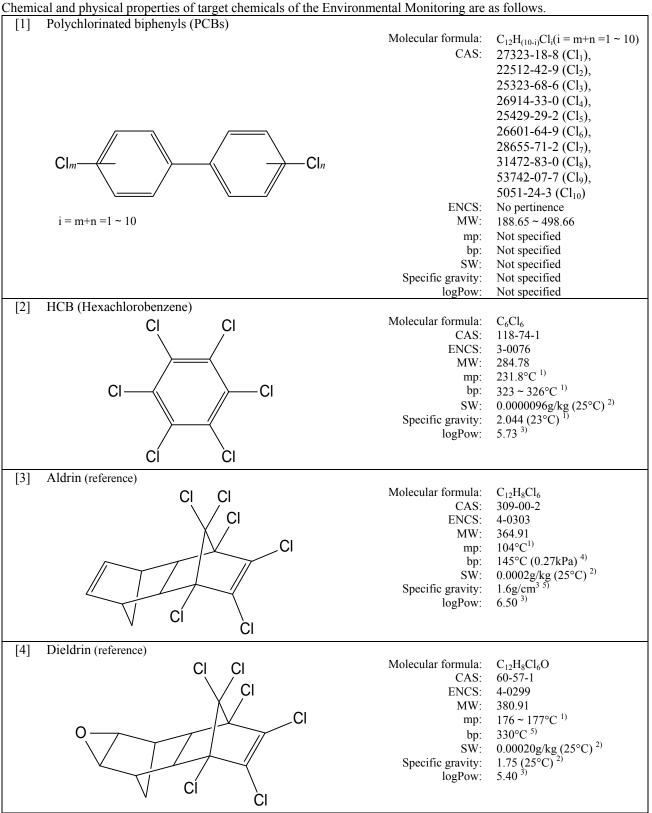
Chapter 3 Results of the Environmental Monitoring in FY 2010

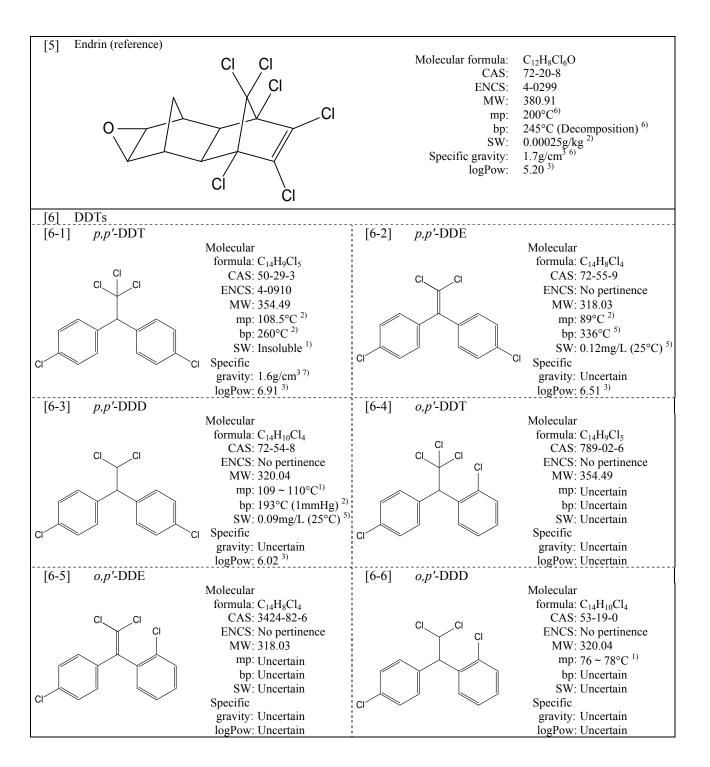
1. Purpose of the monitoring

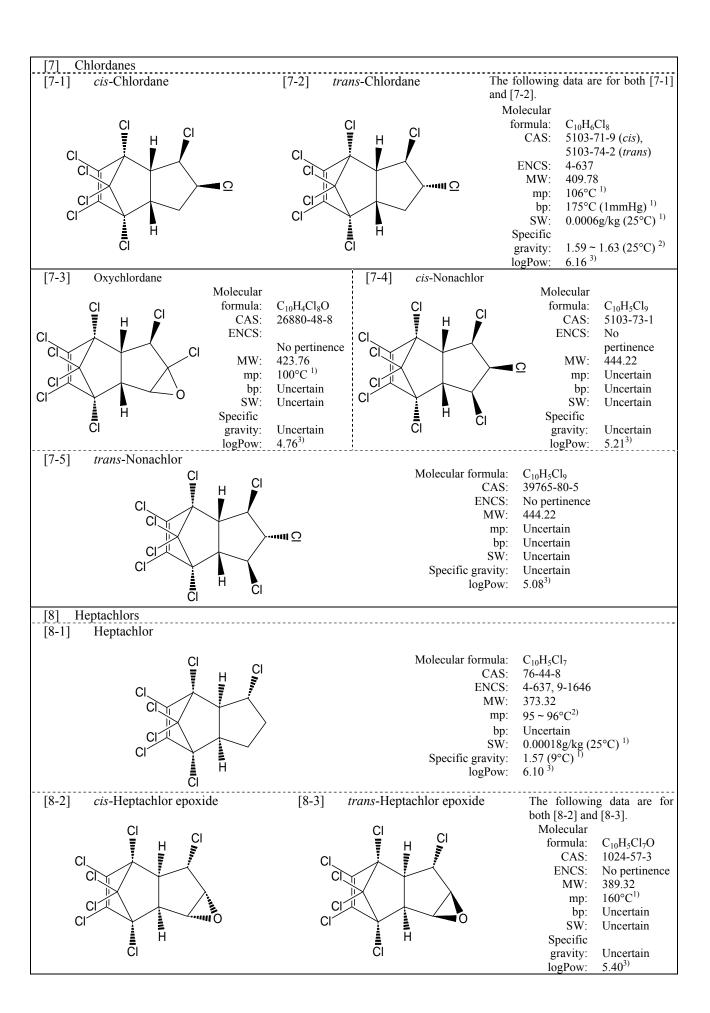
Environmental Monitoring provides annual surveys of the environmental persistence of target chemicals as listed in the Stockholm Convention, chemicals that while undesignated are still subject to review for potential risk, and/or highly persistent chemicals annotated as Specified Chemical Substances and Monitored Chemical Substances under the Law Concerning the Examination and Regulation of Manufacture, etc. of Chemical Substances (aka, the Chemical Substances Control Law), all target chemicals whose year to year changes in persistence in the environment must be understood.

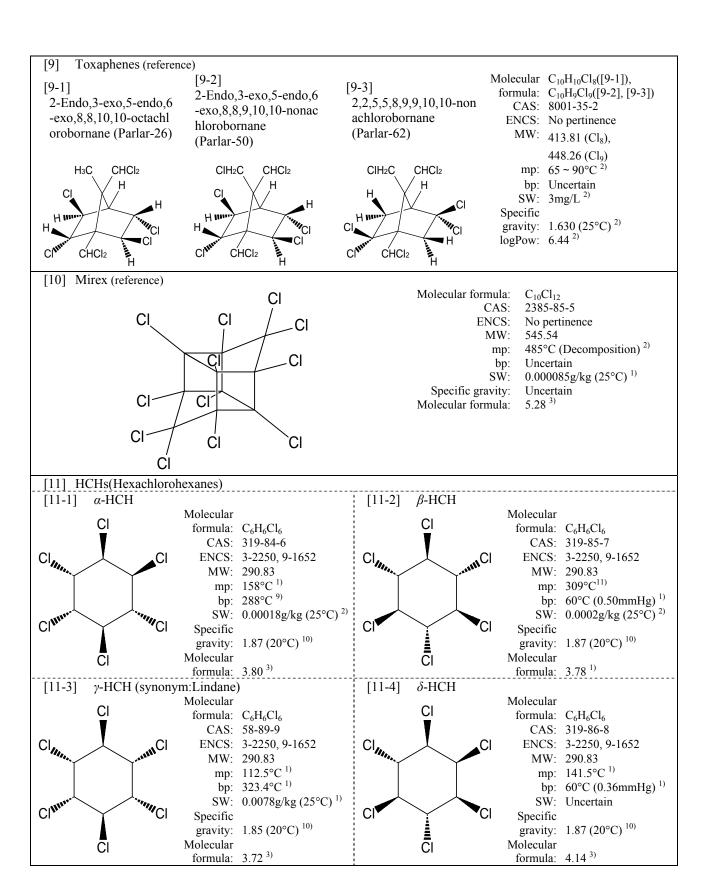
*POPs: persistent organic pollutants


2. Target chemicals

In the FY 2010 Environmental Monitoring, usual 11 chemicals (groups) which added Hexachlorohexanes*, Chlordecone, Hexabromobiphenyls, Polybromodiphenyl ethers ($Br_4 \sim Br_{10}$) **, Perfluorooctane sulfonic acid (PFOS) and Pentachlorobenzene which were adopted to be POPs in the Stockholm Convention at fourth meeting of the Conference of the Parties held from 4 to 8 May 2009, to initial 5 chemicals*** (groups), namely, Polychlorinated biphenyls (PCBs), Hexachlorobenzene, DDTs, Chlordanes and Heptachlors included in the Stockholm Convention (hereafter, POPs), and 4 chemicals (groups), namely, Perfluorooctanoic acid (PFOA), N,N-Diphenyl-p-phenylenediamines, Tributyltin compounds and Triphenyltin compounds were designated as target chemicals. The combinations of target chemicals and the monitoring media are given below.


- * In the COP4, α -HCH, β -HCH and γ -HCH (synonym:Lindane) were adopted to be POPs among HCHs, but in this Environmental Monitoring, HCHs which were able to include δ -HCH were designated as target chemicals.
- ** In the COP4, Tetrabromodiphenyl ethers, Pentabromodiphenyl ethers, Hexabromodiphenyl ethers and Heptabromodiphenyl ethers were adopted to be POPs among Polybromodiphenyl ethers but in this Environmental Monitoring, Polybromodiphenyl ethers(Br₄ ~ Br₁₀) which were able to include Octabromodiphenyl ethers Nonabromodiphenyl ethers and Decabromodiphenyl ether were designated as target chemicals.
- *** Up to FY 2009, the ten target substance groups of pollutants annotated in the Stockholm Convention text with the exceptions of Polybrominated dibenzo-p-dioxin (PCDDs) and Polybrominated dibenzo-furans (PCDFs) were monitored each fiscal year. As of FY 2010, the scope of monitoring had been reviewed and adjustments made to implementation frequency; as some target substances were re-designated for bi-annual monitoring, the scope did not include five substances (groups): Aldrin, Dieldrin, Endrin, Toxaphene, and Mirex. In this vein, the FY 2009 findings for these five target substances not specifically monitored in FY 2010 have been included in this report for purpose of reference.


	AT.		Monitored media			
No	Name	Surface water	Sediment	Wildlife	Air	
[1]	Polychlorinated biphenyls (PCBs) [1-1] Monochlorobiphenyls [1-2] Dichlorobiphenyls [1-3] Trichlorobiphenyls [1-4-1] 3,3',4,4'-Tetrachlorobiphenyl (#77) [1-4-2] 3,4,4',5-Tetrachlorobiphenyl (#81) [1-5] Pentachlorobiphenyls [1-5-1] 2,3,3',4,4'-Pentachlorobiphenyl (#105) [1-5-2] 2,3,4,4',5-Pentachlorobiphenyl (#114) [1-5-3] 2,3',4,4'-5-Pentachlorobiphenyl (#118) [1-5-4] 2',3,4,4',5-Pentachlorobiphenyl (#123) [1-5-5] 3,3',4,4',5-Pentachlorobiphenyl (#126) [1-6] Hexachlorobiphenyls [1-6-1] 2,3,3',4,4',5-Hexachlorobiphenyl (#157) [1-6-2] 2,3,3',4,4',5,5'-Hexachlorobiphenyl (#167) [1-6-4] 3,3',4,4',5,5'-Hexachlorobiphenyl (#169) [1-7] Heptachlorobiphenyls [1-7-1] 2,2',3,3',4,4',5-Heptachlorobiphenyl (#170) [1-7-2] 2,2',3,4,4',5,5'-Heptachlorobiphenyl (#180) [1-7-3] 2,3,3',4,4',5,5'-Heptachlorobiphenyl (#189) [1-8] Octachlorobiphenyls [1-9] Nonachlorobiphenyls	0	0	0	0	
[2]	[1-10] Decachlorobiphenyl Hexachlorobenzene	0	0	0	0	
[3]	Aldrin (reference)			Ü	Ü	
[4]	Dieldrin (reference)					
[6]	Endrin (reference) DDTs [6-1]	0	0	0	0	
[7]	Chlordanes [7-1] cis-Chlordane [7-2] trans-Chlordane [7-3] Oxychlordane [7-4] cis-Nonachlor [7-5] trans-Nonachlor Heptachlors	0	0	0	0	
[8]	[8-1] Heptachlor [8-2] <i>cis</i> -Heptachlor epoxide [8-3] <i>trans</i> -Heptachlor epoxide	0	0	0	0	
[9]	Toxaphenes (reference) [9-1]					
[11]	HCHs (Hexachlorohexanes) $[11-1] \alpha\text{-HCH}$ $[11-2] \beta\text{-HCH}$ $[11-3] \gamma\text{-HCH (synonym:Lindane)}$ $[11-4] \delta\text{-HCH}$	0	0	0	0	
[12]	Chlordecone	0	0	0	0	


			Monitored media			
No	Name	Surface water	Sediment	Wildlife	Air	
[13]	Hexabromobiphenyls [13-1] 2,2',4,4',5,5'-Hexabromobiphenyl (#153) [13-2] 2,2',4,4',5,6'-Hexabromobiphenyl (#154) [13-3] 2,2',4,4',6,6'-Hexabromobiphenyl (#155) [13-4] 2,3,3',4,4',5-Hexabromobiphenyl (#156) [13-5] 3,3',4,4',5,5'-Hexabromobiphenyl (#169)	0	0	0	0	
[14]	Polybromodiphenyl ethers(Br ₄ ~ Br ₁₀) [14-1] Tetrabromodiphenyl ethers [14-1-1] 2,2',4,4'-Tetrabromodiphenyl ether (#47) [14-2] Pentabromodiphenyl ethers [14-2-1] 2,2',4,4',5-Pentabromodiphenyl ether (#99) [14-3] Hexabromodiphenyl ethers [14-3-1] 2,2',4,4',5,5'-Pentabromodiphenyl ether (#153) [14-3-2] 2,2',4,4',5,6'-Pentabromodiphenyl ether (#154) [14-4] Heptabromodiphenyl ethers [14-4-1] 2,2',3,3',4,5',6'-Pentabromodiphenyl ether (#175) [14-4-2] 2,2',3,4,4',5',6'-Pentabromodiphenyl ether (#183) [14-5] Octabromodiphenyl ethers [14-6] Nonabromodiphenyl ethers [14-7] Decabromodiphenyl ether		0	0	0	
[15]	Perfluorooctane sulfonic acid (PFOS)	0	0	0	0	
[16]	Perfluorooctanoic acid (PFOA)	0	0	0	0	
[17]	Pentachlorobenzene	0	0	0	0	
[18]	N,N'-Diphenyl-p-phenylenediamines [18-1] N,N'-Diphenyl-p-phenylenediamine [18-2] N,N'-Ditolyl-p-phenylenediamine [18-3] N,N'-Dixylyl-p-phenylenediamine				0	
[19]	Tributyltin compounds	0	0	0	-	
[20]	Triphenyltin compounds	0	0	0		

(Abbreviations) CAS: CAS registry number, ENCS: registry number in the Existing and New Chemical Substances List, MW: molecular weight, mp: melting point, bp: boiling point, SW: solubility in water, logPow: *n*-octanol-water partition coefficient, kPa: kilopascal (1 atom 101.3kPa).

[12] Chlordecone Molecular formula: $C_{10}Cl_{10}O$ CI CI CAS: 143-50-0 -CI ENCS: No pertinence MW: 490.64 CI mp: 350°C²⁾ bp: Not specified Cľ CIsw: 7.6mg/L (24°C) 5) Specific CI gravity: 1.61 (25°C) 1) logPow: 3.45 12) [13] Hexabromobiphenyls Molecular formula: C₁₂H₄Br₆ CAS: 36355-01-8 ENCS: No pertinence MW: 627.58 Br_n mp: Not specified bp: Not specified sw: Not specified Specific gravity: Not specified m+n=6logPow: Not specified [14] Polybromodiphenyl ethers ($Br_4 \sim Br_{10}$) Molecular formula: $C_{12}H_{(10-i)}Br_iO$ (i = m+n =4 ~ 10) 40088-47-9 (Br₄), 32534-81-9 (Br₅), 36483-60-0 (Br₆), 68928-80-3 (Br₇), O 32536-52-0 (Br₈), 63936-56-1 (Br₉), 1163-19-5 (Br₁₀₎ ENCS: 3-61 (Br₄), 3-2845 (Br₆) Br_m Br_n MW: 485.79 ~ 959.17 mp: Not specified bp: Not specified sw: Not specified Specific $i = m + n = 4 \sim 10$ gravity: Not specified logPow: Not specified [15] Perfluorooctane sulfonic acid (PFOS) Molecular formula: C₈HF₁₇O₃S CAS: 1763-23-1 2-1595 ENCS: MW: 500.13 OH >400°C (potassium salt) ¹³⁾ mp: bp: Uncertain sw: 519mg/L (20°C, potassium salt) 13) Specific gravity: Uncertain logPow: Uncertain [16] Perfluorooctanoic acid(PFOA) Molecular formula: C₈HF₁₅O₂ CAS: 335-67-1 ENCS: 2-1182, 2-2659 MW: 414.07 mp: 54.3°C 1) OH bp: 192.4°C 1) sw: 9.5g/L (20°C) 14) Specific gravity: 1.79g/cm³ 15) logPow: 6.3^{15}

[15] D . 11 1		
[17] Pentachlorobenzene		
Cl	Molecular	C HO!
	formula:	
		608-93-5
Cl	ENCS:	
	MW:	250.34
	mp:	86°C 1)
		277°C 1)
	SW:	0.00050g/kg (25°C) 1)
Cl Cl	Specific	1.0242 / 3.44600 1)
	gravity:	1.8342g/cm ³ (16°C) ¹⁾ 5.17 ³⁾
	logPow:	5.17
Cl		
[18] <i>N,N'</i> -Diphenyl- <i>p</i> -phenylenediamines		
[18-1] <i>N,N'</i> -Diphenyl- <i>p</i> -phenylenediamine		
[10 1] 11,11 Signony is promy to to distance.	Molecular	~
Н	formula:	$C_{18}H_{16}N_2$
N A		74-31-7
	ENCS:	
		260.33
		150 ~ 151 °C ²⁾
		220 ~ 225°C (0.5mmHg) ²⁾
		Uncertain
N N	Specific	Check talli
Н	gravity:	1 2 2)
••		Uncertain
[18-2] <i>N,N'</i> -Ditolyl- <i>p</i> -phenylenediamine	iogi ow.	
[18-2] N,N-Ditoryi-p-prienyienediamine	Molecular	
Н ,	formula:	$C_{20}H_{20}N_2$
N A		27417-40-9
		3-146, 3-365, 4-332
		288.39
		Uncertain
		Uncertain
		Uncertain
}	Specific	
Н ,		Uncertain
		Uncertain
[18-3] <i>N,N'</i> -Dixylyl- <i>p</i> -phenylenediamine		
	Molecular formula:	CHN
l , H .	formula:	C ₂₂ F1 ₂₄ IN ₂
H N	CAS:	28726-30-9
	ENCS:	
		316.44
		Uncertain
		Uncertain
		Uncertain
N V Y	Specific	
Н		Uncertain
	logPow:	Uncertain
[19] Tributyltin compounds		
	Molecular	
		Not specified
C. H		Not specified
C ₄ H ₉ C. H		Not specified
C_4H_9		Not specified
Sn		Not specified
X \		Not specified
C_4H_9		Not specified
4 ¥	Specific	Nist and Cal
		Not specified
	iogPow:	Not specified

References

- 1) Haynes, CRC Handbook of Chemistry and Physics, 92nd Edition, CRC Press LLC (2011)
- 2) O'Neil, The Merck Index An Encyclopedia of Chemicals, Drugs, and Biologicals 14th Edition, Merck Co. Inc. (2006)
- 3) Hansch et al., Exploring QSAR Hydrophobic, Electronic and Steric Constants, American Chemical Society (1995)
- 4) IPCS, International Chemical Safety Cards, Aldrin, ICSC0774 (1998)
- 5) Howard et al., Handbook of Physical Properties of Organic Chemicals, CRC Press Inc. (1996)
- 6) IPCS, International Chemical Safety Cards, Endrin, ICSC1023 (2000)
- 7) IPCS, International Chemical Safety Cards, DDT, ICSC0034 (2004)
- Biggar et al., Apparent solubility of organochlorine insecticides in water at various temperatures, Hilgardia, 42, 383-391 (1974)
- 9) IPCS, International Chemical Safety Cards, alpha-Hexachlorocyclohexane, ICSC0795 (1998)
- 10) ATSDR, Toxicological Profile for alpha-, beta-, gamma- and delta-Hexachlorocyclohexane (2005)
- 11) IPCS, International Chemical Safety Cards, beta-Hexachlorocyclohexane, ICSC0796 (1998)
- 12) IPCS, International Chemical Safety Cards, Chlordecone ICSC1432 (2003)
- 13) United Nations Environment Programme (UNEP), Risk profile on perfluorooctane sulfonate, Report of the Persistent Organic Pollutants Review Committee on the work of its second meeting (2006)
- 14) OECD, Perfluorooctanoic Acid & Ammonium Perfluorooctanoate, SIDS Initial Assessment Profile for 26th SIAM (2008)
- 15) IPCS, International Chemical Safety Cards, Perfkuorooctanoic acid, ICSC1613 (2005)

3. Monitored site and procedure

In the Environmental Monitoring (of surface water, sediment, wildlife, and air), the sampling of specimens was entrusted to prefectural governments and government-designated cities across Japan and the specimens sampled were analysed by private analytical laboratories.

