Chapter 3 Results of the Environmental Monitoring in FY2014

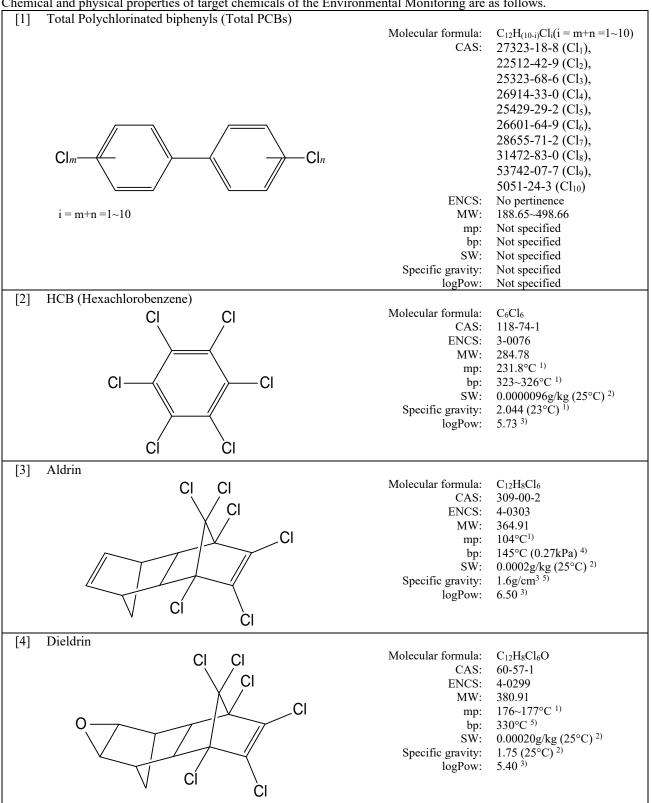
1. Purpose of the monitoring

Environmental Monitoring provides annual surveys of the environmental persistence of target chemicals as listed in the Stockholm Convention, chemicals that while undesignated are still subject to review for potential risk, and/or highly persistent chemicals annotated as Specified Chemical Substances and Monitored Chemical Substances under the Law Concerning the Examination and Regulation of Manufacture, etc. of Chemical Substances (aka, the Chemical Substances Control Law), all target chemicals whose year to year changes in persistence in the environment must be understood.

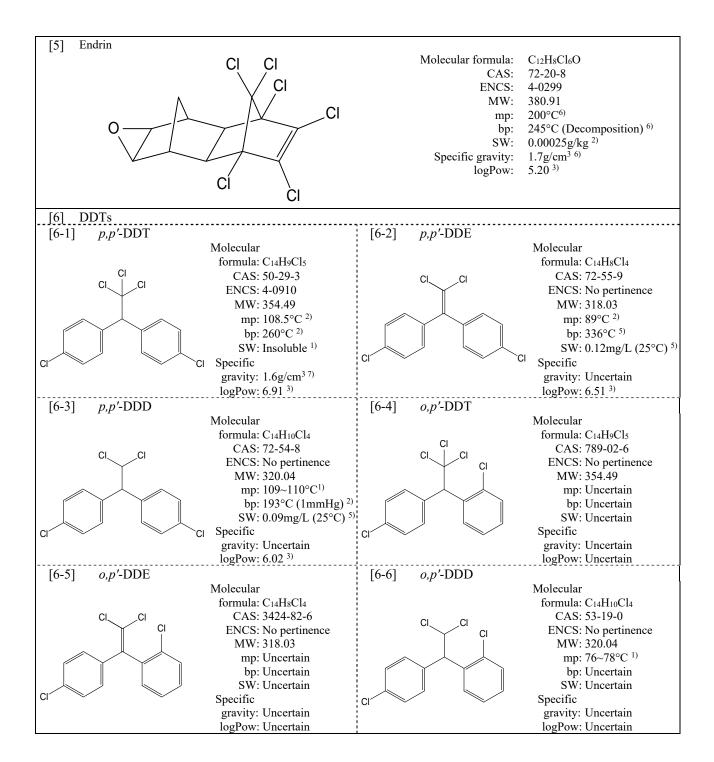
*POPs: persistent organic pollutants

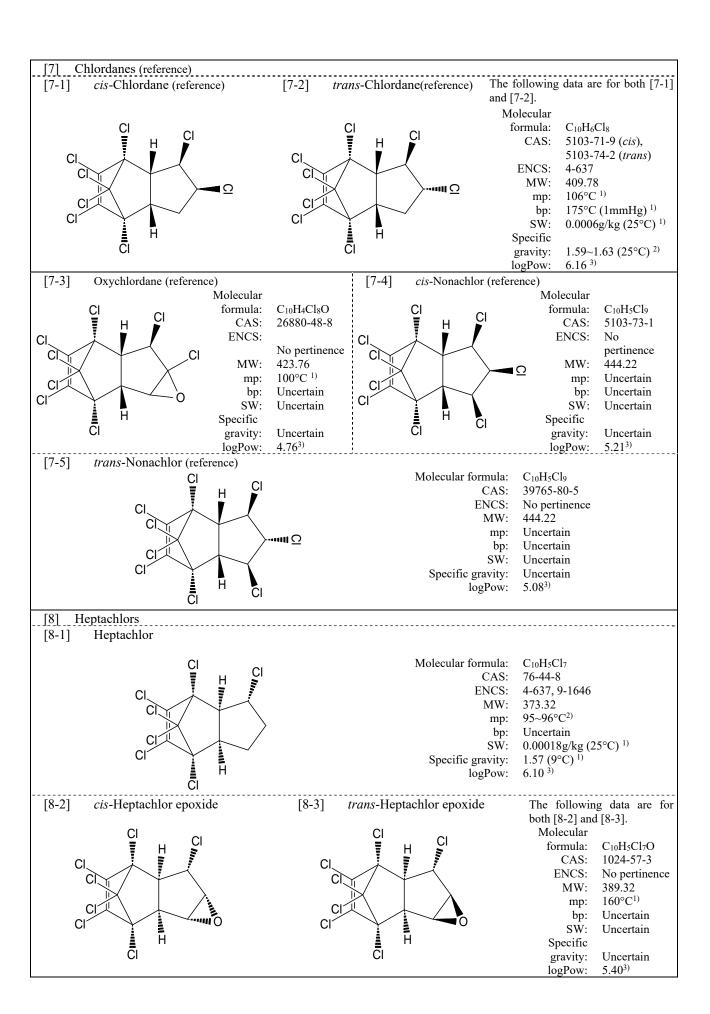
2. Target chemicals

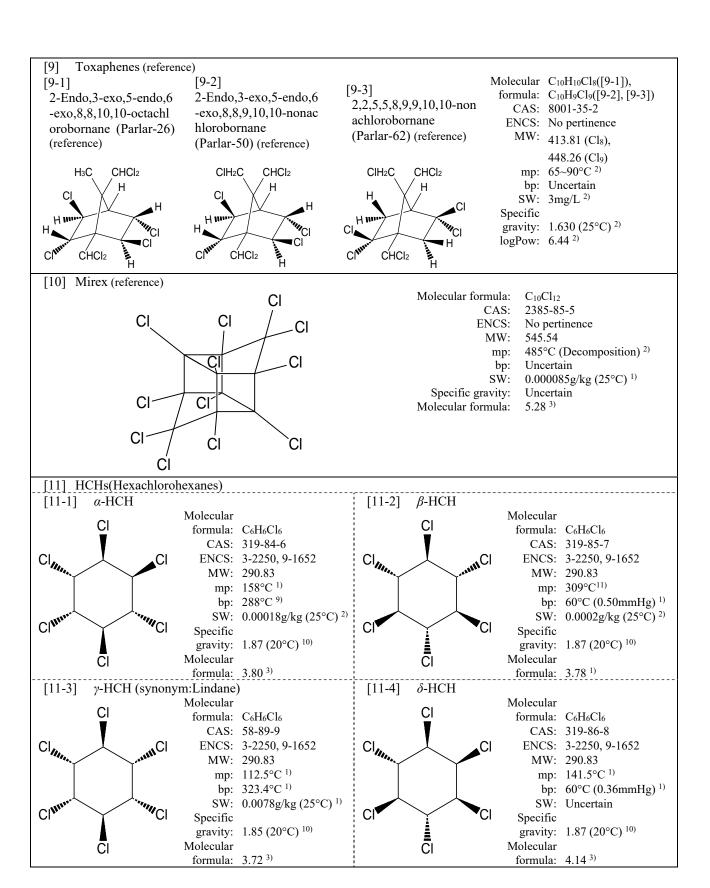
In the FY2014 Environmental Monitoring, usual 14 chemicals (groups) which added Hexachlorohexanes*, Polybromodiphenyl ethers(Br₄~Br₁₀)**, Perfluorooctane sulfonic acid (PFOS), Pentachlorobenzene, Endosulfans, 1,2,5,6,9,10-Hexabromocyclododecanes, Total Polychlorinated Naphthalenes which were adopted to be POPs in the Stockholm Convention at fourth meeting of the Conference of the Parties held from 4 to 8 May 2009, and 4 chemicals (groups), namely, Perfluorooctane sulfonic acid (PFOS), Endosulfans which was adopted to be POPs in the Stockholm Convention at fifth meeting of the Conference of the Parties held from 25 to 29 April 2011, 1,2,5,6,9,10-Hexabromocyclododecanes which was adopted to be POPs in the Stockholm Convention at sixth meeting of the Conference of the Parties held from April to May 2013, Total Polychlorinated Naphthalenes which was adopted to be POPs in the Stockholm Convention at seventh meeting of the Conference of the Parties held in April 2015, to initial 7 chemicals*** (groups), namely, Total Polychlorinated biphenyls (Total PCBs), Hexachlorobenzene, Aldrin, Dieldrin, Endrin, DDTs and Heptachlors included in the Stockholm Convention (hereafter, POPs), and 1 chemicals (groups), namely, Perfluorooctanoic acid (PFOA) which has been discussed whether to be adopted to be POPs in the persistent organic pollutants review committee, were designated as target chemicals. The combinations of target chemicals and the monitoring media are given below.

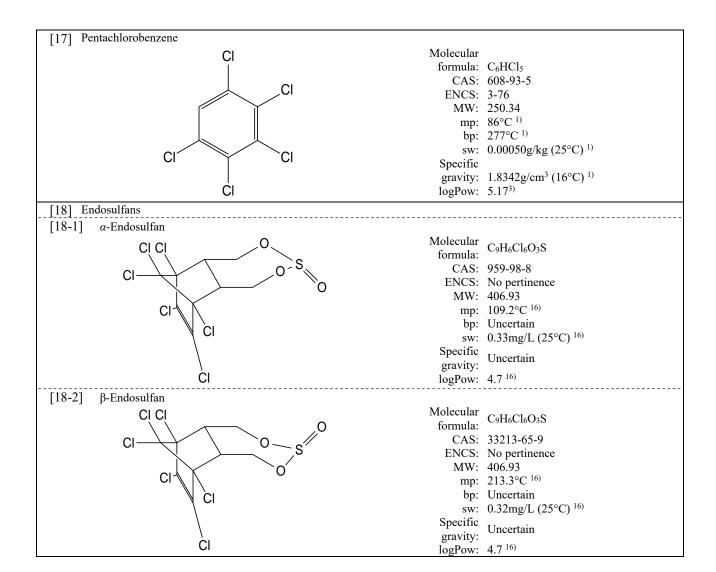

- * In the COP4, α -HCH, β -HCH and γ -HCH (synonym:Lindane) were adopted to be POPs among HCHs, but in this Environmental Monitoring, HCHs which were able to include δ -HCH were designated as target chemicals.
- ** In the COP4, Tetrabromodiphenyl ethers, Pentabromodiphenyl ethers, Hexabromodiphenyl ethers and Heptabromodiphenyl ethers were adopted to be POPs among Polybromodiphenyl ethers but in this Environmental Monitoring, Polybromodiphenyl ethers (Br₄~Br₁₀) which were able to include Octabromodiphenyl ethers Nonabromodiphenyl ethers and Decabromodiphenyl ether were designated as target chemicals.
- *** Up to FY2009, the ten (10) target substance groups of pollutants annotated in the Stockholm Convention text with the exceptions of Polychlorinated dibenzo-p-dioxin (PCDDs) and Polychlorinated dibenzo-furans (PCDFs) were monitored each fiscal year. As of FY2010, the scope of monitoring had been reviewed and adjustments made to implementation frequency; as some target substances were re-designated for every few yeas monitoring, the scope did not include seven (7) substances (groups): Chlordanes, Toxaphenes, Mirex, Chlordecone, Hexabromobiphenyls, Hexachlorobuta-1,3-diene and Pentachlorophenol. In this vein, the latest fiscal year findings for these six (6) target substances excluding Pentachlorophenol not specifically monitored in FY2014 have been included in this report for purpose of reference.

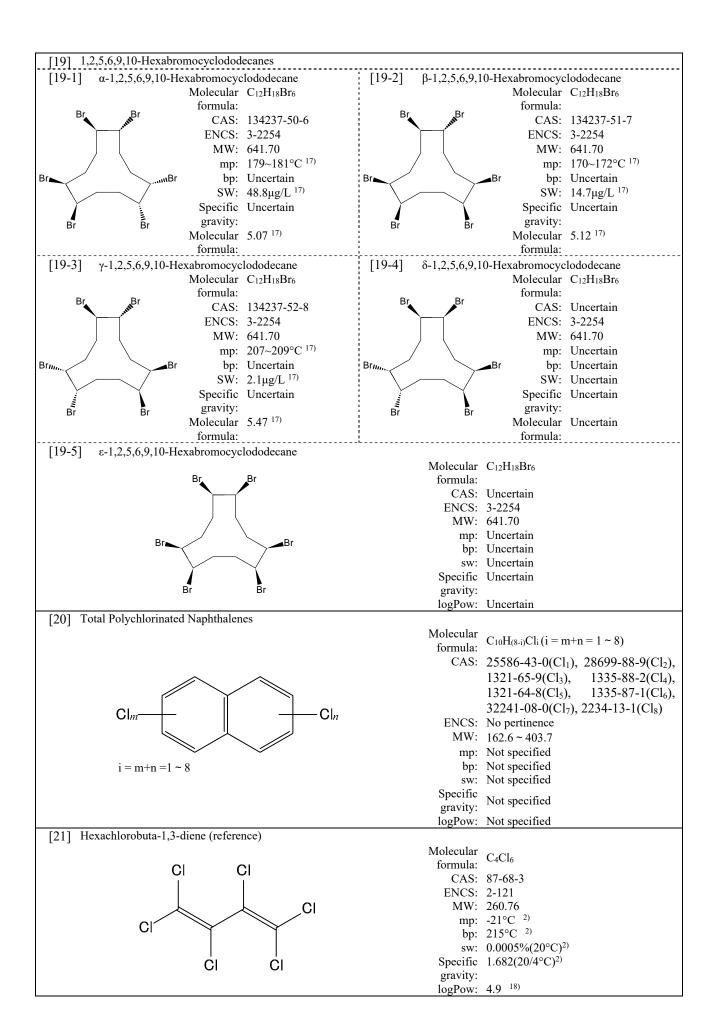
**** In the COP7, Dichloronaphthalenes, Trichloronaphthalenes, Tetrachloronaphthalenes, Pentachloronaphthalenes, Hexachloronaphthalenes, Heptachloronaphthalenes and Octachloronaphthalene were adopted to be POPs among Polychlorinated Naphthalenes but in this Environmental Monitoring, Polychlorinated Naphthalenes which were able to include Monochloronaphthalenes were designated as target chemicals.


No	N.	Monitored media					
110	Name	Surface	Sediment	Wildlife	Air		
[1]	Total Polychlorinated biphenyls (Total PCBs) Total PCBs represents the sum of the PCB congeners listed in the table below. "Total PCBs" only indicates the total amount in the following pages, and the measured values of the individual congeners and coplanar PCBs are listed on the website. [1-1] Monochlorobiphenyls [1-2] Dichlorobiphenyls [1-3] Trichlorobiphenyls [1-4-1] 3,3',4,4'-Tetrachlorobiphenyl (#77) [1-4-2] 3,4,4',5-Tetrachlorobiphenyl (#81) [1-5] Pentachlorobiphenyls [1-5-1] 2,3,3',4,4'-Pentachlorobiphenyl (#105) [1-5-2] 2,3,4,4',5-Pentachlorobiphenyl (#114) [1-5-3] 2,3',4,4'-5-Pentachlorobiphenyl (#118) [1-5-4] 2',3,4,4',5-Pentachlorobiphenyl (#123) [1-5-5] 3,3',4,4',5-Pentachlorobiphenyl (#126) [1-6] Hexachlorobiphenyls [1-6-1] 2,3,3',4,4',5-Hexachlorobiphenyl (#157) [1-6-2] 2,3,3',4,4',5,5'-Hexachlorobiphenyl (#167) [1-6-4] 3,3',4,4',5,5'-Hexachlorobiphenyl (#167) [1-6-1] 4,3,3',4,4',5,5'-Hexachlorobiphenyl (#169) [1-7] Heptachlorobiphenyls [1-7-1] 2,2',3,3',4,4',5,5'-Heptachlorobiphenyl (#180) [1-7-2] 2,2',3,4,4',5,5'-Heptachlorobiphenyl (#180) [1-7-3] 2,3,3',4,4',5,5'-Heptachlorobiphenyl (#180) [1-7-3] 2,3,3',4,4',5,5'-Heptachlorobiphenyl (#189) [1-8] Octachlorobiphenyls	o	0	0	0		
	[1-9] Nonachlorobiphenyls [1-10] Decachlorobiphenyl						
[2]	Hexachlorobenzene	0	0	0	0		
[3]	Aldrin			0	0		
[4] [5]	Dieldrin Endrin	0		0	0		
[6]	DDTs [6-1]	0	0	-	-		
[7]	Chlordanes (reference) [7-1] cis-Chlordane (reference) [7-2] trans-Chlordane (reference) [7-3] Oxychlordane (reference) [7-4] cis-Nonachlor (reference) [7-5] trans-Nonachlor (reference)						
[8]	Heptachlors [8-1] Heptachlor [8-2] cis-Heptachlor epoxide [8-3] trans-Heptachlor epoxide	0	0				
[9]	Toxaphenes (reference) [9-1] 2-endo,3-exo,5-endo,6-exo,8,8,10,10-octachlorobornane (Parlar-26) (reference) [9-2] 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-nonachlorobornane (Parlar-50) (reference) [9-3] 2,2,5,5,8,9,9,10,10-Nonachlorobornane (Parlar-62) (reference)						
[10]	Mirex (reference) HCHs (Hexachlorohexanes)						
[11]	[11-1] α -HCH [11-2] β -HCH [11-3] γ -HCH (synonym:Lindane) [11-4] δ -HCH Chlordecone (reference)	0	0	0	0		
[14]	Cinoraccone (reference)	l	l				


		Monitored media					
No	Name	Surface water	Sediment	Wildlife	Air		
[13]	Hexabromobiphenyls (reference) [13-1] 2,2',4,4',5,5'-Hexabromobiphenyl (#153) (reference) [13-2] 2,2',4,4',5,6'-Hexabromobiphenyl (#154) (reference) [13-3] 2,2',4,4',6,6'-Hexabromobiphenyl (#155) (reference) [13-4] 2,3,3',4,4',5-Hexabromobiphenyl (#156) (reference) [13-5] 3,3',4,4',5,5'-Hexabromobiphenyl (#169) (reference)						
[14]	Polybromodiphenyl ethers (Br ₄ ~Br ₁₀) $[14-1] \text{Tetrabromodiphenyl ethers}$ $[14-1-1] 2,2',4,4'-\text{Tetrabromodiphenyl ether (#47)}$ $[14-2] \text{Pentabromodiphenyl ethers}$ $[14-2-1] 2,2',4,4',5-\text{Pentabromodiphenyl ether (#99)}$ $[14-3] \text{Hexabromodiphenyl ethers}$ $[14-3-1] 2,2',4,4',5,5'-\text{Pentabromodiphenyl ether (#153)}$ $[14-3-2] 2,2',4,4',5,6'-\text{Pentabromodiphenyl ether (#154)}$ $[14-4] \text{Heptabromodiphenyl ethers}$ $[14-4-1] 2,2',3,3',4,5',6'-\text{Pentabromodiphenyl ether (#175)}$ $[14-4-2] 2,2',3,4,4',5',6'-\text{Pentabromodiphenyl ether (#183)}$ $[14-5] \text{Octabromodiphenyl ethers}$ $[14-6] \text{Nonabromodiphenyl ethers}$ $[14-7] \text{Decabromodiphenyl ether}$	0	0	0	0		
[15]	Perfluorooctane sulfonic acid (PFOS)	0	0	0	0		
[16]	Perfluorooctanoic acid (PFOA)	0	0	0	0		
[17]	Pentachlorobenzene	0	0	0	0		
[18]	Endosulfans [18-1] α -Endosulfan [18-2] β -Endosulfan			0	0		
[19]	1,2,5,6,9,10-Hexabromocyclododecanes [19-1] α -1,2,5,6,9,10-Hexabromocyclododecane β -1,2,5,6,9,10-Hexabromocy [19-2] clododecane [19-3] γ -1,2,5,6,9,10-Hexabromocyclododecane [19-4] δ -1,2,5,6,9,10-Hexabromocyclododecane [19-5] ε -1,2,5,6,9,10-Hexabromocyclododecane	0		0	0		
[20]	Total Polychlorinated Naphthalenes Total Polychlorinated Naphthalenes represents the sum of the Polychlorinated Naphthalenes congeners. The measured values of the individual congeners are listed on the website.				0		
[21]	Hexachlorobuta-1,3-diene						


Chemical and physical properties of target chemicals of the Environmental Monitoring are as follows.


(Abbreviations) CAS: CAS registry number, ENCS: registry number in the Existing and New Chemical Substances List, MW: molecular weight, mp: melting point, bp: boiling point, SW: solubility in water, logPow: n-octanol-water partition coefficient, kPa: kilopascal (1 atom approximately equal to 101.3kPa).



[12] Chlordecone (reference) Molecular formula: C₁₀Cl₁₀O CI CI CAS: 143-50-0 .CI ENCS: No pertinence MW: 490.64 CI mp: 350°C²⁾ bp: Not specified CI-Cl sw: 7.6mg/L (24°C) 5) Specific CI CI gravity: 1.61 (25°C) 1) logPow: 3.45 12) [13] Hexabromobiphenyls (reference) Molecular formula: C₁₂H₄Br₆ CAS: 36355-01-8 ENCS: No pertinence MW: 627.58 Br_n mp: Not specified bp: Not specified sw: Not specified Specific m+n=6gravity: Not specified logPow: Not specified [14] Polybromodiphenyl ethers ($Br_4 \sim Br_{10}$) Molecular formula: $C_{12}H_{(10-i)}Br_iO$ (i = m+n =4~10) CAS: 40088-47-9 (Br₄), 32534-81-9 (Br₅), 36483-60-0 (Br₆), 68928-80-3 (Br₇), O 32536-52-0 (Br₈), 63936-56-1 (Br₉), 1163-19-5 (Br₁₀₎ ENCS: 3-61 (Br₄), 3-2845 (Br₆) Br_m Br_n MW: 485.79~959.17 mp: Not specified bp: Not specified sw: Not specified Specific $i = m+n = 4\sim 10$ gravity: Not specified logPow: Not specified [15] Perfluorooctane sulfonic acid (PFOS) Molecular formula: C₈HF₁₇O₃S CAS: 1763-23-1 ENCS: 2-1595 OH MW: 500.13 mp: >400°C (potassium salt) 13) bp: Uncertain sw: 519mg/L (20°C, potassium salt) 13) Specific gravity: Uncertain logPow: Uncertain [16] Perfluorooctanoic acid(PFOA) Molecular formula: C₈HF₁₅O₂ CAS: 335-67-1 ENCS: 2-1182, 2-2659 MW: 414.07 mp: 54.3°C 1) OH bp: 192.4°C 1) sw: 9.5g/L (20°C) 14) Specific gravity: 1.79g/cm³ 15) logPow: 6.3^{15}

References

- 1) Haynes, CRC Handbook of Chemistry and Physics, 92nd Edition, CRC Press LLC (2011)
- 2) O'Neil, The Merck Index An Encyclopedia of Chemicals, Drugs, and Biologicals 14th Edition, Merck Co. Inc. (2006)
- 3) Hansch et al., Exploring QSAR Hydrophobic, Electronic and Steric Constants, American Chemical Society (1995)
- 4) IPCS, International Chemical Safety Cards, Aldrin, ICSC0774 (1998)
- 5) Howard et al., Handbook of Physical Properties of Organic Chemicals, CRC Press Inc. (1996)
- 6) IPCS, International Chemical Safety Cards, Endrin, ICSC1023 (2000)
- 7) IPCS, International Chemical Safety Cards, DDT, ICSC0034 (2004)
- Biggar et al., Apparent solubility of organochlorine insecticides in water at various temperatures, Hilgardia, 42, 383-391 (1974)
- 9) IPCS, International Chemical Safety Cards, alpha-Hexachlorocyclohexane, ICSC0795 (1998)
- 10) ATSDR, Toxicological Profile for alpha-, beta-, gamma- and delta-Hexachlorocyclohexane (2005)
- 11) IPCS, International Chemical Safety Cards, beta-Hexachlorocyclohexane, ICSC0796 (1998)
- 12) IPCS, International Chemical Safety Cards, Chlordecone ICSC1432 (2003)
- 13) United Nations Environment Programme (UNEP), Risk profile on perfluorooctane sulfonate, Report of the Persistent Organic Pollutants Review Committee on the work of its second meeting (2006)
- 14) OECD, Perfluorooctanoic Acid & Ammonium Perfluorooctanoate, SIDS Initial Assessment Profile for 26th SIAM (2008)
- 15) IPCS, International Chemical Safety Cards, Perfkuorooctanoic acid, ICSC1613 (2005)
- 16) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on endosulfan, Report of the Persistent Organic Pollutants Review Committee on the work of its fifth meeting (2009)
- 17) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on hexabromocyclododecane, Report of the Persistent Organic Pollutants Review Committee on the work of its sixth meeting (2010)
- 18) IPCS, International Chemical Safety Cards, Hexachlorobutadiene ICSC0896 (1997)

3. Monitored site and procedure

In the Environmental Monitoring (of surface water, sediment, wildlife, and air), the sampling of specimens was entrusted to prefectural governments and government-designated cities across Japan and the specimens sampled were analysed by private analytical laboratories.

(1) Organisations responsible for sampling

т 1			Monitor	ed media	
Local communities	Organisations responsible for sampling	Surface water	Sediment	Wildlife	Air
Hokkaido	Environmental Promotion Section, Environment Division,				
	Department of Environment and Lifestyle, Hokkaido Prefectural	0	0	0	0
	Government and Hokkaido Research Organization Environmental and	Ü			Ü
	Geological Research Department Institute of Environmental Science				
Sapporo City	Sapporo City Institute of Public Health				0
Iwate Pref.	Research Institute for Environmental Sciences and Public Health of Iwate Prefecture	0	0	0	0
Miyagi Pref.	Miyagi Prefectural Institute of Public Health and Environment	0	0	0	0
Sendai City	Sendai City Institute of Public Health		0		
Akita Pref.	Akita Research Center for Public Health and Environment	0	0		
Yamagata Pref.	Yamagata Institute of Environmental Sciences	0	0		
Fukushima Pref.	Fukushima Prefectural Environmental Center	0	0		
Ibaraki Pref.	Ibaraki Kasumigaura Environmental Science Center	0	0	0	0
Tochigi Pref.	Tochigi Prefectural Institute of Public Health and Environmental Science	0	0		
Gunma Pref.	Gunma Prefectural Institute of Public Health and Environmental				0
Saitama Pref.	Sciences Center for Environmental Science in Saitama	-			
		0			
Chiba Pref.	Chiba Prefectural Environmental Research Center		0		0
Chiba City	Chiba City Institute of Health and Environment	0	0		
Tokyo Met.	Tokyo Metropolitan Research Institute for Environmental Protection	0	0	0	0
Kanagawa Pref.	Kanagawa Environmental Research Center				0
Yokohama City	Yokohama Environmental Science Research Institute	0	0	0	0
Kawasaki City	Kawasaki Environmental Research Institute	0	0	0	
Niigata Pref.	Niigata Prefectural Institute of Public Health and Environmental Sciences	0	0		0
Toyama Pref.	Toyama Prefectural Environmental Science Research Center	0	0		0
Ishikawa Pref.	Ishikawa Prefectural Institute of Public Health and Environmental Science	0	0	0	0
Fukui Pref.	Fukui Prefectural Institute of Public Health and Environmental Science	0	0		
Yamanashi Pref.	Yamanashi Institute for Public Health and Environment		0	0*	0
Nagano Pref.	Nagano Environmental Conservation Research Institute	0	0		0
Gifu Pref.	Gifu Prefectural Research Institute for Health and Environmental Sciences	Ŭ	Ŭ		0
Shizuoka Pref.	Shizuoka Institute of Environment and Hygiene	0	0		
Aichi Pref.	Aichi Environmental Research Center	0	0		
Nagoya City	Nagoya City Environmental Science Research Center	0	0	6	
				0	0
Mie Pref.	Mie Prefecture Health and Environment Research Institute	0	0	_	0
Shiga Pref.	Lake Biwa Environmental Research Institute	0	0	0	
Kyoto Pref.	Kyoto Prefectural Institute of Public Health and Environment	0	0		
Kyoto City	Kyoto City Institute of Health and Environmental Sciences	0	0		
Osaka Pref.	Environment Preservation Division, Environment Management				
	Office, Department of Environment, Agriculture, Forestry and	0	0	0	0
	Fisheries, Osaka Prefectural Government and Research Institute of				
0.1.03	Environment, Agriculture and Fisheries, Osaka Prefecture				
Osaka City	Osaka City Institute of Public Health and Environmental Sciences	0	0		
Hyogo Pref.	Hyogo Prefectural Agricultural Administration and Environment Division, Environment Bureau	0	0	0	0
Kobe City	Environmental Evaluation Symbiotic Promotion Office, Environmental Creative Division, Environment Bureau, Kobe City	0	0		O
Nara Pref.	Nara Prefectural Scenery and Environmental Center		0		0
Wakayama Pref.	Wakayama Prefectural Research Center of Environment and Public				
•	Health	0	0		

Local		Monitored media				
communities	Organisations responsible for sampling	Surface water	Sediment	Wildlife	Air	
Tottori Pref.	Tottori Prefectural Institute of Public Health and Environmental Science	water		0		
Shimane Pref.	Shimane Prefectural Institute of Public Health and Environmental Science				0	
Okayama Pref.	Okayama Prefectural Institute for Environmental Science and Public Health	0	0			
Hiroshima Pref.	Hiroshima Prefectural Technology Research Institute Health and Environment Center	0	0			
Hiroshima City	Hiroshima City Institute of Public Health			0	0	
Yamaguchi Pref.	Yamaguchi Prefectural Institute of Public Health and Environment	0	0		0	
Tokushima Pref.	Tokushima Prefectural Pablic Health, Pharmaceutical and Environmental Sciences Center	0	0		0	
Kagawa Pref.	Kagawa Prefectural Research Institute for Environmental Science and Public Health	0	0	0	0	
Ehime Pref.	Ehime Prefectural Institute of Public Health and Environmental Science		0		0	
Kochi Pref.	Kochi Prefectural Environmental Research Center	0	0	0		
Fukuoka Pref.	Fukuoka Institute of Health and Environmental Sciences				0	
Kitakyushu City	Kitakyushu City Institute of Environmental Sciences	0	0			
Fukuoka City	Fukuoka City Institute for Hygiene and the Environment		0			
Saga Pref.	Saga Prefectural Environmental Research Center	0	0		0	
Nagasaki Pref.	Environment Policy Division, Environment Bureau, Nagasaki Prefecture	0	0			
Kumamoto Pref.	Kumamoto Prefectural Institute of Public-Health and Environmental Science	0			0	
Oita Pref.	Oita Prefectural Institute of Health and Environment, Life and Environment Department		0	0		
Miyazaki Pref.	Miyazaki Prefectural Institute for Public Health and Environment	0	0		0	
Kagoshima Pref.	Kagoshima Prefectural Institute for Environmental Research and Public Health	0	0	0	0	
Okinawa Pref.	Okinawa Prefectural Institute of Health and Environment	0	0	0	0	

⁽Note 1) Organisations responsible for sampling are described by their official names in FY2014.

(2) Monitored sites (areas)

Monitored sites (areas) are shown in Table 3-1-1 and Figure 3-1-1 for surface water, Table 3-1-2 and Figure 3-1-2 for sediment, Table 3-1-3 and Figure 3-1-3 for wildlife and Table 3-1-4 and Figure 3-1-4 for air. The breakdown is summarized as follows.

Monitored media	Numbers of local communities	Numbers of target chemicals (groups)	Numbers of monitored sites (or areas)	Numbers of samples at a monitored site (or area)
Surface water	42	12	48	1
Sediment	47	9	63	1 or 3*
Wildlife (bivalves)	3	12	3	1 or 3**
Wildlife (fish)	17	12	19	1 or 3**
Wildlife (birds)	3***	12	3***	1 or 3**
Air (warm season)	34	13	37	1
All media	58	15	119***	

⁽Note 1) "*": For bottom/sediment cover, at each monitoring point, three(3) specimen samples were collected. The target substance [20] Total Polychlorinated Naphthalenes were analysed with the three(3) specimen samples for each place. The other substances were analysed for

⁽Note 2) *: The collected wildlife by Yamanashi Institute for Public Health and Environment were treated as the reference values.

each place with one(1) specimen sample that is a mixture of equal parts of the three(3) specimen samples.

(Note 2) "**": For biological species, at each monitoring point, three(3) specimen samples were collected. The target substance Total Polychlorinated Naphthalenes were analysed with the three(3) specimen samples for each place. The other substances were analysed for each place with one(1) specimen sample that is a mixture of equal parts of the three(3) specimen samples.

(Note 3) "***": Samples obtained in 1 site of the birds as wildlife eggs of Great Cormorant, and the samples were measured each the eggs yolk and

the eggs white, the results were treated as a reference values.

Table 3-1-1 List of monitored sites (surface water) in the Environmental Monitoring in FY2014

Local	Monitored sites	Sampling dates
communities		
Hokkaido	Suzuran-ohashi Bridge, Riv Tokachi(Obihiro City)	October 7, 2014
	Ishikarikakokyo Bridge, Mouth of Riv. Ishikari(Ishikari City)	November 11, 2014
Iwate Pref.	Riv. Toyosawa(Hanamaki City)	November 5, 2014
Miyagi Pref.	Sendai Bay(Matsushima Bay)	October 20, 2014
Akita Pref.	Lake Hachiro	September 11, 2014
Yamagata Pref.	Mouth of Riv. Mogami(Sakata City)	October 29, 2014
Fukushima Pref.	Onahama Port	October 20, 2014
Ibaraki Pref.	Tonekamome-ohasi Bridge, Mouth of Riv. Tone(Kamisu City)	November 13, 2014
Tochigi Pref.	Riv. Tagawa(Utsunomiya City)	October 10, 2014
Saitama Pref.	Akigaseshusui of Riv. Arakawa(Shiki City)	November 6, 2014
Chiba City	Mouth of Riv. Hanami(Chiba City)	November 5, 2014
Tokyo Met.	Mouth of Riv. Arakawa(Koto Ward)	November 27, 2014
J	Mouth of Riv. Sumida(Minato Ward)	November 27, 2014
Yokohama City	Yokohama Port	October 21, 2014
Kawasaki City	Keihin Canal, Port of Kawasaki	November 5, 2014
Niigata Pref.	Lower Riv. Shinano(Niigata City)	November 5, 2014
Toyama Pref.	Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City)	October 31, 2014
Ishikawa Pref.	Mouth of Riv. Sai(Kanazawa City)	November 20, 2014
Fukui Pref.	Mishima-bashi Bridge, Riv. Shono(Tsuruga City)	October 17, 2014
Nagano Pref.	Lake Suwa(center)	November 6, 2014
Shizuoka Pref.	Riv. Tenryu(Iwata City)	October 30, 2014
Aichi Pref.	Nagova Port	November 12, 2014
Mie Pref.	Yokkaichi Port	October 21, 2014
Shiga Pref.	Lake Biwa(center, offshore of Karasaki)	October 28, 2014
Kyoto Pref.		October 24, 2014
•	Miyazu Port Miyamae-bashi Bridge, Riv. Katsura(Kyoto City)	December 25, 2014
Kyoto City		,
Osaka Pref. Osaka City	Mouth of Riv. Yamato(Sakai City) Osaka Port	November 12, 2014
		November 5, 2014
Hyogo Pref.	Offshore of Himeji	October 17, 2014
Kobe City	Kobe Port(center)	October 28, 2014
Wakayama Pref.	Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City)	November 21, 2014
Okayama Pref.	Offshore of Mizushima	November 4, 2014
Hiroshima Pref.	Kure Port	November 4, 2014
	Hiroshima Bay	November 4, 2014
Yamaguchi Pref.	Tokuyama Bay	October 9, 2014
	Offshore of Ube	October 21, 2014
	Offshore of Hagi	November 19, 2014
Tokushima Pref.	Mouth of Riv. Yoshino(Tokushima City)	November 7, 2014
Kagawa Pref.	Takamatsu Port	October 7, 2014
Kochi Pref.	Mouth of Riv. Shimanto(Shimanto City)	October 22, 2014
Kitakyushu City	Dokai Bay	October 17, 2014
Saga Pref.	Imari Bay	October 29, 2014
Nagasaki Pref.	Omura Bay	November 11, 2014
Kumamoto Pref.	Hiraki-bashi Bridge, Riv. Midori(Uto City)	October 21, 2014
Miyazaki Pref.	Mouth of Riv. Oyodo(Miyazaki City)	October 22, 2014
Kagoshima Pref.	Riv. Amori(Kirishima City)	November 27, 2014
	Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City)	November 26, 2014
Okinawa Pref.	Naha Port	November 26, 2014

(Note) "Keihin Canal, Port of Kawasaki, The Coast of Ougi Town" of Detailed Environmental Survey and "Keihin Canal, Port of Kawasaki" of Environmental Monitoring, and "Nagoya Port" of Initial and Detailed Environmental Survey and "Nagoya Port, West of Shiomi Wharf" of Environmental Monitoring are the same point each.

Figure 3-1-1 Monitored sites (surface water) in the Environmental Monitoring in FY2014

Table 3-1-2 List of monitored sites (sediment) in the Environmental Monitoring in FY2014

	monitored sites (sediment) in the Environmental Monitoring in FY201	4
Local communities	Monitored sites	Sampling dates
Hokkaido	Onnenai-ohashi Bridge, Riv. Teshio(Bifuka Town)	October 2, 2014
Tionnaido	Suzuran-ohashi Bridge, Riv Tokachi(Obihiro City)	October 7, 2014
	Ishikarikakokyo Bridge, Mouth of Riv. Ishikari (Ishikari City)	November 11, 2014
	Tomakomai Port	September 19, 2014
Iwate Pref.	Riv. Toyosawa(Hanamaki City)	November 5, 2014
Miyagi Pref.	Sendai Bay(Matsushima Bay)	October 20, 2014
Sendai City	Hirose-ohashi Bridge, Riv. Hirose(Sendai City)	November 11, 2014
Akita Pref.	Lake Hachiro	September 11, 2014
Yamagata Pref.	Mouth of Riv. Mogami(Sakata City)	October 29, 2014
Fukushima Pref.	Onahama Port	October 20, 2014
Ibaraki Pref.	Tonekamome-ohasi Bridge, Mouth of Riv. Tone(Kamisu City)	November 13, 2014
Tochigi Pref.	Riv. Tagawa(Utsunomiya City)	October 10, 2014
Chiba Pref.	Coast of Ichihara and Anegasaki	October 29, 2014
Chiba City	Mouth of Riv. Hanami(Chiba City)	November 5, 2014
Tokyo Met.	Mouth of Riv. Arakawa(Koto Ward)	November 27, 2014
Tokyo Wict.	Mouth of Riv. Sumida(Minato Ward)	November 27, 2014 November 27, 2014
Yokohama City	Yokohama Port	October 21, 2014
Kawasaki City	Mouth of Riv. Tama(Kawasaki City)	November 5, 2014
Kawasaki City	Keihin Canal, Port of Kawasaki	November 5, 2014 November 5, 2014
Niigata Pref.	Lower Riv. Shinano(Niigata City)	November 5, 2014 November 5, 2014
Toyama Pref.		October 31, 2014
I oyama Pref. Ishikawa Pref.	Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City)	
	Mouth of Riv. Sai(Kanazawa City)	November 20, 2014
Fukui Pref.	Mishima-bashi Bridge, Riv. Shono(Tsuruga City)	October 17, 2014
Yamanashi Pref.	Senshu-bashi Bridge, Riv. Arakawa(Kofu City)	October 20, 2014
Nagano Pref.	Lake Suwa(center)	November 6, 2014
Shizuoka Pref.	Shimizu Port	October 16, 2014
	Riv. Tenryu(Iwata City)	October 30, 2014
Aichi Pref.	Kinuura Port	November 12, 2014
	Nagoya Port	November 12, 2014
Mie Pref.	Yokkaichi Port	October 21, 2014
	Toba Port	October 28, 2014
Shiga Pref.	Lake Biwa(center, offshore of Minamihira)	October 28, 2014
	Lake Biwa(center, offshore of Karasaki)	October 28, 2014
Kyoto Pref.	Miyazu Port	October 24, 2014
Kyoto City	Miyamae-bashi Bridge, Riv. Katsura(Kyoto City)	December 25, 2014
Osaka Pref.	Mouth of Riv. Yamato(Sakai City)	November 12, 2014
Osaka City	Osaka Port	November 5, 2014
	Outside Osaka Port	November 5, 2014
	Mouth of Riv. Yodo(Osaka City)	November 5, 2014
	Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)	November 6, 2014
Hyogo Pref.	Offshore of Himeji	October 17, 2014
Kobe City	Kobe Port(center)	October 28, 2014
Nara Pref.	Riv. Yamato(Oji Town)	October 21, 2014
Wakayama Pref.	Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City)	November 21, 2014
Okayama Pref.	Offshore of Mizushima	November 4, 2014
Hiroshima Pref.	Kure Port	November 4, 2014
	Hiroshima Bay	November 4, 2014
Yamaguchi Pref.	Tokuyama Bay	October 9, 2014
<i>J</i> ,	Offshore of Ube	October 21, 2014
	Offshore of Hagi	November 19, 2014
Tokushima Pref.	Mouth of Riv. Yoshino(Tokushima City)	November 7, 2014
Kagawa Pref.	Takamatsu Port	October 7, 2014
Ehime Pref.	Niihama Port	October 29, 2014
Kochi Pref.	Mouth of Riv. Shimanto(Shimanto City)	October 22, 2014
Kitakyushu City	Dokai Bay	October 17, 2014
Fukuoka City	Hakata Bay	November 11, 2014
Saga Pref.	Imari Bay	October 29, 2014
Nagasaki Pref.	Omura Bay	November 11, 2014
Oita Pref.	Mouth of Riv. Oita(Oita City)	November 17, 2014
Miyazaki Pref.	Mouth of Riv. Oyodo(Miyazaki City)	October 22, 2014
Kagoshima Pref.	Riv. Amori(Kirishima City)	November 27, 2014
	Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City)	November 26, 2014
Okinawa Pref.	Naha Port	November 26, 2014

Figure 3-1-2 Monitored sites (sediment) in the Environmental Monitoring in FY2014

Table 3-1-3 List of monitored areas (wildlife) in the Environmental Monitoring in FY2014

·			2014		
Monitored sites	Sampling dates	Wildlife species			
Offshore of Kushiro	Novemver, 2014*	Fish	Rock greenling (Hexagrammos lagocephalus)		
Offshore of Kushiro	Late October ~ Early Novemver, 2014*	Fish	Chum salmon (Oncorhynchus keta)		
Offshore of Japan Sea (offshore of Iwanai)	Middle November ~ Late Novemver, 2014*	Fish	Greenling (Hexagrammos otakii)		
Yamada Bay	October 16, 2014	Bibalves	Blue mussel (Mytilus galloprovincialis)		
Yamada Bay	October 7, 2014	Fish	Greenling (Hexagrammos otakii)		
Sendai Bay(Matsushima Bay)	November 5, 2014	Fish	Greenling (Hexagrammos otakii)		
Offshore of Sanriku	December 9, 2013	Fish	Pacific saury (Cololabis saira)		
Tokyo Bay	August 26, 2014	Fish	Sea bass (Lateolabrax japonicus)		
Yokohama Port	October 23, 2014	Bibalves	Blue mussel (Mytilus galloprovincialis)		
Offshore of Ogishima Island, Port of Kawasaki	November 5, 2014	Fish	Sea bass (Lateolabrax japonicus)		
Coast of Noto Peninsula	September 2, 2014	Bibalves	Blue mussel (Mytilus galloprovincialis)		
Nagoya Port	August 20, 2014	Fish	Striped mullet (Mugil cephalus)		
Tikubushima Island)	July 25, 2014	Birds	Great Cormorant (Phalacrocorax carbo)		
Lake Biwa, Riv. Ado (Takashima City)	April 3, 2014	Fish	Dace (Tribolodon hakonensis)		
Osaka Bay	November 7, 2014	Fish	Sea bass (Lateolabrax japonicus)		
Offshore of Himeji	November 17, 2014	Fish	Sea bass (Lateolabrax japonicus)		
Riv.Tenjin(Kurayoshi City)	June 16, 2014	Birds	Great Cormorant (<i>Phalacrocorax carbo</i>)		
Nakaumi	October 21, 2014	Fish	Sea bass (Lateolabrax japonicus)		
Hiroshima Bay	November 5, 2014	Fish	Sea bass (Lateolabrax japonicus)		
Takamatsu Port	September 1, 2014	Fish	Striped mullet (Mugil cephalus)		
Mouth of Riv. Shimanto (Shimanto City)	October ~ November, 2014*	Fish	Sea bass (Lateolabrax 19aponicas)		
Mouth of Riv. Oita(Oita City)	January 26, 2015	Fish	Sea bass (Lateolabrax 19aponicas)		
West Coast of Satsuma Peninsula	December 4, 2014	Fish	Sea bass (Lateolabrax 19aponicas)		
Nakagusuku Bay	December 29, 2014 and January 27, 2015	Fish	Okinawa seabeam (Acanthopagrus sivicolus)		
	Offshore of Kushiro Offshore of Japan Sea (offshore of Japan Sea (offshore of Iwanai) Yamada Bay Yamada Bay Sendai Bay(Matsushima Bay) Offshore of Sanriku Tokyo Bay Yokohama Port Offshore of Ogishima Island, Port of Kawasaki Coast of Noto Peninsula Nagoya Port Lake Biwa(Lake Kita, offshore of Tikubushima Island) Lake Biwa, Riv. Ado (Takashima City) Osaka Bay Offshore of Himeji Riv.Tenjin(Kurayoshi City) Nakaumi Hiroshima Bay Takamatsu Port Mouth of Riv. Shimanto (Shimanto City) Mouth of Riv. Oita(Oita City) West Coast of Satsuma Peninsula	Offshore of Kushiro Offshore of Kushiro Offshore of Kushiro Offshore of Japan Sea (offshore of Iwanai) Yamada Bay October 7, 2014 Yamada Bay October 7, 2014 Sendai Bay(Matsushima Bay) Offshore of Sanriku December 9, 2013 Tokyo Bay August 26, 2014 Offshore of Ogishima Island, Port of Kawasaki Coast of Noto Peninsula Nagoya Port Lake Biwa(Lake Kita, offshore of Tikubushima Island) Lake Biwa, Riv. Ado (Takashima City) Osaka Bay Offshore of Himeji November 7, 2014 November 7, 2014 November 5, 2014 December 9, 2013 November 5, 2014 November 5, 2014 November 5, 2014 Offshore of Ogishima Island, Port of Kawasaki Coast of Noto Peninsula September 2, 2014 Lake Biwa(Lake Kita, offshore of Tikubushima Island) Lake Biwa, Riv. Ado (Takashima City) Osaka Bay November 7, 2014 Offshore of Himeji November 7, 2014 November 17, 2014 Riv. Tenjin(Kurayoshi City) June 16, 2014 Hiroshima Bay November 5, 2014 Takamatsu Port September 1, 2014 Mouth of Riv. Shimanto (Shimanto City) Mouth of Riv. Oita(Oita City) January 26, 2015 November 29, 2014	Offshore of Kushiro Offshore of Kushiro Offshore of Kushiro Offshore of Kushiro Offshore of Sapan Sea (offshore of Iwanai) Yamada Bay October 16, 2014 Sendai Bay(Matsushima Bay) Offshore of Sanriku December 9, 2013 Tokyo Bay Yokohama Port Offshore of Ogishima Island, Port of Kawasaki Coast of Noto Peninsula Lake Biwa(Lake Kita, offshore of Tikubushima Island) Lake Biwa, Riv. Ado (Takashima City) Offshore of Himeji November 17, 2014 Fish November 7, 2014 Bibalves Paril 3, 2014 Fish November 5, 2014 Fish November 5, 2014 Fish Birds Fish Offshore of Ogishima Island, Port of Kawasaki Coast of Noto Peninsula September 2, 2014 Bibalves Nagoya Port August 20, 2014 Fish Birds April 3, 2014 Fish Offshore of Himeji November 7, 2014 Fish Offshore of Himeji November 17, 2014 Fish November 17, 2014 Fish Nakaumi October 21, 2014 Fish Takamatsu Port September 1, 2014 Fish Mouth of Riv. Shimanto (Shimanto City) January 26, 2015 Fish Nakawana Peninsula December 4, 2014 Fish Nakawana Peninsula December 4, 2014 Fish Pick Pick Pick Pick Fish Nakawana Peninsula December 29, 2014 Fish Pick Pick Pick Pick Fish Nakawana Peninsula December 29, 2014 Fish Pick Pick Pick Pick Pick Fish Nakawana Peninsula December 29, 2014 Fish Pick Pick Pick Pick Pick Pick Pick Pick Pick Pick Pick Pick Pick Pick Pick Pick		

(Note) "*" means details of the sampling date unknown.

