Chapter 3 Results of the Environmental Monitoring in FY2015

1. Purpose of the monitoring

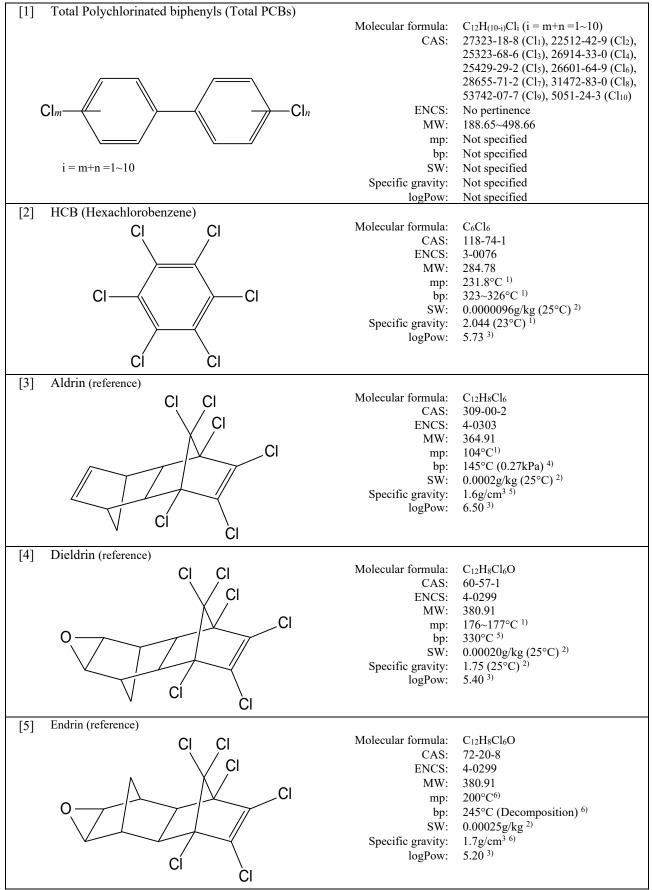
Environmental Monitoring provides annual surveys of the environmental persistence of target chemicals as listed in the Stockholm Convention, chemicals that while undesignated are still subject to review for potential risk, and/or highly persistent chemicals annotated as Specified Chemical Substances and Monitored Chemical Substances under the Law Concerning the Examination and Regulation of Manufacture, etc. of Chemical Substances (aka, the Chemical Substances Control Law), all target chemicals whose year to year changes in persistence in the environment must be understood.

*POPs: persistent organic pollutants

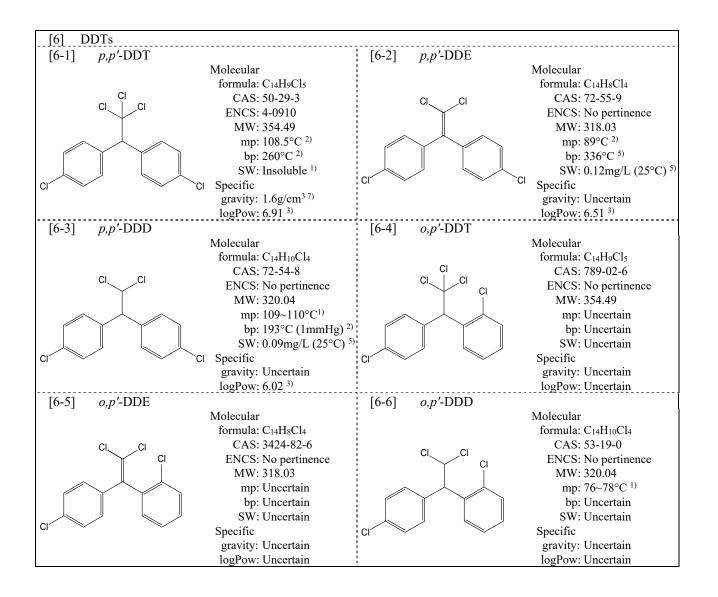
2. Target chemicals

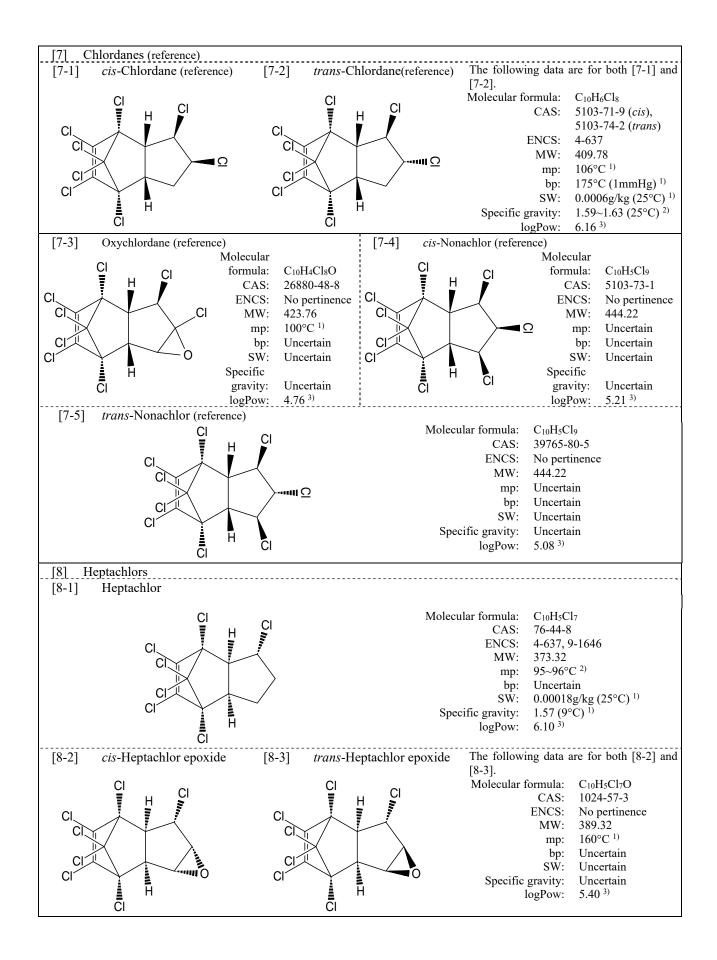
In the FY2015 Environmental Monitoring, 16 chemicals (groups) which added to initial 5 chemicals¹ (groups) out of 10 chemicals (groups) designated in 2004, namely, Total Polychlorinated biphenyls (Total PCBs), Hexachlorobenzene, DDTs², Heptachlors³ and Toxaphenes⁴, included in the Stockholm Convention (hereafter, POPs), and 5 chemicals (groups), namely, HCHs (Hexachlorohexanes)⁵, Hexabromobiphenyls, Polybromodiphenyl ethers (Br4~Br10)⁶, Perfluorooctane sulfonic acid (PFOS)⁷, Pentachlorobenzene, which were adopted to be POPs in the Stockholm Convention at fourth meeting of the Conference of the Parties held from 4 to 8 May 2009, and Endosulfans, which was adopted to be POPs in the Stockholm Convention at fifth meeting of the Conference of the Parties held from 25 to 29 April 2011, 1,2,5,6,9,10-Hexabromocyclododecanes⁽⁸⁾ which was adopted to be POPs in the Stockholm Convention at sixth meeting of the Conference of the Parties held from April to May 2013, and 3 chemicals (groups), namely, Total Polychlorinated Naphthalenes⁽⁹⁾, Hexachlorobuta-1,3-diene and Pentacholorophenol⁽¹⁰⁾ which were adopted to be POPs in the Stockholm Convention at seventh meeting of the Conference of the Parties held in April 2015, and 1 chemicals (groups), namely, Perfluorooctanoic acid (PFOA)⁽¹¹⁾ which has been discussed whether to be adopted to be POPs in the persistent organic pollutants review committee, were designated as target chemicals. The combinations of target chemicals and the monitoring media are given below.

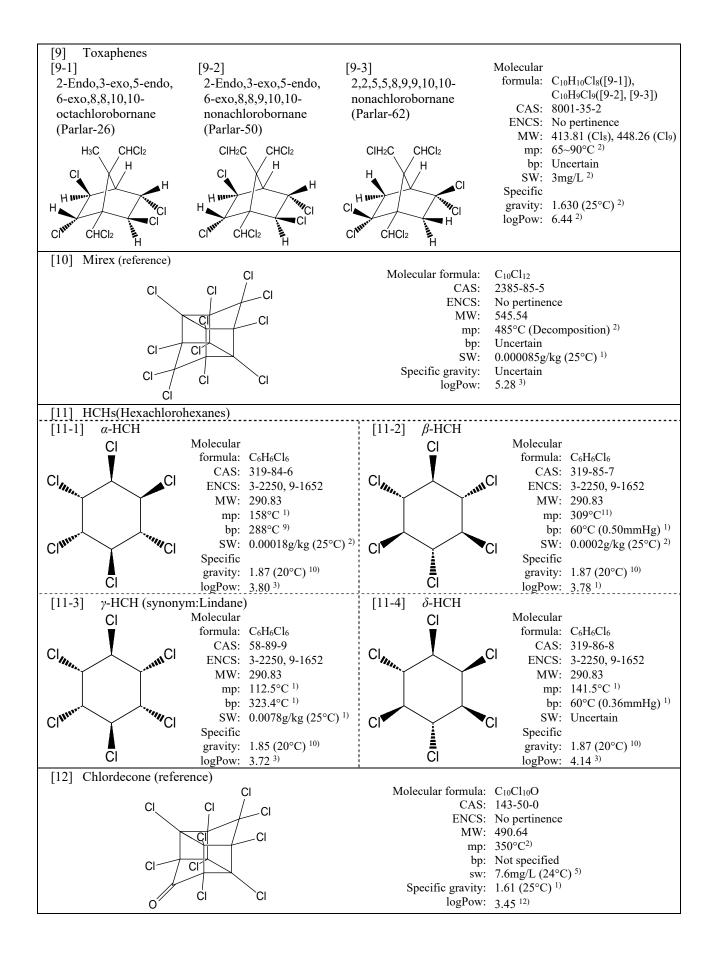
- (Note 1)Up to FY2009, the ten (10) target substance groups of pollutants annotated in the Stockholm Convention with the exceptions of Polychlorinated dibenzo-*p*-dioxin (PCDDs) and Polychlorinated dibenzofurans (PCDFs) were monitored each fiscal year. As of FY2010, the scope of monitoring had been reviewed and adjustments made to implementation frequency; as some target substances were re-designated for every few yeas monitoring, the scope did not include six (6) substances (groups): Aldrin, Dieldrinm, Endrin, Chlordanes⁽¹²⁾, Mirex and Chlordecone. In this vein, the latest fiscal year findings for six (6) target substances not specifically monitored in FY2015 have been included in this report for purpose of reference.
- (Note 2) *p,p'*-DDT and *o,p'*-DDT were adopted as target chemicals of the Stockholm convention on Persistent Organic Pollutants. In the survey, DDTs including environmental degraded products *p,p'*-DDT, *o,p'*-DDT, *p,p'*-DDD and *o,p'*-DDD were target chemicals.
- (Note 3) Heptachlor was adopted as target chemical of the Stockholm convention on Persistent Organic Pollutants. In the survey, Heptachlors including *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide are target chemicals.
- (Note 4) Chlorobornane and Chlorocamphene of industrial blended material (about 16,000 congeners or isomer) were adopted as target chemicals of the Stockholm convention on Persistent Organic Pollutants. In the survey, 2-endo,3-exo,5-endo,6-exo,8,8,10,10-octachlorobornane (Parlar-26), 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-

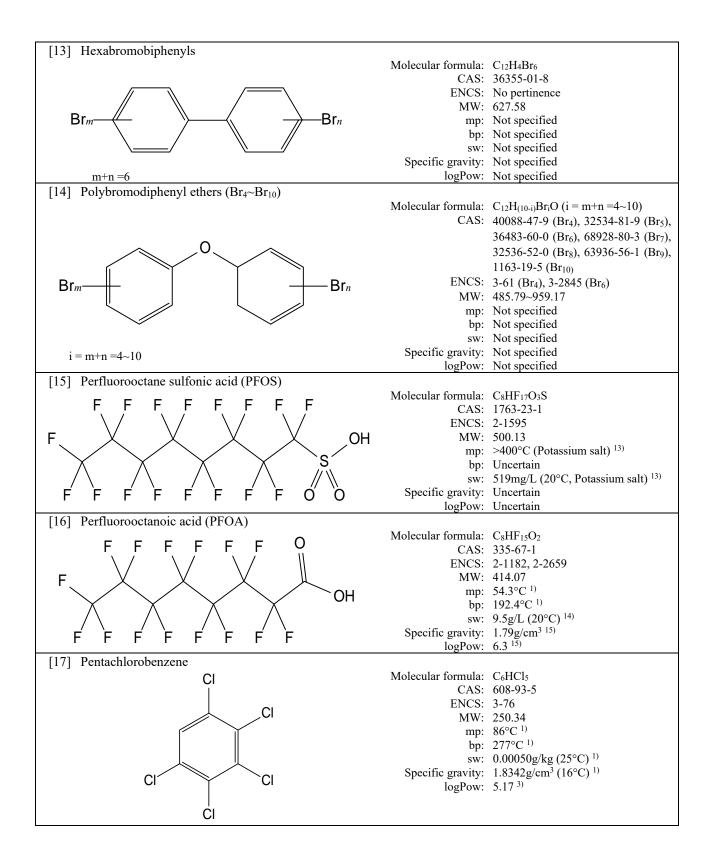

nonachlorobornane (Parlar-50) and 2,2,5,5,8,9,9,10,10-Nonachlorobornane (Parlar-62) are target chemicals.

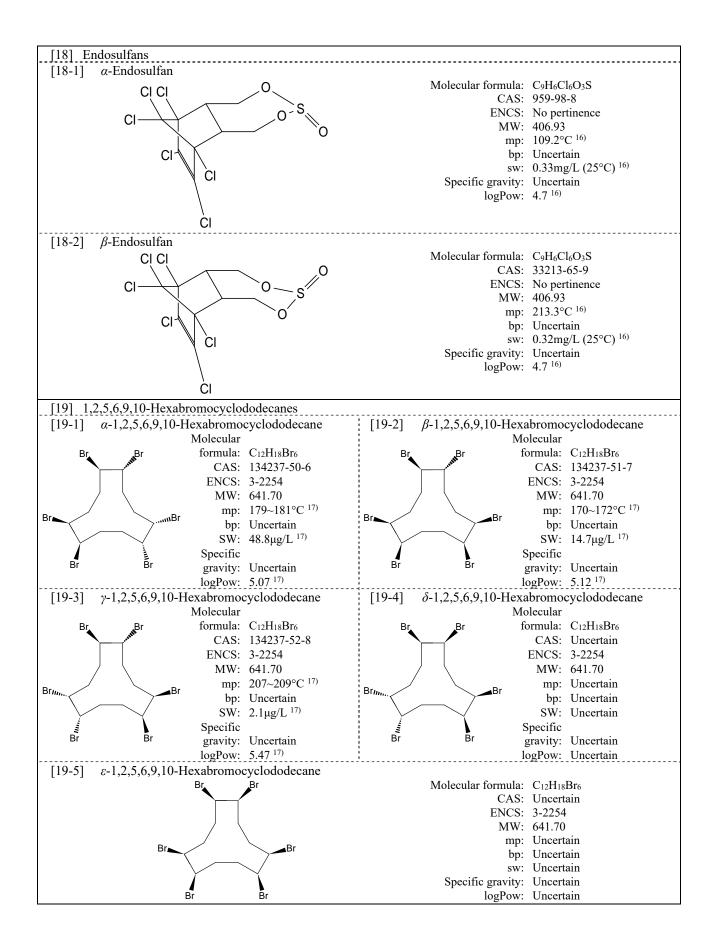
- (Note 5)In the COP4, α -HCH, β -HCH and γ -HCH (synonym:Lindane) were adopted to be POPs among HCHs, but in this Environmental Monitoring, HCHs which were able to include δ -HCH were designated as target chemicals.
- (Note 6) Tetrabromodiphenyl ethers, Pentabromodiphenyl ethers, Hexabromodiphenyl ethers, and Heptabromodiphenyl ethers were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants. In the survey, Polybromodiphenyl ethers including those from 4 to 10 bromines are target chemicals.
- (Note 7) Perfluorooctane sulfonic acid (PFOS) and its salts and Perfluorooctane sulfonyl fluoride were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants. The survey of the Perfluorooctane sulfonic acid (PFOS) only monitored linear octyl Perfluorooctane sulfonic acid (PFOS).
- (Note 8) α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane and γ -1,2,5,6,9,10-Hexabromocyclododecane were adopted as target chemicals at the COP6 of the Stockholm convention on Persistent Organic Pollutants. In the survey, 1,2,5,6,9,10-Hexabromocyclododecanes including δ -1,2,5,6,9,10-Hexabromocyclododecane and ε -1,2,5,6,9,10-Hexabromocyclododecane are target chemicals.
- (Note 9) PCNs (Cl₂~Cl₈) was adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants. In the survey, PCNs including those with 1 chlorine are target chemicals.
- (Note 10)Pentachlorophenol and its salts and esters were adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants, the survey only monitored pentachlorophenol.
- (Note 11)The survey of the Perfluorooctanoic acid (PFOA) only monitored linear octyl Perfluorooctanoic acid (PFOA).
- (Note 12)In Stockholm Convention on Persistent Organic Pollutants, *cis*-chlordane and *trans*-chlordane are as target chemicals, but in this survey, chlordanes including oxychlordene, *cis*-nonachlor and *trans*-nonachlor are target chemicals.


	N.	Monitored media				
No	Name	Surface	Sediment	Wildlife	Air	
	Total Polychlorinated biphenyls (Total PCBs)	water				
[1]	 Total PCBs represents the sum of the PCB congeners listed in the table below. "Total PCBs" only indicates the total amount in the following pages, and the measured values of the individual congeners and coplanar PCBs are listed on the website. [1-1] Monochlorobiphenyls [1-2] Dichlorobiphenyls [1-3] Trichlorobiphenyls [1-4] Tetrachlorobiphenyls [1-4] Tetrachlorobiphenyls [1-5] Pentachlorobiphenyls [1-5-1] 2,3,3',4,4'-Tetrachlorobiphenyl (#77) [1-4-2] 3,4,4',5-Tetrachlorobiphenyl (#105) [1-5-1] 2,3,3',4,4'-S-Pentachlorobiphenyl (#105) [1-5-2] 2,3,4,4',5-Pentachlorobiphenyl (#114) [1-5-3] 2,3',4,4',5-Pentachlorobiphenyl (#118) [1-5-4] 2',3,4,4',5-Pentachlorobiphenyl (#123) [1-5-5] 3,3',4,4',5-Pentachlorobiphenyl (#126) [1-6-1] 2,3,3',4,4',5-Hexachlorobiphenyl (#157) [1-6-3] 2,3',4,4',5-Hexachlorobiphenyl (#157) [1-6-4] 3,3',4,4',5-Hexachlorobiphenyl (#167) [1-6-4] 3,3',4,4',5-Hexachlorobiphenyl (#167) [1-7-1] 4,2',3,3',4,4',5-Hexachlorobiphenyl (#170) [1-7-2] 2,2',3,4,4',5-Heptachlorobiphenyl (#180) [1-7-1] 2,2',3,4,4',5-Heptachlorobiphenyl (#180) [1-7-3] 2,3',4,4',5-Heptachlorobiphenyl (#189) [1-8] Octachlorobiphenyls [1-9] Nonachlorobiphenyls 	Ο	0	Ο	Ο	
[2]	[1-10] Decachlorobiphenyl Hexachlorobenzene	0	0	0	0	
[3]	Aldrin (reference)		Ŭ	~	~	
[4]	Dieldrin (reference)					
[5]	Endrin (reference)					
[6]	DDTs [6-1] p,p' -DDT [6-2] p,p' -DDE [6-3] p,p' -DDD [6-4] o,p' -DDT [6-5] o,p' -DDE [6-6] o,p' -DDD				0	
[7]	[0 0] 0,p DDD Chlordanes (reference) [7-1] cis-Chlordane (reference) [7-2] trans-Chlordane (reference) [7-3] Oxychlordane (reference) [7-4] cis-Nonachlor (reference) [7-5] trans-Nonachlor (reference) [7-5] trans-Nonachlor (reference) [7-5] trans-Nonachlor (reference)					
[8]	 [8-1] Heptachlor [8-2] <i>cis</i>-Heptachlor epoxide [8-3] <i>trans</i>-Heptachlor epoxide 			0	0	
[9]	Toxaphenes [9-1] 2-endo,3-exo,5-endo,6-exo,8,8,10,10-octachlorobornane (Parlar-26) [9-2] 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-nonachlorobornane (Parlar-50) [9-3] 2,2,5,5,8,9,9,10,10-Nonachlorobornane (Parlar-62)			0		
	Mirex (reference) HCHs (Hexachlorohexanes)	0	0	0	0	
	[11-1] α -HCH [11-2] β -HCH [11-3] γ -HCH (synonym:Lindane) [11-4] δ -HCH	0	0	0	U	
[12]	Chlordecone (reference)					
[13]	Hexabromobiphenyls		0	0	0	


			Monitore		
No	Name	Surface water	Sediment	Wildlife	Air
[14]	 [14-3-2] 2,2,4,4,5,6 -Pentabromodiphenyl ether (#154) [14-4] Heptabromodiphenyl ethers [14-4-1] 2,2',3,3',4,5',6'-Pentabromodiphenyl ether (#175) [14-4-2] 2,2',3,4,4',5',6'-Pentabromodiphenyl ether (#183) [14-5] Octabromodiphenyl ethers [14-6] Nonabromodiphenyl ethers [14-7] Decabromodiphenyl ether 	0	0	Ο	Ο
	Perfluorooctane sulfonic acid (PFOS)	0	0	0	0
	Perfluorooctanoic acid (PFOA)	0	0	0	0
[17]	Pentachlorobenzene	0	0	0	0
[18]	Endosulfans [18-1] α -Endosulfan [18-2] β - Endosulfan			0	0
[19]	1,2,5,6,9,10-Hexabromocyclododecanes [19-1] α -1,2,5,6,9,10-Hexabromocyclododecane [19-2] β -1,2,5,6,9,10-Hexabromocyclododecane [19-3] γ -1,2,5,6,9,10-Hexabromocyclododecane [19-4] δ -1,2,5,6,9,10-Hexabromocyclododecane [19-5] ε -1,2,5,6,9,10-Hexabromocyclododecane		0	0	0
[20]	Total Polychlorinated Naphthalenes Total Polychlorinated Naphthalenes represents the sum of the Polychlorinated Naphthalenes congeners. The measured values of the individual congeners are listed on the website.			0	
	Hexachlorobuta-1,3-diene				0
[22]	Pentachlorophenol	0			


Chemical and physical	properties of targe	t chemicals of the Environmental	Monitoring are as follows.




(Abbreviations) CAS: CAS registry number, ENCS: registry number in the Existing and New Chemical Substances List, MW: molecular weight, mp: melting point, bp: boiling point, SW: solubility in water, logPow: *n*-octanol-water partition coefficient, kPa: kilopascal (1 atom approximately equal to 101.3kPa).

[20] Total Polychlorinated Naphthalenes		
	Molecular formula:	$C_{10}H_{(8-i)}Cl_i$ (i = m+n = 1 ~ 8)
		25586-43-0(Cl ₁), 28699-88-9(Cl ₂),
	01101	1321-65-9(Cl ₃), 1335-88-2(Cl ₄),
		1321-64-8(Cl ₅), 1335-87-1(Cl ₆),
		32241-08-0(Cl ₇), 2234-13-1(Cl ₈)
	ENCS:	No pertinence
		162.6~403.7
		Not specified
$i = m + n = 1 \sim 8$		Not specified
$1 = m + n = 1 \sim \delta$		Not specified
	Specific gravity:	
		Not specified
[21] Hexachlorobuta-1,3-diene		•
	Molecular formula:	C ₄ Cl ₆
CI CI	CAS:	87-68-3
	ENCS:	2-121
	MW:	260.76
		-21°C ²⁾
		215°C ²⁾
		0.0005% (20°C) ²⁾
ĊI ĊI		1.682 (20/4°C) ²⁾
	logPow:	4.9 ¹⁸⁾
[22] Pentachlorophenol		
ОН	Molecular formula:	
	CAS:	87-86-5
CICI	ENCS:	3-2850
CI	MW:	266.35
	mp:	174°C (Monohydrate),
	1	191°C (Anhydrous) ¹⁹⁾
	bp:	$309 \sim 310^{\circ}$ C (Decomposition) ²⁾
CI CI		$14 \text{mg/L} (26.7^{\circ}\text{C})^{20}$
	Specific gravity:	
Ċ	logPow:	
	10,51 0,11	

References

- 1) Haynes, CRC Handbook of Chemistry and Physics, 92nd Edition, CRC Press LLC (2011)
- 2) O'Neil, The Merck Index An Encyclopedia of Chemicals, Drugs, and Biologicals 14th Edition, Merck Co. Inc. (2006)
- 3) Hansch et al., Exploring QSAR Hydrophobic, Electronic and Steric Constants, American Chemical Society (1995)
- 4) IPCS, International Chemical Safety Cards, Aldrin, ICSC0774 (1998)
- 5) Howard et al., Handbook of Physical Properties of Organic Chemicals, CRC Press Inc. (1996)
- 6) IPCS, International Chemical Safety Cards, Endrin, ICSC1023 (2000)
- 7) IPCS, International Chemical Safety Cards, DDT, ICSC0034 (2004)
- 8) Biggar et al., Apparent solubility of organochlorine insecticides in water at various temperatures, Hilgardia, 42, 383-391 (1974)
- 9) IPCS, International Chemical Safety Cards, alpha-Hexachlorocyclohexane, ICSC0795 (1998)
- 10) ATSDR, Toxicological Profile for alpha-, beta-, gamma- and delta-Hexachlorocyclohexane (2005)
- 11) IPCS, International Chemical Safety Cards, beta-Hexachlorocyclohexane, ICSC0796 (1998)
- 12) IPCS, International Chemical Safety Cards, Chlordecone ICSC1432 (2003)
- 13) United Nations Environment Programme (UNEP), Risk profile on perfluorooctane sulfonate, Report of the Persistent Organic Pollutants Review Committee on the work of its second meeting (2006)
- 14) OECD, Perfluorooctanoic Acid & Ammonium Perfluorooctanoate, SIDS Initial Assessment Profile for 26th SIAM (2008)
- 15) IPCS, International Chemical Safety Cards, Perfkuorooctanoic acid, ICSC1613 (2005)
- 16) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on endosulfan, Report of the Persistent Organic Pollutants Review Committee on the work of its fifth meeting (2009)
- 17) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on hexabromocyclododecane, Report of the Persistent Organic Pollutants Review Committee on the work of its sixth meeting (2010)
- 18) IPCS, International Chemical Safety Cards, Hexachlorobutadiene ICSC0896 (1997)
- International Agency for Research on Cancer(IARC), IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man(1972)
- 20) Yalkowsky et al., Aquasol Database of Aqueous Solubility Version 5, College of Pharmacy, University of Arizona(1992)
- 21) Hansch et al., Exploring QSAR Hydrophobic, Electronic and Steric Constants, American Chemical Society (1995)

3. Monitored site and procedure

In the Environmental Monitoring (of surface water, sediment, wildlife, and air), the sampling of specimens was entrusted to prefectural governments and government-designated cities across Japan and the specimens sampled were analysed by private analytical laboratories.

(1) Organisations responsible for sampling

Local			Monitore	ed media	
communities	Organisations responsible for sampling	Surface water	Sediment	Wildlife	Air
Hokkaido	Environmental Promotion Section, Environment Division, Department of Environment and Lifestyle, Hokkaido Prefectural Government and Hokkaido Research Organization Environmental and Geological Research Department Institute of Environmental Science	0	0	0	0
Sapporo City	Sapporo City Institute of Public Health				0
Iwate Pref.	Research Institute for Environmental Sciences and Public Health of Iwate Prefecture	0	0	0	0
Miyagi Pref.	Miyagi Prefectural Institute of Public Health and Environment	0	0	0	0
Sendai City	Sendai City Institute of Public Health		0		
Akita Pref.	Akita Research Center for Public Health and Environment	0	0		
Yamagata Pref.	Yamagata Institute of Environmental Sciences	0	0		
Fukushima Pref.	Fukushima Prefectural Environmental Center	0	0		
Ibaraki Pref.	Ibaraki Kasumigaura Environmental Science Center	0	0	0	0
Tochigi Pref.	Tochigi Prefectural Institute of Public Health and Environmental Science	0	0		
Saitama Pref.	Center for Environmental Science in Saitama	0			
Chiba Pref.	Chiba Prefectural Environmental Research Center		0		0
Chiba City	Chiba City Institute of Health and Environment	0	0		
Tokyo Met.	Tokyo Metropolitan Research Institute for Environmental Protection	0	0	0	0
Kanagawa Pref.	Kanagawa Environmental Research Center				0
Yokohama City	Yokohama Environmental Science Research Institute	0	0	0	0
Kawasaki City	Kawasaki Environmental Research Institute	0	0	0	
Niigata Pref.	Niigata Prefectural Institute of Public Health and Environmental Sciences	0	0		0
Toyama Pref.	Toyama Prefectural Environmental Science Research Center	0	0		0
Ishikawa Pref.	Ishikawa Prefectural Institute of Public Health and Environmental Science	0	0	0	0
Fukui Pref.	Fukui Prefectural Institute of Public Health and Environmental Science	0	0		
Yamanashi Pref.	Yamanashi Institute for Public Health and Environment		0	° *	0
Nagano Pref.	Nagano Environmental Conservation Research Institute	0	0		0
Gifu Pref.	Gifu Prefectural Research Institute for Health and Environmental Sciences				0
Shizuoka Pref.	Shizuoka Institute of Environment and Hygiene	0	0		
Aichi Pref.	Aichi Environmental Research Center	0	0		
Nagoya City	Nagoya City Environmental Science Research Center			0	0
Mie Pref.	Mie Prefecture Health and Environment Research Institute	0	0		0
Shiga Pref.	Lake Biwa Environmental Research Institute	0	0	0	
Kyoto Pref.	Kyoto Prefectural Institute of Public Health and Environment	0	0		
Kyoto City	Kyoto City Institute of Health and Environmental Sciences	0	0		
Osaka Pref.	Environment Preservation Division, Environment Management Office, Department of Environment, Agriculture, Forestry and Fisheries, Osaka Prefectural Government and Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture	0	0	0	0
Osaka City	Osaka City Institute of Public Health and Environmental Sciences	0	0		
Hyogo Pref.	Hyogo Prefectural Agricultural Administration and Environment Division, Environmental Management Bureau, Water and Air Quality	0	0	0	0
Kobe City	Control Division Natural Environmental Symbiotic Division, Environmental Presevation Branch, Environment Bureau, Kobe City	0	0		0
Nara Pref.	Nara Prefecture Landscape and Environment Center		0		0
Wakayama Pref.	Wakayama Prefectural Research Center of Environment and Public	0	0		Ŭ
	Health				

Local			Monitore	ed media	
communities	()rganisations responsible for sampling		Sediment	Wildlife	Air
Shimane Pref.	Shimane Prefectural Institute of Public Health and Environmental Science and Oki Public Health Center				0
Okayama Pref.	Okayama Prefectural Institute for Environmental Science and Public Health	0	0		
Hiroshima Pref.	Hiroshima Prefectural Technology Research Institute Health and Environment Center	0	0		
Hiroshima City	Hiroshima City Institute of Public Health			0	0
Yamaguchi Pref.	Yamaguchi Prefectural Institute of Public Health and Environment	0	0		0
Tokushima Pref.	Tokushima Prefectural Pablic Health, Pharmaceutical and Environmental Sciences Center	0	0		0
Kagawa Pref.	Kagawa Prefectural Research Institute for Environmental Science and Public Health	0	0	0	0
Ehime Pref.	Ehime Prefectural Institute of Public Health and Environmental Science		0		0
Kochi Pref.	Kochi Prefectural Environmental Research Center	0	0	0	
Fukuoka Pref.	Fukuoka Institute of Health and Environmental Sciences				0
Kitakyushu City	Kitakyushu City Institute of Environmental Sciences	0	0		
Fukuoka City	Fukuoka City Institute for Hygiene and the Environment		0		
Saga Pref.	Saga Prefectural Environmental Research Center	0	0		0
Nagasaki Pref.	Environment Policy Division, Environment Bureau, Nagasaki Prefecture	0	0		
Kumamoto Pref.	Kumamoto Prefectural Institute of Public-Health and Environmental Science	0			0
Oita Pref.	Oita Prefectural Institute of Health and Environment, Life and Environment Department		0	0	
Miyazaki Pref.	Miyazaki Prefectural Institute for Public Health and Environment	0	0		0
Kagoshima Pref.	Kagoshima Prefectural Institute for Environmental Research and Public Health	0	0	0	0
Okinawa Pref.	Okinawa Prefectural Institute of Health and Environment	0	0	0	0

(Note 1) Organisations responsible for sampling are described by their official names in FY2015.

(Note 1) organisations responsible for sampling are described by their official names in 1 (2015).
(Note 2) *: In other countries of the survey, because there were the examples that the survey obtained the eggs, the eggs of great cormorants were taken at 1 site in this survey by Yamanashi Institute for Public Health and Environment, the results were treated as the reference values.

(2) Monitored sites (areas)

In the Environmental Monitoring (of surface water, sediment, wildlife, and air), the sampling of specimens was entrusted to prefectural governments and government-designated cities across Japan and the specimens sampled were analysed by private analytical laboratories.

The monitored sites (areas) are shown in Table 3-1-1 and Figure 3-1-1 for surface water, Table 3-1-2 and Figure 3-1-2 for sediment, Table 3-1-3 and Figure 3-1-3 for wildlife and Table 3-1-4 and Figure 3-1-4 for air. The breakdown is summarized as follows.

Monitored	Numbers of local	Numbers of target	Numbers of monitored	Numbers of samples at a
media	communities	chemicals (groups)	sites (or areas)	monitored site (or area)
Surface water	42	8	48	1
Sediment	47	9	62	1*
Wildlife (bivalves)	3	13	3	1**
Wildlife (fish)	17	13	19	1**
Wildlife (birds)	2***	13	2***	1**
Air (warm season)	33	13	34 or 35****	1 or 3***
All media	57	16	114***	

(Note 1) "*": For sediment, at each monitoring point, three(3) specimen samples were collected. The target substances were analysed for each place with one(1) specimen sample that is a mixture of equal parts of the three(3) specimen samples.

(Note 2) "**": For wildlife species, at each monitoring point, three(3) specimen samples were collected. The target substance group Total Polychlorinated Naphthalenes were analysed with the three(3) specimen samples for each place. The other substances were analysed for each place with one(1) specimen sample that is a mixture of equal parts of the three(3) specimen samples.
 (Note 3) "***": Samples obtained in 1 site of the birds as wildlife eggs of Great Cormorant, and the samples were measured each the eggs yolk and

(Note 3) "***": Samples obtained in 1 site of the birds as wildlife eggs of Great Cormorant, and the samples were measured each the eggs yolk and the eggs white, the results were treated as a reference values.

(Note 4) "****": For target substances other than [21] Hexachlorobuta-1,3-diene, one (1) specimen sample for each site was collected at 35 sites. The target substance [21] Hexachlorobuta-1,3-diene was analysed with the three(3) specimen samples for each place and were analysed for each place with the three(3) specimen samples excluding Mishima Community Center(Hagi City).

(3) Sampling method of specimens

The sampling of specimens and the preparation of samples were carried out following the "Environmental Monitoring Instruction Manual" (No. 040309001, published on March 9th, 2004) by the Environment Health and Safety Division, Environmental Health Department, Ministry of the Environment of Japan (MOE).

(4) Target species

The species to be monitored among the wildlife media were selected considering the possibility of international comparison, as well as their significance and practicality as indicators: 1 bivalve (blue mussel), 8 fishes (predominantly sea bass), and 1 bird, namely, 10 species in total.

The properties of the species determined as targets in the FY2015 monitoring are shown in Table 3-2. Moreover, Table 3-1-3 summarizes the outline of the samples used for analysis.

Local communities	Monitored sites	Sampling dates
Hokkaido	Suzuran-ohashi Bridge, Riv Tokachi (Obihiro City)	October 22, 2015
Hokkuldo	Ishikarikakokyo Bridge, Mouth of Riv. Ishikari (Ishikari City)	November 10, 2015
Iwate Pref.	Riv. Toyosawa (Hanamaki City)	October 14, 2015
Miyagi Pref.	Sendai Bay (Matsushima Bay)	October 19, 2015
Akita Pref.	Lake Hachiro	October 16, 2015
Yamagata Pref.	Mouth of Riv. Mogami (Sakata City)	November 19, 2015
Fukushima Pref.	Onahama Port	November 12, 2015
Ibaraki Pref.	Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City)	November 17, 2015
Tochigi Pref.	Riv. Tagawa (Utsunomiya City)	October 14, 2015
Saitama Pref.	Akigaseshusui of Riv. Arakawa (Shiki City)	November 11, 2015
Chiba City	Mouth of Riv. Hanami (Chiba City)	October 22, 2015
Tokyo Met.	Mouth of Riv. Arakawa (Koto Ward)	November 12, 2015
Tokyo Wiet.	Mouth of Riv. Sumida (Minato Ward)	November 12, 2015
Yokohama City	Yokohama Port	October 22, 2015
Kawasaki City	Keihin Canal, Port of Kawasaki	November 17, 2015
Niigata Pref.	Lower Riv. Shinano (Niigata City)	October 14, 2015
Toyama Pref.	Hagiura-bashi Bridge, Mouth of Riv. Jintsu (Toyama City)	October 21, 2015
Ishikawa Pref.	Mouth of Riv. Sai (Kanazawa City)	November 5, 2015
Fukui Pref.	Mishima-bashi Bridge, Riv. Shono (Tsuruga City)	November 3, 2013
Nagano Pref.	Lake Suwa (center)	November 5, 2015
Shizuoka Pref.	Riv. Tenryu (Iwata City)	October 27, 2015
Aichi Pref.	Nagoya Port*	October 27, 2015
Mie Pref.	Yokkaichi Port	October 21, 2015
Shiga Pref.	Lake Biwa (center, offshore of Karasaki)	October 20, 2015
Kyoto Pref.	Miyazu Port	October 23, 2015
Kyoto City	Miyamae-bashi Bridge, Riv. Katsura (Kyoto City)	November 30, 2015
Osaka Pref.	Mouth of Riv. Yamato (Sakai City)	November 19, 2015
Osaka City	Osaka Port	October 27, 2015
Hyogo Pref.	Offshore of Himeji	October 22, 2015
Kobe City	Kobe Port (center)	November 20, 2015
Wakayama Pref.	Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)	November 16, 2015
Okayama Pref.	Offshore of Mizushima	November 4, 2015
Hiroshima Pref.	Kure Port	November 4, 2015
	Hiroshima Bay	November 4, 2015
Yamaguchi Pref.	Tokuyama Bay	October 7, 2015
	Offshore of Ube	November 16, 2015
	Offshore of Hagi	October 22, 2015
Tokushima Pref.	Mouth of Riv. Yoshino (Tokushima City)	October 27, 2015
Kagawa Pref.	Takamatsu Port	October 13, 2015
Kochi Pref.	Mouth of Riv. Shimanto (Shimanto City)	October 14, 2015
Kitakyushu City	Dokai Bay	October 20, 2015
Saga Pref.	Imari Bay	October 29, 2015
Nagasaki Pref.	Omura Bay	December 2, 2015
Kumamoto Pref.	Hiraki-bashi Bridge, Riv. Midori (Uto City)	November 26, 2015
Miyazaki Pref.	Mouth of Riv. Oyodo (Miyazaki City)	October 14, 2015
Kagoshima Pref.	Riv. Amori (Kirishima City)	November 10, 2015
-	Gotanda-bashi Bridge, Riv. Gotanda (Ichikikushikino City)	November 12, 2015
	Obtailua-basin Bridge, Kiv. Obtailua (Teliikikusiikino City)	November 12, 2015

Table 3-1-1 List of monitored sites (surface water) in the Environmental Monitoring in FY2015

(Note) *: "Nagoya Port" of Environmental Monitoring and "Nagoya Port, West of Shiomi Wharf" Initial and Detailed Environmental Survey are the same point each.

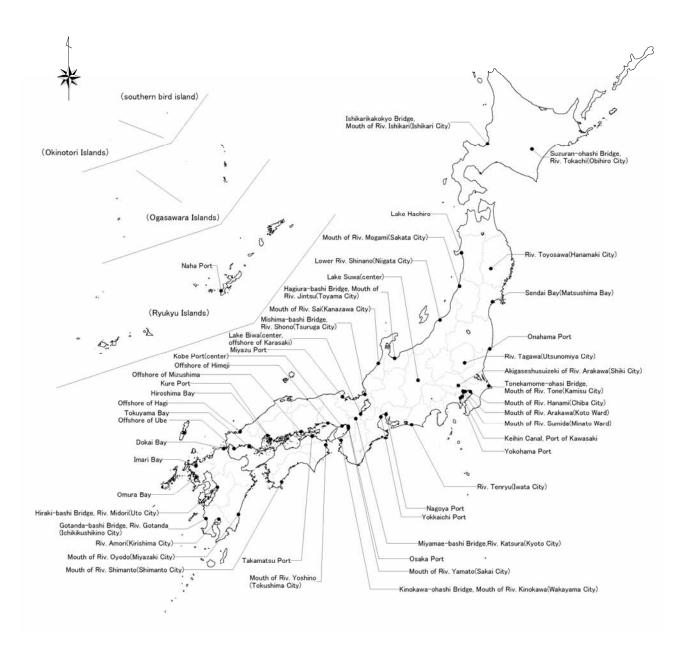


Figure 3-1-1 Monitored sites (surface water) in the Environmental Monitoring in FY2015

