	7	6 [2]	31/31	7/7
Bivalves	2009	45	21	2,200	9	5 [2]	31/31	7/7
(pg/g-wet)	2010	35	20	730	13	3 [1]	6/6	6/6
(pg/g-wet)	2011	64	33	1,200	13	3 [1]	4/4	4/4
	2012	23	12	340	4.0	3.7 [1.2]	5/5	5/5
	2013	30	25	690	6	3 [1]	5/5	5/5
	2014	16	16	39	7	3 [1]	3/3	3/3
	2015	11	15	25	3.5	3.0 [1.0]	3/3	3/3
	2016	13	20	22	5	3 [1]	3/3	3/3
	2017	15	16	32	6	3 [1]	3/3	3/3
	2019	9	12	14	4	4 [2]	3/3	3/3
	2002	57	56	590	tr(1.9)	4.2 [1.4]	70/70	14/14
	2003	43	58	590	2.6	1.8 [0.61]	70/70	14/14
	2004	57	55	2,900	nd	13 [4.3]	63/70	14/14
	2005	42	43	1,000	nd	11 [3.6]	75/80	16/16
	2006	44	53	360	tr(2)	3 [1]	80/80	16/16
	2007	39	40	730	tr(2)	7 [2]	80/80	16/16
	2008	36	47	410	nd	6 [2]	84/85	17/17
Fish	2009	39	32	830	tr(2)	5 [2]	90/90	18/18
(pg/g-wet)	2010	27	39	250	tr(1)	3 [1]	18/18	18/18
(pg/g-wet)	2011	37	54	690	tr(2)	3 [1]	18/18	18/18
	2012	24	32	170	nd	3.7 [1.2]	18/19	18/19
	2013	32	47	320	tr(2)	3 [1]	19/19	19/19
	2014	26	40	210	nd	3 [1]	18/19	18/19
	2015	18	26	180	tr(1.3)	3.0 [1.0]	19/19	19/19
	2016	15	17	81	nd	3 [1]	18/19	18/19
	2017	20	29	130	nd	3 [1]	18/19	18/19
	2019	8	8	130	nd	4 [2]	12/16	12/16

UCU	Monitored	Geometric		NG		Quantification	Detection I	requency
α-HCH	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	170	130	360	93	4.2 [1.4]	10/10	2/2
	2003	73	74	230	30	1.8 [0.61]	10/10	2/2
	2004	190	80	1,600	58	13 [4.3]	10/10	2/2
	2005	76	77	85	67	11 [3.6]	10/10	2/2
	2005	76	75	100	55	3 [1]	10/10	2/2
	2000	75	79 59	210	43	7 [2]	10/10	2/2
	2007	48	48	61	32	6 [2]	10/10	2/2
	2008	48	48	56	32 34		10/10	2/2
Birds**		43 260		430	160	5 [2]		2/2
(pg/g-wet)	2010					3 [1]	2/2	
	2011			48	48	3 [1]	1/1	1/1
	2012	35		39	32	3.7 [1.2]	2/2	2/2
	2013	46		130	16	3 [1]	2/2	2/2
	2014	61		220	17	3 [1]	2/2	2/2
	2015			13	13	3.0 [1.0]	1/1	1/1
	2016	63		170	23	3 [1]	2/2	2/2
	2017	81		930	7	3 [1]	2/2	2/2
	2019			63	63	4 [2]	1/1	1/1
	Monitored	Geometric				Quantification	Detection F	Frequency
β -HCH	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
						limit	-	
	2002	88	62	1,700	32	12 [4]	38/38	8/8
	2003	78	50	1,100	23	9.9 [3.3]	30/30	6/6
	2004	100	74	1,800	22	6.1 [2.0]	31/31	7/7
	2005	85	56	2,000	20	2.2 [0.75]	31/31	7/7
	2006	81	70	880	11	3[1]	31/31	7/7
	2007	79	56	1,800	21	7 [3]	31/31	7/7
	2008	73	51	1,100	23	6 [2]	31/31	7/7
	2009	83	55	1,600	27	6 [2]	31/31	7/7
Bivalves	2010	89	56	1,500	27	3 [1]	6/6	6/6
(pg/g-wet)	2010	130	68	2,000	39	3 [1]	4/4	4/4
	2011	65	37	2,000 980	15	2.0 [0.8]	5/5	5/5
	2012	61	47	710	13		5/5	5/5
	2015	01		64		2.2 [0.8]		3/3
	2014	40	25		10	$\gamma_A m o$		
	2014	40 34	35 45		28	2.4 [0.9]	3/3	
	2015	34	45	69	13	3.0 [1.0]	3/3	3/3
	2015 2016	34 37	45 47	69 50	13 21	3.0 [1.0] 3 [1]	3/3 3/3	3/3 3/3
	2015 2016 2017	34 37 39	45 47 47	69 50 60	13 21 21	3.0 [1.0] 3 [1] 3 [1]	3/3 3/3 3/3	3/3 3/3 3/3
	2015 2016 2017 2019	34 37 39 23	45 47 47 32	69 50 60 33	13 21 21 11	3.0 [1.0] 3 [1] 3 [1] 3 [1] 3 [1]	3/3 3/3 3/3 3/3	3/3 3/3 3/3 3/3
	2015 2016 2017 2019 2002	34 37 39 23 110	45 47 47 32 120	69 50 60 <u>33</u> 1,800	13 21 21 11 tr(5)	3.0 [1.0] 3 [1] 3 [1] 3 [1] 12 [4]	3/3 3/3 3/3 3/3 70/70	3/3 3/3 3/3 3/3 14/14
	2015 2016 2017 2019 2002 2003	34 37 39 23 110 81	45 47 47 32 120 96	69 50 60 33 1,800 1,100	13 21 21 11 tr(5) tr(3.5)	3.0 [1.0] 3 [1] 3 [1] 3 [1] 12 [4] 9.9 [3.3]	3/3 3/3 3/3 3/3 70/70 70/70	3/3 3/3 3/3 3/3 14/14 14/14
	2015 2016 2017 2019 2002 2003 2004	34 37 39 23 110 81 110	45 47 47 32 120 96 140	69 50 60 33 1,800 1,100 1,100	13 21 21 11 tr(5) tr(3.5) tr(3.9)	3.0 [1.0] 3 [1] 3 [1] 3 [1] 12 [4] 9.9 [3.3] 6.1 [2.0]	3/3 3/3 3/3 70/70 70/70 70/70 70/70	3/3 3/3 3/3 3/3 14/14 14/14 14/14
	2015 2016 2017 2019 2002 2003 2004 2005	34 37 39 23 110 81 110 95	45 47 47 32 120 96 140 110	69 50 60 33 1,800 1,100 1,100 1,300	13 21 21 11 tr(5) tr(3.5) tr(3.9) 6.7	3.0 [1.0] 3 [1] 3 [1] 12 [4] 9.9 [3.3] 6.1 [2.0] 2.2 [0.75]	3/3 3/3 3/3 3/3 70/70 70/70 70/70 80/80	3/3 3/3 3/3 3/3 14/14 14/14 14/14 16/16
	2015 2016 2017 2019 2002 2003 2004 2005 2006	34 37 39 23 110 81 110 95 89	45 47 32 120 96 140 110 110	69 50 60 33 1,800 1,100 1,100 1,300 1,100	13 21 21 11 tr(5) tr(3.5) tr(3.9) 6.7 4	3.0 [1.0] 3 [1] 3 [1] 12 [4] 9.9 [3.3] 6.1 [2.0] 2.2 [0.75] 3 [1]	3/3 3/3 3/3 70/70 70/70 70/70 70/70 80/80 80/80	3/3 3/3 3/3 3/3 14/14 14/14 14/14 16/16 16/16
	2015 2016 2017 2019 2002 2003 2004 2005 2006 2007	34 37 39 23 110 81 110 95 89 110	45 47 32 120 96 140 110 110 120	69 50 60 33 1,800 1,100 1,100 1,300 1,100 810	13 21 21 11 tr(5) tr(3.5) tr(3.9) 6.7 4 7	3.0 [1.0] 3 [1] 3 [1] 3 [1] 12 [4] 9.9 [3.3] 6.1 [2.0] 2.2 [0.75] 3 [1] 7 [3]	3/3 3/3 3/3 70/70 70/70 70/70 70/70 80/80 80/80 80/80	3/3 3/3 3/3 3/3 14/14 14/14 14/14 16/16 16/16 16/16
	2015 2016 2017 2019 2002 2003 2004 2005 2006 2007 2008	34 37 39 23 110 81 110 95 89 110 94	45 47 32 120 96 140 110 110 120 150	69 50 60 33 1,800 1,100 1,100 1,300 1,100 810 750	13 21 21 11 tr(5) tr(3.5) tr(3.9) 6.7 4 7 tr(4)	3.0 [1.0] 3 [1] 3 [1] 3 [1] 12 [4] 9.9 [3.3] 6.1 [2.0] 2.2 [0.75] 3 [1] 7 [3] 6 [2]	3/3 3/3 3/3 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85	3/3 3/3 3/3 3/3 14/14 14/14 14/14 16/16 16/16 16/16 16/16 17/17
Fich	2015 2016 2017 2019 2002 2003 2004 2005 2006 2007 2008 2009	34 37 39 23 110 81 110 95 89 110 94 98	45 47 32 120 96 140 110 110 120	69 50 60 33 1,800 1,100 1,100 1,300 1,100 810	13 21 21 11 tr(5) tr(3.5) tr(3.9) 6.7 4 7	$\begin{array}{c} 3.0 \ [1.0] \\ 3 \ [1] \\ 3 \ [1] \\ 3 \ [1] \\ 12 \ [4] \\ 9.9 \ [3.3] \\ 6.1 \ [2.0] \\ 2.2 \ [0.75] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 6 \ [2] \end{array}$	3/3 3/3 3/3 70/70 70/70 70/70 70/70 80/80 80/80 80/80	3/3 3/3 3/3 3/3 14/14 14/14 14/14 16/16 16/16 16/16
Fish	2015 2016 2017 2019 2002 2003 2004 2005 2006 2007 2008	34 37 39 23 110 81 110 95 89 110 94	45 47 32 120 96 140 110 110 120 150	69 50 60 33 1,800 1,100 1,100 1,300 1,100 810 750	13 21 21 11 tr(5) tr(3.5) tr(3.9) 6.7 4 7 tr(4)	3.0 [1.0] 3 [1] 3 [1] 3 [1] 12 [4] 9.9 [3.3] 6.1 [2.0] 2.2 [0.75] 3 [1] 7 [3] 6 [2]	3/3 3/3 3/3 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85	3/3 3/3 3/3 3/3 14/14 14/14 14/14 16/16 16/16 16/16 16/16 17/17
Fish (pg/g-wet)	2015 2016 2017 2019 2002 2003 2004 2005 2006 2007 2008 2009	34 37 39 23 110 81 110 95 89 110 94 98	$ \begin{array}{r} 45 \\ 47 \\ 32 \\ 120 \\ 96 \\ 140 \\ 110 \\ 110 \\ 120 \\ 150 \\ 130 \\ \end{array} $	$ \begin{array}{r} 69\\ 50\\ 60\\ 33\\ 1,800\\ 1,100\\ 1,100\\ 1,300\\ 1,100\\ 810\\ 750\\ 970\\ \end{array} $	13 21 21 11 tr(5) tr(3.5) tr(3.9) 6.7 4 7 tr(4) tr(5)	$\begin{array}{c} 3.0 \ [1.0] \\ 3 \ [1] \\ 3 \ [1] \\ 3 \ [1] \\ 12 \ [4] \\ 9.9 \ [3.3] \\ 6.1 \ [2.0] \\ 2.2 \ [0.75] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 6 \ [2] \end{array}$	3/3 3/3 3/3 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85 90/90	3/3 3/3 3/3 3/3 14/14 14/14 14/14 16/16 16/16 16/16 16/16 17/17 18/18
	2015 2016 2017 2019 2002 2003 2004 2005 2006 2007 2008 2009 2010	34 37 39 23 110 81 110 95 89 110 94 98 81	$ \begin{array}{r} 45 \\ 47 \\ 32 \\ 120 \\ 96 \\ 140 \\ 110 \\ 120 \\ 150 \\ 130 \\ 110 \\ \end{array} $	$ \begin{array}{r} 69\\ 50\\ 60\\ 33\\ 1,800\\ 1,100\\ 1,100\\ 1,300\\ 1,100\\ 810\\ 750\\ 970\\ 760\\ \end{array} $	13 21 21 11 tr(5) tr(3.5) tr(3.9) 6.7 4 7 tr(4) tr(5) 5	$\begin{array}{c} 3.0 \left[1.0 \right] \\ 3 \left[1 \right] \\ 3 \left[1 \right] \\ 3 \left[1 \right] \\ 12 \left[4 \right] \\ 9.9 \left[3.3 \right] \\ 6.1 \left[2.0 \right] \\ 2.2 \left[0.75 \right] \\ 3 \left[1 \right] \\ 7 \left[3 \right] \\ 6 \left[2 \right] \\ 6 \left[2 \right] \\ 3 \left[1 \right] \end{array}$	3/3 3/3 3/3 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85 90/90 18/18	3/3 3/3 3/3 3/3 14/14 14/14 14/14 16/16 16/16 16/16 16/16 17/17 18/18 18/18
	2015 2016 2017 2019 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2011	34 37 39 23 110 81 110 95 89 110 94 98 81 100 72	$\begin{array}{r} 45\\ 47\\ 47\\ 32\\ \hline 120\\ 96\\ 140\\ 110\\ 120\\ 150\\ 130\\ 110\\ 140\\ 100\\ \end{array}$	$ \begin{array}{r} 69\\ 50\\ 60\\ 33\\ 1,800\\ 1,100\\ 1,100\\ 1,300\\ 1,100\\ 810\\ 750\\ 970\\ 760\\ 710\\ 510\\ \end{array} $	$ \begin{array}{r} 13 \\ 21 \\ 21 \\ 11 \\ tr(5) \\ tr(3.5) \\ tr(3.9) \\ 6.7 \\ 4 \\ 7 \\ tr(4) \\ tr(5) \\ 5 \\ 4 \\ 6.5 \\ \end{array} $	$\begin{array}{c} 3.0 \ [1.0] \\ 3 \ [1] \\ 3 \ [1] \\ 3 \ [1] \\ 12 \ [4] \\ 9.9 \ [3.3] \\ 6.1 \ [2.0] \\ 2.2 \ [0.75] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 6 \ [2] \\ 3 \ [1] \\ 3 \ [1] \\ 2.0 \ [0.8] \end{array}$	3/3 3/3 3/3 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 18/18 18/18 19/19	3/3 3/3 3/3 3/3 14/14 14/14 14/14 16/16 16/16 16/16 16/16 17/17 18/18 18/18 18/18 18/18 19/19
	2015 2016 2017 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013	34 37 39 23 110 81 110 95 89 110 94 98 81 100 72 80	$\begin{array}{r} 45\\ 47\\ 47\\ 32\\ \hline 120\\ 96\\ 140\\ 110\\ 110\\ 120\\ 150\\ 130\\ 110\\ 140\\ 100\\ 110\\ \end{array}$	$\begin{array}{c} 69\\ 50\\ 60\\ 33\\ 1,800\\ 1,100\\ 1,100\\ 1,300\\ 1,100\\ 810\\ 750\\ 970\\ 760\\ 710\\ 510\\ 420\\ \end{array}$	13 21 21 11 tr(5) tr(3.5) tr(3.9) 6.7 4 7 tr(4) tr(5) 5 4 6.5 7.2	$\begin{array}{c} 3.0 \ [1.0] \\ 3 \ [1] \\ 3 \ [1] \\ 3 \ [1] \\ 12 \ [4] \\ 9.9 \ [3.3] \\ 6.1 \ [2.0] \\ 2.2 \ [0.75] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 6 \ [2] \\ 3 \ [1] \\ 3 \ [1] \\ 2.0 \ [0.8] \\ 2.2 \ [0.8] \end{array}$	3/3 3/3 3/3 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 18/18 18/18 19/19 19/19	3/3 3/3 3/3 3/3 14/14 14/14 14/14 16/16 16/16 16/16 16/16 17/17 18/18 18/18 18/18 18/18 19/19 19/19
	2015 2016 2017 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014	34 37 39 23 110 81 110 95 89 110 94 98 81 100 72 80 75	$\begin{array}{r} 45\\ 47\\ 47\\ 32\\ \hline 120\\ 96\\ 140\\ 110\\ 110\\ 120\\ 150\\ 130\\ 110\\ 140\\ 100\\ 110\\ 140\\ \end{array}$	$\begin{array}{c} 69\\ 50\\ 60\\ 33\\ 1,800\\ 1,100\\ 1,100\\ 1,300\\ 1,100\\ 810\\ 750\\ 970\\ 760\\ 710\\ 510\\ 420\\ 460\\ \end{array}$	$ \begin{array}{r} 13 \\ 21 \\ 21 \\ 11 \\ tr(5) \\ tr(3.5) \\ tr(3.9) \\ 6.7 \\ 4 \\ 7 \\ tr(4) \\ tr(5) \\ 5 \\ 4 \\ 6.5 \\ 7.2 \\ 4.4 \\ \end{array} $	$\begin{array}{c} 3.0 \ [1.0] \\ 3 \ [1] \\ 3 \ [1] \\ 3 \ [1] \\ 12 \ [4] \\ 9.9 \ [3.3] \\ 6.1 \ [2.0] \\ 2.2 \ [0.75] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 6 \ [2] \\ 3 \ [1] \\ 3 \ [1] \\ 2.0 \ [0.8] \\ 2.2 \ [0.8] \\ 2.4 \ [0.9] \end{array}$	3/3 3/3 3/3 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85 90/90 18/18 18/18 18/18 18/19 19/19 19/19	3/3 3/3 3/3 3/3 14/14 14/14 14/14 16/16 16/16 16/16 16/16 16/16 17/17 18/18 18/18 18/18 18/18 19/19 19/19
	2015 2016 2017 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015	34 37 39 23 110 81 110 95 89 110 94 98 81 100 72 80 75 56	$\begin{array}{r} 45\\ 47\\ 47\\ 32\\ 120\\ 96\\ 140\\ 110\\ 110\\ 120\\ 150\\ 130\\ 110\\ 140\\ 100\\ 110\\ 140\\ 94\\ \end{array}$	$\begin{array}{c} 69\\ 50\\ 60\\ 33\\ 1,800\\ 1,100\\ 1,100\\ 1,300\\ 1,100\\ 810\\ 750\\ 970\\ 760\\ 710\\ 510\\ 420\\ 460\\ 390\\ \end{array}$	$ \begin{array}{r} 13 \\ 21 \\ 21 \\ 11 \\ tr(5) \\ tr(3.5) \\ tr(3.9) \\ 6.7 \\ 4 \\ 7 \\ tr(4) \\ tr(5) \\ 5 \\ 4 \\ 6.5 \\ 7.2 \\ 4.4 \\ 6.0 \\ \end{array} $	$\begin{array}{c} 3.0 \ [1.0] \\ 3 \ [1] \\ 3 \ [1] \\ 3 \ [1] \\ 12 \ [4] \\ 9.9 \ [3.3] \\ 6.1 \ [2.0] \\ 2.2 \ [0.75] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 6 \ [2] \\ 3 \ [1] \\ 3 \ [1] \\ 2.0 \ [0.8] \\ 2.2 \ [0.8] \\ 2.4 \ [0.9] \\ 3.0 \ [1.0] \end{array}$	3/3 3/3 3/3 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 18/18 18/18 18/18 19/19 19/19 19/19	3/3 3/3 3/3 3/3 14/14 14/14 14/14 16/16 16/16 16/16 16/16 16/16 17/17 18/18 18/18 18/18 18/18 19/19 19/19 19/19
	2015 2016 2017 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016	$\begin{array}{c} 34\\ 37\\ 39\\ 23\\ 110\\ 81\\ 110\\ 95\\ 89\\ 110\\ 94\\ 98\\ 81\\ 100\\ 72\\ 80\\ 75\\ 56\\ 41\\ \end{array}$	$\begin{array}{r} 45\\ 47\\ 47\\ 32\\ 120\\ 96\\ 140\\ 110\\ 110\\ 120\\ 150\\ 130\\ 110\\ 140\\ 100\\ 110\\ 140\\ 94\\ 65\\ \end{array}$	$\begin{array}{c} 69\\ 50\\ 60\\ 33\\ 1,800\\ 1,100\\ 1,100\\ 1,300\\ 1,100\\ 810\\ 750\\ 970\\ 760\\ 710\\ 510\\ 420\\ 460\\ 390\\ 200\\ \end{array}$	$ \begin{array}{r} 13 \\ 21 \\ 21 \\ 11 \\ tr(5) \\ tr(3.5) \\ tr(3.5) \\ tr(3.9) \\ 6.7 \\ 4 \\ 7 \\ tr(4) \\ tr(5) \\ 5 \\ 4 \\ 6.5 \\ 7.2 \\ 4.4 \\ 6.0 \\ 5 \\ \end{array} $	$\begin{array}{c} 3.0 \ [1.0] \\ 3 \ [1] \\ 3 \ [1] \\ 3 \ [1] \\ 12 \ [4] \\ 9.9 \ [3.3] \\ 6.1 \ [2.0] \\ 2.2 \ [0.75] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 6 \ [2] \\ 3 \ [1] \\ 2.0 \ [0.8] \\ 2.2 \ [0.8] \\ 2.2 \ [0.8] \\ 2.4 \ [0.9] \\ 3.0 \ [1.0] \\ 3 \ [1] \end{array}$	3/3 3/3 3/3 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 18/18 18/18 19/19 19/19 19/19 19/19	3/3 3/3 3/3 3/3 14/14 14/14 14/14 16/16 16/16 16/16 16/16 16/16 17/17 18/18 18/18 18/18 18/18 18/18 19/19 19/19 19/19 19/19
	2015 2016 2017 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015	34 37 39 23 110 81 110 95 89 110 94 98 81 100 72 80 75 56	$\begin{array}{r} 45\\ 47\\ 47\\ 32\\ 120\\ 96\\ 140\\ 110\\ 110\\ 120\\ 150\\ 130\\ 110\\ 140\\ 100\\ 110\\ 140\\ 94\\ \end{array}$	$\begin{array}{c} 69\\ 50\\ 60\\ 33\\ 1,800\\ 1,100\\ 1,100\\ 1,300\\ 1,100\\ 810\\ 750\\ 970\\ 760\\ 710\\ 510\\ 420\\ 460\\ 390\\ \end{array}$	$ \begin{array}{r} 13 \\ 21 \\ 21 \\ 11 \\ tr(5) \\ tr(3.5) \\ tr(3.9) \\ 6.7 \\ 4 \\ 7 \\ tr(4) \\ tr(5) \\ 5 \\ 4 \\ 6.5 \\ 7.2 \\ 4.4 \\ 6.0 \\ \end{array} $	$\begin{array}{c} 3.0 \ [1.0] \\ 3 \ [1] \\ 3 \ [1] \\ 3 \ [1] \\ 12 \ [4] \\ 9.9 \ [3.3] \\ 6.1 \ [2.0] \\ 2.2 \ [0.75] \\ 3 \ [1] \\ 7 \ [3] \\ 6 \ [2] \\ 6 \ [2] \\ 3 \ [1] \\ 3 \ [1] \\ 2.0 \ [0.8] \\ 2.2 \ [0.8] \\ 2.4 \ [0.9] \\ 3.0 \ [1.0] \end{array}$	3/3 3/3 3/3 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 18/18 18/18 18/18 19/19 19/19 19/19	3/3 3/3 3/3 3/3 14/14 14/14 14/14 16/16 16/16 16/16 16/16 16/16 17/17 18/18 18/18 18/18 18/18 19/19 19/19 19/19

R UCU	Monitored	Geometric	Modian	Movimur	Minimum	Quantification	Detection I	Frequency
β -HCH	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	3,000	3,000	7,300	1,600	12 [4]	10/10	2/2
	2003	3,400	3,900	5,900	1,800	9.9 [3.3]	10/10	2/2
	2004	2,300	2,100	4,800	1,100	6.1 [2.0]	10/10	2/2
	2005	2,500	2,800	6,000	930	2.2 [0.75]	10/10	2/2
	2006	2,100	2,400	4,200	1,100	3 [1]	10/10	2/2
	2007	2,000	1,900	3,200	1,400	7 [3]	10/10	2/2
	2008	2,400	2,000	5,600	1,300	6 [2]	10/10	2/2
Birds**	2009	1,600	1,400	4,200	870	6 [2]	10/10	2/2
(pg/g-wet)	2010	1,600		2,800	910	3 [1]	2/2	2/2
(pg/g-wet)	2011			4,500	4,500	3 [1]	1/1	1/1
	2012	1,400		2,600	730	2.0 [0.8]	2/2	2/2
	2013	1,400		3,000	610	2.2 [0.8]	2/2	2/2
	2014	290		3,600	24	2.4 [0.9]	2/2	2/2
	2015			57	57	3.0 [1.0]	1/1	1/1
	2016	1,400		2,600	790	3 [1]	2/2	2/2
	2017	1,000		3,500	300	3 [1]	2/2	2/2
	2019			950	950	3 [1]	1/1	1/1
ИСИ	M 1	C ()				Quantification	Detection I	Frequency
γ-HCH	Monitored		Median	Maximum	Minimum	[Detection]		
(synonym: Lindane)	year	mean*				limit	Sample	Site
	2003	19	18	130	5.2	3.3 [1.1]	30/30	6/6
	2004	tr(24)	tr(16)	230	nd	31 [10]	28/31	7/7
	2005	23	13	370	tr(5.7)	8.4 [2.8]	31/31	7/7
	2006	18	12	140	7	4 [2]	31/31	7/7
	2007	16	10	450	tr(4)	9 [3]	31/31	7/7
	2008	12	10	98	tr(3)	9 [3]	31/31	7/7
	2009	14	12	89	tr(3)	7 [3]	31/31	7/7
Bivalves	2010	14	9	150	5	3 [1]	6/6	6/6
(pg/g-wet)	2011	26	17	320	5	3 [1]	4/4	4/4
	2012	8.1	3.5	68	3.0	2.3 [0.9]	5/5	5/5
	2013	7.2	3.9	31	tr(2.1)	2.4 [0.9]	5/5	5/5
	2014	7.4	4.8	18	4.6	2.2 [0.8]	3/3	3/3
	2015	7.3	7.8	14	tr(3.6)	4.8 [1.6]	3/3	3/3
	2016	6	5	11	4	3 [1]	3/3	3/3
	2017	4	3	11	tr(2)	3 [1]	3/3	3/3
	2019	tr(2)	tr(2)	7	nd	4 [1]	2/3	2/3
	2003	16	22	130	tr(1.7)	3.3 [1.1]	70/70	14/14
	2004	tr(28)	tr(24)	660	nd	31 [10]	55/70	11/14
	2005	17	17	230	nd	8.4 [2.8]	78/80	16/16
	2006	19	22	97	tr(2)	4 [2]	80/80	16/16
	2007	15	15	190	nd	9 [3]	71/80	15/16
	2008	13	16	96	nd	9 [3]	70/85	15/17
	2009	14	12	180	nd	7 [3]	81/90	17/18
Fish	2010	9	13	56	tr(1)	3 [1]	18/18	18/18
(pg/g-wet)	2011	12	15	160	tr(1)	3 [1]	18/18	18/18
Y 6 6	2012	7.8	12	43	nd	2.3 [0.9]	18/19	18/19
	2012	8.6	12	81	nd	2.4 [0.9]	17/19	17/19
	2013	8.4	12	45	nd	2.2 [0.8]	16/19	16/19
	2014	6.1	7.9	43	nd	4.8 [1.6]	14/19	14/19
	2015	5	5	42	nd	3 [1]	18/19	18/19
	2010	5	9	43 30	nd	3 [1]	16/19	16/19
	2017			30 34			13/16	
	2019	tr(3)	tr(3)	54	nd	4 [1]	13/10	13/16

у-НСН	Monitored	Geometric				Quantification	Detection I	Frequency
(synonym: Lindane)	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	14	19	40	3.7	3.3 [1.1]	10/10	2/2
	2004	64	tr(21)	1,200	tr(11)	31 [10]	10/10	2/2
	2005	18	20	32	9.6	8.4 [2.8]	10/10	2/2
	2006	16	17	29	8	4 [2]	10/10	2/2
	2007	21	14	140	tr(8)	9 [3]	10/10	2/2
	2008	12	14	19	tr(5)	9 [3]	10/10	2/2
	2009	11	11	21	tr(6)	7 [3]	10/10	2/2
Birds**	2010	10		23	4	3 [1]	2/2	2/2
(pg/g-wet)	2011			26	26	3 [1]	1/1	1/1
	2012	11		19	6.3	2.3 [0.9]	2/2	2/2
	2013	6.0		24	tr(1.5)	2.4 [0.9]	2/2	2/2
	2014	10		24	4.4	2.2 [0.8]	2/2	2/2
	2015			nd	nd	4.8 [1.6]	0/1	0/1
	2016	5		14	tr(2)	3 [1]	2/2	2/2
	2017	4		20	tr(1)	3 [1]	2/2	2/2
	2019			7	7	4 [1]	1/1	1/1
		~ .				Quantification	Detection I	
δ -HCH	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	7.4	tr(2.6)	1,300	nd	3.9 [1.3]	29/30	6/6
	2004	6.3	tr(2.1)	1,500	nd	4.6 [1.5]	25/31	6/7
	2005	5.4	tr(2.1)	1,600	nd	5.1 [1.7]	23/31	6/7
	2006	6	tr(2)	890	tr(1)	3 [1]	31/31	7/7
	2007	4	nd	750	nd	4 [2]	12/31	4/7
	2008	tr(3)	nd	610	nd	6 [2]	7/31	3/7
	2009	tr(4)	nd	700	nd	5 [2]	14/31	4/7
Bivalves	2010	4	tr(2)	870	nd	3 [1]	5/6	5/6
(pg/g-wet)	2011	9	tr(2)	1,400	tr(1)	3 [1]	4/4	4/4
(P8/8 1100)	2012	3	tr(1)	580	nd	3 [1]	3/5	3/5
	2012	3	tr(1)	230	nd	3 [1]	3/5	3/5
	2013	tr(1)	tr(2)	3	nd	3 [1]	2/3	2/3
	2014	nd	nd	tr(1.5)	nd	2.1 [0.8]	1/3	1/3
	2015	tr(1)	tr(1)	tr(2)	tr(1)	3 [1]	3/3	3/3
	2010	tr(1.7)	tr(1.6)	3.0	tr(1.0)	2.3 [0.9]	3/3	3/3
							0/3	0/3
	2019 2003	nd tr(3.6)	<u>nd</u> 4.0	nd 16	nd nd	4 [2] 3.9 [1.3]	<u> </u>	13/14
	2003 2004			270			59/70 54/70	
		tr(4.2)	tr(3.5)		nd	4.6 [1.5]		11/14
	2005	tr(3.2)	tr(3.1)	32	nd	5.1 [1.7]	55/80 72/80	12/16
	2006	4 tr(2)	3 tr(2)	35	nd	3 [1]	72/80	16/16
	2007	tr(3)	tr(2)	31	nd	4 [2]	42/80	10/16
	2008	tr(4)	tr(3)	77	nd	6 [2]	54/85	12/17
T ' '	2009	tr(3)	tr(3)	18	nd	5 [2]	57/90	13/18
Fish	2010	tr(2)	tr(2)	36	nd	3 [1]	13/18	13/18
(pg/g-wet)	2011	3	4	19	nd	3 [1]	14/18	14/18
	2012	tr(2)	tr(2)	12	nd	3 [1]	14/19	14/19
	2013	3	tr(2)	40	nd	3 [1]	14/19	14/19
	2014	tr(2)	tr(2)	23	nd	3 [1]	14/19	14/19
	2015	tr(1.7)	tr(1.8)	17	nd	2.1 [0.8]	12/19	12/19
	2016	tr(2)	tr(2)	10	nd	3 [1]	17/19	17/19
	2017	2.4	2.4	23	nd	2.3 [0.9]	15/19	15/19
	2019	nd	nd	5	nd	4 [2]	6/16	6/16

	Monitored	Geometric				Quantification	Detection H	Frequency
δ -HCH	year	year mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	19	18	31	12	3.9 [1.3]	10/10	2/2
	2004	30	14	260	6.4	4.6 [1.5]	10/10	2/2
	2005	16	15	30	10	5.1 [1.7]	10/10	2/2
	2006	13	12	21	9	3 [1]	10/10	2/2
	2007	12	10	22	4	4 [2]	10/10	2/2
	2008	9	8	31	tr(3)	6 [2]	10/10	2/2
	2009	5	6	9	tr(3)	5 [2]	10/10	2/2
Birds**	2010	12		13	11	3 [1]	2/2	2/2
(pg/g-wet)	2011			5	5	3 [1]	1/1	1/1
	2012	4		7	tr(2)	3 [1]	2/2	2/2
	2013	3		4	tr(2)	3 [1]	2/2	2/2
	2014	tr(2)		3	tr(1)	3 [1]	2/2	2/2
	2015			nd	nd	2.1 [0.8]	0/1	0/1
	2016	tr(1)		tr(2)	tr(1)	3 [1]	2/2	2/2
	2017	nd		tr(1.0)	nd	2.3 [0.9]	1/2	1/2
	2019			4	4	4 [2]	1/1	1/1

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was

(Note 1) " in this reactive was calculated for each point, from when the geometric mean value for all points was derived in FY2002~2009.
 (Note 2) " ** " indicates there is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.
 (Note 3) No monitoring was conducted in FY2018.