Figure 3-1-3 Monitored areas (wildlife) in the Environmental Monitoring in FY2014

communities Kushiro General Subprefectural Bureau (Kushiro City) Sapporo City Sapporo Art Park(Sapporo City) Sapporo Art Park(Sapporo City) Miyagi Prefe. Miyagi Prefe. Miyagi Prefectural Government Sendai Civil Engineering Office (Sendai City) September 1-4, 2014 Miyagi Prefe. Miyagi Prefectural Government Sendai Civil Engineering Office (Sendai City) September 1-9, 2014 September 1-9, 2014 September 2-9, 2014 September 3-10, 2014 Protection(Koto Ward) Tokyo Met. Tokyo Met. Tokyo Met. September 3-10, 2014 Protection(Koto Ward) Protection(Koto Ward) Protection(Koto Ward) Yokohama Environmental Research Center(Hiratsuka City) Pref. Yokohama Environmental Science Research Institute(Yokohama City) September 3-10, 2014 September 3	Table 3-1-4 List	of monitored sites (air) in the Environmental Monitoring in FY2014	
Hokkaido Kushiro General Subprefectural Bureau (Kushiro City) September 16-25, 2014		Monitored sites	Sampling dates
Sapporo City Sapporo Art Park(Sapporo City) September 16-19, 2014		Violing Committee Committee (Violing City)	
Insute Pref. Amihan' Ski Area(Shizukuishi Town) September 1-4, 2014			
Miyagi Pref. Miyagi Prefectural Government Sendai Civil Engineering Office (Sendai Civ)			
City Baraki Kasumigaura Environmental Science Center(Tsuchiura City) September 2-9, 2014			
Gunma Pref. Guma Pref. Guma Pref. Guma Pref. Guma Pref. Chiba Pref. Chiba Pref. Ichihara-Matsuzaki Air Quality Monitoring Station(Ichihara City) Chicky Metropolitan Research Institute for Environmental Protection(Koto Ward) Chickijima Island Chickiji	, 0	City)	•
Sciences(Macbashi City) Chiba Pref. Tokyo Met. Tokyo M			
Chiba Pref. Ichihara-Matsuzaki Air Quality Monitoring Station(Ichihara City) September 25—October 2, 2014	Gunma Pref.		September 2~9, 2014
Tokyo Metropolitan Research Institute for Environmental Protection(Koto Ward) Chichijima Island Kanagawa Pref. Vokohama Environmental Research Center(Hiratsuka City) Yokohama Environmental Science Research Institute(Yokohama City) September 8-11, 2014 Yokohama Pref. Oyama Air Quality Monitoring Station(Niigata City) Yamanashi Pref. Ishikawa Pref. Ishikawa Pref. Ishikawa Pref. Selectural Institute of Public Health and Environmental September 8-11, 2014 Yamanashi Station Pref. Gift Pref. Gift Prefectural Research Institute for Health and Environmental Sciences(Kanzawa City) Nagano Pref. Oyama Air Quality Monitoring Station(Tonami City) Yamanashi Institute for Public Health and Environmental September 8-11, 2014 September 1-4, 2014 September 1-9, 2014 September 1-9, 2014 September 1-9, 2014 September 1-	Chiba Pref.		September 25~ October 2, 2014
Kanagawa Environmental Research Center(Hiratsuka City) September 8~11, 2014	Tokyo Met.	Tokyo Metropolitan Research Institute for Environmental	
Pref. Yokohama Yokohama Environmental Science Research Institute(Yokohama City) September 1-8, 2014 Nigata Pref. Oyama Air Quality Monitoring Station(Niigata City) August 25-28, 2014 Ishikawa Pref. Ishikawa Pref. Ishikawa Prefectural Institute of Public Health and Environmental Science(Kanazawa City) Yamanashi Pref. Ishikawa Prefectural Institute of Public Health and Environmental Science(Kanazawa City) Yamanashi Pref. Nagano Environmental Conservation Research Institute(Nagano City) Yamanashi Institute for Public Health and Environmental September 8-11, 2014 Sciences(Kanazawa City) Yamanashi Pref. Gifu Prefectural Research Institute for Health and Environmental September 16-19, 2014 Sciences(Kakamigahara City) Nagoya City Gifu Prefectural Environment Research Institute(Yokakaichi City) Nagoya City Mie Pref. Research Institute of Environment Research Institute(Yokakaichi City) Osaka Pref. Research Institute of Environment, Agriculture and Fisheries, Osaka Prefectural Government(Osaka City) Hyogo Pref. Kobe City Government Building (Kobe City) Kobe City Government Building (Kobe City) Nara Pref. Tenri Air Quality Monitoring Station(Tenri City) Nara Pref. Tenri Air Quality Monitoring Station(Tenri City) September 1-4, 2014 September 1-4, 2014 September 1-4, 2014 September 1-4, 2014 Yamaguchi Prefectural Institute of Public Health and Prefectural Institute of Public Health and Prefectural Sciences Center(Tokushima City) Tokushima Prefectural Public Swimming Pool(Takamatsu City) September 16-19, 2014 Tokushima Prefectural Public Swimming Pool(Takamatsu City) September 16-19, 2014 September 19-20, 2014 Sept		Chichijima Island	October 19~26, 2014
Yokohama Yokohama Environmental Science Research Institute(Yokohama City) September 1-8, 2014	Kanagawa Pref.	Kanagawa Environmental Research Center(Hiratsuka City)	
Toyama Pref. Tonami Air Quality Monitoring Station(Tonami City) September 8-11, 2014		Yokohama Environmental Science Research Institute(Yokohama City)	September 1~8, 2014
Toyama Pref. Tonami Air Quality Monitoring Station(Tonami City) September 8-11, 2014	Niigata Pref.	Oyama Air Quality Monitoring Station(Niigata City)	August 25~28, 2014
Ishikawa Pref. Ishikawa Prefectural Institute of Public Health and Environmental Science(Kanazawa City) Yamanashi Institute for Public Health and Environment(Kofu City) August 26-29, 2014 September Pref. August 26-29, 2014 September Pref. September Prefectural Research Institute (Nagano City) September 16-19, 2014 September 16-19, 2014 September Prefectural Research Institute (Nagano City) September 17-24, 2014 September Prefectural Environment Research Institute(Yokkaichi City) September 17-24, 2014 September Prefectural Environment Research Institute(Yokkaichi City) September 1-4, 2014 September Prefectural Environmental Research Center(Kobe City) September 1-4, 2014 September 1-4, 2014 September Prefectural Environmental Research Center(Kobe City) September 1-4, 2014 September 1-5, 2014 September 8-11, 20			
Yamanashi Pamanashi Institute for Public Health and Environment(Kofu City) Pref. Nagano Pref. Oifu Prefectural Research Institute for Health and Environmental September 2–9, 2014 September 2–9, 2014 September 2–9, 2014 September 2–9, 2014 September 16–19, 2014 September 16–19, 2014 September 17–24, 2014 Mie Pref. Oifu Prefecture Health and Environmental September 1–4, 2014 Mie Pref. Mie Prefecture Health and Environment Research Institute(Yokkaichi City) Osaka Pref. Research Institute of Environment, Agriculture and Fisheries, Osaka Prefectural Government(Osaka City) Hyogo Prefectural Environmental Research Center(Kobe City) Kobe City Nara Pref. Tenri Air Quality Monitoring Station(Tenri City) September 1–4, 2014 September 1–4, 2014 Kobe City Nara Pref. Oiki National Acid Rain Observatory(Okinoshima Town) September 1–4, 2014 Hiroshima City Vamaguchi Pref. Wamaguchi Pref. Tokushima Prefectural Institute of Public Health and Environmental Sciences Center(Tokushima City) Tokushima Prefectural Owernment Building(Takamatsu City) Kagawa Pref. Takamatsu Joint Prefectural Government Building(Takamatsu City) September 1–2, 2014 September 1–4, 2014 August 29– September 5, 2014 September 5, 2014 September 6–19, 2014 September 6–19, 2014 September 6–19, 2014 September 7–20, 2014 September 8–11, 2014 September 16–19, 2014 September 20–20 tober 2, 2014 September 16–19, 2014 September 16–19, 2014 September 16–19, 2014 September 16–19, 2014 September 16–1	Ishikawa Pref.	Ishikawa Prefectural Institute of Public Health and Environmental	
Nagano Pref. Nagano Environmental Conservation Research Institute (Nagano City) September 2~9, 2014 Gifu Prefectural Research Institute for Health and Environmental Sciences (Kakamigahara City) September 16~19, 2014 Nagoya City Chikusa Ward Heiwa Park(Nagoya City) September 17~24, 2014 Mie Pref. Mie Prefecture Health and Environment Research Institute(Yokkaichi City) September 17~24, 2014 Osaka Pref. Research Institute of Environment, Agriculture and Fisheries, Osaka Prefectural Government(Osaka City) September 1~4, 2014 Hyogo Pref. Hyogo Prefectural Environmental Research Center(Kobe City) September 8~11, 2014 Kobe City Kobe City Government Building (Kobe City) September 1~4, 2014 Nara Pref. Tenri Air Quality Monitoring Station(Tenri City) September 1~4, 2014 Shimane Pref. Oki National Acid Rain Observatory(Okinoshima Town) September 16~19, 2014 Hiroshima Hiroshima City Kokutaiji Junior High School(Hiroshima City) September 8~11, 2014 City Yamaguchi Prefectural Institute of Public Health and August 29~ September 5, 2014 Tokushima Tokushima Prefectural Pablic Health, Pharmaceutical and Environmental Sciences Center(Tokushima City) September 16~19, 2014 Kagawa Pref. Kagawa Prefectu	Yamanashi Pref.		August 26~29, 2014
Gifu Prefe. Gifu Prefectural Research Institute for Health and Environmental September 16~19, 2014 Sciences(Kakamigahara City) Mie Pref. Mie Prefectural Health and Environment Research Institute (Yokkaichi City) Osaka Pref. Research Institute of Environment Research Institute (Yokkaichi City) Whyogo Pref. Hyogo Pref. Hyogo Prefectural Government (Osaka City) Hyogo Pref. Kobe City Government Building (Kobe City) Nara Pref. Tenri Air Quality Monitoring Station(Tenri City) September 1~4, 2014 Sep		Nagano Environmental Conservation Research Institute(Nagano City)	September 2~9, 2014
Nagoya City Mie Prefecture Health and Environment Research Institute(Yokkaichi City) Osaka Pref. Research Institute of Environment, Agriculture and Fisheries, Osaka Prefectural Government(Osaka City) Hyogo Pref. Hyogo Prefectural Environmental Research Center(Kobe City) Kobe City Kobe City Kobe City Nara Pref. Tenri Air Quality Monitoring Station(Tenri City) September 14, 2014 S	Gifu Pref.	Gifu Prefectural Research Institute for Health and Environmental	
Mie Prefecture Health and Environment Research Institute(Yokkaichi City) Osaka Pref. Research Institute of Environment, Agriculture and Fisheries, Osaka Prefectural Government(Osaka City) Hyogo Pref. Hyogo Prefectural Environmental Research Center(Kobe City) Kobe City Kobe City Government Building (Kobe City) Nara Pref. Tenri Air Quality Monitoring Station(Tenri City) September 1-4, 2014 September 2-2, 2014 September 2-2, 2014 September 2-2, 2014 September 2-2, 2014 September 1-4, 2014 September 2-2, 2014 Septemb	Nagova City		September 17~24, 2014
Osaka Pref. Research Institute of Environment, Agriculture and Fisheries, Osaka Prefectural Government(Osaka City) September 1~4, 2014 Hyogo Pref. Hyogo Prefectural Environmental Research Center(Kobe City) September 8~11, 2014 Kobe City Kobe City Government Building (Kobe City) September 1~4, 2014 Nara Pref. Tenri Air Quality Monitoring Station(Tenri City) September 1~4, 2014 Shimane Pref. Oki National Acid Rain Observatory(Okinoshima Town) September 16~19, 2014 Hiroshima Hiroshima City Kokutaiji Junior High School(Hiroshima City) September 8~11, 2014 City Yamaguchi Prefectural Institute of Public Health and Environment(Yamaguchi City) August 29~ September 5, 2014 Tokushima Tokushima Prefectural Pablic Health, Pharmaceutical and Environmental Sciences Center(Tokushima City) September 16~19, 2014 Kagawa Pref. Takamatsu Joint Prefectural Government Building(Takamatsu City) September 16~19, 2014 Kagawa Prefectural Public Swimming Pool(Takamatsu City) September 22~29, 2014 Kagawa Pref. Ehime Prefectural Government Building(Omuta City) September 8~11, 2014 Fukuoka Pref. Omuta City Government Building(Omuta City) September 5~12, 2014 Kumamoto Kagashima Prefectural Insti	Mie Pref.	Mie Prefecture Health and Environment Research Institute(Yokkaichi	
Hyogo Pref. Hyogo Prefectural Environmental Research Center(Kobe City) September 8~11, 2014	Osaka Pref.	Research Institute of Environment, Agriculture and Fisheries, Osaka	September 1~4, 2014
Kobe City Kobe City Government Building (Kobe City) September 1~4, 2014	Hvogo Pref.		September 8~11, 2014
Nara Pref. Tenri Air Quality Monitoring Station(Tenri City) September 1~4, 2014	Kobe City	Kobe City Government Building	
Shimane Pref. Oki National Acid Rain Observatory(Okinoshima Town) Hiroshima City Kokutaiji Junior High School(Hiroshima City) Yamaguchi Prefectural Institute of Public Health and Environment(Yamaguchi City) Tokushima Tokushima Prefectural Public Health, Pharmaceutical and Environmental Sceptember 16~19, 2014 Kagawa Pref. Takamatsu Joint Prefectural Government Building(Takamatsu City) as a reference site Ehime Pref. Ehime Prefectural Government Nanyo Regional Office(Uwajima City) September 22~29, 2014 September 23~2014 September 24~2014 September 25~2014 September 26~10, 2014 September 27~2014 September 27~2014 September 28~2014 September 29~2014 September 29~2014 September 20~2014 September 3~2014 Sep	Nara Pref.		September 1~4, 2014
Hiroshima City Kokutaiji Junior High School(Hiroshima City) Yamaguchi Prefectural Institute of Public Health and Environment(Yamaguchi City) Mishima Community Center(Hagi City) Tokushima Prefectural Public Health, Pharmaceutical and Environmental Sciences Center(Tokushima City) Kagawa Pref. Takamatsu Joint Prefectural Government Building(Takamatsu City) as a reference site Ehime Pref. Ehime Prefectural Public Swimming Pool(Takamatsu City) as a reference site Ehime Pref. Saga Prefectural Government Building(Omuta City) September 8~11, 2014 August 29~ September 5, 2014 September 16~19, 2014 September 22~29, 2014 September 5~11, 2014 September 5~12, 2014 September 5~12, 2014 September 16~19, 2014 September 8~11, 2014 September 16~19, 2014 September 8~11, 2014			
Yamaguchi Prefectural Institute of Public Health and Environment(Yamaguchi City) Mishima Community Center(Hagi City) Tokushima Prefectural Pablic Health, Pharmaceutical and Environmental Sciences Center(Tokushima City) Kagawa Pref. Takamatsu Joint Prefectural Government Building(Takamatsu City) as a reference site Ehime Pref. Ehime Pref. Ehime Prefectural Government Nanyo Regional Office(Uwajima City) September 22~29, 2014 September 23~2014 September 24~2014 September 25~2014 September 25~2014 September 26~11, 2014 September 29~0ctober 2, 2014 Kumamoto Prefectural Environmental Research Center(Saga City) September 5, 2014 September 16~19, 2014 September 27~2014 September 29~0ctober 2, 2014 September 16~19, 2014	Hiroshima		September 8~11, 2014
Mishima Community Center(Hagi City) Tokushima Prefectural Pablic Health, Pharmaceutical and Environmental Sciences Center(Tokushima City) Kagawa Pref. Takamatsu Joint Prefectural Government Building(Takamatsu City) Kagawa Prefectural Public Swimming Pool(Takamatsu City) as a reference site Ehime Pref. Ehime Prefectural Government Nanyo Regional Office(Uwajima City) September 22~29, 2014 September 22~29, 2014 Fukuoka Pref. Omuta City Government Building(Omuta City) September 8~11, 2014 September 29~ October 2, 2014 Saga Pref. Saga Prefectural Environmental Research Center(Saga City) Kumamoto Pref. Kumamoto Prefectural Institute of Public Health and Environmental Science(Udo City) Miyazaki Pref. Miyazaki Prefectural Institute for Public Health and Environment(Miyazaki City) Kagoshima Kagoshima Prefectural Institute for Environmental Research and Public Pref. Kagoshima Prefectural Institute for Environmental Research and Public Pref. Health(Kagoshima City)	Yamaguchi		August 29~ September 5, 2014
Tokushima Prefectural Pablic Health, Pharmaceutical and Environmental Sciences Center(Tokushima City) Kagawa Pref. Takamatsu Joint Prefectural Government Building(Takamatsu City) Kagawa Prefectural Public Swimming Pool(Takamatsu City) as a reference site Ehime Pref. Ehime Prefectural Government Nanyo Regional Office(Uwajima City) September 22~29, 2014 September 22~29, 2014 September 8~11, 2014 Fukuoka Pref. Omuta City Government Building(Omuta City) September 29~ October 2, 2014 September 29~ October 2, 2014 September 5~12, 2014 Kumamoto Prefectural Institute of Public Health and Environmental September 16~19, 2014 Pref. Miyazaki Prefectural Institute for Public Health and Environment(Miyazaki City) Kagoshima Kagoshima Prefectural Institute for Environmental Research and Public September 8~11, 2014 September 10~17, 2014 September 10~17, 2014 September 8~11, 2014			August 29~ September 5, 2014
Sciences Center(Tokushima City) Kagawa Pref. Takamatsu Joint Prefectural Government Building(Takamatsu City) Kagawa Prefectural Public Swimming Pool(Takamatsu City) as a reference site	Tokushima		
Kagawa Pref.Takamatsu Joint Prefectural Government Building(Takamatsu City)September 22~29, 2014Kagawa Prefectural Public Swimming Pool(Takamatsu City) as a reference siteEhime Prefectural Government Nanyo Regional Office(Uwajima City)September 8~11, 2014Ehime Pref.Ehime Prefectural Government Nanyo Regional Office(Uwajima City)September 8~11, 2014Fukuoka Pref.Omuta City Government Building(Omuta City)September 29~ October 2, 2014Saga Pref.Saga Prefectural Environmental Research Center(Saga City)September 5~12, 2014Kumamoto Prefectural Institute of Public Health and Environmental Science(Udo City)September 16~19, 2014Miyazaki Pref.Miyazaki Prefectural Institute for Public Health and Environment(Miyazaki City)September 10~17, 2014Kagoshima Prefectural Institute for Environmental Research and Public Health(Kagoshima City)September 8~11, 2014	Pref.		1,
reference site Ehime Pref. Ehime Prefectural Government Nanyo Regional Office(Uwajima City) September 8~11, 2014 Fukuoka Pref. Omuta City Government Building(Omuta City) September 29~ October 2, 2014 Saga Pref. Saga Prefectural Environmental Research Center(Saga City) September 5~12, 2014 Kumamoto Kumamoto Prefectural Institute of Public Health and Environmental September 16~19, 2014 Pref. Miyazaki Prefectural Institute for Public Health and Environment(Miyazaki City) Kagoshima Kagoshima Prefectural Institute for Environmental Research and Public September 8~11, 2014 Pref. Health(Kagoshima City)	Kagawa Pref.	Takamatsu Joint Prefectural Government Building(Takamatsu City)	September 22~29, 2014
Fukuoka Pref. Omuta City Government Building(Omuta City) Saga Pref. Saga Prefectural Environmental Research Center(Saga City) Kumamoto Prefectural Institute of Public Health and Environmental September 5~12, 2014 Pref. Science(Udo City) Miyazaki Pref. Miyazaki Prefectural Institute for Public Health and Environment(Miyazaki City) Kagoshima Prefectural Institute for Environmental Research and Public September 8~11, 2014 Pref. Health(Kagoshima City)	El: B C	reference site	0 1 0 11 2014
Saga Pref.Saga Prefectural Environmental Research Center(Saga City)September 5~12, 2014KumamotoKumamoto Prefectural Institute of Public Health and Environmental Science(Udo City)September 16~19, 2014Miyazaki Pref.Miyazaki Prefectural Institute for Public Health and Environment(Miyazaki City)September 10~17, 2014Kagoshima Pref.Kagoshima Prefectural Institute for Environmental Research and Public Health(Kagoshima City)September 8~11, 2014			
KumamotoKumamoto Prefectural Institute of Public Health and EnvironmentalSeptember 16~19, 2014Pref.Science(Udo City)Science(Udo City)Miyazaki Pref.Miyazaki Prefectural Institute for Public Health and Environment(Miyazaki City)September 10~17, 2014Kagoshima Prefectural Institute for Environmental Research and Public Health(Kagoshima City)September 8~11, 2014			
Pref. Science(Udo City) Miyazaki Pref. Miyazaki Prefectural Institute for Public Health and Environment(Miyazaki City) Kagoshima Ragoshima Prefectural Institute for Environmental Research and Public Health(Kagoshima City) September 8~11, 2014			
Environment(Miyazaki City) Kagoshima Prefectural Institute for Environmental Research and Public September 8~11, 2014 Pref. Health(Kagoshima City)	Pref.	Science(Udo City)	•
Pref. Health(Kagoshima City)	Miyazaki Pref.		September 10~17, 2014
	Kagoshima Pref.	Kagoshima Prefectural Institute for Environmental Research and Public	September 8~11, 2014
	Okinawa Pref.		September 8~11, 2014

Figure 3-1-4 Monitored sites (air) in the Environmental Monitoring in FY2014

(3) Target species

The species to be monitored among the wildlife media were selected considering the possibility of international comparison, as well as their significance and practicality as indicators: 1 bivalve (blue mussel), 8 fishes (predominantly sea bass), and 1 bird, namely, 10 species in total.

The properties of the species determined as targets in the FY2014 monitoring are shown in Table 3-2. Moreover, Table 3-3 summarizes the outline of the samples used for analysis.

(4) Sampling method of specimens

The sampling of specimens and the preparation of samples were carried out following the "Environmental Monitoring Instruction Manual" (No. 040309001, published on March 9th, 2004) by the Environment Health and Safety Division, Environmental Health Department, Ministry of the Environment of Japan (MOE).

Table 3-2 Properties of target species

	Species	Properties	Monitored areas	Aim of monitoring	Notes
	Blue mussel	Distributed worldwide, excluding	Yamada bay	Follow-up of the	Monitored
Bibalves	(Mytilus galloprovincialis)	tropical zones Adheres to rocks in inner bays and to bridge piers	Yokohama port Coast of Noto Peninsula	environmental fate and persistency in specific areas	in the 3 areas with different levels of persistency
	Greenling (Hexagrammos otakki)	Distributed from Hokkaido to southern Japan, the Korean Peninsula, and China Lives in shallow seas of 5-50 m depth from sea level	 Offshore of Iwanai Yamada bay Sendai Bay	Follow-up of the environmental fate and persistency in specific areas	
	Rock greenling (Hexagrammos lagocephalus)	Lives in cold-current areas of Hidaka and eastward (Hokkaido) Larger than the greenling and eats fish smaller than its mouth size at the sea bottom	Offshore of Kushiro	Follow-up of the environmental fate and persistency in specific areas	
	Pacific saury (Cololabis saira)	Distributed widely in northern Pacific Ocean Migrates around Japanese Archipelago; in Chishima in autumn and northern Kyushu in winter Bioaccumulation of chemicals is said to be moderate	Offshore of Sanriku	Follow-up of the environmental fate and persistency around the Japanese archipelago	
Fish	Chum salmon (Oncorhynchus keta)	Distributed in northern Pacific Ocean, Sea of Japan, Bering Sea, Sea of Okhotsk, the whole of the Gulf of Alaska, and part of the Arctic Ocean Runs the Tone River on the Pacific Ocean side and rivers in Yamaguchi Prefecture and northward on the Sea of Japan side in Japan Bioaccumulation of chemicals is said to be moderate	Offshore of Kushiro	Follow-up of the environmental fate and persistency on a global scale	
	Sea bass (Lateolabrax japonicus)	Distributed around the shores of various areas in Japan, the Korean Peninsula, and the coastal areas of China Sometimes lives in a freshwater environment and brackish-water regions during its life cycle Bioaccumulation of chemicals is said to be high	 Tokyo Bay Offshore of Ogishima Island, Port of Kawasaki Osaka Bay Offshore of Himeji Nakaumi Hiroshima Bay Mouth of Riv. Shimanto Mouth of Riv. Oita West Coast of Satsuma Peninsula 	Follow-up of the environmental fate and persistency in specific areas	Monitored in the 9 areas with different levels of persistency
	Striped mullet (Mugil cephalus)	Distributed widely in the worldwide tropical zones and subtropical zones Sometimes lives in a freshwater environment and brackish-water regions during its life cycle	Nagoya Port Takamatsu Port	Follow-up of the environmental fate and persistency in specific areas	
	Okinawa seabeam (Acanthopagrus sivicolus)	Distributed around Nansei Shoto (Ryukyu Islands) Lives in coral reefs and in bays into which rivers flow	• Nakagusuku Bay	Follow-up of the environmental fate and persistency in specific areas	
	Dace (Tribolodon hakonensis)	Distributed widely in freshwater environments throughout Japan Preys mainly on insects	• Lake Biwa, Riv. Ado (Takashima City)	Follow-up of the environmental fate and persistency in specific areas	
Birds	Great Cormorant (immature)* (Phalacrocorax carbo)	Distributed widely throughout Japan Eats primarily fish Bioaccumulation of chemicals is said to be high of the survey because there were	Lake Biwa(Lake Kita, offshore of Tikubushima Island) Riv.Tenjin(Kurayoshi City)	concentrations of chemicals in top predators	

^{*} In other countries of the survey, because there were the examples that the survey obtained the eggs of great cormorants, even if the eggs were taken at 1 site in this survey, the results were treated as the reference values, shown in reference.

Table 3-3-1 Basic data of specimens (bivalves as wildlife) in the Environmental Monitoring in FY 2014

Bivalve species (Area)	No.	Sampling month	Sex	Number of animals		eight (g) Average)			igth (cm) verage)		Water content %	Lipid content %
Blue mussel	1		Uncertain	428	5.9 ~	7.5 (6.7)	6.4 ~	33.4 (23.0)	86.1	1.57
(Mytilus galloprovincialis)	2	October, 2014	Uncertain	315	6.7 ~	7.8 (7.4)	19.7 ~	41.9 (30.3)		
Yamada Bay	3	2014	Uncertain	201	7.5 ~	8.8 (8.2)	34.2 ~	63.7 (43.8)		
Blue mussel	1		Mixed	195	2.8 ~	5.5 (3.7)	2.2 ~	18.6 (5.4)	87.7	0.64
(Mytilus galloprovincialis)	2	October, 2014	Mixed	247	3.1 ~	5.7 (3.7)	2.8 ~	19.5 (5.4)		
Yokohama Port	3	2014	Mixed	209	2.8 ~	6.5 (3.8)	1.9 ~	30.2 (6.2)		
Blue mussel (Mytilus	1		Uncertain	45	9.0 ~	12.0 (10.0)	73.2 ~	166.6 (95.8)	74.2	1.83
galloprovincialis)	2	September, 2014	Uncertain	69	7.8 ~	9.2 (8.5)	35.7 ~	75.6 (52.0)		
Coast of Noto Peninsula	3	2011	Uncertain	170	5.8 ~	7.4 (6.5)	17.0 ~	43.6 (29.1)		

Table 3-3-2 Basic data of specimens (fish as wildlife) in the Environmental Monitoring in FY 2014 (Part 1)

Fish species (Area)	Table 3-3-2 Basic data of specimens (fish as wildlife) in the Environmental Monitoring in FY 2014 (Part 1)											
Rock greenling (Hexagrammos lake)	Fish species (Area)	No		Sev								_
Hexagrammos of Kushiro Cotober	Tish species (Area)	110.	month	SCA			((Average)		(Average)		I
August Continue		1	October ~	Mixed	5	33	~	37 (34.7)	980 ~ 1,080 (1,03	4) 78	3.9 1.08
Offshore of Kushino 3	`	2	,	Mixed	4	32	~	34 (33.0)	890 ~ 1,135 (1,00	6)	
Concorhynchus keta Offshore of Kushino Concorhynchus keta Offshore of Ivanani Concorhynchus keta Offshore of Sanriku Cololabia saira Offshore of Sanriku Cololabia saira Offshore of Sanriku Cololabia saira Offshore of Ogishima Collabia pay Collabia Collab		3	2014	Mixed	4	29	~	40 (35.5)	660 ~ 1,730 (1,30	5)	
Offshore of Kushiro 3 2014 Female 2 67 ~ 69 (68) 4,760 ~ 5,460 (5,110)	Chum salmon	1	October~	Male	1			68 (68)	4,620 (4,62	0) 71	.8 2.30
Greenling (Hexagrammos otakit) October, 2014 Mixed 6 27 27 28 27 28 28 28 28		2		Male	1			60 (60)		0)	
November Company Cothograms Cothogra	Offshore of Kushiro	3	2014	Female	2	67	~	69 (68)	4,760 ~ 5,460 (5,11	0)	
Ortshore of Japan Sea(offshore of Gashima Sabasa Lateolabrax japonicus) Ortshore of Ogishima Striped mullet Lateolabrax japonicus) November, 2014 Mixed Mixed Sabasa Sabasa Lateolabrax japonicus) November, 2014 Mixed Sabasa Sabasa Lateolabrax japonicus) Ortshore of Ogishima Sabasa Sabasa Lateolabrax japonicus) Ortshore of Ogishima Sabasa Sabasa Cateolabrax japonicus) Ortshore of Ogishima Sabasa Sabasa Sabasa Cateolabrax japonicus) Ortshore of Ogishima Sabasa Sabasa Sabasa Cateolabrax japonicus) Ortshore of Ogishima Sabasa Sabasa Cateolabrax japonicus) Ortshore of Ogishima Sabasa Cateolabrax japonicus Ortshore of Ogishima Ort		1		Mixed	6	30	~	38 (33)	650 ~ 1,300 (86	6) 75	5.8 1.57
Sea (offshore of Iwanai) 3		2		Mixed	6	27	~	35 (32)	595 ~ 1,500 (87	7)	
Coctober, Yamada Bay 3		3	2014	Mixed	6	31	~	37 (33)	700 ~ 1,190 (88	1)	
Varnada Bay 2 2014 Uncertain 12 31.0 \(\topsilon \) 35.0 \(\topsilon \) 3	Greenling		Ootobou	Uncertain	8	35.0	~	42.0 (539 ~ 1,021 (83	1) 73	4.75
Yamada Bay 3				Uncertain	12	31.0	~	35.0 (33.4)		5)	
November, Sendai Bay (Matsushima Bay) 2 November, Sendai Bay (Matsushima Bay) 3 November, Sendai Bay (Matsushima Bay) 3 November, Sendai Bay (Matsushima Bay) 3 November, Sendai Bay (Cololabis saira) 1 Decemmber, Uncertain (Uncertain) 20 24.0		3	2014	Uncertain								
Sendai Bay (Matsushima Bay) 3	S	_	N. 1	Mixed	51	14.5	~		17.5)	51.7 ~ 184 (9	5.1) 75	.4 1.44
Matsushima Bay 3		2	,	Mixed	21	21.0	~	23.8 (22.7)	139 ~ 287 (21	3)	
Cololabis saira Offshore of Sanriku 3 Decemmber 2014 Uncertain 27 27 ~ 31 (30) 119 ~ 165 (146)	,	3	2011	Mixed	21	24.0	~	30.0 (26.1)	228 ~ 633 (35	1)	
(Cololabis saira) 2 2014 Uncertain 30 25 ~ 30 30 29 83.0 ~ 152 132 1 Sea bass 1 Uncertain 27 27 ~ 31 30 119 ~ 165 146 1 Sea bass 1 August, 2014 Mixed 4 46.4 ~ 51.6 48.3 1,405 ~ 1,675 1,539) Tokyo Bay 3 Mixed 4 46.4 ~ 51.6 48.3 1,405 ~ 1,675 1,539) Sea bass 1 November, 2014 Mixed 6 35.6 ~ 44.2 40.7 706 ~ 1,285 1,097 > Clateolabrax japonicus) Offshore of Ogishima Island, Port of Kawasaki 1 November, 2014 Female 15 30.7 ~ 31.9 31.2 367 ~ 448 409) Striped mullet (Mugil cephalus) Nagoya Port 1 August, 2014 Uncertain 5 345 ~ 380 364 722 ~ 1,077 950 73.9 2.59 Dace (Tribolodon hakonensis) Lake Biwa, Riv. Ado (Takashima City) 1 April, Male 22	Pacific saury	1	D 1	Uncertain	39	21	~	27 (26)	57.1 ~ 128 (9	2.9) 62	.8 15.3
Offshore of Sanriku 3			,	Uncertain			~		- ,			
Clateolabrax japonicus Clateolabrax japonicus Tokyo Bay 3 Mixed Mixed 6 35.6 ~ 44.2 (Offshore of Sanriku		2014	Uncertain								
Tokyo Bay 3 2014 Mixed 4 46.4 ~ 31.6 (48.3) 1,403 ~ 1,673 (1,339)			Anguet	Mixed	_				,			.0 3.73
Sea bass Clateolabrax japonicus Offshore of Ogishima Island, Port of Kawasaki Striped mullet (Mugil cephalus) Nagoya Port Striped mullet (Mugil cephalus) Offshore of Ogishima Island, Port of Kawasaki Striped mullet (Mugil cephalus) Nagoya Port Striped mullet (Mugil cephalus) Offshore of Ogishima Island, Port of Kawasaki Striped mullet (Mugil cephalus) Offshore of Ogishima Island, Port of Kawasaki Striped mullet (Mugil cephalus) Offshore of Ogishima Island, Port of Kawasaki Striped mullet (Mugil cephalus) Offshore of Ogishima Island, Port of Kawasaki Offshore of Ogishima Island, Port of Ogis					· ·							
Clateolabrax japonicus Clateolabrax japonicus Offshore of Ogishima Island, Port of Kawasaki Striped mullet (Mugil cephalus) Nagoya Port Striped mullet (Mugil cephalus) Offshore of Ogishima Island, Port of Kawasaki Striped mullet (Mugil cephalus) Offshore of Ogishima Island, Port of Kawasaki Striped mullet (Mugil cephalus) Offshore of Ogishima Island, Port of Kawasaki Striped mullet (Mugil cephalus) Offshore of Ogishima Island, Port of Kawasaki Striped mullet Offshore of Ogishima Island, Port of Kawasaki Offshore of Ogishima Island, Port of Offshore of Ogishima Island, Port of Kawasaki Offshore of Ogishima Island, Port of Kawasaki Offshore of Ogishima Island, Port of Ogishima Island, Por		-										
Offshore of Ogishima Island, Port of Kawasaki 2 2014 Male 13 30.7 ~ 31.9 (31.2) 367 ~ 448 (409) Striped mullet (Mugil cephalus) Nagoya Port 1 3 30.7 ~ 33.4 (31.8) 374 ~ 504 (418) Dace (Tribolodan hakonensis) Lake Biwa, Riv. Ado (Takashima City) 1 4 April, 2014 Male 2 24.6 ~ 26.2 (25.4) 203.4 ~ 264.3 (228.0) 233.8) 70.2 4.73 Sea bass (Lateolabra japonicus) 1 November, 2014 November, 2014 Uncertain 10 35.4 ~ 38.7 (37.2) 554 ~ 729 (630) 38.7 (37.2) 554 ~ 729 (630)		1	Marramahan	Male	_			,		`		.4 1.17
Striped mullet 1	Offshore of Ogishima	2		Female	15			31.9 (367 ~ 448 (40	9)	
Mugil cephalus 2 August 2014 Uncertain 5 356 ~ 445 (3	_,-,-,	Male	14	31.2	~	33.4 (31.8)	374 ~ 504 (41	8)	
Nagoya Port 3 2014 Uncertain 5 356 ~ 445 (Striped mullet	1	August	Uncertain	5	345	~	380 (364)			.9 2.59
Nagoya Port 3 Uncertain 5 345 ~ 387 (363) 927 ~ 1,170 (1,007)				Uncertain	_			445 (
Cribolodon hakonensis Lake Biwa, Riv. Ado (Takashima City) Sea bass (Lateolabrax japonicus) Clateolabrax japonicus) Clateolabrax japonicus Clateolabrax japonicu	_ ·	3	2014	Uncertain	5	345	~	387 (363)	927 ~ 1,170 (1,00	7)	
Lake Biwa, Riv. Ado (Takashima City) 2 2014 Male 22 24.6 ~ 26.2 (25.4) 203.4 ~ 264.3 (228.0) Sea bass 1 Female 25 24.0 ~ 27.5 (25.6) 25.6) 163.3 ~ 259.7 (221.9) (Lateolabrax japonicus) 1 November, 2014 Uncertain 10 33.5 ~ 40.4 (38.6) 455 ~ 820 (730) 76.9 (2.57)		1	A	Male	23	25.0	~	27.5 (25.6)	209.0 ~ 276.5 (23.	3.8) 70	.2 4.73
(Takashima City) 3 Female 25 24.0 ~ 27.5 (25.6) 163.3 ~ 259.7 (221.9) Sea bass (Lateolabrax japonicus) 1 November, 2014 Uncertain Uncertain 10 33.5 ~ 40.4 (38.6) 455 ~ 820 (730) 76.9 2.57		2		Male	22	24.6	~	26.2 (25.4)	203.4 ~ 264.3 (22	3.0)	
Sea bass 1 November, (Lateolabrax japonicus) Uncertain 2014 10 33.5 ~ 40.4 (38.6) 455 ~ 820 (730) 76.9 2.57		3	2017	Female	25	24.0	~	27.5 (25.6)	163.3 ~ 259.7(22	1.9)	
(Lateolabrax japonicus) 2 November, 2014 Uncertain 10 35.4 ~ 38.7 (37.2) 554 ~ 729 (630)	Sea bass	1		Uncertain				40.4 (0) 76	.9 2.57
Ocales Pay		2	,			35.4	~	,	37.2)	554 ~ 729 (63	0)	
			2014	Uncertain	10	32.6	~	40.6 (,	`	0)	

Table 3-3-2 Basic data of specimens (fish as wildlife) in the Environmental Monitoring in FY 2014 (Part 2)

Fish species (Area)	No.	Sampling month	Sex	Number of animals		Weight (g) (Average)		Length (cm) (Average)	Water content %	Lipid content %
Sea bass (Lateolabrax japonicus)	1 2	November, 2014	Male Mixed	3 4	60 ~ 62 ~	61 (63 (62.4)	2,000 ~ 2,500 (2,200) 1,900 ~ 2,200 (2,100)	75.4	3.99
Offshore of Himeji	3	-	Mixed	3	64 ~	70 (,	$2,000 \sim 3,600 \ (2,600)$		
Sea bass	1	October,	Mixed	10	36.0 ~	40.8 (38.3)	665 ~ 930 (774)	72.9	2.93
(Lateolabrax japonicus)	2	2014	Mixed	13	33.3 ~	37.9 (36.0)	525 ~ 793 (664)		
Nakaumi	3		Mixed	13	28.6 ~	37.1 (33.6)	357 ~ 730 (565)		
Sea bass	1	November,	Female	3	40.2 ~	42.0 (41.1)	858 ~ 1,022 (941)	78.2	0.81
(Lateolabrax japonicus) Hiroshima Bay	2	2014	Female	3	39.0 ~	41.7 (40.6)	793 ~ 1,048 (889)		
Tillosiiilia Bay	3		Male	4	38.5 ~	39.7 (39.1)	710 ~ 844 (787)	74.7	4.2.4
Striped mullet	1	September,	Uncertain	1		62 (62)	2,800 (2,800)	74.7	4.34
(Mugil cephalus)		2014	Uncertain	2	49 ~	60 (55)	$1,300 \sim 2,500 (1,900)$)	
Takamatsu Port	3		Uncertain	2	50 ~	57 (54)	$1,300 \sim 2,000 (1,650)$)	
Sea bass	1	October ~	Uncertain	20	15.2 ~	35.0 (20.0)	59.9 ~ 716 (174)	77.3	0.92
(<i>Lateolabrax japonicus</i>) Mouth of Riv. Shimanto	2	November,	Uncertain	21	15.5 ~	28.0 (19.9)	62.6 ~ 457 (164))	
(Shimanto City)	3	2014	Uncertain	22	14.2 ~	28.5 (19.8)	53.5 ~ 470 (158))	
Sea bass	1		Uncertain	2	52.0 ~	58.0 (55.0)	1,580 ~ 2,560 (2,070	75.4	1.46
(Lateolabrax japonicus) Mouth of Riv. Oita	2	January, 2015	Uncertain	2	51.5 ~	57.0 (54.2)	2,820 ~ 2,140 (1,980)	
(Oita City)	3	2013	Uncertain	2	55.0 ~	56.0 (55.5)	1,780 ~ 2,000 (1,890)		
Sea bass	1		Uncertain	12	24.0 ~	25.5 (25.0)	230 ~ 355 (276	76.0	0.48
(Lateolabrax japonicus) West Coast of Satsuma	2	Decemmber,	Uncertain	10	25.5 ~	25.8 (25.8)	282 ~ 345 (310		
Peninsula)	3	2014	Uncertain	10	26.0 ~	26.4 (26.2)	276 ~ 352 (311		
Okinawa seabeam	1	Decemmber,	Male	2	31.7 ~	32.5 (32.1)	807 ~ 957 (882)	73.8	1.42
(Acanthopagrus sivicolus)	2	2014~	Female	2	33.5 ~	35.0 (34.2)	1.139 ~ 1.153 (1.146)	, 2.0	
Nakagusuku Bay	3	January, 2015	Female	2	35.0 ~	35.6 (35.3)	1,213 ~ 1,236 (1,125)		

Table 3-3-3 Basic data of specimens (birds as wildlife) in the Environmental Monitoring in FY 2014

Table 3 3 3 Basic data of specimens (ords as whente) in the Environmental Womtoring in 1 1 2011								
Bird species (Area)	No.	Sampling month	Sex	Number of animals	Weight (g)	Length (cm)	Water content %	Lipid content %
Great Cormorant (immature)	1		Female	4	71.0 ~ 74.5 (74.5)	1,380 ~ 1,720 (1,540)	73.2	4.47
(Phalacrocorax carbo) Lake Biwa	2	July, 2014	Female	3	75.0 ~ 76.0 (76.0)	1,460 ~ 1,780 (1,580)	-	-
(Lake Kita Offshore of Tikubushima Island)	3		Male	1	79.0 (79.0)	1,360 (1,360)	-	-
Great Cormorant (immature)	1		Female	1	65.0 (65.0)	1,780 (1,780)	79.4	0.51
(Phalacrocorax carbo)	2	June, 2014	Female	1	67.5 (67.5)	1,680 (1,680)	-	-
Riv.Tenjin (Kuravoshi Citv)	3	2017	Female	1	70.0 (70.0)	1,560 (1,560)	-	-

(Note) The great cormorants (immature) killed as harmful birds were used as specimens.

4. Summary of monitoring results

The detection ranges are shown in Table 3-4, and the detection limits are shown in Table 3-5.

The monitoring results in FY2014 were statistically analysed together with the previous monitoring results, accumulated over the past 13 years (or 12 years) as a result of successive measurements at the same site or area from FY2002 (FY2003 for some substances and media), in order to detect inter-annual trends of increase or decrease over the 13 years (or 12 years). The results of the analyses are shown in Table 3-6

OData were carefully handled on the basis of following points.

· For sediment

At each monitoring point, three (3) specimen samples were collected. And the substances were analysed for each place with one specimen sample that is a mixture of equal parts of the three (3) specimen samples.

· For wildlife

At each monitoring point, three (3) specimen samples were collected in principle. And the substances were analysed for each place with one specimen sample that is a mixture of equal parts of the three (3) specimen samples.

• For air

At each monitored site, the sampling was for the monitoring in the warm season (August 25, $2014 \sim$ October 26, 2014).

In Kagawa Pref., monitoring was carried out at not only the Takamatsu Joint Prefectural Government Building but also at the location of the Kagawa Prefectural Public Swimming Pool (Takamatsu City) as a reference site.

OMethod for regression analysis and testing

The procedures described below were applied in an attempt to analyse and test the monitoring results obtained since FY2002 (FY2003 for air) in order to identify statistically significant differences which indicate inter-annual trends.

The sites which were surveyed in FY2014 and had had the target chemicals sampled there since the start of the respective surveys, except for those that were excluded from the surveys more than once, were selected for the analysis of annual trends. Among them, the sites whose data were missing in FY2014 and had been missing more than once since the start of the respective surveys until FY2014 were excluded.

Before FY2002, three (3) specimen samples were collected at each monitoring place and respectively analysed for water monitoring; after FY2003, the substances were analysed for each place with one specimen sample. For this reason, one specimen sample were taken at the point which one specimen sample continually collected after FY2002 was used analysis.

Before FY2009, three (3) specimen samples were collected at each monitoring place and respectively analysed for sediment monitoring; after FY2010, the substances were analysed for each place with one specimen sample that is a mixture of equal parts of the three (3) specimen samples collected at the location. For this reason, the arithmetic mean value of the three (3) specimen samples at each monitoring place was used for the analysis before FY2009.

Before FY2009, five (5) specimen samples were collected at each monitoring place and respectively analysed for wildlife monitoring; after FY2010, the substances were analysed for each place with one specimen sample that is a mixture of equal parts of the three (3) or five (5) specimen samples collected at the location. For this reason, the

arithmetic mean value of the three (3) specimen samples at each monitoring place was used for the analysis before FY2009.

In the FY2013 wildlife survey, the subject of the ornithological survey was changed to great cormorants, and therefore the survey sites were also changed. Because these changes may have affected the consistency between the survey results in FY2013 and those in previous years, the ornithological data were excluded from the inter-annual trend analysis.

Assessments done in past years applied nonparametric analysis to findings that diverged from norm. However, since such methods cannot support quantitative analysis, the procedures were deemed inadequate to properly track year by year changes. Therefore, as a means of evaluation that could be appropriately applied to findings out of the norm, regression lines with maximum probability estimates were used to analyse and track year by year changes, with boot strap methods being applied to test the mean differences.

- (1) For successive samplings taken from the same point: if, in any fiscal year, concentrations in one-third or more samples failed to reach detectible limits (i.e., were Non-Detected or 'nd'), it was then judged inappropriate to apply linear regression analysis to year by year changes, since the most frequent findings came below detection limits. Therefore, year by year trend analysis is provided only when less than one third of the samples show "nd" or non-detected readings.
- (2) In the inter-annual trend analyses, the increase or decrease was evaluated by examining a slope obtained from simple linear regression analysis (simple log-linear regression model). To obtain the proper regression line, the line was selected using methods to maximize the product of the probability density of each measured value according to the distribution of population obtained by each measurement result (maximum likelihood estimation). Where the total of samples at each point differed from others, the data were weighted so that the overall impact of data from different points was leveled. Also, the agreement between the linear regression model (primary expression) results and measurement results was evaluated in accord with Akaike's Information Criterion (AIC). AICs were calculated for both "slope model (simple log-linear regression model)" and "non-slope model (residuals from the mean value model)". These AIC data were used to calculate posteriori probability. When probability was 95% or greater, measurement results were deemed to be in agreement with the simple log-linear regression model.
- (3) When agreement was found as per (2) above, concentrations were deemed to sufficient to demonstrate inter-annual increase or decrease trends, based on the (positive or negative) slope of the regression line obtained via (1) above. The results are indicated as " or " in Table 3-6.
- (4) As addressed in (1) above, where concentrations found in one third or more samples failed to demonstrate detection, (i.e., were 'nd'), linear regression analysis was deemed inappropriate to track year by year changes. Instead, we employed mean difference derived using the boot strap method. This method helps verify differences in mean distribution between two (2) samples obtained from repeated calculations of mean values of randomly extracted data for these samples. This method was employed in the initial half-period period (FY 2002 FY 2005) and the second-half period (FY 2011 2014) for results where more than 50% of samples failed to evidence detection (nd) in any fiscal year.
- (5) The second-half period indicated a lower concentration when it was deemed by the testing of differences in average values using the boot strap method (p-value: more than 5%) that there is a significant difference between the first-half and second-half periods and the average concentration in the second-half period was lower than the

first half. These results are indicated as " $\;\; \bigsqcup$ " (or" $\;\;$ ") in Table 3-6.

When findings did not clearly demonstrate a year by year or inter-annual decrease (or increase) in (3), or when there was no difference in (5), this is indicated in Table 3-6 as "-". When concentrations found in 50% or more samples failed to demonstrate detection, (i.e., were nd), this is indicated as "X" in Table 3-6 because that method is insufficient to analyse year by year trends.

Table 3-4-1 List of the detection ranges in the Environmental Monitoring in FY2014 (Part 1)

		Surface wa	ter (pg/L)	Sediment (pg/g-dry)			
No.	Target chemicals	Range (Frepuency)	Av.	Range (Frepuency)	Av.		
[1]	Total PCBs	16~4,800 (48/48)	150	tr(35)~440,000 (63/63)	4,900		
[2]	НСВ	2.7~200 (48/48)	12	tr(4)~5,600 (63/63)	95		
[3]	Aldrin (reference)						
[4]	Dieldrin	2.7~200 (48/48)	28				
[5]	Endrin	tr(0.4)~25 (48/48)	2.5				
	DDTs						
	[6-1] <i>p,p</i> '-DDT	nd~380 (47/48)	4.4	tr(0.2)~12,000 (63/63)	140		
	[6-2] <i>p,p</i> '-DDE	1.9~610 (48/48)	16	11~64,000 (63/63)	530		
[6]	[6-3] <i>p,p</i> '-DDD	1.0~87 (48/48)	9.0	4.9~21,000 (63/63)	330		
	[6-4] <i>o.p</i> '-DDT	nd~63 (42/48)	1.0	nd~2,400 (62/63)	26		
	[6-5] <i>o,p</i> '-DDE	nd~560 (36/48)	0.6	tr(0.5)~41,000 (63/63)	30		
	[6-6] <i>o,p</i> '-DDD	0.33~38 (48/48)	3.7	tr(0.7)~3,200 (63/63)	74		
	Chlordanes (reference)						
	[7-1] <i>cis</i> -chlordane (reference)						
	[7-2] <i>trans</i> -chlordane (reference)						
[7]	[7-3] Oxychlordane (reference)						
	[7-4] cis-Nonachlor (reference)						
	[7-5] trans-Nonachlor (reference)						
	Heptachlors						
	[8-1] Heptachlor	nd~1.5 (28/48)	tr(0.2)	nd~49 (38/63)	tr(1.0)		
[8]	[8-2] cis-heptachlor epoxide	0.7~56 (48/48)	4.9	nd~310 (59/63)	2.1		
	[8-3] <i>trans</i> -heptachlor epoxide	nd (0/48)	nd	nd~3.6 (1/63)	nd		
	Toxaphenes (reference)						
	[9-1] Parlar-26 (reference)						
[9]	[9-2] Parlar-50 (reference)						
	[9-3] Parlar-62 (reference)						
	Mirex (reference)						
	HCHs [11-1] α-HCH	7.3~700	47	nd~4,300	84		
F1 17	[11-2] <i>β</i> -HCH	(48/48) 11~1,100	100	(62/63) 2.9~7,200	140		
[11]	[11-3] γ-HCH	(48/48) 3.5~350 (48/48)	18	(63/63) nd~2,600	27		
	(synonym:Lindane) [11-4] δ-HCH	(48/48) 0.7~590 (48/48)	7.1	(61/63) 0.4~3,900 (63/63)	27		
(N.I	1 1 6 4 22 1 1 4 41		vy aggrundina nd (halavy	the detection limit) to be hal	C411 C41		

⁽Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

⁽Note 2) "Range" is based on the concentrations of the samples and "Frequency" is based on the number of sites or areas. Therefore "Range" can be shown as "nd~" even if a target chemical is detected in all sites or areas.

(Note 3) " means the medium was not monitored.

(Note 4) "tr(X)" indicates that X was below the quantification limit and over the detection limit.

Table 3-4-2 List of the detection ranges in the Environmental Monitoring in FY2014 (Part 2)

		Surface wa	iter (pg/L)	Sediment (pg/g-dry)			
No.	Target chemicals	Range (Frepuency)	Av.	Range (Frepuency)	Av.		
[12]	Chlordecone (reference)						
[13]	Hexabromobiphenyls (reference)						
	Polybromodiphenyl ethers $(Br_4 \sim Br_{10})$						
	[14-1] Tetrabromodiphenyl ethers	tr(4)~51 (48/48)	tr(6)	nd~550 (44/63)	tr(24)		
	[14-2] Pentabromodiphenyl ethers	nd~39 (19/48)	nd 	nd~570 (53/63)	16		
[14]	[14-3] Hexabromodiphenyl ethers	nd~8 (10/48)	nd 	nd~730 (50/63)	21		
[1.]	[14-4] Heptabromodiphenyl ethers	nd~8 (3/48)	nd 	nd~680 (41/63)	19		
	[14-5] Octabromodiphenyl ethers	nd~38 (33/48)	2.5	nd~2,000 (55/63)	52		
	[14-6] Nonabromodiphenyl ethers	nd~590 (47/48)	37	nd~42,000 (60/63)	470		
	[14-7] Decabromodiphenyl ether	tr(14)~5,600 (48/48)	200	nd~980,000 (61/63)	5,600		
[13]	Perfluorooctane sulfonic acid (PFOS)	nd~7,500 (47/48)	460	nd~980 (62/63)	59		
F4 (3	Perfluorooctanoic acid (PFOA)	140~26,000 (48/48)	1,400	tr(6)~190 (63/63)	44		
[17]	Pentachlorobenzene	2.8~180 (48/48)	10	tr(1.2)~3,600 (63/63)	70		
	Endosulfans (reference)						
[18]	α-Endosulfan (reference)						
	β -Endosulfan (reference)						
	1,2,5,6,9,10-Hexabromo Cyclododecanes						
	[19-1] α-1,2,5,6,9,10-Hexabromo Cyclododecane	nd~1,600 (1/48)	nd				
	[19-2] β-1,2,5,6,9,10-Hexabromo cyclododecane	nd~tr(300) (1/48)	nd				
	[19-3] γ-1,2,5,6,9,10-Hexabromo cyclododecane	nd (0/48)	nd				
	[19-4] δ-1,2,5,6,9,10-Hexabromo cyclododecane	nd (0/48)	nd				
	[19-5] ε-1,2,5,6,9,10-Hexabromo cyclododecane	nd (0/48)	nd				
[20]	Total Polychlorinated Naphthalenes						
[21]	Hexachlorobuta-1,3-diene (reference)						

⁽Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

⁽Note 2) "Range" is based on the concentrations of the samples and "Frequency" is based on the number of sites or areas. Therefore "Range" can be shown as "nd ~" even if a target chemical is detected in all sites or areas.

⁽Note 3) "Image: means the medium was not monitored.
(Note 4) "tr(X)" indicates that X was below the quantification limit and over the detection limit.

⁽Note 5) The target chemicals of the Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) monitoring survey were *n*-Perfluorooctane sulfonic acid and *n*-Perfluorooctanoic acid.

Table 3-4-3 List of the detection ranges in the Environmental Monitoring in FY2014 (Part 3)

				Wildlife (pg/g-wet)			•	Air (pg/m³)	
No.	Target chemicals	Bibalve	s	Fish		Birds		First (Warm season)	
	S	Range (Frepuency)	Av.	Range (Frepuency)	Av.	Range (Frepuency)	Av.	Range (Frepuency)	Av.
[1]	Total PCBs	600~15,000	2,900	940 ~230,000 (19/19)	13,000	15,000 ~140,000 (2/2)	46,000	28~1,300 (36/36)	140
[2]	НСВ	15~100 (3/3)	34	37~1,900 (19/19)	280	32~5,600 (2/2)	420	84~240 (36/36)	150
[3]	Aldrin	nd (0/3)	nd	nd~2.4 (4/19)	nd	nd (0/2)	nd	nd~17 (6/34)	nd
[4]	Dieldrin	41~490 (3/3)	180	27~1,000 (19/19)	270	190~530 (2/2)	320	0.89~160 (36/36)	11
[5]	Endrin	8~84 (3/3)	23	nd~140 (18/19)	16	4~5 (2/2)	4.5	nd~2.9 (32/36)	0.39
	DDTs (reference)								
	[6-1] <i>p,p</i> '-DDT (reference)								
_	[6-2] <i>p,p</i> '-DDE (reference)								
[6]	[6-3] <i>p,p</i> '-DDD (reference)								
	[6-4] <i>o,p</i> '-DDT (reference)							ļļ	
	[6-5] o,p'-DDE (reference)								
	[6-6] o,p'-DDD (reference)								
	Chlordanes (reference)								
	[7-1] cis-chlordane (reference)								
[7]	[7-2] <i>trans</i> -chlordane (reference)								
[,]	[7-3] Oxychlordane (reference)								
	[7-4] cis-Nonachlor (reference)								
	[7-5] <i>trans</i> -Nonachlor (reference)								
	Heptachlors								
гот	[8-1] Heptachlor (reference)								
[8]	[8-2] cis-heptachlor epoxide								
	(reference)							- 	
	[8-3] <i>trans</i> -heptachlor epoxide (reference)								
	Toxaphenes (reference)								
[0]	[9-1] Parlar-26 (reference)								
[9]	[9-2] Parlar-50 (reference)								
	[9-3] Parlar-62 (reference)								
[10]	Mirex (reference)								
	HCHs								
	[11-1] α-HCH	7~39 (3/3)	16	nd~210 (18/19)	26	17~220 (2/2)	61	14~650 (36/36)	44
[11]	[11-2] <i>β</i> -HCH	28~64 (3/3)	40	4.4~460 (19/19)	75	24~3,600 (2/2)	290	0.57~74 (36/36)	5.4
	[11-3] γ -HCH (synonym:Lindane)	4.6~18 (3/3)	7.4	nd~45 (16/19)	8.4	4.4~24 (2/2)	10	1.7~100 (36/36)	14
	[11-4] δ-HCH	nd~3 (2/3)	tr(1)	nd~23 (14/19)	tr(2)	tr(1)~3 (2/2)	tr(2)	tr(0.07)~50 (36/36)	1.2
(N	ote 1) "Av." indicates the g		calculated		nd (below		imit) to be l		of the

⁽Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

⁽Note 2) "Range" is based on the concentrations of the samples and "Frequency" is based on the number of sites or areas. Therefore "Range" can be shown as "nd ~" even if a target chemical is detected in all sites or areas. (Note 3) " means the medium was not monitored. (Note 4) "tr(X)" indicates that X was below the quantification limit and over the detection limit.

Table 3-4-4 List of the detection ranges in the Environmental Monitoring in FY2014 (Part 4)

				Air (pg/m³)						
No.	Target chemicals	Bibalve	s	Fish		Bir	ds		First (Warm season)	
NO.		Renge (Frepuency)	Av.	Renge (Frepuency)	Av.	Renge (Frepuency)	Av.	Renge (Frepuency)	Av.	
[12]	Chlordecone (reference)	(======================================		(corp access)		(======================================		(222)		
	Hexabromobiphenyls (reference)									
	Polybromodiphenyl ethers($Br_4 \sim Br_{10}$) [14-1] Tetrabromodiphenyl	33~140	56	18~1,300	150	78~480	190	tr(0.09)~2.3	0.53	
	ethers [14-2] Pentabromodiphenyl ethers	(3/3) 18~41 (3/3)	30	(19/19) nd~570 (18/19)	41	(2/2) 31~320 (2/2)	100	(36/36) nd~0.80 (25/36)	tr(0.13)	
	[14-3] Hexabromodiphenyl ethers	11~52 (3/3)	23	nd~1,100 (18/19)	60	42~680 (2/2)	170	nd~0.4 (5/36)	nd	
	[14-4] Heptabromodiphenyl ethers	nd~13 (1/3)	nd	nd~280 (10/19)	tr(10)	nd~150 (1/2)	19	nd~tr(0.4) (2/36)	nd	
	[14-5] Octabromodiphenyl ethers	$tr(5)\sim14$ (3/3)	tr(9.2)	nd~540 (15/19)	14	nd~140 (1/2)	17	nd~0.7 (22/36)	tr(0.11)	
	[14-6] Nonabromodiphenyl ethers	tr(20)~110 (3/3)	40	nd~40 (16/19)	tr(10)	tr(10)~tr(20) (2/2)	tr(10)	nd~tr(3) (7/36)	nd	
	[14-7] Decabromodiphenyl ether	tr(120)~570 (3/3)	220	nd~300 (13/19)	tr(75)	nd~tr(140) (1/2)	tr(65)	nd~64 (24/36)	tr(4.7)	
[13]	Perfluorooctane sulfonic acid (PFOS)	nd~93 (2/3)	8	nd~4,600 (18/19)	82	190~110,000 (2/2)	4,600	0.52~8.6 (36/36)	3.1	
[16]	Perfluorooctanoic acid (PFOA)	nd~10 (2/3)	tr(4)	nd~85 (11/19)	tr(6)	nd~2,600 (1/2)	62	5.4~210 (36/36)	28	
[17]	Pentachlorobenzene	10~23 (3/3)	14	nd~280 (18/19)	38	tr(5.6)~560 (2/2)	56	39~210 (36/36)	83	
	Endosulfans									
[18]	α-Endosulfan	nd~130 (1/3)	tr(20)	nd~tr(30) (1/19)	nd	nd (0/2)	nd 	2.6~90 (36/36)	20	
	β-Endosulfan	nd~23 (1/3)	nd	nd~tr(8) (3/19)	nd	nd~tr(8) (1/2)	nd	nd~6.1 (33/36)	1.3	
	1,2,5,6,9,10-Hexabromo cyclododecanes [19-1]									
	α-1,2,5,6,9,10-Hexabromo cyclododecane	200~380 (3/3)	270	nd~15,000 (18/19)	240	130~1,800 (2/2)	480	nd~3.1 (25/36)	tr(0.56)	
	[19-2] β-1,2,5,6,9,10-Hexabromo cyclododecane	tr(10)~tr(20) (3/3)	tr(10)	nd~30 (5/19)	nd	nd (0/2)	nd	nd~tr(0.8) (8/36)	nd	
[19]	[19-3] γ-1,2,5,6,9,10-Hexabromo cyclododecane	30~110 (3/3)	60	nd~2,800 (12/19)	tr(30)	tr(10) (2/2)	tr(10)	nd~tr(1.2) (4/36)	nd	
	[19-4] δ-1,2,5,6,9,10-Hexabromo cyclododecane	nd (0/3)	nd	nd (0/19)	nd	nd (0/2)	nd	nd (0/36)	nd	
	[19-5] ε-1,2,5,6,9,10-Hexabromo cyclododecane	nd~tr(20) (1/3)	nd	nd~80 (3/19)	nd	nd (0/2)	nd	nd (0/36)	nd	
[20]	Total Polychlorinated Naphthalenes							5.4~1,600 (36/36)	110	
	Hexachlorobuta-1,3-diene ote 1) "Av." indicates the g									

⁽Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

⁽Note 2) "Range" is based on the concentrations of the samples and "Frequency" is based on the number of sites or areas. Therefore "Range" can be shown as "nd \sim " even if a target chemical is detected in all sites or areas.

⁽Note 3) "means the medium was not monitored.

⁽Note 4) "tr(X)" indicates that X was below the quantification limit and over the detection limit.

⁽Note 5) The target chemicals of the Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) monitoring survey were *n*-Perfluorooctane sulfonic acid and *n*-Perfluorooctanoic acid. However, the possibility cannot be ruled out that the concentration of branched Perfluorooctanoic acid, which has a branched carbon chain, was included in measured concentration as *n*-Perfluorooctanoic acid in a survey of wildlife.

Table 3-5-1 List of the quantification [detection] limits in the Environmental Monitoring in FY2014 (Part 1)

				ntal Monitoring in FY20	
No.	Target chemicals	Surface water (pg/L) *8.2	Sediment (pg/g-dry) *61	Wildlife (pg/g-wet) *95	Air (pg/m³) *4.1
[1]	Total PCBs	[*2.9]	[*21]	[*31]	[*1.4]
[2]	НСВ	0.9	6	10	1.4
	Aldrin	[0.4]	[2]	[3] 1.8 [0.7]	[0.5] 12 [4]
[4]	Dieldrin	0.5 [0.2]		3 [1]	0.34 [0.11]
[5]	Endrin	0.5 [0.2]		3 [1]	0.2 [0.07]
	DDTs	[0.2]			[0.07]
	[6-1] <i>p,p'</i> -DDT	0.4 [0.1]	0.4 [0.2]		
	[6-2] <i>p,p'</i> -DDE	0.5 [0.2]	1.8 [0.6]		
[6]	[6-3] <i>p,p'</i> -DDD	1.0 [0.4]	4.2 [1.4]		
	[6-4] <i>o,p'</i> -DDT	0.4 [0.2]	0.4 [0.2]		
	[6-5] <i>o,p'</i> -DDE	0.3 [0.1]	0.8 [0.3]		
	[6-6] <i>o,p'</i> -DDD	0.20 [0.08]	1.2 [0.5]		
	Chlordanes (reference)				
	[7-1] <i>cis-</i> chlordane (reference)				
	[7-2] trans-chlordane (reference)				
[7]	[7-3] Oxychlordane (reference)				
	[7-4] cis-Nonachlor (reference)				
	[7-5] trans-Nonachlor (reference)				
	Heptachlors				
F03	[8-1] Heptachlor	0.5 [0.2]	1.5 [0.5]		
[8]	[8-2] cis-heptachlor epoxide	0.5 [0.2]	0.5 [0.2]		
	[8-3] trans-heptachlor epoxide	0.8 [0.3]	0.7 [0.3]		
	Toxaphenes (reference)				
[0]	[9-1] Parlar-26 (reference)				
[9]	[9-2] Parlar-50 (reference)				
	[9-3] Parlar-62 (reference)				
[10]	Mirex (reference)				
	HCHs			ļ	
	[11-1] α-HCH	4.5 [1.5]	2.4 [0.8]	3 [1]	0.19 [0.06]
[11]		1.0 [0.4]	0.9 [0.3]	2.4 [0.9]	0.24 [0.08]
	[11-3] γ -HCH (synonym:Lindane)	1.2 [0.4]	2.7 [0.9]	2.2 [0.8]	0.17 [0.06]
	[11-4] δ-HCH	0.4 [0.2]	0.4 [0.1]	3 [1]	0.19 [0.06]
(Not	a 1) Each quantification 1		orresponding [detection line		F: **I

(Note 1) Each quantification limit is shown above the corresponding [detection limit].