Communities Control September 15, 2015 Torkkaido Duncenai-olushi Bridge, Riv. Teshio (Bifuka Town) September 17, 2015 Wate Pref. Riv. Toryosava (Hammaki City) October 14, 2015 Wargel Pref. Sendai Boy (Mausshima Bay) October 19, 2015 Sendai City Hirose-schaushi Bridge, Riv. Hirose (Sendai City) November 11, 2015 Vatia Pref. Jake Hachimo October 16, 2015 Vatushima Pref. Mouth of Riv. Mogani (Sakata City) November 12, 2015 Usushima Pref. Onshama Port. November 12, 2015 Usushimi Pref. Coust of Ichihara and Anegasaki October 14, 2015 October 14, 2015 Mouth of Riv. Anazava (Koto Ward) November 12, 2015 Othak City Mouth of Riv. Anazava (Koto Ward) November 17, 2015 Yokohama Fort Mouth of Riv. Anazava (Koto Ward) November 17, 2015 Vatiana Pref. Haguira-bashi Bridge, Riv. Shone (Tary) October 14, 2015 Vatiana Pref. Haguira-bashi Bridge, Riv. Shone (Tary) October 14, 2015 Vatiana Pref. Haguira-bashi Bridge, Riv. Shone (Tary) October 14, 2015 Toyana Pref. <	Local	monitored sites (sediment) in the Environmental Monitoring in FY20	
Inhibit Inverse Number Perial Number Perial Itomakonai Cotober 14, 2015 Sendai	communities	Monitored sites	Sampling dates
Tomskomai Port September 17, 2015 Myagi Pref. Sendai City October 14, 2015 Myagi Pref. Sendai City November 11, 2015 Akin Pref. Lake Hachino October 16, 2015 Yamagata Pref. Mouth of Bix, Mogami (Sakata City) November 12, 2015 Ibaraki Pref. Tonskamome chasis Bridge, Mouth of Riv. Tone (Kamisu City) November 12, 2015 Ibaraki Pref. Tonskamome chasis Bridge, Mouth of Riv. Tone (Kamisu City) October 14, 2015 Chiba City Mouth of Riv. Hanami (Chiba City) October 22, 2015 Tokyo Met. Mouth of Riv. Samida (Minau Ward) November 12, 2015 Yokohama Fort Causa Of Ichibara and Anegasaki November 12, 2015 Yokohama City Yokohama Fort November 17, 2015 Keinian Canal, Port of Kawasaki City) November 17, 2015 November 17, 2015 Nigaiga Pref. Lawasaki City) November 5, 2015 Namanabi Pref. <td>Hokkaido</td> <td></td> <td></td>	Hokkaido		
Ivate Pref. Rv. Toyosawa (Hanamaki City) October 19, 2015 Sendai City Matsushima Bay) October 19, 2015 Akita Pref. Matsushima Bay) October 19, 2015 Akita Pref. Mauth of Riv. Magami (Sakata City) November 11, 2015 Takushima Pref. October 16, 2015 Takushima Pref. Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City) November 19, 2015 Takushima Pref. Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City) November 12, 2015 Tonking Pref. Coast of Ichibura and Angesaki October 19, 2015 Tohasi Pref. Coast of Ichibura and Angesaki October 20, 2015 Chiba Pref. Coast of Ichibura and Angesaki October 20, 2015 Chiba City Mouth of Riv. Anakawa (Koto Ward) November 12, 2015 Mouth of Riv. Anakawa (Koto Ward) November 12, 2015 November 17, 2015 Nigda Pref. Lower Riv. Shinano (Nigata City) November 17, 2015 Nigda Pref. Mouth of Riv. Saina (City) November 17, 2015 Nigda Pref. Mastura Andrey City November 17, 2015 Nagano Pref. Mastura Andrey New Sain (City) November 12, 2015 Nagano Pref. Mastura Andrey New Sain (City) November 12, 2015 Nagano Pref. Saintizz Pref. November 11, 2015 Nagano Pref. Saintizz Pref. November 12, 2015 Nagano Pref. Mastura Andrey New Sainti City November 12, 2015 Nagano Pref. Sainti Bridge, Riv. Natawa (Kofu City) November 12, 2015 Nagano Pref. Sainti Bridge, Riv. Natawa (Kofu City) November 12, 2015 Nagano Pref. Sainti Bridge, Riv. Natawa (Kofu City) November 12, 2015 Nagano Pref. Nagaya Part ^a October 27, 2015 Nagaya Part ^a October 27, 2015 Nagasa Part October 27, 2015 Nagasa Part October 27, 2015 Nagasa			
Miyagi Pref. Senda City Ilroso-chashi Bridge, Riv. Hirose (Senda City) November 11, 2015 Akira Pref. Lake Hachiro October 12, 2015 Fukushima Pref. Constanana Port Ibraso-chashi Bridge, Kiv. Hirose (Senda City) November 19, 2015 Fukushima Pref. Constanana Port Ibrasoli Pref. Constanana Port Mouth of Riv. Arakawa (Koto Ward) November 12, 2015 October 22, 2015 Constana City November 12, 2015 November 12, 2015 Vakohama Port Ibrasoli Pref. Constanana Port Mouth of Riv. Arakawa (Koto Ward) November 12, 2015 November 17, 2015 November 5, 2015 Nigita Pref. Hagiura-bashi Bridge, Riv. Shono (Tarunga City) November 5, 2015 Nikawa Pref. Hagiura-bashi Bridge, Riv. Shono (Tarunga City) November 5, 2015 Nagano Pref. Lake Suwa (center) November 5, 2015 Nikawa Pref. Sensba-bashi Bridge, Riv. Ankawa (Kofu City) November 5, 2015 Nikawa Pref. Mishima-bashi Bridge, Riv. Ankawa (Kofu City) November 5, 2015 Nikawa Pref. Mishima-bashi Bridge, Riv. Ankawa (Kofu City) November 20, 2015 Nikawa Pref. Jake Suwa (center, offshore of Karasaki) October 27, 2015 Nikawa Pref. Mishima-bashi Bridge, Riv. Atsawa (Kofu City) November 4, 2015 Nikawa Pref. Mouht of Riv. Yanato (Sakai City) November 4, 2015 Nikawa Pref. Mouht of Riv. Yanato (Sakai City) November 4, 2015 Nagawa Pref. Mouht of Riv. Yanato (Sakai City) November 4, 2015 Nagawa Pref. Mouht of Riv. Yanato (Sakai City) November 4, 2015 Nagawa Pref. Mouht of Riv. Natana (Sakai City) November 4, 2015 Nana P			
Sendia City Hirrose-ohashi Bridge, Riv. Hirose (Sendia City) November 11, 2015 Yamagata Pref. Mouth of Kiv. Mogani (Sakata City) November 12, 2015 Baraki Pref. Onehama Port November 17, 2015 Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City) November 17, 2015 Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City) November 17, 2015 Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City) October 22, 2015 Chaba City Moutt of Riv. Anakawa (Kow Ward) November 12, 2015 Yoshohman City Vachohma City October 22, 2015 Kawasaki City Moutt of Riv. Anakawa (Kow Ward) November 12, 2015 Kawasaki City Noter Riv. Shinano (Niggata City) November 17, 2015 Yoshohman City October 21, 2015 November 17, 2015 Ishikawa Pref. Lower Riv. Shinano (Niggata City) November 3, 2015 Yamanabi Pref. Lake Sawa (center) November 5, 2015 Nagano Pref. Shinabu-bashi Bridge, Riv. Ankawa (Kofu City) October 21, 2015 Nagano Pref. Shinabu-bashi Bridge, Riv. Ankawa (Kofu City) October 21, 2015 Nagano Pref. Shinabu-bashi Brid			
Akita Pref. Lake Thachiro Outober 17, 2015 Fukushima Pref. Onnhama Port November 19, 2015 Fukushima Pref. Onnhama Port November 17, 2015 Fukushima Pref. Constamone-ohasi Bridge, Mouth of Riv. Tone (Kamisu City) October 14, 2015 Chabig Pref. Constamone-ohasi Bridge, Mouth of Riv. Tone (Kamisu City) October 22, 2015 Chaba City Moutt of Riv. Anakawa (Koto Ward) November 12, 2015 Tokyo Met. Moutt of Riv. Sminal (Minauto Ward) November 12, 2015 Yokohama Port Komison (Nigua City) October 22, 2015 Keibin Canal, Port of Kawasaki City) November 17, 2015 November 17, 2015 Toyama Pref. Haginar-bashi Bridge, Riv. Shano (Nigua City) October 14, 2015 Toyama Pref. Haginar-bashi Bridge, Riv. Shano (Nigua City) October 14, 2015 Toyama Pref. Haginar-bashi Bridge, Riv. Anakawa (Kofu City) October 14, 2015 Yamanahi Pref. Sensha-bashi Bridge, Riv. Anakawa (Kofu City) October 27, 2015 Shiazuo A Pref. Mushima-bashi Bridge, Riv. Anakawa (Kofu City) October 27, 2015 Shiazuo A Pref. Sensha-bashi Bridge, Riv. Anakawa (Kofu City)			
Yanagan Pref. Mouth of Riv. Mogani (Sakata City) November 12, 2015 Iburski Pref. Tonskamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City) November 17, 2015 Iburski Pref. Casta of Ichihara and Anegassaki October 14, 2015 Chiba Pref. Casta of Ichihara and Anegassaki October 22, 2015 Chiba Pref. Casta of Ichihara and Anegassaki October 22, 2015 Tokyo Met. Mouth of Riv. Arakava (Koto Ward) November 12, 2015 Yokohama City Yokohama Prett October 22, 2015 Yokohama Prett Yokohama Prett November 17, 2015 Kawasski City Mouth of Riv. Tama (Kawasski City) November 17, 2015 Yokohama Pref. Lower Riv. Shinano (Niggata City) November 17, 2015 Niggata Pref. Lower Riv. Saina (Kitgata City) November 12, 2015 Shinawa Pref. Mouth of Riv. Sai (Kanazawa City) November 5, 2015 Yamanabi Pref. Sasha-bashi Bridge, Riv. Arakawa (Kofu City) November 5, 2015 Shinaya Pref. Muth of Riv. Sai (Kanazawa City) November 12, 2015 Yamanabi Pref. Sashawa (center) November 12, 2015 Shinaya Pref. <td></td> <td></td> <td></td>			
Fukshima Pref. Onahama Port November 12, 2015 Branki Pref. Tonekamome-shasi Bridge, Mouth of Riv. Tone (Kamisu City) November 17, 2015 Tochigi Pref. Riv. Tagawa (Utsunomiya City) October 14, 2015 Chaba City Mouth of Riv. Hanami (Chaba City) October 29, 2015 Chaba City Mouth of Riv. Vankawa (Koto Ward) November 12, 2015 Yokohama City Yokohama Port October 22, 2015 Kawaski City) Mouth of Riv. Sumida (Minato Ward) November 17, 2015 Yokohama City Yokohama Port November 17, 2015 Kihin Canal, Port of Kawasaki November 17, 2015 Nisitat Pref. Hagiura-bashi Bridge, Mouth of Riv. Jintsu (Toyana City) October 14, 2015 Yamanabi Pref. Mouth of Riv. Sait (Kanazawa City) November 17, 2015 Fukua Pref. Mouth of Riv. Sait (Kanazawa City) November 17, 2015 Yamanabi Pref. Senshu-bashi Bridge, Riv. Arakawa (Kofu City) November 17, 2015 Yamanabi Pref. Senshu-bashi Bridge, Riv. Arakawa (Kofu City) November 12, 2015 Yamanabi Pref. Senshu-bashi Bridge, Riv. Arakawa (Kofu City) November 2, 2015 Yamana			
Ibaraki Pref. Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City) November 17, 2015 Cribig Pref. Coast of Ichihara and Anegasaki October 14, 2015 Chiba City Mouth of Riv. Anakawa (Koto Ward) November 12, 2015 Tokyo Met. Mouth of Riv. Anakawa (Koto Ward) November 12, 2015 Yokohama City Wouth of Riv. Anakawa (Koto Ward) November 12, 2015 Yokohama City Yokohama Port October 22, 2015 Yokohama City Yokohama Port October 22, 2015 Kawasaki City Mouth of Riv. Tama (Kawasaki City) November 17, 2015 Toyama Pref. Lower Riv. Shinuno (Nigata City) October 14, 2015 Yamanashi Pref. Mouth of Riv. Sini (Kanazawa City) November 10, 2015 Yamanashi Pref. Mouth of Riv. Sini (Kanazawa City) November 12, 2015 Yamanashi Pref. Senslu-bashi Bridge, Riv. Shono (Tsuruga City) November 20, 2015 Nagano Pref. Lake Suwa (center) November 20, 2015 Nagano Pref. Lake Suwa (center) November 20, 2015 Nagaya Port October 27, 2015 Nigat Pref. November 32, 2015 Nigat Pref. <td>U</td> <td></td> <td></td>	U		
Tochigi Pref. Riv. Tagawa (Ustanomiya City) October 14, 2015 Chiba Crip Month of Riv. Hanami (Chiba City) October 22, 2015 Tokyo Met. Month of Riv. Anakwa (Koto Ward) November 12, 2015 Wooth Mo Riv. Sumida (Minato Ward) November 12, 2015 Yokohama Port October 22, 2015 Kawasaki City November 17, 2015 Keihin Canal, Port of Kawasaki November 17, 2015 Jigata Pref. Lowyer Riv. Shinano (Nigata City) October 21, 2015 Tokuan Pref. Hagura-bashi Bridge, Riv. Shono (Tsuraga City) November 17, 2015 Yananashi Perf. Mishima-bashi Bridge, Riv. Shono (Tsuraga City) November 5, 2015 Yananashi Perf. Shinizu Port November 7, 2015 Nagano Pref. Shinizu Port November 7, 2015 Shizuka Pref. Shinizu Port October 27, 2015 Nagano Pref. Shinizu Port October 27, 2015 Nagano Pref. Shinizu Port October 27, 2015 Mike Pref. Shinizu Port October 27, 2015 Nagano Pref. Shinizu Port October 27, 2015 Nigar Pref. Shinizu Port October 27, 2015 Nagay			
Chiba Perf. Coast of Lehhara and Anegasaki October 23, 2015 Chiba Ciry Mouth of Riv. Hanami (Chiba Ciry) October 22, 2015 Tokyo Met. Mouth of Riv. Anakawa (Koito Ward) November 12, 2015 Yakohama City Yokohama Port October 22, 2015 Yakohama City Yokohama Port October 22, 2015 Kawasaki City November 17, 2015 November 17, 2015 Kaihu Canal, Port of Kawasaki November 17, 2015 October 22, 2015 Stawasaki City November 17, 2015 October 14, 2015 Toyana Pref. Hagiura-Isabai Bridge, Riv. Arakawa (Kofu City) November 17, 2015 Yamanashi Pref. Senshu-bashi Bridge, Riv. Arakawa (Kofu City) November 32, 2015 Nagano Pref. Lake Sowa (center) November 32, 2015 Nagano Pref. Lake Sowa (center) November 32, 2015 Nigato Pref. Shimizu Port October 22, 2015 Nigato Pref. Shimizu Port October 27, 2015 Nigato Pref. Nagano Pref. Lake Biva (center, offshore of Minamihira) October 23, 2015 Kjoto Pref. Musthof Riv. Yanato (Saka City) Novemb			
Chiba City Mouth of Riv. Hanani (Chiba City) October 22, 2015 Tokyo Met. Mouth of Riv. Arakawa (Koto Ward) November 12, 2015 Mouth of Riv. Sumida (Minato Ward) November 12, 2015 Yokohama City Yokohama Port October 22, 2015 Kawasaki City Mouth of Riv. Tama (Kawasaki City) November 17, 2015 Nigata Pref. Lower Riv. Shinano (Nigata City) October 21, 2015 Fuku Pref. Mishima-bashi Bridge, Mouth of Riv. Jintsu (Toyama City) November 5, 2015 Fuku Pref. Mishima-bashi Bridge, Riv. Ankawa (Kofu City) November 5, 2015 Shagano Pref. Shsimizu Port October 12, 2015 Magano Pref. Shsimizu Port October 27, 2015 Shizoka Pref. Shimizu Port October 27, 2015 Magano Pref. Shizoka Pref. Nivermber 5, 2015 Nagaro Pref. Yokkaichi Port October 27, 2015 Mishiga Pref. Shizoka Pref. Nivermber 20, 2015 Mispa Pref. Yokkaichi Port October 20, 2015 Kyoto City Mouth of Riv. Yamato City) October 20, 2015 Kyoto Pref. Mouth of R			
Tokyo Met. Mouth of Riv. Arakava (Koto Ward) November 12, 2015 Mouth of Riv. Sumida (Minato Ward) November 12, 2015 Yokohama City Yokohama Port October 22, 2015 Kawaski City Mouth of Riv. Tama (Kawasaki City) November 17, 2015 Keihni Canal, Port of Kawaski November 17, 2015 November 17, 2015 Stripper Canadity (Kamazawa City) October 14, 2015 October 12, 2015 Jamanashi Pref. Mouth of Riv. Sai (Kamazawa City) November 5, 2015 Fakui Pref. Mishima-bashi Bridge, Riv. Ankawa (Kofu City) October 19, 2015 Yamanashi Pref. Senshu-bashi Bridge, Riv. Ankawa (Kofu City) October 19, 2015 Nagaon Pref. Lake Suwa (center) November 5, 2015 Nagaon Pref. Kinuzar Port October 27, 2015 Nagaya Port* October 27, 2015 Nagaya Port* October 27, 2015 Nagaya Port* October 27, 2015 Nagaya Port* October 27, 2015 Shimizu Port Okakainina) October 27, 2015 Kinuzar Port October 27, 2015 Nagaya Port* October 27, 2015 Shimizu Port Misyarna Port<			
Mouth of Riv. Sumida (Minato Ward)November 12, 2015Yokohama CityYokohama PortOctober 22, 2015Kawasaki CityMouth of Riv. Tama (Kawasaki City)November 17, 2015Kawasaki CityNovember 17, 2015November 17, 2015Kingata Pref.Lower Riv. Shinano (Nigata City)October 14, 2015Toyama Pref.Hagiura-bashi Bridge, Mouth of Riv. Jintsu (Toyama City)November 5, 2015Fakui Pref.Mishima-bashi Bridge, Riv. Shono (Tsuruga City)November 5, 2015Shizaka Pref.Kishima-bashi Bridge, Riv. Ankawa (Kofu City)Notober 19, 2015Yananashi Pref.Seshu-bashi Bridge, Riv. Ankawa (Kofu City)October 19, 2015Yananashi Pref.Kimura PortOctober 27, 2015Shizuoka Pref.Kimura PortOctober 27, 2015Nikima PortOctober 27, 2015Nikima PortOctober 27, 2015Niki Pref.Kimura PortOctober 27, 2015Niga Pref.Kimura PortOctober 27, 2015Niga Pref.Kimaura PortOctober 20, 2015Lake Biwa (center, offshore of Karasaki)October 20, 2015Lake Biwa (center, offshore of Karasaki)October 22, 2015Kyoto CityMyamac-bashi Bridge, Riv. Matsura (Kyoto City)November 19, 2015Osaka CityOsaka PortOctober 22, 2015Muth of Riv. Yamato (Saki City)November 19, 2015Osaka CityOsaka PortOctober 22, 2015Muth of Riv. Yamato (Saki City)November 19, 2015Osaka CityOsaka PortOctober 22, 2015Muth of Riv, Yamato			,
Yekohama City Yekohama Port October 22, 2015 Kawasaki City Mouth of Riv. Tama (Kawasaki City) November 17, 2015 Keihin Canal, Port of Kawasaki November 17, 2015 Nigata Pref. Lower Riv. Shinano (Nigata City) October 14, 2015 Toyama Pref. Hagiura-bashi Bridge, Nut of Riv. Jintsu (Toyama City) October 12, 2015 Ishikawa Pref. Mishima-bashi Bridge, Riv. Shono (Touruga City) November 5, 2015 Yamanashi Pref. Senshu-bashi Bridge, Riv. Shono (Touruga City) November 1, 2015 Nagano Pref. Shimizu Port October 27, 2015 Nigata Pref. Shimizu Port October 27, 2015 Nike Pref. Shimizu Port October 27, 2015 Nike Pref. Yokaichi Port October 27, 2015 Nike Pref. Yokaichi Port October 27, 2015 Shiga Pref. Lake Biva (center, offshore of Minamihira) October 20, 2015 Kyoto City Myama-bashi Bridge, Riv. Katsura (Kyoto City) November 30, 2015 Skyoto City Myama-bashi Bridge, Riv. Catsura (Kyoto City) November 19, 2015 Osaka Pref. Mouth of Riv. Yamato (Saka City) October	Tokyo Wiet.		
Kawasaki City November 17, 2015 Keihin Canal, Port of Kawasaki November 17, 2015 Niigata Pref. Lower Riv. Shinano (Niigata City) October 14, 2015 Toyama Pref. Hagiura-bashi Bridge, Mouth of Riv. Jintsu (Toyama City) November 5, 2015 Fukui Pref. Mouth of Riv. Sai (Kanazawa City) November 5, 2015 Yamanashi Pref. Senshu-bashi Bridge, Riv. Arakawa (Kofu City) November 5, 2015 Nagano Pref. Lake Suwa (center) November 7, 2015 Shizuka Pref. Kin. Tenryu (Iwata City) October 27, 2015 Aichi Pref. Kin. Tenryu (Iwata City) October 27, 2015 Mile Pref. Yokkaichi Port October 27, 2015 Mile Pref. Yokkaichi Port October 27, 2015 Mile Pref. Yokkaichi Port October 20, 2015 Kyoto City Miyama-bashi Bridge, Riv. Katsura (Kyoto City) November 30, 2015 Kyoto City Miyama-bashi Bridge, Riv. Katsura (Kyoto City) November 30, 2015 Osaka City Osaka Port October 28, 2015 Osaka City Osaka Port October 27, 2015 Kem Pref. Kone Nawa (Osaka	Vokohama City		
Keihin Canal, Port of KawasakiNovember 17, 2015Toyama Pref.Lower Riv. Shinano (Niigata City)October 14, 2015Toyama Pref.Hagiura-bashi Bridge, Mouth of Riv. Jintsu (Toyama City)October 21, 2015Ishikawa Pref.Molth of Riv. Sii (Kanazawa City)November 1, 2015Yamanashi Pref.Senshu-bashi Bridge, Riv. Shono (Tsuruga City)November 1, 2015Yamanashi Pref.Senshu-bashi Bridge, Riv. Shono (Tsuruga City)October 19, 2015Naguno Pref.Lake Suwa (center)November 1, 2015Shimizu PortOctober 1, 2015Cetober 27, 2015Aichi Pref.Shimizu PortOctober 27, 2015Nie Pref.Yokkaichi PortOctober 27, 2015Nie Pref.Yokkaichi PortOctober 27, 2015Nigoaya Port*October 20, 2015Shiga Pref.Lake Biwa (center, offshore of Minamihira)October 20, 2015Kyoto CityMiyaza PortOctober 20, 2015Kyoto CityMiyaza PortOctober 27, 2015Osaka Pref.Mouth of Riv. Yamato (Sakai City)November 30, 2015Osaka Pref.Mouth of Riv. Yamato (Sakai City)November 30, 2015Osaka Pref.Mouth of Riv. Yamato (Sakai City)October 27, 2015Kobe CityKobe Port (center)November 4, 2015Mouth of Riv. Yamato (Saka City)October 27, 2015Kobe CityKobe Port (center)November 4, 2015Mouth of Riv. Yamato (Oji Town)November 4, 2015Kure PortOfishore of HimejiOctober 27, 2015Kobe CityKobe Port (center)			
Nigata Pref. Lower Riv. Shinano (Nigata City) October 14, 2015 Toyama Pref. Hagiura-bashi Bridge, Mouth of Riv. Jintsu (Toyama City) Notember 21, 2015 Bikikawa Pref. Mouth of Riv. Sai (Kanazawa City) November 5, 2015 Fukui Pref. Mishima-bashi Bridge, Riv. Arakawa (Kofu City) October 19, 2015 Nagano Pref. Lake Suwa (center) November 5, 2015 Shizoka Pref. Simizu Port October 12, 2015 Kim Tenryu (Iwata City) October 27, 2015 October 27, 2015 Nigata Pref. Nagoay Port* October 27, 2015 Mich Pref. Yokkaichi Port October 27, 2015 Mice Pref. Yokkaichi Port October 27, 2015 Shiga Pref. Lake Biwa (center, offshore of Minamihira) October 20, 2015 Kyoto City Miyazu Port October 20, 2015 Kyoto City Miyazu Port October 23, 2015 Osaka Ort October 23, 2015 October 23, 2015 Kwata City October 24, 2015 October 27, 2015 Soaka Ort October 27, 2015 October 27, 2015 Kata Pref. Mouth of Riv. Yama	isuwusuki City		
Toyama Pref. Hagiura-bashi Bridge, Mouth of Riv. Jintsu (Toyama City) October 21, 2015 Ishikawa Pref. Mouth of Riv. Sai (Kanazawa City) November 1, 2015 Yamanashi Pref. Senshu-bashi Bridge, Riv. Arakawa (Kofu City) October 19, 2015 Nagano Pref. Lake Suwa (center) November 5, 2015 Shizuoka Pref. Shimizu Port October 1, 2015 Shizuoka Pref. Shimizu Port October 27, 2015 Nagooy Ref. Kinuura Port October 27, 2015 Nagoya Port* October 27, 2015 October 27, 2015 Nagoya Port October 27, 2015 October 27, 2015 Nagoya Port October 20, 2015 October 20, 2015 Shiga Pref. Lake Biwa (center, offshore of Minamihira) October 20, 2015 Kyoto City Miyama-bashi Bridge, Riv. Katsura (Kyoto City) November 19, 2015 Osaka Pref. Mouth of Riv. Yamato (Sakai City) November 19, 2015 Osaka Port October 22, 2015 Mouth of Riv. Yamato (Sakai City) November 19, 2015 Osaka Pref. Mouth of Riv. Yamato (Sakai City) October 27, 2015 Mouth of Riv. Yamato (Sakai City) October 27, 2015 </td <td>Niigata Pref</td> <td>/</td> <td></td>	Niigata Pref	/	
Ishikawa Pref. Mouth of Riv, Sai (Kanazawa City) November 5, 2015 Fukui Pref. Mishima-bashi Bridge, Riv. Shono (Tsuruga City) October 19, 2015 Yamanashi Pref. Senshu-bashi Bridge, Riv. Arakawa (Kofu City) October 1, 2015 Nagano Pref. Lake Suwa (center) November 5, 2015 Shizuoka Pref. Shimizu Port October 1, 2015 Aichi Pref. Sininzu Port October 22, 2015 Aichi Pref. Yokkaichi Port October 27, 2015 Mise Pref. Yokkaichi Port October 22, 2015 Toba Port October 22, 2015 Doctober 22, 2015 Shiga Pref. Lake Biwa (center, offshore of Minamihira) October 22, 2015 Lake Diva (center, offshore of Karasaki) October 23, 2015 Doctober 23, 2015 Kyoto Dref. Miyazu Port October 23, 2015 Doctober 23, 2015 Kyoto City Mouth of Riv. Yamato (Sakai City) November 19, 2015 Doctober 23, 2015 Oaska Pref. Mouth of Riv. Yamato (Sakai City) October 27, 2015 Doctober 23, 2015 Mouth of Riv. Yodo (Osaka City) October 27, 2015 Doctober 24, 2015 Doctober 27, 2015			
Fukui Pref.Mishima-bashi Bridge, Riv. Shono (Tsuruga City)November 11, 2015Yamanshi Pref.Senshu-bashi Bridge, Riv. Arakawa (Kofu City)October 19, 2015Nagano Pref.Lake Suwa (center)November 5, 2015Shizuoka Pref.Shimizu PortOctober 7, 2015Riv. Tenryu (Iwata City)October 27, 2015Aichi Pref.Kinuura PortOctober 27, 2015Nagoya Port*October 27, 2015Nagoya Port*October 27, 2015Toba PortOctober 20, 2015Lake Biwa (center, offshore of Minamihira)October 20, 2015Lake Biwa (center, offshore of Karasaki)October 20, 2015Kyoto Pref.Miyazu PortNovember 30, 2015Kyoto Pref.Miyazu PortNovember 30, 2015Ostaka Pref.Mouth of Riv. Yamato (Sakai City)November 30, 2015Osaka Pref.Ostaka PortOctober 22, 2015Mouth of Riv. Yamato (Sakai City)November 30, 2015Osaka CityOsaka PortOctober 27, 2015Muath of Riv. Yamato (Sakai City)October 27, 2015Mouth of Riv. Yamato (Sakai City)October 27, 2015Mouth of Riv. Yamato (Sakai City)October 27, 2015Mouth of Riv. Yamato (Saka City)October 22, 2015Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)October 22, 2015Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)November 4, 2015Mouth of Riv. Yamato (Gi Town)October 12, 2015Kama-bashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)November 16, 2015Offshore of MizushimaNovember 16, 2015 <td></td> <td></td> <td>,</td>			,
Yamanashi Pref. Senshu-bashi Bridge, Riv. Arakawa (Kofu City) October 19, 2015 Nagano Pref. Lake Suwa (center) November 5, 2015 Shinzuoka Pref. Shinzuroka Pref. Shinzuroka Pref. Aichi Pref. Shinzuroka Pref. October 27, 2015 Aichi Pref. Kinuura Port October 27, 2015 Mie Pref. Yokkaichi Port October 27, 2015 Toba Port October 27, 2015 Shiga Pref. Lake Biwa (center, offshore of Minamihira) October 20, 2015 Lake Biwa (center, offshore of Karasaki) October 20, 2015 Kyoto Pref. Miyamac-bashi Bridge, Riv. Katsura (Kyoto City) November 30, 2015 Osaka Pref. Mouth of Riv. Yamato (Sakai City) November 19, 2015 Osaka Pref. Offshore of Himeji October 27, 2015 Mouth of Riv. Yado (Osaka City) October 27, 2015 November 19, 2015 Osaka Port Offshore of Minegi October 22, 2015 Kobe City Kobe Port (center) November 20, 2015 Nagan Pref. Riv. Yamato (Oji Town) October 22, 2015 Kobe City Kobe Port (center) November 4, 2015 Mayama Pref. Riv. Yamato (Oj			,
Nagano Pref. Lake Suwa (center) November 5, 2015 Shizuoka Pref. Shimizu Port October 1, 2015 Riv. Tenryu (Iwata City) October 27, 2015 Aichi Pref. Kinnura Port October 27, 2015 Magoya Port* October 27, 2015 Migoya Port* October 27, 2015 Shizuoka Cotober 27, 2015 Shiga Pref. Lake Biwa (center, offshore of Minamihira) October 20, 2015 Lake Biwa (center, offshore of Karasaki) October 20, 2015 Kyoto Pref. Miyazu Port October 23, 2015 Kyoto City Miyamae-bashi Bridge, Riv. Katsura (Kyoto City) November 19, 2015 Osaka Pref. Mouth of Riv. Vamato (Sakai City) November 19, 2015 Outside Osaka Port October 27, 2015 Mouth of Riv. Yodo (Osaka City) October 27, 2015 Mouth of Riv. Yodo (Osaka City) October 27, 2015 Mouth of Riv. Yamato (Oji Town) October 27, 2015 Kobe City Kobe Port (center) November 4, 2015 November 4, 2015 Nara Pref. Kinokawa (Wakayama City) November 4, 2015 Matayama Pref. Kinokawa (Wakayama City)	Yamanashi Pref.		· · · · · · · · · · · · · · · · · · ·
Shizuoka Pref. Shimizu Port October 1, 2015 Riv. Tenryu (Iwata City) October 27, 2015 Aichi Pref. Kinuura Port October 27, 2015 Mie Pref. Yokkaichi Port October 27, 2015 Shiga Pref. Lake Biwa (center, offshore of Minamihira) October 20, 2015 Lake Biwa (center, offshore of Karasaki) October 20, 2015 Lake Biwa (center, offshore of Karasaki) October 20, 2015 Kyoto Pref. Miyamae-bashi Bridge, Riv. Katsura (Kyoto City) November 30, 2015 Osaka Pref. Mouth of Riv. Yamato (Sakai City) November 19, 2015 Osaka Pref. Ostober 27, 2015 Outside Osaka Port October 27, 2015 Outside Osaka Port October 27, 2015 Outside Osaka Port October 27, 2015 Mouth of Riv. Yodo (Osaka City) October 27, 2015 Outside Osaka Port October 27, 2015 Mouth of Riv. Yodo (Osaka City) October 27, 2015 Outside Osaka Port October 22, 2015 Nara Pref. Offshore of Himeji October 22, 2015 November 4, 2015 Mara Pref. Offshore of Himeji October 22, 2015 November 4, 2015 Warayama Pref. Offshore of Mizushima November			,
Riv. Tenryu (Iwata City)October 27, 2015Aichi Pref.Kinuura PortOctober 27, 2015Mie Pref.Yokkaichi PortOctober 27, 2015Toba PortOctober 27, 2015Shiga Pref.Lake Biwa (center, offshore of Minamihira)October 20, 2015Lake Biwa (center, offshore of Karasaki)October 20, 2015Kyoto Pref.Miyazu PortOctober 20, 2015Sokaa Pref.Mouth of Riv. Yamato (Sakai City)November 30, 2015Oaska Pref.Mouth of Riv. Yamato (Sakai City)November 30, 2015Oaska Pref.October 27, 2015October 27, 2015Mouth of Riv. Yamato (Sakai City)October 27, 2015Outsi of Sokaa PortOctober 27, 2015Outsi of Sokaa PortOctober 27, 2015Mouth of Riv. Yodo (Osaka City)October 27, 2015Mouth of Riv. Yodo (Osaka City)October 27, 2015Kobe CityKobe Port (center)November 20, 2015Nara Pref.Offshore of HimejiOctober 22, 2015Kawama Pref.Offshore of HimejiOctober 22, 2015Naara Pref.Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)November 4, 2015Wakayama Pref.Offshore of MizushimaNovember 4, 2015Offshore of HagiOctober 22, 2015October 22, 2015Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)November 4, 2015Yamaguchi Pref.Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)November 4, 2015Yamaguchi Pref.Kuoth of Riv. Yoshino (Tokushima City)October 22, 2015O	Shizuoka Pref.		
Aichi Pref. Kinuura Port October 27, 2015 Nagoya Port* October 27, 2015 Mie Pref. Yokkaichi Port October 27, 2015 Shiga Pref. Lake Biwa (center, offshore of Minamihira) October 20, 2015 Kyoto Pref. Miyazu Port October 20, 2015 Kyoto Pref. Miyazu Port October 20, 2015 Soska Pref. Mouth of Riv. Yamato (Sakai City) November 30, 2015 Osaka Pref. Mouth of Riv. Yamato (Sakai City) November 19, 2015 Osaka Port October 27, 2015 Mouth of Riv. Yamato (Sakai City) October 27, 2015 Mouth of Riv. Yodo (Osaka City) October 27, 2015 Mouth of Riv. Yodo (Osaka City) October 27, 2015 Kema-bashi Bridge, Riv. Oh-kawa (Osaka City) October 27, 2015 November 20, 2015 Nara Pref. Nara Pref. Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City) November 20, 2015 Nara Pref. Riv. Yamato (Qi Town) October 27, 2015 Wakayama Pref. Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City) November 4, 2015 Nara Pref. Grishore of Mizushima November 4, 2015			
Mie Pref. Yokkaichi Port October 21, 2015 Toba Port October 20, 2015 Shiga Pref. Lake Biwa (center, offshore of Minamihira) October 20, 2015 Kyoto Pref. Miyazu Port October 20, 2015 Kyoto City Miyama-bashi Bridge, Riv. Katsura (Kyoto City) November 30, 2015 Osaka Pref. Mouth of Riv. Yamato (Sakai City) November 19, 2015 Osaka Port October 27, 2015 Muth of Riv. Yodo (Osaka City) October 27, 2015 Muth of Riv. Yodo (Osaka City) October 27, 2015 Kema-bashi Bridge, Riv. Oh-kawa (Osaka City) October 27, 2015 Kema-bashi Bridge, Riv. Oh-kawa (Osaka City) October 27, 2015 Kobe City Kobe Port (center) November 20, 2015 Nara Pref. Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City) November 4, 2015 Mayayama Pref. Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City) November 4, 2015 Wakayama Pref. Kure Port November 4, 2015 Hiroshima Bay November 4, 2015 November 4, 2015 Yamaguchi Pref. Tokuyama Bay October 27, 2015	Aichi Pref.		
Toba PortOctober 27, 2015Shiga Pref.Lake Biwa (center, offshore of Minamihira)October 20, 2015Kyoto Pref.Miyazu PortOctober 20, 2015Kyoto CityMiyaruae-bashi Bridge, Riv. Katsura (Kyoto City)November 30, 2015Osaka Pref.Mouth of Riv. Yamato (Sakai City)November 19, 2015Osaka CityOsaka PortOctober 27, 2015Outside Osaka PortOctober 27, 2015Outside Osaka PortOctober 27, 2015Outside Osaka PortOctober 27, 2015Outside Osaka PortOctober 27, 2015Mouth of Riv. Yodo (Osaka City)October 27, 2015Kobe CityKobe Port (center)November 20, 2015Nara Pref.Offshore of HimejiOctober 27, 2015Wakayama Pref.Riv. Yamato (Oji Town)October 19, 2015Wakayama Pref.Offshore of MizushimaNovember 4, 2015Hiroshima BayNovember 4, 2015November 4, 2015Yamaguchi Pref.Tokuyama BayOctober 7, 2015Offshore of HagiOctober 7, 2015Offshore of HagiOffshore of HagiOctober 7, 2015Offshore of 14giOffshore of HagiOctober 7, 2015Offshore 20, 2015Tokushima Pref.Tokuyama BayOctober 12, 2015Offshore of HagiOctober 7, 2015Offshore of 14giOffshore of HagiOctober 7, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 7, 2015Tokushima Pref.Mouth of Riv. Sohimanto City)October 20, 2015Kagawa Pref.Takamatu Port <td></td> <td>Nagoya Port*</td> <td>October 27, 2015</td>		Nagoya Port*	October 27, 2015
Shiga Pref. Lake Biwa (center, offshore of Minamihira) October 20, 2015 Kyoto Pref. Miyazu Port October 20, 2015 Kyoto City Miyazu Port October 20, 2015 Kyoto City Miyazu Port October 20, 2015 Skaga Pref. Mouth of Riv. Yamato (Sakai City) November 30, 2015 Osaka Pref. Mouth of Riv. Yamato (Sakai City) November 19, 2015 Osaka City Osaka Port October 27, 2015 Muth of Riv. Yodo (Osaka City) October 27, 2015 Kema-bashi Bridge, Riv. Oh-kawa (Osaka City) October 27, 2015 Kobe City Kobe Port (center) November 10, 2015 Nara Pref. Riv. Yamato (Oji Town) October 22, 2015 Vakayama Pref. Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City) November 4, 2015 Varanguchi Pref. Kure Port November 4, 2015 Hiroshima Bay October 22, 2015 Offshore of Hingi Offshore of Hagi October 22, 2015 October 22, 2015 Yamaguchi Pref. Tokuyama Bay October 22, 2015 Offshore of Hagi Offshore of Hagi October 22, 2015	Mie Pref.		October 21, 2015
Lake Biwa (center, offshore of Karasaki)October 20, 2015Kyoto Pref.Miyazu PortOctober 23, 2015Syoto CityMiyamae-bashi Bridge, Riv. Katsura (Kyoto City)November 30, 2015Osaka Pref.Mouth of Riv. Yamato (Sakai City)November 30, 2015Osaka CityOsaka PortOctober 28, 2015Outside Osaka PortOctober 27, 2015Mouth of Riv. Yodo (Osaka City)October 27, 2015Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)October 27, 2015Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)October 22, 2015Nara Pref.Offshore of HimejiNara Pref.Riv. Yamato (Oji Town)Wakayama Pref.Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)November 4, 2015Hiroshima BayWamaguchi Pref.Offshore of MizushimaHiroshima BayOctober 7, 2015Yamaguchi Pref.Tokuyama BayOffshore of HagiOctober 7, 2015Tokuyama BayOctober 7, 2015Offshore of HagiOctober 7, 2015Offshore of HagiOctober 7, 2015Offshore of HagiOctober 7, 2015Tokuyama BayOctober 7, 2015Offshore of HagiOctober 7, 2015Offshore of HagiOctober 7, 2015Offshore of HagiOctober 7, 2015Tokuyama BayOctober 7, 2015Offshore of HagiOctober 7, 2015Offshore of HagiOctober 7, 2015Tokuyama BayOctober 7, 2015Offshore of HagiOctober 7, 2015Saga Pref.Nihamato (Shimanto City)<		Toba Port	October 27, 2015
Kyoto Pref.Miyazu PortOctober 23, 2015Kyoto CityMiyamae-bashi Bridge, Riv. Katsura (Kyoto City)November 30, 2015Osaka Pref.Mouth of Riv. Yamato (Sakai City)November 30, 2015Osaka CityOsaka PortOctober 28, 2015Outside Osaka PortOctober 27, 2015Mouth of Riv. Yodo (Osaka City)October 27, 2015Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)October 27, 2015Kobe CityKobe Port (center)November 20, 2015Kobe CityKobe Port (center)November 20, 2015Kaayama Pref.Riv. Yamato (Oji Town)October 22, 2015Wakayama Pref.Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)November 4, 2015Hiroshima BayNovember 4, 2015Hiroshima BayNovember 4, 2015Yamaguchi Pref.Tokuyama BayOctober 27, 2015Offshore of HagiOffshore of HagiOctober 27, 2015Offshore of HagiOctober 7, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)November 4, 2015Yamaguchi Pref.Mouth of Riv. Yoshino (Tokushima City)October 30, 2015Offshore of HagiOctober 30, 2015Socober 30, 2015Kochi Pref.Mouth of Riv. Shimanto (Shimanto City)October 29, 2015Kitakyushu CityDokai BayOctober 29, 2015Nagasaki Pref.Mouth of Riv. Oita (Oita City)December 20, 2015Nagasaki Pref.Mouth of Riv. Oita (Oita City)December 2, 2015Nagasaki Pref.Mouth of Riv. Oita (Oita City)December 2, 2015Nagas	Shiga Pref.		October 20, 2015
Kyoto CityMiyamae-bashi Bridge, Riv. Katsura (Kyoto City)November 30, 2015Osaka Pref.Mouth of Riv. Yamato (Sakai City)November 19, 2015Osaka CityOsaka PortOctober 28, 2015Outside Osaka PortOctober 27, 2015Mouth of Riv. Yodo (Osaka City)October 27, 2015Mouth of Riv. Yodo (Osaka City)October 27, 2015Hyogo Pref.Offshore of HimejiOctober 27, 2015Kobe CityKobe Port (center)November 20, 2015Nara Pref.Riv. Yamato (Oji Town)October 22, 2015Wakayama Pref.Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)November 10, 2015Mayama Pref.Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)November 4, 2015Hiroshima Pref.Kure PortNovember 4, 2015Hiroshima BayNovember 4, 2015Offshore of UbeOffshore of UbeOctober 22, 2015Offshore of HagiOctober 22, 2015Tokuşama Pref.Mouth of Riv. Yoshino (Tokushima City)October 2, 2015Yamaguchi Pref.Mouth of Riv. Yoshino (Tokushima City)October 22, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 22, 2015Kagawa Pref.Takamatus PortOctober 30, 2015Kochi Pref.Mouth of Riv. Shimanto (Shimanto City)October 20, 2015Kaga Pref.Mouth of Riv. Shimanto (Shimanto City)October 20, 2015Kaga Pref.Mouth of Riv. Oita (Oita City)December 2, 2015Kagashi Pref.Mouth of Riv. Oita (Oita City)December 2, 2015 <td></td> <td></td> <td></td>			
Osaka Pref.Mouth of Riv. Yamato (Sakai City)November 19, 2015Osaka CityOsaka PortOctober 28, 2015Outide Osaka PortOctober 27, 2015Mouth of Riv. Yodo (Osaka City)October 27, 2015Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)October 27, 2015Kobe Perf.Offshore of HimejiOctober 27, 2015Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)Nara Pref.Offshore of HimejiWakayama Pref.Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)November 20, 2015November 20, 2015Wakayama Pref.Offshore of MizushimaHiroshima Pref.Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)November 4, 2015Hiroshima BayYamaguchi Pref.Tokuyama BayOffshore of UbeNovember 4, 2015Offshore of HagiOctober 27, 2015Kagawa Pref.Mouth of Riv. Yoshino (Tokushima City)October 22, 2015Kagawa Pref.Takamatsu PortOctober 22, 2015Kagawa Pref.Nihama PortOctober 23, 2015Kitakyushu CityDotai BayOctober 24, 2015Kucpi Pref.Nihama PortOctober 20, 2015Stityushu CityKagasa Pref.Imari BayOctober 20, 2015Kagasa Pref.Mouth of Riv. Shimanto (Shimanto City)October 20, 2015Kagasa Pref.Imari BayOctober 20, 2015Kagasa Pref.Imari BayOctober 20, 2015Kagasa Pref.Imari BayOctober 20, 2015			
Osaka CityOsaka PortOctober 28, 2015Outside Osaka PortOctober 27, 2015Mouth of Riv. Yodo (Osaka City)October 27, 2015Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)October 27, 2015Hyogo Pref.Offshore of HimejiOctober 22, 2015Kobe CityKobe Port (center)November 20, 2015Nara Pref.Riv. Yamato (Oji Town)October 19, 2015Wakayama Pref.Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)November 16, 2015Okayama Pref.Offshore of MizushimaNovember 4, 2015Hiroshima Pref.Kure PortNovember 4, 2015Hiroshima Pref.Tokuyama BayOctober 27, 2015Offshore of UbeNovember 4, 2015Offshore of HagiOctober 27, 2015Offshore of HagiOctober 27, 2015Offshore of HagiOctober 27, 2015Tokuyama Pref.Mouth of Riv. Yoshino (Tokushima City)October 27, 2015Tokushima Pref.Nouth of Riv. Yoshino (Tokushima City)October 27, 2015Kagawa Pref.Takamatsu PortOctober 23, 2015Kochi Pref.Niihama PortOctober 30, 2015Kutakyushu CityDoka BayOctober 20, 2015Fukuoka CityHakata BayNovember 30, 2015Saga Pref.Imari BayOctober 29, 2015Nagasaki Pref.Omura BayOctober 29, 2015Nagasaki Pref.Mouth of Riv. Oita (Oita City)December 2, 2015Nagasaki Pref.Mouth of Riv. Oita (Oita City)December 2, 2015Nagasaki Pref.Mouth of Riv.			
Outside Osaka PortOctober 27, 2015Mouth of Riv. Yodo (Osaka City)October 27, 2015Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)October 27, 2015Hyogo Pref.Offshore of HimejiOctober 27, 2015Kobe CityKobe Port (center)November 20, 2015Nara Pref.Riv. Yamato (Oji Town)October 19, 2015Wakayama Pref.Offshore of MizushimaNovember 20, 2015Okayama Pref.Offshore of MizushimaNovember 4, 2015Hiroshima Pref.Kure PortNovember 4, 2015Hiroshima Pref.Tokuyama BayOctober 7, 2015Offshore of UbeNovember 4, 2015Yamaguchi Pref.Tokuyama BayOctober 22, 2015Offshore of HagiOctober 22, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 27, 2015Kagawa Pref.Nihama PortOctober 22, 2015Kochi Pref.Nouth of Riv. Shimanto (Shimanto City)October 20, 2015Kitakyushu CityDokai BayOctober 20, 2015Kitakyushu CityDokai BayOctober 20, 2015Nagasaki Pref.Imari BayOctober 20, 2015Nagasaki Pref.Omura BayOctober 20, 2015Nagasaki Pref.Mouth of Riv. Oita (Ota City)December 2, 2015Kagoshima Pref.Mouth of Riv. Oita (Ota City)December 2, 20			
Mouth of Riv. Yodo (Osaka City)October 27, 2015Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)October 22, 2015Hyogo Pref.Offshore of HimejiOctober 22, 2015Kobe CityKobe Port (center)November 20, 2015Wakayama Pref.Riv. Yamato (Oji Town)October 19, 2015Wakayama Pref.Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)November 16, 2015Okayama Pref.Offshore of MizushimaNovember 4, 2015Hiroshima Pref.Kure PortNovember 4, 2015Hiroshima BayNovember 4, 2015Yamaguchi Pref.Tokuyama BayOctober 7, 2015Offshore of HagiOctober 7, 2015Offshore of HagiOctober 22, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 7, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 13, 2015Ehime Pref.Niihama PortOctober 30, 2015Kochi Pref.Mouth of Riv. Shimanto (Shimanto City)October 14, 2015Kitakyushu CityDokai BayOctober 20, 2015Fukuoka CityHakata BayOctober 20, 2015Saga Pref.Imari BayOctober 20, 2015Saga Pref.Imari BayOctober 20, 2015Sagaski Pref.Mouth of Riv. Oita (Oita City)December 3, 2015Nagasaki Pref.Mouth of Riv. Oita (Oita City)October 14, 2015Kagoshima Pref.Mouth of Riv. Oita (Oita City)October 14, 2015Kagoshima Pref.Mouth of Riv. Oita (Oita City)October 14, 2015Kagoshima Pref.<	Osaka City		,
Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)October 27, 2015Hyogo Pref.Offshore of HimejiOctober 22, 2015Kobe CityKobe Port (center)November 20, 2015Nara Pref.Riv. Yamato (Oji Town)October 19, 2015Wakayama Pref.Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)November 16, 2015Okayama Pref.Offshore of MizushimaNovember 4, 2015Hiroshima Pref.Kure PortNovember 4, 2015Hiroshima BayNovember 4, 2015Yamaguchi Pref.Tokuyama BayOctober 7, 2015Offshore of UbeOctober 22, 2015Offshore of HagiOctober 22, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 22, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 13, 2015Kitakyushu CityDokai BayOctober 20, 2015Kutakyushu CityHakata BayOctober 20, 2015Fukuoka CityHakata BayOctober 20, 2015Nagasaki Pref.Imari BayOctober 20, 2015Nagasaki Pref.Imari BayOctober 20, 2015Nagasaki Pref.Mouth of Riv. Oita (Oita City)December 30, 2015Nagasaki Pref.Mouth of Riv. Oita (Oita City)December 8, 2015Miyazaki Pref.Mouth of Riv. Oita (Oita City)December 8, 2015Kagoshima Pref.Mouth of Riv. Oita (Oita City)December 8, 2015Kitakyushu CityGotober 10, 2015Kagoshima Pref.Kitakyushu CityGotober 12, 2015Kagoshima Pref.November F. <td< td=""><td></td><td></td><td></td></td<>			
Hyogo Pref.Offshore of HimejiOctober 22, 2015Kobe CityKobe Port (center)November 20, 2015Nara Pref.Riv. Yamato (Oji Town)October 19, 2015Wakayama Pref.Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)November 16, 2015Wakayama Pref.Offshore of MizushimaNovember 4, 2015Hiroshima Pref.Kure PortNovember 4, 2015Hiroshima BayNovember 4, 2015Yamaguchi Pref.Tokuyama BayOctober 7, 2015Offshore of HagiOctober 22, 2015Offshore of HagiOctober 22, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 22, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 13, 2015Ehime Pref.Nihama PortOctober 13, 2015Kochi Pref.Mouth of Riv. Shimanto (Shimanto City)October 20, 2015Kitakyushu CityDokai BayOctober 20, 2015Fukuoka CityHakata BayNovember 30, 2015Saga Pref.Imari BayOctober 29, 2015Nagasaki Pref.Omura BayOctober 29, 2015Nagasaki Pref.Mouth of Riv. Oita (Oita City)December 2, 2015Miyazaki Pref.Mouth of Riv. Oyodo (Miyazaki City)October 14, 2015Kagoshima Pref.Riv. Amori (Kirishima City)October 14, 2015Kagoshima Pref.Mouth of Riv. Oyodo (Miyazaki City)November 10, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 10, 2015			
Kobe CityKobe Port (center)November 20, 2015Nara Pref.Riv. Yamato (Oji Town)October 19, 2015Wakayama Pref.Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)November 16, 2015Offshore of MizushimaNovember 4, 2015Hiroshima Pref.Kure PortNovember 4, 2015Hiroshima BayNovember 4, 2015Yamaguchi Pref.Tokuyama BayOctober 7, 2015Offshore of UbeNovember 16, 2015Offshore of HagiOctober 22, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 22, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 13, 2015Kagawa Pref.Takamatsu PortOctober 30, 2015Kochi Pref.Mouth of Riv. Shimanto (Shimanto City)October 20, 2015Kitakyushu CityDokai BayOctober 20, 2015Fukuoka CityHakata BayNovember 30, 2015Saga Pref.Imari BayOctober 20, 2015Nagasaki Pref.Omura BayOctober 2, 2015Otia Pref.Mouth of Riv. Oita (Oita City)December 2, 2015Magasaki Pref.Mouth of Riv. Oita (Oita City)December 8, 2015Miyazaki Pref.Mouth of Riv. Oodo (Miyazaki City)October 14, 2015Kagoshima Pref.Riv. Amori (Kirishima City)October 14, 2015Kagoshima Pref.Mouth of Riv. Oodo (Miyazaki City)October 14, 2015Kagoshima Pref.Mouth of Riv. Oita (Oita City)December 2, 2015Miyazaki Pref.Mouth of Riv. Oodo (Miyazaki City)October 14, 20			,
Nara Pref.Riv. Yamato (Oji Town)October 19, 2015Wakayama Pref.Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)November 16, 2015Okayama Pref.Offshore of MizushimaNovember 4, 2015Hiroshima Pref.Kure PortNovember 4, 2015Hiroshima BayNovember 4, 2015Yamaguchi Pref.Tokuyama BayOctober 7, 2015Offshore of HagiOctober 7, 2015Offshore of HagiOctober 22, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 27, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 13, 2015Kagawa Pref.Takamatsu PortOctober 30, 2015Kochi Pref.Niihama PortOctober 20, 2015Kitakyushu CityDokai BayOctober 20, 2015Fukuoka CityHakata BayOctober 20, 2015Nagasaki Pref.Imari BayOctober 29, 2015Nagasaki Pref.Mouth of Riv. Oita (Oita City)December 2, 2015Magasaki Pref.Mouth of Riv. Oita (Oita City)December 2, 2015Miyazaki Pref.Mouth of Riv. Oyodo (Miyazaki City)December 8, 2015Miyazaki Pref.Mouth of Riv. Oyodo (Miyazaki City)October 14, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 10, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 12, 2015			
Wakayama Pref.Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)November 16, 2015Okayama Pref.Offshore of MizushimaNovember 4, 2015Hiroshima Pref.Kure PortNovember 4, 2015Hiroshima BayNovember 4, 2015Yamaguchi Pref.Tokuyama BayOctober 7, 2015Offshore of UbeNovember 16, 2015Offshore of HagiOctober 22, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 27, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 13, 2015Kagawa Pref.Takamatsu PortOctober 30, 2015Kochi Pref.Mouth of Riv. Shimanto (Shimanto City)October 14, 2015Kitakyushu CityDokai BayOctober 20, 2015Fukuoka CityHakata BayOctober 29, 2015Nagasaki Pref.Imari BayOctober 29, 2015Nagasaki Pref.Omura BayDecember 2, 2015Oita Pref.Mouth of Riv. Oita (Oita City)December 2, 2015Nagasaki Pref.Mouth of Riv. Oita (Oita City)December 2, 2015Miyazaki Pref.Mouth of Riv. Oita (Oita City)December 2, 2015Miyazaki Pref.Mouth of Riv. Oita (Oita City)December 14, 2015Kagoshima Pref.Kiv. Amori (Kirishima City)November 10, 2015Kagoshima Pref.Kiv. Amori (Kirishima City)November 10, 2015			,
Okayama Pref.Offshore of MizushimaNovember 4, 2015Hiroshima Pref.Kure PortNovember 4, 2015Hiroshima BayNovember 4, 2015Yamaguchi Pref.Tokuyama BayOctober 7, 2015Offshore of UbeNovember 16, 2015Offshore of HagiOctober 22, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 27, 2015Kagawa Pref.Takamatsu PortOctober 13, 2015Ehime Pref.Niihama PortOctober 30, 2015Kochi Pref.Mouth of Riv. Shimanto (Shimanto City)October 20, 2015Kitakyushu CityDokai BayOctober 20, 2015Fukuoka CityHakata BayNovember 30, 2015Saga Pref.Imari BayOctober 29, 2015Nagasaki Pref.Omura BayDecember 2, 2015Oita Pref.Mouth of Riv. Oita (Oita City)December 2, 2015Miyazaki Pref.Mouth of Riv. Oyodo (Miyazaki City)December 8, 2015Miyazaki Pref.Mouth of Riv. Oyodo (Miyazaki City)November 10, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 10, 2015			
Hiroshima Pref.Kure PortNovember 4, 2015Hiroshima BayNovember 4, 2015Yamaguchi Pref.Tokuyama BayOctober 7, 2015Offshore of UbeNovember 16, 2015Offshore of HagiOctober 22, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 27, 2015Kagawa Pref.Takamatsu PortOctober 13, 2015Ehime Pref.Niihama PortOctober 30, 2015Kochi Pref.Mouth of Riv. Shimanto (Shimanto City)October 20, 2015Kitakyushu CityDokai BayOctober 20, 2015Fukuoka CityHakata BayOctober 20, 2015Saga Pref.Imari BayOctober 29, 2015Nagasaki Pref.Omura BayOctober 29, 2015Oita Pref.Mouth of Riv. Oita (Oita City)December 2, 2015Miyazaki Pref.Mouth of Riv. Oita (Oita City)December 8, 2015Miyazaki Pref.Mouth of Riv. Oyodo (Miyazaki City)October 14, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 10, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 10, 2015			
Hiroshima BayNovember 4, 2015Yamaguchi Pref.Tokuyama BayOctober 7, 2015Offshore of UbeNovember 16, 2015Offshore of HagiOctober 22, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 27, 2015Kagawa Pref.Takamatsu PortOctober 13, 2015Ehime Pref.Niihama PortOctober 30, 2015Kochi Pref.Mouth of Riv. Shimanto (Shimanto City)October 20, 2015Kitakyushu CityDokai BayOctober 20, 2015Fukuoka CityHakata BayOctober 30, 2015Saga Pref.Imari BayOctober 29, 2015Nagasaki Pref.Omura BayOctober 29, 2015Oita Pref.Mouth of Riv. Oita (Oita City)December 2, 2015Miyazaki Pref.Mouth of Riv. Ojta (Oita City)December 8, 2015Miyazaki Pref.Mouth of Riv. Ojta (Cita City)October 14, 2015Kagoshima Pref.Kiv. Amori (Kirishima City)November 10, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 12, 2015			
Yamaguchi Pref.Tokuyama BayOctober 7, 2015Offshore of UbeNovember 16, 2015Offshore of HagiOctober 22, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 27, 2015Kagawa Pref.Takamatsu PortOctober 13, 2015Ehime Pref.Niihama PortOctober 30, 2015Kochi Pref.Mouth of Riv. Shimanto (Shimanto City)October 20, 2015Kitakyushu CityDokai BayOctober 20, 2015Fukuoka CityHakata BayNovember 30, 2015Saga Pref.Imari BayOctober 29, 2015Nagasaki Pref.Omura BayDecember 2, 2015Oita Pref.Mouth of Riv. Oita (Oita City)December 8, 2015Miyazaki Pref.Mouth of Riv. Oyodo (Miyazaki City)October 14, 2015Kagoshima Pref.Riv. Amori (Kirishima City)October 14, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 10, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 12, 2015	mrosmina Pref.		
Offshore of UbeNovember 16, 2015Offshore of HagiOctober 22, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 27, 2015Kagawa Pref.Takamatsu PortOctober 13, 2015Ehime Pref.Niihama PortOctober 30, 2015Kochi Pref.Mouth of Riv. Shimanto (Shimanto City)October 14, 2015Kitakyushu CityDokai BayOctober 20, 2015Fukuoka CityHakata BayOctober 20, 2015Saga Pref.Imari BayOctober 29, 2015Nagasaki Pref.Omura BayDecember 2, 2015Oita Pref.Mouth of Riv. Oita (Oita City)December 2, 2015Miyazaki Pref.Mouth of Riv. Oyodo (Miyazaki City)October 14, 2015Kagoshima Pref.Riv. Amori (Kirishima City)October 14, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 10, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 10, 2015	Vamaguchi Drof		· · · · · · · · · · · · · · · · · · ·
Offshore of HagiOctober 22, 2015Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 27, 2015Kagawa Pref.Takamatsu PortOctober 13, 2015Ehime Pref.Niihama PortOctober 30, 2015Kochi Pref.Mouth of Riv. Shimanto (Shimanto City)October 14, 2015Kitakyushu CityDokai BayOctober 20, 2015Fukuoka CityHakata BayNovember 30, 2015Saga Pref.Imari BayOctober 29, 2015Nagasaki Pref.Omura BayDecember 2, 2015Oita Pref.Mouth of Riv. Oita (Oita City)December 8, 2015Miyazaki Pref.Mouth of Riv. Oyodo (Miyazaki City)October 14, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 10, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 10, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 10, 2015	i amaguciii Piel.		
Tokushima Pref.Mouth of Riv. Yoshino (Tokushima City)October 27, 2015Kagawa Pref.Takamatsu PortOctober 13, 2015Ehime Pref.Niihama PortOctober 30, 2015Kochi Pref.Mouth of Riv. Shimanto (Shimanto City)October 14, 2015Kitakyushu CityDokai BayOctober 20, 2015Fukuoka CityHakata BayNovember 30, 2015Saga Pref.Imari BayOctober 29, 2015Nagasaki Pref.Omura BayDecember 2, 2015Oita Pref.Mouth of Riv. Oita (Oita City)December 8, 2015Miyazaki Pref.Mouth of Riv. Oyodo (Miyazaki City)October 14, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 10, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 12, 2015			
Kagawa Pref.Takamatsu PortOctober 13, 2015Ehime Pref.Niihama PortOctober 30, 2015Kochi Pref.Mouth of Riv. Shimanto (Shimanto City)October 14, 2015Kitakyushu CityDokai BayOctober 20, 2015Fukuoka CityHakata BayNovember 30, 2015Saga Pref.Imari BayOctober 29, 2015Nagasaki Pref.Omura BayDecember 2, 2015Oita Pref.Mouth of Riv. Oita (Oita City)December 8, 2015Miyazaki Pref.Mouth of Riv. Oyodo (Miyazaki City)October 14, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 10, 2015Gotanda-bashi Bridge, Riv. Gotanda (Ichikikushikino City)November 12, 2015	Tokushima Pref		· · · · · · · · · · · · · · · · · · ·
Ehime Pref.Niihama PortOctober 30, 2015Kochi Pref.Mouth of Riv. Shimanto (Shimanto City)October 14, 2015Kitakyushu CityDokai BayOctober 20, 2015Fukuoka CityHakata BayNovember 30, 2015Saga Pref.Imari BayOctober 29, 2015Nagasaki Pref.Omura BayDecember 2, 2015Oita Pref.Mouth of Riv. Oita (Oita City)December 8, 2015Miyazaki Pref.Mouth of Riv. Oyodo (Miyazaki City)October 14, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 10, 2015Gotanda-bashi Bridge, Riv. Gotanda (Ichikikushikino City)November 12, 2015			
Kochi Pref.Mouth of Riv. Shimanto (Shimanto City)October 14, 2015Kitakyushu CityDokai BayOctober 20, 2015Fukuoka CityHakata BayNovember 30, 2015Saga Pref.Imari BayOctober 29, 2015Nagasaki Pref.Omura BayDecember 2, 2015Oita Pref.Mouth of Riv. Oita (Oita City)December 8, 2015Miyazaki Pref.Mouth of Riv. Oyodo (Miyazaki City)October 14, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 10, 2015Gotanda-bashi Bridge, Riv. Gotanda (Ichikikushikino City)November 12, 2015			
Kitakyushu CityDokai BayOctober 20, 2015Fukuoka CityHakata BayNovember 30, 2015Saga Pref.Imari BayOctober 29, 2015Nagasaki Pref.Omura BayDecember 2, 2015Oita Pref.Mouth of Riv. Oita (Oita City)December 8, 2015Miyazaki Pref.Mouth of Riv. Oyodo (Miyazaki City)October 14, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 10, 2015Gotanda-bashi Bridge, Riv. Gotanda (Ichikikushikino City)November 12, 2015			
Fukuoka CityHakata BayNovember 30, 2015Saga Pref.Imari BayOctober 29, 2015Nagasaki Pref.Omura BayDecember 2, 2015Oita Pref.Mouth of Riv. Oita (Oita City)December 8, 2015Miyazaki Pref.Mouth of Riv. Oyodo (Miyazaki City)October 14, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 10, 2015Gotanda-bashi Bridge, Riv. Gotanda (Ichikikushikino City)November 12, 2015			
Saga Pref.Imari BayOctober 29, 2015Nagasaki Pref.Omura BayDecember 2, 2015Oita Pref.Mouth of Riv. Oita (Oita City)December 8, 2015Miyazaki Pref.Mouth of Riv. Oyodo (Miyazaki City)October 14, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 10, 2015Gotanda-bashi Bridge, Riv. Gotanda (Ichikikushikino City)November 12, 2015			
Nagasaki Pref.Omura BayDecember 2, 2015Oita Pref.Mouth of Riv. Oita (Oita City)December 8, 2015Miyazaki Pref.Mouth of Riv. Oyodo (Miyazaki City)October 14, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 10, 2015Gotanda-bashi Bridge, Riv. Gotanda (Ichikikushikino City)November 12, 2015			
Oita Pref.Mouth of Riv. Oita (Oita City)December 8, 2015Miyazaki Pref.Mouth of Riv. Oyodo (Miyazaki City)October 14, 2015Kagoshima Pref.Riv. Amori (Kirishima City)November 10, 2015Gotanda-bashi Bridge, Riv. Gotanda (Ichikikushikino City)November 12, 2015			
Miyazaki Pref. Mouth of Riv. Oyodo (Miyazaki City) October 14, 2015 Kagoshima Pref. Riv. Amori (Kirishima City) November 10, 2015 Gotanda-bashi Bridge, Riv. Gotanda (Ichikikushikino City) November 12, 2015			
Kagoshima Pref.Riv. Amori (Kirishima City)November 10, 2015Gotanda-bashi Bridge, Riv. Gotanda (Ichikikushikino City)November 12, 2015			
Gotanda-bashi Bridge, Riv. Gotanda (Ichikikushikino City) November 12, 2015			
	Okinawa Pref.		October 29, 2015

Table 3-1-2 List of monitored sites (sediment) in the Environmental Monitoring in FY2015

(Note) *: "Nagoya Port" of Environmental Monitoring and "Nagoya Port, West of Shiomi Wharf" Initial and Detailed Environmental Survey are the same point each.

Figure 3-1-2 Monitored sites (sediment) in the Environmental Monitoring in FY2015

Local communities	Monitored sites	Sampling dates		Wildlife species
Hokkaido	Offshore of Kushiro	October 24, 2015	Fish	Rock greenling (Hexagrammos lagocephalus)
	Offshore of Kushiro	October 7, 2015	Fish	Chum salmon (Oncorhynchus keta)
	Offshore of Japan Sea (offshore of Iwanai)	Late November *	Fish	Greenling (Hexagrammos otakii)
Iwate Pref.	Yamada Bay	October 14, 2015	Bibalves	Blue mussel (Mytilus galloprovincialis)
	Yamada Bay	October 14, 2015	Fish	Greenling (Hexagrammos otakii)
Miyagi Pref.	Sendai Bay(Matsushima Bay)	December 17, 2015	Fish	Greenling (Hexagrammos otakii)
Ibaraki Pref.	Offshore of Onahama	November 6, 2015	Fish	Pacific saury (Cololabis saira)
Tokyo Met.	Tokyo Bay	September 8, 2015	Fish	Sea bass (Lateolabrax japonicus)
Yokohama City	Yokohama Port	November 24, 2015	Bibalves	Blue mussel (Mytilus galloprovincialis)
Kawasaki City	Offshore of Ogishima Island, Port of Kawasaki	October 11~13, 2015	Fish	Sea bass (Lateolabrax japonicus)
Ishikawa Pref.	Coast of Noto Peninsula	August 4, 2015	Bibalves	Blue mussel (<i>Mytilus galloprovincialis</i>)
Nagoya City	Nagoya Port	September 3, 2015	Fish	Striped mullet (<i>Mugil cephalus</i>)
Shiga Pref.	Lake Biwa, Riv. Ado (Takashima City)	April 2, 2015	Fish	Dace (Tribolodon hakonensis)
Osaka Pref.	Osaka Bay	November 9, 2015	Fish	Sea bass (Lateolabrax japonicus)
Hyogo Pref.	Offshore of Himeji	November 30, 2015	Fish	(Lateolabrax japonicus) (Lateolabrax japonicus)
Tottori Pref.	Riv.Tenjin(Kurayoshi City)	July 15, 2015	Birds	Great Cormorant (<i>Phalacrocorax carbo</i>)
	Nakaumi	October 19, 2015	Fish	(Lateolabrax japonicus)
Hiroshima City	Hiroshima Bay	October 18, 2015	Fish	Sea bass (Lateolabrax japonicus)
Kagawa Pref.	Takamatsu Port	September 18, 2015	Fish	Striped mullet (<i>Mugil cephalus</i>)
Kochi Pref.	Mouth of Riv. Shimanto (Shimanto City)	October ~ November, 2015*	Fish	Sea bass (<i>Lateolabrax japonicas</i>)
Oita Pref.	Mouth of Riv. Oita(Oita City)	January 24, 2016	Fish	Sea bass (<i>Lateolabrax japonicas</i>)
Kagoshima Pref.	West Coast of Satsuma Peninsula	November 30, 2015	Fish	(Lateolabrax japonicas) Sea bass (Lateolabrax japonicas)
Okinawa Pref.	Nakagusuku Bay	January 27, 2016	Fish	(<i>Lateolaorax Japonicus</i>) Okinawa seabeam (<i>Acanthopagrus sivicolus</i>)

Table 3-1-3 List of monitored areas (wildlife) in the Environmental Monitoring in FY2015

(Note) "*" means details of the sampling date unknown.

Figure 3-1-3 Monitored areas (wildlife) in the Environmental Monitoring in FY2015

Local	monitored sites (air) in the Environmental Monitoring in FY2	Sampling dates
communities	Monitored sites	(Warm season)
Hokkaido	Oshima Subprefectural Office Building (Hakodate City)	October 13 ~ 20, 2015 * or October 13 ~ 16, 2015**
Sapporo City	Sapporo Art Park (Sapporo City)	October 5 ~ 8, 2015
Iwate Pref.	Amihari Ski Area(Shizukuishi Town)	September 8 ~ 11, 2015
Miyagi Pref.	Miyagi Prefectural Government Sendai Civil Engineering Office (Sendai City)	September $2 \sim 9^*$ or September $3 \sim 4$ and $7 \sim 9^{**}$, 2015
Ibaraki Pref.	Ibaraki Kasumigaura Environmental Science Center (Tsuchiura City)	September $3 \sim 10^*$ or September $8 \sim 10$ and $11 \sim 12^{**}$, 2015
Chiba Pref.	Ichihara-Matsuzaki Air Quality Monitoring Station (Ichihara City)	September 28 ~ October 5* or September 28 ~ October 1**, 2015
Tokyo Met.	Tokyo Metropolitan Research Institute for Environmental Protection (Koto Ward)	September 11~18* or September 14~17**, 2015
	Chichijima Island	October $1 \sim 8^*$ or October $1 \sim 3$ and $5 \sim 6^{**}$, 2015
Kanagawa Pref.	Kanagawa Environmental Research Center (Hiratsuka City)	September 14 ~ 17, 2015
Yokohama City	Yokohama Environmental Science Research Institute (Yokohama City)	September 24 ~ October 1* or September 28 ~ October 1**, 2015
Niigata Pref.	Oyama Air Quality Monitoring Station (Niigata City)	September 14 ~ 17, 2015
Toyama Pref.	Tonami Air Quality Monitoring Station (Tonami City)	September 7 ~ 10, 2015
Ishikawa Pref.	Ishikawa Prefectural Institute of Public Health and Environmental Science (Kanazawa City)	November 9 ~ 12, 2015
Yamanashi Pref.	Yamanashi Institute for Public Health and Environment (Kofu City)	September 7 ~ 10, 2015
Nagano Pref.	Nagano Environmental Conservation Research Institute (Nagano City)	September 29 ~ October 6* or September 29 ~ October 2,** 2015
Gifu Pref.	Gifu Prefectural Research Institute for Health and Environmental Sciences (Kakamigahara City)	October 19~22, 2015
Nagoya City	Chikusa Ward Heiwa Park (Nagoya City)	September 29 ~ October 6* or September 29 ~ October 2**, 2015
Mie Pref.	Mie Prefecture Health and Environment Research Institute (Yokkaichi City)	October 5 ~ 8, 2015
Osaka Pref.	Research Institute of Environment, Agriculture and Fisheries, Osaka Prefectural Government (Osaka City)	October 6 ~ 9, 2015
Hyogo Pref.	Hyogo Prefectural Environmental Research Center (Kobe City)	September 7 ~ 10, 2015
Kobe City	Kobe City Government Building (Kobe City)	October 13 ~ 16, 2015
Nara Pref.	Tenri Air Quality Monitoring Station (Tenri City)	September 28 ~ October 1, 2015
Shimane Pref.	Oki National Acid Rain Observatory (Okinoshima Town)	October 5 ~ 7 and 8 ~ 9, 2015
Hiroshima City	Hiroshima City Kokutaiji Junior High School (Hiroshima City)	September 14 ~ 17, 2015
Yamaguchi Pref.	Yamaguchi Prefectural Institute of Public Health and Environment (Yamaguchi City)	September 10 \sim 17* or September 14 \sim 17**, 2015
	Mishima Community Center (Hagi City)	September 17 ~ 24, 2015*
Tokushima Pref.	Tokushima Prefectural Pablic Health, Pharmaceutical and Environmental Sciences Center (Tokushima City)	October 13 ~ 16, 2015
Kagawa Pref.	Kagawa Prefectural Public Swimming Pool (Takamatsu City)	September 25 ~ October 2^* or September $27 \sim 28$ and $30 \sim$ October 2^{**} , 2015
Ehime Pref.	Ehime Prefectural Government Nanyo Regional Office (Uwajima City)	September 28 ~ October 1, 2015
Fukuoka Pref.	Omuta City Government Building (Omuta City)	September 28 ~ October 1, 2015
Saga Pref.	Saga Prefectural Environmental Research Center (Saga City)	September 24 ~ October 1* or September 28 ~ October 1**, 2015
Kumamoto Pref.	Kumamoto Prefectural Institute of Public Health and Environmental Science (Udo City)	October 13 ~ 16, 2015
Miyazaki Pref.	Miyazaki Prefectural Institute for Public Health and Environment (Miyazaki City)	September 29 ~ October 6* or September 29 ~ October 2**, 2015
Kagoshima Pref.	Kagoshima Prefectural Institute for Environmental Research and Public Health (Kagoshima City)	September 28 ~ October 1, 2015
Okinawa Pref.	Cape Hedo (Kunigami Village)	September 14 ~ 17, 2015
	sampling except [21] Hexachlorobuta-1,3-diene. " ** " means sampli	

Table 3-1-4 List of monitored sites (air) in the Environmental Monitoring in FY2015
Tuble 5 1 1 Elst of monitored sites	un	, in the Environmental Monitoring in 1 12019

(Note) " * " means sampling except [21] Hexachlorobuta-1,3-diene. " ** " means sampling [21] Hexachlorobuta-1,3-diene. As well, [21] Hexachlorobuta-1,3-diene was not collected at Mishima Community Center (Hagi City).

Figure 3-1-4 Monitored sites (air) in the Environmental Monitoring in FY2015

T 11 2 2	D	C	· · · · · ·
1 able $3-2$	Properties	of target	species

	Species	Properties	Monitored areas	Aim of monitoring	Notes
Bibalves	Blue mussel (<i>Mytilus</i> galloprovincialis)	Distributed worldwide, excluding tropical zones Adheres to rocks in inner bays and to bridge piers	 Yamada bay Yokohama port Coast of Noto Peninsula 	Follow-up of the environmental fate and persistency in specific areas	Monitored in the 3 areas with different levels of persistency
	Greenling (Hexagrammos otakki)	Distributed from Hokkaido to southern Japan, the Korean Peninsula, and China Lives in shallow seas of 5-50 m depth from sea level	 Offshore of Iwanai Yamada bay Sendai Bay 	Follow-up of the environmental fate and persistency in specific areas	persistency
	Rock greenling (Hexagrammos lagocephalus)	Lives in cold-current areas of Hidaka and eastward (Hokkaido) Larger than the greenling and eats fish smaller than its mouth size at the sea bottom	Offshore of Kushiro	Follow-up of the environmental fate and persistency in specific areas	
	Pacific saury (Cololabis saira)	Distributed widely in northern Pacific Ocean Migrates around Japanese Archipelago; in Chishima in autumn and northern Kyushu in winter Bioaccumulation of chemicals is said to be moderate	• Offshore of Sanriku	Follow-up of the environmental fate and persistency around the Japanese archipelago	
Fish	Chum salmon (Oncorhynchus keta)	Distributed in northern Pacific Ocean, Sea of Japan, Bering Sea, Sea of Okhotsk, the whole of the Gulf of Alaska, and part of the Arctic Ocean Runs the Tone River on the Pacific Ocean side and rivers in Yamaguchi Prefecture and northward on the Sea of Japan side in Japan Bioaccumulation of chemicals is said to be moderate	• Offshore of Kushiro	Follow-up of the environmental fate and persistency on a global scale	
File	Sea bass (Lateolabrax japonicus)	Distributed around the shores of various areas in Japan, the Korean Peninsula, and the coastal areas of China Sometimes lives in a freshwater environment and brackish-water regions during its life cycle Bioaccumulation of chemicals is said to be high	 Tokyo Bay Offshore of Ogishima Island, Port of Kawasaki Osaka Bay Offshore of Himeji Nakaumi Hiroshima Bay Mouth of Riv. Shimanto Mouth of Riv. Oita West Coast of Satsuma Peninsula 	Follow-up of the environmental fate and persistency in specific areas	Monitored in the 9 areas with different levels of persistency
	Striped mullet (Mugil cephalus)	Distributed widely in the worldwide tropical zones and subtropical zones Sometimes lives in a freshwater environment and brackish-water regions during its life cycle	 Nagoya Port Takamatsu Port 	Follow-up of the environmental fate and persistency in specific areas	
	Okinawa seabeam (Acanthopagrus sivicolus)	Distributed around Nansei Shoto (Ryukyu Islands) Lives in coral reefs and in bays into which rivers flow	• Nakagusuku Bay	Follow-up of the environmental fate and persistency in specific areas	
	Dace (Tribolodon hakonensis)	Distributed widely in freshwater environments throughout Japan Preys mainly on insects	• Lake Biwa, Riv. Ado (Takashima City)	Follow-up of the environmental fate and persistency in specific areas	
Birds	Great Cormorant (immature)* (<i>Phalacrocorax</i> <i>carbo</i>)	Distributed widely throughout Japan Eats primarily fish Bioaccumulation of chemicals is said to be high	Riv.Tenjin(Kurayoshi City)	Follow-up of the concentrations of chemicals in top predators	

* In other countries of the survey, because there were the examples that the survey obtained the eggs, the eggs of great cormorants were taken at 1 site in this survey, the results were treated as the reference values, shown in reference.

Table 3-3-1 Basic data of specimens (bivalves as wildlife) in the Environmental Monitoring in FY 2015

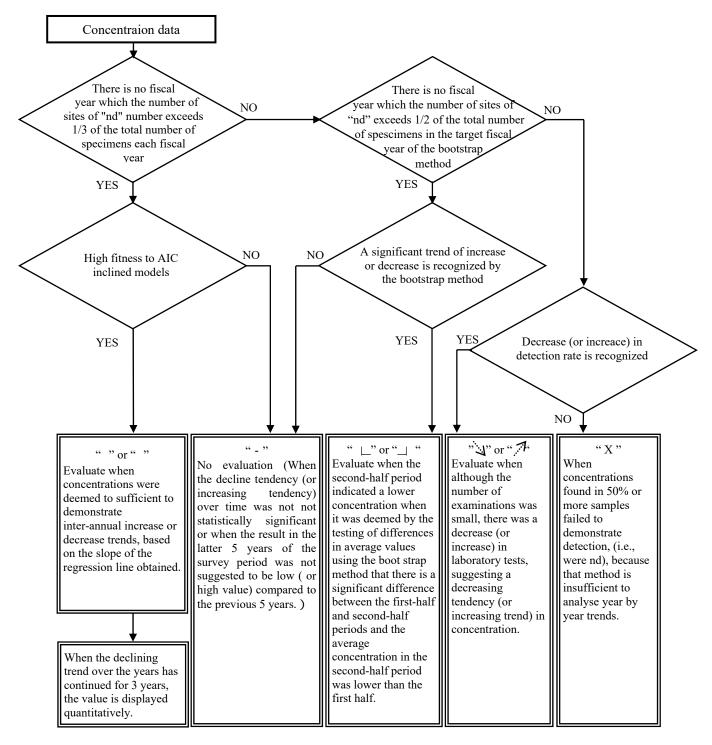
Bivalve species (Area)	No.	Sampling month	Sex	Number of animals		eight (g) Average)			ength (cm) Average)		Water content %	Lipid content %
Blue mussel	1	0.1	Uncertain	128	8.5 ~	10.1 (9.2)	$28.4~\sim$	76.5 (44.2)	80	1.7
(Mytilus galloprovincialis)	2	October, 2015	Uncertain	212	6.8 ~	8.7 (7.8)	17.2 ~	48.8 (28.7)	80	1.6
Yamada Bay	3		Uncertain	295	6.2 ~	8.0 (7.0)	12.8 ~	30.8 (21.0)	80	1.5
Blue mussel	1		Mixed	120	3.5 ~	5.3 (4.2)	4.4 ~	12.3 (6.8)	91	0.4
(Mytilus galloprovincialis)	2	November, 2015	Mixed	112	3.5 ~	5.9 (4.1)	3.4 ~	17.7 (7.1)	90	0.5
Yokohama Port	3	2015	Mixed	115	3.5 ~	5.0 (4.1)	3.7 ~	12.2 (6.8)	91	0.4
Blue mussel	1		Uncertain	47	10.4 ~	11.8 (11.1)	74.4 ~	119.5 (94.9)	64	2.2
(Mytilus galloprovincialis)	2	August, 2015	Uncertain	76	8.0 ~	10.0 (9.2)	$40.1~\sim$	74.0 (61.3)	67	2.6
Coast of Noto Peninsula	3	2015	Uncertain	147	6.5 ~	7.7 (7.2)	24.3 ~	44.2 (32.4)	67	2.6

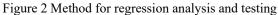
Table 3-3-2 Basic data of specimens (fish as wildlife) in the Environmental Monitoring in FY 2014 (Part 1)

Fish species (Area)	No.	Sampling month	Sex	Number of animals		^v eight (g) Average)			length (c (Average		<u></u>	Water content %	Lipid content %
Rock greenling	1	0.1	Mixed	4	32.0 ~	40.0 (36.8)	740 ~	1,670	(1,2	69)	76	1.5
(Hexagrammos lagocephalus)	2	October, 2015	Mixed	3	37.0 ~	42.0 (38.8)	1,610 ~	2,040	(1,7	60)	78	1.7
Offshore of Kushiro	3		Mixed	4	30.0 ~	44.0 (36.0)	690 ~	2,480	(1,3	38)	78	1.2
Chum salmon	1	0.11	Male	1		62			4,520			71	2.6
(Oncorhynchus keta)	2	October, 2015	Male	1		61			3,660			70	3.2
Offshore of Kushiro	3	2010	Female	2	59 ~	67 (63)	3,480 ~	4,300	(3,8	90)	73	2.5
Greenling	1	NT 1	Mixed	6	$28.0~\sim$	34.0 (31.3)	580 ~	1,210	(8	53)	75	2.6
(Hexagrammos otakii) Offshore of Japan	2	November, 2015	Mixed	7	$26.0~\sim$	37.0 (29.6)	490 ~	1,290	(7	22)	70	3.2
Sea(offshore of Iwanai)	3	2010	Mixed	7	24.0 ~	40.0 (31.3)	360 ~	1,410	(7	46)	73	2.5
Greenling	1	0.11	Uncertain	6	35.5 ~	39.5 (37.2)	903 ~	1,248	(1,0	52)	73	4.1
(Hexagrammos otakii)	2	October, 2015	Uncertain	8	33.5 ~	35.5 (34.3)	754 ~	971	(8	50)	72	5.0
Yamada Bay	3	2015	Uncertain	11	30.0 ~	33.0 (31.6)	527 ~	854	(6	65)	73	5.1
Greenling	1	D 1	Mixed	79	12.8 ~	15.9 (14.7)	37.1 ~	82.1		60.1)	76	0.86
(Hexagrammos otakii) Sendai Bay	2	December, 2015	Mixed	42	16.0 ~	18.0 (17.0)	70.7 ~	131.8	(94.8)		
(Matsushima Bay)	3	2015	Mixed	21	18.1 ~	25.8 (21.3)	78.8 ~	329.9	(1	97.4)		
Pacific saury	1		Uncertain	45	23.0 ~	28.0 (25.9)	62.3 ~	120.0) (88.9)	67	12
(Cololabis saira)	2	November, 2015	Uncertain	35	$27.0~\sim$	30.0 (28.4)	120.3 ~	133.5	(1	27.2)	65	12
Offshore of Onahama	3	2015	Uncertain	28	$27.0~\sim$	30.0 (29.1)	135.1 ~	155.4	(1	42.1)	60	12
Sea bass	1		Mixed	4	53.8 ~	59.8 (56.7)	1,540 ~	1,720	(1,6	36)	76	2.7
(Lateolabrax japonicus)	2	September, 2015	Mixed	5	52.2 ~	55.6 (53.5)	1,190 ~	1,435	(1,3	03)	76	2.0
Tokyo Bay	3	2015	Mixed	5	44.2 ~	51.8 (48.0)	835 ~	1,180	(1,0	13)	77	2.2
Sea bass	1		Female	15	30.2 ~	32.4 (31.6)	347 ~	502	(4	29)	68	1.8
(Lateolabrax japonicus) Offshore of Ogishima	2	October, 2015	Male	14	27.2 ~	37.4 (31.9)	300 ~	671	(4	49)	68	1.2
Island, Port of Kawasaki	3	2015	Female	13	32.6 ~	34.1 (33.3)	228 ~	528	(4	66)	70	1.4
Striped mullet	1	~ .	Uncertain	5	34.5 ~	35.0 (34.8)	625 ~	758	(7	11)	-	-
(Mugil cephalus)	2	September, 2015	Uncertain	5	33.5 ~	36.1 (35.1)	680 ~	814	(7	55)		
Nagoya Port	3	2015	Uncertain	5	32.7 ~	38.5 (35.4)	689 ~	1,015	(7	92)		
Dace	1		Male	22	23.0 ~	29.0 (25.4)	166 ~	312	(2	34)	69	3.7
(<i>Tribolodon hakonensis</i>) Lake Biwa, Riv. Ado	2	April, 2015	Female	23	22.8 ~	28.8 (26.0)	175 ~	316	(2	37)	73	3.5
(Takashima City)	3		Female	23	$25.0~\sim$	28.3 (26.4)	202 ~	307	(2	41)	70	3.6
Sea bass	1		Uncertain	10	32.6 ~	37.4 (35.2)	500 ~	698	(6	25)	77	1.9
(Lateolabrax japonicus)	2	November, 2015	Uncertain	10	33.2 ~	37.4 (35.1)	514 ~	700	(6	24)	77	2.2
Osaka Bay	3	2015	Uncertain	10	32.2 ~	37.6 (35.2)	542 ~	765	(6	40)	75	2.2
Sea bass	1		Male	4	47.4 ~	49.0 (48.1)	1,500 ~	1,700	(1,6	00)	75	4.5
(Lateolabrax japonicus)	2	November, 2015	Male	3	49.6 ~	51.8 (50.8)	1,900 ~	2,300	(2,1	00)		
Offshore of Himeji	3	2013	Mixed	3	52.8 ~	56.1 (55.0)	2,000 ~	3,400	(2,6	00)		
Sea bass	1		Mixed	10	34.0 ~	39.4 (36.5)	488 ~	759	(6	40)	80	0.73
(Lateolabrax japonicus)	2	October, 2015	Mixed	11	33.1 ~	36.7 (35.0)	464 ~	602	(5	33)	81	0.65
Nakaumi	3	2015	Mixed	13	30.3 ~	36.7 (35.9)	356 ~	579	(4	72)	80	0.65

Fish species (Area)	No.	Sampling month	Sex	Number of animals		eight (g) verage)				ength (c (Averag				Water content %	Lipid content %
Sea bass	1	0.1	Female	4	37.2 ~	38.5 (37.9)	712	\sim	784	(763)	78	1.1
(Lateolabrax japonicus)	2	October, 2015	Female	4	36.8 ~	37.0 (37.0)	701	\sim	795	(734)	78	1.4
Hiroshima Bay	3	2015	Mixed	4	33.0 ~	34.0 (33.8)	562	\sim	671	(616)	78	1.2
Striped mullet	1	~ .	Uncertain	1		57.0 (57.0)			2,200				67	3.5
(Mugil cephalus)	2	September, 2015	Uncertain	2	52.0 ~	56.0 (54.0)	1,600	\sim	2,000	(1,800)	61	4.3
Takamatsu Port	3	2015	Uncertain	2	53.0 ~	54.0 (53.5)	1,800	\sim	2,000	(1,900)	68	3.9
Sea bass	1	October ~	Uncertain	9	25.4 ~	28.5 (27.1)	330	~	414	(381)	77	1.5
(<i>Lateolabrax japonicus</i>) Mouth of Riv. Shimanto	2	November	Uncertain	9	$20.6 \sim$	28.1 (26.5)	301	\sim	422	(374)	78	1.1
(Shimanto City)	3	2015	Uncertain	9	18.4 ~	35.9 (26.1)	127	\sim	927	(366)	77	1.6
Sea bass	1		Female	2	52.4 ~	53.1 (52.8)	1,675	~	1,755	(1,715)	79	1.0
(<i>Lateolabrax japonicus</i>) Mouth of Riv. Oita	2	January, 2016	Female	2	48.9 ~	53.5 (51.2)	1,376	~	1,803	(1,590)	79	1.0
(Oita City)	3	2010	Female	2	54.7 ~	55.4 (55.1)	1,848	~	2,051	(1,950)	78	1.2
Sea bass	1		Mixed	8	28.6 ~	30.0 (29.5)	428	~	480	(455)	81	2.4
(Lateolabrax japonicus) West Coast of Satsuma	2	November, 2015	Mixed	11	24.2 ~	27.0 (26.3)	240	~	406	(329)	86	1.1
Peninsula)	3	2015	Mixed	9	27.0 \sim	28.0 (27.6)	328	~	397	(362)	86	1.2
Okinawa seabeam	1	-	Male	2	29.5 ~	33.0 (31.3)	883	~	1,136	(1,010)	74	1.4
(Acanthopagrus sivicolus)	2	January, 2016	Female	2	31.7 ~	32.1 (31.9)	1,190	~	1,229	(1,210)	76	1.3
Nakagusuku Bay	3	2010	Female	2	30.8 ~	35.8 (33.3)	1,307	~	1,640	(1,474)	74	1.1

Table 3-3-2 Basic data of specimens (fish as wildlife) in the Environmental Monitoring in FY 2015 (Part 2)


Table 3-3-3 Basic data of specime	ns (hirds as wildlife) in the Environmental	Monitoring in FY 2015
Table 3-3-3 Dasie data of specific	ns (onus as whunte) In the Environmental	Monitoring in r 1 2015


Bird species (Area)	No.	Sampling month	Sex	Number of animals	Weight (g)	Length (cm)	Water content %	Lipid content %
Great Cormorant (immature)	1		Male	1	100	2,040	72	2.2
(Phalacrocorax carbo)	2	July, 2015	Male	1	100	1,380		
Riv.Tenjin (Kurayoshi City)	3		Male	1	97	1,600		

(Note) The great cormorants (immature) killed as harmful birds were used as specimens.

4. Method for regression analysis and testing

The analysis procedure and the evaluation for the analysis result shown in Fig.2 were carried out by the following method, as as to whether the survey results since FY2002 (since FY2003 for all substances in air and some substances in other media) in order to identify statistically significant differences which indicate inter-annual trends.

5. Summary of monitoring results

The detection ranges are shown in Table 3-4, and the detection limits are shown in Table 3-5.

The monitoring results in FY2015 were statistically analysed together with the previous monitoring results, accumulated over the past 14 years (or 13 years) as a result of successive measurements at the same site or area from FY2002 (FY2003 for some substances and media), in order to detect inter-annual trends of increase or decrease over the 14 years (or 13 years). The results of the analyses are shown in Table 3-6

OData were carefully handled on the basis of following points.

• For sediment

At each monitoring point, three (3) specimen samples were collected. And the substances were analysed for each place with one specimen sample that is a mixture of equal parts of the three (3) specimen samples.

• For wildlife

At each monitoring point, three (3) specimen samples were collected in principle. And the substances were analysed for each place with one specimen sample that is a mixture of equal parts of the three (3) specimen samples. • For air

At each monitored site, the sampling was for the monitoring in the warm season (September 2, 2015 \sim November 12, 2015).

In Kagawa Pref., monitoring had been carried out at not only the Takamatsu Joint Prefectural Government Building but also at the location of the Kagawa Prefectural Public Swimming Pool (Takamatsu City) as a reference site until FY 2014. In FY 2015, monitoring was carried out at only the Kagawa Prefectural Public Swimming Pool.

Table 3-4-1 List of the detection ranges in the Environmental M	Monitoring in FY2015 (Part 1)
---	-------------------------------

NT	Trucet al. 1	Surface wate	er (pg/L)	Sediment (p	g/g-dry)
No.	Target chemicals	Range (Frepuency)	Av.	Range (Frepuency)	Av.
[1]	Total PCBs	34~4,200 (48/48)	200	nd~1,100,000 (61/62)	6,400
[2]	НСВ	4.2~140 (48/48)	15	4~17,000 (62/62)	100
[3]	Aldrin (reference)				
[4]	Dieldrin (reference)				
[5]	Endrin (reference)				
	DDTs				
	[6-1] <i>p,p</i> '-DDT				
[6]	[6-2] <i>p,p</i> '-DDE				
	[6-3] <i>p,p</i> '-DDD				
	[6-4] <i>o.p</i> '-DDT				
	[6-5] <i>o.p</i> '-DDE				
	[6-6] <i>o,p</i> '-DDD				
	Chlordanes (reference)				
	[7-1] <i>cis</i> -chlordane (reference)				
[7]	[7-2] <i>trans</i> -chlordane (reference)				
L/]	[7-3] Oxychlordane (reference)				
	[7-4] <i>cis</i> -Nonachlor (reference)				
	[7-5] <i>trans</i> -Nonachlor (reference)				
	Heptachlors				
	[8-1] Heptachlor				
[8]	[8-2] <i>cis</i> -heptachlor epoxide				
	[8-3] trans-heptachlor epoxide				
	Toxaphenes				
	[9-1] Parlar-26				
[9]	[9-2] Parlar-50				
	[9-3] Parlar-62				
-	Mirex (reference)				
	HCHs	9.7.610	10	1.1~9,600	07
	[11-1] α-HCH	8.7~610 (48/48)	48	(62/62)	97
[11]	[11-2] <i>β</i> -HCH	21~1,100 (48/48)	130	2.5~5,900 (62/62)	160
	[11-3] γ-HCH (synonym:Lindane)	2.6~110 (48/48)	17	tr(0.3)~2,800 (62/62)	29
	[11-4] <i>ð</i> -HCH	0.8~310 (48/48)	7.2	tr(0.4)~2,900 (62/62)	27

(Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.
(Note 2) "

(Note 3) "tr(X)" indicates that X was below the quantification limit and over the detection limit.

		Surface wa	ter (pg/L)	Sediment (p	og/g-dry)
No.	Target chemicals	Range (Frepuency)	Av.	Range (Frepuency)	Av.
[12]	Chlordecone (reference)				
[13]	Hexabromobiphenyls			nd~15 (9/62)	nd
	Polybromodiphenyl ethers $(Br_4 \sim Br_{10})$ [14-1] Tetrabromodiphenyl	tr(1.2)~40	4.3	nd~1,400	30
	ethers [14-2] Pentabromodiphenyl ethers	(48/48) nd~31 (34/48)	tr(3.0)	(44/62) nd~1,300 (44/62)	23
1 41	[14-3] Hexabromodiphenyl ethers	nd~12 (5/48)	nd	nd~820 (42/62)	11
[14]	[14-4] Heptabromodiphenyl	nd~28 (9/48)	nd	nd~1,800 (44/62)	16
	[14-5] Octabromodiphenyl ethers	nd~36 (31/48)	2.3	nd~1,400 (41/62)	58
	[14-6] Nonabromodiphenyl ethers [14-7] Decabromodiphenyl	nd~330 (47/48) 140~13,000	36	nd~11,000 (55/62) 40~490,000	300
	ether Perfluorooctane sulfonic acid	(48/48) 120~4,700	630	(62/62) 7~2,200	91
[15]	(PFOS)	(48/48)		(62/62)	-
[16]	Perfluorooctanoic acid (PFOA)	310~17,000 (48/48)	1,400	8~270 (62/62)	48
[17]	Pentachlorobenzene	3.0~180 (48/48)	13	2.4~2,600 (62/62)	65
	Endosulfans				
18]	[18-1] α-Endosulfan				
	[18-2] β -Endosulfan				
	1,2,5,6,9,10-Hexabromo cyclododecanes				
	[19-1] α-1,2,5,6,9,10- Hexabromo cyclododecane			nd~27,000 (47/62)	390
101	[19-2] β-1,2,5,6,9,10- Hexabromo cyclododecane			nd~7,600 (33/62)	120
19]	[19-3] γ-1,2,5,6,9,10- Hexabromo cyclododecane			nd~60,000 (48/62)	330
	[19-4] δ-1,2,5,6,9,10- Hexabromo cyclododecane			nd (0/62)	nd
	[19-5] ε-1,2,5,6,9,10- Hexabromo cyclododecane			nd (0/62)	nd
20]	Total Polychlorinated Naphthalenes				
21]	Hexachlorobuta-1,3-diene				
22]	Pentachlorophenol	nd~26,000 (25/48)	130		

(Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.
(Note 2) """ means the medium was not monitored.
(Note 3) "tr(X)" indicates that X was below the quantification limit and over the detection limit.

		D1_1		Wildlife (p		D: 1		Air (pg	
No.	Target chemicals	Bibaly Range		Fish		Bird Range		Warm se Range	
		(Frepuency)	Av.	(Frepuency) 1,300	Av.	(Frepuency)	Av.	(Frepuency)	Av.
[1]	Total PCBs	580~9,600 (3/3)	2,400	~180,000 (19/19)	11,000	5,000 (1/1)	5,000	17~950 (35/35)	98
[2]	НСВ	tr(14)~120 (3/3)	35	43~1,700 (19/19)	170	760 (1/1)	760	74~170 (35/35)	120
[3]	Aldrin (reference)								
[4]	Dieldrin (reference)								
[5]	Endrin (reference)								
	DDTs								
	[6-1] <i>p,p'-</i> DDT							0.18~13 (35/35)	1.5
	[6-2] <i>p,p'-</i> DDE							0.31~34 (35/35)	2.4
[6]	[6-3] <i>p,p'</i> -DDD							nd~tr(0.31) (17/35)	nd
	[6-4] <i>o,p'-</i> DDT							0.14~6.8 (35/35)	0.99
	[6-5] <i>o,p'-</i> DDE							nd~1.1 (34/35)	0.25
	[6-6] <i>o,p'</i> -DDD							nd~0.37 (25/35)	tr(0.09)
	Chlordanes (reference) [7-1] <i>cis</i> -chlordane (reference)								
[7]	[7-2] <i>trans</i> -chlordane (reference) [7-3] Oxychlordane								
	(reference) [7-4] <i>cis</i> -Nonachlor								
	(reference) [7-5] <i>trans</i> -Nonachlor (reference)								
	Heptachlors								
	[8-1] Heptachlor	nd~tr(1.7) (1/3)	nd	nd~9.2 (9/19)	nd	nd (0/1)	nd	0.43~49 (35/35)	8.7
[8]	[8-2] <i>cis</i> -heptachlor epoxide	7.2~91 (3/3)	21	3.2~190 (19/19)	33	20 (1/1)	20	tr(0.4)~4.7 (35/35)	1.4
	[8-3] <i>trans</i> -heptachlor epoxide	nd (0/3)	nd	nd~10 (5/19)	nd	nd (0/1)	nd	nd (0/35)	nd
	Toxaphenes								
	[9-1]Parlar-26	nd~tr(17) (2/3)	tr(10)	nd~400 (13/19)	26	tr(10) (1/1)	tr(10)		
[9]	[9-2]Parlar-50	nd~tr(16) (2/3)	tr(11)	nd~640 (13/19)	tr(25)	nd (0/1)	nd		
	[9-3]Parlar-62	nd (0/3)	nd	nd~320 (2/19)	nd	nd (0/1)	nd		
[10]	Mirex (reference)								
	HCHs [11-1]a-HCH	3.5~25 (3/3)	11	tr(1.3)~180 (19/19)	18	13 (1/1)	13	8.8~300 (35/35)	33
[11]	 [11-2]β-НСН	13~69 (3/3)	34	6.0~390 (19/19)	56	57 (1/1)	57	0.36~34 (35/35)	3.0
1	[11-3] γ-HCH (synonym:Lindane)	$tr(3.6) \sim 14$ (3/3)	7.3	nd~42 (14/19)	6.1	nd (0/1)	nd	(35/35) (35/35)	8.3
	[11-4] <i>ð</i> -HCH	nd~tr(1.5) (1/3)	nd	nd~17 (12/19)	tr(1.7)	nd (0/1)	nd	nd~22 (32/35)	0.55

		Bibalves			Wildlife (pg/g-wet) Fish		Birds		Air (pg/m ³) Warm season	
No.	Target chemicals	Range (Frepuency)	Av.	Range (Frepuency)	Av.	Range (Frepuency)	Av.	Range (Frepuency)	Av.	
12]	Chlordecone (reference)									
[13]	Hexabromobiphenyls	nd (0/3)	nd	nd (0/19)	nd	nd (0/1)	nd	nd~1.1 (2/35)	nd	
	Polybromodiphenyl ethers $(Br_4 \sim Br_{10})$									
	[14-1] Tetrabromodiphenyl ethers	32~89 (3/3)	48	tr(14)~580 (19/19)	90	36 (1/1)	36	nd~2.7 (30/35)	tr(0.3)	
	[14-2] Pentabromodiphenyl ethers	16~20 (3/3)	18	nd~140 (18/19)	22	22 (1/1)	22	nd~0.9 (6/35)	nd	
14]	[14-3] Hexabromodiphenyl ethers	nd~41 (2/3)	tr(9)	nd~250 (18/19)	44	30 (1/1)	30	nd~2.0 (3/35)	nd	
1-1	[14-4] Heptabromodiphenyl ethers	nd~tr(11) (1/3)	nd	nd~44 (4/19)	nd	tr(11) (1/1)	tr(11)	nd~tr(0.6) (2/35)	nd	
	[14-5] Octabromodiphenyl ethers	nd (0/3)	nd	nd~60 (9/19)	tr(7)	tr(5) (1/1)	tr(5)	nd~3.8 (9/35)	nd	
	[14-6] Nonabromodiphenyl ethers	nd~tr(11) (1/3)	nd	nd~35 (6/19)	nd	tr(12) (1/1)	tr(12)	nd~12 (14/35)	nd	
	[14-7] Decabromodiphenyl ether	nd~tr(70) (1/3)	nd	nd~380 (5/19)	nd	tr(90) (1/1)	tr(90)	nd~61 (30/35)	4.2	
[15]	Perfluorooctane sulfonic acid (PFOS)	nd~210 (2/3)	7	nd~2,500 (18/19)	91	790 (1/1)	790	0.59~8.8 (35/35)	2.8	
16]	Perfluorooctanoic acid (PFOA)	nd~26 (2/3)	tr(6.5)	nd~99 (11/19)	tr(5.7)	31 (1/1)	31	tr(3.7)~260 (35/35)	19	
[17]	Pentachlorobenzene	tr(7.4)~18 (3/3)	tr(11)	nd~230 (18/19)	26	53 (1/1)	53	34~170 (35/35)	67	
18]	Endosulfans [18-1] α- Endosulfan	nd~130 (1/3)	nd	nd~tr(49) (1/19)	nd	nd (0/1)	nd	1.6~140 (35/35)	10	
	[18-2] β- Endosulfan	nd~tr(22) (1/3)	nd	nd~tr(11) (1/19)	nd	nd (0/1)	nd	nd~38 (33/35)	0.7	
	1,2,5,6,9,10-Hexabromo cyclododecanes									
	[19-1] α-1,2,5,6,9,10- Hexabromo cyclododecane	150~560 (3/3)	260	nd~3,000 (18/19)	160	80 (1/1)	80	nd~30 (26/35)	tr(0.6)	
19]	[19-2] β-1,2,5,6,9,10- Hexabromo cyclododecane	nd~30 (2/3)	tr(10)	nd~tr(20) (2/19)	nd	nd (0/1)	nd	nd~3.9 (7/35)	nd	
	[19-3] γ-1,2,5,6,9,10- Hexabromo cyclododecane	tr(20)~200 (3/3)	70	nd~230 (10/19)	tr(20)	tr(10) (1/1)	tr(10)	nd~4.4 (11/35)	nd	
	[19-4] δ -1,2,5,6,9,10- Hexabromo cyclododecane	nd (0/3)	nd	nd~tr(20) (1/19)	nd	nd (0/1)	nd	nd~1.9 (1/35)	nd	
	19-5] ε-1,2,5,6,9,10- Hexabromo cyclododecane	nd~tr(10) (1/3)	nd	nd~tr(10) (1/19)	nd	nd (0/1)	nd	nd (0/35)	nd	
20]	Total Polychlorinated Naphthalenes	nd~580 (2/3)	70	nd~390 (13/19)	tr(50)	tr(20) (1/1)	tr(20)			
21]	Hexachlorobuta-1,3-diene							45~3,500 (34/34)	1,100	
22]	Pentachlorophenol									

(Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit. (Note 2) " means the medium was not monitored.