(1) Organisations responsible for sampling

T 1		Monitored media			
Local communities	Organisations responsible for sampling	Surface water	Sediment	Wildlife	Air
Hokkaido	Hokkaido Research Organization Environmental and Geological Research Department Institute of Environmental Sciences	0	0	0	0
Sapporo City	Sapporo City Institute of Public Health				0
Aomori Pref.	Aomori Prefectural Institute of Public Health and Environment	0	0		
	Aomori Prefectural Government Sanpachi District Administration Office Management and Local Coordination Division Hachinohe Environmental Management Office			0	
Iwate Pref.	Research Institute for Environmental Sciences and Public Health of Iwate Prefecture	0	0	0	0
Miyagi Pref.	Miyagi Prefectural Institute of Public Health and Environment	0	0	0	0
Sendai City	Sendai City Institute of Public Health		0		
Akita Pref.	Akita Research Center for Public Health and Environment	0	0		
Yamagata Pref.	Yamagata Institute of Environmental Sciences	0	0		
Fukushima Pref.	Fukushima Prefectural Institute of Environmental Research	0	0		
Ibaraki Pref.	Ibaraki Kasumigaura Environmental Science Center	0	0	0	0
Tochigi Pref.	Tochigi Prefectural Institute of Public Health and Environmental Science	0	0		
Gunma Pref.	Gunma Prefectural Institute of Public Health and Environmental Sciences				0
Saitama Pref.	Center for Environmental Science in Saitama	0			
Chiba Pref.	Chiba Prefectural Environmental Research Center		0		0
Chiba City	Chiba City Institute of Health and Environment	0	0		
Tokyo Met.	Tokyo Metropolitan Research Institute for Environmental Protection	0	0	0	0
Kanagawa Pref.	Kanagawa Environmental Research Center				0
Yokohama City	Yokohama Environmental Science Research Institute	0	0	0	0
Kawasaki City	Kawasaki Municipal Research Institute for Environmental Protection	0	0	0	
Niigata Pref.	Niigata Prefectural Institute of Public Health and Environmental Sciences	0	0		0
Toyama Pref.	Toyama Prefectural Environmental Science Research Center	0	0		0
Ishikawa Pref.	Ishikawa Prefectural Institute of Public Health and Environmental Science	0	0		0
Fukui Pref.	Fukui Prefectural Institute of Public Health and Environmental Science	0	0		
Yamanashi Pref.	Yamanashi Prefectural Institute of Public Health and Environment		0		0
Nagano Pref.	Nagano Environmental Conservation Research Institute	0	0		0
Gifu Pref.	Gifu Prefectural Research Institute for Health and Environmental Sciences				0
Shizuoka Pref.	Shizuoka Institute of Environment and Hygiene	0	0		
Aichi Pref.	Aichi Environmental Research Center	0	0		
Nagoya City	Nagoya City Environmental Science Research Institute			0	0
Mie Pref.	Mie Prefecture Health and Environment Research Institute	0	0		0
Shiga Pref.	Lake Biwa Environmental Research Institute	0	0	0	
Kyoto Pref.	Kyoto Prefectural Institute of Public Health and Environment	0	0		0
Kyoto City	Kyoto Prefectural Institute of Public Health and Environment	0	0		
Osaka Pref.	Research Institute of Environment, Agriculture and Fisheries, Osaka Prefectural Government	0	0	0	0
Osaka City	Osaka City Institute of Public Health and Environmental Sciences	0	0		
Hyogo Pref.	Hyogo Prefectural Agricultural Administration and Environment Division, Environment Bureau	0	0	0	0
Kobe City	Environmental Conservation and Guidance Division, Environment Bureau	0	0		0
Nara Pref.	Nara Prefectural Institute for Hygiene and Environment		0		0
Wakayama Pref.	Wakayama Prefectural Research Center of Environment and Public	0	0		
	Health				

Local		Monitored media			
communities	Organisations responsible for sampling	Surface water	Sediment	Wildlife	Air
Tottori Pref.	Tottori Prefectural Institute of Public Health and Environment			0	
Shimane Pref.	Shimane Prefectural Institute of Public Health and Environmental Science			0	0
Okayama Pref.	Okayama Prefectural Institute for Environmental Science and Public Health		0		
Hiroshima Pref.	Hiroshima Prefectural Technology Research Institute Health and Environment Center	0	0		
Hiroshima City	Hiroshima City Institute of Public Health			0	0
Yamaguchi Pref.	Yamaguchi Prefectural Public Health and Environment	0	0		0
Tokushima Pref.	Tokushima Prefectural Institute of Public Health and Environmental Sciences		0	0	0
Kagawa Pref.	Kagawa Prefectural Research Institute for Environmental Sciences and Public Health		0	0	0
Ehime Pref.	Ehime Prefectural Institute of Public Health and Environmental Science		0		0
Kochi Pref.	Kochi Prefectural Environmental Research Center	0	0	0	
Fukuoka Pref.	Fukuoka Institute of Health and Environmental Science				0
Kitakyushu City	Kitakyushu City Institute of Environmental Sciences	0	0	0	
Fukuoka City	Fukuoka City Institute for Hygiene and the Environment		0		
Saga Pref.	Saga Prefectural Environmental Research Center	0	0		0
Nagasaki Pref.	Public Relations and Public Hearing Division, Policy Planning and Coordination Bureau, Nagasaki Prefecture	0	0		
Kumamoto Pref.	Kumamoto Prefectural Institute of Public Health and Environmental Science	0			0
Oita Pref.	Oita Prefectural Environmental Preservation Division, Life and Environment Department		0	0	
Miyazaki Pref.	Miyazaki Prefectural Institute for Public Health and Environment	0	0		0
Kagoshima Pref.	Kagoshima Prefectural Institute forEnvironmental Research and Public Health	0	0	0	0
Okinawa Pref.	Okinawa Prefectural Institute of Health and Environment	0	0	0	0

(Note) Organisations responsible for sampling are described by their official names in FY 2010.

(2) Monitored sites (areas)

Monitored sites (areas) are shown in Table 3-1-1 and Figure 3-1-1 for surface water, Table 3-1-2 and Figure 3-1-2 for sediment, Table 3-1-3 and Figure 3-1-3 for wildlife and Table 3-1-4 and Figure 3-1-4 for air. The breakdown is summarized as follows.

Monitored media	Numbers of local communities	Numbers of target chemicals (groups)	Numbers of monitored sites (or areas)	Numbers of samples at a monitored site (or area)
Surface water	43	14	49	1
Sediment	48	14	64	1 or 3 *
Wildlife (bivalves)	6	14	6	1 or 3 **
Wildlife (fish)	15	14	18	1 or 3 **
Wildlife (birds)	2	14	2	1 or 3 **
Air (warm season)	35	13	37	1 or 3 ***
Air (cold season)	35	12	37	1 ***
All media	59	15	120	

⁽Note 1) For bottom/sediment cover, the plan for each monitoring point included three (3) specimen samples per point while three (3) samples for the target substances [19] Tributyltin compounds and [20] triphenyltin compounds were taken at each point. Samples to track other target substances were taken one sample per point, with each point having no more than three target substances.

⁽Note 2) For biological species (flora and fauna), five specimens were taken at each point. Three (3) samples were taken at each point for target substances [19] Tributyltin compounds and [20] Triphenyltin compounds. Samples to track other target substances were taken one sample per point, with each point having no more than three target substances.

⁽Note 3) For target substance group [18] Diphenyl-p-phenylenediamine, measurement was conducted for three samples at each point only in warm season. For other chemicals, one sample was gathered per point, in both warm and cold seasons.

	Smonitored sites (surface water) in the Environmental Monitoring in F	Y 2010
Local communities	Monitored sites	Sampling dates
Hokkaido	Suzuran-ohashi Bridge, Riv Tokachi(Obihiro City)	October 7, 2010
	Ishikarikakokyo Bridge, Mouth of Riv. Ishikari(Ishikari City)	October 6, 2010
Aomori Pref.	Lake Jusan	October 14, 2010
Iwate Pref.	Riv. Toyosawa(Hanamaki City)	October 13, 2010
Miyagi Pref.	Sendai Bay(Matsushima Bay)	October 20, 2010
Akita Pref.	Lake Hachiro	September 28, 2010
Yamagata Pref.	Mouth of Riv. Mogami(Sakata City)	November 8, 2010
Fukushima Pref.	Onahama Port	February 2, 2011
Ibaraki Pref.	Tonekamome-ohasi Bridge, Mouth of Riv. Tone(Kamisu City)	November 6, 2010
Tochigi Pref.	Riv. Tagawa(Utsunomiya City)	November 11, 2010
Saitama Pref.	Akigaseshusui of Riv. Arakawa	November 18, 2010
Chiba City	Mouth of Riv. Hanami(Chiba City)	November 12, 2010
Tokyo Met.	Mouth of Riv. Iraham(Chiba City) Mouth of Riv. Arakawa(Koto Ward)	November 15, 2010
TORYO WICE.	Mouth of Riv. Sumida(Minato Ward)	November 15, 2010
Yokohama City	Yokohama Port	November 24, 2010
Kawasaki City	Keihin Canal, Port of Kawasaki	November 8, 2010
Niigata Pref.	Lower Riv. Shinano(Niigata City)	September 29, 2010
Toyama Pref.	Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City)	November 18, 2010
Ishikawa Pref.	Mouth of Riv. Sai(Kanazawa City)	October 13, 2010
Fukui Pref.	Mishima-bashi Bridge, Riv. Shono(Tsuruga City)	November 17, 2010
		October 21, 2010
Nagano Pref.	Lake Suwa(center)	
Shizuoka Pref.	Riv. Tenryu(Iwata City)	October 5, 2010
Aichi Pref.	Nagoya Port	October 28, 2010
Mie Pref.	Yokkaichi Port	October 26, 2010
Shiga Pref.	Lake Biwa(center, offshore of Karasaki)	November 16, 2010
Kyoto Pref.	Miyazu Port	October 6, 2010
Kyoto City	Miyamae-bashi Bridge, Miyamae Bridge, Riv. Katsura(Kyoto City)	November 11, 2010
Osaka Pref.	Mouth of Riv. Yamato(Sakai City)	November 19, 2010
Osaka City	Osaka Port	September 27, 2010
Hyogo Pref.	Offshore of Himeji	October 8, 2010
Kobe City	Kobe Port(center)	October 27, 2010
Wakayama Pref.	Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City)	October 27, 2010
Okayama Pref.	Offshore of Mizushima	October 27, 2010
Hiroshima Pref.	Kure Port	November 4, 2010
	Hiroshima Bay	November 4, 2010
Yamaguchi Pref.	Tokuyama Bay	October 21, 2010
	Offshore of Ube	October 13, 2010
	Offshore of Hagi	October 20, 2010
Tokushima Pref.	Mouth of Riv. Yoshino(Tokushima City)	October 7, 2010
Kagawa Pref.	Takamatsu Port	October 12, 2010
Kochi Pref.	Mouth of Riv. Shimanto(Shimanto City)	October 18, 2010
Kitakyushu City	Dokai Bay	October 27, 2010
Saga Pref.	Imari Bay	October 5, 2010
Nagasaki Pref.	Omura Bay	November 18, 2010
Kumamoto Pref.	Riv. Midori(Uto City)	October 18, 2010
Miyazaki Pref.	Mouth of Riv. Oyodo(Miyazaki City)	November 5, 2010
Kagoshima Pref.	Riv. Amori(Kirishima City)	October 27, 2010
5		
	Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City)	November 16, 2010

Figure 3-1-1 Monitored sites (surface water) in the Environmental Monitoring in FY 2010

Table 3-1-2 List of	f monitored sites (sediment) in the Environmental Monitoring in FY 20	10
Local communities	Monitored sites	Sampling dates
Hokkaido	Onnenai-ohashi Bridge, Riv. Teshio(Bifuka Town)	October 18, 2010
	Suzuran-ohashi Bridge, Riv Tokachi(Obihiro City)	October 7, 2010
	Ishikarikakokyo Bridge, Mouth of Riv. Ishikari(Ishikari City)	October 6, 2010
	Tomakomai Port	September 14, 2010
Aomori Pref.	Lake Jusan	October 14, 2010
Iwate Pref.	Riv. Toyosawa(Hanamaki City)	October 13, 2010
Miyagi Pref.	Sendai Bay(Matsushima Bay)	October 20, 2010
Sendai City	Hirose-ohashi Bridge, Riv. Hirose(Sendai City)	November 17, 2010
Akita Pref.	Lake Hachiro	September 28, 2010
Yamagata Pref.	Mouth of Riv. Mogami(Sakata City)	November 8, 2010
Fukushima Pref.	Onahama Port	February 2, 2011
Ibaraki Pref.	Tonekamome-ohasi Bridge, Mouth of Riv. Tone(Kamisu City)	November 6, 2010
Tochigi Pref. Chiba Pref.	Riv. Tagawa(Utsunomiya City) Coast of Ichihara and Anegasaki	November 11, 2010 October 27, 2010
Chiba City	Mouth of Riv. Hanami(Chiba City)	November 12, 2010
Tokyo Met.	Mouth of Riv. Arakawa(Koto Ward)	November 15, 2010
TORYO MEL.	Mouth of Riv. Sumida(Minato Ward)	November 15, 2010
Yokohama City	Yokohama Port	November 24, 2010
Kawasaki City	Mouth of Riv. Tama(Kawasaki City)	November 8, 2010
Transmit City	Keihin Canal, Port of Kawasaki	November 8, 2010
Niigata Pref.	Lower Riv. Shinano(Niigata City)	September 29, 2010
Toyama Pref.	Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City)	November 18, 2010
Ishikawa Pref.	Mouth of Riv. Sai(Kanazawa City)	October 13, 2010
Fukui Pref.	Mishima-bashi Bridge, Riv. Shono(Tsuruga City)	November 17, 2010
Yamanashi Pref.	Senshu-bashi Bridge, Riv. Arakawa(Kofu City)	October 26, 2010
Nagano Pref.	Lake Suwa(center)	October 21, 2010
Shizuoka Pref.	Shimizu Port	October 13, 2010
	Riv. Tenryu(Iwata City)	October 5, 2010
Aichi Pref.	Kinuura Port	October 28, 2010
	Nagoya Port	October 28, 2010
Mie Pref.	Yokkaichi Port	October 26, 2010
	Toba Port	October 19, 2010
Shiga Pref.	Lake Biwa(center, offshore of Minamihira)	November 16, 2010
	Lake Biwa(center, offshore of Karasaki)	November 16, 2010
Kyoto Pref.	Miyazu Port	October 6, 2010
Kyoto City	Miyamae-bashi Bridge, Miyamae Bridge, Riv. Katsura(Kyoto City)	November 11, 2010
Osaka Pref.	Mouth of Riv. Yamato(Sakai City)	November 19, 2010
Osaka City	Osaka Port	September 27, 2010
	Outside Osaka Port	September 27, 2010
	Mouth of Riv. Yodo(Osaka City)	September 27, 2010
Hyogo Pref.	Riv. Yodo(Osaka City) Offshore of Himeji	October 6, 2010 October 8, 2010
Kobe City	Kobe Port(center)	October 8, 2010 October 27, 2010
Nara Pref.	Riv. Yamato(Ooji Town)	November 8, 2010
Wakayama Pref.	Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City)	October 27, 2010
Okayama Pref.	Offshore of Mizushima	October 27, 2010
Hiroshima Pref.	Kure Port	November 4, 2010
111105111110 1 1 011	Hiroshima Bay	November 4, 2010
Yamaguchi Pref.	Tokuyama Bay	October 21, 2010
	Offshore of Ube	October 13, 2010
	Offshore of Hagi	October 20, 2010
Tokushima Pref.	Mouth of Riv. Yoshino(Tokushima City)	October 7, 2010
Kagawa Pref.	Takamatsu Port	October 12, 2010
Ehime Pref.	Niihama Port	November 16, 2010
Kochi Pref.	Mouth of Riv. Shimanto(Shimanto City)	October 18, 2010
Kitakyushu City	Dokai Bay	October 27, 2010
Fukuoka City	Hakata Bay	October 19, 2010
Saga Pref.	Imari Bay	October 5, 2010
Nagasaki Pref.	Omura Bay	November 18, 2010
Oita Pref.	Mouth of Riv. Oita(Oita City)	November 19, 2010
Miyazaki Pref.	Mouth of Riv. Oyodo(Miyazaki City)	November 5, 2010
Kagoshima Pref.	Riv. Amori(Kirishima City)	October 27, 2010
01: 7.0	Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City)	November 16, 2010
Okinawa Pref.	Naha Port	November 5, 2010

Figure 3-1-2 Monitored sites (sediment) in the Environmental Monitoring in FY 2010

Local	Monitored sites	Sampling dates		Wildlife species
communities	0001 01 1:	0 1 1 2010	B: 1	<u> </u>
Hokkaido	Offshore of Kushiro	September 1, 2010	Fish	Rock greenling (Hexagrammos lagocephalus)
	Offshore of Kushiro	October 18, 2010	Fish	Chum salmon (Oncorhynchus keta)
	Offshore of Japan Sea	November 1, 2010	Fish	Greenling
	(offshore of Iwanai)			(Hexagrammos otakii)
Aomori Pref.	Kabu Is.(Hachinohe City)	July 8, 2010	Birds	Black-taild gull (Larus crassirostris)
Iwate Pref.	Yamada Bay	November 24, 2010	Bibalves	Blue mussel (Mytilus galloprovincialis)
	Yamada Bay	December 1, 2010	Fish	Greenling (Hexagrammos otakii)
	Suburb of Morioka City	August 11, 2010	Birds	Gray starling (Sturnus cineraceus)
Miyagi Pref.	Sendai Bay(Matsushima Bay)	September 6, 2010	Fish	Sea bass
wiiyagi i lel.	Schuai Day(iviatsusiiiiia Day)	September 0, 2010	1.1211	(Lateolabrax japonicus)
Ibaraki Pref.	Offshore of Joban	December 1, 2010	Fish	Pacific saury
				(Cololabis saira)
Tokyo Met.	Tokyo Bay	August 26, 2010	Fish	Sea bass (Lateolabrax japonicus)
Yokohama City	Yokohama Port	October 19, 2010	Bibalves	Green mussel (Perna viridis)
Kawasaki City	Offshore of Ogishima Island,	October 12, 2010	Fish	Sea bass
-	Port of Kawasaki			(Lateolabrax japonicus)
Nagoya City	Nagoya Port	August 18, 2010	Fish	Striped mullet
China Duaf	Lala Diana Dia Amani	A 1 2 2010	Einle	(Mugil cephalus)
Shiga Pref.	Lake Biwa, Riv. Azumi (Takashima City)	April 2, 2010	Fish	Dace (Tribolodon hakonensis)
Osaka Pref.	Osaka Bay	August 23, 2010	Fish	Sea bass (Lateolabrax japonicus)
Hyogo Pref.	Offshore of Himeji	November 25, 2010	Fish	Sea bass (Lateolabrax japonicus)
Tottori Pref.	Nakaumi	October 17, 2010	Fish	Sea bass (Lateolabrax japonicus)
Shimane Pref.	Shichirui Bay,	October 11, 2010	Bibalves	Blue mussel
Hiroshima City	Shimane Peninsula Hiroshima Bay	November 18, 2010	Fish	(Mytilus galloprovincialis) Sea bass
mosiiiiia City	Tinosiiiiia Day	1101011001 10, 2010	1 1511	(Lateolabrax japonicus)
Tokushima Pref.	Naruto	October 12, 2010	Bibalves	Hard-shelled mussel
	T 1 P	0 1 1 2010	Dil 1	(Mytilus coruscus)
Kagawa Pref.	Takamatsu Port	September 1, 2010	Bibalves	Hard-shelled mussel (Mytilus coruscus)
Kochi Pref.	Mouth of	October 18, 2010	Fish	Sea bass
	Riv. Shimanto(Shimanto City)		1 1011	(Lateolabrax japonicus)
Kitakyushu City	Dokai Bay	July 27, 2010	Bibalves	Blue mussel (Mytilus galloprovincialis)
Oita Pref.	Mouth of Riv. Oita(Oita City)	November 29, 2010	Fish	Sea bass (Lateolabrax japonicus)
Kagoshima Pref.	West Coast of	November 29, 2010	Fish	Sea bass
	Satsuma Peninsula	·	1 1011	(Lateolabrax japonicus)
Okinawa Pref.	Nakagusuku Bay	December 13, 2010	Fish	Okinawa seabeam
				(Acanthopagrus sivicolus)

Figure 3-1-3 Monitored areas (wildlife) in the Environmental Monitoring in FY 2010

Table 3-1-4 List of monitored sites (air) in the Environmental Monitoring in FY 2010

	st of monitored sites (air) in the Envir		
Local communities	Monitored sites	Sampling dates (Warm season)	Sampling dates (Cold season)
Hokkaido	Kamikawa Combination Office (Asahikawa City)	September 14~21, 2010* or September 14~17, 2010**,***	November 15~22, 2010* or November 15~17 and 18~19, 2010**
Sapporo City	Sapporo Art Park(Sapporo City)	September 27~30, 2010	November 16~17,18~19, 2010 and January 6~7, 2011
Iwate Pref.	Amihari Ski Area(Shizukuishi Town)	August 30~September 2, 2010*,** or September 13~16***, 2010	November 8~11, 2010
Miyagi Pref.	Miyagi Prefectural Institute of Public Health and Environment(Sendai City)	September 27~October 4, 2010*,September 28~October 1, 2010** or September 28~October 2, 2010***	December 6~13, 2010* or December 6~8 and 14~15, 2010**
Ibaraki Pref.	Ibaraki Kasumigaura Environmental Science Center(Tsuchiura City)	September 9~16, 2010* or September 9~12, 2010**,***	December 7~14, 2010* or December 7~10, 2010**
Gunma Pref.	Gunma Prefectural Institute of Public Health and Environmental Sciences(Maebashi City)	October 12~19, 2010* or October 12~15, 2010**,***	November 29~December 6, 2010* or November 29~December 2, 2010**
Chiba Pref.	Ichihara-Matsuzaki Air Quality Monitoring Station(Ichihara City)	September 27~October 4, 2010* or September 27~30, 2010**,***	November 29~December 6, 2010* or November 29~December 2, 2010**
Tokyo Met.	Tokyo Metropolitan Research Institutefor Environmental Protection (Koto Ward)	September 3~10, 2010*,September 6~9, 2010** or September 6~8 and 9~10, 2010***	November 4~11, 2010* or November 8~11, 2010**
	Chichijima Island	September 27~30, 2010	November 21~28, 2010* or November 21~24, 2010**
Kanagawa Pref.	Kanagawa Environmental Research Center(Hiratsuka City)	September 6~9, 2010	November 15~18, 2010
Yokohama City	Yokohama Environmental Science Research Institute(Yokohama City)	September 10~17, 2010*, September 14~17, 2010** or September 7~10, 2010***	December 10~17, 2010* or December 14~17, 2010**
Niigata Pref.	Oyama Air Quality Monitoring Station(Niigata City)	September 28~October 1, 2010	December 13~16, 2010
Toyama Pref.	Tonami Air Quality Monitoring Station(Tonami City)	September 7~10, 2010*,** or September 14~17, 2010***	December 6~9, 2010
Ishikawa Pref.	Ishikawa Prefectural Institute of Public Health and Environmental Science (Kanazawa City)	September 28~October 1, 2010	December 14~17, 2010
Yamanashi Pref.	Yamanashi Prefectural Institute of Public Health and Environment(Kofu City)	September 14~17, 2010	November 30~December 3, 2010
Nagano Pref.	Nagano Environmental Conservation Research Institute(Nagano City)	September 7~14, 2010*, September 7~10, 2010** or September 13~16, 2010***	November 8~15, 2010* or November 9~12, 2010**
Gifu Pref.	Gifu Prefectural Research Institute for Health and Environmental Sciences(Kakamigahara City)	October 12~15, 2010	November 29~December 2, 2010
Nagoya City	Chikusa Ward Heiwa Park (Nagoya City)	September 22~29, 2010* or September 27~30, 2010**,***	December 7~14, 2010* or December 7~10, 2010**
Mie Pref.	Mie Prefecture Health and Environment Research Institute(Yokkaichi City)	September 13~16, 2010	December 13~16, 2010
Kyoto Pref.	Kyoto Prefecture Joyo Senior High School(Joyo City)	October 12~15, 2010	December 14~17, 2010
Osaka Pref.	Research Institute of Environment, Agriculture and Fisheries, Osaka Prefectural Government(Osaka City)	September 27~30, 2010	November 29~December 2, 2010
Hyogo Pref.	Hyogo Prefectural Environmental Research Center(Kobe City)	August 30~September 2, 2010*,** or October 13~15 and 26~27, 2010***	November 29~December 2, 2010
Kobe City	Fukiai Air Quality Monitoring Station(Kobe City)	September 27~30, 2010*,** or October 4~7, 2010***	November 29~December 2, 2010
Nara Pref.	Tenri Air Quality Monitoring Station(Tenri City)	September 27~30, 2010*,** or September 27~29 and 30~October 1, 2010***	December 13~16, 2010* or December 14~17, 2010**

Local communities	Monitored sites	Sampling dates (Warm season)	Sampling dates (Cold season)
Shimane	Oki National Acid Rain	September 14~17, 2010	November 22~25, 2010
Pref.	Observatory(Okinoshima Town)	September 11 17, 2010	1100011001 22 23, 2010
Hiroshima	Hiroshima City Kokutaiji Junior	September 13~16, 2010	November 16~19, 2010
City	High School(Hiroshima City)	,	,
Yamaguchi Pref.	Yamaguchi Prefectural Public Health and Environment(Yamaguchi City)	September 14~21, 2010*, September 14~17, 2010** or September 15~18, 2010***	November 26~December 3, 2010* or November 30~December 3, 2010**
	Hagi City Government Building, Mishima Branch(Hagi City)	September 14~21, 2010* or September 14~17, 2010**,***	November 26~December 3, 2010* or November 30~December 3, 2010**
Tokushima Pref.	Tokushima Prefectural Institute of Public Health and Environmental Sciences(Tokushima City)	September 27~30, 2010*,** or October 4~7, 2010***	December 6~9, 2010
Kagawa Pref.	Takamatsu Joint Prefectural Government Building (Takamatsu City)	September 8~15, 2010*,September 8~11, 2010** or September 10~13, 2010***	November 17~24, 2010* or November 17~20, 2010**
	Kagawa Prefectural Public Swimming Pool(Takamatsu City) as a reference site		
Ehime Pref.	Ehime Prefectural Government Nanyo Regional Office (Uwajima City)	October 5~8, 2010	November 8~11, 2010
Fukuoka Pref.	Omuta City Government Building(Omuta City)	September 27~30, 2010	November 29~December 2, 2010
Saga Pref.	Saga Prefectural Environmental Research Center(Saga City)	September 7~14, 2010*,September 7~10, 2010** or September 14~17, 2010***	November 9~16, 2010* or November 9~12, 2010**
Kumamoto Pref.	Kumamoto Prefectural Institute of Public Health and Environmental Science(Udo City)	September 27~30, 2010	December 13~16, 2010
Miyazaki Pref.	Miyazaki Prefectural Institute for Public Health and Environment (Miyazaki City)	September 7~14, 2010* or September 7~10, 2010**,***	November 22~29, 2010* or November 22~25, 2010**
Kagoshima Pref.	Kagoshima Prefectural Institute for Environmental Research and Public Health(Kagoshima City)	September 6~8 and 9~10, 2010*,** or September 13~16, 2010***	December 6~7,8~9 and 9~10, 2010
Okinawa Pref.	Cape Hedo(Kunigami Village)	September 27~30, 2010	November 29~December 2, 2010

(Note) " * " means sampling except [17] Pentachlorobenzene and [18] *N,N*'-Diphenyl-p-phenylenediamines. " ** " means sampling [17] Pentachlorobenzene." *** " means sampling [18] *N,N*'-Diphenyl-p-phenylenediamines.