⁽Note 2) " * " means the quantification [detection] limit is the sum value of congeners.

⁽Note 3) The same quantification [detection] limit was employed for bivalves, fish and birds as wildlife for each target chemical.

⁽Note 4) The quantification [detection] limit for surface water offshore of Himeji was different from the value shown in the table. (Note 5) "means the medium was not monitored.

Table 3-5-1 List of the quantification [detection] limits in the Environmental Monitoring in FY2014 (Part 2)

No.	Target chemicals	Surface water (pg/L)	imits in the Environmer Sediment (pg/g-dry)	Wildlife (pg/g-wet)	$\frac{\text{Air (pg/m}^3)}{\text{Air (pg/m}^3)}$
	-	Surface water (pg/L)	Scannent (pg/g-ary)	whame (pg/g-wet)	All (pg/III)
[12]	Chlordecone (reference)				
[13]	Hexabromobiphenyls (reference)				
	Polybromodiphenyl				
	ethers(Br ₄ ~ Br ₁₀)				
	[14-1]	8	27	15	0.28
	Tetrabromodiphenyl ethers	[3]	[9]	[6]	[0.09]
	[14-2]				[0.02]
	Pentabromodiphenyl	4	6	12	0.28
	ethers	[2]	[2]	[5]	[0.09]
	[14-3]	4	5	10	0.4
[14]	Hexabromodiphenyl ether	[1]	[2]	[4]	[0.1]
[17]	[14-4]				
	Heptabromodiphenyl	8	16	12	0.7
	ethers	[3]	[6]	[5]	[0.2]
	[14-5] Octabromodiphenyl	1.6	12	11	0.4
	ethers	[0.6]	[4]	[4] 30	[0.1]
	[14-6] Nonabromodiphenyl ethers	6 [2]	60 [20]	[10]	4 [1]
	[14-7] Decabromodiphenyl	<u>L21</u> 22	240	170	9
	ether	[9]	[80]	[60]	[3]
51.53	Perfluorooctane sulfonic	50	5	5	0.17
[15]	acid (PFOS)	[20]	[2]	[2]	[0.06]
[16]	Perfluorooctanoic acid	50	11	10	0.4
[10]	(PFOA)	[20]	[5]	[3]	[0.1]
[17]	Pentachlorobenzene	0.8	2.4 [0.8]	9.3 [3.1]	0.9 [0.3]
	Endosulfans	[0.5]	[0.0]	[5.1]	[0.5]
[18]	α-Endosulfan			60	0.8
				[20]	[0.3]
	β -Endosulfan			19 [6]	1.2 [0.4]
	1,2,5,6,9,10-Hexabromo			[0]	[0.4]
	Cyclododecanes				
	[19-1]				
	α -1,2,5,6,9,10-Hexabromo	1,500		30	1.2
	cyclododecane	[600]		[10]	[0.4]
	[19-2]	F 2 2 1		F	r1
	β -1,2,5,6,9,10-Hexabromo	500		30	1.0
	cyclododecane	[200]		[10]	[0.3]
[19]	[19-3]				
	γ-1,2,5,6,9,10-Hexabromo	700		30	1.3
	cyclododecane	[300]		[10]	[0.4]
1	[19-4]	(00		20	1.0
	δ-1,2,5,6,9,10-Hexabromo cyclododecane	600 [200]		30 [10]	1.8 [0.6]
	[19-5]	[200]		[10]	[0.0]
	ε -1,2,5,6,9,10-Hexabromo	400		30	0.9
	cyclododecane	[200]		[10]	[0.3]
[20]	Total Polychlorinated				2.8
[20]	Naphthalenes				[1.0]
[21]	Hexachlorobuta-1,3-diene				
<u> </u>			arragnanding [dataatian liv		

(Note 1) Each quantification limit is shown above the corresponding [detection limit].

⁽Note 2) The same quantification [detection] limit was employed for bivalves, fish and birds as wildlife for each target chemical. (Note 3) "means the medium was not monitored.

Table 3-6-1 Results of inter-annual trend analysis from FY2002 to FY2014 (surface water)

No	Name	Surface water								
INO	Name		River area	Lake area	Mouth area	Sea area				
[1]	Total PCBs					-				
[2]	НСВ		-	-						
[3]	Aldrin (reference)									
[4]	Dieldrin	-	-	-	-	-				
[5]	Endrin	-	-		-					
	DDTs	-		•	,,					
	[6-1] <i>p,p'</i> -DDT		-		-	-				
	[6-2] <i>p,p'</i> -DDE	_	-			-				
[6]	[6-3] <i>p,p'</i> -DDD	- :	-	-	-	-				
	[6-4] <i>o,p'</i> -DDT									
	[6-5] <i>o,p'</i> -DDE	L .	X	X	-	L				
	[6-6] <i>o,p'</i> -DDD	-	-	-	-	-				
	Chlordanes (reference)	•								
	[7-1] cis-chlordane (reference)									
	[7-2] trans-chlordane (reference)									
[7]	[7-3] Oxychlordane (reference)									
	[7-4] cis-Nonachlor (reference)									
	[7-5] trans-Nonachlor (reference)									
	Heptachlors									
	[8-1] Heptachlor	X	X	X	X	X				
[8]	[8-2] cis-heptachlor epoxide	-	-	_	-	-				
	[8-3] trans-heptachlor epoxide	X	X	X	X	X				
	Toxaphenes (reference)									
	[9-1] Parlar-26 (reference)									
[9]	[9-2] Parlar-50 (reference)									
	[9-3] Parlar-62 (reference)	-								
[10]	Mirex (reference)									
	HCHs				1					
	[11-1] α-HCH		-	-	y	_				
[11]	[11-2] β-HCH		-		_					
[]	[11-3] γ -HCH (synonym:Lindane)				_					
	[11-4] δ-HCH	_*	-	: _	_*	X				
(Not			1 050/ 1	manguramant ragu	<u> </u>	1 '				

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

⁽Note 2) " \rightharpoonup ": An inter-annual trend of decrease was found.
" \rightharpoonup ": Statistically significant differences between the first-half and second-half periods were found.

[&]quot;-": An inter-annual trend was not found.

[&]quot;X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," or "less number of monitoring sites" "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 11 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."

"*":In case of using the bootstrap methods, there was not a significant difference between the values of first-half and

second-half periods.

⁽Note 3) The classification of monitored sites with area are shown in Table 3-7

⁽Note 4)" ": The inter-annual trend analysis was not analysed because not conducted the survey in FY2014.

Table 3-6-2 Results of inter-annual trend analysis from FY2002 to FY2014 (sediment)

		Sediment								
No	Name		River area	Lake area	Mouth area	Sea area				
[1]	Total PCBs			-	-					
[2]	НСВ	-	-	-	-	-				
[3]	Aldrin									
[4]	Dieldrin									
[5]	Endrin									
	DDTs									
	[6-1] <i>p,p'</i> -DDT	_	-	_	-	_				
	[6-2] <i>p,p'</i> -DDE		-	_	-	_				
[6]	[6-3] <i>p,p'</i> -DDD		-	_	-	_				
	[6-4] <i>o,p'</i> -DDT		-	_		_				
	[6-5] <i>o,p'</i> -DDE		-	-	-	-				
	[6-6] <i>o,p'</i> -DDD	-	-	-	-					
	Chlordanes (reference)		,							
	[7-1] cis-chlordane (reference)									
[7]	[7-2] trans-chlordane (reference)									
[7]	[7-3] Oxychlordane (reference)									
	[7-4] cis-Nonachlor (reference)									
	[7-5] trans-Nonachlor (reference)									
	Heptachlors									
	[8-1] Heptachlor	X	X	X	∟	X				
[8]	[8-2] cis-heptachlor epoxide	L	*	*		X				
	[8-3] trans-heptachlor epoxide	X	X	X	X	X				
	Toxaphenes (reference)									
	[9-1] Parlar-26 (reference)									
[9]	[9-2] Parlar-50 (reference)									
	[9-3] Parlar-62 (reference)									
[10]	Mirex (reference)									
	HCHs									
	[11-1] α-HCH	-	-	-	-	-				
[11]	[11-2] <i>β</i> -HCH	_	-	-	-	_				
	[11-3] γ-HCH (synonym:Lindane)	-	-	-	-	-				
	[11-4] <i>δ</i> -HCH		-	-	- 1	_				

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

⁽Note 2) " ¾ ": An inter-annual trend of decrease was found.
" □ ": Statistically significant differences between the first-half and second-half periods were found.

[&]quot;-": An inter-annual trend was not found.

[&]quot;X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 11 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."

[&]quot;*": In case of using the bootstrap methods, there was not a significant difference between the values of first-half and second-half periods.

⁽Note 3) The classification of monitored sites with area are shown in Table 3-7

⁽Note 4)": The inter-annual trend analysis was not analysed because not conducted the survey in FY 2014.

Table 3-6-3 Results of inter-annual trend analysis from FY2002 to FY2014 (wildlife)

No	Name	Bivalves	Fish
[1]	Total PCBs	-	-
[2]	НСВ	-	-
[3]	Aldrin	X	X
[4]	Dieldrin	-	-
[5]	Endrin	-	* -
	DDTs (reference)		
[6]	[6-1] p,p'-DDT (reference) [6-2] p,p'-DDE (reference) [6-3] p,p'-DDD (reference) [6-4] o,p'-DDT (reference)		
	[6-5] <i>o,p'</i> -DDE (reference) [6-6] <i>o,p'</i> -DDD (reference)		
	Chlordanes (reference)		
	[7-1] cis-chlordane (reference)		
[7]	[7-2] trans-chlordane (reference)		
[7]	[7-3] Oxychlordane (reference)		
	[7-4] cis-Nonachlor (reference)		
	[7-5] trans-Nonachlor (reference)		
	Heptachlors (reference)		
F03	[8-1] heptachlor (reference)		
[8]	[8-2] cis-heptachlor epoxide (reference)		
	[8-3] <i>trans</i> -heptachlor epoxide (reference)		
	Toxaphenes (reference)		
	[9-1] Parlar-26 (reference)		
[9]	[9-2] Parlar-50 (reference)		
	[9-3] Parlar-62 (reference)		
[10]	Mirex (reference)		
	HCHs		
	[11-1] α-HCH		-
[11]	[11-2] β-HCH	-	-
	[11-3] γ-HCH (synonym:Lindane)		
	[11-4] δ-HCH	X X	L

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 3) ": The inter-annual trend analysis was not analyzed because not conducted the survey in FY 2014.

⁽Note 2) " \(\sigma\) ": An inter-annual trend of decrease was found.
" \(\sigma\) ": Statistically significant differences between the first-half and second-half periods were found.

[&]quot;-": An inter-annual trend was not found.

[&]quot;X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 11 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more." ": In case of using the bootstrap methods, there was not a significant difference between the values of first-half and second-half periods.

Table 3-6-4 Results of inter-annual trend analysis from FY2002 to FY2014 (air)

NT.	N.	Air	
No	Name	Warm season	Cold season
[1]	Total PCBs		
[2]	НСВ	-	
[3]	Aldrin (reference)	X	
[4]	Dieldrin (reference)	-	
[5]	Endrin (reference)	-	
	DDTs (reference)	•	
	[6-1] p,p'-DDT (reference)		
	[6-2] p,p'-DDE (reference)		
[6]	[6-3] p,p'-DDD (reference)		
	[6-4] o,p'-DDT (reference)		
	[6-5] o,p'-DDE (reference)		
	[6-6] <i>o,p'</i> -DDD (reference)		
	Chlordanes (reference)		
	[7-1] cis-chlordane (reference)		
	[7-2] trans-chlordane (reference)		
[7]	[7-3] Oxychlordane (reference)		
	[7-4] cis-Nonachlor (reference)		
	[7-5] trans-Nonachlor (reference)		
	Heptachlors (reference)		
	[8-1] Heptachlor (reference)		
[8]	[8-2] cis-heptachlor epoxide (reference)		
	[8-3] <i>trans</i> -heptachlor epoxide (reference)		
	Toxaphenes (reference)		
	[9-1] Parlar-26 (reference)		
[9]	[9-2] Parlar-50 (reference)		
	[9-3] Parlar-62 (reference)		
[10]	Mirex (reference)		

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 3) "T: The inter-annual trend analysis was not analyzed because not conducted the survey in FY 2014.

⁽Note 2) " \(\sigma\) ": An inter-annual trend of decrease was found.
" \(\sigma\) ": Statistically significant differences between the first-half and second-half periods were found.

[&]quot;-": An inter-annual trend was not found.

[&]quot;X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 11 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."

Table 3-7 The classification of monitored sites with area at inter-annual trend analysis from FY2002 to FY2014

Classification	Local	Monitored sites	Monitore	
	Communities		Surface water	Sediment
River area	Hokkaido	Onnenai-ohashi Bridge, Riv. Teshio(Bifuka Town)		0
		Suzuran-ohashi Bridge, Riv Tokachi(Obihiro City)	0	0
	T . D C	Ishikarikakokyo Bridge, Mouth of Riv. Ishikari(Ishikari City)	0	0
	Iwate Pref.	Riv. Toyosawa(Hanamaki City)	0	0
	Sendai City	Hirose-ohashi Bridge, Riv. Hirose(Sendai City)		0
	Yamagata Pref.	Mouth of Riv. Mogami(Sakata City)	0	0
	Ibaraki Pref.	Tonekamome-ohasi Bridge, Mouth of Riv. Tone(Kamisu City)	0	0
	Tochigi Pref. Saitama Pref.	Riv. Tagawa(Utsunomiya City)	0	0
		Akigaseshusui of Riv. Arakawa	0	
	Niigata Pref.	Lower Riv. Shinano(Niigata City)	0	0
	Toyama Pref.	Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City)	0	0
	Fukui Pref.	Mishima-bashi Bridge, Riv. Shono(Tsuruga City)	0	0
	Yamanashi Pref. Shizuoka Pref.	Senshu-bashi Bridge, Riv. Arakawa(Kofu City)		0
		Riv. Tenryu(Iwata City)	0	0
	Kyoto City	Miyamae-bashi Bridge, Riv. Katsura(Kyoto City)	0	0
	Osaka City	Osaka Port	0	0
	N. D. C	Kema-bashi Bridge, Riv. Oh-kawa (Osaka City)		0
	Nara Pref.	Riv. Yamato(Oji Town)	_	0
	Wakayama Pref.	Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City)	0	0
	Kochi Pref.	Mouth of Riv. Shimanto(Shimanto City)	0	0
	Kumamoto Pref.	Hiraki-bashi Bridge, Riv. Midori(Uto City)	0	
	Miyazaki Pref.	Mouth of Riv. Oyodo(Miyazaki City)	0	0
	Kagoshima Pref.	Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City)	0	0
T -1	Akita Pref.		0	0
Lake area	Nagano Pref.	Lake Hachiro Lake Suwa(center)	0	0
	Shiga Pref.	Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)	0	0
	Siliga Piel.	Lake Biwa(center, offshore of Karasaki)	<u>^</u>	0
River	Hokkaido	Tomakomai Port	0	
mouth area	Chiba City	Mouth of Riv. Hanami(Chiba City)	<u> </u>	0
illoutii aica	Tokyo Met.	Mouth of Riv. Arakawa(Koto Ward)	0	0
	Tokyo Met.	Mouth of Riv. Sumida(Minato Ward)	+	
	Kawasaki City	Mouth of Riv. Tama(Kawasaki City)	0	0
	Ishikawa Pref.	Mouth of Riv. Sai(Kanazawa City)	0	0
	Aichi Pref.	Kinuura Port	Ŭ	0
	Mie Pref.	Toba Port		0
	Osaka Pref.	Mouth of Riv. Yamato(Sakai City)	0	0
	Osaka Tier.	Mouth of Riv. Yodo(Osaka City)	- U	0
	Tokushima Pref.	Mouth of Riv. Yoshino(Tokushima City)	0	0
	Kagawa Pref.	Takamatsu Port	0	0
	Kitakyushu City	Dokai Bay	0	0
	Oita Pref.	Mouth of Riv. Oita(Oita City)	· ·	0
	Okinawa Pref.	Naha Port	0	0
Sea area	Miyagi Pref.	Sendai Bay(Matsushima Bay)	0	0
Sea area	Fukushima Pref.	Onahama Port	0	0
	Chiba Pref.	Coast of Ichihara and Anegasaki	<u> </u>	0
	Yokohama City	Yokohama Port	0	0
	Kawasaki City	Keihin Canal, Port of Kawasaki	0	0
	Shizuoka Pref.	Shimizu Port		0
	Aichi Pref.	Nagoya Port	0	0
	Mie Pref.	Yokkaichi Port	0	0
	Kyoto Pref.	Miyazu Port	0	0
	Osaka City	Outside Osaka Port	†	0
	Hyogo Pref.	Offshore of Himeji	0	0
	Kobe City	Kobe Port(center)	0	0
	Okayama Pref.	Offshore of Mizushima	0	0
	Hiroshima Pref.	Kure Port	0	0
	111001111111111111111111111111111111111	Hiroshima Bay	0	0
	Yamaguchi Pref.	Tokuyama Bay	0	0
	I uninguoni i ici.	Offshore of Ube	0	0
	1	Offshore of Hagi	0	0
	Ehime Pref			
	Ehime Pref.	Niihama Port	,	0
	Ehime Pref. Fukuoka City Saga Pref.		0	

(Note) There are monitored sites which were classified in the area unlike these names by the situations

In the wake of the monitoring surveys of FYs2002~2013, FY2014 saw a high sensitivity analysis covering two (2) of fifteen (15) POPs treaty substances and HCHs. All these chemicals were found.

A high sensitivity analysis also surveyed for Aldrin, Dieldrin, Endrin, DDTs, Heptachlors, Polybromodiphenyl ethers (Br₄~Br₁₀), Perfluorooctane sulfonic acid (PFOS), Perfluorooctanoic acid (PFOA), Pentachlorobenzene, Endosulfans, 1,2,5,6,9,10-Hexabromocyclododecanes and Total Polychlorinated Naphthalenes. All these chemicals were detected excepting Aldrin in wildlife (bibalves and birds), Heptachlors (trans-Heptachlor epoxide) in surface wildlife 1,2,5,6,9,10-Hexabromocyclododecanes water, Endosulfan $(\alpha$ -Endosulfan) in (birds), $(\beta-1,2,5,6,9,10$ -Hexabromocyclododecane) in wildlife (birds), 1,2,5,6,9,10-Hexabromocyclododecanes $(\gamma-1,2,5,6,9,10$ -Hexabromocyclododecane) surface 1,2,5,6,9,10-Hexabromocyclododecanes in water, $(\delta-1,2,5,6,9,10$ -Hexabromocyclododecane) in surface water, wildlife (bibalves, fish and birds) and air, 1,2,5,6,9,10-Hexabromocyclododecanes (ε-1,2,5,6,9,10-Hexabromocyclododecane) in surface water, wildlife (birds) and air.

The monitoring results for each chemical (group) are described below.

[1] Total PCBs

· History and state of monitoring

Polychlorinated biphenyls (PCBs) had been used as insulating oil, etc. and were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in June 1974, since the substances are persistent, highly accumulative in living organisms, and chronically toxic.

In previous monitoring series, the substances were monitored in wildlife (bivalves, fish and birds) during the period of FY1978~2001 under the framework of "the Wildlife Monitoring." Under the framework of "The Follow-up Survey of the Status of Pollution by Unintentionally Formed Chemicals," sediment and wildlife (fish) were the monitored media in FY1996 and FY1997, and surface water, sediment, wildlife (fish) and air were the monitored media in FY2000 and FY2001.

Under the framework of the Environmental Monitoring, the substances in surface water, sediment, wildlife (bivalves, fish and birds) and air have been monitored since FY2002.

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of **2.9pg/L, and the detection range was 16~4,800pg/L. As results of the inter-annual trend analysis from FY2002 to FY2014, reduction tendency in specimens from river areas, lake areas and river mouth areas identified as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

Stocktaking of the detection of Total PCBs (total amount) in surface water during FY2002~2014

Total PCBs	Monitored	Geometric				Quantification	Detection l	requency
(total amount)	year	Mean*	Median	Maximum	Minimum	[Detection] Limit**	Detection I Sample 114/114 36/36 38/38 47/47 48/48 48/48 48/48 48/48 41/49 49/49 48/48	Site
	2002	470	330	11,000	60	7.4 [2.5]	114/114	38/38
	2003	530	450	3,100	230	9.4 [2.5]	36/36	36/36
	2004	630	540	4,400	140	14 [5.0]	38/38	38/38
	2005	520	370	7,800	140	10 [3.2]	47/47	47/47
	2006	240	200	4,300	15	9 [3]	48/48	48/48
C	2007	180	140	2,700	12	7.6 [2.9]	48/48	48/48
Surface water	2008	260	250	4,300	27	7.8 [3.0]	48/48	48/48
(pg/L)	2009	210	170	3,900	14	10 [4]	48/48	48/48
	2010	120	99	2,200	nd	73 [24]	41/49	41/49
	2011	150	130	2,100	16	4.5 [1.7]	49/49	49/49
	2012	400	280	6,500	72	44 [15]	48/48	48/48
	2013	140	110	2,600	tr(13)	25 [8]	48/48	48/48
	2014	150	120	4,800	16	8.2 [2.9]	48/48	48/48

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

< Sediment>

The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of **21pg/g-dry, and the detection range was tr(35) ~ 440,000 pg/g-dry. As results of the inter-annual trend analysis from FY2002 to FY2014, reduction tendency in specimens from river areas and sea areas identified as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

⁽Note 2) " ** " indicates the sum value of the Quantification [Detection] limits of each congener.

Stocktaking of the detection of Total PCBs (total amount) in sediment during FY2002~2014

Total PCBs	Monitored	Geometric				Quantification	Detection 1	Frequency
(total amount)	year	Mean*	Median	Maximum	Minimum	[Detection] Limit**	Sample	Site
	2002	11,000	11,000	630,000	39	10 [3.5]	189/189	63/63
	2003	9,400	9,500	5,600,000	39	10 [3.2]	186/186	62/62
	2004	8,400	7,600	1,300,000	38	7.9 [2.6]	189/189	63/63
	2005	8,600	7,100	690,000	42	6.3 [2.1]	189/189	63/63
	2006	8,800	6,600	690,000	36	4 [1]	192/192	64/64
C - 1: 4	2007	7,400	6,800	820,000	19	4.7 [1.5]	192/192	64/64
Sediment	2008	8,700	8,900	630,000	22	3.3 [1.2]	192/192	64/64
(pg/g-dry)	2009	7,600	7,100	1,700,000	17	5.1 [2.1]	192/192	64/64
	2010	6,500	7,800	710,000	nd	660 [220]	56/64	56/64
	2011	6,300	7,400	950,000	24	12 [4.5]	64/64	64/64
	2012	5,700	6,700	640,000	tr(32)	51 [18]	63/63	63/63
	2013	6,200	8,000	650,000	tr(43)	44 [13]	62/62	62/62
	2014	4,900	5,500	440,000	tr(35)	61 [21]	63/63	63/63

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002~FY2009.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of **31pg/g-wet, and the detection range was 600~15,000pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of **31pg/g-wet, and the detection range was 940~230,000pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of **31pg/g-wet, and detection range were 15,000 ~ 140,000pg/g-wet.

Stocktaking of the detection of Total PCBs (total amount) in wildlife (bivalves, fish and birds) during FY2002~2014

Total PCBs	Monitored	Geometric				Quantification	Detection 1	Frequency
(total amount)	year	Mean*	Median	Maximum	Minimum	[Detection] Limit**	Sample 38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 4/4 5/5 5/5 3/3 70/70 70/70 70/70 70/70 80/80 80/80 80/80 80/80 85/85 90/90 18/18 18/18 19/19	Site
	2002	8,800	28,000	160,000	200	25 [8.4]	38/38	8/8
	2003	11,000	9,600	130,000	1,000	50 [17]	30/30	6/6
	2004	11,000	11,000	150,000	1,500	85 [29]	31/31	7/7
	2005	11,000	13,000	85,000	920	69 [23]	31/31	7/7
	2006	8,500	8,600	77,000	690	42 [14]	31/31	7/7
Bivalves	2007	9,000	11,000	66,000	980	46 [18]	31/31	7/7
	2008	8,600	8,600	69,000	870	47 [17]	31/31	7/7
(pg/g-wet)	2009	8,700	11,000	62,000	780	32 [11]	31/31	7/7
	2010	9,200	11,000	46,000	1,500	52 [20]	6/6	6/6
	2011	8,900	17,000	65,000	820	220 [74]	4/4	4/4
	2012	6,600	12,000	34,000	680	34 [11]	5/5	5/5
	2013	5,200	7,800	44,000	730	44 [14]	5/5	5/5
	2014	2,900	2,600	15,000	600	95 [31]	3/3	3/3
	2002	17,000	8,100	550,000	1,500	25 [8.4]	70/70	14/14
	2003	11,000	9,600	150,000	870	50 [17]	70/70	14/14
	2004	15,000	10,000	540,000	990	85 [29]	70/70	14/14
	2005	14,000	8,600	540,000	800	69 [23]	80/80	16/16
	2006	13,000	9,000	310,000	990	42 [14]	80/80	16/16
Fish	2007	11,000	6,200	530,000	790	46 [18]	80/80	16/16
	2008	12,000	9,100	330,000	1,200	47 [17]	85/85	17/17
(pg/g-wet)	2009	12,000	12,000	290,000	840	32 [11]	90/90	18/18
	2010	13,000	10,000	260,000	880	52 [20]	18/18	18/18
	2011	14,000	12,000	250,000	900	220 [74]	18/18	18/18
	2012	13,000	14,000	130,000	920	34 [11]	19/19	19/19
	2013	14,000	13,000	270,000	1,000	44 [14]	19/19	19/19
	2014	13,000	10,000	230,000	940	95 [31]	19/19	19/19

⁽Note 2) " ** " indicates the sum value of the Quantification [Detection] limits of each congener.

Total PCBs	Monitored	Geometric				Quantification	Detection I	requency
(total amount)	year	Mean*	Median	Maximum	Minimum	[Detection] Limit**	Sample	Site
	2002	12,000	14,000	22,000	4,800	25 [8.4]	10/10	2/2
	2003	19,000	22,000	42,000	6,800	50 [17]	10/10	2/2
	2004	9,000	9,400	13,000	5,900	85 [29]	10/10	2/2
	2005	10,000	9,700	19,000	5,600	69 [23]	10/10	2/2
	2006	12,000	9,800	48,000	5,600	42 [14]	10/10	2/2
D' 1	2007	7,600	7,800	15,000	3,900	46 [18]	10/10	2/2
Birds	2008	9,700	7,400	56,000	3,000	47 [17]	10/10	2/2
(pg/g-wet)	2009	5,900	5,700	9,500	3,900	32 [11]	10/10	2/2
	2010	7,700		9,100	6,600	52 [20]	2/2	2/2
	2011			5,400	5,400	220 [74]	1/1	1/1
	2012	5,900		6,200	5,600	34 [11]	2/2	2/2
	2013***	360,000		510,000	250,000	44 [14]	2/2	2/2
	2014***	46,000		140,000	15,000	95 [31]	2/2	2/2

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002~FY2009.

The presence of the substance in air was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of *1.4pg/m³, and the detection range was 28~1,300pg/m³.

FY2002 to FY2014, reduction tendency in specimens from the warm season identified as statistically.

Stocktaking of the detection of Total PCBs (total amount) in air during FY2002~2014

Total PCBs	M:44	Geometric				Quantification	Detection Frequency	
(total amount)	Monitored year	Mean	Median	Maximum	Minimum	[Detection] limit*	Sample	Site
	**2002	100	100	880	16	99 [33]	102/102	34/34
	2003 Warm season	260	340	2,600	36	6.6 [2.2]	35/35	35/35
	2003 Cold season	110	120	630	17		34/34	34/34
	2004 Warm season	240	250	3,300	25	2 0 10 091	37/37	37/37
	2004 Cold season	130	130	1,500	20	2.9 [0.98]	37/37	37/37
	2005 Warm season	190	210	1,500	23	0.29 [0.14]	37/37	37/37
	2005 Cold season	66	64	380	20	0.38 [0.14]	37/37	37/37
	2006 Warm season	170	180	1,500	21	0.8.10.21	37/37	37/37
	2006 Cold season	82	90	450	19	0.8 [0.3]	37/37	37/37
	2007 Warm season	250	290	980	37	0.37 [0.13]	24/24	24/24
	2007 Cold season	72	76	230	25		22/22	22/22
Air	2008 Warm season	200	170	960	52	0.8 [0.3]	22/22	22/22
(pg/m^3)	2008 Cold season	93	86	1,500	21		36/36	36/36
	2009 Warm season	200	190	1,400	43	0.75 [0.26]	34/34	34/34
	2009 Cold season	85	78	380	20	0.75 [0.26]	34/34	34/34
	2010 Warm season	160	150	970	36	7.3 [2.5]	35/35	35/35
	2010 Cold season	84	86	630	19	7.3 [2.3]	35/35	35/35
	2011 Warm season	150	160	660	32	19 [5 0]	35/35	35/35
	2011 Cold season	76	66	320	tr(17)	18 [5.9]	37/37	37/37
	2012 Warm season	130	130	840	27	26 [0.5]	35/35	35/35
	2012 Cold season	54	62	280	tr(16)	26 [8.5]	35/35	35/35
	2013 Warm season	140	130	1,100	24	20.56.51	35/35	35/35
	2013 Cold season	57	55	300	tr(19)	20 [6.5]	35/35	35/35
	2014 Warm season	140	150	1,300	28	4.1 [1.4]	36/36	36/36

(Note 1) " \ast ": The sum value of the Quantification [Detection] limits of each congener.

(Note 2) " ** ": In 2002, there was a technical problem in the measuring method for lowly chlorinated congeners, and therefore the values are shown just as reference.

⁽Note 2) " ** " indicates the sum value of the Quantification [Detection] limits of each congener.

⁽Note 3) "*** " indicates there is no consistency between the results of the ornithological survey in FY2013~2014 and those in previous years because of the changes in the survey sites and target species.

[2] Hexachlorobenzene

· History and state of monitoring

Hexachlorobenzene had been used as pesticidal material and was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in August 1979.

In previous monitoring series, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1996 and in FY1998, FY2000 and FY2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," the substance in surface water and sediment was monitored during the period of FY1986~1998 and FY1986~2001, respectively.

Under the framework of the Environmental Monitoring, the substance in surface water, sediment, wildlife (bivalves, fish and birds) and air has been monitored since FY2002.

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.4pg/L,and the detection range was 2.7~200pg/L. As results of the inter-annual trend analysis from FY2002 to FY2014, reduction tendencies in specimens from river mouth areas were identified as statistically significant, the second-half period indicated lower concentration than the first-half period in specimens from sea areas as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

Stocktaking of the detection of Hexachlorobenzene in surface water during FY2002~2014

	Monitored	Geometric			<u> </u>	Quantification	Detection l	Frequency
HCB	year	Mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	37	28	1,400	9.8	0.6 [0.2]	114/114	38/38
	2003	29	24	340	11	5 [2]	36/36	36/36
	2004	30	tr(29)	180	tr(11)	30 [8]	38/38	38/38
	2005	21	17	210	tr(6)	15 [5]	47/47	47/47
	2006	16	tr(12)	190	nd	16 [5]	46/48	46/48
C	2007	17	14	190	tr(4)	8 [3]	48/48	48/48
Surface water	2008	16	13	480	4	3 [1]	48/48	48/48
(pg/L)	2009	15	17	180	2.4	0.5 [0.2]	49/49	49/49
	2010	tr(10)	tr(8)	120	nd	13 [4]	39/49	39/49
	2011	13	12	140	tr(3)	5 [2]	49/49	49/49
	2012	29	23	330	8.1	2.2 [0.7]	48/48	48/48
	2013	14	11	260	tr(4)	7 [2]	48/48	48/48
	2014	12	9.7	200	2.7	0.9 [0.4]	48/48	48/48

(Note) " * ":Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

< Sediment>

The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 2pg/g-dry, and the detection range was tr(4)~5,600pg/g-dry.

Stocktaking of the detection of Hexachlorobenzene in sediment during FY2002~2014

	Monitored	Geometric				Quantification	Detection l	Frequency
НСВ	year	mean	Median	Maximum	Minimum	[Detection]	Sample	Site
	year	mean				limit		
	2002	240	200	19,000	7.6	0.9 [0.3]	189/189	63/63
	2003	160	120	42,000	5	4 [2]	186/186	62/62
	2004	140	100	25,000	tr(6)	7 [3]	189/189	63/63
	2005	170	130	22,000	13	3 [1]	189/189	63/63
	2006	180	120	19,000	10	2.9 [1.0]	192/192	64/64
G 1' 4	2007	140	110	65,000	nd	5 [2]	191/192	64/64
Sediment	2008	160	97	29,000	4.4	2.0 [0.8]	192/192	64/64
(pg/g-dry)	2009	150	120	34,000	nd	1.8 [0.7]	190/192	64/64
	2010	130	96	21,000	4	3 [1]	64/64	64/64
	2011	150	110	35,000	11	7 [3]	64/64	64/64
	2012	100	110	12,000	3	3 [1]	63/63	63/63
	2013	120	91	6,600	7.2	5.3 [1.8]	63/63	63/63
	2014	95	85	5,600	tr(4)	6 [2]	63/63	63/63

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 3pg/g-wet, and the detection range was 15~100pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 3pg/g-wet, and the detection range was 37~1,900pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 3pg/g-wet, and detection range was 32~5,600pg/g-wet.

Stocktaking of the detection of Hexachlorobenzene in wildlife (bivalves, fish and birds) during FY2002~2014

	Monitored	Geometric				Quantification	Detection l	Frequency
НСВ	year	Mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	21	22	330	2.4	0.18 [0.06]	38/38	8/8
	2003	44	27	660	tr(21)	23 [7.5]	30/30	6/6
	2004	32	31	80	14	14 [4.6]	31/31	7/7
	2005	51	28	450	19	11 [3.8]	31/31	7/7
	2006	46	28	340	11	3 [1]	31/31	7/7
Bivalves	2007	37	22	400	11	7 [3]	31/31	7/7
(pg/g-wet)	2008	38	24	240	13	7 [3]	31/31	7/7
(pg/g-wei)	2009	34	32	200	12	4 [2]	31/31	7/7
	2010	34	48	210	tr(4)	5 [2]	6/6	6/6
	2011	45	34	920	4	4 [1]	4/4	4/4
	2012	39	38	340	10	8.4 [2.8]	5/5	5/5
	2013	32	39	250	nd	31 [10]	4/5	4/5
	2014	34	26	100	15	10 [3]	3/3	3/3
	2002	140	180	910	19	0.18 [0.06]	70/70	14/14
	2003	180	170	1,500	28	23 [7.5]	70/70	14/14
	2004	230	210	1,800	26	14 [4.6]	70/70	14/14
	2005	180	160	1,700	29	11 [3.8]	80/80	16/16
	2006	180	220	1,400	25	3 [1]	80/80	16/16
Fish	2007	160	140	1,500	17	7 [3]	80/80	16/16
	2008	170	210	1,500	25	7 [3]	85/85	17/17
(pg/g-wet)	2009	210	180	30,000	29	4 [2]	90/90	18/18
	2010	240	280	1,700	36	5 [2]	18/18	18/18
	2011	260	320	1,500	34	4 [1]	18/18	18/18
	2012	200	300	1,100	33	8.4 [2.8]	19/19	19/19
	2013	240	220	1,500	36	31 [10]	19/19	19/19
	2014	280	340	1,900	37	10 [3]	19/19	19/19

	Monitored	Geometric				Quantification	Detection I	requency
НСВ	year	Mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	1,000	1,200	1,600	560	0.18 [0.06]	10/10	2/2
	2003	1,800	2,000	4,700	790	23 [7.5]	10/10	2/2
	2004	980	1,300	2,200	410	14 [4.6]	10/10	2/2
	2005	1,000	1,100	2,500	400	11 [3.8]	10/10	2/2
	2006	970	1,100	2,100	490	3 [1]	10/10	2/2
Birds	2007	960	1,100	2,000	420	7 [3]	10/10	2/2
	2008	880	1,100	2,500	240	7 [3]	10/10	2/2
(pg/g-wet)	2009	850	910	1,500	400	4 [2]	10/10	2/2
	2010	970		1,900	500	5 [2]	2/2	2/2
	2011			460	460	4[1]	1/1	1/1
	2012	840		1,500	470	8.4 [2.8]	2/2	2/2
	2013**	3,900		5,200	2,900	31 [10]	2/2	2/2
	2014**	420		5,600	32	10 [3]	2/2	2/2

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

The presence of the substance in air was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of 0.5pg/m^3 , and the detection range was $84 \sim 240 \text{pg/m}^3$.

Stocktaking of the detection of Hexachlorobenzene in air during FY2002~2014

		Geometric				Quantification	Detection l	requency
НСВ	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	99	93	3,000	57	0.9 [0.3]	102/102	34/34
	2003 Warm season	150	130	430	81	2.3 [0.78]	35/35	35/35
	2003 Cold season	94	90	320	64	2.3 [0.76]	34/34	34/34
	2004 Warm season	130	130	430	47	1.1 [0.37]	37/37	37/37
	2004 Cold season	98	89	390	51	1.1 [0.37]	37/37	37/37
	2005 Warm season	88	90	250	27	0.14 [0.034]	37/37	37/37
	2005 Cold season	77	68	180	44	0.14 [0.034]	37/37	37/37
	2006 Warm season	83	89	210	23	0.21 [0.07]	37/37	37/37
	2006 Cold season	65	74	170	8.2	0.21 [0.07]	37/37	37/37
	2007 Warm season	110	100	230	72	0.09 [0.03]	24/24	24/24
	2007 Cold season	77	72	120	55		22/22	22/22
Air	2008 Warm season	120	110	260	78	0.22 [0.08]	22/22	22/22
(pg/m^3)	2008 Cold season	87	83	160	58		36/36	36/36
	2009 Warm season	110	110	210	78	0.6 [0.2]	34/34	34/34
	2009 Cold season	87	87	150	59		34/34	34/34
	2010 Warm season	120	120	160	73	1.8 [0.7]	37/37	37/37
	2010 Cold season	100	96	380	56		37/37	37/37
	2011 Warm season	120	110	180	87	2.3 [0.75]	35/35	35/35
	2011 Cold season	96	96	160	75	2.3 [0.73]	37/37	37/37
	2012 Warm season	120	110	150	84	1 2 F1 17	36/36	36/36
	2012 Cold season	97	95	150	68	4.3 [1.4]	36/36	36/36
	2013Warm season	110	110	180	52	3.8 [1.3]	36/36	36/36
	2013 Cold season	97	97	180	73	J.0 [1.3]	36/36	36/36
	2014Warm season	150	160	240	84	1.4 [0.5]	36/36	36/36

⁽Note 2) " ** " indicates there is no consistency between the results of the ornithological survey in FY2013 and FY2014 and those in previous years because of the changes in the survey sites and target species.

[3] Aldrin

· History and state of monitoring

Aldrin had been used as a soil insecticide until FY1971 when the application of the substance was substantially stopped. Its registration under the Agricultural Chemicals Regulation Law was expired in FY1975. It was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981.

In previous monitoring series until FY2001, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1989, FY1991 and FY1993 under the framework of "the Wildlife Monitoring."

Under the framework of the Environmental Monitoring, the substance had been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2002~FY2009, in wildlife (bivalves, fish and birds) and air in FY2014.

· Monitoring results

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was not detected at all 3 valid areas adopting the detection limit of 0.7pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 4 of the 19 valid areas adopting the detection limit of 0.7pg/g-wet, and none of the detected concentrations exceeded 2.4pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was not detected at all 2 valid areas adopting the detection limit of 0.7pg/g-wet.

Stocktaking of the detection of aldrin in wildlife (bivalves, fish and birds) during FY2002~2009 and FY2014

	Monitored	Geometric			2.51		Detection I	requency
Aldrin	year	Mean*	Median	Maximum	Minimum	Aldrin	Sample	Site
	2002	tr(1.6)	nd	34	nd	4.2 [1.4]	12/38	4/8
	2003	tr(1.7)	tr(0.85)	51	nd	2.5 [0.84]	15/30	3/6
	2004	tr(2.5)	tr(1.6)	46	nd	4.0 [1.3]	16/31	4/7
Bivalves	2005	tr(1.8)	nd	84	nd	3.5 [1.2]	11/31	3/7
	2006	tr(2)	nd	19	nd	4 [2]	11/31	3/7
(pg/g-wet)	2007	tr(2)	nd	26	nd	5 [2]	5/31	2/7
	2008	tr(2)	nd	20	nd	5 [2]	5/31	3/7
	2009	tr(1.6)	tr(0.8)	89	nd	2.1 [0.8]	16/31	6/7
	2014	nd	nd	nd	nd	1.8 [0.7]	0/3	0/3
	2002	nd	nd	tr(2.0)	nd	4.2 [1.4]	1/70	1/14
	2003	nd	nd	tr(1.9)	nd	2.5 [0.84]	16/70	7/14
	2004	nd	nd	tr(2.4)	nd	4.0 [1.3]	5/70	2/14
Fish	2005	nd	nd	6.4	nd	3.5 [1.2]	11/80	5/16
(pg/g-wet)	2006	nd	nd	tr(2)	nd	4 [2]	2/80	2/16
(pg/g-wet)	2007	nd	nd	tr(2)	nd	5 [2]	2/80	2/16
	2008	nd	nd	tr(2)	nd	5 [2]	1/85	1/17
	2009	nd	nd	3.1	nd	2.1 [0.8]	22/90	7/18
	2014	nd	nd	2.4	nd	1.8 [0.7]	4/19	4/19
	2002	nd	nd	nd	nd	4.2 [1.4]	0/10	0/2
	2003	nd	nd	nd	nd	2.5 [0.84]	0/10	0/2
	2004	nd	nd	nd	nd	4.0 [1.3]	0/10	0/2
Birds	2005	nd	nd	nd	nd	3.5 [1.2]	0/10	0/2
(pg/g-wet)	2006	nd	nd	nd	nd	4 [2]	0/10	0/2
(hg/g-wer)	2007	nd	nd	nd	nd	5 [2]	0/10	0/2
	2008	nd	nd	nd	nd	5 [2]	0/10	0/2
	2009	nd	nd	nd	nd	2.1 [0.8]	0/10	0/2
	2014**	nd		nd	nd	1.8 [0.7]	0/2	0/2

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

(Note 3) No monitoring was conducted in FY2010~2013.

⁽Note 2) " ** " indicates there is no consistency between the results of the ornithological survey in FY2014 and those in previous years because of the changes in the survey sites and target species.

The presence of the substance in air was monitored at 36 sites excluding 2 sites whose concentrations were treated as invalid, and it was detected at 6 of the 34 valid sites adopting the detection limit of 4pg/m³, and none of the detected concentrations exceeded 17pg/m³.

Stocktaking of the detection of aldrin in air during FY2002~2009 and FY2014

		Geometric				Quantification	Detection l	Frequency
Aldrin	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(0.030)	nd	3.2	nd	0.060 [0.020]	41/102	19/34
	2003 Warm season	1.5	1.9	28	nd	0.023 [0.0077]	34/35	34/35
	2003 Cold season	0.55	0.44	6.9	0.030	0.023 [0.0077]	34/34	34/34
	2004 Warm season	tr(0.12)	nd	14	nd	0.15 [0.05]	15/37	15/37
	2004 Cold season	tr(0.08)	nd	13	nd	0.15 [0.05]	14/37	14/37
	2005 Warm season	0.33	0.56	10	nd	0.00.00.021	29/37	29/37
	2005 Cold season	tr(0.04)	nd	1.8	nd	0.08 [0.03]	9/37	9/37
Air	2006 Warm season	0.30	0.35	8.5	nd	0.14.50.053	31/37	31/37
(pg/m^3)	2006 Cold season	tr(0.05)	nd	1.1	nd	0.14 [0.05]	16/37	16/37
	2007 Warm season	0.58	0.48	19	nd	0.05.00.021	35/36	35/36
	2007 Cold season	0.14	0.15	2.1	nd	0.05 [0.02]	34/36	34/36
	2008 Warm season	0.27	0.30	9.4	tr(0.02)	0.04.50.023	25/25	25/25
	2008 Cold season	0.09	0.08	1.3	nd	0.04 [0.02]	22/25	22/25
	2009 Warm season	0.07	nd	10	nd	0.04.50.023	10/25	10/25
	2009 Cold season	tr(0.03)	nd	1.8	nd	0.04 [0.02]	8/24	8/24
	2014 Warm season	nd	nd	17	nd	12 [4]	6/34	6/34

(Note) No monitoring was conducted in FY2010~2013.

• Monitoring results until FY2009 (reference)

<Surface Water>

Stocktaking of the detection of aldrin in surface water during FY2002~2009

	Monitored	Geometric				Quantification	Detection 1	Frequency
Aldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.8	0.9	18	nd	0.6 [0.2]	93/114	37/38
	2003	0.9	0.9	3.8	nd	0.6 [0.2]	34/36	34/36
	2004	tr(1.5)	tr(1.8)	13	nd	2 [0.4]	33/38	33/38
Surface water	2005	tr(0.6)	tr(0.7)	5.7	nd	0.9 [0.3]	32/47	32/47
(pg/L)	2006	nd	nd	4.4	nd	1.7 [0.6]	18/48	18/48
	2007	tr(0.6)	tr(0.6)	9.5	nd	1.0 [0.3]	34/48	34/48
	2008	tr(0.8)	tr(0.7)	21	nd	1.4 [0.6]	26/48	26/48
	2009	0.7	0.9	22	nd	0.7 [0.3]	32/49	32/49

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Stocktaking of the detection of aldrin in sediment during FY2002~2009

	Monitored	Geometric				Quantification	Detection I	Frequency
Aldrin	year	Mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	14	12	570	nd	6 [2]	149/189	56/63
	2003	19	18	1,000	nd	2 [0.6]	178/186	60/62
	2004	10	10	390	nd	2 [0.6]	170/189	62/63
Sediment	2005	8.4	7.1	500	nd	1.4 [0.5]	173/189	62/63
(pg/g-dry)	2006	10	9.3	330	nd	1.9 [0.6]	184/192	64/64
	2007	7.5	6.7	330	nd	1.8 [0.6]	172/192	60/64
	2008	6	6	370	nd	3 [1]	153/192	56/64
	2009	8.9	7.8	540	nd	0.5 [0.2]	180/192	64/64

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

[4] Dieldrin

· History and state of monitoring

Dieldrin was used as a pesticide and its application culminated during the period of 1955~1964. The substance had been used as termitecides as a Soil-Residue-Prone Pesticide under the Agricultural Chemicals Regulation Law in 1971, but its registration under the Agricultural Chemicals Regulation Law was expired in FY1975. It had been used for termite control and was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981.

In previous monitoring series until FY2001, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1996, FY1998, FY2000 and FY2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," the substance in surface water and sediment was monitored during the period of FY1986~1998 and FY1986~2001, respectively.

Under the framework of the Environmental Monitoring, the substance had been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002 to FY2009 and in FY2011 and in surface water, wildlife (bivalves, fish and birds) and air in FY2014.

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.2pg/L, and the detection range was 2.7~200 pg/L.

Stocktaking of the detection of dieldrin in surface water during FY2002~2009, 2011 and FY2014

	Monitored	Geometric				Quantification	Detection 1	Frequency
Dieldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample 114/114 36/36 38/38	Site
	2002	42	41	940	3.3	1.8 [0.6]	114/114	38/38
	2003	57	57	510	9.7	0.7 [0.3]	36/36	36/36
	2004	55	51	430	9	2 [0.5]	38/38	38/38
	2005	39	49	630	4.5	1.0 [0.34]	47/47	47/47
Surface water	2006	36	32	800	6	3 [1]	48/48	48/48
(pg/L)	2007	38	36	750	3.1	2.1 [0.7]	48/48	48/48
	2008	36	37	450	3.6	1.5 [0.6]	48/48	48/48
	2009	36	32	650	2.7	0.6 [0.2]	49/49	49/49
	2011	33	38	300	2.1	1.6 [0.6]	49/49	49/49
	2014	28	27	200	2.7	0.5 [0.2]	48/48	48/48

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was 41~490pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was 27~1,000pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 1pg/g-wet, and detection range was 190~530pg/g-wet.

⁽Note 2) No monitoring was conducted in FY2010, and FY2012~FY2013.

Stocktaking of the detection of dieldrin in wildlife (bivalves, fish and birds) during FY2002~2009, 2011 and FY2014

	Monitored	Geometric				Quantification	Detection l	Frequency
Dieldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	440	390	190,000	tr(7)	12 [4]	38/38	8/8
	2003	440	160	78,000	46	4.8 [1.6]	30/30	6/6
	2004	630	270	69,000	42	31 [10]	31/31	7/7
	2005	500	140	39,000	34	9.4 [3.4]	31/31	7/7
Bivalves	2006	450	120	47,000	30	7 [3]	31/31	7/7
(pg/g-wet)	2007	380	110	77,000	37	9 [3]	31/31	7/7
	2008	430	150	24,000	47	9 [3]	31/31	7/7
	2009	490	230	28,000	48	7 [2]	31/31	7/7
	2011	390	690	3,800	16	3 [1]	4/4	4/4
	2014	180	300	490	41	3 [1]	3/3	3/3
	2002	290	270	2,400	46	12 [4]	70/70	14/14
	2003	220	200	1,000	29	4.8 [1.6]	70/70	14/14
	2004	250	230	2,800	tr(23)	31 [10]	70/70	14/14
	2005	230	250	1,400	21	9.4 [3.4]	80/80	16/16
Fish	2006	230	220	1,400	19	7 [3]	80/80	16/16
(pg/g-wet)	2007	250	210	1,900	23	9 [3]	80/80	16/16
	2008	240	240	1,300	15	9 [3]	85/85	17/17
	2009	240	190	1,400	29	7 [2]	90/90	18/18
	2011	270	340	1,100	17	3 [1]	18/18	18/18
	2014	270	310	1,000	27	3 [1]	19/19	19/19
	2002	1,100	1,100	1,700	820	12 [4]	10/10	2/2
	2003	1,300	1,400	2,200	790	4.8 [1.6]	10/10	2/2
	2004	600	610	960	370	31 [10]	10/10	2/2
	2005	830	740	1,800	500	9.4 [3.4]	10/10	2/2
Birds	2006	700	690	1,300	440	7 [3]	10/10	2/2
(pg/g-wet)	2007	710	710	910	560	9 [3]	10/10	2/2
	2008	680	620	1,300	260	9 [3]	10/10	2/2
	2009	470	420	890	330	7 [2]	10/10	2/2
	2011			770	770	3 [1]	1/1	1/1
	2014**	320		530	190	3 [1]	2/2	2/2

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

The presence of the substance in air was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of $0.11pg/m^3$, and the detection range was $0.89\sim160pg/m^3$.

⁽Note 2) " ** " indicates there is no consistency between the results of the ornithological survey in FY2014 and those in previous years because of the changes in the survey sites and target species.

⁽Note 3) No monitoring was conducted in FY2010 and FY2012 ~FY 2013.

Stocktaking of the detection of dieldrin in air during FY2002~2009,2011 and FY2014

		Geometric				Quantification	Detection l	Frequency
Dieldrin	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.6	5.4	110	0.73	0.60 [0.20]	102/102	34/34
	2003 Warm season	19	22	260	2.1	2 1 [0 70]	35/35	35/35
	2003 Cold season	5.7	5.2	110	tr(0.82)	2.1 [0.70]	34/34	34/34
	2004 Warm season	17	22	280	1.1	0.33 [0.11]	37/37	37/37
	2004 Cold season	5.5	6.9	76	0.81	0.33 [0.11]	37/37	37/37
	2005 Warm season	14	12	200	1.5	0.54.[0.24]	37/37	37/37
	2005 Cold season	3.9	3.6	50	0.88	0.54 [0.24]	37/37	37/37
	2006 Warm season	15	14	290	1.5	0.2 [0.1]	37/37	37/37
Air	2006 Cold season	4.5	4.2	250	0.7	0.3 [0.1]	37/37	37/37
(pg/m^3)	2007 Warm season	19	22	310	1.3	0.18 [0.07]	36/36	36/36
	2007 Cold season	4.5	3.7	75	0.96	0.18 [0.07]	36/36	36/36
	2008 Warm season	14	16	220	1.6	0.24 [0.09]	37/37	37/37
	2008 Cold season	4.9	3.8	72	0.68	0.24 [0.09]	37/37	37/37
	2009 Warm season	13	13	150	0.91	0.06 [0.02]	37/37	37/37
	2009 Cold season	4.5	4.0	80	0.52	0.06 [0.02]	37/37	37/37
	2011 Warm season	12	15	230	0.80	0.42 [0.14]	35/35	35/35
	2011 Cold season	4.3	4.9	96	0.52	0.42 [0.14]	37/37	37/37
	2014 Warm season	11	9.9	160	0.89	0.34 [0.11]	36/36	36/36

(Note) No monitoring was conducted in FY2010 and FY2012~2013.

• Monitoring results until FY2011 (reference)

< Sediment>

Stocktaking of the detection of dieldrin in sediment during FY2002~2009, 2011

	Monitored	Geometric				Quantification	Detection l	Frequency
Dieldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	70	51	2,300	4	3 [1]	189/189	63/63
	2003	66	56	9,100	nd	4 [2]	184/186	62/62
	2004	65	62	3,700	tr(1.9)	3 [0.9]	189/189	63/63
C - 1: 4	2005	61	55	4,200	tr(2)	3 [1]	189/189	63/63
Sediment	2006	61	54	1,500	tr(1.7)	2.9 [1.0]	192/192	64/64
(pg/g-dry)	2007	49	40	2,700	tr(1.2)	2.7 [0.9]	192/192	64/64
	2008	48	43	2,900	tr(0.7)	1.2 [0.5]	192/192	64/64
	2009	51	47	3,000	1.1	0.8 [0.3]	192/192	64/64
	2011	47	44	2,200	2	5 [2]	64/64	64/64

2011 47 44 2,200 2 5 [2] 64/64 64/64 (Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

(Note 2) No monitoring was conducted in FY2010.

[5] Endrin

· History and state of monitoring

Endrin was used as an insecticide and a rodenticide, but its registration under the Agricultural Chemicals Regulation Law was expired in FY1975. It was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981.

In previous monitoring series until FY2001, the substance was monitored in wildlife (bivalves, fish and birds) during the periods of FY 1978~1989 and FY1991~FY1993 under the framework of "the Wildlife Monitoring".

Under the framework of the Environmental Monitoring, the substance has been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002 to FY2009, and in surface water, wildlife (bivalves, fish and birds) and air in FY2014.

Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.2pg/L, and the detection range was tr(0.4)~25pg/L. As results of the inter-annual trend analysis from FY2002 to FY2014, reduction tendency in specimens from lake areas and sea areas identified as statistically significant.

Stocktaking of the detection of endrin in surface water during FY2002~2009,2011 and FY2014

-	Monitored	Geometric				Quantification	Detection I	Frequency
Endrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(4.8)	tr(5.5)	31	nd	6.0 [2.0]	101/114	36/38
	2003	5.7	6.0	78	0.7	0.7 [0.3]	36/36	36/36
	2004	7	7	100	tr(0.7)	2 [0.5]	38/38	38/38
	2005	4.0	4.5	120	nd	1.1 [0.4]	45/47	45/47
Surface water	2006	3.1	3.5	26	nd	1.3 [0.4]	44/48	44/48
(pg/L)	2007	3.5	3.4	25	nd	1.9 [0.6]	46/48	46/48
	2008	3	4	20	nd	3 [1]	45/48	45/48
	2009	2.0	2.3	67	nd	0.7 [0.3]	39/49	39/49
	2011	3.8	4.6	71	nd	1.6 [0.6]	47/49	47/49
	2014	2.5	2.2	25	tr(0.4)	0.5 [0.2]	48/48	48/48

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was 8~84pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 18 of the 19 valid areas adopting the detection limit of 1pg/g-wet, and none of the detected concentrations exceeded 140pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 1pg/g-wet, and the detection range were 4~5pg/g-wet.

⁽Note 2) No monitoring was conducted in FY2010 and FY2012~2013.