<Air>

Stocktaking of the detection of α -HCH,	β -HCH, γ -HCH	I (synonym: Lindane	e) and δ -HCH in air during FY2002~2019

α-НСН	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection Frequency	
							Sample	Site
	2009 Warm season	58	58	340	19	0.12 [0.05]	37/37	37/37
	2009 Cold season	21	18	400	7.8		37/37	37/37
	2010 Warm season	46	51	280	14	1.4 [0.47]	37/37	37/37
	2010 Cold season	19	16	410	6.8		37/37	37/37
	2011 Warm season	43	44	410	9.5	2.5 [0.83]	35/35	35/35
	2011 Cold season	18	15	680	6.5		37/37	37/37
Air	2012 Warm season	37	37	250	15	2.1 [0.7]	36/36	36/36
	2012 Cold season	12	11	120	4.4		36/36	36/36
(pg/m ³)	2013 Warm season	36	39	220	13	5.2 [1.7]	36/36	36/36
	2013 Cold season	10	8.8	75	tr(3.9)		36/36	36/36
	2014 Warm season	44	40	650	14	0.19 [0.06]	36/36	36/36
	2015 Warm season	33	32	300	8.8	0.17 [0.06]	35/35	35/35
	2016 Warm season	39	35	520	5.4	0.17 [0.07]	37/37	37/37
	2017 Warm season	36	37	700	4.9	0.08 [0.03]	37/37	37/37
	2019 Warm season	21	21	230	6.3	0.12 [0.05]	36/36	36/36
	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification	Detection I	Frequency
β -HCH						[Detection] limit	Sample	Site
	2009 Warm season	5.6	5.6	28	0.96	0.09 [0.03]	37/37	37/37
	2009 Cold season	1.8	1.8	24	0.31		37/37	37/37
	2010 Warm season	5.6	6.2	34	0.89	0.27 [0.00]	37/37	37/37
	2010 Cold season	1.7				0 27 [0 00]		
		1./	1.7	29	tr(0.26)	0.27 [0.09]	37/37	37/37
	2011 Warm season	5.0	<u> </u>	<u> </u>	tr(0.26) 0.84		<u> </u>	<u> </u>
	2011 Warm season 2011 Cold season					0.27 [0.09]		
		5.0	5.2	49	0.84	0.39 [0.13]	35/35	35/35
Air $(n - (m^3))$	2011 Cold season	5.0 1.7	5.2 1.7	49 91	0.84 tr(0.31)		35/35 37/37	35/35 37/37
Air (pg/m ³)	2011 Cold season 2012 Warm season	5.0 1.7 5.0	5.2 1.7 5.5	49 91 32	0.84 tr(0.31) 0.65	0.39 [0.13]	35/35 37/37 36/36	35/35 37/37 36/36
	2011 Cold season 2012 Warm season 2012 Cold season	5.0 1.7 5.0 0.93	5.2 1.7 5.5 1.1	49 91 32 8.5	0.84 tr(0.31) 0.65 tr(0.26)	0.39 [0.13]	35/35 37/37 36/36 36/36	35/35 37/37 36/36 36/36
	2011 Cold season 2012 Warm season 2012 Cold season 2013 Warm season	5.0 1.7 5.0 0.93 4.7	5.2 1.7 5.5 1.1 5.7	49 91 32 8.5 37	0.84 tr(0.31) 0.65 tr(0.26) 0.66	0.39 [0.13]	35/35 37/37 36/36 36/36 36/36	35/35 37/37 36/36 36/36 36/36
	2011 Cold season 2012 Warm season 2012 Cold season 2013 Warm season 2013 Cold season	5.0 1.7 5.0 0.93 4.7 0.97	5.2 1.7 5.5 1.1 5.7 0.95	49 91 32 8.5 37 6.7	0.84 tr(0.31) 0.65 tr(0.26) 0.66 tr(0.17)	0.39 [0.13] 0.36 [0.12] 0.21 [0.07]	35/35 37/37 36/36 36/36 36/36 36/36	35/35 37/37 36/36 36/36 36/36 36/36
	2011 Cold season2012 Warm season2012 Cold season2013 Warm season2013 Cold season2014 Warm season	5.0 1.7 5.0 0.93 4.7 0.97 5.4	5.2 1.7 5.5 1.1 5.7 0.95 6.8	49 91 32 8.5 37 6.7 74	$\begin{array}{c} 0.84 \\ tr(0.31) \\ 0.65 \\ tr(0.26) \\ 0.66 \\ tr(0.17) \\ 0.57 \end{array}$	0.39 [0.13] 0.36 [0.12] 0.21 [0.07] 0.24 [0.08]	35/35 37/37 36/36 36/36 36/36 36/36 36/36	35/35 37/37 36/36 36/36 36/36 36/36 36/36
	2011 Cold season 2012 Warm season 2012 Cold season 2013 Warm season 2013 Cold season 2014 Warm season 2015 Warm season	5.0 1.7 5.0 0.93 4.7 0.97 5.4 3.0	5.2 1.7 5.5 1.1 5.7 0.95 6.8 3.0	49 91 32 8.5 37 6.7 74 34	0.84 tr(0.31) 0.65 tr(0.26) 0.66 tr(0.17) 0.57 0.36	0.39 [0.13] 0.36 [0.12] 0.21 [0.07] 0.24 [0.08] 0.25 [0.08]	35/35 37/37 36/36 36/36 36/36 36/36 36/36 35/35	35/35 37/37 36/36 36/36 36/36 36/36 36/36 35/35

γ-НСН		Geometric				Quantification	Detection I	Frequency
(synonym: Lindane)	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	17	19	65	2.9	0.06 [0.02]	37/37	37/37
	2009 Cold season	5.6	4.6	55	1.5	0.06 [0.02]	37/37	37/37
	2010 Warm season	14	16	66	2.3	0.35 [0.12]	37/37	37/37
	2010 Cold season	4.8	4.4	60	1.1	0.55 [0.12]	37/37	37/37
	2011 Warm season	14	17	98	2.7	1.6 [0.52]	35/35	35/35
	2011 Cold season	5.1	4.8	67	tr(1.1)	1.0 [0.32]	37/37	37/37
Air	2012 Warm season	13	15	55	2.3	0.95 [0.32]	36/36	36/36
(pg/m^3)	2012 Cold season	3.1	3.2	19	tr(0.63)	0.95 [0.52]	36/36	36/36
(pg/m)	2013 Warm season	12	14	58	tr(2.0)	2.2 [0.7]	36/36	36/36
	2013 Cold season	2.8	3.0	12	nd	2.2 [0.7]	34/36	34/36
	2014 Warm season	14	16	100	1.7	0.17 [0.06]	36/36	36/36
	2015 Warm season	8.3	10	51	1.4	0.19 [0.06]	35/35	35/35
	2016 Warm season	12	13	89	0.79	0.18 [0.07]	37/37	37/37
	2017 Warm season	10	11	93	0.84	0.10 [0.04]	37/37	37/37
	2019 Warm season	6.4	7.0	49	0.88	0.12 [0.05]	36/36	36/36
		Geometric				Quantification	Detection I	Frequency
δ -HCH	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	1.3	1.3	21	0.09	0.04 [0.02]	37/37	37/37
	2009 Cold season	0.36	0.33	20	0.04	0.04 [0.02]	37/37	37/37
	2010 Warm season	1.4	1.3	25	0.11	0.05 [0.02]	37/37	37/37
	2010 Cold season	0.38	0.35	22	0.05	0.05 [0.02]	37/37	37/37
	2011 Warm season	1.1	1.1	33	0.11	0.062 [0.021]	35/35	35/35
	2011 Cold season	0.35	0.34	26	tr(0.050)	0.063 [0.021]	37/37	37/37
Air	2012 Warm season	1.0	1.3	20	tr(0.06)	0.07.[0.02]	36/36	36/36
	2012 Cold season	0.18	0.19	7.3	nd	0.07 [0.03]	35/36	35/36
(pg/m^3)	2013 Warm season	1.0	1.1	20	tr(0.05)	0.08 [0.03]	36/36	36/36
	2013 Cold season	0.17	0.17	5.3	nd	0.08 [0.05]	34/36	34/36
	2014 Warm season	1.2	1.3	50	tr(0.07)	0.19 [0.06]	36/36	36/36
	2015 Warm season	0.55	0.71	22	nd	0.15 [0.05]	32/35	32/35
	2016 Warm season	1.0	1.2	46	nd	0.20 [0.08]	35/37	35/37
	2010 Wallin beabon							
	2017 Warm season	0.80	0.92	46	nd	0.08 [0.03]	36/37	36/37

(Note) No monitoring was conducted in FY2018.

[12] Chlordecone (reference)

• History and state of monitoring (reference)

Chlordecone is a synthetic chlorinated organic compound, which was mainly used as an agricultural pesticide. No domestic record of manufacture/import of the substance was reported since it was historically never registrated under the Agricultural Chemicals Regulation Law. Chlordecone was adopted as a target chemical at the Fourth Meeting of the Conference of Parties (COP4) on Stockholm convention on Persistent Organic Pollutants in May 2009 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

As a continuous survey, the first survey was in FY2008. In the Initial Environmental Survey and the Detailed Environmental Survey etc. under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, the substance was monitored in air in FY2003.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY2008, and in surface water, sediment and wildlife (bivalves, fish and birds) air in FY2010 and FY2011.

No monitoring was conducted after FY2012. For reference, the monitoring results up to FY2011 are given below.

· Monitoring results until FY2011

<Surface Water>

Stocktaking of the detection of Chlordecone in surface water during FY2008~2011

	Monitored	Geometric				Quantification	Detection	Frequency
Chlordecone	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water (pg/L)	2008	nd	nd	0.76	nd	0.14 [0.05]	13/46	13/46
	2010	tr(0.04)	nd	1.6	nd	0.09 [0.04]	13/49	13/49
	2011	nd	nd	0.70	nd	0.20 [0.05]	15/49	15/49

(Note) No monitoring was conducted in FY2009.

<Sediment>

Stocktaking of the detection of Chlordecone sediment during FY2008~2011

	Monitored	Geometric		N6 ·		Quantification	Detection 1	Frequency
Chlordecone	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
C a d'an ant	2008	nd	nd	5.8	nd	0.42 [0.16]	23/129	10/49
Sediment	2010	nd	nd	2.8	nd	0.4 [0.2]	9/64	9/64
(pg/g-dry)	2011	nd	nd	1.5	nd	0.40 [0.20]	9/64	9/64

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

(Note 2) No monitoring was conducted in FY2009.

<Wildlife>

	Monitored	Geometric				Quantification	Detection I	Frequency
Chlordecone	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Bivalves	2008	nd	nd	nd	nd	5.6 [2.2]	0/31	0/7
	2010	nd	nd	nd	nd	5.9 [2.3]	0/6	0/6
(pg/g-wet)	2011	nd	nd	nd	nd	0.5 [0.2]	0/4	0/4
Fish	2008	nd	nd	nd	nd	5.6 [2.2]	0/85	0/17
	2010	nd	nd	nd	nd	5.9 [2.3]	0/18	0/18
(pg/g-wet)	2011	nd	nd	nd	nd	0.5 [0.2]	0/18	0/18
D:1-	2008	nd	nd	nd	nd	5.6 [2.2]	0/10	0/2
Birds	2010	nd		nd	nd	5.9 [2.3]	0/2	0/2
(pg/g-wet)	2011			nd	nd	0.5 [0.2]	0/1	0/1

Stocktaking of the detection of Chlordecone in wildlife (bivalves, fish and birds) during FY2002~2014

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

(Note 2) No monitoring was conducted in FY209.

<Air>

Stocktaking of the detection of Chlordecone in air in FY2010 and 2011

		Geometric				Quantification	Detection I	Frequency
Chlordecone	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2010 Warm season	nd	nd	nd	nd	0.04 [0.02]	0/37	0/37
Air	2010 Cold season	nd	nd	nd	nd	0.04 [0.02]	0/37	0/37
(pg/m ³)	2011 Warm season	nd	nd	nd	nd	0.04.00.021	0/35	0/35
	2011 Cold season	nd	nd	nd	nd	0.04 [0.02]	0/37	0/37

[13] Hexabromobiphenyls (reference)

· History and state of monitoring

Hexabromobiphenyls are industrial chemicals that have been used as flame retardans. Hexabromobiphenyls were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

As a continuous survey, the first survey was in FY2009. Under the framework of the Environmental Survey of Chemical Substances up to FY2001, the substance was monitored in surface water, sediment, wildlife (fish) and air in FY1989. Under the framework of the Initial Environmental Survey and the Detailed Environmental Survey etc. in the Environmental Survey and Monitoring of Chemicals after FY2002, the substance was monitored surface water and sediment in FY2003, in air in FY2004.

Under the framework of the Environmental Monitoring, the substances were monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY2009, in air in FY2010~2011 and in sediment, wildlife (bivalves, fish and birds) and air in FY2015.

No monitoring was conducted after FY2016. For reference, the monitoring results up to FY2015 are given below.

Monitoring results until FY2015

<Surface Water>

Stocktaking of the detection of Hexabromobiphenyls in surface water during FY2009~2011

	Monitored	Geometric				Quantification	Detection I	Frequency
Hexabromobiphenyls	year	mean	Median	Maximum	Minimum	[Detection] limit*	Sample	Site
Courfe and Western	2009	nd	nd	nd	nd	5.7 [2.2]	0/49	0/49
Surface Water (pg/I)	2010	nd	nd	nd	nd	3 [1]	0/49	0/49
(pg/L)	2011	nd	nd	nd	nd	2.2 [0.9]	0/49	0/49

(Note) "**" indicates the sum value of the Quantification [Detection] limits of each congener in FY2009 and FY2011.

<Sediment>

Stocktaking of the detection of Hexabromobiphenyls in sediment during FY2002~2015

	Monitored	Geometric		NG .	NC .	Quantification	Detection 1	Frequency
Hexabromobiphenyls	year	mean*	Median	Maximum	Minimum	[Detection] limit**	Sample	Site
	2009	nd	nd	12	nd	1.1 [0.40]	45/190	21/64
Sediment	2010	nd	nd	18	nd	1.5 [0.6]	10/64	10/64
(pg/g-dry)	2011	nd	nd	6.3	nd	3.6 [1.4]	8/64	8/64
	2015	nd	nd	15	nd	0.8 [0.3]	9/62	9/62

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) "** " indicates the sum value of the Quantification [Detection] limits of each congener in FY2009 and FY2011. (Note 3) No monitoring was conducted during FY2012~2014.

<Wildlife>

	Monitored	Geometric				Quantification	Detection 1	Frequency
Hexabromobiphenyls	year	mean*	Median	Maximum	Minimum	[Detection] limit**	Sample	Site
	2009	nd	nd	tr(0.53)	nd	1.3 [0.43]	1/31	1/7
Bivalves	2010	nd	nd	nd	nd	24 [10]	0/6	0/6
(pg/g-wet)	2011	nd	nd	nd	nd	3 [1]	0/4	0/4
	2015	nd	nd	nd	nd	14 [5]	0/3	0/3
	2009	tr(0.49)	tr(0.43)	6.0	nd	1.3 [0.43]	46/90	12/18
Fish	2010	nd	nd	nd	nd	24 [10]	0/18	0/18
(pg/g-wet)	2011	nd	nd	3	nd	3 [1]	5/18	5/18
	2015	nd	nd	nd	nd	14 [5]	0/19	0/19
	2009	1.6	1.6	2.1	tr(1.2)	1.3 [0.43]	10/10	2/2
Birds***	2010	nd		nd	nd	24 [10]	0/2	0/2
(pg/g-wet)	2011			3	3	3 [1]	1/1	1/1
(188 ····	2015			nd	nd	14 [5]	0/1	0/1

Stocktaking of the detection of	of Hexabromobiphenvls in	ı wildlife (bivalves, fish an	d birds) during FY2009~2015

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) "** " indicates the sum value of the Quantification [Detection] limits of each congener in FY2009 and FY2010. (Note 3) "***" There is no consistency between the results of the ornithological survey in FY2015 and those in previous years

because of the changes in the survey sites and target species.

(Note 4) No monitoring was conducted during FY2012~2014.

<Air>

Stocktaking of the detection of Hexabromobiphenyls in air during FY2010~2015

Hexabromo		Geometric				Quantification	Detection I	Frequency
biphenyls	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2010 Warm season	nd	nd	nd	nd	0.3 [0.1]	0/37	0/37
A :	2010 Cold season	nd	nd	nd	nd	0.5 [0.1]	0/37	0/37
Air (ma/m^3)	2011 Warm season	nd	nd	nd	nd	0.3 [0.1]	0/35	0/35
(pg/m ³)	2011 Cold season	nd	nd	nd	nd	0.5 [0.1]	0/37	0/37
	2015 Warm season	nd	nd	1.1	nd	0.06 [0.02]	2/35	2/35

(Note) No monitoring was conducted during FY2012~2014.

[14] Polybromodiphenyl ethers (Br₄~Br₁₀) (reference)

· History and state of monitoring

Polybrominated diphenyl ethers have been used as flame retardants for plastics products. Tetrabromodiphenyl ethers, Pentabromodiphenyl ethers, Hexabromodiphenyl ethers, and Heptabromodiphenyl ethers were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010. Also, Decabromodiphenyl ether was adopted as target chemicals at the COP8 of the Stockholm convention on Persistent Organic Pollutants held from late April to early May 2017. The substance was designated as a Class I Specified Chemical Substances Control Law in April 2018.

As a continuous survey, the first survey was in FY2008. Under the framework of the Environmental Survey of Chemical Substances up to FY2001, Decabromodiphenyl ether was monitored in surface water and sediment in FY1977 and FY1996, Polybromodiphenyl ethers (Br_6 , Br_8 and Br_{10}) were monitored in surface water, sediment and wildlife (fish) in FY1987 and FY1988, Polybromodiphenyl ethers ($Br_1 \sim Br_7$) were monitored in air in FY2001. In the Initial Environmental Survey and the Detailed Environmental Survey etc. under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, Decabromodiphenyl ether was monitored in surface water, sediment and wildlife (fish) in FY2002, Polybromodiphenyl ethers (Br_6 , Br_8 and Br_{10}) were monitored in sediment and wildlife (fish) in FY2003, Pentabromodiphenyl ethers were monitored in sediment and Polybromodiphenyl ethers ($Br_1 \sim Br_7$) in air in FY2004, Polybromodiphenyl ethers ($Br_1 \sim Br_7$, Br_9 and Br_{10}) were monitored in surface water in FY2005.

Under the framework of the Environmental Monitoring, Polybromodiphenyl ethers $(Br_4 \sim Br_{10})$ were monitored in wildlife (bivalves, fish and birds) in FY2008, in surface water, sediment and air in FY2009 and in surface water, sediment and wildlife (bivalves, fish and birds) and air in FY2010~2012, 2014~2019.

No monitoring was conducted in FY2020. For reference, the monitoring results up to FY2019 are given below.

Tetrabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	17	16	160	nd	8 [3]	44/49	44/49
	2010	nd	nd	390	nd	9 [3]	17/49	17/49
	2011	11	10	180	nd	4 [2]	48/49	48/49
	2012	tr(3)	tr(3)	22	nd	4 [1]	47/48	47/48
Surface Water	2014	tr(6)	tr(6)	51	tr(4)	8 [3]	48/48	48/48
(pg/L)	2015	4.3	4.1	40	tr(1.2)	3.6 [1.2]	48/48	48/48
	2016	5	tr(5)	47	tr(3)	5 [2]	48/48	48/48
	2017	tr(4)	tr(4)	12	nd	9 [3]	44/47	44/47
	2018	nd	nd	72	nd	13 [5]	22/47	22/47
	2019	tr(6)	tr(6)	320	nd	11 [4]	39/48	39/48
Dontohnomodinhonvi	Monitored	Coomotrio				Quantification	Detection	Frequency
Pentabromodiphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	11	12	87	nd	11 [4]	43/49	43/49
	2010	tr(1)	tr(1)	130	nd	3 [1]	25/49	25/49
	2011	5	4	180	nd	3 [1]	48/49	48/49
	2012	tr(1)	tr(1)	20	nd	2 [1]	32/48	32/48
Surface Water	2014	nd	nd	39	nd	4 [2]	19/48	19/48
(pg/L)	2015	tr(3.0)	tr(3.2)	31	nd	6.3 [2.1]	34/48	34/48
	2016	tr(1.5)	tr(1.3)	36	nd	2.4 [0.9]	39/48	39/48
	2017	nd	tr(1)	8	nd	3 [1]	24/47	24/47
	2018	nd	nd	110	nd	9 [3]	13/47	13/47
	2019	nd	nd	69	nd	6 [2]	19/48	19/48

Monitoring results until FY2019

<Surface Water>

Hexabromodiphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection Sample	Frequency Site
	2009	tr(0.9)	tr(0.7)	18	nd	1.4 [0.6]	26/49	26/49
	2009	nd	nd	51	nd	4 [2]	16/49	16/49
	2010	tr(1)	nd	39	nd	3 [1]	21/49	21/49
	2011	nd	nd	7	nd	3 [1]	6/48	6/48
Surface Water	2012	nd	nd	8	nd	4 [1]	10/48	10/48
(pg/L)	2014	nd	nd	12	nd	1.5 [0.6]	5/48	5/48
(PS/2)	2015	nd	nd	9.1	nd	2.1 [0.8]	9/48	9/48
	2010	nd	nd	tr(6)	nd	7 [3]	1/47	1/47
	2017	nd	nd	54	nd	3 [1]	15/47	15/47
	2010	nd	nd	8	nd	2 [1]	5/48	5/48
			iiu	0	nu	Quantification	Detection	
Heptabromodiphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	nd	nd	40	nd	4 [2]	9/49	9/49
	2010	nd	nd	14	nd	3 [1]	17/49	17/49
	2011	nd	nd	14	nd	6 [2]	14/49	14/49
	2012	nd	nd	10	nd	4 [1]	9/48	9/48
Surface Water	2014	nd	nd	8	nd	8 [3]	3/48	3/48
(pg/L)	2015	nd	nd	28	nd	2.0 [0.8]	9/48	9/48
	2016	nd	nd	11	nd	7 [3]	10/48	10/48
	2017	nd	nd	30	nd	14 [5]	1/47	1/47
	2018	nd	nd	65	nd	8 [3]	3/47	3/47
	2019	nd	nd	6	nd	4 [2]	2/48	2/48
			na	0	nu	Quantification	Detection	
Octabromodiphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	3.0	3.9	56	nd	1.4 [0.6]	37/49	37/49
	2010	tr(2)	tr(2)	69	nd	3 [1]	40/49	40/49
	2011	4	3	98	nd	2 [1]	44/49	44/49
	2012	tr(2)	nd	35	nd	4 [2]	16/48	16/48
Surface Water	2014	2.5	3.7	38	nd	1.6 [0.6]	33/48	33/48
(pg/L)	2015	2.3	3.1	36	nd	1.5 [0.6]	31/48	31/48
	2016	5.8	7.5	230	nd	0.8 [0.3]	44/48	44/48
	2017	tr(2)	nd	33	nd	2 [1]	22/47	22/47
	2018	tr(2)	tr(1)	69	nd	3 [1]	35/47	35/47
	2019	nd	nd	14	nd	3 [1]	12/48	12/48
NT 1 1 1 1		a				Quantification	Detection	
Nonabromodiphenyl ethers	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	tr(46)	tr(38)	500	nd	91 [30]	32/49	32/49
	2010	tr(17)	tr(13)	620	nd	21 [7]	39/49	39/49
	2011	33	24	920	nd	10 [4]	47/49	47/49
	2012	tr(21)	tr(19)	320	nd	40 [13]	30/48	30/48
Surface Water	2014	37	38	590	nd	6 [2]	47/48	47/48
(pg/L)	2015	36	33	330	nd	6 [2]	47/48	47/48
	2016	43	45	3,900	tr(2)	4 [1]	48/48	48/48
	2017	17	26	460	nd	7 [3]	37/47	37/47
	2018	12	12	170	nd	6 [2]	46/47	46/47
	2019	tr(7)	8	150	nd	8 [3]	27/48	27/48
Decabromodiphenyl	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection	Frequency Site
ether	year	mean				limit	Sample	
	2009	tr(310)	tr(220)	3,400	nd	600 [200]	26/49	26/49
	2010	tr(250)	tr(200)	13,000	nd	300 [100]	31/49	31/49
	2011	200	140	58,000	nd	60 [20]	45/49	45/49
	2012	tr(400)	tr(320)	12,000	nd	660 [220]	31/48	31/48
Surface Water	2014	200	230	5,600	tr(14)	22 [9]	48/48	48/48
(pg/L)	2015	720	570	13,000	140	18 [7]	48/48	48/48
	2016	210	160	34,000	tr(12)	14 [6]	48/48	48/48
	2017	150	210	4,100	nd	24 [8]	46/47	46/47
	2018	120	110	2,700	12	11 [4]	47/47	47/47
	2010	120	110	2,700	12	11 [7]		

(Note) No monitoring was conducted in FY2013.