Figure 3-1-4 Monitored sites (air) in the Environmental Monitoring in FY 2010

(3) Target species

The species to be monitored among the wildlife media were selected considering the possibility of international comparison, as well as their significance and practicality as indicators: 3 bivalves (predominantly blue mussel), 8 fishes (predominantly sea bass), and 2 birds, namely, 13 species in total.

The properties of the species determined as targets in the FY 2009 monitoring are shown in Table 3-2. Moreover, Table 3-3 summarizes the outline of the samples used for analysis. Here, in the case of the black-tailed gull, prefledged juveniles (sacrificed) were used as samples.

(4) Sampling method of specimens

The sampling of specimens and the preparation of samples were carried out following the "Environmental Monitoring Instruction Manual" (No. 040309001, published on March 9th, 2004) by the Environment Health and Safety Division, Environmental Health Department, Ministry of the Environment of Japan (MOE).

Table 3-2 Properties of target species

	Species	Properties	Monitored areas	Aim of monitoring	Notes
	Blue mussel (Mytilus galloprovincialis)	Distributed worldwide, excluding tropical zones Adheres to rocks in inner bays and to bridge piers	Yamada BayCoast of Noto Peninsula Shitirui BayDokai Bay	Follow-up of the environmental fate and persistency in specific areas	Monitored in the 3 areas with different levels of persistency
Bibalves	Hard-shelled mussel (Mytilus coruscus)	Distributed in various areas of southern Hokkaido and southward Adheres to rocks where the current is fast (1-10 m/s)	Naruto Takamatsu Port	Follow-up of the environmental fate and persistency in specific areas	
	Green mussel (Perna viridis)	Distribution ranges from southern Honshu island, to the southernmost reaches of Japan Adheres to sheltered rock faces or harbor pilings.	• Yokohama Port	Follow-up of the environmental fate and persistency in specific areas	
	Greenling (Hexagrammos otakki)	Distributed from Hokkaido to southern Japan, the Korean Peninsula, and China Lives in shallow seas of 5-50 m depth from sea level	Offshore of Iwanai Yamada Bay	Follow-up of the environmental fate and persistency in specific areas	
	Rock greenling (Hexagrammos lagocephalus)	Lives in cold-current areas of Hidaka and eastward (Hokkaido) Larger than the greenling and eats fish smaller than its mouth size at the sea bottom	Offshore of Kushiro	Follow-up of the environmental fate and persistency in specific areas	
	Pacific saury (Cololabis saira)	Distributed widely in northern Pacific Ocean Migrates around Japanese Archipelago; in Chishima in autumn and northern Kyushu in winter Bioaccumulation of chemicals is said to be moderate	Offshore of Joban	Follow-up of the environmental fate and persistency around the Japanese archipelago	
Fish	Chum salmon (Oncorhynchus keta)	Distributed in northern Pacific Ocean, Sea of Japan, Bering Sea, Sea of Okhotsk, the whole of the Gulf of Alaska, and part of the Arctic Ocean Runs the Tone River on the Pacific Ocean side and rivers in Yamaguchi Prefecture and northward on the Sea of Japan side in Japan Bioaccumulation of chemicals is said to be moderate	Offshore of Kushiro	Follow-up of the environmental fate and persistency on a global scale	
	Sea bass (Lateolabrax japonicus)	Distributed around the shores of various areas in Japan, the Korean Peninsula, and the coastal areas of China Sometimes lives in a freshwater environment and brackish-water regions during its life cycle Bioaccumulation of chemicals is said to be high	Matsushima Bay Tokyo Bay Kawasaki Port Osaka Bay Offshore of Himeji Nakaumi Hiroshima Bay Mouth of Riv. Shimanto Mouth of Riv. Oita West Coast of Satsuma Peninsula	Follow-up of the environmental fate and persistency in specific areas	Monitored in the 10 areas with different levels of persistency
	Striped mullet (Mugil cephalus)	Distributed widely in the worldwide tropical zones and subtropical zones Sometimes lives in a freshwater environment and brackish-water regions during its life cycle	Nagoya Bay	Follow-up of the environmental fate and persistency in specific areas	

	Species	Properties	Monitored areas	Aim of monitoring	Notes
	Okinawa seabeam (Acanthopagrus sivicolus)	Distributed around Nansei Shoto (Ryukyu Islands) Lives in coral reefs and in bays into which rivers flow	Kanagusuku Bay	Follow-up of the environmental fate and persistency in specific areas	
	Dace (Tribolodon hakonensis)	Distributed widely in freshwater environments throughout Japan Preys mainly on insects	• Lake Biwa, Riv. Azumi (Takashima City)	Follow-up of the environmental fate and persistency in specific areas	
Birds	Gray starling (Sturnus cineraceus)	Distributed widely in the Far East (Related species are distributed worldwide) Eats primarily insects	Morioka City	Follow-up of the environmental fate and persistency in northern Japan	
Bii	Black-taild gull (Larus crassirostris)	Breeds mainly in the sea off Japan Breeds in groups at shore reefs and in grassy fields	Kabu Is. (Hachinohe City)	Follow-up of the environmental fate and persistency in specific areas	

Table 3-3-1 Basic data of specimens (bivalves as wildlife) in the Environmental Monitoring in FY 2010

Table 3-3-1 Basic data of specimens (bivalves as wildlife) in the Environmental Monitoring in FY 2010											
Bivalve species	No.	Sampling	Sex	Number of	W	eight (g)		Leng	gth (cm)	Water	Lipid
(Area)	INO.	month	Sex	animals	(<i>A</i>	(verage)		(Av	verage)	%	content %
Blue mussel	1		Uncertain	148	32.1 ~	88.2 (45.7)	8.1 ~	10.7 (8.8)	79.2	2.2
Mytilus	2	3.T 1	Uncertain	197	25.3 ~	57.1 (36.0)	7.7 ~	8.3 (8.0)	79.8	2.3
galloprovincialis	3	November, 2010	Uncertain	258	18.4 ~	46.5 (30.1)	7.1 ~	8.0 (7.5)	80.1	2.1
	4	2010	Uncertain	381	16.8 ~	33.6 (24.6)	6.7 ~	7.3 (7.0)	81.1	2.0
(Yamada Bay)	5		Uncertain	468	8.5 ~	27.4 (13.5)	5.2 ~	6.8 (6.0)	81.3	1.9
	1		Mixed	583	1.5 ~	3.7 (2.4)	2.6 ~	3.7 (3.1)	82	1.5
Green mussel	2	Ostaban	Mixed	663	1.2 ~	4.0 (2.1)	2.6~	3.5 (3.0)	83	1.5
Perna viridis	3	October, 2010	Mixed	762	1.2 ~	3.0 (1.9)	2.5 ~	3.4 (2.9)	83	1.1
(Yokohama Port)	4	2010	Mixed	692	1.3 ~	3.0 (2.1)	2.6~	3.5 (3.0)	84	1.2
	5		Mixed	680	1.2 ~	3.0 (2.1)	2.7 ~	3.3 (3.0)		1.1
Blue mussel	1		Uncertain	40	130.8 ~	298.9 (190.7)	9.6~	14.2 (11.4)	71.6	2.0
Mytilus	2	October,	Uncertain	80	98.0 ~	177.1 (133.5)	9.1 ~	12.1 (10.5)	72.3	2.5
galloprovincialis	3	2010	Uncertain	400	53.6 ~	150.4 (91.6)	7.3 ~	10.4 (9.1)	80.9	1.4
(C1::: D)	4	2010	Uncertain	510	14.1 ~	108.3 (60.2)	3.8 ~	9.7 (7.0)	81.6	1.4
(Shitirui Bay)	5		Uncertain	600	12.7 ~	21.1 (16.5)	3.2 ~	4.2 (3.8)	80.5	1.6
** 1 1 11 1	1		Mixed	21	268.0 ~	437.5 (345)	13.2 ~	16.5 (15.0)	72.4	1.6
Hard-shelled mussel <i>Mytilus coruscus</i>	2	October,	Mixed	20	347.1 ~	533.2 (436)	15.0 ~	18.5 (16.3)	71.6	1.3
Myllius Coruscus	3	2010	Mixed	19	364.1 ~	517.2 (428)	14.5 ~	18.0 (16.5)	73.4	1.3
(Naruto)	4	2010	Mixed	18	363.2 ~	591.7 (471)	15.3 ~	19.2 (17.3)		1.2
	5		Mixed	17	391.9~	671.6 (524)	17.0 ~	19.6 (18.1)		0.7
TT 1 1 11 1 1	1		Uncertain	28	72.2 ~	266.1 (155.3)	8.5 ~	14.5 (11.6)		2.8
Hard-shelled mussel <i>Mytilus coruscus</i>	2	September,	Uncertain	32	74.4 ~	311.0 (156.2)	9.1 ~	15.6 (11.3)		2.0
Myllius Coruscus	3	2010	Uncertain	25	79.9 ~	313.0 (185.5)	8.5 ~	15.5 (12.4)		3.0
(Takamatsu Port)	4	2010	Uncertain	42	35.3 ~	280.1 (96.3)	7.6 ~	14.5 (10.0)	74.5	2.7
,	5		Uncertain	42	76.4 ~	256.7 (138.8)	9.5 ~	14.0 (11.3)	76.1	2.4
Purplish bifurcate mussel Septifer virgatus (Dokai Bay)	1	July, 2010	Mixed	1,100	1.6~	8.2 (2.8)	2.4 ~	4.0 (3.1)	82	2.3

Coffshore of 4 September, 2010 Mixed 7 525 ~ 785 (628) 35 ~ 39 (35 ~ 38 (35 ~ 38) 35 ~ 38		Water	Lipid
Rock greenling Hexagrammos otakki Coffshore of 4 Coffshore of A Coffshore o			
Rock greenling 1 Mixed 6 615 ~ 855 (741) 36 ~ 41 (3 1 1 1 1 1 1 1 1 1			content
Rock greening Hexagrammos otakki 2	38)	% 74.5	% 1.5
(Offshore of 4 September, 2010 Mixed 7 545 ~ 755 (616) 35 ~ 38 (37) 35 ~ 38 (36)	75.5	
(Offshore of 4 2010 Mixed 7 545 ~ 745 (642) 34 ~ 38 (3		74.8	1.2 0.2
Kushiro) 5 Mixed 7 545 ~ 675 (612) 34 ~ 37 (3	36)	74.8	1.7
7 343 073 (012) 34 37 (36)	74.7	2.7
Cnum saimon		72.3	1.6
Oncorhynchus 2 October, Female 1 4,900 71		71.9	2.0
keta 3 2010 Female 1 4,300 /1		72.4	1.1
Vlim)		68.2	4.0
7 3 1 cmate 1 4,300	44)	72.4	1.5
Greening 1 24 A55 (760) 24 A55 (44)	72.4	1.8
November	38)	71.6	2.1
lagocephalus 3 2010 Mixed 3 625 ~ 1,275 (879) 38 ~ 40 (2	41)	72.4	1.8
(0.001 07 3)	38)	73.3	2.0
Winder 0 403 1,033 (023) 33 40 (37)	73.3	1.8
Greening	36.4)	72.4	2.8
December	34.2)	73.1	3.4
lagocephatus 3 2010 Oncertain 11 402.3 ~ 347.9 (433.3) 31.8 ~ 33.4 (3.6
(Yamada Bay) 5 Uncertain 12 338.8~ 593.2 (431.4) 30.3~ 31.6 (3.20) 17 204.0~ 449.8 (329.2) 24.8~ 29.9 (4.20)		73.4	3.8
57 5 Officertain 17 204.0 447.0 (325.2) 24.0 25.5 (2	28.3)	74.0	3.6
Sea bass	22.3)	73.6	1.9
Lateolabrax 2 Mixed 25 159 ~ 307 (196) 21.3 ~ 27.6 (197) 20.8 26.0 (197) 20.0		74.4	1.7
Japonicus 3 2010 Mixed 31 139~ 233 (187) 20.8~ 20.0 (187)		73.7	1.3
(M) 1: D)	23.3)	73.7	1.5
30 110 333 (170) 20.3 21.1 (1	22.9)	74.3	1.3
racine saury	27)	67.2	9.5
December	28)	66.9	8.9
3 2010 Oncertain 25 126 ~ 133 (131) 28 ~ 32 (2	29)	65.1	11.0
Talan	30)	63.0	12.3
) S Onecitain 25 85 1 156 (125) 25 1 51 (2	28)	66.0	12.5
Sea bass	52.0)	75.5	4.7
Lateolatica August August	45.0)	74.7	3.2
Japonicus 3 2010 Wixed 3 1,506 ~ 1,570 (1,541) 46.4 ~ 50.6 (l l	2.9
(Tala Da)	43.6)		2.8
3 990 1,000 (1,025) 59.0 11.2 (40.9)	75.6	2.7
Sea bass	30.0)		
Lateolabrax 2 October, Male 11 410 ~ 450 (434) 31.0 ~ 33.5 (3.15 - 36.0 (524) 31.5 - 36.0 (71.0	3.7
Juponicus 3 2010 Wate 9 430 ~ 600 (324) 31.3 ~ 30.0 ((Av)	(Av)
(Kawasaki Port) 4 Female 11 345 ~ 675 (416) 27.5 ~ 35.0 (360) 360 768 (466) 29.5 39.6 (360)			
5 Temate 10 300 ~ 700 (400) 27.3~ 37.0 (
	40.1)	l l	
Mugil caphalus August Siectum Sin, 101 (1,000) 50.5		70 (4.0
3 2010 Oncertain 3 1,014 ~ 1,002 (1,044) 38.8 ~ 40.0 ((Δv)	(Av)
(Nagoya Port) 4 Uncertain 5 952 ~ 1,011 (973) 37.5 ~ 38.5 (3			, ,
	36.7)		4.0
	26.4)	70.8	4.0
Tribolodon 2 April, Hale 25 215 ~ 321 (271) 24.1 ~ 29.0 (271)			4.2
3 2010 remaie 22 2/3 ~ 433 (330) 24.6 ~ 29.0 (2			4.5
(Lake Biwa, Riv. 4 Male 24 188 ~ 338 (250) 23.5 ~ 27.6 (4.0
Azumi) 5 Female 20 253 ~ 313 (279) 24.8 ~ 27.6 (2			3.8
Sea bass 1 Uncertain 7 682.2 ~ 816.3 (767.0) 37.0 ~ 38.0 (
Lateolabrax 2 Uncertain 8 553.5 ~ 733.0 (674.1) 33.0 ~ 36.0 (3		710	2.0
japonicus 3 August, 2010 Uncertain 5 789.7 ~ 916.1 (862.1) 38.0 ~ 38.5 (38.2)	74.8 (Av)	3.9 (Av)
Uncertain 6 644.6~ 770.7 (734.1) 34.0~ 37.0 (1			(AV)
(Osaka Bay) 5 Uncertain 7 500.8 ~ 657.1 (611.1) 30.5 ~ 35.0 (3	32.6)		

	month	Sex	of animals	Weight (g) (Average)	Length (cm) (Average)	Water content %	Lipid content %
Sea bass Lateolabrax 1 2	November.	Male Male	2 2	1,642 ~ 1,938 (1,790) 1,962 ~ 2,074 (2,018)	47.5 ~ 49.0 (48.3) 49.0 ~ 49.5 (49.1)	72.7	3.9
(Offshore of 4	2010	Male Male	2 2	1,842 ~ 1,873 (1,858) 1,985 ~ 2,001 (1,993)	49.5 ~ 50.0 (49.8) 50.0 ~ 50.5 (50.3)	(Av)	(Av)
3		Male	2	2,059 ~ 2,262 (2,161)	52.0 ~ 52.5 (52.3)		
Sea bass 1		Female	9	790 ~ 1,170 (929)	40.2 ~ 47.2 (42.7)	79.2	1.3
Lateolabrax 2	October,	Mixed	11	717 ~ 845 (778)	38.0 ~ 40.5 (39.0)	77.8	1.7
japonicus 3	2010	Mixed	12	595 ~ 760 (689)	35.4 ~ 39.7 (37.8)	78.7	1.1
(1)		Mixed	14	440 ~ 690 (527)	32.5 ~ 39.2 (34.3)	79.0	1.1
(Nakaumi) 5		Mixed	16	430 ~ 560 (486)	30.1 ~ 34.8 (32.9)	79.0	1.1
Sea bass 1		Female	6	624 ~ 763 (697)	35 ~ 38 (37)	77.4	1.4
Lateolabrax 2	November,	Female	8	444 ~ 586 (499)	30 ~ 35 (32)	78.0	1.2
japonicus 3	2010	Female	7	432 ~ 608 (514)	30 ~ 35 (32)	78.1	1.4
4	2010	Male	7	447 ~ 628 (536)	32 ~ 37 (34)	77.6	1.5
(Hiroshima Bay) 5		Male	7	425 ~ 631 (521)	31 ~ 35 (34)	77.6	1.4
Sea bass 1		Mixed	8	322 ~ 495 (398)	25.4 ~ 29.1 (27.3)	75.8	1.1
Lateolabrax 2		Mixed	10	92 ~ 410 (318)	18.0 ~ 27.1 (25.2)	76.2	0.9
japonicus 3	October,	Mixed	10	229 ~ 381 (316)	22.5 ~ 26.8 (25.4)	76.4	1.3
(Mouth of Riv. 4	2010	Mixed	11	134 ~ 372 (292)	19.2 ~ 27.3 (24.9)	75.8	1.0
Shimanto) 5		Mixed	40	39 ~ 115 (82)	12.9 ~ 18.8 (16.0)	77.6	0.9
Sea bass 1		Uncertain	1	2,595	57.2	66.1	1.8
Lateolabrax 2		Uncertain	2	1,852 ~ 1,876 (1,864)	54.0 ~ 57.0 (55.5)	70.1	2.2
japonicus 3	November,	Uncertain	2	1,679 ~ 1,891 (1,785)	52.8 ~ 53.8 (53.3)	69.1	2.4
(Mouth of Riv. 4	2010	Uncertain	2	1,638 ~ 1,915 (1,777)	52.0 ~ 52.5 (52.3)	71.1	1.7
Oita(Oita City)) 5		Uncertain	2	1,554 ~ 1,850 (1,702)	51.5 ~ 53.1 (52.3)	70.6	1.8
Sea bass 1		Male	5	738.4 ~ 860.2 (787.2)	34.0 ~ 35.0 (34.5)	75.7	2.2
Lateolabrax 2		Female	6	681.3 ~ 817.8 (750.6)	33.5 ~ 34.5 (33.9)	76.1	1.8
	November,	Female	6	572.0 ~ 714.7 (638.3)	32.0 ~ 33.0 (32.6)	76.3	1.8
(West Coast of 4	2010	Male	6	611.8 ~ 658.5 (636.0)	31.5 ~ 32.5 (31.8)	75.4	2.1
Satsuma Peninsula) 5		Male	6	561.6 ~ 634.6 (607.3)	30.5 ~ 31.5 (31.1)	75.7	2.0
1		Female	3	760 ~ 1,160 (1,000)	28.5 ~ 32.5 (30.7)	77	1.5
Okinawa seabeam		Female	3	960 ~ 980 (973)	30.0 ~ 31.0 (30.5)	78	1.4
Acaninopagrus	December,	Female	3	840 ~ 1,300 (1,107)	30.5 ~ 35.0 (32.7)	70	1.3
sivicolus 3 4	2010	Male	4	580 ~ 1,000 (770)	28.0 ~ 32.0 (29.6)	78	1.5
(Nakagusuku Bay) 5		Female	3	940 ~ 1,580 (1,180)	$31.0 \sim 36.5 (33.0)$	79	1.0

Table 3-3-3 Basic data of specimens (birds as wildlife) in the Environmental Monitoring in FY 2010

Bird species (Area)	No.	Sampling month	Sex	Number of animals		eight (g) Average)			ngth (cm) verage)	Water content %	Lipid content %
Black-taild gull	1		Mixed	82	219.2 ~	502.7 (346.4)	14 ~	30 (20)	
Larus crassirostris	2	T 1	Mixed	40	294.8 ~	625.2 (406.1)	20 ~	27 (23)	
	3	July, 2010	Mixed	35	324.6 ~	541.6 (425.9)	22 ~	28 (25	74.2	3.0
(Kabu Is (Hachinohe	4	2010	Mixed	25	323.2 ~	588.7 (433.0)	23 ~	29 (27	(Av)	(Av)
City))	5		Mixed	20	375.9 ~	585.1 (451.5)	27 ~	33 (30)	
	1		Male	55	77.0 ~	115.0 (90.2)	13.5 ~	14.5 (13.8) 69.4	2.9
Gray starling	2		Male	66	73.0 ~	100.6 (85.4)	11.0 ~	14.0 (13.2	70.6	3.3
Sturnus cineraceus	3	August, 2010	Female	55	77.1 ~	102.3 (87.9)	13.0 ~	14.3 (13.7) 69.1	3.2
(Morioka City)	4	2010	Female	65	69.1 ~	102.3 (84.0)	12.9 ~	13.5 (13.2	70.0	3.1
(Worldan City)	5		Uncertain	59	77.8 ~	115.2 (88.2)	12.9~	14.4 (13.6	70.4	3.3

(Note) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

4. Summary of monitoring results

The detection ranges are shown in Table 3-4, and the detection limits are shown in Table 3-5.

The monitoring results in FY 2010 were statistically analyzed together with the previous monitoring results, accumulated over the past 9 years (or 8 years) as a result of successive measurements at the same site or area from FY 2002 (FY 2003 for some substances and media), in order to detect inter-annual trends of increase or decrease over the 9 years (or 8 years). The results of the analyses are shown in Table 3-6

Additionally, the scope of monitoring for bioaccumulate in avian biologicals (birds) was adjusted as of the FY 2010 program to include additions of target substances listed under the Stockholm Convention. Target samplings taken from black tailed gulls and starlings were reduced from five to one each. In considering that the subsequent reduction in available data could negatively impact the tracking of changes, these two species were excluded from the statistical analysis for the present fiscal year. Table3-6 summarizes year by year findings.

OData were carefully handled on the basis of following points.

· For surface water

In Hyogo Pref., 50L and 250L water samples were collected with a high volume sampling system, and only the data of the 250L sample were used.

• For air

At each monitored site, the first sampling was for the monitoring in the warm season (August 30, 2010 ~ October 27, 2010) and the second was for that in the cold season (Novemver 7, 2010 ~ January 7, 2011).

In Kagawa Pref., monitoring was carried out at not only the Takamatsu Joint Prefectural Government Building but also at the location of the Kagawa Prefectural Public Swimming Pool (Takamatsu City) as a reference site.

Method for regression analysis and testing

The procedures described below were applied in an attempt to analyze and test the monitoring results obtained since FY 2002 (FY 2003 for air) in order to identify statistically significant differences which indicate inter-annual trends.

Assessments done in past years applied nonparametric analysis to findings that diverged from norm. However, since such methods cannot support quantitative analysis, the procedures were deemed inadequate to properly track year by year changes. Therefore, as a means of evaluation that could be appropriately applied to findings out of the norm, regression lines with maximum probability estimates were used to analyze and track year by year changes, with boot strap methods being applied to test the mean differences.

- (1) For successive samplings taken from the same point: if, in any fiscal year, concentrations in one-third or more samples failed to reach detectible limits (i.e., were Non-Detected or 'nd'), it was then judged inappropriate to apply linear regression analysis to year by year changes, since the most frequent findings came below detection limits. Therefore, year by year trend analysis is provided only when less than one third of the samples show "nd" or non-detected readings.
- (2) In the inter-annual trend analyses, the increase or decrease was evaluated by examining a slope obtained from simple linear regression analysis (simple log-linear regression model). To obtain the proper regression line, the line was selected using methods to maximize the product of the probability density of each measured value according to the distribution of population obtained by each measurement result (maximum likelihood estimation). Where the total of samples at each point differed from others, the data were weighted so that the overall impact of data from different points was leveled. Also, the agreement between the linear regression model (primary expression) results and measurement results was evaluated in accord with Akaike's Information Criterion (AIC). AICs were calculated for both "slope model (simple log-linear regression model)" and "non-slope model

- (residuals from the mean value model)". These AIC data were used to calculate posteriori probability. When probability was 95% or greater, measurement results were deemed to be in agreement with the simple log-linear regression model.
- (3) When agreement was found as per (2) above, concentrations were deemed to sufficient to demonstrate inter-annual increase or decrease trends, based on the (positive or negative) slope of the regression line obtained via (1) above. The results are indicated as " or " in Table 3-6.
- (4) As addressed in (1) above, where concentrations found in one third or more samples failed to demonstrate detection, (i.e., were 'nd'), linear regression analysis was deemed inappropriate to track year by year changes. Instead, we employed mean difference derived using the boot strap method. This method helps verify differences in mean distribution between two samples obtained from repeated calculations of mean values of randomly extracted data for these samples. This method was employed in the initial half-period period (FY 2002 FY 2006) and the second-half period (FY2008 2010) for results where more than 50% of samples failed to evidence detection (nd) in any fiscal year.
- (5) The second-half period indicated a lower concentration when it was deemed by the testing of differences in average values using the boot strap method (p-value: more than 5%) that there is a significant difference between the first-half and second-half periods and the average concentration in the second-half period was lower than the first half. These results are indicated as " _ " (or" _ | ") in Table 3-6.