Stocktaking of the detection of endrin in wildlife (bivalves, fish and birds) during FY2002~2009,2011 and FY2014

	Monitored	Geometric				Quantification	Detection	Frequenc
Endrin	year	Mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	42	27	12,000	nd	18 [6]	35/38	7/8
	2003	38	21	5,000	6.3	4.8 [1.6]	30/30	6/6
	2004	65	25	4,600	tr(5.7)	12 [4.2]	31/31	7/7
	2005	39	19	2,100	nd	17 [5.5]	27/31	7/7
Bivalves	2006	40	15	3,100	tr(5)	11 [4]	31/31	7/7
(pg/g-wet)	2007	28	12	3,000	tr(6)	9 [3]	31/31	7/7
	2008	30	10	1,500	tr(6)	8 [3]	31/31	7/7
	2009	38	19	1,400	tr(5)	7 [3]	31/31	7/7
	2011	33	62	110	tr(3)	4 [2]	4/4	4/4
	2014	23	17	84	8	3 [1]	3/3	3/3
	2002	20	24	180	nd	18 [6]	54/70	13/14
	2003	14	10	180	nd	4.8 [1.6]	67/70	14/14
	2004	18	24	220	nd	12 [4.2]	57/70	13/14
	2005	19	tr(16)	2,100	nd	17 [5.5]	58/80	12/16
Fish	2006	13	tr(10)	150	nd	11 [4]	66/80	16/16
(pg/g-wet)	2007	13	12	170	nd	9 [3]	69/80	15/16
	2008	11	10	200	nd	8 [3]	63/85	14/17
	2009	17	12	270	nd	7 [3]	86/90	18/18
	2011	18	19	160	nd	4 [2]	16/18	16/18
	2014	16	16	140	nd	3 [1]	18/19	18/19
	2002	28	52	99	nd	18 [6]	7/10	2/2
	2003	22	30	96	5.4	4.8 [1.6]	10/10	2/2
	2004	tr(11)	25	62	nd	12 [4.2]	5/10	1/2
	2005	18	28	64	nd	17 [5.5]	7/10	2/2
Birds	2006	16	23	57	tr(4)	11 [4]	10/10	2/2
(pg/g-wet)	2007	17	28	55	nd	9 [3]	9/10	2/2
	2008	10	26	83	nd	8 [3]	5/10	1/2
	2009	11	17	43	tr(3)	7 [3]	10/10	2/2
	2011			tr(3)	tr(3)	4 [2]	1/1	1/1
	2014**	4		5	4	3 [1]	2/2	2/2

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

The presence of the substance in air was monitored at 36 sites, and it was detected at 32 of the 36 valid sites adopting the detection limit of $0.07pg/m^3$, and none of the detected concentraions exceeded $2.9pg/m^3$.

⁽Note 2) " ** " indicates there is no consistency between the results of the ornithological survey in FY2014 and those in previous years because of the changes in the survey sites and target species.

⁽Note 3) No monitoring was conducted in FY2010 and FY2012~2013.

Stocktaking of the detection of endrin in air during FY2002~2009,2011 and FY2014

		Geometric				Quantification	Detection 1	Frequency
Endrin	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.22	0.28	2.5	nd	0.090 [0.030]	90/102	32/34
	2003 Warm season	0.74	0.95	6.2	0.081	0.042.00.0141	35/35	35/35
	2003 Cold season	0.23	0.20	2.1	0.042	0.042 [0.014]	34/34	34/34
	2004 Warm season	0.64	0.68	6.5	tr(0.054)	0.14 [0.049]	37/37	37/37
	2004 Cold season	0.23	0.26	1.9	nd	0.14 [0.048]	36/37	36/37
	2005 Warm season	tr(0.4)	tr(0.3)	2.9	nd	0.5.[0.2]	27/37	27/37
	2005 Cold season	nd	nd	0.7	nd	0.5 [0.2]	8/37	8/37
	2006 Warm season	0.31	0.32	5.4	nd	0.20 [0.10]	32/37	32/37
Air	2006 Cold season	nd	nd	5.0	nd	0.30 [0.10]	7/37	7/37
(pg/m^3)	2007 Warm season	0.69	0.73	6.3	tr(0.06)	0.00.50.041	36/36	36/36
	2007 Cold season	0.16	0.13	1.5	nd	0.09 [0.04]	33/36	33/36
	2008 Warm season	0.53	0.68	4.6	tr(0.06)	0.10.50.041	37/37	37/37
	2008 Cold season	0.18	0.18	1.8	nd	0.10 [0.04]	35/37	35/37
	2009 Warm season	0.49	0.51	3.4	nd	0.00.00.041	36/37	36/37
	2009 Cold season	0.17	0.15	1.8	nd	0.09 [0.04]	36/37	36/37
	2011 Warm season	0.46	0.62	5.1	nd	0.00.00.041	34/35	34/35
	2011 Cold season	0.16	0.16	1.8	nd	0.09 [0.04]	33/37	33/37
	2014 Warm season	0.39	0.48	2.9	nd	0.2 [0.07]	32/36	32/36

(Note) No monitoring was conducted in FY2010 and FY2012~2013.

• Monitoring results until FY2011

<Sediment>

Stocktaking of the detection of endrin in sediment during FY2002~2009,2011

	Monitored	Geometric	Modian			Quantification	Detection I	requency
Endrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	10	10	19,000	nd	6 [2]	141/189	54/63
	2003	12	11	29,000	nd	5 [2]	150/186	53/62
	2004	15	13	6,900	nd	3 [0.9]	182/189	63/63
Sediment	2005	12	11	19,000	nd	2.6 [0.9]	170/189	61/63
	2006	12	10	61,000	nd	4 [1]	178/192	63/64
(pg/g-dry)	2007	11	9	61,000	nd	5 [2]	151/192	55/64
	2008	11	11	38,000	nd	1.9 [0.7]	168/192	61/64
	2009	9.6	8.4	11,000	nd	1.6 [0.6]	168/192	63/64
	2011	8.8	14	1,100	nd	1.1 [0.4]	59/64	59/64

(Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

(Note 2) No monitoring was conducted in FY2010.

[6] **DDTs**

· History and state of monitoring

DDT, along with hexachlorocyclohexanes (HCHs) and drins, was used as insecticides in high volume. Its registration under the Agricultural Chemicals Regulation Law was expired in FY1971. It was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Among several DDT isomers with chlorine at various positions on the aromatic ring, not only p,p'-DDT and o,p'-DDT as active substances but also p,p'-DDE, o,p'-DDE, p,p'-DDD and o,p'-DDD as the environmentally degraded products of DDTs have been the target chemicals in monitoring series since FY1978.

In previous monitoring series, *p,p'*-DDT, *p,p'*-DDE and *p,p'*-DDD had been monitored in wildlife (bivalves, fish and birds) during the period of FY1978~2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," surface water and sediment had been the monitored media during the period of FY1986~1998 and FY1986~2001, respectively. Similarly, *o,p'*-DDT, *o,p'*-DDE and *o,p'*-DDD had been monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1996 and in FY1998, FY2000 and FY2001 under the framework of "the Wildlife Monitoring."

Under the framework of the Environmental Monitoring, *p,p'*-DDT, *p,p'*-DDE, *p,p'*-DDD, *o,p'*-DDT, *o,p'*-DDE and *o,p'*-DDD have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2002 to FY2010, and wildlife (bivalves, fish and birds) and air in FY2013 and in surface water and sediment in FY2014.

- · Monitoring results
- o p,p'-DDT, p,p'-DDE and p,p'-DDD

<Surface Water>

p,p'-DDT: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 47 of the 48 valid sites adopting the detection limit of 0.1pg/L, and none of the detected concentrations exceeded 380pg/L. As results of the inter-annual trend analysis from FY2002 to FY2014, reduction tendencies in specimens from lake areas were identified as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

p,p'-DDE: The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.2pg/L, and the detection range was 1.9~610pg/L.

p,p'-DDD: The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.4pg/L, and the detection range was 1.0~87pg/L.

Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in surface water during FY2002~2010 and FY2014

	Monitored	Geometric				Quantification	Detection 1	Frequency
p,p'-DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	13	11	440	0.25	0.6 [0.2]	114/114	38/38
	2003	14	12	740	tr(2.8)	3 [0.9]	36/36	36/36
	2004	15	14	310	nd	6 [2]	36/38	36/38
	2005	8	9	110	1	4[1]	47/47	47/47
Surface Water	2006	9.1	9.2	170	tr(1.6)	1.9 [0.6]	48/48	48/48
(pg/L)	2007	7.3	9.1	670	nd	1.7 [0.6]	46/48	46/48
	2008	11	11	1,200	nd	1.2 [0.5]	47/48	47/48
	2009	9.2	8.4	440	0.81	0.15 [0.06]	49/49	49/49
	2010	8.5	7.6	7,500	tr(1.0)	2.4 [0.8]	49/49	49/49
	2014	4.4	3.9	380	nd	0.4 [0.1]	47/48	47/48
	M '4 1	C				Quantification	Detection 1	Frequency
p,p'-DDE	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	25	26	760	1.3	0.6 [0.2]	114/114	38/38
	2003	26	22	380	5	4 [2]	36/36	36/36
	2004	36	34	680	tr(6)	8 [3]	38/38	38/38
	2005	26	24	410	4	6 [2]	47/47	47/47
Surface Water	2006	24	24	170	tr(4)	7 [2]	48/48	48/48
(pg/L)	2007	22	23	440	tr(2)	4 [2]	48/48	48/48
	2008	27	28	350	2.5	1.1 [0.4]	48/48	48/48
	2009	23	23	240	3.4	1.1 [0.4]	49/49	49/49
	2010	14	12	1,600	2.4	2.3 [0.8]	49/49	49/49
	2014	16	17	610	1.9	0.5 [0.2]	48/48	48/48
	M:41	C				Quantification	Detection 1	Frequency
p,p'-DDD		Geometric *	Median	Maximum	Minimum	[Detection]	Sample	Site
	year	mean*				limit	Sumple	Site
	2002	16	18	190	0.57	0.24 [0.08]	114/114	38/38
	2003	19	18	410	4	2 [0.5]	36/36	36/36
	2004	19	18	740	tr(2.4)	3 [0.8]	38/38	38/38
	2005	17	16	130	tr(1.8)	1.9 [0.64]	47/47	47/47
Surface Water	2006	16	17	99	2.0	1.6 [0.5]	48/48	48/48
(pg/L)	2007	15	12	150	tr(1.5)	1.7 [0.6]	48/48	48/48
4.5	2008	22	20	850	2.0	0.6 [0.2]	48/48	48/48
	2009	14	13	140	1.4	0.4 [0.2]	49/49	49/49
	2010	12	10	970	1.6	0.20 [0.08]	49/49	49/49
	2014	9.0	8.7	87	1.0	1.0 [0.4]	48/48	48/48

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted from FY2011 to FY2013.

< Sediment >

p,p'-DDT: The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.2pg/g-dry, and the detection range was $tr(0.2)\sim12,000pg/g$ -dry.

p,p'-DDE: The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.6pg/g-dry, and the detection range was $11\sim64,000pg/g$ -dry.

p,p'-DDD: The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 1.4pg/g-dry, and the detection range was $4.9\sim21,000$ pg/g-dry.

Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in sediment during FY2002~2010 and FY2014

Stocktaking of the				F 4		Quantification	Detection	
p,p'-DDT	year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	380	240	97,000	tr(5)	6 [2]	189/189	63/63
	2003	290	220	55,000	3	2 [0.4]	186/186	62/62
	2004	460	230	98,000	7	2 [0.5]	189/189	63/63
	2005	360	230	1,700,000	5.1	1.0 [0.34]	189/189	63/63
Sediment	2006	310	240	130,000	4.5	1.4 [0.5]	192/192	64/64
(pg/g-dry)	2007	210	150	130,000	3	1.3 [0.5]	192/192	64/64
	2008	270	180	1,400,000	4.8	1.2 [0.5]	192/192	64/64
	2009	250	170	2,100,000	1.9	1.0 [0.4]	192/192	64/64
	2010	230	200	220,000	9.3	2.8 [0.9]	64/64	64/64
	2014	140	140	12,000	tr(0.2)	0.4 [0.2]	63/63	63/63
	Monitored	Geometric				Quantification	Detection :	Frequency
p,p'-DDE	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	780	630	23,000	8.4	2.7 [0.9]	189/189	63/63
	2003	790	780	80,000	9.5	0.9 [0.3]	186/186	62/62
	2004	720	700	39,000	8	3 [0.8]	189/189	63/63
	2005	710	730	64,000	8.4	2.7 [0.94]	189/189	63/63
Sediment	2006	710	820	49,000	5.8	1.0 [0.3]	192/192	64/64
(pg/g-dry)	2007	670	900	61,000	3.2	1.1 [0.4]	192/192	64/64
	2008	920	940	96,000	9.0	1.7 [0.7]	192/192	64/64
	2009	700	660	50,000	6.7	0.8 [0.3]	192/192	64/64
	2010	680	790	40,000	11	5 [2]	64/64	64/64
	2014	530	610	64,000	11	1.8 [0.6]	63/63	63/63
	Monitored	Geometric				Quantification	Detection	Frequency
p,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
						limit		
	2002	640	690	51,000	tr(2.2)	2.4 [0.8]	189/189	63/63
	2003	670	580	32,000	3.7	0.9 [0.3]	186/186	62/62
	2004	650	550	75,000	4	2 [0.7]	189/189	63/63
	2005	600	570	210,000	5.2	1.7 [0.64]	189/189	63/63
Sediment	2006	560	540	53,000	2.2	0.7 [0.2]	192/192	64/64
(pg/g-dry)	2007	520	550	80,000	3.5	1.0 [0.4]	192/192	64/64
	2008	740	660	300,000	2.8	1.0 [0.4]	192/192	64/64
	2009	540	560	300,000	3.9	0.4 [0.2]	192/192	64/64
	2010	510	510	78,000	4.4	1.4 [0.5]	64/64	64/64
	2014	330	410	21,000	4.9	4.2 [1.4]	63/63	63/63

(Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

(Note 2) No monitoring was conducted from FY2011 to FY2013.

\circ o,p'-DDT, o,p'-DDE and o,p'-DDD

<Surface Water>

o,p'-DDT: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 42 of the 48 valid sites adopting the detection limit of 0.2pg/L, and none of the detected concentrations exceeded 63pg/L. As results of the inter-annual trend analysis from FY2002 to FY2014, reduction tendencies in specimens from river areas, lake areas, river mouth areas and sea areas were identified as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

o,p'-DDE: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 36 of the 48 valid sites adopting the detection limit of 0.1pg/L, and none of the detected concentrations exceeded 560pg/L. As results of the inter-annual trend analysis from FY2002 to FY2014, the second-half period indicated lower concentration than the first-half period in specimens from sea areas as statistically significant and the second-half period also indicated lower concentration than the first-half period in specimens from overall areas as statistically significant.

o,p'-DDD: The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.08pg/L, and the detection range was $0.33\sim38$ pg/L.

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in surface water during FY2002~2010 and FY2014

2014	Monitored	Geometric				Quantification	Detection 1	Frequency
o,p'-DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.4	4.6	77	0.19	1.2 [0.4]	114/114	38/38
	2003	6	5	100	tr(1.5)	3 [0.7]	36/36	36/36
	2004	tr(4.5)	5	85	nd	5 [2]	29/38	29/38
	2005	3	3	39	nd	3 [1]	42/47	42/47
Surface Water	2006	2.8	2.4	52	0.51	2.3 [0.8]	48/48	48/48
(pg/L)	2007	tr(2.1)	tr(2.2)	86	nd	2.5 [0.8]	38/48	38/48
	2008	3.1	3.0	230	nd	1.4 [0.5]	44/48	44/48
	2009	2.4	2.4	100	0.43	0.16 [0.06]	49/49	49/49
	2010	1.5	tr(1.2)	700	nd	1.5 [0.5]	43/49	43/49
	2014	1.0	1.0	63	nd	0.4 [0.2]	42/48	42/48
	M'41	C ti -				Quantification	Detection	Frequency
o,p'-DDE	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.4	2.1	680	nd	0.9 [0.3]	113/114	38/38
	2003	2.2	2.0	170	tr(0.42)	0.8 [0.3]	36/36	36/36
	2004	3	2	170	tr(0.6)	2 [0.5]	38/38	38/38
	2005	2.5	2.1	410	0.4	1.2 [0.4]	47/47	47/47
Surface Water	2006	tr(1.6)	tr(1.4)	210	nd	2.6 [0.9]	28/48	28/48
(pg/L)	2007	tr(1.5)	tr(1.1)	210	nd	2.3 [0.8]	29/48	29/48
	2008	1.5	1.8	260	nd	0.7 [0.3]	39/48	39/48
	2009	1.3	1.1	140	nd	0.22 [0.09]	47/49	47/49
	2010	0.97	0.65	180	tr(0.13)	0.24 [0.09]	49/49	49/49
	2014	0.6	0.6	560	nd	0.3 [0.1]	36/48	36/48
	Manitarad	Geometric				Quantification	Detection 1	Frequency
o,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.6	6.0	110	nd	0.60 [0.20]	113/114	38/38
	2003	7.1	5.0	160	1.1	0.8 [0.3]	36/36	36/36
	2004	6	5	81	tr(0.7)	2 [0.5]	38/38	38/38
	2005	5.2	5.4	51	tr(0.5)	1.2 [0.4]	47/47	47/47
Surface Water	2006	2.5	3.3	39	nd	0.8 [0.3]	40/48	40/48
(pg/L)	2007	4.6	3.9	41	tr(0.3)	0.8 [0.3]	48/48	48/48
	2008	6.7	7.2	170	nd	0.8 [0.3]	47/48	47/48
	2009	4.4	3.8	41	0.44	0.22 [0.09]	49/49	49/49
	2010	4.6	3.8	170	tr(0.5)	0.6 [0.2]	49/49	49/49
	2014	3.7	3.2	38	0.33	0.20 [0.08]	48/48	48/48

(Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

(Note 2) No monitoring was conducted from FY2011 to FY2013.

< Sediment >

o,p'-DDT: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 62 of the 63 valid sites adopting the detection limit of 0.2pg/g-dry, and none of the detected concentrations exceeded 2,400pg/g-dry. As results of the inter-annual trend analysis from FY2002 to FY2014, reduction tendencies in specimens from river mouth areas were identified as statistically significant..

o,p'-DDE: The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.3pg/g-dry, and the detection range was $tr(0.5)\sim41,000pg/g$ -dry.

o,p'-DDD: The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.5 pg/g-dry, and the detection range was $\text{tr}(0.7) \sim 3,200 \text{pg/g-dry}$.

Stocktaking of the detection of *o,p'*-DDT, *o,p'*-DDE and *o,p'*-DDD in sediment during FY2002~2010 and FY2014

Stocktaking of the C			p BBE un	а о,р ввв	in scaiment	Quantification	Detection 1	
o,p'-DDT	year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	76	47	27,000	nd	6 [2]	183/189	62/63
	2003	50	43	3,200	nd	0.8 [0.3]	185/186	62/62
	2004	69	50	17,000	tr(1.1)	2 [0.6]	189/189	63/63
	2005	58	46	160,000	0.8	0.8 [0.3]	189/189	63/63
Sediment	2006	57	52	18,000	tr(0.8)	1.2 [0.4]	192/192	64/64
(pg/g-dry)	2007	38	31	27,000	nd	1.8 [0.6]	186/192	63/64
	2008	51	40	140,000	tr(0.7)	1.5 [0.6]	192/192	64/64
	2009	44	30	100,000	nd	1.2 [0.5]	190/192	64/64
	2010	40	33	13,000	1.4	1.1 [0.4]	64/64	64/64
	2014	26	24	2,400	nd	0.4 [0.2]	62/63	62/63
	Monitored	Geometric				Quantification	Detection 1	Frequency
o,p'-DDE	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	54	37	16,000	nd	3 [1]	188/189	63/63
	2003	48	39	24,000	tr(0.5)	0.6 [0.2]	186/186	62/62
	2004	40	34	28,000	nd	3 [0.8]	184/189	63/63
	2005	40	32	31,000	nd	2.6 [0.9]	181/189	62/63
Sediment	2006	42	40	27,000	tr(0.4)	1.1 [0.4]	192/192	64/64
(pg/g-dry)	2007	37	41	25,000	nd	1.2 [0.4]	186/192	63/64
	2008	50	48	37,000	nd	1.4 [0.6]	186/192	63/64
	2009	37	31	33,000	nd	0.6 [0.2]	191/192	64/64
	2010	37	32	25,000	tr(0.7)	1.2 [0.5]	64/64	64/64
	2014	30	32	41,000	tr(0.5)	0.8 [0.3]	63/63	63/63
	Monitored	Geometric				Quantification	Detection 1	Frequency
o,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
						limit		
	2002	160	150	14,000	nd	6 [2]	184/189	62/63
	2003	160	130	8,800	tr(1.0)	2 [0.5]	186/186	62/62
	2004	140	120	16,000	tr(0.7)	2 [0.5]	189/189	63/63
	2005	130	110	32,000	tr(0.8)	1.0 [0.3]	189/189	63/63
Sediment	2006	120	110	13,000	tr(0.3)	0.5 [0.2]	192/192	64/64
(pg/g-dry)	2007	110	130	21,000	tr(0.5)	1.0 [0.4]	192/192	64/64
	2008	170	150	50,000	0.5	0.3 [0.1]	192/192	64/64
	2009	120	120	24,000	0.5	0.5 [0.2]	192/192	64/64
	2010	130	130	6,900	tr(0.8)	0.9 [0.4]	64/64	64/64
_	2014	74	85	3,200	tr(0.7)	1.2 [0.5]	63/63	63/63

(Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

(Note 2) No monitoring was conducted in FY2011, FY2013

- Monitoring results until 2013 (reference)
- \circ p,p'-DDT, p,p'-DDE and p,p'-DDD

<Wildlife>

Stocktaking of the detection of *p,p'*-DDT in wildlife (bivalves, fish and birds) during FY2002~2010 and FY2013

	Monitored	Geometric				Quantification	Detection l	Frequency
p,p'-DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	200	200	1,200	38	4.2 [1.4]	38/38	8/8
	2003	290	290	1,800	49	11 [3.5]	30/30	6/6
	2004	360	340	2,600	48	3.2 [1.1]	31/31	7/7
	2005	240	170	1,300	66	5.1 [1.7]	31/31	7/7
Bivalves	2006	250	220	1,100	56	6 [2]	31/31	7/7
(pg/g-wet)	2007	240	150	1,200	49	5 [2]	31/31	7/7
	2008	160	100	1,400	12	5 [2]	31/31	7/7
	2009	240	170	9,600	46	3 [1]	31/31	7/7
	2010	180	280	470	43	3 [1]	6/6	6/6
	2013	190	210	890	46	3.3 [1.1]	5/5	5/5
	2002	430	450	24,000	6.8	4.2 [1.4]	70/70	14/14
	2003	220	400	1,900	tr(3.7)	11 [3.5]	70/70	14/14
	2004	410	330	53,000	5.5	3.2 [1.1]	70/70	14/14
	2005	280	330	8,400	tr(3.8)	5.1 [1.7]	80/80	16/16
Fish	2006	300	340	3,000	tr(5)	6 [2]	80/80	16/16
(pg/g-wet)	2007	260	320	1,800	9	5 [2]	80/80	16/16
	2008	280	310	2,900	7	5 [2]	85/85	17/17
	2009	250	300	2,000	4	3 [1]	90/90	18/18
	2010	240	280	2,100	7	3 [1]	18/18	18/18
	2013	280	250	3,300	5.2	3.3 [1.1]	19/19	19/19
	2002	440	510	1,300	76	4.2 [1.4]	10/10	2/2
	2003	610	620	1,400	180	11 [3.5]	10/10	2/2
	2004	340	320	700	160	3.2 [1.1]	10/10	2/2
	2005	430	550	900	180	5.1 [1.7]	10/10	2/2
Birds	2006	580	490	1,800	110	6 [2]	10/10	2/2
(pg/g-wet)	2007	480	350	1,900	160	5 [2]	10/10	2/2
	2008	160	170	270	56	5 [2]	10/10	2/2
	2009	300	190	2,900	85	3 [1]	10/10	2/2
	2010	3		15	nd	3 [1]	1/2	1/2
	2013**	14		46	4.3	3.3 [1.1]	2/2	2/2

Stocktaking of the detection of *p,p'*-DDE in wildlife (bivalves, fish and birds) during FY2002~2010 and FY2013

	Monitored	Geometric				Quantification	Detection l	requency
p,p'-DDE	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	1,000	1,700	6,000	140	2.4 [0.8]	38/38	8/8
	2003	1,200	1,000	6,500	190	5.7 [1.9]	30/30	6/6
	2004	1,300	1,400	8,400	220	8.2 [2.7]	31/31	7/7
	2005	1,200	1,600	6,600	230	8.5 [2.8]	31/31	7/7
Bivalves	2006	1,000	1,200	6,000	160	1.9 [0.7]	31/31	7/7
(pg/g-wet)	2007	1,100	1,200	5,600	180	3 [1]	31/31	7/7
	2008	900	1,100	5,800	120	3 [1]	31/31	7/7
	2009	940	1,100	6,400	150	4 [1]	31/31	7/7
	2010	1,100	1,300	6,300	230	3 [1]	6/6	6/6
	2013	790	1,600	3,000	170	4.3 [1.4]	5/5	5/5
	2002	2,900	2,200	98,000	510	2.4 [0.8]	70/70	14/14
	2003	2,000	2,200	12,000	180	5.7 [1.9]	70/70	14/14
	2004	3,000	2,100	52,000	390	8.2 [2.7]	70/70	14/14
	2005	2,400	2,400	73,000	230	8.5 [2.8]	80/80	16/16
Fish	2006	2,200	2,600	28,000	280	1.9 [0.7]	80/80	16/16
(pg/g-wet)	2007	2,200	2,000	22,000	160	3 [1]	80/80	16/16
	2008	2,500	2,000	53,000	320	3 [1]	85/85	17/17
	2009	2,300	2,100	20,000	260	4 [1]	90/90	18/18
	2010	2,300	2,100	13,000	260	3 [1]	18/18	18/18
	2013	2,900	2,800	16,000	430	4.3 [1.4]	19/19	19/19
	2002	36,000	60,000	170,000	8,100	2.4 [0.8]	10/10	2/2
	2003	66,000	76,000	240,000	18,000	5.7 [1.9]	10/10	2/2
	2004	34,000	65,000	200,000	6,800	8.2 [2.7]	10/10	2/2
	2005	44,000	86,000	300,000	7,100	8.5 [2.8]	10/10	2/2
Birds	2006	38,000	57,000	160,000	5,900	1.9 [0.7]	10/10	2/2
(pg/g-wet)	2007	40,000	56,000	320,000	6,700	3 [1]	10/10	2/2
	2008	51,000	79,000	160,000	7,500	3 [1]	10/10	2/2
	2009	30,000	64,000	220,000	4,300	4 [1]	10/10	2/2
	2010	32,000		160,000	6,300	3 [1]	2/2	2/2
	2013**	170,000		170,000	170,000	4.3 [1.4]	2/2	2/2

Stocktaking of the detection of p,p'-DDD in wildlife (bivalves, fish and birds) during FY2002~2010 and FY2013

	Monitored	Geometric				Quantification	Detection	Frequency
p,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	340	710	3,200	11	5.4 [1.8]	38/38	8/8
	2003	390	640	2,600	tr(7.5)	9.9 [3.3]	30/30	6/6
	2004	440	240	8,900	7.8	2.2 [0.70]	31/31	7/7
	2005	370	800	1,700	13	2.9 [0.97]	31/31	7/7
Bivalves	2006	300	480	1,400	7.3	2.4 [0.9]	31/31	7/7
(pg/g-wet)	2007	310	360	1,500	7	3 [1]	31/31	7/7
	2008	280	280	1,300	6	3 [1]	31/31	7/7
	2009	220	170	2,400	5.8	2.4 [0.9]	31/31	7/7
	2010	180	330	960	11	1.3 [0.5]	6/6	6/6
	2013	270	520	1,300	19	1.9 [0.7]	5/5	5/5
	2002	750	680	14,000	80	5.4 [1.8]	70/70	14/14
	2003	510	520	3,700	43	9.9 [3.3]	70/70	14/14
	2004	770	510	9,700	56	2.2 [0.70]	70/70	14/14
	2005	510	650	6,700	29	2.9 [0.97]	80/80	16/16
Fish	2006	520	580	4,300	60	2.4 [0.9]	80/80	16/16
(pg/g-wet)	2007	470	490	4,100	36	3 [1]	80/80	16/16
	2008	460	440	4,100	33	3 [1]	85/85	17/17
	2009	440	460	2,500	57	2.4 [0.9]	90/90	18/18
	2010	560	610	2,900	57	1.3 [0.5]	18/18	18/18
	2013	500	500	4,700	68	1.9 [0.7]	19/19	19/19
	2002	580	740	3,900	140	5.4 [1.8]	10/10	2/2
	2003	640	860	3,900	110	9.9 [3.3]	10/10	2/2
	2004	330	520	1,400	52	2.2 [0.70]	10/10	2/2
	2005	310	540	1,400	45	2.9 [0.97]	10/10	2/2
Birds	2006	410	740	1,800	55	2.4 [0.9]	10/10	2/2
(pg/g-wet)	2007	440	780	2,300	70	3 [1]	10/10	2/2
	2008	240	490	1,100	35	3 [1]	10/10	2/2
	2009	280	430	3,400	31	2.4 [0.9]	10/10	2/2
	2010	440		1,600	120	1.3 [0.5]	2/2	2/2
	2013**	140		270	70	1.9 [0.7]	2/2	2/2

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in air during FY2002~2010 and FY2013

		Geometric				Quantification	Detection I	requency
p,p'-DDT	Monitored year	mean	Median	Maximum	Minimum	[Detection]	Sample	Site
						limit		
	2002	1.9	1.8	22	0.25	0.24 [0.08]	102/102	34/34
	2003 Warm season	5.8	6.6	24	0.75	0.14 [0.046]	35/35	35/35
	2003 Cold season	1.7	1.6	11	0.31	0.14 [0.040]	34/34	34/34
	2004 Warm season	4.7	5.1	37	0.41	0.22 [0.074]	37/37	37/37
	2004 Cold season	1.8	1.7	13	0.29	0.22 [0.074]	37/37	37/37
	2005 Warm season	4.1	4.2	31	0.44	0.16 [0.054]	37/37	37/37
	2005 Cold season	1.1	0.99	4.8	0.25	0.16 [0.054]	37/37	37/37
	2006 Warm season	4.2	3.8	51	0.35	0.17 [0.06]	37/37	37/37
A :	2006 Cold season	1.4	1.2	7.3	0.29	0.1 / [0.06]	37/37	37/37
Air	2007 Warm season	4.9	5.2	30	0.6	0.07 [0.03]	36/36	36/36
(pg/m^3)	2007 Cold season	1.2	1.2	8.8	0.23	0.07 [0.03]	36/36	36/36
	2008 Warm season	3.6	3.0	27	0.76	0.07 [0.03]	37/37	37/37
	2008 Cold season	1.2	1.0	15	0.22	0.07 [0.03]	37/37	37/37
	2009 Warm season	3.6	3.6	28	0.44	0.07 [0.03]	37/37	37/37
	2009 Cold season	1.1	1.0	8.0	0.20	0.07 [0.03]	37/37	37/37
	2010 Warm season	3.5	3.1	56	0.28	0.10.50.021	37/37	37/37
	2010 Cold season	1.3	0.89	16	0.30	0.10 [0.03]	37/37	37/37
	2013 Warm season	2.8	3.6	17	0.20	0.11 [0.04]	36/36	36/36
	2013 Cold season	0.65	0.53	4.5	0.18	0.11 [0.04]	36/36	36/36

⁽Note2)"**" There is no consistency between the results of the ornithological survey in FY2013 and those in previous years because of the changes in the survey sites and target species.

⁽Note 3) No monitoring was conducted in FY2011, FY2012.

p,p'-DDE		Geometric				Quantification	Detection l	Frequency
p,p'-DDE	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.8	2.7	28	0.56	0.09 [0.03]	102/102	34/34
	2003 Warm season	7.2	7.0	51	1.2	0.40 [0.13]	35/35	35/35
	2003 Cold season	2.8	2.4	22	1.1		34/34	34/34
	2004 Warm season	6.1	6.3	95	0.62	0.12 [0.039]	37/37	37/37
	2004 Cold season	2.9	2.6	43	0.85	0.12 [0.039]	37/37	37/37
	2005 Warm season	5.0	5.7	42	1.2	0.14 [0.034]	37/37	37/37
	2005 Cold season	1.7	1.5	9.9	0.76	0.14 [0.034]	37/37	37/37
	2006 Warm season	5.0	4.7	49	1.7	0.10 [0.03]	37/37	37/37
Air	2006 Cold season	1.9	1.7	9.5	0.52		37/37	37/37
(pg/m^3)	2007 Warm season	6.4	6.1	120	0.54	0.04 [0.02]	36/36	36/36
(pg/III)	2007 Cold season	2.1	1.9	39	0.73		36/36	36/36
	2008 Warm season	4.8	4.4	96	0.98	0.04 [0.02]	37/37	37/37
	2008 Cold season	2.2	2.0	22	0.89		37/37	37/37
	2009 Warm season	4.9	4.8	130	0.87	0.08 [0.03]	37/37	37/37
	2009 Cold season	2.1	1.9	100	0.60		37/37	37/37
	2010 Warm season	4.9	4.1	200	tr(0.41)	0.62 [0.21]	37/37	37/37
	2010 Cold season	2.2	1.8	28	tr(0.47)		37/37	37/37
	2013 Warm season	4.1	4.3	37	0.2	0.10 [0.03]	36/36	36/36
	2013 Cold season	1.6	1.5	11	0.6		36/36	36/36
		Geometric				Quantification	Detection l	Frequency
p,p'-DDD	Monitored year	mean	Median	Maximum	Minimum	[Detection]	Sample	Site
						limit		
	2002	0.12	0.13	0.76	nd	limit 0.018 [0.006]	101/102	34/34
	2002 2003 Warm season		0.13 0.35	0.76	nd 0.063	0.018 [0.006]		34/34 35/35
	2003 Warm season 2003 Cold season	0.12 0.30 0.13	0.35 0.14	1.4 0.52			101/102	34/34 35/35 34/34
	2003 Warm season	0.12	0.35	1.4	0.063	0.018 [0.006] 0.054 [0.018]	101/102 35/35	34/34 35/35
	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season	0.12 0.30 0.13 0.24 0.12	0.35 0.14 0.27 0.12	1.4 0.52 1.4 0.91	0.063 tr(0.037) tr(0.036) tr(0.025)	0.018 [0.006]	101/102 35/35 34/34 37/37 37/37	34/34 35/35 34/34 37/37 37/37
	2003 Warm season 2003 Cold season 2004 Warm season	0.12 0.30 0.13 0.24 0.12 0.24	0.35 0.14 0.27	1.4 0.52 1.4	0.063 tr(0.037) tr(0.036)	0.018 [0.006] 0.054 [0.018] 0.053 [0.018]	101/102 35/35 34/34 37/37	34/34 35/35 34/34 37/37
	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season	0.12 0.30 0.13 0.24 0.12	0.35 0.14 0.27 0.12	1.4 0.52 1.4 0.91	0.063 tr(0.037) tr(0.036) tr(0.025)	0.018 [0.006] 0.054 [0.018]	101/102 35/35 34/34 37/37 37/37	34/34 35/35 34/34 37/37 37/37
	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season	0.12 0.30 0.13 0.24 0.12 0.24 tr(0.06)	0.35 0.14 0.27 0.12 0.26	1.4 0.52 1.4 0.91 1.3	0.063 tr(0.037) tr(0.036) tr(0.025) tr(0.07)	0.018 [0.006] 0.054 [0.018] 0.053 [0.018] 0.16 [0.05]	35/35 34/34 37/37 37/37 37/37	34/34 35/35 34/34 37/37 37/37 37/37 28/37 36/37
A i	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season	0.12 0.30 0.13 0.24 0.12 0.24 tr(0.06)	0.35 0.14 0.27 0.12 0.26 tr(0.07)	1.4 0.52 1.4 0.91 1.3 0.29	0.063 tr(0.037) tr(0.036) tr(0.025) tr(0.07) nd	0.018 [0.006] 0.054 [0.018] 0.053 [0.018]	35/35 34/34 37/37 37/37 37/37 28/37	34/34 35/35 34/34 37/37 37/37 37/37 28/37
Air	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season	0.12 0.30 0.13 0.24 0.12 0.24 tr(0.06)	0.35 0.14 0.27 0.12 0.26 tr(0.07)	1.4 0.52 1.4 0.91 1.3 0.29	0.063 tr(0.037) tr(0.036) tr(0.025) tr(0.07) nd	0.018 [0.006] 0.054 [0.018] 0.053 [0.018] 0.16 [0.05] 0.13 [0.04]	35/35 34/34 37/37 37/37 37/37 28/37 36/37	34/34 35/35 34/34 37/37 37/37 37/37 28/37 36/37
Air (pg/m³)	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season	0.12 0.30 0.13 0.24 0.12 0.24 tr(0.06) 0.28 0.14	0.35 0.14 0.27 0.12 0.26 tr(0.07) 0.32 tr(0.12)	1.4 0.52 1.4 0.91 1.3 0.29 1.3 0.99 1.4	0.063 tr(0.037) tr(0.036) tr(0.025) tr(0.07) nd nd nd	0.018 [0.006] 0.054 [0.018] 0.053 [0.018] 0.16 [0.05]	35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/37	34/34 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/37
	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season	0.12 0.30 0.13 0.24 0.12 0.24 tr(0.06) 0.28 0.14 0.26 0.093 0.17	0.35 0.14 0.27 0.12 0.26 tr(0.07) 0.32 tr(0.12) 0.27 0.087	1.4 0.52 1.4 0.91 1.3 0.29 1.3 0.99	0.063 tr(0.037) tr(0.036) tr(0.025) tr(0.07) nd nd nd 0.046	0.018 [0.006] 0.054 [0.018] 0.053 [0.018] 0.16 [0.05] 0.13 [0.04] 0.011 [0.004]	35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/37 36/36	34/34 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/37 36/36
	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season	0.12 0.30 0.13 0.24 0.12 0.24 tr(0.06) 0.28 0.14 0.26 0.093	0.35 0.14 0.27 0.12 0.26 tr(0.07) 0.32 tr(0.12) 0.27 0.087	1.4 0.52 1.4 0.91 1.3 0.29 1.3 0.99 1.4	0.063 tr(0.037) tr(0.036) tr(0.025) tr(0.07) nd nd nd 0.046 0.026	0.018 [0.006] 0.054 [0.018] 0.053 [0.018] 0.16 [0.05] 0.13 [0.04]	35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/37 36/36 36/36	34/34 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/37 36/36 36/36
	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season	0.12 0.30 0.13 0.24 0.12 0.24 tr(0.06) 0.28 0.14 0.26 0.093 0.17 0.091	0.35 0.14 0.27 0.12 0.26 tr(0.07) 0.32 tr(0.12) 0.27 0.087 0.17 0.081	1.4 0.52 1.4 0.91 1.3 0.29 1.3 0.99 1.4 0.5	0.063 tr(0.037) tr(0.036) tr(0.025) tr(0.07) nd nd nd 0.046 0.026	0.018 [0.006] 0.054 [0.018] 0.053 [0.018] 0.16 [0.05] 0.13 [0.04] 0.011 [0.004] 0.025 [0.009]	35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/37 36/36 36/36 37/37 37/37	34/34 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/36 36/36 37/37
	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season	0.12 0.30 0.13 0.24 0.12 0.24 tr(0.06) 0.28 0.14 0.26 0.093 0.17 0.091 0.17 0.08	0.35 0.14 0.27 0.12 0.26 tr(0.07) 0.32 tr(0.12) 0.27 0.087 0.17 0.081 0.18 0.08	1.4 0.52 1.4 0.91 1.3 0.29 1.3 0.99 1.4 0.5	0.063 tr(0.037) tr(0.036) tr(0.025) tr(0.07) nd nd nd 0.046 0.026 0.037 0.036	0.018 [0.006] 0.054 [0.018] 0.053 [0.018] 0.16 [0.05] 0.13 [0.04] 0.011 [0.004]	35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/37 36/36 36/36 37/37 37/37	34/34 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/37 36/36 36/36 37/37 37/37
	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2008 Warm season 2008 Cold season 2009 Warm season	0.12 0.30 0.13 0.24 0.12 0.24 tr(0.06) 0.28 0.14 0.26 0.093 0.17 0.091 0.17 0.08 0.20	0.35 0.14 0.27 0.12 0.26 tr(0.07) 0.32 tr(0.12) 0.27 0.087 0.17 0.081 0.18 0.08 0.17	1.4 0.52 1.4 0.91 1.3 0.29 1.3 0.99 1.4 0.5 1.1 0.31 0.82	0.063 tr(0.037) tr(0.036) tr(0.025) tr(0.07) nd nd 0.046 0.026 0.037 0.036 0.03 tr(0.02)	0.018 [0.006] 0.054 [0.018] 0.053 [0.018] 0.16 [0.05] 0.13 [0.04] 0.011 [0.004] 0.025 [0.009] 0.03 [0.01]	101/102 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/36 36/36 37/37 37/37 37/37 37/37	34/34 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/36 36/36 37/37 37/37 37/37 37/37
	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Warm season 2010 Cold season 2010 Warm season	0.12 0.30 0.13 0.24 0.12 0.24 tr(0.06) 0.28 0.14 0.26 0.093 0.17 0.091 0.17 0.08 0.20 0.10	0.35 0.14 0.27 0.12 0.26 tr(0.07) 0.32 tr(0.12) 0.27 0.087 0.17 0.081 0.18 0.08	1.4 0.52 1.4 0.91 1.3 0.29 1.3 0.99 1.4 0.5 1.1 0.31 0.82 0.35	0.063 tr(0.037) tr(0.036) tr(0.025) tr(0.07) nd nd 0.046 0.026 0.037 0.036 0.03 tr(0.02)	0.018 [0.006] 0.054 [0.018] 0.053 [0.018] 0.16 [0.05] 0.13 [0.04] 0.011 [0.004] 0.025 [0.009]	101/102 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/36 36/36 37/37 37/37 37/37	34/34 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37
	2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Warm season 2009 Cold season 2010 Warm season	0.12 0.30 0.13 0.24 0.12 0.24 tr(0.06) 0.28 0.14 0.26 0.093 0.17 0.091 0.17 0.08 0.20	0.35 0.14 0.27 0.12 0.26 tr(0.07) 0.32 tr(0.12) 0.27 0.087 0.17 0.081 0.18 0.08 0.17	1.4 0.52 1.4 0.91 1.3 0.29 1.3 0.99 1.4 0.5 1.1 0.31 0.82 0.35 1.7	0.063 tr(0.037) tr(0.036) tr(0.025) tr(0.07) nd nd 0.046 0.026 0.037 0.036 0.03 tr(0.02)	0.018 [0.006] 0.054 [0.018] 0.053 [0.018] 0.16 [0.05] 0.13 [0.04] 0.011 [0.004] 0.025 [0.009] 0.03 [0.01]	101/102 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/36 36/36 37/37 37/37 37/37 37/37	34/34 35/35 34/34 37/37 37/37 37/37 28/37 36/37 36/36 36/36 37/37 37/37 37/37 37/37

(Note) No monitoring was conducted from FY2011 to FY2012.

o *o,p'*-DDT, *o,p'*-DDE and *o,p'*-DDD

<Wildlife>

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in wildlife (bivalves, fish and birds) during $FY2002\sim2010$ and FY2013

	Monitored	Geometric				Quantification	Detection 1	Frequency
o,p'-DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	110	83	480	22	12 [4]	38/38	8/8
	2003	130	120	480	35	2.9 [0.97]	30/30	6/6
	2004	160	140	910	20	1.8 [0.61]	31/31	7/7
	2005	98	57	440	29	2.6 [0.86]	31/31	7/7
Bivalves	2006	92	79	380	24	3 [1]	31/31	7/7
(pg/g-wet)	2007	79	52	350	20	3 [1]	31/31	7/7
	2008	58	37	330	5	3 [1]	31/31	7/7
	2009	74	48	2,500	17	2.2 [0.8]	31/31	7/7
	2010	51	67	160	15	3 [1]	6/6	6/6
	2013	49	51	180	12	3 [1]	5/5	5/5
	2002	130	130	2,300	tr(6)	12 [4]	70/70	14/14
	2003	85	120	520	2.9	2.9 [0.97]	70/70	14/14
	2004	160	140	1,800	3.7	1.8 [0.61]	70/70	14/14
	2005	100	110	1,500	5.8	2.6 [0.86]	80/80	16/16
Fish	2006	100	110	700	6	3 [1]	80/80	16/16
(pg/g-wet)	2007	69	90	430	3	3 [1]	80/80	16/16
	2008	72	92	720	3	3 [1]	85/85	17/17
	2009	61	73	470	2.4	2.2 [0.8]	90/90	18/18
	2010	58	71	550	5	3 [1]	18/18	18/18
	2013	58	76	310	4	3 [1]	19/19	19/19
	2002	12	tr(10)	58	nd	12 [4]	8/10	2/2
	2003	24	16	66	8.3	2.9 [0.97]	10/10	2/2
	2004	8.5	13	43	tr(0.87)	1.8 [0.61]	10/10	2/2
	2005	11	14	24	3.4	2.6 [0.86]	10/10	2/2
Birds	2006	14	10	120	3	3 [1]	10/10	2/2
(pg/g-wet)	2007	9	9	26	tr(2)	3 [1]	10/10	2/2
	2008	4	6	16	nd	3 [1]	8/10	2/2
	2009	6.3	7.6	12	tr(1.4)	2.2 [0.8]	10/10	2/2
	2010	nd		nd	nd	3 [1]	0/2	0/2
	2013**	nd		tr(1)	nd	3 [1]	1/2	1/2

	Monitored	Geometric				Quantification	Detection 1	Frequency
o,p'-DDE	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	83	66	1,100	13	3.6 [1.2]	38/38	8/8
	2003	85	100	460	17	3.6 [1.2]	30/30	6/6
	2004	86	69	360	19	2.1 [0.69]	31/31	7/7
	2005	70	89	470	12	3.4 [1.1]	31/31	7/7
Bivalves	2006	62	81	340	12	3 [1]	31/31	7/7
(pg/g-wet)	2007	56	69	410	8.9	2.3 [0.9]	31/31	7/7
	2008	49	52	390	8	3 [1]	31/31	7/7
	2009	46	58	310	8	3 [1]	31/31	7/7
	2010	46	58	160	7.8	1.5 [0.6]	6/6	6/6
	2013	28	31	260	4	4 [1]	5/5	5/5
	2002	91	50	13,000	3.6	3.6 [1.2]	70/70	14/14
	2003	51	54	2,500	nd	3.6 [1.2]	67/70	14/14
	2004	76	48	5,800	tr(0.89)	2.1 [0.69]	70/70	14/14
	2005	54	45	12,000	tr(1.4)	3.4 [1.1]	80/80	16/16
Fish	2006	56	43	4,800	tr(1)	3 [1]	80/80	16/16
(pg/g-wet)	2007	45	29	4,400	nd	2.3 [0.9]	79/80	16/16
	2008	50	37	13,000	tr(1)	3 [1]	85/85	17/17
	2009	46	33	4,300	tr(1)	3 [1]	90/90	18/18
	2010	47	37	2,800	tr(1.2)	1.5 [0.6]	18/18	18/18
	2013	51	40	3,000	tr(1)	4 [1]	19/19	19/19
	2002	28	26	49	20	3.6 [1.2]	10/10	2/2
	2003	tr(2.3)	tr(2.0)	4.2	nd	3.6 [1.2]	9/10	2/2
	2004	tr(1.0)	tr(1.1)	3.7	nd	2.1 [0.69]	5/10	1/2
	2005	tr(1.2)	tr(1.9)	tr(2.9)	nd	3.4 [1.1]	7/10	2/2
Birds	2006	tr(1)	tr(2)	3	tr(1)	3 [1]	10/10	2/2
(pg/g-wet)	2007	tr(1.0)	tr(1.4)	2.8	nd	2.3 [0.9]	6/10	2/2
	2008	tr(1)	nd	3	nd	3 [1]	5/10	1/2
	2009	nd	tr(1)	tr(2)	nd	3 [1]	6/10	2/2
	2010	tr(1.1)		3.7	nd	1.5 [0.6]	1/2	1/2
	2013**	nd		tr(1)	nd	4 [1]	1/2	1/2

	Monitored	Geometric				Quantification	Detection I	requency
o,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	120	190	2,900	tr(9)	12 [4]	38/38	8/8
	2003	200	220	1,900	6.5	6.0 [2.0]	30/30	6/6
	2004	220	130	2,800	6.0	5.7 [1.9]	31/31	7/7
	2005	170	280	1,800	10	3.3 [1.1]	31/31	7/7
Bivalves	2006	150	200	1,000	7	4 [1]	31/31	7/7
(pg/g-wet)	2007	150	200	1,200	6	3 [1]	31/31	7/7
	2008	130	140	1,100	5	4 [2]	31/31	7/7
	2009	95	51	1,000	5	3 [1]	31/31	7/7
	2010	57	50	400	5.8	0.6 [0.2]	6/6	6/6
	2013	100	74	1,800	7.8	1.8 [0.7]	5/5	5/5
	2002	95	90	1,100	nd	12 [4]	66/70	14/14
	2003	75	96	920	nd	6.0 [2.0]	66/70	14/14
	2004	120	96	1,700	nd	5.7 [1.9]	68/70	14/14
	2005	83	81	1,400	nd	3.3 [1.1]	79/80	16/16
Fish	2006	80	86	1,100	tr(1)	4 [1]	80/80	16/16
(pg/g-wet)	2007	66	62	1,300	nd	3 [1]	78/80	16/16
	2008	65	74	1,000	nd	4 [2]	80/85	16/17
	2009	63	64	760	nd	3 [1]	87/90	18/18
	2010	75	99	700	2.6	0.6 [0.2]	18/18	18/18
	2013	70	85	940	nd	1.8 [0.7]	18/19	18/19
	2002	15	15	23	tr(8)	12 [4]	10/10	2/2
	2003	15	14	36	tr(5.0)	6.0 [2.0]	10/10	2/2
	2004	6.1	5.7	25	nd	5.7 [1.9]	9/10	2/2
	2005	7.3	7.5	9.7	4.7	3.3 [1.1]	10/10	2/2
Birds	2006	8	8	19	5	4 [1]	10/10	2/2
(pg/g-wet)	2007	7	7	10	5	3 [1]	10/10	2/2
	2008	4	tr(3)	14	tr(2)	4 [2]	10/10	2/2
	2009	6	5	13	3	3 [1]	10/10	2/2
	2010	6.3		11	3.6	0.6 [0.2]	2/2	2/2
	2013**	5.4		12	2.4	1.8 [0.7]	2/2	2/2

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

(Note 2) "**": There is no consistency between the results of the ornithological survey in FY2013 and those in previous years

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in air during FY2002~2010 and FY2013

		Geometric				Quantification	Detection I	Frequency
o,p'-DDT	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.2	2.0	40	0.41	0.15 [0.05]	102/102	34/34
	2003 Warm season	6.9	7.7	38	0.61	0.12 [0.040]	35/35	35/35
	2003 Cold season	1.6	1.4	6.4	0.43	0.12 [0.040]	34/34	34/34
	2004 Warm season	5.1	5.4	22	0.54	0.002 [0.021]	37/37	37/37
	2004 Cold season	1.5	1.4	9.4	0.35	0.093 [0.031]	37/37	37/37
	2005 Warm season	3.0	3.1	14	0.67	0.10 [0.024]	37/37	37/37
	2005 Cold season	0.76	0.67	3.0	0.32	0.10 [0.034]	37/37	37/37
	2006 Warm season	2.5	2.4	20	0.55	0.00.00.021	37/37	37/37
Air	2006 Cold season	0.90	0.79	3.9	0.37	0.09 [0.03]	37/37	37/37
(pg/m^3)	2007 Warm season	2.9	2.6	19	0.24	0.03 [0.01]	36/36	36/36
(pg/m)	2007 Cold season	0.77	0.63	3.4	0.31	0.03 [0.01]	36/36	36/36
	2008 Warm season	2.3	2.1	18	0.33	0.03 [0.01]	37/37	37/37
	2008 Cold season	0.80	0.62	6.5	0.32	0.03 [0.01]	37/37	37/37
	2009 Warm season	2.3	2.2	14	0.33	0.010.00.0001	37/37	37/37
	2009 Cold season	0.80	0.71	3.7	0.20	0.019 [0.008]	37/37	37/37
	2010 Warm season	2.2	1.9	26	0.19	0.14 [0.05]	37/37	37/37
	2010 Cold season	0.81	0.69	5.5	0.22	0.14 [0.05]	37/37	37/37
	2013 Warm season	1.7	1.7	12	0.15	0.054 [0.018]	36/36	36/36
	2013 Cold season	0.47	0.44	2.4	0.20	0.034 [0.018]	36/36	36/36

because of the changes in the survey sites and target species.

⁽Note 3) No monitoring was conducted in FY2011, FY2012.

		Geometric				Quantification	Detection I	Frequency
o,p'-DDE	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.60	0.56	8.5	0.11	0.03 [0.01]	102/102	34/34
	2003 Warm season	1.4	1.5	7.5	0.17	0.020.00.00691	35/35	35/35
	2003 Cold season	0.50	0.47	1.7	0.18	0.020 [0.0068]	34/34	34/34
	2004 Warm season	1.1	1.2	8.9	0.14	0.027.50.0121	37/37	37/37
	2004 Cold season	0.53	0.49	3.9	0.14	0.037 [0.012]	37/37	37/37
	2005 Warm season	1.6	1.5	7.9	0.33	0.074.50.0241	37/37	37/37
	2005 Cold season	0.62	0.59	2.0	0.24	0.074 [0.024]	37/37	37/37
	2006 Warm season	1.1	1.1	7.4	nd	0.00.50.021	36/37	36/37
	2006 Cold season	0.65	0.56	2.6	0.19	0.09 [0.03]	37/37	37/37
Air	2007 Warm season	0.66	0.67	7	0.096	0.017.50.0071	36/36	36/36
(pg/m^3)	2007 Cold season	0.3	0.29	3.7	0.12	0.017 [0.007]	36/36	36/36
	2008 Warm season	0.48	0.52	5.0	0.11	0.007.50.0003	37/37	37/37
	2008 Cold season	0.30	0.24	1.1	0.15	0.025 [0.009]	37/37	37/37
	2009 Warm season	0.51	0.46	6.7	0.098		37/37	37/37
	2009 Cold season	0.27	0.24	23	0.072	0.016 [0.006]	37/37	37/37
	2010 Warm season	0.49	0.41	9.0	0.09		37/37	37/37
	2010 Cold season	0.27	0.23	2.3	0.08	0.04 [0.01]	37/37	37/37
	2013 Warm season	0.38	0.35	3.3	0.051	0.000.50.0007	36/36	36/36
	2013 Cold season	0.21	0.19	0.65	0.097	0.023 [0.009]	36/36	36/36
		Caamatria				Quantification	Detection I	requency
o,p'-DDD	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.14	0.18	0.85	nd	0.021 [0.007]	97/102	33/34
	2003 Warm season	0.37	0.42	1.3	0.059	0.042 [0.014]	35/35	35/35
	2003 Cold season	0.15	0.14	0.42	0.062		34/34	34/34
	2004 Warm season	0.31	0.33	2.6	tr(0.052)	0.14 [0.048]	37/37	37/37
	2004 Cold season	0.14	tr(0.13)	0.86	nd		35/37	35/37
	2005 Warm season	0.22	0.19	0.90	tr(0.07)	0.10 [0.03]	37/37	37/37
	2005 Cold season	tr(0.07)	tr(0.07)	0.21	nd		35/37	35/37
	2006 Warm season	0.28	0.28	1.4	tr(0.05)	0.10 [0.03]	37/37	37/37
Air	2006 Cold season 2007 Warm season	0.12	$\frac{0.11}{0.29}$	0.79 1.9	nd 0.05		34/37 36/36	34/37 36/36
(pg/m^3)	2007 Warm season 2007 Cold season	0.28	0.29	0.33	tr(0.03)	0.05 [0.02]	36/36	36/36
	2007 Cold season	0.093	0.16	1.6	0.05		37/37	37/37
	2008 Cold season	0.10	0.10	0.26	0.03	0.04 [0.01]	37/37	37/37
	2009 Warm season	0.20	0.19	0.90	0.04		37/37	37/37
	2009 Cold season	0.08	0.08	0.28	tr(0.02)	0.03 [0.01]	37/37	37/37
	2010 Warm season	0.21	0.19	1.8	0.04	0.02.50.013	37/37	37/37
	2010 Cold season	0.10	0.09	0.48	tr(0.02)	0.03 [0.01]	37/37	37/37
	2013 Warm season	0.17	0.18	1.2	tr(0.03)	0.05 [0.02]	36/36	36/36
		0.06	0.06	0.17	nd	0.00 10.021	35/36	35/36

(Note) No monitoring was conducted in FY2011, FY2012.

[7] Chlordanes (reference)

· History and state of monitoring

Chlordanes were used as insecticides, but the registration of Chlordanes under the Agricultural Chemicals Regulation Law was expired in FY1968. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 1986 because of its properties such as persistency, since it had been used as termitecides for wood products such as primary processed timber, plywood and house.

Although manufactured Chlordanes have complicated compositions, heptachlor, γ-chlordane, heptachlor epoxide, *cis*-chlordane, *trans*-chlordane, oxychlordane (as a chlordane metabolite), *cis*-nonachlor (not registrated as an Agricultural Chemical) and *trans*-nonachlor (not registrated as an Agricultural Chemical) were the original target chemicals in monitoring series. Since FY1983, 5 of those 8 chemicals (*cis*-chlordane, *trans*-chlordane, oxychlordane, *cis*-nonachlor and *trans*-nonachlor) have been the target chemicals owning to their high detection frequency in the FY1982 High-Precision Environmental Survey.

In previous monitoring series, Chlordanes had been monitored in wildlife (bivalves, fish and birds) during the period of FY1978~2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring", *cis*-chlordane, *trans*-chlordane, *cis*-nonachlor and *trans*-nonachlor in surface water and sediment have been the monitored during the period of FY1986~1998 and FY1986~2001, respectively.

Under the framework of the Environmental Monitoring, *cis*-chlordane, *trans*-chlordane, oxychlordane (as a chlordane metabolite), *cis*-nonachlor (not registrated as an Agricultural Chemical) and *trans*-nonachlor have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air since FY2002.

No monitoring was conducted from FY2014. For reference, the monitoring results up to FY2013 are given below.