Stocktaking of the d	letection of 1	Polybromodi	iphenyl eth	ers (Br ₄ ~Br ₁₀) in sedime	nt during FY200)9~2019	
Tetrabromodiphenyl	Monitored		Median	Maximum	Minimum	Quantification [Detection]	Detection	
ethers	year	mean*				limit	Sample	Site
	2009	tr(60)	tr(44)	1,400	nd	69 [23]	131/192	51/64
	2010	35	38	910	nd	6 [2]	57/64	57/64
	2011	32	30	2,600	nd	30 [10]	47/64	47/64
	2012	27	37	4,500	nd	2 [1]	60/63	60/63
Sediment	2014	tr(24)	tr(19)	550	nd	27 [9]	44/63	44/63
(pg/g-dry)	2015	30	28	1,400	nd	21 [7]	44/62	44/62
	2016	tr(21)	tr(16)	390	nd	33 [11]	35/62	35/62
	2017	13	10	570	nd	9 [4]	44/62	44/62
	2018	21	tr(16)	3,100	nd	18 [6]	43/61	43/61
	2019	15	14	710	nd	5 [2]	58/61	58/61
Dontohnomodinhanvl	Monitored	Coomotrio				Quantification	Detection	
Pentabromodiphenyl ethers	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	36	24	1,700	nd	24 [8]	146/192	57/64
	2010	26	23	740	nd	5 [2]	58/64	58/64
	2011	24	18	4,700	nd	5 [2]	62/64	62/64
	2011	24	21	2,900	nd	2.4 [0.9]	62/63	62/63
Sediment	2012	16	14	570	nd	6 [2]	53/63	53/63
(pg/g-dry)	2014	23	20	1,300	nd	18 [6]	44/62	44/62
400 - 11	2016	13	tr(10)	400	nd	12 [4]	46/62	46/62
	2017	10	tr(5.5)	560	nd	9 [4]	37/62	37/62
	2018	19	24	2,800	nd	4 [2]	53/61	53/61
	2019	9	9	740	nd	3 [1]	52/61	52/61
		Constantin				Quantification	Detection	
Hexabromodiphenyl	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		
ethers	year	mean*				limit	Sample	Site
	2009	21	21	2,600	nd	5 [2]	139/192	53/64
	2010	23	23	770	nd	4 [2]	57/64	57/64
	2011	31	42	2,000	nd	9 [3]	52/64	52/64
	2012	15	19	1,700	nd	3 [1]	48/63	48/63
Sediment	2014	21	27	730	nd	5 [2]	50/63	50/63
(pg/g-dry)	2015	11	15	820	nd	3 [1]	42/62	42/62
	2016	17	19	600	nd	8 [3]	40/62	40/62
	2017	16	24	570	nd	6 [2]	44/62	44/62
	2018	29	37	1,300	nd	3 [1]	52/61	52/61
	2019	14	17	690	nd	4 [2]	41/61	41/61
Heptabromodiphenyl	Monitored	Geometric	Median	M	M:	Quantification	Detection	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	2009	30	25	16,000	nd	limit 9 [4]	125/192	51/64
	2009	28	23 18	930	nd	4 [2]	58/64	58/64
	2010	28 29	32	2,400	nd	4 [2] 7 [3]	55/64	55/64
	2011	29 34	32 32	2,400 4,400	nd	7 [3] 4 [2]	48/63	48/63
Sediment	2012	54 19	52 tr(14)	4,400 680	nd	4 [2] 16 [6]	48/63	48/63
(pg/g-dry)	2014	19	21	1,800	nd	3 [1]	44/62	44/62
(P8/5 (1))	2015	16	17	1,800	nd	6 [2]	44/62	44/62
	2010	18	16	580	nd	15 [6]	36/62	36/62
	2017	44	48	1,900	nd	14 [5]	46/61	46/61
	2018	15	40	1,900	nd	6 [3]	39/61	39/61
· · · · · · · · ·			11	1,100	nu	Quantification	Detection	
Octabromodiphenyl	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		
ethers	year	mean*				limit	Sample	Site
	2009	210	96	110,000	nd	1.2 [0.5]	182/192	63/64
	2010	71	76	1,800	nd	10 [4]	60/64	60/64
	2011	57	64	36,000	nd	10 [4]	55/64	55/64
	2012	78	74	15,000	nd	19 [6]	47/63	47/63
Sediment	2014	52	58	2,000	nd	12 [4]	55/63	55/63
(pg/g-dry)	2015	58	tr(44)	1,400	nd	48 [16]	41/62	41/62
	2016	51	49	1,400	nd	6 [2]	55/62	55/62
	2017	38	58	1,900	nd	5 [2]	48/62	48/62
	2018	100	140	5,500	nd	1.2 [0.5]	57/61	57/61
	2019	33	47	2,000	nd	3 [1]	50/61	50/61

<Sediment>

Stocktaking of the detection of Polybromodiphenyl ethers (Br₄~Br₁₀) in sediment during FY2009~2019

Nonshromodinhanul	Monitored	Geometric				Quantification	Detection I	Frequency
Nonabromodiphenyl ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	1,100	710	230,000	nd	9 [4]	181/192	64/64
	2010	360	430	26,000	nd	24 [9]	60/64	60/64
	2011	710	630	70,000	nd	23 [9]	62/64	62/64
	2012	360	380	84,000	nd	34 [11]	52/63	52/63
Sediment	2014	470	470	42,000	nd	60 [20]	60/63	60/63
(pg/g-dry)	2015	300	420	11,000	nd	24 [8]	55/62	55/62
	2016	430	390	26,000	nd	27 [9]	60/62	60/62
	2017	400	490	29,000	nd	15 [5]	61/62	61/62
	2018	690	770	56,000	nd	5 [2]	60/61	60/61
	2019	310	420	40,000	nd	5 [2]	59/61	59/61
Decabromodiphenyl ether	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
	2009	6,000	4,800	880,000	tr(30)	60 [20]	192/192	64/64
	2010	5,100	4,200	700,000	nd	220 [80]	60/64	60/64
	2011	4,200	4,700	700,000	nd	40 [20]	62/64	62/64
	2012	5,700	6,300	760,000	nd	270 [89]	60/63	60/63
Sediment	2014	5,600	5,000	980,000	nd	240 [80]	61/63	61/63
(pg/g-dry)	2015	6,600	7,200	490,000	40	40 [20]	62/62	62/62
	2016	4,700	5,100	940,000	nd	120 [41]	61/62	61/62
	2017	4,600	5,700	580,000	tr(27)	30 [10]	62/62	62/62
	2018	5,100	6,300	520,000	tr(14)	42 [14]	61/61	61/61
	2019	4,400	6,300	560,000	14	4 [2]	61/61	61/61

(Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) No monitoring was conducted in FY2013.

<Wildlife>

Stocktaking of the detection of Polybromodiphenyl ethers $(Br_4 \sim Br_{10})$ in wildlife (bivalves, fish and birds) during FY2008~2019

Tetrabromodiphenyl	Monitored	Geometric				Quantification	Detection I	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	73	61	380	20	5.9 [2.2]	31/31	7/7
	2010	59	73	310	nd	43 [16]	5/6	5/6
	2011	96	120	490	26	16 [6]	4/4	4/4
	2012	59	44	190	24	19 [7]	5/5	5/5
Bivalves	2014	56	38	140	33	15 [6]	3/3	3/3
(pg/g-wet)	2015	48	38	89	32	15 [6]	3/3	3/3
	2016	42	32	98	23	13 [5]	3/3	3/3
	2017	47	23	200	23	16 [6]	3/3	3/3
	2018	36	26	68	26	14 [5]	3/3	3/3
	2019	26	tr(17)	68	tr(15)	18 [7]	3/3	3/3
	2008	120	110	1,300	9.8	5.9 [2.2]	85/85	17/17
	2010	160	170	740	tr(16)	43 [16]	18/18	18/18
	2011	110	110	860	tr(9)	16 [6]	18/18	18/18
	2012	120	140	650	tr(10)	19 [7]	19/19	19/19
Fish	2014	150	160	1,300	18	15 [6]	19/19	19/19
(pg/g-wet)	2015	90	82	580	tr(14)	15 [6]	19/19	19/19
	2016	76	53	390	tr(10)	13 [5]	19/19	19/19
	2017	80	73	360	tr(7)	16 [6]	19/19	19/19
	2018	79	61	440	tr(13)	14 [5]	18/18	18/18
	2019	57	62	210	tr(10)	18 [7]	16/16	16/16
	2008	170	190	1,200	32	5.9 [2.2]	10/10	2/2
	2010	140		270	72	43 [16]	2/2	2/2
	2011			67	67	16 [6]	1/1	1/1
	2012	73		110	49	19 [7]	2/2	2/2
Birds**	2014	190		480	78	15 [6]	2/2	2/2
(pg/g-wet)	2015			36	36	15 [6]	1/1	1/1
	2016	170		470	62	13 [5]	2/2	2/2
	2017	130		660	26	16 [6]	2/2	2/2
	2018	290		310	280	14 [5]	2/2	2/2
	2019			210	210	18 [7]	1/1	1/1

Pentabromodiphenyl ethers	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection]	Detection I Sample	Frequency Site
	2008	32	27	94	tr(11)	limit 16 [5.9]	31/31	7/7
	2008	32	37	94 98	tr(9)	14 [6]	6/6	6/6
	2010	51	60	160	tr(12)	15 [6]	4/4	0/0 4/4
	2012	28	24	67	tr(8)	18 [6]	5/5	5/5
Bivalves	2012	30	37	41	18	12 [5]	3/3	3/3
(pg/g-wet)	2015	18	19	20	16	13 [5]	3/3	3/3
(P8-8)	2016	11	9	20	tr(8)	9 [4]	3/3	3/3
	2017	18	16	62	tr(6)	12 [5]	3/3	3/3
	2018	13	21	23	tr(5)	11 [4]	3/3	3/3
	2019	12	12	28	tr(5)	10 [4]	3/3	3/3
	2008	30	37	280	nd	16 [5.9]	72/85	16/17
	2010	51	54	200	nd	14 [6]	16/18	16/18
	2011	39	39	300	nd	15 [6]	17/18	17/18
	2012	37	54	180	nd	18 [6]	17/19	17/19
Fish	2014	41	47	570	nd	12 [5]	18/19	18/19
(pg/g-wet)	2015	22	17	140	nd	13 [5]	18/19	18/19
(F8/8)	2016	18	14	87	tr(4)	9 [4]	19/19	19/19
	2017	23	28	87	nd	12 [5]	18/19	18/19
	2018	21	21	100	nd	11 [4]	17/18	17/18
	2010	17	18	58	tr(4)	10 [4]	16/16	16/16
	2008	150	130	440	52	16 [5.9]	10/10	2/2
	2010	150		200	120	14 [6]	2/2	2/2
	2011			110	110	15 [6]	1/1	1/1
	2012	85		110	66	18 [6]	2/2	$\frac{1}{2}$
Birds**	2012	100		320	31	12 [5]	2/2	2/2
(pg/g-wet)	2015			22	22	13 [5]	1/1	1/1
(P8/8 1100)	2015	88		300	26	9 [4]	2/2	$\frac{1}{2}$
	2017	77		500	12	12 [5]	2/2	$\frac{2}{2}$
	2018	180		240	140	11 [4]	2/2	$\frac{2}{2}$
	2019			150	150	10 [4]	1/1	1/1
Hexabromodiphenyl ethers	2019					10 [4] Quantification [Detection]		1/1
	2019 Monitored year	Geometric mean*	 Median	150 Maximum	150 Minimum	10 [4] Quantification [Detection] limit	1/1 Detection I Sample	1/1 Frequency Site
	2019 Monitored year 2008	Geometric mean* 19	 Median 16	150 Maximum 82	150 Minimum tr(5.3)	10 [4] Quantification [Detection] limit 14 [5.0]	$ \frac{1/1}{\text{Detection I}} $ $ \frac{\text{Sample}}{31/31} $	1/1 Frequency Site 7/7
	2019 Monitored year 2008 2010	Geometric mean* 19 8	 Median 16 16	150 Maximum 82 26	150 Minimum tr(5.3) nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3]	1/1 Detection I Sample 31/31 4/6	1/1 Frequency Site 7/7 4/6
	2019 Monitored year 2008 2010 2011	Geometric mean* 19 8 38	 Median 16 16 41	150 Maximum 82 26 81	150 Minimum tr(5.3) nd 20	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4]	1/1 Detection 1 Sample 31/31 4/6 4/4	1/1 Frequency Site 7/7 4/6 4/4
ethers	2019 Monitored year 2008 2010 2011 2012	Geometric mean* 19 8	 Median 16 16	150 Maximum 82 26 81 130	150 Minimum tr(5.3) nd 20 tr(6)	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4]	1/1 Detection 1 Sample 31/31 4/6 4/4 5/5	1/1 Frequency Site 7/7 4/6 4/4 5/5
ethers Bivalves	2019 Monitored year 2008 2010 2011 2012 2014	 Geometric mean* 19 8 38 21 23	Median 16 16 41 23 21	150 Maximum 82 26 81 130 52	150 Minimum tr(5.3) nd 20 tr(6) 11	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4]	1/1 Detection 1 Sample 31/31 4/6 4/4 5/5 3/3	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3
ethers	2019 Monitored year 2008 2010 2011 2012 2014 2015	 Geometric mean* 19 8 38 21 23 tr(9)	Median 16 16 41 23 21 tr(6)	150 Maximum 82 26 81 130 52 41	150 Minimum tr(5.3) nd 20 tr(6) 11 nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 10 [4] 12 [5]	1/1 Detection 1 Sample 31/31 4/6 4/4 5/5 3/3 2/3	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3
ethers Bivalves	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016	 Geometric mean* 19 8 38 21 23 tr(9) tr(13)	Median 16 16 41 23 21 tr(6) tr(13)	150 Maximum 82 26 81 130 52 41 40	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8]	1/1 Detection 1 Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3
ethers Bivalves	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016 2017	 Geometric mean* 19 8 38 21 23 tr(9) tr(13) tr(14)	Median 16 16 41 23 21 tr(6) tr(13) 20	150 Maximum 82 26 81 130 52 41 40 36	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7]	1/1 Detection 1 Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3
ethers Bivalves	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016 2017 2018	 Geometric mean* 19 8 38 21 23 tr(9) tr(13) tr(14) tr(12)	Median 16 16 41 23 21 tr(6) tr(13) 20 tr(12)	150 Maximum 82 26 81 130 52 41 40 36 34	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd nd nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8]	1/1 Detection 1 Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 2/3
ethers Bivalves	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019	 Geometric mean* 19 8 38 21 23 tr(9) tr(13) tr(14) tr(12) nd	Median 16 16 41 23 21 tr(6) tr(13) 20 tr(12) nd	150 Maximum 82 26 81 130 52 41 40 36 34 24	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd nd nd nd nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 21 [8]	1/1 Detection I Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 2/3 1/3
ethers Bivalves	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008	 Geometric mean* 19 8 38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46	Median 16 16 41 23 21 tr(6) tr(13) 20 tr(12) nd 51	150 Maximum 82 26 81 130 52 41 40 36 34 24 310	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd nd nd nd nd nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 21 [8] 14 [5.0]	1/1 Detection I Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 83/85	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 2/3 1/3 17/17
ethers Bivalves	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010	 Geometric mean* 19 8 38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39	 Median 16 16 41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47	150 Maximum 82 26 81 130 52 41 40 36 34 24 310 400	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd nd nd nd nd nd nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 21 [8] 14 [5.0] 8 [3]	1/1 Detection I Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18
ethers Bivalves	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011	 Geometric mean* 19 8 38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53	Median 16 16 41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50	150 Maximum 82 26 81 130 52 41 40 36 34 24 310 400 430	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 21 [8] 21 [8] 14 [5.0] 8 [3] 10 [4]	1/1 Detection I Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18
Bivalves (pg/g-wet)	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012	 Geometric mean* 19 8 38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55	 Median 16 16 41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71	150 Maximum 82 26 81 130 52 41 40 36 34 24 310 400 430 320	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 21 [8] 14 [5.0] 8 [3] 10 [4] 10 [4]	1/1 Detection I Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19
ethers Bivalves (pg/g-wet) Fish	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014	 Geometric mean* 19 8 38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60	Median 16 16 41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61	150 Maximum 82 26 81 130 52 41 40 36 34 24 310 400 430 320 1,100	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 21 [8] 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4]	1/1 Detection I Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 18/19	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18/19
Bivalves (pg/g-wet)	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2014 2015	 Geometric mean* 19 8 38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44	Median 16 16 41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61 45	150 Maximum 82 26 81 130 52 41 40 36 34 24 310 400 430 320 1,100 250	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 21 [8] 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 10 [4] 12 [5]	1/1 Detection I Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 18/19 18/19 18/19	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18/19 18/19
Bivalves (pg/g-wet) Fish	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2014 2015 2016	 Geometric mean* 19 8 38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44 42	Median 16 16 41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61 45 36	150 Maximum 82 26 81 130 52 41 40 36 34 24 310 400 430 320 1,100 250 190	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 21 [8] 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8]	1/1 Detection I Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18/19 18/19 18/19
Bivalves (pg/g-wet) Fish	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2014 2015 2016 2017	 Geometric mean* 19 8 38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44 42 49	Median 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17 0 17 16 45 36 49	150 Maximum 82 26 81 130 52 41 40 36 34 24 310 400 430 320 1,100 250 190 210	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 21 [8] 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7]	1/1 Detection I Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18/19 18/19 18/19 18/19
Bivalves (pg/g-wet) Fish	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2018 2010 2019 2018 2010 2011 2012 2018 2010 2011 2018 2010 2011 2018 2010 2011 2018 2010 2011 2018 2010 2011 2018 2010 2011 2018 2010 2011 2018 2010 2011 2012 2014 2018 2010 2011 2012 2014 2012 2014 2018 2010 2014 2015 2014 2015 2014 2015 2014 2015 2016 2017 2018 2019 2018 2019 2018 2019 2018 2019 2018 2016 2017 2018 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018	 Geometric mean* 19 8 38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44 42 49 44	Median 16 16 16 16 16 16 16 16 16 16 16 16 16 16 11 20 tr(12) nd 51 47 50 71 61 45 36 49 48	150 Maximum 82 26 81 130 52 41 40 36 34 24 310 400 430 320 1,100 250 190 210 190	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 21 [8] 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8]	1/1 Detection 1 Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19
Bivalves (pg/g-wet) Fish	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2017 2018 2010 2019	 Geometric mean* 19 8 38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44 42 49 44 42	 Median 16 16 41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61 45 36 49 48 40	150 Maximum 82 26 81 130 52 41 40 36 34 24 310 400 430 320 1,100 250 190 210 190 290	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 21 [8] 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 21 [8]	1/1 Detection I Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 16/16	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18/16 18/19 18/19 18/19 18/16 18/18 18/19 18/19 18/19 18/19 18/19 18/18 18/19 18/19 18/16 18/18 18/19 18/19 18/16 18/18 18/19 18/18 18/19 18/18 18/19 18/18 18/19 18/18 18/19 18/18 18/19 18/18 18/19 18/18 18/19 18/18 18/18 18/19 18/18 18/18 18/19 18/18 18
ethers Bivalves (pg/g-wet) Fish	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2010 2010 2017 2018 2019 2018 2010 2019 2018 2010 2019 2018 2010 2019 2018 2010 2019 2018 2010 2019 2018 2010 2019 2018 2019 2016 2017 2018 2019 2008	 Geometric mean* 19 8 38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44 42 49 44 42 49 44 42 140	Median 16 16 16 16 17 20 tr(13) 20 tr(12) nd 51 47 50 71 61 45 36 49 48 40 120	150 Maximum 82 26 81 130 52 41 40 36 34 24 310 400 430 320 1,100 250 190 210 190 290 380	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 17 [7] 21 [8] 17 [7] 21 [8] 14 [5.0]	1/1 Detection I Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 18/19 16/16 10/10	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18/12 18/12 18/19 18/19 18/12 18/12 18/19 18/12 18
ethers Bivalves (pg/g-wet) Fish	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2019 2018 2019 2018 2019 2018 2010 2019 2018 2010 2010 2017 2018 2010 2010 2017 2018 2010 2010 2017 2018 2010 2010 2017 2018 2010 2019 2008 2010 2010 2017 2018 2010 2019 2008 2010 2019 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2019 2018 2010 2011 2012 2014 2019 2008 2010 2011 2012 2014 2019 2018 2010 2011 2012 2014 2019 2018 2019 2018 2019 2016 2017 2018 2019 2018 2016 2017 2018 2019 2018 2019 2018 2010 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018 2019 2008 2010 2010 2010 2010 2010 2018 2019 2008 2010 2	 Geometric mean* 19 8 38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44 42 49 44 42 140 110	Median 16 16 16 16 11 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61 45 36 49 48 40 120	150 Maximum 82 26 81 130 52 41 40 36 34 24 310 400 430 320 1,100 250 190 210 190 210 190 290 380 140	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 17 [7] 21 [8] 17 [7] 21 [8] 14 [5.0] 8 [3]	1/1 Detection I Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 18/19 16/16 10/10 2/2	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18/12 18
Bivalves (pg/g-wet) Fish	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2017 2018 2019 2008 2010 2011 2012 2014 2017 2018 2019 2008 2010 2011 2012 2014 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2010 2011 2012 2014 2019 2008 2010 2011 2012 2014 2019 2008 2010 2017 2018 2010 2017 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2017 2018 2019 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2019 2018 2017 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2010 2019 2018 2019 2018 2019 2008 2019 2008 2010 2010 2010 2010 2011 2012 2014 2015 2016 2019 2008 2010 2010 2010 2010 2010 2011 2012 2018 2019 2008 2010 2011 2011	Geometric mean* 19 8 38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44 42 49 44 42 49 44 42 140 110	Median 16 16 41 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61 45 36 49 48 40 120 	150 Maximum 82 26 81 130 52 41 40 36 34 24 310 400 430 320 1,100 250 190 210 190 210 190 290 380 140 96	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 10 [4]	1/1 Detection I Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 18/19 16/16 10/10 2/2 1/1	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18
Bivalves (pg/g-wet) Fish (pg/g-wet)	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2019 2008 2010 2011 2012 2014 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2019 2008 2010 2017 2018 2019 2008 2010 2012 2014 2019 2008 2019 2008 2019 2008 2019 2008 2010 2012 2010 2010 2012 2012 2012 2012 2010 2012 2010 2010 2010 2010 2012 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2011 2012 2010 2011 2012	 Geometric mean* 19 8 38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44 42 49 44 42 49 44 42 140 110 150	Median 16 16 16 16 11 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61 45 36 49 48 40 120	150 Maximum 82 26 81 130 52 41 40 36 34 24 310 400 430 320 1,100 250 190 210 190 290 380 140 96 320	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd nd nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 21 [8] 14 [5.0] 8 [3] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 14 [5.0] 8 [3] 17 [7] 21 [8] 17 [7] 21 [8] 17 [7] 21 [8] 10 [4] 10 [4]	1/1 Detection I Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 16/16 10/10 2/2 1/1 2/2	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 17/18 16/16 2/2 2/2 1/1 2/2
Bivalves (pg/g-wet) Fish (pg/g-wet) Birds**	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2017 2018 2019 2008 2010 2011 2012 2014 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2017 2018 2019 2008 2010 2011 2012 2014 2017 2018 2019 2008 2010 2011 2012 2014 2017 2018 2019 2008 2010 2011 2012 2014 2017 2018 2019 2008 2010 2011 2012 2014 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2019 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2017 2018 2019 2018 2019 2018 2019 2018 2017 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2008 2010 2010 2010 2010 2010 2017 2018 2019 2008 2010 2011 2012 2014	 Geometric mean* 19 8 38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44 42 49 44 42 49 44 42 140 110 150 170	Median 16 16 16 16 11 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61 45 36 49 48 40 120	150 Maximum 82 26 81 130 52 41 40 36 34 24 310 400 430 320 1,100 250 190 210 190 210 190 290 380 140 96 320 680	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 21 [8] 14 [5.0] 8 [3] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 14 [5.0] 8 [3] 17 [7] 21 [8] 17 [7] 21 [8] 17 [7] 21 [8] 10 [4] 10 [4]	1/1 Detection I Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 16/16 10/10 2/2 2/2	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18/19 18/19 18/19 18/19 17/18 16/16 2/2 1/1 2/2 1/1
Bivalves (pg/g-wet) Fish (pg/g-wet)	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2019 2018 2019 2018 2019 2014 2015 2016 2017 2018 2019 2018 2019 2014 2017 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2010 2011 2012 2014 2010 2011 2012 2014 2015 2010 2011 2012 2014 2012 2014 2012 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015	 Geometric mean* 19 8 38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44 42 49 44 42 49 44 42 140 110 150 170 	Median 16 16 16 11 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61 45 36 49 48 40 120	150 Maximum 82 26 81 130 52 41 40 36 34 24 310 400 430 320 1,100 250 190 210 190 290 380 140 96 320 680 30	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 21 [8] 14 [5.0] 8 [3] 10 [4] 10 [4] 12 [5] 21 [8] 14 [5.0] 8 [3] 10 [4] 10 [4]	1/1 Detection I Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 16/16 10/10 2/2 1/1 2/2 1/1	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 17/18 16/16 2/2 1/1 2/2 1/1
Bivalves (pg/g-wet) Fish (pg/g-wet) Birds**	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2019 2018 2019 2018 2019 2014 2015 2016 2017 2018 2019 2018 2019 2018 2019 2014 2015 2016 2017 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2010 2011 2012 2014 2015 2010 2011 2012 2014 2015 2016 2011 2012 2014 2015 2016 2017 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2014 2015 2016	 Geometric mean* 19 8 38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44 42 49 44 42 49 44 42 140 110 150 170 220	Median 16 16 16 16 16 16 16 17 0 tr(13) 20 tr(13) 20 tr(12) nd 51 47 50 71 61 45 36 49 48 40 120 <	150 Maximum 82 26 81 130 52 41 40 36 34 24 310 400 430 320 1,100 250 190 210 190 210 190 290 380 140 96 320 680 30 740	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 21 [8] 14 [5.0] 8 [3] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 14 [5.0] 8 [3] 10 [4] 10 [4]	1/1 Detection I Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 16/16 10/10 2/2 1/1 2/2 1/1 2/2	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 17/18 16/16 2/2 1/1 2/2 1/1 2/2 1/1 2/2 1/1
Bivalves (pg/g-wet) Fish (pg/g-wet) Birds**	2019 Monitored year 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2019 2018 2019 2018 2019 2014 2015 2016 2017 2018 2019 2018 2019 2014 2017 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2010 2011 2012 2014 2010 2011 2012 2014 2015 2010 2011 2012 2014 2012 2014 2012 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015 2014 2015	 Geometric mean* 19 8 38 21 23 tr(9) tr(13) tr(14) tr(12) nd 46 39 53 55 60 44 42 49 44 42 49 44 42 140 110 150 170 	Median 16 16 16 11 23 21 tr(6) tr(13) 20 tr(12) nd 51 47 50 71 61 45 36 49 48 40 120	150 Maximum 82 26 81 130 52 41 40 36 34 24 310 400 430 320 1,100 250 190 210 190 290 380 140 96 320 680 30	150 Minimum tr(5.3) nd 20 tr(6) 11 nd nd nd nd nd nd nd nd nd nd	10 [4] Quantification [Detection] limit 14 [5.0] 8 [3] 10 [4] 10 [4] 10 [4] 12 [5] 21 [8] 17 [7] 21 [8] 21 [8] 14 [5.0] 8 [3] 10 [4] 10 [4] 12 [5] 21 [8] 14 [5.0] 8 [3] 10 [4] 10 [4]	1/1 Detection I Sample 31/31 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 83/85 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 16/16 10/10 2/2 1/1 2/2 1/1	1/1 Frequency Site 7/7 4/6 4/4 5/5 3/3 2/3 2/3 2/3 2/3 1/3 17/17 16/18 17/18 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 18/19 17/18 16/16 2/2 1/1 2/2 1/1