(Note 3) "tr(X)" indicates that X was below the quantification limit and over the detection limit.

(Note 4) Hexachlorobuta-1,3-diene in air was analysed with the three(3) specimen samples for each place. "Range" is based on the concentrations of the samples and "Frequency" is based on the number of sites or areas.

Table 3-5-1 List of the quantification	[detection] limits in the Environmenta	al Monitoring in FY2015 (Part 1)

No.	Target chemicals	Surface water (pg/L)	Sediment (pg/g-dry)	tal Monitoring in FY20 Wildlife (pg/g-wet)	Air (pg/m ³)
[1]	Total PCBs*	21 [7.3]	62 [22]	52 [17]	5.9 [2.0]
[2]	НСВ	[,5] 1.8 [0.6]	3 [1]	20 [6.5]	0.5 [0.2]
[3]	Aldrin (reference)				
[4]	Dieldrin (reference)				
[5]	Endrin (reference)				
	DDT 類				
	[6-1] <i>p,p'-</i> DDT				0.15 [0.05]
	[6-2] <i>p,p'</i> -DDE				0.12 [0.04]
[6]	[6-3] <i>p,p'</i> -DDD				0.33 [0.11]
	[6-4] <i>o,p'</i> -DDT				0.12 [0.04]
	[6-5] <i>o,p'-</i> DDE				0.18 [0.06]
	[6-6] <i>o,p'</i> -DDD				0.20 [0.07]
	Chlordanes (reference)				
	[7-1] <i>cis</i> -chlordane (reference)				
[7]	[7-2] <i>trans</i> -chlordane (reference)				
[7]	[7-3] Oxychlordane (reference)				
	[7-4] <i>cis</i> -Nonachlor (reference)				
	[7-5] <i>trans</i> -Nonachlor (reference)				
	Heptachlors				
[07	[8-1] Heptachlor			3.0 [1.0]	0.19 [0.06]
[8]	[8-2] <i>cis</i> -heptachlor epoxide			2.1 [0.8]	0.5 [0.2]
	[8-3] <i>trans</i> -heptachlor epoxide			7 [3]	0.03 [0.01]
	Toxaphenes				L · · · ·
	[9-1] Parlar-26			23 [9]	
[9]	[9-2] Parlar-50			30 [10]	
	[9-3] Parlar-62			150 [60]	
[10]	Mirex (reference)				
	HCHs		^ _		~ · -
	[11-1]α-HCH	1.2 [0.4]	0.7 [0.3]	3.0 [1.0]	0.17 [0.06]
[11]	[11-2] <i>β</i> -НСН	1.2 [0.4]	0.8 [0.3]	3.0 [1.0]	0.25 [0.08]
	[11-3] γ-HCH (synonym:Lindane)	0.9 [0.3]	0.5 [0.2]	4.8 [1.6]	0.19 [0.06]
	[11-4]δ-HCH	0.3 [0.1]	0.5 [0.2]	2.1 [0.8]	0.15 [0.05]

(Note 1) Each quantification limit is shown above the corresponding [detection limit]. (Note 2) "*" means the quantification [detection] limit is the sum value of congeners. (Note 3) The same quantification [detection] limit was employed for bivalves, fish and birds as wildlife for each target chemical. (Note 4) "T" means the medium was not monitored.

Table 3-5-2 List of the quantification	[detection] limits in the Environmenta	al Monitoring in FY2015 (Part 2)
		8

Target chemicals	Surface water (pg/L)	Sediment (pg/g-dry)	Wildlife (pg/g-wet)	Air (pg/m ³)
Chlordecone (reference)				
Hexabromobiphenyls		0.8	14 [5]	0.06
Polybromodiphenyl ethers(Br ₄ ~ Br ₁₀)		[0.5]	[0]	[0:02]
[14-1] Tetrabromodiphenyl	3.6 [1.2]	21 [7]	15 [6]	0.4 [0.1]
ethers	6.3 [2.1]	18 [6]	13 [5]	0.6 [0.2]
ether	1.5 [0.6]	3 [1]	12 [5]	1.1 [0.4]
diphenyl ethers	[0.8]	[1]	[5]	1.3 [0.4]
ethers	[0.6]	[16]	[5]	1.1 [0.4]
ethers	[2]	[8]	[9]	3.2 [1.1] 2.2
ether	[7] 29	[20] 3	[70]	[0.7] 0.19
acid (PFOS) Perfluorooctanoic acid	[11] 56	[1] 3	[2] 10	[0.06] 4.2
	1.5	1.5	12	[1.4]
	[0.5]	[0.5]	[4.0]	[0.2]
α-Endosulfan			120 [38]	1.0 [0.3]
β -Endosulfan			32 [11]	0.5 [0.2]
cyclododecanes				
Hexabromo cyclododecanes		[60]	[10]	0.9
Hexabromo cvclododecanes		[60]	[10]	0.8 [0.3] 0.8
Hexabromo cyclododecanes		[42]	[10]	[0.3] 1.9
Hexabromo cyclododecanes [19-5] ε-1,2,5,6,9,10-		[70] 130	[10] 30	[0.6] 0.9
Total Polychlorinated		[51]	54	[0.3]
				29 [11]
Pentachlorophenol	260 [85]			
	Chlordecone (reference) Hexabromobiphenyls Polybromodiphenyl ethers(Br ₄ ~ Br ₁₀) [14-1] Tetrabromodiphenyl ethers [14-2] Pentabromodiphenyl ethers [14-3] Hexabromodiphenyl ether [14-4] Heptabromo- diphenyl ethers [14-6] Nonabromodiphenyl ethers [14-6] Nonabromodiphenyl ethers [14-7] Decabromodiphenyl ethers [14-7] Decabromodiphenyl ether Perfluorooctane sulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) Pentachlorobenzene Endosulfans α -Endosulfan 1,2,5,6,9,10-Hexabromo cyclododecanes [19-1] α -1,2,5,6,9,10- Hexabromo cyclododecanes [19-2] β -1,2,5,6,9,10- Hexabromo cyclododecanes [19-5] ε -1,2,5,6,9,10- Hexabromo cyclododecanes [19-5] ε -1,2,5,6,9,10- Hexabromo cyclododecanes [19-5] ε -1,2,5,6,9,10- Hexabromo cyclododecanes	Chlordecone (reference)HexabromobiphenylsPolybromodiphenylethers(Br ₄ ~ Br ₁₀)[14-1] Tetrabromodiphenyl[14-2] Pentabromodiphenylethers[1.2][14-2] Pentabromodiphenyl6.3ethers[2.1][14-3] Hexabromodiphenyl[14-4] Heptabromo-(0.6][14-4] Heptabromo-(0.6][14-4] Heptabromo-(0.6][14-5] Octabromodiphenylethers[2][14-7] Decabromodiphenyl6ethers[2][14-7] Decabromodiphenyl6ethers[2][14-7] Decabromodiphenyl18ether[7]Perfluorooctane sulfonic29acid (PFOS)[11]Perfluorooctanoic acid56(PFOA)[22]Pentachlorobenzene[0.5]Endosulfan a -Endosulfan <td< td=""><td>Chlordecone (reference) 0.8 Hexabromobiphenyls 0.8 Polybromodiphenyl 0.3 ethers(Br, ~ Br₁₀) 3.6 [14-1] Tetrabromodiphenyl 6.3 ethers [1.2] [14-2] Pentabromodiphenyl 6.3 ethers [2.1] [14-3] Hexabromodiphenyl 1.5 ether [0.6] [14-4] Heptabromo- 2.0 3 diphenyl etters [0.6] [11] [14-5] Octabromodiphenyl 1.5 ethers [0.6] [14-5] Octabromodiphenyl 6 ethers [2] [14-6] Nonabromodiphenyl 6 ethers [2] [14-7] Decabromodiphenyl 18 ether [7] [20] Perfluorooctane sulfonic 29 3 acid (PFOS) [11] Perfluorooctane sulfonic 29 a-Endosulfan </td><td>Chlordecone (reference) 0.8 14 Polybromodiphenyl [0.3] [5] Polybromodiphenyl </td></td<>	Chlordecone (reference) 0.8 Hexabromobiphenyls 0.8 Polybromodiphenyl 0.3 ethers(Br, ~ Br ₁₀) 3.6 [14-1] Tetrabromodiphenyl 6.3 ethers [1.2] [14-2] Pentabromodiphenyl 6.3 ethers [2.1] [14-3] Hexabromodiphenyl 1.5 ether [0.6] [14-4] Heptabromo- 2.0 3 diphenyl etters [0.6] [11] [14-5] Octabromodiphenyl 1.5 ethers [0.6] [14-5] Octabromodiphenyl 6 ethers [2] [14-6] Nonabromodiphenyl 6 ethers [2] [14-7] Decabromodiphenyl 18 ether [7] [20] Perfluorooctane sulfonic 29 3 acid (PFOS) [11] Perfluorooctane sulfonic 29 a-Endosulfan	Chlordecone (reference) 0.8 14 Polybromodiphenyl [0.3] [5] Polybromodiphenyl

[85]
 (Note 1) Each quantification limit is shown above the corresponding [detection limit].
 (Note 2) "*" means the quantification [detection] limit is the sum value of congeners.
 (Note 3) The same quantification [detection] limit was employed for bivalves, fish and birds as wildlife for each target chemical.
 (Note 4) " Treass the medium was not monitored.

		Surface water				
No	Name		River area	Lake area	Mouth area	Sea area
[1]	Total PCBs	Half-life : 7 years [5 ~ 10 years]	Half-life : 7 years [5 ~ 10 years]	Half-life : 6 years [4 ~ 12 years]	Half-life : 11 years [7 ~ 25 years]	-
[2]	НСВ	Half-life : 12 years [9 ~ 18 years]	-	-	Half-life : 7 years [5 ~ 11 years]	
[3]	Aldrin (reference)					
[4]	Dieldrin (reference)					
[5]	Endrin (reference)					
	DDTs					
	[6-1] <i>p,p'</i> -DDT					
	[6-2] <i>p,p'</i> -DDE					
[6]	[6-3] <i>p,p'</i> -DDD					
	[6-4] <i>o,p'</i> -DDT					
	[6-5] <i>o,p'</i> -DDE					
	[6-6] <i>o,p'</i> -DDD					
	Chlordanes (reference)					
	[7-1] <i>cis</i> -chlordane (reference)					
	[7-2] <i>trans</i> -chlordane (reference)					
[7]	[7-3] Oxychlordane (reference)					
	[7-4] cis-Nonachlor (reference)					
	[7-5] trans-Nonachlor (reference)					
	Heptachlors					-
503	[8-1] Heptachlor					
[8]	[8-2] cis-heptachlor epoxide					
	[8-3] trans-heptachlor epoxide					
	Toxaphenes (reference)					
	[9-1] Parlar-26 (reference)					
[9]	[9-2] Parlar-50 (reference)					
	[9-3] Parlar-62 (reference)					
[10]	Mirex (reference)					
	HCHs					
	[11-1] α-HCH		-	-	-	
[11]	[11-2] <i>β</i> -HCH	Half-life : 14 years [10 ~ 23 years]	-	Half-life : 8 years [6 ~ 12 years]	_	
	[11-3] y-HCH (synonym:Lindane)	Half-life : 5 years [4 ~ 7 years]	Half-life : 5 years [3 ~ 8 years]	Half-life : 6 years [4 ~ 12 years]		Half-life : 5 years [4 ~ 6 years]
	[11-4] δ-HCH	_*	-	-	_*	Х

Table 3-6-1 Results of inter-annual trend analysis from FY2002 to FY2015 (Surface water)

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 2) " 🍹 ": An inter-annual trend of decrease was found.

" \Box ": Statistically significant differences between the first-half and second-half periods were found.

"-": An inter-annual trend was not found.

": Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency.

"X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," or "less number of monitoring sites" "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 11 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."

"*": In case of using the bootstrap methods, there was not a significant difference between the values of first-half and second-half periods.

(Note 3) The classification of monitored sites with area are shown in Table 3-7

(Note 4) "": The inter-annual trend analysis was not analysed because not conducted the survey in FY2014. (Note 5) The half-life describes the half-life in the environment based on the survey results when the decrease tendency continues for 3 years or more by the maximum likelihood estimation that does not assume parametric residual distribution. The results in [] indicate that the values in the 95% confidence interval.

N	N	Sediment				
No	Name		River area	Lake area	Mouth area	Sea area
[1]	Total PCBs		Half-life : 12 years [8 ~ 25 years]	-	-	-
[2]	НСВ	-	-	-	-	-
[3]	Aldrin (reference)					
[4]	Dieldrin (reference)					
[5]	Endrin (reference)					
	DDTs			×		
	[6-1] <i>p</i> , <i>p</i> '-DDT					
	[6-2] <i>p,p'</i> -DDE					
[6]	[6-3] <i>p,p'</i> -DDD					
	[6-4] <i>o</i> , <i>p</i> '-DDT					
	[6-5] <i>o,p'</i> -DDE					
	[6-6] <i>o,p'</i> -DDD					
	Chlordanes (reference)					
	[7-1] <i>cis</i> -chlordane (reference)					
	[7-2] <i>trans</i> -chlordane (reference)					
[7]	[7-3] Oxychlordane (reference)					
	[7-4] cis-Nonachlor (reference)					
	[7-5] trans-Nonachlor (reference)					
	Heptachlors					
	[8-1] Heptachlor					
[8]	[8-2] <i>cis</i> -heptachlor epoxide					<u></u>
	[8-3] <i>trans</i> -heptachlor epoxide					
	Toxaphenes (reference)			•		
	[9-1] Parlar-26 (reference)					
[9]	[9-2] Parlar-50 (reference)			£		
	[9-3] Parlar-62 (reference)					
[10]	Mirex (reference)					
	HCHs					
	[11-1] α-HCH	-	-	-	-	-
[11]	[11-2] β-HCH	-	-	_		_
	[11-3] γ -HCH (synonym:Lindane)	-	-	_	-	
	[11-4] <i>δ</i> -HCH	-	-	-	-	_
						1

Table 3-6-2 Results of inter-annual trend analysis from FY2002 to FY2015 (Sediment)

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 2) " Y ": An inter-annual trend of decrease was found. " T ": Statistically significant differences between the first-half and second-half periods were found.

" - ": An inter-annual trend was not found.

" 🔄 ": Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency.

"X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," or "less number of monitoring sites" "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 11 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."

"*": In case of using the bootstrap methods, there was not a significant difference between the values of first-half and second-half periods.

(Note 3) The classification of monitored sites with area are shown in Table 3-7

(Note 4) "": The inter-annual trend analysis was not analysed because not conducted the survey in FY2014.

(Note 5) The half-life describes the half-life in the environment based on the survey results when the decrease tendency continues for 3 years or more by the maximum likelihood estimation that does not assume parametric residual distribution. The results in [] indicate values in the 95% confidence interval..

No	Name	Bivalves	Fish				
[1]	Total PCBs		-				
[2]	НСВ	-	-				
[3]	Aldrin (reference)						
[4]	Dieldrin (reference)						
[5]	Endrin (reference)						
	DDTs						
	[6-1] <i>p,p'</i> -DDT						
	[6-2] <i>p,p'</i> -DDE						
[6]	[6-3] <i>p,p'</i> -DDD						
	[6-4] <i>o,p'</i> -DDT						
	[6-5] <i>o,p'</i> -DDE						
	[6-6] <i>o,p'</i> -DDD						
	Chlordanes (reference)						
	[7-1] <i>cis</i> -chlordane (reference)						
	[7-2] trans-chlordane (reference)						
[7]	[7-3] Oxychlordane (reference)						
	[7-4] cis-Nonachlor (reference)						
	[7-5] trans-Nonachlor (reference)						
	Heptachlors						
503	[8-1] Heptachlor	Х	<u> </u>				
[8]	[8-2] cis-heptachlor epoxide	-	_				
	[8-3] trans-heptachlor epoxide	X	X				
	Toxaphenes (reference)						
[0]	[9-1] Parlar-26 (reference)	_*	_*				
[9]	[9-2] Parlar-50 (reference)	_*	_*				
	[9-3] Parlar-62 (reference)	_*	X				
[10]	Mirex (reference)						
	HCHs						
[11]	[11-1] <i>α</i> -HCH	Half-life : 9 years [6 ~ 18 years]	-				
[11]	[11-2] β-НСН	-	-				
	[11-3] y-HCH (synonym:Lindane)	-					
	[11-4] δ-HCH	Х					

Table 3-6-3 Results of inter-annual trend analysis from FY2002 to FY2015 (Wildlife)

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 2) " 🍹 ": An inter-annual trend of decrease was found.

" \Box ": Statistically significant differences between the first-half and second-half periods were found.

"-": An inter-annual trend was not found.

" 这 ": Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency.

"X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," or "less number of monitoring sites" "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 11 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."

"*": In case of using the bootstrap methods, there was not a significant difference between the values of first-half and second-half periods.

(Note 3) The classification of monitored sites with area are shown in Table 3-7

(Note 4) "": The inter-annual trend analysis was not analysed because not conducted the survey in FY2014.

(Note 5) The half-life describes the half-life in the environment based on the survey results when the decrease tendency continues for 3 years or more by the maximum likelihood estimation that does not assume parametric residual distribution. The results in [] indicate values in the 95% confidence interval..

No	Name	Air
NO	Ivanie	Warm season
[1]	Total PCBs	Half-life : 12 years [8 ~ 30 years]
[2]	НСВ	[8 ~ 30 years]
[3]	Aldrin (reference)	
[4]	Dieldrin (reference)	
[5]	Endrin (reference)	
	DDTs	
	[6-1] <i>p,p'</i> -DDT	
	[6-2] <i>p,p'</i> -DDE	Half-life : 8 years [6 ~ 14 years]
	[6-3] <i>p,p</i> '-DDD	<u> </u>
[6]	[6-4] <i>o,p'</i> -DDT	Half-life : 5 years
		[4 ~ 6 years]
	[6-5] <i>o,p'</i> -DDE	Half-life : 4 years [4 ~ 5 years]
	[6-6] <i>o,p'</i> -DDD	
	Chlordanes (reference)	
	[7-1] <i>cis</i> -chlordane (reference)	
[7]	[7-2] trans-chlordane (reference)	
[/]	[7-3] Oxychlordane (reference)	
	[7-4] cis-Nonachlor (reference)	
-	[7-5] trans-Nonachlor (reference)	
	Heptachlors	
[8]	[8-1] Heptachlor	Half-life : 8 years [6 ~ 12 years]
	[8-2] cis-heptachlor epoxide	
	[8-3] trans-heptachlor epoxide	Х
	Toxaphenes (reference)	
[0]	[9-1] Parlar-26 (reference)	
[9]	[9-2] Parlar-50 (reference)	
	[9-3] Parlar-62 (reference)	
[10]	Mirex (reference)	
	HCHs	
[11]	[11-1] α-HCH	Half-life : 9 years [6 ~ 17 years]
[11]	[11-2] <i>β</i> -HCH	-
	[11-3] y-HCH (synonym:Lindane)	
	[11-4] δ-HCH	_

Table 3-6-4 Results of inter-annual trend analysis from FY2002 to FY2015 (Air)

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 2) " 🍹 ": An inter-annual trend of decrease was found.

" \square ": Statistically significant differences between the first-half and second-half periods were found.

" - ": An inter-annual trend was not found.

" 🔄 ": Although the number of detections was small, the detection rate was decreased, it suggested a reduction tendency.

"X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," or "less number of monitoring sites" "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 11 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."

"*":In case of using the bootstrap methods, there was not a significant difference between the values of first-half and second-half periods.

(Note 3) The classification of monitored sites with area are shown in Table 3-7

(Note 4) "": The inter-annual trend analysis was not analysed because not conducted the survey in FY2014.

(Note 5) The half-life describes the half-life in the environment based on the survey results when the decrease tendency continues for 3 years or more by the maximum likelihood estimation that does not assume parametric residual distribution. The results in [] indicate values in the 95% confidence interval..

Classification	Local Communities	Monitored sites	Monitore Surface water	
River area	Hokkaido	Onnenai-ohashi Bridge, Riv. Teshio(Bifuka Town)	Surface water	Sedimen
River area	покканоо	Suzuran-ohashi Bridge, Riv Tokachi(Obihiro City)		
	Iwate Pref.	Ishikarikakokyo Bridge, Mouth of Riv. Ishikari(Ishikari City) Riv. Toyosawa(Hanamaki City)		
	Sendai City	Hirose-ohashi Bridge, Riv. Hirose(Sendai City)		
	Yamagata Pref.	Mouth of Riv. Mogami(Sakata City)		
	Ibaraki Pref.	Tonekamome-ohasi Bridge, Mouth of Riv. Tone(Kamisu City)		
	Tochigi Pref.	Riv. Tagawa(Utsunomiya City)		
	Saitama Pref.	Akigaseshusui of Riv. Arakawa		
	Niigata Pref.	Lower Riv. Shinano(Niigata City)		
	Toyama Pref.	Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City)		
	Fukui Pref.	Mishima-bashi Bridge, Riv. Shono(Tsuruga City)		
	Yamanashi Pref.	Senshu-bashi Bridge, Riv. Arakawa(Kofu City)		
	Shizuoka Pref.	Riv. Tenryu(Iwata City)		
	Kyoto City	Miyamae-bashi Bridge, Riv. Katsura(Kyoto City)		
	Osaka City	Osaka Port		
		Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)		
	Nara Pref.	Riv. Yamato(Oji Town)		
	Wakayama Pref.	Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City)		
	Kochi Pref.	Mouth of Riv. Shimanto(Shimanto City)		
	Kumamoto Pref.	Hiraki-bashi Bridge, Riv. Midori(Uto City)		
	Miyazaki Pref.	Mouth of Riv. Oyodo(Miyazaki City)	1	
	Kagoshima Pref.	Riv. Amori(Kirishima City)		
	Ragosillina i ter.	Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City)		
Lake area	Akita Pref.	Lake Hachiro		
Lake area	Nagano Pref.	Lake Suwa(center)		
	Shiga Pref.	Lake Biwa(center) Lake Biwa(center)		
	Siliga Fiel.			
D.	TT 11 1	Lake Biwa(center, offshore of Karasaki)		
River	Hokkaido	Tomakomai Port		
mouth area	Chiba City	Mouth of Riv. Hanami(Chiba City)		
	Tokyo Met.	Mouth of Riv. Arakawa(Koto Ward)		
		Mouth of Riv. Sumida(Minato Ward)		
	Kawasaki City	Mouth of Riv. Tama(Kawasaki City)		
	Ishikawa Pref.	Mouth of Riv. Sai(Kanazawa City)		
	Aichi Pref.	Kinuura Port		
	Mie Pref.	Toba Port		
	Osaka Pref.	Mouth of Riv. Yamato(Sakai City)		
	Osaka City	Mouth of Riv. Yodo(Osaka City)		
	Tokushima Pref.	Mouth of Riv. Yoshino(Tokushima City)		
	Kagawa Pref.	Takamatsu Port		
	Kitakyushu City	Dokai Bay		
	Oita Pref.	Mouth of Riv. Oita(Oita City)		
	Okinawa Pref.	Naha Port		
Sea area	Miyagi Pref.	Sendai Bay(Matsushima Bay)		
Sea area	Fukushima Pref.	Onahama Port		
	Chiba Pref.	Coast of Ichihara and Anegasaki	+	
	Yokohama City	Yokohama Port	+	
	Kawasaki City	Keihin Canal. Port of Kawasaki		
	Shizuoka Pref.	Shimizu Port		
	Aichi Pref.	Nagoya Port		
	Mie Pref.	Yokkaichi Port		
	Kyoto Pref.	Miyazu Port		
	Osaka City	Outside Osaka Port		
	Hyogo Pref.	Offshore of Himeji		
	Kobe City	Kobe Port(center)		
	Okayama Pref.	Offshore of Mizushima		
	Hiroshima Pref.	Kure Port		
		Hiroshima Bay		
	Yamaguchi Pref.	Tokuyama Bay		
	-	Offshore of Ube		
		Offshore of Hagi		
	Ehime Pref.	Niihama Port		
	Fukuoka City	Hakata Bay	1	
	Saga Pref.	Imari Bay	+	
	Suga 1 101.	minut Day		

(Note) There are monitored sites which were classified in the area unlike these names by the situations.

In the wake of the monitoring surveys of FY2002~2015, high-sensitivity analysis of PCBs, HCB and HCHs were conducted. All these chemicals were detected.

High-sensitivity analysis of DDTs, Heptachlors, Toxaphenes, Hexabromobiphenyls, Polybromodiphenyl ethers (Br₄~Br₁₀), Perfluorooctane sulfonic acid (PFOS), Perfluorooctanoic acid (PFOA), Pentachlorobenzene, Endosulfans, 1,2,5,6,9,10-Hexabromocyclododecanes, Total Polychlorinated Naphthalenes, Hexachlorobuta-1,3-diene and Pentachlorophenol were also conducted in FY2015. Except for cases of undetected Heptachlor in wildlife (birds), trans-Heptachlor epoxide in wildlife (bivalves and birds) and air, Parlar-26 and Parlar-50 of Toxaphenes in wildlife (birds), Parlar-62 of Toxaphenes in wildlife (bivalves and birds), γ -HCH(synonym:Lindane) and δ -HCH in wildlife (birds), Hexabromobiphenyls in wildlife (bivalves, fish and birds), Heptabromodiphenyl ethers, Nonabromodiphenyl ethers and Decabromodiphenyl ether in wildlife (birds), Octabromodiphenyl ethers in wildlife (bivalves and birds), Perfluorooctanoic acid (PFOA) in wildlife (birds), Pentachlorobenzene in wildlife (birds), a-Endosulfan and β -Endosulfan in wildlife (birds), β -1,2,5,6,9,10-Hexabromocyclododecane, and y-1,2,5,6,9,10-Hexabromocyclododecane in wildlife (birds), δ -1,2,5,6,9,10-Hexabromocyclododecane in wildlife (bivalves and birds) and ε -1,2,5,6,9,10-Hexabromocyclododecane in wildlife (birds) and air, all chemicals were detected.

The monitoring results for each chemical (group) are described below.

[1] Total PCBs

· History and state of monitoring

Polychlorinated biphenyls (PCBs) are used in industry as heat exchange fluids, etc. and were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in June 1974, since the substances are persistent, highly accumulative in living organisms, and chronically toxic. Also the substances are one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series, the substances were monitored in wildlife (bivalves, fish and birds) during the period of FY1978~2001 under the framework of "the Wildlife Monitoring." Under the framework of "The Follow-up Survey of the Status of Pollution by Unintentionally Formed Chemicals," sediment and wildlife (fish) were the monitored media in FY1996 and FY1997, and surface water, sediment, wildlife (fish) and air were the monitored media in FY2000 and FY2001.

Under the framework of the Environmental Monitoring, the substances in surface water, sediment, wildlife (bivalves, fish and birds) and air have been monitored since FY2002.

· Monitoring results

<Surface Water>

The presence of the substances in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of **7.3pg/L, and the detection range was 34~4,200pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2015, reduction tendencies in specimens from river areas, lake areas and river mouth areas were identified as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

Total PCBs	Monitored	Coomotrio				Quantification	Detection	Frequency
(total amount)	year	Geometric mean*	Median	Maximum	Minimum	[Detection] Limit**	Sample	Site
	2002	470	330	11,000	60	7.4 [2.5]	114/114	38/38
	2003	530	450	3,100	230	9.4 [2.5]	36/36	36/36
	2004	630	540	4,400	140	14 [5.0]	38/38	38/38
	2005	520	370	7,800	140	10 [3.2]	47/47	47/47
	2006	240	200	4,300	15	9 [3]	48/48	48/48
	2007	180	140	2,700	12	7.6 [2.9]	48/48	48/48
Surface water	2008	260	250	4,300	27	7.8 [3.0]	48/48	48/48
(pg/L)	2009	210	170	3,900	14	10 [4]	48/48	48/48
	2010	120	99	2,200	nd	73 [24]	41/49	41/49
	2011	150	130	2,100	16	4.5 [1.7]	49/49	49/49
	2012	400	280	6,500	72	44 [15]	48/48	48/48
	2013	140	110	2,600	tr(13)	25 [8]	48/48	48/48
	2014	150	120	4,800	16	8.2 [2.9]	48/48	48/48
	2015	200	160	4,200	34	21 [7.3]	48/48	48/48

Stocktaking of the detection of Total PCBs (total amount) in surface water during FY2002~2015

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) "** " indicates the sum value of the Quantification [Detection] limits of each congener.

<Sediment>

The presence of the substances in sediment was monitored at 62 sites, and it was detected at 61 of the 62 valid sites adopting the detection limit of **22pg/g-dry, and none of the detected concentrations exceeded 1,100,000pg/g-dry.

As results of the inter-annual trend analysis from FY2002 to FY2015, reduction tendency in specimens from

river areas was identified as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

0		· · · · ·	<u>.</u>	/	0			
Total PCBs	Monitored	Geometric				Quantification	Detection 1	Frequency
(total amount)	year	mean*	Median	Maximum	Minimum	[Detection] Limit**	Sample	Site
	2002	11,000	11,000	630,000	39	10 [3.5]	189/189	63/63
	2003	9,400	9,500	5,600,000	39	10 [3.2]	186/186	62/62
	2004	8,400	7,600	1,300,000	38	7.9 [2.6]	189/189	63/63
	2005	8,600	7,100	690,000	42	6.3 [2.1]	189/189	63/63
	2006	8,800	6,600	690,000	36	4 [1]	192/192	64/64
	2007	7,400	6,800	820,000	19	4.7 [1.5]	192/192	64/64
Sediment	2008	8,700	8,900	630,000	22	3.3 [1.2]	192/192	64/64
(pg/g-dry)	2009	7,600	7,100	1,700,000	17	5.1 [2.1]	192/192	64/64
	2010	6,500	7,800	710,000	nd	660 [220]	56/64	56/64
	2011	6,300	7,400	950,000	24	12 [4.5]	64/64	64/64
	2012	5,700	6,700	640,000	tr(32)	51 [18]	63/63	63/63
	2013	6,200	8,000	650,000	tr(43)	44 [13]	62/62	62/62
	2014	4,900	5,500	440,000	tr(35)	61 [21]	63/63	63/63
	2015	6,400	7,500	1,100,000	nd	62 [22]	61/62	61/62

Stocktaking of the detection of Total PCBs (total amount) in sediment during FY2002~2015

(Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002~2009.

(Note 2) " ** " indicates the sum value of the Quantification [Detection] limits of each congener.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of **17pg/g-wet, and the detection range was 580~9,600pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of **17pg/g-wet, and the detection range was 1,300~180,000pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of **17pg/g-wet, and the detected in the area adopting the detection limit of **17pg/g-wet, and the detected in the area adopting the detection limit of **17pg/g-wet, and the detected in the area adopting the detection limit of **17pg/g-wet, and the detected in the area adopting the detection limit of **17pg/g-wet, and the detected in the area adopting the detection limit of **17pg/g-wet, and the detected in the area adopting the detection limit of **17pg/g-wet, and the detected in the area adopting the detection limit of **17pg/g-wet, and the detected concentration was 5,000pg/g-wet.

As results of the inter-annual trend analysis from FY2002 to FY2015, reduction tendency in specimens from bivalves were identified as statistically significant.

Total PCBs	Monitored	Geometric				Quantification	Detection I	Frequen
(total amount)	year	mean*	Median	Maximum	Minimum	[Detection] Limit**	Sample	Site
	2002	8,800	28,000	160,000	200	25 [8.4]	38/38	8/8
	2003	11,000	9,600	130,000	1,000	50 [17]	30/30	6/6
	2004	11,000	11,000	150,000	1,500	85 [29]	31/31	7/7
	2005	11,000	13,000	85,000	920	69 [23]	31/31	7/7
	2006	8,500	8,600	77,000	690	42 [14]	31/31	7/7
	2007	9,000	11,000	66,000	980	46 [18]	31/31	7/7
Bivalves	2008	8,600	8,600	69,000	870	47 [17]	31/31	7/7
(pg/g-wet)	2009	8,700	11,000	62,000	780	32 [11]	31/31	7/7
488 /	2010	9,200	11,000	46,000	1,500	52 [20]	6/6	6/6
	2011	8,900	17,000	65,000	820	220 [74]	4/4	4/4
	2012	6,600	12,000	34,000	680	34 [11]	5/5	5/5
	2013	5,200	7,800	44,000	730	44 [14]	5/5	5/5
	2014	2,900	2,600	15,000	600	95 [31]	3/3	3/3
	2015	2,400	2,500	9,600	580	52 [17]	3/3	3/3
	2002	17,000	8,100	550,000	1,500	25 [8.4]	70/70	14/14
	2003	11,000	9,600	150,000	870	50 [17]	70/70	14/14
	2004	15,000	10,000	540,000	990	85 [29]	70/70	14/14
	2005	14,000	8,600	540,000	800	69 [23]	80/80	16/16
	2006	13,000	9,000	310,000	990	42 [14]	80/80	16/16
	2007	11,000	6,200	530,000	790	46 [18]	80/80	16/16
Fish	2008	12,000	9,100	330,000	1,200	47 [17]	85/85	17/17
(pg/g-wet)	2009	12,000	12,000	290,000	840	32 [11]	90/90	18/18
(188.00)	2010	13,000	10,000	260,000	880	52 [20]	18/18	18/18
	2011	14,000	12,000	250,000	900	220 [74]	18/18	18/18
	2012	13,000	14,000	130,000	920	34 [11]	19/19	19/19
	2013	14,000	13,000	270,000	1,000	44 [14]	19/19	19/19
	2014	13,000	10,000	230,000	940	95 [31]	19/19	19/19
	2015	11,000	7,700	180,000	1,300	52 [17]	19/19	19/19
	2002	12,000	14,000	22,000	4,800	25 [8.4]	10/10	2/2
	2003	19,000	22,000	42,000	6,800	50 [17]	10/10	2/2
	2004	9,000	9,400	13,000	5,900	85 [29]	10/10	2/2
	2005	10,000	9,700	19,000	5,600	69 [23]	10/10	2/2
	2006	12,000	9,800	48,000	5,600	42 [14]	10/10	2/2
	2007	7,600	7,800	15,000	3,900	46 [18]	10/10	2/2
Birds	2008	9,700	7,400	56,000	3,000	47 [17]	10/10	2/2
(pg/g-wet)	2009	5,900	5,700	9,500	3,900	32 [11]	10/10	2/2
100	2010	7,700		9,100	6,600	52 [20]	2/2	2/2
	2011			5,400	5,400	220 [74]	1/1	1/1
	2012	5,900		6,200	5,600	34 [11]	2/2	2/2
	2013***	360,000		510,000	250,000	44 [14]	2/2	2/2
	2013	46,000		140,000	15,000	95 [31]	2/2	2/2
	2015***			5,000	5,000	52 [17]	1/1	1/1

Stocktokir dataati of Total DCBs (total unt) in wildlife (bival fal d hirde) durie ~ EV2002 2015 f th

(Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002~2009.

(Note 2) "** " indicates the sum value of the Quantification [Detection] limits of each congener. (Note 3) "*** " indicates there is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

<Air>

The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of **2.0pg/m³, and the detection range was 17~950pg/m³.

As results of the inter-annual trend analysis from FY2003 to FY2015, reduction tendency in specimens from warm season was identified as statistically significant.

Stocktaking of the detection of Total PCB	s (total amount) i	in air during FY	2002~2015

Total PCBs		Geometric				Quantification	Detection I	Frequency
(total amount)		mean	Median	Maximum	Minimum	[Detection] limit*	Sample	Site
	2002**	100	100	880	16	99 [33]	102/102	34/34
	2003 Warm season	260	340	2,600	36	6.6 [2.2]	35/35	35/35
	2003 Cold season	110	120	630	17	0.0 [2.2]	34/34	34/34
	2004 Warm season	240	250	3,300	25	2 0 [0 08]	37/37	37/37
	2004 Cold season	130	130	1,500	20	2.9 [0.98]	37/37	37/37
	2005 Warm season	190	210	1,500	23	0 29 [0 14]	37/37	37/37
	2005 Cold season	66	64	380	20	0.38 [0.14]	37/37	37/37
	2006 Warm season	170	180	1,500	21	0.8 [0.3]	37/37	37/37
	2006 Cold season	82	90	450	19		37/37	37/37
	2007 Warm season	250	290	980	37	0.37 [0.13]	24/24	24/24
	2007 Cold season	72	76	230	25		22/22	22/22
Air	2008 Warm season	200	170	960	52	0.8 [0.3]	22/22	22/22
	2008 Cold season	93	86	1,500	21		36/36	36/36
(pg/m^3)	2009 Warm season	200	190	1,400	43	0.75 [0.26]	34/34	34/34
	2009 Cold season	85	78	380	20	0.75 [0.26]	34/34	34/34
	2010 Warm season	160	150	970	36	7 2 [2 5]	35/35	35/35
	2010 Cold season	84	86	630	19	7.3 [2.5]	35/35	35/35
	2011 Warm season	150	160	660	32	18 [5.9]	35/35	35/35
	2011 Cold season	76	66	320	tr(17)	10[5.7]	37/37	37/37
	2012 Warm season	130	130	840	27	26 [0 5]	35/35	35/35
	2012 Cold season	54	62	280	tr(16)	26 [8.5]	35/35	35/35
	2013 Warm season	140	130	1,100	24	20 [6 5]	35/35	35/35
	2013 Cold season	57	55	300	tr(19)	20 [6.5]	35/35	35/35
	2014 Warm season	140	150	1,300	28	4.1 [1.4]	36/36	36/36
	2015 Warm season	98	110	950	17	5.9 [2.0]	35/35	35/35

 (Note 1) "*" :The sum value of the Quantification [Detection] limits of each congener.

 (Note 2) "**" :In 2002, there was a technical problem in the measuring method for lowly chlorinated congeners, and therefore the values are shown just as reference.

[2] Hexachlorobenzene

· History and state of monitoring

Hexachlorobenzene was used as pesticidal material and was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in August 1979. Also the substances is one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1996 and in FY1998, FY2000 and FY2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," the substance in surface water and sediment was monitored during the period of FY1986~1998 and FY1986~2001, respectively.

Under the framework of the Environmental Monitoring, the substance in surface water, sediment, wildlife (bivalves, fish and birds) and air has been monitored since FY2002.

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.6pg/L, and the detection range was 4.2~140pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2015, reduction tendency in specimens from river mouth areas was identified as statistically significant, the last 5 yers period was indicated lower concentration than the first 5 yers period in specimens from sea areas as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

	Monitored	Geometric			Minimum	Quantification	Detection Frequency	
HCB	year	mean*	Median	Maximum		[Detection] limit	Sample	Site
	2002	37	28	1,400	9.8	0.6 [0.2]	114/114	38/38
	2003	29	24	340	11	5 [2]	36/36	36/36
	2004	30	tr(29)	180	tr(11)	30 [8]	38/38	38/38
	2005	21	17	210	tr(6)	15 [5]	47/47	47/47
	2006	16	tr(12)	190	nd	16 [5]	46/48	46/48
	2007	17	14	190	tr(4)	8 [3]	48/48	48/48
Surface water	2008	16	13	480	4	3 [1]	48/48	48/48
(pg/L)	2009	15	17	180	2.4	0.5 [0.2]	49/49	49/49
	2010	tr(10)	tr(8)	120	nd	13 [4]	39/49	39/49
	2011	13	12	140	tr(3)	5 [2]	49/49	49/49
	2012	29	23	330	8.1	2.2 [0.7]	48/48	48/48
	2013	14	11	260	tr(4)	7 [2]	48/48	48/48
	2014	12	9.7	200	2.7	0.9 [0.4]	48/48	48/48
	2015	15	13	140	4.2	1.8 [0.6]	48/48	48/48

Stocktaking of the detection of Hexachlorobenzene in surface water during FY2002~2015

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

The presence of the substance in sediment was monitored at 62 sites, and it was detected at all 62 valid sites adopting the detection limit of 1pg/g-dry, and the detection range was 4~17,000pg/g-dry.

Stocktaking of the detection of Hexachlorobenzene in sediment during FY2002~2015

	Monitored	Geometric				Quantification	Detection 1	Frequency
HCB	year	. Me	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	240	200	19,000	7.6	0.9 [0.3]	189/189	63/63
	2003	160	120	42,000	5	4 [2]	186/186	62/62
	2004	140	100	25,000	tr(6)	7 [3]	189/189	63/63
	2005	170	130	22,000	13	3 [1]	189/189	63/63
	2006	180	120	19,000	10	2.9 [1.0]	192/192	64/64
	2007	140	110	65,000	nd	5 [2]	191/192	64/64
Sediment	2008	160	97	29,000	4.4	2.0 [0.8]	192/192	64/64
(pg/g-dry)	2009	150	120	34,000	nd	1.8 [0.7]	190/192	64/64
	2010	130	96	21,000	4	3 [1]	64/64	64/64
	2011	150	110	35,000	11	7 [3]	64/64	64/64
	2012	100	110	12,000	3	3 [1]	63/63	63/63
	2013	120	91	6,600	7.2	5.3 [1.8]	63/63	63/63
	2014	95	85	5,600	tr(4)	6 [2]	63/63	63/63
	2015	100	90	17,000	4	3 [1]	62/62	62/62

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 6.5pg/g-wet, and the detection range was tr(14)~120pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 6.5pg/g-wet, and the detection range was 43~1,700pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 6.5pg/g-wet, and the detection limit of 6.5pg/g-wet.

Total PCBs	Monitored Geometric					Quantification	Detection l	Frequency
(total amount)	year	mean*	Median	Maximum	Minimum	[Detection] Limit**	Sample	Site
	2002	21	22	330	2.4	0.18 [0.06]	38/38	8/8
	2003	44	27	660	tr(21)	23 [7.5]	30/30	6/6
	2004	32	31	80	14	14 [4.6]	31/31	7/7
	2005	51	28	450	19	11 [3.8]	31/31	7/7
	2006	46	28	340	11	3 [1]	31/31	7/7
	2007	37	22	400	11	7 [3]	31/31	7/7
Bivalves	2008	38	24	240	13	7 [3]	31/31	7/7
(pg/g-wet)	2009	34	32	200	12	4 [2]	31/31	7/7
	2010	34	48	210	tr(4)	5 [2]	6/6	6/6
	2011	45	34	920	4	4 [1]	4/4	4/4
	2012	39	38	340	10	8.4 [2.8]	5/5	5/5
	2013	32	39	250	nd	31 [10]	4/5	4/5
	2014	34	26	100	15	10 [3]	3/3	3/3
	2015	35	26	120	tr(14)	20 [6.5]	3/3	3/3
	2002	140	180	910	19	0.18 [0.06]	70/70	14/14
	2003	180	170	1,500	28	23 [7.5]	70/70	14/14
	2004	230	210	1,800	26	14 [4.6]	70/70	14/14
	2005	180	160	1,700	29	11 [3.8]	80/80	16/16
	2006	180	220	1,400	25	3 [1]	80/80	16/16
	2007	160	140	1,500	17	7 [3]	80/80	16/16
Fish	2008	170	210	1,500	25	7 [3]	85/85	17/17
(pg/g-wet)	2009	210	180	30,000	29	4 [2]	90/90	18/18
(188)	2010	240	280	1,700	36	5 [2]	18/18	18/18
	2011	260	320	1,500	34	4 [1]	18/18	18/18
	2012	200	300	1,100	33	8.4 [2.8]	19/19	19/19
	2013	240	220	1,500	36	31 [10]	19/19	19/19
	2014	280	340	1,900	37	10 [3]	19/19	19/19
	2015	170	150	1,700	43	20 [6.5]	19/19	19/19
	2002	1,000	1,200	1,600	560	0.18 [0.06]	10/10	2/2
	2003	1,800	2,000	4,700	790	23 [7.5]	10/10	2/2
	2004	980	1,300	2,200	410	14 [4.6]	10/10	2/2
	2005	1,000	1,100	2,500	400	11 [3.8]	10/10	2/2
	2006	970	1,100	2,100	490	3 [1]	10/10	2/2
	2007	960	1,100	2,000	420	7 [3]	10/10	2/2
Birds	2008	880	1,100	2,500	240	7 [3]	10/10	2/2
(pg/g-wet)	2009	850	910	1,500	400	4 [2]	10/10	2/2
100	2010	970		1,900	500	5 [2]	2/2	2/2
	2011			460	460	4 [1]	1/1	1/1
	2011	840		1,500	470	8.4 [2.8]	2/2	2/2
	2013**	3,900		5,200	2,900	31 [10]	2/2	2/2
	2015	420		5,600	32	10 [3]	2/2	2/2
	2014			5,000 760	760	20 [6.5]	1/1	1/1

Stocktaking of the detection of Hexachlorobenzene in wildlife	(bivalves fish and birds) during FY2002~2015
	(01) all cos, fibil and on as a daming 1 1 2002 2015

(Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009. (Note 2) " ** " indicates there is no consistency between the results of the ornithological survey after FY2013 and those in

previous years because of the changes in the survey sites and target species.

<Air>

The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of $0.2 pg/m^3$, and the detection range was $74 \sim 170 pg/m^3$.

		Geometric				Quantification	Detection I	Frequency
HCB	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002**	99	93	3,000	57	0.9 [0.3]	102/102	34/34
	2003 Warm season	150	130	430	81	2 2 [0 79]	35/35	35/35
	2003 Cold season	94	90	320	64	2.3 [0.78]	34/34	34/34
	2004 Warm season	130	130	430	47	1 1 [0 27]	37/37	37/37
	2004 Cold season	98	89	390	51	1.1 [0.37]	37/37	37/37
	2005 Warm season	88	90	250	27	0 14 [0 034]	37/37	37/37
	2005 Cold season	77	68	180	44	0.14 [0.034]	37/37	37/37
	2006 Warm season	83	89	210	23	0.21 [0.07]	37/37	37/37
	2006 Cold season	65	74	170	8.2	0.21 [0.07]	37/37	37/37
	2007 Warm season	110	100	230	72	0.09 [0.03]	24/24	24/24
	2007 Cold season	77	72	120	55		22/22	22/22
Air	2008 Warm season	120	110	260	78	0.22 [0.08]	22/22	22/22
(pg/m^3)	2008 Cold season	87	83	160	58		36/36	36/36
(pg/m)	2009 Warm season	110	110	210	78	0.6 [0.2]	34/34	34/34
	2009 Cold season	87	87	150	59	0.0 [0.2]	34/34	34/34
	2010 Warm season	120	120	160	73	1 8 [0 7]	37/37	37/37
	2010 Cold season	100	96	380	56	1.8 [0.7]	37/37	37/37
	2011 Warm season	120	110	180	87	2.3 [0.75]	35/35	35/35
	2011 Cold season	96	96	160	75	2.3 [0.75]	37/37	37/37
	2012 Warm season	120	110	150	84	1 2 [1 4]	36/36	36/36
	2012 Cold season	97	95	150	68	4.3 [1.4]	36/36	36/36
	2013 Warm season	110	110	180	52	3.8 [1.3]	36/36	36/36
	2013 Cold season	97	97	180	73	5.0[1.5]	36/36	36/36
	2014 Warm season	150	160	240	84	1.4 [0.5]	36/36	36/36
	2015 Warm season	120	130	170	74	0.5 [0.2]	35/35	35/35

Stocktaking of the detection of Hexachlorobenzene in air during FY2002~2015

[3] Aldrin (reference)

· History and state of monitoring

Aldrin had been used as a soil insecticide until FY1971 when the application of the substance was substantially stopped. Its registration under the Agricultural Chemicals Regulation Law was expired in FY1975. It was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Also the substance is the initial POPs under the Stockholm Convention since 2004.

In previous monitoring series until FY2001, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1989, FY1991 and FY1993 under the framework of "the Wildlife Monitoring."

Under the framework of the Environmental Monitoring, the substance had been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002 to FY2009, in wildlife (bivalves, fish and birds) and air in FY2014.

No monitoring was conducted in FY2015. For reference, the monitoring results up to FY2014 are given below.

· Monitoring results until 2014

<Surface Water>

Stocktaking of the detection of Aldrin in surface water during FY2002~2009

	Monitored	Geometric				Quantification	Detection	Frequency
Aldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.8	0.9	18	nd	0.6 [0.2]	93/114	37/38
	2003	0.9	0.9	3.8	nd	0.6 [0.2]	34/36	34/36
	2004	tr(1.5)	tr(1.8)	13	nd	2 [0.4]	33/38	33/38
Surface Water	2005	tr(0.6)	tr(0.7)	5.7	nd	0.9 [0.3]	32/47	32/47
(pg/L)	2006	nd	nd	4.4	nd	1.7 [0.6]	18/48	18/48
	2007	tr(0.6)	tr(0.6)	9.5	nd	1.0 [0.3]	34/48	34/48
	2008	tr(0.8)	tr(0.7)	21	nd	1.4 [0.6]	26/48	26/48
	2009	0.7	0.9	22	nd	0.7 [0.3]	32/49	32/49

(Note) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Stocktaking of the detection of Aldrin in sediment during FY2002~2009

	Monitored	Geometric				Quantification	Detection l	Frequency
Aldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	14	12	570	nd	6 [2]	149/189	56/63
	2003	19	18	1,000	nd	2 [0.6]	178/186	60/62
	2004	10	10	390	nd	2 [0.6]	170/189	62/63
Sediment	2005	8.4	7.1	500	nd	1.4 [0.5]	173/189	62/63
(pg/g-dry)	2006	10	9.3	330	nd	1.9 [0.6]	184/192	64/64
	2007	7.5	6.7	330	nd	1.8 [0.6]	172/192	60/64
	2008	6	6	370	nd	3 [1]	153/192	56/64
	2009	8.9	7.8	540	nd	0.5 [0.2]	180/192	64/64

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

	Monitored	Geometric				Quantification	Detection I	Frequency
Aldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(1.6)	nd	34	nd	4.2 [1.4]	12/38	4/8
	2003	tr(1.7)	tr(0.85)	51	nd	2.5 [0.84]	15/30	3/6
	2004	tr(2.5)	tr(1.6)	46	nd	4.0 [1.3]	16/31	4/7
Bivalves	2005	tr(1.8)	nd	84	nd	3.5 [1.2]	11/31	3/7
(pg/g-wet)	2006	tr(2)	nd	19	nd	4 [2]	11/31	3/7
(pg/g-wet)	2007	tr(2)	nd	26	nd	5 [2]	5/31	2/7
	2008	tr(2)	nd	20	nd	5 [2]	5/31	3/7
	2009	tr(1.6)	tr(0.8)	89	nd	2.1 [0.8]	16/31	6/7
	2014	nd	nd	nd	nd	1.8 [0.7]	0/3	0/3
Fish	2002	nd	nd	tr(2.0)	nd	4.2 [1.4]	1/70	1/14
	2003	nd	nd	tr(1.9)	nd	2.5 [0.84]	16/70	7/14
	2004	nd	nd	tr(2.4)	nd	4.0 [1.3]	5/70	2/14
	2005	nd	nd	6.4	nd	3.5 [1.2]	11/80	5/16
(pg/g-wet)	2006	nd	nd	tr(2)	nd	4 [2]	2/80	2/16
(pg/g-wet)	2007	nd	nd	tr(2)	nd	5 [2]	2/80	2/16
	2008	nd	nd	tr(2)	nd	5 [2]	1/85	1/17
	2009	nd	nd	3.1	nd	2.1 [0.8]	22/90	7/18
	2014	nd	nd	2.4	nd	1.8 [0.7]	4/19	4/19
	2002	nd	nd	nd	nd	4.2 [1.4]	0/10	0/2
	2003	nd	nd	nd	nd	2.5 [0.84]	0/10	0/2
	2004	nd	nd	nd	nd	4.0 [1.3]	0/10	0/2
Birds	2005	nd	nd	nd	nd	3.5 [1.2]	0/10	0/2
(pg/g-wet)	2006	nd	nd	nd	nd	4 [2]	0/10	0/2
(PB/g-wel)	2007	nd	nd	nd	nd	5 [2]	0/10	0/2
	2008	nd	nd	nd	nd	5 [2]	0/10	0/2
	2009	nd	nd	nd	nd	2.1 [0.8]	0/10	0/2
	2014**	nd		nd	nd	1.8 [0.7]	0/2	0/2

<Wildlife>

Stocktaking of the detection of Aldrin in wildlife (bivalves, fish and birds) during FY2002~2014

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009. (Note 2) " ** " indicates there is no consistency between the results of the ornithological survey in FY2014 and those in

previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted during FY2010~2013.

<Air>

Stocktaking of the detection of Aldrin in air during FY2002~2014

		Geometric				Quantification	Detection l	Frequency
Aldrin	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(0.030)	nd	3.2	nd	0.060 [0.020]	41/102	19/34
	2003Warm season	1.5	1.9	28	nd	0.023 [0.0077]	34/35	34/35
	2003Cold season	0.55	0.44	6.9	0.030	0.023 [0.0077]	34/34	34/34
	2004Warm season	tr(0.12)	nd	14	nd	0 15 [0 05]	15/37	15/37
	2004Cold season	tr(0.08)	nd	13	nd	0.15 [0.05]	14/37	14/37
	2005Warm season	0.33	0.56	10	nd	0.08 [0.03]	29/37	29/37
	2005Cold season	tr(0.04)	nd	1.8	nd	0.08 [0.03]	9/37	9/37
Air	2006Warm season	0.30	0.35	8.5	nd	0 14 [0 05]	31/37	31/37
(pg/m^3)	2006Cold season	tr(0.05)	nd	1.1	nd	0.14 [0.05]	16/37	16/37
	2007Warm season	0.58	0.48	19	nd	0.05 [0.02]	35/36	35/36
	2007Cold season	0.14	0.15	2.1	nd	0.05 [0.02]	34/36	34/36
	2008Warm season	0.27	0.30	9.4	tr(0.02)	0.04.00.001	25/25	25/25
	2008Cold season	0.09	0.08	1.3	nd	0.04 [0.02]	22/25	22/25
	2009Warm season	0.07	nd	10	nd	0.04.00.001	10/25	10/25
	2009Cold season	tr(0.03)	nd	1.8	nd	0.04 [0.02]	8/24	8/24
	2014Warm season	nd	nd	17	nd	12 [4]	6/34	6/34

(Note) No monitoring was conducted during FY2010~2013.

[4] Dieldrin (reference)

· History and state of monitoring

Dieldrin was used as a pesticide and its application culminated during the period of 1955~1964. The substance had been used as termitecides as a Soil-Residue-Prone Pesticide under the Agricultural Chemicals Regulation Law in 1971, but its registration under the Agricultural Chemicals Regulation Law was expired in FY1975. It had been used for termite control and was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Also the substances is one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series until FY2001, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1996, FY1998, FY2000 and FY2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," the substance in surface water and sediment was monitored during the period of FY1986~1998 and FY1986~2001, respectively.

Under the framework of the Environmental Monitoring, the substance had been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002 to FY2009 and in FY2011 and in surface water, wildlife (bivalves, fish and birds) and air in FY2014.

No monitoring was conducted in FY2015. For reference, the monitoring results up to FY2014 are given below.

Monitoring results until 2014

<Surface Water>

Stocktaking of the detection of Dieldrin in surface water during FY2002~2014

	Monitored	Geometric			Detection	Frequency		
Dieldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	42	41	940	3.3	1.8 [0.6]	114/114	38/38
	2003	57	57	510	9.7	0.7 [0.3]	36/36	36/36
	2004	55	51	430	9	2 [0.5]	38/38	38/38
	2005	39	49	630	4.5	1.0 [0.34]	47/47	47/47
Surface Water	2006	36	32	800	6	3 [1]	48/48	48/48
(pg/L)	2007	38	36	750	3.1	2.1 [0.7]	48/48	48/48
	2008	36	37	450	3.6	1.5 [0.6]	48/48	48/48
	2009	36	32	650	2.7	0.6 [0.2]	49/49	49/49
	2011	33	38	300	2.1	1.6 [0.6]	49/49	49/49
	2014	28	27	200	2.7	0.5 [0.2]	48/48	48/48

(Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted in FY2010, FY2012 and FY2013.

<Sediment>

Stocktaking of the detection of Dieldrin in sediment during FY2002~2011

	Monitored	Geometric				Quantification	Detection 1	Frequency
Dieldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	70	51	2,300	4	3 [1]	189/189	63/63
	2003	66	56	9,100	nd	4 [2]	184/186	62/62
	2004	65	62	3,700	tr(1.9)	3 [0.9]	189/189	63/63
C a l'an ant	2005	61	55	4,200	tr(2)	3 [1]	189/189	63/63
Sediment	2006	61	54	1,500	tr(1.7)	2.9 [1.0]	192/192	64/64
(pg/g-dry)	2007	49	40	2,700	tr(1.2)	2.7 [0.9]	192/192	64/64
	2008	48	43	2,900	tr(0.7)	1.2 [0.5]	192/192	64/64
	2009	51	47	3,000	1.1	0.8 [0.3]	192/192	64/64
	2011	47	44	2,200	2	5 [2]	64/64	64/64

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted in FY2010.

	Monitored	Geometric				Quantification	Detection 1	Frequency
Dieldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	440	390	190,000	tr(7)	12 [4]	38/38	8/8
	2003	440	160	78,000	46	4.8 [1.6]	30/30	6/6
	2004	630	270	69,000	42	31 [10]	31/31	7/7
	2005	500	140	39,000	34	9.4 [3.4]	31/31	7/7
Bivalves	2006	450	120	47,000	30	7 [3]	31/31	7/7
(pg/g-wet)	2007	380	110	77,000	37	9 [3]	31/31	7/7
	2008	430	150	24,000	47	9 [3]	31/31	7/7
	2009	490	230	28,000	48	7 [2]	31/31	7/7
	2011	390	690	3,800	16	3 [1]	4/4	4/4
	2014	180	300	490	41	3 [1]	3/3	3/3
	2002	290	270	2,400	46	12 [4]	70/70	14/14
	2003	220	200	1,000	29	4.8 [1.6]	70/70	14/14
	2004	250	230	2,800	tr(23)	31 [10]	70/70	14/14
	2005	230	250	1,400	21	9.4 [3.4]	80/80	16/16
Fish	2006	230	220	1,400	19	7 [3]	80/80	16/16
(pg/g-wet)	2007	250	210	1,900	23	9 [3]	80/80	16/16
	2008	240	240	1,300	15	9 [3]	85/85	17/17
	2009	240	190	1,400	29	7 [2]	90/90	18/18
	2011	270	340	1,100	17	3 [1]	18/18	18/18
	2014	270	310	1,000	27	3 [1]	19/19	19/19
	2002	1,100	1,100	1,700	820	12 [4]	10/10	2/2
	2003	1,300	1,400	2,200	790	4.8 [1.6]	10/10	2/2
	2004	600	610	960	370	31 [10]	10/10	2/2
	2005	830	740	1,800	500	9.4 [3.4]	10/10	2/2
Birds	2006	700	690	1,300	440	7 [3]	10/10	2/2
(pg/g-wet)	2007	710	710	910	560	9 [3]	10/10	2/2
	2008	680	620	1,300	260	9 [3]	10/10	2/2
	2009	470	420	890	330	7 [2]	10/10	2/2
	2011			770	770	3 [1]	1/1	1/1
	2014**	320		530	190	3 [1]	2/2	2/2

<Wildlife>

Stocktaking of the detection of Dieldrin in wildlife (bivalves, fish and birds) during FY2002~2014

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) " ** " indicates there is no consistency between the results of the ornithological survey in FY2014 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2010, FY2012 and FY2013.

<Air>

Stocktaking of the detection of Dieldrin in air during FY2002~2014

		Geometric				Quantification	Detection I	Frequency
Dieldrin	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.6	5.4	110	0.73	0.60 [0.20]	102/102	34/34
	2003Warm season	19	22	260	2.1	2 1 [0 70]	35/35	35/35
	2003Cold season	5.7	5.2	110	tr(0.82)	2.1 [0.70]	34/34	34/34
	2004Warm season	17	22	280	1.1	0.22 [0.11]	37/37	37/37
	2004Cold season	5.5	6.9	76	0.81	0.33 [0.11]	37/37	37/37
	2005Warm season	14	12	200	1.5	0.54.[0.24]	37/37	37/37
	2005Cold season	3.9	3.6	50	0.88	0.54 [0.24]	37/37	37/37
	2006Warm season	15	14	290	1.5	0.2 [0.1]	37/37	37/37
Air	2006Cold season	4.5	4.2	250	0.7	0.3 [0.1]	37/37	37/37
(pg/m^3)	2007Warm season	19	22	310	1.3	0.18 [0.07]	36/36	36/36
	2007Cold season	4.5	3.7	75	0.96	0.18 [0.07]	36/36	36/36
	2008Warm season	14	16	220	1.6	0.24 [0.00]	37/37	37/37
	2008Cold season	4.9	3.8	72	0.68	0.24 [0.09]	37/37	37/37
	2009Warm season	13	13	150	0.91	0.06 [0.02]	37/37	37/37
	2009Cold season	4.5	4.0	80	0.52	0.06 [0.02]	37/37	37/37
	2011Warm season	12	15	230	0.80	0.42 [0.14]	35/35	35/35
	2011Cold season	4.3	4.9	96	0.52	0.42 [0.14]	37/37	37/37
	2014Warm season	11	9.9	160	0.89	0.34 [0.11]	36/36	36/36

(Note) No monitoring was conducted in FY2010, FY2012 and FY2013.

[5] Endrin (reference)

· History and state of monitoring

Endrin was used as an insecticide and a rodenticide, but its registration under the Agricultural Chemicals Regulation Law was expired in FY1975. It was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Also the substances is one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series until FY2001, the substance was monitored in wildlife (bivalves, fish and birds) during the periods of FY1978~1989 and FY1991~1993 under the framework of "the Wildlife Monitoring".

Under the framework of the Environmental Monitoring, the substance has been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002 to FY2009, and in surface water, wildlife (bivalves, fish and birds) and air in FY2014.

No monitoring was conducted in FY2015. For reference, the monitoring results up to FY2014 are given below.

· Monitoring results until 2014

<Surface Water>

Stocktaking of the detection of Endrin in surface water during FY2002~2014

~	Monitored	Geometric		8		Quantification	Detection	Frequency
Endrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(4.8)	tr(5.5)	31	nd	6.0 [2.0]	101/114	36/38
	2003	5.7	6.0	78	0.7	0.7 [0.3]	36/36	36/36
	2004	7	7	100	tr(0.7)	2 [0.5]	38/38	38/38
	2005	4.0	4.5	120	nd	1.1 [0.4]	45/47	45/47
Surface Water	2006	3.1	3.5	26	nd	1.3 [0.4]	44/48	44/48
(pg/L)	2007	3.5	3.4	25	nd	1.9 [0.6]	46/48	46/48
	2008	3	4	20	nd	3 [1]	45/48	45/48
	2009	2.0	2.3	67	nd	0.7 [0.3]	39/49	39/49
	2011	3.8	4.6	71	nd	1.6 [0.6]	47/49	47/49
	2014	2.5	2.2	25	tr(0.4)	0.5 [0.2]	48/48	48/48

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted in FY2010, FY2012 and FY2013.

<Sediment>

Stocktaking of the detection of Endrin in sediment during FY2002~2011

	Monitored	Geometric				Quantification	Detection I	Frequency
Endrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	10	10	19,000	nd	6 [2]	141/189	54/63
	2003	12	11	29,000	nd	5 [2]	150/186	53/62
	2004	15	13	6,900	nd	3 [0.9]	182/189	63/63
Sediment	2005	12	11	19,000	nd	2.6 [0.9]	170/189	61/63
	2006	12	10	61,000	nd	4 [1]	178/192	63/64
(pg/g-dry)	2007	11	9	61,000	nd	5 [2]	151/192	55/64
	2008	11	11	38,000	nd	1.9 [0.7]	168/192	61/64
	2009	9.6	8.4	11,000	nd	1.6 [0.6]	168/192	63/64
	2011	8.8	14	1,100	nd	1.1 [0.4]	59/64	59/64

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted in FY2010.

	Monitored	Geometric				Quantification	Detection	Frequency
Endrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	42	27	12,000	nd	18 [6]	35/38	7/8
	2003	38	21	5,000	6.3	4.8 [1.6]	30/30	6/6
	2004	65	25	4,600	tr(5.7)	12 [4.2]	31/31	7/7
	2005	39	19	2,100	nd	17 [5.5]	27/31	7/7
Bivalves	2006	40	15	3,100	tr(5)	11 [4]	31/31	7/7
(pg/g-wet)	2007	28	12	3,000	tr(6)	9 [3]	31/31	7/7
	2008	30	10	1,500	tr(6)	8 [3]	31/31	7/7
	2009	38	19	1,400	tr(5)	7 [3]	31/31	7/7
	2011	33	62	110	tr(3)	4 [2]	4/4	4/4
	2014	23	17	84	8	3 [1]	3/3	3/3
	2002	20	24	180	nd	18 [6]	54/70	13/14
	2003	14	10	180	nd	4.8 [1.6]	67/70	14/14
	2004	18	24	220	nd	12 [4.2]	57/70	13/14
	2005	19	tr(16)	2,100	nd	17 [5.5]	58/80	12/16
Fish	2006	13	tr(10)	150	nd	11 [4]	66/80	16/16
(pg/g-wet)	2007	13	12	170	nd	9 [3]	69/80	15/16
	2008	11	10	200	nd	8 [3]	63/85	14/17
	2009	17	12	270	nd	7 [3]	86/90	18/18
	2011	18	19	160	nd	4 [2]	16/18	16/18
	2014	16	16	140	nd	3 [1]	18/19	18/19
	2002	28	52	99	nd	18 [6]	7/10	2/2
	2003	22	30	96	5.4	4.8 [1.6]	10/10	2/2
	2004	tr(11)	25	62	nd	12 [4.2]	5/10	1/2
	2005	18	28	64	nd	17 [5.5]	7/10	2/2
Birds	2006	16	23	57	tr(4)	11 [4]	10/10	2/2
(pg/g-wet)	2007	17	28	55	nd	9 [3]	9/10	2/2
	2008	10	26	83	nd	8 [3]	5/10	1/2
	2009	11	17	43	tr(3)	7 [3]	10/10	2/2
	2011			tr(3)	tr(3)	4 [2]	1/1	1/1
	2014**	4		5	4	3 [1]	2/2	2/2

<Wildlife>

Stocktaking of the detection of Endrin in wildlife (bivalves, fish and birds) during FY2002~2014

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) " ** " indicates there is no consistency between the results of the ornithological survey in FY2014 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2010, FY2012 and FY2013.

<Air>

Stocktaking of the detection of Endrin in air during FY2002~2014

		Geometric				Quantification	Detection	Frequency
Endrin	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.22	0.28	2.5	nd	0.090 [0.030]	90/102	32/34
	2003Warm season	0.74	0.95	6.2	0.081	0.042 [0.014]	35/35	35/35
	2003Cold season	0.23	0.20	2.1	0.042	0.042 [0.014]	34/34	34/34
	2004Warm season	0.64	0.68	6.5	tr(0.054)	0 14 [0 049]	37/37	37/37
	2004Cold season	0.23	0.26	1.9	nd	0.14 [0.048]	36/37	36/37
	2005Warm season	tr(0.4)	tr(0.3)	2.9	nd	0.5 [0.2]	27/37	27/37
	2005Cold season	nd	nd	0.7	nd	0.5 [0.2]	8/37	8/37
	2006Warm season	0.31	0.32	5.4	nd	0.20[0.10]	32/37	32/37
Air	2006Cold season	nd	nd	5.0	nd	0.30 [0.10]	7/37	7/37
(pg/m^3)	2007Warm season	0.69	0.73	6.3	tr(0.06)	0.09 [0.04]	36/36	36/36
	2007Cold season	0.16	0.13	1.5	nd	0.09 [0.04]	33/36	33/36
	2008Warm season	0.53	0.68	4.6	tr(0.06)	0.10 [0.04]	37/37	37/37
	2008Cold season	0.18	0.18	1.8	nd	0.10 [0.04]	35/37	35/37
	2009Warm season	0.49	0.51	3.4	nd	0.00.00.041	36/37	36/37
	2009Cold season	0.17	0.15	1.8	nd	0.09 [0.04]	36/37	36/37
	2011Warm season	0.46	0.62	5.1	nd	0.00.00.041	34/35	34/35
	2011Cold season	0.16	0.16	1.8	nd	0.09 [0.04]	33/37	33/37
	2014Warm season	0.39	0.48	2.9	nd	0.20 [0.07]	32/36	32/36

(Note) No monitoring was conducted in FY2010, FY2012 and FY2013.