- Monitoring results until 2013
- o cis-Chlordane and trans-Chlordane

<Surface Water>
Stocktaking of the detection of *cis*-chlordane and *trans*-chlordane in surface water FY2002~2013

	Monitored	Geometric				Quantification	Detection l	requency
cis-chlordane	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	year	mean				limit	Sample 114/114 36/36 38/38 47/47 48/48 47/48 48/48 49/49 47/49 49/49 48/48	
	2002	42	32	880	2.5	0.9[0.3]	114/114	38/38
	2003	69	51	920	12	3 [0.9]	36/36	36/36
	2004	92	87	1,900	10	6 [2]	38/38	38/38
	2005	53	54	510	6	4 [1]	47/47	47/47
	2006	31	26	440	5	5 [2]	48/48	48/48
Surface Water	2007	23	22	680	nd	4 [2]	47/48	47/48
(pg/L)	2008	29	29	480	2.9	1.6 [0.6]	48/48	48/48
	2009	29	26	710	4.4	1.1 [0.4]	49/49	49/49
	2010	19	14	170	nd	11 [4]	47/49	47/49
	2011	20	16	500	3.8	1.4 [0.6]	49/49	49/49
	2012	43	37	350	10	1.6 [0.6]	48/48	48/48
	2013	18	16	260	2.9	2.7 [0.9]	48/48	48/48

	Monitored	Geometric				Quantification	Detection l	requency
trans-chlordane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	33	24	780	3.1	1.5 [0.5]	114/114	38/38
	2003	34	30	410	6	5 [2]	36/36	36/36
	2004	32	26	1,200	5	5 [2]	38/38	38/38
	2005	25	21	200	3	4 [1]	47/47	47/47
	2006	24	16	330	tr(4)	7 [2]	48/48	48/48
Surface Water	2007	16	20	580	nd	2.4 [0.8]	47/48	47/48
(pg/L)	2008	23	22	420	3	3 [1]	48/48	48/48
	2009	23	18	690	3.0	0.8 [0.3]	49/49	49/49
	2010	15	tr(11)	310	nd	13 [4]	44/49	44/49
	2011	16	13	470	3.2	1.0 [0.4]	49/49	49/49
	2012	41	33	300	12	2.5 [0.8]	48/48	48/48
	2013	15	13	200	3	3 [1]	48/48	48/48

⁽Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Stocktaking of the detection of cis-chlordane and trans-chlordane in sediment FV2002~2013

	Monitored	Geometric				Quantification	Detection 1	Frequenc
cis-chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	140	98	18,000	1.8	0.9 [0.3]	189/189	63/63
	2003	190	140	19,000	tr(3.6)	4 [2]	186/186	62/62
	2004	160	97	36,000	4	4 [2]	189/189	63/63
	2005	150	100	44,000	3.3	1.9 [0.64]	189/189	63/63
	2006	100	70	13,000	tr(0.9)	2.4 [0.8]	192/192	64/64
Sediment	2007	82	55	7,500	nd	5 [2]	191/192	64/64
(pg/g-dry)	2008	100	63	11,000	tr(2.3)	2.4 [0.9]	192/192	64/64
	2009	84	61	8,600	2.0	0.7 [0.3]	192/192	64/64
	2010	82	62	7,200	tr(4)	6 [2]	64/64	64/64
	2011	70	58	4,500	1.7	1.1 [0.4]	64/64	64/64
	2012	69	61	11,000	tr(2.6)	2.9 [1.0]	63/63	63/63
	2013	65	55	5,400	tr(1.9)	2.0 [0.8]	63/63	63/63
	Monitored	Geometric				Quantification	Detection 1	Frequenc
trans-chlordane	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
						limit		
	2002	150	110	16,000	2.1	1.8 [0.6]	189/189	63/63
	2003	130	100	13,000	tr(2.4)	4 [2]	186/186	62/62
	2004	110	80	26,000	3	3 [0.9]	189/189	63/63
	2005	110	81	32,000	3.4	2.3 [0.84]	189/189	63/63
	2006	110	76	12,000	2.2	1.1 [0.4]	192/192	64/64
Sediment	2007	82	58	7,500	nd	2.2 [0.8]	191/192	64/64
(pg/g-dry)	2008	110	66	10,000	2.4	2.0 [0.8]	192/192	64/64
	2009	91	68	8,300	2.1	1.7 [0.7]	192/192	64/64
	2010	95	69	8,000	tr(4)	11 [4]	64/64	64/64
	2011	73	64	4,300	3.2	1.3 [0.5]	64/64	64/64
	2012	80	71	13,000	tr(2.9)	4.0 [1.3]	63/63	63/63
	2013	74	65	5,600	2.5	1.8 [0.7]	63/63	63/63

<Wildlife>
Stocktaking of the detection of cis-chlordane and trans-chlordane in wildlife (bivalves, fish and birds)
FY2002~2013

	Monitored	Geometric				Quantification	Detection l	requency
cis-chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	730	1,200	26,000	24	2.4 [0.8]	38/38	8/8
	2003	1,100	1,400	14,000	110	3.9 [1.3]	30/30	6/6
	2004	1,300	1,600	14,000	91	18 [5.8]	31/31	7/7
	2005	1,000	960	13,000	78	12 [3.9]	31/31	7/7
	2006	970	1,100	18,000	67	4 [1]	31/31	7/7
Bivalves	2007	870	590	19,000	59	5 [2]	31/31	7/7
(pg/g-wet)	2008	750	560	11,000	85	5 [2]	31/31	7/7
	2009	1,200	1,100	16,000	83	4 [2]	31/31	7/7
	2010	1,600	2,300	15,000	67	4 [2]	6/6	6/6
	2011	790	880	3,400	160	3 [1]	4/4	4/4
	2012	710	500	3,500	180	5 [2]	5/5	5/5
	2013	410	410	2,000	75	13 [4]	5/5	5/5
	2002	610	550	6,900	57	2.4 [0.8]	70/70	14/14
	2003	510	400	4,400	43	3.9 [1.3]	70/70	14/14
	2004	620	490	9,800	68	18 [5.8]	70/70	14/14
	2005	520	600	8,000	42	12 [3.9]	80/80	16/16
	2006	520	420	4,900	56	4[1]	80/80	16/16
Fish	2007	430	360	5,200	30	5 [2]	80/80	16/16
(pg/g-wet)	2008	430	340	3,500	36	5 [2]	85/85	17/17
	2009	430	450	3,200	41	4 [2]	90/90	18/18
	2010	450	630	3,400	51	4 [2]	18/18	18/18
	2011	580	660	3,800	79	3 [1]	18/18	18/18
	2012	580	550	3,100	98	5 [2]	19/19	19/19
	2013	540	450	5,700	65	13 [4]	19/19	19/19
	2002	67	180	450	10	2.4 [0.8]	10/10	2/2
	2003	47	120	370	6.8	3.9 [1.3]	10/10	2/2
	2004	39	110	240	tr(5.8)	18 [5.8]	10/10	2/2
	2005	53	120	340	tr(5.8)	12 [3.9]	10/10	2/2
	2006	32	83	250	5	4[1]	10/10	2/2
Birds	2007	29	83	230	tr(4)	5 [2]	10/10	2/2
(pg/g-wet)	2008	24	87	280	tr(3)	5 [2]	10/10	2/2
	2009	21	48	130	4	4 [2]	10/10	2/2
	2010	27		180	4	4 [2]	2/2	2/2
	2011			6	6	3 [1]	1/1	1/1
	2012	23		110	5	5 [2]	2/2	2/2
	2013**	37		140	tr(10)	13 [4]	2/2	2/2

	Monitored	Geometric				Quantification	Detection I	requen
trans-chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	390	840	2,300	33	2.4 [0.8]	38/38	8/8
	2003	550	840	2,800	69	7.2 [2.4]	30/30	6/6
	2004	560	770	2,800	53	48 [16]	31/31	7/7
	2005	470	660	2,400	40	10 [3.5]	31/31	7/7
	2006	470	580	2,800	41	4 [2]	31/31	7/7
Bivalves	2007	440	460	1,500	34	6 [2]	31/31	7/7
(pg/g-wet)	2008	360	410	1,300	52	7 [3]	31/31	7/7
	2009	540	560	16,000	48	4 [1]	31/31	7/7
	2010	520	640	5,500	31	3 [1]	6/6	6/6
	2011	490	470	2,900	150	4 [1]	4/4	4/4
	2012	390	310	1,300	140	7 [2]	5/5	5/5
	2013	280	230	1,700	58	16 [5.2]	5/5	5/5
	2002	190	160	2,700	20	2.4 [0.8]	70/70	14/14
	2003	160	120	1,800	9.6	7.2 [2.4]	70/70	14/14
	2004	200	130	5,200	tr(17)	48 [16]	70/70	14/1
	2005	160	180	3,100	tr(9.8)	10 [3.5]	76/80	16/1
	2006	150	120	2,000	14	4 [2]	80/80	16/1
Fish	2007	130	100	2,100	8	6 [2]	80/80	16/1
(pg/g-wet)	2008	120	71	1,300	14	7 [3]	85/85	17/1
	2009	130	140	1,300	10	4 [1]	90/90	18/1
	2010	120	170	1,100	9	3 [1]	18/18	18/1
	2011	180	240	1,300	20	4 [1]	18/18	18/1
	2012	170	140	1,100	19	7 [2]	19/19	19/1
	2013	160	170	2,700	tr(14)	16 [5.2]	5/5 5/5 70/70 70/70 70/70 76/80 80/80 80/80 85/85 90/90 18/18 18/18 19/19 10/10 10/10 5/10 10/10 10/10 10/10	19/1
	2002	14	14	26	8.9	2.4 [0.8]	10/10	2/2
	2003	11	12	27	tr(5.9)	7.2 [2.4]	10/10	2/2
	2004	nd	nd	tr(26)	nd	48 [16]	5/10	1/2
	2005	11	12	30	tr(4.5)	10 [3.5]	10/10	2/2
	2006	7	8	17	tr(3)	4 [2]	10/10	2/2
Birds	2007	7	8	19	tr(3)	6 [2]	10/10	2/2
(pg/g-wet)	2008	tr(5)	9	27	nd	7 [3]	7/10	2/2
	2009	6	7	13	tr(3)	4[1]	10/10	2/2
	2010	4		10	tr(2)	3 [1]	2/2	2/2
	2011			5	5	4 [1]	1/1	1/1
	2012	tr(6)		10	tr(4)	7 [2]	2/2	2/2
	2013**	26		68	tr(10)	16 [5.2]	2/2	2/2

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was

derived during FY2002 ~FY2009.

(Note 2) "**": There is no consistency between the results of the ornithological survey in FY2013 and those in previous years because of the changes in the survey sites and target species.

< Air >

Stocktaking of the detection of *cis*-chlordane and *trans*-chlordane in air during FY2002~2013

cis-		Geometric				Quantification	Detection l	Frequency
chlordane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	31	40	670	0.86	0.60 [0.20]	102/102	34/34
	2003 Warm season	110	120	1,600	6.4	0.51 [0.17]	35/35	35/35
	2003 Cold season	30	38	220	2.5		34/34	34/34
	2004 Warm season	92	160	1,000	2.3	0.57 [0.19]	37/37	37/37
	2004 Cold season	29	49	290	1.2		37/37	37/37
	2005 Warm season	92	120	1,000	3.4	0.16 [0.054]	37/37	37/37
	2005 Cold season	16	19	260	1.4		37/37	37/37
	2006 Warm season	82	110	760	2.9	0.13 [0.04]	37/37	37/37
	2006 Cold season	19	19	280	2.0	0.13 [0.04]	37/37	37/37
	2007 Warm season	90	120	1,100	3.3	0.10 [0.04]	36/36	36/36
Air	2007 Cold season	17	20	230	1.4	0.10 [0.04]	36/36	36/36
(pg/m^3)	2008 Warm season	75	120	790	1.9	0.14 [0.05]	37/37	37/37
(pg/III [*])	2008 Cold season	21	34	200	1.5	0.14 [0.03]	37/37	37/37
	2009 Warm season	67	110	790	2.7	0 16 [0 06]	37/37	37/37
	2009 Cold season	19	22	180	0.65	0.16 [0.06]	37/37	37/37
	2010 Warm season	68	100	700	1.8	0.17.50.061	37/37	37/37
	2010 Cold season	20	27	130	0.84	0.17 [0.06]	37/37	37/37
	2011 Warm season	66	95	700	1.5	1 2 50 427	35/35	35/35
	2011 Cold season	20	31	240	tr(0.88)	1.3 [0.42]	37/37	37/37
	2012 Warm season	61	98	650	2.9	1.5 [0.51]	36/36	36/36
	2012 Cold season	10	14	74	nd		35/36	35/36
	2013 Warm season	58	97	580	1.5	0.7.50.01	36/36	36/36
	2013 Cold season	11	15	86	tr(0.5)	0.7 [0.2]	36/36	36/36
,		C				Quantification	Detection 1	Frequency
trans- chlordane	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection l Sample	Frequency Site
	2002		Median 48	Maximum 820	Minimum 0.62	[Detection]		
		mean				[Detection] limit 0.60 [0.20]	Sample	Site
	2002	mean 36	48	820	0.62	[Detection] limit	Sample 102/102	Site 34/34
	2002 2003 Warm season	36 130	48 150	820 2,000	0.62 6.5	[Detection] limit 0.60 [0.20] 0.86 [0.29]	Sample 102/102 35/35	Site 34/34 35/35
	2002 2003 Warm season 2003 Cold season	mean 36 130 37	48 150 44	820 2,000 290	0.62 6.5 2.5	[Detection] limit 0.60 [0.20]	Sample 102/102 35/35 34/34	Site 34/34 35/35 34/34
	2002 2003 Warm season 2003 Cold season 2004 Warm season	mean 36 130 37 110	48 150 44 190	820 2,000 290 1,300	0.62 6.5 2.5 2.2 1.5 3.2	[Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23]	Sample 102/102 35/35 34/34 37/37	Site 34/34 35/35 34/34 37/37
	2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season	mean 36 130 37 110 35	48 150 44 190 60	820 2,000 290 1,300 360	0.62 6.5 2.5 2.2 1.5	[Detection] limit 0.60 [0.20] 0.86 [0.29]	Sample 102/102 35/35 34/34 37/37 37/37	Site 34/34 35/35 34/34 37/37 37/37
	2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season	mean 36 130 37 110 35 100	48 150 44 190 60 130	820 2,000 290 1,300 360 1,300	0.62 6.5 2.5 2.2 1.5 3.2	[Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14]	Sample 102/102 35/35 34/34 37/37 37/37 37/37	Site 34/34 35/35 34/34 37/37 37/37 37/37
	2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season	mean 36 130 37 110 35 100 19	48 150 44 190 60 130 23	820 2,000 290 1,300 360 1,300 310	0.62 6.5 2.5 2.2 1.5 3.2 1.9	[Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23]	Sample 102/102 35/35 34/34 37/37 37/37 37/37	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37
	2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season	mean 36 130 37 110 35 100 19 96	48 150 44 190 60 130 23 140	820 2,000 290 1,300 360 1,300 310 1,200	0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4	[Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37
chlordane	2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season	mean 36 130 37 110 35 100 19 96 22	48 150 44 190 60 130 23 140 21	820 2,000 290 1,300 360 1,300 310 1,200 350	0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8	[Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36
chlordane	2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season	mean 36 130 37 110 35 100 19 96 22 100	48 150 44 190 60 130 23 140 21	820 2,000 290 1,300 360 1,300 310 1,200 350 1,300	0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5	[Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36
chlordane	2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2007 Cold season	mean 36 130 37 110 35 100 19 96 22 100 20 87	48 150 44 190 60 130 23 140 21 140 24	820 2,000 290 1,300 360 1,300 310 1,200 350 1,300 300 990	0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5	[Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37
chlordane	2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season	mean 36 130 37 110 35 100 19 96 22 100 20	48 150 44 190 60 130 23 140 21 140 24 130 41	820 2,000 290 1,300 360 1,300 310 1,200 350 1,300 300 990 250	0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8	[Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37
chlordane	2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Warm season 2008 Warm season 2009 Warm season	mean 36 130 37 110 35 100 19 96 22 100 20 87 25 79	48 150 44 190 60 130 23 140 21 140 24 130 41 120	820 2,000 290 1,300 360 1,300 310 1,200 350 1,300 300 990 250 960	0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8	[Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37
chlordane	2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Warm season 2009 Warm season 2009 Cold season	mean 36 130 37 110 35 100 19 96 22 100 20 87 25	48 150 44 190 60 130 23 140 21 140 24 130 41	820 2,000 290 1,300 360 1,300 310 1,200 350 1,300 300 990 250 960 210	0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68	[Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.12 [0.05]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37
chlordane	2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Warm season 2009 Cold season 2009 Cold season 2009 Warm season 2009 Warm season 2010 Warm season	mean 36 130 37 110 35 100 19 96 22 100 20 87 25 79 23	48 150 44 190 60 130 23 140 21 140 24 130 41 120 30 120	820 2,000 290 1,300 360 1,300 310 1,200 350 1,300 300 990 250 960 210 820	0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68 2.0	[Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.17 [0.06]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37
chlordane	2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2009 Cold season 2009 Cold season 2010 Warm season 2010 Cold season	mean 36 130 37 110 35 100 19 96 22 100 20 87 25 79 23 79 24	48 150 44 190 60 130 23 140 21 140 24 130 41 120 30 120 34	820 2,000 290 1,300 360 1,300 310 1,200 350 1,300 300 990 250 960 210 820 150	0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68 2.0 tr(1.0)	[Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.12 [0.05] 1.2 [0.4]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37
chlordane	2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2009 Cold season 2009 Warm season 2010 Warm season 2010 Cold season 2011 Warm season	mean 36 130 37 110 35 100 19 96 22 100 20 87 25 79 23 79 24 76	48 150 44 190 60 130 23 140 21 140 24 130 41 120 30 120 34 110	820 2,000 290 1,300 360 1,300 310 1,200 350 1,300 300 990 250 960 210 820 150 810	0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68 2.0 tr(1.0) tr(1.4)	[Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.12 [0.05]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37
chlordane	2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2007 Warm season 2008 Warm season 2008 Warm season 2009 Warm season 2010 Cold season 2010 Warm season 2010 Warm season 2011 Warm season 2011 Cold season	mean 36 130 37 110 35 100 19 96 22 100 20 87 25 79 23 79 24 76 24	48 150 44 190 60 130 23 140 21 140 24 130 41 120 30 120 34 110 37	820 2,000 290 1,300 360 1,300 310 1,200 350 1,300 300 990 250 960 210 820 150 810 290	0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68 2.0 tr(1.0) tr(1.4) tr(0.70)	[Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.12 [0.05] 1.2 [0.4] 1.6 [0.53]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37
chlordane	2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Cold season 2009 Warm season 2010 Warm season 2010 Warm season 2011 Warm season 2011 Cold season 2011 Cold season 2011 Cold season	mean 36 130 37 110 35 100 19 96 22 100 20 87 25 79 23 79 24 76 24 70	48 150 44 190 60 130 23 140 21 140 24 130 41 120 30 120 34 110 37 120	820 2,000 290 1,300 360 1,300 310 1,200 350 1,300 300 990 250 960 210 820 150 810 290 780	0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68 2.0 tr(1.0) tr(1.4) tr(0.70) 2.8	[Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.12 [0.05] 1.2 [0.4]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36	Site 34/34 35/35 34/34 37/37
chlordane	2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Cold season 2009 Warm season 2010 Warm season 2010 Warm season 2011 Warm season 2011 Cold season 2011 Cold season 2011 Warm season 2011 Cold season 2012 Warm season 2012 Warm season	mean 36 130 37 110 35 100 19 96 22 100 20 87 25 79 23 79 24 76 24 70 12	48 150 44 190 60 130 23 140 21 140 24 130 41 120 30 120 34 110 37 120 18	820 2,000 290 1,300 360 1,300 310 1,200 350 1,300 300 990 250 960 210 820 150 810 290 780 95	0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68 2.0 tr(1.0) tr(1.4) tr(0.70) 2.8 nd	[Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.12 [0.05] 1.2 [0.4] 1.6 [0.53] 2.1 [0.7]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 35/36 36/36 35/36	Site 34/34 35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 35/36
chlordane	2002 2003 Warm season 2003 Cold season 2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2007 Cold season 2008 Warm season 2008 Warm season 2008 Cold season 2009 Warm season 2010 Warm season 2010 Warm season 2011 Warm season 2011 Cold season 2011 Cold season 2011 Cold season	mean 36 130 37 110 35 100 19 96 22 100 20 87 25 79 23 79 24 76 24 70	48 150 44 190 60 130 23 140 21 140 24 130 41 120 30 120 34 110 37 120	820 2,000 290 1,300 360 1,300 310 1,200 350 1,300 300 990 250 960 210 820 150 810 290 780	0.62 6.5 2.5 2.2 1.5 3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68 2.0 tr(1.0) tr(1.4) tr(0.70) 2.8	[Detection] limit 0.60 [0.20] 0.86 [0.29] 0.69 [0.23] 0.34 [0.14] 0.17 [0.06] 0.12 [0.05] 0.12 [0.05] 1.2 [0.4] 1.6 [0.53]	Sample 102/102 35/35 34/34 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36	Site 34/34 35/35 34/34 37/37

Oxychlordane, cis-Nonachlor and trans-Nonachlor

<Surface Water>

Stocktaking of the detection of Oxychlordane, cis-Nonachlor and trans-Nonachlor in surface water during FY2002~2013

2002~2013	Monitored	Geometric				Quantification	Detection 1	Frequency
Oxychlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.7	3.5	41	nd	1.2 [0.4]	96/114	35/38
	2003	3	2	39	tr(0.6)	2 [0.5]	36/36	36/36
	2004	3.2	2.9	47	tr(0.7)	2 [0.5]	38/38	38/38
	2005	2.6	2.1	19	nd	1.1 [0.4]	46/47	46/47
	2006	tr(2.5)	tr(2.4)	18	nd	2.8 [0.9]	43/48	43/48
Surface Water	2007	tr(2)	nd	41	nd	6 [2]	25/48	25/48
(pg/L)	2008	1.9	1.9	14	nd	1.9 [0.7]	40/48	40/48
	2009	2.0	1.9	19	nd	1.1 [0.4]	45/49	45/49
	2010	1.5	1.3	45	nd	0.7 [0.3]	47/49	47/49
	2011	1.9	1.8	34	nd	1.3 [0.5]	44/49	44/49
	2012	2.2	2.3	17	nd	0.9 [0.4]	44/48	44/48
	2013	1.8	1.8	12	nd	0.9 [0.4]	41/48	41/48
	M '4 1	Carantaia				Quantification	Detection 1	Frequency
cis-Nonachlor	year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	7.9	6.7	250	0.23	1.8 [0.6]	114/114	38/38
	2003	8.0	7.0	130	1.3	0.3 [0.1]	36/36	36/36
	2004	7.5	6.3	340	0.8	0.6 [0.2]	38/38	38/38
	2005	6.0	5.9	43	0.9	0.5 [0.2]	47/47	47/47
	2006	6.6	5.6	83	1.0	0.8 [0.3]	48/48	48/48
Surface Water	2007	5.9	6.1	210	nd	2.4 [0.8]	43/48	43/48
(pg/L)	2008	6.5	5.9	130	0.9	0.9 [0.3]	48/48	48/48
	2009	7.1	5.5	210	1.4	0.3 [0.1]	49/49	49/49
	2010	5.4	3.9	40	tr(0.9)	1.3 [0.4]	49/49	49/49
	2011	5.0	4.3	130	0.8	0.6 [0.2]	49/49	49/49
	2012	6.4	5.9	58	1.1	0.8 [0.3]	48/48	48/48
	2013	5.1	4.6	74	tr(0.7)	0.8 [0.3]	48/48	48/48
	Monitored	Geometric				Quantification	Detection 1	Frequency
trans-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	30	24	780	1.8	1.2 [0.4]	114/114	38/38
	2003	26	20	450	4	2 [0.5]	36/36	36/36
	2004	25	19	1,100	tr(3)	4 [2]	38/38	38/38
	2005	20	17	150	2.6	2.5 [0.84]	47/47	47/47
	2006	21	16	310	3.2	3.0 [1.0]	48/48	48/48
Surface Water	2007	17	17	540	tr(2)	5 [2]	48/48	48/48
(pg/L)	2008	18	17	340	1.9	1.6 [0.6]	48/48	48/48
	2009	20	17	530	2.7	1.0 [0.4]	49/49	49/49
	2010	12	11	93	nd	8 [3]	45/49	45/49
	2011	15	12	480	2.6	1.3 [0.5]	49/49	49/49
	2012	30	26	210	7.9	1.5 [0.6]	48/48	48/48
	2013	14	11	170	2.3	1.5 [0.6]	48/48	48/48

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

Stocktaking of the detection of Oxychlordane, cis-Nonachlor and trans-Nonachlor in sediment during FY2002~2013

Stocktaking of the		•	ic, <i>cis</i> 1 (011)	acinor and ire	ins-rvonaeme	Quantification	Detection 1	
Oxychlordane		Geometric mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
•	year					limit		
	2002	2.7	1.7	120	nd	1.5 [0.5]	153/189	59/63
	2003	2	2	85	nd	1 [0.4]	158/186	57/62
	2004	tr(2.1)	tr(1.3)	140	nd	3 [0.8]	129/189	54/63
	2005	2.3	tr(1.9)	160	nd	2.0 [0.7]	133/189	51/63
	2006	tr(2.5)	tr(1.7)	280	nd	2.9 [1.0]	141/192	54/64
Sediment	2007	tr(2.1)	tr(1.5)	76	nd	2.5 [0.9]	117/192	46/64
(pg/g-dry)	2008	tr(2)	tr(1)	340	nd	3 [1]	110/192	48/64
	2009	2	tr(1)	150	nd	2 [1]	97/192	45/64
	2010	1.7	1.2	60	nd	1.0 [0.4]	56/64	56/64
	2011	tr(1.6)	tr(1.2)	83	nd	2.2 [0.9]	36/64	36/64
	2012	tr(1.4)	tr(1.0)	75	nd	1.7 [0.7]	38/63	38/63
	2013	1.5	1.3	54	nd	1.3 [0.5]	50/63	50/63
	M'1	Geometric				Quantification	Detection	Frequency
cis-Nonachlor	Monitored	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	year					limit	- Sumpre	2110
	2002	76	66	7,800	nd	2.1 [0.7]	188/189	63/63
	2003	66	50	6,500	nd	3 [0.9]	184/186	62/62
	2004	53	34	9,400	tr(0.8)	2 [0.6]	189/189	63/63
	2005	56	42	9,900	tr(1.1)	1.9 [0.64]	189/189	63/63
	2006	58	48	5,800	tr(0.6)	1.2 [0.4]	192/192	64/64
Sediment	2007	48	35	4,200	nd	1.6 [0.6]	191/192	64/64
(pg/g-dry)	2008	57	42	5,100	1.1	0.6 [0.2]	192/192	64/64
	2009	53	38	4,700	1.4	1.0 [0.4]	192/192	64/64
	2010	53	45	3,600	2.3	0.9 [0.3]	64/64	64/64
	2011	41	38	2,900	nd	1.1 [0.4]	63/64	63/64
	2012	44	35	4,900	tr(1)	3 [1]	63/63	63/63
	2013	41	31	3,100	tr(0.6)	0.7 [0.3]	63/63	63/63
	Monitored	Geometric				Quantification	Detection 1	Frequency
trans-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
						limit		
	2002	130	83	13,000	3.1	1.5 [0.5]	189/189	63/63
	2003	110	78	11,000	2	2 [0.6]	186/186	62/62
	2004	94	63	23,000	3	2 [0.6]	189/189	63/63
	2005	99	72	24,000	2.4	1.5 [0.54]	189/189	63/63
	2006	100	65	10,000	3.4	1.2 [0.4]	192/192	64/64
Sediment	2007	78	55	8,400	tr(1.6)	1.7 [0.6]	192/192	64/64
(pg/g-dry)	2008	91	53	8,400	tr(1.6)	2.2 [0.8]	192/192	64/64
	2009	85	58	7,800	2.0	0.9 [0.3]	192/192	64/64
	2010	80	65	6,200	tr(3)	6 [2]	64/64	64/64
	2011	68	52	4,500	1.7	0.8 [0.3]	64/64	64/64
	2012	69	62	10,000	2.5	2.4 [0.8]	63/63	63/63
	2013	67	54	4,700	2.2	1.2 [0.4]	63/63	63/63

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

< Wildlife > Stocktaking of the detection of Oxychlordane, cis-Nonachlor and trans-Nonachlor in wildlife (bivalves, fish and birds) during FY2002~2013

	Monitored	Geometric				Quantification	Detection l	requency
Oxychlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	71	83	5,600	nd	3.6 [1.2]	37/38	8/8
	2003	93	62	1,900	11	8.4 [2.8]	30/30	6/6
	2004	110	100	1,700	14	9.2 [3.1]	31/31	7/7
	2005	99	79	1,400	12	9.3 [3.1]	31/31	7/7
	2006	91	90	2,400	7	7 [3]	31/31	7/7
Bivalves	2007	70	43	2,200	8	6 [2]	31/31	7/7
(pg/g-wet)	2008	64	55	1,100	7	7 [2]	31/31	7/7
	2009	100	89	820	10	4 [1]	31/31	7/7
	2010	240	390	3,300	11	8 [3]	6/6	6/6
	2011	68	100	260	8	3 [1]	4/4	4/4
	2012	66	80	450	12	3 [1]	5/5	5/5
	2013	42	44	210	8	3 [1]	5/5	5/5
	2002	170	140	3,900	16	3.6 [1.2]	70/70	14/14
	2003	150	160	820	30	8.4 [2.8]	70/70	14/14
	2004	160	140	1,500	25	9.2 [3.1]	70/70	14/14
	2005	150	150	1,900	20	9.3 [3.1]	80/80	16/16
	2006	150	120	3,000	28	7 [3]	80/80	16/16
Fish	2007	120	100	1,900	17	6 [2]	80/80	16/16
(pg/g-wet)	2008	130	130	2,200	15	7 [2]	85/85	17/17
	2009	120	99	2,400	23	4 [1]	90/90	18/18
	2010	120	140	1,000	33	8 [3]	18/18	18/18
	2011	140	130	2,300	33	3 [1]	18/18	18/18
	2012	140	180	390	28	3 [1]	19/19	19/19
	2013	130	130	560	31	3 [1]	19/19	19/19
	2002	640	630	890	470	3.6 [1.2]	10/10	2/2
	2003	760	700	1,300	610	8.4 [2.8]	10/10	2/2
	2004	460	450	730	320	9.2 [3.1]	10/10	2/2
	2005	610	660	860	390	9.3 [3.1]	10/10	2/2
	2006	510	560	720	270	7 [3]	10/10	2/2
Birds	2007	440	400	740	290	6 [2]	10/10	2/2
(pg/g-wet)	2008	560	530	960	290	7 [2]	10/10	2/2
	2009	300	290	540	190	4 [1]	10/10	2/2
	2010	400		510	320	8 [3]	2/2	2/2
	2011			590	590	3 [1]	1/1	1/1
	2012	250		360	170	3 [1]	2/2	2/2
	2013**	2,500		3,400	1,900	3 [1]	2/2	2/2

	Monitored	Geometric				Quantification	Detection I	requency
cis-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	170	300	870	8.6	1.2 [0.4]	38/38	8/8
	2003	290	260	1,800	48	4.8 [1.6]	30/30	6/6
	2004	320	380	1,800	43	3.4 [1.1]	31/31	7/7
	2005	270	220	1,300	27	4.5 [1.5]	31/31	7/7
	2006	270	180	1,500	31	3 [1]	31/31	7/7
Bivalves	2007	250	250	1,000	26	3 [1]	31/31	7/7
(pg/g-wet)	2008	210	210	780	33	4 [1]	31/31	7/7
(188)	2009	300	310	10,000	31	3 [1]	31/31	7/7
	2010	280	310	1,300	35	3 [1]	6/6	6/6
	2011	250	280	1,300	77	1.8 [0.7]	4/4	4/4
	2012	200	190	670	52	2 [1]	5/5	5/5
	2013	150	140	900	38	2.2 [0.7]	5/5	5/5
	2002	460	420	5,100	46	1.2 [0.4]	70/70	14/14
	2003	360	360	2,600	19	4.8 [1.6]	70/70	14/14
	2004	430	310	10,000	48	3.4 [1.1]	70/70	14/14
	2005	380	360	6,200	27	4.5 [1.5]	80/80	16/16
	2006	370	330	3,300	33	3 [1]	80/80	16/16
Fish	2007	320	280	3,700	16	3 [1]	80/80	16/16
(pg/g-wet)	2008	350	300	3,200	46	4 [1]	85/85	17/17
(188)	2009	340	340	2,600	27	3 [1]	90/90	18/18
	2010	320	370	2,200	23	3 [1]	18/18	18/18
	2011	440	450	2,900	45	1.8 [0.7]	18/18	18/18
	2012	420	450	2,200	33	2 [1]	19/19	19/19
	2013	430	420	3,000	34	2.2 [0.7]	19/19	19/19
	2002	200	240	450	68	1.2 [0.4]	10/10	2/2
	2003	200	260	660	68	4.8 [1.6]	10/10	2/2
	2004	140	150	240	73	3.4 [1.1]	10/10	2/2
	2005	160	180	370	86	4.5 [1.5]	10/10	2/2
	2006	120	130	270	60	3 [1] أ	10/10	2/2
Birds	2007	130	140	300	42	3 [1]	10/10	2/2
(pg/g-wet)	2008	140	150	410	37	4 [1]	10/10	2/2
(FB/B)	2009	81	85	160	44	3 [1]	10/10	2/2
	2010	100		190	57	3 [1]	2/2	2/2
	2011			76	76	1.8 [0.7]	1/1	1/1
	2012	75		100	56	2 [1]	2/2	2/2
	2013**	270		970	74	2.2 [0.7]	2/2	2/2

	Monitored	Geometric				Quantification	Detection I	requency
trans-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	450	1,100	1,800	21	2.4 [0.8]	38/38	8/8
	2003	800	700	3,800	140	3.6 [1.2]	30/30	6/6
	2004	780	870	3,400	110	13 [4.2]	31/31	7/7
	2005	700	650	3,400	72	6.2 [2.1]	31/31	7/7
	2006	660	610	3,200	85	3 [1]	31/31	7/7
Bivalves	2007	640	610	2,400	71	7 [3]	31/31	7/7
(pg/g-wet)	2008	510	510	2,000	94	6 [2]	31/31	7/7
(188)	2009	780	680	33,000	79	3 [1]	31/31	7/7
	2010	790	870	6,000	84	4 [2]	6/6	6/6
	2011	640	680	3,000	200	3 [1]	4/4	4/4
	2012	530	400	1,800	190	4 [1]	5/5	5/5
	2013	380	370	2,000	98	10 [3.4]	5/5	5/5
	2002	1,000	900	8,300	98	2.4 [0.8]	70/70	14/14
	2003	920	840	5,800	85	3.6 [1.2]	70/70	14/14
	2004	1,100	760	21,000	140	13 [4.2]	70/70	14/14
	2005	970	750	13,000	80	6.2 [2.1]	80/80	16/16
	2006	940	680	6,900	120	3 [1]	80/80	16/16
Fish	2007	800	680	7,900	71	7 [3]	80/80	16/16
(pg/g-wet)	2008	860	750	6,900	87	6 [2]	85/85	17/17
400	2009	810	720	7,400	68	3 [1]	90/90	18/18
	2010	800		4,700	110	4 [2]	18/18	18/18
	2011	1,100	1,000	5,000	190	3 [1]	18/18	18/18
	2012	1,100	1,300	4,200	140	4 [1]	19/19	19/19
	2013	1,100	1,100	7,800	150	10 [3.4]	19/19	19/19
	2002	890	980	1,900	350	2.4 [0.8]	10/10	2/2
	2003	1,100	1,400	3,700	350	3.6 [1.2]	10/10	2/2
	2004	690	780	1,200	390	13 [4.2]	10/10	2/2
	2005	870	880	2,000	440	6.2 [2.1]	10/10	2/2
	2006	650	620	1,500	310	3 [1]	10/10	2/2
Birds	2007	590	680	1,400	200	7 [3]	10/10	2/2
(pg/g-wet)	2008	740	850	2,600	180	6 [2]	10/10	2/2
(100)	2009	400	430	730	220	3 [1]	10/10	2/2
	2010	510		880	290	4 [2]	2/2	2/2
	2011			400	400	3 [1]	1/1	1/1
	2012	360		480	270	4[1]	2/2	2/2
-	2013**	55		170	18	10 [3.4]	2/2	2/2

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

(Note 2) "**": There is no consistency between the results of the ornithological survey in FY2013 and those in previous years because of the changes in the survey sites and target species.

Stocktaking of the detection of Oxychlordane. cis-Nonachlor and trans-Nonachlor in air during FY2002~2013

		Geometric				Quantification	Detection I	requency
Oxychlordane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.96	0.98	8.3	nd	0.024 [0.008]	101/102	34/34
	2003 Warm season	2.5	2.7	12	0.41		35/35	35/35
	2003 Cold season	0.87	0.88	3.2	0.41	0.045 [0.015]	34/34	34/34
	2004 Warm season	1.9	2.0	7.8	0.41		37/37	37/37
	2004 Cold season	0.80	0.76	3.9	0.27	0.13 [0.042]	37/37	37/37
	2005 Warm season	1.9	2.0	8.8	0.65		37/37	37/37
	2005 Cold season	0.55	0.50	2.2	0.27	0.16 [0.054]	37/37	37/37
	2006 Warm season	1.8	1.9	5.7	0.47		37/37	37/37
	2006 Cold season	0.54	0.56	5.1	tr(0.13)	0.23 [0.08]	37/37	37/37
	2007 Warm season	1.9	1.8	8.6	0.56		36/36	36/36
	2007 Cold season	0.61	0.63	2.4	0.26	0.05 [0.02]	36/36	36/36
Air	2008 Warm season	1.7	1.7	7.1	0.50		37/37	37/37
(pg/m^3)	2008 Cold season	0.61	0.63	1.8	0.27	0.04 [0.01]	37/37	37/37
	2009 Warm season	1.7	1.8	6.5	0.38		37/37	37/37
	2009 Cold season	0.65	0.61	2.7	0.24	0.04 [0.02]	37/37	37/37
	2010 Warm season	1.5	1.5	6.2	0.44		37/37	37/37
	2010 Cold season	0.56	0.55	2.3	0.26	0.03 [0.01]	37/37	37/37
	2010 Cold season	1.5	1.5	5.2	0.28		35/35	35/35
<u>.</u>	2011 Warm season 2011 Cold season	0.61	0.57	2.6	0.23	0.07 [0.03]	37/37	37/37
	2012 Warm season	1.4	1.6	6.7	0.34		36/36	36/36
	2012 Warm season 2012 Cold season	0.41	0.38	1.0	0.22	0.08 [0.03]	36/36	36/36
	2012 Cold season 2013 Warm season	1.4	1.5	4.7	0.36		36/36	36/36
	2013 Warm season 2013 Cold season	0.43	0.41	1.0	0.30	0.03 [0.01]	36/36	36/36
	2013 Cold scasoli	0.43	0.41	1.0	0.20	Quantification	Detection I	
cis-Nonachlor	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection]	Sample	Site
	2002	3.1	4.0	62	0.071	limit 0.030 [0.010]	102/102	34/34
	2002 2003 Warm season	12	15	220	0.81		35/35	35/35
	2003 Warm season 2003 Cold season	2.7	3.5	23	0.81	0.026 [0.0088]	34/34	34/34
	2004 Warm season	10	15	130	0.16		37/37	37/37
	2004 Warm season 2004 Cold season	2.7	4.4	28	0.30	0.072 [0.024]	37/37	37/37
		10	14	160	0.30		37/37	37/37
	2005 Warm season					0.08 [0.03]		
	2005 Cold season	1.6	1.6	34 170	$\frac{0.08}{0.28}$		37/37	37/37
						0.15.50.051	37/37	37/37
	2006 Warm season	11	12			0.15 [0.05]	27/27	
	2006 Cold season	2.4	2.0	41	tr(0.14)	0.15 [0.05]	37/37	37/37
	2006 Cold season 2007 Warm season	2.4 10	2.0	41 150	tr(0.14) 0.31		36/36	36/36
Air	2006 Cold season 2007 Warm season 2007 Cold season	2.4 10 1.6	2.0 14 1.7	41 150 22	tr(0.14) 0.31 0.09	0.03 [0.01]	36/36 36/36	36/36 36/36
Air (pg/m³)	2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season	2.4 10 1.6 7.9	2.0 14 1.7 12	41 150 22 87	tr(0.14) 0.31 0.09 0.18	0.03 [0.01]	36/36 36/36 37/37	36/36 36/36 37/37
Air (pg/m³)	2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season	2.4 10 1.6 7.9 2.0	2.0 14 1.7 12 2.7	41 150 22 87 19	tr(0.14) 0.31 0.09 0.18 0.16		36/36 36/36 37/37 37/37	36/36 36/36 37/37 37/37
	2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season	2.4 10 1.6 7.9 2.0 7.5	2.0 14 1.7 12 2.7 10	41 150 22 87 19 110	tr(0.14) 0.31 0.09 0.18 0.16 0.33	0.03 [0.01]	36/36 36/36 37/37 37/37 37/37	36/36 36/36 37/37 37/37 37/37
	2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season	2.4 10 1.6 7.9 2.0 7.5 1.9	2.0 14 1.7 12 2.7 10 2.1	41 150 22 87 19 110 18	tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07	0.03 [0.01]	36/36 36/36 37/37 37/37 37/37 37/37	36/36 36/36 37/37 37/37 37/37
	2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season 2010 Warm season	2.4 10 1.6 7.9 2.0 7.5 1.9 7.5	2.0 14 1.7 12 2.7 10 2.1	41 150 22 87 19 110 18 68	tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23	0.03 [0.01] 0.03 [0.01] 0.04 [0.02]	36/36 36/36 37/37 37/37 37/37 37/37 37/37	36/36 36/36 37/37 37/37 37/37 37/37 37/37
	2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season	2.4 10 1.6 7.9 2.0 7.5 1.9 7.5	2.0 14 1.7 12 2.7 10 2.1 10 2.1	41 150 22 87 19 110 18 68 13	tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23 tr(0.06)	0.03 [0.01]	36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37	36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37
	2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Warm season	2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8 7.4	2.0 14 1.7 12 2.7 10 2.1 10 2.1 8.8	41 150 22 87 19 110 18 68 13	tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23	0.03 [0.01] 0.03 [0.01] 0.04 [0.02] 0.11 [0.04]	36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35	36/36 36/36 37/37 37/37 37/37 37/37 37/37
	2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Warm season 2011 Cold season	2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8 7.4 1.9	2.0 14 1.7 12 2.7 10 2.1 10 2.1	41 150 22 87 19 110 18 68 13 89 28	tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23 tr(0.06) 0.24 nd	0.03 [0.01] 0.03 [0.01] 0.04 [0.02]	36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 36/37	36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 36/37
	2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Warm season	2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8 7.4	2.0 14 1.7 12 2.7 10 2.1 10 2.1 8.8	41 150 22 87 19 110 18 68 13	tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23 tr(0.06) 0.24	0.03 [0.01] 0.03 [0.01] 0.04 [0.02] 0.11 [0.04] 0.15 [0.051]	36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35	36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35
	2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Warm season 2011 Cold season	2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8 7.4 1.9 6.9 0.98	2.0 14 1.7 12 2.7 10 2.1 10 2.1 8.8 2.9	41 150 22 87 19 110 18 68 13 89 28	tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23 tr(0.06) 0.24 nd	0.03 [0.01] 0.03 [0.01] 0.04 [0.02] 0.11 [0.04]	36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 36/37	36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 35/35 36/37
	2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season 2011 Warm season 2011 Cold season 2011 Cold season 2012 Warm season	2.4 10 1.6 7.9 2.0 7.5 1.9 7.5 1.8 7.4 1.9 6.9	2.0 14 1.7 12 2.7 10 2.1 10 2.1 8.8 2.9	41 150 22 87 19 110 18 68 13 89 28	tr(0.14) 0.31 0.09 0.18 0.16 0.33 0.07 0.23 tr(0.06) 0.24 nd 0.29	0.03 [0.01] 0.03 [0.01] 0.04 [0.02] 0.11 [0.04] 0.15 [0.051]	36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 36/37 36/36	36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 36/37 36/36

trans-Nonachl		Geometric				Quantification	Detection l	Frequency
or	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	24	30	550	0.64	0.30 [0.10]	102/102	34/34
	2003 Warm season	87	100	1,200	5.1	0.25 [0.12]	35/35	35/35
	2003 Cold season	24	28	180	2.1	0.35 [0.12]	34/34	34/34
	2004 Warm season	72	120	870	1.9	0.49 [0.16]	37/37	37/37
	2004 Cold season	23	39	240	0.95	0.48 [0.16]	37/37	37/37
	2005 Warm season	75	95	870	3.1	0.13.10.0441	37/37	37/37
	2005 Cold season	13	16	210	1.2	0.13 [0.044]	37/37	37/37
	2006 Warm season	68	91	800	3.0	0.10.10.031	37/37	37/37
	2006 Cold season	16	15	240	1.4	0.10 [0.03]	37/37	37/37
	2007 Warm season	72	96	940	2.5	0.00.00.021	36/36	36/36
Air	2007 Cold season	13	15	190	1.1	0.09 [0.03]	36/36	36/36
	2008 Warm season	59	91	650	1.5	0.00.00.021	37/37	37/37
(pg/m^3)	2008 Cold season	17	25	170	1.3	0.09 [0.03]	37/37	37/37
	2009 Warm season	54	81	630	2.2	0.07.00.021	37/37	37/37
	2009 Cold season	16	19	140	0.75	0.07 [0.03]	37/37	37/37
	2010 Warm season	52	78	520	1.7	0.8 [0.2]	37/37	37/37
	2010 Cold season	15	17	89	tr(0.7)	0.8 [0.3]	37/37	37/37
	2011 Warm season	53	72	550	1.2	1 1 [0 25]	35/35	35/35
	2011 Cold season	16	24	210	tr(0.70)	1.1 [0.35]	37/37	37/37
	2012 Warm season	49	79	510	2.5	1.2.50.413	36/36	36/36
	2012 Cold season	8.1	10	61	tr(0.50)	1.2 [0.41]	36/36	36/36
	2013 Warm season	46	78	470	1.2	0.5.[0.2]	36/36	36/36
	2013 Cold season	8.5	12	75	0.5	0.5 [0.2]	36/36	36/36

[8] Heptachlors

· History and state of monitoring

Heptachlor and its metabolite, heptachlor epoxide, are a group of organochlorine insecticides applied for agricultural crops such as rice, wheat, barley, potato, sweet potato, tobacco, beans, cruciferous vegetables, alliaceous vegetables, cucurbitaceous vegetables, sugar beet and spinach. The substances were not registrated under the Agricultural Chemicals Regulation Law in FY1975. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 1986, since it includes the technical chlordane used as a termitecide.

In previous monitoring series before FY2001, heptachlor and heptachlor epoxide were measured in FY1982 (in surface water, sediment and fish) and in FY1986 (in air) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Heptachlor in surface water, sediment, and wildlife (bibalves, fish and birds) has been monitored since FY2002, and *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide have also been monitored since FY2003.

Under the framework of the Environmental Monitoring, the substances has been monitored in sediment, wildlife (bivalves, fish and birds) and air in FY2012, in wildlife (bivalves, fish and birds) and air in FY2013, in surface water and sediment in FY2014.

- · Monitoring results
- o heptachlor, cis-heptachlor epoxide, and trans-heptachlor epoxide

<Surface Water>

Heptachlor: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 28 of the 48 valid sites adopting the detection limit of 0.2pg/L, and none of the detected concentrations exceeded 1.5pg/L. cis-Heptachlor epoxide: The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.2pg/L, and the detection range was 0.7~56pg/L.

trans-Heptachlor epoxide: The presence of the substance in surface water was monitored at 48 sites, and it was not detected at all 48 valid sites adopting the detection limit of 0.3pg/L.

Stocktaking of the detection of heptachlor, *cis*-heptachlor epocide and *trans*-heptachlor epocide in surface water during FY2002~2011 and FY2014

	Monitored	Geometric				Quantification	Detection 1	Frequency
Heptachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(1.2)	tr(1.0)	25	nd	1.5 [0.5]	97/114	38/38
	2003	tr(1.8)	tr(1.6)	7	tr(1.0)	2 [0.5]	36/36	36/36
	2004	nd	nd	29	nd	5 [2]	9/38	9/38
	2005	nd	tr(1)	54	nd	3 [1]	25/47	25/47
Surface Water	2006	nd	nd	6	nd	5 [2]	5/48	5/48
	2007	nd	nd	5.2	nd	2.4 [0.8]	12/48	12/48
(pg/L)	2008	nd	nd	4.6	nd	2.1 [0.8]	19/48	19/48
	2009	tr(0.5)	nd	17	nd	0.8 [0.3]	20/49	20/49
	2010	nd	nd	43	nd	2.2 [0.7]	4/49	4/49
	2011	nd	nd	22	nd	1.3 [0.5]	6/49	6/49
	2014	tr(0.2)	tr(0.2)	1.5	nd	0.5 [0.2]	28/48	28/48

cis-Heptachlor	Monitored	Geometric				Quantification	Detection 1	Frequency
epoxide	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	9.8	11	170	1.2	0.7 [0.2]	36/36	36/36
	2004	10	10	77	2	2 [0.4]	38/38	38/38
	2005	7.1	6.6	59	1.0	0.7 [0.2]	47/47	47/47
	2006	7.6	6.6	47	1.1	2.0 [0.7]	48/48	48/48
Surface Water	2007	6.1	5.8	120	tr(0.9)	1.3 [0.4]	48/48	48/48
(pg/L)	2008	4.7	5.0	37	nd	0.6 [0.2]	46/48	46/48
	2009	5.5	4.2	72	0.8	0.5 [0.2]	49/49	49/49
	2010	5.9	3.9	710	0.7	0.4 [0.2]	49/49	49/49
	2011	5.8	5.8	160	0.7	0.7 [0.3]	49/49	49/49
	2014	4.9	3.4	56	0.7	0.5 [0.2]	48/48	48/48
tuana Hantaahlan	Monitored	Geometric				Quantification	Detection	Frequency
trans-Heptachlor epoxide	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	2	nd	2 [0.4]	4/36	4/36
	2004	nd	nd	nd	nd	0.9 [0.3]	0/38	0/38
	2005	nd	nd	nd	nd	0.7 [0.2]	0/47	0/47
	2006	nd	nd	nd	nd	1.8 [0.6]	0/48	0/48
Surface Water	2007	nd	nd	tr(0.9)	nd	2.0[0.7]	2/48	2/48
(pg/L)	2008	nd	nd	nd	nd	1.9 [0.7]	0/48	0/48
	2009	nd	nd	nd	nd	0.7 [0.3]	0/49	0/49
	2010	nd	nd	8.0	nd	1.3 [0.5]	2/49	2/49
	2011	nd	nd	2.8	nd	0.8 [0.3]	3/49	3/49
	2014	nd	nd	nd	nd	0.8 [0.3]	0/48	0/48

(Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

(Note 2) No monitoring was conducted during FY2012~FY2013.

<Sediment>

Heptachlor: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 38 of 63 valid sites adopting the detection limit of 0.5pg/g-dry, and none of the detected concentrations exceeded 49pg/g-dry. As results of the inter-annual trend analysis from FY2002 to FY2014, the second-half period indicated lower concentration than the first-half period in specimens from river mouth areas as statistically significant.

cis-Heptachlor epoxide: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 59 of the 63valid sites adopting the detection limit of 0.2pg/g-dry, and none of the detected concentrations exceeded 310pg/g-dry. As results of the inter-annual trend analysis from FY2003 to FY2014, reduction tendencies in specimens from river mouth areas were identified as statistically significant and the second-half period indicated lower concentration than the first-half period in specimens from overall areas as statistically significant.

trans-Heptachlor epoxide: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 1 of the 63valid sites adopting the detection limit of 0.3pg/g-dry, and the detected concentrarion was 3.6pg/g-dry.

Stocktaking of the detection of heptachlor, *cis*-heptachlor epocide and *trans*-heptachlor epocide in sediment during FY2002~2011 and FY2014

	Monitored	Geometric				Quantification	Detection	Frequency
Heptachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	4.1	3.2	120	nd	1.8 [0.6]	167/189	60/63
	2003	tr(2.7)	tr(2.2)	160	nd	3 [1.0]	138/186	53/62
	2004	tr(2.8)	tr(2.3)	170	nd	3 [0.9]	134/189	53/63
	2005	3.1	2.8	200	nd	2.5 [0.8]	120/189	48/63
Sediment	2006	5.2	3.9	230	nd	1.9 [0.6]	190/192	64/64
(pg/g-dry)	2007	tr(1.8)	tr(1.5)	110	nd	3.0 [0.7]	143/192	57/64
(pg/g-ury)	2008	tr(1)	nd	85	nd	4 [1]	59/192	27/64
	2009	1.6	1.3	65	nd	1.1 [0.4]	144/192	59/64
	2010	1.2	tr(0.8)	35	nd	1.1 [0.4]	51/64	51/64
	2011	tr(1.3)	tr(1.2)	48	nd	1.8 [0.7]	40/64	40/64
	2014	tr(1.0)	tr(0.9)	49	nd	1.5 [0.5]	38/63	38/63
cis-Heptachlor	Monitored	Geometric				Quantification	Detection	Frequency
epoxide	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	4	3	160	nd	3 [1]	153/186	55/62
	2004	tr(5)	tr(3)	230	nd	6 [2]	136/189	52/63
	2005	tr(4)	tr(3)	140	nd	7 [2]	119/189	49/63
	2006	4.0	3.2	210	nd	3.0 [1.0]	157/192	58/64
Sediment	2007	3	tr(2)	270	nd	3 [1]	141/192	53/64
(pg/g-dry)	2008	3	2	180	nd	2 [1]	130/192	51/64
	2009	2.7	1.9	290	nd	0.7 [0.3]	176/192	63/64
	2010	3.1	2.4	300	nd	0.8 [0.3]	62/64	62/64
	2011	2.8	2.5	160	nd	0.6 [0.2]	63/64	63/64
	2014	2.1	1.7	310	nd	0.5 [0.2]	59/63	59/63
trans-Heptachlor	Monitored	Geometric				Quantification	Detection	Frequency
epoxide	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	9 [3]	0/186	0/62
	2004	nd	nd	tr(2.5)	nd	4 [2]	1/189	1/63
	2005	nd	nd	nd	nd	5 [2]	0/189	0/63
	2006	nd	nd	19	nd	7 [2]	2/192	2/64
Sediment	2007	nd	nd	31	nd	10 [4]	2/192	2/64
(pg/g-dry)	2008	nd	nd	nd	nd	1.7 [0.7]	0/192	0/64
	2009	nd	nd	nd	nd	1.4 [0.6]	0/192	0/64
	2010	nd	nd	4	nd	3 [1]	1/64	1/64
	2011	nd	nd	2.4	nd	2.3 [0.9]	2/64	2/64
	2014	nd	nd	3.6	nd	0.7 [0.3]	1/63	1/63

⁽Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

⁽Note 2) No monitoring was conducted during FY2012~FY2013.