Heptabromodiphenyl	Monitored	Geometric				Quantification	Detection I	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	tr(8.5)	tr(7.6)	35	nd	18 [6.7]	20/31	7/7
	2010	nd	nd	tr(10)	nd	30 [10]	1/6	1/6
	2011	14	26	44	nd	11 [4]	3/4	3/4
	2012	tr(8)	tr(6)	59	nd	12 [5]	3/5	3/5
Bivalves	2014	nd	nd	13	nd	12 [5]	1/3	1/3
(pg/g-wet)	2015	nd	nd	tr(11)	nd	12 [5]	1/3	1/3
	2016	nd	nd	tr(8)	nd	13 [5]	1/3	1/3
	2017	nd	nd	tr(9)	nd	22 [8]	1/3	1/3
	2018	nd	nd	tr(10)	nd	15 [6]	1/3	1/3
	2019	nd	nd	tr(18)	nd	24 [9]	1/3	1/3
	2008 2010	tr(11)	tr(8.1)	77 40	nd	18 [6.7]	44/85 4/18	10/17 4/18
	2010	nd 13	nd 21	130	nd nd	30 [10] 11 [4]	4/18	4/18
	2011	tr(11)	18	130	nd	12 [5]	13/18	11/19
Fish	2012	tr(10)	13	280	nd	12 [5]	10/19	10/19
(pg/g-wet)	2014	nd	nd	44	nd	12 [5]	4/19	4/19
(P8/8 (100)	2016	tr(9)	tr(7)	85	nd	13 [5]	11/19	11/19
	2017	tr(11)	tr(12)	55	nd	22 [8]	10/19	10/19
	2018	tr(9)	tr(8)	58	nd	15 [6]	11/18	11/18
	2019	tr(10)	tr(10)	82	nd	24 [9]	9/16	9/16
	2008	35	35	53	19	18 [6.7]	10/10	2/2
	2010	tr(19)		70	nd	30 [10]	1/2	1/2
	2011			44	44	11 [4]	1/1	1/1
	2012	63		280	14	12 [5]	2/2	2/2
Birds**	2014	19		150	nd	12 [5]	1/2	1/2
(pg/g-wet)	2015			tr(11)	tr(11)	12 [5]	1/1	1/1
	2016	65		220	19	13 [5]	2/2	2/2
	2017	89		440	tr(18)	22 [8]	2/2	2/2
	2018	230		480	110	15 [6]	2/2	2/2
	2019			260	260	24 [9]	1/1	1/1
Octabromodiphenyl	Monitored	Geometric				Quantification	Detection I	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	nd	nd	10	nd	9.6 [3.6]	15/31	6/7
	2010	nd	nd	tr(10)	nd	11 [4]	2/6	2/6
	2011	7	9	29	nd	7 [3]	3/4	3/4
	2012	8	tr(7)	25	nd	8 [3]	4/5	4/5
Bivalves	2014	tr(9.2)	11	14	tr(5)	11 [4]	3/3	3/3
(pg/g-wet)	2015	nd	nd	nd	nd	14 [5]	0/3	0/3
	2016	nd	nd	nd	nd	16 [6]	0/3	0/3
	2017	nd	nd	tr(9)	nd	20 [8]	1/3	1/3
	2018	nd	nd	nd	nd	16 [6]	0/3	0/3
	2019	tr(8)	nd	39	nd	17 [7]	1/3	1/3
	2008	tr(5.7)	nd	73	nd	9.6 [3.6]	35/85	7/17
	2010	tr(6)	nd	100	nd	11 [4]	8/18	8/18
	2010							10/18
	2011	tr(6)	tr(7)	150	nd	7 [3]	10/18	
	2011 2012	tr(6) tr(7)	tr(7) 8	150 160	nd nd	7 [3] 8 [3]	12/19	12/19
Fish	2011 2012 2014	tr(6) tr(7) 14	tr(7) 8 13	150 160 540	nd nd nd	7 [3] 8 [3] 11 [4]	12/19 15/19	12/19 15/19
Fish (pg/g-wet)	2011 2012 2014 2015	tr(6) tr(7) 14 tr(7)	tr(7) 8 13 nd	150 160 540 60	nd nd nd	7 [3] 8 [3] 11 [4] 14 [5]	12/19 15/19 9/19	12/19 15/19 9/19
	2011 2012 2014 2015 2016	tr(6) tr(7) 14 tr(7) tr(8)	tr(7) 8 13 nd nd	150 160 540 60 86	nd nd nd nd	7 [3] 8 [3] 11 [4] 14 [5] 16 [6]	12/19 15/19 9/19 9/19	12/19 15/19 9/19 9/19
	2011 2012 2014 2015 2016 2017	tr(6) tr(7) 14 tr(7) tr(8) tr(9.7)	tr(7) 8 13 nd nd nd	150 160 540 60 86 88	nd nd nd nd nd	7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8]	12/19 15/19 9/19 9/19 9/19	12/19 15/19 9/19 9/19 9/19
	2011 2012 2014 2015 2016 2017 2018	tr(6) tr(7) 14 tr(7) tr(8) tr(9.7) tr(7)	tr(7) 8 13 nd nd nd nd	150 160 540 60 86 88 74	nd nd nd nd nd nd	7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6]	12/19 15/19 9/19 9/19 9/19 8/18	12/19 15/19 9/19 9/19 9/19 9/19 8/18
	2011 2012 2014 2015 2016 2017 2018 2019	tr(6) tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(7) tr(8)	tr(7) 8 13 nd nd nd nd nd	150 160 540 60 86 88 74 120	nd nd nd nd nd nd nd	7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7]	12/19 15/19 9/19 9/19 9/19 8/18 8/16	12/19 15/19 9/19 9/19 9/19 8/18 8/16
	2011 2012 2014 2015 2016 2017 2018 2019 2008	tr(6) tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(7) tr(8) 42	tr(7) 8 13 nd nd nd nd 41	150 160 540 60 86 88 74 120 64	nd nd nd nd nd nd nd 30	7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6]	12/19 15/19 9/19 9/19 9/19 8/18 8/16 10/10	12/19 15/19 9/19 9/19 9/19 8/18 8/16 2/2
	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010	tr(6) tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(7) tr(8) 42 41	tr(7) 8 13 nd nd nd nd 41 	150 160 540 60 86 88 74 120 64 65	nd nd nd nd nd nd 30 26	7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4]	12/19 15/19 9/19 9/19 9/19 8/18 8/16 10/10 2/2	12/19 15/19 9/19 9/19 9/19 8/18 8/16 2/2 2/2
	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011	tr(6) tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(7) tr(8) 42 41 	tr(7) 8 13 nd nd nd nd 41 	150 160 540 60 86 88 74 120 64 65 66	nd nd nd nd nd nd 30 26 66	7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3]	12/19 15/19 9/19 9/19 8/18 8/16 10/10 2/2 1/1	12/19 15/19 9/19 9/19 8/18 8/16 2/2 2/2 1/1
(pg/g-wet)	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012	tr(6) tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(7) tr(8) 42 41 130	tr(7) 8 13 nd nd nd nd 41 	150 160 540 60 86 88 74 120 64 65 66 420	nd nd nd nd nd nd 30 26 66 40	7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3]	12/19 15/19 9/19 9/19 8/18 8/16 10/10 2/2 1/1 2/2	12/19 15/19 9/19 9/19 8/18 8/16 2/2 2/2 1/1 2/2
(pg/g-wet) Birds**	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014	tr(6) tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(7) tr(8) 42 41 130 17	tr(7) 8 13 nd nd nd nd 41 	150 160 540 60 86 88 74 120 64 65 66 420 140	nd nd nd nd nd nd 30 26 66 40 nd	7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4]	12/19 15/19 9/19 9/19 8/18 8/16 10/10 2/2 1/1 2/2 1/2	12/19 15/19 9/19 9/19 8/18 8/16 2/2 2/2 1/1 2/2 1/2
(pg/g-wet)	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015	tr(6) tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(7) tr(8) 42 41 130 17 	tr(7) 8 13 nd nd nd nd 41 	150 160 540 60 86 88 74 120 64 65 66 420 140 tr(5)	nd nd nd nd nd nd 30 26 66 40 nd tr(5)	7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5]	12/19 15/19 9/19 9/19 8/18 8/16 10/10 2/2 1/1 2/2 1/2 1/2 1/1	12/19 15/19 9/19 9/19 8/18 8/16 2/2 2/2 1/1 2/2 1/2 1/2 1/1
(pg/g-wet) Birds**	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016	tr(6) tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(7) tr(8) 42 41 130 17 65	tr(7) 8 13 nd nd nd nd 41 	150 160 540 60 86 88 74 120 64 65 66 420 140 tr(5) 220	nd nd nd nd nd nd 30 26 66 40 nd tr(5) 19	7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6]	12/19 15/19 9/19 9/19 8/18 8/16 10/10 2/2 1/1 2/2 1/2 1/2 1/1 2/2	12/19 15/19 9/19 9/19 8/18 8/16 2/2 2/2 1/1 2/2 1/2 1/1 2/2
(pg/g-wet) Birds**	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017	tr(6) tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(7) tr(7) tr(7) tr(8) 42 41 130 17 65 130	tr(7) 8 13 nd nd nd nd 41 	150 160 540 60 86 88 74 120 64 65 66 420 140 tr(5) 220 720	nd nd nd nd nd nd 30 26 66 40 nd tr(5) 19 25	7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8]	12/19 15/19 9/19 9/19 8/18 8/16 10/10 2/2 1/1 2/2 1/1 2/2 1/1 2/2 2/2	12/19 15/19 9/19 9/19 8/18 8/16 2/2 2/2 1/1 2/2 1/2 1/1 2/2 2/2
(pg/g-wet) Birds**	2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016	tr(6) tr(7) 14 tr(7) tr(8) tr(9.7) tr(7) tr(7) tr(8) 42 41 130 17 65	tr(7) 8 13 nd nd nd nd 41 	150 160 540 60 86 88 74 120 64 65 66 420 140 tr(5) 220	nd nd nd nd nd nd 30 26 66 40 nd tr(5) 19	7 [3] 8 [3] 11 [4] 14 [5] 16 [6] 20 [8] 16 [6] 17 [7] 9.6 [3.6] 11 [4] 7 [3] 8 [3] 11 [4] 14 [5] 16 [6]	12/19 15/19 9/19 9/19 8/18 8/16 10/10 2/2 1/1 2/2 1/2 1/2 1/1 2/2	12/19 15/19 9/19 9/19 8/18 8/16 2/2 2/2 1/1 2/2 1/2 1/1 2/2

Nonabromodiphenyl	Monitored	Geometric	Madia	Merim	Minim	Quantification	Detection I	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	nd	nd	tr(23)	nd	35 [13]	5/31	1/7
	2010	tr(16)	tr(15)	60	nd	30 [10]	5/6	5/6
	2011	tr(12)	tr(11)	40	nd	22 [9]	3/4	3/4
D' 1	2012	tr(15)	25	45	nd	24 [9]	3/5	3/5
Bivalves (pg/g-wet)	2014	40 nd	tr(20)	110 tr(11)	tr(20)	30 [10]	3/3	3/3 1/3
(pg/g-wet)	2015 2016	nd nd	nd nd	tr(11) nd	nd nd	23 [9] 36 [14]	1/3 0/3	0/3
	2010	nd	nd	nd	nd	50 [20]	0/3	0/3
	2018	nd	nd	nd	nd	40 [20]	0/3	0/3
	2010	tr(20)	nd	81	nd	50 [20]	1/3	1/3
	2008	nd	nd	tr(15)	nd	35 [13]	2/85	2/17
	2010	nd	nd	40	nd	30 [10]	3/18	3/18
	2011	nd	nd	tr(15)	nd	22 [9]	5/18	5/18
	2012	nd	nd	54	nd	24 [9]	9/19	9/19
Fish	2014	tr(10)	tr(20)	40	nd	30 [10]	16/19	16/19
(pg/g-wet)	2015	nd	nd	35	nd	23 [9]	6/19	6/19
	2016	nd	nd	tr(22)	nd	36 [14]	3/19	3/19
	2017	nd	nd	68	nd	50 [20]	1/19	1/19
	2018	nd	nd	nd	nd	40 [20]	0/18	0/18
	2019	nd	nd	nd	nd	50 [20]	0/16	0/16
	2008	tr(21)	tr(20)	tr(33)	nd	35 [13]	9/10 2/2	2/2
	2010	32		50	tr(20)	30 [10]	2/2	2/2
	2011 2012	100		62 150	62 67	22 [9] 24 [9]	1/1 2/2	1/1 2/2
Birds**	2012	tr(10)		tr(20)	tr(10)	30 [10]	2/2	2/2
(pg/g-wet)	2014	u(10)		tr(12)	tr(10)	23 [9]	1/1	1/1
(\$6,6 wet)	2015	nd		tr(21)	nd	36 [14]	1/1	1/1
	2017	nd		nd	nd	50 [20]	0/2	0/2
	2018	49		53	46	40 [20]	2/2	2/2
	2019			nd	nd	50 [20]	0/1	0/1
Decabromodiphenyl	Monitored	Geometric				Quantification	Detection I	Frequency
ether	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	nd	nd	tr(170)	nd	220 [74]	8/31	3/7
	2008							
		nd	nd	tr(190)	nd	270 [97]	2/6	2/0
	2008 2010 2011	nd nd	nd nd	tr(190) 240	nd nd	270 [97] 230 [80]	2/6 1/4	2/6 1/4
	2010					230 [80]		
Bivalves	2010 2011	nd	nd	240	nd		1/4	1/4
Bivalves (pg/g-wet)	2010 2011 2012 2014 2015	nd 120	nd 170	240 480 570 tr(70)	nd nd	230 [80] 120 [50] 170 [60] 170 [70]	1/4 4/5	1/4 4/5
	2010 2011 2012 2014 2015 2016	nd 120 220 nd nd	nd 170 tr(150) nd nd	240 480 570 tr(70) tr(110)	nd nd tr(120)	230 [80] 120 [50] 170 [60] 170 [70] 300 [100]	1/4 4/5 3/3 1/3 1/3	1/4 4/5 3/3 1/3 1/3
	2010 2011 2012 2014 2015 2016 2017	nd 120 220 nd nd nd	nd 170 tr(150) nd nd nd	240 480 570 tr(70) tr(110) tr(180)	nd nd tr(120) nd nd nd	230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80]	1/4 4/5 3/3 1/3 1/3 1/3	1/4 4/5 3/3 1/3 1/3 1/3
	2010 2011 2012 2014 2015 2016 2017 2018	nd 120 220 nd nd nd nd	nd 170 tr(150) nd nd nd nd	240 480 570 tr(70) tr(110) tr(180) nd	nd nd tr(120) nd nd nd	230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80]	1/4 4/5 3/3 1/3 1/3 1/3 0/3	1/4 4/5 3/3 1/3 1/3 1/3 0/3
	2010 2011 2012 2014 2015 2016 2017 2018 2019	nd 120 220 nd nd nd nd nd nd	nd 170 tr(150) nd nd nd nd nd	240 480 570 tr(70) tr(110) tr(180) nd tr(180)	nd nd tr(120) nd nd nd nd	230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70]	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3
	2010 2011 2012 2014 2015 2016 2017 2018 2019 2008	nd 120 220 nd nd nd nd nd nd nd	nd 170 tr(150) nd nd nd nd nd nd	240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230	nd nd tr(120) nd nd nd nd nd nd	230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74]	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 5/76	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 4/16
	2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010	nd 120 220 nd nd nd nd nd nd nd nd nd	nd 170 tr(150) nd nd nd nd nd nd nd	240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150)	nd nd tr(120) nd nd nd nd nd nd nd	230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97]	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 5/76 2/18	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18
	2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011	nd 120 220 nd nd nd nd nd nd nd nd nd nd	nd 170 tr(150) nd nd nd nd nd nd nd nd	240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90)	nd nd tr(120) nd nd nd <u>nd</u> nd nd nd	230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80]	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 5/76 2/18 2/18	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18
(pg/g-wet)	2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012	nd 120 220 nd nd nd nd nd nd tr(59)	nd 170 tr(150) nd nd nd nd nd nd nd tr(60)	240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90) 380	nd nd tr(120) nd nd nd nd nd nd nd nd	230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50]	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 5/76 2/18 2/18 11/19	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 11/19
(pg/g-wet) Fish	2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014	nd 120 220 nd nd nd nd nd tr(59) tr(75)	nd 170 tr(150) nd nd nd nd nd nd tr(60) tr(70)	240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd	230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60]	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 5/76 2/18 2/18 11/19 13/19	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 11/19 13/19
(pg/g-wet)	2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015	nd 120 220 nd nd nd nd nd tr(59) tr(75) nd	nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd	240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd	230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70]	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 5/76 2/18 2/18 2/18 11/19 13/19 5/19	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 11/19 13/19 5/19
(pg/g-wet) Fish	2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016	nd 120 220 nd nd nd nd nd tr(59) tr(75) nd nd	nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd	240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190)	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100]	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 0/3 1/3 5/76 2/18 2/18 2/18 11/19 13/19 5/19 7/19	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 11/19 13/19 5/19 7/19
(pg/g-wet) Fish	2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017	nd 120 220 nd nd nd nd nd tr(59) tr(75) nd nd nd nd	nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd	240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190) 2,100	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [60] 170 [70] 300 [100] 210 [80]	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 0/3 1/3 5/76 2/18 2/18 11/19 13/19 5/19 7/19 1/19	1/4 4/5 3/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 2/18 11/19 13/19 5/19 7/19 1/19
(pg/g-wet) Fish	2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018	nd 120 220 nd nd nd nd nd tr(59) tr(75) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd nd nd	240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(110)	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80]	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 5/76 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18
(pg/g-wet) 	2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019	nd 120 220 nd nd nd nd nd tr(59) tr(75) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd	240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(110) nd	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [60] 170 [70] 300 [100] 210 [80]	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 0/3 1/3 5/76 2/18 2/18 11/19 13/19 5/19 7/19 1/19	1/4 4/5 3/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16
(pg/g-wet) Fish	2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008	nd 120 220 nd nd nd nd nd tr(59) tr(75) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd nd nd nd nd	240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(110)	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74]	1/4 4/5 3/3 1/3 1/3 0/3 1/3 0/3 1/3 5/76 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 4/10	1/4 4/5 3/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2
(pg/g-wet) 	2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2019	nd 120 220 nd nd nd nd nd tr(59) tr(75) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd nd nd nd nd nd nd	240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(110) nd tr(110) nd	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97]	1/4 4/5 3/3 1/3 1/3 0/3 1/3 0/3 1/3 5/76 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 4/10 0/2	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2 0/2
(pg/g-wet) 	2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008	nd 120 220 nd nd nd nd nd tr(59) tr(75) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd nd nd nd nd nd nd nd nd nd nd	240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(110) nd tr(110)	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74]	1/4 4/5 3/3 1/3 1/3 0/3 1/3 0/3 1/3 5/76 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 4/10	1/4 4/5 3/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2
(pg/g-wet) Fish	2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011	nd 120 220 nd nd nd nd nd tr(59) tr(75) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd nd nd nd nd nd nd nd nd nd nd	240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(110) nd tr(110) nd tr(110)	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80]	1/4 4/5 3/3 1/3 1/3 0/3 1/3 0/3 1/3 5/76 2/18 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 4/10 0/2 1/1	1/4 4/5 3/3 1/3 1/3 1/3 1/3 1/3 1/3 4/16 2/18 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2 0/2 1/1
(pg/g-wet) Fish (pg/g-wet)	2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2017 2018 2019	nd 120 220 nd nd nd nd nd tr(59) tr(75) nd nd nd nd nd nd nd nd nd nd nd 250	nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd nd nd nd nd nd nd nd nd nd nd	240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(110) nd tr(110) nd tr(110) 2,60	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 230 [80] 120 [50] 170 [60] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50]	1/4 4/5 3/3 1/3 1/3 0/3 1/3 0/3 1/3 5/76 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 4/10 0/2 1/1 2/2	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2 0/2 1/1 2/2
(pg/g-wet) Fish (pg/g-wet) Birds**	2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2019 2018 2019 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2017 2018 2019 2018 2019 2018 2019 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2014 2015 2016 2017 2018 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2017 2018 2017 2018 2017 2018 2019 2018 2017 2018 2019 2018 2017 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2010 2011 2012 2014 2015 2016 2016 2016 2017 2016 2010 2011 2012 2014 2015 2016 2016 2016 2016 2017 2016	nd 120 220 nd nd nd nd nd nd tr(59) tr(75) nd nd nd nd nd nd nd nd cr(59) tr(75) nd nd nd nd tr(59) tr(75) tr(75) cr(75) nd nd nd tr(59) tr(75) cr(75) tr(75) cr(75	nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd nd nd nd nd nd nd nd nd nd nd	240 480 570 tr(70) tr(110) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(190) 2,100 tr(190) 2,100 tr(110) nd tr(110) nd tr(110) nd tr(110) c,100 tr(110) tr(110) tr(110) tr(120) tr(110) tr(120	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 190 [70] 220 [74] 220 [74] 220 [74] 220 [74] 220 [74] 220 [74] 230 [80] 120 [50] 170 [60]	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 5/76 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 4/10 0/2 1/1 2/2 1/2	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2 0/2 1/1 2/2 1/2 1/1 0/2
(pg/g-wet) Fish (pg/g-wet) Birds**	2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2019 2018 2019 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2017 2018 2019 2018 2019 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2014 2015 2016 2017 2018 2017 2018 2017 2018 2019 2014 2015 2016 2017 2018 2019 2018 2017 2018 2017 2018 2019 2018 2017 2018 2019 2018 2019 2018 2017 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2010 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2012 2014 2015 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2014 2015 2016 2017 2016 2017 2016 2017 2014 2015 2016 2017 2016 2016 2017 2016	nd 120 220 nd nd nd nd nd nd tr(59) tr(75) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd nd nd nd nd nd nd nd nd nd nd	240 480 570 tr(70) tr(10) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(90) 2,100 tr(190) 2,100 tr(110) nd tr(110) nd tr(170) 260 tr(140) tr(90) nd nd	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 220 [74] 270 [97] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [60] 170 [70] 300 [100] 210 [80]	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 5/76 2/18 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 4/10 0/2 1/1 2/2 1/2 1/1 0/2 0/2	$\begin{array}{c} 1/4 \\ 4/5 \\ 3/3 \\ 1/3 \\ 1/3 \\ 1/3 \\ 0/3 \\ 1/3 \\ \hline 4/16 \\ 2/18 \\ 2/18 \\ 2/18 \\ 1/19 \\ 13/19 \\ 5/19 \\ 7/19 \\ 1/19 \\ 2/18 \\ 0/16 \\ \hline 1/2 \\ 0/2 \\ 1/1 \\ 2/2 \\ 1/2 \\ 1/1 \\ 0/2 \\ 0/2 \\ 0/2 \\ \end{array}$
(pg/g-wet) Fish (pg/g-wet) Birds**	2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2011 2012 2014 2015 2016 2017 2018 2019 2008 2010 2017 2018 2019 2018 2019 2018 2019 2018 2010 2011 2012 2014 2015 2016 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2014 2015 2016 2017 2018 2017 2018 2010 2011 2012 2014 2015 2016 2017 2018 2019 2018 2017 2018 2017 2018 2017 2018 2019 2018 2017 2018 2019 2018 2017 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2011 2012 2014 2015 2016 2016 2017 2016 2011 2012 2014 2015 2016 2016 2017 2016 2017 2016 2010 2011 2012 2014 2015 2016	nd 120 220 nd nd nd nd nd nd tr(59) tr(75) nd nd nd nd nd nd nd nd nd cr(59) tr(75) tr(75) tr(75) tr(75) nd nd nd nd nd nd tr(59) tr(75) tr(75) nd nd nd nd nd nd nd nd nd nd nd nd nd	nd 170 tr(150) nd nd nd nd nd tr(60) tr(70) nd nd nd nd nd nd nd nd nd nd nd nd nd	240 480 570 tr(70) tr(10) tr(180) nd tr(180) 230 tr(150) tr(90) 380 300 380 tr(90) 380 tr(190) 2,100 tr(110) nd tr(110) nd tr(110) nd tr(170) 2,60 tr(90) nd	nd nd tr(120) nd nd nd nd nd nd nd nd nd nd nd nd nd	230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [70] 300 [100] 210 [80] 240 [80] 190 [70] 220 [74] 270 [97] 230 [80] 120 [50] 170 [60] 170 [60] 170 [70] 300 [100]	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 5/76 2/18 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 4/10 0/2 1/1 2/2 1/2 1/1 0/2	1/4 4/5 3/3 1/3 1/3 1/3 0/3 1/3 4/16 2/18 2/18 11/19 13/19 5/19 7/19 1/19 2/18 0/16 1/2 0/2 1/1 2/2 1/2 1/1 0/2

(Note 1) "*":Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.
(Note 2) "**" There is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species.
(Note 3) No monitoring was conducted in FY2009 and FY2013.

<Air>

Stocktaking of the detection of Pol	vbromodinhenvl ethers	(Br., Br.,) in air during EV20082	110
Stocktaking of the detection of For	y biomodiphenyi emers	$(D14 \sim D1_{10})$ III all during $\Gamma 12000 \sim 20$	JI 9

Tetrabromo		Geometric				Quantification	Detection 1	Frequency
diphenyl ethers		mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	0.89	0.80	18	0.11	0.11 [0.04]	37/37	37/37
	2009 Cold season	0.40	0.37	7.1	tr(0.04)	0.11 [0.04]	37/37	37/37
	2010 Warm season	0.79	0.57	50	0.15	0.12 [0.05]	37/37	37/37
	2010 Cold season	0.40	0.35	25	tr(0.09)	0.12 [0.03]	37/37	37/37
	2011 Warm season	0.80	0.72	9.3	tr(0.11)	0.18 [0.07]	35/35	35/35
	2011 Cold season	0.36	0.34	7.0	nd	0.18 [0.07]	35/37	35/37
Air	2012 Warm season	0.7	0.7	5.7	nd	0.3 [0.1]	35/36	35/36
(pg/m^3)	2012 Cold season	tr(0.2)	tr(0.2)	1.7	nd	0.5 [0.1]	25/36	25/36
	2014 Warm season	0.53	0.47	2.3	tr(0.09)	0.28 [0.09]	36/36	36/36
	2015 Warm season	tr(0.3)	tr(0.3)	2.7	nd	0.4 [0.1]	30/35	30/35
	2016 Warm season	0.5	0.4	28	nd	0.4 [0.2]	30/37	30/37
	2017 Warm season	0.39	0.34	4.1	tr(0.06)	0.15 [0.05]	37/37	37/37
	2018 Warm season	0.28	0.26	3.9	0.05	0.05 [0.02]	37/37	37/37
	2019 Warm season	0.25	0.23	5.5	tr(0.03)	0.04 [0.01]	36/36	36/36
Pentabromo		Geometric				Quantification	Detection 1	Frequency
diphenyl ethers	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	0.20	0.19	18	nd	0.16 [0.06]	33/37	33/37
	2009 Cold season	0.19	0.16	10	nd	0.10 [0.00]	29/37	29/37
	2010 Warm season	0.20	0.17	45	nd	0.12 [0.05]	35/37	35/37
2	2010 Cold season	0.20	0.22	28	nd	0.12 [0.05]	34/37	34/37
	2011 Warm season	0.19	0.17	8.8	nd	0 16 [0 06]	31/35	31/35
	2011 Cold season	0.16	tr(0.14)	2.6	nd	0.16 [0.06]	31/37	31/37
Air	2012 Warm season	tr(0.13)	tr(0.12)	2.4	nd	0 14 [0 06]	30/36	30/36
(pg/m^3)	2012 Cold season	tr(0.09)	tr(0.09)	0.77	nd	0.14 [0.06]	26/36	26/36
	2014 Warm season	tr(0.13)	tr(0.14)	0.80	nd	0.28 [0.09]	25/36	25/36
	2015 Warm season	nd	nd	0.9	nd	0.6 [0.2]	6/35	6/35
	2016 Warm season	nd	nd	28	nd	0.4 [0.2]	6/37	6/37
	2017 Warm season	0.11	0.10	3.4	nd	0.10 [0.04]	33/37	33/37
	2018 Warm season	tr(0.08)	nd	4.1	nd	0.20 [0.08]	18/37	18/37
	2019 Warm season	tr(0.10)	tr(0.06)	6.1	nd	0.12 [0.05]	27/36	27/36
Hexabromo		Geometric				Quantification	Detection 1	Frequency
diphenyl ethers	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	tr(0.11)	tr(0.11)	2.0	nd	0.22 [0.09]	19/37	19/37
	2009 Cold season	tr(0.20)	0.22	27	nd	0.22 [0.07]	24/37	24/37
	2010 Warm season	tr(0.14)	tr(0.13)	4.9	nd	0.16 [0.06]	29/37	29/37
	2010 Cold season	0.24	0.27	5.4	nd		31/37	31/37
	2011 Warm season	tr(0.11)	tr(0.10)	1.2	nd	0 14 [0 05]	28/35	28/35
	2011 Cold season	0.16	0.18	1.7	nd	0.14 [0.05]	30/37	30/37
Air	2012 Warm season	nd	nd	3.1	nd	0.3 [0.1]	9/36	9/36
(pg/m^3)	2012 Cold season	tr(0.1)	tr(0.1)	0.5	nd	0.3 [0.1]	22/36	22/36
	2014 Warm season	nd	nd	0.4	nd	0.4 [0.1]	5/36	5/36
	2015 Warm season	nd	nd	2.0	nd	1.1 [0.4]	3/35	3/35
				2.7				3/37
	2016 Warm season	nd	nd	2.7	nd	0.6 [0.2]	3/37	5/57
	2016 Warm season 2017 Warm season	nd nd	nd nd		nd	0.3 [0.1]	<u> </u>	11/37
				<u>2.7</u> <u>2.1</u> 1.5				