When findings did not clearly demonstrate a year by year or inter-annual decrease (or increase) in (3), or when there was no difference in (5), this is indicated in Table 3-6 as " - ." When concentrations found in 50% or more samples failed to demonstrate detection, (i.e., were nd), this is indicated as "X" in Table 3-6 because that method is insufficient to analyze year by year trends.

Table 3-4-1 List of the detection ranges in the Environmental Monitoring in FY 2010 (Part 1)

·	m	Surface water	(pg/L)	Sediment (pg	g/g-dry)
lo.	Target chemicals	Renge (Frepuency)	Av.	Renge (Frepuency)	Av.
1]	PCBs	nd ~ 2,200 (41/49)	120	nd ~ 710,000 (56/64)	6,500
2]	НСВ	nd ~ 120 (39/49)	tr(10)	4 ~ 21,000 (64/64)	130
[]	Aldrin (reference)				
.]	Dieldrin (reference)				
-	Endrin (reference)				
	DDTs	8.0 ~ 11,000 (49/49)	46	42 ~ 330,000 (64/64)	1,900
	[6-1] p,p'-DDT	tr(1.0) ~ 7,500 (49/49)	8.5	9.3 ~ 220,000 (64/64)	230
	[6-2] p,p'-DDE	2.4 ~ 1,600 (49/49)	14	11 ~ 40,000 (64/64)	680
6]	[6-3] p,p'-DDD	1.6 ~ 970 (49/49)	12	4.4 ~ 78,000 (64/64)	510
	[6-4] o,p'-DDT	nd ~ 700 (43/49)	1.5	1.4 ~ 13,000 (64/64)	40
	[6-5] o,p'-DDE	tr(0.13) ~ 180 (49/49)	0.97	$tr(0.7) \sim 25,000$ $(64/64)$	37
	[6-6] o,p'-DDD	$tr(0.5) \sim 170$ (49/49)	4.6	tr(0.8) ~ 6,900 (64/64)	130
	Chlordanes	nd ~ 540 (44/49)	52	tr(14) ~ 25,000 (64/64)	320
	[7-1] cis-chlordane	nd ~ 170 (47/49)	19	tr(4) ~ 7,200 (64/64)	82
	[7-2] trans-chlordane	nd ~ 310 (44/49)	15	tr(4) ~ 8,000 (64/64)	95
]	[7-3] Oxychlordane	nd ~ 45 (47/49)	1.5	nd ~ 60 (56/64)	1.7
	[7-4] cis-Nonachlor	$tr(0.9) \sim 40$ (49/49)	5.4	2.3 ~ 3,600 (64/64)	53
	[7-5] trans-Nonachlor	nd ~ 93 (45/49)	12	tr(3) ~ 6,200 (64/64)	80
	Heptachlors	nd ~ 760 (44/49)	5.8	nd ~ 340 (45/64)	tr(4.4)
	[8-1] heptachlor	nd ~ 43	nd	nd ~ 35 (51/64)	1.2
	[8-2] cis-heptachlor epoxide	(4/49) 0.7 ~ 710 (49/49)	5.9	nd ~ 300 (62/64)	3.1
	[8-3] trans-heptachlor	nd ~ 8.0	nd	nd ~ 4	nd
-	epoxide Toxaphenes (reference)	(2/49)		(1/64)	
	[9-1] Parlar-26				
)]	(reference) [9-2] Parlar-50				
	(reference) [9-3] Parlar-62				
	(reference)				
	Mirex (reference)				
	HCHs [11-1] α-HCH	14 ~ 1,400 (49/49)	94	3.1 ~ 3,700	140
- 1	[11-2] β-НСН	33 ~ 2,500 (49/49)	180	(64/64) 11 ~ 8,200 (64/64)	230
1]	[11-3] γ-HCH (synonym:Lindane)	$tr(5) \sim 190$ (49/49)	26	$tr(1.5) \sim 2,300$ (64/64)	35
	(synonym:Lindane) [11-4] δ-HCH	0.9 ~ 780	16	1.3 ~ 3,800	39

(Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

(Note 2) "Range" is based on the concentrations of the samples and "Frequency" is based on the number of sites or areas. Therefore "range" can be shown as "nd ~" even if a target chemical is detected in all sites or areas.

Table 3-4-2 List of the detection ranges in the Environmental Monitoring in FY 2010 (Part 2)

		Surface water	er (pg/L)	Sediment (p	g/g-dry)
No.	Target chemicals	Renge (Frepuency)	Av.	Renge (Frepuency)	Av.
[12]	Chlordecone	nd ~ 1.6 (13/49)	tr(0.04)	nd ~ 2.8 (9/64)	nd
[13]	Hexabromobiphenyls	nd (0/49)	nd	nd ~ 18 (10/64)	nd
	Polybromodiphenyl ethers(Br4 ~ Br10)	nd ~ 14,000 (31/49)	tr(270)	nd ~ 730,000 (60/64)	5,800
	[14-1] Tetrabromodiphenyl ethers	nd ~ 390 (17/49)	nd	nd ~ 910 (57/64)	35
	[14-2] Pentabromodiphenyl ethers	nd ~ 130 (25/49)	tr(1)	nd ~ 740 (58/64)	26
[14]	[14-3] Hexabromodiphenyl ethers	nd ~ 51 (16/49)	nd	nd ~ 770 (57/64)	23
	[14-4] Heptabromodiphenyl ethers	nd ~ 14 (17/49)	nd	nd ~ 930 (58/64)	28
	[14-5] Octabromodiphenyl ethers	nd ~ 69 (40/49)	tr(2)	nd ~ 1,800 (60/64)	71
	[14-6] Nonabromodiphenyl ethers	nd ~ 620 (39/49)	tr(17)	nd ~ 26,000 (60/64)	360
	[14-7] Decabromodiphenyl ether	nd ~ 13,000 (31/49)	tr(250)	nd ~ 700,000 (60/64)	5,100
[15]	(Pros)	tr(37) ~ 230,000 (49/49)	490	tr(3) ~ 1,700 (64/64)	82
[16]	Perfluorooctanoic acid (PFOA)	190 ~ 23,000 (49/49)	2,700	nd ~ 180 (62/64)	28
[17]	Pentachlorobenzene	tr(1) ~ 100 (49/49)	8	1.0 ~ 4,200 (64/64)	90
	<i>N,N'</i> -Diphenyl- <i>p</i> -phenylened iamines				
	[18-1] <i>N,N'</i> -Diphenyl- <i>p</i> -phenylened iamine				
[18]	[18-2] <i>N,N'</i> -Ditolyl- <i>p</i> -phenylenedia mine				
	[18-3] <i>N,N'</i> -Dixylyl- <i>p</i> -phenylenedia mine				
[19]	Tributyltin compounds	nd ~ 1,600 (12/49)	nd	nd ~ 1,300,000 (53/64)	2,500
[20]	Triphenyltin compounds	nd ~ 250 (4/49)	nd	nd ~ 210,000 (42/64)	290

⁽Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

⁽Note 2) "Range" is based on the concentrations of the samples and "Frequency" is based on the number of sites or areas. Therefore "range" can be shown as "nd ~" even if a target chemical is detected in all sites or areas.

(Note 3) _____means the medium was not monitored.

(Note 4) The target chemicals of the Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) monitoring survey

were n-Perfluorooctane sulfonic acid and n-Perfluorooctanoic acid.

Table 3-4-3 List of the detection ranges in the Environmental Monitoring in FY 2010 (Part 3)

	le 3-4-3 List of the di			Wildlife (pg/g		<u> </u>		()	Air (p	og/m³)	
No.	Target chemicals	Bibalves		Fish		Birds		First		Second	
NO.	rarget chemicals	Renge	A	Renge	A	Renge	A	(Warm seas Renge		(Cold seas Renge	
		(Frepuency)	Av.	(Frepuency)	Av.	(Frepuency)	Av.	(Frepuency)	Av.	(Frepuency)	Av.
[1]	PCBs	1,500 ~ 46,000 (6/6)	9,200	880 ~ 260,000 (18/18)	13,000	6,600 ~ 9,100 (2/2)	7,700	36 ~ 970 (35/35)	160	19 ~ 630 (35/35)	84
[2]	НСВ	tr(4) ~ 210 (6/6)	34	36 ~ 1,700 (18/18)	240	500 ~ 1,900 (2/2)	970	73 ~ 160 (37/37)	120	56 ~ 380 (37/37)	100
[3]	Aldrin (reference)										
[4]	Dieldrin (reference)										
[5]	Endrin (reference)										
	DDTs	460 ~ 7,400 (6/6)	1,800	360 ~ 19,000 (18/18)	3,600	6,400 ~ 160,000 (2/2)	32,000	$1.0 \sim 290$ $(37/37)$	12	1.4 ~ 41 (37/37)	4.9
	[6-1] <i>p,p'</i> -DDT	43 ~ 470 (6/6)	180	7 ~ 2,100 (18/18)	240	nd ~ 15 (1/2)	3	0.28 ~ 56 (37/37)	3.5	0.30 ~ 16 (37/37)	1.3
	[6-2] <i>p,p'</i> -DDE	230 ~ 6,300 (6/6)	1,100	260 ~ 13,000 (18/18)	2,300	6,300 ~ 160,000 (2/2)	32,000	$tr(0.41) \sim 200$ (37/37)	4.9	$tr(0.47) \sim 28$ (37/37)	2.2
[6]	[6-3] <i>p,p'</i> -DDD	11 ~ 960 (6/6)	180	57 ~ 2,900 (18/18)	560	120 ~ 1,600 (2/2)	440	0.04 ~ 1.7 (37/37)	0.20	0.02 ~ 0.41 (37/37)	0.10
	[6-4] <i>o,p'</i> -DDT	15 ~ 160 (6/6)	51	5 ~ 550 (18/18)	58	nd (0/2)	nd	0.19 ~ 26 (37/37)	2.2	0.22 ~ 5.5 (37/37)	0.81
	[6-5] <i>o,p'</i> -DDE	7.8 ~ 160 (6/6)	46	$tr(1.2) \sim 2,800$ (18/18)	47	nd ~ 3.7 (1/2)	tr(1.1)	0.09 ~ 9.0 (37/37)	0.49	0.08 ~ 2.3 (37/37)	0.27
	[6-6] <i>o,p'</i> -DDD	5.8 ~ 400 (6/6)	57	2.6 ~ 700 (18/18)	75	3.6 ~ 11 (2/2)	6.3	0.04 ~ 1.8 (37/37)	0.21	$tr(0.02) \sim 0.48$ (37/37)	0.10
	Chlordanes	230 ~ 31,000 (6/6)	3,900	230 ~ 11,000 (18/18)	1,900	860 ~ 1,600 (2/2)	1,200	6.6 ~ 2,100 (37/37)	210	$tr(2.9) \sim 380$ (37/37)	63
	[7-1] cis-chlordane	67 ~ 15,000 (6/6)	1,600	51 ~ 3,400 (18/18)	450	4 ~ 180 (2/2)	27	2.2 ~ 700 (37/37)	68	tr(0.8) ~ 130 (37/37)	20
[7]	[7-2] <i>trans</i> -chlordane	31 ~ 5,500 (6/6)	520	9 ~ 1,100 (18/18)	120	$tr(2) \sim 10$ (2/2)	4	2.0 ~ 820 (37/37)	79	tr(1.0) ~ 150 (37/37)	24
[/]	[7-3] Oxychlordane	11 ~ 3,300 (6/6)	240	33 ~ 1,000 (18/18)	120	320 ~ 510 (2/2)	400	0.44 ~ 6.2 (37/37)	1.5	0.26 ~ 2.3 (37/37)	0.56
	[7-4] cis-Nonachlor	35 ~ 1,300 (6/6)	280	23 ~ 2,200 (18/18)	320	57 ~ 190 (2/2)	100	0.23 ~ 68 (37/37)	7.5	tr(0.06) ~ 13 (37/37)	1.8
	[7-5] trans-Nonachlor	84 ~ 6,000 (6/6)	790	110 ~ 4,700 (18/18)	800	290 ~ 880 (2/2)	510	1.7 ~ 520 (37/37)	52	$tr(0.7) \sim 89$ (37/37)	15
	Heptachlors	10 ~ 1,900 (6/6)	180	$tr(6.0) \sim 230$ (18/18)	41	240 ~ 360 (2/2)	290	1.4 ~ 170 (37/37)	21	0.73 ~ 53 (37/37)	8.7
[8]	[8-1] heptachlor	nd ~ 78 (5/6)	3	nd ~ 5 (12/18)	tr(2)	nd ~ tr(1) (1/2)	nd	0.69 ~ 160 (37/37)	17	0.22 ~ 53 (37/37)	7.2
[o]	[8-2] <i>cis</i> -heptachlor epoxide	9.0 ~ 1,800 (6/6)	170	5.0 ~ 230 (18/18)	39	$240 \sim 360$ (2/2)	290	$0.38 \sim 10$ (37/37)	2.3	0.33 ~ 4.3 (37/37)	0.93
	[8-3] <i>trans</i> -heptachlor epoxide	nd ~ 24 (3/6)	3	nd (0/18)	nd	nd (0/2)	nd	nd ~ 0.16 (6/37)	nd	nd (0/37)	nd
	Toxaphenes (reference)	(5, 5)		(0/10)		(0/2)		(0/37)		(0/37)	
	[9-1] Parlar-26										
F03	(reference)										
[9]	[9-2] Parlar-50 (reference)										
	[9-3] Parlar-62										
	(reference)										
[10]	Mirex(reference)										
	HCHs		2.5	(1) 050		1.60 420	260		4.6		10
	[11-1] α-HCH	13 ~ 730 (6/6)	35	$tr(1) \sim 250$ (18/18)	27	$160 \sim 430$ (2/2)	260	$14 \sim 280$ (37/37)	46	6.8 ~ 410 (37/37)	19
[11]	[11-2] <i>β</i> -HCH	27 ~ 1,500 (6/6)	89	5 ~ 760 (18/18)	81	910 ~ 2,800 (2/2)	1,600	0.89 ~ 34 (37/37)	5.6	$tr(0.26) \sim 29$ (37/37)	1.7
	[11-3] y-HCH (synonym:Lindane)	5 ~ 150 (6/6)	14	tr(1) ~ 56 (18/18)	9	$4 \sim 23$ (2/2)	10	2.3 ~ 66 (37/37)	14	1.1 ~ 60 (37/37)	4.8
	[11-4] δ-HCH	nd ~ 870	4	nd ~ 36	tr(2)	11 ~ 13	12	0.11 ~ 25	1.4	0.05 ~ 22	0.38
(NI	ote 1) "Av." indicates t	(5/6)	noon oo	(13/18)	minan	(2/2)	taction	(37/37) limit) to be be	lf tho x	(37/37)	

⁽Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

⁽Note 2) "Range" is based on the concentrations of the samples and "Frequency" is based on the number of sites or areas. Therefore "range" can be shown as "nd ~" even if a target chemical is detected in all sites or areas.

Table 3-4-4 List of the detection ranges in the Environmental Monitoring in FY 2010 (Part 4)

				Wildlife (pg	g/g-wet)				Air (p	g/m ³)	
		Bibalv	eç	Fish		Birds		First		Second	
No.	Target chemicals							(Warm sea	son)	(Cold seas	son)
		Renge (Frepuency)	Av.	Renge (Frepuency)	Av.	Renge (Frepuency)	Av.	Renge (Frepuency)	Av.	Renge (Frepuency)	Av.
		nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
[12]	Chlordecone	(0/6)	iiu.	(0/18)	iid	(0/2)	110	(0/37)	iid.	(0/37)	iid.
[13]	Hexabromobiphenyls	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
[13]	Trexadiomodiphenyis	(0/6)		(0/18)		(0/2)		(0/37)		(0/37)	
	Polybromodiphenyl	nd ~ 610	tr(160)	nd ~ 1,200	tr(300)	460 ~ 660	550	nd ~ 330	nd	nd ~ 120	tr(14)
	ethers(Br4 ~ Br10)	(3/6)	11(100)	(12/18)	11(300)	(2/2)	330	(16/37)	iid.	(22/37)	u(11)
	[14-1] Tetrabromodiphenyl	nd ~ 310	59	tr(16) ~ 740	160	72 ~ 270	140	0.15 ~ 50	0.79	tr(0.09) ~ 25	0.40
	ethers	(5/6)		(18/18)		(2/2)		(37/37)		(37/37)	
	[14-2] Pentabromodiphenyl	tr(9) ~ 98	32	nd ~ 200	51	120 ~ 200	150	nd ~ 45	0.20	nd ~ 28	0.20
	ethers	(6/6)		(16/18)		(2/2)		(35/37)	(0.4.1)	(34/37)	
	[14-3] Hexabromodiphenyl	nd ~ 26	8	nd ~ 400	39	86 ~ 140	110	nd ~ 4.9	tr(0.14)	nd ~ 5.4	0.24
[14]	ethers	(4/6)		(16/18)		(2/2)	4-(10)	(29/37)	4-(0, 2)	(31/37) nd ~ 11	0.2
	[14-4] Heptabromodiphenyl ethers	$nd \sim tr(10)$ (1/6)	nd	nd ~ 40 (4/18)	nd	$nd \sim 70$ (1/2)	tr(19)	nd ~ 1.4 (24/37)	tr(0.2)	na ~ 11 (28/37)	0.3
	[14-5] Octabromodiphenyl	$nd \sim tr(10)$	nd	nd ~ 100	tr(6)	26 ~ 65	41	$nd \sim 2.3$	0.25	$nd \sim 6.9$	0.40
	ethers	(2/6)	na	(8/18)	u(0)	(2/2)	71	(30/37)	0.23	(32/37)	0.40
	[14-6] Nonabromodiphenyl	nd ~ 60	tr(16)	nd ~ 40	nd	$tr(20) \sim 50$	32	nd ~ 24	nd	nd ~ 7.1	tr(1.2)
	ethers	(5/6)	,	(3/18)		(2/2)		(12/37)		(22/37)	,
	[14-7] Decabromodiphenyl	nd ~ tr(190)	nd	nd ~ tr(150)	nd	nd	nd	nd ~ 290	nd	nd ~ 88	tr(11)
	ether	(2/6)		(2/18)		(0/2)		(10/37)		(21/37)	
[15]	Perfluorooctane sulfonic	nd ~ 680	72	nd ~ 15,000	390	580 ~ 3,000	1,300	1.6 ~ 14	5.2	1.4 ~ 15	4.7
	acid (PFOS) Perfluorooctanoic acid	(5/6) nd ~ 76	20	(17/18) nd ~ 95	±-(12)	(2/2) 30 ~ 48	38	$(37/37)$ $4.0 \sim 210$	25	(37/37) 2.4 ~ 130	1.4
[16]	(PFOA)	(5/6)	28	na~95 (13/18)	tr(13)	$30 \sim 48$ (2/2)	38	$4.0 \sim 210$ $(37/37)$	25	(37/37)	14
[17]	D	5.9 ~ 110	18	5.6 ~ 230	42	49 ~ 170	91	36 ~ 140	68	37 ~ 180	70
[1/]	Pentachlorobenzene	(6/6)		(18/18)		(2/2)		(37/37)		(37/37)	
	<i>N,N'</i> -Diphenyl- <i>p</i> -phenylened							nd	nd		
	iamines [18-1]										
	N, N'-Diphenyl- p -phenylened							(0/114)			
	iamine										
	[18-2]						1	nd	nd		
F1.03	<i>N,N'</i> -Ditolyl- <i>p</i> -phenylenedia										
[18]	mine [18-3]							(0/114)			
	N, N'-Dixylyl- p -phenylenedia							(0/114)			
	mine										
	Tributyltin compounds							nd (0/114)	nd		
	Triphenyltin compounds							nd	nd		
		1,600 ~ 30,000	6,400	nd ~ 23,000	1,100	nd	nd	(0/114)			
[19]	Tributyltin compounds	(6/6)	0,700	(17/18)	1,100	(0/2)	iiu				
F203	m : 1 1/2 1	490 ~ 6,500	1,700	$tr(140) \sim 14,000$	2,300	$nd \sim tr(120)$	nd				
[20]	Triphenyltin compounds	(6/6)	,	(18/18)	,	(1/2)	-				
	. 1\((\) 22 \cdot 1\(\) (1										

⁽Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

⁽Note 2) "Range" is based on the concentrations of the samples and "Frequency" is based on the number of sites or areas. Therefore "range" can be shown as "nd ~" even if a target chemical is detected in all sites or areas.

⁽Note 3) means the medium was not monitored.

⁽Note 4) The target chemicals of the Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) monitoring survey were n-Perfluorooctane sulfonic acid and n-Perfluorooctanoic acid. However, the possibility cannot be ruled out that the concentration of branched Perfluorooctanoic acid, which has a branched carbon chain, was included in measured concentration as n-Perfluorooctanoic acid in a survey of wildlife.

Table 3-5-1 List of the quantification [detection] limits in the Environmental Monitoring in FY 2010 (Part 1)

No.	Target chemicals	Surface water (pg/L)	imits in the Environmer Sediment (pg/g-dry)	Wildlife (pg/g-wet)	Air (pg/m^3)
		73	660	52	7.3
[1]	PCBs	[24]	[220]	[20]	[2.5]
[2]	НСВ	13 [4]	3 [1]	5 [2]	1.8 [0.7]
[3]	Aldrin (reference)				
[4]	Dieldrin (reference)				
[5]	Endrin (reference)				
	DDTs	7.2 [2.5]	12 [4.7]	12 [4.3]	0.95 [0.32]
	[6-1] <i>p,p'</i> -DDT	2.4 [0.8]	2.8 [0.9]	3 [1]	0.10 [0.03]
	[6-2] <i>p,p'</i> -DDE	2.3 [0.8]	5 [2]	3 [1]	0.62 [0.21]
[6]	[6-3] <i>p,p'</i> -DDD	0.20 [0.08]	1.4 [0.5]	1.3 [0.5]	0.02 [0.01]
	[6-4] <i>o,p'</i> -DDT	1.5 [0.5]	1.1 [0.4]	3 [1]	0.14 [0.05]
	[6-5] <i>o,p'</i> -DDE	0.24 [0.09]	1.2 [0.5]	1.5 [0.6]	0.04 [0.01]
	[6-6] <i>o,p'</i> -DDD	0.6 [0.2]	0.9 [0.4]	0.6 [0.2]	0.03 [0.01]
	Chlordanes	34 [12]	25 [8.7]	22 [9]	3.0
	[7-1] <i>cis-</i> chlordane	11 [4]	6 [2]	4 [2]	0.9
[7]	[7-2] <i>trans</i> -chlordane	13 [4]	11 [4]	3 [1]	1.2 [0.4]
[7]	[7-3] Oxychlordane	0.7 [0.3]	1.0 [0.4]	8 [3]	0.03 [0.01]
	[7-4] <i>cis</i> -Nonachlor	1.3 [0.4]	0.9 [0.3]	3 [1]	0.11 [0.04]
	[7-5] trans-Nonachlor	8 [3]	6 [2]	4 [2]	0.8 [0.3]
	Heptachlors	3.9 [1.4]	4.9 [1.7]	8.4 [2.9]	0.29 [0.11]
[8]	[8-1] heptachlor	2.2 [0.7]	1.1 [0.4]	3 [1]	0.11 [0.04]
[o]	[8-2] <i>cis</i> -heptachlor epoxide	0.4 [0.2]	0.8 [0.3]	2.4 [0.9]	0.02 [0.01]
	[8-3] <i>trans</i> -heptachlor epoxide	1.3 [0.5]	3 [1]	3 [1]	0.16 [0.06]
	Toxaphenes (reference)				
	[9-1] Parlar-26 (reference)				
[9]	[9-2] Parlar-50 (reference)				
	[9-3] Parlar-62 (reference)				
[10]	Mirex(reference)				
	HCHs				
	[11-1] α-HCH	4 [1]	2.0 [0.8]	3 [1]	1.4 [0.47]
[11]	[11-2] <i>β</i> -HCH	2.0 [0.7]	2.4 [0.8]	3 [1]	0.27 [0.09]
	[11-3] γ-HCH (synonym:Lindane)	6 [2]	2.0 [0.7]	3 [1]	0.35 [0.12]
	[11-4] δ-HCH	0.8 [0.3]	1.2 [0.5]	3 [1]	0.05 [0.02]

⁽Note 1) Each quantification limit is shown above the corresponding [detection limit].
(Note 2) " * " means the quantification [detection] limit is the sum value of congeners.
(Note 3) The same quantification [detection] limit was employed for bivalves, fish and birds as wildlife for each target chemical.