[6] DDTs

· History and state of monitoring

DDT, along with hexachlorocyclohexanes (HCHs) and drins, was used as insecticides in high volume. Its registration under the Agricultural Chemicals Regulation Law was expired in FY1971. *p,p'*-DDT was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Also the substances are one of the original twelve POPs covered by the Stockholm Convention.

Among several DDT isomers with chlorine at various positions on the aromatic ring, not only p,p'-DDT and o,p'-DDT as active substances but also p,p'-DDE, o,p'-DDE, p,p'-DDD and o,p'-DDD as the environmentally degraded products of DDTs have been the target chemicals in monitoring series since FY1978.

In previous monitoring series, *p,p'*-DDT, *p,p'*-DDE and *p,p'*-DDD had been monitored in wildlife (bivalves, fish and birds) during the period of FY1978~2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," surface water and sediment had been the monitored media during the period of FY1986~1998 and FY1986~2001, respectively. Similarly, *o,p'*-DDT, *o,p'*-DDE and *o,p'*-DDD had been monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1998, FY2000 and FY2001 under the framework of "the Wildlife Monitoring."

Under the framework of the Environmental Monitoring, p,p'-DDT, p,p'-DDE, p,p'-DDD, o,p'-DDT, o,p'-DDE and o,p'-DDD have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002 to FY2010, wildlife (bivalves, fish and birds) and air in FY2013, surface water and sediment in FY2014 and air in FY2015.

· Monitoring results

\circ *p,p'*-DDT, *p,p'*-DDE and *p,p'*-DDD <<Air>

p,p'-DDT: The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.05pg/m³, and the detection range was 0.18~13pg/m³.

As results of the inter-annual trend analysis from FY2003 to FY2015, reduction tendency in specimens from warm season was identified as statistically significant.

p,p'-DDE: The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.04pg/m³, and the detection range was 0.31~34pg/m³.

As results of the inter-annual trend analysis from FY2003 to FY2015, reduction tendency in specimens from warm season was identified as statistically significant.

p,p'-DDD: The presence of the substance in air was monitored at 35 sites, and it was detected at 17 of the 35 valid sites adopting the detection limit of 0.11pg/m^3 , and none of the detected concentrations exceeded tr(0.31)pg/m³.

As results of the inter-annual trend analysis from FY2003 to FY2015, although the number of detections was small, the detection rate of the warm season was decreased, it suggested a reduction tendency of the concentrations

		Geometric				Quantification	Detection Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 35/35 Detection Sample 102/102 35/35 34/34 37/37 37/37 37/37	Frequence
<i>p,p'</i> -DDT	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	1.9	1.8	22	0.25	0.24 [0.08]	102/102	34/34
	2003Warm season	5.8	6.6	24	0.75	0.14 [0.046]	35/35	35/35
	2003Cold season	1.7	1.6	11	0.31	0.14 [0.040]	34/34	34/34
	2004Warm season	4.7	5.1	37	0.41	0.22 [0.074]		37/37
	2004Cold season	1.8	1.7	13	0.29	0.22 [0.074]		37/37
	2005Warm season	4.1	4.2	31	0.44	0.16 [0.054]		37/37
	2005Cold season	1.1	0.99	4.8	0.25	0.10 [0.034]	37/37	37/37
	2006Warm season	4.2	3.8	51	0.35	0.17 [0.06]	37/37	37/37
	2006Cold season	1.4	1.2	7.3	0.29	0.17[0.00]	37/37	37/37
Air	2007Warm season	4.9	5.2	30	0.6	0.07.[0.02]	36/36	36/36
(pg/m^3)	2007Cold season	1.2	1.2	8.8	0.23	0.07 [0.03]	36/36	36/36
	2008Warm season	3.6	3.0	27	0.76	0.07.00.021	37/37	37/37
	2008Cold season	1.2	1.0	15	0.22	0.07 [0.03]	37/37	37/37
	2009Warm season	3.6	3.6	28	0.44	0.07.00.021	37/37	37/37
	2009Cold season	1.1	1.0	8.0	0.20	0.07 [0.03]	37/37	37/37
	2010Warm season	3.5	3.1	56	0.28			37/37
	2010Cold season	1.3	0.89	16	0.30	0.10 [0.03]		37/37
	2013Warm season	2.8	3.6	17	0.20		36/36	36/36
	2013Cold season	0.65	0.53	4.5	0.18	0.11 [0.04]		36/36
	2015Warm season	1.5	1.8	13	0.18	0.15 [0.05]		35/35
						Quantification	Detection I	
<i>p,p'</i> -DDE	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit		Site
	2002	2.8	2.7	28	0.56	0.09 [0.03]	102/102	34/34
	2003Warm season	7.2	7.0	51	1.2	0 40 50 123	35/35	35/35
	2003Cold season	2.8	2.4	22	1.1	0.40 [0.13]	34/34	34/34
	2004Warm season	6.1	6.3	95	0.62	0.10.0000		37/37
	2004Cold season	2.9	2.6	43	0.85	0.12 [0.039]	37/37	37/37
	2005Warm season	5.0	5.7	42	1.2			37/37
	2005Cold season	1.7	1.5	9.9	0.76	0.14 [0.034]		37/37
	2006Warm season	5.0	4.7	49	1.7		37/37	37/37
	2006Cold season	1.9	1.7	9.5	0.52	0.10 [0.03]	37/37	37/37
Air	2007Warm season	6.4	6.1	120	0.54		36/36	36/36
(pg/m^3)	2007Cold season	2.1	1.9	39	0.73	0.04 [0.02]	36/36	36/36
(18)	2008Warm season	4.8	4.4	96	0.98		37/37	37/37
	2008Cold season	2.2	2.0	22	0.89	0.04 [0.02]	37/37	37/37
		4.9	4.8	130	0.87		37/37	37/37
	2009 Warm season		1.0			0.08 [0.03]		37/37
	2009Warm season 2009Cold season		19	100	0.60		1 // 1 /	
	2009Cold season	2.1	1.9	100	$\frac{0.60}{\text{tr}(0.41)}$		37/37	
	2009Cold season 2010Warm season	<u>2.1</u> 4.9	4.1	200	tr(0.41)	0.62 [0.21]	37/37	37/37
	2009Cold season 2010Warm season 2010Cold season	2.1 4.9 2.2	4.1 1.8	200 28	tr(0.41) tr(0.47)		37/37 37/37	37/37 37/37
	2009Cold season 2010Warm season 2010Cold season 2013Warm season	2.1 4.9 2.2 4.1	4.1 1.8 4.3	200 28 37	tr(0.41) tr(0.47) 0.2	0.62 [0.21]	37/37 37/37 36/36	37/37 37/37 36/36
	2009Cold season 2010Warm season 2010Cold season	2.1 4.9 2.2	4.1 1.8	200 28	tr(0.41) tr(0.47)		37/37 37/37	37/37 37/37

Stocktaking of the detection of *p*,*p*'-DDT, *p*,*p*'-DDE and *p*,*p*'-DDD in air during FY2002~2015

		Geometric				Quantification	Detection l	Frequency
<i>p,p'</i> -DDD	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.12	0.13	0.76	nd	0.018 [0.006]	101/102	34/34
	2003Warm season	0.30	0.35	1.4	0.063	0.054 [0.018]	35/35	35/35
	2003Cold season	0.13	0.14	0.52	tr(0.037)	0.034 [0.018]	34/34	34/34
	2004Warm season	0.24	0.27	1.4	tr(0.036)	0.053 [0.018]	37/37	37/37
	2004Cold season	0.12	0.12	0.91	tr(0.025)	0.033 [0.018]	37/37	37/37
	2005Warm season	0.24	0.26	1.3	tr(0.07)	0.16 [0.05]	37/37	37/37
	2005Cold season	tr(0.06)	tr(0.07)	0.29	nd	0.10[0.03]	28/37	28/37
	2006Warm season	0.28	0.32	1.3	nd	0 13 10 041	36/37	36/37
	2006Cold season	0.14	tr(0.12)	0.99	nd	0.13 [0.04]	36/37	36/37
Air	2007Warm season	0.26	0.27	1.4	0.046		36/36	36/36
(pg/m^3)	2007Cold season	0.093	0.087	0.5	0.026	0.011 [0.004]	36/36	36/36
	2008Warm season	0.17	0.17	1.1	0.037	0.025 [0.009]	37/37	37/37
	2008Cold season	0.091	0.081	0.31	0.036	0.025 [0.009]	37/37	37/37
	2009Warm season	0.17	0.18	0.82	0.03	0.03 [0.01]	37/37	37/37
	2009Cold season	0.08	0.08	0.35	tr(0.02)	0.03 [0.01]	37/37	37/37
	2010Warm season	0.20	0.17	1.7	0.04	0.02 [0.01]	37/37	37/37
	2010Cold season	0.10	0.09	0.41	0.02	0.02 [0.01]	37/37	37/37
	2013Warm season	0.16	0.18	0.80	0.027	0.018 [0.007]	36/36	36/36
	2013Cold season	0.056	0.054	0.14	tr(0.015)	0.018 [0.007]	36/36	36/36
	2015Warm season	nd	nd	tr(0.31)	nd	0.33 [0.11]	17/35	17/35

(Note) No monitoring was conducted in FY2011, FY2012 and FY2014.

○ *o,p'*-DDT, *o,p'*-DDE and *o,p'*-DDD

<Air>

o,p'-DDT: The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.04pg/m³, and the detection range was 0.14~6.8pg/m³.

As results of the inter-annual trend analysis from FY2003 to FY2015, reduction tendency in specimens from warm season was identified as statistically significant.

o,p'-DDE: The presence of the substance in air was monitored at 35 sites, and it was detected at 34 of the 35 valid sites adopting the detection limit of 0.06 pg/m³, and none of the detected concentrations exceeded 1.1 pg/m³.

As results of the inter-annual trend analysis from FY2003 to FY2015, reduction tendency in specimens from warm season was identified as statistically significant.

o,p'-DDD: The presence of the substance in air was monitored at 35 sites, and it was detected at 25 of the 35 valid sites adopting the detection limit of 0.07pg/m^3 , and none of the detected concentrations exceeded 0.37pg/m^3 .

As results of the inter-annual trend analysis from FY2003 to FY2015, the last 5 yers period was indicated lower concentration than the first 5 yers period in specimens from warm season as statistically significant

<i>o,p'</i> -DDT	Monitored year	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection I	
• <i>y</i> _{<i>T</i>} = = = =	-	mean				limit	Sample	Site
	2002	2.2	2.0	40	0.41	0.15 [0.05]	102/102	34/34
	2003Warm season	6.9	7.7	38	0.61	0.12 [0.040]	35/35	35/35
	2003Cold season	1.6	1.4	6.4	0.43		34/34	34/34
	2004Warm season	5.1	5.4	22	0.54	0.093 [0.031]	37/37	37/37
	2004Cold season	1.5	1.4	9.4	0.35		37/37	37/37
	2005Warm season	3.0	3.1	14	0.67	0.10 [0.034]	37/37	37/37
	2005Cold season	0.76	0.67	3.0	0.32		37/37	37/37
	2006Warm season	2.5	2.4	20	0.55	0.09 [0.03]	37/37	37/37
	2006Cold season	0.90	0.79	3.9	0.37		37/37	37/37
Air	2007Warm season	2.9	2.6	19	0.24	0.03 [0.01]	36/36	36/36
(pg/m^3)	2007Cold season	0.77	0.63	3.4	0.31		36/36	36/36
	2008Warm season	2.3	2.1	18	0.33	0.03 [0.01]	37/37	37/37
	2008Cold season	0.80	0.62	6.5	0.32		37/37	37/37
	2009Warm season	2.3	2.2	14	0.33	0.019 [0.008]	37/37	37/37
	2009Cold season	0.80	0.71	3.7	0.20		37/37	37/37
	2010Warm season	2.2	1.9	26	0.19	0 14 [0 05]	37/37	37/37
	2010Cold season	0.81	0.69	5.5	0.22	19 22 15 0.054 [0.05]	37/37	37/37
	2013Warm season	1.7	1.7	12	0.15	0 054 [0 018]	36/36	36/36
	2013Cold season	0.47	0.44	2.4	0.20		36/36	36/36
	2015Warm season	0.99	1.2	6.8	0.14	0.12 [0.04]	35/35	35/35
		Geometric				Quantification	Detection I	Frequency
<i>o,p'</i> -DDE	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.60	0.56	8.5	0.11	0.02 [0.01]	102/102	34/34
	2002	0.00	0.50		0.11	0.03 [0.01]	102/102	
	2002 2003Warm season	1.4	1.5	7.5	0.17		35/35	35/35
				7.5 1.7		0.020 [0.0068]		
	2003Warm season	1.4	1.5		0.17	0.020 [0.0068]	35/35	35/35
	2003Warm season 2003Cold season	1.4 0.50	1.5 0.47	1.7	0.17 0.18		35/35 34/34	35/35 34/34
	2003Warm season 2003Cold season 2004Warm season	1.4 0.50 1.1	1.5 0.47 1.2	<u> </u>	0.17 0.18 0.14	0.020 [0.0068]	35/35 34/34 37/37	35/35 34/34 37/37
	2003Warm season 2003Cold season 2004Warm season 2004Cold season	1.4 0.50 1.1 0.53	1.5 0.47 1.2 0.49	1.7 8.9 3.9	0.17 0.18 0.14 0.14	0.020 [0.0068]	35/35 34/34 37/37 37/37	35/35 34/34 37/37 37/37
	2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season	1.4 0.50 1.1 0.53 1.6	1.5 0.47 1.2 0.49 1.5	1.7 8.9 3.9 7.9	0.17 0.18 0.14 0.14 0.33	0.020 [0.0068] 0.037 [0.012] 0.074 [0.024]	35/35 34/34 37/37 37/37 37/37	35/35 34/34 37/37 37/37 37/37
	2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season	1.4 0.50 1.1 0.53 1.6 0.62	$ \begin{array}{r} 1.5 \\ 0.47 \\ 1.2 \\ 0.49 \\ 1.5 \\ 0.59 \\ \end{array} $	1.7 8.9 3.9 7.9 2.0	0.17 0.18 0.14 0.14 0.33 0.24	0.020 [0.0068]	35/35 34/34 37/37 37/37 37/37 37/37 37/37	35/35 34/34 37/37 37/37 37/37 37/37
Air	2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season	1.4 0.50 1.1 0.53 1.6 0.62 1.1	$ \begin{array}{r} 1.5 \\ 0.47 \\ 1.2 \\ 0.49 \\ 1.5 \\ 0.59 \\ 1.1 \\ \end{array} $	1.7 8.9 3.9 7.9 2.0 7.4	0.17 0.18 0.14 0.33 0.24 nd	0.020 [0.0068] 0.037 [0.012] 0.074 [0.024] 0.09 [0.03]	35/35 34/34 37/37 37/37 37/37 37/37 36/37	35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/37
	2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season	$ \begin{array}{r} 1.4 \\ 0.50 \\ 1.1 \\ 0.53 \\ 1.6 \\ 0.62 \\ 1.1 \\ 0.65 \\ \end{array} $	$ \begin{array}{r} 1.5 \\ 0.47 \\ 1.2 \\ 0.49 \\ 1.5 \\ 0.59 \\ 1.1 \\ 0.56 \\ \end{array} $	1.7 8.9 3.9 7.9 2.0 7.4 2.6	0.17 0.18 0.14 0.33 0.24 nd 0.19	0.020 [0.0068] 0.037 [0.012] 0.074 [0.024]	35/35 34/34 37/37 37/37 37/37 37/37 36/37 37/37	35/35 34/34 37/37 37/37 37/37 37/37 36/37 37/37
Air (pg/m³)	2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season	$ \begin{array}{r} 1.4 \\ 0.50 \\ 1.1 \\ 0.53 \\ 1.6 \\ 0.62 \\ 1.1 \\ 0.65 \\ 0.66 \\ \end{array} $	$ \begin{array}{r} 1.5\\ 0.47\\ 1.2\\ 0.49\\ 1.5\\ 0.59\\ 1.1\\ 0.56\\ 0.67\\ \end{array} $	$ \begin{array}{r} 1.7 \\ 8.9 \\ 3.9 \\ 7.9 \\ 2.0 \\ 7.4 \\ 2.6 \\ 7 7 $	0.17 0.18 0.14 0.33 0.24 nd 0.19 0.096 0.12 0.11	0.020 [0.0068] 0.037 [0.012] 0.074 [0.024] 0.09 [0.03] 0.017 [0.007]	35/35 34/34 37/37 37/37 37/37 37/37 36/37 36/37 36/36	35/35 34/34 37/37 37/37 37/37 37/37 36/37 37/37 36/36
	2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season	$ \begin{array}{r} 1.4\\ 0.50\\ 1.1\\ 0.53\\ 1.6\\ 0.62\\ 1.1\\ 0.65\\ 0.66\\ 0.3\\ \end{array} $	$ \begin{array}{r} 1.5\\ 0.47\\ 1.2\\ 0.49\\ 1.5\\ 0.59\\ 1.1\\ 0.56\\ 0.67\\ 0.29\\ \end{array} $	$ \begin{array}{r} 1.7 \\ 8.9 \\ 3.9 \\ 7.9 \\ 2.0 \\ 7.4 \\ 2.6 \\ 7 \\ 3.7 \\ 3.7 $	0.17 0.18 0.14 0.33 0.24 nd 0.19 0.096 0.12	0.020 [0.0068] 0.037 [0.012] 0.074 [0.024] 0.09 [0.03]	35/35 34/34 37/37 37/37 37/37 36/37 36/37 36/36 36/36	35/35 34/34 37/37 37/37 37/37 36/37 37/37 36/36 36/36
	2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season 2008Warm season	$ \begin{array}{r} 1.4\\ 0.50\\ 1.1\\ 0.53\\ 1.6\\ 0.62\\ 1.1\\ 0.65\\ 0.66\\ 0.3\\ 0.48\\ \end{array} $	$ \begin{array}{r} 1.5\\ 0.47\\ 1.2\\ 0.49\\ 1.5\\ 0.59\\ 1.1\\ 0.56\\ 0.67\\ 0.29\\ 0.52\\ \end{array} $	$ \begin{array}{r} 1.7 \\ 8.9 \\ 3.9 \\ 7.9 \\ 2.0 \\ 7.4 \\ 2.6 \\ 7 \\ 3.7 \\ 5.0 \\ \end{array} $	0.17 0.18 0.14 0.14 0.33 0.24 nd 0.19 0.096 0.12 0.11	0.020 [0.0068] 0.037 [0.012] 0.074 [0.024] 0.09 [0.03] 0.017 [0.007] 0.025 [0.009]	35/35 34/34 37/37 37/37 37/37 36/37 36/37 36/36 36/36 36/36 37/37	35/35 34/34 37/37 37/37 37/37 36/37 36/37 36/36 36/36 36/36 37/37
	2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Warm season	$ \begin{array}{r} 1.4\\ 0.50\\ 1.1\\ 0.53\\ 1.6\\ 0.62\\ 1.1\\ 0.65\\ 0.66\\ 0.3\\ 0.48\\ 0.30\\ \end{array} $	$ \begin{array}{r} 1.5\\ 0.47\\ 1.2\\ 0.49\\ 1.5\\ 0.59\\ 1.1\\ 0.56\\ 0.67\\ 0.29\\ 0.52\\ 0.24\\ \end{array} $	$ \begin{array}{r} 1.7 \\ 8.9 \\ 3.9 \\ 7.9 \\ 2.0 \\ 7.4 \\ 2.6 \\ 7 \\ 3.7 \\ 5.0 \\ 1.1 \\ \end{array} $	0.17 0.18 0.14 0.33 0.24 nd 0.19 0.096 0.12 0.11 0.15	0.020 [0.0068] 0.037 [0.012] 0.074 [0.024] 0.09 [0.03] 0.017 [0.007]	35/35 34/34 37/37 37/37 37/37 36/37 36/37 36/36 36/36 36/36 37/37 37/37	35/35 34/34 37/37 37/37 37/37 36/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37
	2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Cold season 2008Cold season 2009Warm season	$ \begin{array}{r} 1.4\\ 0.50\\ 1.1\\ 0.53\\ 1.6\\ 0.62\\ 1.1\\ 0.65\\ 0.66\\ 0.3\\ 0.48\\ 0.30\\ 0.51\\ \end{array} $	$\begin{array}{c} 1.5\\ 0.47\\ 1.2\\ 0.49\\ 1.5\\ 0.59\\ 1.1\\ 0.56\\ 0.67\\ 0.29\\ 0.52\\ 0.24\\ 0.46\\ \end{array}$	$ \begin{array}{r} 1.7 \\ 8.9 \\ 3.9 \\ 7.9 \\ 2.0 \\ 7.4 \\ 2.6 \\ 7 \\ 3.7 \\ 5.0 \\ 1.1 \\ 6.7 \\ \end{array} $	0.17 0.18 0.14 0.33 0.24 nd 0.19 0.096 0.12 0.11 0.15 0.098	0.020 [0.0068] 0.037 [0.012] 0.074 [0.024] 0.09 [0.03] 0.017 [0.007] 0.025 [0.009] 0.016 [0.006]	35/35 34/34 37/37 37/37 37/37 36/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37	35/35 34/34 37/37 37/37 37/37 36/37 37/37 36/36 36/36 36/36 37/37 37/37
	2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Cold season 2008Warm season 2009Warm season 2009Warm season	$\begin{array}{c} 1.4 \\ 0.50 \\ 1.1 \\ 0.53 \\ 1.6 \\ 0.62 \\ 1.1 \\ 0.65 \\ 0.66 \\ 0.3 \\ 0.48 \\ 0.30 \\ 0.51 \\ 0.27 \end{array}$	$\begin{array}{c} 1.5\\ 0.47\\ 1.2\\ 0.49\\ 1.5\\ 0.59\\ 1.1\\ 0.56\\ 0.67\\ 0.29\\ 0.52\\ 0.24\\ 0.46\\ 0.24\\ \end{array}$	$ \begin{array}{r} 1.7 \\ 8.9 \\ 3.9 \\ 7.9 \\ 2.0 \\ 7.4 \\ 2.6 \\ 7 \\ 3.7 \\ 5.0 \\ 1.1 \\ 6.7 \\ 23 \\ 9.0 \\ \end{array} $	0.17 0.18 0.14 0.33 0.24 nd 0.19 0.096 0.12 0.11 0.15 0.098 0.072	0.020 [0.0068] 0.037 [0.012] 0.074 [0.024] 0.09 [0.03] 0.017 [0.007] 0.025 [0.009]	35/35 34/34 37/37 37/37 37/37 36/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37	35/35 34/34 37/37 37/37 37/37 36/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37
	2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Warm season 2009Warm season 2009Warm season 2009Cold season 2010Warm season	$\begin{array}{c} 1.4\\ 0.50\\ 1.1\\ 0.53\\ 1.6\\ 0.62\\ 1.1\\ 0.65\\ 0.66\\ 0.3\\ 0.48\\ 0.30\\ 0.51\\ 0.27\\ 0.49\\ \end{array}$	$\begin{array}{c} 1.5\\ 0.47\\ 1.2\\ 0.49\\ 1.5\\ 0.59\\ 1.1\\ 0.56\\ 0.67\\ 0.29\\ 0.52\\ 0.24\\ 0.46\\ 0.24\\ 0.41\\ \end{array}$	$ \begin{array}{r} 1.7 \\ 8.9 \\ 3.9 \\ 7.9 \\ 2.0 \\ 7.4 \\ 2.6 \\ 7 \\ 3.7 \\ 5.0 \\ 1.1 \\ 6.7 \\ 23 $	0.17 0.18 0.14 0.33 0.24 nd 0.19 0.096 0.12 0.11 0.15 0.098 0.072 0.09	0.020 [0.0068] 0.037 [0.012] 0.074 [0.024] 0.09 [0.03] 0.017 [0.007] 0.025 [0.009] 0.016 [0.006] 0.04 [0.01]	35/35 34/34 37/37 37/37 37/37 36/37 36/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37	35/35 34/34 37/37 37/37 37/37 36/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37
	2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Warm season 2009Warm season 2009Cold season 2009Cold season 2010Warm season 2010Warm season	$\begin{array}{c} 1.4\\ 0.50\\ 1.1\\ 0.53\\ 1.6\\ 0.62\\ 1.1\\ 0.65\\ 0.66\\ 0.3\\ 0.48\\ 0.30\\ 0.51\\ 0.27\\ 0.49\\ 0.27\\ \end{array}$	$\begin{array}{c} 1.5\\ 0.47\\ 1.2\\ 0.49\\ 1.5\\ 0.59\\ 1.1\\ 0.56\\ 0.67\\ 0.29\\ 0.52\\ 0.24\\ 0.46\\ 0.24\\ 0.41\\ 0.23\\ \end{array}$	$ \begin{array}{r} 1.7 \\ 8.9 \\ 3.9 \\ 7.9 \\ 2.0 \\ 7.4 \\ 2.6 \\ 7 \\ 3.7 \\ 5.0 \\ 1.1 \\ 6.7 \\ 23 \\ 9.0 \\ 2.3 \\ \end{array} $	0.17 0.18 0.14 0.33 0.24 nd 0.19 0.096 0.12 0.11 0.15 0.098 0.072 0.09 0.08	0.020 [0.0068] 0.037 [0.012] 0.074 [0.024] 0.09 [0.03] 0.017 [0.007] 0.025 [0.009] 0.016 [0.006]	35/35 34/34 37/37 37/37 37/37 36/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37	35/35 34/34 37/37 37/37 37/37 36/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37

Stocktaking of the detection of *o*,*p*'-DDT, *o*,*p*'-DDE and *o*,*p*'-DDD in air during FY2002~2015

		Geometric				Quantification	Detection l	Frequency
o,p'-DDD	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.14	0.18	0.85	nd	0.021 [0.007]	97/102	33/34
	2003Warm season	0.37	0.42	1.3	0.059	0.042 [0.014]	35/35	35/35
	2003Cold season	0.15	0.14	0.42	0.062	0.042 [0.014]	34/34	34/34
	2004Warm season	0.31	0.33	2.6	tr(0.052)	0.14 [0.048]	37/37	37/37
	2004Cold season	0.14	tr(0.13)	0.86	nd	0.14 [0.048]	35/37	35/37
	2005Warm season	0.22	0.19	0.90	tr(0.07)	0 10 [0 02]	37/37	37/37
	2005Cold season	tr(0.07)	tr(0.07)	0.21	nd	0.10 [0.03]	35/37	35/37
	2006Warm season	0.28	0.28	1.4	tr(0.05)	0 10 [0 02]	37/37	37/37
	2006Cold season	0.12	0.11	0.79	nd	0.10 [0.03]	34/37	34/37
Air	2007Warm season	0.28	0.29	1.9	0.05	0.05 [0.02]	36/36	36/36
(pg/m^3)	2007Cold season	0.095	0.09	0.33	tr(0.03)	0 05 10 021	36/36	36/36
	2008Warm season	0.19	0.16	1.6	0.05	0.04.00.011	37/37	37/37
	2008Cold season	0.10	0.09	0.26	0.04	0.04 [0.01]	37/37	37/37
	2009Warm season	0.20	0.19	0.90	0.04	0.02 [0.01]	37/37	37/37
	2009Cold season	0.08	0.08	0.28	tr(0.02)	0.03 [0.01]	37/37	37/37
	2010Warm season	0.21	0.19	1.8	0.04	0.02 [0.01]	37/37	37/37
	2010Cold season	0.10	0.09	0.48	tr(0.02)	0.03 [0.01]	37/37	37/37
	2013Warm season	0.17	0.18	1.2	tr(0.03)	0.05 [0.02]	36/36	36/36
	2013Cold season	0.06	0.06	0.17	nd	0.05 [0.02]	35/36	35/36
	2015Warm season	tr(0.09)	tr(0.10)	0.37	nd	0.20 [0.07]	25/35	25/35

(Note) No monitoring was conducted in FY2011, FY2012 and FY2014.

• Monitoring results until 2014 (reference)

\circ *p,p'*-DDT, *p,p'*-DDE and *p,p'*-DDD

<Surface Water>

Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in surface water during FY2002~2014

	Monitored	Geometric				Quantification	Detection l	Frequency
<i>p,p'</i> -DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	13	11	440	0.25	0.6 [0.2]	114/114	38/38
	2003	14	12	740	tr(2.8)	3 [0.9]	36/36	36/36
	2004	15	14	310	nd	6 [2]	36/38	36/38
	2005	8	9	110	1	4 [1]	47/47	47/47
Surface Water	2006	9.1	9.2	170	tr(1.6)	1.9 [0.6]	48/48	48/48
(pg/L)	2007	7.3	9.1	670	nd	1.7 [0.6]	46/48	46/48
	2008	11	11	1,200	nd	1.2 [0.5]	47/48	47/48
	2009	9.2	8.4	440	0.81	0.15 [0.06]	49/49	49/49
	2010	8.5	7.6	7,500	tr(1.0)	2.4 [0.8]	49/49	49/49
	2014	4.4	3.9	380	nd	0.4 [0.1]	47/48	47/48
	Monitored	Geometric				Quantification	Detection l	Frequenc
<i>p,p'</i> -DDE	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	25	26	760	1.3	0.6 [0.2]	114/114	38/38
	2003	26	22	380	5	4 [2]	36/36	36/36
	2004	36	34	680	tr(6)	8 [3]	38/38	38/38
	2005	26	24	410	4	6 [2]	47/47	47/47
Surface Water	2006	24	24	170	tr(4)	7 [2]	48/48	48/48
(pg/L)	2007	22	23	440	tr(2)	4 [2]	48/48	48/48
	2008	27	28	350	2.5	1.1 [0.4]	48/48	48/48
	2009	23	23	240	3.4	1.1 [0.4]	49/49	49/49
	2010	14	12	1,600	2.4	2.3 [0.8]	49/49	49/49
	2014	16	17	610	1.9	0.5 [0.2]	48/48	48/48
	Manitanal	Constraint				Quantification	Detection l	Frequenc
<i>p,p'</i> -DDD	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	16	18	190	0.57	0.24 [0.08]	114/114	38/38
	2003	19	18	410	4	2 [0.5]	36/36	36/36
	2004	19	18	740	tr(2.4)	3 [0.8]	38/38	38/38
	2005	17	16	130	tr(1.8)	1.9 [0.64]	47/47	47/47
Surface Water	2006	16	17	99	2.0	1.6 [0.5]	48/48	48/48
(pg/L)	2007	15	12	150	tr(1.5)	1.7 [0.6]	48/48	48/48
	2008	22	20	850	2.0	0.6 [0.2]	48/48	48/48
	2009	14	13	140	1.4	0.4 [0.2]	49/49	49/49
	2010	12	10	970	1.6	0.20 0.08	49/49	49/49
	2014	9.0	8.7	87	1.0	1.0 [0.4]	48/48	48/48

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted during FY2011~2013.

	Monitored	Geometric				Quantification	Detection	Frequency
<i>p,p'</i> -DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	380	240	97,000	tr(5)	6 [2]	189/189	63/63
	2003	290	220	55,000	3	2 [0.4]	186/186	62/62
	2004	460	230	98,000	7	2 [0.5]	189/189	63/63
	2005	360	230	1,700,000	5.1	1.0 [0.34]	189/189	63/63
Sediment	2006	310	240	130,000	4.5	1.4 [0.5]	192/192	64/64
(pg/g-dry)	2007	210	150	130,000	3	1.3 [0.5]	192/192	64/64
	2008	270	180	1,400,000	4.8	1.2 [0.5]	192/192	64/64
	2009	250	170	2,100,000	1.9	1.0 [0.4]	192/192	64/64
	2010	230	200	220,000	9.3	2.8 [0.9]	64/64	64/64
	2014	140	140	12,000	tr(0.2)	0.4 [0.2]	63/63	63/63
	Monitored	Geometric				Quantification	Detection	Frequency
<i>p,p'</i> -DDE	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	780	630	23,000	8.4	2.7 [0.9]	189/189	63/63
	2003	790	780	80,000	9.5	0.9 [0.3]	186/186	62/62
	2004	720	700	39,000	8	3 [0.8]	189/189	63/63
	2005	710	730	64,000	8.4	2.7 [0.94]	189/189	63/63
Sediment	2006	710	820	49,000	5.8	1.0 [0.3]	192/192	64/64
(pg/g-dry)	2007	670	900	61,000	3.2	1.1 [0.4]	192/192	64/64
	2008	920	940	96,000	9.0	1.7 [0.7]	192/192	64/64
	2009	700	660	50,000	6.7	0.8 [0.3]	192/192	64/64
	2010	680	790	40,000	11	5 [2]	64/64	64/64
	2014	530	610	64,000	11	1.8 [0.6]	63/63	63/63
	Monitor-1	Coomotric				Quantification	Detection	Frequency
<i>p,p'</i> -DDD	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	640	690	51,000	tr(2.2)	2.4 [0.8]	189/189	63/63
	2003	670	580	32,000	3.7	0.9 [0.3]	186/186	62/62
	2004	650	550	75,000	4	2 [0.7]	189/189	63/63
	2005	600	570	210,000	5.2	1.7 [0.64]	189/189	63/63
Sediment	2006	560	540	53,000	2.2	0.7 [0.2]	192/192	64/64
(pg/g-dry)	2007	520	550	80,000	3.5	1.0 [0.4]	192/192	64/64
	2008	740	660	300,000	2.8	1.0 [0.4]	192/192	64/64
	2009	540	560	300,000	3.9	0.4 [0.2]	192/192	64/64
	2010	510	510	78,000	4.4	1.4 [0.5]	64/64	64/64
	2014	330	410	21,000	4.9	4.2 [1.4]	63/63	63/63

<Sediment>

Stocktaking of the detection of *p*,*p*'-DDT, *p*,*p*'-DDE and *p*,*p*'-DDD in sediment during FY2002~2014

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

(Note 2) No monitoring was conducted during FY2011~2013.

<Wildlife>

Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in wildlife (bivalves, fish and birds) during FY2002~2013

	Monitored	Geometric				Quantification	Detection 1	Frequency
<i>p,p'</i> -DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	200	200	1,200	38	4.2 [1.4]	38/38	8/8
	2003	290	290	1,800	49	11 [3.5]	30/30	6/6
	2004	360	340	2,600	48	3.2 [1.1]	31/31	7/7
	2005	240	170	1,300	66	5.1 [1.7]	31/31	7/7
Bivalves	2006	250	220	1,100	56	6 [2]	31/31	7/7
(pg/g-wet)	2007	240	150	1,200	49	5 [2]	31/31	7/7
	2008	160	100	1,400	12	5 [2]	31/31	7/7
	2009	240	170	9,600	46	3 [1]	31/31	7/7
	2010	180	280	470	43	3 [1]	6/6	6/6
	2013	190	210	890	46	3.3 [1.1]	5/5	5/5
	2002	430	450	24,000	6.8	4.2 [1.4]	70/70	14/14
	2003	220	400	1,900	tr(3.7)	11 [3.5]	70/70	14/14
	2004	410	330	53,000	5.5	3.2 [1.1]	70/70	14/14
	2005	280	330	8,400	tr(3.8)	5.1 [1.7]	80/80	16/16
Fish	2006	300	340	3,000	tr(5)	6 [2]	80/80	16/16
(pg/g-wet)	2007	260	320	1,800	9	5 [2]	80/80	16/16
	2008	280	310	2,900	7	5 [2]	85/85	17/17
	2009	250	300	2,000	4	3 [1]	90/90	18/18
	2010	240	280	2,100	7	3 [1]	18/18	18/18
	2013	280	250	3,300	5.2	3.3 [1.1]	19/19	19/19
	2002	440	510	1,300	76	4.2 [1.4]	10/10	2/2
	2003	610	620	1,400	180	11 [3.5]	10/10	2/2
	2004	340	320	700	160	3.2 [1.1]	10/10	2/2
	2005	430	550	900	180	5.1 [1.7]	10/10	2/2
Birds	2006	580	490	1,800	110	6 [2]	10/10	2/2
(pg/g-wet)	2007	480	350	1,900	160	5 [2]	10/10	2/2
	2008	160	170	270	56	5 [2]	10/10	2/2
	2009	300	190	2,900	85	3 [1]	10/10	2/2
	2010	3		15	nd	3 [1]	1/2	1/2
	2013**	14		46	4.3	3.3 [1.1]	2/2	2/2

	Monitored	Geometric				Quantification	Detection I	Frequency
<i>p,p'</i> -DDE	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	1,000	1,700	6,000	140	2.4 [0.8]	38/38	8/8
	2003	1,200	1,000	6,500	190	5.7 [1.9]	30/30	6/6
	2004	1,300	1,400	8,400	220	8.2 [2.7]	31/31	7/7
	2005	1,200	1,600	6,600	230	8.5 [2.8]	31/31	7/7
Bivalves	2006	1,000	1,200	6,000	160	1.9 [0.7]	31/31	7/7
(pg/g-wet)	2007	1,100	1,200	5,600	180	3 [1]	31/31	7/7
	2008	900	1,100	5,800	120	3 [1]	31/31	7/7
	2009	940	1,100	6,400	150	4 [1]	31/31	7/7
	2010	1,100	1,300	6,300	230	3 [1]	6/6	6/6
	2013	790	1,600	3,000	170	4.3 [1.4]	5/5	5/5
	2002	2,900	2,200	98,000	510	2.4 [0.8]	70/70	14/14
	2003	2,000	2,200	12,000	180	5.7 [1.9]	70/70	14/14
	2004	3,000	2,100	52,000	390	8.2 [2.7]	70/70	14/14
	2005	2,400	2,400	73,000	230	8.5 [2.8]	80/80	16/16
Fish	2006	2,200	2,600	28,000	280	1.9 [0.7]	80/80	16/16
(pg/g-wet)	2007	2,200	2,000	22,000	160	3 [1]	80/80	16/16
	2008	2,500	2,000	53,000	320	3 [1]	85/85	17/17
	2009	2,300	2,100	20,000	260	4 [1]	90/90	18/18
	2010	2,300	2,100	13,000	260	3 [1]	18/18	18/18
	2013	2,900	2,800	16,000	430	4.3 [1.4]	19/19	19/19
	2002	36,000	60,000	170,000	8,100	2.4 [0.8]	10/10	2/2
	2003	66,000	76,000	240,000	18,000	5.7 [1.9]	10/10	2/2
	2004	34,000	65,000	200,000	6,800	8.2 [2.7]	10/10	2/2
	2005	44,000	86,000	300,000	7,100	8.5 [2.8]	10/10	2/2
Birds	2006	38,000	57,000	160,000	5,900	1.9 [0.7]	10/10	2/2
(pg/g-wet)	2007	40,000	56,000	320,000	6,700	3 [1]	10/10	2/2
	2008	51,000	79,000	160,000	7,500	3 [1]	10/10	2/2
	2009	30,000	64,000	220,000	4,300	4 [1]	10/10	2/2
	2010	32,000		160,000	6,300	3 [1]	2/2	2/2
	2013**	170,000		170,000	170,000	4.3 [1.4]	2/2	2/2

	Monitored	Geometric				Quantification	Detection 1	Frequency
<i>p,p'</i> -DDD	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	340	710	3,200	11	5.4 [1.8]	38/38	8/8
	2003	390	640	2,600	tr(7.5)	9.9 [3.3]	30/30	6/6
	2004	440	240	8,900	7.8	2.2 [0.70]	31/31	7/7
	2005	370	800	1,700	13	2.9 [0.97]	31/31	7/7
Bivalves	2006	300	480	1,400	7.3	2.4 [0.9]	31/31	7/7
(pg/g-wet)	2007	310	360	1,500	7	3 [1]	31/31	7/7
	2008	280	280	1,300	6	3 [1]	31/31	7/7
	2009	220	170	2,400	5.8	2.4 [0.9]	31/31	7/7
	2010	180	330	960	11	1.3 [0.5]	6/6	6/6
	2013	270	520	1,300	19	1.9 [0.7]	5/5	5/5
	2002	750	680	14,000	80	5.4 [1.8]	70/70	14/14
	2003	510	520	3,700	43	9.9 [3.3]	70/70	14/14
	2004	770	510	9,700	56	2.2 [0.70]	70/70	14/14
	2005	510	650	6,700	29	2.9 [0.97]	80/80	16/16
Fish	2006	520	580	4,300	60	2.4 [0.9]	80/80	16/16
(pg/g-wet)	2007	470	490	4,100	36	3 [1]	80/80	16/16
	2008	460	440	4,100	33	3 [1]	85/85	17/17
	2009	440	460	2,500	57	2.4 [0.9]	90/90	18/18
	2010	560	610	2,900	57	1.3 [0.5]	18/18	18/18
	2013	500	500	4,700	68	1.9 [0.7]	19/19	19/19
	2002	580	740	3,900	140	5.4 [1.8]	10/10	2/2
	2003	640	860	3,900	110	9.9 [3.3]	10/10	2/2
	2004	330	520	1,400	52	2.2 [0.70]	10/10	2/2
	2005	310	540	1,400	45	2.9 [0.97]	10/10	2/2
Birds	2006	410	740	1,800	55	2.4 [0.9]	10/10	2/2
(pg/g-wet)	2007	440	780	2,300	70	3 [1]	10/10	2/2
/	2008	240	490	1,100	35	3 [1]	10/10	2/2
	2009	280	430	3,400	31	2.4 [0.9]	10/10	2/2
	2010	440		1,600	120	1.3 [0.5]	2/2	2/2
	2013**	140		270	70	1.9 [0.7]	2/2	2/2

(Note 1) "* ":Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009. (Note 2) "**" There is no consistency between the results of the ornithological survey in FY2013 and those in previous years

because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2011 and FY2012.

\circ *o,p'*-DDT, *o,p'*-DDE and *o,p'*-DDD

<Surface Water>

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in surface water during FY2002~2014

	Monitored	Geometric				Quantification	Detection 1	Frequency
<i>o,p'</i> -DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.4	4.6	77	0.19	1.2 [0.4]	114/114	38/38
	2003	6	5	100	tr(1.5)	3 [0.7]	36/36	36/36
	2004	tr(4.5)	5	85	nd	5 [2]	29/38	29/38
	2005	3	3	39	nd	3 [1]	42/47	42/47
Surface Water	2006	2.8	2.4	52	0.51	2.3 [0.8]	48/48	48/48
(pg/L)	2007	tr(2.1)	tr(2.2)	86	nd	2.5 [0.8]	38/48	38/48
	2008	3.1	3.0	230	nd	1.4 [0.5]	44/48	44/48
	2009	2.4	2.4	100	0.43	0.16 [0.06]	49/49	49/49
	2010	1.5	tr(1.2)	700	nd	1.5 [0.5]	43/49	43/49
	2014	1.0	1.0	63	nd	0.4 [0.2]	42/48	42/48

	Monitored	Geometric				Quantification	Detection l	Frequency
<i>o,p'</i> - DDE	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.4	2.1	680	nd	0.9 [0.3]	113/114	38/38
	2003	2.2	2.0	170	tr(0.42)	0.8 [0.3]	36/36	36/36
	2004	3	2	170	tr(0.6)	2 [0.5]	38/38	38/38
	2005	2.5	2.1	410	0.4	1.2 [0.4]	47/47	47/47
Surface Water	2006	tr(1.6)	tr(1.4)	210	nd	2.6 [0.9]	28/48	28/48
(pg/L)	2007	tr(1.5)	tr(1.1)	210	nd	2.3 [0.8]	29/48	29/48
	2008	1.5	1.8	260	nd	0.7 [0.3]	39/48	39/48
	2009	1.3	1.1	140	nd	0.22 [0.09]	47/49	47/49
	2010	0.97	0.65	180	tr(0.13)	0.24 [0.09]	49/49	49/49
	2014	0.6	0.6	560	nd	0.3 [0.1]	36/48	36/48
	Monitored	Geometric				Quantification	Detection l	Frequency
o,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.6	6.0	110	nd	0.60 [0.20]	113/114	38/38
	2003	7.1	5.0	160	1.1	0.8 [0.3]	36/36	36/36
	2004	6	5	81	tr(0.7)	2 [0.5]	38/38	38/38
	2005	5.2	5.4	51	tr(0.5)	1.2 [0.4]	47/47	47/47
Surface Water	2006	2.5	3.3	39	nd	0.8 [0.3]	40/48	40/48
(pg/L)	2007	4.6	3.9	41	tr(0.3)	0.8 [0.3]	48/48	48/48
	2008	6.7	7.2	170	nd	0.8 [0.3]	47/48	47/48
		4 4	2.0	41	0.44	0.22 [0.09]	49/49	49/49
	2009	4.4	3.8	41	0.44	0.22 [0.07]	+)/+)	
	2009 2010	4.4 4.6	3.8 3.8	170	0.44 tr(0.5)	0.6 [0.2]	49/49	49/49

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted during FY2011~2013.

<Sediment>

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in sediment during FY2002~2014

0						Quantification	Detection	Frequency
<i>o,p'</i> -DDT	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	76	47	27,000	nd	6 [2]	183/189	62/63
	2003	50	43	3,200	nd	0.8 [0.3]	185/186	62/62
	2004	69	50	17,000	tr(1.1)	2 [0.6]	189/189	63/63
	2005	58	46	160,000	0.8	0.8 [0.3]	189/189	63/63
Sediment	2006	57	52	18,000	tr(0.8)	1.2 [0.4]	192/192	64/64
(pg/g-dry)	2007	38	31	27,000	nd	1.8 [0.6]	186/192	63/64
	2008	51	40	140,000	tr(0.7)	1.5 [0.6]	192/192	64/64
	2009	44	30	100,000	nd	1.2 [0.5]	190/192	64/64
	2010	40	33	13,000	1.4	1.1 [0.4]	64/64	64/64
	2014	26	24	2,400	nd	0.4 [0.2]	62/63	62/63
<i>o,p'</i> -DDE	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
	2002	54	37	16,000	nd	3 [1]	188/189	63/63
	2003	48	39	24,000	tr(0.5)	0.6 [0.2]	186/186	62/62
	2004	40	34	28,000	nd	3 [0.8]	184/189	63/63
	2005	40	32	31,000	nd	2.6 [0.9]	181/189	62/63
Sediment	2006	42	40	27,000	tr(0.4)	1.1 [0.4]	192/192	64/64
(pg/g-dry)	2007	37	41	25,000	nd	1.2 [0.4]	186/192	63/64
	2008	50	48	37,000	nd	1.4 [0.6]	186/192	63/64
	2009	37	31	33,000	nd	0.6 [0.2]	191/192	64/64
	2010	37	32	25,000	tr(0.7)	1.2 [0.5]	64/64	64/64
	2014	30	32	41,000	tr(0.5)	0.8 [0.3]	63/63	63/63

	Monitored	Geometric				Quantification	Detection 1	Frequency
o,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	160	150	14,000	nd	6 [2]	184/189	62/63
	2003	160	130	8,800	tr(1.0)	2 [0.5]	186/186	62/62
	2004	140	120	16,000	tr(0.7)	2 [0.5]	189/189	63/63
	2005	130	110	32,000	tr(0.8)	1.0 [0.3]	189/189	63/63
Sediment	2006	120	110	13,000	tr(0.3)	0.5 [0.2]	192/192	64/64
(pg/g-dry)	2007	110	130	21,000	tr(0.5)	1.0 [0.4]	192/192	64/64
	2008	170	150	50,000	0.5	0.3 [0.1]	192/192	64/64
	2009	120	120	24,000	0.5	0.5 [0.2]	192/192	64/64
	2010	130	130	6,900	tr(0.8)	0.9 [0.4]	64/64	64/64
	2014	74	85	3,200	tr(0.7)	1.2 [0.5]	63/63	63/63

(Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009. (Note 2) No monitoring was conducted during FY2011~2013.

<Wildlife>

Stocktaking of the detection of *o,p'*-DDT, *o,p'*-DDE and *o,p'*-DDD in wildlife (bivalves, fish and birds) during FY2002~2013

	Monitored	Geometric				Quantification	Detection l	Frequency
<i>o,p'</i> -DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	110	83	480	22	12 [4]	38/38	8/8
	2003	130	120	480	35	2.9 [0.97]	30/30	6/6
	2004	160	140	910	20	1.8 [0.61]	31/31	7/7
	2005	98	57	440	29	2.6 [0.86]	31/31	7/7
Bivalves	2006	92	79	380	24	3 [1]	31/31	7/7
(pg/g-wet)	2007	79	52	350	20	3 [1]	31/31	7/7
	2008	58	37	330	5	3 [1]	31/31	7/7
	2009	74	48	2,500	17	2.2 [0.8]	31/31	7/7
	2010	51	67	160	15	3 [1]	6/6	6/6
	2013	49	51	180	12	3 [1]	5/5	5/5
	2002	130	130	2,300	tr(6)	12 [4]	70/70	14/14
	2003	85	120	520	2.9	2.9 [0.97]	70/70	14/14
	2004	160	140	1,800	3.7	1.8 [0.61]	70/70	14/14
	2005	100	110	1,500	5.8	2.6 [0.86]	80/80	16/16
Fish	2006	100	110	700	6	3 [1]	80/80	16/16
(pg/g-wet)	2007	69	90	430	3	3 [1]	80/80	16/16
	2008	72	92	720	3	3 [1]	85/85	17/17
	2009	61	73	470	2.4	2.2 [0.8]	90/90	18/18
	2010	58	71	550	5	3 [1]	18/18	18/18
	2013	58	76	310	4	3 [1]	19/19	19/19
	2002	12	tr(10)	58	nd	12 [4]	8/10	2/2
	2003	24	16	66	8.3	2.9 [0.97]	10/10	2/2
	2004	8.5	13	43	tr(0.87)	1.8 [0.61]	10/10	2/2
	2005	11	14	24	3.4	2.6 [0.86]	10/10	2/2
Birds	2006	14	10	120	3	3 [1]	10/10	2/2
(pg/g-wet)	2007	9	9	26	tr(2)	3 [1]	10/10	2/2
	2008	4	6	16	nd	3 [1]	8/10	2/2
	2009	6.3	7.6	12	tr(1.4)	2.2 [0.8]	10/10	2/2
	2010	nd		nd	nd	3 [1]	0/2	0/2
	2013**	nd		tr(1)	nd	3 [1]	1/2	1/2

	Monitored	Geometric				Quantification	Detection	Frequency
<i>o,p'</i> - DDE	year	mean*	Median	Maximum	Minimum	[Detection] limit	Samp le	Site
	2002	83	66	1,100	13	3.6 [1.2]	38/38	8/8
	2003	85	100	460	17	3.6 [1.2]	30/30	6/6
	2004	86	69	360	19	2.1 [0.69]	31/31	7/7
	2005	70	89	470	12	3.4 [1.1]	31/31	7/7
Bivalves	2006	62	81	340	12	3 [1]	31/31	7/7
(pg/g-wet)	2007	56	69	410	8.9	2.3 [0.9]	31/31	7/7
	2008	49	52	390	8	3 [1]	31/31	7/7
	2009	46	58	310	8	3 [1]	31/31	7/7
	2010	46	58	160	7.8	1.5 [0.6]	6/6	6/6
	2013	28	31	260	4	4 [1]	5/5	5/5
	2002	91	50	13,000	3.6	3.6 [1.2]	70/70	14/14
	2003	51	54	2,500	nd	3.6 [1.2]	67/70	14/14
	2004	76	48	5,800	tr(0.89)	2.1 [0.69]	70/70	14/14
	2005	54	45	12,000	tr(1.4)	3.4 [1.1]	80/80	16/16
Fish	2006	56	43	4,800	tr(1)	3 [1]	80/80	16/16
(pg/g-wet)	2007	45	29	4,400	nd	2.3 [0.9]	79/80	16/16
	2008	50	37	13,000	tr(1)	3 [1]	85/85	17/17
	2009	46	33	4,300	tr(1)	3 [1]	90/90	18/18
	2010	47	37	2,800	tr(1.2)	1.5 [0.6]	18/18	18/18
	2013	51	40	3,000	tr(1)	4 [1]	19/19	19/19
	2002	28	26	49	20	3.6 [1.2]	10/10	2/2
	2003	tr(2.3)	tr(2.0)	4.2	nd	3.6 [1.2]	9/10	2/2
	2004	tr(1.0)	tr(1.1)	3.7	nd	2.1 [0.69]	5/10	1/2
	2005	tr(1.2)	tr(1.9)	tr(2.9)	nd	3.4 [1.1]	7/10	2/2
Birds	2006	tr(1)	tr(2)	3	tr(1)	3 [1]	10/10	2/2
(pg/g-wet)	2007	tr(1.0)	tr(1.4)	2.8	nd	2.3 [0.9]	6/10	2/2
	2008	tr(1)	nd	3	nd	3 [1]	5/10	1/2
	2009	nd	tr(1)	tr(2)	nd	3 [1]	6/10	2/2
	2010	tr(1.1)		3.7	nd	1.5 [0.6]	1/2	1/2
	2013**	nd		tr(1)	nd	4 [1]	1/2	1/2

	Monitored	Geometric				Quantification	Detection	Frequency
o,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	120	190	2,900	tr(9)	12 [4]	38/38	8/8
	2003	200	220	1,900	6.5	6.0 [2.0]	30/30	6/6
	2004	220	130	2,800	6.0	5.7 [1.9]	31/31	7/7
	2005	170	280	1,800	10	3.3 [1.1]	31/31	7/7
Bivalves	2006	150	200	1,000	7	4 [1]	31/31	7/7
(pg/g-wet)	2007	150	200	1,200	6	3 [1]	31/31	7/7
	2008	130	140	1,100	5	4 [2]	31/31	7/7
	2009	95	51	1,000	5	3 [1]	31/31	7/7
	2010	57	50	400	5.8	0.6 [0.2]	6/6	6/6
	2013	100	74	1,800	7.8	1.8 [0.7]	5/5	5/5
	2002	95	90	1,100	nd	12 [4]	66/70	14/14
	2003	75	96	920	nd	6.0 [2.0]	66/70	14/14
	2004	120	96	1,700	nd	5.7 [1.9]	68/70	14/14
	2005	83	81	1,400	nd	3.3 [1.1]	79/80	16/16
Fish	2006	80	86	1,100	tr(1)	4 [1]	80/80	16/16
(pg/g-wet)	2007	66	62	1,300	nd	3 [1]	78/80	16/16
	2008	65	74	1,000	nd	4 [2]	80/85	16/17
	2009	63	64	760	nd	3 [1]	87/90	18/18
	2010	75	99	700	2.6	0.6 [0.2]	18/18	18/18
	2013	70	85	940	nd	1.8 [0.7]	18/19	18/19
	2002	15	15	23	tr(8)	12 [4]	10/10	2/2
	2003	15	14	36	tr(5.0)	6.0 [2.0]	10/10	2/2
	2004	6.1	5.7	25	nd	5.7 [1.9]	9/10	2/2
	2005	7.3	7.5	9.7	4.7	3.3 [1.1]	10/10	2/2
Birds	2006	8	8	19	5	4 [1]	10/10	2/2
(pg/g-wet)	2007	7	7	10	5	3 [1]	10/10	2/2
	2008	4	tr(3)	14	tr(2)	4 [2]	10/10	2/2
	2009	6	5	13	3	3 [1]	10/10	2/2
	2010	6.3		11	3.6	0.6 [0.2]	2/2	2/2
	2013**	5.4		12	2.4	1.8 [0.7]	2/2	2/2

(Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009. (Note2)"**" There is no consistency between the results of the ornithological survey in FY2013 and those in previous years

because of the changes in the survey sites and target species. (Note 3) No monitoring was conducted in FY2011 and FY2012.

[7] Chlordanes (reference)

· History and state of monitoring

Chlordane was used as insecticides on a range of agricultural crops, but the registration of Chlordanes under the Agricultural Chemicals Regulation Law was expired in FY1968. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 1986 because of its properties such as persistency, since it had been used as termitecides for wood products such as primary processed timber, plywood and house. Also *cis*-Chlordane and *trans*-Chlordane are one of the original twelve POPs covered by the Stockholm Convention.

Although manufactured Chlordanes have complicated compositions, Heptachlor, γ-Chlordane, Heptachlor epoxide, *cis*-Chlordane, *trans*-Chlordane, Oxychlordane (as a chlordane metabolite), *cis*-Nonachlor (not registrated as an Agricultural Chemical) and *trans*-Nonachlor (not registrated as an Agricultural Chemical) and *trans*-Nonachlor (not registrated as an Agricultural Chemical) were the original target chemicals in monitoring series. Since FY1983, 5 of those 8 chemicals (*cis*-Chlordane, *trans*-Chlordane, Oxychlordane, *cis*-Nonachlor and *trans*-Nonachlor) have been the target chemicals owning to their high detection frequency in the FY1982 High-Precision Environmental Survey.

In previous monitoring series, Chlordanes had been monitored in wildlife (bivalves, fish and birds) during the period of FY1978~2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring", *cis*-Chlordane, *trans*-Chlordane, *cis*-Nonachlor and *trans*-Nonachlor in surface water and sediment have been the monitored during the period of FY1986~1998 and FY1986~2001, respectively.

Under the framework of the Environmental Monitoring, *cis*-Chlordane, *trans*-Chlordane, Oxychlordane (as a Chlordane metabolite), *cis*-Nonachlor (not registrated as an Agricultural Chemical) and *trans*-Nonachlor have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002 to FY2013.

No monitoring was conducted from FY2014. For reference, the monitoring results up to FY2013 are given below.

Monitoring results until 2013

o cis-Chlordane and trans-Chlordane

<Surface Water>

Stocktaking of the detection of cis-Chlordane and trans-Chlordane in surface water FY2002~2013

8	Monitored	Geometric				Quantification	Detection I	Frequency
cis-Chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	42	32	880	2.5	0.9 [0.3]	114/114	38/38
	2003	69	51	920	12	3 [0.9]	36/36	36/36
	2004	92	87	1,900	10	6 [2]	38/38	38/38
	2005	53	54	510	6	4 [1]	47/47	47/47
	2006	31	26	440	5	5 [2]	48/48	48/48
Surface Water	2007	23	22	680	nd	4 [2]	47/48	47/48
(pg/L)	2008	29	29	480	2.9	1.6 [0.6]	48/48	48/48
	2009	29	26	710	4.4	1.1 [0.4]	49/49	49/49
	2010	19	14	170	nd	11 [4]	47/49	47/49
	2011	20	16	500	3.8	1.4 [0.6]	49/49	49/49
	2012	43	37	350	10	1.6 [0.6]	48/48	48/48
	2013	18	16	260	2.9	2.7 [0.9]	48/48	48/48

	Monitored	Geometric				Quantification	Detection l	Frequency
trans-Chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	33	24	780	3.1	1.5 [0.5]	114/114	38/38
	2003	34	30	410	6	5 [2]	36/36	36/36
	2004	32	26	1,200	5	5 [2]	38/38	38/38
	2005	25	21	200	3	4 [1]	47/47	47/47
	2006	24	16	330	tr(4)	7 [2]	48/48	48/48
Surface Water	2007	16	20	580	nd	2.4 [0.8]	47/48	47/48
(pg/L)	2008	23	22	420	3	3 [1]	48/48	48/48
	2009	23	18	690	3.0	0.8 [0.3]	49/49	49/49
	2010	15	tr(11)	310	nd	13 [4]	44/49	44/49
	2011	16	13	470	3.2	1.0 [0.4]	49/49	49/49
	2012	41	33	300	12	2.5 [0.8]	48/48	48/48
	2013	15	13	200	3	3 [1]	48/48	48/48

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Stocktaking of the detection of *cis*-Chlordane and *trans*-Chlordane in sediment FY2002~2013

	Monitored	Geometric				Quantification	Detection	Frequency
cis-Chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	140	98	18,000	1.8	0.9 [0.3]	189/189	63/63
	2003	190	140	19,000	tr(3.6)	4 [2]	186/186	62/62
	2004	160	97	36,000	4	4 [2]	189/189	63/63
	2005	150	100	44,000	3.3	1.9 [0.64]	189/189	63/63
	2006	100	70	13,000	tr(0.9)	2.4 [0.8]	192/192	64/64
Sediment	2007	82	55	7,500	nd	5 [2]	191/192	64/64
(pg/g-dry)	2008	100	63	11,000	tr(2.3)	2.4 [0.9]	192/192	64/64
	2009	84	61	8,600	2.0	0.7 [0.3]	192/192	64/64
	2010	82	62	7,200	tr(4)	6 [2]	64/64	64/64
	2011	70	58	4,500	1.7	1.1 [0.4]	64/64	64/64
	2012	69	61	11,000	tr(2.6)	2.9 [1.0]	63/63	63/63
	2013	65	55	5,400	tr(1.9)	2.0 [0.8]	63/63	63/63
	Monitored	Geometric				Quantification	Detection	Frequency
trans-Chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	150	110	16,000	2.1	1.8 [0.6]	189/189	63/63
	2003	130	100	13,000	tr(2.4)	4 [2]	186/186	62/62
	2004	110	80	26,000	3	3 [0.9]	189/189	63/63
	2005	110	81	32,000	3.4	2.3 [0.84]	189/189	63/63
	2006	110	76	12,000	2.2	1.1 [0.4]	192/192	64/64
Sediment	2007	82	58	7,500	nd	2.2 [0.8]	191/192	64/64
(pg/g-dry)	2008	110	66	10,000	2.4	2.0 [0.8]	192/192	64/64
	2009	91	68	8,300	2.1	1.7 [0.7]	192/192	64/64
	2010	95	69	8,000	tr(4)	11 [4]	64/64	64/64
	2011	73	64	4,300	3.2	1.3 [0.5]	64/64	64/64
	2012	80	71	13,000	tr(2.9)	4.0 [1.3]	63/63	63/63
								63/63

(Note) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

<Wildlife>

Stocktaking of the detection of *cis*-Chlordane and *trans*-Chlordane in wildlife (bivalves, fish and birds) FY2002~2013

	Monitored	Geometric				Quantification	Detection I	Frequen
cis-Chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	730	1,200	26,000	24	2.4 [0.8]	38/38	8/8
	2003	1,100	1,400	14,000	110	3.9 [1.3]	30/30	6/6
	2004	1,300	1,600	14,000	91	18 [5.8]	31/31	7/7
	2005	1,000	960	13,000	78	12 [3.9]	31/31	7/7
	2006	970	1,100	18,000	67	4 [1]	31/31	7/7
Bivalves	2007	870	590	19,000	59	5 [2]	31/31	7/7
(pg/g-wet)	2008	750	560	11,000	85	5 [2]	31/31	7/7
	2009	1,200	1,100	16,000	83	4 [2]	31/31	7/7
	2010	1,600	2,300	15,000	67	4 [2]	6/6	6/6
	2011	790	880	3,400	160	3 [1]	4/4	4/4
	2012	710	500	3,500	180	5 [2]	5/5	5/5
	2013	410	410	2,000	75	13 [4]	5/5	5/5
	2002	610	550	6,900	57	2.4 [0.8]	70/70	14/14
	2003	510	400	4,400	43	3.9 [1.3]	70/70	14/14
	2004	620	490	9,800	68	18 [5.8]	70/70	14/14
	2005	520	600	8,000	42	12 [3.9]	80/80	16/10
	2006	520	420	4,900	56	4 [1]	80/80	16/10
Fish	2007	430	360	5,200	30	5 [2]	80/80	16/1
(pg/g-wet)	2008	430	340	3,500	36	5 [2]	85/85	$17/1^{2}$
	2009	430	450	3,200	41	4 [2]	90/90	18/1
	2010	450	630	3,400	51	4 [2]	18/18	18/1
	2011	580	660	3,800	79	3 [1]	18/18	18/1
	2012	580	550	3,100	98	5 [2]	19/19	19/1
	2013	540	450	5,700	65	13 [4]	19/19	19/1
	2002	67	180	450	10	2.4 [0.8]	10/10	2/2
	2003	47	120	370	6.8	3.9 [1.3]	10/10	2/2
	2004	39	110	240	tr(5.8)	18 [5.8]	10/10	2/2
	2005	53	120	340	tr(5.8)	12 [3.9]	10/10	2/2
	2006	32	83	250	5	4[1]	10/10	2/2
Birds	2007	29	83	230	tr(4)	5 [2]	10/10	2/2
(pg/g-wet)	2008	24	87	280	tr(3)	5 [2]	10/10	2/2
	2009	21	48	130	4	4 [2]	10/10	2/2
	2010	27		180	4	4 [2]	2/2	2/2
	2011			6	6	3 [1]	1/1	1/1
	2012	23		110	5	5 [2]	2/2	2/2
	2013**	37		140	tr(10)	13 [4]	2/2	2/2

	Monitored	Geometric				Quantification	Detection	Frequenc
trans-Chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	390	840	2,300	33	2.4 [0.8]	38/38	8/8
	2003	550	840	2,800	69	7.2 [2.4]	30/30	6/6
	2004	560	770	2,800	53	48 [16]	31/31	7/7
	2005	470	660	2,400	40	10 [3.5]	31/31	7/7
	2006	470	580	2,800	41	4 [2]	31/31	7/7
Bivalves	2007	440	460	1,500	34	6 [2]	31/31	7/7
(pg/g-wet)	2008	360	410	1,300	52	7 [3]	31/31	7/7
400 /	2009	540	560	16,000	48	4 [1]	31/31	7/7
	2010	520	640	5,500	31	3 [1]	6/6	6/6
	2011	490	470	2,900	150	4 [1]	4/4	4/4
	2012	390	310	1,300	140	7 [2]	5/5	5/5
	2013	280	230	1,700	58	16 [5.2]	5/5	5/5
	2002	190	160	2,700	20	2.4 [0.8]	70/70	14/14
	2003	160	120	1,800	9.6	7.2 [2.4]	70/70	14/14
	2004	200	130	5,200	tr(17)	48 [16]	70/70	14/14
	2005	160	180	3,100	tr(9.8)	10 [3.5]	76/80	16/16
	2006	150	120	2,000	14	4 [2]	80/80	16/16
Fish	2007	130	100	2,100	8	6 [2]	80/80	16/16
(pg/g-wet)	2008	120	71	1,300	14	7 [3]	85/85	17/17
400 /	2009	130	140	1,300	10	4 [1]	90/90	18/18
	2010	120	170	1,100	9	3 [1]	18/18	18/18
	2011	180	240	1,300	20	4 [1]	18/18	18/18
	2012	170	140	1,100	19	7 [2]	19/19	19/19
	2013	160	170	2,700	tr(14)	16 [5.2]	19/19	19/19
	2002	14	14	26	8.9	2.4 [0.8]	10/10	2/2
	2003	11	12	27	tr(5.9)	7.2 [2.4]	10/10	2/2
	2004	nd	nd	tr(26)	nd	48 [16]	5/10	1/2
	2005	11	12	30	tr(4.5)	10 [3.5]	10/10	2/2
	2006	7	8	17	tr(3)	4 [2]	10/10	2/2
Birds	2007	7	8	19	tr(3)	6 [2]	10/10	2/2
(pg/g-wet)	2008	tr(5)	9	27	nd	7 [3]	7/10	2/2
	2009	6	7	13	tr(3)	4 [1]	10/10	2/2
	2010	4		10	tr(2)	3 [1]	2/2	2/2
	2011			5	5	4 [1]	1/1	1/1
	2012	tr(6)		10	tr(4)	7 [2]	2/2	2/2
	2013**	26		68	tr(10)	16 [5.2]	2/2	2/2

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.
 (Note 2) "**" : There is no consistency between the results of the ornithological survey in FY2013 and those in previous years because of the changes in the survey sites and target species.