Heptabromo		Geometric				Quantification	Detection 1	Frequency
diphenyl ethers		mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	tr(0.1)	nd	1.7	nd	0.3 [0.1]	17/37	17/37
	2009 Cold season	$\frac{\text{tr}(0.2)}{(0.2)}$	0.3	20	nd		25/37	25/37
	2010 Warm season 2010 Cold season	tr(0.2) 0.3	tr(0.1) 0.4	1.4 11	nd nd	0.3 [0.1]	24/37	24/37 28/37
	2010 Cold season 2011 Warm season	tr(0.1)	$\frac{0.4}{tr(0.1)}$	1.1	nd		<u>28/37</u> 20/35	20/35
	2011 Cold season	tr(0.1)	tr(0.1)	2.3	nd	0.3 [0.1]	25/37	25/37
Air	2012 Warm season	nd	nd	1.8	nd		6/36	6/36
(pg/m^3)	2012 Cold season	nd	nd	0.7	nd	0.5 [0.2]	8/36	8/36
40 /	2014 Warm season	nd	nd	tr(0.4)	nd	0.7 [0.2]	2/36	2/36
	2015 Warm season	nd	nd	tr(0.6)	nd	1.3 [0.4]	2/35	2/35
	2016 Warm season	nd	nd	1.3	nd	1.1 [0.4]	1/37	1/37
	2017 Warm season	nd	nd	3.2	nd	0.4 [0.2]	10/37	10/37
	2018 Warm season	tr(0.09)	nd	1.3	nd	0.20 [0.08]	16/37	16/37
	2019 Warm season	tr(0.1)	tr(0.1)	2.7	nd	0.3 [0.1]	24/36	24/36
Octabromo diphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
	2009 Warm season	tr(0.2)	0.3	1.6	nd	0 2 [0 1]	23/37	23/37
	2009 Cold season	0.3	0.4	7.1	nd	0.3 [0.1]	26/37	26/37
	2010 Warm season	0.25	0.30	2.3	nd	0.15 [0.06]	30/37	30/37
	2010 Cold season	0.40	0.52	6.9	nd		32/37	32/37
	2011 Warm season	0.24	0.31	1.9	nd	0.20 [0.08]	27/35	27/35
	2011 Cold season	0.35	0.44	7.0	nd		30/37	30/37
Air $(n \alpha / m^3)$	2012 Warm season	tr(0.2)	tr(0.2)	1.2	nd	0.3 [0.1]	29/36 20/26	29/36
(pg/m ³)	2012 Cold season	$\frac{0.3}{\text{tr}(0.1)}$	$\frac{0.4}{tr(0,1)}$	1.2	nd		30/36	30/36
	2014 Warm season 2015 Warm season	nd	tr(0.1) nd	0.7	nd	0.4 [0.1] 1.1 [0.4]	<u> 22/36 </u>	<u>22/36</u> 9/35
	2015 Warm season 2016 Warm season	nd	nd	1.6	nd	0.6 [0.2]	18/37	18/37
	2017 Warm season	tr(0.19)	0.23	5.7	nd	0.21 [0.07]	28/37	28/37
	2018 Warm season	0.15	0.14	1.3	nd	0.11 [0.04]	34/37	34/37
	2019 Warm season	tr(0.2)	tr(0.2)	2.6	nd	0.3 [0.1]	32/36	32/36
Nanahaama						Quantification	Detection 1	
Nonabromo diphenyl ethers		Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	tr(0.7)	tr(0.7)	3.0	nd	1.8 [0.6]	22/37	22/37
	2009 Cold season	tr(1.0)	tr(0.8)	3.9	nd		27/37	27/37
	2010 Warm season	nd	nd	24	nd	3.7 [1.2]	12/37	12/37
	2010 Cold season	tr(1.2)	tr(1.3)	7.1	nd		22/37	22/37
	2011 Warm season	tr(0.8)	0.9	3.9	nd	0.9 [0.4]	29/35	29/35
A :	2011 Cold season	1.1	$\frac{1.1}{tr(0.5)}$	14	nd		30/37	30/37
Air (pg/m ³)	2012 Warm season 2012 Cold season	tr(0.5) tr(0.9)	tr(0.5)	5.1 4.7	nd nd	1.2 [0.4]	24/36 30/36	24/36 30/36
(pg/m [*])	2012 Cold season 2014 Warm season	nd			nd	4 [1]	7/36	7/36
	2014 Warm season 2015 Warm season	nd	nd	12	nd	3.2 [1.1]	14/35	14/35
	2016 Warm season	tr(0.9)	tr(0.9)	11	nd	1.4 [0.5]	28/37	28/37
	2017 Warm season	0.8	0.8	40	nd	0.6 [0.2]	31/37	31/37
	2018 Warm season	0.5	0.7	3	nd	0.4 [0.2]	31/37	31/37
	2019 Warm season	0.5	0.7	3.1	nd	0.3 [0.1]	34/36	34/36
		Geometric	Madian	Maximum	Minimum	Quantification [Detection]	Detection I Sample	
Decabromo diphenyl ether	Monitored year	mean	Median			1		-
		mean			1	limit		20/27
	2009 Warm season	mean tr(7)	tr(9)	31	nd	limit 16 [5]	28/37	28/37
	2009 Warm season 2009 Cold season	mean tr(7) tr(10)	tr(9) tr(11)	31 45	nd	16 [5]	28/37 29/37	29/37
	2009 Warm season 2009 Cold season 2010 Warm season	mean tr(7) tr(10) nd	tr(9) tr(11) nd	31 45 290	nd nd		28/37 29/37 10/37	29/37 10/37
	2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season	mean tr(7) tr(10) nd tr(11)	tr(9) tr(11) nd tr(12)	31 45 290 88	nd nd nd	16 [5] 27 [9.1]	28/37 29/37 10/37 21/37	29/37 10/37 21/37
	2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Warm season	mean tr(7) tr(10) nd tr(11) tr(8.2)	tr(9) tr(11) nd tr(12) tr(9.0)	31 45 290 88 30	nd nd nd nd	16 [5]	28/37 29/37 10/37 21/37 31/35	29/37 10/37 21/37 31/35
	2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season	mean tr(7) tr(10) nd tr(11) tr(8.2) tr(8.4)	tr(9) tr(11) nd tr(12) tr(9.0) tr(9.0)	31 45 290 88 30 44	nd nd nd nd nd	16 [5] 27 [9.1] 12 [4.0]	28/37 29/37 10/37 21/37 31/35 29/37	29/37 10/37 21/37 31/35 29/37
liphenyl ether Air	2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Warm season 2011 Cold season 2012 Warm season	mean tr(7) tr(10) nd tr(11) tr(8.2) tr(8.4) nd	tr(9) tr(11) nd tr(12) tr(9.0) tr(9.0) nd	31 45 290 88 30	nd nd nd nd nd nd	16 [5] 27 [9.1]	28/37 29/37 10/37 21/37 31/35 29/37 17/36	29/37 10/37 21/37 31/35 29/37 17/36
diphenyl ether	2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Warm season 2011 Cold season	mean tr(7) tr(10) nd tr(11) tr(8.2) tr(8.4) nd tr(10)	tr(9) tr(11) nd tr(12) tr(9.0) tr(9.0) nd tr(12)	31 45 290 88 30 44 31	nd nd nd nd nd	16 [5] 27 [9.1] 12 [4.0] 16 [5]	28/37 29/37 10/37 21/37 31/35 29/37	29/37 10/37 21/37 31/35 29/37
liphenyl ether Air	2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Warm season 2011 Cold season 2012 Warm season 2012 Cold season	mean tr(7) tr(10) nd tr(11) tr(8.2) tr(8.4) nd tr(10) tr(10)	tr(9) tr(11) nd tr(12) tr(9.0) tr(9.0) nd	31 45 290 88 30 44 31 73 64	nd nd nd nd nd nd nd nd nd	16 [5] 27 [9.1] 12 [4.0] 16 [5] 9 [3]	28/37 29/37 10/37 21/37 31/35 29/37 17/36 28/36 24/36	29/37 10/37 21/37 31/35 29/37 17/36 28/36 24/36
liphenyl ether Air	2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Warm season 2011 Cold season 2012 Warm season 2012 Cold season 2014 Warm season	mean tr(7) tr(10) nd tr(11) tr(8.2) tr(8.4) nd tr(10)	tr(9) tr(11) nd tr(12) tr(9.0) tr(9.0) nd tr(12) tr(12) tr(5.0)	31 45 290 88 30 44 31 73	nd nd nd nd nd nd nd	16 [5] 27 [9.1] 12 [4.0] 16 [5]	28/37 29/37 10/37 21/37 31/35 29/37 17/36 28/36	29/37 10/37 21/37 31/35 29/37 17/36 28/36
diphenyl ether Air	2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Warm season 2011 Cold season 2012 Warm season 2012 Cold season 2014 Warm season 2015 Warm season	mean tr(7) tr(10) nd tr(11) tr(8.2) tr(8.4) nd tr(10) tr(4.7) 4.2	tr(9) tr(11) nd tr(12) tr(9.0) tr(9.0) nd tr(12) tr(12) tr(5.0) 4.3	31 45 290 88 30 44 31 73 64 61 86	nd nd nd nd nd nd nd nd nd nd	16 [5] 27 [9.1] 12 [4.0] 16 [5] 9 [3] 2.2 [0.7]	28/37 29/37 10/37 21/37 31/35 29/37 17/36 28/36 24/36 30/35	29/37 10/37 21/37 31/35 29/37 17/36 28/36 24/36 30/35
liphenyl ether Air	2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Warm season 2011 Cold season 2012 Warm season 2012 Cold season 2014 Warm season 2015 Warm season 2016 Warm season	mean tr(7) tr(10) nd tr(11) tr(8.2) tr(8.4) nd tr(10) tr(4.7) 4.2 5	tr(9) tr(11) nd tr(12) tr(9.0) tr(9.0) nd tr(12) tr(5.0) 4.3 5	31 45 290 88 30 44 31 73 64 61	nd nd nd nd nd nd nd nd nd nd nd	16 [5] 27 [9.1] 12 [4.0] 16 [5] 9 [3] 2.2 [0.7] 3 [1]	28/37 29/37 10/37 21/37 31/35 29/37 17/36 28/36 24/36 30/35 35/37	29/37 10/37 21/37 31/35 29/37 17/36 28/36 24/36 30/35 35/37

(Note) No monitoring was conducted in FY2013.

[15] Perfluorooctane sulfonic acid (PFOS)

· History and state of monitoring

Perfluorooctane sulfonic acid (PFOS) has been used as electric and electronic parts, fire fighting foam, photo imaging, hydraulic fluids and textiles. Perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonyl fluoride were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009, and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

As a continuous survey, the first survey was in FY2008. Under the framework the Initial Environmental Survey and the Detailed Environmental Survey etc. in the Environmental Survey and Monitoring of Chemicals after FY2002, the substance was monitored in surface water in FY2002, sediment and wildlife (fish) in FY2003, air in FY2004, surface water, sediment and wildlife (bivalves and fish) in FY2005.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water and sediment in FY2009~2012, FY2014~2016, and FY2018~2020, in wildlife (bivalves, fish and birds) in FY2009~2012, FY2014~2017, FY2019 and FY2020, in air in FY2010~2012, FY2014~2017 and FY2019surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2010~2017, FY2019 and FY2020.

• Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 46 sites, and it was detected at all 46 valid sites adopting the detection limit of 30 pg/L, and the detection range was tr(52) ~ 3,700 pg/L.

As results of the inter-annual trend analysis from FY2009 to FY2020, a reduction tendency in specimens from lake areas was identified as statistically significant.

Perfluorooctane sulfonic acid	Monitored	Geometric	Median	edian Maximum N		Quantification [Detection]	Detection Frequency	
(PFOS)	year	mean	Wiedian	Waximum	winninum	limit	Sample	Site
	2009	730	580	14,000	tr(26)	37 [14]	49/49	49/49
	2010	490	380	230,000	tr(37)	50 [20]	49/49	49/49
	2011	480	360	10,000	tr(20)	50 [20]	49/49	49/49
	2012	550	510	14,000	39	31 [12]	48/48	48/48
Surface Water	2014	460	410	7,500	nd	50 [20]	47/48	47/48
(pg/L)	2015	630	490	4,700	120	29 [11]	48/48	48/48
	2016	330	300	14,000	tr(23)	50 [20]	48/48	48/48
	2018	310	300	4,100	nd	70 [30]	42/47	42/47
	2019	290	260	2,500	nd	80 [30]	47/48	47/48
	2020	330	260	3,700	tr(52)	80 [30]	46/46	46/46

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in surface water during FY2009~2020

(Note) No monitoring was conducted in FY2013 and FY2017.

<Sediment>

The presence of the substance in sediment was monitored at 58 sites, and it was detected at all 58 valid sites adopting the detection limit of 2pg/g-dry, and the detection range was tr(3) ~ 450pg/g-dry.

As results of the inter-annual trend analysis from FY2009 to FY2020, reduction tendencies in specimens from river mouth areas and sea areas were identified as statistically significant and a reduction tendency in specimens from the overall areas in sediment was also identified as statistically significant.

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in sediment during FY2009~2020

Perfluorooctane	. Monitored	Geometric		`	/	Quantification	Detection 1	Frequency
sulfonic acid (PFOS)	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	78	97	1,900	nd	9.6 [3.7]	180/190	64/64
	2010	82	100	1,700	tr(3)	5 [2]	64/64	64/64
	2011	92	110	1,100	nd	5 [2]	63/64	63/64
	2012	68	84	1,200	tr(7)	9 [4]	63/63	63/63
Sediment	2014	59	79	980	nd	5 [2]	62/63	62/63
(pg/g-dry)	2015	91	88	2,200	7	3 [1]	62/62	62/62
	2016	54	61	690	5	5 [2]	62/62	62/62
	2018	43	57	700	nd	7 [3]	55/61	55/61
	2019	44	46	460	nd	9 [4]	60/61	60/61
	2020	40	48	450	tr(3)	5 [2]	58/58	58/58

(Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) No monitoring was conducted in FY2013.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was tr(4) ~ 130pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was 5 ~ 3,000pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 2pg/g-wet. and the detected concentration was 8,500pg/g-wet.

Although the number of detections was small, the detection rate of specimens from the bivalves was decreased, it suggested a reduction tendency of the concentrations.

Perfluorooctane sulfonic acid	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection I	Frequency
(PFOS)	year	mean*	wictian	waximum	winningin	limit	Sample	Site
	2009	24	28	640	nd	19 [7.4]	17/31	5/7
	2010	72	85	680	nd	25 [9.6]	5/6	5/6
	2011	38	44	100	16	10 [4]	4/4	4/4
	2012	27	21	160	tr(4)	7 [3]	5/5	5/5
Bivalves	2014	8	6	93	nd	5 [2]	2/3	2/3
(pg/g-wet)	2015	7	tr(2)	210	nd	4 [2]	2/3	2/3
	2016	11	tr(6)	160	nd	9 [3]	2/3	2/3
	2017	22	34	160	nd	12 [4]	2/3	2/3
	2019	10	tr(4)	140	tr(2)	6 [2]	3/3	3/3
	2020	16	8	130	tr(4)	5 [2]	3/3	3/3
	2009	220	230	15,000	nd	19 [7.4]	83/90	17/18
	2010	390	480	15,000	nd	25 [9.6]	17/18	17/18
	2011	82	95	3,200	nd	10 [4]	16/18	16/18
	2012	110	130	7,300	tr(5)	7 [3]	19/19	19/19
Fish	2014	82	83	4,600	nd	5 [2]	18/19	18/19
(pg/g-wet)	2015	91	90	2,500	nd	4 [2]	18/19	18/19
	2016	79	80	5,200	nd	9 [3]	18/19	18/19
	2017	150	150	11,000	tr(4)	12 [4]	19/19	19/19
	2019	67	80	3,600	tr(3)	6 [2]	16/16	16/16
	2020	76	100	3,000	5	5 [2]	18/18	18/18

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in wildlife (bivalves, fish and birds) during FY2009~2020

Perfluorooctane sulfonic acid	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection Frequency	
(PFOS)	year	mean*	Wiedian	waximum	Willing	limit	Sample	Site
	2009	300	360	890	37	19 [7.4]	10/10	2/2
	2010	1,300		3,000	580	25 [9.6]	2/2	2/2
	2011			110	110	10 [4]	1/1	1/1
	2012	160		410	63	7 [3]	2/2	2/2
Birds**	2014	4,600		110,000	190	5 [2]	2/2	2/2
(pg/g-wet)	2015			790	790	4 [2]	1/1	1/1
	2016	3,600		9,100	1,400	9 [3]	2/2	2/2
	2017	9,800		32,000	3,000	12 [4]	2/2	2/2
	2019			360	360	6 [2]	1/1	1/1
	2020			8,500	8,500	5 [2]	1/1	1/1

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009. (Note 2) "** " indicates there is no consistency between the results of the ornithological survey after FY2014 and those in

previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2013 and FY2018.

<Air>

The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.1 pg/m^3 , and the detection range was $1.1 \sim 7.2 \text{ pg/m}^3$.

As results of the inter-annual trend analysis from FY2010 to FY2020, a reduction tendency in specimens from warm season was identified as statistically significant.

Stocktaking of the detection of Perfluorooctane sulfonic acid	(PFOS) in air du	ing FY2010~2020

Perfluorooct ane sulfonic	Monitored year	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection	Frequency
acid (PFOS)	Monitored year	mean	Wedian	Iviaxiiliuili	Winningin	limit	Sample	Site
	2010 Warm season	5.2	5.9	14	1.6	0.4.[0.1]	37/37	37/37
	2010 Cold season	4.7	4.4	15	1.4	0.4 [0.1]	37/37	37/37
	2011 Warm season	4.4	4.2	10	0.9	0.5 [0.2]	35/35	35/35
	2011 Cold season	3.7	3.8	9.5	1.3	0.5 [0.2]	37/37	37/37
	2012 Warm season	3.6	3.8	8.9	1.3	0.5 [0.2]	36/36	36/36
	2012 Cold season	2.7	3.0	5.9	1.0	0.5 [0.2]	36/36	36/36
Air	2013 Warm season	4.6	5.2	9.6	1.2	0 2 [0 1]	36/36	36/36
(pg/m ³)	2013 Cold season	3.7	3.9	7.4	1.6	0.3 [0.1]	36/36	36/36
	2014 Warm season	3.1	3.2	8.6	0.52	0.17 [0.06]	36/36	36/36
	2015 Warm season	2.8	2.6	8.8	0.59	0.19 [0.06]	35/35	35/35
	2016 Warm season	3.1	2.4	9.3	0.7	0.6 [0.2]	37/37	37/37
	2017 Warm season	2.9	2.7	8.9	1.1	0.3 [0.1]	37/37	37/37
	2019 Warm season	3.8	4.1	7.8	1.3	0.8 [0.3]	36/36	36/36
	2020 Warm season	3.4	4.2	7.2	1.1	0.3 [0.1]	37/37	37/37

(Note) No monitoring was conducted in FY2018.

[16] Perfluorooctanoic acid (PFOA)

· History and state of monitoring

Perfluorooctanoic acids (PFOA) have been used as water repellent agent, oil repellent agent and surface acting agent. PFOA, its salts and PFOA-related compounds were adopted as target chemicals at the COP9 of the Stockholm convention on Persistent Organic Pollutants held from late April to early May 2019. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2021.

As a continuous survey, the first survey was in FY2009. Under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was monitored in surface water in FY2002, sediment and wildlife (fish) in FY2003, air in FY2004, surface water, sediment and wildlife (bivalves and fish) in FY2005.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water and sediment in FY2009~2012, FY2014~2016, and FY2018~2020, in wildlife (bivalves, fish and birds) in FY2009~2012, FY2014~2017, FY2019 and FY2020, in air in FY2010~2012, FY2014~2017 and FY2019surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2010~2017, FY2019 and FY2020.

• Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 46 sites, and it was detected at all 46 valid sites adopting the detection limit of 30pg/L, and the detection range was 220 ~ 16,000pg/L.

As results of the inter-annual trend analysis from FY2009 to FY2020, a reduction tendency in specimens from river mouth areas was identified as statistically significant and a reduction tendency in specimens from the overall areas in surface water was also identified as statistically significant.

Perfluorooctanoic	Monitored	Geometric				Quantification	Detection 1	Frequency
acid (PFOA)	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	1,600	1,300	31,000	250	59 [23]	49/49	49/49
	2010	2,700	2,400	23,000	190	60 [20]	49/49	49/49
	2011	2,000	1,700	50,000	380	50 [20]	49/49	49/49
	2012	1,400	1,100	26,000	240	170 [55]	48/48	48/48
Surface Water	2014	1,400	1,400	26,000	140	50 [20]	48/48	48/48
(pg/L)	2015	1,400	1,200	17,000	310	56 [22]	48/48	48/48
	2016	1,300	1,200	21,000	260	50 [20]	48/48	48/48
	2018	1,100	1,100	28,000	160	70 [30]	47/47	47/47
	2019	1,000	900	11,000	160	90 [40]	48/48	48/48
	2020	1,100	920	16,000	220	90 [30]	46/46	46/46

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in surface water during FY2009~2020

(Note) No monitoring was conducted in FY2013 and FY2017.

<Sediment>

The presence of the substance in sediment was monitored at 58 sites, and it was detected at 57 of the 58 valid sites adopting the detection limit of 3pg/g-dry, and the detection range was up to 190pg/g-dry.

As results of the inter-annual trend analysis from FY2009 to FY2020, a reduction tendencies in specimens from river areas and river mouth areas were identified as statistically significant.

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in sediment during FY2009~2020

Perfluorooctanoic	Monitored	Geometric				Quantification	Detection 1	Frequency
acid (PFOA)	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	27	24	500	nd	8.3 [3.3]	182/190	64/64
	2010	28	33	180	nd	12 [5]	62/64	62/64
	2011	100	93	1,100	22	5 [2]	64/64	64/64
	2012	51	48	280	12	4 [2]	63/63	63/63
Sediment	2014	44	50	190	tr(6)	11 [5]	63/63	63/63
(pg/g-dry)	2015	48	48	270	8	3 [1]	62/62	62/62
	2016	27	27	190	nd	9 [4]	61/62	61/62
	2018	23	25	190	nd	9 [4]	58/61	58/61
	2019	21	22	190	tr(3)	5 [2]	61/61	61/61
	2020	21	22	190	nd	8 [3]	57/58	57/58

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) No monitoring was conducted in FY2013 and FY2017.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was tr(3) ~ 14pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 12 of the 18 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was up to 49pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 2pg/g-wet, and the detected in the area adopting the detection limit of 2pg/g-wet, and the detected in the area adopting the detection limit of 2pg/g-wet, and the detected concentration was 280pg/g-wet.

Although the number of detections was small, the detection rates of specimens from bivalves and fish were decreased, it suggested a reduction tendency of the concentrations.

Perfluorooctanoic	Monitored	Geometric				Quantification	Detection I	Frequency
acid (PFOA)	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	tr(20)	tr(21)	94	nd	25 [9.9]	27/31	7/7
	2010	28	33	76	nd	26 [9.9]	5/6	5/6
	2011	tr(19)	tr(22)	tr(40)	nd	41 [14]	3/4	3/4
	2012	tr(21)	tr(23)	46	nd	38 [13]	4/5	4/5
Bivalves	2014	tr(4)	tr(6)	10	nd	10 [3]	2/3	2/3
(pg/g-wet)	2015	tr(6.5)	tr(6.3)	26	nd	10 [3.4]	2/3	2/3
	2016	4	7	9	nd	4 [2]	2/3	2/3
	2017	tr(6)	tr(7)	18	nd	12 [4]	2/3	2/3
	2019	tr(3)	tr(4)	tr(5)	tr(2)	6 [2]	3/3	3/3
	2020	6	tr(5)	14	tr(3)	6 [2]	3/3	3/3
	2009	tr(23)	tr(19)	490	nd	25 [9.9]	74/90	17/18
	2010	tr(13)	tr(11)	95	nd	26 [9.9]	13/18	13/18
	2011	nd	nd	51	nd	41 [14]	7/18	7/18
	2012	tr(35)	tr(32)	86	nd	38 [13]	18/19	18/19
Fish	2014	tr(6)	tr(4)	85	nd	10 [3]	11/19	11/19
(pg/g-wet)	2015	tr(5.7)	tr(5.3)	99	nd	10 [3.4]	11/19	11/19
	2016	4	tr(3)	20	tr(2)	4 [2]	19/19	19/19
	2017	tr(6)	tr(4)	79	nd	12 [4]	12/19	12/19
	2019	tr(3)	tr(3)	18	nd	6 [2]	12/16	12/16
	2020	tr(4)	tr(2)	49	nd	6 [2]	12/18	12/18

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in wildlife (bivalves, fish and birds) during FY2009~2017

Perfluorooctanoic	Monitored	Geometric				Quantification	Detection I	Frequency
acid (PFOA)	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	32	29	58	tr(16)	25 [9.9]	10/10	2/2
	2010	38		48	30	26 [9.9]	2/2	2/2
	2011			nd	nd	41 [14]	0/1	0/1
	2012	tr(27)		tr(28)	tr(26)	38 [13]	2/2	2/2
Birds**	2014	62		2,600	nd	10 [3]	1/2	1/2
(pg/g-wet)	2015			31	31	10 [3.4]	1/1	1/1
	2016	130		320	52	4 [2]	2/2	2/2
	2017	240		680	85	12 [4]	2/2	2/2
	2019			27	27	6 [2]	1/1	1/1
	2020			280	280	6 [2]	1/1	1/1

(Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) "** " indicates there is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2013 and FY2018.

<Air>

The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.3pg/m^3 , and the detection range was $4.9 \sim 55 \text{pg/m}^3$.

Perfluorooct		Geometric				Quantification	Detection 1	Frequency
anoic acid (PFOA)	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2010 Warm season	25	26	210	4.0	0.5 [0.2]	37/37	37/37
	2010 Cold season	14	14	130	2.4	0.5 [0.2]	37/37	37/37
	2011 Warm season	20	18	240	tr(3.5)	5 / [1 0]	35/35	35/35
	2011 Cold season	12	11	97	nd	5.4 [1.8]	36/37	36/37
	2012 Warm season	11	12	120	1.9	0.7.[0.2]	36/36	36/36
	2012 Cold season	6.9	6.0	48	1.6		36/36	36/36
Air	2013 Warm season	23	23	190	3.2	1.8 [0.6]	36/36	36/36
(pg/m^3)	2013 Cold season	14	14	53	3.0	1.8 [0.0]	36/36	36/36
	2014 Warm season	28	29	210	5.4	0.4 [0.1]	36/36	36/36
	2015 Warm season	19	17	260	tr(3.7)	4.2 [1.4]	35/35	35/35
	2016 Warm season	17	15	140	3.2	1.3 [0.4]	37/37	37/37
	2017 Warm season	14	13	150	tr(2.0)	3.3 [1.1]	37/37	37/37
	2019 Warm season	14	14	46	5.5	0.8 [0.3]	36/36	36/36
	2020 Warm season	13	12	55	4.9	0.8 [0.3]	37/37	37/37

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in air during FY2010~2020

(Note) No monitoring was conducted in FY2018.

[17] Pentachlorobenzene

· History and state of monitoring

Pentachlorobenzene have been used as used in PCB products, in dyestuff carriers, as a fungicide, a flame retardant and as a chemical intermediate e.g. previously for the production of quintozene. PeCB might still be used as an intermediate. PeCB is also produced unintentionally during combustion, thermal and industrial processes. It also present as impurities in products such as solvents or pesticides. It was historically never registered under the Agricultural Chemicals Regulation Law. The substance is produced as a by-product when agricultural chemicals are produced. In addition, it is generated unintentionally at the time of combustion. The substance was adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

As a continuous survey to FY2001, undert the framework "the Wildlife Monitoring of Chemicals," the substance was monitored in wildlife (bivalves and fish) in FY1980, wildlife (bivalves, fish and birds) from FY1979 to FY1986, in FY1988, FY1990, FY1992, FY1996 and FY1999.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water in FY2007, FY2010~2015 and FY2017~2020, in sediment and wildlife (bivalves, fish and birds) in FY2007 and FY2010~2020, in air in FY2007, FY2009~2020.

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 46 sites, and it was detected at all 46 valid sites adopting the detection limit of 1pg/L, and the detection range was tr(2) ~ 500pg/L.

	Monitored	Geometric				Quantification	Detection 1	Frequency
Pentachlorobenzene	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	nd	nd	nd	nd	3,300 [1,300]	0/48	0/48
	2010	8	5	100	tr(1)	4 [1]	49/49	49/49
	2011	11	11	170	2.6	2.4 [0.9]	49/49	49/49
	2012	14	11	170	3	3 [1]	48/48	48/48
Courfe of Water	2013	12	10	170	tr(3)	4 [1]	48/48	48/48
Surface Water	2014	10	7.0	180	2.8	0.8 [0.3]	48/48	48/48
(pg/L)	2015	13	11	180	3.0	1.5 [0.5]	48/48	48/48
	2017	8.8	5.9	140	2.0	1.4 [0.6]	47/47	47/47
	2018	12	9.7	320	2.7	1.3 [0.5]	47/47	47/47
	2019	9	7	360	tr(2)	6 [2]	48/48	48/48
	2020	7	5	500	tr(2)	3 [1]	46/46	46/46

Stocktaking of the detection of Pentachlorobenzene in surface water during FY2007~2020

(Note) No monitoring was conducted in FY2008, FY2009 and FY2016.

<Sediment>

The presence of the substance in sediment was monitored at 58 sites, and it was detected at all 58 valid sites adopting the detection limit of 0.2pg/g-dry, and the detection range was $1.8 \sim 2,900pg/g$ -dry.

As results of the inter-annual trend analysis from FY2002 to FY2020, reduction tendency in specimens from sea areas was identified as statistically significant.

Stocktaking of the detection of Pentachlorobenzene in sediment during FY2007~2020

	Monitored	Geometric				Quantification	Detection	Frequency
Pentachlorobenzene	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	tr(46)	nd	2,400	nd	86 [33]	79/192	35/64
	2010	90	95	4,200	1.0	0.9 [0.3]	64/64	64/64
	2011	95	76	4,500	3	5 [2]	64/64	64/64
	2012	33	33	1,100	nd	2.5 [0.8]	62/63	62/63
	2013	84	98	3,800	2.2	2.1 [0.7]	63/63	63/63
Sediment	2014	70	78	3,600	tr(1.2)	2.4 [0.8]	63/63	63/63
(pg/g-dry)	2015	65	69	2,600	2.4	1.5 [0.5]	62/62	62/62
	2016	62	71	3,700	tr(1.1)	1.8 [0.6]	62/62	62/62
	2017	61	61	2,800	1.3	1.2 [0.5]	62/62	62/62
	2018	72	77	3,400	1.2	0.9 [0.3]	61/61	61/61
	2019	29	27	3,300	1.2	0.9 [0.4]	61/61	61/61
	2020	63	65	2,900	1.8	0.4 [0.2]	58/58	58/58

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2007.

(Note 2) No monitoring was conducted in FY2008 and FY2009.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was 8 ~ 9pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 14 of the 18 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was up to 120pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 1pg/g-wet, and the detected in the area adopting the detection limit of 1pg/g-wet, and the detected in the area adopting the detection limit of 1pg/g-wet, and the detected concentration was 390pg/g-wet.

Although the number of detections was small, the detection rate of specimens from the bivalves was decreased, it suggested a reduction tendency of the concentrations.

	Monitored	Geometric				Quantification	Detection I	Frequency
Pentachlorobenzene	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	nd	nd	tr(150)	nd	180 [61]	1/31	1/7
	2010	18	16	110	5.9	1.9 [0.7]	6/6	6/6
	2011	28	16	260	10	4 [1]	4/4	4/4
	2012	16	9.7	110	tr(5.8)	8.1 [2.7]	5/5	5/5
	2013	nd	nd	87	nd	78 [26]	1/5	1/5
Bivalves	2014	14	11	23	10	9.3 [3.1]	3/3	3/3
(pg/g-wet)	2015	tr(11)	tr(9.7)	18	tr(7.4)	12 [4.0]	3/3	3/3
	2016	tr(13)	tr(12)	15	tr(11)	15 [5.1]	3/3	3/3
	2017	18	19	22	14	4 [1]	3/3	3/3
	2018	tr(8)	tr(7)	tr(13)	tr(5)	15 [5]	3/3	3/3
	2019	10	11	14	7	3 [1]	3/3	3/3
	2020	9	9	9	8	3 [1]	3/3	3/3
	2007	nd	nd	480	nd	180 [61]	36/80	10/16
	2010	42	37	230	5.6	1.9 [0.7]	18/18	18/18
	2011	36	37	220	5	4 [1]	18/18	18/18
	2012	29	37	190	tr(5.0)	8.1 [2.7]	19/19	19/19
	2013	tr(35)	tr(40)	160	nd	78 [26]	11/19	11/19
Fish	2014	38	51	280	nd	9.3 [3.1]	18/19	18/19
(pg/g-wet)	2015	26	40	230	nd	12 [4.0]	18/19	18/19
	2016	19	22	150	nd	15 [5.1]	16/19	16/19
	2017	29	32	170	4	4 [1]	19/19	19/19
	2018	19	29	70	nd	15 [5]	15/18	15/18
	2019	20	19	280	3	3 [1]	16/16	16/16
	2020	11	19	120	nd	3 [1]	14/18	14/18

Stocktaking of the detection of Pentachlorobenzene in wildlife (bivalves, fish and birds) during FY2007~2020

	Monitored	Geometric				Quantification	Detection I	Frequency
Pentachlorobenzene	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	tr(140)	tr(140)	210	tr(89)	180 [61]	10/10	2/2
	2010	91		170	49	1.9 [0.7]	2/2	2/2
	2011			52	52	4 [1]	1/1	1/1
	2012	77		130	46	8.1 [2.7]	2/2	2/2
	2013	300		390	230	78 [26]	2/2	2/2
Birds**	2014	56		560	tr(5.6)	9.3 [3.1]	2/2	2/2
(pg/g-wet)	2015			53	53	12 [4.0]	1/1	1/1
	2016	240		570	100	15 [5.1]	2/2	2/2
	2017	130		470	35	4 [1]	2/2	2/2
	2018	370		480	280	15 [5]	2/2	2/2
	2019			470	470	3 [1]	1/1	1/1
	2020			390	390	3 [1]	1/1	1/1

(Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2007.