⁽Note 4) The quantification [detection] limit for surface water offshore of Himeji was different from the value shown in the table. (Note 5) means the medium was not monitored.

Table 3-5-1 List of the quantification [detection] limits in the Environmental Monitoring in FY 2010 (Part 2).

			imits in the Environmer		
No.	Target chemicals	Surface water (pg/L)	Sediment (pg/g-dry)	Wildlife (pg/g-wet)	Air (pg/m ³)
[12]	Chlordecone	0.09 [0.04]	0.4 [0.2]	5.9 [2.3]	0.04 [0.02]
[13]	Hexabromobiphenyls	3 [1]	1.5 [0.6]	24 [10]	0.3 [0.1]
	Polybromodiphenyl ethers(Br4 ~ Br10)	340 [110]	270 [100]	400 [150]	32 [11]
	[14-1] Tetrabromodiphenyl ethers	9 [3]	6 [2]	43 [16]	0.12 [0.05]
	[14-2] Pentabromodiphenyl ethers	3 [1]	5 [2]	14 [6]	0.12 [0.05]
[14]	[14-3] Hexabromodiphenyl ethers	4 [2]	4 [2]	8 [3]	0.16 [0.06]
	[14-4] Heptabromodiphenyl ethers	3 [1]	4 [2]	30 [10]	0.3 [0.1]
	[14-5] Octabromodiphenyl ethers	3 [1]	10 [4]	11 [4]	0.15 [0.06]
	[14-6] Nonabromodiphenyl ethers [14-7] Decabromodiphenyl	21 [7] 300	24 [9] 220	30 [10] 270	3.7 [1.2] 27
	ether	[100]	[80]	[97]	[9.1]
[15]	Perfluorooctane sulfonic acid (PFOS)	50 [20]	5 [2]	25 [9.6]	0.4 [0.1]
[16]	Perfluorooctanoic acid (PFOA)	60 [20]	12 [5]	26 [9.9]	0.5 [0.2]
[17]	Pentachlorobenzene	4 [1]	0.9 [0.3]	1.9 [0.7]	1.2 [0.5]
	N,N'-Diphenyl-p-phenylen ediamines [18-1] N,N'-Diphenyl-p-phenylen ediamine				
[18]	[18-2] <i>N,N'-</i> Ditolyl- <i>p</i> -phenylened iamine				1.4
	[18-3] <i>N,N'-</i> Dixylyl- <i>p</i> -phenylene diamine				[0.34]
	Tributyltin compounds				1.5 [0.51]
	Triphenyltin compounds				1.4 [0.34]
[19]	Tributyltin compounds	200 [100]	160 [80]	420 [160]	
	Triphenyltin compounds	120 [50]	70 [30]	270 [110]	

Table 3-6-1 Results of inter-annual trend analysis from FY2002 to FY2010 (surface water)

Na	Nama	Surface water				
No	Name		River area	Lake area	Mouth area	Sea area
[1]	PCBs					-
[2]	НСВ			-		L
[3]	Aldrin (reference)					
[4]	Dieldrin (reference)					
[5]	Endrin (reference)					
	DDTs	·			i i	
	[6-1] <i>p,p'</i> -DDT	-	-		-	-
	[6-2] <i>p,p'</i> -DDE	-		-		-
[6]	[6-3] <i>p,p'</i> -DDD	-	-	-	-	-
	[6-4] <i>o,p'</i> -DDT					L
	[6-5] <i>o,p'</i> -DDE	L	X	-	-	L
	[6-6] <i>o,p'</i> -DDD	-	-	-		-
	Chlordanes	:		:	<u>:</u>	
	[7-1] cis-chlordane			-		
	[7-2] trans-chlordane		-	-	-	
[7]	[7-3] Oxychlordane	X	_ *	X	-	X
	[7-4] cis-Nonachlor	-	_	-	_	_
	[7-5] trans-Nonachlor		-	-	-	
	Heptachlors				·	
	[8-1] heptachlor	X	X	X	X	X
[8]	[8-2] cis-heptachlor epoxide	-	-	-		
	[8-3] trans-heptachlor epoxide	X	X	X	X	X
	Toxaphenes (reference)	:		<u>: </u>	::	
	[9-1] Parlar-26 (reference)					
[9]	[9-2] Parlar-50 (reference)					
	[9-3] Parlar-62 (reference)					
[10]	Mirex(reference)					
	HCHs					
	[11-1] α-HCH	-	-	-	-	-
[11]	[11-2] <i>β</i> -HCH	-	-		-	-
[11]	[11-3] γ -HCH (synonym:Lindane)			-		
	[11-4] δ-HCH	_ *	_	_	X	X

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 3) The classification of monitored sites with area are shown in Table 3-7

⁽Note 2) " \ ". An inter-annual trend of decrease was found.
" \ ". Statistically significant differences between the first-half and second-half periods were found.

[&]quot; - ": An inter-annual trend was not found.

[&]quot;X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 10 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."

Table 3-6-2 Results of inter-annual trend analysis from FY2002 to FY2010 (sediment)

N	N	Sediment								
No	Name		River area	Lake area	Mouth area	Sea area				
[1]	PCBs	-	_ *	-	-	-				
[2]	НСВ	-	-	-	-	-				
[3]	Aldrin (reference)									
[4]	Dieldrin (reference)									
[5]	Endrin (reference)									
	DDTs									
	[6-1] <i>p,p'</i> -DDT	_	-	-	-	-				
	[6-2] <i>p,p'</i> -DDE	-	-	-	-	-				
[6]	[6-3] <i>p,p'</i> -DDD	-	-	-	- [-				
	[6-4] <i>o,p'</i> -DDT	_	-	_	-	_				
	[6-5] <i>o,p'</i> -DDE	_	-	_	-	-				
	[6-6] <i>o,p'</i> -DDD	-	-	-	-	-				
	Chlordanes		:	<u>:</u>	: :					
	[7-1] cis-chlordane		-		- [
	[7-2] trans-chlordane	_	-	_	-					
[7]	[7-3] Oxychlordane	_ *	-	X	_ *	X				
	[7-4] cis-Nonachlor	_	-	-	-					
	[7-5] trans-Nonachlor	trans-Nonachlor	-							
	Heptachlors									
	[8-1] heptachlor	X	X	X	L	X				
[8]	[8-2] cis-heptachlor epoxide	L	_ *	_		X				
	[8-3] trans-heptachlor epoxide	X	X	X	X	X				
	Toxaphenes (reference)									
	[9-1] Parlar-26 (reference)									
[9]	[9-2] Parlar-50 (reference)									
	[9-3] Parlar-62 (reference)									
[10]	Mirex(reference)									
	HCHs									
	[11-1] α-HCH	_	-	_	-	-				
[11]	[11-2] <i>β</i> -HCH	-	-		-	-				
[++]	[11-3] γ -HCH (synonym:Lindane)	-	-		-	-				
	[11-4] δ-HCH	-	-	_	-	-				

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

(Note 3) The classification of monitored sites with area are shown in Table 3-7

⁽Note 2) " \ ". An inter-annual trend of decrease was found.
" \ ". Statistically significant differences between the first-half and second-half periods were found.

[&]quot; - ": An inter-annual trend was not found.

[&]quot;X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 10 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."

Table 3-6-3 Results of inter-annual trend analysis from FY2002 to FY2010 (wildlife)

No	Name	Bivalves	Fish
[1]	PCBs		-
[2]	НСВ	-	-
[3]	Aldrin (reference)		
[4]	Dieldrin (reference)		
[5]	Endrin (reference)		
	DDTs		
	[6-1] <i>p,p'</i> -DDT		-
	[6-2] <i>p,p'</i> -DDE	-	-
[6]	[6-3] <i>p,p'</i> -DDD		
	[6-4] <i>o,p'</i> -DDT		
	[6-5] <i>o,p'</i> -DDE		
	[6-6] <i>o,p'</i> -DDD		-
	Chlordanes		
	[7-1] cis-chlordane		
	[7-2] trans-chlordane	-	
[7]	[7-3] Oxychlordane		
	[7-4] cis-Nonachlor	-	-
	[7-5] trans-Nonachlor		_
	Heptachlors		
	[8-1] heptachlor	X	X
[8]	[8-2] cis-heptachlor epoxide	-	-
	[8-3] trans-heptachlor epoxide	X	X
	Toxaphenes (reference)		
	[9-1] Parlar-26 (reference)		
[9]	[9-2] Parlar-50 (reference)		
	[9-3] Parlar-62 (reference)		
[10]	Mirex(reference)		
	HCHs		
	[11-1] α-HCH	_	-
[11]	[11-2] <i>β</i> -HCH	-	-
[11]	[11-3] γ-HCH		
	(synonym:Lindane)	V	_ *
(NI.4	[11-4] δ-HCH	X	ment results were deemed to be in agreement

(Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

⁽Note 2) " \(\sigma\) ": An inter-annual trend of decrease was found.
" \(\sigma\) ": Statistically significant differences between the first-half and second-half periods were found.

[&]quot; - ": An inter-annual trend was not found.

[&]quot;X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 10 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."

Table 3-6-4 Results of inter-annual trend analysis from FY2002 to FY2010 (air)

N	N	A	ir
No	Name	Warm season	Cold season
[1]	PCBs	-	-
[2]	НСВ	-	-
[3]	Aldrin (reference)		
[4]	Dieldrin (reference)		
[5]	Endrin (reference)		
	DDTs		
	[6-1] <i>p,p'</i> -DDT	-	-
	[6-2] <i>p,p'</i> -DDE		-
[6]	[6-3] <i>p,p'</i> -DDD	-	-
	[6-4] <i>o,p'</i> -DDT		
	[6-5] <i>o,p'</i> -DDE		
	[6-6] <i>o,p'</i> -DDD		-
	Chlordanes		
	[7-1] cis-chlordane		-
	[7-2] trans-chlordane		
[7]	[7-3] Oxychlordane		-
	[7-4] cis-Nonachlor		-
	[7-5] trans-Nonachlor		-
	Heptachlors		
	[8-1] heptachlor	-	-
[8]	[8-2] cis-heptachlor epoxide	-	-
	[8-3] trans-heptachlor epoxide	X	X
	Toxaphenes (reference)		
	[9-1] Parlar-26 (reference)		
[9]	[9-2] Parlar-50 (reference)		
	[9-3] Parlar-62 (reference)		
[10]	Mirex(reference)		

⁽Note 1) When the posteriori probability from AICs was more than 95%, the measurement results were deemed to be in agreement with the simple log-linear regression model.

⁽Note 2) " > ": An inter-annual trend of decrease was found.
" \(\sigma\) ": Statistically significant differences between the first-half and second-half periods were found.

[&]quot; - ": An inter-annual trend was not found.

[&]quot;X": This analysis approach was regarded as unsuitable because "measured concentrations of more than 50% of samples did not reach the detection limit (nd) in an FY or more," "measured concentrations did not show a normal distribution in an FY or more," "the number of samples was less than 10 in each FY," or "measured concentrations did not show a homoscedasticity in an FY or more."

Table 3-7 The classification of monitored sites with area at inter-annual trend analysis

Name	Communities Tokkaido wate Pref. endai City Tamagata Pref. cochigi Pref. aitama Pref. Tochigi Pref. diigata Pref. Toyama Pref. Ukui Pref. Tamanashi Pref. Liyoto City Deaka City Iara Pref. Liyoto City Liyoto Cit	Onnenai-ohashi Bridge, Riv. Teshio(Bifuka Town) Suzuran-ohashi Bridge, Riv Tokachi(Obihiro City) Ishikarikakokyo Bridge, Mouth of Riv. Ishikari(Ishikari City) Riv. Toyosawa(Hanamaki City) Hirose-ohashi Bridge, Riv. Hirose(Sendai City) Mouth of Riv. Mogami(Sakata City) Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City) Riv. Tagawa(Utsunomiya City) Akigaseshusui of Riv. Arakawa Lower Riv. Shinano(Niigata City) Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City) Mishima-bashi Bridge, Riv. Shono(Tsuruga City) Senshu-bashi Bridge, Riv. Arakawa(Kofu City) Riv. Tenryu(Iwata City) Miyamae-bashi Bridge, Miyamae Bridge, Riv. Katsura (Kyoto City) Osaka Port Riv. Yodo(Osaka City) Riv. Yamato(Ooji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira) Lake Biwa(center, offshore of Karasaki)	Surface water	Sedimen
Iwa Sen Yar Iban Toc Sait Niig Toy Fuk Yar Shi: Kyc Osa Nar Wa Koo Kur Miy Kag Lake area Aki Nag Shi; Shi Aic Mie Osa Osa Tok Kav Sen Aic Mie Osa Sea area Miy Fuk Chi Yol	wate Pref. endai City 'amagata Pref. baraki Pref. 'amagata Pref. diigata Pref. liigata Pref. 'oyama Pref. 'awanashi Pref. 'awanashi Pref. 'awanashi Pref. Lyoto City Daka City lara Pref. Lyoto Pref. Lumamoto Pref. Lumamoto Pref. Lumamoto Pref. Lagoshima Pref. Lagoshima Pref. Lagono Pref. Liigano Pref.	Suzuran-ohashi Bridge, Riv Tokachi(Obihiro City) Ishikarikakokyo Bridge, Mouth of Riv. Ishikari(Ishikari City) Riv. Toyosawa(Hanamaki City) Hirose-ohashi Bridge, Riv. Hirose(Sendai City) Mouth of Riv. Mogami(Sakata City) Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City) Riv. Tagawa(Utsunomiya City) Akigaseshusui of Riv. Arakawa Lower Riv. Shinano(Niigata City) Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City) Mishima-bashi Bridge, Riv. Shono(Tsuruga City) Senshu-bashi Bridge, Riv. Arakawa(Kofu City) Riv. Tenryu(Iwata City) Miyamae-bashi Bridge, Miyamae Bridge, Riv. Katsura (Kyoto City) Osaka Port Riv. Yodo(Osaka City) Riv. Yamato(Ooji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)		
Sen Yar Ibar Toc Sait Niig Toy Fuk Yar Shi: Kyo Osa Nar Wa Koo Kuu Miy Kag Shi; River mouth area Chi Tok Kav Ishi Aic Mie Osa Osa Tok Kat Shi; Chi Chi Yol Sea area Miy Fuk Chi Yol Chi Tok Chi Yol Chi Yol Chi Yol Chi Tok Chi Yol Chi Yol Chi Yol Chi Yol Chi Tok To	endai City Tamagata Pref. Daraki Pref. Darak	Ishikarikakokyo Bridge, Mouth of Riv. Ishikari (Ishikari City) Riv. Toyosawa(Hanamaki City) Hirose-ohashi Bridge, Riv. Hirose(Sendai City) Mouth of Riv. Mogami(Sakata City) Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City) Riv. Tagawa(Utsunomiya City) Akigaseshusui of Riv. Arakawa Lower Riv. Shinano(Niigata City) Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City) Mishima-bashi Bridge, Riv. Shono(Tsuruga City) Senshu-bashi Bridge, Riv. Arakawa(Kofu City) Riv. Tenryu(Iwata City) Miyamae-bashi Bridge, Miyamae Bridge, Riv. Katsura (Kyoto City) Osaka Port Riv. Yodo(Osaka City) Riv. Yamato(Ooji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)		
Sen Yar Ibar Toc Sait Niig Toy Fuk Yar Shi: Kyo Osa Nar Wa Koo Kuu Miy Kag Shi; River nouth area Chi Tok Kav Ishi Aic Mie Osa Osa Tok Kat Shi; Chi Chi Yol Sea area Miy Fuk Chi Yol Chi Tok Chi Yol Chi Yol Chi Yol Chi Yol Chi Yol Chi Yol Chi Tok Chi Yol Chi Tok To	endai City Tamagata Pref. Daraki Pref. Darak	Riv. Toyosawa(Hanamaki City) Hirose-ohashi Bridge, Riv. Hirose(Sendai City) Mouth of Riv. Mogami(Sakata City) Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City) Riv. Tagawa(Utsunomiya City) Akigaseshusui of Riv. Arakawa Lower Riv. Shinano(Niigata City) Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City) Mishima-bashi Bridge, Riv. Shono(Tsuruga City) Senshu-bashi Bridge, Riv. Arakawa(Kofu City) Riv. Tenryu(Iwata City) Miyamae-bashi Bridge, Miyamae Bridge, Riv. Katsura (Kyoto City) Osaka Port Riv. Yodo(Osaka City) Riv. Yamato(Ooji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)		
Sen Yar Ibar Toc Sait Niig Toy Fuk Yar Shi: Kyo Osa Nar Wa Koo Kuu Miy Kag Shi; River nouth area Chi Tok Kav Ishi Aic Mie Osa Osa Tok Kat Shi; Chi Chi Yol Sea area Miy Fuk Chi Yol Chi Tok Chi Yol Chi Yol Chi Yol Chi Yol Chi Yol Chi Yol Chi Tok Chi Yol Chi Tok To	endai City Tamagata Pref. Daraki Pref. Darak	Hirose-ohashi Bridge, Riv. Hirose(Sendai City) Mouth of Riv. Mogami(Sakata City) Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City) Riv. Tagawa(Utsunomiya City) Akigaseshusui of Riv. Arakawa Lower Riv. Shinano(Niigata City) Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City) Mishima-bashi Bridge, Riv. Shono(Tsuruga City) Senshu-bashi Bridge, Riv. Arakawa(Kofu City) Riv. Tenryu(Iwata City) Miyamae-bashi Bridge, Miyamae Bridge, Riv. Katsura (Kyoto City) Osaka Port Riv. Yodo(Osaka City) Riv. Yamato(Ooji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)		
Yar Ibar Toc Sait Nii; Toy Fuk Yar Shi: Kyo Osa Nar Wa Koo Kuu Miy Kag Shi; River Hol nouth area Chi Tok Kav Ishi Aic Mie Osa Osa Tok Kav Shi; Sea area Miy Fuk Chi Yol Sea Miy Fuk Chi Yol Chi Tok Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi Chi	amagata Pref. cochigi Pref. aitama Pref. diigata Pref. diigazaki Pref. diigazaki Pref. diigazaki Pref. diigano Pref. diigano Pref. diiga Pref. diiga Pref. diiga Pref. diiga Pref.	Mouth of Riv. Mogami(Sakata City) Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City) Riv. Tagawa(Utsunomiya City) Akigaseshusui of Riv. Arakawa Lower Riv. Shinano(Niigata City) Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City) Mishima-bashi Bridge, Riv. Shono(Tsuruga City) Senshu-bashi Bridge, Riv. Arakawa(Kofu City) Riv. Tenryu(Iwata City) Miyamae-bashi Bridge, Miyamae Bridge, Riv. Katsura (Kyoto City) Osaka Port Riv. Yodo(Osaka City) Riv. Yamato(Ooji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)		
River Holmouth area Chi Tokas Sea area Miy Sea area Miy Sea Sea Sea Area Miy Sea Sea Sea Area Miy Sea Area Miy Sea Sea Area M	paraki Pref. pa	Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City) Riv. Tagawa(Utsunomiya City) Akigaseshusui of Riv. Arakawa Lower Riv. Shinano(Niigata City) Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City) Mishima-bashi Bridge, Riv. Shono(Tsuruga City) Senshu-bashi Bridge, Riv. Arakawa(Kofu City) Riv. Tenryu(Iwata City) Miyamae-bashi Bridge, Miyamae Bridge, Riv. Katsura (Kyoto City) Osaka Port Riv. Yodo(Osaka City) Riv. Yamato(Ooji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)		
Toc	Cochigi Pref. aitama Pref. liigata Pref. liigata Pref. liigata Pref. liigata Pref. Coyama Pref. liigata Pref. liigata Pref. liyoto City Disaka City Lara Pref. Livata Pref. Liumamoto Pref. Liuma	(Kamisu City) Riv. Tagawa(Utsunomiya City) Akigaseshusui of Riv. Arakawa Lower Riv. Shinano(Niigata City) Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City) Mishima-bashi Bridge, Riv. Shono(Tsuruga City) Senshu-bashi Bridge, Riv. Arakawa(Kofu City) Riv. Tenryu(Iwata City) Miyamae-bashi Bridge, Miyamae Bridge, Riv. Katsura (Kyoto City) Osaka Port Riv. Yodo(Osaka City) Riv. Yamato(Ooji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)		
Sait Niij Toy Fuk Yar Shi: Kyo Osa Nar Wa Koo Kum Miy Kag Shi: Tok Shi: Tok Shi: Aic Mie Osa Osa Tok Kag Kita Oiti Sea area Miy Fuk Chi Yol	aitama Pref. liigata Pref. liigata Pref. loyama Pref. loy	Riv. Tagawa(Utsunomiya City) Akigaseshusui of Riv. Arakawa Lower Riv. Shinano(Niigata City) Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City) Mishima-bashi Bridge, Riv. Shono(Tsuruga City) Senshu-bashi Bridge, Riv. Arakawa(Kofu City) Riv. Tenryu(Iwata City) Miyamae-bashi Bridge, Miyamae Bridge, Riv. Katsura (Kyoto City) Osaka Port Riv. Yodo(Osaka City) Riv. Yamato(Ooji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)		
Sait Niij Toy Fuk	aitama Pref. liigata Pref. liigata Pref. loyama Pref. loy	Akigaseshusui of Riv. Arakawa Lower Riv. Shinano(Niigata City) Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City) Mishima-bashi Bridge, Riv. Shono(Tsuruga City) Senshu-bashi Bridge, Riv. Arakawa(Kofu City) Riv. Tenryu(Iwata City) Miyamae-bashi Bridge, Miyamae Bridge, Riv. Katsura (Kyoto City) Osaka Port Riv. Yodo(Osaka City) Riv. Yamato(Ooji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)		
Niight	liigata Pref. Coyama Pref. Liyoto City Disaka City Jara Pref. Liyoto City Jara Pref. Liyoto City Jara Pref. Liyoto Pref. Liyoto City Jara Pref. Liyoto Pref. Liyoto City	Lower Riv. Shinano(Niigata City) Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City) Mishima-bashi Bridge, Riv. Shono(Tsuruga City) Senshu-bashi Bridge, Riv. Arakawa(Kofu City) Riv. Tenryu(Iwata City) Miyamae-bashi Bridge, Miyamae Bridge, Riv. Katsura (Kyoto City) Osaka Port Riv. Yodo(Osaka City) Riv. Yamato(Ooji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)		
Toy Fuk Yar Shi: Kyo Osa Nar Wa Koo Kun Miy Kag Shi:	Coyama Pref. ukui Pref. 'amanashi Pref. hizuoka Pref. Lyoto City Dsaka City Jara Pref. Vakayama Pref. Lumamoto Pref. Lumamoto Pref. Lumayaki Pref. Lagoshima Pref. Lumamoto Pref. Lagoshima Pref. Lumamoto Pref. Lumam	Hagiura-bashi Bridge, Mouth of Riv. Jintsu(Toyama City) Mishima-bashi Bridge, Riv. Shono(Tsuruga City) Senshu-bashi Bridge, Riv. Arakawa(Kofu City) Riv. Tenryu(Iwata City) Miyamae-bashi Bridge, Miyamae Bridge, Riv. Katsura (Kyoto City) Osaka Port Riv. Yodo(Osaka City) Riv. Yamato(Ooji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)		
Fuk Yar Shi: Kyo	ukui Pref. Zamanashi Pref. hizuoka Pref. Lyoto City Dsaka City Mara Pref. Vakayama Pref. Lumamoto Pref. Lumamoto Pref. Lagoshima Pref. Lagoshima Pref. Lagoshima Pref. Lagono Pref. Ligano Pref. Ligano Pref. Ligano Pref.	Mishima-bashi Bridge, Riv. Shono(Tsuruga City) Senshu-bashi Bridge, Riv. Arakawa(Kofu City) Riv. Tenryu(Iwata City) Miyamae-bashi Bridge, Miyamae Bridge, Riv. Katsura (Kyoto City) Osaka Port Riv. Yodo(Osaka City) Riv. Yamato(Ooji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)		
Yar Shi: Kyo	amanashi Pref. hizuoka Pref. Lyoto City Dsaka City Jara Pref. Vakayama Pref. Lochi Pref. Lumamoto Pref. Miyazaki Pref. Lagoshima Pref. Lomori Pref. Likita Pref. Jagano Pref. higa Pref.	Senshu-bashi Bridge, Riv. Arakawa(Kofu City) Riv. Tenryu(Iwata City) Miyamae-bashi Bridge, Miyamae Bridge, Riv. Katsura (Kyoto City) Osaka Port Riv. Yodo(Osaka City) Riv. Yamato(Ooji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)		
Shi: Kyc Osa Nar Wa Koo Kun Miy Kag Lake area Aoi Aki Nag Shi: Tok Kav Ishi Aic Mie Osa Osa Tok Kag Kitt Oit Oki Sea area Miy Fuk Chi Yol	hizuoka Pref. Lyoto City Dsaka City Jara Pref. Vakayama Pref. Lochi Pref. Lumamoto Pref. Jagoshima Pref. Lomori Pref. Likita Pref. Jagano Pref.	Riv. Tenryu(Iwata City) Miyamae-bashi Bridge, Miyamae Bridge, Riv. Katsura (Kyoto City) Osaka Port Riv. Yodo(Osaka City) Riv. Yamato(Ooji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)		
River nouth area Rave area River nouth area Kave are	Josaka City Jara Pref. Vakayama Pref. Jochi Pref. Journamoto Pref. Jagoshima Pref. Jagoshima Pref. Jagoshima Pref. Jagoshima Pref. Jagano Pref. Jagano Pref. Jagano Pref. Jagano Pref. Jagano Pref.	Miyamae-bashi Bridge, Miyamae Bridge, Riv. Katsura (Kyoto City) Osaka Port Riv. Yodo(Osaka City) Riv. Yamato(Ooji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)		0 0 0 0 0
River Holmouth area Rave Aon Aki Nag Shig River Holmouth area Kava Ishi Aic Mice Osa Osa Tok Kag Kitta Oitt Oki Sea area Sea area Miy Fuk Chi Yol	Osaka City Jara Pref. Vakayama Pref. Lochi Pref. Lumamoto Pref. Jagoshima Pref. Lomori Pref. Likita Pref. Jagano Pref. Jagano Pref. Jagano Pref. Jagano Pref.	(Kyoto City) Osaka Port Riv. Yodo(Osaka City) Riv. Yamato(Ooji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)		0 0 0 0
Nar Wa	Jara Pref. Vakayama Pref. Lochi Pref. Lumamoto Pref. Liagoshima Pref. Lochi Pref. Lagoshima Pref. Lagoshima Pref. Likita Pref. Lagano Pref. Liagano Pref. Liagano Pref.	Osaka Port Riv. Yodo(Osaka City) Riv. Yamato(Ooji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)		0 0 0 0 0 0 0 0 0
River Holmouth area River Mishin Aric Mis	Jara Pref. Vakayama Pref. Lochi Pref. Lumamoto Pref. Liagoshima Pref. Lomori Pref. Likita Pref. Lagano Pref. Liagano Pref. Liagano Pref.	Riv. Yodo(Osaka City) Riv. Yamato(Ooji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)		0 0 0 0 0 0 0 0 0
Wa Koo Kui Miy Kag Lake area Aoi Aki Nag Shi; River Hol Tok Chi Tok Kay Ishi Aic Mie Osa Tok Kag Kita Oiti Oiti Sea area Miy Fuk Chi Yol	Vakayama Pref. Lochi Pref. Lumamoto Pref. Miyazaki Pref. Lagoshima Pref. Lomori Pref. Likita Pref. Lagano Pref. higa Pref.	Riv. Yamato(Ooji Town) Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)	0 0 0 0 0 0	0 0 0 0 0 0 0
Wa Koo Kui Miy Kag Lake area Aoi Aki Nag Shi; River Hol Tok Chi Tok Kay Ishi Aic Mie Osa Tok Kag Kita Oiti Oiti Sea area Miy Fuk Chi Yol	Vakayama Pref. Lochi Pref. Lumamoto Pref. Miyazaki Pref. Lagoshima Pref. Lomori Pref. Likita Pref. Lagano Pref. higa Pref.	Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0
Koo Kui Miy Kag	Lochi Pref. Lumamoto Pref. Liagoshima Pref. Lomori Pref. Likita Pref. Lagano Pref. Liagano Pref. Liagano Pref.	Riv. Kinokawa(Wakayama City) Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0
River Holmouth area Kay Shi River Holmouth area Kay Ishi Aic Mise Osa Tok Kay Ishi Aic Mise Osa Tok Kay Fix Chi Sea area Kur Mise Osa Tok Kay Kitt Oitt Okr Sea Area Miy Fuk Chi Yol	Aumamoto Pref. Miyazaki Pref. Agoshima Pref. Amomori Pref. Akita Pref. Alagano Pref. Alagano Pref. Alagano Pref.	Mouth of Riv. Shimanto(Shimanto City) Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0
Kuman Miy Kag	Aumamoto Pref. Miyazaki Pref. Agoshima Pref. Amomori Pref. Akita Pref. Alagano Pref. Alagano Pref. Alagano Pref.	Riv. Midori(Uto City) Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0
Lake area Aon Aki Nag Shi, River Hol mouth area Chi Tok Kav Ishi Aic Mic Osa Osa Tok Kag Kitt Oitt Oki Sea area Miy Fuk	Aiyazaki Pref. Lagoshima Pref. Lomori Pref. Likita Pref. Lagano Pref. Linga Pref. Linga Pref.	Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0
Lake area Aon Aki Nag Shi, River Hol mouth area Chi Tok Kay Ishi Aic Mic Osa Osa Tok Kag Kita Oitz Otk Sea area Miy Fuk Chi Yol	Agoshima Pref. Aomori Pref. Akita Pref. Aggano Pref. higa Pref.	Mouth of Riv. Oyodo(Miyazaki City) Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)	0 0 0 0 0 0 0	0 0 0 0 0
Lake area Aon Aki Nag Shi, River Hol mouth area Chi Tok Kay Ishi Aic Mic Osa Osa Tok Kag Kita Oitz Otk Sea area Miy Fuk Chi Yol	Agoshima Pref. Aomori Pref. Akita Pref. Aggano Pref. higa Pref.	Riv. Amori(Kirishima City) Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)	0 0 0	0 0 0 0
Lake area Aoi Aki Nag Shi River Hol mouth area Chi Tok Kav Ishi Aic Mic Osa Osa Tok Kat Lake area Miy Shi Aic Mic Osa Osa Tok Kat Chi Oki Sea area Miy Fuk	Lomori Pref. Lkita Pref. Jagano Pref. higa Pref.	Gotanda-bashi Bridge, Riv. Gotanda(Ichikikushikino City) Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)	0 0	0 0 0
River Holmouth area River Holmouth area Kav Ishi Aic Mic Osa Osa Tok Kat Chi Sea area Miy Fuk Chi Yol	kita Pref. Jagano Pref. higa Pref.	Lake Jusan Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)	0	0 0
River Holmouth area River Holmouth area Kav Ishi Aic Mice Osa Osa Tok Kat Chi Aic Sea area Miy Fuk Chi Yol	kita Pref. Jagano Pref. higa Pref.	Lake Hachiro Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)	0	0
River Holmouth area River Holmouth area Kan Ishi Aic Mie Osa Tok Kat Kat Oitt Oki Sea area Miy Fuk Chi Yol	lagano Pref. higa Pref.	Lake Suwa(center) Lake Biwa(center, offshore of Minamihira)		0
River Holmouth area River Holmouth area Kan Ishi Aic Mice Osa Tok Kag Kitt Oitt Oki Sea area Miy Fuk Chi Yol	higa Pref.	Lake Biwa(center, offshore of Minamihira)	0	
River Holmouth area River Chi Tok Kav Ishi Aic Mic Osa Osa Tok Kag Kiti Oit Oki Sea area Miy Fuk Chi Yol			0	
mouth area Chi Tok Kay Ishi Aic Osa Osa Tok Kay Kita Oiti Sea area Miy Fuk Chi Yol	Iokkaido	Earc Biwa(center, orishore or rearesact)		~
mouth area Chi Tok Kay Ishi Aic Osa Osa Tok Kay Kita Oiti Sea area Miy Fuk Chi Yol	iokkaido	Tomakomai Port		0
Tok	Chiba City	Mouth of Riv. Hanami(Chiba City)	0	0
Kav Ishi Aic Mie Osa Osa Tok Kat Oiti Oki Sea area Miy Fuk Chi Yol	,			
Ishi Aic Aic Osa Osa Tok Kag Kitt Oit Oki Sea area Miy Fuk Chi Yol	okyo Met.	Mouth of Riv. Arakawa(Koto Ward)	0	0
Ishi Aic Aic Osa Osa Tok Kag Kitt Oit Oki Sea area Miy Fuk Chi Yol	1:0:4	Mouth of Riv. Sumida(Minato Ward)	0	0
Aic Mie Osa Osa Tok Kag Kitt Oit Oki Sea area Miy Fuk Chi Yol	Lawasaki City	Mouth of Riv. Tama(Kawasaki City)		0
Mic	shikawa Pref.	Mouth of Riv. Sai(Kanazawa City)	0	0
Osa	ichi Pref.	Kinuura Port		0
Osa Tok	lie Pref.	Toba Port		0
Tok	Saka Pref.	Mouth of Riv. Yamato(Sakai City)	0	0
Kaş Kitt Oitt Oki Sea area Miy Fuk Chi Yol	Saka City	Mouth of Riv. Yodo(Osaka City)		0
Sea area Miy Fuk Chi Yol	okushima Pref.	Mouth of Riv. Yoshino(Tokushima City)	0	0
Oiti Oki Sea area Miy Fuk Chi Yol	Lagawa Pref.	Takamatsu Port	0	0
Sea area Miy Fuk Chi Yol	Litakyushu City	Dokai Bay	0	0
Sea area Miy Fuk Chi Yol	ita Pref.	Mouth of Riv. Oita(Oita City)		0
Fuk Chi Yol	kinawa Pref.	Naha Port	0	0
Chi Yol	Iiyagi Pref.	Sendai Bay(Matsushima Bay)	0	0
Chi Yol	ukushima Pref.	Onahama Port	0	0
Yol	hiba Pref.	Coast of Ichihara and Anegasaki		0
	okohama City	Yokohama Port	0	0
Kay	Lawasaki City	Keihin Canal, Port of Kawasaki	0	0
	hizuoka Pref.	Shimizu Port	-	0
	ichi Pref.	Nagoya Port	0	0
	lie Pref.	Yokkaichi Port	0	0
	Lyoto Pref.	Miyazu Port	0	0
	Osaka City	Outside Osaka Port	- V	0
	Iyogo Pref.	Offshore of Himeji	0	0
	Lobe City	Kobe Port(center)	0	0
		Offshore of Mizushima	0	0
	lkovomo Drof			
Hire	Okayama Pref.	Kure Port	0	0
	Okayama Pref. Iiroshima Pref.	Hiroshima Bay	0	0
Yar	Iiroshima Pref.		0	0
	,	Tokuyama Bay	0	0
	Iiroshima Pref.	Offshore of Ube		0
	Iiroshima Pref. Yamaguchi Pref.	Offshore of Ube Offshore of Hagi	0	0
Fuk	Iiroshima Pref. Yamaguchi Pref.	Offshore of Ube Offshore of Hagi Niihama Port	0	
Sag	Iiroshima Pref. Yamaguchi Pref.	Offshore of Ube Offshore of Hagi	0	0