<Air>

Stocktaking of the detection of cis-Chlordane and trans-Chlordane in air FY2002~2013

chll-	Monitored	Geometric	Median	Manimum	Minimu	Quantification	Detection I	Freque
cis-Chlordane	-	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	31	40	670	0.86	0.60 [0.20]	102/102	34/3
	2003Warm season	110	120	1,600	6.4	0.51 [0.17]	35/35	35/3
	2003Cold season	30	38	220	2.5	0.01 [0.17]	34/34	34/3
	2004Warm season	92	160	1,000	2.3	0.57 [0.19]	37/37	37/3
	2004Cold season	29	49	290	1.2	0.37 [0.19]	37/37	37/3
	2005Warm season	92	120	1,000	3.4	0.16 [0.054]	37/37	37/3
	2005Cold season	16	19	260	1.4	0.10 [0.034]	37/37	37/3
	2006Warm season	82	110	760	2.9	0.13 [0.04]	37/37	37/3
	2006Cold season	19	19	280	2.0	0.13 [0.04]	37/37	37/3
	2007Warm season	90	120	1,100	3.3	0.10 [0.04]	36/36	36/3
Air	2007Cold season	17	20	230	1.4	0.10 [0.04]	36/36	36/3
(pg/m^3)	2008Warm season	75	120	790	1.9	0 14 [0 05]	37/37	37/3
(pg/m ²)	2008Cold season	21	34	200	1.5	0.14 [0.05]	37/37	37/3
	2009Warm season	67	110	790	2.7	0.16.50.061	37/37	37/3
	2009Cold season	19	22	180	0.65	0.16 [0.06]	37/37	37/3
	2010Warm season	68	100	700	1.8	0 17 [0 0/]	37/37	37/3
	2010Cold season	20	27	130	0.84	0.17 [0.06]	37/37	37/3
	2011Warm season	66	95	700	1.5	1 2 50 423	35/35	35/3
	2011Cold season	20	31	240	tr(0.88)	1.3 [0.42]	37/37	37/3
	2012Warm season	61	98	650	2.9	1 5 50 513	36/36	36/3
	2012Cold season	10	14	74	nd	1.5 [0.51]	35/36	35/3
	2013Warm season	58	97	580	1.5	0 = 50 03	36/36	36/3
	2013Cold season	11	15	86	tr(0.5)	0.7 [0.2]	36/36	36/3
		<u> </u>				Quantification	Detection I	
<i>trans</i> - Chlordane	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Sit
	2002	36	48	820	0.62	0.60 [0.20]	102/102	34/3
		130	150	2,000	6.5	0.06.50.203	35/35	35/3
	2003Warm season	150	150		0.5			
						0.86 [0.29]		34/3
	2003Warm season 2003Cold season 2004Warm season	<u> </u>	<u>44</u> 190	290	<u>2.5</u> 2.2		<u>34/34</u> 37/37	
	2003Cold season	37	44		<u>2.5</u> 2.2	0.86 [0.29]	34/34	37/3
	2003Cold season 2004Warm season	37 110 35	44 190 60	290 1,300 360	2.5 2.2 1.5	0.69 [0.23]	<u>34/34</u> 37/37 37/37	37/3 37/3
	2003Cold season 2004Warm season 2004Cold season	<u> </u>	<u> </u>	<u>290</u> 1,300	<u>2.5</u> 2.2		<u>34/34</u> 37/37 <u>37/37</u> 37/37	37/3 37/3 37/3
	2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season	37 110 35 100 19	44 190 60 130 23	290 1,300 360 1,300 310	2.5 2.2 1.5 3.2 1.9	0.69 [0.23]	<u>34/34</u> 37/37 <u>37/37</u> 37/37 37/37	37/3 37/3 37/3 37/3
	2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season	37 110 35 100 19 96	44 190 60 130 23 140	290 1,300 360 1,300 310 1,200	2.5 2.2 1.5 3.2 1.9 3.4	0.69 [0.23]	<u>34/34</u> 37/37 <u>37/37</u> <u>37/37</u> <u>37/37</u> <u>37/37</u>	37/3 37/3 37/3 37/3 37/3
	2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season	37 110 35 100 19 96 22	44 190 60 130 23 140 21	290 1,300 360 1,300 310 1,200 350	2.5 2.2 1.5 3.2 1.9 3.4 2.0	0.69 [0.23] 0.34 [0.14] 0.17 [0.06]	34/34 37/37 37/37 37/37 37/37 37/37 37/37 37/37	37/3 37/3 37/3 37/3 37/3 37/3
	2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season	37 110 35 100 19 96 22 100	44 190 60 130 23 140 21 140	290 1,300 360 1,300 310 1,200 350 1,300	2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8	0.69 [0.23]	34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36	37/3 37/3 37/3 37/3 37/3 37/3 37/3 36/3
Air	2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season	$ \begin{array}{r} 37 \\ 110 \\ 35 \\ 100 \\ 19 \\ 96 \\ 22 \\ 100 \\ 20 \\ \end{array} $	44 190 60 130 23 140 21 140 24	290 1,300 360 1,300 310 1,200 350 1,300 300	2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5	0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05]	34/34 37/37 37/37 37/37 37/37 37/37 37/37 37/37	37/3 37/3 37/3 37/3 37/3 37/3 37/3 36/3 36
Air (pg/m ³)	2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season 2008Warm season	37 110 35 100 19 96 22 100 20 87	44 190 60 130 23 140 21 140 24 130	290 1,300 360 1,300 310 1,200 350 1,300 300 990	2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5	0.69 [0.23] 0.34 [0.14] 0.17 [0.06]	34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37	37/2 37/2 37/2 37/2 37/2 37/2 36/2 36/2 37/2
_	2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Cold season	$ \begin{array}{r} 37 \\ 110 \\ 35 \\ 100 \\ 19 \\ 96 \\ 22 \\ 100 \\ 20 \\ 87 \\ 25 \\ \end{array} $	$ \begin{array}{r} $	290 1,300 360 1,300 310 1,200 350 1,300 300 990 250	$ \begin{array}{r} 2.5 \\ 2.2 \\ 1.5 \\ 3.2 \\ 1.9 \\ 3.4 \\ 2.0 \\ 3.8 \\ 1.5 \\ 2.5 \\ 1.8 \\ \end{array} $	0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06]	34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37	37/3 37/3 37/3 37/3 37/3 37/3 36/3 36/3
_	2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Cold season 2007Cold season 2007Cold season 2008Warm season 2008Cold season 2008Cold season	$ \begin{array}{r} 37 \\ 110 \\ 35 \\ 100 \\ 19 \\ 96 \\ 22 \\ 100 \\ 20 \\ 87 \\ 25 \\ 79 \\ 79 \end{array} $	44 190 60 130 23 140 21 140 24 130 41 120	$\begin{array}{r} 290 \\ \hline 1,300 \\ 360 \\ \hline 1,300 \\ 310 \\ \hline 1,200 \\ 350 \\ \hline 1,300 \\ 300 \\ 990 \\ 250 \\ \hline 960 \end{array}$	$ \begin{array}{r} 2.5 \\ 2.2 \\ 1.5 \\ 3.2 \\ 1.9 \\ 3.4 \\ 2.0 \\ 3.8 \\ 1.5 \\ 2.5 \\ 1.8 \\ 2.6 \\ \end{array} $	0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05]	34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37	37/3 37/3 37/3 37/3 37/3 37/3 36/3 36/3
_	2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Cold season 2009Warm season	$ \begin{array}{r} 37 \\ 110 \\ 35 \\ 100 \\ 19 \\ 96 \\ 22 \\ 100 \\ 20 \\ 87 \\ 25 \\ 79 \\ 23 \\ \end{array} $	$ \begin{array}{r} $	$\begin{array}{r} 290\\ \hline 1,300\\ 360\\ \hline 1,300\\ 310\\ \hline 1,200\\ 350\\ \hline 1,300\\ 300\\ 990\\ 250\\ 960\\ 210\\ \end{array}$	$\begin{array}{r} 2.5 \\ 2.2 \\ 1.5 \\ 3.2 \\ 1.9 \\ 3.4 \\ 2.0 \\ 3.8 \\ 1.5 \\ 2.5 \\ 1.8 \\ 2.6 \\ 0.68 \end{array}$	0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06] 0.12 [0.05]	34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37	37/3 37/3 37/3 37/3 37/3 37/3 36/3 36/3
_	2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Warm season 2009Warm season 2009Warm season 2009Cold season 2009Cold season	$ \begin{array}{r} 37 \\ 110 \\ 35 \\ 100 \\ 19 \\ 96 \\ 22 \\ 100 \\ 20 \\ 87 \\ 25 \\ 79 \\ 23 \\ 79 \end{array} $	$ \begin{array}{r} 44 \\ 190 \\ 60 \\ 130 \\ 23 \\ 140 \\ 21 \\ 140 \\ 24 \\ 130 \\ 41 \\ 120 \\ 30 \\ 120 \\ \end{array} $	$\begin{array}{r} 290\\ \hline 1,300\\ 360\\ \hline 1,300\\ 310\\ \hline 1,200\\ 350\\ \hline 1,300\\ 300\\ 990\\ 250\\ 960\\ 210\\ 820\\ \end{array}$	$\begin{array}{r} 2.5 \\ 2.2 \\ 1.5 \\ 3.2 \\ 1.9 \\ 3.4 \\ 2.0 \\ 3.8 \\ 1.5 \\ 2.5 \\ 1.8 \\ 2.6 \\ 0.68 \\ 2.0 \end{array}$	0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06]	34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37	37/3 37/3 37/3 37/3 37/3 37/3 37/3 36/3 36
_	2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Cold season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Cold season 2009Warm season 2009Cold season 2010Warm season 2010Cold season	$ \begin{array}{r} 37 \\ 110 \\ 35 \\ 100 \\ 19 \\ 96 \\ 22 \\ 100 \\ 20 \\ 87 \\ 25 \\ 79 \\ 23 \\ 79 \\ 24 \\ \end{array} $	$ \begin{array}{r} 44 \\ 190 \\ 60 \\ 130 \\ 23 \\ 140 \\ 21 \\ 140 \\ 24 \\ 130 \\ 41 \\ 120 \\ 30 \\ 120 \\ 34 \\ \end{array} $	$\begin{array}{r} 290\\ \hline 1,300\\ 360\\ \hline 1,300\\ 310\\ \hline 1,200\\ 350\\ \hline 1,300\\ 300\\ 990\\ 250\\ 960\\ 210\\ 820\\ 150\\ \end{array}$	$\begin{array}{r} 2.5 \\ 2.2 \\ 1.5 \\ 3.2 \\ 1.9 \\ 3.4 \\ 2.0 \\ 3.8 \\ 1.5 \\ 2.5 \\ 1.8 \\ 2.6 \\ 0.68 \\ 2.0 \\ tr(1.0) \end{array}$	0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06] 0.12 [0.05] 1.2 [0.4]	34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37	37/3 37/3 37/3 37/3 37/3 37/3 36/3 37/3 37
_	2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Cold season 2009Warm season 2009Cold season 2010Warm season 2010Warm season 2010Cold season 2011Warm season	$ \begin{array}{r} 37 \\ 110 \\ 35 \\ 100 \\ 19 \\ 96 \\ 22 \\ 100 \\ 20 \\ 87 \\ 25 \\ 79 \\ 23 \\ 79 \\ 24 \\ 76 \\ \end{array} $	$ \begin{array}{r} 44 \\ 190 \\ 60 \\ 130 \\ 23 \\ 140 \\ 21 \\ 140 \\ 24 \\ 130 \\ 41 \\ 120 \\ 30 \\ 120 \\ 34 \\ 110 \\ \end{array} $	$\begin{array}{r} 290\\ \hline 290\\ \hline 1,300\\ \hline 360\\ \hline 1,300\\ \hline 310\\ \hline 1,200\\ \hline 350\\ \hline 1,300\\ \hline 300\\ \hline 250\\ \hline 990\\ \hline 250\\ \hline 960\\ \hline 210\\ \hline 820\\ \hline 150\\ \hline 810\\ \end{array}$	$\begin{array}{r} 2.5 \\ 2.2 \\ 1.5 \\ 3.2 \\ 1.9 \\ 3.4 \\ 2.0 \\ 3.8 \\ 1.5 \\ 2.5 \\ 1.8 \\ 2.6 \\ 0.68 \\ 2.0 \\ tr(1.0) \\ tr(1.4) \end{array}$	0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06] 0.12 [0.05]	34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35	37/3 37/3 37/3 37/3 37/3 37/3 37/3 36/3 37/3 37
_	2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Cold season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Cold season 2009Warm season 2009Cold season 2010Warm season 2010Cold season 2011Warm season 2011Cold season	$ \begin{array}{r} 37 \\ 110 \\ 35 \\ 100 \\ 19 \\ 96 \\ 22 \\ 100 \\ 20 \\ 87 \\ 25 \\ 79 \\ 23 \\ 79 \\ 23 \\ 79 \\ 24 \\ 76 \\ 24 \\ \end{array} $	$ \begin{array}{r} 44 \\ 190 \\ 60 \\ 130 \\ 23 \\ 140 \\ 21 \\ 140 \\ 24 \\ 130 \\ 41 \\ 120 \\ 30 \\ 120 \\ 34 \\ 110 \\ 37 \\ \end{array} $	$\begin{array}{r} 290\\ \hline 290\\ \hline 1,300\\ \hline 360\\ \hline 1,300\\ \hline 310\\ \hline 1,200\\ \hline 350\\ \hline 1,300\\ \hline 300\\ \hline 990\\ \hline 250\\ \hline 990\\ \hline 250\\ \hline 960\\ \hline 210\\ \hline 820\\ \hline 150\\ \hline 810\\ \hline 290\\ \end{array}$	$\begin{array}{r} 2.5\\ 2.2\\ 1.5\\ 3.2\\ 1.9\\ 3.4\\ 2.0\\ 3.8\\ 1.5\\ 2.5\\ 1.8\\ 2.6\\ 0.68\\ 2.0\\ tr(1.0)\\ tr(1.4)\\ tr(0.70) \end{array}$	0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06] 0.12 [0.05] 1.2 [0.4] 1.6 [0.53]	34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37	37/3 37/3 37/3 37/3 37/3 37/3 36/3 37/3 37
-	2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Cold season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2009Warm season 2009Cold season 2009Cold season 2010Warm season 2010Cold season 2011Cold season 2011Cold season 2011Cold season 2012Warm season	$\begin{array}{r} 37\\ 110\\ 35\\ 100\\ 19\\ 96\\ 22\\ 100\\ 20\\ 87\\ 25\\ 79\\ 23\\ 79\\ 23\\ 79\\ 24\\ 76\\ 24\\ 70\\ \end{array}$	$ \begin{array}{r} 44 \\ 190 \\ 60 \\ 130 \\ 23 \\ 140 \\ 21 \\ 140 \\ 24 \\ 130 \\ 41 \\ 120 \\ 30 \\ 120 \\ 34 \\ 110 \\ 37 \\ 120 \\ \end{array} $	$\begin{array}{r} 290\\ \hline 290\\ \hline 1,300\\ \hline 360\\ \hline 1,300\\ \hline 310\\ \hline 1,200\\ \hline 350\\ \hline 1,300\\ \hline 300\\ \hline 990\\ \hline 250\\ \hline 990\\ \hline 250\\ \hline 960\\ \hline 210\\ \hline 820\\ \hline 150\\ \hline 810\\ \hline 290\\ \hline 780\\ \end{array}$	$\begin{array}{r} 2.5\\ 2.2\\ 1.5\\ 3.2\\ 1.9\\ 3.4\\ 2.0\\ 3.8\\ 1.5\\ 2.5\\ 1.8\\ 2.6\\ 0.68\\ 2.0\\ tr(1.0)\\ tr(1.4)\\ tr(0.70)\\ 2.8\end{array}$	0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06] 0.12 [0.05] 1.2 [0.4]	34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 35/35 37/37 36/36	37/3 37/3 37/3 37/3 37/3 37/3 36/3 37/3 37
_	2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Cold season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Cold season 2009Warm season 2009Cold season 2010Warm season 2010Cold season 2011Warm season 2011Cold season	$ \begin{array}{r} 37 \\ 110 \\ 35 \\ 100 \\ 19 \\ 96 \\ 22 \\ 100 \\ 20 \\ 87 \\ 25 \\ 79 \\ 23 \\ 79 \\ 23 \\ 79 \\ 24 \\ 76 \\ 24 \\ \end{array} $	$ \begin{array}{r} 44 \\ 190 \\ 60 \\ 130 \\ 23 \\ 140 \\ 21 \\ 140 \\ 24 \\ 130 \\ 41 \\ 120 \\ 30 \\ 120 \\ 34 \\ 110 \\ 37 \\ \end{array} $	$\begin{array}{r} 290\\ \hline 290\\ \hline 1,300\\ \hline 360\\ \hline 1,300\\ \hline 310\\ \hline 1,200\\ \hline 350\\ \hline 1,300\\ \hline 300\\ \hline 990\\ \hline 250\\ \hline 990\\ \hline 250\\ \hline 960\\ \hline 210\\ \hline 820\\ \hline 150\\ \hline 810\\ \hline 290\\ \end{array}$	$\begin{array}{r} 2.5\\ 2.2\\ 1.5\\ 3.2\\ 1.9\\ 3.4\\ 2.0\\ 3.8\\ 1.5\\ 2.5\\ 1.8\\ 2.6\\ 0.68\\ 2.0\\ tr(1.0)\\ tr(1.4)\\ tr(0.70) \end{array}$	0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06] 0.12 [0.05] 1.2 [0.4] 1.6 [0.53]	34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37	34/3 37/3 37/3 37/3 37/3 37/3 37/3 36/3 37/3 37

• Oxychlordane, *cis*-Nonachlor and *trans*-Nonachlor

<Surface Water>

Stocktaking of the detection of Oxychlordane, <i>cis</i> -No	nachlor and <i>trans</i> -Nonachlor in surface water FY2002~2013
--	--

0 11 1	Monitored	Geometric				Quantification	Detection	Frequenc
Oxychlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.7	3.5	41	nd	1.2 [0.4]	96/114	35/38
	2003	3	2	39	tr(0.6)	2 [0.5]	36/36	36/36
	2004	3.2	2.9	47	tr(0.7)	2 [0.5]	38/38	38/38
	2005	2.6	2.1	19	nd	1.1 [0.4]	46/47	46/47
	2006	tr(2.5)	tr(2.4)	18	nd	2.8 0.9	43/48	43/48
Surface Water	2007	tr(2)	nd	41	nd	6 [2]	25/48	25/48
(pg/L)	2008	1.9	1.9	14	nd	1.9 [0.7]	40/48	40/48
	2009	2.0	1.9	19	nd	1.1 [0.4]	45/49	45/49
	2010	1.5	1.3	45	nd	0.7 [0.3]	47/49	47/49
	2011	1.9	1.8	34	nd	1.3 [0.5]	44/49	44/49
	2012	2.2	2.3	17	nd	0.9 0.4	44/48	44/48
	2013	1.8	1.8	12	nd	0.9 0.4	41/48	41/48
						Quantification	Detection	Frequen
cis-Nonachlor	Monitored		Median	Maximum	Minimum	[Detection]		•
	year	mean*				limit	Sample	Site
	2002	7.9	6.7	250	0.23	1.8 [0.6]	114/114	38/38
	2003	8.0	7.0	130	1.3	0.3 [0.1]	36/36	36/36
	2004	7.5	6.3	340	0.8	0.6 [0.2]	38/38	38/38
	2005	6.0	5.9	43	0.9	0.5 [0.2]	47/47	47/47
	2006	6.6	5.6	83	1.0	0.8 [0.3]	48/48	48/48
Surface Water	2007	5.9	6.1	210	nd	2.4 [0.8]	43/48	43/48
(pg/L)	2008	6.5	5.9	130	0.9	0.9 [0.3]	48/48	48/48
	2009	7.1	5.5	210	1.4	0.3 [0.1]	49/49	49/49
	2010	5.4	3.9	40	tr(0.9)	1.3 [0.4]	49/49	49/49
	2011	5.0	4.3	130	0.8	0.6 [0.2]	49/49	49/49
	2012	6.4	5.9	58	1.1	0.8 [0.3]	48/48	48/48
	2013	5.1	4.6	74	tr(0.7)	0.8 [0.3]	48/48	48/48
	Maultand	Geometric				Quantification	Detection	Frequen
trans-Nonachlor	Monitored	mean*	Median	Maximum	Minimum	[Detection]		
	year	mean				limit	Sample	Site
	2002	30	24	780	1.8	1.2 [0.4]	114/114	38/38
	2003	26	20	450	4	2 [0.5]	36/36	36/36
	2004	25	19	1,100	tr(3)	4 [2]	38/38	38/38
	2005	20	17	150	2.6	2.5 [0.84]	47/47	47/47
	2006	21	16	310	3.2	3.0 [1.0]	48/48	48/48
Surface Water	2007	17	17	540	tr(2)	5 [2]	48/48	48/48
(pg/L)	2008	18	17	340	1.9	1.6 [0.6]	48/48	48/48
	2009	20	17	530	2.7	1.0 [0.4]	49/49	49/49
	2010	12	11	93	nd	8 [3]	45/49	45/49
	2011	15	12	480	2.6	1.3 [0.5]	49/49	49/49
	2012	30	26	210	7.9		48/48	48/48
	2012	30	20	210	7.9	1.5 [0.6]	40/40	40/40

(Note) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

Stocktaking of the	detection of	Oxychlordan	e, <i>cis</i> -Nona	chlor and <i>tra</i>	ns-Nonachl			
	Monitored	Geometric				Quantification	Detection	Frequency
Oxychlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.7	1.7	120	nd	1.5 [0.5]	153/189	59/63
	2003	2	2	85	nd	1 [0.4]	158/186	57/62
	2004	tr(2.1)	tr(1.3)	140	nd	3 [0.8]	129/189	54/63
	2005	2.3	tr(1.9)	160	nd	2.0 [0.7]	133/189	51/63
	2006	tr(2.5)	tr(1.7)	280	nd	2.9 [1.0]	141/192	54/64
Sediment	2007	tr(2.1)	tr(1.5)	76	nd	2.5 [0.9]	117/192	46/64
(pg/g-dry)	2008	tr(2)	tr(1)	340	nd	3 [1]	110/192	48/64
	2009	2	tr(1)	150	nd	2 [1]	97/192	45/64
	2010	1.7	1.2	60	nd	1.0 [0.4]	56/64	56/64
	2011	tr(1.6)	tr(1.2)	83	nd	2.2 0.9	36/64	36/64
	2012	tr(1.4)	tr(1.0)	75	nd	1.7 [0.7]	38/63	38/63
	2013	1.5	1.3	54	nd	1.3 [0.5]	50/63	50/63
				-		Quantification	Detection	
cis-Nonachlor	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		
	year	mean*				limit	Sample	Site
	2002	76	66	7,800	nd	2.1 [0.7]	188/189	63/63
	2003	66	50	6,500	nd	3 [0.9]	184/186	62/62
	2004	53	34	9,400	tr(0.8)	2 [0.6]	189/189	63/63
	2005	56	42	9,900	tr(1.1)	1.9 [0.64]	189/189	63/63
	2006	58	48	5,800	tr(0.6)	1.2 [0.4]	192/192	64/64
Sediment	2007	48	35	4,200	nd	1.6 [0.6]	191/192	64/64
(pg/g-dry)	2008	57	42	5,100	1.1	0.6 [0.2]	192/192	64/64
	2009	53	38	4,700	1.4	1.0 [0.4]	192/192	64/64
	2010	53	45	3,600	2.3	0.9 [0.3]	64/64	64/64
	2011	41	38	2,900	nd	1.1 [0.4]	63/64	63/64
	2012	44	35	4,900	tr(1)	3 [1]	63/63	63/63
	2013	41	31	3,100	tr(0.6)	0.7 [0.3]	63/63	63/63
	Monitored	Geometric				Quantification	Detection	Frequency
trans-Nonachlor		mean*	Median	Maximum	Minimum	[Detection]		
	year	mean				limit	Sample	Site
	2002	130	83	13,000	3.1	1.5 [0.5]	189/189	63/63
	2003	110	78	11,000	2	2 [0.6]	186/186	62/62
	2004	94	63	23,000	3	2 [0.6]	189/189	63/63
	2005	99	72	24,000	2.4	1.5 [0.54]	189/189	63/63
	2006	100	65	10,000	3.4	1.2 [0.4]	192/192	64/64
Sediment	2007	78	55	8,400	tr(1.6)	1.7 [0.6]	192/192	64/64
(pg/g-dry)	2008	91	53	8,400	tr(1.6)	2.2 [0.8]	192/192	64/64
	2009	85	58	7,800	2.0	0.9 [0.3]	192/192	64/64
	2010	80	65	6,200	tr(3)	6 [2]	64/64	64/64
	2011	68	52	4,500	1.7	0.8 [0.3]	64/64	64/64
	2012	69	62	10,000	2.5	2.4 [0.8]	63/63	63/63
	2013	67	54	4,700	2.2	1.2 [0.4]	63/63	63/63
(Note) "*" · Arithr		luo was aalau	lated for an		which the a	eometric mean va		into was

Stocktaking of the detection of Oxychlordane, cis-Nonachlor and trans-Nonachlor in sediment FY2002~2013

<Sediment>

(Note) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.

<Wildlife>

Stocktaking of the detection of Oxychlordane, *cis*-Nonachlor and *trans*-Nonachlor in wildlife (bivalves, fish and birds) FY2002~2013

	Monitored	Geometric				Quantification	Detection I	Frequenc
Oxychlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	71	83	5,600	nd	3.6 [1.2]	37/38	8/8
	2003	93	62	1,900	11	8.4 [2.8]	30/30	6/6
	2004	110	100	1,700	14	9.2 [3.1]	31/31	7/7
	2005	99	79	1,400	12	9.3 [3.1]	31/31	7/7
	2006	91	90	2,400	7	7 [3]	31/31	7/7
Bivalves	2007	70	43	2,200	8	6 [2]	31/31	7/7
(pg/g-wet)	2008	64	55	1,100	7	7 [2]	31/31	7/7
	2009	100	89	820	10	4 [1]	31/31	7/7
	2010	240	390	3,300	11	8 [3]	6/6	6/6
	2011	68	100	260	8	3 [1]	4/4	4/4
	2012	66	80	450	12	3 [1]	5/5	5/5
	2013	42	44	210	8	3 [1]	5/5	5/5
	2002	170	140	3,900	16	3.6 [1.2]	70/70	14/14
	2003	150	160	820	30	8.4 [2.8]	70/70	14/14
	2004	160	140	1,500	25	9.2 [3.1]	70/70	14/14
	2005	150	150	1,900	20	9.3 [3.1]	80/80	16/16
	2006	150	120	3,000	28	7 [3]	80/80	16/16
Fish	2007	120	100	1,900	17	6 [2]	80/80	16/16
(pg/g-wet)	2008	130	130	2,200	15	7 [2]	85/85	17/17
	2009	120	99	2,400	23	4 [1]	90/90	18/18
	2010	120	140	1,000	33	8 [3]	18/18	18/18
	2011	140	130	2,300	33	3 [1]	18/18	18/18
	2012	140	180	390	28	3 [1]	19/19	19/19
	2013	130	130	560	31	3 [1]	19/19	19/19
	2002	640	630	890	470	3.6 [1.2]	10/10	2/2
	2003	760	700	1,300	610	8.4 [2.8]	10/10	2/2
	2004	460	450	730	320	9.2 [3.1]	10/10	2/2
	2005	610	660	860	390	9.3 [3.1]	10/10	2/2
	2006	510	560	720	270	7 [3]	10/10	2/2
Birds	2007	440	400	740	290	6 [2]	10/10	2/2
(pg/g-wet)	2008	560	530	960	290	7 [2]	10/10	2/2
	2009	300	290	540	190	4 [1]	10/10	2/2
	2010	400		510	320	8 [3]	2/2	2/2
	2011			590	590	3 [1]	1/1	1/1
	2012	250		360	170	3 [1]	2/2	2/2
	2013**	2,500		3,400	1,900	3 [1]	2/2	2/2

	Monitored	Geometric				Quantification	Detection l	Frequency
cis-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	170	300	870	8.6	1.2 [0.4]	38/38	8/8
	2003	290	260	1,800	48	4.8 [1.6]	30/30	6/6
	2004	320	380	1,800	43	3.4 [1.1]	31/31	7/7
	2005	270	220	1,300	27	4.5 [1.5]	31/31	7/7
	2006	270	180	1,500	31	3 [1]	31/31	7/7
Bivalves	2007	250	250	1,000	26	3 [1]	31/31	7/7
(pg/g-wet)	2008	210	210	780	33	4 [1]	31/31	7/7
400 /	2009	300	310	10,000	31	3 [1]	31/31	7/7
	2010	280	310	1,300	35	3 [1]	6/6	6/6
	2011	250	280	1,300	77	1.8 [0.7]	4/4	4/4
	2012	200	190	670	52	2 [1]	5/5	5/5
	2013	150	140	900	38	2.2 [0.7]	5/5	5/5
	2002	460	420	5,100	46	1.2 [0.4]	70/70	14/14
	2003	360	360	2,600	19	4.8 [1.6]	70/70	14/14
	2004	430	310	10,000	48	3.4 [1.1]	70/70	14/14
	2005	380	360	6,200	27	4.5 [1.5]	80/80	16/16
	2006	370	330	3,300	33	3 [1]	80/80	16/16
Fish	2007	320	280	3,700	16	3 [1]	80/80	16/16
(pg/g-wet)	2008	350	300	3,200	46	4 [1]	85/85	17/17
400 /	2009	340	340	2,600	27	3 [1]	90/90	18/18
	2010	320	370	2,200	23	3 [1]	18/18	18/18
	2011	440	450	2,900	45	1.8 [0.7]	18/18	18/18
	2012	420	450	2,200	33	2 [1]	19/19	19/19
	2013	430	420	3,000	34	2.2 [0.7]	19/19	19/19
	2002	200	240	450	68	1.2 [0.4]	10/10	2/2
	2003	200	260	660	68	4.8 [1.6]	10/10	2/2
	2004	140	150	240	73	3.4 [1.1]	10/10	2/2
	2005	160	180	370	86	4.5 [1.5]	10/10	2/2
	2006	120	130	270	60	3 [1]	10/10	2/2
Birds	2007	130	140	300	42	3 [1]	10/10	2/2
(pg/g-wet)	2008	140	150	410	37	4 [1]	10/10	2/2
400 /	2009	81	85	160	44	3 [1]	10/10	2/2
	2010	100		190	57	3 [1]	2/2	2/2
	2011			76	76	1.8 [0.7]	1/1	1/1
	2012	75		100	56	2 [1]	2/2	2/2
	2013**	270		970	<u>74</u>	2.2 [0.7]	2/2	2/2

	Monitored	Geometric				Quantification	Detection 1	Frequenc
trans-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	450	1,100	1,800	21	2.4 [0.8]	38/38	8/8
	2003	800	700	3,800	140	3.6 [1.2]	30/30	6/6
	2004	780	870	3,400	110	13 [4.2]	31/31	7/7
	2005	700	650	3,400	72	6.2 [2.1]	31/31	7/7
	2006	660	610	3,200	85	3 [1]	31/31	7/7
Bivalves	2007	640	610	2,400	71	7 [3]	31/31	7/7
(pg/g-wet)	2008	510	510	2,000	94	6 [2]	31/31	7/7
	2009	780	680	33,000	79	3 [1]	31/31	7/7
	2010	790	870	6,000	84	4 [2]	6/6	6/6
	2011	640	680	3,000	200	3 [1]	4/4	4/4
	2012	530	400	1,800	190	4 [1]	5/5	5/5
	2013	380	370	2,000	98	10 [3.4]	5/5	5/5
	2002	1,000	900	8,300	98	2.4 [0.8]	70/70	14/14
	2003	920	840	5,800	85	3.6 [1.2]	70/70	14/14
	2004	1,100	760	21,000	140	13 [4.2]	70/70	14/14
	2005	970	750	13,000	80	6.2 [2.1]	80/80	16/16
	2006	940	680	6,900	120	3 [1]	80/80	16/16
Fish	2007	800	680	7,900	71	7 [3]	80/80	16/16
(pg/g-wet)	2008	860	750	6,900	87	6 [2]	85/85	17/17
400 /	2009	810	720	7,400	68	3 [1]	90/90	18/18
	2010	800	1,000	4,700	110	4 [2]	18/18	18/18
	2011	1,100	1,000	5,000	190	3 [1]	18/18	18/18
	2012	1,100	1,300	4,200	140	4 [1]	19/19	19/19
	2013	1,100	1,100	7,800	150	10 [3.4]	19/19	19/19
	2002	890	980	1,900	350	2.4 [0.8]	10/10	2/2
	2003	1,100	1,400	3,700	350	3.6 [1.2]	10/10	2/2
	2004	690	780	1,200	390	13 [4.2]	10/10	2/2
	2005	870	880	2,000	440	6.2 [2.1]	10/10	2/2
	2006	650	620	1,500	310	3 [1]	10/10	2/2
Birds	2007	590	680	1,400	200	7 [3]	10/10	2/2
(pg/g-wet)	2008	740	850	2,600	180	6 [2]	10/10	2/2
	2009	400	430	730	220	3 [1]	10/10	2/2
	2010	510		880	290	4 [2]	2/2	2/2
	2011			400	400	3 [1]	1/1	1/1
	2012	360		480	270	4 [1]	2/2	2/2
	2013**	55		170	18	10 [3.4]	2/2	2/2

 2013***
 55
 -- 170
 18
 10 [3.4]
 272
 272

 (Note 1) "* ":Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.
 (Note 2) " ** ": There is no consistency between the results of the ornithological survey in FY2013 and those in previous years because of the changes in the survey sites and target species.

	Monitored year	Geometric				Quantification	Detection l	Frequen
Oxychlordane	Wontored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.96	0.98	8.3	nd	0.024 [0.008]	101/102	34/34
	2003Warm season	2.5	2.7	12	0.41	0.045 [0.015]	35/35	35/35
	2003Cold season	0.87	0.88	3.2	0.41		34/34	34/34
	2004Warm season	1.9	2.0	7.8	0.41	0.13 [0.042]	37/37	37/37
	2004Cold season	0.80	0.76	3.9	0.27	0.15 [0.042]	37/37	37/3
	2005Warm season	1.9	2.0	8.8	0.65	0.16 [0.054]	37/37	37/3'
	2005Cold season	0.55	0.50	2.2	0.27		37/37	37/3
	2006Warm season	1.8	1.9	5.7	0.47	0.23 [0.08]	37/37	37/3
	2006Cold season	0.54	0.56	5.1	tr(0.13)		37/37	37/3
	2007Warm season	1.9	1.8	8.6	0.56	0.05 [0.02]	36/36	36/3
Air	2007Cold season	0.61	0.63	2.4	0.26	0.05 [0.02]	36/36	36/3
(pg/m^3)	2008Warm season	1.7	1.7	7.1	0.50	0.04 [0.01]	37/37	37/3
(pg/m)	2008Cold season	0.61	0.63	1.8	0.27	0.04 [0.01]	37/37	37/3
	2009Warm season	1.7	1.8	6.5	0.38	0.04 [0.02]	37/37	37/3
	2009Cold season	0.65	0.61	2.7	0.24	0.04 [0.02]	37/37	37/3
	2010Warm season	1.5	1.5	6.2	0.44	0.03 [0.01]	37/37	37/3
	2010Cold season	0.56	0.55	2.3	0.26	0.03 [0.01]	37/37	37/3
	2011Warm season	1.5	1.5	5.2	0.28	0.07 [0.03]	35/35	35/3
	2011Cold season	0.61	0.57	2.6	0.21	0.07 [0.03]	37/37	37/3
20 20 20	2012Warm season	1.4	1.6	6.7	0.34	0.08 [0.03]	36/36	36/3
	2012Cold season	0.41	0.38	1.0	0.22	0.08 [0.03]	36/36	36/3
	2013Warm season	1.4	1.5	4.7	0.36	0.03 [0.01]	36/36	36/3
	2013Cold season	0.43	0.41	1.0	0.20		36/36	36/3
		Geometric				Quantification	Detection 1	Freque
eis-Nonachlor	Monitored year	mean	Median	Maximum	Minimum	[Detection]	Sample	-
is-Nonachlor	-	mean				limit	Sample	Site
<i>is</i> -Nonachlor	2002	mean 3.1	4.0	62	0.071	limit 0.030 [0.010]	Sample 102/102	Site 34/3
is-Nonachlor	2002 2003Warm season	mean 3.1 12	4.0	62 220	0.071	limit	Sample 102/102 35/35	Site 34/3 35/3
is-Nonachlor	2002 2003Warm season 2003Cold season	mean 3.1 12 2.7	4.0 15 3.5	62 220 23	0.071 0.81 0.18	limit 0.030 [0.010] 0.026 [0.0088]	Sample 102/102 35/35 34/34	Site 34/3 35/3 34/3
<i>is</i> -Nonachlor	2002 2003Warm season 2003Cold season 2004Warm season	mean 3.1 12 2.7 10	4.0 15 3.5 15	62 220 23 130	0.071 0.81 0.18 0.36	limit 0.030 [0.010]	Sample 102/102 35/35 34/34 37/37	Site 34/3 35/3 34/3 37/3
<i>is</i> -Nonachlor	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season	mean 3.1 12 2.7 10 2.7	4.0 15 3.5 15 4.4	62 220 23 130 28	0.071 0.81 0.18 0.36 0.087	limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024]	Sample 102/102 35/35 34/34 37/37 37/37	Site 34/3 35/3 34/3 37/3 37/3
<i>is</i> -Nonachlor	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season	mean 3.1 12 2.7 10 2.7 10	4.0 15 3.5 15 4.4 14	62 220 23 130 28 160	0.071 0.81 0.18 0.36 0.087 0.30	limit 0.030 [0.010] 0.026 [0.0088]	Sample 102/102 35/35 34/34 37/37 37/37 37/37	Site 34/3 35/3 34/3 37/3 37/3 37/3
<i>is</i> -Nonachlor	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season	mean 3.1 12 2.7 10 2.7 10 2.7 10 1.6	4.0 15 3.5 15 4.4 14 1.6	62 220 23 130 28 160 34	0.071 0.81 0.18 0.36 0.087 0.30 0.08	limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37	Site 34/3 35/3 34/3 37/3 37/3 37/3 37/3 37/3
<i>is</i> -Nonachlor	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season	mean 3.1 12 2.7 10 2.7 10 1.6 11	4.0 15 3.5 15 4.4 14 1.6 12	62 220 23 130 28 160 34 170	0.071 0.81 0.18 0.36 0.087 0.30 0.08 0.28	limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37	Site 34/3 35/3 37/3 37/3 37/3 37/3 37/3 37/3
<i>is</i> -Nonachlor	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4	$ \begin{array}{r} 4.0 \\ 15 \\ 3.5 \\ 15 \\ 4.4 \\ 14 \\ 1.6 \\ 12 \\ 2.0 \\ \end{array} $	62 220 23 130 28 160 34 170 41	0.071 0.81 0.18 0.36 0.087 0.30 0.08 0.28 tr(0.14)	limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37	Site 34/3 35/3 37/3 37/3 37/3 37/3 37/3 37/3 37
	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Cold season 2006Cold season 2006Cold season 2006Cold season 2007Warm season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10	4.0 15 3.5 15 4.4 14 1.6 12 2.0 14	62 220 23 130 28 160 34 170 41 150	0.071 0.81 0.18 0.36 0.087 0.30 0.08 0.28 tr(0.14) 0.31	limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 37/37 36/36	Site 34/3 35/3 37/3 37/3 37/3 37/3 37/3 37/3 37
Air	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6	$ \begin{array}{r} 4.0 \\ 15 \\ 3.5 \\ 15 \\ 4.4 \\ 14 \\ 1.6 \\ 12 \\ 2.0 \\ 14 \\ 1.7 \\ \end{array} $	62 220 23 130 28 160 34 170 41 150 22	$\begin{array}{r} 0.071\\ 0.81\\ 0.18\\ 0.36\\ 0.087\\ 0.30\\ 0.08\\ 0.28\\ tr(0.14)\\ 0.31\\ 0.09\\ \end{array}$	limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36 36/36	Site 34/3 35/3 37/3 37/3 37/3 37/3 37/3 37/3 36/3 36
	2002 2003Warm season 2003Cold season 2004Warm season 2004Cold season 2005Warm season 2005Cold season 2006Cold season 2006Cold season 2007Warm season 2007Cold season 2007Cold season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9 10 1.7 10 1.6 7.9 10 1.6 1.9 1.6 1.6 1.6 1.9 1.6 1.6 1.6 1.9 1.6 1.6 1.9 1.6 1.6 1.6 1.9 1.6 1.6 1.6 1.9 1.6 1.6 1.6 1.9 1.6 1.6 1.6 1.9 1.6 1.6 1.6 1.9 1.6 1.9 1.6 1.6 1.9 1.6 1.6 1.9 1.6 1.6 1.9 1.6 1.9 1.6 1.9 1.6 1.9 1.6 1.9 1.6 1.9 1.6 1.9 1.6 1.9 1.6 1.9 1.6 1.9 1.6 1.9 1.6 1.9 1.6 1.9 1.6 1.9 1.6 1.9 1.6 1.9 1.6 1.9 1.9 1.6 1.9 1.9 1.9 1.6 1.9 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.6 1.9 1.6 1.9 1.6 1.8 1.9 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.9 1.9 1.8 1	$ \begin{array}{r} 4.0 \\ 15 \\ 3.5 \\ 15 \\ 4.4 \\ 14 \\ 1.6 \\ 12 \\ 2.0 \\ 14 \\ 1.7 \\ 12 \end{array} $	62 220 23 130 28 160 34 170 41 150 22 87	$\begin{array}{r} 0.071\\ 0.81\\ 0.18\\ 0.36\\ 0.087\\ 0.30\\ 0.08\\ 0.28\\ tr(0.14)\\ 0.31\\ 0.09\\ 0.18\\ \end{array}$	limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37	Site 34/3 35/3 34/3 37/3 37/3 37/3 37/3 37/3 37/3 36/3 36/3 37/3
Air	2002 2003Warm season 2003Cold season 2004Warm season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Warm season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9 2.0	$ \begin{array}{r} 4.0 \\ 15 \\ 3.5 \\ 15 \\ 4.4 \\ 14 \\ 1.6 \\ 12 \\ 2.0 \\ 14 \\ 1.7 \\ 12 \\ 2.7 \\ \end{array} $	62 220 23 130 28 160 34 170 41 150 22 87 19	$\begin{array}{r} 0.071\\ 0.81\\ 0.18\\ 0.36\\ 0.087\\ 0.30\\ 0.08\\ 0.28\\ tr(0.14)\\ 0.31\\ 0.09\\ 0.18\\ 0.16\\ \end{array}$	limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01] 0.03 [0.01]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37	Site 34/3 35/3 37/3 37/3 37/3 37/3 37/3 37/3 37
Air	2002 2003Warm season 2003Cold season 2004Warm season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Cold season 2007Cold season 2008Warm season 2008Warm season 2008Cold season 2009Warm season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9 2.0 7.5	$ \begin{array}{r} 4.0 \\ 15 \\ 3.5 \\ 15 \\ 4.4 \\ 14 \\ 1.6 \\ 12 \\ 2.0 \\ 14 \\ 1.7 \\ 12 \\ 2.7 \\ 10 \\ \end{array} $	62 220 23 130 28 160 34 170 41 150 22 87 19 110	$\begin{array}{r} 0.071\\ 0.81\\ 0.18\\ 0.36\\ 0.087\\ 0.30\\ 0.08\\ 0.28\\ tr(0.14)\\ 0.31\\ 0.09\\ 0.18\\ 0.16\\ 0.33\\ \end{array}$	limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37	Site 34/3 35/3 37/3 37/3 37/3 37/3 37/3 36/3 36/3 37/3 37
Air	2002 2003Warm season 2003Cold season 2004Warm season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Cold season 2007Cold season 2008Warm season 2008Warm season 2008Cold season 2009Warm season 2009Warm season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9 2.0 7.5 1.9	$ \begin{array}{r} 4.0 \\ 15 \\ 3.5 \\ 15 \\ 4.4 \\ 14 \\ 1.6 \\ 12 \\ 2.0 \\ 14 \\ 1.7 \\ 12 \\ 2.7 \\ 10 \\ 2.1 \\ \end{array} $	62 220 23 130 28 160 34 170 41 150 22 87 19 110 18	$\begin{array}{r} 0.071\\ 0.81\\ 0.18\\ 0.36\\ 0.087\\ 0.30\\ 0.08\\ 0.28\\ tr(0.14)\\ 0.31\\ 0.09\\ 0.18\\ 0.16\\ 0.33\\ 0.07\\ \end{array}$	limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01] 0.03 [0.01] 0.04 [0.02]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37	Site 34/3 35/3 37/3 37/3 37/3 37/3 37/3 37/3 36/3 37/3 36/3 37/3 37
Air	2002 2003Warm season 2003Cold season 2004Warm season 2005Warm season 2005Cold season 2006Warm season 2006Cold season 2007Cold season 2007Cold season 2008Warm season 2008Cold season 2009Warm season 2009Warm season 2009Cold season 2009Cold season 2009Cold season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9 2.0 7.5 1.9 7.5	$ \begin{array}{r} 4.0 \\ 15 \\ 3.5 \\ 15 \\ 4.4 \\ 14 \\ 1.6 \\ 12 \\ 2.0 \\ 14 \\ 1.7 \\ 12 \\ 2.7 \\ 10 \\ 2.1 \\ 10 \\ 10 \end{array} $	62 220 23 130 28 160 34 170 41 150 22 87 19 110 18 68	$\begin{array}{r} 0.071\\ 0.81\\ 0.18\\ 0.36\\ 0.087\\ 0.30\\ 0.08\\ 0.28\\ tr(0.14)\\ 0.31\\ 0.09\\ 0.18\\ 0.16\\ 0.33\\ 0.07\\ 0.23\\ \end{array}$	limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01] 0.03 [0.01]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37	Site 34/3 35/3 37/3 37/3 37/3 37/3 37/3 36/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3
Air	2002 2003Warm season 2003Cold season 2004Warm season 2005Warm season 2005Cold season 2006Cold season 2006Cold season 2007Cold season 2007Cold season 2008Warm season 2008Warm season 2009Warm season 2009Warm season 2009Cold season 2010Warm season 2010Warm season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8	$ \begin{array}{r} 4.0 \\ 15 \\ 3.5 \\ 15 \\ 4.4 \\ 14 \\ 1.6 \\ 12 \\ 2.0 \\ 14 \\ 1.7 \\ 12 \\ 2.7 \\ 10 \\ 2.1 \\ 10 \\ 2.1 \\ \end{array} $	62 220 23 130 28 160 34 170 41 150 22 87 19 110 18 68 13	0.071 0.81 0.36 0.087 0.30 0.08 0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23 tr(0.06)	limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01] 0.03 [0.01] 0.04 [0.02] 0.11 [0.04]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37	Site 34/3 35/3 37/3 37/3 37/3 37/3 37/3 36/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3
Air	2002 2003Warm season 2003Cold season 2004Warm season 2005Warm season 2005Cold season 2006Cold season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Warm season 2009Warm season 2009Warm season 2009Cold season 2010Warm season 2010Cold season 2010Cold season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8 7.4	$ \begin{array}{r} 4.0 \\ 15 \\ 3.5 \\ 15 \\ 4.4 \\ 14 \\ 1.6 \\ 12 \\ 2.0 \\ 14 \\ 1.7 \\ 12 \\ 2.7 \\ 10 \\ 2.1 \\ 10 \\ 2.1 \\ 8.8 \\ \end{array} $	62 220 23 130 28 160 34 170 41 150 22 87 19 110 18 68 13 89	$\begin{array}{r} 0.071\\ 0.81\\ 0.18\\ 0.36\\ 0.087\\ 0.30\\ 0.08\\ 0.28\\ tr(0.14)\\ 0.31\\ 0.09\\ 0.18\\ 0.16\\ 0.33\\ 0.07\\ 0.23\\ tr(0.06)\\ 0.24\\ \end{array}$	limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01] 0.03 [0.01] 0.04 [0.02]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37	Site 34/3 35/3 37/3 37/3 37/3 37/3 37/3 36/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3
Air	2002 2003Warm season 2003Cold season 2004Warm season 2005Warm season 2005Cold season 2006Cold season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Warm season 2008Warm season 2009Warm season 2009Warm season 2010Cold season 2010Cold season 2011Warm season 2011Cold season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8 7.4 1.9	$\begin{array}{r} 4.0\\ 15\\ 3.5\\ 15\\ 4.4\\ 14\\ 1.6\\ 12\\ 2.0\\ 14\\ 1.7\\ 12\\ 2.7\\ 10\\ 2.1\\ 10\\ 2.1\\ 8.8\\ 2.9\\ \end{array}$	62 220 23 130 28 160 34 170 41 150 22 87 19 110 18 68 13 89 28	$\begin{array}{c} 0.071\\ 0.81\\ 0.18\\ 0.36\\ 0.087\\ 0.30\\ 0.08\\ 0.28\\ tr(0.14)\\ 0.31\\ 0.09\\ 0.18\\ 0.16\\ 0.33\\ 0.07\\ 0.23\\ tr(0.06)\\ 0.24\\ nd \end{array}$	limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01] 0.03 [0.01] 0.04 [0.02] 0.15 [0.051]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37	Site 34/3 35/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 37/3 35/3 36/3
Air	2002 2003Warm season 2003Cold season 2004Warm season 2005Warm season 2005Cold season 2006Cold season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Warm season 2008Warm season 2009Warm season 2009Warm season 2010Cold season 2010Cold season 2011Warm season 2011Cold season 2011Cold season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8 7.4 1.9 6.9	$\begin{array}{r} 4.0\\ 15\\ 3.5\\ 15\\ 4.4\\ 14\\ 1.6\\ 12\\ 2.0\\ 14\\ 1.7\\ 12\\ 2.7\\ 10\\ 2.1\\ 10\\ 2.1\\ 10\\ 2.1\\ 8.8\\ 2.9\\ 11\\ \end{array}$	62 220 23 130 28 160 34 170 41 150 22 87 19 110 18 68 13 89 28 89 28 89	0.071 0.81 0.18 0.36 0.087 0.30 0.08 0.28 tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23 tr(0.06) 0.24 nd 0.29	limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01] 0.03 [0.01] 0.04 [0.02] 0.11 [0.04]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 36/36	Site 34/3 35/3 37/3 36/3
	2002 2003Warm season 2003Cold season 2004Warm season 2005Warm season 2005Cold season 2006Cold season 2006Cold season 2007Warm season 2007Cold season 2008Warm season 2008Warm season 2008Warm season 2009Warm season 2009Warm season 2010Cold season 2010Cold season 2011Warm season 2011Cold season	mean 3.1 12 2.7 10 2.7 10 1.6 11 2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8 7.4 1.9	$\begin{array}{r} 4.0\\ 15\\ 3.5\\ 15\\ 4.4\\ 14\\ 1.6\\ 12\\ 2.0\\ 14\\ 1.7\\ 12\\ 2.7\\ 10\\ 2.1\\ 10\\ 2.1\\ 8.8\\ 2.9\\ \end{array}$	62 220 23 130 28 160 34 170 41 150 22 87 19 110 18 68 13 89 28	$\begin{array}{c} 0.071\\ 0.81\\ 0.18\\ 0.36\\ 0.087\\ 0.30\\ 0.08\\ 0.28\\ tr(0.14)\\ 0.31\\ 0.09\\ 0.18\\ 0.16\\ 0.33\\ 0.07\\ 0.23\\ tr(0.06)\\ 0.24\\ nd \end{array}$	limit 0.030 [0.010] 0.026 [0.0088] 0.072 [0.024] 0.08 [0.03] 0.15 [0.05] 0.03 [0.01] 0.03 [0.01] 0.04 [0.02] 0.15 [0.051]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37	Site 34/3: 35/3: 37/3: 36/

Stocktaking of the detection of Oxychlordane. *cis*-Nonachlor and *trans*-Nonachlor in air FY2002~2013

<Air>

		Geometric				Quantification	Detection l	Frequency
<i>trans-</i> Nonachlor	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	24	30	550	0.64	0.30 [0.10]	102/102	34/34
	2003Warm season	87	100	1,200	5.1	0.25 [0.12]	35/35	35/35
	2003Cold season	24	28	180	2.1	0.35 [0.12]	34/34	34/34
	2004Warm season	72	120	870	1.9	0.49 [0.16]	37/37	37/37
	2004Cold season	23	39	240	0.95	0.48 [0.16]	37/37	37/37
	2005Warm season	75	95	870	3.1	0 12 [0 044]	37/37	37/37
	2005Cold season	13	16	210	1.2	0.13 [0.044]	37/37	37/37
	2006Warm season	68	91	800	3.0	0 10 [0 02]	37/37	37/37
	2006Cold season	16	15	240	1.4	0.10 [0.03]	37/37	37/37
	2007Warm season	72	96	940	2.5	0.00.00.21	36/36	36/36
Air	2007Cold season	13	15	190	1.1	0.09 [0.03]	36/36	36/36
	2008Warm season	59	91	650	1.5	0.09 [0.03]	37/37	37/37
(pg/m^3)	2008Cold season	17	25	170	1.3	0.09 [0.03]	37/37	37/37
	2009Warm season	54	81	630	2.2	0.07 [0.03]	37/37	37/37
	2009Cold season	16	19	140	0.75	0.07 [0.03]	37/37	37/37
	2010Warm season	52	78	520	1.7	0.9 [0.2]	37/37	37/37
	2010Cold season	15	17	89	tr(0.7)	0.8 [0.3]	37/37	37/37
	2011Warm season	53	72	550	1.2	1 1 [0 25]	35/35	35/35
	2011Cold season	16	24	210	tr(0.70)	1.1 [0.35]	37/37	37/37
	2012Warm season	49	79	510	2.5	1 2 [0 41]	36/36	36/36
	2012Cold season	8.1	10	61	tr(0.50)	1.2 [0.41]	36/36	36/36
	2013Warm season	46	78	470	1.2	0.5 [0.2]	36/36	36/36
	2013Cold season	8.5	12	75	0.5	0.5 [0.2]	36/36	36/36

[8] Heptachlors

· History and state of monitoring

Heptachlor and its metabolite, heptachlor epoxide, used to kill soil insects and termites, heptachlor has also been used more widely to kill cotton insects, grasshoppers, other crop pests, and malaria-carrying mosquitoes. The substances were not registrated under the Agricultural Chemicals Regulation Law in FY1975. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 1986, since it includes the technical chlordane used as a termitecide. Also Heptachlors is one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series before FY2001, heptachlor and heptachlor epoxide were measured in FY1982 (in surface water, sediment and fish) and in FY1986 (in air) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Heptachlor in surface water, sediment, wildlife (bibalves, fish and birds) and air had been monitored since FY2002, and *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide had also been monitored since FY2003. After FY2012, the substances has been monitored in sediment, wildlife (bivalves, fish and birds) and air in FY2012, FY2013 and FY2015 and in surface water and sediment in FY2014.

· Monitoring results

<Wildlife>

Heptachlor: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 1.0pg/g-wet, and the detected concentration was tr(1.7)pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 9 of the 19 valid areas adopting the detection limit of 1.0pg/g-wet, and none of the detected concentrations exceeded 9.2pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and not detected in the area adopting the detection limit of 1.0pg/g-wet. As the results of the inter-annual trend analysis from FY2002 to FY2015, although the number of detections was small, the detection rate of the fish was decreased, it suggested a reduction tendency of the concentrations.

cis-Heptachlor epoxide: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 0.8pg/g-wet, and the detection range was 7.2~91pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 0.8pg/g-wet, and the detection range was 3.2~190pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 0.8pg/g-wet, and the detected concentration was 20pg/g-wet.

trans-Heptachlor epoxide: The presence of the substance in bivalves was monitored in 3 areas, and it was not detected at all 3 valid areas adopting the detection limit of 3pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 5 of the 19 valid areas adopting the detection limit of 3pg/g-wet, and none of the detected concentrations exceeded 10pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and not detected in the area adopting the detection limit of 3pg/g-wet.

Heptachlor	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection I	
meptaemor	year	mean*	moului	maximum	TVIIIIIIIIII	limit	Sample	Site
	2002	tr(3.5)	4.6	15	nd	4.2 [1.4]	28/38	6/8
	2003	tr(2.8)	tr(2.4)	14	nd	6.6 [2.2]	16/30	4/6
	2004	tr(3.4)	5.2	16	nd	4.1 [1.4]	23/31	6/7
	2005	tr(2.9)	tr(2.9)	24	nd	6.1 [2.0]	18/31	6/7
	2006	tr(4)	tr(4)	20	nd	6 [2]	23/31	6/7
Bivalves	2007	tr(3)	tr(3)	12	nd	6 [2]	20/31	6/7
(pg/g-wet)	2008	tr(2)	nd	9	nd	6 [2]	13/31	5/7
(pg/g-wet)	2009	tr(4)	nd	120	nd	5 [2]	14/31	4/7
	2010	3	tr(2)	78	nd	3 [1]	5/6	5/6
	2011	4	4	51	nd	3 [1]	3/4	3/4
	2012	tr(3)	tr(3)	13	nd	4 [1]	4/5	4/5
	2013	3	tr(2)	19	nd	3 [1]	4/5	4/5
	2015	nd	nd	tr(1.7)	nd	3.0 [1.0]	1/3	1/3
	2002	4.2	4.8	20	nd	4.2 [1.4]	57/70	12/14
	2003	nd	nd	11	nd	6.6 [2.2]	29/70	8/14
	2004	tr(2.3)	tr(2.1)	460	nd	4.1 [1.4]	50/70	11/14
	2005	nd	nd	7.6	nd	6.1 [2.0]	32/80	8/16
	2006	tr(2)	nd	8	nd	6 [2]	36/80	8/16
F ' 1	2007	tr(2)	nd	7	nd	6 [2]	28/80	6/16
Fish	2008	nd	nd	9	nd	6 [2]	25/85	7/17
(pg/g-wet)	2009	tr(2)	nd	8	nd	5 [2]	30/90	11/18
	2010	tr(2)	tr(2)	5	nd	3 [1]	12/18	12/18
	2011	tr(1)	tr(1)	7	nd	3 [1]	13/18	13/18
	2012	nd	tr(1)	5	nd	4 [1]	10/19	10/19
	2013	nd	nd	12	nd	3 [1]	9/19	9/19
	2015	nd	nd	9.2	nd	3.0 [1.0]	9/19	9/19
	2002	tr(1.7)	tr(2.8)	5.2	nd	4.2 [1.4]	7/10	2/2
	2003	nd	nd	nd	nd	6.6 [2.2]	0/10	0/2
	2004	nd	nd	tr(1.5)	nd	4.1 [1.4]	1/10	1/2
	2005	nd	nd	nd	nd	6.1 [2.0]	0/10	0/2
	2006	nd	nd	nd	nd	6 [2]	0/10	0/2
D' 1	2007	nd	nd	nd	nd	6 [2]	0/10	0/2
Birds	2008	nd	nd	nd	nd	6 [2]	0/10	0/2
(pg/g-wet)	2009	nd	nd	nd	nd	5 [2]	0/10	0/2
	2010	nd		tr(1)	nd	3 [1]	1/2	1/2
	2011			nd	nd	3 [1]	0/1	0/1
	2012	nd		nd	nd	4 [1]	0/2	0/2
	2013**	nd		nd	nd	3 [1]	0/2	0/2
	2015**			nd	nd	3.0 [1.0]	0/1	0/1

Stocktaking of the detection of Heptachlor, *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide in wildlife (bivalves, fish and birds) during FY2002~2015

cis-Heptachlor	Monitored	Geometric				Quantification	Detection l	Frequency
epoxide	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	44	29	880	9.7	6.9 [2.3]	30/30	6/6
	2004	64	34	840	tr(9.8)	9.9 [3.3]	31/31	7/7
	2005	49	20	590	7.4	3.5 [1.2]	31/31	7/7
	2006	56	23	1,100	8	4 [1]	31/31	7/7
	2007	37	20	1,100	8	4 [1]	31/31	7/7
Bivalves	2008	37	19	510	8	5 [2]	31/31	7/7
(pg/g-wet)	2009	59	33	380	10	3 [1]	31/31	7/7
	2010	170	260	1,800	9.0	2.4 [0.9]	6/6	6/6
	2011	55	110	320	3.9	2.0 [0.8]	4/4	4/4
	2012	48	120	180	6.2	1.5 [0.6]	5/5	5/5
	2013	28	29	110	4.4	2.1 [0.8]	5/5	5/5
	2015	21	14	91	7.2	2.1 [0.8]	3/3	3/3
	2003	43	43	320	7.0	6.9 [2.3]	70/70	14/14
	2004	51	49	620	tr(3.3)	9.9 [3.3]	70/70	14/14
	2005	41	45	390	4.9	3.5 [1.2]	80/80	16/16
	2006	42	48	270	4	4 [1]	80/80	16/16
	2007	43	49	390	4	4 [1]	80/80	16/16
Fish	2008	39	46	350	tr(3)	5 [2]	85/85	17/17
(pg/g-wet)	2009	41	50	310	4	3 [1]	90/90	18/18
	2010	39	49	230	5.0	2.4 [0.9]	18/18	18/18
	2011	50	62	540	3.2	2.0 [0.8]	18/18	18/18
	2012	41	62	120	6.9	1.5 [0.6]	19/19	19/19
	2013	42	46	190	7.3	2.1 [0.8]	19/19	19/19
	2015	33	43	190	3.2	2.1 [0.8]	19/19	19/19
	2003	540	510	770	370	6.9 [2.3]	10/10	2/2
	2004	270	270	350	190	9.9 [3.3]	10/10	2/2
	2005	370	340	690	250	3.5 [1.2]	10/10	2/2
	2006	330	310	650	240	4 [1]	10/10	2/2
	2007	280	270	350	250	4 [1]	10/10	2/2
Birds	2008	370	370	560	180	5 [2]	10/10	2/2
(pg/g-wet)	2009	220	210	390	160	3 [1]	10/10	2/2
	2010	290		360	240	2.4 [0.9]	2/2	2/2
	2011			410	410	2.0 [0.8]	1/1	1/1
	2012	160		170	150	1.5 0.6	2/2	2/2
	2013**	300		560	160	2.1 [0.8]	2/2	2/2
	2015**			20	20	2.1 [0.8]	1/1	1/1

trans-Heptachlor	Monitored	Geometric				Quantification	Detection I	requenc
epoxide	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	48	nd	13 [4.4]	5/30	1/6
	2004	nd	nd	55	nd	12 [4.0]	9/31	2/7
	2005	nd	nd	37	nd	23 [7.5]	5/31	1/7
	2006	nd	nd	45	nd	13 [5]	5/31	1/7
	2007	nd	nd	61	nd	13 [5]	5/31	1/7
Bivalves	2008	nd	nd	33	nd	10 [4]	5/31	1/7
(pg/g-wet)	2009	tr(3)	nd	24	nd	8 [3]	13/31	3/7
	2010	3	tr(2)	24	nd	3 [1]	3/6	3/6
	2011	nd	nd	tr(6)	nd	7 [3]	1/4	1/4
	2012	nd	nd	tr(4)	nd	8 [3]	1/5	1/5
	2013	nd	nd	nd	nd	7 [3]	0/5	0/5
	2015	nd	nd	nd	nd	7 [3]	0/3	0/3
	2003	nd	nd	nd	nd	13 [4.4]	0/70	0/14
	2004	nd	nd	tr(10)	nd	12 [4.0]	2/70	2/14
	2005	nd	nd	nd	nd	23 [7.5]	0/80	0/16
	2006	nd	nd	nd	nd	13 [5]	0/80	0/16
	2007	nd	nd	nd	nd	13 [5]	0/80	0/16
Fish	2008	nd	nd	nd	nd	10 [4]	0/85	0/17
(pg/g-wet)	2009	nd	nd	nd	nd	8 [3]	0/90	0/18
	2010	nd	nd	nd	nd	3 [1]	0/18	0/18
	2011	nd	nd	nd	nd	7 [3]	0/18	0/18
	2012	nd	nd	nd	nd	8 [3]	0/19	0/19
	2013	nd	nd	nd	nd	7 [3]	0/19	0/19
	2015	nd	nd	10	nd	7 [3]	5/19	5/19
	2003	nd	nd	nd	nd	13 [4.4]	0/10	0/2
	2004	nd	nd	nd	nd	12 [4.0]	0/10	0/2
	2005	nd	nd	nd	nd	23 [7.5]	0/10	0/2
	2006	nd	nd	nd	nd	13 [5]	0/10	0/2
	2007	nd	nd	nd	nd	13 [5]	0/10	0/2
Birds	2008	nd	nd	nd	nd	10 [4]	0/10	0/2
(pg/g-wet)	2009	nd	nd	nd	nd	8 [3]	0/10	0/2
	2010	nd		nd	nd	3 [1]	0/2	0/2
	2011			nd	nd	7 [3]	0/1	0/1
	2012	nd		nd	nd	8 [3]	0/2	0/2
	2013**	nd		tr(5)	nd	7 [3]	1/2	1/2
	2015**			nd	nd	7 [3]	0/1	0/1

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009.
 (Note 2) "**" : There is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.
 (Note 3) No monitoring was conducted in FY2014.

<Air>

Heptachlor: The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.06pg/m³, and the detection range was 0.43~49pg/m³.

As results of the inter-annual trend analysis from FY2003 to FY2015, reduction tendency in specimens from warm season was identified as statistically significant.

cis-Heptachlor epoxide: The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.2 pg/m³, and the detection range was tr(0.4)~4.7 pg/m³.

As results of the inter-annual trend analysis from FY2003 to FY2015, reduction tendency in specimens from warm season was identified as statistically significant.

trans-Heptachlor epoxide: The presence of the substance in air was monitored at 35 sites, and it was not detected at all 35 valid sites adopting the detection limit of 0.01 pg/m³.

Stocktaking of the detection of Heptachlor, *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide in air during FY2002~2015

		Geometric				Quantification	Detection I	Frequency
Heptachlor	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	11	14	220	0.20	0.12 [0.04]	102/102	34/34
	2003Warm season	27	41	240	1.1	0.25 [0.085]	35/35	35/35
	2003Cold season	10	16	65	0.39	0.23 [0.083]	34/34	34/34
	2004Warm season	23	36	200	0.46	0.23 [0.078]	37/37	37/37
	2004Cold season	11	18	100	0.53	0.23 [0.078]	37/37	37/37
	2005Warm season	25	29	190	1.1	0.16 [0.054]	37/37	37/37
	2005Cold season	6.5	7.9	61	0.52	0.10 [0.034]	37/37	37/37
	2006Warm season	20	27	160	0.88	0.11 [0.04]	37/37	37/37
	2006Cold season	6.8	7.2	56	0.32	0.11[0.04]	37/37	37/37
	2007Warm season	22	27	320	1.1	0.07 [0.03]	36/36	36/36
	2007Cold season	6.3	8.0	74	0.42	0.07 [0.03]	36/36	36/36
Air	2008Warm season	20	31	190	0.92	0.06 [0.02]	37/37	37/37
(pg/m^3)	2008Cold season	7.5	12	60	0.51	0.00 [0.02]	37/37	37/37
	2009Warm season	18	30	110	0.48	0.04 [0.01]	37/37	37/37
	2009Cold season	6.3	7.8	48	0.15	0.04 [0.01]	37/37	37/37
	2010Warm season	17	26	160	0.69	0.11 [0.04]	37/37	37/37
	2010Cold season	7.2	9.5	53	0.22	0.11[0.04]	37/37	37/37
	2011Warm season	16	25	110	0.73	0.30 [0.099]	35/35	35/35
	2011Cold season	6.1	10	56	tr(0.13)	0.30 [0.099]	37/37	37/37
	2012Warm season	13	21	58	0.46	0 41 [0 14]	36/36	36/36
	2012Cold season	3.2	4.9	20	nd	0.41 [0.14]	35/36	35/36
	2013Warm season	11	21	43	0.46	0.16 [0.05]	36/36	36/36
	2013Cold season	3.1	4.6	22	tr(0.10)	0.10[0.03]	36/36	36/36
	2015Warm season	8.7	11	49	0.43	0.19 [0.06]	35/35	35/35

$\begin{array}{c} \begin{array}{c} \begin{array}{c} 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200$	Monitored year 03Warm season 04Warm season 04Warm season 05Warm season 06Warm season 06Warm season 07Warm season 07Cold season 07Cold season 08Warm season 08Warm season 08Warm season 10Warm season 10Warm season 11Warm season 11Cold season 12Warm season 12Cold season 13Warm season 13Warm season	Geometric mean 3.5 1.3 2.8 1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91 2.5 1.0 2.3 0.93 2.0 0.93 2.0 0.90 2.0 0.62 2.0	Median 3.5 1.3 2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84 2.2 0.84 2.6 0.91 2.3 0.85 2.3 0.90 2.1 0.57 	Maximum 28 6.6 9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0 16 3.8 10 4.3 6.0 2.8	Minimum 0.45 0.49 0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.42 0.38 0.33 0.29	[Detection] limit 0.015 [0.0048] 0.052 [0.017] 0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01] 0.02 [0.01]	Sample 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37	Site 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35
$\begin{array}{c} 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200$	03Cold season 04Warm season 04Cold season 05Warm season 05Cold season 06Warm season 06Cold season 07Warm season 07Cold season 08Warm season 08Cold season 09Warm season 10Warm season 10Cold season 11Warm season 11Cold season 12Warm season 12Cold season 12Warm season 12Cold season 13Warm season	$\begin{array}{c} 1.3 \\ 2.8 \\ 1.1 \\ 1.5 \\ 0.91 \\ 1.7 \\ 0.74 \\ 2.9 \\ 0.93 \\ 2.4 \\ 0.91 \\ 2.5 \\ 1.0 \\ 2.3 \\ 0.93 \\ 2.0 \\ 0.90 \\ 2.0 \\ 0.62 \end{array}$	$\begin{array}{r} 1.3 \\ 2.9 \\ 1.1 \\ 1.7 \\ 0.81 \\ 2.0 \\ 0.88 \\ 2.8 \\ 0.82 \\ 2.2 \\ 0.84 \\ 2.6 \\ 0.91 \\ 2.3 \\ 0.85 \\ 2.3 \\ 0.90 \\ 2.1 \end{array}$	$\begin{array}{r} 6.6\\ 9.7\\ 7.0\\ 11\\ 2.9\\ 6.7\\ 3.2\\ 13\\ 3.0\\ 9.9\\ 3.0\\ 16\\ 3.8\\ 10\\ 4.3\\ 6.0\\ \end{array}$	$\begin{array}{r} 0.49\\ 0.65\\ 0.44\\ tr(0.10)\\ 0.43\\ 0.13\\ nd\\ 0.54\\ 0.41\\ 0.53\\ 0.37\\ 0.37\\ 0.37\\ 0.42\\ 0.38\\ 0.33\\ \end{array}$	0.052 [0.017] 0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01] 0.02 [0.01]	34/34 37/37 37/37 37/37 37/37 36/37 36/36 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37	34/34 37/37 37/37 37/37 37/37 36/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37
$\begin{array}{c} 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200$	04Warm season 04Cold season 05Warm season 06Warm season 06Cold season 07Warm season 07Cold season 07Cold season 08Warm season 08Warm season 09Warm season 10Warm season 10Cold season 11Warm season 11Cold season 12Warm season 12Cold season 13Warm season	$\begin{array}{c} 2.8 \\ 1.1 \\ 1.5 \\ 0.91 \\ 1.7 \\ 0.74 \\ 2.9 \\ 0.93 \\ 2.4 \\ 0.91 \\ 2.5 \\ 1.0 \\ 2.3 \\ 0.93 \\ 2.0 \\ 0.90 \\ 2.0 \\ 0.62 \end{array}$	$\begin{array}{r} 2.9\\ 1.1\\ 1.7\\ 0.81\\ 2.0\\ 0.88\\ 2.8\\ 0.82\\ 2.2\\ 0.84\\ 2.6\\ 0.91\\ 2.3\\ 0.85\\ 2.3\\ 0.90\\ 2.1\\ \end{array}$	$\begin{array}{r} 9.7 \\ 7.0 \\ 11 \\ 2.9 \\ 6.7 \\ 3.2 \\ 13 \\ 3.0 \\ 9.9 \\ 3.0 \\ 16 \\ 3.8 \\ 10 \\ 4.3 \\ 6.0 \\ \end{array}$	0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.37 0.42 0.38 0.33	0.052 [0.017] 0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01] 0.02 [0.01]	37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37 36/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37
$\begin{array}{c} 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200$	04Cold season 05Warm season 06Warm season 06Cold season 07Warm season 07Cold season 07Cold season 08Warm season 08Warm season 09Warm season 10Warm season 10Cold season 11Warm season 11Cold season 12Warm season 12Cold season 13Warm season	$ \begin{array}{r} 1.1\\ 1.5\\ 0.91\\ 1.7\\ 0.74\\ 2.9\\ 0.93\\ 2.4\\ 0.91\\ 2.5\\ 1.0\\ 2.3\\ 0.93\\ 2.0\\ 0.90\\ 2.0\\ 0.62 \end{array} $	$ \begin{array}{r} 1.1\\ 1.7\\ 0.81\\ 2.0\\ 0.88\\ 2.8\\ 0.82\\ 2.2\\ 0.84\\ 2.6\\ 0.91\\ 2.3\\ 0.85\\ 2.3\\ 0.90\\ 2.1\\ \end{array} $	$\begin{array}{c} 7.0 \\ 11 \\ 2.9 \\ 6.7 \\ 3.2 \\ 13 \\ 3.0 \\ 9.9 \\ 3.0 \\ 16 \\ 3.8 \\ 10 \\ 4.3 \\ 6.0 \end{array}$	0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.42 0.38 0.33	0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01] 0.02 [0.01]	37/37 37/37 37/37 37/37 36/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37 36/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37
$\begin{array}{c} 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200$	05Warm season 06Cold season 06Warm season 07Warm season 07Cold season 08Warm season 08Cold season 09Warm season 09Cold season 10Warm season 10Cold season 11Warm season 11Cold season 12Warm season 12Cold season 13Warm season	$ \begin{array}{r} 1.5\\ 0.91\\ 1.7\\ 0.74\\ 2.9\\ 0.93\\ 2.4\\ 0.91\\ 2.5\\ 1.0\\ 2.3\\ 0.93\\ 2.0\\ 0.90\\ 2.0\\ 0.62 \end{array} $	$ \begin{array}{r} 1.7\\ 0.81\\ 2.0\\ 0.88\\ 2.8\\ 0.82\\ 2.2\\ 0.84\\ 2.6\\ 0.91\\ 2.3\\ 0.85\\ 2.3\\ 0.90\\ 2.1\\ \end{array} $	$ \begin{array}{r} 11\\ 2.9\\ 6.7\\ 3.2\\ 13\\ 3.0\\ 9.9\\ 3.0\\ 16\\ 3.8\\ 10\\ 4.3\\ 6.0\\ \end{array} $	tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.42 0.38 0.33	0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01] 0.02 [0.01]	37/37 37/37 37/37 36/37 36/36 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37	37/37 37/37 36/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37
$\begin{array}{c} \begin{array}{c} 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200$	05Cold season 06Warm season 07Warm season 07Cold season 08Warm season 08Warm season 09Warm season 09Cold season 10Warm season 10Cold season 11Warm season 11Cold season 12Warm season 12Cold season 13Warm season	$\begin{array}{r} 0.91 \\ 1.7 \\ 0.74 \\ 2.9 \\ 0.93 \\ 2.4 \\ 0.91 \\ 2.5 \\ 1.0 \\ 2.3 \\ 0.93 \\ 2.0 \\ 0.90 \\ 2.0 \\ 0.62 \end{array}$	$\begin{array}{r} 0.81 \\ 2.0 \\ 0.88 \\ 2.8 \\ 0.82 \\ 2.2 \\ 0.84 \\ 2.6 \\ 0.91 \\ 2.3 \\ 0.85 \\ 2.3 \\ 0.90 \\ 2.1 \end{array}$	$ \begin{array}{r} 2.9\\ 6.7\\ 3.2\\ 13\\ 3.0\\ 9.9\\ 3.0\\ 16\\ 3.8\\ 10\\ 4.3\\ 6.0\\ \end{array} $	0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.42 0.38 0.33	0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01] 0.02 [0.01]	37/37 37/37 36/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37	37/37 37/37 36/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37
$\begin{array}{c} 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200$	06Warm season 06Cold season 07Warm season 08Warm season 08Cold season 09Warm season 09Cold season 10Warm season 10Cold season 11Warm season 11Cold season 12Warm season 12Cold season 13Warm season	$ \begin{array}{r} 1.7\\ 0.74\\ 2.9\\ 0.93\\ 2.4\\ 0.91\\ 2.5\\ 1.0\\ 2.3\\ 0.93\\ 2.0\\ 0.90\\ 2.0\\ 0.62 \end{array} $	$\begin{array}{r} 2.0 \\ 0.88 \\ 2.8 \\ 0.82 \\ 2.2 \\ 0.84 \\ 2.6 \\ 0.91 \\ 2.3 \\ 0.85 \\ 2.3 \\ 0.90 \\ 2.1 \end{array}$	$ \begin{array}{r} 6.7 \\ 3.2 \\ 13 \\ 3.0 \\ 9.9 \\ 3.0 \\ 16 \\ 3.8 \\ 10 \\ 4.3 \\ 6.0 \\ \end{array} $	0.13 nd 0.54 0.41 0.53 0.37 0.37 0.42 0.38 0.33	0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01] 0.02 [0.01]	37/37 36/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37	37/37 36/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37
$\begin{array}{c} 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200$	06Cold season 07Warm season 07Cold season 08Warm season 08Cold season 09Warm season 09Cold season 10Warm season 10Cold season 11Warm season 11Cold season 12Warm season 12Cold season 13Warm season	$\begin{array}{r} 0.74 \\ 2.9 \\ 0.93 \\ 2.4 \\ 0.91 \\ 2.5 \\ 1.0 \\ 2.3 \\ 0.93 \\ 2.0 \\ 0.90 \\ 2.0 \\ 0.62 \end{array}$	$\begin{array}{r} 0.88\\ 2.8\\ 0.82\\ 2.2\\ 0.84\\ 2.6\\ 0.91\\ 2.3\\ 0.85\\ 2.3\\ 0.90\\ 2.1\\ \end{array}$	$ \begin{array}{r} 3.2 \\ 13 \\ 3.0 \\ 9.9 \\ 3.0 \\ 16 \\ 3.8 \\ 10 \\ 4.3 \\ 6.0 \\ \end{array} $	nd 0.54 0.41 0.53 0.37 0.37 0.42 0.38 0.33	0.03 [0.01] 0.022 [0.008] 0.03 [0.01] 0.02 [0.01]	36/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37	36/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37
$\begin{array}{c} \hline 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 200\\ 20$	07Warm season 07Cold season 08Warm season 08Cold season 09Warm season 09Cold season 10Warm season 10Cold season 11Warm season 11Cold season 12Warm season 12Cold season 13Warm season	$\begin{array}{r} 2.9\\ 0.93\\ 2.4\\ 0.91\\ 2.5\\ 1.0\\ 2.3\\ 0.93\\ 2.0\\ 0.90\\ \hline 2.0\\ 0.62\\ \end{array}$	2.8 0.82 2.2 0.84 2.6 0.91 2.3 0.85 2.3 0.90 2.1	$ \begin{array}{r} 13 \\ 3.0 \\ 9.9 \\ 3.0 \\ 16 \\ 3.8 \\ 10 \\ 4.3 \\ 6.0 \\ \end{array} $	0.54 0.41 0.53 0.37 0.37 0.42 0.38 0.33	0.03 [0.01] 0.022 [0.008] 0.03 [0.01] 0.02 [0.01]	36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37	36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37
$\begin{array}{c} \text{Air} \\ (\text{pg/m}^3) \\ \end{array} \begin{array}{c} 200 \\ 200 \\ 200 \\ 200 \\ 200 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \end{array}$	07Cold season 08Warm season 09Warm season 09Cold season 10Warm season 10Cold season 11Warm season 11Cold season 12Warm season 12Cold season 13Warm season	$\begin{array}{r} 0.93 \\ \hline 2.4 \\ 0.91 \\ \hline 2.5 \\ \hline 1.0 \\ \hline 2.3 \\ 0.93 \\ \hline 2.0 \\ 0.90 \\ \hline 2.0 \\ 0.62 \end{array}$	0.82 2.2 0.84 2.6 0.91 2.3 0.85 2.3 0.90 2.1	$ \begin{array}{r} 3.0 \\ 9.9 \\ 3.0 \\ 16 \\ 3.8 \\ 10 \\ 4.3 \\ 6.0 \\ \end{array} $	0.41 0.53 0.37 0.37 0.42 0.38 0.33	0.022 [0.008] 0.03 [0.01] 0.02 [0.01]	36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37	36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37
$\begin{array}{c} \text{Air} \\ (\text{pg/m}^3) \\ \hline \\ \begin{array}{c} 200 \\ 200 \\ 200 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \end{array}$	08Warm season 08Cold season 09Warm season 09Cold season 10Warm season 10Cold season 11Cold season 12Warm season 12Cold season 13Warm season	$\begin{array}{r} 2.4 \\ 0.91 \\ 2.5 \\ 1.0 \\ 2.3 \\ 0.93 \\ 2.0 \\ 0.90 \\ 2.0 \\ 0.62 \end{array}$	2.2 0.84 2.6 0.91 2.3 0.85 2.3 0.90 2.1	9.93.0163.8104.36.0	0.53 0.37 0.37 0.42 0.38 0.33	0.022 [0.008] 0.03 [0.01] 0.02 [0.01]	37/37 37/37 37/37 37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37 37/37 37/37
Air (pg/m ³) 200 200 201 201 201 201 201 201 201 201	08Cold season 09Warm season 09Cold season 10Warm season 10Cold season 11Cold season 12Warm season 12Cold season 13Warm season	0.91 2.5 1.0 2.3 0.93 2.0 0.90 2.0 0.62	0.84 2.6 0.91 2.3 0.85 2.3 0.90 2.1	3.0 16 3.8 10 4.3 6.0	0.37 0.37 0.42 0.38 0.33	0.03 [0.01]	<u>37/37</u> 37/37 <u>37/37</u> <u>37/37</u> <u>37/37</u>	37/37 37/37 37/37 37/37 37/37 37/37
(pg/m ³) 200 200 201 201 201 201 201 201 201 201	09Warm season 09Cold season 10Warm season 10Cold season 11Warm season 11Cold season 12Warm season 12Cold season 13Warm season	2.5 1.0 2.3 0.93 2.0 0.90 2.0 0.62	2.6 0.91 2.3 0.85 2.3 0.90 2.1	16 3.8 10 4.3 6.0	0.37 0.42 0.38 0.33	0.03 [0.01]	37/37 37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37 37/37
(pg/m ⁻) 200 201 201 201 201 201 201 201 201 201	09Warm season 09Cold season 10Warm season 10Cold season 11Warm season 11Cold season 12Warm season 12Cold season 13Warm season	2.5 1.0 2.3 0.93 2.0 0.90 2.0 0.62	2.6 0.91 2.3 0.85 2.3 0.90 2.1	16 3.8 10 4.3 6.0	0.37 0.42 0.38 0.33	0.02 [0.01]	37/37 37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37 37/37
$ \begin{array}{r} 200 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ 201 \\ \end{array} $	09Cold season 10Warm season 10Cold season 11Warm season 11Cold season 12Warm season 12Cold season 13Warm season	$ \begin{array}{r} 1.0 \\ 2.3 \\ 0.93 \\ 2.0 \\ 0.90 \\ 2.0 \\ 0.62 \\ \end{array} $	0.91 2.3 0.85 2.3 0.90 2.1	10 4.3 6.0	0.42 0.38 0.33	0.02 [0.01]	37/37 37/37 37/37	37/37 37/37 37/37
201 201 201 201 201 201 201 201 201	10Warm season 10Cold season 11Warm season 11Cold season 12Warm season 12Cold season 13Warm season	2.3 0.93 2.0 0.90 2.0 0.62	2.3 0.85 2.3 0.90 2.1	10 4.3 6.0	0.38 0.33		37/37 37/37	37/37 37/37
201 201 201 201 201 201 201 201	10Cold season 11Warm season 11Cold season 12Warm season 12Cold season 13Warm season	0.93 2.0 0.90 2.0 0.62	0.85 2.3 0.90 2.1	4.3 6.0	0.33		37/37	37/37
201 201 201 201 201 201 201	11Warm season 11Cold season 12Warm season 12Cold season 13Warm season	2.0 0.90 2.0 0.62	2.3 0.90 2.1	6.0		0.04.00.013		
201 201 201 201 201 201	11Cold season 12Warm season 12Cold season 13Warm season	0.90 2.0 0.62	0.90		0.2	0 04 [0 01]		7 1/ 17
201 201 201 201 201	12Warm season 12Cold season 13Warm season	2.0 0.62	2.1		0.35	0.04 [0.01]	37/37	37/37
$\frac{201}{201}$ $\frac{201}{201}$	12Cold season 13Warm season	0.62		6.3	0.37		36/36	36/36
201 201 201	13Warm season		0.7/	1.9	0.30	0.05 [0.02]	36/36	36/36
$\frac{201}{201}$			2.1	7.7	0.43		36/36	36/36
201		0.66	0.63	1.4	0.32	0.03 [0.01]	36/36	36/36
	15Warm season	1.4	1.4	4.7	tr(0.4)	0.5 [0.2]	35/35	35/35
	15 Wallin Season		1.1	1.7	u(0.1)	Quantification	Detection	
rans-Heptachl or epoxide	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
200	03Warm season	tr(0.036)	tr(0.038)	0.30	nd	0.000 [0.022]	18/35	18/35
200	03Cold season	nd	nd	tr(0.094)	nd	0.099 [0.033]	3/34	3/34
200	04Warm season	nd	nd	tr(0.38)	nd	0 ([0 0]	4/37	4/37
200	04Cold season	nd	nd	nd	nd	0.6 [0.2]	0/37	0/37
200	05Warm season	tr(0.10)	tr(0.12)	1.2	nd	0.1650.053	27/37	27/37
200	05Cold season	nd	nd	0.32	nd	0.16 [0.05]	3/37	3/37
	06Warm season	nd	nd	0.7	nd	0.0.0.13	2/37	2/37
200	06Cold season	nd	nd	tr(0.1)	nd	0.3 [0.1]	1/37	1/37
	07Warm season	nd	nd	0.16	nd		8/36	8/36
200	07Cold season	nd	nd	tr(0.06)	nd	0.14 [0.06]	1/36	1/36
200	08Warm season	nd	nd	0.17	nd		6/37	6/37
Air 200	08Cold season	nd	nd	nd	nd	0.16 [0.06]	0/37	0/37
(ng/m ²)	09Warm season	nd	nd	0.18	nd		10/37	10/37
	09Cold season	nd	nd	tr(0.06)	nd	0.14 [0.05]	1/37	1/37
	10Warm season	nd	nd	0.16	nd		6/37	6/37
	10Cold season	nd	nd	nd	nd	0.16 [0.06]	0/37	0/37
	11Warm season	nd	nd	0.14	nd		5/35	5/35
	11Cold season	nd	nd	nd	nd	0.13 [0.05]	0/37	0/37
	12Warm season	nd	nd	tr(0.08)	nd		8/36	8/36
	12Cold season	nd	nd	nd	nd	0.12 [0.05]	0/36	0/36
	13Warm season	nd	nd	tr(0.11)	nd		7/36	7/36
	13 Warm season 13Cold season					0.12 [0.05]		
////		nd	nd nd	nd nd	nd nd	0.03 [0.01]	0/36	0/36

(Note) No monitoring was conducted in FY2014.