(Note 2) " ** " indicates there is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2008 and FY2009.

<Air>

The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.07pg/m³, and the detection range was 35 ~ 180pg/m³.

Pentachloro		Geometric				Quantification	Detection I	Frequency
benzene	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007 Warm season	85	83	310	18	10 [4 0]	78/78	26/26
	2007 Cold season	60	55	220	27	12 [4.8]	75/75	25/25
	2009 Warm season	63	64	210	20	6 4 [2 5]	111/111	37/37
	2009 Cold season	25	22	120	tr(5.0)	6.4 [2.5]	111/111	37/37
	2010 Warm season	68	73	140	36	1 2 [0 5]	37/37	37/37
	2010 Cold season	70	69	180	37	1.2 [0.5]	37/37	37/37
	2011 Warm season	61	60	140	30	2 1 [0 70]	35/35	35/35
	2011 Cold season	59	57	180	26	2.1 [0.70]	37/37	37/37
A :	2012 Warm season	58	57	150	31	1 9 [0 6]	36/36	36/36
Air $(n\alpha/m^3)$	2012 Cold season	55	55	120	27	1.8 [0.6]	36/36	36/36
(pg/m ³)	2013 Warm season	55	58	160	27	1 7 [0 6]	36/36	36/36
	2013 Cold season	55	52	110	34	1.7 [0.6]	36/36	36/36
	2014 Warm season	83	86	210	39	0.9 [0.3]	36/36	36/36
	2015 Warm season	67	68	170	34	0.6 [0.2]	35/35	35/35
	2016 Warm season	75	75	220	33	0.5 [0.2]	37/37	37/37
	2017 Warm season	71	69	200	32	0.3 [0.1]	37/37	37/37
	2018 Warm season	59	61	100	30	0.22 [0.08]	37/37	37/37
	2019 Warm season	64	64	110	36	0.09 [0.04]	36/36	36/36
	2020 Warm season	69	63	180	35	0.17 [0.07]	37/37	37/37

Stocktaking of the detection of Pentachlorobenzene in air during FY2007~2020

(Note) No monitoring was conducted in FY2008.

[18] Endosulfans (reference)

· History and state of monitoring

Endosulfans had been used an insecticide that has been used since the 1950s to control crop pests, tsetse flies and ectoparasites of cattle and as a wood preservative. Endosulfans were adopted as target chemicals at the COP5 of the Stockholm convention on Persistent Organic Pollutants in Apri 2011. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in May 2014.

As a continuous survey, the first survey was in FY2011, under the framework of the Environmental Survey of Chemical Substances up to FY2001, the substance was monitored in surface water and sediment in FY1982 and air in FY1996.

Under the framework of the Environmental Monitoring, the substances were monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2011 and FY2012, in wildlife (bivalves, fish and birds) and air in FY2014 and FY2015 and in air in FY2016 and in surface water, sediment in FY2018.

No monitoring was conducted after FY2019. For reference, the monitoring results up to FY2018 are given below.

Monitoring results until FY2018

<Surface Water>

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in surface water during FY2011~2018

	Monitored	Geometric				Quantification	Detection I	Frequency
α -Endosulfan	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	180	nd	120 [50]	2/49	2/49
	2012	nd	nd	30	nd	27 [10]	3/48	3/48
(pg/L)	2018	nd	nd	tr(50)	nd	120 [40]	1/47	1/47
	Monitored	Geometric				Quantification	Detection F	Frequency
β -Endosulfan	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	270	nd	22 [9]	8/49	8/49
Surface Water	2012	nd	nd	tr(12)	nd	24 [9]	1/48	1/48
(pg/L)	2018	nd	nd	tr(20)	nd	30 [10]	3/47	3/47

(Note) No monitoring was conducted during FY2013~2017.

<Sediment>

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in sediment during FY2011~2018

	Monitored	Geometric				Quantification	Detection I	Frequency
α -Endosulfan	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2011	tr(13)	tr(11)	480	nd	30 [10]	35/64	35/64
	2012	nd	nd	480	nd	13 [5]	19/63	19/63
(pg/g-dry)	2018	nd	nd	30	nd	5 [2]	21/61	21/61
β -Endosulfan	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection]	Detection I Sample	Frequency Site
	2011	tr(5)	tr(4)	240	nd	limit 9 [4]	38/64	38/64
Sediment	2012	nd	nd	250	nd	13 [5]	8/63	8/63
(pg/g-dry)	2018	nd	nd	41	nd	5 [2]	11/61	11/61

(Note) No monitoring was conducted during FY2013~2017.

<Wildlife>

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in wildlife (bivalves, fish and birds) during FY2011~2015

	Monitored	Geometric				Quantification	Detection I	Frequency
α-Endosulfan	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	62	120	330	nd	50 [20]	3/4	3/4
Bivalves	2012	tr(54)	tr(61)	200	nd	71 [24]	4/5	4/5
(pg/g-wet)	2014	tr(20)	nd	130	nd	60 [20]	1/3	1/3
	2015	nd	nd	130	nd	120 [38]	1/3	1/3
	2011	tr(20)	tr(20)	140	nd	50 [20]	10/18	10/18
Fish	2012	nd	nd	tr(54)	nd	71 [24]	6/19	6/19
(pg/g-wet)	2014	nd	nd	tr(30)	nd	60 [20]	1/19	1/19
	2015	nd	nd	tr(49)	nd	120 [38]	1/19	1/19
	2011			nd	nd	50 [20]	0/1	0/1
Birds*	2012	nd		nd	nd	71 [24]	0/2	0/2
(pg/g-wet)	2014	nd		nd	nd	60 [20]	0/2	0/2
	2015			nd	nd	120 [38]	0/1	0/1
	Monitored	Geometric				Quantification	Detection I	Frequency
β -Endosulfan			Median	Maximum	Minimum	[Detection]	Samula	Site
	year	mean				limit	Sample	Site
	2011	16	26	52	4	11 [4]	4/4	4/4
Bivalves	2012	15	16	43	nd	14 [5]	4/5	4/5
(pg/g-wet)	2014	nd	nd	23	nd	19 [6]	1/3	1/3
	2015	nd	nd	tr(22)	nd	32 [11]	1/3	1/3
	2011	nd	nd	37	nd	11 [4]	9/18	9/18
Fish	2012	nd	nd	15	nd	14 [5]	6/19	6/19
(pg/g-wet)	2014	nd	nd	tr(8)	nd	19 [6]	3/19	3/19
	2015	nd	nd	tr(11)	nd	32 [11]	1/19	1/19
	2011			nd	nd	11 [4]	0/1	0/1
Birds*	2012	nd		tr(7)	nd	14 [5]	1/2	1/2
(pg/g-wet)	2014	nd		tr(8)	nd	19 [6]	1/2	1/2
	2015			nd	nd	32 [11]	0/1	0/1

(Note 1) "*" indicates there is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species. (Note 2) No monitoring was conducted in FY2013.

<Air>

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in air during FY2011~2016

		Geometric				Quantification	Detection 1	Frequency
α-Endosulfan	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011 Warm season	26	24	190	tr(7.8)	12 [4 0]	35/35	35/35
	2011 Cold season	tr(9.6)	tr(9.8)	45	nd	12 [4.0]	35/37	35/37
大気	2012 Warm season	23	22	98	tr(6.0)	16 [5.3]	36/36	36/36
へえ (pg/m ³)	2012 Cold season	nd	nd	19	nd	10[3.3]	15/36	15/36
(pg/m [*])	2014 Warm season	20	23	90	2.6	0.8 [0.3]	36/36	36/36
	2015 Warm season	10	11	140	1.6	1.0 [0.3]	35/35	35/35
	2016 Warm season	8.9	9.3	46	1.0	0.8 [0.3]	37/37	37/37
		Coomotrio				Quantification	Detection 1	Frequency
$\beta\text{-}\text{Endosulfan}$	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection]	Sample	Site
		mean				limit	Sumple	
	2011 Warm season	2.1	1.8	11	nd		34/35	34/35
	2011 Warm season 2011 Cold season		1.8 tr(0.90)	11 8.3	nd nd	limit 1.2 [0.39]		
+=		2.1				1.2 [0.39]	34/35	34/35
大気	2011 Cold season	2.1 tr(0.80)	tr(0.90)	8.3	nd		34/35 31/37	34/35 31/37
大気 (pg/m ³)	2011 Cold season 2012 Warm season	2.1 tr(0.80) 1.3	tr(0.90) 1.3	<u>8.3</u> 18	nd nd	1.2 [0.39]	34/35 31/37 33/36	34/35 31/37 33/36
	2011 Cold season 2012 Warm season 2012 Cold season	2.1 tr(0.80) 1.3 nd	tr(0.90) 1.3 nd	8.3 18 1.7	nd nd nd	1.2 [0.39] 1.2 [0.4]	34/35 31/37 33/36 17/36	34/35 31/37 33/36 17/36

(Note) No monitoring was conducted in FY2013.

[19] 1,2,5,6,9,10-Hexabromocyclododecanes (reference)

· History and state of monitoring

1,2,5,6,9,10-Hexabromocyclododecanes have been used a flame retardant additive, providing fire protection during the service life of vehicles, buildings or articles, as well as protection while stored. α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane and γ -1,2,5,6,9,10-Hexabromocyclododecane were adopted as target chemicals at the COP6 of the Stockholm convention on Persistent Organic Pollutants held from late April to early May 2013, and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in May 2014.

As a continuous survey, the first survey was in FY2011, under the framework of the Environmental Survey of Chemical Substances up to FY2001, the substances were monitored in surface water, sediment and wildlife (fish) in FY1987. In the framework of the Environmental Survey and Monitoring of Chemicals after FY2002 under the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was monitored in surface water and sediment in FY2003, in wildlife (fish) in FY2004.

Under the framework of the Environmental Monitoring, α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane, γ -1,2,5,6,9,10-Hexabromocyclododecane, δ -1,2,5,6,9,10-Hexabromocyclododecane and ε -1,2,5,6,9,10-Hexabromocyclododecan have been monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY2011, in sediment, wildlife (bivalves, fish and birds) and air in FY2012, surface water, wildlife (bivalves, fish and birds) and air in FY2014 and in sediment, wildlife (bivalves, fish and birds) and air in FY2015. And α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane and γ -1,2,5,6,9,10-Hexabromocyclododecane have been monitored in sediment, wildlife (bivalves, fish and birds) and air in FY2016 in wildlife (bivalves, fish and birds) and air in FY2017 in wildlife (bivalves, fish and birds) in FY2018 in wildlife (bivalves, fish and birds) and air in FY2019.

No monitoring was conducted in FY2020. For reference, the monitoring results up to FY2019 are given below.

Monitoring results until FY2019

<Surface Water>

Stocktaking of the d	etection of	1,2,5,6,9,10-1	Hexabrom	ocyclododeca	anes in surfa			
α-1,2,5,6,9,10-Hexabro mocyclododecane	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	frequency Site
Surface Water	2011	nd	nd	6,300	nd	1,500 [600]	4/47	4/47
(pg/L)	2014	nd	nd	1,600	nd	1,500 [600]	1/48	1/48
β-1,2,5,6,9,10-Hexabro	Monitored	Geometric				Quantification	Detection I	Frequency
mocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	1,300	nd	1,300 [500]	4/47	4/47
(pg/L)	2014	nd	nd	tr(300)	nd	500 [200]	1/48	1/48
y-1,2,5,6,9,10-Hexabrom	Monitorad	Geometric				Quantification	Detection I	Frequency
ocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	65,000	nd	1,200 [500]	5/47	5/47
(pg/L)	2014	nd	nd	nd	nd	700 [300]	0/48	0/48
δ -1,2,5,6,9,10-Hexabro	Monitored	Geometric				Quantification	Detection I	Frequency
mocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	nd	nd	790 [300]	0/47	0/47
(pg/L)	2014	nd	nd	nd	nd	600 [200]	0/48	0/48
ε-1,2,5,6,9,10-Hexabrom	Monitored	Geometric				Quantification	Detection I	Frequency
ocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	nd	nd	740 [300]	0/47	0/47
(pg/L)	2014	nd	nd	nd	nd	400 [200]	0/48	0/48

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in surface water in FY2011 and FY2014

<Sediment>

α-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection	Frequency
bromocyclododecane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	430	nd	24,000	nd	420 [280]	78/186	35/62
Sediment	2012	310	280	22,000	nd	180 [70]	47/63	47/63
(pg/g-dry)	2015	390	410	27,000	nd	150 [60]	47/62	47/62
	2016	260	210	27,000	nd	130 [60]	43/62	43/62
β-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection	Frequency
bromocyclododecane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	nd	nd	14,000	nd	250 [170]	48/186	21/62
Sediment	2012	tr(93)	nd	8,900	nd	150 [60]	29/63	29/63
(pg/g-dry)	2015	120	92	7,600	nd	150 [60]	33/62	33/62
	2016	tr(87)	nd	7,400	nd	130 [50]	31/62	31/62
γ-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection	Frequency
bromocyclododecane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	670	nd	570,000	nd	400 [260]	89/186	36/62
Sediment	2012	420	330	55,000	nd	160 [60]	52/63	52/63
(pg/g-dry)	2015	330	450	60,000	nd	110 [42]	48/62	48/62
	2016	250	190	50,000	nd	150 [60]	42/62	42/62
δ-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection	Frequency
bromocyclododecane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2011	nd	nd	800	nd	350 [250]	11/186	6/62
(pg/g-dry)	2012	nd	nd	680	nd	300 [100]	5/63	5/63
(pg/g-ury)	2015	nd	nd	nd	nd	180 [70]	0/62	0/62
ε-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection	Frequency
bromocyclododecane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2011	nd	nd	tr(260)	nd	280 [210]	2/186	1/62
	2012	nd	nd	310	nd	150 [60]	7/63	7/63
(pg/g-dry)	2015	nd	nd	nd	nd	130 [51]	0/62	0/62

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in sediment during FY2011~2016

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2011.

(Note 2) No monitoring was conducted in FY2013 and FY2014. No monitoring of δ -1,2,5,6,9,10-Hexabromocyclododecane and ε -1,2,5,6,9,10-Hexabromocyclododecane was conducted in FY2016.

<Wildlife>

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in wildlife (bivalves, fish and birds) during FY2011~2019

α-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection I	Frequency
bromocyclododecane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	1,100	1,200	13,000	tr(86)	170 [70]	10/10	4/4
	2012	530	480	2,500	190	50 [20]	5/5	5/5
	2014	270	270	380	200	30 [10]	3/3	3/3
Bivalves	2015	260	200	560	150	30 [10]	3/3	3/3
(pg/g-wet)	2016	140	140	180	110	22 [9]	3/3	3/3
	2017	190	200	430	86	24 [9]	3/3	3/3
	2018	120	88	270	76	23 [9]	3/3	3/3
	2019	140	150	260	68	24 [9]	3/3	3/3
	2011	770	850	69,000	nd	170 [70]	41/51	16/17
	2012	510	560	8,700	nd	50 [20]	18/19	18/19
	2014	240	290	15,000	nd	30 [10]	18/19	18/19
Fish	2015	160	180	3,000	nd	30 [10]	18/19	18/19
(pg/g-wet)	2016	110	140	1,100	tr(12)	22 [9]	19/19	19/19
	2017	140	140	7,800	tr(9)	24 [9]	19/19	19/19
	2018	89	140	530	nd	23 [9]	17/18	17/18
	2019	79	92	980	nd	24 [9]	15/16	15/16

Monitored	Geometric				Quantification	Detection I	Frequence
year	mean*	Median			limit	Sample	Site
2011	200	nd	530	nd	170 [70]	1/3	1/1
			1,400	nd	50 [20]	1/2	1/2
	480						2/2
					30 [10]	1/1	1/1
							2/2
					24 [9]		2/2
	600						2/2
2019			1,100	1,100			1/1
Monitored	Geometric					Detection I	Frequence
year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
2011	tr(70)	tr(85)	240	nd	98 [40]	7/10	3/4
2012	tr(25)	40	90	nd	40 [10]	4/5	4/5
2014	tr(10)	tr(10)	tr(20)	tr(10)	30 [10]	3/3	3/3
2015	tr(10)	tr(10)	30	nd	30 [10]	2/3	2/3
2016	nd	tr(8)	tr(9)	nd	21 [8]	2/3	2/3
2017	tr(9)	nd	36	nd	23 [9]	1/3	1/3
2018	nd	nd	nd	nd	22 [8]	0/3	0/3
2019	nd	nd	tr(22)	nd	24 [9]	1/3	1/3
2011	nd	nd	760	nd	98 [40]	11/51	5/17
2012	nd	nd	40	nd	40 [10]	8/19	8/19
2014	nd	nd	30	nd	30 [10]	5/19	5/19
2015	nd	nd	tr(20)	nd	30 [10]	2/19	2/19
2016	nd	nd	tr(12)	nd	21 [8]	3/19	3/19
2017	nd	nd	tr(12)	nd		2/19	2/19
2018	nd	nd	nd	nd		0/18	0/18
2019	nd	nd	nd	nd		0/16	0/16
	nd	nd	nd	nd			0/1
							0/2
	nd		nd	nd			0/2
			nd	nd			0/1
	nd						0/2
							0/2
	nd		nd	nd			0/2
2019			nd	nd	24 [9]	0/1	0/1
Monitored	Geometric				Quantification	Detection I	Frequen
Monitoreu		Median	Maximum	Minimum	[Detection] limit	Sample	Site
year	mean*				IIIIII		
•		470	3.300	nd			4/4
2011	440	470 180	3,300 910	nd 30	210 [80]	8/10	4/4 5/5
2011 2012	440 170	180	910	30	210 [80] 30 [10]	8/10 5/5	5/5
2011 2012 2014	440 170 60	180 60	910 110	30 30	210 [80] 30 [10] 30 [10]	8/10 5/5 3/3	5/5 3/3
2011 2012 2014 2015	440 170 60 70	180 60 90	910 110 200	30 30 tr(20)	210 [80] 30 [10] 30 [10] 30 [10]	8/10 5/5 3/3 3/3	5/5 3/3 3/3
2011 2012 2014 2015 2016	440 170 60 70 37	180 60 90 39	910 110 200 61	30 30 tr(20) tr(21)	210 [80] 30 [10] 30 [10] 30 [10] 24 [9]	8/10 5/5 3/3 3/3 3/3	5/5 3/3 3/3 3/3
2011 2012 2014 2015 2016 2017	440 170 60 70 37 49	180 60 90 39 30	910 110 200 61 200	30 30 tr(20) tr(21) tr(20)	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9]	8/10 5/5 3/3 3/3 3/3 3/3 3/3	5/5 3/3 3/3 3/3 3/3
2011 2012 2014 2015 2016 2017 2018	440 170 60 70 37 49 tr(19)	180 60 90 39 30 39	910 110 200 61 200 46	30 30 tr(20) tr(21) tr(20) nd	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8]	8/10 5/5 3/3 3/3 3/3 3/3 2/3	5/5 3/3 3/3 3/3 3/3 2/3
2011 2012 2014 2015 2016 2017 2018 2019	440 170 60 70 37 49 tr(19) 34	180 60 90 39 30 39 22	910 110 200 61 200 46 140	30 30 tr(20) tr(21) tr(20) nd tr(13)	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8] 22 [9]	8/10 5/5 3/3 3/3 3/3 3/3 2/3 3/3	5/5 3/3 3/3 3/3 3/3 2/3 3/3
2011 2012 2014 2015 2016 2017 2018 2019 2011	440 170 60 70 37 49 tr(19) 34 210	180 60 90 39 30 39 22 tr(90)	910 110 200 61 200 46 140 50,000	30 30 tr(20) tr(21) tr(20) nd tr(13) nd	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80]	8/10 5/5 3/3 3/3 3/3 3/3 2/3 3/3 26/51	5/5 3/3 3/3 3/3 3/3 2/3 3/3 10/17
2011 2012 2014 2015 2016 2017 2018 2019 2011 2012	440 170 60 70 37 49 tr(19) 34 210 75	180 60 90 39 30 39 22 tr(90) 80	910 110 200 61 200 46 140 50,000 1,600	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80] 30 [10]	8/10 5/5 3/3 3/3 3/3 2/3 3/3 2/3 3/3 26/51 16/19	5/5 3/3 3/3 3/3 3/3 2/3 3/3 10/17 16/19
2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014	440 170 60 70 37 49 tr(19) <u>34</u> 210 75 30	180 60 90 39 30 39 22 tr(90) 80 tr(20)	910 110 200 61 200 46 140 50,000 1,600 2,800	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80] 30 [10] 30 [10]	8/10 5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19	5/5 3/3 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19
2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015	440 170 60 70 37 49 tr(19) 34 210 75 30 tr(20)	180 60 90 39 30 39 22 tr(90) 80 tr(20) tr(10)	910 110 200 61 200 46 140 50,000 1,600 2,800 230	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80] 30 [10] 30 [10] 30 [10]	8/10 5/5 3/3 3/3 3/3 2/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19	5/5 3/3 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19
2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016	440 170 60 70 37 49 tr(19) 34 210 75 30 tr(20) tr(16)	180 60 90 39 30 39 22 tr(90) 80 tr(20) tr(10) tr(13)	$910 \\ 110 \\ 200 \\ 61 \\ 200 \\ 46 \\ 140 \\ 50,000 \\ 1,600 \\ 2,800 \\ 230 \\ 160 \\ $	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd nd nd	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80] 30 [10] 30 [10] 30 [10] 24 [9]	8/10 5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19 11/19	5/5 3/3 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19 11/19
2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017	440 170 60 70 37 49 tr(19) 34 210 75 30 tr(20) tr(16) tr(16)	180 60 90 39 30 39 22 tr(90) 80 tr(20) tr(10) tr(13) tr(18)	910 110 200 61 200 46 140 50,000 1,600 2,800 230 160 120	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd nd nd nd	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9]	8/10 5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19 11/19 12/19	5/5 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19 11/19 12/19
2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018	440 170 60 70 37 49 tr(19) 34 210 75 30 tr(20) tr(16) tr(16) tr(11)	180 60 90 39 30 39 22 tr(90) 80 tr(20) tr(10) tr(13) tr(18) tr(11)	910 110 200 61 200 46 140 50,000 1,600 2,800 230 160 120 130	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd nd nd nd nd nd nd	$\begin{array}{c} 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \\ 21 \ [8] \\ \hline 22 \ [9] \\ \hline 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \\ 24 \ [9] \\ 21 \ [8] \end{array}$	8/10 5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19 11/19 12/19 10/18	5/5 3/3 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19 11/19 12/19 12/19 10/18
2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017	440 170 60 70 37 49 tr(19) 34 210 75 30 tr(20) tr(16) tr(16)	180 60 90 39 30 39 22 tr(90) 80 tr(20) tr(10) tr(13) tr(18)	910 110 200 61 200 46 140 50,000 1,600 2,800 230 160 120	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd nd nd nd	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9]	8/10 5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19 11/19 12/19 10/18 9/16	5/5 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19 11/19 12/19 10/18 9/16
2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2017 2018 2019	$\begin{array}{c} 440\\ 170\\ 60\\ 70\\ 37\\ 49\\ tr(19)\\ 34\\ 210\\ 75\\ 30\\ tr(20)\\ tr(16)\\ tr(16)\\ tr(16)\\ tr(11)\\ tr(12)\\ \end{array}$	180 60 90 39 30 39 22 tr(90) 80 tr(20) tr(10) tr(13) tr(18) tr(11) tr(11) tr(13)	$\begin{array}{r} 910\\ 110\\ 200\\ 61\\ 200\\ 46\\ 140\\ \hline 50,000\\ 1,600\\ 2,800\\ 230\\ 160\\ 120\\ 130\\ 62\\ \end{array}$	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd nd nd nd nd nd nd nd	$\begin{array}{c} 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \\ 21 \ [8] \\ 22 \ [9] \\ \hline 210 \ [80] \\ 30 \ [10] \\ 30 \ [10] \\ 30 \ [10] \\ 24 \ [9] \\ 24 \ [9] \\ 24 \ [9] \\ 21 \ [8] \\ 22 \ [9] \\ \hline \end{array}$	8/10 5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19 11/19 12/19 10/18 9/16 Sample	5/5 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19 11/19 12/19 10/18 9/16 Site
2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2017 2018 2019 2011	440 170 60 70 37 49 tr(19) 34 210 75 30 tr(20) tr(16) tr(16) tr(11) tr(12) tr(180)	180 60 90 39 30 39 22 tr(90) 80 tr(20) tr(10) tr(13) tr(18) tr(11) tr(13) tr(13) tr(13)	910 110 200 61 200 46 140 50,000 1,600 2,800 230 160 120 130 62 460	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd nd nd nd nd nd nd nd nd	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80]	8/10 5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19 11/19 12/19 10/18 9/16 Sample 1/3	5/5 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19 11/19 12/19 10/18 9/16 Site 1/1
2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2018 2019	440 170 60 70 37 49 tr(19) 34 210 75 30 tr(20) tr(16) tr(16) tr(11) tr(12) tr(180) 31	180 60 90 39 30 39 22 tr(90) 80 tr(20) tr(10) tr(13) tr(18) tr(11) tr(13) tr(13) tr(13)	910 110 200 61 200 46 140 50,000 1,600 2,800 230 160 120 130 62 460 190	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd nd nd nd nd nd nd nd nd	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80] 30 [10]	8/10 5/5 3/3 3/3 3/3 2/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19 11/19 12/19 10/19 11/19 12/19 10/18 9/16 Sample 1/3 1/2	5/5 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19 11/19 12/19 10/18 <u>9/16</u> Site 1/1 1/2
2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2018 2019 2011 2012 2014	440 170 60 70 37 49 tr(19) 34 210 75 30 tr(20) tr(16) tr(16) tr(16) tr(11) tr(12) tr(180) 31 tr(10)	180 60 90 39 30 22 tr(90) 80 tr(20) tr(10) tr(13) tr(13) tr(13) tr(11) tr(13) 	910 110 200 61 200 46 140 50,000 1,600 2,800 230 160 120 130 62 460 190 tr(10)	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd nd nd nd nd nd nd nd nd	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80] 30 [10] 30 [10] 24 [9] 24 [9] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80] 30 [10] 30 [10] 30 [10] 30 [10]	8/10 5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19 11/19 12/19 10/18 9/16 Sample 1/3 1/2 2/2	5/5 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19 12/19 10/18 9/16 <u>Site</u> 1/1 1/2 2/2
2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2018 2019 2011 2012 2014 2012	440 170 60 70 37 49 tr(19) 34 210 75 30 tr(20) tr(16) tr(16) tr(11) tr(12) tr(180) 31 tr(10) 	180 60 90 39 30 39 22 tr(90) 80 tr(20) tr(10) tr(13) tr(18) tr(11) tr(13) tr(13) tr(13)	910 110 200 61 200 46 140 50,000 1,600 2,800 230 160 120 130 62 460 190 tr(10) tr(10)	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd nd nd nd nd nd nd rd nd rd rd rd rd(10) tr(10) tr(10)	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80] 30 [10] 30 [10] 24 [9] 24 [9] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80] 30 [10] 30 [10] 30 [10] 30 [10] 30 [10] 30 [10]	8/10 5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19 11/19 12/19 10/18 9/16 Sample 1/3 1/2 2/2 1/1	5/5 3/3 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19 12/19 10/18 9/16 <u>Site</u> 1/1 1/2 2/2 1/1
2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2018 2019 2011 2012 2014 2015 2014 2015 2016	440 170 60 70 37 49 tr(19) 34 210 75 30 tr(20) tr(16) tr(16) tr(16) tr(11) tr(12) tr(180) 31 tr(10) tr(10)	180 60 90 39 30 22 tr(90) 80 tr(20) tr(10) tr(13) tr(13) tr(13) tr(11) tr(13) 	910 110 200 61 200 46 140 50,000 1,600 2,800 230 160 120 130 62 460 190 tr(10) tr(10) tr(20)	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd nd nd nd nd nd nd nd rd nd rd rd nd nd nd nd nd nd nd nd nd nd nd nd nd	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80] 30 [10] 30 [10] 30 [10] 30 [10] 30 [10] 30 [10] 24 [9]	8/10 5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19 11/19 12/19 10/18 9/16 Sample 1/3 1/2 2/2 1/1 1/2	5/5 3/3 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19 12/19 10/19 12/19 10/18 9/16 <u>Site</u> 1/1 1/2 2/2 1/1 1/2
2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2018 2019 2011 2012 2014 2012	440 170 60 70 37 49 tr(19) 34 210 75 30 tr(20) tr(16) tr(16) tr(11) tr(12) tr(180) 31 tr(10) 	180 60 90 39 30 22 tr(90) 80 tr(20) tr(10) tr(13) tr(13) tr(13) tr(11) tr(13) 	910 110 200 61 200 46 140 50,000 1,600 2,800 230 160 120 130 62 460 190 tr(10) tr(10)	30 30 tr(20) tr(21) tr(20) nd tr(13) nd nd nd nd nd nd nd nd nd nd nd rd nd rd rd rd rd(10) tr(10) tr(10)	210 [80] 30 [10] 30 [10] 30 [10] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80] 30 [10] 30 [10] 24 [9] 24 [9] 24 [9] 24 [9] 21 [8] 22 [9] 210 [80] 30 [10] 30 [10] 30 [10] 30 [10] 30 [10] 30 [10]	8/10 5/5 3/3 3/3 3/3 2/3 3/3 26/51 16/19 12/19 10/19 11/19 12/19 10/18 9/16 Sample 1/3 1/2 2/2 1/1	5/5 3/3 3/3 3/3 3/3 2/3 3/3 10/17 16/19 12/19 10/19 11/19 12/19 10/18 9/16 <u>Site</u> 1/1 1/2 2/2 1/1
	year 2011 2012 2014 2015 2016 2017 2018 2019 Monitored year 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2019 2011 2012 2014 2019 2011 2012 2014 2019 2011 2012 2014 2015 2016 2017 2018 2019 2011 2012 2014 2015 2016 2017 2018 2019 2016 2017 2018 2019 2016 2017 2018 2019 2016 2017 2018 2019 2016 2017 2018 2019 2016 2017 2018 2019 2016 2017 2018 2019 2016 2017 2018 2019 2016 2017 2018 2019 2017 2018 2019 2019 2018 2019 2019 2018 2019 2019 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2	year mean* 2011 200 2012 120 2014 480 2015 2016 400 2017 330 2018 600 2019 Monitored Geometric mean* 2011 tr(70) 2012 tr(25) 2014 tr(10) 2015 tr(10) 2016 nd 2017 tr(9) 2018 nd 2017 tr(9) 2018 nd 2019 nd 2011 nd 2015 tr(9) 2016 nd 2017 nd 2018 nd 2019 nd 2016 nd 2017 nd 2018 nd 2019 nd 2014 nd 2015 2016	year mean* Median 2011 200 nd 2012 120 2014 480 2015 2016 400 2017 330 2018 600 2019 2011 tr(70) tr(85) 2012 tr(25) 40 2014 tr(10) tr(10) 2015 tr(10) tr(10) 2016 nd nd 2017 tr(9) nd 2018 nd nd 2017 tr(9) nd 2018 nd nd 2019 nd nd 2011 nd nd 2012 nd nd 2013 nd nd 2014 nd nd 2015 nd nd 2016	year mean* Median Maximum 2011 200 nd 530 2012 120 1,400 2014 480 1,800 2015 80 2016 400 1,600 2017 330 2,200 2018 600 610 2019 1,100 Monitored Geometric year mean* Median Maximum 2011 tr(70) tr(85) 240 2012 tr(25) 40 90 2014 tr(10) tr(10) tr(20) 2015 tr(10) tr(10) 30 2016 nd nd nd 2017 tr(9) nd 36 2018 nd nd nd 2011 nd nd 40 2013 nd nd 40	year mean* Median Maximum Minimum 2011 200 nd 530 nd 2012 120 1,400 nd 2014 480 1,800 130 2015 80 80 2016 400 1,600 100 2017 330 2,200 50 2018 600 610 590 2019 1,100 1,100 Monitored Geometric mean* Median Maximum Minimum 2011 tr(70) tr(85) 240 nd 2012 tr(25) 40 90 nd 2014 tr(10) tr(10) 30 nd 2016 nd tr(10) 30 nd 2017 tr(9) nd 36 nd 2018 nd nd nd nd	Monitored Geometric year Median mean* Maximum Median Maximum Minimum Minimum Imit IDetection limit 2011 200 nd 530 nd 170 [70] 2012 120 1,400 nd 50 [20] 2014 480 1,600 130 30 [10] 2015 80 80 30 [10] 2016 400 1,600 100 22 [9] 2018 600 610 590 23 [9] 2019 1,100 1,100 24 [9] Monitored Geometric mean* Median Maximum Minimum IDetection] 2011 tr(70) tr(85) 240 nd 98 [40] 2012 tr(25) 40 90 nd 40 [10] 2014 tr(10) tr(10) 30 [10] 30 [10] 2015 tr(10) tr(10) 30 nd 21 [8]	Monitored vertice Median Maximum Minimum [Detection] limit Sample 2011 200 nd 530 nd 170 [70] 1/3 2012 120 1,400 nd 50 [20] 1/2 2014 480 1,800 130 30 [10] 2/2 2015 80 80 30 [10] 1/1 2016 400 1,600 100 22 [9] 2/2 2017 330 2,200 50 24 [9] 2/2 2018 600 1,100 1,100 24 [9] 1/1 Monitored Geometric Median Maximum Minimum Patientification Detection I year mean* Median Maximum Minimum 98 [40] 7/10 2011 tr(70) tr(85) 240 nd 40 [10] 4/5 2014 tr(10) tr(10) tr(20)