• Monitoring results until 2013 (reference)

<Wildlife>

Stocktaking of the detection of heptachlor, *cis*-heptachlor amd *trans*-heptachlor in wildlife (bivalves, fish and birds) during FY2002~2013

	Monitored	Geometric				Quantification	Detection I	Frequency
Heptachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(3.5)	4.6	15	nd	4.2 [1.4]	28/38	6/8
	2003	tr(2.8)	tr(2.4)	14	nd	6.6 [2.2]	16/30	4/6
	2004	tr(3.4)	5.2	16	nd	4.1 [1.4]	23/31	6/7
	2005	tr(2.9)	tr(2.9)	24	nd	6.1 [2.0]	18/31	6/7
	2006	tr(4)	tr(4)	20	nd	6 [2]	23/31	6/7
Bivalves	2007	tr(3)	tr(3)	12	nd	6 [2]	20/31	6/7
(pg/g-wet)	2008	tr(2)	nd	9	nd	6 [2]	13/31	5/7
400	2009	tr(4)	nd	120	nd	5 [2]	14/31	4/7
	2010	3	tr(2)	78	nd	3 [1]	5/6	5/6
	2011	4	4	51	nd	3 [1]	3/4	3/4
	2012	tr(3)	tr(3)	13	nd	4 [1]	4/5	4/5
	2013	3	tr(2)	19	nd	3 [1]	4/5	4/5
	2002	4.2	4.8	20	nd	4.2 [1.4]	57/70	12/14
	2003	nd	nd	11	nd	6.6 [2.2]	29/70	8/14
	2004	tr(2.3)	tr(2.1)	460	nd	4.1 [1.4]	50/70	11/14
	2005	nd	nd	7.6	nd	6.1 [2.0]	32/80	8/16
	2006	tr(2)	nd	8	nd	6 [2]	36/80	8/16
Fish	2007	tr(2)	nd	7	nd	6 [2]	28/80	6/16
(pg/g-wet)	2008	nd	nd	9	nd	6 [2]	25/85	7/17
	2009	tr(2)	nd	8	nd	5 [2]	30/90	11/18
	2010	tr(2)	tr(2)	5	nd	3 [1]	12/18	12/18
	2011	tr(1)	tr(1)	7	nd	3 [1]	13/18	13/18
	2012	nd	tr(1)	5	nd	4 [1]	10/19	10/19
	2013	nd	nd	12	nd	3 [1]	9/19	9/19
	2002	tr(1.7)	tr(2.8)	5.2	nd	4.2 [1.4]	7/10	2/2
	2003	nd	nd	nd	nd	6.6 [2.2]	0/10	0/2
	2004	nd	nd	tr(1.5)	nd	4.1 [1.4]	1/10	1/2
	2005	nd	nd	nd	nd	6.1 [2.0]	0/10	0/2
	2006	nd	nd	nd	nd	6 [2]	0/10	0/2
Birds	2007	nd	nd	nd	nd	6 [2]	0/10	0/2
(pg/g-wet)	2008	nd	nd	nd	nd	6 [2]	0/10	0/2
	2009	nd	nd	nd	nd	5 [2]	0/10	0/2
	2010	nd	nd	tr(1)	nd	3 [1]	1/2	1/2
	2011			nd	nd	3 [1]	0/1	0/1
	2012	nd		nd	nd	4 [1]	0/2	0/2
	2013**	nd		nd	nd	3 [1]	0/2	0/2

cis-Heptachlor	Monitored	Geometric				Quantification	Detection l	Frequency
epoxide	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	44	29	880	9.7	6.9 [2.3]	30/30	6/6
	2004	64	34	840	tr(9.8)	9.9 [3.3]	31/31	7/7
	2005	49	20	590	` 7.4	3.5 [1.2]	31/31	7/7
	2006	56	23	1,100	8	4 [1]	31/31	7/7
D. 1	2007	37	20	1,100	8	4 [1]	31/31	7/7
Bivalves	2008	37	19	510	8	5 [2]	31/31	7/7
(pg/g-wet)	2009	59	33	380	10	3 [1]	31/31	7/7
	2010	170	260	1,800	9.0	2.4 [0.9]	6/6	6/6
	2011	55	110	320	3.9	2.0 [0.8]	4/4	4/4
	2012	48	120	180	6.2	1.5 [0.6]	5/5	5/5
	2013	28	29	110	4.4	2.1 [0.8]	5/5	5/5
	2003	43	43	320	7.0	6.9 [2.3]	70/70	14/14
	2004	51	49	620	tr(3.3)	9.9 [3.3]	70/70	14/14
	2005	41	45	390	4.9	3.5 [1.2]	80/80	16/16
	2006	42	48	270	4	4 [1]	80/80	16/16
T. 1	2007	43	49	390	4	4 [1]	80/80	16/16
Fish	2008	39	46	350	tr(3)	5 [2]	85/85	17/17
(pg/g-wet)	2009	41	50	310	4	3 [1]	90/90	18/18
	2010	39	49	230	5.0	2.4 [0.9]	18/18	18/18
	2011	50	62	540	3.2	2.0 [0.8]	18/18	18/18
	2012	41	62	120	6.9	1.5 [0.6]	19/19	19/19
	2013	42	46	190	7.3	2.1 [0.8]	19/19	19/19
	2003	540	510	770	370	6.9 [2.3]	10/10	2/2
	2004	270	270	350	190	9.9 [3.3]	10/10	2/2
	2005	370	340	690	250	3.5 [1.2]	10/10	2/2
	2006	330	310	650	240	4 [1]	10/10	2/2
D: 1	2007	280	270	350	250	4 [1]	10/10	2/2
Birds	2008	370	370	560	180	5 [2]	10/10	2/2
(pg/g-wet)	2009	220	210	390	160	3 [1]	10/10	2/2
	2010	290	300	360	240	2.4 [0.9]	2/2	2/2
	2011			410	410	2.0 [0.8]	1/1	1/1
	2012	160		170	150	1.5 [0.6]	2/2	2/2
	2013**	300		560	160	2.1 [0.8]	2/2	2/2

trans-Heptachlor epoxide	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection]	Detection I Sample	Frequen Site
	2003	nd	nd	48	nd	limit 13 [4.4]	5/30	1/6
	2003	nd	nd	55	nd	12 [4.0]	9/31	2/7
	2005	nd	nd	37	nd	23 [7.5]	5/31	1/7
	2006	nd	nd	45	nd	13 [5]	5/31	1/7
	2007	nd	nd	61	nd	13 [5]	5/31	1/7
Bivalves	2008	nd	nd	33	nd	10 [4]	5/31	1/7
(pg/g-wet)	2009	tr(3)	nd	24	nd	8 [3]	13/31	3/7
	2010	3	tr(2)	24	nd	3 [1]	3/6	3/6
	2010	nd	nd	tr(6)	nd	7 [3]	1/4	1/4
	2012	nd	nd	tr(4)	nd	8 [3]	1/5	1/5
	2012	nd	nd	nd	nd	7 [3]	0/5	0/5
	2003	nd	nd	nd nd	nd	13 [4.4]	0/70	0/14
	2004	nd	nd	tr(10)	nd	12 [4.0]	2/70	2/14
	2005	nd	nd	nd	nd	23 [7.5]	0/80	0/16
	2006	nd	nd	nd	nd	13 [5]	0/80	0/16
	2007	nd	nd	nd	nd	13 [5]	0/80	0/16
Fish	2008	nd	nd	nd	nd	10 [4]	0/85	0/17
(pg/g-wet)	2009	nd	nd	nd	nd	8 [3]	0/90	0/1/
	2010	nd	nd	nd	nd	3 [1]	0/18	0/18
	2010	nd	nd	nd	nd	7 [3]	0/18	0/18
	2012	nd	nd	nd	nd	8 [3]	0/19	0/19
	2012	nd	nd	nd	nd	7 [3]	0/19	0/19
	2003	nd	nd	nd	nd	13 [4.4]	0/10	0/2
	2004	nd	nd	nd	nd	12 [4.0]	0/10	0/2
	2005	nd	nd	nd	nd	23 [7.5]	0/10	0/2
	2006	nd	nd	nd	nd	13 [5]	0/10	0/2
	2007	nd	nd	nd	nd	13 [5]	0/10	0/2
Birds	2008	nd	nd	nd	nd	10 [4]	0/10	0/2
(pg/g-wet)	2009	nd	nd	nd	nd	8 [3]	0/10	0/2
	2010	nd	nd	nd	nd	3 [1]	0/2	0/2
	2011			nd	nd	7 [3]	0/1	0/1
	2012	nd		nd	nd	8 [3]	0/2	0/2
	2013**	nd		tr(5)	nd	7 [3]	1/2	1/2

(Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

(Note 2) "**": There is no consistency between the results of the ornithological survey in FY2013 and those in previous years because of the changes in the survey sites and target species.

<Air>
 Stocktaking of the detection of heptachlor, *cis*-heptachlor epocide and *trans*-heptachlor epocide in air during FY2002~2013

		Geometric				Quantification	Detection l	Frequency
Heptachlor	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	11	14	220	0.20	0.12 [0.04]	102/102	34/34
	2003 Warm season	27	41	240	1.1	0.25 [0.085]	35/35	35/35
	2003 Cold season	10	16	65	0.39	0.25 [0.085]	34/34	34/34
	2004 Warm season	23	36	200	0.46	0.23 [0.078]	37/37	37/37
	2004 Cold season	11	18	100	0.53	0.23 [0.078]	37/37	37/37
	2005 Warm season	25	29	190	1.1	0.16 [0.054]	37/37	37/37
	2005 Cold season	6.5	7.9	61	0.52		37/37	37/37
	2006 Warm season	20	27	160	0.88	0.11 [0.04]	37/37	37/37
	2006 Cold season	6.8	7.2	56	0.32		37/37	37/37
	2007 Warm season	22	27	320	1.1	0.07 [0.03]	36/36	36/36
Air	2007 Cold season	6.3	8.0	74	0.42		36/36	36/36
(pg/m^3)	2008 Warm season	20	31	190	0.92	0.06 [0.02]	37/37	37/37
(18/11)	2008 Cold season	7.5	12 30	60	0.51		37/37	37/37
	2009 Warm season	18	7.8	110 48	0.48	0.04 [0.01]	37/37	37/37
	2009 Cold season 2010 Warm season	6.3 17	<u>7.8</u> 26	160	0.15		37/37 37/37	37/37 37/37
	2010 Wariii season 2010 Cold season	7.2	9.5	53	0.09	0.11 [0.04]	37/37 37/37	37/37 37/37
	2010 Cold season 2011 Warm season	<u>7.2</u> 16	25	110	0.73		35/35	35/35
	2011 Wallii season	6.1	10	56	tr(0.13)	0.30 [0.099]	37/37	37/37
	2012 Warm season	13	21	58	0.46		36/36	36/36
	2012 Warm season	3.2	4.9	20	nd	0.41[0.14]	35/36	35/36
	2012 Warm season	<u></u>	21	43	0.46		36/36	36/36
	2013 Warm season	3.1	4.6	22	tr(0.10)	0.16 [0.05]	36/36	36/36
cis-	2013 Wallii Scasoli	3.1	4.0		11(0.10)	Quantification	Detection l	
Heptachlor	Monitored year	Geometric	Median	Maximum	Minimum	[Detection]		
	Monitored year	mean	Median	Maximum	Millimum		Sample	Site
epoxide	2002	3.5	3.5	28	0.45	limit	35/35	35/35
	2002 2003 Warm season	1.3	1.3	6.6		0.015 [0.0048]		33/33 34/34
	2003 Wallii season		1.3					
		28	2 0		0.49		34/34	
		2.8	2.9	9.7	0.65	0.052 [0.017]	37/37	37/37
	2004 Warm season	1.1	2.9 1.1	9.7 7.0	0.65 0.44		37/37 37/37	37/37 37/37
	2004 Warm season 2004 Cold season	1.1 1.5	2.9 1.1 1.7	9.7 7.0 11	0.65 0.44 tr(0.10)	0.052 [0.017]	37/37 37/37 37/37	37/37 37/37 37/37
	2004 Warm season 2004 Cold season 2005 Warm season	1.1 1.5 0.91	2.9 1.1 1.7 0.81	9.7 7.0 11 2.9	0.65 0.44 tr(0.10) 0.43	0.12 [0.044]	37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37
	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season	1.1 1.5 0.91 1.7	2.9 1.1 1.7 0.81 2.0	9.7 7.0 11 2.9 6.7	0.65 0.44 tr(0.10) 0.43 0.13		37/37 37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37 37/37
	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season	1.1 1.5 0.91 1.7 0.74	2.9 1.1 1.7 0.81 2.0 0.88	9.7 7.0 11 2.9 6.7 3.2	0.65 0.44 tr(0.10) 0.43 0.13 nd	0.12 [0.044]	37/37 37/37 37/37 37/37 37/37 36/37	37/37 37/37 37/37 37/37 37/37 36/37
	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season	1.1 1.5 0.91 1.7 0.74 2.9	2.9 1.1 1.7 0.81 2.0 0.88 2.8	9.7 7.0 11 2.9 6.7 3.2	0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54	0.12 [0.044]	37/37 37/37 37/37 37/37 37/37 36/37 36/36	37/37 37/37 37/37 37/37 37/37 36/37 36/36
Δir	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season	1.1 1.5 0.91 1.7 0.74	2.9 1.1 1.7 0.81 2.0 0.88	9.7 7.0 11 2.9 6.7 3.2	0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41	0.12 [0.044] 0.11 [0.04] 0.03 [0.01]	37/37 37/37 37/37 37/37 37/37 36/37	37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36
Air (ng/m³)	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season	1.1 1.5 0.91 1.7 0.74 2.9 0.93	2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2	9.7 7.0 11 2.9 6.7 3.2 13 3.0	0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41	0.12 [0.044]	37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36	37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36 37/37
Air (pg/m³)	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season	1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4	2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82	9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0	0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41	0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008]	37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36 37/37	37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36
	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season	1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91 2.5 1.0	2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84 2.6 0.91	9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0	0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.42	0.12 [0.044] 0.11 [0.04] 0.03 [0.01]	37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36 37/37 37/37 37/37	37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36 37/37 37/37 37/37
	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season	1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91	2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84	9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0	0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37	0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01]	37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36 37/37 37/37 37/37	37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36 37/37 37/37 37/37 37/37
	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season	1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91 2.5 1.0	2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84 2.6 0.91	9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0 16 3.8 10 4.3	0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.42 0.38 0.33	0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008]	37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36 37/37 37/37 37/37
	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2009 Warm season 2009 Cold season 2009 Cold season 2010 Warm season 2011 Warm season	1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91 2.5 1.0 2.3 0.93 2.0	2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84 2.6 0.91 2.3 0.85 2.3	9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0 16 3.8 10 4.3 6.0	0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.42 0.38 0.33 0.29	0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01] 0.02 [0.01]	37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 35/35	37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 35/35
	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Cold season 2008 Cold season 2009 Warm season 2009 Warm season 2009 Cold season 2009 Cold season	1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91 2.5 1.0 2.3 0.93 2.0 0.90	2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84 2.6 0.91 2.3 0.85 2.3 0.90	9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0 16 3.8 10 4.3 6.0 2.8	0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.42 0.38 0.33 0.29 0.35	0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01]	37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37	37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37
	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Warm season 2009 Warm season 2009 Cold season 2009 Cold season 2010 Warm season 2011 Warm season	1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91 2.5 1.0 2.3 0.93 2.0	2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84 2.6 0.91 2.3 0.85 2.3 0.90 2.1	9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0 16 3.8 10 4.3 6.0 2.8 6.3	0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.42 0.38 0.33 0.29	0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01] 0.02 [0.01] 0.04 [0.01]	37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 37/37 35/35	37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36
	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2009 Cold season 2009 Warm season 2009 Warm season 2010 Warm season 2011 Warm season 2011 Warm season 2011 Cold season	1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91 2.5 1.0 2.3 0.93 2.0 0.90	2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84 2.6 0.91 2.3 0.85 2.3 0.90 2.1 0.57	9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0 16 3.8 10 4.3 6.0 2.8 6.3 1.9	0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.42 0.38 0.33 0.29 0.35	0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01] 0.02 [0.01]	37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37	37/37 37/37 37/37 37/37 36/37 36/36 36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36 36/36
	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2009 Cold season 2009 Warm season 2009 Warm season 2010 Warm season 2011 Warm season 2011 Cold season 2012 Warm season	1.1 1.5 0.91 1.7 0.74 2.9 0.93 2.4 0.91 2.5 1.0 2.3 0.93 2.0 0.90	2.9 1.1 1.7 0.81 2.0 0.88 2.8 0.82 2.2 0.84 2.6 0.91 2.3 0.85 2.3 0.90 2.1	9.7 7.0 11 2.9 6.7 3.2 13 3.0 9.9 3.0 16 3.8 10 4.3 6.0 2.8 6.3	0.65 0.44 tr(0.10) 0.43 0.13 nd 0.54 0.41 0.53 0.37 0.37 0.42 0.38 0.33 0.29 0.35 0.37	0.12 [0.044] 0.11 [0.04] 0.03 [0.01] 0.022 [0.008] 0.03 [0.01] 0.02 [0.01] 0.04 [0.01]	37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35 37/37 35/35	37/37 37/37 37/37 37/37 37/37 36/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 37/37 35/35 37/37 36/36

trans-		Geometric				Quantification	Detection l	Frequency
Heptachlor epoxide	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	tr(0.036)	tr(0.038)	0.30	nd	0.099 [0.033]	18/35	18/35
	2003 Cold season	nd	nd	tr(0.094)	nd	0.099 [0.033]	3/34	3/34
	2004 Warm season	nd	nd	tr(0.38)	nd	0.6.[0.2]	4/37	4/37
	2004 Cold season	nd	nd	nd	nd	0.6 [0.2]	0/37	0/37
	2005 Warm season	tr(0.10)	tr(0.12)	1.2	nd	0.16 [0.05]	27/37	27/37
	2005 Cold season	nd	nd	0.32	nd	0.16 [0.05]	3/37	3/37
	2006 Warm season	nd	nd	0.7	nd	0.2 [0.1]	2/37	2/37
	2006 Cold season	nd	nd	tr(0.1)	nd	0.3 [0.1]	1/37	1/37
	2007 Warm season	nd	nd	0.16	nd	0.14 [0.06]	8/36	8/36
	2007 Cold season	nd	nd	tr(0.06)	nd	0.14 [0.06]	1/36	1/36
Air	2008 Warm season	nd	nd	0.17	nd	0.16.50.061	6/37	6/37
(pg/m^3)	2008 Cold season	nd	nd	nd	nd	0.16 [0.06]	0/37	0/37
	2009 Warm season	nd	nd	0.18	nd	0.14.50.053	10/37	10/37
	2009 Cold season	nd	nd	tr(0.06)	nd	0.14 [0.05]	1/37	1/37
	2010 Warm season	nd	nd	0.16	nd	0.16.50.063	6/37	6/37
	2010 Warm season	nd	nd	nd	nd	0.16 [0.06]	0/37	0/37
	2011 Warm season	nd	nd	0.14	nd	0.12 [0.05]	5/35	5/35
	2011 Cold season	nd	nd	nd	nd	0.13 [0.05]	0/37	0/37
	2012 Warm season	nd	nd	tr(0.08)	nd	0.12.0.051	8/36	8/36
	2012 Warm season	nd	nd	nd	nd	0.12 [0.05]	0/36	0/36
	2013 Warm season	nd	nd	tr(0.11)	nd	0.12.50.051	7/36	7/36
	2013 Warm season	nd	nd	nd	nd	0.12 [0.05]	0/36	0/36

[9] Toxaphenes (reference)

· History and state of monitoring

Toxaphenes are a group of organochlorine insecticides. No domestic record of manufacture/import of the substances was reported since those were historically never registrated under the Agricultural Chemicals Regulation Law. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 2002.

In previous monitoring series before FY2001, the substance was measured in FY1983 (in surface water and sediment) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Parlar-26, Parlar-50 and Parlar-62 had been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air from FY2003 to FY2009.

No monitoring was conducted from FY2010 to FY2014. For reference, the monitoring results up to FY2009 are given below.

- Monitoring results until FY2009
- Parlar-26, Parlar-50, and Parlar-62

<Surface Water>

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in surface water during FY2003~2009

	Monitored	Geometric				Quantification	Detection l	requency
Parlar-26	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	40 [20]	0/36	0/36
	2004	nd	nd	nd	nd	9 [3]	0/38	0/38
Surface Water	2005	nd	nd	nd	nd	10 [4]	0/47	0/47
(pg/L)	2006	nd	nd	nd	nd	16 [5]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	20 [5]	0/48	0/48
	2008	nd	nd	nd	nd	8 [3]	0/48	0/48
	2009	nd	nd	nd	nd	5 [2]	0/49	0/49
	Monitored	Geometric				Quantification	Detection l	requency
Parlar-50	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	70 [30]	0/36	0/36
	2004	nd	nd	nd	nd	20 [7]	0/38	0/38
C	2005	nd	nd	nd	nd	20 [5]	0/47	0/47
Surface Water	2006	nd	nd	nd	nd	16 [5]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	9 [3]	0/48	0/48
	2008	nd	nd	nd	nd	7 [3]	0/48	0/48
	2009	nd	nd	nd	nd	7 [3]	0/49	0/49
	Monitored	Geometric				Quantification	Detection l	requency
Parlar-62	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	300 [90]	0/36	0/36
	2004	nd	nd	nd	nd	90 [30]	0/38	0/38
Surface Water	2005	nd	nd	nd	nd	70[30]	0/47	0/47
	2006	nd	nd	nd	nd	60 [20]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	70 [30]	0/48	0/48
	2008	nd	nd	nd	nd	40 [20]	0/48	0/48
	2009	nd	nd	nd	nd	40 [20]	0/49	0/49

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in sediment during FY2003~2009

	Monitored	Geometric			·	Quantification	Detection I	requency
Parlar-26	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	90 [30]	0/186	0/62
	2004	nd	nd	nd	nd	60 [20]	0/189	0/63
Sediment	2005	nd	nd	nd	nd	60 [30]	0/189	0/63
(pg/g-dry)	2006	nd	nd	nd	nd	12 [4]	0/192	0/64
(pg/g-dry)	2007	nd	nd	nd	nd	7 [3]	0/192	0/64
	2008	nd	nd	nd	nd	12 [5]	0/192	0/64
	2009	nd	nd	nd	nd	10 [4]	0/192	0/64
	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-50	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	200 [50]	0/186	0/62
	2004	nd	nd	nd	nd	60 [20]	0/189	0/63
Sediment	2005	nd	nd	nd	nd	90 [40]	0/189	0/63
(pg/g-dry)	2006	nd	nd	nd	nd	24 [7]	0/192	0/64
(pg/g-ury)	2007	nd	nd	nd	nd	30 [10]	0/192	0/64
	2008	nd	nd	nd	nd	17 [6]	0/192	0/64
	2009	nd	nd	nd	nd	12 [5]	0/192	0/64
	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-62	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	4,000 [2,000]	0/186	0/62
	2004	nd	nd	nd	nd	2,000 [400]	0/189	0/63
Sediment	2005	nd	nd	nd	nd	2,000 [700]	0/189	0/63
	2006	nd	nd	nd	nd	210 [60]	0/192	0/64
(pg/g-dry)	2007	nd	nd	nd	nd	300 [70]	0/192	0/64
	2008	nd	nd	nd	nd	90 [40]	0/192	0/64
	2009	nd	nd	nd	nd	80 [30]	0/192	0/64

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~FY2009.

<Wildlife>

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in wildlife (bivalves, fish and birds) during $FY2003\sim2009$

	Monitored	Geometric				Quantification	Detection 1	Frequency
Parlar-26	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	tr(39)	nd	45 [15]	11/30	3/6
	2004	nd	nd	tr(32)	nd	42 [14]	15/31	3/7
D:1	2005	nd	nd	tr(28)	nd	47 [16]	7/31	4/7
Bivalves	2006	tr(9)	tr(12)	25	nd	18 [7]	21/31	5/7
(pg/g-wet)	2007	tr(7)	tr(8)	20	nd	10 [4]	26/31	6/7
	2008	tr(7)	tr(8)	22	nd	9 [3]	27/31	7/7
	2009	9	9	23	nd	7 [3]	27/31	7/7
	2003	tr(28)	tr(24)	810	nd	45 [15]	44/70	11/14
	2004	43	tr(41)	1,000	nd	42 [14]	54/70	13/14
Fish	2005	tr(42)	53	900	nd	47 [16]	50/75	13/16
	2006	41	44	880	nd	18 [7]	70/80	15/16
(pg/g-wet)	2007	24	32	690	nd	10 [4]	64/80	14/16
	2008	35	33	730	nd	9 [3]	79/85	17/17
	2009	25	20	690	nd	7 [3]	82/90	18/18
	2003	120	650	2,500	nd	45 [15]	5/10	1/2
	2004	70	340	810	nd	42 [14]	5/10	1/2
D:1-	2005	86	380	1,200	nd	47 [16]	5/10	1/2
Birds	2006	48	290	750	nd	18 [7]	5/10	1/2
(pg/g-wet)	2007	34	280	650	nd	10 [4]	5/10	1/2
	2008	38	320	1,200	nd	9 [3]	6/10	2/2
	2009	26	200	500	nd	7 [3]	6/10	2/2

Parlar-50	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequen Site
	2003	tr(12)	tr(12)	58	nd	33 [11]	17/30	4/6
	2004	tr(15)	nd	tr(45)	nd	46 [15]	15/31	3/7
	2005	nd	nd	tr(38)	nd	54 [18]	9/31	4/7
Bivalves	2006	tr(10)	14	32	nd	14 [5]	24/31	6/7
(pg/g-wet)	2007	9	10	37	nd	9 [3]	27/31	7/7
	2008	tr(7)	tr(6)	23	nd	10 [4]	23/31	6/7
	2009	9	9	31	nd	8 [3]	27/31	7/7
	2003	35	34	1,100	nd	33 [11]	55/70	14/14
	2004	60	61	1,300	nd	46 [15]	59/70	14/14
	2005	tr(52)	66	1,400	nd	54 [18]	55/80	13/16
Fish	2006	56	52	1,300	nd	14 [5]	79/80	16/16
(pg/g-wet)	2007	35	41	1,100	nd	9 [3]	77/80	16/16
	2008	44	45	1,000	nd	10 [4]	77/85	17/17
	2009	30	23	910	nd	8 [3]	85/90	18/18
	2003	110	850	3,000	nd	33 [11]	5/10	1/2
	2004	83	440	1,000	nd	46 [15]	5/10	1/2
	2005	100	480	1,500	nd	54 [18]	5/10	1/2
Birds	2006	46	380	1,000	nd	14 [5]	5/10	1/2
(pg/g-wet)	2007	34	360	930	nd	9 [3]	5/10	1/2
	2007	49	410	1,600	nd		5/10	1/2
	2008	49 29	250	620		10 [4]	5/10	1/2
	2009	29	230	020	nd	8 [3] Quantification		
Dorlar 62	Monitored	Geometric	Median	Maximum	Minimum	[Detection]	Detection I	-
ranai-02	year	mean*	Median	Iviaxiiiiuiii	Millillillilli	limit	Sample	Site
	2003	nd	nd	nd	nd	120 [40]	0/30	0/6
	2004	nd	nd	nd			0/30	0/7
	200 1	IIU						
	2005				nd nd	98 [33]		
Bivalves	2005	nd	nd	nd	nd	100 [34]	0/31	0/7
Bivalves (pg/g-wet)	2006	nd nd	nd nd	nd nd	nd nd	100 [34] 70 [30]	0/31 0/31	0/7
Parlar-62 Bivalves	2006 2007	nd nd nd	nd nd nd	nd nd nd	nd nd nd	100 [34] 70 [30] 70 [30]	0/31 0/31 0/31	0/7 0/7
	2006 2007 2008	nd nd nd nd	nd nd nd nd	nd nd nd nd	nd nd nd nd	100 [34] 70 [30] 70 [30] 80 [30]	0/31 0/31 0/31 0/31	0/7 0/7 0/7
	2006 2007 2008 2009	nd nd nd nd nd	nd nd nd nd nd	nd nd nd nd nd	nd nd nd nd nd	100 [34] 70 [30] 70 [30] 80 [30] 70 [20]	0/31 0/31 0/31 0/31 0/31	0/7 0/7 0/7 0/7
	2006 2007 2008 2009 2003	nd nd nd nd nd	nd nd nd nd nd	nd nd nd nd nd	nd nd nd nd nd	100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40]	0/31 0/31 0/31 0/31 0/31 	0/7 0/7 0/7 0/7 3/14
	2006 2007 2008 2009 2003 2004	nd nd nd nd nd	nd nd nd nd nd nd	nd nd nd nd nd 580 870	nd nd nd nd nd nd	100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33]	0/31 0/31 0/31 0/31 0/31 0/31 9/70 24/70	0/7 0/7 0/7 0/7 0/7 3/14 7/14
(pg/g-wet)	2006 2007 2008 2009 2003 2004 2005	nd nd nd nd nd nd	nd nd nd nd nd nd	nd nd nd nd 580 870 830	nd nd nd nd nd nd	100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34]	0/31 0/31 0/31 0/31 0/31 0/31 9/70 24/70 23/80	0/7 0/7 0/7 0/7 3/14 7/14 8/16
(pg/g-wet) Fish	2006 2007 2008 2009 2003 2004 2005 2006	nd nd nd nd nd nd tr(30)	nd nd nd nd nd nd nd nd nd	nd nd nd nd 580 870 830 870	nd nd nd nd nd nd nd	100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [30]	0/31 0/31 0/31 0/31 0/31 0/31 9/70 24/70 23/80 28/80	0/7 0/7 0/7 0/7 3/14 7/14 8/16 10/10
(pg/g-wet)	2006 2007 2008 2009 2003 2004 2005 2006 2007	nd nd nd nd nd tr(30) tr(30)	nd n	nd nd nd nd 580 870 830 870 530	nd nd nd nd nd nd nd nd	100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30]	0/31 0/31 0/31 0/31 0/31 9/70 24/70 23/80 28/80 22/80	0/7 0/7 0/7 0/7 3/14 7/14 8/16 10/16
(pg/g-wet) Fish	2006 2007 2008 2009 2003 2004 2005 2006 2007 2008	nd nd nd nd nd tr(30) tr(30)	nd n	nd nd nd nd 580 870 830 870 530 590	nd	100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30]	0/31 0/31 0/31 0/31 0/31 9/70 24/70 23/80 28/80 22/80 31/85	0/7 0/7 0/7 0/7 3/14 7/14 8/16 10/16 7/16
(pg/g-wet) Fish	2006 2007 2008 2009 2003 2004 2005 2006 2007 2008 2009	nd nd nd nd nd tr(30) tr(30) tr(20)	nd n	nd nd nd nd 580 870 830 870 530 590 660	nd	100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20]	0/31 0/31 0/31 0/31 0/31 9/70 24/70 23/80 28/80 22/80 31/85 24/90	0/7 0/7 0/7 0/7 3/14 7/14 8/16 10/16 8/17 8/18
(pg/g-wet) Fish	2006 2007 2008 2009 2003 2004 2005 2006 2007 2008 2009	nd nd nd nd nd tr(30) tr(30) tr(20) tr(96)	nd n	nd nd nd nd nd 580 870 830 870 530 590 660 530	nd n	100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20]	0/31 0/31 0/31 0/31 0/31 9/70 24/70 23/80 28/80 22/80 31/85 24/90 5/10	0/7 0/7 0/7 0/7 3/14 7/14 8/16 10/16 8/17 8/18
(pg/g-wet) Fish	2006 2007 2008 2009 2003 2004 2005 2006 2007 2008 2009 2003 2004	nd nd nd nd nd tr(30) tr(30) tr(20) tr(96) tr(64)	nd n	nd nd nd nd nd 580 870 830 870 530 590 660 530 280	nd n	100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33]	0/31 0/31 0/31 0/31 0/31 9/70 24/70 23/80 28/80 22/80 31/85 24/90 5/10 5/10	0/7 0/7 0/7 0/7 3/14 7/14 8/16 10/16 8/17 8/18 1/2
Fish (pg/g-wet)	2006 2007 2008 2009 2003 2004 2005 2006 2007 2008 2009 2003 2004 2005	nd nd nd nd nd nd tr(30) tr(30) tr(20) tr(96) tr(64) tr(78)	nd n	nd nd nd nd nd 580 870 830 870 530 590 660 530 280 460	nd n	100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34]	0/31 0/31 0/31 0/31 0/31 9/70 24/70 23/80 28/80 22/80 31/85 24/90 5/10 5/10 5/10	0/7 0/7 0/7 0/7 3/14 7/14 8/16 10/10 7/16 8/17 8/18 1/2 1/2
Fish (pg/g-wet) Birds	2006 2007 2008 2009 2003 2004 2005 2006 2007 2008 2009 2003 2004 2005 2006	nd nd nd nd nd nd tr(30) tr(30) tr(20) tr(64) tr(78) 70	nd n	nd nd nd nd nd s80 870 830 870 530 590 660 530 280 460 430	nd n	100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [30]	0/31 0/31 0/31 0/31 0/31 9/70 24/70 23/80 28/80 22/80 31/85 24/90 5/10 5/10 5/10	0/7 0/7 0/7 0/7 3/14 7/14 8/16 10/16 8/17 8/18 1/2 1/2 1/2
Fish (pg/g-wet)	2006 2007 2008 2009 2003 2004 2005 2006 2007 2008 2009 2003 2004 2005 2006 2007	nd nd nd nd nd nd nd tr(30) tr(30) tr(20) tr(64) tr(78) 70 tr(60)	nd n	nd nd nd nd nd s80 870 830 870 530 590 660 430 300	nd n	100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [30] 70 [30] 70 [30]	0/31 0/31 0/31 0/31 0/31 9/70 24/70 23/80 28/80 22/80 31/85 24/90 5/10 5/10 5/10 5/10	0/7 0/7 0/7 0/7 3/14 7/14 8/16 10/10 7/16 8/17 8/18 1/2 1/2 1/2 1/2
Fish (pg/g-wet) Birds	2006 2007 2008 2009 2003 2004 2005 2006 2007 2008 2009 2003 2004 2005 2006	nd nd nd nd nd nd tr(30) tr(30) tr(20) tr(64) tr(78) 70	nd n	nd nd nd nd nd s80 870 830 870 530 590 660 530 280 460 430	nd n	100 [34] 70 [30] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [30] 80 [30] 70 [20] 120 [40] 98 [33] 100 [34] 70 [30]	0/31 0/31 0/31 0/31 0/31 9/70 24/70 23/80 28/80 22/80 31/85 24/90 5/10 5/10 5/10	0/7 0/7 0/7 0/7 3/14 7/14 8/16 10/16 8/17 8/18 1/2 1/2 1/2

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~FY2009.

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in air during FY2003~2009

Stocktaking	g of the detection of		iiui 50 uiic	Turiur 02 ii	run uuring	Quantification	Detection 1	Frequency
Parlar-26	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	0.31	0.31	0.77	tr(0.17)	0.20 [0.066]	35/35	35/35
	2003 Cold season	tr(0.17)	tr(0.17)	0.27	tr(0.091)		34/34	34/34
	2004 Warm season	0.27	0.26	0.46	tr(0.17)	0.20 [0.066]	37/37	37/37
	2004 Cold season	tr(0.15)	tr(0.15)	0.50	tr(0.094)	0.20 [0.000]	37/37	37/37
	2005 Warm season	nd	nd	nd	nd	0.3 [0.1]	0/37	0/37
	2005 Cold season	nd	nd	nd	nd	0.3 [0.1]	0/37	0/37
Air	2006 Warm season	nd	nd	nd	nd	1.8 [0.6]	0/37	0/37
(pg/m^3)	2006 Cold season	nd	nd	nd	nd	1.8 [0.0]	0/37	0/37
	2007 Warm season	nd	nd	tr(0.3)	nd	0.6 [0.2]	18/36	18/36
	2007 Cold season	nd	nd	nd	nd	0.0 [0.2]	0/36	0/36
	2008 Warm season	tr(0.21)	0.22	0.58	tr(0.12)	0.22 [0.08]	37/37	37/37
	2008 Cold season	tr(0.11)	tr(0.12)	tr(0.20)	nd	0.22 [0.08]	36/37	36/37
	2009 Warm season	tr(0.18)	tr(0.19)	0.26	tr(0.11)	0.23 [0.09]	37/37	37/37
	2009 Cold season	tr(0.12)	tr(0.13)	0.27	nd		33/37	33/37
		Geometric				Quantification	Detection 1	Frequency
Parlar-50	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	nd	nd	tr(0.37)	nd	0.81 [0.27]	2/35	2/35
	2003 Cold season	nd	nd	nd	nd		0/34	0/34
	2004 Warm season	nd	nd	nd	nd	1.2 [0.4]	0/37	0/37
	2004 Cold season	nd	nd	nd	nd	1.2 [0.4]	0/37	0/37
	2005 Warm season	nd	nd	nd	nd	0.6 [0.2]	0/37	0/37
	2005 Cold season	nd	nd	nd	nd		0/37	0/37
Air	2006 Warm season	nd	nd	nd	nd	1.6 [0.5]	0/37	0/37
(pg/m^3)	2006 Cold season	nd	nd	nd	nd	1.0 [0.5]	0/37	0/37
	2007 Warm season	nd	tr(0.1)	tr(0.2)	nd	0.3 [0.1]	29/36	29/36
	2007 Cold season	nd	nd	nd	nd		0/36	0/36
	2008 Warm season	nd	nd	tr(0.19)	nd	0.25 [0.09]	15/37	15/37
	2008 Cold season	nd	nd	nd	nd		0/37	0/37
	2009 Warm season	nd	nd	tr(0.1)	nd	0.3 [0.1]	11/37	11/37
	2009 Cold season	nd	nd	tr(0.1)	nd		1/37	1/37
		Geometric				Quantification	Detection	Frequency
Parlar-62	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	nd	nd	nd	nd	1.6 [0.52]	0/35	0/35
	2003 Cold season	nd	nd	nd	nd		0/34	0/34
	2004 Warm season	nd	nd	nd	nd	2.4 [0.81]	0/37	0/37
	2004 Cold season	nd	nd	nd	nd	2.4 [0.81]	0/37	0/37
	2005 Warm season	nd	nd	nd	nd	1.2 [0.4]	0/37	0/37
	2005 Cold season	nd	nd	nd	nd	1.2 [0.4]	0/37	0/37
Air	2006 Warm season	nd	nd	nd	nd	0 [2]	0/37	0/37
(pg/m^3)	2006 Cold season	nd	nd	nd	nd	8 [3]	0/37	0/37
	2007 Warm season	nd	nd	nd	nd	1 5 [0 4]	0/36	0/36
	2007 Cold season	nd	nd	nd	nd	1.5 [0.6]	0/36	0/36
	2008 Warm season	nd	nd	nd	nd	1 6 [0 6]	0/37	0/37
	2008 Cold season	nd	nd	nd	nd	1.6 [0.6]	0/37	0/37
	2009 Warm season	nd	nd	nd	nd	1 6 [0 6]	0/37	0/37
	2009 Cold season	nd	nd	nd	nd	1.6 [0.6]	0/37	0/37

[10] Mirex (reference)

· History and state of monitoring

Mirex was developed as an organochlorine insecticide chemical in the United States, and it was also used as a flame retardant. No domestic record of manufacture/import of the substance was reported since it was historically never registrated under the Agricultural Chemicals Regulation Law. The substance was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 2002.

Before FY2001, the substance was measured in FY1983 (in surface water and sediment) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Mirex has been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2003 ~2009, and FY2011.

No monitoring was conducted in FY2012~FY2014. For reference, the monitoring results up to FY2011 are given below.

Monitoring results until FY2011

<Surface Water>

Stocktaking of the detection of mirex in surface water during FY2003~2009, 2011

	Monitored	Geometric				Quantification	Detection 1	Frequency
Mirex	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	tr(0.13)	tr(0.12)	0.8	nd	0.3 [0.09]	25/36	25/36
	2004	nd	nd	1.1	nd	0.4 [0.2]	18/38	18/38
	2005	nd	nd	1.0	nd	0.4 [0.1]	14/47	14/47
Surface Water	2006	nd	nd	0.07	nd	1.6 [0.5]	1/48	1/48
(pg/L)	2007	nd	nd	tr(0.5)	nd	1.1 [0.4]	2/48	2/48
	2008	nd	nd	0.7	nd	0.6 [0.2]	4/48	4/48
	2009	nd	nd	0.5	nd	0.4 [0.2]	8/49	8/49
	2011	nd	nd	0.8	nd	0.5 [0.2]	3/49	3/49

(Note) No monitoring was conducted in FY2010.

<Sediment>

Stocktaking of the detection of mirex in sediment during FY2003~2009, 2011

	Monitored	Geometric				Quantification	Detection l	Frequency
Mirex	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	2	tr(1.6)	1,500	nd	2 [0.4]	137/186	51/62
	2004	2	tr(1.6)	220	nd	2 [0.5]	153/189	55/63
	2005	1.8	1.2	5,300	nd	0.9 [0.3]	134/189	48/63
Sediment	2006	1.7	1.2	640	nd	0.6 [0.2]	156/192	57/64
(pg/g-dry)	2007	1.5	0.9	200	nd	0.9 [0.3]	147/192	55/64
	2008	1.4	1.1	820	nd	0.7 [0.3]	117/192	48/64
	2009	1.4	1.3	620	nd	1.0 [0.4]	126/192	49/64
	2011	1.2	0.9	1,900	nd	0.9 [0.4]	42/64	42/64

(Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~FY2009.

(Note 2) No monitoring was conducted in FY2010.

<Wildlife>

Stocktaking of the detection of mirex in wildlife (bivalves, fish and birds) during FY2003~2009, 2011

	Monitored	Geometric				Quantification	Detection l	Frequency
Mirex	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	4.9	4.2	19	tr(1.6)	2.4 [0.81]	30/30	6/6
	2004	4.4	4.3	12	tr(1.1)	2.5 [0.82]	31/31	7/7
	2005	5.4	5.2	20	tr(1.9)	3.0 [0.99]	31/31	7/7
Bivalves	2006	5	4	19	tr(2)	3 [1]	31/31	7/7
(pg/g-wet)	2007	5	4	18	tr(2)	3 [1]	31/31	7/7
	2008	4	tr(3)	18	tr(2)	4 [1]	31/31	7/7
	2009	5.9	5.2	21	tr(1.7)	2.1 [0.8]	31/31	7/7
	2011	10	7.1	44	5.2	1.9 [0.8]	4/4	4/4
	2003	8.3	9.0	25	tr(1.7)	2.4 [0.81]	70/70	14/14
	2004	13	11	180	3.8	2.5 [0.82]	70/70	14/14
	2005	13	13	78	tr(1.0)	3.0 [0.99]	80/80	16/16
Fish	2006	11	10	53	tr(2)	3 [1]	80/80	16/16
(pg/g-wet)	2007	9	11	36	tr(1)	3 [1]	80/80	16/16
	2008	11	13	48	tr(1)	4 [1]	85/85	17/17
	2009	8.6	9.6	37	tr(0.9)	2.1 [0.8]	90/90	18/18
	2011	12	15	41	tr(1.3)	1.9 [0.8]	18/18	18/18
	2003	120	150	450	31	2.4 [0.81]	10/10	2/2
	2004	61	64	110	33	2.5 [0.82]	10/10	2/2
	2005	77	66	180	41	3.0 [0.99]	10/10	2/2
Birds	2006	77	70	280	39	3 [1]	10/10	2/2
(pg/g-wet)	2007	57	59	100	32	3 [1]	10/10	2/2
	2008	74	68	260	27	4 [1]	10/10	2/2
	2009	49	50	79	32	2.1 [0.8]	10/10	2/2
	2011			58	58	1.9 [0.8]	1/1	1/1

⁽Note 1) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~FY2009.

<Air>

Stocktaking of the detection of mirex in air during FY2003~2009, 2011

	_	Geometric	•			Quantification	Detection Frequency	
Mirex	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	0.11	0.12	0.19	0.047	0.0084	35/35	35/35
	2003 Cold season	0.044	0.043	0.099	0.024	[0.0028]	34/34	34/34
	2004 Warm season	0.099	0.11	0.16	tr(0.042)	0.05 [0.017]	37/37	37/37
	2004 Cold season	tr(0.046)	tr(0.047)	0.23	tr(0.019)	0.03 [0.017]	37/37	37/37
	2005 Warm season	tr(0.09)	tr(0.09)	0.24	tr(0.05)	0.10 [0.03]	37/37	37/37
	2005 Cold season	tr(0.04)	tr(0.04)	tr(0.08)	nd	0.10 [0.03]	29/37	29/37
	2006 Warm season	tr(0.07)	tr(0.10)	0.22	nd	0.13 [0.04]	29/37	29/37
Air	2006 Cold season	tr(0.07)	tr(0.07)	2.1	nd	0.13 [0.04]	27/37	27/37
(pg/m^3)	2007 Warm season	0.11	0.11	0.28	0.04	0.03 [0.01]	36/36	36/36
	2007 Cold season	0.04	0.04	0.09	tr(0.02)	0.03 [0.01]	36/36	36/36
	2008 Warm season	0.09	0.09	0.25	0.03	0.02.00.013	37/37	37/37
	2008 Cold season	0.05	0.04	0.08	0.03	0.03 [0.01]	37/37	37/37
	2009 Warm season	0.12	0.13	0.48	0.049	0.015 [0.006]	37/37	37/37
	2009 Cold season	0.058	0.054	0.18	0.030	0.015 [0.006]	37/37	37/37
	2011 Warm season	0.14	0.13	0.25	0.08	0.04 [0.01]	35/35	35/35
	2011 Cold season	0.07	0.07	0.11	tr(0.03)	0.04 [0.01]	37/37	37/37

(Note) No monitoring was conducted in FY2010.

⁽Note 2) No monitoring was conducted in FY2010.

[11] HCHs

· History and state of monitoring

HCHs were used as plant protection products, pesticides, household insecticides, and termitecides, etc. Even after their registration under the Agricultural Chemicals Regulation Law was expired in FY1971, they continue to be used as termitecides and wood preservatives. α -HCH, β -HCH, and γ -HCH (synonym:Lindane) were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

Among many HCH isomers, α -HCH, β -HCH, γ -HCH (synonym: Lindane) and δ -HCH have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air.

Before FY2001, the substances were measured in FY1974 (in surface water, sediment and fish) under the framework of "the Environmental Survey and Monitoring of Chemicals." α -HCH and β -HCH had been the target chemicals, and surface water and sediment had been the monitored media during the period of FY1986~1998 and FY1986 ~ 2001, respectively. Under the framework of the Wildlife Monitoring, the substances were monitored in wildlife (bivalves, fish and birds) during the period of FY1978~1996 and in FY1998, FY2000 and FY2001 (γ -HCH (synonym:Lindane) and δ -HCH had not been monitored since FY1997 and FY1993, respectively.)

Under the framework of the Environmental Monitoring, α -HCH and β -HCH have been monitored in surface water, sediment, and wildlife (bivalves, fish and birds) since FY2002. α -HCH and β -HCH have also been monitored in air, and γ -HCH (synonym:Lindane) and δ -HCH have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air since FY2003.

- Monitoring results
- ο α-HCH, β -HCH, γ -HCH (synonym:Lindane) and δ -HCH

<Surface Water>

 α -HCH: The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 1.5pg/L, and the detection range was 7.3 \sim 700 pg/L. As results of the inter-annual trend analysis from FY2002 to FY2014, reduction tendencies in specimens from river mouth areas were identified as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

β-HCH: The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.4pg/L, and the detection range was 11~1,100pg/L. As results of the inter-annual trend analysis from FY2002 to FY2014, reduction tendencies in specimens from river areas, lake areas and sea areas were identified as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

 γ -HCH(synonym:Lindane): The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.4pg/L, and the detection range was 3.5~350pg/L. As results of the inter-annual trend analysis from FY2003 to FY2014, reduction tendencies in specimens from lake areas and sea areas were identified as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

 δ -HCH: The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.2pg/L, and the detection range was 0.7~590pg/L.

Stocktaking of the detection of α -HCH, β -HCH, γ -HCH (synonym: Lindane) and δ -HCH in surface water during FY2002~2014

2002~2014 α-HCH	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
	2002	86	76	6,500	1.9	0.9 [0.3]	114/114	38/38
	2003	120	120	970	13	3 [0.9]	36/36	36/36
	2004	150	145	5,700	13	6 [2]	38/38	38/38
	2005	90	81	660	16	4 [1]	47/47	47/47
	2006	110	90	2,100	25	3 [1]	48/48	48/48
C	2007	76	73	720	13	1.9 [0.6]	48/48	48/48
Surface Water	2008	78	75	1,100	9	4 [2]	48/48	48/48
(pg/L)	2009	74	73	560	14	1.2 [0.4]	49/49	49/49
	2010	94	75	1,400	14	4[1]	49/49	49/49
	2011	67	60	1,000	11	7 [3]	49/49	49/49
	2012	65	56	2,200	9.5	1.4 [0.5]	48/48	48/48
	2013	57	55	1,900	9	7 [2]	48/48	48/48
	2014	47	41	700	7.3	4.5 [1.5]	48/48	48/48
		<u> </u>				Quantification	Detection I	requency
β-НСН	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	210	180	1,600	24	0.9 [0.3]	114/114	38/38
	2003	250	240	1,700	14	3 [0.7]	36/36	36/36
	2004	260	250	3,400	31	4 [2]	38/38	38/38
	2005	200	170	2,300	25	2.6 [0.9]	47/47	47/47
	2006	200	160	2,000	42	1.7 [0.6]	48/48	48/48
	2007	170	150	1,300	18	2.7[0.9]	48/48	48/48
Surface Water	2008	150	150	1,800	15	1.0 [0.4]	48/48	48/48
(pg/L)	2009	150	150	1,100	18	0.6 [0.2]	49/49	49/49
	2010	180	160	2,500	33	2.0 [0.7]	49/49	49/49
	2011	130	120	840	28	2.0 [0.8]	49/49	49/49
	2012	150	130	820	17	1.4 [0.5]	48/48	48/48
	2013	130	130	1,100	20	7 [2]	48/48	48/48
	2014	100	110	1,100	11	1.0 [0.4]	48/48	48/48
γ-НСН			-	,		Quantification	Detection I	
(synonym:	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Lindane)	2002	02	00	270	22		26/26	26/26
	2003	92	90	370	32	7 [2]	36/36	36/36
	2004	91	76	8,200	21	20 [7]	38/38	38/38
	2005	48	40	250	tr(8)	14 [5]	47/47	47/47
	2006	44	43	460	tr(9)	18 [6]	48/48	48/48
G 6 ***	2007	34	32	290	5.2	2.1 [0.7]	48/48	48/48
Surface Water	2008	34	32	340	4	3 [1]	48/48	48/48
(pg/L)	2009	32	26	280	5.1	0.6 [0.2]	49/49	49/49
	2010	26	22	190	tr(5)	6 [2]	49/49	49/49
	2011	23	20	170	3	3 [1]	49/49	49/49
	2012	22	21	440	3.0	1.3 [0.4]	48/48	48/48
	2013	21	17	560	3.2	2.7 [0.8]	48/48	48/48
	2014	18	18	350	3.5	1.2 [0.4]	48/48	48/48

δ-НСН	Monitored		Median	Maximum	Minimum	Quantification [Detection]	DetectionFrequency	
	year	mean				limit	Sample	Site
	2003	14	14	200	tr(1.1)	2 [0.5]	36/36	36/36
	2004	24	29	670	tr(1.4)	2 [0.7]	38/38	38/38
	2005	1.8	nd	62	nd	1.5 [0.5]	23/47	23/47
	2006	24	18	1,000	2.2	2.0 [0.8]	48/48	48/48
	2007	11	9.7	720	tr(0.7)	1.2 [0.4]	48/48	48/48
Surface Water	2008	11	10	1,900	tr(1.1)	2.3 [0.9]	48/48	48/48
(pg/L)	2009	10	11	450	tr(0.7)	0.9 [0.4]	49/49	49/49
	2010	16	17	780	0.9	0.8 [0.3]	49/49	49/49
	2011	8.6	8.9	300	0.7	0.4 [0.2]	49/49	49/49
	2012	7.9	6.7	220	tr(0.5)	1.1 [0.4]	48/48	48/48
	2013	8.2	8.9	320	tr(0.6)	1.1 [0.4]	48/48	48/48
	2014	7.1	6.5	590	0.7	0.4 [0.2]	48/48	48/48

(Note) " * ":Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

 α -HCH: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 62 of the 63 valid sites adopting the detection limit of 0.8pg/g-dry, and none of the detected concentrations exceeded 4,300 pg/g-dry.

 β -HCH: The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.3pg/g-dry, and the detection range was 2.9~7,200pg/g-dry.

 γ -HCH(synonym:Lindane): The presence of the substance in sediment was monitored at 63 sites, and it was detected at 61 of the 63 valid sites adopting the detection limit of 0.9 pg/g-dry, and none of the detected concentrations exceeded 2,600 pg/g-dry.

 δ -HCH: The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.1pg/g-dry, and the detection range was 0.4~3,900pg/g-dry.

Stocktaking of the detection of α -HCH, β -HCH, γ -HCH (synonym: Lindane) and δ -HCH in sediment during FY2002~2014

	Monitored	Geometric				Quantification	Detection Frequency	
α-НСН	year mean*		Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	150	170	8,200	2.0	1.2 [0.4]	189/189	63/63
	2003	160	170	9,500	2	2 [0.5]	186/186	62/62
	2004	160	180	5,700	tr(1.5)	2 [0.6]	189/189	63/63
	2005	140	160	7,000	3.4	1.7 [0.6]	189/189	63/63
	2006	140	160	4,300	tr(2)	5 [2]	192/192	64/64
Sediment	2007	140	150	12,000	tr(1.3)	1.8 [0.6]	192/192	64/64
	2008	140	190	5,200	nd	1.6 [0.6]	191/192	64/64
(pg/g-dry)	2009	120	120	6,300	nd	1.1 [0.4]	191/192	64/64
	2010	140	140	3,700	3.1	2.0 [0.8]	64/64	64/64
	2011	120	140	5,100	1.6	1.5 [0.6]	64/64	64/64
	2012	100	100	3,900	tr(1.1)	1.6 [0.5]	63/63	63/63
	2013	94	98	3,200	tr(0.6)	1.5 [0.5]	63/63	63/63
	2014	84	93	4,300	nd	2.4 [0.8]	62/63	62/63

	Monitored	Geometric				Quantification	Detection 1	Frequency
β-НСН	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	230	230	11,000	3.9	0.9 [0.3]	189/189	63/63
	2003	250	220	39,000	5	2 [0.7]	186/186	62/62
	2004	240	230	53,000	4	3 [0.8]	189/189	63/63
	2005	200	220	13,000	3.9	2.6 [0.9]	189/189	63/63
	2006	190	210	21,000	2.3	1.3 [0.4]	192/192	64/64
Sediment	2007	200	190	59,000	1.6	0.9 [0.3]	192/192	64/64
(pg/g-dry)	2008	190	200	8,900	2.8	0.8 [0.3]	192/192	64/64
(pg/g-dry)	2009	180	170	10,000	2.4	1.3 [0.5]	192/192	64/64
	2010	230	210	8,200	11	2.4 [0.8]	64/64	64/64
	2011	180	210	14,000	3	3 [1]	64/64	64/64
	2012	160	170	8,300	3.7	1.5 [0.6]	63/63	63/63
	2013	160	170	6,900	4.5	0.4 [0.1]	63/63	63/63
	2014	140	140	7,200	2.9	0.9 [0.3]	63/63	63/63
γ-НСН	3.6 % 1	G				Quantification	Detection 1	Frequency
(synonym: Lindane)	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
-	2003	51	47	4,000	tr(1.4)	2 [0.4]	186/186	62/62
	2004	53	48	4,100	tr(0.8)	2 [0.5]	189/189	63/63
	2005	49	46	6,400	tr(1.8)	2.0 [0.7]	189/189	63/63
	2006	48	49	3,500	tr(1.4)	2.1 [0.7]	192/192	64/64
	2007	42	41	5,200	tr(0.6)	1.2 [0.4]	192/192	64/64
Sediment	2008	40	43	2,200	tr(0.7)	0.9 [0.4]	192/192	64/64
(pg/g-dry)	2009	38	43	3,800	nd	0.6 [0.2]	191/192	64/64
400 77	2010	35	30	2,300	tr(1.5)	2.0 [0.7]	64/64	64/64
	2011	35	42	3,500	nd	3 [1]	62/64	62/64
	2012	30	29	3,500	nd	1.3 [0.4]	61/63	61/63
	2013	33	35	2,100	0.9	0.6 [0.2]	63/63	63/63
	2014	27	30	2,600	nd	2.7 [0.9]	61/63	61/63
				,		Quantification	Detection 1	
δ -HCH	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	42	46	5,400	nd	2 [0.7]	180/186	61/62
	2004	55	55	5,500	tr(0.5)	2 [0.5]	189/189	63/63
	2005	52	63	6,200	nd	1.0 [0.3]	188/189	63/63
	2006	45	47	6,000	nd	1.7 [0.6]	189/192	64/64
	2007	26	28	5,400	nd	5 [2]	165/192	60/64
Sediment	2008	41	53	3,300	nd	2 [1]	186/192	64/64
(pg/g-dry)	2009	36	37	5,000	nd	1.2 [0.5]	190/192	64/64
400 37	2010	39	40	3,800	1.3	1.2 [0.5]	64/64	64/64
	2011	37	47	5,000	nd	1.4 [0.5]	63/64	63/64
	2012	28	28	3,100	nd	0.8 [0.3]	62/63	62/63
	2013	31	29	2,500	0.4	0.3 [0.1]	63/63	63/63

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Wildlife>

α-HCH: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was 7~39 pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 18 of the 19 valid areas adopting the detection limit of 1pg/g-wet, and none of the detected concentrations exceeded 210pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was 17~220pg/g-wet. As results of the inter-annual trend analysis from FY2003 to FY2014, reduction tendencies in specimens from bivalves were identified as statistically significant.

 β -HCH: The presence of the substance in bivalves was monitored in 3 areas, and it was detected all 3 valid areas adopting the detection limit of 0.9pg/g-wet, and the detection range was 28~64pg/g-wet. For fish, the presence of the

substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 0.9 pg/g-wet, and the detection range was 4.4~460pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 0.9pg/g-wet, and the detection values were 24~3,600pg/g-wet.

 γ -HCH(synonym:Lindane): The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 0.8pg/g-wet, and the detection range was $4.6\sim18pg/g$ -wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 16 of the 19 valid areas adopting the detection limit of 0.8pg/g-wet, and none of the detected concentrations exceeded 45pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 0.8pg/g-wet, and the detection values were $4.4\sim24pg/g$ -wet. As results of the inter-annual trend analysis from FY2003 to FY2014, reduction tendencies in specimens from bivalves and fishes were identified as statistically significant.

 δ -HCH: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 1pg/g-wet, and none of the detected concentrations exceeded 3pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 14 of the 19 valid areas adopting the detection limit of 1pg/g-wet, and none of the detected concentrations exceeded 23pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was t tr(1)~3 pg/g-wet. As results of the inter-annual trend analysis from FY2002 to FY2014, the second-half period indicated lower concentration than the first-half period in specimens from fish as statistically significant.