• Monitoring results until 2014 (reference)

<Surface Water>

Stocktaking of the detection of Heptachlor, *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide in surface water during FY2002~2014

ning 1 1 2002~20	Monitored	Geometric				Quantification	Detection l	Frequency
Heptachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(1.2)	tr(1.0)	25	nd	1.5 [0.5]	97/114	38/38
	2003	tr(1.8)	tr(1.6)	7	tr(1.0)	2 [0.5]	36/36	36/36
	2004	nd	nd	29	nd	5 [2]	9/38	9/38
	2005	nd	tr(1)	54	nd	3 [1]	25/47	25/47
Surface Water	2006	nd	nd	6	nd	5 [2]	5/48	5/48
	2007	nd	nd	5.2	nd	2.4 [0.8]	12/48	12/48
(pg/L)	2008	nd	nd	4.6	nd	2.1 [0.8]	19/48	19/48
	2009	tr(0.5)	nd	17	nd	0.8 [0.3]	20/49	20/49
	2010	nd	nd	43	nd	2.2 [0.7]	4/49	4/49
	2011	nd	nd	22	nd	1.3 [0.5]	6/49	6/49
	2014	tr(0.2)	tr(0.2)	1.5	nd	0.5 [0.2]	28/48	28/48
-:- II	Manitanal	Constant				Quantification	Detection l	Frequenc
<i>cis</i> -Heptachlor epoxide	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	9.8	11	170	1.2	0.7 [0.2]	36/36	36/36
	2004	10	10	77	2	2 [0.4]	38/38	38/38
	2005	7.1	6.6	59	1.0	0.7 [0.2]	47/47	47/47
	2006	7.6	6.6	47	1.1	2.0 [0.7]	48/48	48/48
Surface Water	2007	6.1	5.8	120	tr(0.9)	1.3 [0.4]	48/48	48/48
(pg/L)	2008	4.7	5.0	37	nd	0.6 [0.2]	46/48	46/48
	2009	5.5	4.2	72	0.8	0.5 [0.2]	49/49	49/49
	2010	5.9	3.9	710	0.7	0.4 [0.2]	49/49	49/49
	2011	5.8	5.8	160	0.7	0.7 [0.3]	49/49	49/49
	2014	4.9	3.4	56	0.7	0.5 [0.2]	48/48	48/48
tugua Hantaahlan	Monitored	Geometric				Quantification	Detection l	Frequenc
trans-Heptachlor epoxide	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	2	nd	2 [0.4]	4/36	4/36
	2004	nd	nd	nd	nd	0.9 [0.3]	0/38	0/38
	2005	nd	nd	nd	nd	0.7 [0.2]	0/47	0/47
	2006	nd	nd	nd	nd	1.8 [0.6]	0/48	0/48
Surface Water	2007	nd	nd	tr(0.9)	nd	2.0 [0.7]	2/48	2/48
(pg/L)	2008	nd	nd	nd	nd	1.9 [0.7]	0/48	0/48
	2009	nd	nd	nd	nd	0.7 [0.3]	0/49	0/49
	2010	nd	nd	8.0	nd	1.3 [0.5]	2/49	2/49
	2011	nd	nd	2.8	nd	0.8 [0.3]	3/49	3/49
	2014	nd	nd	nd	nd	0.8 0.3	0/48	0/48

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted in FY2012 and FY2013.

<Sediment>

Stocktaking of the detection of Heptachlor, *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide in sediment during FY2002~2014

	Monitored	Geometric				Quantification	Detection 1	Frequency
Heptachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	4.1	3.2	120	nd	1.8 [0.6]	167/189	60/63
	2003	tr(2.7)	tr(2.2)	160	nd	3 [1.0]	138/186	53/62
	2004	tr(2.8)	tr(2.3)	170	nd	3 [0.9]	134/189	53/63
	2005	3.1	2.8	200	nd	2.5 [0.8]	120/189	48/63
G 1' (2006	5.2	3.9	230	nd	1.9 [0.6]	190/192	64/64
Sediment	2007	tr(1.8)	tr(1.5)	110	nd	3.0 [0.7]	143/192	57/64
(pg/g-dry)	2008	tr(1)	nd	85	nd	4 [1]	59/192	27/64
	2009	1.6	1.3	65	nd	1.1 [0.4]	144/192	59/64
	2010	1.2	tr(0.8)	35	nd	1.1 [0.4]	51/64	51/64
	2011	tr(1.3)	tr(1.2)	48	nd	1.8 [0.7]	40/64	40/64
	2014	tr(1.0)	tr(0.9)	49	nd	1.5 [0.5]	38/63	38/63

cis-Heptachlor	Monitored	Geometric				Quantification	Detection 1	Frequency
epoxide	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	4	3	160	nd	3 [1]	153/186	55/62
	2004	tr(5)	tr(3)	230	nd	6 [2]	136/189	52/63
	2005	tr(4)	tr(3)	140	nd	7 [2]	119/189	49/63
	2006	4 .0	3.2	210	nd	3.0 [1.0]	157/192	58/64
Sediment	2007	3	tr(2)	270	nd	3 [1]	141/192	53/64
(pg/g-dry)	2008	3	2	180	nd	2 [1]	130/192	51/64
400 0	2009	2.7	1.9	290	nd	0.7 [0.3]	176/192	63/64
	2010	3.1	2.4	300	nd	0.8 0.3	62/64	62/64
	2011	2.8	2.5	160	nd	0.6 [0.2]	63/64	63/64
	2014	2.1	1.7	310	nd	0.5 [0.2]	59/63	59/63
· TT · 11	M 4 1	с ·				Quantification	Detection	Frequenc
trans-Heptachlor	Monitored	Geometric	Median	Maximum	Minimum	[Detection]	G 1	с.,
epoxide	year	mean*				limit	Sample	Site
	2003	nd	nd	nd	nd	9 [3]	0/186	0/62
	2004	nd	nd	tr(2.5)	nd	4 [2]	1/189	1/63
	2005	nd	nd	nd	nd	5 [2]	0/189	0/63
	2006	nd	nd	19	nd	7 [2]	2/192	2/64
Sediment	2007	nd	nd	31	nd	10 [4]	2/192	2/64
(pg/g-dry)	2008	nd	nd	nd	nd	1.7 [0.7]	0/192	0/64
	2009	nd	nd	nd	nd	1.4 [0.6]	0/192	0/64
	2010	nd	nd	4	nd	3 [1]	1/64	1/64
	2011	nd	nd	2.4	nd	2.3 [0.9]	2/64	2/64
	2014	nd	nd	3.6	nd	0.7 0.3	1/63	1/63

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002~2009. (Note 2) No monitoring was conducted in FY2012 and FY2013.

[9] Toxaphenes

· History and state of monitoring

Toxaphenes are a group of organochlorine insecticides used on cotton, cereal grains, fruits, nuts, and vegetables and also it has also been used to control ticks and mites in livestock. No domestic record of manufacture/import of the substances was reported since those were historically never registrated under the Agricultural Chemicals Regulation Law. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 2002. Also Toxaphenes are one of the original twelve POPs covered by the Stockholm Convention.

In previous monitoring series before FY2001, total amount of Toxaphenes was measured in FY1983 (in surface water and sediment) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Parlar-26, Parlar-50 and Parlar-62 have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2003 to FY2009 and in wildlife (bivalves, fish and birds) in FY2015.

· Monitoring results

<Wildlife>

Parlar-26: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 9pg/g-wet, and none of the detected concentrations exceeded tr(17)pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 13 of the 19 valid areas adopting the detection limit of 9pg/g-wet, and none of the detected concentrations exceeded 400pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 9pg/g-wet, and none of the detected in the area adopting the detection limit of 9pg/g-wet, and the detected in the area adopting the detection limit of 9pg/g-wet.

Parlar-50: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 10pg/g-wet, and none of the detected concentrations exceeded tr(16)pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 13 of the 19 valid areas adopting the detection limit of 10pg/g-wet, and none of the detected concentrations exceeded 640pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and not detected in the area adopting the detection limit of 10pg/g-wet.

Parlar-62: The presence of the substance in bivalves was monitored in 3 areas, and it was not detected at all 3 valid areas adopting the detection limit of 60pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 2 of the 19 valid areas adopting the detection limit of 60pg/g-wet, and none of the detected concentrations exceeded 320pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and not detected in the area adopting the detection limit of 60pg/g-wet.

Deviler 26	Monitored	Geometric	M- 1'	Mani	Mini	Quantification	Detection	Frequenc
Parlar-26	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	tr(39)	nd	45 [15]	11/30	3/6
	2004	nd	nd	tr(32)	nd	42 [14]	15/31	3/7
	2005	nd	nd	tr(28)	nd	47 [16]	7/31	4/7
Bivalves	2006	tr(9)	tr(12)	25	nd	18 [7]	21/31	5/7
(pg/g-wet)	2007	tr(7)	tr(8)	20	nd	10 [4]	26/31	6/7
400 /	2008	tr(7)	tr(8)	22	nd	9 [3]	27/31	7/7
	2009	9	9	23	nd	7 [3]	27/31	7/7
	2015	tr(10)	tr(15)	tr(17)	nd	23 [9]	2/3	2/3
	2003	tr(28)	tr(24)	810	nd	45 [15]	44/70	11/14
	2004	43	tr(41)	1,000	nd	42 [14]	54/70	13/14
	2005	tr(42)	53	900	nd	47 [16]	50/75	13/16
Fish	2006	41	44	880	nd	18[7]	70/80	15/16
(pg/g-wet)	2007	24	32	690	nd	10 [4]	64/80	14/16
466	2008	35	33	730	nd	9 [3]	79/85	17/17
	2009	25	20	690	nd	7 [3]	82/90	18/18
	2015	26	28	400	nd	23 [9]	13/19	13/19
	2003	120	650	2,500	nd	45 [15]	5/10	1/2
	2004	70	340	810	nd	42 [14]	5/10	1/2
	2005	86	380	1,200	nd	47 [16]	5/10	1/2
Birds	2006	48	290	750	nd	18 [7]	5/10	1/2
(pg/g-wet)	2007	34	280	650	nd	10 [4]	5/10	1/2
(188)	2008	38	320	1,200	nd	9 [3]	6/10	2/2
	2009	26	200	500	nd	7 [3]	6/10	2/2
	2015**			tr(10)	tr(10)	23 [9]	1/1	1/1
	2010			u(10)	u(10)	Quantification	Detection	
						Quantification		
Parlar-50	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
Parlar-50	year	mean*		Maximum		[Detection] limit		-
Parlar-50	year 2003	mean* tr(12)	Median tr(12) nd	58	nd	[Detection] limit 33 [11]	Sample 17/30	Site 4/6
Parlar-50	year 2003 2004	mean* tr(12) tr(15)	tr(12) nd	58 tr(45)	nd nd	[Detection] limit 33 [11] 46 [15]	Sample 17/30 15/31	Site 4/6 3/7
	year 2003 2004 2005	mean* tr(12) tr(15) nd	tr(12) nd nd	58 tr(45) tr(38)	nd nd nd	[Detection] limit 33 [11] 46 [15] 54 [18]	Sample 17/30 15/31 9/31	Site 4/6 3/7 4/7
Bivalves	year 2003 2004 2005 2006	mean* tr(12) tr(15)	tr(12) nd nd 14	58 tr(45) tr(38) 32	nd nd nd nd	[Detection] limit 33 [11] 46 [15] 54 [18] 14 [5]	Sample 17/30 15/31 9/31 24/31	Site 4/6 3/7 4/7 6/7
	year 2003 2004 2005 2006 2007	mean* tr(12) tr(15) nd tr(10) 9	tr(12) nd nd 14 10	58 tr(45) tr(38) 32 37	nd nd nd nd	[Detection] limit 33 [11] 46 [15] 54 [18] 14 [5] 9 [3]	Sample 17/30 15/31 9/31 24/31 27/31	Site 4/6 3/7 4/7 6/7 7/7
Bivalves	year 2003 2004 2005 2006 2007 2008	mean* tr(12) tr(15) nd tr(10) 9 tr(7)	tr(12) nd nd 14 10 tr(6)	58 tr(45) tr(38) 32 37 23	nd nd nd nd nd	[Detection] limit 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4]	Sample 17/30 15/31 9/31 24/31 27/31 23/31	Site 4/6 3/7 4/7 6/7 7/7 6/7
Bivalves	year 2003 2004 2005 2006 2007 2008 2009	mean* tr(12) tr(15) nd tr(10) 9 tr(7) 9	tr(12) nd nd 14 10 tr(6) 9	58 tr(45) tr(38) 32 37 23 31	nd nd nd nd nd nd	[Detection] limit 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4] 8 [3]	Sample 17/30 15/31 9/31 24/31 27/31 23/31 27/31	Site 4/6 3/7 4/7 6/7 7/7 6/7 7/7
Bivalves	year 2003 2004 2005 2006 2007 2008 2009 2015	mean* tr(12) tr(15) nd tr(10) 9 tr(7) 9 tr(11)	tr(12) nd nd 14 10 tr(6) 9 tr(15)	58 tr(45) tr(38) 32 37 23 31 tr(16)	nd nd nd nd nd nd nd	[Detection] limit 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4] 8 [3] 30 [10]	Sample 17/30 15/31 9/31 24/31 27/31 23/31 27/31 2/3	Site 4/6 3/7 4/7 6/7 7/7 6/7 7/7 2/3
Bivalves	year 2003 2004 2005 2006 2007 2008 2009 2015 2003	mean* tr(12) tr(15) nd tr(10) 9 tr(7) 9 tr(7) 9 tr(11) 35	tr(12) nd nd 14 10 tr(6) 9 tr(15) 34	58 tr(45) tr(38) 32 37 23 31 tr(16) 1,100	nd nd nd nd nd nd nd nd nd	[Detection] limit 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4] 8 [3] 30 [10] 33 [11]	Sample 17/30 15/31 9/31 24/31 27/31 23/31 2/3 55/70	Site 4/6 3/7 4/7 6/7 7/7 6/7 7/7 2/3 14/14
Bivalves	year 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004	mean* tr(12) tr(15) nd tr(10) 9 tr(7) 9 tr(7) 9 tr(11) 35 60	tr(12) nd nd 14 10 tr(6) 9 tr(15) 34 61	58 tr(45) tr(38) 32 37 23 31 tr(16) 1,100 1,300	nd nd nd nd nd nd nd nd nd nd	[Detection] limit 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4] 8 [3] 30 [10] 33 [11] 46 [15]	Sample 17/30 15/31 9/31 24/31 27/31 2/31 2/3 55/70 59/70	Site 4/6 3/7 4/7 6/7 7/7 6/7 7/7 2/3 14/14 14/14
Bivalves (pg/g-wet)	year 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004 2005	mean* tr(12) tr(15) nd tr(10) 9 tr(7) 9 tr(7) 9 tr(11) 35 60 tr(52)	tr(12) nd nd 14 10 tr(6) 9 tr(15) 34 61 66	58 tr(45) tr(38) 32 37 23 31 tr(16) 1,100 1,300 1,400	nd nd nd nd nd nd nd nd nd nd	[Detection] limit 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4] 8 [3] 30 [10] 33 [11] 46 [15] 54 [18]	Sample 17/30 15/31 9/31 24/31 27/31 2/31 2/3 55/70 59/70 55/80	Site 4/6 3/7 4/7 6/7 7/7 2/3 14/14 14/14 13/16
Bivalves (pg/g-wet) Fish	year 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004 2005 2006	mean* tr(12) tr(15) nd tr(10) 9 tr(7) 9 tr(11) 35 60 tr(52) 56	tr(12) nd nd 14 10 tr(6) 9 tr(15) 34 61 66 52	58 tr(45) tr(38) 32 37 23 31 tr(16) 1,100 1,300 1,400 1,300	nd nd nd nd nd nd nd nd nd nd nd	[Detection] limit 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4] 8 [3] 30 [10] 33 [11] 46 [15] 54 [18] 14 [5]	Sample 17/30 15/31 9/31 24/31 27/31 2/3 55/70 59/70 55/80 79/80	Site 4/6 3/7 4/7 6/7 7/7 2/3 14/14 13/16 16/16
Bivalves (pg/g-wet)	year 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004 2005 2006 2007	mean* tr(12) tr(15) nd tr(10) 9 tr(7) 9 tr(7) 9 tr(11) 35 60 tr(52) 56 35	tr(12) nd nd 14 10 tr(6) 9 tr(15) 34 61 66 52 41	58 tr(45) tr(38) 32 37 23 31 tr(16) 1,100 1,300 1,400 1,300 1,100	nd nd nd nd nd nd nd nd nd nd nd nd	[Detection] limit 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4] 8 [3] 30 [10] 33 [11] 46 [15] 54 [18] 14 [5] 9 [3]	Sample 17/30 15/31 9/31 24/31 27/31 2/31 2/3 55/70 59/70 55/80 79/80 77/80	Site 4/6 3/7 4/7 6/7 7/7 6/7 7/7 2/3 14/14 13/16 16/16 16/16
Bivalves (pg/g-wet) Fish	year 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004 2005 2006 2007 2006 2007 2008	mean* tr(12) tr(15) nd tr(10) 9 tr(7) 9 tr(7) 9 tr(11) 35 60 tr(52) 56 35 44	tr(12) nd nd 14 10 tr(6) 9 tr(15) 34 61 66 52 41 45	58 tr(45) tr(38) 32 37 23 31 tr(16) 1,100 1,300 1,400 1,300 1,100 1,000	nd nd nd nd nd nd nd nd nd nd nd nd nd n	[Detection] limit 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4] 8 [3] 30 [10] 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4]	Sample 17/30 15/31 9/31 24/31 27/31 23/31 27/31 2/3 55/70 59/70 55/80 79/80 77/80 77/85	Site 4/6 3/7 4/7 6/7 7/7 2/3 14/14 13/16 16/16 16/16 16/16
Bivalves (pg/g-wet) Fish	year 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004 2005 2006 2007 2008 2007 2008 2007	mean* tr(12) tr(15) nd tr(10) 9 tr(7) 9 tr(7) 9 tr(11) 35 60 tr(52) 56 35 44 30	tr(12) nd nd 14 10 tr(6) 9 tr(15) 34 61 66 52 41 45 23	58 tr(45) tr(38) 32 37 23 31 tr(16) 1,100 1,300 1,400 1,300 1,100 1,000 910	nd nd nd nd nd nd nd nd nd nd nd nd nd n	[Detection] limit 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4] 8 [3] 30 [10] 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4] 8 [3]	Sample 17/30 15/31 9/31 24/31 27/31 23/31 27/31 2/3 55/70 59/70 55/80 79/80 77/85 85/90	Site 4/6 3/7 4/7 6/7 7/7 2/3 14/14 13/16 16/16 16/16 16/16 17/17 18/18
Bivalves (pg/g-wet) Fish	year 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004 2005 2006 2007 2008 2007 2008 2007 2008 2009 2015	mean* tr(12) tr(15) nd tr(10) 9 tr(7) 9 tr(11) 35 60 tr(52) 56 35 44 30 tr(25)	$\begin{array}{c} {\rm tr}(12) \\ {\rm nd} \\ {\rm nd} \\ 14 \\ 10 \\ {\rm tr}(6) \\ 9 \\ {\rm tr}(15) \\ 34 \\ 61 \\ 66 \\ 52 \\ 41 \\ 45 \\ 23 \\ {\rm tr}(13) \end{array}$	58 tr(45) tr(38) 32 37 23 31 tr(16) 1,100 1,300 1,400 1,300 1,100 1,000 910 640	nd nd nd nd nd nd nd nd nd nd nd nd nd n	[Detection] limit 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4] 8 [3] 30 [10] 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4] 8 [3] 30 [10]	Sample 17/30 15/31 9/31 24/31 27/31 23/31 27/31 2/3 55/70 59/70 55/80 79/80 77/85 85/90 13/19	Site 4/6 3/7 4/7 6/7 7/7 2/3 14/14 13/16 16/16 16/16 16/16 17/17 18/18 13/19
Bivalves (pg/g-wet) Fish	year 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004 2005 2006 2007 2008 2007 2008 2007 2008 2009 2015 2006 2007 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004 2005 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2008 2009 2015 2006 2007 2008 2009 2015 2008 2009 2015 2006 2007 2008 2009 2015 2003 2004 2005 2006 2007 2008 2009 2015 2006 2007 2008 2005 2006 2007 2008 2005 2006 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2009 2015 2008 2007 2008 2009 2015 2008 2009 2015 2008 2009 2009 2009 2005 2008 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2015 2003	mean* tr(12) tr(15) nd tr(10) 9 tr(7) 9 tr(11) 35 60 tr(52) 56 35 44 30 tr(25) 110	$\begin{array}{c} tr(12) \\ nd \\ nd \\ 14 \\ 10 \\ tr(6) \\ 9 \\ tr(15) \\ 34 \\ 61 \\ 66 \\ 52 \\ 41 \\ 45 \\ 23 \\ tr(13) \\ 850 \\ \end{array}$	58 tr(45) tr(38) 32 37 23 31 tr(16) 1,100 1,300 1,400 1,300 1,100 1,000 910 640 3,000	nd nd nd nd nd nd nd nd nd nd nd nd nd n	[Detection] limit 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4] 8 [3] 30 [10] 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4] 8 [3] 30 [10] 33 [11]	Sample 17/30 15/31 9/31 24/31 27/31 23/31 2/3 55/70 59/70 55/80 79/80 77/85 85/90 13/19 5/10	Site 4/6 3/7 4/7 6/7 7/7 6/7 7/7 2/3 14/14 13/16 16/16 16/16 16/16 17/17 18/18 13/19 1/2
Bivalves (pg/g-wet) Fish	year 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004 2005 2006 2007 2008 2007 2008 2009 2015 2008 2009 2015 2006 2007 2003 2004	mean* tr(12) tr(15) nd tr(10) 9 tr(7) 9 tr(11) 35 60 tr(52) 56 35 44 30 tr(25) 110 83	$\begin{array}{c} tr(12) \\ nd \\ nd \\ 14 \\ 10 \\ tr(6) \\ 9 \\ tr(15) \\ 34 \\ 61 \\ 66 \\ 52 \\ 41 \\ 45 \\ 23 \\ tr(13) \\ 850 \\ 440 \\ \end{array}$	58 tr(45) tr(38) 32 37 23 31 tr(16) 1,100 1,300 1,400 1,300 1,100 1,000 910 640 3,000 1,000	nd nd nd nd nd nd nd nd nd nd nd nd nd n	[Detection] limit 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4] 8 [3] 30 [10] 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4] 8 [3] 30 [10] 33 [11] 46 [15]	Sample 17/30 15/31 9/31 24/31 27/31 2/3 55/70 59/70 55/80 79/80 77/85 85/90 13/19 5/10 5/10	Site 4/6 3/7 4/7 6/7 7/7 6/7 7/7 2/3 14/14 13/16 16/16 16/16 16/16 17/17 18/18 13/19 1/2 1/2
Bivalves (pg/g-wet) Fish (pg/g-wet)	year 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004 2005 2006 2007 2008 2007 2008 2009 2015 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2008 2009 2015 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2009 2015 2008 2009 2015 2008 2009 2015 2008 2009 2015 2008 2009 2015 2008 2009 2015 2003 2009 2015 2003 2009 2015 2003 2009 2015 2003 2003 2005 2003 2003 2005 2003 2003 2003 2003 2004 2003 2004 2005 2003 2004 2005 2003 2004 2005 2003 2004 2005 2003 2004 2005 2005 2005 2003 2005	mean* tr(12) tr(15) nd tr(10) 9 tr(7) 9 tr(7) 9 tr(11) 35 60 tr(52) 56 35 44 30 tr(25) 110 83 100	$\begin{array}{c} tr(12) \\ nd \\ nd \\ 14 \\ 10 \\ tr(6) \\ 9 \\ tr(15) \\ \hline 34 \\ 61 \\ 66 \\ 52 \\ 41 \\ 45 \\ 23 \\ tr(13) \\ \hline 850 \\ 440 \\ 480 \\ \hline \end{array}$	58 tr(45) tr(38) 32 37 23 31 tr(16) 1,100 1,300 1,400 1,300 1,100 1,000 1,000 1,000 1,000 1,500	nd nd nd nd nd nd nd nd nd nd nd nd nd n	[Detection] limit 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4] 8 [3] 30 [10] 33 [11] 46 [15] 54 [18] 10 [4] 8 [3] 30 [10] 33 [11] 46 [15] 54 [18] 30 [10] 33 [11] 46 [15] 54 [18]	Sample 17/30 15/31 9/31 24/31 27/31 2/3 55/70 59/70 55/80 79/80 77/85 85/90 13/19 5/10 5/10 5/10	Site 4/6 3/7 4/7 6/7 7/7 2/3 14/14 14/14 13/16 16/16 16/16 16/16 17/17 18/18 13/19 1/2 1/2 1/2
Bivalves (pg/g-wet) Fish (pg/g-wet) Birds	year 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004 2005 2006 2007 2008 2009 2015 2008 2009 2015 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2003 2004 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2009 2015 2008 2007 2008 2009 2015 2008 2009 2015 2008 2009 2015 2008 2009 2015 2008 2009 2015 2003 2009 2015 2003 2009 2015 2003 2009 2015 2003 2004 2005 2003 2004 2005 2003 2004 2005 2004 2005 2004 2005 2004 2005 2004 2005 2006 2005 2006 2004 2005 2006 2006 2007 2006 2006 2007 2008 2004 2005 2006 2006 2006 2006 2007 2003 2004 2005 2006	$\begin{array}{r} mean^* \\ \hline tr(12) \\ tr(15) \\ nd \\ tr(10) \\ 9 \\ tr(7) \\ 9 \\ tr(7) \\ 9 \\ tr(11) \\ 35 \\ 60 \\ tr(52) \\ 56 \\ 35 \\ 44 \\ 30 \\ tr(25) \\ 110 \\ 83 \\ 100 \\ 46 \\ \end{array}$	$\begin{array}{c} tr(12) \\ nd \\ nd \\ 14 \\ 10 \\ tr(6) \\ 9 \\ tr(15) \\ \hline 34 \\ 61 \\ 66 \\ 52 \\ 41 \\ 45 \\ 23 \\ tr(13) \\ \hline 850 \\ 440 \\ 480 \\ 380 \\ \hline \end{array}$	58 tr(45) tr(38) 32 37 23 31 tr(16) 1,100 1,300 1,400 1,300 1,000 1,000 1,000 1,000 1,500 1,000	nd nd nd nd nd nd nd nd nd nd nd nd nd n	[Detection] limit 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4] 8 [3] 30 [10] 33 [11] 46 [15] 54 [18] 10 [4] 8 [3] 30 [10] 33 [11] 46 [15] 54 [18] 10 [4] 8 [3] 30 [10] 33 [11] 46 [15] 54 [18] 14 [5]	Sample 17/30 15/31 9/31 24/31 27/31 2/3 55/70 59/70 55/80 79/80 77/85 85/90 13/19 5/10 5/10 5/10 5/10	Site 4/6 3/7 4/7 6/7 7/7 2/3 14/14 14/14 13/16 16/16 16/16 16/16 17/17 18/18 13/19 1/2 1/2 1/2 1/2
Bivalves (pg/g-wet) Fish (pg/g-wet)	year 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004 2005 2006 2007 2008 2009 2015 2008 2009 2015 2008 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004 2005 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2008 2009 2015 2006 2007 2008 2009 2015 2008 2009 2015 2006 2007 2008 2009 2015 2003 2004 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2009 2015 2008 2007 2008 2009 2015 2008 2007 2008 2009 2015 2008 2009 2015 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004 2005 2006 2007 2003 2004 2005 2006 2007 2006 2007 2003 2004 2005 2006 2007 2007	$\begin{array}{r} mean^* \\ \hline tr(12) \\ tr(15) \\ nd \\ tr(10) \\ 9 \\ tr(7) \\ 9 \\ tr(7) \\ 9 \\ tr(7) \\ 56 \\ 35 \\ 60 \\ tr(52) \\ 56 \\ 35 \\ 44 \\ 30 \\ tr(25) \\ 110 \\ 83 \\ 100 \\ 46 \\ 34 \\ \end{array}$	$\begin{array}{c} {\rm tr}(12) \\ {\rm nd} \\ {\rm nd} \\ 14 \\ 10 \\ {\rm tr}(6) \\ 9 \\ {\rm tr}(15) \\ \hline 34 \\ 61 \\ 66 \\ 52 \\ 41 \\ 45 \\ 23 \\ {\rm tr}(13) \\ \hline 850 \\ 440 \\ 480 \\ 380 \\ 360 \\ \hline \end{array}$	58 tr(45) tr(38) 32 37 23 31 tr(16) 1,100 1,300 1,400 1,300 1,000 1,000 910 640 3,000 1,000 1,500 1,000 930	nd nd nd nd nd nd nd nd nd nd nd nd nd n	[Detection] limit 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4] 8 [3] 30 [10] 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4] 8 [3] 30 [10] 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 9 [3]	Sample 17/30 15/31 9/31 24/31 27/31 2/3 55/70 59/70 55/80 79/80 77/85 85/90 13/19 5/10 5/10 5/10 5/10 5/10	Site 4/6 3/7 4/7 6/7 7/7 2/3 14/14 14/14 13/16 16/16 16/16 16/16 17/17 18/18 13/19 1/2 1/2 1/2 1/2 1/2
Bivalves (pg/g-wet) Fish (pg/g-wet) Birds	year 2003 2004 2005 2006 2007 2008 2009 2015 2003 2004 2005 2006 2007 2008 2009 2015 2008 2009 2015 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2006 2007 2008 2009 2015 2003 2004 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2009 2015 2008 2007 2008 2009 2015 2008 2009 2015 2008 2009 2015 2008 2009 2015 2008 2009 2015 2003 2009 2015 2003 2009 2015 2003 2009 2015 2003 2004 2005 2003 2004 2005 2003 2004 2005 2004 2005 2004 2005 2004 2005 2004 2005 2006 2005 2006 2004 2005 2006 2006 2007 2006 2006 2007 2008 2004 2005 2006 2006 2006 2006 2007 2003 2004 2005 2006	$\begin{array}{r} mean^* \\ \hline tr(12) \\ tr(15) \\ nd \\ tr(10) \\ 9 \\ tr(7) \\ 9 \\ tr(7) \\ 9 \\ tr(11) \\ 35 \\ 60 \\ tr(52) \\ 56 \\ 35 \\ 44 \\ 30 \\ tr(25) \\ 110 \\ 83 \\ 100 \\ 46 \\ \end{array}$	$\begin{array}{c} tr(12) \\ nd \\ nd \\ 14 \\ 10 \\ tr(6) \\ 9 \\ tr(15) \\ \hline 34 \\ 61 \\ 66 \\ 52 \\ 41 \\ 45 \\ 23 \\ tr(13) \\ \hline 850 \\ 440 \\ 480 \\ 380 \\ \hline \end{array}$	58 tr(45) tr(38) 32 37 23 31 tr(16) 1,100 1,300 1,400 1,300 1,000 1,000 1,000 1,000 1,500 1,000	nd nd nd nd nd nd nd nd nd nd nd nd nd n	[Detection] limit 33 [11] 46 [15] 54 [18] 14 [5] 9 [3] 10 [4] 8 [3] 30 [10] 33 [11] 46 [15] 54 [18] 10 [4] 8 [3] 30 [10] 33 [11] 46 [15] 54 [18] 10 [4] 8 [3] 30 [10] 33 [11] 46 [15] 54 [18] 14 [5]	Sample 17/30 15/31 9/31 24/31 27/31 2/3 55/70 59/70 55/80 79/80 77/85 85/90 13/19 5/10 5/10 5/10 5/10	Site 4/6 3/7 4/7 6/7 7/7 2/3 14/14 14/14 13/16 16/16 16/16 16/16 17/17 18/18 13/19 1/2 1/2 1/2 1/2

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in wildlife (bivalves, fish and birds) during FY2003~2015

	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-62	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	120 [40]	0/30	0/6
	2004	nd	nd	nd	nd	98 [33]	0/31	0/7
	2005	nd	nd	nd	nd	100 [34]	0/31	0/7
Bivalves	2006	nd	nd	nd	nd	70 [30]	0/31	0/7
(pg/g-wet)	2007	nd	nd	nd	nd	70 [30]	0/31	0/7
	2008	nd	nd	nd	nd	80 [30]	0/31	0/7
	2009	nd	nd	nd	nd	70 [20]	0/31	0/7
	2015	nd	nd	nd	nd	150 [60]	0/3	0/3
	2003	nd	nd	580	nd	120 [40]	9/70	3/14
	2004	nd	nd	870	nd	98 [33]	24/70	7/14
	2005	nd	nd	830	nd	100 [34]	23/80	8/16
Fish	2006	tr(30)	nd	870	nd	70 [30]	28/80	10/16
(pg/g-wet)	2007	tr(30)	nd	530	nd	70 [30]	22/80	7/16
	2008	tr(30)	nd	590	nd	80 [30]	31/85	8/17
	2009	tr(20)	nd	660	nd	70 [20]	24/90	8/18
	2015	nd	nd	320	nd	150 [60]	2/19	2/19
	2003	tr(96)	200	530	nd	120 [40]	5/10	1/2
	2004	tr(64)	110	280	nd	98 [33]	5/10	1/2
	2005	tr(78)	130	460	nd	100 [34]	5/10	1/2
Birds	2006	70	120	430	nd	70 [30]	5/10	1/2
(pg/g-wet)	2007	tr(60)	100	300	nd	70 [30]	5/10	1/2
-	2008	tr(70)	130	360	nd	80 [30]	5/10	1/2
	2009	tr(40)	80	210	nd	70 [20]	5/10	1/2
	2015**			nd	nd	150 [60]	0/1	0/1

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~2009.
 (Note 2) "**" : There is no consistency between the results of the ornithological survey in FY2015 and those in previous

years because of the changes in the survey sites and target species. (Note 3) No monitoring was conducted during FY2010~2014.

• Monitoring results until 2009 (reference)

<Surface Water>

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in surface water during FY2003~2009

	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-26	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	40 [20]	0/36	0/36
	2004	nd	nd	nd	nd	9 [3]	0/38	0/38
Courfe of Weder	2005	nd	nd	nd	nd	10 [4]	0/47	0/47
Surface Water	2006	nd	nd	nd	nd	16 [5]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	20 [5]	0/48	0/48
	2008	nd	nd	nd	nd	8 [3]	0/48	0/48
	2009	nd	nd	nd	nd	5 [2]	0/49	0/49
Parlar-50	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
	2003	nd	nd	nd	nd	70 [30]	0/36	0/36
	2004	nd	nd	nd	nd	20 [7]	0/38	0/38
	2005	nd	nd	nd	nd	20 [5]	0/47	0/47
Surface Water	2006	nd	nd	nd	nd	16 [5]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	9 [3]	0/48	0/48
	2008	nd	nd	nd	nd	7 [3]	0/48	0/48
	2009	nd	nd	nd	nd	7 [3]	0/49	0/49

	Monitored	Geometric			NC .	Quantification	Detection I	Frequency
Parlar-62	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	300 [90]	0/36	0/36
	2004	nd	nd	nd	nd	90 [30]	0/38	0/38
	2005	nd	nd	nd	nd	70[30]	0/47	0/47
Surface Water	2006	nd	nd	nd	nd	60 [20]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	70 [30]	0/48	0/48
	2008	nd	nd	nd	nd	40 [20]	0/48	0/48
	2009	nd	nd	nd	nd	40 [20]	0/49	0/49

<Sediment>

Stocktaking of the detection of Parlar-26.	Parlar-50 and Parlar-62 in	n sediment during FY2003~2009

~	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-26	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	90 [30]	0/186	0/62
	2004	nd	nd	nd	nd	60 [20]	0/189	0/63
Sediment	2005	nd	nd	nd	nd	60 [30]	0/189	0/63
(pg/g-dry)	2006	nd	nd	nd	nd	12 [4]	0/192	0/64
(pg/g-ury)	2007	nd	nd	nd	nd	7 [3]	0/192	0/64
	2008	nd	nd	nd	nd	12 [5]	0/192	0/64
	2009	nd	nd	nd	nd	10 [4]	0/192	0/64
	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-50	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	200 [50]	0/186	0/62
	2004	nd	nd	nd	nd	60 [20]	0/189	0/63
Sediment	2005	nd	nd	nd	nd	90 [40]	0/189	0/63
	2006	nd	nd	nd	nd	24 [7]	0/192	0/64
(pg/g-dry)	2007	nd	nd	nd	nd	30 [10]	0/192	0/64
	2008	nd	nd	nd	nd	17 [6]	0/192	0/64
	2009	nd	nd	nd	nd	12 [5]	0/192	0/64
	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-62	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	4,000 [2,000]	0/186	0/62
	2004	nd	nd	nd	nd	2,000 [400]	0/189	0/63
Sediment	2005	nd	nd	nd	nd	2,000 [700]	0/189	0/63
	2006	nd	nd	nd	nd	210 [60]	0/192	0/64
(pg/g-dry)	2007	nd	nd	nd	nd	300 [70]	0/192	0/64
	2008	nd	nd	nd	nd	90 [40]	0/192	0/64
	2009	nd	nd	nd	nd	80 [30]	0/192	0/64

(Note) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~2009.

Parlar-26	Monitored veer	Geometric	Madian	Maximum	Minimum	Quantification [Detection]	Detection 1	Frequenc
r ariar-20	Monitored year	mean	Median			limit	Sample	Site
	2003Warm season	0.31	0.31	0.77	tr(0.17)	0.20 [0.066]	35/35	35/35
	2003Cold season	tr(0.17)	tr(0.17)	0.27	tr(0.091)	0.20 [0.000]	34/34	34/34
	2004Warm season	0.27	0.26	0.46	tr(0.17)	0.20 [0.066]	37/37	37/37
	2004Cold season	tr(0.15)	tr(0.15)	0.50	tr(0.094)	0.20 [0.000]	37/37	37/37
	2005Warm season	nd	nd	nd	nd	0.3 [0.1]	0/37	0/37
	2005Cold season	nd	nd	nd	nd		0/37	0/37
Air	2006Warm season	nd	nd	nd	nd	1.8 [0.6]	0/37	0/37
(pg/m^3)	2006Cold season	nd	nd	nd	nd		0/37	0/37
	2007Warm season	nd	nd	tr(0.3)	nd	0.6 [0.2]	18/36	18/36
	2007Cold season	nd	nd	nd	nd		0/36	0/36
	2008Warm season	tr(0.21)	0.22	0.58	tr(0.12)	0.22 [0.08]	37/37	37/37
	2008Cold season	tr(0.11)	tr(0.12)	tr(0.20)	nd		36/37	36/37
	2009Warm season	tr(0.18)	tr(0.19)	0.26	tr(0.11)	0.23 [0.09]	37/37	37/37
	2009Cold season	tr(0.12)	tr(0.13)	0.27	nd		33/37	33/37
D 1 50		Geometric		NG	NC 1	Quantification	Detection 1	Frequen
Parlar-50	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003Warm season	nd	nd	tr(0.37)	nd	0.81 [0.27]	2/35	2/35
	2003Cold season	nd	nd	nd	nd		0/34	0/34
	2004Warm season	nd	nd	nd	nd	1.2 [0.4]	0/37	0/37
	2004Cold season	nd	nd	nd	nd		0/37	0/37
	2005Warm season	nd	nd	nd	nd	0.6 [0.2]	0/37	0/37
	2005Cold season	nd	nd	nd	nd		0/37	0/37
Air	2006Warm season	nd	nd	nd	nd	1.6 [0.5]	0/37	0/37
(pg/m^3)	2006Cold season	nd	nd	nd	nd		0/37	0/37
	2007Warm season	nd	tr(0.1)	tr(0.2)	nd	0.3 [0.1]	29/36	29/36
	2007Cold season	nd	nd	nd	nd		0/36	0/36
	2008Warm season	nd	nd	tr(0.19)	nd	0.25 [0.09]	15/37	15/37
	2008Cold season	nd	nd	nd	nd		0/37	0/37
	2009Warm season	nd	nd	tr(0.1)	nd	0.3 [0.1]	11/37	11/37
	2009Cold season	nd	nd	tr(0.1)	nd		1/37	1/37
Parlar-62	Monitored year	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection I	-
		mean				limit	Sample	Site
	2003Warm season	nd	nd	nd	nd	1.6 [0.52]	0/35	0/35
	2003Cold season	nd	nd	nd	nd	1.0 [0.32]	0/34	0/34
	2004Warm season	nd	nd	nd	nd	2.4 [0.81]	0/37	0/37
	2004Cold season	nd	nd	nd	nd	2.4 [0.01]	0/37	0/37
	2005Warm season	nd	nd	nd	nd	1.2 [0.4]	0/37	0/37
	2005Cold season	nd	nd	nd	nd	1.2 [0.4]	0/37	0/37
Air	2006Warm season	nd	nd	nd	nd	8 [3]	0/37	0/37
(pg/m^3)	2006Cold season	nd	nd	nd	nd		0/37	0/37
	2007Warm season	nd	nd	nd	nd	1.5 [0.6]	0/36	0/36
	2007Cold season	nd	nd	nd	nd	1.5 [0.0]	0/36	0/36
	2008Warm season	nd	nd	nd	nd	1.6 [0.6]	0/37	0/37
	2008Cold season	nd	nd	nd	nd	1.0 [0.0]	0/37	0/37
	2009Warm season	nd	nd	nd	nd	1.6 [0.6]	0/37	0/37
	2009Cold season	nd	nd	nd	nd	1.0 [0.0]	0/37	0/37

<Air> Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in air during FY2003~2009

[10] Mirex (reference)

· History and state of monitoring

Mirex was developed as an organochlorine insecticide chemical in the United States, and it was also used as a fire retardant in plastics, rubber, and electrical goods. No domestic record of manufacture/import of the substance was reported since it was historically never registrated under the Agricultural Chemicals Regulation Law. The substance was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 2002. Also the substance is one of the original twelve POPs covered by the Stockholm Convention.

Before FY2001, the substance was measured in FY1983 (in surface water and sediment) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Mirex has been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2003~2009 and FY2011.

No monitoring was conducted in FY2012~FY2014. For reference, the monitoring results up to FY2011 are given below.

Monitoring results until FY2011

<Surface Water>

Stocktaking of the detection of Mirex in surface water during FY2003~2011

	Monitored	Geometric				Quantification	Detection	Frequency
Mirex	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	tr(0.13)	tr(0.12)	0.8	nd	0.3 [0.09]	25/36	25/36
	2004	nd	nd	1.1	nd	0.4 [0.2]	18/38	18/38
	2005	nd	nd	1.0	nd	0.4 [0.1]	14/47	14/47
Surface Water	2006	nd	nd	0.07	nd	1.6 [0.5]	1/48	1/48
(pg/L)	2007	nd	nd	tr(0.5)	nd	1.1 [0.4]	2/48	2/48
	2008	nd	nd	0.7	nd	0.6 [0.2]	4/48	4/48
	2009	nd	nd	0.5	nd	0.4 [0.2]	8/49	8/49
	2011	nd	nd	0.8	nd	0.5 [0.2]	3/49	3/49

(Note) No monitoring was conducted during FY2010.

<Sediment>

Stocktaking of the detection of Mirex in sediment during FY2003~2011

	Monitored	ed Geometric		M ·		Quantification	Detection	Frequency
Mirex	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	2	tr(1.6)	1,500	nd	2 [0.4]	137/186	51/62
	2004	2	tr(1.6)	220	nd	2 [0.5]	153/189	55/63
	2005	1.8	1.2	5,300	nd	0.9 [0.3]	134/189	48/63
Sediment	2006	1.7	1.2	640	nd	0.6 [0.2]	156/192	57/64
(pg/g-dry)	2007	1.5	0.9	200	nd	0.9 [0.3]	147/192	55/64
	2008	1.4	1.1	820	nd	0.7 [0.3]	117/192	48/64
	2009	1.4	1.3	620	nd	1.0 [0.4]	126/192	49/64
	2011	1.2	0.9	1,900	nd	0.9 [0.4]	42/64	42/64

(Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~2009.

(Note 2) No monitoring was conducted in FY2010.

Stocktaking of the	detection of	where in whe	unie (bivai	ves, fish and	birds) durir	*		
Mirex	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Site
	2003	4.9	4.2	19	tr(1.6)	2.4 [0.81]	30/30	6/6
	2004	4.4	4.3	12	tr(1.1)	2.5 [0.82]	31/31	7/7
	2005	5.4	5.2	20	tr(1.9)	3.0 [0.99]	31/31	7/7
Bivalves	2006	5	4	19	tr(2)	3 [1]	31/31	7/7
(pg/g-wet)	2007	5	4	18	tr(2)	3 [1]	31/31	7/7
	2008	4	tr(3)	18	tr(2)	4 [1]	31/31	7/7
	2009	5.9	5.2	21	tr(1.7)	2.1 [0.8]	31/31	7/7
	2011	10	7.1	44	5.2	1.9 [0.8]	4/4	4/4
	2003	8.3	9.0	25	tr(1.7)	2.4 [0.81]	70/70	14/14
	2004	13	11	180	3.8	2.5 [0.82]	70/70	14/14
	2005	13	13	78	tr(1.0)	3.0 [0.99]	80/80	16/16
Fish	2006	11	10	53	tr(2)	3 [1]	80/80	16/16
(pg/g-wet)	2007	9	11	36	tr(1)	3 [1]	80/80	16/16
	2008	11	13	48	tr(1)	4 [1]	85/85	17/17
	2009	8.6	9.6	37	tr(0.9)	2.1 [0.8]	90/90	18/18
	2011	12	15	41	tr(1.3)	1.9 [0.8]	18/18	18/18
	2003	120	150	450	31	2.4 [0.81]	10/10	2/2
	2004	61	64	110	33	2.5 [0.82]	10/10	2/2
	2005	77	66	180	41	3.0 [0.99]	10/10	2/2
Birds	2006	77	70	280	39	3 [1]	10/10	2/2
(pg/g-wet)	2007	57	59	100	32	3 [1]	10/10	2/2
	2008	74	68	260	27	4 [1]	10/10	2/2
	2009	49	50	79	32	2.1 [0.8]	10/10	2/2
	2011			58	58	1.9 [0.8]	1/1	1/1

<Wildlife>

Stocktaking of the detection of Mirex in wildlife (bivalves, fish and birds) during FY2003~2011

 2011
 -- -- -- -- -- -- -- 1/1
 1/1
 1/1

 (Note 1) "* ":Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~2009.
 (Note 2) No monitoring was conducted in FY2010.
 --- --- --- --- --- --- --- --- --- --- ---- ---- ---- ---- ---- ---- ----- ----- ----- ------ --------- ------------ -----

<Air>

Stocktaking of the detection of Mirex in air during FY2003~2011

		Geometric				Quantification	Detection Frequency	
Mirex	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003Warm season	0.11	0.12	0.19	0.047	0.0084	35/35	35/35
	2003Cold season	0.044	0.043	0.099	0.024	[0.0028]	34/34	34/34
	2004Warm season	0.099	0.11	0.16	tr(0.042)	0.05 [0.017]	37/37	37/37
	2004Cold season	tr(0.046)	tr(0.047)	0.23	tr(0.019)	0.03 [0.017]	37/37	37/37
	2005Warm season	tr(0.09)	tr(0.09)	0.24	tr(0.05)	0 10 [0 02]	37/37	37/37
	2005Cold season	tr(0.04)	tr(0.04)	tr(0.08)	nd	0.10 [0.03]	29/37	29/37
	2006Warm season	tr(0.07)	tr(0.10)	0.22	nd	0.13 [0.04]	29/37	29/37
Air	2006Cold season	tr(0.07)	tr(0.07)	2.1	nd		27/37	27/37
(pg/m^3)	2007Warm season	0.11	0.11	0.28	0.04	0.02.00.013	36/36	36/36
	2007Cold season	0.04	0.04	0.09	tr(0.02)	0.03 [0.01]	36/36	36/36
	2008Warm season	0.09	0.09	0.25	0.03	0.02 [0.01]	37/37	37/37
	2008Cold season	0.05	0.04	0.08	0.03	0.03 [0.01]	37/37	37/37
	2009Warm season	0.12	0.13	0.48	0.049	0.015 [0.00/]	37/37	37/37
	2009Cold season	0.058	0.054	0.18	0.030	0.015 [0.006]	37/37	37/37
	2011Warm season	0.14	0.13	0.25	0.08	0.04.0.013	35/35	35/35
	2011Cold season	0.07	0.07	0.11	tr(0.03)	0.04 [0.01]	37/37	37/37

(Note) No monitoring was conducted in FY2010.

[11] HCHs

· History and state of monitoring

HCHs were used as pesticides, household insecticides, and termiticides, etc. Even after their registration under the Agricultural Chemicals Regulation Law was expired in FY1971, they continue to be used as termiticides and wood preservatives. α -HCH, β -HCH, and γ -HCH (synonym:Lindane) were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

Among many HCH isomers, α -HCH, β -HCH, γ -HCH (synonym: Lindane) and δ -HCH have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air.

Before FY2001, the substances were measured in FY1974 (in surface water, sediment and fish) under the framework of "the Environmental Survey and Monitoring of Chemicals." α -HCH and β -HCH had been the target chemicals, and surface water and sediment had been the monitored media during the period of FY1986~1998 and FY1986~2001, respectively. Under the framework of the Wildlife Monitoring, the substances were monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1996 and in FY1998, FY2000 and FY2001 (γ -HCH (synonym: Lindane) and δ -HCH had not been monitored since FY1997 and FY1993, respectively.)

Under the framework of the Environmental Monitoring, α -HCH and β -HCH in surface water, sediment, and wildlife (bivalves, fish and birds) have been monitored since FY2002. α -HCH and β -HCH in air and γ -HCH (synonym: Lindane) and δ -HCH in surface water, sediment, wildlife (bivalves, fish and birds) and air have also been monitored since FY2003.

· Monitoring results

<Surface Water>

 α -HCH: The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.4pg/L, and the detection range was 8.7~610pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2015, reduction tendency in specimens from sea areas was identified as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

 β -HCH: The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.4pg/L, and the detection range was 21~1,100pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2015, reduction tendencies in specimens from lake areas and sea areas were identified as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

 γ -HCH(synonym:Lindane): The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.3pg/L, and the detection range was 2.6~110pg/L.

As results of the inter-annual trend analysis from FY2002 to FY2015, reduction tendencies in specimens from river areas, lake areas, river mouth areas and sea areas were identified as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

 δ -HCH: The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.1pg/L, and the detection range was 0.8~310pg/L.

α-HCH	Monitored	Geometric	Median	Maximum	Minimum	Quantification	Detection	Frequenc
и-пСп	year	mean*		Maximum		[Detection] limit	Sample	Site
	2002	86	76	6,500	1.9	0.9 [0.3]	114/114	38/38
	2003	120	120	970	13	3 [0.9]	36/36	36/36
	2004	150	145	5,700	13	6 [2]	38/38	38/38
	2005	90	81	660	16	4 [1]	47/47	47/47
	2006	110	90	2,100	25	3 [1]	48/48	48/48
	2007	76	73	720	13	1.9 [0.6]	48/48	48/48
Surface Water	2008	78	75	1,100	9	4 [2]	48/48	48/48
(pg/L)	2009	74	73	560	14	1.2 [0.4]	49/49	49/49
	2010	94	75	1,400	14	4 [1]	49/49	49/49
	2011	67	60	1,000	11	7 [3]	49/49	49/49
	2012	65	56	2,200	9.5	1.4 [0.5]	48/48	48/48
	2013	57	55	1,900	9	7 [2]	48/48	48/48
	2014	47	41	700	7.3	4.5 [1.5]	48/48	48/48
	2015	48	40	610	8.7	1.2 [0.4]	48/48	48/48
			10	010	0.7	Quantification	Detection	
β -HCH	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		-
p nen	year	mean*		WithHum	1011111114111	limit	Sample	Site
	2002	210	180	1,600	24	0.9 [0.3]	114/114	38/38
	2003	250	240	1,700	14	3 [0.7]	36/36	36/36
	2004	260	250	3,400	31	4 [2]	38/38	38/38
Surface Water	2005	200	170	2,300	25	2.6 [0.9]	47/47	47/47
	2006	200	160	2,000	42	1.7 0.6	48/48	48/48
	2007	170	150	1,300	18	2.7[0.9]	48/48	48/48
	2008	150	150	1,800	15	1.0 [0.4]	48/48	48/48
(pg/L)	2009	150	150	1,100	18	0.6 [0.2]	49/49	49/49
$(\mathbf{r} \mathcal{B}^{-})$	2010	180	160	2,500	33	2.0 [0.7]	49/49	49/49
	2011	130	120	840	28	2.0 [0.8]	49/49	49/49
	2012	150	130	820	17	1.4 [0.5]	48/48	48/48
	2012	130	130	1,100	20	7 [2]	48/48	48/48
	2013	100	110	1,100	11	1.0 [0.4]	48/48	48/48
	2014	130	110	1,100	21	1.2 [0.4]	48/48	48/48
	2013	150	120	1,100	21	Quantificati	Deteo	
у-НСН	Monitored	Geometric		Maximu		on	Frequ	
(synonym:Lindane)	year	mean*	Median	m	Minimum	[Detection]	Tiequ	ency
(synonym.Lindane)	year	mean		111		limit	Sample	Site
	2003	92	90	370	32	7 [2]	36/36	36/36
	2003	92 91	90 76	8,200	21	20 [7]	38/38	38/38
	2004	48	70 40	8,200 250	tr(8)	20 [7] 14 [5]	47/47	47/47
	2006	44	43	460	tr(9)	18 [6]	48/48	48/48
	2007	34	32	290 240	5.2	2.1 [0.7]	48/48	48/48
Surface Water	2008	34	32	340	4	3 [1]	48/48	48/48
(pg/L)	2009	32	26	280	5.1	0.6 [0.2]	49/49	49/49
,	2010	26	22	190	tr(5)	6 [2]	49/49	49/49
	2011	23	20	170	3	3 [1]	49/49	49/49
	2012	22	21	440	3.0	1.3 [0.4]	48/48	48/48
	2013	21	17	560	3.2	2.7 [0.8]	48/48	48/48
	2014	18	18	350	3.5	1.2 [0.4]	48/48	48/48
	2015	17	15	110	2.6	0.9 [0.3]	48/48	48/48

Stocktaking of the detection of Total α -HCH, β -HCH, γ -HCH(synonym:Lindane) and δ -HCH in surface water during FY2002~2015

δ -HCH	Monitored	Geometric	Median	Maximu	Minimum	Quantificati on	Deteo Frequ	
0-mem	year	mean*	Wedian	m	winning	[Detection] limit	Sample	Site
	2003	14	14	200	tr(1.1)	2 [0.5]	36/36	36/36
	2004	24	29	670	tr(1.4)	2 [0.7]	38/38	38/38
	2005	1.8	nd	62	nd	1.5 [0.5]	23/47	23/47
	2006	24	18	1,000	2.2	2.0 [0.8]	48/48	48/48
	2007	11	9.7	720	tr(0.7)	1.2 [0.4]	48/48	48/48
Surface Water	2008	11	10	1,900	tr(1.1)	2.3 [0.9]	48/48	48/48
Surrave uter	2009	10	11	450	tr(0.7)	0.9 [0.4]	49/49	49/49
(pg/L)	2010	16	17	780	0.9	0.8 [0.3]	49/49	49/49
	2011	8.6	8.9	300	0.7	0.4 [0.2]	49/49	49/49
	2012	7.9	6.7	220	tr(0.5)	1.1 [0.4]	48/48	48/48
	2013	8.2	8.9	320	tr(0.6)	1.1 [0.4]	48/48	48/48
	2014	7.1	6.5	590	0.7	0.4 [0.2]	48/48	48/48
	2015	7.2	7.4	310	0.8	0.3 [0.1]	48/48	48/48

(Note) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

 α -HCH: The presence of the substance in sediment was monitored at 62 sites, and it was detected at all 62 valid sites adopting the detection limit of 0.3pg/g-dry, and the detection range was 1.1~9,600pg/g-dry.

 β -HCH: The presence of the substance in sediment was monitored at 62 sites, and it was detected at all 62 valid sites adopting the detection limit of 0.3pg/g-dry, and the detection range was 2.5~5,900pg/g-dry.

As results of the inter-annual trend analysis from FY2002 to FY2015, reduction tendency in specimens from river mouth areas was identified as statistically significant.

 γ -HCH(synonym:Lindane): The presence of the substance in sediment was monitored at 62 sites, and it was detected at all 62 valid sites adopting the detection limit of 0.2pg/g-dry, and the detection range was tr(0.3)~2,800pg/g-dry.

 δ -HCH: The presence of the substance in sediment was monitored at 62 sites, and it was detected at all 62 valid sites adopting the detection limit of 0.2pg/g-dry, and the detection range was tr(0.4)~2,900pg/g-dry.

Stocktaking of the detection of α -HCH, β -HCH, γ -HCH(synonym:Lindane) and δ -HCH in sediment during <u>FY2002~2015</u> <u>a-HCH</u> Monitored Geometric Median Maximum Minimum [Detection] Complex Site

	Monitored	Geometric				Quantification	Detection	Frequency
α-HCH	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	150	170	8,200	2.0	1.2 [0.4]	189/189	63/63
	2003	160	170	9,500	2	2 [0.5]	186/186	62/62
	2004	160	180	5,700	tr(1.5)	2 [0.6]	189/189	63/63
	2005	140	160	7,000	3.4	1.7 [0.6]	189/189	63/63
	2006	140	160	4,300	tr(2)	5 [2]	192/192	64/64
	2007	140	150	12,000	tr(1.3)	1.8 [0.6]	192/192	64/64
Sediment	2008	140	190	5,200	nd	1.6 [0.6]	191/192	64/64
(pg/g-dry)	2009	120	120	6,300	nd	1.1 [0.4]	191/192	64/64
	2010	140	140	3,700	3.1	2.0 [0.8]	64/64	64/64
	2011	120	140	5,100	1.6	1.5 [0.6]	64/64	64/64
	2012	100	100	3,900	tr(1.1)	1.6 [0.5]	63/63	63/63
	2013	94	98	3,200	tr(0.6)	1.5 [0.5]	63/63	63/63
	2014	84	93	4,300	nd	2.4 [0.8]	62/63	62/63
	2015	97	120	9,600	1.1	0.7 [0.3]	62/62	62/62

0	Monitored	Geometric				Quantification	Detection I	Frequency
β -HCH	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	230	230	11,000	3.9	0.9 [0.3]	189/189	63/63
	2003	250	220	39,000	5	2 [0.7]	186/186	62/62
	2004	240	230	53,000	4	3 [0.8]	189/189	63/63
	2005	200	220	13,000	3.9	2.6 [0.9]	189/189	63/63
	2006	190	210	21,000	2.3	1.3 [0.4]	192/192	64/64
	2007	200	190	59,000	1.6	0.9 [0.3]	192/192	64/64
Sediment	2008	190	200	8,900	2.8	0.8 [0.3]	192/192	64/64
(pg/g-dry)	2009	180	170	10,000	2.4	1.3 [0.5]	192/192	64/64
	2010	230	210	8,200	11	2.4 [0.8]	64/64	64/64
	2011	180	210	14,000	3	3 [1]	64/64	64/64
	2012	160	170	8,300	3.7	1.5 [0.6]	63/63	63/63
	2013	160	170	6,900	4.5	0.4 [0.1]	63/63	63/63
	2014	140	140	7,200	2.9	0.9 [0.3]	63/63	63/63
	2015	160	170	5,900	2.5	0.8 [0.3]	62/62	62/62
γ-HCH	Monitored	Geometric				Quantification	Detection l	Frequenc
(synonym:Lindane)	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
(synonym.Emdane)	-					limit	-	
	2003	51	47	4,000	tr(1.4)	2 [0.4]	186/186	62/62
	2004	53	48	4,100	tr(0.8)	2 [0.5]	189/189	63/63
Sediment	2005	49	46	6,400	tr(1.8)	2.0 [0.7]	189/189	63/63
	2006	48	49	3,500	tr(1.4)	2.1 [0.7]	192/192	64/64
	2007	42	41	5,200	tr(0.6)	1.2 [0.4]	192/192	64/64
	2008	40	43	2,200	tr(0.7)	0.9 [0.4]	192/192	64/64
(pg/g-dry)	2009	38	43	3,800	nd	0.6 [0.2]	191/192	64/64
(pg/g-ury)	2010	35	30	2,300	tr(1.5)	2.0 [0.7]	64/64	64/64
	2011	35	42	3,500	nd	3 [1]	62/64	62/64
	2012	30	29	3,500	nd	1.3 [0.4]	61/63	61/63
	2013	33	35	2,100	0.9	0.6 [0.2]	63/63	63/63
	2014	27	30	2,600	nd	2.7 [0.9]	61/63	61/63
	2015	29	35	2,800	tr(0.3)	0.5 [0.2]	62/62	62/62
	Monitored	Geometric				Quantification	Detection l	requenc
δ -HCH	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
						limit		
	2003	42	46	5,400	nd	2 [0.7]	180/186	61/62
	2004	55	55	5,500	tr(0.5)	2 [0.5]	189/189	63/63
	2005	52	63	6,200	nd	1.0 [0.3]	188/189	63/63
	2006	45	47	6,000	nd	1.7 [0.6]	189/192	64/64
	2007	26	28	5,400	nd	5 [2]	165/192	60/64
0.1	2008	41	53	3,300	nd	2 [1]	186/192	64/64
Sediment	2009	36	37	5,000	nd	1.2 [0.5]	190/192	64/64
(pg/g-dry)	2010	39	40	3,800	1.3	1.2 [0.5]	64/64	64/64
	2011	37	47	5,000	nd	1.4 [0.5]	63/64	63/64
	2011	28	28	3,100	nd	0.8 [0.3]	62/63	62/63
	2012	31	28 29	2,500	0.4	0.3 [0.3]	63/63	63/63
	2013	27	29	2,300 3,900	0.4		63/63	
						0.4 [0.1]	62/62	63/63
	2015	27	28	2,900	tr(0.4)	0.5 [0.2]		62/62

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002~2009.