(Note) There are monitored sites which were classified in the area unlike these names by the situations

In the wake of the monitoring surveys of FYs 2002, 2003, 2004, 2005, 2006, 2007, 2008 and 2009, FY 2010 saw a high sensitivity analysis covering five of ten POPs treaty substances and HCHs. All these chemicals were found, excepting heptachlors (*trans*-heptachlor epoxide) in wildlife (fish and birds).

A high sensitivity analysis also surveyed for Chlordecone, Hexabromobiphenyls, Polybromodiphenyl ethers (Br4~Br10), Perfluorooctane sulfonic acid (PFOS), Perfluorooctanoic acid (PFOA), Pentachlorobenzene, *N*,*N*'-Diphenyl-*p*-phenylenediamines, Tributyltin compounds and Triphenyltin compounds. All these chemicals were detected excepting Chlordecone in wildlife and in the air; Hexabromobiphenyls in surface water, wildlife and air: *N*,*N*'-Diphenyl-*p*-phenylenediamines in air: and Triphenyltin compounds in wildlife (specifically, birds).

The monitoring results for each chemical (group) are described below.

[1] **PCBs**

· History and state of monitoring

Polychlorinated biphenyls (PCBs) had been used as insulating oil, etc. and were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in June 1974, since the substances are persistent, highly accumulative in living organisms, and chronically toxic.

In previous monitoring series, the substances were monitored in wildlife (bivalves, fish and birds) during the period of FY 1978~2001 under the framework of "the Wildlife Monitoring." Under the framework of "The Follow-up Survey of the Status of Pollution by Unintentionally Formed Chemicals," sediment and wildlife (fish) were the monitored media in FY 1996 and FY 1997, and surface water, sediment, wildlife (fish) and air were the monitored media in FY 2000 and FY 2001.

Under the framework of the Environmental Monitoring, the substances in surface water, sediment, wildlife (bivalves, fish and birds) and air have been monitored since FY 2002.

Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 49 sites, and it was detected at 41 of the 49 valid sites adopting the detection limit of **24pg/L, and none of the detected concentrations exceeded 2,200 pg/L. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendency in specimens from river areas, lake areas, river mouth areas and sea area were identified as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

Stocktaking of the detection of PCBs (total amount) in surface water during FY2002~2010

PCBs	Monitored	Geometric				Quantification	Detection l	Frequency
(total amount)	year	Mean*	Median	Maximum	Minimum	[Detection] Limit**	Sample	Site
	2002	470	330	11,000	60	7.4 [2.5]	114/114	38/38
	2003	530	450	3,100	230	9.4 [2.5]	36/36	36/36
	2004	630	540	4,400	140	14 [5.0]	38/38	38/38
C	2005	520	370	7,800	140	10 [3.2]	47/47	47/47
Surface water	2006	240	200	4,300	15	9 [3]	48/48	48/48
(pg/L)	2007	180	140	2,700	12	7.6 [2.9]	48/48	48/48
	2008	260	250	4,300	27	7.8 [3.0]	48/48	48/48
	2009	210	170	3,900	14	10 [4]	48/48	48/48
	2010	120	99	2,200	nd	73 [24]	41/49	41/49

⁽Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

< Sediment>

The presence of the substance in sediment was monitored at 64 sites, and it was detected at 56 of the 64 valid sites adopting the detection limit of **220pg/g-dry, and none of the detected concentrations exceeded 710,000 pg/g-dry.

⁽Note 2) "**" indicates the sum value of the Quantification [Detection] limits of each congener.

Stocktaking of the detection of PCBs (total amount) in sediment during FY2002~2010

PCBs	Monitored	Geometric				Quantification	Detection I	Frequency
(total amount)	year	Mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	2002	11.000	11.000	(20,000	20	Limit**	100/100	62/62
	2002	11,000	11,000	630,000	39	10 [3.5]	189/189	63/63
	2003	9,400	9,500	5,600,000	39	10 [3.2]	186/186	62/62
	2004	8,400	7,600	1,300,000	38	7.9 [2.6]	189/189	63/63
Sediment	2005	8,600	7,100	690,000	42	6.3 [2.1]	189/189	63/63
	2006	8,800	6,600	690,000	36	4 [1]	192/192	64/64
(pg/g-dry)	2007	7,400	6,800	820,000	19	4.7 [1.5]	192/192	64/64
	2008	8,700	8,900	630,000	22	3.3 [1.2]	192/192	64/64
	2009	7,600	7,100	1,700,000	17	5.1 [2.1]	192/192	64/64
	2010	6,500	7,800	710,000	nd	660 [220]	56/64	56/64

⁽Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Wildlife>

The presence of the substance in bivalves was monitored in 7 areas, and it was detected at 6 of the 7 valid areas adopting the detection limit of **20pg/g-wet, and the detection range was $1,500\sim46,000$ pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of **20pg/g-wet, and the detection range was $880\sim260,000$ pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of **20pg/g-wet, and the detection range was $6,600\sim9,100$ pg/g-wet. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from bivalves was identified as statistically significant.

Stocktaking of the detection of PCBs (total amount) in wildlife (bivalves, fish and birds) during FY2002~2010

PCBs	Monitored	Geometric				Quantification	Detection I	Frequency
(total amount)	year	Mean*	Median	Maximum	Minimum	[Detection] Limit**	Sample	Site
	2002	8,800	28,000	160,000	200	25 [8.4]	38/38	8/8
	2003	11,000	9,600	130,000	1,000	50 [17]	30/30	6/6
	2004	11,000	11,000	150,000	1,500	85 [29]	31/31	7/7
Bivalves	2005	11,000	13,000	85,000	920	69 [23]	31/31	7/7
	2006	8,500	8,600	77,000	690	42 [14]	31/31	7/7
(pg/g-wet)	2007	9,000	11,000	66,000	980	46 [18]	31/31	7/7
	2008	8,600	8,600	69,000	870	47 [17]	31/31	7/7
	2009	8,700	11,000	62,000	780	32 [11]	31/31	7/7
	2010	9,200	11,000	46,000	1,500	52 [20]	6/6	6/6
	2002	17,000	8,100	550,000	1,500	25 [8.4]	70/70	14/14
Ei.l	2003	11,000	9,600	150,000	870	50 [17]	70/70	14/14
	2004	15,000	10,000	540,000	990	85 [29]	70/70	14/14
	2005	14,000	8,600	540,000	800	69 [23]	80/80	16/16
Fish	2006	13,000	9,000	310,000	990	42 [14]	80/80	16/16
(pg/g-wet)	2007	11,000	6,200	530,000	790	46 [18]	80/80	16/16
	2008	12,000	9,100	330,000	1,200	47 [17]	85/85	17/17
	2009	12,000	12,000	290,000	840	32 [11]	90/90	18/18
	2010	13,000	10,000	260,000	880	52 [20]	18/18	18/18
	2002	12,000	14,000	22,000	4,800	25 [8.4]	10/10	2/2
	2003	19,000	22,000	42,000	6,800	50 [17]	10/10	2/2
	2004	9,000	9,400	13,000	5,900	85 [29]	10/10	2/2
D:1.	2005	10,000	9,700	19,000	5,600	69 [23]	10/10	2/2
Birds	2006	12,000	9,800	48,000	5,600	42 [14]	10/10	2/2
(pg/g-wet)	2007	7,600	7,800	15,000	3,900	46 [18]	10/10	2/2
	2008	9,700	7,400	56,000	3,000	47 [17]	10/10	2/2
	2009	5,900	5,700	9,500	3,900	32 [11]	10/10	2/2
	2010	7,700		9,100	6,600	52 [20]	2/2	2/2

⁽Note 1) "*" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

⁽Note 2) "**" indicates the sum value of the Quantification [Detection] limits of each congener.

⁽Note 2) " ** " indicates the sum value of the Quantification [Detection] limits of each congener.

<Air>

The presence of the substance in air in the warm season was monitored at 37 sites and, excluding 2 sites whose concentrations were treated as invalid, it was detected at all 35 valid sites adopting the detection limit of **2.5pg/m³, and the detection range was $36\sim970$ pg/m³. For air in the cold season, the presence of the substance was monitored at 37 sites and, excluding 2 sites whose concentrations were treated as invalid, it was detected at all 35 valid sites adopting the detection limit of **2.5pg/m³, and the detection range was $19\sim630$ pg/m³.

Stocktaking of the detection of PCBs (total amount) in air during FY2002~2010

PCBs		Geometric	•	120		Quantification	Detection I	Frequency
(total amount)	Monitored year	Mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	**2002	100	100	880	16	99 [33]	102/102	34/34
	2003 Warm season	260	340	2,600	36	6.6 [2.2]	35/35	35/35
	2003 Cold season	110	120	630	17	0.0 [2.2]	34/34	34/34
	2004 Warm season	240	250	3,300	25	2.9 [0.98]	37/37	37/37
	2004 Cold season	130	130	1,500	20	2.9 [0.98]	37/37	37/37
	2005 Warm season	190	210	1,500	23	0.38 [0.14]	37/37	37/37
	2005 Cold season	66	64	380	20	0.38 [0.14]	37/37	37/37
Air	2006 Warm season	170	180	1,500	21	0.8 [0.3]	37/37	37/37
(pg/m^3)	2006 Cold season	82	90	450	19		37/37	37/37
(pg/III)	2007 Warm season	250	290	980	37	0.27 [0.12]	24/24	24/24
	2007 Cold season	72	76	230	25	0.37 [0.13]	22/22	22/22
	2008 Warm season	200	170	960	52	0.0.0.21	22/22	22/22
	2008 Cold season	93	86	1,500	21	0.8 [0.3]	36/36	36/36
	2009 Warm season	200	190	1,400	43	0.75 [0.26]	34/34	34/34
	2009 Cold season	85	78	380	20	0.75 [0.26]	34/34	34/34
	2010 Warm season	160	150	970	36	7 2 [2 5]	35/35	35/35
	2010 Cold season	84	86	630	19	7.3 [2.5]	35/35	35/35

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

⁽Note 2) " ** " indicates the sum value of the Quantification [Detection] limits of each congener.

⁽Note 3) In 2002, there was a technical problem in the measuring method for lowly chlorinated congeners, and therefore the values are shown just as reference.

[2] Hexachlorobenzene

· History and state of monitoring

Hexachlorobenzene had been used as pesticidal material and was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in August 1979.

In previous monitoring series, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY 1978~1996 and in FY 1998, FY 2000 and FY 2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," the substance in surface water and sediment was monitored during the period of FY 1986~1998 and FY 1986~2001, respectively.

Under the framework of the Environmental Monitoring, the substance in surface water, sediment, wildlife (bivalves, fish and birds) and air has been monitored since FY 2002.

Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 49 sites, and it was detected at 39 of the 49 valid sites adopting the detection limit of 4pg/L, and none of the detected concentrations exceeded 120 pg/L. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from river areas and river mouth areas were identified as statistically significant, the second-half period indicated lower concentration than the first-half period in specimens from sea areas as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

Stocktaking of the detection of Hexachlorobenzene in surface water during FY2002~2010

	Monitored	Geometric				Quantification	Detection l	Frequency
НСВ		Mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	37	28	1,400	9.8	0.6 [0.2]	114/114	38/38
	2003	29	24	340	11	5 [2]	36/36	36/36
	2004	30	tr(29)	180	tr(11)	30 [8]	38/38	38/38
Surface water	2005	21	17	210	tr(6)	15 [5]	47/47	47/47
	2006	16	tr(12)	190	nd	16 [5]	46/48	46/48
(pg/L)	2007	17	14	190	tr(4)	8 [3]	48/48	48/48
	2008	16	13	480	4	3 [1]	48/48	48/48
	2009	15	17	180	2.4	0.5 [0.2]	49/49	49/49
	2010	tr(10)	tr(8)	120	nd	13 [4]	39/49	39/49

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

< Sediment>

The presence of the substance in sediment was monitored at 64 sites, and it was detected at all 64 valid sites adopting the detection limit of 1pg/g-dry, and the detection range was $4\sim21,000$ pg/g-dry.

Stocktaking of the detection of Hexachlorobenzene in sediment during FY2002~2010

	Monitored	Geometric				Quantification	Detection I	Frequency
НСВ	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	240	200	19,000	7.6	0.9 [0.3]	189/189	63/63
	2003	160	120	42,000	5	4 [2]	186/186	62/62
	2004	140	100	25,000	tr(6)	7 [3]	189/189	63/63
Sediment	2005	170	130	22,000	13	3 [1]	189/189	63/63
	2006	180	120	19,000	10	2.9 [1.0]	192/192	64/64
(pg/g-dry)	2007	140	110	65,000	nd	5 [2]	191/192	64/64
	2008	160	97	29,000	4.4	2.0 [0.8]	192/192	64/64
	2009	150	120	34,000	nd	1.8 [0.7]	190/192	64/64
	2010	130	96	21,000	4	3 [1]	64/64	64/64

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Wildlife>

The presence of the substance in bivalves was monitored in 7 areas, and it was detected at 6 of the 7 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was $tr(4)\sim210$ pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was $36\sim1,700$ pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was $500\sim1,900$ pg/g-wet.