Stocktaking of the detection of α -HCH, β -HCH , γ -HCH (synonym: Lindane) and δ -HCH in wildlife (bivalves,) during FY2002~2014

	Monitored	Geometric				Quantification	Detection 1	Frequency
α-НСН	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	67	64	1,100	12	4.2 [1.4]	38/38	8/8
	2003	45	30	610	9.9	1.8 [0.61]	30/30	6/6
	2004	56	25	1,800	tr(12)	13 [4.3]	31/31	7/7
	2005	38	25	1,100	tr(7.1)	11 [3.6]	31/31	7/7
	2006	30	21	390	6	3 [1]	31/31	7/7
Bivalves	2007	31	17	1,400	8	7 [2]	31/31	7/7
(pg/g-wet)	2008	26	16	380	7	6 [2]	31/31	7/7
(pg/g-wei)	2009	45	21	2,200	9	5 [2]	31/31	7/7
	2010	35	20	730	13	3 [1]	6/6	6/6
	2011	64	33	1,200	13	3 [1]	4/4	4/4
	2012	23	12	340	4.0	3.7 [1.2]	5/5	5/5
	2013	30	25	690	6	3 [1]	5/5	5/5
	2014	16	16	39	7	3 [1]	3/3	3/3
	2002	57	56	590	tr(1.9)	4.2 [1.4]	70/70	14/14
	2003	43	58	590	2.6	1.8 [0.61]	70/70	14/14
	2004	57	55	2,900	nd	13 [4.3]	63/70	14/14
Fish	2005	42	43	1,000	nd	11 [3.6]	75/80	16/16
	2006	44	53	360	tr(2)	3 [1]	80/80	16/16
	2007	39	40	730	tr(2)	7 [2]	80/80	16/16
(pg/g-wet)	2008	36	47	410	nd	6 [2]	84/85	17/17
(pg/g-wei)	2009	39	32	830	tr(2)	5 [2]	90/90	18/18
	2010	27	39	250	tr(1)	3 [1]	18/18	18/18
	2011	37	54	690	tr(2)	3 [1]	18/18	18/18
	2012	24	32	170	nd	3.7 [1.2]	18/19	18/19
	2013	32	47	320	tr(2)	3 [1]	19/19	19/19
	2014	26	40	210	nd	3 [1]	18/19	18/19
	2002	170	130	360	93	4.2 [1.4]	10/10	2/2
	2003	73	74	230	30	1.8 [0.61]	10/10	2/2
	2004	190	80	1,600	58	13 [4.3]	10/10	2/2
	2005	76	77	85	67	11 [3.6]	10/10	2/2
	2006	76	75	100	55	3 [1]	10/10	2/2
Birds	2007	75	59	210	43	7 [2]	10/10	2/2
(pg/g-wet)	2008	48	48	61	32	6 [2]	10/10	2/2
(hg/g-wei)	2009	43	42	56	34	5 [2]	10/10	2/2
	2010	260		430	160	3 [1]	2/2	2/2
	2011			48	48	3 [1]	1/1	1/1
	2012	35		39	32	3.7 [1.2]	2/2	2/2
	2013**	46		130	16	3 [1]	2/2	2/2
	2014**	61		220	17	3 [1]	2/2	2/2

	Monitored	Geometric				Quantification	Detection Frequency	
β -HCH	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	88	62	1,700	32	12 [4]	38/38	8/8
	2003	78	50	1,100	23	9.9 [3.3]	30/30	6/6
	2004	100	74	1,800	22	6.1 [2.0]	31/31	7/7
Bivalves	2005	85	56	2,000	20	2.2 [0.75]	31/31	7/7
	2006	81	70	880	11	3 [1]	31/31	7/7
	2007	79	56	1,800	21	7 [3]	31/31	7/7
	2008	73	51	1,100	23	6 [2]	31/31	7/7
(pg/g-wet)	2009	83	55	1,600	27	6 [2]	31/31	7/7
	2010	89	56	1,500	27	3 [1]	6/6	6/6
	2011	130	68	2,000	39	3 [1]	4/4	4/4
	2012	65	37	980	15	2 [0.8]	5/5	5/5
	2013	61	47	710	17	2.2 [0.8]	5/5	5/5
	2014	40	35	64	28	2.4 [0.9]	3/3	3/3
	2002	110	120	1,800	tr(5)	12 [4]	70/70	14/14
Fish	2003	81	96	1,100	tr(3.5)	9.9 [3.3]	70/70	14/14
(pg/g-wet)	2004	110	140	1,100	tr(3.9)	6.1 [2.0]	70/70	14/14
	2005	95	110	1,300	6.7	2.2 [0.75]	80/80	16/16

	2006	89	110	1,100	4	3 [1]	80/80	16/16
	2007	110	120	810	7	7 [3]	80/80	16/16
	2008	94	150	750	tr(4)	6 [2]	85/85	17/17
	2009	98	130	970	tr(5)	6 [2]	90/90	18/18
	2010	81	110	760	5	3 [1]	18/18	18/18
	2011	100	140	710	4	3 [1]	18/18	18/18
	2012	72	100	510	6.5	2 [0.8]	19/19	19/19
	2013	80	110	420	7.2	2.2 [0.8]	19/19	19/19
	2014	75	140	460	4.4	2.4 [0.9]	19/19	19/19
	2002	3,000	3,000	7,300	1,600	12 [4]	10/10	2/2
	2003	3,400	3,900	5,900	1,800	9.9 [3.3]	10/10	2/2
	2004	2,300	2,100	4,800	1,100	6.1 [2.0]	10/10	2/2
	2005	2,500	2,800	6,000	930	2.2 [0.75]	10/10	2/2
	2006	2,100	2,400	4,200	1,100	3 [1]	10/10	2/2
D: 1	2007	2,000	1,900	3,200	1,400	7 [3]	10/10	2/2
Birds	2008	2,400	2,000	5,600	1,300	6 [2]	10/10	2/2
(pg/g-wet)	2009	1,600	1,400	4,200	870	6 [2]	10/10	2/2
	2010	1,600		2,800	910	3 [1]	2/2	2/2
	2011			4,500	4,500	3 [1]	1/1	1/1
	2012	1,400		2,600	730	2 [0.8]	2/2	2/2
	2013**	1,400		3,000	610	2.2 [0.8]	2/2	2/2
	2014**	290		3,600	24	2.4 [0.9]	2/2	2/2

у-НСН	Monitored	Geometric				Quantification	Detection l	Frequency
(synonym:Lindane)	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	19	18	130	5.2	3.3 [1.1]	30/30	6/6
	2004	tr(24)	tr(16)	230	nd	31 [10]	28/31	7/7
	2005	23	13	370	tr(5.7)	8.4 [2.8]	31/31	7/7
	2006	18	12	140	7	4 [2]	31/31	7/7
	2007	16	10	450	tr(4)	9 [3]	31/31	7/7
Bivalves	2008	12	10	98	tr(3)	9 [3]	31/31	7/7
(pg/g-wet)	2009	14	12	89	tr(3)	7 [3]	31/31	7/7
400	2010	14	9	150	5	3 [1]	6/6	6/6
	2011	26	17	320	5	3 [1]	4/4	4/4
	2012	8.1	3.5	68	3.0	2.3 [0.9]	5/5	5/5
	2013	7.2	3.9	31	tr(2.1)	2.4 [0.9]	5/5	5/5
	2014	7.4	4.8	18	4.6	2.2 [0.8]	3/3	3/3
	2003	16	22	130	tr(1.7)	3.3 [1.1]	70/70	14/14
	2004	tr(28)	tr(24)	660	nd	31 [10]	55/70	11/14
	2005	17	17	230	nd	8.4 [2.8]	78/80	16/16
	2006	19	22	97	tr(2)	4 [2]	80/80	16/16
	2007	15	15	190	nd	9 [3]	71/80	15/16
Fish	2008	13	16	96	nd	9 [3]	70/85	15/17
(pg/g-wet)	2009	14	12	180	nd	7 [3]	81/90	17/18
	2010	9	13	56	tr(1)	3 [1]	18/18	18/18
	2011	12	15	160	tr(1)	3 [1]	18/18	18/18
	2012	7.8	12	43	nd	2.3 [0.9]	18/19	18/19
	2013	8.6	12	81	nd	2.4 [0.9]	17/19	17/19
	2014	8.4	14	45	nd	2.2 [0.8]	16/19	16/19
	2003	14	19	40	3.7	3.3 [1.1]	10/10	2/2
	2004	64	tr(21)	1,200	tr(11)	31 [10]	10/10	2/2
	2005	18	20	32	9.6	8.4 [2.8]	10/10	2/2
	2006	16	17	29	8	4 [2]	10/10	2/2
	2007	21	14	140	tr(8)	9 [3]	10/10	2/2
Birds	2008	12	14	19	tr(5)	9 [3]	10/10	2/2
(pg/g-wet)	2009	11	11	21	tr(6)	7 [3]	10/10	2/2
	2010	10		23	4	3 [1]	2/2	2/2
	2011			26	26	3 [1]	1/1	1/1
	2012	11		19	6.3	2.3 [0.9]	2/2	2/2
	2013**	6.0		24	tr(1.5)	2.4 [0.9]	2/2	2/2
	2014**	10		24	4.4	2.2 [0.8]	2/2	2/2

	Monitored	Geometric				Quantification	Detection l	requenc
δ -HCH	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	7.4	tr(2.6)	1,300	nd	3.9 [1.3]	29/30	6/6
	2004	6.3	tr(2.1)	1,500	nd	4.6 [1.5]	25/31	6/7
	2005	5.4	tr(2.1)	1,600	nd	5.1 [1.7]	23/31	6/7
	2006	6	tr(2)	890	tr(1)	3 [1]	31/31	7/7
	2007	4	nd	750	nd	4 [2]	12/31	4/7
Bivalves	2008	tr(3)	nd	610	nd	6 [2]	7/31	3/7
(pg/g-wet)	2009	tr(4)	nd	700	nd	5 [2]	14/31	4/7
400	2010	4	tr(2)	870	nd	3 [1]	5/6	5/6
	2011	9	tr(2)	1,400	tr(1)	3 [1]	4/4	4/4
	2012	3	tr(1)	580	nd	3 [1]	3/5	3/5
	2013	3	tr(1)	230	nd	3 [1]	3/5	3/5
	2014	tr(1)	tr(2)	3	nd	3 [1]	2/3	2/3
	2003	tr(3.6)	4.0	16	nd	3.9 [1.3]	59/70	13/14
	2004	tr(4.2)	tr(3.5)	270	nd	4.6 [1.5]	54/70	11/14
	2005	tr(3.2)	tr(3.1)	32	nd	5.1 [1.7]	55/80	12/16
	2006	` <u>4</u>	3	35	nd	3 [1]	72/80	16/16
	2007	tr(3)	tr(2)	31	nd	4 [2]	42/80	10/16
Fish	2008	tr(4)	tr(3)	77	nd	6 [2]	54/85	12/17
(pg/g-wet)	2009	tr(3)	tr(3)	18	nd	5 [2]	57/90	13/18
(188)	2010	tr(2)	tr(2)	36	nd	3 [1]	13/18	13/18
	2011	3	4	19	nd	3 [1]	14/18	14/18
	2012	tr(2)	tr(2)	12	nd	3 [1]	14/19	14/19
	2013	3	tr(2)	40	nd	3 [1]	14/19	14/19
	2014	tr(2)	tr(2)	23	nd	3 [1]	14/19	14/19
	2003	19	18	31	12	3.9 [1.3]	10/10	2/2
	2004	30	14	260	6.4	4.6 [1.5]	10/10	2/2
	2005	16	15	30	10	5.1 [1.7]	10/10	2/2
	2006	13	12	21	9	3 [1]	10/10	2/2
	2007	12	10	22	4	4 [2]	10/10	2/2
Birds	2008	9	8	31	tr(3)	6 [2]	10/10	2/2
(pg/g-wet)	2009	5	6	9	tr(3)	5 [2]	10/10	2/2
(100)	2010	12		13	11	3 [1]	2/2	2/2
	2011			5	5	3 [1]	1/1	1/1
	2012	4		7	tr(2)	3 [1]	2/2	2/2
	2013**	3		4	tr(2)	3 [1]	2/2	2/2
	2014**	tr(2)		3	tr(1)	3 [1]	2/2	2/2

(Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

(Note 2) "** ":There is no consistency between the results of the ornithological survey in FY2013 and FY2014 and those in previous years because of the changes in the survey sites and target species.

<Air>

 α -HCH: The presence of the substance in air was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of 0.06pg/m³, and the detection range was $14\sim650$ pg/m³.

 β -HCH: The presence of the substance in air was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of 0.08 pg/m³, and the detection range was 0.57~74 pg/m³.

 γ -HCH(synonym: Lindane): The presence of the substance in air in the warm season was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of $0.06 pg/m^3$, and the detection range was $1.7 \sim 100$ pg/m³.

 δ -HCH: The presence of the substance in air was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of 0.06pg/m³, and the detection range was tr(0.07)~50pg/m³.

In addition, it was found that there were some problems in collection of HCHs because of some parts of the air sampler that was used between FY2003 and FY2008 were contaminated by HCHs and affected monitored concentration. Therefore all samples in the air were recognized as undetectable in calculation of data for that period.

Stocktaking of the detection of α -HCH, β -HCH, γ -HCH (synonym: Lindane) and δ -HCH in air during FY2009~2014

A-HCH Monitored year Median Maximum Minimum Detection Detection 1	-		<u> </u>				Quantification	Detection	Frequency
2009 Cold season	α-НСН	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection]		
2010 Warm season		2009 Warm season					0.12 [0.05]	37/37	
2010 Cold season									
Air 2011 Warm season 43 44 410 9.5 2.5 [0.83] 35/35		2010 Warm season		51	280		1.4[0.47]		
Air (pg/m) 2011 Cold season 18 15 680 6.5 2.5 [0.84] 37/37 37/37 2012 Cold season 12 11 120 4.4 4.0 36/36 3									
Company Com	Air	2011 Warm season			410		2 5 [0 83]		
2012 Cold season 12					680				
2013 Cold season 12 11 120 4.4 3.03 30.30 30.	(pg/m/)			37		15	2 1 [0 7]		
P-HCH Monitored year Commercial Part Note		2012 Cold season	12		120	4.4	2.1 [0.7]	36/36	
P-HCH Monitored year Geometric mean Median Maximum Minimum Detection Detection Frequency Sample Site		2013 Warm season	36	39	220	13	5 2 [1 7]	36/36	36/36
P-HCH Monitored year Geometric mean Median Maximum Minimum Cluettication Sample Site					75	tr(3.9)		36/36	
Pi-HCH Monitored year Median Median Maximum Minimum Ditation Sample Site	-	2014 Warm season	44	40	650	14			
Sample Site Sample Sa			Geometric					Detection	Frequency
	<i>β</i> -HCH			Median	Maximum				
2010 Warm season 1.8 1.8 24 0.31 0.89 0.27 [0.09] 37/37 37/3		2009 Warm season					0.09 [0.03]		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2009 Cold season	1.8	1.8	24	0.31		37/37	37/37
Air Clay C			5.6				0.27 [0.09]		
Air		2010 Cold season	1.7			tr(0.26)		37/37	37/37
Part	Air						0 39 [0 13]		
2012 Cold season 2.013 Warm season 2.013 Warm season 2.013 Warm season 2.013 Warm season 2.013 Cold season 2.014 Warm season 2.015 Warm season 2.016 Warm season 2.016 Warm season 2.017 Warm season 2.017 Warm season 2.018 Warm season 2.019 Warm season 2.01									
2013 Warm season 4.7 5.7 37 0.66 0.21 [0.07] 36/36 36	(pg/m/)		5.0				0.36 [0.12]		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						tr(0.26)		36/36	
No. Part		2013 Warm season	4.7		37	0.66	0.21 [0.07]	36/36	
Notion Part Synonym: Monitored year Geometric mean Median Maximum Minimum Detection Detection Sample Site		2013 Cold season	0.97	0.95	6.7	tr(0.17)	0.21 [0.07]	36/36	36/36
Synonym: Lindane Monitored year Median mean Maximum Minimum [Detection] Sample Site		2014 Warm season	5.4	6.8	74	0.57	0.24 [0.08]		
Synonym: Monitored year Median Maximum Minimum Detection Ilimit Sample Site	•		Geometric				•	Detection	Frequency
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Monitored year		Median	Maximum	Minimum		Sample	Site
Air (pg/m³)		2009 Warm season	17	19	65	2.9	0.06.[0.02]	37/37	37/37
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2009 Cold season	5.6	4.6	55	1.5	0.00 [0.02]	37/37	37/37
Air (pg/m³) 2011 Cold season 4.8 4.4 60 1.1 37/37 37/37 (pg/m³) 2011 Warm season 14 17 98 2.7 1.6 [0.52] 35/35 35/35 35/35 35/35 35/35 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 37/37 36/36		2010 Warm season	14	16	66	2.3	0.25 [0.12]	37/37	37/37
Air (pg/m³) 2011 Cold season 2012 Warm season 2012 Warm season 2012 Cold season 3.1 3.2 19 tr(0.63) 4.8 55 2.3 0.95 [0.32] 37/37 37/37 37/37 37/37 36/36			4.8	4.4		1.1	0.33 [0.12]	37/37	37/37
Company 2011 Cold season 3.1 4.8 67 tr(1.1) 57 37/37 37/37	A	2011 Warm season	14	17	98	2.7	1 6 [0 52]	35/35	35/35
2012 Varm season 13 13 3.2 19 tr(0.63) 0.95 [0.32] 36/36 36/36 36/36 2013 Varm season 12 14 58 tr(2.0) 2.2 [0.7] 36/36 36/36 36/36 2013 Cold season 2.8 3.0 12 nd 2.2 [0.7] 34/36 34/36 34/36 2014 Varm season 14 16 100 1.7 0.17 [0.06] 36/36		2011 Cold season	5.1	4.8	67	tr(1.1)	1.0 [0.32]	37/37	37/37
2012 Cold season 3.1 3.2 19 tr(0.05) 36/36 36/36 36/36 36/36 2013 Cold season 2.8 3.0 12 nd 2.2 [0.7] 36/36 36/36 34/36 34/36 2014 Warm season 14 16 100 1.7 0.17 [0.06] 36/36	(pg/III [*])	2012 Warm season	13	15	55	2.3	0.05 [0.22]	36/36	36/36
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2012 Cold season	3.1	3.2	19	tr(0.63)	0.93 [0.32]	36/36	36/36
2013 Cold season 2.8 3.0 12 11d 34/36 34/36 34/36 34/36 2014 Warm season 14 16 100 1.7 0.17 [0.06] 36/36 36		2013 Warm season	12	14	58	tr(2.0)	2 2 [0 7]	36/36	36/36
δ-HCHMonitored yearGeometric meanMedian meanMaximumMinimum [Detection] [Imit]Quantification [Detection] [Detection] [Imit]Detection Frequency SampleSite2009 Warm season1.31.3210.090.04 [0.02]37/3737/372009 Cold season0.360.33200.040.04 [0.02]37/3737/372010 Warm season1.41.3250.110.05 [0.02]37/3737/372010 Cold season0.380.35220.050.05 [0.02]37/3737/374011 Warm season1.11.1330.110.063 [0.021]35/3535/352011 Cold season0.350.3426tr(0.050)0.063 [0.021]36/3636/362012 Warm season1.01.320tr(0.06)0.07 [0.03]36/3636/362012 Cold season0.180.197.3nd0.07 [0.03]36/3635/362013 Warm season1.01.120tr(0.05)0.08 [0.03]36/3636/362013 Cold season0.170.175.3nd0.08 [0.03]36/3634/36		2013 Cold season	2.8	3.0	12	nd	2.2 [0.7]	34/36	34/36
δ-HCH Monitored year Geometric mean Median mean Maximum Minimum limit [Detection] limit Sample Site 2009 Warm season 2009 Cold season 2009 Cold season 2010 Warm season 2010 Warm season 2010 Warm season 2010 Cold season		2014 Warm season	14	16	100	1.7	0.17 [0.06]	36/36	36/36
Sample Site Site Sample Site Site Sample Site Site Sample Site Site Sample Site Sit			Gaamatria				Quantification	Detection	Frequency
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	δ -HCH	Monitored year		Median	Maximum	Minimum		Sample	Site
Air (pg/m³)		2009 Warm season	1.3	1.3	21	0.09	0.04.[0.02]	37/37	37/37
Air (pg/m³)		2009 Cold season	0.36	0.33	20	0.04	U.U4 [U.U2]	37/37	37/37
Air (pg/m³)		2010 Warm season	1.4	1.3	25	0.11	0.05 [0.02]	37/37	37/37
$ \begin{array}{c} \text{Air} \\ (\text{pg/m}^3) \\ \hline \\ 2011 \text{ Cold season} \\ \hline \\ 2012 \text{ Warm season} \\ \hline \\ 2012 \text{ Cold season} \\ \hline \\ 2012 \text{ Cold season} \\ \hline \\ 2012 \text{ Cold season} \\ \hline \\ 2013 \text{ Warm season} \\ \hline \\ 2013 \text{ Cold season} \\ \hline \\ 2017 \text{ Cold season} \\ \hline \\ 2017 \text{ Cold season} \\ \hline \\ 2018 \text{ Cold season} \\ \hline \\ 2019 Cold $			0.38	0.35	22	0.05	0.03 [0.02]		37/37
(pg/m³) 2011 Cold season 0.35 0.34 26 tr(0.050) - 3//3/ 3//3/ 2012 Warm season 1.0 1.3 20 tr(0.06) 0.07 [0.03] 36/36 36/36 2012 Cold season 0.18 0.19 7.3 nd 0.07 [0.03] 35/36 35/36 2013 Warm season 1.0 1.1 20 tr(0.05) 0.08 [0.03] 36/36 36/36 2013 Cold season 0.17 0.17 5.3 nd 0.08 [0.03] 34/36 34/36	A :	2011 Warm season			33	0.11	0.062 [0.021]		
2012 Warm season 1.0 1.3 20 tr(0.06) 0.07 [0.03] 35/36 35/36 2012 Cold season 0.18 0.19 7.3 nd 35/36 35/36 2013 Warm season 1.0 1.1 20 tr(0.05) 0.08 [0.03] 36/36 36/36 2013 Cold season 0.17 0.17 5.3 nd 34/36 34/36		2011 Cold season	0.35	0.34	26	tr(0.050)	0.003 [0.021]	37/37	37/37
2012 Cold season 0.18 0.19 7.3 nd 0.07 [0.03] 35/36 35/36 2013 Warm season 1.0 1.1 20 tr(0.05) 0.08 [0.03] 36/36 36/36 2013 Cold season 0.17 0.17 5.3 nd 0.08 [0.03] 34/36 34/36	(pg/III-)	2012 Warm season	1.0	1.3	20	tr(0.06)	0.07.50.023	36/36	36/36
2013 Warm season 1.0 1.1 20 tr(0.05) 36/36 36/36 2013 Cold season 0.17 0.17 5.3 nd 0.08 [0.03] 36/36 34/36		2012 Cold season	0.18	0.19	7.3		0.07 [0.03]		
2013 Cold season 0.17 0.17 5.3 nd 0.08 [0.03] 34/36 34/36			1.0	1.1		tr(0.05)	0.00.00.023		
							0.08 [0.03]		
2014 Warm season 1.2 1.3 50 tr(0.07) 0.19 [0.06] 36/36 36/36		2013 Cold season	0.17	0.17	5.3	na		34/36	34/36

[12] Chlordecone (reference)

· History and state of monitoring

Chlordecone is a group of organochlorine insecticides. No domestic record of manufacture/import of the substance was reported since it was historically never registrated under the Agricultural Chemicals Regulation Law. Chlordecone was adopted as a target chemical at the Fourth Meeting of the Conference of Parties (COP4) on Stockholm convention on Persistent Organic Pollutants in May 2009.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY2008, and surface water, sediment and wildlife (bivalves, fish and birds) air in FY2010~2011.

No monitoring was conducted during FY2012~FY2014. For reference, the monitoring results up to FY2011 are given below.

Monitoring results until FY2011

<Surface Water>

Stocktaking of the detection of Chlordecone in surface water during FY2008, 2010, 2011

	Monitored	Monitored Geometric				Quantification	Detection 1	Frequency
Chlordecone	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2008	nd	nd	0.76	nd	0.14 [0.05]	13/46	13/46
	2010	tr(0.04)	nd	1.6	nd	0.09 [0.04]	13/49	13/49
(pg/L)	2011	nd	nd	0.70	nd	0.20 [0.05]	15/49	15/49

⁽Note) No monitoring was conducted in FY2009.

<Sediment>

Stocktaking of the detection of Chlordecone in sediment during FY2008, 2010, 2011

	Monitored	l Geometric				Quantification	Detection Frequency	
Chlordecone	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
						IIIIII		
C - 1: 4	2008	nd	nd	5.8	nd	0.42 [0.16]	23/129	10/49
Sediment	2010	nd	nd	2.8	nd	0.4 [0.2]	9/64	9/64
(pg/g-dry)	2011	nd	nd	1.5	nd	0.40 [0.20]	9/64	9/64

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

<Wildlife>

Stocktaking of the detection of Chlordecone in wildlife during FY2008, 2010, 2011

	Monitored	Geometric				Quantification	Detection I	requency
Chlordecone	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Bivalves	2008	nd	nd	nd	nd	5.6 [2.2]	0/31	0/7
(pg/g-wet)	2010	nd	nd	nd	nd	5.9 [2.3]	0/6	0/6
	2011	nd	nd	nd	nd	0.5 [0.2]	0/4	0/4
Fish	2008	nd	nd	nd	nd	5.6 [2.2]	0/85	0/17
(pg/g-wet)	2010	nd	nd	nd	nd	5.9 [2.3]	0/18	0/18
	2011	nd	nd	nd	nd	0.5 [0.2]	0/18	0/18
Birds	2008	nd	nd	nd	nd	5.6 [2.2]	0/10	0/2
(pg/g-wet)	2010	nd		nd	nd	5.9 [2.3]	0/2	0/2
	2011			nd	nd	0.5 [0.2]	0/1	0/1

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

⁽Note 2) No monitoring was conducted in FY2009.

⁽Note 2) No monitoring was conducted in FY2009.

<Air>
Stocktaking of the detection of Chlordecone in air during FY2010~2011

Chlordecon		Geometric mean	Median	Maximum	Minimum	Quantification [Detection]	Detection I Sample	Frequency Site
				1		limit	0/27	0/27
	2010 Warm season	nd	nd	nd	nd	- 0.04 [0.02]	0/37	0/37
Air (pg/m³)	2010 Cold season	nd	nd	nd	nd	0.04 [0.02]	0/37	0/37
	2011 Warm season	nd	nd	nd	nd	- 0.04 [0.02]	0/35	0/35
	2011 Cold season	nd	nd	nd	nd	0.04 [0.02]	0/37	0/37

[13] Hexabromobiphenyls (reference)

· History and state of monitoring

Hexabromobiphenyls have been used as flame retardants for plastics products. Hexabromobiphenyls were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY2009 and air in FY2010~2011.

No monitoring was conducted during FY2012 \sim FY2014. For reference, the monitoring results up to FY2011 are given below.

Monitoring results until FY2011

<Surface Water>

Stocktaking of the detection of Hexabromobiphenyls in surface water during FY2009~2011

	Monitored	Geometric				Quantification	Detection I	Frequency
Hexabromobiphenyls	year	mean	Median	Maximum	Minimum	[Detection] Limit*	Sample	Site
Surface Water (pg/L)	2009	nd	nd	nd	nd	5.7 [2.2]	0/49	0/49
	2010	nd	nd	nd	nd	3 [1]	0/49	0/49
	2011	nd	nd	nd	nd	2.2 [0.9]	0/49	0/49

⁽Note) "*" indicates the sum value of the Quantification [Detection] limits of each congener in FY2009.

<Sediment>

Stocktaking of the detection of Hexabromobiphenyls in sediment during FY2009~2011

Hexabromobiphenyl	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] Limit**	Detection I Sample	Frequency Site
Sediment (pg/g-dry)	2009	nd	nd	12	nd	1.1 [0.40]	45/190	21/64
	2010	nd	nd	18	nd	1.5 [0.6]	10/64	10/64
	2011	nd	nd	6.3	nd	3.6 [1.4]	8/64	8/64

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

<Wildlife>

Stocktaking of the detection of Hexabromobiphenyls in wildlife (bivalves, fish and birds) during FY2009~2011

	Monitored	nitored Geometric	Median	Maximum	Minimum	Quantification	Detection l	Frequency
Hexabromobiphenyls	year	mean*				[Detection] Limit**	Sample	Site
Bivalves	2009	nd	nd	tr(0.53)	nd	1.3 [0.43]	1/31	1/7
(pg/g-wet)	2010	nd	nd	nd	nd	24 [10]	0/6	0/6
(pg/g-wet)	2011	nd	nd	nd	nd	3 [1]	0/4	0/4
Fish	2009	tr(0.49)	tr(0.43)	6.0	nd	1.3 [0.43]	46/90	12/18
	2010	nd	nd	nd	nd	24 [10]	0/18	0/18
(pg/g-wet)	2011	nd	nd	3	nd	3 [1]	5/18	5/18
Birds	2009	1.6	1.6	2.1	tr(1.2)	1.3 [0.43]	10/10	2/2
	2010	nd		nd	nd	24 [10]	0/2	0/2
(pg/g-wet)	2011			3	3	3 [1]	1/1	1/1

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

⁽Note 2) " ** " indicates the sum value of the Quantification [Detection] limits of each congener in FY2009.

⁽Note 2) " ** " indicates the sum value of the Quantification [Detection] limits of each congener in FY2009.

<Air>

Stocktaking of the detection of Hexabromobiphenyls in air during FY2010~2011

Hexabromo		Geometric				Quantification	Detection Frequency	
biphenyls	Monitored year	mean	Median	Maximum	Minimum	[Detection] Limit	Sample	Site
Air (pg/m³)	2010 Warm season	nd	nd	nd	nd	0.2 [0.1]	0/37	0/37
	2010 Cold season	nd	nd	nd	nd	0.3 [0.1]	0/37	0/37
	2011 Warm season	nd	nd	nd	nd	0.2 [0.1]	0/35	0/35
	2011 Cold season	nd	nd	nd	nd	0.3 [0.1]	0/37	0/37

[14] Polybromodiphenyl ethers (Br₄~Br₁₀)

· History and state of monitoring

Polybrominated diphenyl ethers have been used as flame retardants for plastics products. Tetrabromodiphenyl ethers, Pentabromodiphenyl ethers, Hexabromodiphenyl ethers, and Heptabromodiphenyl ethers were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

Under the framework of the Environmental Monitoring, the substance was monitored in wildlife (bivalves, fish and birds) in FY2008, and in surface water, sediment and wildlife (bivalves, fish and birds) and air in FY2010~2012 and FY2014.

- · Monitoring results
- Tetrabromodiphenyl ethers, Pentabromodiphenyl ethers, Hexabromodiphenyl ethers, Heptabromodiphenyl ethers,
 Octabromodiphenyl ethers, Nonabromodiphenyl ethers and Decabromodiphenyl ether

<Surface Water>

Tetrabromo diphenyl ethers: The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 3pg/L, and the detection range was $tr(4) \sim 51pg/L$.

Pentabromo diphenyl ethers: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 19 of the 48 valid sites adopting the detection limit of 2pg/L, and none of the detected concentrations exceeded 39pg/L.

Hexabromo diphenyl ethers: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 10 of the 48 valid sites adopting the detection limit of 1pg/L, and none of the detected concentrations exceeded 8pg/L.

Heptabromo diphenyl ethers: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 3 of the 48 valid sites adopting the detection limit of 3pg/L, and none of the detected concentrations exceeded 8pg/L.

Octabromo diphenyl ethers: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 33 of the 48 valid sites adopting the detection limit of 0.6pg/L, and none of the detected concentrations exceeded 38pg/L.

Nonabromo diphenyl ethers: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 47 of the 48 valid sites adopting the detection limit of 2pg/L, and none of the detected concentrations exceeded 590pg/L.

Decabromo diphenyl ethers: The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 9pg/L, and the detection range was tr(14)~5,600pg/L.

Stocktaking of the detection of Polybromodiphenyl ethers ($Br_4 \sim Br_{10}$) in surface water during FY2009~2012 and FY2014

Tetrabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	17	16	160	nd	8 [3]	44/49	44/49
Surface Water	2010	nd	nd	390	nd	9 [3]	17/49	17/49
(pg/L)	2011	11	10	180	nd	4 [2]	48/49	48/49
(pg/L)	2012	tr(3)	tr(3)	22	nd	4 [1]	47/48	47/48
-	2014	tr(6)	tr(6)	51	tr(4)	8 [3]	48/48	48/48
Pentabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	11	12	87	nd	11 [4]	43/49	43/49
Surface Water	2010	tr(1)	tr(1)	130	nd	3 [1]	25/49	25/49
(pg/L)	2011	5	4	180	nd	3 [1]	48/49	48/49
(pg/L)	2012	tr(1)	tr(1)	20	nd	2 [1]	32/48	32/48
	2014	nd	nd	39	nd	4 [2]	19/48	19/48
Hexabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean	Median	Maximum	Minimum	[Detection]	Sample	Site
ctilets		incan				limit		
	2009	tr(0.9)	tr(0.7)	18	nd	1.4 [0.6]	26/49	26/49
Surface Water	2010	nd	nd	51	nd	4 [2]	16/49	16/49
(pg/L)	2011	tr(1)	nd	39	nd	3 [1]	21/49	21/49
(pg/L)	2012	nd	nd	7	nd	3 [1]	6/48	6/48
	2014	nd	nd	8	nd	4 [1]	10/48	10/48
Heptabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	nd	nd	40	nd	4 [2]	9/49	9/49
C C W	2010	nd	nd	14	nd	3 [1]	17/49	17/49
Surface Water	2011	tr(1)	nd	39	nd	3 [1]	21/49	21/49
(pg/L)	2012	nd	nd	10	nd	4 [1]	9/48	9/48
	2014	nd	nd	8	nd	8 [3]	3/48	3/48
Oatahuama dinhansil	Manitanad	Coomotnio				Quantification	Detection	Frequency
Octabromodiphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	3.0	3.9	56	nd	1.4 [0.6]	37/49	37/49
	2010	tr(2)	tr(2)	69	nd	3 [1]	40/49	40/49
Surface Water	2011	4	3	98	nd	2 [1]	44/49	44/49
(pg/L)	2012	tr(2)	nd	35	nd	4 [2]	16/48	16/48
	2014	2.5	3.7	38	nd	1.6 [0.6]	33/48	33/48
N 1 1 1 1	M ' 1	C				Quantification	Detection	Frequency
Nonabromodiphenyl ethers	year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	
	2009	tr(46)	tr(38)	500	nd	91 [30]	32/49	32/49
G 0 TT	2010	tr(17)	tr(13)	620	nd	21 [7]	39/49	39/49
Surface Water	2011	33	24	920	nd	10 [4]	47/49	47/49
(pg/L)	2012	tr(21)	tr(19)	320	nd	40 [13]	30/48	30/48
	2014	37	38	590	nd	6 [2]	47/48	47/48
D 1 11 1						Quantification		Frequency
Decabromodiphenyl ether	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	tr(310)	tr(220)	3,400	nd	600 [200]	26/49	26/49
	2010	tr(250)	tr(200)	13,000	nd	300 [100]	31/49	31/49
Surface Water	2010	200	140	58,000	nd	60 [20]	45/49	45/49
(pg/L)	2011	tr(400)	tr(320)	12,000	nd	660 [220]	31/48	31/48
	2012	200	230	5,600	tr(14)	22 [9]	48/48	48/48
	2017	200	230	2,000	и(17)	22 [J]	10/10	10/70

<Sediment>

Tetrabromo diphenyl ethers: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 44 of the 63 valid sites adopting the detection limit of 9pg/g-dry, and the none of the detected concentrations exceeded 550 pg/g-dry.

Pentabromo diphenyl ethers: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 53 of the 63 valid sites adopting the detection limit of 2pg/g-dry, and the none of the detected concentrations exceeded 570pg/g-dry.

Hexabromo diphenyl ethers: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 50 of the 63 valid sites adopting the detection limit of 2pg/g-dry, and the none of the detected concentrations exceeded 730pg/g-dry.

Heptabromo diphenyl ethers: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 41 of the 63 valid sites adopting the detection limit of 6pg/g-dry, and the none of the detected concentrations exceeded 680pg/g-dry.

Octabromo diphenyl ethers: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 55 of the 63 valid sites adopting the detection limit of 4pg/g-dry, and the none of the detected concentrations exceeded 2,000pg/g-dry.

Nonabromo diphenyl ethers: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 60 of the 63 valid sites adopting the detection limit of 20pg/g-dry, and the none of the detected concentrations exceeded 42,000pg/g-dry.

Decabromo diphenyl ethers: The presence of the substance in sediment was monitored at 63 sites, and it was detected at 61 of the 63 valid sites adopting the detection limit of 80pg/g-dry, and the none of the detected concentrations exceeded 980,000pg/g-dry.

Stocktaking of the detection of Polybromodiphenyl ethers (Br₄~Br₁₀) in sediment during FY2009~2012 and FY2014

Tetrabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ethers:	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	tr(60)	tr(44)	1,400	nd	69 [23]	131/192	51/64
Sediment	2010	35	38	910	nd	6 [2]	57/64	57/64
	2011	32	30	2,600	nd	30 [10]	47/64	47/64
(pg/g-dry)	2012	27	37	4,500	nd	2 [1]	60/63	60/63
	2014	tr(24)	tr(19)	550	nd	27 [9]	44/63	44/63
Pentabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ethers	vear	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
ethers	yeai	ilicali				limit		
	2009	36	24	1,700	nd	24 [8]	146/192	57/64
Sediment	2010	26	23	740	nd	5 [2]	58/64	58/64
	2011	24	18	4,700	nd	5 [2]	62/64	62/64
(pg/g-dry)	2012	21	21	2,900	nd	2.4 [0.9]	62/63	62/63
	2014	16	14	570	nd	6 [2]	53/63	53/63
Hexabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ethers	vear	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
ctricis	ycai	incan				limit		
	2009	21	21	2,600	nd	5 [2]	139/192	53/64
Sediment	2010	23	23	770	nd	4 [2]	57/64	57/64
	2011	31	42	2,000	nd	9 [3]	52/64	52/64
(pg/g-dry)	2012	15	19	1,700	nd	3 [1]	48/63	48/63
	2014	21	27	730	nd	5 [2]	50/63	50/63

Heptabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	30	25	16,000	nd	9 [4]	125/192	51/64
Sediment	2010	28	18	930	nd	4 [2]	58/64	58/64
(pg/g-dry)	2011	29	32	2,400	nd	7 [3]	55/64	55/64
(pg/g-dry)	2012	34	32	4,400	nd	4 [2]	48/63	48/63
	2014	19	tr(14)	680	nd	16 [6]	41/63	41/63
Octabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	210	96	110,000	nd	1.2 [0.5]	182/192	63/64
Sediment	2010	71	76	1,800	nd	10 [4]	60/64	60/64
(pg/g-dry)	2011	57	64	36,000	nd	10 [4]	55/64	55/64
(pg/g-dry)	2012	78	74	15,000	nd	19 [6]	47/63	47/63
	2014	52	58	2,000	nd	12 [4]	55/63	55/63
Nonabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	1,100	710	230,000	nd	9 [4]	181/192	64/64
Sediment	2010	360	430	26,000	nd	24 [9]	60/64	60/64
(pg/g-dry)	2011	710	630	70,000	nd	23 [9]	62/64	62/64
(pg/g-dry)	2012	360	380	84,000	nd	34 [11]	52/63	52/63
	2014	470	470	42,000	nd	60 [20]	60/63	60/63
Decabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ether	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	6,000	4,800	880,000	tr(30)	60 [20]	192/192	64/64
Sediment	2010	5,100	4,200	700,000	nd	220 [80]	60/64	60/64
	2011	4,200	4,700	700,000	nd	40 [20]	62/64	62/64
(pg/g-dry)	2012	5,700	6,300	760,000	nd	270 [89]	60/63	60/63
	2014	5,600	5,000	980,000	nd	240 [80]	61/63	61/63

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

<Wildlife>

Tetrabromo diphenyl ethers: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 6pg/g-wet, and detection range was 33~140pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at all 19 valid areas adopting the detection limit of 6pg/g-wet, and the detection range was 18~1,300pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 6pg/g-wet, and the detection range was 78~480pg/g-wet.

Pentabromo diphenyl ethers: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 5pg/g-wet, and detection range was 18~41pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 18 of the 19 valid areas adopting the detection limit of 5pg/g-wet, and none of the detected concentrations exceeded 570pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 5pg/g-wet, and the detection range was 31~320pg/g-wet.

Hexabromo diphenyl ethers: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 4pg/g-wet, and detection range was 11~52pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 18 of the 19 valid areas adopting the detection limit of 4pg/g-wet, and none of the detected concentrations exceeded 1,100pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 4pg/g-wet, and the detection range was 42~680pg/g-wet.

Heptabromo diphenyl ethers: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 5pg/g-wet, and detected concentration was 13pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 10 of the 19 valid areas adopting the detection limit of 5pg/g-wet, and none of the detected concentrations exceeded 280pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at 1 of the 2 valid areas adopting the detection limit of 5pg/g-wet, and the detected concentration was 150pg/g-wet.

Octabromo diphenyl ethers: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 4pg/g-wet, and detection range was tr(5)~14pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 15 of the 19 valid areas adopting the detection limit of 4pg/g-wet, and none of the detected concentrations exceeded 540pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at 1 of the 2 valid areas adopting the detection limit of 4pg/g-wet, and the detected concentration was 140pg/g-wet.

Nonabromo diphenyl ethers: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 10pg/g-wet, and detection range was $tr(20)\sim110pg/g$ -wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 16 of the 19 valid areas adopting the detection limit of 10pg/g-wet, and none of the detected concentrations exceeded 40pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 10pg/g-wet, and the detection range was $tr(10)\sim tr(20)pg/g$ -wet.

Decabromo diphenyl ethers: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 60pg/g-wet, and detection range was tr(120)~570pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 13 of the 19 valid areas adopting the detection limit of 60pg/g-wet, and none of the detected concentrations exceeded 300pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at 1 of the 2 valid areas adopting the detection limit of 60pg/g-wet, and the detected concentration was tr(140)pg/g-wet.

Stocktaking of the detection of Polybromodiphenyl ethers (Br₄~Br₁₀) in wildlife during FY2008~2012 and FY2014

Tetrabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	73	61	380	20	5.9 [2.2]	31/31	7/7
D:1	2010	59	73	310	nd	43 [16]	5/6	5/6
Bivalves	2011	96	120	490	26	16 [6]	4/4	4/4
(pg/g-wet)	2012	59	44	190	24	19 [7]	5/5	5/5
	2014	56	38	140	33	15 [6]	3/3	3/3
	2008	120	110	1,300	9.8	5.9 [2.2]	85/85	17/17
Fish	2010	160	170	740	tr(16)	43 [16]	18/18	18/18
	2011	110	110	860	tr(9)	16 [6]	18/18	18/18
(pg/g-wet)	2012	120	140	650	tr(10)	19 [7]	19/19	19/19
	2014	150	160	1,300	18	15 [6]	19/19	19/19
	2008	170	190	1,200	32	5.9 [2.2]	10/10	2/2
D' 1	2010	140		270	72	43 [16]	2/2	2/2
Birds	2011			67	67	16 [6]	1/1	1/1
(pg/g-wet)	2012	73		110	49	19 [7]	2/2	2/2
	2014**	190		480	78	15 [6]	2/2	2/2

Bivalves 2010 32 37 98 tr(1) 16[5.9] 3 3 12[5] 1 1 1 1 1 1 1 1 1	31/31 6/6 4/4 5/5 3/3 72/85 16/18 17/18	7/7 6/6 4/4 5/5 3/3 16/17
Bivalves 2010 32 37 98 tr(9) 14 [6]	6/6 4/4 5/5 3/3 72/85 16/18 17/18	6/6 4/4 5/5 3/3
Bivalves	4/4 5/5 3/3 72/85 16/18 17/18	4/4 5/5 3/3
(pg/g-wet) 2011 51 60 160 tr(12) 15 [6] 4 2014 30 37 41 18 12 [5] 201 2008 30 37 280 nd 16 [5.9] 7 Fish 2010 51 54 200 nd 14 [6] 1 (pg/g-wet) 2011 39 39 300 nd 15 [6] 1 2012 37 54 180 nd 18 [6] 1 2014 41 47 570 nd 12 [5] 1 2008 150 130 440 52 16 [5.9] 1 Birds 2010 150 200 120 14 [6] 1 Birds 2011 110 110 15 [6] 1 (pg/g-wet) 2012 8.5 110 66 18 [6] 2 2014*** 100 8	5/5 3/3 72/85 16/18 17/18	5/5 3/3
2012 28 24 67 1185 18 67 18 18 69 18 69 18 69 18 69 18 69 18 69 18 69 18 69 18 69 18 69 18 69 18 69 18 69 18 69 18 69 19 16 82 17 18 18 19 19 19 19 19 19	3/3 72/85 16/18 17/18	3/3
Pish 2010 2011 39 39 300 30 37 41 18 12 5 5 12 5 14 5 5 5 14 5 5 5 14 5 5 5 14 5 5 5 5 5 5 5 5 5	72/85 16/18 17/18	
Fish 2010 51 54 200 nd 14 [6] 16 16 17 17 18 18 18 19 16 18 19 19 19 19 19 19 19	16/18 17/18	16/17
Pish	17/18	- U. I /
(pg/g-wet) 2011 39 39 300 nd 15 [6] 1 2014 41 47 570 nd 12 [5] 1 2008 150 130 440 52 16 [5.9] 1 Birds 2010 150 200 120 14 [6] 1 Birds 2011 110 110 15 [6] 1 2014** 100 320 31 12 [5] 1 Hexabromodiphenyl ethers Monitored year Geometric mean* Median Maximum Minimum Quantification [Detection] [Dimit Sa Bivalves 2010 8 16 26 nd 8 [3] 3 3 (pg/g-wet) 2011 38 41 81 20 10 [4] 2 10 [4] 2 10 [4] 4 10 [4] 4 10 [4] 4 10 [4] 4 10 [4] 4 10 [4] 4		16/18
Birds 2014 41 47 570 nd 12 [5] 1	17/19	17/18
Birds 2010 150 200 120 14 [6]		17/19
Birds	18/19	18/19
Birds	10/10	2/2
Part	2/2	2/2
Hexabromodiphenyl ethers	1/1	1/1
Hexabromodiphenyl ethers	2/2	2/2
Hexabromodiphenyl ethers	2/2	2/2
Monitored Geometric ethers Median Median Maximum Minimum [Detection] Ilimit Median Maximum Minimum Minimum [Detection] Median Maximum Minimum Mi	etection Fr	
Bivalves (pg/g-wet) 2010 8 16 26 nd 8 [3] (pg/g-wet) 2011 38 41 81 20 10 [4] 2012 21 23 130 tr(6) 10 [4] 2014 23 21 52 11 10 [4] Fish 2010 39 47 400 nd 14 [5.0] 8 Fish 2010 39 47 400 nd 8 [3] 16 (pg/g-wet) 2011 53 50 430 nd 10 [4] 1 2014 60 61 1,100 nd 10 [4] 1 2014 60 61 1,100 nd 10 [4] 1 Birds 2010 110 140 86 8 [3] Birds 2011 96 96 10 [4] 4 2012 150 320 72 10 [4	Sample	Site
Bivalves (pg/g-wet) 2010 8 16 26 nd 8 [3] (pg/g-wet) 2011 38 41 81 20 10 [4] 2012 21 23 130 tr(6) 10 [4] 2014 23 21 52 11 10 [4] Fish 2010 39 47 400 nd 14 [5.0] 8 Fish 2010 39 47 400 nd 8 [3] 16 (pg/g-wet) 2011 53 50 430 nd 10 [4] 1 2014 60 61 1,100 nd 10 [4] 1 2014 60 61 1,100 nd 10 [4] 1 Birds 2010 110 140 86 8 [3] Birds 2011 96 96 10 [4] 4 2012 150 320 72 10 [4	31/31	7/7
(pg/g-wet) 2011 38 41 81 20 10 [4] (pg/g-wet) 2012 21 23 130 tr(6) 10 [4] 2014 23 21 52 11 10 [4] 2008 46 51 310 nd 14 [5.0] 8 2010 39 47 400 nd 8 [3] 10 [4] 11 [2014 60 61 1,100 nd 10 [4] 11 [2014 60 86 8 [3] 11 [4/6	4/6
Composition	4/4	4/4
2014 23 21 52 11 10 [4]	5/5	5/5
Fish 2010 39 47 400 nd 14 [5.0] 8 [7] [7] [7] [8] [7] [7] [8] [7] [8] [7] [7] [8] [7] [7] [8] [7] [7] [7] [7] [7] [7] [7] [7] [7] [7	3/3	3/3
Fish (pg/g-wet) 2010 39 47 400 nd 8 [3] 10 [4] 11 [10	83/85	17/17
Pish	16/18	16/18
Comparison of the comparison	17/18	17/18
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18/19	18/19
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18/19	18/19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10/10	2/2
Birds	2/2	2/2
Comparison	1/1	1/1
	2/2	2/2
	2/2	2/2
Median Maximum Minimum [Detection] Sa	etection Fr	
Bivalves (pg/g-wet) 2012 tr(8) tr(8.5) tr(7.6) 35 nd 18 [6.7] 2 2010 nd nd tr(10) nd 30 [10] 2011 14 26 44 nd 11 [4] 2012 tr(8) tr(6) 59 nd 12 [5]	Sample	Site
Bivalves (pg/g-wet) 2010 nd nd tr(10) nd 30 [10] 2011 14 26 44 nd 11 [4] 2012 tr(8) tr(6) 59 nd 12 [5]	20/31	7/7
(pg/g-wet) 2011 14 26 44 nd 11 [4] 2012 tr(8) tr(6) 59 nd 12 [5]	1/6	1/6
(pg/g-wet) 2012 $tr(8)$ $tr(6)$ 59 nd 12 [5]	3/4	3/4
	3/5	3/5
	1/3	1/3
	44/85	10/17
2010 nd nd 40 nd 30 [10]	4/18	4/18
FISH 2011 13 21 130 nd 11 [4] 1	13/18	13/18
(DG/G-W/21)	11/19	11/19
	10/19	10/19
	10/19	2/2
2010 tr(10) 70 pd 20[10]	1/2	1/2
Birds 2011 44 44 11 [4]		1/1
	1/1	2/2
2012 03 280 14 12 [5] 2014** 19 150 nd 12 [5]	1/1 2/2	

0.41 1.1 1	M 2 1	C				Quantification	Detection	Frequency
Octabromodiphenyl ethers	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2008	nd	nd	10	nd	9.6 [3.6]	15/31	6/7
Bivalves	2010	nd	nd	tr(10)	nd	11 [4]	2/6	2/6
(pg/g-wet)	2011	7	9	29	nd	7 [3]	3/4	3/4
(pg/g-wet)	2012	8	tr(7)	25	nd	8 [3]	4/5	4/5
	2014	tr(9.2)	11	14	tr(5)	11 [4]	3/3	3/3
	2008	tr(5.7)	nd	73	nd	9.6 [3.6]	35/85	7/17
T21-1.	2010	tr(6)	nd	100	nd	11 [4]	8/18	8/18
Fish	2011	tr(6)	tr(7)	150	nd	7 [3]	10/18	10/18
(pg/g-wet)	2012	tr(7)	8	160	nd	8 [3]	12/19	12/19
	2014	14	13	540	nd	11 [4]	15/19	15/19
	2008	42	41	64	30	9.6 [3.6]	10/10	2/2
D' 1	2010	41		65	26	11 [4]	2/2	2/2
Birds	2011			66	66	7 [3]	1/1	1/1
(pg/g-wet)	2012	130		420	40	8 [3]	2/2	2/2
	2014**	17		140	nd	11 [4]	1/2	1/2
Nonohuomo dinhonvil	Manitanad	Caamatuia				Quantification	Detection	Frequency
Nonabromodiphenyl ethers	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
ethers		Illean				limit		
	2008	nd	nd	tr(23)	nd	35 [13]	5/31	1/7
Bivalves	2010	tr(16)	tr(15)	60	nd	30 [10]	5/6	5/6
(pg/g-wet)	2011	tr(12)	tr(11)	40	nd	22 [9]	3/4	3/4
(pg/g-wet)	2012	tr(15)	25	45	nd	24 [9]	3/5	3/5
	2014	40	tr(20)	110	tr(20)	30 [10]	3/3	3/3
	2008	nd	nd	tr(15)	nd	35 [13]	2/85	2/17
Fish	2010	nd	nd	40	nd	30 [10]	3/18	3/18
(pg/g-wet)	2011	nd	nd	tr(15)	nd	22 [9]	5/18	5/18
(PB/B Well)	2012	nd	nd	54	nd	24 [9]	9/19	9/19
	2014	tr(10)	tr(20)	40	nd	30 [10]	16/19	16/19
	2008	tr(21)	tr(20)	tr(33)	nd	35 [13]	9/10	2/2
Birds	2010	32		50	tr(20)	30 [10]	2/2	2/2
(pg/g-wet)	2011			62	62	22 [9]	1/1	1/1
(PB/B Well)	2012	100		150	67	24 [9]	2/2	2/2
	2014**	tr(10)		tr(20)	tr(10)	30 [10]	2/2	2/2
Decabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ether	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
			1	(150)	,	limit	0/21	2 /5
	2008	nd	nd	tr(170)	nd	220 [74]	8/31	3/7
Bivalves	2010	nd	nd	tr(190)	nd	270 [97]	2/6	2/6
(pg/g-wet)	2011	nd	nd	240	nd	230 [80]	1/4	1/4
400	2012	120	170	480	nd	120 [50]	4/5	4/5
	2014	220	tr(150)	570	tr(120)	170 [60]	3/3	3/3
	2008	nd	nd	230	nd	220 [74]	5/76	4/16
Fish	2010	nd	nd	tr(150)	nd	270 [97]	2/18	2/18
(pg/g-wet)	2011	nd	nd	tr(90)	nd	230 [80]	2/18	2/18
400	2012	tr(59)	tr(60)	380	nd	120 [50]	11/19	11/19
	2014	tr(75)	tr(70)	300	nd nd	170 [60]	13/19	13/19
	2008	nd	nd	tr(110)	nd	220 [74]	4/10	1/2
Birds	2010	nd		nd	nd	270 [97]	0/2	0/2
(pg/g-wet)	2011			tr(170)	tr(170)	230 [80]	1/1	1/1
(100)	2012	250		260	240	120 [50]	2/2	2/2
	2014**	tr(65)		tr(140)	nd	170 [60]	1/2	1/2

⁽Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

⁽Note 2) "**": There is no consistency between the results of the ornithological survey in FY2014 and those in previous years because of the changes in the survey sites and target species.

<Air>

Tetrabromo diphenyl ethers: The presence of the substance in air was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of 0.09pg/m³, and the detection range was tr(0.09)~2.3 pg/m³.

Pentabromo diphenyl ethers: The presence of the substance in air was monitored at 36 sites, and it was detected at 25 of the 36 valid sites adopting the detection limit of 0.09pg/m³, and none of the detected concentrations exceeded 0.80pg/m³.

Hexabromo diphenyl ethers: The presence of the substance in air was monitored at 36 sites, and it was detected at 5 of the 36 valid sites adopting the detection limit of 0.1pg/m^3 , and none of the detected concentrations exceeded 0.4pg/m^3 .

Heptabromo diphenyl ethers: The presence of the substance in air was monitored at 36 sites, and it was detected at 2 of the 36 valid sites adopting the detection limit of $0.2pg/m^3$, and none of the detected concentrations exceeded $tr(0.4)pg/m^3$.

Octabromo diphenyl ethers: The presence of the substance in air was monitored at 36 sites, and it was detected at 22 of the 36 valid sites adopting the detection limit of 0.1pg/m³, and none of the detected concentrations exceeded 0.7pg/m³.

Nonabromo diphenyl ethers: The presence of the substance in air was monitored at 36 sites, and it was detected at 7 of the 36 valid sites adopting the detection limit of 1pg/m³, and none of the detected concentrations exceeded tr(3)pg/m³.

Decabromo diphenyl ethers: The presence of the substance in air was monitored at 36 sites, and it was detected at 24 of the 36 valid sites adopting the detection limit of 3pg/m³, and none of the detected concentrations exceeded 64pg/m³.