<Wildlife>

 α -HCH: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1.0pg/g-wet, and the detection range was 3.5~25pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 1.0pg/g-wet, and the detection range was tr(1.3)~180pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 1.0pg/g-wet, and the detected in the area adopting the detection limit of 1.0pg/g-wet, and the detected in the area adopting the detection limit of 1.0pg/g-wet, and the detected in the area adopting the detection limit of 1.0pg/g-wet, and the detected concentration was 13pg/g-wet.

As results of the inter-annual trend analysis from FY2002 to FY2015, reduction tendencies in specimy from bivalves was identified as statistically significant.

 β -HCH: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid

areas adopting the detection limit of 1.0pg/g-wet, and the detection range was 13~69pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 1.0pg/g-wet, and the detection range was 6.0~390pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 1.0pg/g-wet, and the detected concentration was 57pg/g-wet.

 γ -HCH(synonym:Lindane): The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1.6pg/g-wet, and the detection range was tr(3.6)~14pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 14 of the 19 valid areas adopting the detection limit of 1.6pg/g-wet, and none of the detected concentrations exceeded 42pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and not detected in the area adopting the detection limit of 1.6pg/g-wet.

As results of the inter-annual trend analysis from FY2003 to FY2015, the last 5 yers period was indicated lower concentration than the first 5 yers period in specimens from fish as statistically significant.

 δ -HCH: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 0.8pg/g-wet, and the detected concentration was tr(1.5)pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 12 of the 19 valid areas adopting the detection limit of 0.8pg/g-wet, and none of the detected concentrations exceeded 17pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and not detected in the area adopting the detection limit of 0.8pg/g-wet.

As results of the inter-annual trend analysis from FY2003 to FY2015, the last 5 yers period was indicated lower concentration than the first 5 yers period in specimens from fish as statistically significant.

	Monitored	Geometric		м ·	. · ·	Quantification	Detection I	Frequenc
α-HCH	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	67	64	1,100	12	4.2 [1.4]	38/38	8/8
	2003	45	30	610	9.9	1.8 [0.61]	30/30	6/6
	2004	56	25	1,800	tr(12)	13 [4.3]	31/31	7/7
	2005	38	25	1,100	tr(7.1)	11 [3.6]	31/31	7/7
	2006	30	21	390	6	3 [1]	31/31	7/7
	2007	31	17	1,400	8	7 [2]	31/31	7/7
Bivalves	2008	26	16	380	7	6 [2]	31/31	7/7
(pg/g-wet)	2009	45	21	2,200	9	5 [2]	31/31	7/7
	2010	35	20	730	13	3 [1]	6/6	6/6
	2011	64	33	1,200	13	3 [1]	4/4	4/4
	2012	23	12	340	4.0	3.7 [1.2]	5/5	5/5
	2013	30	25	690	6	3 [1]	5/5	5/5
	2014	16	16	39	7	3 [1]	3/3	3/3
	2015	11	15	25	3.5	3.0 [1.0]	3/3	3/3
	2002	57	56	590	tr(1.9)	4.2 [1.4]	70/70	14/14
	2003	43	58	590	2.6	1.8 [0.61]	70/70	14/14
	2004	57	55	2,900	nd	13 [4.3]	63/70	14/14
	2005	42	43	1,000	nd	11 [3.6]	75/80	16/16
Fish	2006	44	53	360	tr(2)	3 [1]	80/80	16/16
	2007	39	40	730	tr(2)	7 [2]	80/80	16/16
	2008	36	47	410	nd	6 [2]	84/85	17/17
(pg/g-wet)	2009	39	32	830	tr(2)	5 [2]	90/90	18/18
	2010	27	39	250	tr(1)	3 [1]	18/18	18/18
	2011	37	54	690	tr(2)	3 [1]	18/18	18/18
	2012	24	32	170	nd	3.7 [1.2]	18/19	18/19
	2013	32	47	320	tr(2)	3 [1]	19/19	19/19
	2014	26	40	210	nd	3 [1]	18/19	18/19
	2015	18	26	180	tr(1.3)	3.0 [1.0]	19/19	19/19
	2002	170	130	360	93	4.2 [1.4]	10/10	2/2
	2003	73	74	230	30	1.8 [0.61]	10/10	2/2
	2004	190	80	1,600	58	13 [4.3]	10/10	2/2
	2005	76	77	85	67	11 [3.6]	10/10	2/2
	2006	76	75	100	55	3 [1]	10/10	2/2
	2007	75	59	210	43	7 [2]	10/10	2/2
Birds	2008	48	48	61	32	6 [2]	10/10	2/2
(pg/g-wet)	2009	43	42	56	34	5 [2]	10/10	2/2
	2010	260		430	160	3 [1]	2/2	2/2
	2011			48	48	3 [1]	1/1	1/1
	2012	35		39	32	3.7 [1.2]	2/2	2/2
	2013**	46		130	16	3 [1]	2/2	2/2
	2014**	61		220	17	3 [1]	2/2	2/2
	2015**			13	13	3.0 [1.0]	1/1	1/1

Stocktaking of the detection of α -HCH, β -HCH, γ -HCH(synonym:Lindane) and δ -HCH in wildlife (bivalves, fish and birds) during FY2002~2015

AHGH	Monitored	Geometric				Quantification	Detection I	Frequenc
β -HCH	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	88	62	1,700	32	12 [4]	38/38	8/8
	2003	78	50	1,100	23	9.9 [3.3]	30/30	6/6
	2004	100	74	1,800	22	6.1 [2.0]	31/31	7/7
	2005	85	56	2,000	20	2.2 [0.75]	31/31	7/7
	2006	81	70	880	11	3 [1]	31/31	7/7
	2007	79	56	1,800	21	7 [3]	31/31	7/7
Bivalves	2008	73	51	1,100	23	6 [2]	31/31	7/7
(pg/g-wet)	2009	83	55	1,600	27	6 [2]	31/31	7/7
	2010	89	56	1,500	27	3 [1]	6/6	6/6
	2011	130	68	2,000	39	3 [1]	4/4	4/4
	2012	65	37	980	15	2.0 [0.8]	5/5	5/5
	2013	61	47	710	17	2.2 [0.8]	5/5	5/5
	2014	40	35	64	28	2.4 [0.9]	3/3	3/3
	2015	34	45	69	13	3.0 [1.0]	3/3	3/3
	2002	110	120	1,800	tr(5)	12 [4]	70/70	14/14
	2003	81	96	1,100	tr(3.5)	9.9 [3.3]	70/70	14/14
	2004	110	140	1,100	tr(3.9)	6.1 [2.0]	70/70	14/14
	2005	95	110	1,300	6.7	2.2 [0.75]	80/80	16/16
	2006	89	110	1,100	4	3[1]	80/80	16/16
	2007	110	120	810	7	7 [3]	80/80	16/16
Fish	2008	94	150	750	tr(4)	6 [2]	85/85	17/17
(pg/g-wet)	2009	98	130	970	tr(5)	6 [2]	90/90	18/18
400 /	2010	81	110	760	5	3 [1]	18/18	18/18
	2011	100	140	710	4	3 [1]	18/18	18/18
	2012	72	100	510	6.5	2.0 [0.8]	19/19	19/19
	2013	80	110	420	7.2	2.2 [0.8]	19/19	19/19
	2014	75	140	460	4.4	2.4 [0.9]	19/19	19/19
	2015	56	94	390	6.0	3.0 [1.0]	19/19	19/19
	2002	3,000	3,000	7,300	1,600	12 [4]	10/10	2/2
	2003	3,400	3,900	5,900	1,800	9.9 [3.3]	10/10	2/2
	2004	2,300	2,100	4,800	1,100	6.1 [2.0]	10/10	2/2
	2005	2,500	2,800	6,000	930	2.2 [0.75]	10/10	2/2
	2006	2,100	2,400	4,200	1,100	3[1]	10/10	2/2
	2007	2,000	1,900	3,200	1,400	7 [3]	10/10	2/2
Birds	2008	2,400	2,000	5,600	1,300	6 [2]	10/10	2/2
(pg/g-wet)	2009	1,600	1,400	4,200	870	6 [2]	10/10	2/2
400 /	2010	1,600	-,	2,800	910	3 [1]	2/2	2/2
	2011			4,500	4,500	3 [1]	1/1	1/1
	2012	1,400		2,600	730	2.0 [0.8]	2/2	2/2
	2013**	1,400		3,000	610	2.2 [0.8]	2/2	2/2
	2013	290		3,600	24	2.4 [0.9]	2/2	2/2
	2015**			57	57	3.0 [1.0]	1/1	1/1

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	у-НСН	Monitored	Geometric				Quantification	Detection 1	Frequency
$ \begin{array}{c} & \begin{array}{c} 2004 & tr(24) & tr(16) & 230 & nd & 31 \left[10 \right] & 28/31 \\ 2005 & 23 & 13 & 370 & tr(5.7) & 8.4 \left[2.8 \right] & 31/31 \\ 2006 & 18 & 12 & 140 & 7 & 4 \left[2 \right] & 31/31 \\ 2007 & 16 & 10 & 450 & tr(4) & 9 \left[3 \right] & 31/31 \\ 2009 & 14 & 12 & 89 & tr(3) & 9 \left[3 \right] & 31/31 \\ 2009 & 14 & 12 & 89 & tr(3) & 7 \left[3 \right] & 31/31 \\ 2010 & 14 & 9 & 150 & 5 & 3 \left[1 \right] & 6/6 \\ 2011 & 26 & 17 & 320 & 5 & 3 \left[1 \right] & 4/4 \\ 2012 & 8.1 & 3.5 & 68 & 3.0 & 2.3 \left[0.9 \right] & 5/5 \\ 2014 & 7.4 & 4.8 & 18 & 4.6 & 2.2 \left[0.8 \right] & 3/3 \\ 2015 & 7.3 & 7.8 & 14 & tr(3.6) & 4.8 \left[1.6 \right] & 3/3 \\ 2005 & 17 & 17 & 230 & nd & 8.4 \left[1.6 \right] & 3/3 \\ 2005 & 17 & 17 & 230 & nd & 8.4 \left[1.6 \right] & 3/3 \\ 2005 & 17 & 17 & 230 & nd & 8.4 \left[1.8 \right] & 70/70 \\ 2004 & tr(28) & tr(24) & 660 & nd & 31 \left[10 \right] & 55/70 \\ 2005 & 17 & 17 & 230 & nd & 8.4 \left[2.8 \right] & 78/80 \\ 2007 & 15 & 15 & 190 & nd & 9 \left[3 \right] & 70/85 \\ 2008 & 13 & 16 & 96 & nd & 9 \left[3 \right] & 70/85 \\ 2009 & 13 & 16 & 96 & nd & 9 \left[3 \right] & 70/85 \\ 2010 & 9 & 13 & 56 & tr(1) & 3 \left[1 \right] & 18/18 \\ 2011 & 12 & 15 & 160 & tr(1) & 3 \left[1 \right] & 18/18 \\ 2012 & 7.8 & 12 & 43 & nd & 2.3 \left[0.9 \right] & 18/19 \\ 2013 & 8.6 & 12 & 81 & nd & 2.4 \left[0.9 \right] & 17/19 \\ 2014 & 8.4 & 14 & 45 & nd & 2.2 \left[0.8 \right] & 16/19 \\ 2015 & 6.1 & 7.9 & 42 & nd & 4.8 \left[1.6 \right] & 14/19 \\ 2014 & 8.4 & 14 & 45 & nd & 2.2 \left[0.8 \right] & 16/19 \\ 2015 & 6.1 & 7.9 & 42 & nd & 4.8 \left[1.6 \right] & 14/19 \\ 2006 & 16 & 17 & 29 & 8 & 4 \left[2.8 \right] & 10/10 \\ 2005 & 18 & 20 & 32 & 9.6 & 8.4 \left[2.8 \right] & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 \left[2.8 \right] & 10/10 \\ 2007 & 21 & 14 & 140 & tr(8) & 9 \left[3 \right] & 10/10 \\ 2007 & 21 & 14 & 140 & tr(8) & 9 \left[3 \right] & 10/10 \\ 2007 & 21 & 14 & 140 & tr(8) & 9 \left[3 \right] & 10/10 \\ 2010 & 10 & & 23 & 4 & 3 \left[1 \right] & 2/2 \\ 2011 & & & 26 & 26 & 3 \left[1 \right] & 1/1 \\ 2012 & 11 & & & 26 & 26 & 3 \left[1 \right] & 1/1 \\ 2014 & 8.0 & & 24 & tr(1.5) & 2.24 \left[0.9 \right] & 2/2 \\ \end{array}$				Median	Maximum	Minimum	[Detection] limit	Sample	Site
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2003	19	18	130	5.2	3.3 [1.1]	30/30	6/6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2004	tr(24)	tr(16)	230	nd	31 [10]	28/31	7/7
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} 2007 & 16 & 10 & 450 & tr(4) & 9 [3] & 31/31 \\ \hline Bivalves \\ (pg/g-wet) & 2009 & 14 & 12 & 89 & tr(3) & 9 [3] & 31/31 \\ 2009 & 14 & 12 & 89 & tr(3) & 9 [3] & 31/31 \\ 2010 & 14 & 9 & 150 & 5 & 3 [1] & 6/6 \\ \hline 2011 & 26 & 17 & 320 & 5 & 3 [1] & 4/4 \\ 2012 & 8.1 & 3.5 & 68 & 3.0 & 2.3 [0.9] & 5/5 \\ 2013 & 7.2 & 3 & 7.8 & 14 & tr(3.6) & 4.8 [1.6] & 3/3 \\ \hline 2015 & 7.3 & 7.8 & 14 & tr(3.6) & 4.8 [1.6] & 3/3 \\ 2003 & 16 & 22 & 130 & tr(.7) & 3.3 [1.1] & 70/70 \\ 2004 & tr(28) & tr(24) & 660 & nd & 9 [3] & 71/80 \\ 2005 & 17 & 17 & 230 & nd & 8.4 [2.8] & 78/80 \\ 2006 & 19 & 22 & 97 & tr(2) & 4 [2] & 80/80 \\ 2006 & 19 & 22 & 97 & tr(2) & 4 [2] & 80/80 \\ 2006 & 19 & 22 & 97 & tr(2) & 4 [2] & 80/80 \\ 2006 & 19 & 22 & 97 & tr(2) & 4 [2] & 80/80 \\ 2006 & 19 & 22 & 97 & tr(1) & 3 [1] & 18/18 \\ 2010 & 9 & 13 & 56 & tr(1) & 3 [1] & 18/18 \\ 2010 & 9 & 13 & 56 & tr(1) & 3 [1] & 18/18 \\ 2011 & 12 & 15 & 160 & tr(1) & 3 [1] & 18/18 \\ 2012 & 7.8 & 12 & 43 & nd & 2.3 [0.9] & 18/19 \\ 2013 & 8.6 & 12 & 81 & nd & 2.4 [0.9] & 17/19 \\ 2014 & 8.4 & 19 & 40 & 3.7 & 3.3 [1.1] & 10/10 \\ 2004 & 64 & tr(21) & 1.200 & tr(11) & 3 [1] & 18/18 \\ 2015 & 6.1 & 7.9 & 42 & nd & 4.8 [1.6] & 14/19 \\ 2003 & 14 & 19 & 40 & 3.7 & 3.3 [1.1] & 10/10 \\ 2004 & 64 & tr(21) & 1.200 & tr(11) & 31 [10] & 10/10 \\ 2005 & 18 & 20 & 32 & 9.6 & 8.4 [2.8] & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 [2] & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 [2] & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 [2] & 10/10 \\ 2007 & 21 & 14 & 140 & tr(8) & 9 [3] & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 [2] & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 [2] & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 [2] & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 [2] & 10/10 \\ 2007 & 21 & 14 & 19 & tr(5) & 9 [3] & 10/10 \\ 2008 & 12 & 14 & 19 & tr(5) & 9 [3] & 10/10 \\ 2010 & 10 & & 23 & 4 & 3 [1] & 2/2 \\ 2011 & & & 26 & 26 & 3 [1] & 1/1 \\ 2012 & 2012 & 11 & & 24 & tr(1.5) & 2.4 [0.9] & 2/2 \\ \end{array}$		2005	23	13	370	tr(5.7)	8.4 [2.8]	31/31	7/7
$ \begin{array}{c} \begin{array}{c} & 2007 & 16 & 10 & 450 & tr(4) & 9 [3] & 31/31 \\ \hline Bivalves \\ (pg/g-wet) & 2008 & 12 & 10 & 98 & tr(3) & 9 [3] & 31/31 \\ 2008 & 12 & 10 & 98 & tr(3) & 7 [3] & 31/31 \\ 2010 & 14 & 9 & 150 & 5 & 3 [1] & 6/6 \\ \hline 2011 & 26 & 17 & 320 & 5 & 3 [1] & 4/4 \\ 2012 & 8.1 & 3.5 & 68 & 3.0 & 2.3 [0.9] & 5/5 \\ 2014 & 7.4 & 4.8 & 18 & 4.6 & 2.2 [0.8] & 3/3 \\ \hline 2015 & 7.3 & 7.8 & 14 & tr(3.6) & 4.8 [1.6] & 3/3 \\ 2003 & 16 & 22 & 130 & tr(7) & 3.3 [1.1] & 70/70 \\ 2004 & tr(28) & tr(24) & 660 & nd & 31 [10] & 55/70 \\ 2005 & 17 & 17 & 230 & nd & 8.4 [2.8] & 78/80 \\ 2006 & 19 & 22 & 97 & tr(2) & 4 [2] & 80/80 \\ 2006 & 19 & 22 & 97 & tr(2) & 4 [2] & 80/80 \\ 2006 & 19 & 22 & 97 & tr(2) & 4 [2] & 80/80 \\ 2006 & 19 & 22 & 97 & tr(2) & 4 [2] & 80/80 \\ 2006 & 19 & 22 & 97 & tr(2) & 4 [2] & 80/80 \\ 2006 & 19 & 3 & 56 & tr(1) & 3 [1] & 18/18 \\ 2010 & 9 & 13 & 56 & tr(1) & 3 [1] & 18/18 \\ 2011 & 12 & 15 & 160 & tr(1) & 3 [1] & 18/18 \\ 2012 & 7.8 & 12 & 43 & nd & 2.3 [0.9] & 18/19 \\ 2013 & 8.6 & 12 & 81 & nd & 2.4 [0.9] & 17/19 \\ 2014 & 8.4 & 19 & 40 & 3.7 & 3.3 [1.1] & 10/10 \\ 2004 & 64 & tr(21) & 1.200 & tr(11) & 31 [10] & 10/10 \\ 2005 & 18 & 20 & 32 & 9.6 & 8.4 [2.8] & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 [2] & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 [2] & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 [2] & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 [2] & 10/10 \\ 2007 & 21 & 14 & 140 & tr(8) & 9 [3] & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 [2] & 10/10 \\ 2007 & 21 & 14 & 140 & tr(8) & 9 [3] & 10/10 \\ 2008 & 12 & 14 & 19 & tr(5) & 9 [3] & 10/10 \\ 2009 & 10 & & 23 & 4 & 3 [1] & 2/2 \\ 2011 & & & 26 & 26 & 3 [1] & 1/1 \\ 2012 & 2012 & 11 & & 23 & 4 & 3 [1] & 2/2 \\ 2011 & & & 26 & 26 & 3 [1] & 1/1 \\ 2012 & 2012 & 11 & & 24 & tr(1.5) & 2.4 [0.9] & 2/2 \\ \end{array}$		2006	18	12	140	7	4 [2]	31/31	7/7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2007	16	10	450	tr(4)		31/31	7/7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D' 1	2008	12	10	98	tr(3)	9 [3]	31/31	7/7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2009	14	12	89			31/31	7/7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(pg/g-wet)	2010	14	9	150			6/6	6/6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2011	26	17	320	5		4/4	4/4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2012	8.1	3.5	68	3.0		5/5	5/5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2013	7.2	3.9	31	tr(2.1)	2.4 [0.9]	5/5	5/5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									3/3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									3/3
$ \begin{array}{c} \mbox{Fish} \\ \mbox{(pg/g-wet)} & \begin{array}{c} 2004 & \mbox{tr}(28) & \mbox{tr}(24) & 660 & \mbox{nd} & 31 \left[10\right] & 55/70 \\ 2005 & 17 & 17 & 230 & \mbox{nd} & 8.4 \left[2.8\right] & 78/80 \\ 2006 & 19 & 22 & 97 & \mbox{tr}(2) & 4 \left[2\right] & 80/80 \\ 2007 & 15 & 15 & 190 & \mbox{nd} & 9 \left[3\right] & 71/80 \\ 2009 & 14 & 12 & 180 & \mbox{nd} & 7 \left[3\right] & 81/90 \\ 2010 & 9 & 13 & 56 & \mbox{tr}(1) & 3 \left[1\right] & 18/18 \\ 2011 & 12 & 15 & 160 & \mbox{tr}(1) & 3 \left[1\right] & 18/18 \\ 2012 & 7.8 & 12 & 43 & \mbox{nd} & 2.3 \left[0.9\right] & 17/19 \\ 2013 & 8.6 & 12 & 81 & \mbox{nd} & 2.2 \left[0.8\right] & 16/19 \\ 2015 & 6.1 & 7.9 & 42 & \mbox{nd} & 4.8 \left[1.6\right] & 14/19 \\ 2003 & 14 & 19 & 40 & 3.7 & 3.3 \left[1.1\right] & 10/10 \\ 2004 & 64 & \mbox{tr}(21) & 1.200 & \mbox{tr}(11) & 31 \left[10\right] & 10/10 \\ 2005 & 18 & 20 & 32 & 9.6 & 8.4 \left[2.8\right] & 10/10 \\ 2005 & 18 & 20 & 32 & 9.6 & 8.4 \left[2.8\right] & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 \left[2\right] & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 \left[2\right] & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 \left[2\right] & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 \left[2\right] & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 \left[2\right] & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 \left[2\right] & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 \left[2\right] & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 \left[2\right] & 10/10 \\ 2007 & 21 & 14 & 140 & \mbox{tr}(8) & 9 \left[3\right] & 10/10 \\ 2009 & 11 & 11 & 21 & \mbox{tr}(6) & 7 \left[3\right] & 10/10 \\ 2010 & 10 & & 23 & 4 & 3 \left[1\right] & 2/2 \\ 2011 & & -26 & 26 & 23 \left[1\right] & 1/1 \\ 2012 & 11 & & 19 & 6.3 & 2.3 \left[0.9\right] & 2/2 \\ \end{array}$					130				14/14
$ \begin{array}{c} \mbox{Fish} \\ \mbox{(pg/g-wet)} & \begin{array}{ccccccccccccccccccccccccccccccccccc$				tr(24)		. ,			11/14
$ \begin{array}{c} Fish \\ (pg/g-wet) \end{array} \begin{array}{c} 2006 & 19 & 22 & 97 & tr(2) & 4 \begin{bmatrix} 2 \end{bmatrix} & 80/80 \\ 2007 & 15 & 15 & 190 & nd & 9 \begin{bmatrix} 3 \end{bmatrix} & 71/80 \\ 2008 & 13 & 16 & 96 & nd & 9 \begin{bmatrix} 3 \end{bmatrix} & 70/85 \\ 2009 & 14 & 12 & 180 & nd & 7 \begin{bmatrix} 3 \end{bmatrix} & 81/90 \\ 2010 & 9 & 13 & 56 & tr(1) & 3 \begin{bmatrix} 1 \end{bmatrix} & 18/18 \\ 2011 & 12 & 15 & 160 & tr(1) & 3 \begin{bmatrix} 1 \end{bmatrix} & 18/18 \\ 2012 & 7.8 & 12 & 43 & nd & 2.3 \begin{bmatrix} 0.9 \end{bmatrix} & 18/19 \\ 2013 & 8.6 & 12 & 81 & nd & 2.4 \begin{bmatrix} 0.9 \end{bmatrix} & 17/19 \\ 2014 & 8.4 & 14 & 45 & nd & 2.2 \begin{bmatrix} 0.8 \end{bmatrix} & 16/19 \\ 2015 & 6.1 & 7.9 & 42 & nd & 4.8 \begin{bmatrix} 1.6 \end{bmatrix} & 14/19 \\ 2003 & 14 & 19 & 40 & 3.7 & 3.3 \begin{bmatrix} 1.1 \end{bmatrix} & 10/10 \\ 2004 & 64 & tr(21) & 1,200 & tr(11) & 31 \begin{bmatrix} 10 \end{bmatrix} & 10/10 \\ 2005 & 18 & 20 & 32 & 9.6 & 8.4 \begin{bmatrix} 2.8 \end{bmatrix} & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 \begin{bmatrix} 2 \end{bmatrix} & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 \begin{bmatrix} 2 \end{bmatrix} & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 \begin{bmatrix} 2 \end{bmatrix} & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 \begin{bmatrix} 2 \end{bmatrix} & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 \begin{bmatrix} 2 \end{bmatrix} & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 \begin{bmatrix} 2 \end{bmatrix} & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 \begin{bmatrix} 2 \end{bmatrix} & 10/10 \\ 2007 & 21 & 14 & 140 & tr(8) & 9 \begin{bmatrix} 3 \end{bmatrix} & 10/10 \\ 2008 & 12 & 11 & 12 & tr(6) & 7 \begin{bmatrix} 3 \end{bmatrix} & 10/10 \\ 2010 & 10 & & 23 & 4 & 3 \begin{bmatrix} 1 \end{bmatrix} & 2/2 \\ 2011 & & -26 & 26 & 3 \begin{bmatrix} 1 \end{bmatrix} & 1/1 \\ 202 & 11 & & 19 & 6.3 & 2.3 \begin{bmatrix} 0.9 \end{bmatrix} & 2/2 \\ 2013 * * & 6.0 & & 24 & tr(1.5) & 2.4 \begin{bmatrix} 0.9 \end{bmatrix} & 2/2 \\ 201 & 202 & 202 & 202 \\ 201 & 202 & 202 & 202 & 202 \\ 201 & 202 & 202 & 202 & 202 \\ 201 & 202 & 202 & 202 & 202 & 202 \\ 201 & 202 & 202 & 202 & 202 & 202 \\ 201 & 202 & 202 & 202 & 202 & 202 \\ 201 & 202 & 202 & 202 & 202 & 202 \\ 201 & 202 & 202 & 202 & 202 & 202 & 202 \\ 201 & 202 & 202 & 202 & 202 & 202 & 202 & 202 \\ 201 & 202 & 202 & 202 & 202 & 202 & 202 & 202 \\ 201 & 202 & 202 & 202 & 202 & 202 & 202 & 202 \\ 201 & 202 &$						nd			16/16
$ \begin{array}{c} \mbox{Fish} \\ \mbox{(pg/g-wet)} & \begin{array}{c} 2007 & 15 & 15 & 190 & nd & 9 \begin{bmatrix} 3 \\ 3 \end{bmatrix} & 71/80 \\ 2008 & 13 & 16 & 96 & nd & 9 \begin{bmatrix} 3 \\ 3 \end{bmatrix} & 70/85 \\ 2009 & 14 & 12 & 180 & nd & 7 \begin{bmatrix} 3 \\ 3 \end{bmatrix} & 81/90 \\ 2010 & 9 & 13 & 56 & tr(1) & 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} & 18/18 \\ 2011 & 12 & 15 & 160 & tr(1) & 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} & 18/18 \\ 2012 & 7.8 & 12 & 43 & nd & 2.3 \begin{bmatrix} 0.9 \\ 0.9 \end{bmatrix} & 18/19 \\ 2013 & 8.6 & 12 & 81 & nd & 2.4 \begin{bmatrix} 0.9 \\ 0.9 \end{bmatrix} & 17/19 \\ 2014 & 8.4 & 14 & 45 & nd & 2.2 \begin{bmatrix} 0.8 \\ 0.8 \end{bmatrix} & 16/19 \\ 2015 & 6.1 & 7.9 & 42 & nd & 4.8 \begin{bmatrix} 1.6 \\ 1.49 \end{bmatrix} & 14/19 \\ 2003 & 14 & 19 & 40 & 3.7 & 3.3 \begin{bmatrix} 1.1 \\ 0.11 \end{bmatrix} & 10/10 \\ 2004 & 64 & tr(21) & 1,200 & tr(11) & 31 \begin{bmatrix} 10 \\ 0.005 & 18 & 20 & 32 & 9.6 & 8.4 \begin{bmatrix} 2.8 \\ 0.8 \end{bmatrix} & 10/10 \\ 2005 & 18 & 20 & 32 & 9.6 & 8.4 \begin{bmatrix} 2.8 \\ 0.8 \end{bmatrix} & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 \begin{bmatrix} 2 \\ 0.10 & 10 & 2007 & 21 & 14 & 140 & tr(8) & 9 \begin{bmatrix} 3 \\ 0.9 \end{bmatrix} & 10/10 \\ 2007 & 21 & 14 & 140 & tr(8) & 9 \begin{bmatrix} 3 \\ 0.9 \end{bmatrix} & 10/10 \\ 2008 & 12 & 14 & 19 & tr(5) & 9 \begin{bmatrix} 3 \\ 0.9 \end{bmatrix} & 10/10 \\ 2010 & 10 & & 23 & 4 & 3 \begin{bmatrix} 1 \\ 0.2 \end{bmatrix} & 2/2 \\ 2011 & & & 26 & 26 & 3 \begin{bmatrix} 1 \\ 0.9 \end{bmatrix} & 1/1 \\ 2012 & 11 & & 19 & 6.3 & 2.3 \begin{bmatrix} 0.9 \\ 0.9 \end{bmatrix} & 2/2 \\ 2013^{**} & 6.0 & & 24 & tr(1.5) & 2.4 \begin{bmatrix} 0.9 \\ 0.9 \end{bmatrix} & 2/2 \\ \end{array}$									16/16
$ \begin{array}{c} Fish \\ (pg/g-wet) \end{array} \begin{array}{c} 2008 & 13 & 16 & 96 & nd & 9 \begin{bmatrix} 13 \\ 2009 & 14 & 12 & 180 & nd & 7 \begin{bmatrix} 3 \\ 3 & 81/90 \\ 2010 & 9 & 13 & 56 & tr(1) & 3 \begin{bmatrix} 1 \\ 1 & 18/18 \\ 2011 & 12 & 15 & 160 & tr(1) & 3 \begin{bmatrix} 1 \\ 1 & 18/18 \\ 2012 & 7.8 & 12 & 43 & nd & 2.3 \begin{bmatrix} 0.9 \\ 0.9 \end{bmatrix} & 18/19 \\ 2013 & 8.6 & 12 & 81 & nd & 2.4 \begin{bmatrix} 0.9 \\ 0.9 \end{bmatrix} & 17/19 \\ 2014 & 8.4 & 14 & 45 & nd & 2.2 \begin{bmatrix} 0.8 \\ 0.9 \end{bmatrix} & 16/19 \\ 2015 & 6.1 & 7.9 & 42 & nd & 4.8 \begin{bmatrix} 1.6 \\ 0.9 \end{bmatrix} & 16/19 \\ 2003 & 14 & 19 & 40 & 3.7 & 3.3 \begin{bmatrix} 1.1 \\ 0.1 \end{bmatrix} & 10/10 \\ 2004 & 64 & tr(21) & 1,200 & tr(11) & 31 \begin{bmatrix} 10 \\ 0.005 & 18 & 20 & 32 & 9.6 & 8.4 \begin{bmatrix} 2.8 \\ 0.9 \end{bmatrix} & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 \begin{bmatrix} 2 \\ 2 \end{bmatrix} & 10/10 \\ 2006 & 16 & 17 & 29 & 8 & 4 \begin{bmatrix} 2 \\ 2 \end{bmatrix} & 10/10 \\ 2007 & 21 & 14 & 140 & tr(8) & 9 \begin{bmatrix} 3 \\ 3 \end{bmatrix} & 10/10 \\ 2007 & 21 & 14 & 140 & tr(8) & 9 \begin{bmatrix} 3 \\ 3 \end{bmatrix} & 10/10 \\ 2008 & 12 & 14 & 19 & tr(5) & 9 \begin{bmatrix} 3 \\ 3 \end{bmatrix} & 10/10 \\ 2010 & 10 & & 23 & 4 & 3 \begin{bmatrix} 1 \\ 2 \\ 0.11 & &26 & 26 & 3 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} & 1/1 \\ 2012 & 11 & & 19 & 6.3 & 2.3 \begin{bmatrix} 0.9 \\ 0.9 \\ 0.9 \\ 2.4 \end{bmatrix} & 2/2 \end{array}$									15/16
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									15/17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									17/18
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(pg/g-wet)								18/18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									18/18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									18/19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									17/19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									16/19
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									14/19
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									2/2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									2/2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. ,					2/2
$ \begin{array}{c} \text{Birds} \\ (\text{pg/g-wet}) \end{array} \begin{array}{c ccccccccccccccccccccccccccccccccccc$									2/2
$ \begin{array}{c} \text{Birds} \\ (\text{pg/g-wet}) \end{array} \begin{array}{c} 2008 & 12 & 14 & 19 & \text{tr}(5) & 9 \begin{bmatrix} 3 \\ 3 \end{bmatrix} & 10/10 \\ 2009 & 11 & 11 & 21 & \text{tr}(6) & 7 \begin{bmatrix} 3 \\ 3 \end{bmatrix} & 10/10 \\ 2010 & 10 & & 23 & 4 & 3 \begin{bmatrix} 1 \\ 2 \end{bmatrix} & 2/2 \\ 2011 & & & 26 & 26 & 3 \begin{bmatrix} 1 \\ 3 \end{bmatrix} & 1/1 \\ 2012 & 11 & & 19 & 6.3 & 2.3 \begin{bmatrix} 0.9 \end{bmatrix} & 2/2 \\ 2013^{**} & 6.0 & & 24 & \text{tr}(1.5) & 2.4 \begin{bmatrix} 0.9 \end{bmatrix} & 2/2 \end{array} $									2/2
$ \begin{array}{c} \text{Birds} \\ (\text{pg/g-wet}) \end{array} & \begin{array}{c} 2009 & 11 & 11 & 21 & \text{tr}(6) & 7 \begin{bmatrix} 3 \\ 3 \end{bmatrix} & \begin{array}{c} 10/10 \\ 2/2 \\ 2010 & 10 & & 23 & 4 & 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} & \begin{array}{c} 2/2 \\ 2/2 \\ 2011 & & 26 & 26 & 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} & \begin{array}{c} 1/1 \\ 2/2 \\ 2012 & 11 & & 19 & 6.3 & 2.3 \begin{bmatrix} 0.9 \end{bmatrix} & \begin{array}{c} 2/2 \\ 2/2 \\ 2/2 \\ 2013^{**} & 6.0 & & 24 & \text{tr}(1.5) & 2.4 \begin{bmatrix} 0.9 \end{bmatrix} & \begin{array}{c} 2/2 \\ 2/2 \end{array} $									2/2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									2/2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(pg/g-wet)								2/2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	488 /								1/1
2013** 6.0 24 tr(1.5) 2.4 [0.9] 2/2									2/2
									2/2
2014^{**} 10 24 4.4 2.2 [0.8] 2/2		2013	10		24	4.4	2.2 [0.8]	2/2	2/2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									0/1

	Monitored	Geometric				Quantification	Detection l	Frequency
δ -HCH	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	7.4	tr(2.6)	1,300	nd	3.9 [1.3]	29/30	6/6
	2004	6.3	tr(2.1)	1,500	nd	4.6 [1.5]	25/31	6/7
	2005	5.4	tr(2.1)	1,600	nd	5.1 [1.7]	23/31	6/7
	2006	6	tr(2)	890	tr(1)	3 [1]	31/31	7/7
	2007	4	nd	750	nd	4 [2]	12/31	4/7
Bivalves	2008	tr(3)	nd	610	nd	6 [2]	7/31	3/7
(pg/g-wet)	2009	tr(4)	nd	700	nd	5 [2]	14/31	4/7
(pg/g-wet)	2010	4	tr(2)	870	nd	3 [1]	5/6	5/6
	2011	9	tr(2)	1,400	tr(1)	3 [1]	4/4	4/4
	2012	3	tr(1)	580	nd	3 [1]	3/5	3/5
	2013	3	tr(1)	230	nd	3 [1]	3/5	3/5
	2014	tr(1)	tr(2)	3	nd	3 [1]	2/3	2/3
	2015	nd	nd	tr(1.5)	nd	2.1 [0.8]	1/3	1/3
	2003	tr(3.6)	4.0	16	nd	3.9 [1.3]	59/70	13/14
	2004	tr(4.2)	tr(3.5)	270	nd	4.6 [1.5]	54/70	11/14
	2005	tr(3.2)	tr(3.1)	32	nd	5.1 [1.7]	55/80	12/16
	2006	4	3	35	nd	3 [1]	72/80	16/16
	2007	tr(3)	tr(2)	31	nd	4 [2]	42/80	10/16
F' 1	2008	tr(4)	tr(3)	77	nd	6 [2]	54/85	12/17
Fish	2009	tr(3)	tr(3)	18	nd	5 [2]	57/90	13/18
(pg/g-wet)	2010	tr(2)	tr(2)	36	nd	3 [1]	13/18	13/18
	2011	3	4	19	nd	3 [1]	14/18	14/18
	2012	tr(2)	tr(2)	12	nd	3 [1]	14/19	14/19
	2013	3	tr(2)	40	nd	3 [1]	14/19	14/19
	2014	tr(2)	tr(2)	23	nd	3 [1]	14/19	14/19
	2015	tr(1.7)	tr(1.8)	17	nd	2.1 [0.8]	12/19	12/19
	2003	19	18	31	12	3.9 [1.3]	10/10	2/2
	2004	30	14	260	6.4	4.6 [1.5]	10/10	2/2
	2005	16	15	30	10	5.1 [1.7]	10/10	2/2
	2006	13	12	21	9	3 [1]	10/10	2/2
	2007	12	10	22	4	4 [2]	10/10	2/2
D' 1	2008	9	8	31	tr(3)	6 [2]	10/10	2/2
Birds	2009	5	6	9	tr(3)	5 [2]	10/10	2/2
(pg/g-wet)	2010	12		13	11	3 [1]	2/2	2/2
	2011			5	5	3 [1]	1/1	1/1
	2012	4		7	tr(2)	3 [1]	2/2	2/2
	2013**	3		4	tr(2)	3 [1]	2/2	2/2
	2014**	tr(2)		3	tr(1)	3 [1]	2/2	2/2
	2015**			nd	nd	2.1 [0.8]	0/1	0/1

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002~2009.

(Note 2) " ** " indicates there is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

<Air>

 α -HCH: The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.06pg/m³, and the detection range was 8.8~300pg/m³.

As results of the inter-annual trend analysis from FY2009 to FY2015, reduction tendency in specimens from warm season was identified as statistically significant.

 β -HCH: The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.08pg/m³, and the detection range was 0.36~34pg/m³.

 γ -HCH(synonym:Lindane): The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.06pg/m³, and the detection range was 1.4~51pg/m³.

As results of the inter-annual trend analysis from FY2009 to FY2015, reduction tendency in specimens from warm season was identified as statistically significant.

 δ -HCH: The presence of the substance in air was monitored at 35 sites, and it was detected at 32 of the 35 valid

sites adopting the detection limit of 0.05pg/m³, and none of the detected concentrations exceeded 22pg/m³.

In addition, it was found that there were some problems in collection of HCHs because of some parts of the air sampler that was used between FY2003 and FY2008 were contaminated by HCHs and affected monitored concentration. Therefore all samples in the air were recognized as undetectable in calculation of data for that period.

		<u> </u>		ion Maria	N(: -	Quantification	n Detection Frequence	
α-НСН	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009Warm season	58	58	340	19	0.12 [0.05]	37/37	37/37
	2009Cold season	21	18	400	7.8	0.12 [0.03]	37/37	37/37
	2010Warm season	46	51	280	14	1.4 [0.47]	37/37	37/37
	2010Cold season	19	16	410	6.8	1.4 [0.47]	37/37	37/37
	2011Warm season	43	44	410	9.5	2 5 [0 82]	35/35	35/35
Air	2011Cold season	18	15	680	6.5	2.5 [0.83]	37/37	37/37
(pg/m^3)	2012Warm season	37	37	250	15	2 1 [0 7]	36/36	36/36
	2012Cold season	12	11	120	4.4	2.1 [0.7]	36/36	36/36
	2013Warm season	36	39	220	13	5 2 [1 7]	36/36	36/36
	2013Cold season	10	8.8	75	tr(3.9)	5.2 [1.7]	36/36	36/36
	2014Warm season	44	40	650	14	0.19 [0.06]	36/36	36/36
	2015Warm season	33	32	300	8.8	0.17 [0.06]	35/35	35/35
		Coomotrio			NC .	Quantification	Detection	Frequency
β -HCH	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009Warm season	5.6	5.6	28	0.96	0.09 [0.03]	37/37	37/37
	2009Cold season	1.8	1.8	24	0.31	0.09 [0.03]	37/37	37/37
	2010Warm season	5.6	6.2	34	0.89	0.27 [0.00]	37/37	37/37
	2010Cold season	1.7	1.7	29	tr(0.26)	0.27 [0.09]	37/37	37/37
	2011Warm season	5.0	5.2	49	0.84	0.39 [0.13]	35/35	35/35
Air	2011Cold season	1.7	1.7	91	tr(0.31)		37/37	37/37
(pg/m^3)	2012Warm season	5.0	5.5	32	0.65	0.36 [0.12]	36/36	36/36
	2012Cold season	0.93	1.1	8.5	tr(0.26)		36/36	36/36
	2013Warm season	4.7	5.7	37	0.66	0.21 [0.07]	36/36	36/36
	2013Cold season	0.97	0.95	6.7	tr(0.17)	0.21 [0.07]	36/36	36/36
	2014Warm season	5.4	6.8	74	0.57	0.24 [0.08]	36/36	36/36
	2015Warm season	3.0	3.0	34	0.36	0.25 [0.08]	35/35	35/35
γ-НСН		Geometric				Quantification	Detection	Frequency
(synonym: Lindane)	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009Warm season	17	19	65	2.9	0.06 [0.02]	37/37	37/37
	2009Cold season	5.6	4.6	55	1.5	0.00 [0.02]	37/37	37/37
	2010Warm season	14	16	66	2.3	0.25 [0.12]	37/37	37/37
	2010Cold season	4.8	4.4	60	1.1	0.35 [0.12]	37/37	37/37
	2011Warm season	14	17	98	2.7	1 ([0 52]	35/35	35/35
Air	2011Cold season	5.1	4.8	67	tr(1.1)	1.6 [0.52]	37/37	37/37
(pg/m^3)	2012Warm season	13	15	55	2.3	0.05 [0.22]	36/36	36/36
/	2012Cold season	3.1	3.2	19	tr(0.63)	0.95 [0.32]	36/36	36/36
	2013Warm season	12	14	58	tr(2.0)	2 2 [0 7]	36/36	36/36
	2013Cold season	2.8	3.0	12	nd	2.2 [0.7]	34/36	34/36
	2014Warm season	14	16	100	1.7	0.17 [0.06]	36/36	36/36
	2015Warm season	8.3	10	51	1.4	0.19 [0.06]	35/35	35/35

Stocktaking of the detection of α -HCH, β -HCH, γ -HCH (synonym: Lindane) and δ -HCH in air during FY2009~2015

δ -HCH	Monitored year	Geometric			Minimum	Quantification [Detection] limit	Detection Frequency	
		mean	Median	Maximum			Sample	Site
	2009Warm season	1.3	1.3	21	0.09	0.04 [0.02]	37/37	37/37
	2009Cold season	0.36	0.33	20	0.04	0.04 [0.02]	37/37	37/37
	2010Warm season	1.4	1.3	25	0.11	0.05 [0.02]	37/37	37/37
	2010Cold season	0.38	0.35	22	0.05	0.03 [0.02]	37/37	37/37
	2011Warm season	1.1	1.1	33	0.11	0.063 [0.021]	35/35	35/35
Air	2011Cold season	0.35	0.34	26	tr(0.050)		37/37	37/37
(pg/m^3)	2012Warm season	1.0	1.3	20	tr(0.06)	0.07 [0.03]	36/36	36/36
	2012Cold season	0.18	0.19	7.3	nd	0.07 [0.03]	35/36	35/36
	2013Warm season	1.0	1.1	20	tr(0.05)	0.08 [0.03]	36/36	36/36
	2013Cold season	0.17	0.17	5.3	nd	0.08 [0.05]	34/36	34/36
	2014Warm season	1.2	1.3	50	tr(0.07)	0.19 [0.06]	36/36	36/36
	2015Warm season	0.55	0.71	22	nd	0.15 [0.05]	32/35	32/35

[12] Chlordecone (reference)

· History and state of monitoring

Chlordecone is a synthetic chlorinated organic compound, which was mainly used as an agricultural pesticide. No domestic record of manufacture/import of the substance was reported since it was historically never registrated under the Agricultural Chemicals Regulation Law. Chlordecone was adopted as a target chemical at the Fourth Meeting of the Conference of Parties (COP4) on Stockholm convention on Persistent Organic Pollutants in May 2009 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

As a continuous survey, the first survey was in FY2008. In the Initial Environmental Survey and the Detailed Environmental Survey etc. under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, the substance was monitored in air in FY2003.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY2008, and in surface water, sediment and wildlife (bivalves, fish and birds) air in FY2010 and FY2011.

No monitoring was conducted during FY2012~FY2014. For reference, the monitoring results up to FY2011 are given below.

Monitoring results until FY2011

<Surface Water>

Stocktaking of the detection of Chlordecone in surface water during FY2008~2011

	Monitored year	Geometric mean	Median			Quantification	Detection Frequency	
Chlordecone				Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2008	nd	nd	0.76	nd	0.14 [0.05]	13/46	13/46
	2010	tr(0.04)	nd	1.6	nd	0.09 [0.04]	13/49	13/49
(pg/L)	2011	nd	nd	0.70	nd	0.20 [0.05]	15/49	15/49

(Note) No monitoring was conducted in FY2009.

<Sediment>

Stocktaking of the detection of Chlordecone sediment during FY2008~2011

	Monitored	Geometric				Quantification	Detection Frequency	
Chlordecone	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
C a l'ins ant	2008	nd	nd	5.8	nd	0.42 [0.16]	23/129	10/49
Sediment	2010	nd	nd	2.8	nd	0.4 [0.2]	9/64	9/64
(pg/g-dry)	2011	nd	nd	1.5	nd	0.40 [0.20]	9/64	9/64
OT (1) ((* 1) A 1/1		1 1	1 4 1 6	1	1 * 1 /1		1 C 11	• .

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

(Note 2) No monitoring was conducted in FY2009.

<Wildlife> Stocktaking of the detection of Chlordecone in wildlife (bivalves, fish and birds) during FY2008~2014

8				(/		Ouentification	Datastian I	
Chlordecone	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Site
D' 1	2008	nd	nd	nd	nd	5.6 [2.2]	0/31	0/7
Bivalves	2010	nd	nd	nd	nd	5.9 [2.3]	0/6	0/6
(pg/g-wet)	2011	nd	nd	nd	nd	0.5 [0.2]	0/4	0/4
Fish	2008	nd	nd	nd	nd	5.6 [2.2]	0/85	0/17
	2010	nd	nd	nd	nd	5.9 [2.3]	0/18	0/18
(pg/g-wet)	2011	nd	nd	nd	nd	0.5 [0.2]	0/18	0/18
	2008	nd	nd	nd	nd	5.6 [2.2]	0/10	0/2
Birds	2010	nd		nd	nd	5.9 [2.3]	0/2	0/2
(pg/g-wet)	2011			nd	nd	0.5 [0.2]	0/1	0/1

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

(Note 2) No monitoring was conducted in FY2009.

<Air>

Stocktaking of the detection of Chlordecone in air in FY2010 and 2011

	Monitored year	Geometric			Minimum	Quantification	Detection Frequency	
Chlordecone		mean	Median	Maximum		[Detection] limit	Sample	Site
	2010Warm season	nd	nd	nd	nd	0.04 [0.02]	0/37	0/37
Air	2010Cold season	nd	nd	nd	nd		0/37	0/37
(pg/m^3)	2011Warm season	nd	nd	nd	nd		0/35	0/35
	2011Cold season	nd	nd	nd	nd		0/37	0/37

[13] Hexabromobiphenyls

· History and state of monitoring

Hexabromobiphenyls are industrial chemicals that have been used as flame retardans. Hexabromobiphenyls were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

As a continuous survey, the first survey was in FY2009. Under the framework of the Environmental Survey of Chemical Substances up to FY2001, the substance was monitored in surface water, sediment, wildlife (fish) and air in FY1989. Under the framework of the Initial Environmental Survey and the Detailed Environmental Survey etc. in the Environmental Survey and Monitoring of Chemicals after FY2002, the substance was monitored surface water and sediment in FY2003, in air in FY2004.

Under the framework of the Environmental Monitoring, the substances were monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY2009, in air in FY2010~2011 and in sediment, wildlife (bivalves, fish and birds) and air in FY2015.

· Monitoring results

<Sediment>

The presence of the substance in sediment was monitored at 62 sites, and it was detected at 9 of the 62 valid sites adopting the detection limit of 0.3pg/g-dry, and none of the detected concentrations exceeded 15pg/g-dry.

	Monitored year	l Geometric mean*	Median			Quantification	Detection Frequency	
Hexabromobiphenyls				Maximum	Minimum	[Detection] limit**	Sample	Site
	2009	nd	nd	12	nd	1.1 [0.40]	45/190	21/64
Sediment	2010	nd	nd	18	nd	1.5 [0.6]	10/64	10/64
(pg/g-dry)	2011	nd	nd	6.3	nd	3.6 [1.4]	8/64	8/64
	2015	nd	nd	15	nd	0.8 [0.3]	9/62	9/62

Stocktaking of the detection of Hexabromobiphenyls in sediment during FY2009~2015

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) " ** " indicates the sum value of the Quantification [Detection] limits of each congener in FY2009 and FY2011. (Note 3) No monitoring was conducted during FY2012~2014.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was not detected at all 3 valid areas adopting the detection limit of 5pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was not detected at all 19 valid areas adopting the detection limit of 5pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and not detected in the area adopting the detection limit of 5pg/g-wet.

Stocktaking of the detection of Hexabromobiphenyls in wildlife (bivalves, fish and birds) during FY2009~2015

	Monitored	Geometric				Quantification	Detection I	Frequency
Hexabromobiphenyls	year	mean*	Median	Maximum	Minimum	[Detection] limit**	Sample	Site
	2009	nd	nd	tr(0.53)	nd	1.3 [0.43]	1/31	1/7
Bivalves	2010	nd	nd	nd	nd	24 [10]	0/6	0/6
(pg/g-wet)	2011	nd	nd	nd	nd	3 [1]	0/4	0/4
	2015	nd	nd	nd	nd	14 [5]	0/3	0/3
	2009	tr(0.49)	tr(0.43)	6.0	nd	1.3 [0.43]	46/90	12/18
Fish	2010	nd	nd	nd	nd	24 [10]	0/18	0/18
(pg/g-wet)	2011	nd	nd	3	nd	3 [1]	5/18	5/18
	2015	nd	nd	nd	nd	14 [5]	0/19	0/19
	2009	1.6	1.6	2.1	tr(1.2)	1.3 [0.43]	10/10	2/2
Birds	2010	nd		nd	nd	24 [10]	0/2	0/2
(pg/g-wet)	2011			3	3	3 [1]	1/1	1/1
	2015***			nd	nd	14 [5]	0/1	0/1

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) "** " indicates the sum value of the Quantification [Detection] limits of each congener in FY2009 and FY2010.

(Note 3) "***" There is no consistency between the results of the ornithological survey in FY2015 and those in previous years because of the changes in the survey sites and target species.

(Note 4) No monitoring was conducted during FY2012~2014.

<Air>

The presence of the substance in air was monitored at 35 sites, and it was detected at 2 of the 35 valid sites adopting the detection limit of 0.02 pg/m^3 , and none of the detected concentrations exceeded 1.1 pg/m^3 .

Hexabromo		Geometric				Quantification	Detection I	Frequency
biphenyls	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2010Warm season	nd	nd	nd	nd	0 2 [0 1]	0/37	0/37
A :	2010Cold season	nd	nd	nd	nd	0.3 [0.1]	0/37	0/37
Air $(m \alpha/m^3)$	2011Warm season	nd	nd	nd	nd	0.3 [0.1]	0/35	0/35
(pg/m^3)	2011Cold season	nd	nd	nd	nd		0/37	0/37
	2015Warm season	nd	nd	1.1	nd	0.06 [0.02]	2/35	2/35

Stocktaking of the detection of Hexabromobiphenyls in air during FY2010~2015

(Note) No monitoring was conducted during FY2012~2014.

• Monitoring results until 2011 (reference)

<Surface Water>

Stocktaking of the detection of Hexabromobiphenyls in surface water during FY2009~2011

	Monitored	Geometric	Quantification		Quantification	Detection Frequen		
Hexabromobiphenyls	year	mean	Median	Maximum	Minimum	[Detection] limit*	Sample	Site
	2009	nd	nd	nd	nd	5.7 [2.2]	0/49	0/49
Surface Water	2010	nd	nd	nd	nd	3 [1]	0/49	0/49
(pg/L)	2011	nd	nd	nd	nd	2.2 [0.9]	0/49	0/49

(Note) "** " indicates the sum value of the Quantification [Detection] limits of each congener in FY2009 and FY2011.

[14] Polybromodiphenyl ethers (Br₄~Br₁₀)

· History and state of monitoring

Polybrominated diphenyl ethers have been used as flame retardants for plastics products. Tetrabromodiphenyl ethers, Pentabromodiphenyl ethers, Hexabromodiphenyl ethers, and Heptabromodiphenyl ethers were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

As a continuous survey, the first survey was in FY2008. Under the framework of the Environmental Survey of Chemical Substances up to FY2001, Decabromodiphenyl ether was monitored in surface water and sediment in FY1977 and FY1996, Polybromodiphenyl ethers (Br_6 , Br_8 and Br_{10}) were monitored in surface water, sediment and wildlife (fish) in FY1987 and FY1988, Polybromodiphenyl ethers ($Br_1 \sim Br_7$) were monitored in air in FY2001. In the Initial Environmental Survey and the Detailed Environmental Survey etc. under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, Decabromodiphenyl ether was monitored in surface water, sediment and wildlife (fish) in FY2002, Polybromodiphenyl ethers (Br_6 , Br_8 and Br_{10}) were monitored in sediment and wildlife (fish) in FY2003, Pentabromodiphenyl ethers were monitored in sediment and Polybromodiphenyl ethers ($Br_1 \sim Br_7$) in air in FY2004, Polybromodiphenyl ethers ($Br_1 \sim Br_7$, Br_9 and Br_{10}) were monitored in surface water in FY2005.

Under the framework of the Environmental Monitoring, Polybromodiphenyl ethers (Br₄~Br₁₀) were monitored in wildlife (bivalves, fish and birds) in FY2008, in surface water, sediment and air in FY2009 and in surface water, sediment and wildlife (bivalves, fish and birds) and air in FY2010~2012, FY2014 and FY2015.

· Monitoring results

<Surface Water>

Tetrabromodiphenyl ethers: The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 1.2pg/L, and the detection range was tr(1.2)~40pg/L.

Pentabromodiphenyl ethers: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 34 of the 48 valid sites adopting the detection limit of 2.1pg/L, and none of the detected concentrations exceeded 31pg/L.

Hexabromodiphenyl ethers: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 5 of the 48 valid sites adopting the detection limit of 0.6pg/L, and none of the detected concentrations exceeded 12pg/L.

Heptabromodiphenyl ethers: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 9 of the 48 valid sites adopting the detection limit of 0.8pg/L, and none of the detected concentrations exceeded 28pg/L.

Octabromodiphenyl ethers: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 31 of the 48 valid sites adopting the detection limit of 0.6pg/L, and none of the detected concentrations exceeded 36pg/L.

Nonabromodiphenyl ethers: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 47 of the 48 valid sites adopting the detection limit of 2pg/L, and none of the detected concentrations exceeded 330pg/L.

Decabromodiphenyl ether: The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 7pg/L, and the detection range was 140~13,000pg/L.

Tetrabromodiphenyl		Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection	1 2
ethers	year	mean				limit	Sample	Site
	2009	17	16	160	nd	8 [3]	44/49	44/49
	2010	nd	nd	390	nd	9 [3]	17/49	17/49
Surface Water	2011	11	10	180	nd	4 [2]	48/49	48/49
(pg/L)	2012	tr(3)	tr(3)	22	nd	4 [1]	47/48	47/48
	2014	tr(6)	tr(6)	51	tr(4)	8 [3]	48/48	48/48
	2015	4.3	4.1	40	tr(1.2)	3.6 [1.2]	<u>48/48</u>	48/48
Pentabromodiphenyl	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection	
ethers	year	mean	Wiediam	Maximum	Willingin	limit	Sample	Site
	2009	11	12	87	nd	11 [4]	43/49	43/49
	2010	tr(1)	tr(1)	130	nd	3 [1]	25/49	25/49
Surface Water	2011	5	4	180	nd	3 [1]	48/49	48/49
(pg/L)	2012	tr(1)	tr(1)	20	nd	2 [1]	32/48	32/48
	2014	nd	nd	39	nd	4 [2]	19/48	19/48
	2015	tr(3.0)	tr(3.2)	31	nd	6.3 [2.1]	34/48	34/48
Hexabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean	Median	Maximum	Minimum	[Detection]	Sample	Site
	2009	tr(0.9)	tr(0.7)	18	nd	limit 1.4 [0.6]	26/49	26/49
	2009	tr(0.9) nd	r(0.7) nd	18 51	nd nd	1.4 [0.6] 4 [2]	26/49	26/49 16/49
Surface Water	2010	tr(1)	nd	39	nd	3 [1]	21/49	21/49
(pg/L)	2011	nd	nd	39 7	nd	3 [1]	6/48	6/48
(pg/L)	2012	nd	nd	8	nd	4 [1]	10/48	10/48
	2014	nd	nd	12	nd	1.5 [0.6]	5/48	5/48
	2013	liu	nu	12	IIu	Quantification	Detection	
Heptabromodiphenyl	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		riequency
ethers	year	mean	wiedian	WidXillium	Iviiiiiiiuuiii	limit	Sample	
	2009	nd	nd	40	nd	4 [2]	9/49	9/49
	2010	nd	nd	14	nd	3 [1]	17/49	17/49
Surface Water	2011	nd	nd	14	nd	6 [2]	14/49	14/49
(pg/L)	2012	nd	nd	10	nd	4 [1]	9/48	9/48
	2014	nd	nd	8	nd	8 [3]	3/48	3/48
	2015	nd	nd	28	nd	2.0 [0.8]	9/48	9/48
Octabromodiphenyl	Monitored	Geometric		·	NC .	Quantification	Detection	
ethers	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	3.0	3.9	56	nd	1.4 [0.6]	37/49	37/49
	2010	tr(2)	tr(2)	69	nd	3 [1]	40/49	40/49
Surface Water	2010	4	3	98	nd	2 [1]	44/49	44/49
(pg/L)	2011	tr(2)	nd	35	nd	4 [2]	16/48	16/48
(18.2)	2012	2.5	3.7	38	nd	1.6 [0.6]	33/48	33/48
	2015	2.3	3.1	36	nd	1.5 [0.6]	31/48	31/48
NT 1 1'1 1						Quantification	Detection	
Nonabromodiphenyl ethers	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		Site
etilers	year	mean				limit	Sample	
	2009	tr(46)	tr(38)	500	nd	91 [30]	32/49	32/49
	2010	tr(17)	tr(13)	620	nd	21 [7]	39/49	39/49
Surface Water	2011	33	24	920	nd	10 [4]	47/49	47/49
(pg/L)	2012	tr(21)	tr(19)	320	nd	40 [13]	30/48	30/48
	2014	37	38	590 220	nd	6 [2]	47/48	47/48
	2015	36	33	330	nd	6[2]	47/48	47/48
Decabromodiphenyl	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection	
ether	year	mean	wiedian	waximum	winninum	limit	Sample	Site
	2009	tr(310)	tr(220)	3,400	nd	600 [200]	26/49	26/49
	2010	tr(250)	tr(200)	13,000	nd	300 [100]	31/49	31/49
			. ,			60 [20]		45/49
Surface Water	2011	200	140	28.000	na	001201	43/49	TJ/T/
Surface Water (pg/L)	2011 2012	200 tr(400)	140 tr(320)	58,000 12,000	nd nd		45/49 31/48	
Surface Water (pg/L)	2011 2012 2014	200 tr(400) 200	140 tr(320) 230	12,000 5,600	nd nd tr(14)	660 [220] 22 [9]	43/49 31/48 48/48	31/48 48/48

Stocktaking of the detection of Polybromodiphenyl ethers (Br₄~Br₁₀) in surface water during FY2009~2015

(Note) No monitoring was conducted in FY2013.

<Sediment>

Tetrabromodiphenyl ethers: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 44 of the 62 valid sites adopting the detection limit of 7pg/g-dry, and none of the detected concentrations exceeded 1,400pg/g-dry.

Pentabromodiphenyl ethers: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 44 of the 62 valid sites adopting the detection limit of 6pg/g-dry, and none of the detected concentrations exceeded 1,300pg/g-dry.

Hexabromodiphenyl ethers: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 42 of the 62 valid sites adopting the detection limit of 1pg/g-dry, and none of the detected concentrations exceeded 820pg/g-dry.

Heptabromodiphenyl ethers: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 44 of the 62 valid sites adopting the detection limit of 1pg/g-dry, and none of the detected concentrations exceeded 1,800pg/g-dry.

Octabromodiphenyl ethers: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 41 of the 62 valid sites adopting the detection limit of 16pg/g-dry, and none of the detected concentrations exceeded 1,400pg/g-dry.

Nonabromodiphenyl ethers: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 55 of the 62 valid sites adopting the detection limit of 8pg/g-dry, and none of the detected concentrations exceeded 11,000pg/g-dry.

Decabromodiphenyl ether: The presence of the substance in sediment was monitored at 62 sites, and it was detected at all 62 valid sites adopting the detection limit of 20pg/g-dry, and the detection range was 40~490,000pg/g-dry.

Tetrabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	tr(60)	tr(44)	1,400	nd	69 [23]	131/192	51/64
	2010	35	38	910	nd	6 [2]	57/64	57/64
Sediment	2011	32	30	2,600	nd	30 [10]	47/64	47/64
(pg/g-dry)	2012	27	37	4,500	nd	2 [1]	60/63	60/63
	2014	tr(24)	tr(19)	550	nd	27 [9]	44/63	44/63
	2015	30	28	1,400	nd	21 [7]	44/62	44/62
Pentabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	36	24	1,700	nd	24 [8]	146/192	57/64
	2010	26	23	740	nd	5 [2]	58/64	58/64
Sediment	2011	24	18	4,700	nd	5 [2]	62/64	62/64
(pg/g-dry)	2012	21	21	2,900	nd	2.4 [0.9]	62/63	62/63
	2014	16	14	570	nd	6 [2]	53/63	53/63
	2015	23	20	1,300	nd	18 [6]	44/62	44/62
Hexabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	21	21	2,600	nd	5 [2]	139/192	53/64
	2010	23	23	770	nd	4 [2]	57/64	57/64
Sediment	2011	31	42	2,000	nd	9 [3]	52/64	52/64
(pg/g-dry)	2012	15	19	1,700	nd	3 [1]	48/63	48/63
	2014	21	27	730	nd	5 [2]	50/63	50/63
	2015	11	15	820	nd	3 [1]	42/62	42/62

Stocktaking of the detection of Polybromodiphenyl ethers ($Br_4 \sim Br_{10}$) in sediment during FY2009~2015

Heptabromodiphenyl ethers	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
	2009	30	25	16,000	nd	9 [4]	125/192	51/64
	2010	28	18	930	nd	4 [2]	58/64	58/64
Sediment	2011	29	32	2,400	nd	7 [3]	55/64	55/64
(pg/g-dry)	2012	34	32	4,400	nd	4 [2]	48/63	48/63
	2014	19	tr(14)	680	nd	16 [6]	41/63	41/63
	2015	16	21	1,800	nd	3 [1]	44/62	44/62
Octabromodiphenyl	Monitored	Geometric				Quantification	Detection l	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	210	96	110,000	nd	1.2 [0.5]	182/192	63/64
	2010	71	76	1,800	nd	10 [4]	60/64	60/64
Sediment	2011	57	64	36,000	nd	10 [4]	55/64	55/64
(pg/g-dry)	2012	78	74	15,000	nd	19 [6]	47/63	47/63
	2014	52	58	2,000	nd	12 [4]	55/63	55/63
	2015	58	tr(44)	1,400	nd	48 [16]	41/62	41/62
Nonabromodiphenyl	Monitored	Geometric				Quantification	Detection l	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	1,100	710	230,000	nd	9 [4]	181/192	64/64
	2010	360	430	26,000	nd	24 [9]	60/64	60/64
Sediment	2011	710	630	70,000	nd	23 [9]	62/64	62/64
(pg/g-dry)	2012	360	380	84,000	nd	34 [11]	52/63	52/63
	2014	470	470	42,000	nd	60 [20]	60/63	60/63
	2015	300	420	11,000	nd	24 [8]	55/62	55/62
Decabromodiphenyl	Monitored	Geometric				Quantification	Detection l	Frequency
ether	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	year	mean				limit	Bample	
	2009	6,000	4,800	880,000	tr(30)	60 [20]	192/192	64/64
	2010	5,100	4,200	700,000	nd	220 [80]	60/64	60/64
Sediment	2011	4,200	4,700	700,000	nd	40 [20]	62/64	62/64
(pg/g-dry)	2012	5,700	6,300	760,000	nd	270 [89]	60/63	60/63
	2014	5,600	5,000	980,000	nd	240 [80]	61/63	61/63
(Note 1) "*" · Arith	2015	6,600	7,200	490,000	40	40 [20]	62/62	62/62

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) No monitoring was conducted in FY2013.

<Wildlife>

Tetrabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 6pg/g-wet, and the detection range was 32~89pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection range was tr(14)~580pg/g-wet. For birds, the presence of the substance was monitored in the area adopting the detection limit of 6pg/g-wet, and the detected in the area adopting the detection limit of 6pg/g-wet, and the detected in the area adopting the detection limit of 6pg/g-wet, and the detected in the area adopting the detection limit of 6pg/g-wet, and the detected in the area adopting the detection limit of 6pg/g-wet, and the detected in the area adopting the detection limit of 6pg/g-wet, and the detected in the area adopting the detection limit of 6pg/g-wet.

Pentabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 5pg/g-wet, and the detection range was 16~20pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 18 of the 19 valid areas adopting the detection limit of 5pg/g-wet, and none of the detected concentrations exceeded 140pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 5pg/g-wet, and the detected concentration was 22pg/g-wet.

Hexabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 5pg/g-wet, and none of the detected concentrations exceeded 41pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 18 of the 19 valid areas adopting the detection limit of 5pg/g-wet, and none of the detected concentrations exceeded 250pg/g-wet.

For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 5pg/g-wet, and the detected concentration was 30pg/g-wet.

Heptabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 5pg/g-wet, and the detected concentration was tr(11)pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 4 of the 19 valid areas adopting the detection limit of 5pg/g-wet, and none of the detected concentrations exceeded 44pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 5pg/g-wet, and the detected concentration was tr(11)pg/g-wet.

Octabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 3 areas, and it was not detected at all 3 valid areas adopting the detection limit of 5pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 9 of the 19 valid areas adopting the detection limit of 5pg/g-wet, and none of the detected concentrations exceeded 60pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 5pg/g-wet, and the detected concentration was tr(5)pg/g-wet.

Nonabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 9pg/g-wet, and the detected concentration was tr(11)pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 6 of the 19 valid areas adopting the detection limit of 9pg/g-wet, and none of the detected concentrations exceeded 35pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 9pg/g-wet, and the detected concentration was tr(12)pg/g-wet.

Decabromodiphenyl ether: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 70pg/g-wet, and the detected concentration was tr(70)pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 5 of the 19 valid areas adopting the detection limit of 70pg/g-wet, and none of the detected concentrations exceeded 380pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 70pg/g-wet. and the detected concentration was tr(90)pg/g-wet.

Tetrabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	73	61	380	20	5.9 [2.2]	31/31	7/7
	2010	59	73	310	nd	43 [16]	5/6	5/6
Bivalves	2011	96	120	490	26	16 [6]	4/4	4/4
(pg/g-wet)	2012	59	44	190	24	19 [7]	5/5	5/5
	2014	56	38	140	33	15 [6]	3/3	3/3
	2015	48	38	89	32	15 [6]	3/3	3/3
	2008	120	110	1,300	9.8	5.9 [2.2]	85/85	17/17
	2010	160	170	740	tr(16)	43 [16]	18/18	18/18
Fish	2011	110	110	860	tr(9)	16 [6]	18/18	18/18
(pg/g-wet)	2012	120	140	650	tr(10)	19 [7]	19/19	19/19
	2014	150	160	1,300	18	15 [6]	19/19	19/19
	2015	90	82	580	tr(14)	15 [6]	19/19	19/19
	2008	170	190	1,200	32	5.9 [2.2]	10/10	2/2
	2010	140		270	72	43 [16]	2/2	2/2
Birds	2011			67	67	16 [6]	1/1	1/1
(pg/g-wet)	2012	73		110	49	19 [7]	2/2	2/2
/	2014**	190		480	78	15 [6]	2/2	2/2
	2015**			36	36	15 [6]	1/1	1/1

Stocktaking of the detection of Polybromodiphenyl ethers $(Br_4 \sim Br_{10})$ in wildlife (bivalves, fish and birds) during FY2008~2015

Pentabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	32	27	94	tr(11)	16 [5.9]	31/31	7/7
	2010	32	37	98	tr(9)	14 [6]	6/6	6/6
Bivalves	2011	51	60	160	tr(12)	15 [6]	4/4	4/4
(pg/g-wet)	2012	28	24	67	tr(8)	18 [6]	5/5	5/5
	2014	30	37	41	18	12 [5]	3/3	3/3
	2015	18	19	20	16	13 [5]	3/3	3/3
	2008	30	37	280	nd	16 [5.9]	72/85	16/17
	2010	51	54	200	nd	14 [6]	16/18	16/18
Fish	2011	39	39	300	nd	15 [6]	17/18	17/18
(pg/g-wet)	2012	37	54	180	nd	18 [6]	17/19	17/19
	2014	41	47	570	nd	12 [5]	18/19	18/19
	2015	22	17	140	nd	13 [5]	18/19	18/19
	2008	150	130	440	52	16 [5.9]	10/10	2/2
D' 1	2010	150		200	120	14 [6]	2/2	2/2
Birds	2011			110	110	15 [6]	1/1	1/1
(pg/g-wet)	2012	85		110	66	18 [6]	2/2	2/2
	2014**	100		320	31	12 [5]	2/2	2/2
	2015**			22	22	13 [5]	1/1 D (()	1/1
Hexabromodiphenyl	Monitored	Geometric	Madian	M	M:	Quantification	Detection	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	19	16	82	tr(5.3)	14 [5.0]	31/31	7/7
	2008	8	16	26	u(5.5) nd	8 [3]	4/6	4/6
Bivalves	2010	38	41	81	20	10 [4]	4/4	4/4
(pg/g-wet)	2011	21	23	130	tr(6)	10 [4]	5/5	5/5
(P5/5 "(et))	2012	23	23	52	11	10 [4]	3/3	3/3
	2015	tr(9)	tr(6)	41	nd	12 [5]	2/3	2/3
	2013	46	51	310	nd	14 [5.0]	83/85	17/17
	2000	39	47	400	nd	8 [3]	16/18	16/18
Fish	2010	53	50	430	nd	10 [4]	17/18	17/18
(pg/g-wet)	2011	55	50 71	320	nd	10 [4]	18/19	18/19
(18.8)	2012	60	61	1,100	nd	10 [4]	18/19	18/19
	2015	44	45	250	nd	12 [5]	18/19	18/19
	2008	140	120	380	62	14 [5.0]	10/10	2/2
	2010	110		140	86	8 [3]	2/2	2/2
Birds	2011			96	96	10 [4]	1/1	1/1
(pg/g-wet)	2012	150		320	72	10 [4]	2/2	2/2
	2014**	170		680	42	10 [4]	2/2	2/2
	2015**			30	30	12 [5]	1/1	1/1
		~		20	20	Quantification	Detection	
Heptabromodiphenyl			Median	Maximum	Minimum	[Detection]		
ethers	year	mean*				limit	Sample	Site
	2008	tr(8.5)	tr(7.6)	35	nd	18 [6.7]	20/31	7/7
	2010	nd	nd	tr(10)	nd	30 [10]	1/6	1/6
Bivalves	2011	14	26	44	nd	11 [4]	3/4	3/4
(pg/g-wet)	2012	tr(8)	tr(6)	59	nd	12 [5]	3/5	3/5
	2014	nd	nd	13	nd	12 [5]	1/3	1/3
	2015	nd	nd	tr(11)	nd	12 [5]	1/3	1/3
	2008	tr(11)	tr(8.1)	77	nd	18 [6.7]	44/85	10/17
	2010	nd	nd	40	nd	30 [10]	4/18	4/18
Fish	2011	13	21	130	nd	11 [4]	13/18	13/18
(pg/g-wet)	2012	tr(11)	18	120	nd	12 [5]	11/19	11/19
*	2014	tr(10)	13	280	nd	12 [5]	10/19	10/19
	2015	nd	nd	44	nd	12 [5]	4/19	4/19
	2008	35	35	53	19	18 [6.7]	10/10	2/2
	2010	tr(19)		70	nd	30 [10]	1/2	1/2
Birds	2011			44	44	11 [4]	1/1	1/1
		(2		280	14	12 5	2/2	2/2
(pg/g-wet)	2012	63		200	14	12 3	212	
(pg/g-wet)	2012 2014**	19		150	nd	12 [5]	1/2	1/2

Octabromodiphenyl	Monitored	Geometric				Quantification	Detection I	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	nd	nd	10	nd	9.6 [3.6]	15/31	6/7
	2010	nd	nd	tr(10)	nd	11 [4]	2/6	2/6
Bivalves	2011	7	9	29	nd	7 [3]	3/4	3/4
(pg/g-wet)	2012	8	tr(7)	25	nd	8 [3]	4/5	4/5
	2014	tr(9.2)	11	14	tr(5)	11 [4]	3/3	3/3
	2015	nd	nd	nd	nd	14 [5]	0/3	0/3
	2008	tr(5.7)	nd	73	nd	9.6 [3.6]	35/85	7/17
	2010	tr(6)	nd	100	nd	11 [4]	8/18	8/18
Fish	2011	tr(6)	tr(7)	150	nd	7 [3]	10/18	10/18
(pg/g-wet)	2012	tr(7)	8	160	nd	8 [3]	12/19	12/19
	2014	14	13	540	nd	11 [4]	15/19	15/19
	2015	tr(7)	nd	60	nd	14 [5]	9/19	9/19
	2008	42	41	64	30	9.6 [3.6]	10/10	2/2
	2010	41		65	26	11 [4]	2/2	2/2
Birds	2011			66	66	7 [3]	1/1	1/1
(pg/g-wet)	2012	130		420	40	8 [3]	2/2	2/2
	2014**	17		140	nd	11 [4]	1/2	1/2
	2015**			tr(5)	tr(5)	14 [5]	1/1	1/1
Nonabromodiphenyl	Monitored	Geometric				Quantification	Detection l	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	2					limit	· .	
	2008	nd	nd	tr(23)	nd	35 [13]	5/31	1/7
	2010	tr(16)	tr(15)	60	nd	30 [10]	5/6	5/6
Bivalves	2011	tr(12)	tr(11)	40	nd	22 [9]	3/4	3/4
(pg/g-wet)	2012	tr(15)	25	45	nd	24 [9]	3/5	3/5
	2014	40	tr(20)	110	tr(20)	30 [10]	3/3	3/3
	2015	nd	nd	tr(11)	nd	23 [9]	1/3	1/3
	2008	nd	nd	tr(15)	nd	35 [13]	2/85	2/17
	2010	nd	nd	40	nd	30 [10]	3/18	3/18
Fish	2011	nd	nd	tr(15)	nd	22 [9]	5/18	5/18
(pg/g-wet)	2012	nd	nd	54	nd	24 [9]	9/19	9/19
	2014	tr(10)	tr(20)	40	nd	30 [10]	16/19	16/19
	2015	nd	nd	35	nd	23 [9]	6/19	6/19
	2008	tr(21)	tr(20)	tr(33)	nd	35 [13]	9/10	2/2
	2010	32		50	tr(20)	30 [10]	2/2	2/2
Birds	2011			62	62	22 [9]	1/1	1/1
(pg/g-wet)	2012	100		150	67	24 [9]	2/2	2/2
	2014**	tr(10)		tr(20)	tr(10)	30 [10]	2/2	2/2
	2015**			tr(12)	tr(12)	23 [9]	1/1	1/1

Daashuama dinhanzi	Manitanad	Geometric				Quantification	Detection l	Frequency
Decabromodiphenyl ether	Monitored year	mean* Med	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	nd	nd	tr(170)	nd	220 [74]	8/31	3/7
	2010	nd	nd	tr(190)	nd	270 [97]	2/6	2/6
Bivalves	2011	nd	nd	240	nd	230 [80]	1/4	1/4
(pg/g-wet)	2012	120	170	480	nd	120 [50]	4/5	4/5
	2014	220	tr(150)	570	tr(120)	170 [60]	3/3	3/3
	2015	nd	nd	tr(70)	nd	170 [70]	1/3	1/3
	2008	nd	nd	230	nd	220 [74]	5/76	4/16
	2010	nd	nd	tr(150)	nd	270 [97]	2/18	2/18
Fish	2011	nd	nd	tr(90)	nd	230 [80]	2/18	2/18
(pg/g-wet)	2012	tr(59)	tr(60)	380	nd	120 [50]	11/19	11/19
	2014	tr(75)	tr(70)	300	nd	170 [60]	13/19	13/19
	2015	nd	nd	380	nd	170 [70]	5/19	5/19
	2008	nd	nd	tr(110)	nd	220 [74]	4/10	1/2
	2010	nd		nd	nd	270 [97]	0/2	0/2
Birds	2011			tr(170)	tr(170)	230 [80]	1/1	1/1
(pg/g-wet)	2012	250		260	240	120 [50]	2/2	2/2
	2014**	tr(65)		tr(140)	nd	170 [60]	1/2	1/2
	2015**			tr(90)	tr(90)	170 [70]	1/1	1/1

(Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

(Note 2) "**" There is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2009 and FY2013.

<Air>

Tetrabromodiphenyl ethers: The presence of the substance in air was monitored at 35 sites, and it was detected at 30 of the 35 valid sites adopting the detection limit of 0.1pg/m³, and none of the detected concentrations exceeded 2.7pg/m³.

Pentabromodiphenyl ethers: The presence of the substance in air was monitored at 35 sites, and it was detected at 6 of the 35 valid sites adopting the detection limit of 0.2pg/m³, and none of the detected concentrations exceeded 0.9pg/m³

Hexabromodiphenyl ethers: The presence of the substance in air was monitored at 35 sites, and it was detected at 3 of the 35 valid sites adopting the detection limit of 0.4pg/m³, and none of the detected concentrations exceeded 2.0pg/m³.

Heptabromodiphenyl ethers: The presence of the substance in air was monitored at 35 sites, and it was detected at 2 of the 35 valid sites adopting the detection limit of 0.4pg/m^3 , and none of the detected concentrations exceeded $\text{tr}(0.6)\text{pg/m}^3$.

Octabromodiphenyl ethers: The presence of the substance in air was monitored at 35 sites, and it was detected at 9 of the 35 valid sites adopting the detection limit of 0.4pg/m^3 , and none of the detected concentrations exceeded 3.8pg/m^3 .

Nonabromodiphenyl ethers: The presence of the substance in air was monitored at 35 sites, and it was detected at 14 of the 35 valid sites adopting the detection limit of 1.1pg/m³, and none of the detected concentrations exceeded 12pg/m³.

Decabromodiphenyl ether: The presence of the substance in air was monitored at 35 sites, and it was detected at 30 of the 35 valid sites adopting the detection limit of 0.7pg/m³, and none of the detected concentrations exceeded 61pg/m³.

Tetrabromo	Monitored year	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection 1	
diphenyl ethers		mean			0.11	limit	Sample	Site
	2009Warm season	0.89	0.80	18	0.11	0.11 [0.04]	37/37	37/37
	2009Cold season	0.40	0.37	7.1	tr(0.04)		37/37	37/37
	2010Warm season	0.79	0.57	50 25	0.15	0.12 [0.05]	37/37	37/37
A in	2010Cold season	0.40	0.35	25	$\frac{\text{tr}(0.09)}{\text{tr}(0.11)}$		37/37	37/37
Air $(n\alpha/m^3)$	2011Warm season	0.80	0.72	9.3 7.0	tr(0.11)	0.18 [0.07]	35/35	35/35
(pg/m^3)	2011Cold season 2012Warm season	0.36	0.34	<u>7.0</u> 5.7	nd nd		<u> </u>	<u>35/37</u> 35/36
	2012 Warm season 2012Cold season	tr(0.2)	tr(0.2)	3.7 1.7	nd	0.3 [0.1]	25/36	25/36
	2012Cold season 2014Warm season	0.53	0.47	2.3	tr(0.09)	0.28 [0.09]	36/36	36/36
	2015Warm season	tr(0.3)	$\frac{0.47}{tr(0.3)}$	2.7	nd	0.4 [0.1]	30/35	30/35
	2013 Wulli Seuson		u(0.5)	2.,	114	Quantification	Detection	
Pentabromo diphenyl ethers		Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009Warm season	0.20	0.19	18	nd	0.16 [0.06]	33/37	33/37
	2009Cold season	0.19	0.16	10	nd	0.10 [0.00]	29/37	29/37
	2010Warm season	0.20	0.17	45	nd	0.12 [0.05]	35/37	35/37
	2010Cold season	0.20	0.22	28	nd	0.12 [0.03]	34/37	34/37
Air	2011Warm season	0.19	0.17	8.8	nd	0.16 [0.06]	31/35	31/35
(pg/m^3)	2011Cold season	0.16	tr(0.14)	2.6	nd	0.10 [0.00]	31/37	31/37
	2012Warm season	tr(0.13)	tr(0.12)	2.4	nd	0.14 [0.06]	30/36	30/36
	2012Cold season	tr(0.09)	tr(0.09)	0.77	nd		26/36	26/36
	2014Warm season	tr(0.13)	tr(0.14)	0.80	nd	0.28 [0.09]	25/36	25/36
	2015Warm season	nd	nd	0.9	nd	0.6 [0.2]	6/35	6/35
Hexabromo diphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
	2009Warm season	tr(0.11)	tr(0.11)	2.0	nd		19/37	19/37
	2009Cold season	tr(0.20)	0.22	27	nd	0.22 [0.09]	24/37	24/37
_	2010Warm season	tr(0.14)	tr(0.13)	4.9	nd	0.16.0001	29/37	29/37
	2010Cold season	0.24	0.27	5.4	nd	0.16 [0.06]	31/37	31/37
	2011Warm season	tr(0.11)	tr(0.10)	1.2	nd	0 14 [0 05]	28/35	28/35
(pg/m^3)	2011Cold season	0.16	0.18	1.7	nd	0.14 [0.05]	30/37	30/37
	2012Warm season	nd	nd	3.1	nd	0.3 [0.1]	9/36	9/36
	2012Cold season	tr(0.1)	tr(0.1)	0.5	nd		22/36	22/36
	2014Warm season	nd	nd	0.4	nd	0.4 [0.1]	5/36	5/36
	2015Warm season	nd	nd	2.0	nd	1.1 [0.4]	3/35	3/35
Heptabromo diphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
	2009Warm season	tr(0.1)	nd	1.7	nd		17/37	17/37
	2009Cold season	tr(0.2)	0.3	20	nd	0.3 [0.1]	25/37	25/37
	2010Warm season	tr(0.2)	tr(0.1)	1.4	nd	0.0.50.45	24/37	24/37
	2010Cold season	0.3	0.4	11	nd	0.3 [0.1]	28/37	28/37
Air	2011Warm season	tr(0.1)	tr(0.1)	1.1	nd	0.2 [0.1]	20/35	20/35
(pg/m^3)	2011Cold season	tr(0.2)	tr(0.2)	2.3	nd	0.3 [0.1]	25/37	25/37
/	2012Warm season	nd	nd	1.8	nd	0.5 [0.2]	6/36	6/36
	2012Cold season	nd	nd	0.7	nd	0.5 [0.2]	8/36	8/36
	2014Warm season	nd	nd	tr(0.4)	nd	0.7 [0.2]	2/36	2/36
	2015Warm season	nd	nd	tr(0.6)	nd	1.3 [0.4]	2/35	2/35
Octabromo		Geometric				Quantification	Detection	Frequency
diphenyl ethers		mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009Warm season	tr(0.2)	0.3	1.6	nd	0.3 [0.1]	23/37	23/37
	2009Cold season	0.3	0.4	7.1	nd	с J	26/37	26/37
	2010Warm season	0.25	0.30	2.3	nd	0.15 [0.06]	30/37	30/37
. ·	2010Cold season	0.40	0.52	6.9	nd	L J	32/37	32/37
Air $(r \alpha/rr^3)$	2011Warm season	0.24	0.31	1.9	nd	0.20 [0.08]	27/35	27/35
(pg/m^3)	2011Cold season	$\frac{0.35}{tr(0,2)}$	$\frac{0.44}{tr(0,2)}$	7.0	nd		30/37	30/37
	2012Warm season	tr(0.2)	tr(0.2)	1.2	nd	0.3 [0.1]	29/36 20/26	29/36 20/26
	2012Cold season	$\frac{0.3}{tr(0,1)}$	$\frac{0.4}{tr(0,1)}$	1.2	nd		30/36	30/36
	2014Warm season 2015Warm season	tr(0.1)	tr(0.1)	0.7	nd	0.4 [0.1]	22/36	<u>22/36</u> 9/35
	2010 warm season	nd	nd	3.8	nd	1.1 [0.4]	9/35	7133

Stocktaking of the detection of Polybromodiphenyl ethers (Br₄~Br₁₀) in air during FY2009~2015

Nonabromo		Geometric				Quantification	Detection	Frequency
diphenyl ethers	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009Warm season	tr(0.7)	tr(0.7)	3.0	nd	1 9 [0 6]	22/37	22/37
	2009Cold season	tr(1.0)	tr(0.8)	3.9	nd	1.8 [0.6]	27/37	27/37
	2010Warm season	nd	nd	24	nd	2 7 [1 2]	12/37	12/37
	2010Cold season	tr(1.2)	tr(1.3)	7.1	nd	3.7 [1.2]	22/37	22/37
Air	2011Warm season	tr(0.8)	0.9	3.9	nd	0 0 [0 4]	29/35	29/35
(pg/m^3)	2011Cold season	1.1	1.1	14	nd	0.9 [0.4]	30/37	30/37
	2012Warm season	tr(0.5)	tr(0.5)	5.1	nd	1 2 [0 4]	24/36	24/36
	2012Cold season	tr(0.9)	tr(1.1)	4.7	nd	1.2 [0.4]	30/36	30/36
	2014Warm season	nd	nd	tr(3)	nd	4 [1]	7/36	7/36
	2015Warm season	nd	nd	12	nd	3.2 [1.1]	14/35	14/35
Decabromo		Geometric				Quantification	Detection 1	Frequency
diphenyl ether	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009Warm season	tr(7)	tr(9)	31	nd	16 [5]	28/37	28/37
	2009Cold season	tr(10)	tr(11)	45	nd	16 [5]	29/37	29/37
	2010Warm season	nd	nd	290	nd	27 [0 1]	10/37	10/37
	2010Cold season	tr(11)	tr(12)	88	nd	27 [9.1]	21/37	21/37
Air	2011Warm season	tr(8.2)	tr(9.0)	30	nd	12 [4 0]	31/35	31/35
(pg/m^3)	2011Cold season	tr(8.4)	tr(9.0)	44	nd	12 [4.0]	29/37	29/37
	2012Warm season	nd	nd	31	nd	16 [5]	17/36	17/36
	2012Cold season	tr(10)	tr(12)	73	nd	16 [5]	28/36	28/36
	2014Warm season	tr(4.7)	tr(5.0)	64	nd	9 [3]	24/36	24/36
	2015Warm season	4.2	4.3	61	nd	2.2 [0.7]	30/35	30/35

(Note) No monitoring was conducted in FY2013.

[15] Perfluorooctane sulfonic acid (PFOS)

· History and state of monitoring

Perfluorooctane sulfonic acid (PFOS) has been used as electric and electronic parts, fire fighting foam, photo imaging, hydraulic fluids and textiles. Perfluorooctane sulfonic acid, its salts and perfluorooctane sulfonyl fluoride were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009, and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

As a continuous survey, the first survey was in FY2008. Under the framework the Initial Environmental Survey and the Detailed Environmental Survey etc. in the Environmental Survey and Monitoring of Chemicals after FY2002, the substance was monitored in surface water in FY2002, sediment and wildlife (fish) in FY2003, air in FY2004, surface water, sediment and wildlife (bivalves and fish) in FY2005.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY2009, in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2010~2012, FY2014 and FY2015 and in air in FY2013. The survey of the Perfluorooctane sulfonic acid (PFOS) only monitored linear octyl Perfluorooctane sulfonic acid (PFOS) from FY2002.

Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 11pg/L, and the detection range was 120~4,700pg/L.

Perfluorooctane sulfonic acid	Monitored	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection Frequency	
(PFOS)	year						Sample	Site
	2009	730	580	14,000	tr(26)	37 [14]	49/49	49/49
	2010	490	380	230,000	tr(37)	50 [20]	49/49	49/49
Surface Water	2011	480	360	10,000	tr(20)	50 [20]	49/49	49/49
(pg/L)	2012	550	510	14,000	39	31 [12]	48/48	48/48
	2014	460	410	7,500	nd	50 [20]	47/48	47/48
	2015	630	490	4,700	120	29 [11]	48/48	48/48

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in surface water during FY2009~2015

(Note) No monitoring was conducted in FY2013.

<Sediment>

The presence of the substance in sediment was monitored at 62 sites, and it was detected at all 62 valid sites adopting the detection limit of 1pg/g-dry, and the detection range was 7~2,200pg/g-dry.

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFC	FOS) in sediment during FY2009~2015
--	-------------------------------------

Perfluorooctane sulfonic acid	Monitored	Geometric	Median	Maximum	Minimum	Quantification [Detection] limit	Detection Frequency	
PFOS) year	year	mean*	Wiedian				Sample	Site
	2009	78	97	1,900	nd	9.6 [3.7]	180/190	64/64
	2010	82	100	1,700	tr(3)	5 [2]	64/64	64/64
Sediment	2011	92	110	1,100	nd	5 [2]	63/64	63/64
(pg/g-dry)	2012	68	84	1,200	tr(7)	9 [4]	63/63	63/63
	2014	59	79	980	nd	5 [2]	62/63	62/63
	2015	91	88	2,200	7	3 [1]	62/62	62/62

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) No monitoring was conducted in FY2013.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 2pg/g-wet, and none of the detected concentrations exceeded 210pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 18 of the 19 valid areas adopting the detection limit of 2pg/g-wet, and none of the detected concentrations exceeded 2,500pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 2pg/g-wet, and the detected concentrations was 790pg/g-wet.

Perfluorooctane	Monitored	Geometric	Madian	Maximum	Minimum	Quantification	Detection	Frequency
sulfonic acid (PFOS)	year	mean*	Median	Maximum	wimmum	[Detection] limit	Sample	Site
	2009	24	28	640	nd	19 [7.4]	17/31	5/7
	2010	72	85	680	nd	25 [9.6]	5/6	5/6
Bivalves	2011	38	44	100	16	10 [4]	4/4	4/4
(pg/g-wet)	2012	27	21	160	tr(4)	7 [3]	5/5	5/5
	2014	8	6	93	nd	5 [2]	2/3	2/3
	2015	7	tr(2)	210	nd	4 [2]	2/3	2/3
	2009	220	230	15,000	nd	19 [7.4]	83/90	17/18
	2010	390	480	15,000	nd	25 [9.6]	17/18	17/18
Fish	2011	82	95	3,200	nd	10 [4]	16/18	16/18
(pg/g-wet)	2012	110	130	7,300	tr(5)	7 [3]	19/19	19/19
	2014	82	83	4,600	nd	5 [2]	18/19	18/19
	2015	91	90	2,500	nd	4 [2]	18/19	18/19
	2009	300	360	890	37	19 [7.4]	10/10	2/2
	2010	1,300		3,000	580	25 [9.6]	2/2	2/2
Birds	2011			110	110	10 [4]	1/1	1/1
(pg/g-wet)	2012	160		410	63	7 [3]	2/2	2/2
	2014**	4,600		110,000	190	5 [2]	2/2	2/2
	2015**			790	790	4 [2]	1/1	1/1

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in wildlife (bivalves, fish and birds) during FY2009~2015

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) "**" indicates there is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2013.

<Air>

The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.06pg/m³, and the detection range was 0.59~8.8pg/m³.

Perfluorooct ane sulfonic	Monitored year	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection Frequency	
acid (PFOS)		mean	Wiedian		winningin	limit	Sample	Site
	2010Warm season	5.2	5.9	14	1.6	0.4.[0.1]	37/37	37/37
	2010Cold season	4.7	4.4	15	1.4	0.4 [0.1]	37/37	37/37
	2011Warm season	4.4	4.2	10	0.9	051021	35/35	35/35
	2011Cold season	3.7	3.8	9.5	1.3	0.3 [0.2]	37/37	37/37
Air	2012Warm season	3.6	3.8	8.9	1.3	0.5.[0.2]	36/36	36/36
(pg/m^3)	2012Cold season	2.7	3.0	5.9	1.0	0.5 [0.2]	36/36	36/36
	2013Warm season	4.6	5.2	9.6	1.2	0.3 [0.1]	36/36	36/36
	2013Cold season	3.7	3.9	7.4	1.6	0.5 [0.1]	36/36	36/36
	2014Warm season	3.1	3.2	8.6	0.52	0.17 [0.06]	36/36	36/36
	2015Warm season	2.8	2.6	8.8	0.59	0.19 [0.06]	35/35	35/35

[16] Perfluorooctanoic acid (PFOA)

· History and state of monitoring

Perfluorooctanoic acids (PFOA) have been used as water repellent agent, oil repellent agent and surface acting agent. The POPs Review Committee evaluates the proposals and makes recommendation to the Conference of the Parties, and currently, PFOA are under review.

As a continuous survey, the first survey was in FY2009. Under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was monitored in surface water in FY2002, sediment and wildlife (fish) in FY2003, air in FY2004, surface water, sediment and wildlife (bivalves and fish) in FY2005.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY2009, in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2010~2012, FY2014 and FY2015 and in air in FY2013. The survey of the Perfluorooctanoic acid (PFOA) only monitored linear octyl Perfluorooctanoic acid (PFOA). However, it remains possible that the survey in wildlife monitored isomer of branched-chain Perfluorooctanoic acid (PFOA).

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 22pg/L, and the detection range was 310~17,000pg/L.

Perfluorooctanoic	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification	Detection	Frequency
acid (PFOA)						[Detection] limit	Sample	Site
	2009	1,600	1,300	31,000	250	59 [23]	49/49	49/49
	2010	2,700	2,400	23,000	190	60 [20]	49/49	49/49
Surface Water	2011	2,000	1,700	50,000	380	50 [20]	49/49	49/49
(pg/L)	2012	1,400	1,100	26,000	240	170 [55]	48/48	48/48
	2014	1,400	1,400	26,000	140	50 [20]	48/48	48/48
	2015	1,400	1,200	17,000	310	56 [22]	48/48	48/48

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in surface water during FY2009~2015

(Note) No monitoring was conducted in FY2013.

<Sediment>

The presence of the substance in sediment was monitored at 62 sites, and it was detected at all 62 valid sites adopting the detection limit of 1pg/g-dry, and the detection range was 8~270pg/g-dry.

Stocktaking of the detection of Perfluorooctanoic acid ((PFOA)) in sediment during	FY2009~2015
Stoentaning of the detection of fermation of the		/ III Decalification continue	, 1 1 2000 2010

Perfluorooctanoic	Monitored year	Geometric mean*		Maximum	Minimum	Quantification	Detection 1	Frequency
acid (PFOA)			Median			[Detection] limit	Sample	Site
	2009	27	24	500	nd	8.3 [3.3]	182/190	64/64
	2010	28	33	180	nd	12 [5]	62/64	62/64
Sediment	2011	100	93	1,100	22	5 [2]	64/64	64/64
(pg/g-dry)	2012	51	48	280	12	4 [2]	63/63	63/63
	2014	44	50	190	tr(6)	11 [5]	63/63	63/63
	2015	48	48	270	8	3 [1]	62/62	62/62

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) No monitoring was conducted in FY2013.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 3.4pg/g-wet, and none of the detected concentrations exceeded 26pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 11 of the 19 valid areas adopting the detection limit of 3.4pg/g-wet, and none of the detected concentrations exceeded 99pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 3.4pg/g-wet, and the detected concentration was 31pg/g-wet.

Perfluorooctanoic	Monitored	Geometric				Quantification	Detection 1	Frequency
acid (PFOA)	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	tr(20)	tr(21)	94	nd	25 [9.9]	27/31	7/7
	2010	28	33	76	nd	26 [9.9]	5/6	5/6
Bivalves	2011	100	93	1,100	22	5 [2]	64/64	64/64
(pg/g-wet)	2012	tr(21)	tr(23)	46	nd	38 [13]	4/5	4/5
	2014	tr(4)	tr(6)	10	nd	10 [3]	2/3	2/3
	2015	tr(6.5)	tr(6.3)	26	nd	10 [3.4]	2/3	2/3
	2009	tr(23)	tr(19)	490	nd	25 [9.9]	74/90	17/18
	2010	tr(13)	tr(11)	95	nd	26 [9.9]	13/18	13/18
Fish	2011	nd	nd	51	nd	41 [14]	7/18	7/18
(pg/g-wet)	2012	tr(35)	tr(32)	86	nd	38 [13]	18/19	18/19
	2014	tr(6)	tr(4)	85	nd	10 [3]	11/19	11/19
	2015	tr(5.7)	tr(5.3)	99	nd	10 [3.4]	11/19	11/19
	2009	32	29	58	tr(16)	25 [9.9]	10/10	2/2
	2010	38		48	30	26 [9.9]	2/2	2/2
Birds	2011			nd	nd	41 [14]	0/1	0/1
(pg/g-wet)	2012	tr(27)		tr(28)	tr(26)	38 [13]	2/2	2/2
	2014**	62		2,600	nd	10 [3]	1/2	1/2
	2015**			31	31	10 [3.4]	1/1	1/1

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in wildlife (bivalves, fish and birds) during FY2009~2015

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

(Note 2) " ** " indicates there is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2013.

<Air>

The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 1.4pg/m^3 , and the detection range was tr(3.7)~260 pg/m³.

Perfluorooct		Geometric				Quantification	Detection 1	Frequency
anoic acid (PFOA)	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2010Warm season	25	26	210	4.0	0.5 [0.2]	37/37	37/37
	2010Cold season	14	14	130	2.4	0.5 [0.2]	37/37	37/37
	2011Warm season	20	18	240	tr(3.5)	5 4 [1 9]	35/35	35/35
	2011Cold season	12	11	97	nd	5.4 [1.8]	36/37	36/37
Air	2012Warm season	11	12	120	1.9	0.7.[0.2]	36/36	36/36
(pg/m^3)	2012Cold season	6.9	6.0	48	1.6	0.7 [0.2]	36/36	36/36
	2013Warm season	23	23	190	3.2	1.8 [0.6]	36/36	36/36
	2013Cold season	14	14	53	3.0	1.8 [0.0]	36/36	36/36
	2014Warm season	28	29	210	5.4	0.4 [0.1]	36/36	36/36
	2015Warm season	19	17	260	tr(3.7)	4.2 [1.4]	35/35	35/35

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in air during FY2010~2015

[17] Pentachlorobenzene

History and state of monitoring

Pentachlorobenzene have been used as used in PCB products, in dyestuff carriers, as a fungicide, a flame retardant and as a chemical intermediate e.g. previously for the production of quintozene. PeCB might still be used as an intermediate. PeCB is also produced unintentionally during combustion, thermal and industrial processes. It also present as impurities in products such as solvents or pesticides. It was historically never registered under the Agricultural Chemicals Regulation Law. The substance is produced as a by-product when agricultural chemicals are produced. In addition, it is generated unintentionally at the time of combustion. The substance was adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

As a continuous survey to FY2001, undert the framework "the Wildlife Monitoring of Chemicals," the substance was monitored in wildlife (bivalves and fish) in FY1980, wildlife (bivalves, fish and birds) from FY1979 to FY1986, in FY1988, FY1990, FY1992, FY1996 and FY1999.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2007 and FY2010~2015, and in air in FY2009.

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.5pg/L, and the detection range was 3.0~180pg/L.

	Monitored	Geometric				Quantification	Detection	Frequency
Pentachlorobenzene	year	mean		Maximum	Minimum	[Detection] limit	Sample	Site
	2007	nd	nd	nd	nd	3,300 [1,300]	0/48	0/48
	2010	8	5	100	tr(1)	4 [1]	49/49	49/49
Surface Water	2011	11	11	170	2.6	2.4 [0.9]	49/49	49/49
	2012	14	11	170	3	3 [1]	48/48	48/48
(pg/L)	2013	12	10	170	tr(3)	4 [1]	48/48	48/48
	2014	10	7.0	180	2.8	0.8 [0.3]	48/48	48/48
	2015	13	11	180	3.0	1.5 [0.5]	48/48	48/48

Stocktaking of the detection of Pentachlorobenzene in surface water during FY2007~2015

(Note) No monitoring was conducted in FY2008 and FY2009.

<Sediment>

The presence of the substance in sediment was monitored at 62 sites, and it was detected at all 62 valid sites adopting the detection limit of 0.5pg/g-dry, and the detection range was 2.4~2,600pg/g-dry.

Stocktaking of the detection of Pentachlorobenzene in sediment	during FY2007~2015
--	--------------------

	Monitored	Geometric				Quantification	Detection l	Frequency
Pentachlorobenzene	year	ar mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	tr(46)	nd	2,400	nd	86 [33]	79/192	35/64
	2010	90	95	4,200	1.0	0.9 [0.3]	64/64	64/64
C - 1:	2011	95	76	4,500	3	5 [2]	64/64	64/64
Sediment	2012	33	33	1,100	nd	2.5 [0.8]	62/63	62/63
(pg/g-dry)	2013	84	98	3,800	2.2	2.1 [0.7]	63/63	63/63
	2014	70	78	3,600	tr(1.2)	2.4 [0.8]	63/63	63/63
	2015	65	69	2,600	2.4	1.5 [0.5]	62/62	62/62

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2007.

(Note 2) No monitoring was conducted in FY2008 and FY2009.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 4.0pg/g-wet, and the detection range was tr(7.4)~18pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 18 of the 19 valid areas adopting the detection limit of 4.0pg/g-wet, and none of the detected concentrations exceeded 230pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 4.0pg/g-wet, and the detected concentrations was 53pg/g-wet.

	Monitored	Geometric				Quantification	Detection I	Frequency
Pentachlorobenzene	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	nd	nd	tr(150)	nd	180 [61]	1/31	1/7
	2010	18	16	110	5.9	1.9 [0.7]	6/6	6/6
D' 1	2011	28	16	260	10	4 [1]	4/4	4/4
Bivalves	2012	16	9.7	110	tr(5.8)	8.1 [2.7]	5/5	5/5
(pg/g-wet)	2013	nd	nd	87	nd	78 [26]	1/5	1/5
	2014	14	11	23	10	9.3 [3.1]	3/3	3/3
	2015	tr(11)	tr(9.7)	18	tr(7.4)	12 [4.0]	3/3	3/3
	2007	nd	nd	480	nd	180 [61]	36/80	10/16
	2010	42	37	230	5.6	1.9 [0.7]	18/18	18/18
E' 1	2011	36	37	220	5	4 [1]	18/18	18/18
Fish	2012	29	37	190	tr(5.0)	8.1 [2.7]	19/19	19/19
(pg/g-wet)	2013	tr(35)	tr(40)	160	nd	78 [26]	11/19	11/19
	2014	38	51	280	nd	9.3 [3.1]	18/19	18/19
	2015	26	40	230	nd	12 [4.0]	18/19	18/19
	2007	tr(140)	tr(140)	210	tr(89)	180 [61]	10/10	2/2
	2010	91		170	49	1.9 [0.7]	2/2	2/2
Birds	2011			52	52	4 [1]	1/1	1/1
	2012	77		130	46	8.1 [2.7]	2/2	2/2
(pg/g-wet)	2013**	300		390	230	78 [26]	2/2	2/2
	2014**	56		560	tr(5.6)	9.3 [3.1]	2/2	2/2
	2015**			53	53	12 [4.0]	1/1	1/1

Stocktaking of the detection of Pentachlorobenzene in wildlife (bivalves, fish and birds) during FY2007~2015

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2007.

(Note 2) " ** " indicates there is no consistency between the results of the ornithological survey after FY2013 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2008 and FY2009.

<Air>

The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.2 pg/m^3 , and the detection range was $34 \sim 170 \text{ pg/m}^3$.

Pentachloro		Geometric				Quantification	Detection 1	Frequency
benzene	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007Warm season	85	83	310	18	12 [4 9]	78/78	26/26
	2007Cold season	60	55	220	27	12 [4.8]	75/75	25/25
	2009Warm season	63	64	210	20	(4 [2 5]	111/111	37/37
	2009Cold season	25	22	120	tr(5.0)	6.4 [2.5]	111/111	37/37
	2010Warm season	68	73	140	36	1 2 [0 5]	37/37	37/37
	2010Cold season	70	69	180	37	1.2 [0.5]	37/37	37/37
Air	2011Warm season	61	60	140	30	2 1 [0 70]	35/35	35/35
(pg/m^3)	2011Cold season	59	57	180	26	2.1 [0.70]	37/37	37/37
	2012Warm season	58	57	150	31	1 8 [0 4]	36/36	36/36
	2012Cold season	55	55	120	27	1.8 [0.6]	36/36	36/36
	2013Warm season	55	58	160	27	1 7 [0 6]	36/36	36/36
	2013Cold season	55	52	110	34	1.7 [0.6]	36/36	36/36
	2014Warm season	83	86	210	39	0.9 [0.3]	36/36	36/36
	2015Warm season	67	68	170	34	0.6 [0.2]	35/35	35/35

Stocktaking of the detection of Pentachlorobenzene in air during FY2007~2015

(Note) No monitoring was conducted in FY2008 and FY2009.

[18] Endosulfans

· History and state of monitoring

Endosulfans have been used an insecticide that has been used since the 1950s to control crop pests, tsetse flies and ectoparasites of cattle and as a wood preservative. As a broad-spectrum insecticide, endosulfan is currently used to control a wide range of pests on a variety of crops including coffee, cotton, rice, sorghum and soy.

As a continuous survey, the first survey was in FY2011, under the framework of the Environmental Survey of Chemical Substances up to FY2001, the substance was monitored in surface water and sediment in FY1982 and air in FY1996.

Under the framework of the Environmental Monitoring, the substances were monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2011 and FY2012, in wildlife (bivalves, fish and birds) and air in FY2014 and FY2015.

· Monitoring results

<Wildlife>

 α -Endosulfan: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 38pg/g-wet, and the detected concentration was 130pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 1 of the 19 valid areas adopting the detection limit of 38pg/g-wet, and the detected concentration was tr(49)pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and not detected in the area adopting the detection limit of 38pg/g-wet.

 β -Endosulfan: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 11pg/g-wet, and the detected concentration was tr(22)pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 1 of the 19 valid areas adopting the detection limit of 11pg/g-wet, and the detected concentration was tr(11)pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and not detected in the area adopting the detection limit of 11pg/g-wet.

	Monitored	Geometric				Quantification	Detection l	Frequency
α-Endosulfan	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	62	120	330	nd	50 [20]	3/4	3/4
Bivalves	2012	tr(54)	tr(61)	200	nd	71 [24]	4/5	4/5
(pg/g-wet)	2014	tr(20)	nd	130	nd	60 [20]	1/3	1/3
	2015	nd	nd	130	nd	120 [38]	1/3	1/3
	2011	tr(20)	tr(20)	140	nd	50 [20]	10/18	10/18
Fish	2012	nd	nd	tr(54)	nd	71 [24]	6/19	6/19
(pg/g-wet)	2014	nd	nd	tr(30)	nd	60 [20]	1/19	1/19
	2015*	nd	nd	tr(49)	nd	120 [38]	1/19	1/19
	2011			nd	nd	50 [20]	0/1	0/1
Birds	2012	nd		nd	nd	71 [24]	0/2	0/2
(pg/g-wet)	2014*	nd		nd	nd	60 [20]	0/2	0/2
	2015*			nd	nd	120 [38]	0/1	0/1

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in wildlife (bivalves, fish and birds) during FY2011~2015

	Monitored	Geometric				Quantification	Detection I	Frequency
β -Endosulfan	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	16	26	52	4	11 [4]	4/4	4/4
Bivalves	2012	15	16	43	nd	14 [5]	4/5	4/5
(pg/g-wet)	2014	nd	nd	23	nd	19 [6]	1/3	1/3
	2015	nd	nd	tr(22)	nd	32 [11]	1/3	1/3
	2011	nd	nd	37	nd	11 [4]	9/18	9/18
Fish	2012	nd	nd	15	nd	14 [5]	6/19	6/19
(pg/g-wet)	2014	nd	nd	tr(8)	nd	19 [6]	3/19	3/19
	2015	nd	nd	tr(11)	nd	32 [11]	1/19	1/19
	2011			nd	nd	11 [4]	0/1	0/1
Birds	2012	nd		tr(7)	nd	14 [5]	1/2	1/2
(pg/g-wet)	2014*	nd		tr(8)	nd	19 [6]	1/2	1/2
	2015*			nd	nd	32 [11]	0/1	0/1

(Note 1) "*" indicates there is no consistency between the results of the ornithological survey after FY2014 and those in previous years because of the changes in the survey sites and target species.

(Note 2) No monitoring was conducted in FY2013.

<Air>

 α -Endosulfan: The presence of the substance in air was monitored at 35 sites, and it was detected at all 35 valid sites adopting the detection limit of 0.3pg/m³, and the detection range was 1.6~140pg/m³.

 β -Endosulfan: The presence of the substance in air was monitored at 35 sites, and it was detected at 33 of the 35 valid sites adopting the detection limit of 0.2pg/m³, and none of the detected concentrations exceeded 38pg/m³.

		Geometric				Quantification	Detection 1	Frequency
α-Endosulfan	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011Warm season	26	24	190	tr(7.8)	12 [4 0]	35/35	35/35
	2011Cold season	tr(9.6)	tr(9.8)	45	nd	12 [4.0]	35/37	35/37
Air	2012Warm season	23	22	98	tr(6.0)	16 [5 2]	36/36	36/36
(pg/m^3)	2012Cold season	nd	nd	19	nd	16 [5.3]	15/36	15/36
	2014Warm season	20	23	90	2.6	0.8 [0.3]	36/36	36/36
	2015Warm season	10	11	140	1.6	1.0 [0.3]	35/35	35/35
β -Endosulfan	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
	2011Warm season	2.1	1.8	11	nd	1 2 [0 20]	34/35	34/35
	2011Cold season	tr(0.80)	tr(0.90)	8.3	nd	1.2 [0.39]	31/37	31/37
Air	2012Warm season	1.3	1.3	18	nd	1 2 [0 4]	33/36	33/36
			1	1.7	nd	1.2 [0.4]	17/36	17/36
(pg/m^3)	2012Cold season	nd	nd	1./			17750	11100
-	2012Cold season 2014Warm season	nd 1.3	nd 1.4	6.1	nd	1.2 [0.4]	33/36	33/36

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in air during FY2011~2015

(Note) No monitoring was conducted in FY2013.

• Monitoring results until 2012 (reference)

<Surface Water>

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in surface water in FY2011 and FY2012

	Monitored	Geometric				Quantification	Detection I	Frequency
α -Endosulfan	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	180	nd	120 [50]	2/49	2/49
(pg/L)	2012	nd	nd	30	nd	27 [10]	3/48	3/48
β -Endosulfan	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
Surface Water	2011	nd	nd	270	nd	22 [9]	8/49	8/49
(pg/L)	2012	nd	nd	tr(12)	nd	24 [9]	1/48	1/48

<Sediment>

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in sediment in FY2011 and FY2012

	Monitored	Geometric				Quantification	Detection 1	Frequency
α -Endosulfan	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2011	tr(13)	tr(11)	480	nd	30 [10]	35/64	35/64
(pg/g-dry)	2012	nd	nd	480	nd	13 [5]	19/63	19/63
	Monitored	Geometric				Quantification	Detection 1	Frequency
β -Endosulfan	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2011	tr(5)	tr(4)	240	nd	9 [4]	38/64	38/64
(pg/g-dry)	2012	nd	nd	250	nd	13 [5]	8/63	8/63

[19] 1,2,5,6,9,10-Hexabromocyclododecanes

· History and state of monitoring

1,2,5,6,9,10-Hexabromocyclododecanes have been used a flame retardant additive, providing fire protection during the service life of vehicles, buildings or articles, as well as protection while stored. α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane and γ -1,2,5,6,9,10-Hexabromocyclododecane were adopted as target chemicals at the COP6 of the Stockholm convention on Persistent Organic Pollutants in April~May 2013, and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in May 2014.

As a continuous survey, the first survey was in FY2011, under the framework of the Environmental Survey of Chemical Substances up to FY2001, the substances were monitored in surface water, sediment and wildlife (fish) in FY1987. In the framework of the Environmental Survey and Monitoring of Chemicals after FY2002 under the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was monitored in surface water and sediment in FY2003, in wildlife (fish) in FY2004.

Under the framework of the Environmental Monitoring, α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane, γ -1,2,5,6,9,10-Hexabromocyclododecane, δ -1,2,5,6,9,10-Hexabromo cyclododecane and ε -1,2,5,6,9,10-Hexabromocyclododecan have been monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY2011, in sediment, wildlife (bivalves, fish and birds) and air in FY2012, surface water, wildlife (bivalves, fish and birds) and air in FY2014 and in sediment, wildlife (bivalves, fish and birds) and air in FY2015.

· Monitoring results

<Sediment>

 α -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 47 of the 62 valid sites adopting the detection limit of 60pg/g-dry, and none of the detected concentrations exceeded 27,000pg/g-dry.

 β -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 33 of the 62 valid sites adopting the detection limit of 60pg/g-dry, and none of the detected concentrations exceeded 7,600pg/g-dry.

 γ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in sediment was monitored at 62 sites, and it was detected at 48 of the 62 valid sites adopting the detection limit of 42pg/g-dry, and none of the detected concentrations exceeded 60,000pg/g-dry.

 δ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in sediment was monitored at 62 sites, and it was not detected at all 62 valid sites adopting the detection limit of 70pg/g-dry.

 ε -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in sediment was monitored at 62 sites, and it was not detected at all 62 valid sites adopting the detection limit of 51pg/g-dry.

α-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection	Frequency
bromocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2011	430	nd	24,000	nd	420 [280]	78/186	35/62
	2012	310	280	22,000	nd	180 [70]	47/63	47/63
(pg/g-dry)	2015	390	410	27,000	nd	150 [60]	47/62	47/62

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in sediment during FY2011~2015

β-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection	Frequency
bromocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2011	nd	nd	14,000	nd	250 [170]	48/186	21/62
	2012	tr(93)	nd	8,900	nd	150 [60]	29/63	29/63
(pg/g-dry)	2015	120	92	7,600	nd	150 [60]	33/62	33/62
y-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection 1	Frequency
bromocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
C a d'un aut	2011	670	nd	570,000	nd	400 [260]	89/186	36/62
Sediment	2012	420	330	55,000	nd	160 [60]	52/63	52/63
(pg/g-dry)	2015	330	450	60,000	nd	110 [42]	48/62	48/62
δ-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection 1	Frequency
bromocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
G 1' (2011	nd	nd	800	nd	350 [250]	11/186	6/62
Sediment	2012	nd	nd	680	nd	300 [100]	5/63	5/63
(pg/g-dry)	2015	nd	nd	nd	nd	180 [70]	0/62	0/62
a 1 2 5 6 0 10 Hova	Monitored	Geometric				Quantification	Detection 1	Frequency
ε-1,2,5,6,9,10-Hexa bromocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
C - d'an ant	2011	nd	nd	tr(260)	nd	280 [210]	2/186	1/62
Sediment	2012	nd	nd	310	nd	150 [60]	7/63	7/63
(pg/g-dry)	2015	nd	nd	nd	nd	130 [51]	0/62	0/62

(Note) No monitoring was conducted in FY2013 and FY2014.

<Wildlife>

 α -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 10pg/g-wet, and the detection range was 150~560pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 18 of the 19 valid areas adopting the detection limit of 10pg/g-wet, and none of the detected concentrations exceeded 3,000pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 10pg/g-wet, and the detected concentration was 80pg/g-wet.

 β -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 10pg/g-wet, and none of the detected concentrations exceeded 30pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 2 of the 19 valid areas adopting the detection limit of 10pg/g-wet, and none of the detected concentrations exceeded tr(20)pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and not detected in the area adopting the detection limit of 10pg/g-wet.

 γ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 10pg/g-wet, and the detection range was tr(20)~200pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 10 of the 19 valid areas adopting the detection limit of 10pg/g-wet, and none of the detected concentrations exceeded 230pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 10pg/g-wet.

 δ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in bivalves was monitored in 3 areas, and it was not detected at all 3 valid areas adopting the detection limit of 10pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 1 of the 19 valid areas adopting the detection limit of 10pg/g-wet, and the detected concentration was tr(20)pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and not detected in the area adopting the detection limit of 10pg/g-wet.

 ε -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in bivalves was monitored in 3 areas,

and it was detected at 1 of the 3 valid areas adopting the detection limit of 10pg/g-wet, and the detected concentration was tr(10)pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 1 of the 19 valid areas adopting the detection limit of 10pg/g-wet, and the detected concentration was tr(10)pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and not detected in the area adopting the detection limit of 10pg/g-wet.

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in wildlife (bivalves, fish and birds) during FY2011~2015

α-1,2,5,6,9,10-Hexa	Monitored	Geometric	NG 12	NG -	NC .	Quantification	Detection	Frequency
bromocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	1,100	1,200	13,000	tr(86)	170 [70]	10/10	4/4
Bivalves	2012	530	480	2,500	190	50 [20]	5/5	5/5
(pg/g-wet)	2014	270	270	380	200	30 [10]	3/3	3/3
	2015	260	200	560	150	30 [10]	3/3	3/3
	2011	770	850	69,000	nd	170 [70]	41/51	16/17
Fish	2012	510	560	8,700	nd	50 [20]	18/19	18/19
(pg/g-wet)	2014	240	290	15,000	nd	30 [10]	18/19	18/19
	2015	160	180	3,000	nd	30 [10]	18/19	18/19
	2011	200	nd	530	nd	170 [70]	1/3	1/1
Birds	2012	120		1,400	nd	50 [20]	1/2	1/2
(pg/g-wet)	2014*	480		1,800	130	30 [10]	2/2	2/2
	2015*			80	80	30 [10]	1/1	1/1
0125(010 Ham	Maultand	Constantia				Quantification	Detection	Frequency
β-1,2,5,6,9,10-Hexa		Geometric	Median	Maximum	Minimum	[Detection]	G 1	
bromocyclododecane	year	mean				limit	Sample	Site
	2011	tr(70)	tr(85)	240	nd	98 [40]	7/10	3/4
Bivalves	2012	tr(25)	40	90	nd	40 [10]	4/5	4/5
(pg/g-wet)	2014	tr(10)	tr(10)	tr(20)	tr(10)	30 [10]	3/3	3/3
	2015	tr(10)	tr(10)	30	nd	30 [10]	2/3	2/3
	2011	nd	nd	760	nd	98 [40]	11/51	5/17
Fish	2012	nd	nd	40	nd	40 [10]	8/19	8/19
(pg/g-wet)	2014	nd	nd	30	nd	30 [10]	5/19	5/19
	2015	nd	nd	tr(20)	nd	30 [10]	2/19	2/19
	2011	nd	nd	nd	nd	98 [40]	0/3	0/1
Birds	2012	nd		nd	nd	40 [10]	0/2	0/2
(pg/g-wet)	2014*	nd		nd	nd	30 [10]	0/2	0/2
	2015*			nd	nd	30 [10]	0/1	0/1
105(01011		<u> </u>				Quantification	Detection	Frequency
γ-1,2,5,6,9,10-Hexa bromocyclododecane	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection]	Sample	Site
5	•	4.40	170	2 200		limit		
D 1	2011	440	470	3,300	nd	210 [80]	8/10	4/4
Bivalves	2012	170	180	910	30	30 [10]	5/5	5/5
(pg/g-wet)	2014	60	60	110	30	30 [10]	3/3	3/3
	2015	70	90	200	tr(20)	30 [10]	3/3	3/3
	2011	210	tr(90)	50,000	nd	210 [80]	26/51	10/17
Fish	2012	75	80	1,600	nd	30 [10]	16/19	16/19
(pg/g-wet)	2014	30	tr(20)	2,800	nd	30 [10]	12/19	12/19
	2015	tr(20)	tr(10)	230	nd	30 [10]	10/19	10/19
	2011	tr(180)	nd	460	nd	210 [80]	1/3	1/1
Birds	2012	31		190	nd	30 [10]	1/2	1/2
(pg/g-wet)	2014*	tr(10)		tr(10)	tr(10)	30 [10]	2/2	2/2
	2015*			tr(10)	tr(10)	30 [10]	1/1	1/1

δ-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection l	Frequency
bromocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011	nd	nd	nd	nd	140 [60]	0/10	0/4
Bivalves	2012	nd	nd	nd	nd	50 [20]	0/5	0/5
(pg/g-wet)	2014	nd	nd	nd	nd	30 [10]	0/3	0/3
	2015	nd	nd	nd	nd	30 [10]	0/3	0/3
	2011	nd	nd	nd	nd	140 [60]	0/51	0/17
Fish	2012	nd	nd	nd	nd	50 [20]	0/19	0/19
(pg/g-wet)	2014	nd	nd	nd	nd	30 [10]	0/19	0/19
	2015	nd	nd	tr(20)	nd	30 [10]	1/19	1/19
	2011	nd	nd	nd	nd	140 [60]	0/3	0/1
Birds	2012	nd		nd	nd	50 [20]	0/2	0/2
(pg/g-wet)	2014*	nd		nd	nd	30 [10]	0/2	0/2
	2015*			nd	nd	30 [10]	0/1	0/1
ε-1,2,5,6,9,10-Hexa	Monitored	Geometric				Quantification	Detection l	Frequency
bromocyclododecane	year	mean	Median	Maximum	Minimum	[Detection]	Samula	Site
bioinocyclododecane	year	mean				limit	Sample	Sile
	2011	nd	nd	nd	nd	140 [60]	0/10	0/4
Bivalves	2012	nd	nd	tr(30)	nd	40 [20]	1/5	1/5
(pg/g-wet)	2014	nd	nd	tr(20)	nd	30 [10]	1/3	1/3
	2015	nd	nd	tr(10)	nd	30 [10]	1/3	1/3
	2011	nd	nd	nd	nd	140 [60]	0/51	0/17
Fish	2012	nd	nd	tr(30)	nd	40 [20]	3/19	3/19
(pg/g-wet)	2014	nd	nd	80	nd	30 [10]	3/19	3/19
	2015	nd	nd	tr(10)	nd	30 [10]	1/19	1/19
	2011	nd	nd	nd	nd	140 [60]	0/3	0/1
Birds	2012	nd		nd	nd	40 [20]	0/2	0/2
(pg/g-wet)	2014*	nd		nd	nd	30 [10]	0/2	0/2
	2015*			nd	nd	30 [10]	0/1	0/1

(Note 1) "*": There is no consistency between the results of the ornithological survey in FY2015 and those in previous years because of the changes in the survey sites and target species.

(Note 2) No monitoring was conducted in FY2013 and FY2014.

<Air>

 α -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in air was monitored at 35 sites, and it was detected at 26 of the 35 valid sites adopting the detection limit of 0.3pg/m³, and none of the detected concentrations exceeded 30pg/m³.

 β -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in air was monitored at 35 sites, and it was detected at 7 of the 35 valid sites adopting the detection limit of 0.3pg/m³, and none of the detected concentrations exceeded 3.9pg/m³.

 γ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in air was monitored at 35 sites, and it was detected at 11 of the 35 valid sites adopting the detection limit of 0.3pg/m³, and none of the detected concentrations exceeded 4.4pg/m³.

 δ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in air was monitored at 35 sites, and it was detected at 1 of the 35 valid sites adopting the detection limit of 0.6pg/m³, and the detected concentration was 1.9pg/m³.

 ε -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in air was monitored at 35 sites, and it was not detected at all 35 valid sites adopting the detection limit of 0.3pg/m³.

$\frac{FY2012\sim2013}{\alpha-1,2,5,6,9,10}$	5	<u> </u>				Quantification	Detection I	Frequency
Hexabromo cyclododecane	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
-	2012Warm season	1.7	2.2	130	nd	0 ([0 2]	31/36	31/36
Air	2012Cold season	2.9	3.0	63	nd	0.6 [0.2]	35/36	35/36
(pg/m^3)	2014Warm season	tr(0.6)	tr(0.7)	3.1	nd	1.2 [0.4]	25/36	25/36
	2015Warm season	tr(0.6)	tr(0.7)	30	nd	0.9 [0.3]	26/35	26/35
β-1,2,5,6,9,10-		Geometric				Quantification	Detection l	Frequency
Hexabromo cyclododecane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2012Warm season	0.5	0.5	29	nd	0.2 [0.1]	30/36	30/36
Air	2012Cold season	0.8	0.8	18	nd	0.3 [0.1]	35/36	35/36
(pg/m^3)	2014Warm season	nd	nd	tr(0.8)	nd	1.0 [0.3]	8/36	8/36
	2015Warm season	nd	nd	3.9	nd	0.8 [0.3]	7/35	7/35
y-1,2,5,6,9,10-		a , :				Quantification	Detection l	Frequency
Hexabromo cyclododecane	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2012Warm season	1.6	1.7	280	nd	0.2 [0.1]	31/36	31/36
Air	2012Cold season	2.1	1.8	84	nd	0.3 [0.1]	35/36	35/36
(pg/m^3)	2014Warm season	nd	nd	tr(1.2)	nd	1.3 [0.4]	4/36	4/36
	2015Warm season	nd	nd	4.4	nd	0.8 [0.3]	11/35	11/35
δ-1,2,5,6,9,10-		C				Quantification	Detection l	Frequency
Hexabromo cyclododecane	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2012Warm season	nd	nd	0.8	nd	0 4 [0 2]	1/36	1/36
Air	2012Cold season	nd	nd	1.1	nd	0.4 [0.2]	1/36	1/36
(pg/m^3)	2014Warm season	nd	nd	nd	nd	1.8 [0.6]	0/36	0/36
	2015Warm season	nd	nd	1.9	nd	1.9 [0.6]	1/35	1/35
ε-1,2,5,6,9,10-		Casmatria				Quantification	Detection l	Frequency
Hexabromo cyclododecane	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2012Warm season	nd	nd	nd	nd	0.6 [0.2]	0/36	0/36
Air	2012Cold season	nd	nd	tr(0.5)	nd	0.6 [0.2]	1/36	1/36
		1			1	0.0.50.23	0 /2 6	0/0 (
(pg/m^3)	2014Warm season	nd	nd	nd	nd	0.9 [0.3]	0/36	0/36

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in wildlife (bivalves, fish and birds) during FY2012~2015

(Note) No monitoring was conducted in FY2013.

• Monitoring results until 2009 (reference)

<Surface Water>

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in surface wate during FY2011~2014

α-1,2,5,6,9,10-Hexabro	Monitored	Geometric				Quantification	Detection I	Frequency
mocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	6,300	nd	1,500 [600]	4/47	4/47
(pg/L)	2014	nd	nd	1,600	nd	1,500 [600]	1/48	1/48
β-1,2,5,6,9,10-Hexabro	Monitored	Geometric				Quantification	Detection I	Frequency
mocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	1,300	nd	1,300 [500]	4/47	4/47
(pg/L)	2014	nd	nd	tr(300)	nd	500 [200]	1/48	1/48
y-1,2,5,6,9,10-Hexabrom	Monitored	Geometric				Quantification	Detection H	Frequency
ocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	65,000	nd	1,200 [500]	5/47	5/47
(pg/L)	2014	nd	nd	nd	nd	700 [300]	0/48	0/48
\$1256010 Hovebro	Monitored	Gaamatria				Quantification	Detection H	Frequency
δ-1,2,5,6,9,10-Hexabro mocyclododecane	year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	nd	nd	790 [300]	0/47	0/47

E-1,2,5,6,9,10-Hexabron	n Monitored	Geometric				Quantification	Detection I	Frequency
ocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	nd	nd	740 [300]	0/47	0/47
(pg/L)	2014	nd	nd	nd	nd	400 [200]	0/48	0/48
	• 1	11 11/2001		10				

(Note 2) No monitoring was conducted in FY2012 and FY2013.

[20] Total Polychlorinated Naphthalenes (Total PCNs)

· History and results of the monitoring

Polychlorinated Naphthalenes (PCNs) make effective insulating coatings for electrical wires and have been used as wood preservatives, as rubber and plastic additives, for capacitor dielectrics and in lubricants. The substances with over 3 chloric ions were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in August 1979. And PCNs (Cl₂~Cl₈) was adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants in May 2015 and Dichloronaphthalene designated as a Class I Specified Chemical Substance under the Chemical Substance under the Chemical Substance Scontrol Law in Persistent Organic Pollutants in May 2015 and Dichloronaphthalene designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2016.

In previous monitoring series, Polychlorinated Naphthalenes were monitored in wildlife (bivalves, fish and birds) during the period of FY1980~1985 FY1987 FY 1989 FY 1991 and FY 1993 under the framework of "the Wildlife Monitoring."

Under the framework of "the Environmental Monitoring", Polychlorinated Naphthalenes with over a chloric ions have been monitored in wildlife (bivalves, fish and birds) in FY 2006, in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2008, in air in FY2014 and in wildlife (bivalves, fish and birds) in FY2015.

· Monitoring results

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of *18pg/g-wet, and none of the detected concentrations exceeded 580pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 13 of the 19 valid areas adopting the detection limit of *18pg/g-wet, and none of the detected concentrations exceeded 390pg/g-wet. For birds, the presence of the substance was monitored in 1 area, and detected in the area adopting the detection limit of 18pg/g-wet, and the detected concentration was tr(20)pg/g-wet.

Stocktaking of the detection of Total Polychlorinated Naphthalenes in wildlife (bivalves, fish and birds) during FY2006~2015

Total Polychlorinated	1 Monitored	Geometric				Quantification	Detection 1	Frequency
Naphthalenes	year	mean	Median	Maximum	Minimum	[Detection] limit*	Sample	Site
Bivalves	2006	85	73	1.2	tr(19)	27 [11]	31/31	7/7
	2008	77	73	1,300	tr(11)	26 [10]	31/31	7/7
(pg/g-wet)	2015	70	67	580	nd	54 [18]	2/3	2/3
E:-1	2006	68	49	2,700	nd	27 [11]	78/80	16/16
Fish	2008	55	40	2,200	nd	26 [10]	79/85	17/17
(pg/g-wet)	2015	tr(50)	85	390	nd	54 [18]	13/19	13/19
Birds	2006	tr(17)	tr(18)	27	tr(11)	27 [11]	10/10	2/2
	2008	nd	nd	tr(22)	nd	26 [10]	5/10	1/2
(pg/g-wet)	2015**			tr(20)	tr(20)	54 [18]	1/1	1/1

(Note 1) " * " indicates the sum value of the Quantification [Detection] limits of each congener.

(Note 2) " ** " indicates there is no consistency between the results of the ornithological survey in FY2015 and those in previous years because of the changes in the survey sites and target species.

(Note 3) No monitoring was conducted in FY2007 and FY2009~2014.

• Monitoring results until 2014 (reference)

<Surface Water>

Total Polychlorinated	Monitored	Geometric		•		Quantification	Detection I	requency
Naphthalenes	year	mean	Median	Maximum	Minimum	[Detection] limit*	Sample	Site
Surface Water (pg/L)	2008	nd	nd	180	nd	85[30]	9/48	9/48

Staalttaking of the detection of Total Delyahlaminated Neghthalanas in surface water in EV2000

(Note) "* " indicates the sum value of the Quantification [Detection] limits of each congener.

<Sediment>

Stocktaking of the de	Stocktaking of the detection of Total Polychlorinated Naphthalenes in sediment in FY2008							
Total Polychlorinated	Monitored	Geometric				Quantification	Detection l	Frequency
Naphthalenes	year	mean	Median	Maximum	Minimum	[Detection] limit*	Sample	Site
Sediment (pg/g-dry)	2008	360	400	28,000	nd	84[30]	166/189	58/63
(Note) "*" indicates the sum value of the Quantification [Detection] limits of each congener								

(Note) "indicates the sum value of the Quantification [Detection] limits of each congener.

<Air>

Stocktaking of the detection of Total Polychlorinated Naphthalenes in sediment in FY2008 and FY2014

Total Polychlorinated	Monitored	Geometric				Quantification	Detection I	Frequency
Naphthalenes year	mean Median	Maximum	Minimum	[Detection] limit*	Sample	Site		
	2008Warm season	200	230	660	35	4.0[1.3]	22/22	22/22
Air (pg/m ³)	2008Cold season	tr(9.6)	tr(9.8)	45	nd	4.0[1.3]	36/36	36/36
	2014Warm season	110	130	1,600	5.4	2.8 [1.0]	36/36	36/36

(Note 1) "*" indicates the sum value of the Quantification [Detection] limits of each congener.

(Note 3) No monitoring was conducted during FY2009~2013.

[21] Hexachlorobuta-1,3-diene

· History and results of the monitoring

Hexachlorobuta-1,3-diene had been used as a solvent for other chlorine-containing compounds.. The substance was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law on April 2005. The substance was adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants in May 2015.

As a continuous survey, the first survey was in FY2007, under the framework of the Environmental Survey of Chemical Substances up to FY2002, the substance was monitored in surface wate and sediment in FY1981, under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, in the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was monitored in surface water and sediment in FY2007.

Under the framework of the Environmental Monitoring, the substances have been monitored in surface water sediment and wildlife (bivalves, fish and birds) in FY2013, and in air in FY2015.

· Monitoring results

<Air>

The presence of the substance in air was monitored at 34 sites, and it was detected at all 34 valid sites adopting the detection limit of 11pg/m³, and the detection range was 45~3,500pg/m³.

	Stocktaking of the	detection of Hexachlo	orobuta-1,3-diene in air ii	1 FY2015
--	--------------------	-----------------------	-----------------------------	----------

Hexachlorobuta	Monitored	Geometric				Quantification	Detection I	Frequency
1,3-diene	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Air (pg/m ³)	2015Warm season	1,100	1,200	3,500	45	29 [11]	102/102	34/34

Monitoring results until FY2013

<Surface Water>

Stocktaking of the detection of Hexachlorobuta-1,3-diene in surface water in FY2007 and FY2013

Hexachlorobuta	Monitored	Geometric				Quantification	Detection I	Frequency
1,3-diene	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2007	nd	nd	nd	nd	870 [340]	0/48	0/48
(pg/L)	2013	nd	nd	tr(43)	nd	94 [37]	1/48	1/48
(Note) No monitori	na was conduc	ted during FV	2008 - 2012					

(Note) No monitoring was conducted during FY2008~2012.

<Sediment>

Stocktaking of the detection	of Hexachlorobuta-1.3-diene i	in sediment in FY2007 and FY2013

Hexachlorobuta	Monitored	Geometric				Quantification	Detection 1	Frequency
1,3-diene	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2007	nd	nd	1,300	nd	22 [8.5]	22/192	10/64
(pg/g-dry)	2013	nd	nd	1,600	nd	9.9 [3.8]	40/189	20/63
(Note) No monitoring was conducted during EV2008, 2012								

(Note) No monitoring was conducted during FY2008~2012.

<Wildlife>

Stocktaking of the detection of Hexachlorobuta-1,3-diene in wildlife (bivalves, fish and birds) in FY2007 and FY2013

Hexachlorobuta 1,3-diene	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification	Detection Frequency	
						[Detection] limit	Sample	Site
Bivalves	2007	nd	nd	nd	nd	36 [12]	0/31	0/7
(pg/g-wet)	2013	nd	nd	tr(7.1)	nd	9.4 [3.7]	3/13	1/5
Fish	2007	nd	nd	nd	nd	36 [12]	0/80	0/16
(pg/g-wet)	2013	nd	nd	59	nd	9.4 [3.7]	7/57	4/19
Birds	2007	nd	nd	nd	nd	36 [12]	0/10	0/2
(pg/g-wet)	2013*	nd	nd	nd	nd	9.4 [3.7]	0/6	0/2

(Note 1) "*" indicates there is no consistency between the results of the ornithological survey in FY2015 and those in previous years because of the changes in the survey sites and target species. (Note 2) No monitoring was conducted during FY2008~2012.

[22] Pentachlorophenol

· History and state of monitoring

Pentachlorophenol was used as a herbicide, insecticide, fungicide, algaecide, disinfectant and as an ingredient in antifouling paint. Pentachlorophenol and its salts and esters were adopted as target chemicals at the COP7 of the Stockholm convention on Persistent Organic Pollutants in May 2015, and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in Octorber 2016.

As a continuous survey, the first survey was in FY2015, under the framework of the Environmental Survey of Chemical Substances up to FY2007, the substance was monitored in surface water and sediment in FY1974 and FY1996, and under the framework of the Environmental Survey and Monitoring of Chemicals after FY2002, in the Initial Environmental Survey and the Detailed Environmental Survey etc., the substance was monitored in surface water in FY2005.

Under the framework of the Environmental Monitoring, Pentachlorophenol was monitored in surface water in FY2015.

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 48 sites, and it was detected at 25 of the 48 valid sites adopting the detection limit of 85pg/L, and none of the detected concentrations exceeded 26,000 pg/L.

Stocktaking of the e	Monitored	Geometric				Quantification	Detection l	Frequency
Pentachlorophenol	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water (pg/L)	2015	130	90	26,000	nd	260 [85]	25/48	25/48

Stocktaking of the detection of Pentachlorophenol in surface water in FY2015

•References

- i) Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment, "Chemicals in the Environment," the Surface Water/Sediment Monitoring (http://www.env.go.jp/chemi/kurohon/)
- ii) Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment, "Chemicals in the Environment," the Wildlife Monitoring (http://www.env.go.jp/chemi/kurohon/)
- iii) Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment, "Chemicals in the Environment," the Follow-up Survey of the Status of Pollution by Unintentionally Formed Chemicals (http://www.env.go.jp/chemi/kurohon/)
- iv) Environmental Health and Safety Division, Environmental Health Department, Ministry of the Environment, "Chemicals in the Environment," the Environmental Survey of Chemical Substances (http://www.env.go.jp/chemi/kurohon/)

oEgg of Great Cormorants (egg yolk and white) (References)

In the FY2015 monitoring survey, eggs of great cormorants were analyzed to check for the presence of 13 chemicals (groups): Total PCBs, Hexachlorobenzene, Heptachlors, Toxaphenes, HCHs (hexachlorohexanes), Hexabromobiphenyls, Polybromodiphenyl ethers, Perfluorooctane sulfonic acid (PFOS), Perfluorooctanoic acid (PFOA), Pentachlorobenzene, Endosulfans and 1,2,5,6,9,10-Hexabromocyclododecanes. The eggs were taken under Shimosone-bashi Bridge Riv. Fuefuki by Yamanashi Institute for Public Health and Environment and Yamanashi Prefectural Fisheries Technology Center, and the concentrations of the target chemicals in the egg yolk and white were measured respectively. The results of the analysis in Table 1.

		Orantification	Egg of Gre	(Reposted) Adult of Great Cormoran** Riv.Tenjin	
No.	Target chemicals	Quantification [Detection] Limits	Shimosone-bashi (Kof		
			Egg yolk	Egg white	(Kurayoshi City)
[1]	Total PCBs	52 [17]*	5,400	3,000,000	5,000
[2]	НСВ	20 [6.5]	150	52,000	760
	Heptachlors				
503	[8-1] Heptachlor	3.0 [1.0]	nd	tr(2.5)	nd
[8]	[8-2] cis-Heptachlor epoxide	2.1 [0.8]	73	13,000	20
	[8-3] trans-Heptachlor epoxide	7 [3]	nd	150	nd
	Toxaphenes				
	[9-1] 2-endo,3-exo,5-endo,6-exo,8,8,10,10- octachlorobornane (Parlar-26)	23 [9]	nd	1,300	tr(10)
[9]	[9-2] 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10- nonachlorobornane (Parlar-50)	30 [10]	nd	280	nd
	[9-3] 2,2,5,5,8,9,9,10,10-Nonachlorobornane (Parlar-62)	150 [60]	nd	nd	nd
	HCHs (Hexachlorohexanes)			1	-
	[11-1] α-HCH	3.0 [1.0]	7.4	450	13
[11]	[11-2] <i>β</i> -HCH	3.0 [1.0]	480	15,000	57
	[11-3] y-HCH (synonym:Lindane)	4.8 [1.6]	11	1,100	nd
	[11-4] δ-HCH	2.1 [0.8]	nd	27	nd
[13]	Hexabromobiphenyls	14 [5]	nd	nd	nd
	Polybromodiphenyl ethers(Br ₄ ~Br ₁₀)				
	[14-1] Tetrabromodiphenyl ethers	15 [6]	130	40,000	36
	[14-2] Pentabromodiphenyl ethers	13 [5]	27	27,000	22
[1.4]	[14-3] Hexabromodiphenyl ethers	12 [5]	24	33,000	30
[14]	[14-4] Heptabromodiphenyl ethers	12 [5]	nd	17,000	tr(11)
	[14-5] Octabromodiphenyl ethers	14 [5]	nd	15,000	tr(5)
	[14-6] Nonabromodiphenyl ethers	23 [9]	nd	940	tr(12)
	[14-7] Decabromodiphenyl ether	170 [70]	nd	1,200	tr(90)
[15]	Perfluorooctane sulfonic acid (PFOS)	4 [2]	200	64,000	790
[16]	Perfluorooctanoic acid (PFOA)	10 [3.4]	tr(6.3)	460	31
[17]	Pentachlorobenzene	12 [4]	25	6,700	53
	Endosulfans				
[18]	[18-1] α-Endosulfan	120 [38]	nd	tr(78)	nd
	[18-2] β-Endosulfan	32 [11]	nd	140	nd
	1,2,5,6,9,10-Hexabromocyclododecanes				
	[19-1] α-1,2,5,6,9,10-Hexabromocyclododecane	30 [10]	310	62,000	80
	$[19-2]\beta$ -1,2,5,6,9,10-Hexabromocyclododecane	30 [10]	nd	nd	nd
[19]	[19-3] γ-1,2,5,6,9,10-Hexabromocyclododecane	30 [10]	nd	790	tr(10)
	[19-4] δ-1,2,5,6,9,10-Hexabromocyclododecane	30 [10]	nd	nd	nd
	[19-5] ɛ-1,2,5,6,9,10-Hexabromocyclododecane	30 [10]	nd	nd	nd
	Total Polychlorinated Naphthalenes	54 [18]*	nd	9,200	tr(20)
[20]	Polychlorinated Naphthalenes (Cl ₂ ~Cl ₈)	42 [14]*	nd	9,200	tr(20)

(Note 1) "*" indicates the sum value of the Quantification [Detection] limits of each congener. (Note 2) "**" indicates these values are previously mentioned in the main part but are mentioned here again to indicate the stage of life cycle of great cormorants from egg to adult.