δ-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection l	Frequency
bromocyclododecane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	nd	nd	nd	nd	140 [60]	0/10	0/4
Bivalves	2012	nd	nd	nd	nd	50 [20]	0/5	0/5
(pg/g-wet)	2014	nd	nd	nd	nd	30 [10]	0/3	0/3
	2015	nd	nd	nd	nd	30 [10]	0/3	0/3
	2011	nd	nd	nd	nd	140 [60]	0/51	0/17
Fish	2012	nd	nd	nd	nd	50 [20]	0/19	0/19
(pg/g-wet)	2014	nd	nd	nd	nd	30 [10]	0/19	0/19
	2015	nd	nd	tr(20)	nd	30 [10]	1/19	1/19
	2011	nd	nd	nd	nd	140 [60]	0/3	0/1
Birds**	2012	nd		nd	nd	50 [20]	0/2	0/2
(pg/g-wet)	2014	nd		nd	nd	30 [10]	0/2	0/2
	2015			nd	nd	30 [10]	0/1	0/1
ε-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection I	Frequency
bromocyclododecane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	nd	nd	nd	nd	140 [60]	0/10	0/4
Bivalves	2012	nd	nd	tr(30)	nd	40 [20]	1/5	1/5
(pg/g-wet)	2014	nd	nd	tr(20)	nd	30 [10]	1/3	1/3
	2015	nd	nd	tr(10)	nd	30 [10]	1/3	1/3
	2011	nd	nd	nd	nd	140 [60]	0/51	0/17
Fish	2012	nd	nd	tr(30)	nd	40 [20]	3/19	3/19
(ma/a mat)	2014		nd	80	nd	30 [10]	3/19	3/19
(pg/g-wet)	2014	nd	nu	00			5/1/	
(pg/g-wet)	2014 2015	nd nd	nd	tr(10)	nd	30 [10]	1/19	1/19
(pg/g-wet)								1/19 0/1
Birds**	2015	nd	nd	tr(10)	nd	30 [10]	1/19	
	2015 2011	nd nd	nd nd	tr(10) nd	nd nd	30 [10] 140 [60]	<u>1/19</u> 0/3	0/1

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2011. (Note 2) " ** " : There is no consistency between the results of the ornithological survey after FY2014 and those in previous

years because of the changes in the survey sites and target species. (Note 3) No monitoring was conducted in FY2013. No monitoring of δ -1,2,5,6,9,10-Hexabromocyclododecane and

ε-1,2,5,6,9,10-Hexabromocyclododecane was conducted after FY2016.

<Air

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyc	clododecanes in air during EV2012, 2010
Stocktaking of the detection of 1,2,3,0,9,10-mexabioinocyc	ciououecalles ill all uuring F12012~2019

	of the detection of 1	,2,3,0,7,10	пелиотопи	<i>jeje</i> lououeet	unes in un u	U		
α-1,2,5,6,9,10- Hexabromo	Monitored year	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection 1	1 2
cyclododecane	•	mean				limit	Sample	Site
	2012 Warm season	1.7	2.2	130	nd	0 6 [0 2]	31/36	31/36
	2012 Cold season	2.9	3.0	63	nd	0.6 [0.2]	35/36	35/36
Air	2014 Warm season	tr(0.6)	tr(0.7)	3.1	nd	1.2 [0.4]	25/36	25/36
(pg/m^3)	2015 Warm season	tr(0.6)	tr(0.7)	30	nd	0.9 [0.3]	26/35	26/35
(pg/m)	2016 Warm season	0.5	0.5	2.4	tr(0.1)	0.3 [0.1]	37/37	37/37
	2017 Warm season	0.5	0.5	3.3	nd	0.3 [0.1]	36/37	36/37
	2019 Warm season	0.5	0.5	4.1	nd	0.3 [0.1]	35/36	35/36
β-1,2,5,6,9,10-		Geometric				Quantification	Detection 1	Frequency
Hexabromo cyclododecane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2012 Warm season	0.5	0.5	29	nd	0.2 [0.1]	30/36	30/36
	2012 Cold season	0.8	0.8	18	nd	0.3 [0.1]	35/36	35/36
Air	2014 Warm season	nd	nd	tr(0.8)	nd	1.0 [0.3]	8/36	8/36
	2015 Warm season	nd	nd	3.9	nd	0.8 [0.3]	7/35	7/35
(pg/m ³)	2016 Warm season	tr(0.1)	tr(0.1)	0.7	nd	0.3 [0.1]	21/37	21/37
	2017 Warm season	tr(0.2)	tr(0.1)	0.8	nd	0.3 [0.1]	33/37	33/37
	2019 Warm season	tr(0.13)	tr(0.15)	1.2	nd	0.21 [0.08]	26/36	26/36

γ-1,2,5,6,9,10-		Geometric				Quantification	Detection I	Frequency
Hexabromo cyclododecane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2012 Warm season	1.6	1.7	280	nd	0 2 [0 1]	31/36	31/36
	2012 Cold season	2.1	1.8	84	nd	0.3 [0.1]	35/36	35/36
A in	2014 Warm season	nd	nd	tr(1.2)	nd	1.3 [0.4]	4/36	4/36
Air $(m \alpha/m^3)$	2015 Warm season	nd	nd	4.4	nd	0.8 [0.3]	11/35	11/35
(pg/m^3)	2016 Warm season	tr(0.1)	nd	1.4	nd	0.3 [0.1]	16/37	16/37
	2017 Warm season	tr(0.1)	tr(0.1)	0.8	nd	0.3 [0.1]	20/37	20/37
	2019 Warm season	nd	nd	1.5	nd	0.4 [0.2]	15/36	15/36
δ-1,2,5,6,9,10-		Coomotrio				Quantification	Detection I	Frequency
Hexabromo cyclododecane	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2012 Warm season	nd	nd	0.8	nd	0.4.[0.2]	1/36	1/36
Air	2012 Cold season	nd	nd	1.1	nd	0.4 [0.2]	1/36	1/36
(pg/m^3)	2014 Warm season	nd	nd	nd	nd	1.8 [0.6]	0/36	0/36
(pg/m/)	2015 Warm season	nd	nd	1.9	nd	1.9 [0.6]	1/35	1/35
E-1,2,5,6,9,10-		с :				Quantification	Detection I	Frequency
Hexabromo cyclododecane	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2012 Warm season	nd	nd	nd	nd	0 6 [0 2]	0/36	0/36
Air	2012 Cold season	nd	nd	tr(0.5)	nd	0.6 [0.2]	1/36	1/36
	2014 Warm season	nd	nd	nd	nd	0.9 [0.3]	0/36	0/36
	2015 Warm season	nd	nd	nd	nd	0.9 [0.3]	0/35	0/35

(Note) No monitoring of α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane and γ -1,2,5,6,9,10-Hexabromocyclododecane was conducted in FY2013 and FY2018. No monitoring of δ -1,2,5,6,9,10-Hexabromocyclododecane and ε -1,2,5,6,9,10-Hexabromocyclododecane was conducted in FY2013 and FY2018 and FY2013 and FY2016~2019.

[20] Total Polychlorinated Naphthalenes (Total PCNs) (reference)

· History and results of the monitoring

Polychlorinated Naphthalenes (PCNs) make effective insulating coatings for electrical wires and have been used as wood preservatives, as rubber and plastic additives, for capacitor dielectrics and in lubricants. The substances with over 3 chloric ions were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in August 1979. And PCNs (Cl₂~Cl₈) was adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants in May 2015 and Dichloronaphthalene designated as a Class I Specified Chemical Substance under the Chemical Substance Scontrol Law in August 1979.

In previous monitoring series, Polychlorinated Naphthalenes were monitored in wildlife (bivalves, fish and birds) during the period of FY1980~1985 FY1987 FY 1989 FY 1991 and FY 1993 under the framework of "the Wildlife Monitoring."

Under the framework of "the Environmental Monitoring", Polychlorinated Naphthalenes with over a chloric ions have been monitored in wildlife (bivalves, fish and birds) in FY 2006, in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2008, in air in FY2014, in wildlife (bivalves, fish and birds) in FY2015 and in sediment, wildlife (bivalves, fish and birds) and air in FY2016~2017, in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2018 and FY2019.

No monitoring was conducted in FY2020. For reference, the monitoring results up to FY2019 are given below.

Monitoring results until FY2019

<Surface Water>

Stocktaking of the detection of Total Polychlorinated Naphthalenes in surface water during FY2008~2019

Total Polychlorinated	Monitored	Geometric				Quantification	Detection 1	Frequency
Naphthalenes	year	mean	Median	Maximum	Minimum	[Detection] limit*	Sample	Site
Surface Water	2008	nd	nd	180	nd	85[30]	9/48	9/48
(pg/L)	2018	tr(32)	tr(34)	260	nd	35 [12]	39/47	39/47
	2019	tr(14)	tr(12)	260	nd	24 [7.5]	32/48	32/48

(Note 1) "*" indicates the sum value of the Quantification [Detection] limits of each congener. (Note 2) No monitoring was conducted during FY2009~2017.

<Sediment>

Stocktaking of the detection of Total Polychlorinated Naphthalenes in sediment during FY2008~2019

Total Polychlorinate	d Monitored	Geometric				Quantification	Detection Frequency	
Naphthalenes	year	mean*	Median	Maximum	Minimum	[Detection] limit**	Sample	Site
	2008	410	400	28,000	nd	84 [30]	166/189	58/63
Sediment	2016	760	870	160,000	nd	59 [20]	59/62	59/62
(pg/g-dry)	2017	630	800	32,000	tr(16)	27 [9.1]	62/62	62/62
	2018	680	810	34,000	9.9	8.5 [3.2]	61/61	61/61
	2019	600	720	58,000	13	7.3 [2.7]	61/61	61/61

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

(Note 2) "** " indicates the sum value of the Quantification [Detection] limits of each congener.

(Note 3) No monitoring was conducted during FY2009~2015.

<Wildlife>

Stocktaking of the detection of Total Polychlorinated Naphthalenes in wildlife (bivalves, fish and birds) during FY2006~2019

Fotal Polychlorinated	Monitorad	Geometric				Quantification	Detection	Frequency
Naphthalenes	year	mean*	Median	Maximum	Minimum	[Detection] limit**	Sample	Site
	2006	98	73	1.2	tr(19)	27 [11]	31/31	7/7
	2008	94	73	1,300	tr(11)	26 [10]	31/31	7/7
Divisivas	2015	70	67	580	nd	54 [18]	2/3	2/3
Bivalves (pg/g-wet)	2016	72	tr(49)	790	nd	57 [19]	2/3	2/3
	2017	46	68	1,400	nd	33 [12]	2/3	2/3
	2018	58	tr(22)	700	tr(13)	36 [12]	3/3	3/3
	2019	84	96	820	nd	40 [15]	2/3	2/3
	2006	72	49	2,700	nd	27 [11]	78/80	16/16
Fish (pg/g-wet)	2008	59	40	2,200	nd	26 [10]	79/85	17/17
	2015	tr(50)	85	390	nd	54 [18]	13/19	13/19
	2016	tr(44)	tr(48)	340	nd	57 [19]	13/19	13/19
	2017	32	51	360	nd	33 [12]	17/19	17/19
	2018	41	36	520	nd	36 [12]	16/18	16/18
	2019	46	78	270	nd	40 [15]	12/16	12/16
	2006	tr(17)	tr(18)	27	tr(11)	27 [11]	10/10	2/2
 Birds*** (pg/g-wet)	2008	tr(10)	nd	tr(22)	nd	26 [10]	5/10	1/2
	2015			tr(20)	tr(20)	54 [18]	1/1	1/1
	2016	130		320	tr(49)	57 [19]	2/2	2/2
	2017	91		460	tr(18)	33 [12]	2/2	2/2
	2018	230		250	220	36 [12]	2/2	2/2
	2019			170	170	40 [15]	1/1	1/1

(Note 1) " * " :Arithmetic mean values were calculated for each point, from which the geometric mean value for all points were derived in FY2006 and FY2008.

(Note 2) "** " indicates the sum value of the Quantification [Detection] limits of each congener.

(Note 3) " *** " indicates there is no consistency between the results of the ornithological survey after FY2015 and those in previous years because of the changes in the survey sites and target species. (Note 4) No monitoring was conducted in FY2007 and FY2009~2014.

<Air>

Stocktaking of the detection of Total Polychlorinated Naphthalenes in sediment during FY2008~2019

	Geometric				Quantification	Detection l	Frequency
Monitored year	mean	Median	Maximum	Minimum	[Detection] limit*	Sample	Site
2008 Warm season	200	230	660	35	4.0 [1.2]	22/22	22/22
2008 Cold season	tr(9.6)	tr(9.8)	45	nd	4.0 [1.5]	36/36	36/36
2014 Warm season	110	130	1,600	5.4	2.8 [1.0]	36/36	36/36
2016 Warm season	110	130	660	9.0	0.79 [0.28]	37/37	37/37
2017 Warm season	110	120	920	7	0.67 [0.24]	37/37	37/37
2018 Warm season	86	110	590	5.3	0.5 [0.2]	37/37	37/37
2019 Warm season	100	130	1,100	6.5	0.6 [0.2]	36/36	36/36
	2008 Warm season 2008 Cold season 2014 Warm season 2016 Warm season 2017 Warm season 2018 Warm season	2008 Warm season2002008 Cold seasontr(9.6)2014 Warm season1102016 Warm season1102017 Warm season1102018 Warm season86	Monitored year mean Median 2008 Warm season 200 230 2008 Cold season tr(9.6) tr(9.8) 2014 Warm season 110 130 2016 Warm season 110 130 2017 Warm season 110 120 2018 Warm season 86 110	Monitored year Median Maximum 2008 Warm season 200 230 660 2008 Cold season tr(9.6) tr(9.8) 45 2014 Warm season 110 130 1,600 2016 Warm season 110 130 660 2017 Warm season 110 120 920 2018 Warm season 86 110 590	Monitored year Median Maximum Minimum 2008 Warm season 200 230 660 35 2008 Cold season tr(9.6) tr(9.8) 45 nd 2014 Warm season 110 130 1,600 5.4 2016 Warm season 110 130 660 9.0 2017 Warm season 110 120 920 7 2018 Warm season 86 110 590 5.3	Monitored yearGeometric meanMedianMaximumMinimum[Detection] limit*2008 Warm season200230660352008 Cold seasontr(9.6)tr(9.8)45nd2014 Warm season1101301,6005.42.8 [1.0]2016 Warm season1101306609.00.79 [0.28]2017 Warm season11012092070.67 [0.24]2018 Warm season861105905.30.5 [0.2]	Monitored year Geometric mean Median Maximum Minimum [Detection] limit* Sample 2008 Warm season 200 230 660 35 4.0 [1.3] 22/22 2008 Cold season tr(9.6) tr(9.8) 45 nd 4.0 [1.3] 36/36 2014 Warm season 110 130 1,600 5.4 2.8 [1.0] 36/36 2016 Warm season 110 130 660 9.0 0.79 [0.28] 37/37 2017 Warm season 110 120 920 7 0.67 [0.24] 37/37 2018 Warm season 86 110 590 5.3 0.5 [0.2] 37/37

(Note 1) "*" indicates the sum value of the Quantification [Detection] limits of each congener.

(Note 2) No monitoring was conducted in FY2009~2013 and FY2015.

[21] Hexachlorobuta-1,3-diene

· History and results of the monitoring

Hexachlorobuta-1,3-diene had been used as a solvent for other chlorine-containing compounds. The substance was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law on April 2005. The substance was adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants in May 2015.

As a continuous survey, the first survey was in FY2007, under the framework of the Environmental Survey of Chemical Substances up to FY2002, the substance was monitored in surface wate and sediment in FY1981, under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, in the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was monitored in surface water and sediment in FY2007.

Under the framework of the Environmental Monitoring, the substances have been monitored in surface water sediment and wildlife (bivalves, fish and birds) in FY2007, FY2013 and FY2020, and in air in FY2015~2020

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 46 sites, and it was detected at 1 of the 46 valid sites adopting the detection limit of 40pg/L, and the detected concentration was 490pg/L.

Hexachlorobuta	Monitored	Geometric				Quantification	Detection I	Frequency
1,3-diene	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	nd	nd	nd	nd	870 [340]	0/48	0/48
Surface Water (pg/L)	2013	nd	nd	tr(43)	nd	94 [37]	1/48	1/48
	2020	nd	nd	490	nd	100 [40]	1/46	1/46

Stocktaking of the detection of Hexachlorobuta-1,3-diene in surface water during FY2007~2020

(Note) No monitoring was conducted during FY2008~2012 and FY2013~2019.

<Sediment>

The presence of the substance in sediment was monitored at 58 sites, and it was detected at 2 of the 58 valid sites adopting the detection limit of 10pg/g-dry, and the detection range was up to 180pg/g-dry.

1,3-dieneyearmeanMedianMaximumMinimum[Detection] limitSampleSiSediment2007ndnd1,300nd22 [8.5]22/19210 $(pg/g-dry)$ 2013ndnd1,600nd9.9 [3.8]40/18920	Hexachlorobuta	Monitored	Geometric				Quantification	Detection	Frequency
Sediment 2013 nd nd 1,600 nd 9.9 [3.8] 40/189 20				Median	Maximum	Minimum		Sample	Site
$(p\sigma/g-dry)$ 2013 nd nd 1,600 nd 9.9 [3.8] 40/189 20	Sadimant	2007	nd	nd	1,300	nd	22 [8.5]	22/192	10/64
(pg/g-ury) 2020 nd nd 180 nd 30[10] 2/58 2/		2013	nd	nd	1,600	nd	9.9 [3.8]	40/189	20/63
	(pg/g-ury)	2020	nd	nd	180	nd	30 [10]	2/58	2/58

Stocktaking of the detection of Hexachlorobuta-1,3-diene in sediment during FY2007~2020

(Note 1) "*": Arithmetic mean values were calculated for each point, from which the geometric mean value for all points were derived in FY2007 and FY2013.

(Note 2) No monitoring was conducted during FY2008~2012 and FY2013~2019.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 5pg/g-wet, and the detected concentration was tr(7)pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 8 of the 18 valid areas adopting the detection limit of 5pg/g-wet, and the detection range was up to 19pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and not detected in the area adopting the detection limit of 5pg/g-wet.

Hexachlorobuta	Monitored	Geometric				Quantification	Detection I	Frequency
1,3-diene	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Bivalves	2007	nd	nd	nd	nd	36 [12]	0/31	0/7
(pg/g-wet)	2013	nd	nd	tr(7.1)	nd	9.4 [3.7]	3/13	1/5
(pg/g-wet)	2020	nd	nd	tr(7)	nd	13 [5]	1/3	1/3
Fish	2007	nd	nd	nd	nd	36 [12]	0/80	0/16
(pg/g-wet)	2013	nd	nd	59	nd	9.4 [3.7]	7/57	4/19
(pg/g-wet)	2020	nd	nd	19	nd	13 [5]	8/18	8/18
Birds**	2007	nd	nd	nd	nd	36 [12]	0/10	0/2
	2013	nd	nd	nd	nd	9.4 [3.7]	0/6	0/2
(pg/g-wet)	2020			nd	nd	13 [5]	0/1	0/1

Stocktaking of the detection of Hexachlorobuta-1,3-diene in wildlife (bivalves, fish and birds) during FY2007~2020

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2007.(Note 2) " ** " indicates there is no consistency between the results of the ornithological survey after FY2013 and FY2007

because of the changes in the survey sites and target species.

<Air>

The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of $10pg/m^3$, and the detection range was $1,500 \sim 9,800pg/m^3$.

Stocktaking of the detection of Hex	achlorobuta-1.3-dier	ne in air during FY2015~2020

Hexachloro	Monitored year	Geometric M mean				Quantification	Detection I	Frequency
buta 1,3-diene			Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2015 Warm season	1,100	1,200	3,500	45	29 [11]	102/102	34/34
Air (pg/m ³)	2016 Warm season	850	800	4,300	510	60 [20]	111/111	37/37
	2017 Warm season	4,200	4,000	23,000	1,100	60 [20]	37/37	37/37
	2018 Warm season	3,600	3,500	8,500	150	30 [10]	110/110	37/37
	2019 Warm season	1,500	2,600	5,800	nd	50 [20]	104/108	35/36
	2020 Warm season	2,500	2,500	9,800	1,500	30 [10]	110/110	37/37

[22] Pentachlorophenol and its salts and esters (reference)

· History and state of monitoring

Pentachlorophenol was used as a herbicide, insecticide, fungicide, algaecide, disinfectant and as an ingredient in antifouling paint. Pentachlorophenol and its salts and esters were adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants in May 2015, and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in Octorber 2016.

As a continuous survey, the first survey of Pentachlorophenol was in FY2015, under the framework of the Environmental Survey of Chemical Substances up to FY2007, the substance was monitored in surface water and sediment in FY1974 and FY1996, and under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, in the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was monitored in surface water in FY2005.

Under the framework of the Environmental Monitoring, Pentachlorophenol was monitored in surface water in FY2015. And Pentachlorophenol and Pentachloroanisole were monitored in wildlife (bivalves, fish and birds) and air in FY2016, in surfacewater, sediment, wildlife (bivalves, fish and birds) and air in FY2017~2019.

No monitoring was conducted in FY2020. For reference, the monitoring results up to FY2020 are given below.

Monitoring results until FY2019

<Surface Water>

Stocktaking of the detection of Pentachlorophenol and Pentachloroanisole in surface water during FY2015~2019										
	Monitored	mean				Quantification	Detection Frequence			
Pentachlorophenol	year		Maximum	Minimum	[Detection] limit	Sample	Site			
	2015	tr(130)	tr(90)	26,000	nd	260 [85]	25/48	25/48		
Surface Water	2017	86	110	3,500	nd	30 [10]	43/47	43/47		
(pg/L)	2018	50	47	4,400	nd	24 [9]	44/47	44/47		
	2019	tr(60)	tr(50)	3,500	nd	60 [20]	32/48	32/48		
	Monitored	Geometric				Quantification	Detection 1	Frequency		
Pentachloroanisole			Median	Maximum	Minimum	[Detection]	Sampla	Site		
	year	mean				limit	Sample	Sile		
Surface Water (pg/L)	2017	tr(10)	tr(8)	1,000	nd	14 [5]	32/47	32/47		
	2018	tr(10)	tr(7)	230	nd	16 [6]	30/47	30/47		
	2019	tr(10)	nd	210	nd	30 [10]	20/48	20/48		

(Note) No monitoring was conducted in FY2016. No monitoring of Pentachloroanisole was conducted in FY2015.

<Sediment>

Stocktaking of the detection of Pentachloro	phenol and Pentachloroanisole in sediment during	FY2017~2019

	Monitored	Geometric				Quantification	Detection I	Frequency
Pentachlorophenol	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2017	350	390	7,400	8	4 [2]	62/62	62/62
	2018	220	300	3,900	nd	18 [6]	59/61	59/61
(pg/g-dry)	2019	260	380	6,200	7	6 [2]	61/61	61/61
	Monitored	Geometric				Quantification	Detection I	Frequency
Pentachloroanisole	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2017	34	32	190	nd	5 [2]	61/62	61/62
	2018	tr(23)	tr(25)	160	nd	27 [9]	53/61	53/61
(pg/g-dry)	2019	14	15	140	nd	2.1 [0.8]	60/61	60/61

<Wildlife>

Stocktaking of the detection of Pentachlorophenol and Pentachloroanisole in wildlife (bivalves, fish and birds) during FY2016~2019

during 1 12010 20	Monitored	Geometric				Quantification	Detection	Frequency
Pentachlorophenol	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016	tr(45)	tr(46)	65	tr(30)	63 [21]	3/3	3/3
Bivalves	2017	nd	nd	tr(35)	nd	36 [12]	1/3	1/3
(pg/g-wet)	2018	tr(20)	tr(20)	30	tr(10)	30 [10]	3/3	3/3
	2019	26	26	54	13	10 [4]	3/3	3/3
	2016	100	130	990	nd	63 [21]	18/19	18/19
Fish	2017	tr(15)	tr(15)	110	nd	36 [12]	14/19	14/19
(pg/g-wet)	2018	tr(10)	tr(10)	80	nd	30 [10]	13/18	13/18
	2019	17	22	57	nd	10 [4]	14/16	14/16
	2016	1,200		3,100	440	63 [21]	2/2	2/2
Birds	2017	1,800		11,000	300	36 [12]	2/2	2/2
(pg/g-wet)	2018	460		1,200	180	30 [10]	2/2	2/2
	2019			430	430	10 [4]	1/1	1/1
	Monitored	Geometric				Quantification	Detection 1	Frequency
Pentachloroanisole	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	,					limit		
	2016	7	3	35	3	3 [1]	3/3	3/3
Bivalves	2017	6	tr(3)	36	tr(2)	4 [1]	3/3	3/3
(pg/g-wet)	2018	6	tr(4)	21	tr(2)	6 [2]	3/3	3/3
	2019	4	tr(2)	15	tr(2)	3 [1]	3/3	3/3
	2016	8	6	100	tr(1)	3 [1]	19/19	19/19
Fish	2017	7	5	120	tr(1)	4 [1]	19/19	19/19
(pg/g-wet)	2018	8	7	73	nd	6 [2]	16/18	16/18
	2019	5	6	59	tr(1)	3 [1]	16/16	16/16
	2016	12		14	10	3 [1]	2/2	2/2
Birds	2017	23		47	11	4 [1]	2/2	2/2
(pg/g-wet)	2018	15		20	11	6 [2]	2/2	2/2
(P5/5 "00)	2010	10		20		[=]		_/ _

<Air>

Stocktaking of the detection of Pentachlorophenol and Pentachloroanisole in air during FY2016~2019

Pentachloro		Geometric				Quantification	Detection I	Frequency
phenol	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016 Warm season	6.3	6.0	25	0.6	0.5 [0.2]	37/37	37/37
$A = (m - m^3)$	2017 Warm season	4.6	4.8	33	0.7	0.6 [0.2]	37/37	37/37
Air (pg/m ³)	2018 Warm season	5.1	5.8	30	0.9	0.5 [0.2]	37/37	37/37
	2019 Warm season	4.1	4.2	22	0.6	0.6 [0.2]	36/36	36/36
Pentachloro		Geometric				Quantification	Detection I	Frequency
phenol	Monitored year		Median	Maximum	Minimum	[Detection]	~ .	a .
phenor		mean				limit	Sample	Site
phenor	2016 Warm season	mean 39	42	220	3.4	L	Sample 37/37	37/37
1	2016 Warm season 2017 Warm season					limit	-	
Air (pg/m ³)		39	42	220	3.4	limit 1.0 [0.4]	37/37	37/37

[23] Short-chain chlorinated paraffins

· History and state of monitoring

Short-chain chlorinated paraffinsare are used primarily in metalworking applications and in polyvinyl chloride (PVC) plastics. Other uses are adhesives and sealants, leather fat liquors, plastics, and as flame retardants in rubber, textiles and polymeric materials. The substances were adopted as target chemicals at the COP8 of the Stockholm convention on Persistent Organic Pollutants in April-May 2017.