Stocktaking of the detection of Polybromodiphenyl ethers (Br₄~Br₁₀) in air during FY2009~2012 and FY2014

Tetrabromo		Geometric		•		Quantification	Detection l	requency
diphenyl ethers:	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	0.89	0.80	18	0.11	0.11.50.041	37/37	37/37
	2009 Cold season	0.40	0.37	7.1	tr(0.04)	0.11 [0.04]	37/37	37/37
	2010 Warm season	0.79	0.57	50	0.15	0.12 [0.05]	37/37	37/37
Air	2010 Cold season	0.40	0.35	25	tr(0.09)	0.12 [0.03]	37/37	37/37
	2011 Warm season	0.80	0.72	9.3	tr(0.11)	0.18 [0.07]	35/35	35/35
(pg/m^3)	2011 Cold season	0.36	0.34	7.0	nd	0.18 [0.07]	35/37	35/37
	2012 Warm season	0.7	0.7	5.7	nd	0.2 [0.1]	35/36	35/36
	2012 Cold season	tr(0.2)	tr(0.2)	1.7	nd	0.3 [0.1]	25/36	25/36
	2014 Warm season	0.53	0.47	2.3	tr(0.09)	0.28 [0.09]	36/36	36/36
Pentabromo		Geometric				Quantification	Detection l	requency
diphenyl ethers	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	0.20	0.19	18	nd	0.16 [0.06]	33/37	33/37
	2009 Cold season	0.19	0.16	10	nd	0.16 [0.06]	29/37	29/37
	2010 Warm season	0.20	0.17	45	nd	0.12 [0.05]	35/37	35/37
A :	2010 Cold season	0.20	0.22	28	nd	0.12 [0.05]	34/37	34/37
Air $(n\alpha/m^3)$	2011 Warm season	0.19	0.17	8.8	nd	0.16 [0.06]	31/35	31/35
(pg/m ³)	2011 Cold season	0.16	tr(0.14)	2.6	nd	0.16 [0.06]	31/37	31/37
	2012 Warm season	tr(0.13)	tr(0.12)	2.4	nd	0.14.00.061	30/36	30/36
	2012 Cold season	tr(0.09)	tr(0.09)	0.77	nd	0.14 [0.06]	26/36	26/36
	2014 Warm season	tr(0.13)	tr(0.14)	0.80	nd	0.28 [0.09]	25/36	25/36

Hexabromo		Geometric				Quantification	Detection 1	Frequency
diphenyl ethers	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	tr(0.11)	tr(0.11)	2.0	nd	0.22 [0.09]	19/37	19/37
	2009 Cold season	tr(0.20)	0.22	27	nd		24/37	24/37
	2010 Warm season	tr(0.14)	tr(0.13)	4.9	nd	0.16 [0.06]	29/37	29/37
Air	2010 Cold season	0.24	0.27	5.4	nd		31/37	31/37
(pg/m^3)	2011 Warm season	tr(0.11)	tr(0.10)	1.2	nd	0.14 [0.05]	28/35	28/35
(pg/m)	2011 Cold season	0.16	0.18	1.7	nd		30/37	30/37
	2012 Warm season	nd	nd	3.1	nd	0.3 [0.1]	9/36	9/36
	2012 Cold season	tr(0.1)	tr(0.1)	0.5	nd		22/36	22/36
	2014 Warm season	nd	nd	0.4	nd	0.4 [0.1]	5/36	5/36
Heptabromo diphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
	2009 Warm season	tr(0.1)	nd	1.7	nd	0.2 [0.1]	17/37	17/37
	2009 Cold season	tr(0.2)	0.3	20	nd	0.3 [0.1]	25/37	25/37
	2010 Warm season	tr(0.2)	tr(0.1)	1.4	nd	0.2 [0.1]	24/37	24/37
A :	2010 Cold season	0.3	0.4	11	nd	0.3 [0.1]	28/37	28/37
Air $(n\alpha/m^3)$	2011 Warm season	tr(0.1)	tr(0.1)	1.1	nd	0.2 [0.1]	20/35	20/35
(pg/m^3)	2011 Cold season	tr(0.2)	tr(0.2)	2.3	nd	0.3 [0.1]	25/37	25/37
	2012 Warm season	nd	nd	1.8	nd	0.5.[0.2]	6/36	6/36
	2012 Cold season	nd	nd	0.7	nd	0.5 [0.2]	8/36	8/36
	2014 Warm season	nd	nd	tr(0.4)	nd	0.7 [0.2]	2/36	2/36
Octabromo		Geometric				Quantification	Detection 1	Frequency
diphenyl ethers	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	tr(0.2)	0.3	1.6	nd	0.3 [0.1]	23/37	23/37
	2009 Cold season	0.3	0.4	7.1	nd		26/37	26/37
	2010 Warm season	0.25	0.30	2.3	nd	0.15 [0.06]	30/37	30/37
Air	2010 Cold season	0.40	0.52	6.9	nd		32/37	32/37
(pg/m^3)	2011 Warm season	0.24	0.31	1.9	nd	0.20 [0.08]	27/35	27/35
(PB)	2011 Cold season	0.35	0.44	7.0	nd		30/37	30/37
	2012 Warm season	tr(0.2)	tr(0.2)	1.2	nd	0.3 [0.1]	29/36	29/36
	2012 Cold season	0.3	0.4	1.2	nd		30/36	30/36
	2014 Warm season	tr(0.11)	tr(0.10)	0.7	nd	0.4 [0.1]	22/36	22/36
Nonabromo diphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection l Sample	Frequency Site
	2009 Warm season	tr(0.7)	tr(0.7)	3.0	nd	1.8 [0.6]	22/37	22/37
	2009 Cold season	tr(1.0)	tr(0.8)	3.9	nd		27/37	27/37
	2010 Warm season	nd	nd	24	nd	3.7 [1.2]	12/37	12/37
Air	2010 Cold season	tr(1.2)	tr(1.3)	7.1	nd	J. / [1.2]	22/37	22/37
(pg/m^3)	2011 Warm season	tr(0.8)	0.9	3.9	nd	0.9 [0.4]	29/35	29/35
(PS/III)	2011 Cold season	1.1	1.1	14	nd	U.7 [U.7]	30/37	30/37
	2012 Warm season	tr(0.5)	tr(0.5)	5.1	nd	1.2 [0.4]	24/36	24/36
	2012 Cold season	tr(0.9)	tr(1.1)	4.7	nd		30/36	30/36
	2014 Warm season	nd	nd	tr(3)	nd	4 [1]	7/36	7/36
Decabromo		Geometric				Quantification	Detection 1	Frequency
diphenyl ether	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	tr(7)	tr(9)	31	nd	16 [5]	28/37	28/37
	2009 Cold season	tr(10)	tr(11)	45	nd		29/37	29/37
	2010 Warm season	nd	nd	290	nd	27 [9.1]	10/37	10/37
Air	2010 Cold season	tr(11)	tr(12)	88	nd		21/37	21/37
(pg/m^3)	2011 Warm season	tr(8.2)	tr(9.0)	30	nd	12 [4.0]	31/35	31/35
(PS/III)	2011 Cold season	tr(8.4)	tr(9.0)	44	<u>nd</u>		29/37	29/37
	2012 Warm season	nd	nd	31	nd	16 [5]	17/36	17/36
	2012 Cold season	tr(10)	tr(12)	73	nd		28/36	28/36
	2014 Warm season	tr(4.7)	tr(5.0)	64	nd	9 [3]	24/36	24/36

[15] Perfluorooctane sulfonic acid (PFOS)

· History and state of monitoring

Perfluorooctane sulfonic acid (PFOS) has been used as water repellent agent, oil repellent agent and surface acting agent. Perfluorooctane sulfonic acid (PFOS) was adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009. The substance was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY2009, and in wildlife (bivalves, fish and birds) and air in FY2010~2012, and FY2014 and in air in FY2013.

The survey of the Perfluorooctane sulfonic acid (PFOS) only monitored linear octyl Perfluorooctane sulfonic acid (PFOS).

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 48 sites, and it was detected at 47 of the 48 valid sites adopting the detection limit of 20pg/L, and none of the detected concentrations exceeded 7,500 pg/L.

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in surface water during FY2009~2012 and FY2014

Perfluorooctane	Monitored	Geometric				Quantification	Detection 1	Frequency
sulfonic acid (PFOS)	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	730	580	14,000	tr(26)	37 [14]	49/49	49/49
C C W	2010	490	380	230,000	tr(37)	50 [20]	49/49	49/49
Surface Water	2011	480	360	10,000	tr(20)	50 [20]	49/49	49/49
(pg/L)	2012	550	510	14,000	39	31 [12]	48/48	48/48
	2014	460	410	7,500	nd	50 [20]	47/48	47/48

<Sediment>

The presence of the substance in sediment was monitored at 63 sites, and it was detected at 62 of the 63 valid sites adopting the detection limit of 2pg/g-dry, and none of the detected concentrations exceeded 980pg/g-dry.

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in sediment during FY2009~2012 and FY2014

Perfluorooctane	Monitored	Geometric	N 1.	M .	Μ	Quantification	Detection I	Frequency
sulfonic acid (PFOS)	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	78	97	1,900	nd	9.6 [3.7]	180/190	64/64
G 1' 4	2010	82	100	1,700	tr(3)	5 [2]	64/64	64/64
Sediment	2011	92	110	1,100	nd	5 [2]	63/64	63/64
(pg/g-dry)	2012	68	84	1,200	tr(7)	9 [4]	63/63	63/63
	2014	59	79	980	nd	5 [2]	62/63	62/63

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 2pg/g-wet, and none of the detected concentrations exceeded 93pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 18 of the 19 valid areas adopting the detection limit of 2pg/g-wet, and none of the detected concentrations exceeded 4,600pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was not detected at all 2 valid areas adopting the detection limit of 2pg/g-wet., and the detection range was 190~110,000pg/g-wet.

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in wildlife during FY2009~2012 and FY2014

Perfluorooctane	Monitored	Geometric	3.6.1		3.61.1	Quantification	Detection 1	Frequency
sulfonic acid (PFOS)	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	24	28	640	nd	19 [7.4]	17/31	5/7
D:1	2010	72	85	680	nd	25 [9.6]	5/6	5/6
Bivalves	2011	38	44	100	16	10 [4]	4/4	4/4
(pg/g-wet)	2012	27	21	160	tr(4)	7 [3]	5/5	5/5
	2014	8	6	93	nd	5 [2]	2/3	2/3
	2009	220	230	15,000	nd	19 [7.4]	83/90	17/18
E' 1	2010	390	480	15,000	nd	25 [9.6]	17/18	17/18
Fish	2011	82	95	3,200	nd	10 [4]	16/18	16/18
(pg/g-wet)	2012	110	130	7,300	tr(5)	7 [3]	19/19	19/19
	2014	82	83	4,600	nd	5 [2]	18/19	18/19
	2009	300	360	890	37	19 [7.4]	10/10	2/2
D' 1	2010	1,300		3,000	580	25 [9.6]	2/2	2/2
Birds	2011			110	110	10 [4]	1/1	1/1
(pg/g-wet)	2012	160		410	63	7 [3]	2/2	2/2
	2014**	4,600		110,000	190	5 [2]	2/2	2/2

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

<Air>

The presence of the substance in air was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of $0.06 pg/m^3$, and the detection range was $0.52 \sim 8.6 pg/m^3$.

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in wildlife in FY2010~2014

Perfluorooct ane sulfonic		Geometric				Quantification	Detection 1	Frequency
acid (PFOS)	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2010 Warm season	5.2	5.9	14	1.6	0.4.[0.1]	37/37	37/37
	2010 Cold season	4.7	4.4	15	1.4	0.4 [0.1]	37/37	37/37
	2011 Warm season	4.4	4.2	10	0.9	0.5.[0.2]	35/35	35/35
	2011 Cold season	3.7	3.8	9.5	1.3	0.5 [0.2]	37/37	37/37
	2012 Warm season	3.6	3.8	8.9	1.3	0.5.[0.2]	36/36	36/36
(ng/m ³)	2012 Cold season	2.7	3.0	5.9	1.0	0.5 [0.2]	36/36	36/36
	2013 Warm season	4.6	5.2	9.6	1.2	0.2 [0.1]	36/36	36/36
	2013 Cold season	3.7	3.9	7.4	1.6	0.3 [0.1]	36/36	36/36
	2014 Warm season	3.1	3.2	8.6	0.52	0.17 [0.06]	36/36	36/36

⁽Note 2) No monitoring was conducted during FY2013.

⁽Note 3) " ** ": There is no consistency between the results of the ornithological survey in FY2014 and those in previous years because of the changes in the survey sites and target species.

[16] Perfluorooctanoic acid (PFOA)

· History and state of monitoring

Perfluorooctanoic acids (PFOA) have been used as water repellent agent, oil repellent agent and surface acting agent. Perfluorooctanoic acids (PFOA) were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009.

The substances were measured in surface water, sediment and wildlife in FY2002, 2003, 2004, 2005 under the framework of "the Environmental Survey and Monitoring of Chemicals".

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY2009, and in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2010~2012, FY2014 and in air in FY2013.

The survey of the Perfluorooctanoic acid (PFOA) only monitored linear octyl Perfluorooctanoic acid (PFOA). However, it remains possible that the survey in wildlife monitored isomer of branched-chain Perfluorooctanoic acid (PFOA).

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 20pg/L, and the detection range was 140~26,000 pg/L.

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in surface water during FY2009~2012 and FY2014

Perfluorooctanoic	Monitored	Geometric				Quantification	Detection 1	Frequency
acid(PFOA)	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	1,600	1,300	31,000	250	59 [23]	49/49	49/49
Surface Water	2010	2,700	2,400	23,000	190	60 [20]	49/49	49/49
	2011	2,000	1,700	50,000	380	50 [20]	49/49	49/49
(pg/L)	2012	1,400	1,100	26,000	240	170 [55]	48/48	48/48
	2014	1,400	1,400	26,000	140	50 [20]	48/48	48/48

<Sediment>

The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 5pg/g-dry, the detection range was tr(6)~190 pg/g-dry.

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in sediment during FY2009~FY 2012 and FY2014

Perfluorooctanoic acid(PFOA)	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] limit	Detection l Sample	Frequency Site
	2009	27	24	500	nd	8.3 [3.3]	182/190	64/64
C - 1:4	2010	28	33	180	nd	12 [5]	62/64	62/64
Sediment	2011	100	93	1,100	22	5 [2]	64/64	64/64
(pg/g-dry)	2012	51	48	280	12	4 [2]	63/63	63/63
	2014	44	50	190	tr(6)	11 [5]	63/63	63/63

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 2 of the 3 valid areas adopting the detection limit of 3pg/g-wet, and none of the detected concentrations exceeded 10pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 11 of the 19 valid areas adopting the detection limit of 3pg/g-wet, and none of the detected concentrations exceeded 85pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was not detected at 1 of the 2 valid areas adopting the detection limit of 3pg/g-wet., and the detection concentration was 2,600pg/g-wet.

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in wildlife (bivalves, fish and birds) during FY2009~2012 and FY2014

Perfluorooctanoic	Monitored	Geometric		•		Quantification	Detection l	requency
acid(PFOA)	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009	tr(20)	tr(21)	94	nd	25 [9.9]	27/31	7/7
Bivalves (pg/g-wet)	2010	28	33	76	nd	26 [9.9]	5/6	5/6
	2011	tr(19)	tr(22)	tr(40)	nd	41 [14]	3/4	3/4
	2012	tr(21)	tr(23)	46	nd	38 [13]	4/5	4/5
	2014	tr(4)	tr(6)	10	nd	10 [3]	2/3	2/3
	2009	tr(23)	tr(19)	490	nd	25 [9.9]	74/90	17/18
E:-1.	2010	tr(13)	tr(11)	95	nd	26 [9.9]	13/18	13/18
Fish	2011	nd	nd	51	nd	41 [14]	7/18	7/18
(pg/g-wet)	2012	tr(35)	tr(32)	86	nd	38 [13]	18/19	18/19
	2014	tr(6)	tr(4)	85	nd	10 [3]	11/19	11/19
	2009	32	29	58	tr(16)	25 [9.9]	10/10	2/2
D' 1	2010	38		48	30	26 [9.9]	2/2	2/2
Birds (pg/g-wet)	2011			nd	nd	41 [14]	0/1	0/1
	2012	tr(27)		tr(28)	tr(26)	38 [13]	2/2	2/2
	2014**	62		2,600	nd	10 [3]	1/2	1/2

⁽Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

<Air>

The presence of the substance in air was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of 0.1pg/m³, and the detection range was 5.4~210pg/m³.

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in air during FY2010~2014

Perfluorooct		Geometric				Quantification	Detection 1	Frequency
anoic acid (PFOA)	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2010 Warm season	25	26	210	4.0	0.5 [0.2]	37/37	37/37
	2010 Cold season	14	14	130	2.4	4	37/37	37/37
	2011 Warm season	20	18	240	tr(3.5)	(5.4 [1.8]	35/35	35/35
Air	2011 Cold season	12	11	97	nd		36/37	36/37
	2012 Warm season	11	12	120	1.9	0.7 [0.2]	36/36	36/36
(pg/m^3)	2012 Cold season	6.9	6.0	48	1.6		36/36	36/36
	2013 Warm season	23	23	190	3.2	1.8 [0.6]	36/36	36/36
	2013 Cold season	14	14	53	3.0		36/36	36/36
	2014 Warm season	28	29	210	5.4	0.4 [0.1]	36/36	36/36

⁽Note 2) No monitoring was conducted during FY2013.

⁽Note 3) " ** ": There is no consistency between the results of the ornithological survey in FY2014 and those in previous years because of the changes in the survey sites and target species.

[17] Pentachlorobenzene

· History and state of monitoring

Pentachlorobenzene have been used as flame retardants and pesticide. It was historically never registered under the Agricultural Chemicals Regulation Law. The pentachlorobenzene is produced as a by-product when agricultural chemicals are produced. In addition, it is generated unintentionally at the time of combustion. Pentachlorobenzene was adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2007, FY2010~2014 and air in FY2009.

· Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 48 sites, and it was detected at all 48 valid sites adopting the detection limit of 0.3pg/L, and the detection range was 2.8~180pg/L.

Stocktaking of the detection of Pentachlorobenzene in surface water in FY2007, FY2010~FY2014

Penta chloro	Monitored	Geometric				Quantification	Detection	Frequency
benzene	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	nd	nd	nd	nd	3,300 [1,300]	0/48	0/48
	2010	8	5	100	tr(1)	4[1]	49/49	49/49
Surface Water	2011	11	11	170	2.6	2.4 [0.9]	49/49	49/49
(pg/L)	2012	14	11	170	3	3 [1]	48/48	48/48
40)	2013	12	10	170	tr(3)	4 [1]	48/48	48/48
	2014	10	7.0	180	2.8	0.8 [0.3]	48/48	48/48

<Sediment>

The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.8pg/g-dry, the detection range was tr(1.2)~3,600 pg/g-dry.

Stocktaking of the detection of Pentachlorobenzene in sediment in FY2007, FY2010~FY2014

Penta chloro	Monitored	Geometric				Quantification	Detection	Frequency
benzene	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	tr(46)	nd	2,400	nd	86 [33]	79/19	35/64
	2010	90	95	4,200	1.0	0.9 [0.3]	64/64	64/64
Sediment	2011	95	76	4,500	3	5 [2]	64/64	64/64
(pg/g-dry)	2012	33	33	1,100	nd	2.5 [0.8]	62/63	62/63
	2013	84	98	3,800	2.2	2.1 [0.7]	63/63	63/63
	2014	70	78	3,600	tr(1.2)	2.4 [0.8]	63/63	63/63

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2007.

<Wildlife>

The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 3.1pg/g-wet, and the detection range was 10~23pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 18 of the 19 valid areas adopting the detection limit of 3.1pg/g-wet, and none of the detected concentrations exceeded 280 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 3.1pg/g-wet, and the detection range was tr(5.6)~560 pg/g-wet.

Stocktaking of the detection of Pentachlorobenzene in in wildlife (bivalves, fish and birds) in FY2007, FY2010 \sim FY2014

Penta chloro	Monitored	Geometric				Quantification	Detection	Frequency
benzene	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007	nd	nd	tr(150)	nd	180 [61]	1/31	1/7
	2010	18	16	110	5.9	1.9 [0.7]	6/6	6/6
Bivalves	2011	28	16	260	10	4 [1]	4/4	4/4
(pg/g-wet)	2012	16	9.7	110	tr(5.8)	8.1 [2.7]	5/5	5/5
	2013	nd	nd	87	nd	78 [26]	1/5	1/5
	2014	14	11	23	10	9.3 [3.1]	3/3	3/3
	2007	nd	nd	480	nd	180 [61]	36/80	10/16
	2010	42	37	230	5.6	1.9 [0.7]	18/18	18/18
Fish	2011	36	37	220	5	4 [1]	18/18	18/18
(pg/g-wet)	2012	29	37	190	tr(5.0)	8.1 [2.7]	19/19	19/19
	2013	tr(35)	tr(40)	160	nd	78 [26]	11/19	11/19
	2014	38	51	280	nd	9.3 [3.1]	18/19	18/19
	2007	tr(140)	tr(140)	210	tr(89)	180 [61]	10/10	2/2
	2010	91		170	49	1.9 [0.7]	2/2	2/2
Birds	2011			52	52	4[1]	1/1	1/1
(pg/g-wet)	2012	77		130	46	8.1 [2.7]	2/2	2/2
	2013**	300		390	230	78 [26]	2/2	2/2
	2014**	56		560	tr(5.6)	9.3 [3.1]	2/2	2/2
T . 1) + 22 A 1	.•	1 1	1 , 1 C	1	1 1 1 1		1 C 11	• .

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2007.

<Air>

The presence of the substance in air was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of 0.3pg/m^3 , and the detection range was $39 \sim 210 \text{ pg/m}^3$.

Stocktaking of the detection of Pentachlorobenzene in air in FY2007, FY2009~FY2014

Penta		Geometric				Quantification	Detection 1	Frequency
chloro benzene	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2007 Warm season	85	83	310	18	12 [4 9]	78/78	26/26
	2007 Cold season	60	55	220	27	12 [4.8]	75/75	25/25
	2009 Warm season	63	64	210	20	6.4 [2.5]	111/111	37/37
	2009 Cold season	25	22	120	tr(5.0)	0.4 [2.3]	111/111	37/37
	2010 Warm season	68	73	140	36	1.2 [0.5]	37/37	37/37
Air	2010 Cold season	70	69	180	37	1.2 [0.3]	37/37	37/37
(pg/m^3)	2011 Warm season	61	60	140	30	2.1.[0.70]	35/35	35/35
(pg/III)	2011 Cold season	59	57	180	26	2.1 [0.70]	37/37	37/37
	2012 Warm season	58	57	150	31	1 9 [0 6]	36/36	36/36
	2012 Cold season	55	55	120	27	1.8 [0.6]	36/36	36/36
	2013 Warm season	55	58	160	27	1 7 [0 6]	36/36	36/36
	2013 Cold season	55	52	110	34	1.7 [0.6]	36/36	36/36
	2014 Warm season	83	86	210	39	0.9 [0.3]	36/36	36/36

(Note) No monitoring was conducted in FY2008.

⁽Note 2) " ** ": There is no consistency between the results of the ornithological survey in FY2013 and FY2014 and those in previous years because of the changes in the survey sites and target species.

⁽Note 3) No monitoring was conducted during FY2008~2009.

[18] Endosulfans

· History and state of monitoring

Endosulfans have been used as an organochlorine insecticide chemical. Endosulfans were listed under the Convention at the COP5 of the Stockholm Convention on Persistent Organic Pollutants in April 2011.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2011 and FY2012, in wildlife (bivalves, fish and birds) and air in FY2014.

· Monitoring results

< Wildlife >

 α -Endosulfan: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 20pg/g-wet, and the detection concentration was 130pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 1 of the 19 valid areas adopting the detection limit of 20pg/g-wet, and the detection concentration was tr(30)pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was not detected at all 2 valid areas adopting the detection limit of 20pg/g-wet.

 β - Endosulfan: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 6pg/g-wet, and the detection concentration was 23pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 3 of the 19 valid areas adopting the detection limit of 6pg/g-wet, and and none of the detected concentrations exceeded tr(8)pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at 1 of the 2 valid areas adopting the detection limit of 6pg/g-wet, and the detection concentration was tr(8)pg/g-wet.

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in wildlife (bivalves, fish and birds) in FY2011~FY2012 and FY2014

	Monitored	Geometric				Quantification	Detection 1	Frequency
α-Endosulfan	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Bivalves	2011	62	120	330	nd	50 [20]	3/4	3/4
	2012	tr(54)	tr(61)	200	nd	71 [24]	4/5	4/5
(pg/g-wet)	2014	tr(20)	nd	130	nd	60 [20]	1/3	1/3
Fish	2011	tr(20)	tr(20)	140	nd	50 [20]	10/18	10/18
	2012	nd	nd	tr(54)	nd	71 [24]	6/19	6/19
(pg/g-wet)	2014	nd	nd	tr(30)	nd	60 [20]	1/19	1/19
Birds	2011			nd	nd	50 [20]	0/1	0/1
	2012	nd		nd	nd	71 [24]	0/2	0/2
(pg/g-wet)	2014*	nd		nd	nd	60 [20]	0/2	0/2
	Monitored	Geometric				Quantification	Detection 1	Frequency
β -Endosulfan	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
D' 1	2011	16	26	52	4	11 [4]	4/4	4/4
Bivalves	2012	15	16	43	nd	14 [5]	4/5	4/5
(pg/g-wet)	2014	nd	nd	23	nd	19 [6]		1/3
Fish	2011	nd	nd	37	nd	11 [4]	9/18	9/18
	2012	nd	nd	15	nd	14 [5]	6/19	6/19
(pg/g-wet)	2014	nd	nd	tr(8)	nd	19 [6]	3/19	3/19
Dinda	2011			nd	nd	11 [4]	0/1	0/1
Birds	2012	nd		tr(7)	nd	14 [5]	1/2	1/2
(pg/g-wet)	2014*	nd		tr(8)	nd	19 [6]	1/2	1/2

(Note) "*" indicates there is no consistency between the results of the ornithological survey in FY2014 and those in previous years because of the changes in the survey sites and target species.

<Air>

 α -Endosulfan: The presence of the substance in air was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of 0.3pg/m^3 , and the detected range was $2.6 \sim 90 \text{pg/m}^3$.

 β -Endosulfan: The presence of the substance in air was monitored at 36 sites, and it was detected at 33 of the 36 valid sites adopting the detection limit of 0.4pg/m^3 , and none of the detected concentrations exceeded 6.1pg/m^3 .

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in air in FY2011~2012 and FY2014

		Geometric				Quantification	Detection 1	Frequency
α-Endosulfan	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2011 Warm season	26	24	190	tr(7.8)	12 [4 0]	35/35	35/35
Air	2011 Cold season	tr(9.6)	tr(9.8)	45	nd	12 [4.0]	35/37	35/37
_	2012 Warm season	23	22	98	tr(6.0)	16 [5.3]	36/36	36/36
(pg/m^3)	2012 Cold season	nd	nd	19	nd	10 [3.3]	15/36	15/36
	2014 Warm season	20	23	90	2.6	0.8 [0.3]	36/36	36/36
β -Endosulfan	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection l Sample	Frequency Site
	2011 Warm season	2.1	1.8	11	nd	1 2 [0 20]	34/35	34/35
Air	2011 Cold season	tr(0.80)	tr(0.90)	8.3	nd	1.2 [0.39]	31/37	31/37
	2012 Warm season	1.3	1.3	18	nd	1.2 [0.4]	33/36	33/36
	2012 Cold season	nd	nd	1.7	nd	1.2 [0.4]	17/36	17/36
	2014 Warm season	1.3	1.4	6.1	nd	1.2 [0.4]	33/36	33/36

• Monitoring results until 2012 (reference)

<Surface Water >

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in surface water in FY2011~FY2012.

α -Endosulfan	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection l Sample	Frequency Site
Surface Water	2011	nd	nd	180	nd	120 [50]	2/49	2/49
(pg/L)	2012	nd	nd	30	nd	27 [10]	3/48	3/48
β -Endosulfan	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection l Sample	Frequency Site
Surface Water	2011	nd	nd	270	nd	22 [9]	8/49	8/49
(pg/L)	2012	nd	nd	tr(12)	nd	24 [9]	1/48	1/48

< Sediment >

Stocktaking of the detection of α -Endosulfan and β -Endosulfan in sediment in FY2011~FY2012

α-Endosulfan	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
Sediment	2011	tr(13)	tr(11)	480	nd	30 [10]	35/64	35/64
(pg/g-dry)	2012	nd	nd	480	nd	13 [5]	19/63	19/63
β -Endosulfan	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
Sediment	2011	tr(5)	tr(4)	240	nd	9 [4]	38/64	38/64
(pg/g-dry)	2012	nd	nd	250	nd	13 [5]	8/63	8/63

[19] 1,2,5,6,9,10-Hexabromocyclododecanes

· History and state of monitoring

1,2,5,6,9,10-Hexabromocyclododecanes have been used as flame retardants for plastics products and fiber products. 1,2,5,6,9,10-Hexabromocyclododecanes was adopted as target chemicals at the COP6 of the Stockholm convention on Persistent Organic Pollutants in April~May 2013.

FY2011 was the first year for this Envronmental Monitoring series, and the substances were measured in the surface water and sediment in FY2003 and wildlife (fish) in FY2004 under the framework of "The Initial Environmental Survey". The substances were measured in the surface water, sediment and wildlife (bivalves, fish and birds) in FY2011, and sediment, wildlife (bivalves, fish and birds) and air in FY2012, and surface water, wildlife (bivalves, fish and birds) and air in FY2014 under the framework of the Environmental Monitoring.

· Monitoring results

 α -1,2,5,6,9,10-Hexabromocyclododecane, β -1,2,5,6,9,10-Hexabromocyclododecane, γ -1,2,5,6,9,10-Hexabromocyclododecane cyclododecane, δ -1,2,5,6,9,10-Hexabromocyclododecane

<Surface Water >

 α -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 1 of the 48 valid sites adopting the detection limit of 600pg/L, and the detected concentration was 1,600 pg/L.

 β -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in surface water was monitored at 48 sites, and it was detected at 1 of the 48 valid sites adopting the detection limit of 200pg/L, and the detection concentration was tr(300) pg/L.

 γ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in surface water was monitored at 48 sites, and it was not detected at all 48 valid sites adopting the detection limit of 300pg/L.

 δ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in surface water was monitored at 48 sites, and it was not detected at all 48 valid sites adopting the detection limit of 200pg/L.

 ε -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in surface water was monitored at 48 sites, and it was not detected at all 48 valid sites adopting the detection limit of 200pg/L.

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in surface water in FY2011 and FY2014

α-1,2,5,6,9,10-Hexabro	Monitored	Geometric				Quantification	Detection l	Frequency
mocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	6,300	nd	1,500 [600]	4/47	4/47
(pg/L)	2014	nd	nd	1,600	nd	1,500 [600]	1/48	1/48
β -1,2,5,6,9,10-Hexabro	Monitored	Geometric				Quantification	Detection l	Frequency
mocyclododecane	vear	mean	Median	Maximum	Minimum	[Detection]	Sample	Site
mocyclododecane	yeai	IIICaii				limit		
Surface Water	2011	nd	nd	1,300	nd	1,300 [500]	4/47	4/47
(pg/L)	2014	nd	nd	tr(300)	nd	500 [200]	1/48	1/48
γ-1,2,5,6,9,10-Hexabrom	Manitarad	Geometric				Quantification	Detection l	Frequency
ocyclododecane		mean	Median	Maximum	Minimum	[Detection]	Sample	Site
ocyclododecane	year	illean				limit	Sumpre	5110
Surface Water	2011	nd	nd	65,000	nd	1,200 [500]	5/47	5/47
(pg/L)	2014	nd	nd	nd	nd	700 [300]	0/48	0/48

δ -1,2,5,6,9,10-Hexabro	Monitored	Geometric				Quantification	Detection I	Frequency
mocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	nd	nd	790 [300]	0/47	0/47
(pg/L)	2014	nd	nd	nd	nd	600 [200]	0/48	0/48
ε -1,2,5,6,9,10-Hexabrom	Monitored	Geometric				Quantification	Detection I	requency
ocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2011	nd	nd	nd	nd	740 [300]	0/47	0/47
(pg/L)	2014	nd	nd	nd	nd	400 [200]	0/48	0/48

(Note) No monitoring was conducted in FY2012 and FY2013.

< Wildlife >

 α -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 10pg/g-wet, and the detection range was $200\sim380\text{pg/g-wet}$. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 18 of the 19 valid areas adopting the detection limit of 10pg/g-wet, and none of the detected concentrations exceeded 15,000pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 10pg/g-wet, and the detection range was $130\sim1,800\text{pg/g-wet}$.

 β -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in bivalves was monitored in 3 areas, and it was detected all 3 valid areas adopting the detection limit of 10pg/g-wet, and the detection range was $tr(10)\sim tr(20)pg/g$ -wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 5 of the 19 valid areas adopting the detection limit of 10pg/g-wet, and none of the detected concentrations exceeded 30pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was not detected at all 2 valid areas adopting the detection limit of 10pg/g-wet.

 γ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at all 3 valid areas adopting the detection limit of 10pg/g-wet, and the detection range was $30\sim110$ pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 12 of the 19 valid areas adopting the detection limit of 10pg/g-wet, and none of the detected concentrations exceeded 2,800pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 10pg/g-wet, and the detection values were tr(10)pg/g-wet.

 δ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in bivalves was monitored in 3 areas, and it was not detected at all 3 valid areas adopting the detection limit of 10pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was not detected at all 19 valid areas adopting the detection limit of 10pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was not detected at all 2 valid areas adopting the detection limit of 10pg/g-wet.

ε-1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in bivalves was monitored in 3 areas, and it was detected at 1 of the 3 valid areas adopting the detection limit of 10pg/g-wet, and none of the detected concentration exceeded tr(20)pg/g-wet. For fish, the presence of the substance was monitored in 19 areas, and it was detected at 3 of the 19 valid areas adopting the detection limit of 10pg/g-wet, and none of the detected concentrations exceeded 80pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was not detected at all 2 valid areas adopting the detection limit of 10pg/g-wet.

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in wildlife (bivalves, fish and birds) in FY2011~2012 and FY2014

2011 2012 2014 2011 2012 2014 2011 2012 2014* Ionitored year 2011 2012 2014 2011 2012 2014	Geometric mean 1,100 530 270 770 510 240 200 120 480 Geometric mean tr(70) tr(25) tr(10)	1,200 480 270 850 560 290 nd Median tr(85)	13,000 2,500 380 69,000 8,700 15,000 530 1,400 1,800	tr(86) 190 200 nd nd nd 130	[Detection] limit 170 [70] 50 [20] 30 [10] 170 [70] 50 [20] 30 [10] 170 [70] 50 [20] 30 [10] Quantification	Sample 10/10 5/5 3/3 41/51 18/19 18/19 1/3 1/2 2/2	Site 4/4 5/5 3/3 16/17 18/19 18/19 1/1 1/2 2/2
2012 2014 2011 2012 2014 2011 2012 2014* Ionitored year 2011 2012 2014 2011	530 270 770 510 240 200 120 480 Geometric mean tr(70) tr(25)	480 270 850 560 290 nd Median	2,500 380 69,000 8,700 15,000 530 1,400 1,800	190 200 nd nd nd nd nd 130	50 [20] 30 [10] 170 [70] 50 [20] 30 [10] 170 [70] 50 [20] 30 [10]	5/5 3/3 41/51 18/19 18/19 1/3 1/2 2/2	5/5 3/3 16/17 18/19 18/19 1/1 1/2
2014 2011 2012 2014 2011 2012 2014* Ionitored year 2011 2012 2014 2011	270 770 510 240 200 120 480 Geometric mean tr(70) tr(25)	270 850 560 290 nd Median	380 69,000 8,700 15,000 530 1,400 1,800	200 nd nd nd nd nd 130	30 [10] 170 [70] 50 [20] 30 [10] 170 [70] 50 [20] 30 [10]	3/3 41/51 18/19 18/19 1/3 1/2 2/2	3/3 16/17 18/19 18/19 1/1 1/2
2011 2012 2014 2011 2012 2014* Ionitored year 2011 2012 2014 2011	770 510 240 200 120 480 Geometric mean tr(70) tr(25)	850 560 290 nd Median	69,000 8,700 15,000 530 1,400 1,800	nd nd nd nd nd	170 [70] 50 [20] 30 [10] 170 [70] 50 [20] 30 [10]	41/51 18/19 18/19 1/3 1/2 2/2	16/17 18/19 18/19 1/1 1/2
2012 2014 2011 2012 2014* Ionitored year 2011 2012 2014 2011	510 240 200 120 480 Geometric mean tr(70) tr(25)	560 290 nd Median	8,700 15,000 530 1,400 1,800	nd nd nd nd 130	50 [20] 30 [10] 170 [70] 50 [20] 30 [10]	18/19 18/19 1/3 1/2 2/2	18/19 18/19 1/1 1/2
2014 2011 2012 2014* Ionitored year 2011 2012 2014 2011	240 200 120 480 Geometric mean tr(70) tr(25)	290 nd Median	15,000 530 1,400 1,800	nd nd nd 130	30 [10] 170 [70] 50 [20] 30 [10]	18/19 1/3 1/2 2/2	18/19 1/1 1/2
2011 2012 2014* Ionitored year 2011 2012 2014 2011	200 120 480 Geometric mean tr(70) tr(25)	nd Median	530 1,400 1,800	nd nd 130	170 [70] 50 [20] 30 [10]	1/3 1/2 2/2	1/1 1/2
2012 2014* Ionitored year 2011 2012 2014 2011	120 480 Geometric mean tr(70) tr(25)	 Median	1,400 1,800	nd 130	50 [20] 30 [10]	<u>1/2</u> <u>2/2</u>	1/2
2014* Ionitored year 2011 2012 2014 2011	480 Geometric mean tr(70) tr(25)	Median	1,800	130	30 [10]	2/2	
2014* Ionitored year 2011 2012 2014 2011	Geometric mean tr(70) tr(25)	Median	·				2/2
year 2011 2012 2014 2011	tr(70) tr(25)		Maximum	M	Quantification	ъ :	
2011 2012 2014 2011	tr(70) tr(25)	tr(85)		Minimum	[Detection]	Detection F Sample	Frequency Site
2012 2014 2011	tr(25)	tr(85)			limit	Sample	Site
2014 2011			240	nd	98 [40]	7/10	3/4
2011		40	90	nd	40 [10]	4/5	4/5
2011		tr(10)	tr(20)	tr(10)	30 [10]	3/3	3/3
	nd	nd	760	nd	98 [40]	11/51	5/17
-	nd	nd	40	nd	40 [10]	8/19	8/19
2014	nd	nd	30	nd	30 [10]	5/19	5/19
2011	nd	nd	nd	nd	98 [40]	0/3	0/1
2012	nd		nd	nd	40 [10]	0/2	0/2
2014*	nd		nd	nd	30 [10]	0/2	0/2
			na	na			
Ionitored year	Geometric mean	Median	Maximum	Minimum	[Detection]	Sample	Site
2011	440	470	3,300	nd	210 [80]	8/10	4/4
							5/5
							3/3
							10/17
		, ,					16/19
							12/19
							1/1
	, ,						1/2
							2/2
	u(10)		u(10)	u(10)			
Ionitored year	Geometric mean	Median	Maximum	Minimum	[Detection]	Sample	Site
2011	nd	nd	nd	nd		0/10	0/4
							0/5
							0/3
							0/17
							0/17
							0/19
							0/1
							0/1
-							0/2
			IIU	nu			
Ionitored	Geometric	Median	Maximum	Minimum			
year	mean	Wicdian	Waxiiiuiii	Willimidin		Sample	Site
2011	nd	nd	nd	nd		0/10	0/4
							1/5
							1/3
2014	nd	nd	nd	nd	140 [60]	0/51	0/17
2011	nd	nd nd	tr(30)	nd nd	40 [20]	3/19	3/19
2012			u(30) 80			3/19	3/19
	nd nd	nd		nd nd	30 [10]		
2011	nd	nd	nd	nd	140 [60]	0/3	0/1
2011 2012	nd		nd	nd	40 [20]	0/2	0/2
1	2011 2012 2014 2011 2012 2014 2011 2012 2014* Ionitored year 2011 2012 2014 2011 2012 2014 2011 2012 2014 2011 2012 2014* 2011 2012 2014* 2011 2012 2014 2011 2012 2014	Contitored year Geometric year Mean	Ionitored year Geometric mean Median 2011 440 470 2012 170 180 2014 60 60 2011 210 tr(90) 2012 75 80 2014 tr(30) tr(20) 2011 tr(180) nd 2012 31 2014* tr(10) Ionitored Geometric year Median 2011 nd nd 2012 nd nd 2014 nd nd 2011 nd nd 2012 nd nd 2011 nd nd 2012 nd nd 2014* nd Ionitored Geometric year Median Median 2011 nd nd 2012 nd nd 2013 nd nd 2014 nd nd	Median Maximum Median Maximum Maximum Median Medi	Median Maximum Minimum Minim	Median Maximum Minimum Detection Ilimit	Maximum

(Note) " * " indicates there is no consistency between the results of the ornithological survey in FY2014 and those in previous years because of the changes in the survey sites and target species.

<Air>

 α -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in air was monitored at 36 sites, and it was detected at 25 of the 36 valid sites adopting the detection limit of 0.4pg/m³, and none of the detected concentrations exceeded 3.1pg/m³.

 β -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in air was monitored at 36 sites, and it was detected at 8 of the 36 valid sites adopting the detection limit of 0.3pg/m³, and none of the detected concentrations exceeded tr(0.8)pg/m³.

 γ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in air was monitored at 36 sites, and it was detected at 4 of the 36 valid sites adopting the detection limit of 0.4pg/m³, and none of the detected concentrations exceeded tr(1.2)pg/m³.

 δ -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in air was monitored at 36 sites, and it was not detected at all 36 valid sites adopting the detection limit of 0.6pg/m³.

 ε -1,2,5,6,9,10-Hexabromocyclododecane: The presence of the substance in air was monitored at 36 sites, and it was not detected at all 36 valid sites adopting the detection limit of 0.3pg/m³.

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in air in FY2012 and FY2014

	•			-				
α-1,2,5,6,9,10- Hexabromocyclo dodecane	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection Sample	Frequency Site
Air	2012 Warm season	1.7	2.2	130	nd	0.6.[0.2]	31/36	31/36
(pg/m^3)	2012 Cold season	2.9	3.0	63	nd	0.6 [0.2]	35/36	35/36
(pg/III*)	2014 Warm season	tr(0.56)	tr(0.70)	3.1	nd	1.2 [0.4]	25/36	25/36
β -1,2,5,6,9,10-		Geometric				Quantification	Detection	Frequency
Hexabromocyclo dodecane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Air	2012 Warm season	0.5	0.5	29	nd	0.2 [0.1]	30/36	30/36
(pg/m^3)	2012 Cold season	0.8	0.8	18	nd	0.3 [0.1]	35/36	35/36
(pg/III*)	2014 Warm season	nd	nd	tr(0.8)	nd	1.0 [0.3]	8/36	8/36
γ-1,2,5,6,9,10-		Geometric				Quantification	Detection	Frequency
Hexabromocyclo dodecane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
A :	2012 Warm season	1.6	1.7	280	nd	0.2 [0.1]	31/36	31/36
Air	2012 Cold season	2.1	1.8	84	nd	0.3 [0.1]	35/36	35/36
(pg/m ³)	2014 Warm season	nd	nd	tr(1.2)	nd	1.3 [0.4]	4/36	4/36
δ-1,2,5,6,9,10-		Geometric				Quantification	Detection	Frequency
Hexabromocyclo dodecane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Air	2012 Warm season	nd	nd	0.8	nd	0.4 [0.2]	1/36	1/36
(pg/m^3)	2012 Cold season	nd	nd	1.1	nd	0.4 [0.2]	1/36	1/36
(pg/III)	2014 Warm season	nd	nd	nd	nd	1.8 [0.6]	0/36	0/36
ε-1,2,5,6,9,10-		Geometric				Quantification	Detection	Frequency
Hexabromocyclo dodecane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Air	2012 Warm season	nd	nd	nd	nd	0.6 [0.2]	0/36	0/36
	2012 Cold season	nd	nd	tr(0.5)	nd	0.6 [0.2]	1/36	1/36
(pg/m ³)	2014 Warm season	nd	nd	nd	nd	0.9 [0.3]	0/36	0/36

• Monitoring results until 2012 (reference)

< Sediment >

Stocktaking of the detection of 1,2,5,6,9,10-Hexabromocyclododecanes in sediment in FY2011 \sim 2012

125601011 1	M '4 1	C				Quantification	Detection	Frequency
α-1,2,5,6,9,10-Hexabro mocyclododecane	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2011	430	nd	24,000	nd	420 [280]	78/186	35/62
(pg/g-dry)	2012	310	280	22,000	nd	180 [70]	47/63	47/63
β 1 2 5 6 0 10 Havelera	Monitored	Geometric				Quantification	Detection	Frequency
β-1,2,5,6,9,10-Hexabro mocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2011	nd	nd	14,000	nd	250 [170]	48/186	21/62
(pg/g-dry)	2012	tr(93)	nd	8,900	nd	150 [60]	29/63	29/63
γ-1,2,5,6,9,10-Hexabrom	Manitarad	Geometric				Quantification	Detection	Frequency
ocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2011	670	nd	570,000	nd	400 [260]	89/186	36/62
(pg/g-dry)	2012	420	330	55,000	nd	160 [60]	52/63	52/63
δ -1,2,5,6,9,10-Hexabro	Monitored	Geometric				Quantification	Detection	Frequency
mocyclododecane	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2011	nd	nd	800	nd	350 [250]	11/186	6/62
(pg/g-dry)	2012	nd	nd	680	nd	300 [100]	5/63	5/63
ε-1,2,5,6,9,10-Hexabrom	Manitarad	Geometric				Quantification	Detection	Frequency
ocyclododecane	year	mean	Median	Maximum	Minimum	[Detection]	Sample	Site
	yeai	incan				limit		
Sediment	2011	nd	nd	tr(260)	nd	280 [210]	2/186	1/62
(pg/g-dry)	2012	nd	nd	310	nd	150 [60]	7/63	7/63

[20] Total Polychlorinated Naphthalenes (Total PCNs)

· History and results of the monitoring

Total Polychlorinated Naphthalenes (PCNs) has been used as machine oil. The substance with over 3 chloric ions was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in August 1979.

In previous monitoring series, the substances were monitored in wildlife (bivalves, fish and birds) during the period of FY 1979 ~ 1985, 1987, 1989, 1991, 1993 under the framework of "the Wildlife Monitoring."

Under the framework of "the Environmental Monitoring", the substance has been monitored in wildlife (bivalves, fish and birds) in FY 2006, in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY2008, and in air in FY2014.

· Monitoring results

<Air>

The presence of the substance in air was monitored at 36 sites, and it was detected at all 36 valid sites adopting the detection limit of *1.0pg/m³, and the detection range was 5.4~1,600pg/m³.

Stocktaking of the detection of Total Polychlorinated Naphthalenes in air in FY2008 and FY2014

Total		Geometric				Quantification	Detection	Frequency
Polychlorinate d biphenyls	e Monitored year	mean	Median	Maximum	Minimum	[Detection] Limit*	Sample	Sample
Air	2008 Warm season	200	230	660	35	4.0[1.3]	22/22	22/22
(pg/m^3)	2008 Cold season	tr(9.6)	tr(9.8)	45	nd	4.0[1.3]	36/36	36/36
(pg/III [*])	2014 Warm season	110	130	1,600	5.4	2.8 [1.0]	36/36	36/36

⁽Note 1) " * " indicates the sum value of the Quantification [Detection] limits of each congener.

• Monitoring results until FY2008 (reference)

<Surface Water>

Stocktaking of the detection of Total Polychlorinated Naphthalenes in surface water in FY2008

Total Polychlorinated biphenyls	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] Limit*	Detection I Sample	Frequency Site
Surface Water (pg/L)	2008	nd	nd	180	nd	85 [0.030]	9/48	9/48

⁽Note) " * " indicates the sum value of the Quantification [Detection] limits of each congener.

<Sediment>

Stocktaking of the detection of Total Polychlorinated Naphthalenes in sediment in FY2008

Total Polychlorinated biphenyls	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] Limit*	Detection I Sample	Frequency Site
Sediment (pg/g-dry)	2008	360	400	28,000	nd	84[30]	166/189	58/63

⁽Note) " * " indicates the sum value of the Quantification [Detection] limits of each congener.

⁽Note 2) No monitoring was conducted during FY2009~FY2013.

<Wildlife>

Stocktaking of the detection of Total Polychlorinated Naphthalenes in wildlife (bivalves, fish and birds) in FY2006

aı	u 1 1 2000								
	Total Polychlorinated biphenyls	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] Limit*	Detection I Sample	Frequency Site
	Bivalves	2006	tr	nd	nd	nd	36 [12]	0/31	0/7
_	(pg/g-wet)	2008	nd	nd	tr(7.1)	nd	9.4 [3.7]	3/13	1/5
	Fish	2006	nd	nd	nd	nd	36 [12]	0/80	0/16
	(pg/g-wet)	2008	nd	nd	59	nd	9.4 [3.7]	7/57	4/19
_	Birds	2006	nd	nd	nd	nd	36 [12]	0/10	0/2
	(pg/g-wet)	2008	nd	nd	nd	nd	9.4 [3.7]	0/6	0/2

(Note 1) " * " indicates the sum value of the Quantification [Detection] limits of each congener. (Note 2) No monitoring was conducted in FY2007.

[21] Hexachlorobuta-1,3-diene (reference)

· History and results of the monitoring

Hexachlorobuta-1,3-diene was used as an agricultural chemicals(or as its intermediate) and as a synthetic intermediates. The substance was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law on April 1, 2005.

The substance was measured in FY 1981 (in the surface water and sediment) under the framework of the Environmental Survey and Monitoring of Chemicals and monitored in the surface water, sediment and wildlife (bivalves, fish and birds) in FY2007 under the framework of the Environmental Monitoring.

No monitoring was conducted during FY2014. For reference, the monitoring results up to FY2013 are given below.

· Monitoring results until FY2013

<Surface Water>

Stocktaking of the detection of Hexachlorobuta-1,3-diene in surface water in FY2007 and FY2013

Hexachlorobuta-	Monitored	Geometric				Quantification	Detection I	requency
1,3-diene	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2007	nd	nd	nd	nd	870 [340]	0/48	0/48
(pg/L)	2013	nd	nd	tr(43)	nd	94 [37]	1/48	1/48

⁽Note) No monitoring was conducted in FY2008~2012.

<Sediment>

Stocktaking of the detection of Hexachlorobuta-1,3-diene in sediment in FY2007 and FY2013

Hexachlorobuta-	Monitored	Geometric				Quantification	Detection 1	Frequency
1,3-diene	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2007	nd	nd	1,300	nd	22 [8.5]	22/192	10/64
(pg/g-dry)	2013	nd	nd	1,600	nd	9.9 [3.8]	40/189	20/63

⁽Note) No monitoring was conducted in FY2008 to ~2012.

<Wildlife>

Stocktaking of the detection of Hexachlorobuta-1,3-diene in wildlife (bivalves, fish and birds) in FY2007 and FY2013

Hexachlorobuta-	Monitored	Geometric				Quantification	Detection I	requency
1,3-diene	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Bivalves	2007	nd	nd	nd	nd	36 [12]	0/31	0/7
(pg/g-wet)	2013	nd	nd	tr(7.1)	nd	9.4 [3.7]	3/13	1/5
Fish	2007	nd	nd	nd	nd	36 [12]	0/80	0/16
(pg/g-wet)	2013	nd	nd	59	nd	9.4 [3.7]	7/57	4/19
Birds	2007	nd	nd	nd	nd	36 [12]	0/10	0/2
(pg/g-wet)	2013**	nd	nd	nd	nd	9.4 [3.7]	0/6	0/2

⁽Note 1) No monitoring was conducted in FY2008~2012.

(Note 2) " ** ": There is no consistency between the results of the ornithological survey in FY2013 and those in previous years because of the changes in the survey sites and target species.

oReferences

• Egg of Great Cormorants (egg yolk and white)

In the FY2014 monitoring survey, eggs of great cormorants were analyzed to check for the presence of 12 chemicals (groups): Total PCBs, Hexachlorobenzene, Aldrin, Dieldrin, Endrin, HCHs (hexachlorobenzenes), Polybromodiphenyl ethers, Perfluorooctane sulfonic acid (PFOS), Perfluorooctanoic acid (PFOA), Pentachlorobenzene, Endosulfans and 1,2,5,6,9,10-Hexabromocyclododecanes. The eggs were taken under Shimosone-bashi Bridge Riv. Fuefuki by Yamanashi Institute for Public Health and Environment and Yamanashi Prefectural Fisheries Technology Center, and the concentrations of the target chemicals in the egg yolk and white were measured respectively. The properties of the target species in Table 1, and the results of the analysis in Table 2.

Table 1 Basic data of specimens (egg of Great Cormorant as wildlife) in the Environmental Monitoring in FY2014

No.	Sampling month	Sex	Number of eggs	Y Diameter of the egg (cm)	
1		-	10	5.51 × 3.59 ~ 6.31 × 4.13 (5.77 × 3.76)	$\begin{bmatrix} 38.0 \\ [34.1] \end{bmatrix} \sim \begin{bmatrix} 43.1 \\ [36.9] \end{bmatrix} \begin{pmatrix} 41.3 \\ [36.0] \end{pmatrix}$
2	Early April*, 2014	-	10	$5.50 \times 3.68 \sim 6.26 \times 3.99 (5.97 \times 3.84)$	$\begin{bmatrix} 43.6 \\ [36.7] \end{cases} \sim \begin{bmatrix} 48.4 \\ [41.6] \end{cases} \left(\begin{bmatrix} 46.0 \\ [39.1] \end{bmatrix} \right)$
3		-	10	$5.49 \times 3.85 \sim 6.63 \times 4.20 (6.12 \times 4.00)$	$ \begin{vmatrix} 48.7 \\ [41.6] \end{vmatrix} \sim \begin{vmatrix} 59.4 \\ [51.9] \end{vmatrix} \begin{pmatrix} 51.9 \\ [44.8] \end{vmatrix}) $

⁽Note 1) "*" indicates that details of the sampling date were unknown.

⁽Note 2) "[]" indicates the weight of no shell.

⁽Note 3) "Average." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

Table 2 List of the detection values of egg of Great Cormorant

Target chemicals			at Cormorant	· · ·	f Great Cormoran**				
Target chemicals		Sillinosone-	bashi Bridge,	Lake Biwa(Lake					
Target chemicals	Quantification	Riv.Fuefuki(Kofu City)		Kita, offshore of	Riv.Tenjin				
Ü	[Detection] Limits	Egg yolk	Egg white	Tikubushima Island)	(Kurayoshi City)				
Total PCBs	95[31]*	2,700,000	8,300	140,000	15,000				
НСВ	10[3]	46,000	200	5,600	32				
Aldrin	1.8[0.7]	2.6	nd	nd	nd				
Dieldrin	3[1]	21,000	180	530	190				
Endrin	3[1]	360	3	5	4				
HCHs			r						
[11-1] α-HCH	3[1]	630	12	220	17				
[11-2] β-HCH	2.2[0.8]	14,000	560	3,600	24				
[11-3] γ-HCH (synonym:Lindane)	2.4[0.9]	1,700	33	24	4.4				
[11-4] δ-HCH	3[1]	23	nd	3	tr(1)				
Polybromodiphenyl ethers(Br ₄ ~Br ₁	0)		·						
[14-1] Tetrabromodiphenyl ethers	15[6]	43,000	230	480	788				
Pentabromodiphenyl ethers	12[5]	25,000	53	320	31				
Hexabromodiphenyl ethers	10[4]	30,000	67	680	42				
Heptabromodiphenyl ethers	12[5]	11,000	tr(9)	150	nd				
	11[4]	11,000	tr(5)	140	nd				
[14-6] Nonabromodiphenyl ethers	30[10]	710	tr(10)	tr(20)	tr(10)				
[14-7] Decabromodiphenyl ether	170[60]	1,300	nd	tr(140)	nd				
Perfluorooctane sulfonic acid (PFOS)	5[2]	65,000	56	110,000	190				
Perfluorooctanoic acid (PFOA)	10[3]	210	nd	2,600	nd				
Pentachlorobenzene	9.3[3.1]	6,800	36	560	tr(5.6)				
Endosulfans									
[18-1] α-Endosulfan	60[20]	110	nd	nd	nd				
[18-2] β -Endosulfan	19[6]	91	tr(9)	tr(8)	nd				
α -1,2,5,6,9,10-Hexabromocyclod	30[10]	93,000	1,100	1,800	130				
[19-2] <i>β</i> -1,2,5,6,9,10-Hexabromocyclod odecane	30[10]	80	nd	nd	nd				
[19-3] γ-1,2,5,6,9,10-Hexabromocyclod odecane	30[10]	1,100	nd	tr(10)	tr(10)				
[19-4] δ -1,2,5,6,9,10-Hexabromocyclod odecane	30[10]	nd	nd	nd	nd				
[19-5] <i>ε</i> -1,2,5,6,9,10-Hexabromocyclod odecane	30[10]	130	nd	nd	nd				
	HCB Aldrin Dieldrin Endrin HCHs [11-1] α -HCH [11-2] β -HCH [11-3] γ -HCH (synonym:Lindane) [11-4] δ -HCH Polybromodiphenyl ethers(Br ₄ ~Br ₁ , [14-1] Tetrabromodiphenyl ethers [14-2] Pentabromodiphenyl ethers [14-3] Hexabromodiphenyl ethers [14-4] Heptabromodiphenyl ethers [14-6] Nonabromodiphenyl ethers [14-7] Decabromodiphenyl ethers [14-7] Decabromodiphenyl ethers [14-7] Decabromodiphenyl ethers [14-8] Nonabromodiphenyl ethers [14-9] Nonabromodiphenyl ethers [14-1] α -1 Decabromodiphenyl ether Perfluorooctane sulfonic acid (PFOS) Perfluorooctanoic acid (PFOA) Pentachlorobenzene Endosulfans [18-1] α -Endosulfan [18-2] β -Endosulfan [18-2] β -Endosulfan [19-2] β -1,2,5,6,9,10-Hexabromocyclod odecane [19-2] β -1,2,5,6,9,10-Hexabromocyclod odecane [19-3] γ -1,2,5,6,9,10-Hexabromocyclod odecane [19-4] δ -1,2,5,6,9,10-Hexabromocyclod odecane [19-5] ε -1,2,5,6,9,10-Hexabromocyclod odecane	HCB 10[3] Aldrin 1.8[0.7] Dieldrin 3[1] Endrin 3[1] HCHs 3[1] [11-1] α-HCH 3[1] [11-2] β-HCH 2.2[0.8] [11-3] γ-HCH (synonym:Lindane) 2.4[0.9] [11-4] δ-HCH 3[1] Polybromodiphenyl ethers (Br ₄ ~Br ₁₀) 15[6] [14-1] Tetrabromodiphenyl ethers 12[5] [14-2] Pentabromodiphenyl ethers 10[4] [14-3] Hexabromodiphenyl ethers 11[4] [14-4] 12[5] Pentabromodiphenyl ethers 11[4] [14-5] Octabromodiphenyl ethers 11[4] 14-6[Nonabromodiphenyl ethers 11[4] [14-7] Decabromodiphenyl ethers 10[3] Perfluorooctane sulfonic acid (PFOS) 5[2] Perfluorooctane sulfonic acid (PFOA) 10[3] Pentachlorobenzene 9.3[3.1] Endosulfans [18-1] α-Endosulfan 60[20] 18-2] β-Endosulfan 19[6] [18-2] β-Endosulfan 19[6] 12.2,5,6,9,10-Hexabromocyclod odecane 30[10] 30[10]	HCB 10[3] 46,000 Aldrin 1.8[0.7] 2.6 Dieldrin 3[1] 21,000 Endrin 3[1] 360 HCHS [11-1] α-HCH 3[1] 630 [11-2] β-HCH 2.2[0.8] 14,000 [11-3] γ-HCH (synonym:Lindane) 2.4[0.9] 1,700 [11-4] δ-HCH 3[1] 23 Polybromodiphenyl ethers (Br ₄ ~Br ₁₀) [14-1] Tetrabromodiphenyl ethers 15[6] 43,000 [14-2] Pentabromodiphenyl ethers 12[5] 25,000 [14-3] Hexabromodiphenyl ethers 10[4] 30,000 [14-4] Hexabromodiphenyl ethers 12[5] 11,000 [14-5] Octabromodiphenyl ethers 11[4] 11,000 [14-6] Nonabromodiphenyl ethers 170[60] 1,300 Perfluorooctane sulfonic acid (PFOA) 10[3] 210 Pentachlorobenzene 9.3[3.1] 6,800 Endosulfans 19[6] 91 1,2,5,6,9,10-Hexabromocyclod odecane 19-2] β-1,2,5,6,9,10-Hexabromocyclod odecane 19-2] β-1,2,5,6,9,10-Hexabromocyclod odecane 19-4] β-1,2,5,6,9,10-Hexabromocyclod odecane 19-4] β-1,2,5,6,9,10-Hexabromocyclod odecane 19-4] β-1,2,5,6,9,10-Hexabromocyclod odecane 19-5] β-1,2	HCB	Total PCBs				

⁽Note 1) "*" indicates the sum value of the Quantification [Detection] limits of each congener.
(Note 2) "**" indicates these values are previously mentioned in the main part but are mentioned here again to indicate the stage of life cycle of great cormorants from egg to adult.