Under the framework of the Initial Environmental Survey and the Detailed Environmental Survey etc., the substances were surveied in surface water, sediment and wildlife (fish) in FY2004 and in surface water, sediment and wildlife (bivalves and fish) in FY2005.

Under the framework of the Environmental Monitoring, the substances have been monitored in wildlife (bivalves, fish and birds) and air in FY2016, and in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2017~2020.

The results of short-chain chlorinated paraffins are tentative values obtained in trials among various problems in the measurement method.

• Monitoring results

<Surface water>

Chlorinated decanes: The presence of the substance in surface water was monitored at 46 sites, and it was detected at 16 of the 46 valid sites adopting the detection limit of 200pg/L, and the detection range was up to 1,800pg/L.

Chlorinated undecanes: The presence of the substance in surface water was monitored at 46 sites, and it was detected at 4 of the 46 valid sites adopting the detection limit of 300pg/L, and the detection range was up to 2,400pg/L.

Chlorinated dodecanes: The presence of the substance in surface water was monitored at 46 sites, and it was detected at 4 of the 46 valid sites adopting the detection limit of 300pg/L, and the detection range was up to 2,600pg/L.

Chlorinated tridecanes: The presence of the substance in surface water was monitored at 46 sites, and it was detected at 8 of the 46 valid sites adopting the detection limit of 200pg/L, and the detection range was up to 2,000pg/L.

Chlorinated	Monitored	Geometric				Quantification	Detection 1	Frequency
decanes	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	tr(1,600)	nd	3,300 [1,100]	1/47	1/47
Surface Water (ng/L)	2018	nd	nd	1,600	nd	1,000 [400]	8/47	8/47
Surface Water (pg/L)	2019	nd	nd	2,300	nd	600 [200]	17/48	17/48
	2020	nd	nd	1,800	nd	400 [200]	16/46	16/46
Chlorinated	Monitored	Geometric				Quantification	Detection 1	Frequency
undecanes	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	3,100	nd	1,500 [500]	13/47	13/47
Surface Water (ng/L)	2018	nd	nd	3,500	nd	2,000 [800]	6/47	6/47
Surface Water (pg/L)	2019	nd	nd	5,000	nd	1,400 [500]	19/48	19/48
	2020	nd	nd	2,400	nd	900 [300]	4/46	4/46
Chlorinated	Monitored	Geometric				Quantification	Detection 1	Frequency
dodecanes	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	10,000	nd	3,300 [1,100]	4/47	4/47
Surface Water (ng/L)	2018	nd	nd	3,000	nd	3,000 [1,000]	16/47	16/47
Surface Water (pg/L)	2019	nd	nd	34,000	nd	1,000 [400]	20/48	20/48
	2020	nd	nd	2,600	nd	700 [300]	4/46	4/46

Stocktaking of the detection of Chlorinated decanes, Chlorinated undecanes, Chlorinated dodecanes and Chlorinated tridecanes in surface water during FY2017~2019

Chlorinated	Monitored	Geometric				Quantification	Detection	Frequency
tridecanes	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	10,000	nd	3,600 [1,200]	7/47	7/47
Surface Water (mg/I)	2018	nd	nd	11,000	nd	4,500 [1,500]	18/47	18/47
Surface Water (pg/L)	2019	nd	nd	38,000	nd	1,300 [500]	17/48	17/48
	2020	nd	nd	2,000	nd	500 [200]	8/46	8/46

(Note) Chlorinated paraffins with 5~9 chlorines are target chemicals.

<Sediment>

Chlorinated decanes: The presence of the substance in sediment was monitored at 58 sites, and it was detected at 21 of the 58 valid sites adopting the detection limit of 400pg/g-dry, and the detection range was up to 6,000pg/g-dry.

Chlorinated undecanes: The presence of the substance in sediment was monitored at 58 sites, and it was detected at 25 of the 58 valid sites adopting the detection limit of 500pg/g-dry, and the detection range was up to 6,900pg/g-dry.

Chlorinated dodecanes: The presence of the substance in sediment was monitored at 58 sites, and it was detected at 31 of the 58 valid sites adopting the detection limit of 800pg/g-dry, and the detection range was up to 18,000pg/g-dry.

Chlorinated tridecanes: The presence of the substance in sediment was monitored at 58 sites, and it was detected at 40 of the 58 valid sites adopting the detection limit of 500pg/g-dry, and the detection range was up to 26,000pg/g-dry.

Stocktaking of the detection of Chlorinated decanes, Chlorinated undecanes, Chlorinated dodecanes and Chlorinated tridecanes in sediment during FY2017~2019

Chlorinated	Monitored	Geometric				Quantification	Detection	Frequency
decanes	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	17,000	nd	10,000 [4,000]	12/62	12/62
Sediment	2018	nd	nd	7,000	nd	6,000 [2,000]	7/61	7/61
(pg/g-dry)	2019	nd	nd	2,600	nd	2,000 [1,000]	8/61	8/61
	2020	nd	nd	6,000	nd	900 [400]	21/58	21/58
Chlorinated	Monitored	Geometric				Quantification	Detection 1	Frequency
undecanes	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	37,000	nd	10,000 [4,000]	19/62	19/62
Sediment	2018	nd	nd	tr(13,000)	nd	15,000 [5,000]	7/61	7/61
(pg/g-dry)	2019	nd	nd	5,900	nd	2,000 [1,000]	22/61	22/61
	2020	tr(600)	nd	6,900	nd	1,200 [500]	25/58	25/58
Chlorinated	Monitored	Geometric				Quantification	Detection 1	Frequency
dodecanes	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	44,000	nd	11,000 [4,000]	19/62	19/62
Sediment	2018	tr(2,000)	nd	38,000	nd	6,000 [2,000]	28/61	28/61
(pg/g-dry)	2019	tr(1,100)	nd	83,000	nd	2,000 [1,000]	27/61	27/61
	2020	tr(1,300)	tr(1,200)	18,000	nd	2,000 [800]	31/58	31/58
Chlorinated	Monitored	Geometric				Quantification	Detection 1	Frequency
tridecanes	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2017	nd	nd	94,000	nd	12,000 [5,000]	18/62	18/62
Sediment	2018	nd	nd	36,000	nd	9,000 [3,000]	24/61	24/61
(pg/g-dry)	2019	tr(1,700)	tr(1,700)	60,000	nd	2,000 [1,000]	39/61	39/61
	2020	1,400	tr(1,100)	26,000	nd	1,200 [500]	40/58	40/58

(Note) Chlorinated paraffins with 5~9 chlorines are target chemicals.

<Wildlife>

Chlorinated decanes: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 300pg/g-wet, and the detection range was up to tr(700)pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 3 of the 18 valid areas adopting the detection limit of 300pg/g-wet, and the detection range was up to tr(500)pg/g-wet. For birds, the presence of the substance was monitored in the area adopting the detection limit of 300pg/g-wet.

Chlorinated undecanes: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 300pg/g-wet, and the detection range was up to 1,800pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 4 of the 18 valid areas adopting the detection limit of 300pg/g-wet, and the detection range was up to 1,400pg/g-wet. For birds, the presence of the substance was monitored in the area adopting the detection limit of 300pg/g-wet, and the detected in the area adopting the detection limit of 300pg/g-wet, and the detected in the area adopting the detection limit of 300pg/g-wet, and the detected in the area adopting the detection limit of 300pg/g-wet, and the detected concentration was 1,100pg/g-wet.

Chlorinated dodecanes: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 200pg/g-wet, and the detection range was up to 700pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 2 of the 18 valid areas adopting the detection limit of 200pg/g-wet, and the detection range was up to 1,400pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and not detected in the area adopting the detection limit of 200pg/g-wet.

Chlorinated tridecanes: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 200pg/g-wet, and the detection range was up to 1,700pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 2 of the 18 valid areas adopting the detection limit of 200pg/g-wet, and the detection range was up to 1,900pg/g-wet. For birds, the presence of the substance was monitored in the area adopting the detection limit of 200pg/g-wet, and the detected in the area adopting the detection limit of 200pg/g-wet, and the detected in the area adopting the detection limit of 200pg/g-wet, and the detected in the area adopting the detection limit of 200pg/g-wet, and the detected concentration was tr(300)pg/g-wet.

Chlorinated	Monitored	Geometric				Quantification	Detection l	Frequency
decanes	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016	tr(700)	tr(700)	2,200	nd	1,300 [500]	2/3	2/3
Bivalves	2017	670	1,700	1,800	nd	500 [200]	2/3	2/3
	2018	nd	tr(400)	tr(400)	nd	1,200 [400]	2/3	2/3
(pg/g-wet)	2019	nd	nd	nd	nd	900 [300]	0/3	0/3
	2020	tr(400)	tr(700)	tr(700)	nd	900 [300]	2/3	2/3
	2016	tr(600)	tr(700)	2,800	nd	1,300 [500]	13/19	13/19
Fish	2017	tr(410)	tr(400)	2,100	nd	500 [200]	16/19	16/19
(pg/g-wet)	2018	nd	nd	tr(800)	nd	1,200 [400]	1/18	1/18
(pg/g-wei)	2019	nd	nd	tr(700)	nd	900 [300]	5/16	5/16
	2020	nd	nd	tr(500)	nd	900 [300]	3/18	3/18
	2016	tr(1,000)		1,300	tr(800)	1,300 [500]	2/2	2/2
Birds	2017	tr(400)		1,600	nd	500 [200]	1/2	1/2
(pg/g-wet)	2018	nd		tr(600)	nd	1,200 [400]	1/2	1/2
(pg/g-wet)	2019			tr(600)	tr(600)	900 [300]	1/1	1/1
	2020			nd	nd	900 [300]	0/1	0/1
Chlorinated	Monitored	Geometric				Quantification	Detection I	Frequency
undecanes	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	•					limit	-	
	2016	tr(2,900)	tr(2,000)	6,000	tr(2,000)	3,000 [1,000]	3/3	3/3
Bivalves	2017	2,200	3,400	11,000	tr(300)	800 [300]	3/3	3/3
(pg/g-wet)	2018	nd	nd	nd	nd	1,800 [700]	0/3	0/3
488 /	2019	nd	nd	600	nd	500 [200]	1/3	1/3
	2020	tr(700)	1,300	1,800	nd	800 [300]	2/3	2/3
	2016	tr(2,900)	tr(2,000)	15,000	nd	3,000 [1,000]	18/19	18/19
Fish	2017	1,900	1,100	24,000	nd	800 [300]	16/19	16/19
(pg/g-wet)	2018	nd	nd	tr(700)	nd	1,800 [700]	1/18	1/18
(10.0	2019	tr(300)	tr(400)	1,100	nd	500 [200]	11/16	11/16
	2020	nd	nd	1,400	nd	800 [300]	4/18	4/18
	2016	4,900		8,000	3,000	3,000 [1,000]	2/2	2/2
Birds	2017	5,000		31,000	800	800 [300]	2/2	2/2
(pg/g-wet)	2018	nd		nd	nd	1,800 [700]	0/2	0/2
(roo	2019			1,400	1,400	500 [200]	1/1	1/1
	2020			1,100	1,100	800 [300]	1/1	1/1

Stocktaking of the detection of Chlorinated decanes, Chlorinated undecanes, Chlorinated dodecanes and Chlorinated tridecanes in wildlife (bivalves, fish and birds) during FY2016~2019

Chlorinated	Monitored	Geometric				Quantification	Detection	Frequency
dodecanes	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016	tr(1,400)	tr(1,500)	tr(1,800)	tr(1,100)	2,100 [700]	3/3	3/3
Bivalves	2017	2,000	1,400	4,700	1,300	900 [300]	3/3	3/3
	2018	nd	nd	nd	nd	1,500 [600]	0/3	0/3
(pg/g-wet)	2019	nd	nd	nd	nd	1,200 [500]	0/3	0/3
	2020	tr(300)	tr(500)	700	nd	600 [200]	2/3	2/3
	2016	tr(1,800)	tr(1,800)	8,700	nd	2,100 [700]	17/19	17/19
Fish	2017	2,100	2,100	19,000	nd	900 [300]	18/19	18/19
	2018	nd	nd	nd	nd	1,500 [600]	0/18	0/18
(pg/g-wet)	2019	nd	nd	tr(900)	nd	1,200 [500]	2/16	2/16
	2020	nd	nd	1,400	nd	600 [200]	2/18	2/18
	2016	3,800		6,600	2,200	2,100 [700]	2/2	2/2
D' 1	2017	5,500		25,000	1,200	900 [300]	2/2	2/2
Birds	2018	nd		nd	nd	1,500 [600]	0/2	0/2
(pg/g-wet)	2019			tr(500)	tr(500)	1,200 [500]	1/1	1/1
	2020			nd	nd	600 [200]	0/1	0/1
Chlorinated	Monitored	Geometric				Quantification	Detection 1	Frequency
tridecanes	year	mean*	Median	Maximum	Minimum	[Detection] Limit	Sample	Site
	2016	tr(700)	tr(700)	tr(900)	tr(500)	1,100 [400]	3/3	3/3
D' 1	2017	870	700	3,100	tr(300)	500 [200]	3/3	3/3
Bivalves	2018	nd	nd	nd	nd	1,400 [500]	0/3	0/3
(pg/g-wet)	2019	500	400	1,100	tr(300)	400 [200]	3/3	3/3
	2020	tr(400)	tr(300)	1,700	nd	500 [200]	2/3	2/3
	2016	tr(800)	tr(800)	4,900	nd	1,100 [400]	17/19	17/19
E. 1	2017	tr(290)	nd	4,100	nd	500 [200]	8/19	8/19
Fish	2018	nd	nd	nd	nd	1,400 [500]	0/18	0/18
(pg/g-wet)	2019	tr(200)	tr(200)	1,300	nd	400 [200]	11/16	11/16
	2020	nd	nd	1,900	nd	500 [200]	2/18	2/18
	2016	1,400		1,500	1,400	1,100 [400]	2/2	2/2
D' 1	2017	900		8,100	nd	500 [200]	1/2	1/2
Birds	2018	nd		nd	nd	1,400 [500]	0/2	0/2
(pg/g-wet)	2019			1,300	1,300	400 [200]	1/1	1/1
100 /	2019			1,500	1,500		1/1	

(Note) Chlorinated paraffins with 5~9 chlorines are target chemicals.

<Air>

Chlorinated decanes: The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 50pg/m^3 , and the detection range was tr(60) ~ 560pg/m^3 .

Chlorinated undecanes: The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 50 pg/m³, and the detection range was tr(50) ~ 1,900pg/m³.

Chlorinated dodecanes: The presence of the substance in air was monitored at 37 sites, and it was detected at 29 of the 37 valid sites adopting the detection limit of 50pg/m3, and the detection range was up to 640pg/m³.

Chlorinated tridecanes: The presence of the substance in air was monitored at 37 sites, and it was detected at 23 of the 37 valid sites adopting the detection limit of 40pg/m³, and the detection range was up to 360pg/m³.

Stocktaking of the detection of Chlorinated decanes, Chlorinated undecanes, Chlorinated dodecanes and Chlorinated tridecanes in air during FY2016~2019

Chlorinated		Geometric				Quantification	Detection	Frequency
decanes	Monitored year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016 Warm season	tr(170)	tr(200)	940	nd	290 [110]	24/37	24/37
A *	2017 Warm season	370	380	1,500	tr(70)	140 [50]	37/37	37/37
Air $(\pi \alpha/m^3)$	2018 Warm season	370	390	1,700	tr(130)	150 [60]	37/37	37/37
(pg/m ³)	2019 Warm season	400	400	1,500	tr(100)	400 [100]	36/36	36/36
	2020 Warm season	170	170	560	tr(60)	120 [50]	37/37	37/37

Chlorinated		Geometric				Quantification	Detection	Frequency
undecanes	Monitored year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016 Warm season	tr(350)	tr(320)	3,200	nd	610 [240]	20/37	20/37
A ·	2017 Warm season	500	510	2,300	tr(90)	190 [60]	37/37	37/37
Air $(r - (r - 3))$	2018 Warm season	450	430	2,600	tr(100)	110 [40]	37/37	37/37
(pg/m^3)	2019 Warm season	400	400	2,300	tr(100)	300 [100]	36/36	36/36
	2020 Warm season	220	220	1,900	tr(50)	120 [50]	37/37	37/37
Chlorinated		Geometric				Quantification	Detection	Frequency
dodecanes	Monitored year	mean*	Median	Maximum	Minimum	[Detection]	Sampla	Site
uouecanes		mean				limit	Sample	Sile
	2016 Warm season	nd	nd	740	nd	430 [170]	7/37	7/37
Air	2017 Warm season	190	190	730	tr(30)	100 [30]	37/37	37/37
_	2018 Warm season	190	190	880	tr(60)	110 [40]	37/37	37/37
(pg/m^3)	2019 Warm season	tr(140)	tr(170)	1,600	nd	260 [90]	23/36	23/36
	2020 Warm season	tr(80)	tr(70)	640	nd	140 [50]	29/37	29/37
Chlorinated		Geometric				Quantification	Detection	Frequency
tridecanes	Monitored year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2016 Warm season	nd	nd	510	nd	320 [120]	13/37	13/37
	2017 Warm season	150	160	1,600	nd	120 [40]	35/37	35/37
Air	2018 Warm season	tr(100)	tr(110)	470	nd	180 [70]	26/37	26/37
(pg/m^3)	2019 Warm season	tr(90)	tr(90)	1,600	nd	250 [80]	19/36	19/36
	2020 Warm season	tr(40)	tr(40)	360	nd	100 [40]	23/37	23/37

(Note) In FY2016, Chlorinated decanes with 4~6 chlorines and Chlorinated undecanes, Chlorinated dodecanes and Chlorinated tridecanes with 4~7 chlorines are target chemicals. From FY2017 to FY2019, Chlorinated paraffins with 4~7 chlorines are target chemicals. In FY2020, Chlorinated paraffins with 4~8 chlorines are target chemicals.

[24] Dicofol

· History and state of monitoring

Dicofol was used as insecticides and mites etc., but the registration of Chlordanes under the Agricultural Chemicals Regulation Law was expired in FY2004. The substance was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2005. The substance was adopted as a target chemical at the COP9 of the Stockholm convention on Persistent Organic Pollutants held from late April to early May 2019.

Under the framework of the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was surveied in sediment in FY2004.

Under the framework of the Environmental Monitoring, the substance has been monitored in wildlife (bivalves, fish and birds) in FY2006, in surface water, sediment and wildlife (bivalves, fish and birds) in FY2008, in air in FY2016, in wildlife (bivalves, fish and birds) in FY2018, and in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2019 and FY2020.

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 46 sites, and it was detected at 1 of the 46 valid sites adopting the detection limit of 5pg/L, and the detected concentration was 30pg/L.

	Monitored	Geometric				Quantification	Detection 1	Frequency
Dicofol	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
C C W	2008	nd	nd	76	nd	25 [10]	13/48	13/48
Surface Water	2019	nd	nd	40	nd	13 [8]	3/48	3/48
(pg/L)	2020	nd	nd	30	nd	13 [5]	1/46	1/46

Stocktaking of the detection of Dicofol in surface water during FY2008~2020

(Note) No monitoring was conducted in FY2009~2018.

<Sediment>

The presence of the substance in sediment was monitored at 58 sites, and it was detected at 23 of the 58 valid sites adopting the detection limit of 5pg/g-dry, and the detection range was up to 77pg/g-dry.

	Monitored	nitored Geometric				Quantification	Detection	Frequency
Dicofol	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
C - l'an ant	2008	nd	nd	460	nd	160 [63]	13/63	30/186
Sediment	2019	4	4	84	nd	4 [2]	40/61	40/61
(pg/g-dry)	2020	tr(5)	nd	77	nd	13 [5]	23/58	23/58

Stocktaking of the detection of Dicofol in sediment during FY2008~2020

(Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

(Note 2) No monitoring was conducted in FY2009~2018.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 10pg/g-wet, and the detected concentration was tr(20)pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 8 of the 18 valid areas adopting the detection limit of 10pg/g-wet, and the detection range was up to 330pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and not detected in the area adopting the detection limit of 10pg/g-wet.

Stocktaking of the detection of Dicofol in wildlife (bivalves, fish and birds) during FY2006~2020

	Monitored	Geometric				Quantification	Detection I	Frequency
Dicofol	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2006	tr(58)	tr(70)	240	nd	92 [36]	22/31	5/7
D:1	2008	tr(110)	120	210	nd	120 [48]	28/31	7/7
Bivalves	2018	nd	nd	30	nd	30 [10]	1/3	1/3
(pg/g-wet)	2019	nd	nd	tr(10)	nd	30 [10]	1/3	1/3
	2020	nd	nd	tr(20)	nd	30 [10]	1/3	1/3
	2006	nd	nd	290	nd	92 [36]	5/80	1/16
E. 1	2008	tr(62)	tr(77)	270	nd	120 [48]	55/85	14/17
Fish	2018	tr(10)	nd	280	nd	30 [10]	9/18	9/18
(pg/g-wet)	2019	tr(10)	tr(10)	120	nd	30 [10]	12/16	12/16
	2020	tr(10)	nd	330	nd	30 [10]	8/18	8/18
	2006	nd	nd	nd	nd	92 [36]	0/10	0/2
D' 1	2008	nd	nd	300	nd	120 [48]	1/10	1/2
Birds	2018	nd		nd	nd	30 [10]	0/2	0/2
(pg/g-wet)	2019			nd	nd	30 [10]	0/1	0/1
	2020			nd	nd	30 [10]	0/1	0/1

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2006 and FY2008.

(Note 2) No monitoring was conducted in FY2007 and FY2009~2017.

<Air>

The presence of the substance in air was monitored at 37 sites, and it was detected at 3 of the 37 valid sites adopting the detection limit of 0.2 pg/m^3 , and the detection range was up to $\text{tr}(0.3) \text{ pg/m}^3$.

Stocktaking of the detection of Dicofol in air during FY2016~2020

		Geometric				Quantification	Detection 1	Frequency
Dicofol	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
A :	2016 Warm season	nd	nd	1.0	nd	0.5 [0.2]	10/37	10/37
Air (ma/m^3)	2019 Warm season	nd	nd	0.4	nd	0.4 [0.2]	5/36	5/36
(pg/m ³)	2020 Warm season	nd	nd	tr(0.3)	nd	0.5 [0.2]	3/37	3/37

(Note 2) No monitoring was conducted in FY2017 and FY2018.

[25] Perfluorohexane sulfonic acid (PFHxS)

· History and state of monitoring

Perfluorohexane sulfonic acid (PFHxS) is used as Fluoropolymer processing aid and Surfactant etc. At the fifteenth meeting held from 1 to 4 October 2019, the Committee adopted the risk management evaluation on perfluorohexane sulfonic acid (PFHxS), its salts and PFHxS-related compounds and recommended to the Conference of the Parties that it consider listing the chemicals in Annex A to the Convention without specific exemptions.

Under the framework of the Environmental Monitoring, the substance has been monitored in surface water, and sediment in FY2018 and FY2019, in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2020.

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 46 sites, and it was detected at 44 of the 46 valid sites adopting the detection limit of 20pg/L, and the detection range was up to 1,500pg/L.

Stocktaking of the det	ection of Perfluorohexane sul	lfonic acid (PFHxS)	in surface water	during FY2018~2020

Perfluorohexane	Monitored Geometric					Quantification	Detection Frequency	
sulfonic acid (PFHxS)			Median	Maximum	Minimum	[Detection] Limit	Sample	Site
	2018	190	130	2,600	nd	120 [50]	44/47	44/47
Surface water $(n q^{/})$	2019	150	120	1,800	nd	60 [30]	45/48	45/48
(pg/L)	2020	160	120	1,500	nd	60 [20]	44/46	44/46

<Sediment>

The presence of the substance in sediment was monitored at 58 sites, and it was detected at 13 of the 58 valid sites adopting the detection limit of 3pg/g-dry, and the detection range was up to 10pg/g-dry.

Stocktaking of the detection of Perfluorohexand	e sulfonic acid (PFHxS)	in sediment during FY2018~2020

Perfluorohexane sulfonic acid (PFHxS)	Monitored	ed Geometric mean	Median	Maximum	Minimum	Quantification	Detection I	Frequency
						[Detection] Limit	Sample	Site
G 11	2018	nd	nd	27	nd	11 [5]	15/61	15/61
Sediment	2019	nd	nd	15	nd	13 [5]	10/61	10/61
(pg/g-dry)	2020	nd	nd	10	nd	6 [3]	13/58	13/58

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was up to tr(3)pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 10 of the 18 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was up to 18pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 2pg/g-wet, and the detected in the area adopting the detection limit of 2pg/g-wet, and the detected in the area adopting the detection limit of 2pg/g-wet, and the detected in the area adopting the detection limit of 2pg/g-wet, and the detected concentration was 190pg/g-wet.

Stocktaking of the detection of Perfluorohexane sulfonic acid (PFHxS) in in wildlife (bivalves, fish and birds) in FY2020

Perfluorohexane	Monitored	Geometric	Geometric Median mean	Maximum	Minimum	Quantification [Detection] Limit	Detection Frequency	
sulfonic acid (PFHxS)	monitorea						Sample	Site
Bivalves (pg/g-wet)	2020	tr(2)	tr(3)	tr(3)	nd	5 [2]	2/3	2/3
Fish (pg/g-wet)	2020	tr(3)	tr(2)	18	nd	5 [2]	10/18	10/18

Perfluorohexane	Monitored	Geometric				Quantification	Detection I	Frequency
sulfonic acid (PFHxS)		mean	Median	Maximum	Minimum	[Detection] Limit	Sample	Site
Birds (pg/g-wet)	2020			190	190	5 [2]	1/1	1/1

<Air>

The presence of the substance in air was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.1pg/m^3 , and the detection range was $0.7 \sim 6.1 \text{pg/m}^3$.

Perfluorohexane	Monitored	Geometric				Quantification	Detection I	Frequency
sulfonic acid (PFHxS)		mean	Median	Maximum	Minimum	[Detection] Limit	Sample	Site
Sediment (pg/g-dry)	2020	2.5	2.4	6.1	0.7	0.3 [0.1]	37/37	37/37

References

- i) Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment, "Chemicals in the Environment," the Surface Water/Sediment Monitoring (http://www.env.go.jp/chemi/kurohon/)
- ii) Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment, "Chemicals in the Environment," the Wildlife Monitoring (http://www.env.go.jp/chemi/kurohon/)
- iii) Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment, "Chemicals in the Environment," the Follow-up Survey of the Status of Pollution by Unintentionally Formed Chemicals (http://www.env.go.jp/chemi/kurohon/)
- iv) Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment, "Chemicals in the Environment," the Environmental Survey of Chemical Substances (http://www.env.go.jp/chemi/kurohon/)

Reference: Egg of Great Cormorants (egg yolk and white)

In the FY2020 monitoring survey, eggs of great cormorants were analyzed to check for the presence of 11 chemicals (groups): PCBs, Hexachlorobenzene, Chlordanes Heptachlors, Perfluorooctane sulfonic acid (PFOS), Perfluorooctanoic acids (PFOA), Pentachlorobenzene, Hexachlorobuta-1,3-diene, Short-chain chlorinated paraffins, Dicofol and Perfluorohexane sulfonic acid (PFHxS).

The eggs were taken around Koyaike pond*. The results of the analysis in Table 1.

(Note 1) "*": The eggs were taken by Water and Air Quality Control Division, Environmental Management Bureau, Agricultural and Environmental Affairs Department, Hyogo Prefectural Government and Green Nature Division, Environmental Policy Office, Department of Citizen Autonomy, Itami City.

Table 1 List of the detection values of egg of Great Cormorant

		Quantification	Egg of Gre	at Cormorant	(Reposted) Adult of Great Cormorant**
No.	Target chemicals	[Detection]	Koyaike po	nd (Itami City)	Lake Biwa
		Limits	Egg white	Egg yolk	(offshore of Tikubu Island)
[1]	Total PCBs	31 [11]	43,000	18,000,000	74,000
[2]	НСВ	3 [1]	110	32,000	2,900
	Chlordanes				
	[7-1] cis- Chlordanes	3 [1]	nd	1,100	83
[7]	[7-2] trans- Chlordanes	6 [2]	nd	740	34
[/]	[7-3] Oxychlordane	3 [1]	240	51,000	820
	[7-4] cis- Nonachlor	3 [1]	48	25,000	480
	[7-5] trans- Nonachlor	4 [2]	nd	1,300	81
	Heptachlors			- <u>-</u>	
[8]	[8-1] Heptachlor	3 [1]	nd	nd	nd
[0]	[8-2] cis- Heptachlor epoxide	3 [1]	61	7,400	270
	[8-3] trans- Heptachlor epoxide	9 [4]	nd	84	nd
[15]	Perfluorooctane sulfonic acid (PFOS)	5 [2]	67	15,000	8,500
[16]	Perfluorooctanoic acids (PFOA)	6 [2]	14	1,200	280
[17]	Pentachlorobenzene	3 [1]	22	5,600	390
[21]	Hexachlorobuta-1,3-diene	13 [5]	nd	29	nd
	Short-chain chlorinated paraffinsare				
	[23-1] Chlorinated decanes	900 [300]	nd	nd	nd
[23]	[23-2] Chlorinated undecanes	800 [300]	nd	nd	1,100
	[23-3] Chlorinated dodecanes	600 [200]	nd	900	nd
	[23-4] Chlorinated tridecanes	500 [200]	nd	1,000	tr(300)
[24]	Dicofol	30 [10]	nd	30	nd
[25]	Perfluorohexane sulfonic acid (PFHxS)	5 [2]	9	1,400	190

(Note 1) "*" indicates the sum value of the Quantification [Detection] limits of each congener.

(Note 2) "**" indicates the set in the stage of life cycle of great cormorants from egg to adult.