Stocktaking of the detection of Hexachlorobenzene in wildlife (bivalves, fish and birds) during FY2002~2010

•	Monitored	Geometric				Quantification	Detection 1	Frequency
НСВ	year	Mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	21	22	330	2.4	0.18 [0.06]	38/38	8/8
	2003	44	27	660	tr(21)	23 [7.5]	30/30	6/6
Bivalves (pg/g-wet)	2004	32	31	80	14	14 [4.6]	31/31	7/7
	2005	51	28	450	19	11 [3.8]	31/31	7/7
	2006	46	28	340	11	3 [1]	31/31	7/7
	2007	37	22	400	11	7 [3]	31/31	7/7
	2008	38	24	240	13	7 [3]	31/31	7/7
	2009	34	32	200	12	4 [2]	31/31	7/7
	2010	34	48	210	tr(4)	5 [2]	6/6	6/6
	2002	140	180	910	19	0.18 [0.06]	70/70	14/14
	2003	180	170	1,500	28	23 [7.5]	70/70	14/14
	2004	230	210	1,800	26	14 [4.6]	70/70	14/14
Ti ala	2005	180	160	1,700	29	11 [3.8]	80/80	16/16
Fish	2006	180	220	1,400	25	3 [1]	80/80	16/16
(pg/g-wet)	2007	160	140	1,500	17	7 [3]	80/80	16/16
	2008	170	210	1,500	25	7 [3]	85/85	17/17
	2009	210	180	30,000	29	4 [2]	90/90	18/18
	2010	240	280	1,700	36	5 [2]	18/18	18/18

	Monitored	Geometric				Quantification	Detection I	requency
НСВ	year	Mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	1,000	1,200	1,600	560	0.18 [0.06]	10/10	2/2
	2003	1,800	2,000	4,700	790	23 [7.5]	10/10	2/2
	2004	980	1,300	2,200	410	14 [4.6]	10/10	2/2
Dinda	2005	1,000	1,100	2,500	400	11 [3.8]	10/10	2/2
Birds	2006	970	1,100	2,100	490	3 [1]	10/10	2/2
(pg/g-wet)	2007	960	1,100	2,000	420	7 [3]	10/10	2/2
	2008	880	1,100	2,500	240	7 [3]	10/10	2/2
	2009	850	910	1,500	400	4 [2]	10/10	2/2
	2010	970		1,900	500	5 [2]	2/2	2/2

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Air>

The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of $0.7pg/m^3$, and the detection range was $73\sim160~pg/m^3$. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of $0.7pg/m^3$, and the detection range was $56\sim380~pg/m^3$.

Stocktaking of the detection of Hexachlorobenzene in air during FY2002~2010

		Geometric				Quantification	Detection l	Frequency
НСВ	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	99	93	3,000	57	0.9 [0.3]	102/102	34/34
	2003 Warm season	150	130	430	81	2 2 [0 70]	35/35	35/35
	2003 Cold season	94	90	320	64	2.3 [0.78]	34/34	34/34
	2004 Warm season	130	130	430	47	1 1 [0 27]	37/37	37/37
	2004 Cold season	98	89	390	51	1.1 [0.37]	37/37	37/37
	2005 Warm season	88	90	250	27	0 14 [0 024]	37/37	37/37
	2005 Cold season	77	68	180	44	0.14 [0.034]	37/37	37/37
A *	2006 Warm season	83	89	210	23	0.21 [0.07]	37/37	37/37
Air	2006 Cold season	65	74	170	8.2	0.21 [0.07]	37/37	37/37
(pg/m^3)	2007 Warm season	110	100	230	72	0.00.00.021	24/24	24/24
	2007 Cold season	77	72	120	55	0.09 [0.03]	22/22	22/22
	2008 Warm season	120	110	260	78	0.22 [0.00]	22/22	22/22
	2008 Cold season	87	83	160	58	0.22 [0.08]	36/36	36/36
	2009 Warm season	110	110	210	78	0.6.[0.2]	34/34	34/34
	2009 Cold season	87	87	150	59	0.6 [0.2]	34/34	34/34
	2010 Warm season	120	120	160	73	1 0 [0 7]	37/37	37/37
	2010 Cold season	100	96	380	56	1.8 [0.7]	37/37	37/37

[3] Aldrin (reference)

· History and state of monitoring

Aldrin had been used as a soil insecticide until FY 1971 when the application of the substance was substantially stopped. Its registration under the Agricultural Chemicals Regulation Law was expired in FY 1975. It was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981.

In previous monitoring series until FY 2001, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY 1978~1989 and FY 1991 to FY 2001 under the framework of "the Wildlife Monitoring."

Under the framework of the Environmental Monitoring, the substance in surface water, sediment, wildlife (bivalves, fish and birds) and air has been monitored since FY 2002.

As of FY 2010, monitoring surveys are conducted bi-annually, that is every other year. No monitoring was conducted in 2010. For reference, the monitoring results up to FY 2009 are given below.

Monitoring results until FY 2009

<Surface Water>

Stocktaking of the detection of aldrin in surface water during FY2002~2009

	Monitored	Geometric				Quantification	Detection 1	Frequency
Aldrin	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.8	0.9	18	nd	0.6 [0.2]	93/114	37/38
	2003	0.9	0.9	3.8	nd	0.6 [0.2]	34/36	34/36
	2004	tr(1.5)	tr(1.8)	13	nd	2 [0.4]	33/38	33/38
Surface water	2005	tr(0.6)	tr(0.7)	5.7	nd	0.9 [0.3]	32/47	32/47
(pg/L)	2006	nd	nd	4.4	nd	1.7 [0.6]	18/48	18/48
	2007	tr(0.6)	tr(0.6)	9.5	nd	1.0 [0.3]	34/48	34/48
	2008	tr(0.8)	tr(0.7)	21	nd	1.4 [0.6]	26/48	26/48
	2009	0.7	0.9	22	nd	0.7 [0.3]	32/49	32/49

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Stocktaking of the detection of aldrin in sediment during FY2002~2009

	Monitored	Geometric				Quantification	Detection 1	Frequency
Aldrin	year	Mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	14	12	570	nd	6 [2]	149/189	56/63
	2003	19	18	1,000	nd	2 [0.6]	178/186	60/62
	2004	10	10	390	nd	2 [0.6]	170/189	62/63
Sediment	2005	8.4	7.1	500	nd	1.4 [0.5]	173/189	62/63
(pg/g-dry)	2006	10	9.3	330	nd	1.9 [0.6]	184/192	64/64
	2007	7.5	6.7	330	nd	1.8 [0.6]	172/192	60/64
	2008	6	6	370	nd	3 [1]	153/192	56/64
	2009	8.9	7.8	540	nd	0.5 [0.2]	180/192	64/64

(Note) " *" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 \sim FY2009.

<Wildlife>

Stocktaking of the detection of aldrin in wildlife (bivalves, fish and birds) during FY2002~2009

.11:	Monitored	Geometric	3.6.1			411:	Detection l	requency
Aldrin	year	Mean*	Median	Maximum	Minimum	Aldrin	Sample	Site
	2002	tr(1.6)	nd	34	nd	4.2 [1.4]	12/38	4/8
	2003	tr(1.7)	tr(0.85)	51	nd	2.5 [0.84]	15/30	3/6
	2004	tr(2.5)	tr(1.6)	46	nd	4.0 [1.3]	16/31	4/7
Bivalves	2005	tr(1.8)	nd	84	nd	3.5 [1.2]	11/31	3/7
(pg/g-wet)	2006	tr(2)	nd	19	nd	4 [2]	11/31	3/7
	2007	tr(2)	nd	26	nd	5 [2]	5/31	2/7
	2008	tr(2)	nd	20	nd	5 [2]	5/31	3/7
	2009	tr(1.6)	tr(0.8)	89	nd	2.1 [0.8]	16/31	6/7
	2002	nd	nd	tr(2.0)	nd	4.2 [1.4]	1/70	1/14
	2003	nd	nd	tr(1.9)	nd	2.5 [0.84]	16/70	7/14
	2004	nd	nd	tr(2.4)	nd	4.0 [1.3]	5/70	2/14
Fish	2005	nd	nd	6.4	nd	3.5 [1.2]	11/80	5/16
(pg/g-wet)	2006	nd	nd	tr(2)	nd	4 [2]	2/80	2/16
	2007	nd	nd	tr(2)	nd	5 [2]	2/80	2/16
	2008	nd	nd	tr(2)	nd	5 [2]	1/85	1/17
	2009	nd	nd	3.1	nd	2.1 [0.8]	22/90	7/18
	2002	nd	nd	nd	nd	4.2 [1.4]	0/10	0/2
	2003	nd	nd	nd	nd	2.5 [0.84]	0/10	0/2
	2004	nd	nd	nd	nd	4.0 [1.3]	0/10	0/2
Birds	2005	nd	nd	nd	nd	3.5 [1.2]	0/10	0/2
(pg/g-wet)	2006	nd	nd	nd	nd	4 [2]	0/10	0/2
	2007	nd	nd	nd	nd	5 [2]	0/10	0/2
	2008	nd	nd	nd	nd	5 [2]	0/10	0/2
	2009	nd	nd	nd	nd	2.1 [0.8]	0/10	0/2

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Air>

Stocktaking of the detection of aldrin in air during FY2002~2009

		Geometric				Quantification	Detection 1	Frequency
Aldrin	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(0.030)	nd	3.2	nd	0.060 [0.020]	41/102	19/34
	2003 Warm season	1.5	1.9	28	nd	0.023 [0.0077]	34/35	34/35
	2003 Cold season	0.55	0.44	6.9	0.030	0.023 [0.0077]	34/34	34/34
	2004 Warm season	tr(0.12)	nd	14	nd	0.15 [0.05]	15/37	15/37
	2004 Cold season	tr(0.08)	nd	13	nd	0.13 [0.03]	14/37	14/37
	2005 Warm season	0.33	0.56	10	nd	0.08 [0.03]	29/37	29/37
Air	2005 Cold season	tr(0.04)	nd	1.8	nd	0.08 [0.03]	9/37	9/37
(pg/m^3)	2006 Warm season	0.30	0.35	8.5	nd	0.14 [0.05]	31/37	31/37
(pg/III)	2006 Cold season	tr(0.05)	nd	1.1	nd	0.14 [0.03]	16/37	16/37
	2007 Warm season	0.58	0.48	19	nd	0.05 [0.02]	35/36	35/36
	2007 Cold season	0.14	0.15	2.1	nd	0.05 [0.02]	34/36	34/36
	2008 Warm season	0.27	0.30	9.4	tr(0.02)	0.04 [0.02]	25/25	25/25
	2008 Cold season	0.09	0.08	1.3	nd	0.04 [0.02]	22/25	22/25
	2009 Warm season	0.07	nd	10	nd	0.04.[0.02]	10/25	10/25
	2009 Cold season	tr(0.03)	nd	1.8	nd	0.04 [0.02]	8/24	8/24

[4] Dieldrin (reference)

· History and state of monitoring

Dieldrin was used as a pesticide and its application culminated during the period of 1955~1964. The substance had been used as termitecides as a Soil-Residue-Prone Pesticide under the Agricultural Chemicals Regulation Law in 1971, but its registration under the Agricultural Chemicals Regulation Law was expired in FY 1975. It had been used for termite control and was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981.

In previous monitoring series until FY 2001, the substance was monitored in wildlife (bivalves, fish and birds) during the period of FY 1978~1996, FY 1998 and FY 1999 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," the substance in surface water and sediment was monitored during the period of FY 1986~1998 and FY 1986~2001, respectively.

Under the framework of the Environmental Monitoring, the substance in surface water, sediment, wildlife (bivalves, fish and birds) and air has been monitored since FY 2002.

As of FY 2010, monitoring surveys are conducted bi-annually, that is every other year. No monitoring was conducted in 2010. For reference, the monitoring results up to FY 2009 are given below.

• Monitoring results until FY 2009

<Surface Water>

Stocktaking of the detection of dieldrin in surface water during FY2002~2009

	Monitored	Geometric				Quantification	Detection Fr Sample 114/114 36/36 38/38	Frequency
Dieldrin	year	mean*	41 57 51 49	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	42	41	940	3.3	1.8 [0.6]	114/114	38/38
	2003	57	57	510	9.7	0.7 [0.3]	36/36	36/36
	2004	55	51	430	9	2 [0.5]	38/38	38/38
Surface water	2005	39	49	630	4.5	1.0 [0.34]	47/47	47/47
(pg/L)	2006	36	32	800	6	3 [1]	48/48	48/48
	2007	38	36	750	3.1	2.1 [0.7]	48/48	48/48
	2008	36	37	450	3.6	1.5 [0.6]	48/48	48/48
	2009	36	32	650	2.7	0.6 [0.2]	49/49	49/49

⁽Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

< Sediment>

Stocktaking of the detection of dieldrin in sediment during FY2002~2009

	Monitored	Geometric			Quantification	Detection l	Frequency	
Dieldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	70	51	2,300	4	3 [1]	189/189	63/63
	2003	66	56	9,100	nd	4 [2]	184/186	62/62
	2004	65	62	3,700	tr(1.9)	3 [0.9]	189/189	63/63
Sediment	2005	61	55	4,200	tr(2)	3 [1]	189/189	63/63
(pg/g-dry)	2006	61	54	1,500	tr(1.7)	2.9 [1.0]	192/192	64/64
	2007	49	40	2,700	tr(1.2)	2.7 [0.9]	192/192	64/64
	2008	48	43	2,900	tr(0.7)	1.2 [0.5]	192/192	64/64
	2009	51	47	3,000	1.1	0.8 [0.3]	192/192	64/64

⁽Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Wildlife>
Stocktaking of the detection of dieldrin in wildlife (bivalves, fish and birds) during FY2002~2009

	Monitored	Geometric				Quantification	Detection 1	Frequency
Dieldrin	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	440	390	190,000	tr(7)	12 [4]	38/38	8/8
	2003	440	160	78,000	46	4.8 [1.6]	30/30	6/6
	2004	630	270	69,000	42	31 [10]	31/31	7/7
Bivalves	2005	500	140	39,000	34	9.4 [3.4]	31/31	7/7
(pg/g-wet)	2006	450	120	47,000	30	7 [3]	31/31	7/7
	2007	380	110	77,000	37	9 [3]	31/31	7/7
	2008	430	150	24,000	47	9 [3]	31/31	7/7
	2009	490	230	28,000	48	7 [2]	31/31	7/7
	2002	290	270	2,400	46	12 [4]	70/70	14/14
	2003	220	200	1,000	29	4.8 [1.6]	70/70	14/14
	2004	250	230	2,800	tr(23)	31 [10]	70/70	14/14
Fish	2005	230	250	1,400	21	9.4 [3.4]	80/80	16/16
(pg/g-wet)	2006	230	220	1,400	19	7 [3]	80/80	16/16
	2007	250	210	1,900	23	9 [3]	80/80	16/16
	2008	240	240	1,300	15	9 [3]	85/85	17/17
	2009	240	190	1,400	29	7 [2]	90/90	18/18
	2002	1,100	1,100	1,700	820	12 [4]	10/10	2/2
	2003	1,300	1,400	2,200	790	4.8 [1.6]	10/10	2/2
	2004	600	610	960	370	31 [10]	10/10	2/2
Birds	2005	830	740	1,800	500	9.4 [3.4]	10/10	2/2
(pg/g-wet)	2006	700	690	1,300	440	7 [3]	10/10	2/2
	2007	710	710	910	560	9 [3]	10/10	2/2
	2008	680	620	1,300	260	9 [3]	10/10	2/2
	2009	470	420	890	330	7 [2]	10/10	2/2

(Note) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Air>
Stocktaking of the detection of dieldrin in air during FY2002~2009

		Geometric				Quantification	Detection l	Frequency
Dieldrin	Monitored year 2002 2003 Warm season 2003 Cold season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Cold season 2006 Cold season 2007 Warm season 2007 Warm season 2008 Warm season 2008 Warm season	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.6	5.4	110	0.73	0.60 [0.20]	102/102	34/34
	2003 Warm season	19	22	260	2.1	2.1 [0.70]	35/35	35/35
	2003 Cold season	5.7	5.2	110	tr(0.82)	2.1 [0.70]	34/34	34/34
	2004 Warm season	17	22	280	1.1	0.33 [0.11]	37/37	37/37
	2004 Cold season	5.5	6.9	76	0.81		37/37	37/37
	2005 Warm season	14	12	200	1.5	0.54 10 241	37/37	37/37
Ait	2005 Cold season	3.9	3.6	50	0.88	0.34 [0.24]	37/37	37/37
(pg/m^3)	2006 Warm season	15	14	290	1.5	0.2 [0.1]	37/37	37/37
(pg/III)	2006 Cold season	4.5	4.2	250	0.7	0.3 [0.1]	37/37	37/37
	2007 Warm season	19	22	310	1.3	0.18 [0.07]	36/36	36/36
	2007 Cold season	4.5	3.7	75	0.96	0.18 [0.07]	36/36	36/36
	2008 Warm season	14	16	220	1.6	0.24 [0.09]	37/37	37/37
	2008 Cold season	4.9	3.8	72	0.68	0.24 [0.09]	37/37	37/37
	2009 Warm season	13	13	150	0.91	0.06 [0.02]	37/37	37/37
	2009 Cold season	4.5	4.0	80	0.52	0.00 [0.02]	37/37	37/37

[5] Endrin (reference)

· History and state of monitoring

Endrin was used as an insecticide and a rodenticide, but its registration under the Agricultural Chemicals Regulation Law was expired in FY 1975. It was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981.

In previous monitoring series until FY 2001, the substance was monitored in wildlife (bivalves, fish and birds) during the periods of FY $1978 \sim 1989$ and FY $1991 \sim FY$ 1993 under the framework of "the Wildlife Monitoring".

Under the framework of the Environmental Monitoring, the substance in surface water, sediment, wildlife (bivalves, fish and birds) and air has been monitored since FY 2002.

As of FY 2010, monitoring surveys are conducted bi-annually, that is every other year. No monitoring was conducted in 2010. For reference, the monitoring results up to FY 2009 are given below.

• Monitoring results until FY 2009

<Surface Water>

Stocktaking of the detection of endrin in surface water during FY2002~2009

	Monitored	Geometric				Quantification	Detection l	Frequency
Endrin	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(4.8)	tr(5.5)	31	nd	6.0 [2.0]	101/114	36/38
	2003	5.7	6.0	78	0.7	0.7 [0.3]	36/36	36/36
	2004	7	7	100	tr(0.7)	2 [0.5]	38/38	38/38
Surface water	2005	4.0	4.5	120	nd	1.1 [0.4]	45/47	45/47
(pg/L)	2006	3.1	3.5	26	nd	1.3 [0.4]	44/48	44/48
	2007	3.5	3.4	25	nd	1.9 [0.6]	46/48	46/48
	2008	3	4	20	nd	3 [1]	45/48	45/48
	2009	2.0	2.3	67	nd	0.7 [0.3]	39/49	39/49

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Stocktaking of the detection of endrin in sediment during FY2002~2009

	Monitored	Geometric				Quantification	Detection l	Frequency
Endrin	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	10	10	19,000	nd	6 [2]	141/189	54/63
	2003	12	11	29,000	nd	5 [2]	150/186	53/62
	2004	15	13	6,900	nd	3 [0.9]	182/189	63/63
Sediment	2005	12	11	19,000	nd	2.6 [0.9]	170/189	61/63
(pg/g-dry)	2006	12	10	61,000	nd	4 [1]	178/192	63/64
	2007	11	9	61,000	nd	5 [2]	151/192	55/64
	2008	11	11	38,000	nd	1.9 [0.7]	168/192	61/64
	2009	9.6	8.4	11,000	nd	1.6 [0.6]	168/192	63/64

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Wildlife>
Stocktaking of the detection of endrin in wildlife (bivalves, fish and birds) during FY2002~2009

	Monitored	Geometric				Quantification	Detection 1	Frequency
Endrin	year	Mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	42	27	12,000	nd	18 [6]	35/38	7/8
	2003	38	21	5,000	6.3	4.8 [1.6]	30/30	6/6
	2004	65	25	4,600	tr(5.7)	12 [4.2]	31/31	7/7
Bivalves	2005	39	19	2,100	nd	17 [5.5]	27/31	7/7
(pg/g-wet)	2006	40	15	3,100	tr(5)	11 [4]	31/31	7/7
	2007	28	12	3,000	tr(6)	9 [3]	31/31	7/7
	2008	30	10	1,500	tr(6)	8 [3]	31/31	7/7
	2009	38	19	1,400	tr(5)	7 [3]	31/31	7/7
	2002	20	24	180	nd	18 [6]	54/70	13/14
	2003	14	10	180	nd	4.8 [1.6]	67/70	14/14
	2004	18	24	220	nd	12 [4.2]	57/70	13/14
Fish	2005	19	tr(16)	2,100	nd	17 [5.5]	58/80	12/16
(pg/g-wet)	2006	13	tr(10)	150	nd	11 [4]	66/80	16/16
	2007	13	12	170	nd	9 [3]	69/80	15/16
	2008	11	10	200	nd	8 [3]	63/85	14/17
	2009	17	12	270	nd	7 [3]	86/90	18/18
	2002	28	52	99	nd	18 [6]	7/10	2/2
	2003	22	30	96	5.4	4.8 [1.6]	10/10	2/2
	2004	tr(11)	25	62	nd	12 [4.2]	5/10	1/2
Birds	2005	18	28	64	nd	17 [5.5]	7/10	2/2
(pg/g-wet)	2006	16	23	57	tr(4)	11 [4]	10/10	2/2
	2007	17	28	55	nd	9 [3]	9/10	2/2
	2008	10	26	83	nd	8 [3]	5/10	1/2
	2009	11	17	43	tr(3)	7 [3]	10/10	2/2

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Air>
Stocktaking of the detection of endrin in air during FY2002~2009

		Geometric				Quantification	Detection 1	Frequency
Endrin	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.22	0.28	2.5	nd	0.090 [0.030]	90/102	32/34
	2003 Warm season	0.74	0.95	6.2	0.081	0.042 [0.014]	35/35	35/35
	2003 Cold season	0.23	0.20	2.1	0.042	0.042 [0.014]	34/34	34/34
	2004 Warm season	0.64	0.68	6.5	tr(0.054)	0.14 [0.048]	37/37	37/37
	2004 Cold season	0.23	0.26	1.9	nd	0.14 [0.046]	36/37	36/37
	2005 Warm season	tr(0.4)	tr(0.3)	2.9	nd	0.5 [0.2]	27/37	27/37
Air	2005 Cold season	nd	nd	0.7	nd	0.5 [0.2]	8/37	8/37
(pg/m^3)	2006 Warm season	0.31	0.32	5.4	nd		32/37	32/37
(pg/III)	2006 Cold season	nd	nd	5.0	nd	0.30 [0.10]	7/37	7/37
	2007 Warm season	0.69	0.73	6.3	tr(0.06)	0.09 [0.04]	36/36	36/36
	2007 Cold season	0.16	0.13	1.5	nd	0.09 [0.04]	33/36	33/36
	2008 Warm season	0.53	0.68	4.6	tr(0.06)	0.10 [0.04]	37/37	37/37
	2008 Cold season	0.18	0.18	1.8	nd	0.10 [0.04]	35/37	35/37
	2009 Warm season	0.49	0.51	3.4	nd	0.09 [0.04]	36/37	36/37
	2009 Cold season	0.17	0.15	1.8	nd	0.07 [0.04]	36/37	36/37

[6] **DDTs**

· History and state of monitoring

DDT, along with hexachlorocyclohexanes (HCHs) and drins, was used as insecticides in high volume. Its registration under the Agricultural Chemicals Regulation Law was expired in FY 1971. It was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in October 1981. Among several DDT isomers with chlorine at various positions on the aromatic ring, not only p,p'-DDT and o,p'-DDT as active substances but also p,p'-DDE, o,p'-DDE, p,p'-DDD and o,p'-DDD as the environmentally degraded products of DDTs have been the target chemicals in monitoring series since FY 1978.

In previous monitoring series, p,p'-DDT, p,p'-DDE and p,p'-DDD had been monitored in wildlife (bivalves, fish and birds) during the period of FY 1978 \sim 2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring," surface water and sediment had been the monitored media during the period of FY 1986 \sim 1998 and FY 1986 \sim 2001, respectively. Similarly, o,p'-DDT, o,p'-DDE and o,p'-DDD had been monitored in wildlife (bivalves, fish and birds) during the period of FY 1978 \sim 1996 and in FY 1998, FY 2000 and FY 2001 under the framework of "the Wildlife Monitoring."

Under the framework of the Environmental Monitoring, p,p'-DDT, p,p'-DDE, p,p'-DDD, o,p'-DDT, o,p'-DDE and o,p'-DDD have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air since FY 2002.

· Monitoring results

o p,p'-DDT, p,p'-DDE and p,p'-DDD

<Surface Water>

p,p'-DDT: The presence of the substance in surface water was monitored at 49 sites, and it was detected at all 49 valid sites adopting the detection limit of 0.8pg/L, and the detection range was $tr(1.0) \sim 7,500 pg/L$. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from lake areas was identified as statistically significant.

p,p'-DDE: The presence of the substance in surface water was monitored at 49 sites, and it was detected at all 49 valid sites adopting the detection limit of 0.8pg/L, and the detection range was $2.4\sim1,600$ pg/L. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from river areas and river mouth areas were identified as statistically significant.

p,p'-DDD: The presence of the substance in surface water was monitored at 49 sites, and it was detected at all 49 valid sites adopting the detection limit of 0.08pg/L, and the detection range was 1.6 \sim 970 pg/L.

Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in surface water during FY2002~2010

	Monitored	Geometric				Quantification	Detection 1	Frequency
p,p'-DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	13	11	440	0.25	0.6 [0.2]	114/114	38/38
	2003	14	12	740	tr(2.8)	3 [0.9]	36/36	36/36
	2004	15	14	310	nd	6 [2]	36/38	36/38
Surface Water	2005	8	9	110	1	4 [1]	47/47	47/47
(pg/L)	2006	9.1	9.2	170	tr(1.6)	1.9 [0.6]	48/48	48/48
(pg/L)	2007	7.3	9.1	670	nd	1.7 [0.6]	46/48	46/48
	2008	11	11	1,200	nd	1.2 [0.5]	47/48	47/48
	2009	9.2	8.4	440	0.81	0.15 [0.06]	49/49	49/49
	2010	8.5	7.6	7,500	tr(1.0)	2.4 [0.8]	49/49	49/49
	Manitarad	Geometric				Quantification	Detection 1	Frequency
p,p'-DDE	Monitored year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	25	26	760	1.3	0.6 [0.2]	114/114	38/38
	2003	26	22	380	5	4 [2]	36/36	36/36
	2004	36	34	680	tr(6)	8 [3]	38/38	38/38
C C W	2005	26	24	410	4	6 [2]	47/47	47/47
Surface Water	2006	24	24	170	tr(4)	7 [2]	48/48	48/48
(pg/L)	2007	22	23	440	tr(2)	4 [2]	48/48	48/48
	2008	27	28	350	2.5	1.1 [0.4]	48/48	48/48
	2009	23	23	240	3.4	1.1 [0.4]	49/49	49/49
	2010	14	12	1,600	2.4	2.3 [0.8]	49/49	49/49
	Manitanad	Caamataia				Quantification	Detection 1	Frequency
p,p'-DDD	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	16	18	190	0.57	0.24 [0.08]	114/114	38/38
	2003	19	18	410	4	2 [0.5]	36/36	36/36
	2004	19	18	740	tr(2.4)	3 [0.8]	38/38	38/38
Comfood Water	2005	17	16	130	tr(1.8)	1.9 [0.64]	47/47	47/47
Surface Water	2006	16	17	99	2.0	1.6 [0.5]	48/48	48/48
(pg/L)	2007	15	12	150	tr(1.5)	1.7 [0.6]	48/48	48/48
	2008	22	20	850	2.0	0.6 [0.2]	48/48	48/48
	2009	14	13	140	1.4	0.4 [0.2]	49/49	49/49
	2010	12	10	970	1.6	0.20 [0.08]	49/49	49/49

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

< Sediment >

p,p'-DDT: The presence of the substance in sediment was monitored at 64 sites, and it was detected at all 64 valid sites adopting the detection limit of 0.9pg/g-dry, and the detection range was $9.3 \sim 220,000$ pg/g-dry.

p,p'-DDE: The presence of the substance in sediment was monitored at 64 sites, and it was detected at all 64 valid sites adopting the detection limit of 2pg/g-dry, and the detection range was $11\sim40,000$ pg/g-dry.

p,p'-DDD:The presence of the substance in sediment was monitored at 64 sites, and it was detected at all 64 valid sites adopting the detection limit of 0.5pg/g-dry, and the detection range was $4.4 \sim 78,000$ pg/g-dry.

Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in sediment during FY2002~2010

	Monitored	Geometric				Quantification	Detection	Frequency
p,p'-DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	380	240	97,000	tr(5)	6 [2]	189/189	63/63
	2003	290	220	55,000	3	2 [0.4]	186/186	62/62
	2004	460	230	98,000	7	2 [0.5]	189/189	63/63
Sediment	2005	360	230	1,700,000	5.1	1.0 [0.34]	189/189	63/63
(pg/g-dry)	2006	310	240	130,000	4.5	1.4 [0.5]	192/192	64/64
(pg/g-ury)	2007	210	150	130,000	3	1.3 [0.5]	192/192	64/64
	2008	270	180	1,400,000	4.8	1.2 [0.5]	192/192	64/64
	2009	250	170	2,100,000	1.9	1.0 [0.4]	192/192	64/64
	2010	230	200	220,000	9.3	2.8 [0.9]	64/64	64/64
	Monitored	Geometric				Quantification	Detection	Frequency
p,p'-DDE		mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	year					limit		
	2002	780	630	23,000	8.4	2.7 [0.9]	189/189	63/63
	2003	790	780	80,000	9.5	0.9 [0.3]	186/186	62/62
	2004	720	700	39,000	8	3 [0.8]	189/189	63/63
Sediment	2005	710	730	64,000	8.4	2.7 [0.94]	189/189	63/63
(pg/g-dry)	2006	710	820	49,000	5.8	1.0 [0.3]	192/192	64/64
(pg/g-ury)	2007	670	900	61,000	3.2	1.1 [0.4]	192/192	64/64
	2008	920	940	96,000	9.0	1.7 [0.7]	192/192	64/64
	2009	700	660	50,000	6.7	0.8 [0.3]	192/192	64/64
	2010	680	790	40,000	11	5 [2]	64/64	64/64
	Monitored	Geometric				Quantification	Detection	Frequency
p,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	640	690	51,000	tr(2.2)	2.4 [0.8]	189/189	63/63
	2003	670	580	32,000	3.7	0.9 [0.3]	186/186	62/62
	2004	650	550	75,000	4	2 [0.7]	189/189	63/63
Cadimant	2005	600	570	210,000	5.2	1.7 [0.64]	189/189	63/63
Sediment (pg/g dry)	2006	560	540	53,000	2.2	0.7 [0.2]	192/192	64/64
(pg/g-dry)	2007	520	550	80,000	3.5	1.0 [0.4]	192/192	64/64
	2008	740	660	300,000	2.8	1.0 [0.4]	192/192	64/64
	2009	540	560	300,000	3.9	0.4 [0.2]	192/192	64/64
	2010	510	510	78,000	4.4	1.4 [0.5]	64/64	64/64

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Wildlife>

p,p'-DDT: The presence of the substance in bivalves was monitored in 7 areas, and it was detected at 6 of the 7 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was 43 \sim 470 pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was 7 \sim 2,100 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at 1 of the 2 valid areas adopting the detection limit of 1pg/g-wet, and none of the detected concentrations exceeded 15 pg/g-wet. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from bivalves was identified as statistically significant.

p,p'-DDE: The presence of the substance in bivalves was monitored in 7 areas, and it was detected at 6 of the 7 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was 230 \sim 6,300 pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was 260 \sim 13,000 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was 6,300 \sim 160,000 pg/g-wet.

p,p'-DDD: The presence of the substance in bivalves was monitored in 7 areas, and it was detected at 6 of the 7 valid areas adopting the detection limit of 0.5pg/g-wet, and the detection range was $11\sim960$ pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 0.5pg/g-wet, and the detection range was $57\sim2,900$ pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 0.5pg/g-wet, and the detection range was $120\sim1,600$ pg/g-wet. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from bivalves was identified as statistically significant.

Stocktaking of the detection of *p,p'*-DDT in wildlife (bivalves, fish and birds) during FY2002~2010

	Monitored	Geometric			·	Quantification	Detection l	Frequency
p,p'-DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	200	200	1,200	38	4.2 [1.4]	38/38	8/8
	2003	290	290	1,800	49	11 [3.5]	30/30	6/6
	2004	360	340	2,600	48	3.2 [1.1]	31/31	7/7
Dissalson	2005	240	170	1,300	66	5.1 [1.7]	31/31	7/7
Bivalves	2006	250	220	1,100	56	6 [2]	31/31	7/7
(pg/g-wet)	2007	240	150	1,200	49	5 [2]	31/31	7/7
	2008	160	100	1,400	12	5 [2]	31/31	7/7
	2009	240	170	9,600	46	3 [1]	31/31	7/7
	2010	180	280	470	43	3 [1]	6/6	6/6
	2002	430	450	24,000	6.8	4.2 [1.4]	70/70	14/14
	2003	220	400	1,900	tr(3.7)	11 [3.5]	70/70	14/14
	2004	410	330	53,000	5.5	3.2 [1.1]	70/70	14/14
Eigh.	2005	280	330	8,400	tr(3.8)	5.1 [1.7]	80/80	16/16
Fish	2006	300	340	3,000	tr(5)	6 [2]	80/80	16/16
(pg/g-wet)	2007	260	320	1,800	9	5 [2]	80/80	16/16
	2008	280	310	2,900	7	5 [2]	85/85	17/17
	2009	250	300	2,000	4	3 [1]	90/90	18/18
	2010	240	280	2,100	7	3 [1]	18/18	18/18
	2002	440	510	1,300	76	4.2 [1.4]	10/10	2/2
	2003	610	620	1,400	180	11 [3.5]	10/10	2/2
	2004	340	320	700	160	3.2 [1.1]	10/10	2/2
Birds	2005	430	550	900	180	5.1 [1.7]	10/10	2/2
	2006	580	490	1,800	110	6 [2]	10/10	2/2
(pg/g-wet)	2007	480	350	1,900	160	5 [2]	10/10	2/2
	2008	160	170	270	56	5 [2]	10/10	2/2
	2009	300	190	2,900	85	3 [1]	10/10	2/2
	2010	3		15	nd	3 [1]	1/2	1/2

Stocktaking of the detection of *p,p'*-DDE in wildlife (bivalves, fish and birds) during FY2002~2010

	Monitored	Geometric				Quantification	Detection l	Frequency
p,p'-DDE	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	1,000	1,700	6,000	140	2.4 [0.8]	38/38	8/8
	2003	1,200	1,000	6,500	190	5.7 [1.9]	30/30	6/6
	2004	1,300	1,400	8,400	220	8.2 [2.7]	31/31	7/7
Bivalves	2005	1,200	1,600	6,600	230	8.5 [2.8]	31/31	7/7
	2006	1,000	1,200	6,000	160	1.9 [0.7]	31/31	7/7
(pg/g-wet)	2007	1,100	1,200	5,600	180	3 [1]	31/31	7/7
	2008	900	1,100	5,800	120	3 [1]	31/31	7/7
	2009	940	1,100	6,400	150	4 [1]	31/31	7/7
	2010	1,100	1,300	6,300	230	3 [1]	6/6	6/6
	2002	2,900	2,200	98,000	510	2.4 [0.8]	70/70	14/14
	2003	2,000	2,200	12,000	180	5.7 [1.9]	70/70	14/14
	2004	3,000	2,100	52,000	390	8.2 [2.7]	70/70	14/14
Dial.	2005	2,400	2,400	73,000	230	8.5 [2.8]	80/80	16/16
Fish	2006	2,200	2,600	28,000	280	1.9 [0.7]	80/80	16/16
(pg/g-wet)	2007	2,200	2,000	22,000	160	3 [1]	80/80	16/16
	2008	2,500	2,000	53,000	320	3 [1]	85/85	17/17
	2009	2,300	2,100	20,000	260	4 [1]	90/90	18/18
	2010	2,300	2,100	13,000	260	3 [1]	18/18	18/18
	2002	36,000	60,000	170,000	8,100	2.4 [0.8]	10/10	2/2
	2003	66,000	76,000	240,000	18,000	5.7 [1.9]	10/10	2/2
	2004	34,000	65,000	200,000	6,800	8.2 [2.7]	10/10	2/2
Dinda	2005	44,000	86,000	300,000	7,100	8.5 [2.8]	10/10	2/2
Birds	2006	38,000	57,000	160,000	5,900	1.9 [0.7]	10/10	2/2
(pg/g-wet)	2007	40,000	56,000	320,000	6,700	3 [1]	10/10	2/2
	2008	51,000	79,000	160,000	7,500	3 [1]	10/10	2/2
	2009	30,000	64,000	220,000	4,300	4[1]	10/10	2/2
	2010	32,000		160,000	6,300	3 [1]	2/2	2/2

Stocktaking of the detection of p,p'-DDD in wildlife (bivalves, fish and birds) during FY2002~2010

	Monitored	Geometric				Quantification	Detection	Frequency
p,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	340	710	3,200	11	5.4 [1.8]	38/38	8/8
	2003	390	640	2,600	tr(7.5)	9.9 [3.3]	30/30	6/6
	2004	440	240	8,900	7.8	2.2 [0.70]	31/31	7/7
Bivalves	2005	370	800	1,700	13	2.9 [0.97]	31/31	7/7
	2006	300	480	1,400	7.3	2.4 [0.9]	31/31	7/7
(pg/g-wet)	2007	310	360	1,500	7	3 [1]	31/31	7/7
	2008	280	280	1,300	6	3 [1]	31/31	7/7
	2009	220	170	2,400	5.8	2.4 [0.9]	31/31	7/7
	2010	180	330	960	11	1.3 [0.5]	6/6	6/6
	2002	750	680	14,000	80	5.4 [1.8]	70/70	14/14
	2003	510	520	3,700	43	9.9 [3.3]	70/70	14/14
	2004	770	510	9,700	56	2.2 [0.70]	70/70	14/14
Dial.	2005	510	650	6,700	29	2.9 [0.97]	80/80	16/16
Fish	2006	520	580	4,300	60	2.4 [0.9]	80/80	16/16
(pg/g-wet)	2007	470	490	4,100	36	3 [1]	80/80	16/16
	2008	460	440	4,100	33	3 [1]	85/85	17/17
	2009	440	460	2,500	57	2.4 [0.9]	90/90	18/18
	2010	560	610	2,900	57	1.3 [0.5]	18/18	18/18
	2002	580	740	3,900	140	5.4 [1.8]	10/10	2/2
	2003	640	860	3,900	110	9.9 [3.3]	10/10	2/2
	2004	330	520	1,400	52	2.2 [0.70]	10/10	2/2
D:1-	2005	310	540	1,400	45	2.9 [0.97]	10/10	2/2
Birds	2006	410	740	1,800	55	2.4 [0.9]	10/10	2/2
(pg/g-wet)	2007	440	780	2,300	70	3 [1]	10/10	2/2
	2008	240	490	1,100	35	3 [1]	10/10	2/2
	2009	280	430	3,400	31	2.4 [0.9]	10/10	2/2
	2010	440		1,600	120	1.3 [0.5]	2/2	2/2

(Note) " *" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 \sim FY2009.

<Air>

p,p'-DDT: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.03pg/m³, and the detection range was $0.28\sim56$ pg/m³. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.03pg/m³, and the detection range was $0.30\sim16$ pg/m³.

p,p'-DDE: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.21pg/m^3 , and the detection range was $\text{tr}(0.41) \sim 200 \text{ pg/m}^3$. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.21pg/m^3 , and the detection range was $\text{tr}(0.47) \sim 28 \text{ pg/m}^3$. As results of the inter-annual trend analysis from FY 2003 to FY 2010, reduction tendency in specimens at the warm season was identified as statistically significant.

p,p'-DDD: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.01pg/m^3 , and the detection range was $0.04 \sim 1.7 \text{ pg/m}^3$. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.01pg/m^3 , and the detection range was $0.02 \sim 0.41 \text{ pg/m}^3$.

Stocktaking of the detection of *p,p'*-DDT, *p,p'*-DDE and *p,p'*-DDD in air during FY2002~2010

	or the detection of p	Geometric				Quantification	Detection l	
p,p'-DDT	Monitored year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	1.9	1.8	22	0.25	0.24 [0.08]	102/102	34/34
	2003 Warm season	5.8	6.6	24	0.75	0.14 [0.046]	35/35	35/35
	2003 Cold season	1.7	1.6	11	0.31	0.14 [0.046]	34/34	34/34
	2004 Warm season	4.7	5.1	37	0.41	0.22 [0.074]	37/37	37/37
	2004 Cold season	1.8	1.7	13	0.29	0.22 [0.074]	37/37	37/37
	2005 Warm season	4.1	4.2	31	0.44	0.16 [0.054]	37/37	37/37
	2005 Cold season	1.1	0.99	4.8	0.25	0.10 [0.034]	37/37	37/37
A :	2006 Warm season	4.2	3.8	51	0.35	0.17 [0.06]	37/37	37/37
Air	2006 Cold season	1.4	1.2	7.3	0.29	0.17 [0.06]	37/37	37/37
(pg/m^3)	2007 Warm season	4.9	5.2	30	0.6	0.07.[0.02]	36/36	36/36
	2007 Cold season	1.2	1.2	8.8	0.23	0.07 [0.03]	36/36	36/36
	2008 Warm season	3.6	3.0	27	0.76	0.07.50.021	37/37	37/37
	2008 Cold season	1.2	1.0	15	0.22	0.07 [0.03]	37/37	37/37
	2009 Warm season	3.6	3.6	28	0.44	0.07.50.023	37/37	37/37
	2009 Cold season	1.1	1.0	8.0	0.20	0.07 [0.03]	37/37	37/37
	2010 Warm season	3.5	3.1	56	0.28	0.10.50.023	37/37	37/37
	2010 Cold season	1.3	0.89	16	0.30	0.10 [0.03]	37/37	37/37
						Quantification	Detection l	
p,p'-DDE	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.8	2.7	28	0.56	0.09 [0.03]	102/102	34/34
	2003 Warm season	7.2	7.0	51	1.2		35/35	35/35
	2003 Cold season	2.8	2.4	22	1.1	0.40 [0.13]	34/34	34/34
	2004 Warm season	6.1	6.3	95	0.62		37/37	37/37
	2004 Cold season	2.9	2.6	43	0.85	0.12 [0.039]	37/37	37/37
	2005 Warm season	5.0	5.7	42	1.2		37/37	37/37
	2005 Cold season	1.7	1.5	9.9	0.76	0.14 [0.034]	37/37	37/37
	2006 Warm season	5.0	4.7	49	1.7		37/37	37/37
Air	2006 Cold season	1.9	1.7	9.5	0.52	0.10 [0.03]	37/37	37/37
(pg/m^3)	2007 Warm season	6.4	6.1	120	0.54		36/36	36/36
	2007 Cold season	2.1	1.9	39	0.73	0.04 [0.02]	36/36	36/36
	2008 Warm season	4.8	4.4	96	0.98		37/37	37/37
	2008 Cold season	2.2	2.0	22	0.89	0.04 [0.02]	37/37	37/37
	2009 Warm season	4.9	4.8	130	0.87		37/37	37/37
	2009 Cold season	2.1	1.9	100	0.60	0.08 [0.03]	37/37	37/37
	2010 Warm season	4.9	4.1	200	tr(0.41)		37/37	37/37
	2010 Cold season	2.2	1.8	28	tr(0.47)	0.62 [0.21]	37/37	37/37
	2010 Cola Scason		1.0	20	11(0.17)	Quantification	Detection 1	
p,p'-DDD	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
	2002	0.12	0.13	0.76	nd	0.018 [0.006]	101/102	34/34
	2003 Warm season	0.30	0.35	1.4	0.063		35/35	35/35
	2003 Cold season	0.13	0.14	0.52	tr(0.037)	0.054 [0.018]	34/34	34/34
	2004 Warm season	0.24	0.27	1.4	tr(0.036)	0.052.50.0103	37/37	37/37
					tr(0.025)	0.053 [0.018]	37/37	37/37
	2004 Cold season	0.12	0.12	0.91	u(0.023)			
		0.12	0.12	1.3	tr(0.023)	0.16.50.053	37/37	37/37
	2004 Cold season					0.16 [0.05]		37/37 28/37
A -	2004 Cold season 2005 Warm season	0.24	0.26	1.3	tr(0.07)		37/37	
Air	2004 Cold season 2005 Warm season 2005 Cold season	0.24 tr(0.06)	0.26 tr(0.07)	1.3 0.29	tr(0.07) nd	0.16 [0.05]	37/37 28/37	28/37
Air (pg/m³)	2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season	0.24 tr(0.06) 0.28	0.26 tr(0.07) 0.32	1.3 0.29 1.3	tr(0.07) nd nd	0.13 [0.04]	37/37 28/37 36/37	28/37 36/37
	2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season	0.24 tr(0.06) 0.28 0.14 0.26	0.26 tr(0.07) 0.32 tr(0.12) 0.27	1.3 0.29 1.3 0.99 1.4	tr(0.07) nd nd nd 0.046		37/37 28/37 36/37 36/37 36/36	28/37 36/37 36/37 36/36
	2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season	0.24 tr(0.06) 0.28 0.14 0.26 0.093	0.26 tr(0.07) 0.32 tr(0.12) 0.27 0.087	1.3 0.29 1.3 0.99 1.4 0.5	tr(0.07) nd nd nd 0.046 0.026	0.13 [0.04]	37/37 28/37 36/37 36/37 36/36 36/36	28/37 36/37 36/37 36/36 36/36
	2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season	0.24 tr(0.06) 0.28 0.14 0.26 0.093	0.26 tr(0.07) 0.32 tr(0.12) 0.27 0.087 0.17	1.3 0.29 1.3 0.99 1.4 0.5	tr(0.07) nd nd nd 0.046 0.026 0.037	0.13 [0.04]	37/37 28/37 36/37 36/37 36/36 36/36 37/37	28/37 36/37 36/37 36/36 36/36 37/37
	2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season	0.24 tr(0.06) 0.28 0.14 0.26 0.093 0.17 0.091	0.26 tr(0.07) 0.32 tr(0.12) 0.27 0.087 0.17 0.081	1.3 0.29 1.3 0.99 1.4 0.5 1.1 0.31	tr(0.07) nd nd nd 0.046 0.026 0.037 0.036	0.13 [0.04] 0.011 [0.004] 0.025 [0.009]	37/37 28/37 36/37 36/37 36/36 36/36 37/37 37/37	28/37 36/37 36/37 36/36 36/36 37/37 37/37
	2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2009 Warm season	0.24 tr(0.06) 0.28 0.14 0.26 0.093 0.17 0.091	0.26 tr(0.07) 0.32 tr(0.12) 0.27 0.087 0.17 0.081 0.18	1.3 0.29 1.3 0.99 1.4 0.5 1.1 0.31	tr(0.07) nd nd nd 0.046 0.026 0.037 0.036 0.03	0.13 [0.04]	37/37 28/37 36/37 36/37 36/36 36/36 37/37 37/37	28/37 36/37 36/37 36/36 36/36 37/37 37/37
	2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season	0.24 tr(0.06) 0.28 0.14 0.26 0.093 0.17 0.091	0.26 tr(0.07) 0.32 tr(0.12) 0.27 0.087 0.17 0.081	1.3 0.29 1.3 0.99 1.4 0.5 1.1 0.31	tr(0.07) nd nd nd 0.046 0.026 0.037 0.036	0.13 [0.04] 0.011 [0.004] 0.025 [0.009]	37/37 28/37 36/37 36/37 36/36 36/36 37/37 37/37	28/37 36/37 36/37 36/36 36/36 37/37 37/37

o o,p'-DDT, o,p'-DDE and o,p'-DDD

<Surface Water>

o,p'-DDT: The presence of the substance in surface water was monitored at 49 sites, and it was detected at 43 of the 49 valid sites adopting the detection limit of 0.5pg/L, and none of the detected concentrations exceeded 700 pg/L. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from river areas, lake areas and river mouth areas were identified as statistically significant, the second-half period indicated lower concentration than the first-half period in specimens from sea areas as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

o,p'-DDE: The presence of the substance in surface water was monitored at 49 sites, and it was detected at all 49 valid sites adopting the detection limit of 0.09pg/L, and the detection range was tr(0.13)~180 pg/L. As results of the inter-annual trend analysis from FY 2002 to FY 2010, the second-half period indicated lower concentration than the first-half period in specimens from sea areas as statistically significant. In addition, the second-half period also indicated lower concentration than the first-half period in specimens from overall areas as statistically significant.

o,p'-DDD: The presence of the substance in surface water was monitored at 49 sites, and it was detected at all 49 valid sites adopting the detection limit of 0.2pg/L, and the detection range was tr(0.5) \sim 170 pg/L. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from river mouth areas was identified as statistically significant.

Stocktaking of the detection of o.p'-DDT, o.p'-DDE and o.p'-DDD in surface water during FY2002~2010

Stocktaking of the		1 / .		•		Quantification	Detection 1	Frequency
o,p'-DDT	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.4	4.6	77	0.19	1.2 [0.4]	114/114	38/38
	2003	6	5	100	tr(1.5)	3 [0.7]	36/36	36/36
	2004	tr(4.5)	5	85	nd	5 [2]	29/38	29/38
Comfood Water	2005	3	3	39	nd	3 [1]	42/47	42/47
Surface Water	2006	2.8	2.4	52	0.51	2.3 [0.8]	48/48	48/48
(pg/L)	2007	tr(2.1)	tr(2.2)	86	nd	2.5 [0.8]	38/48	38/48
	2008	3.1	3.0	230	nd	1.4 [0.5]	44/48	44/48
	2009	2.4	2.4	100	0.43	0.16 [0.06]	49/49	49/49
	2010	1.5	tr(1.2)	700	nd	1.5 [0.5]	43/49	43/49
	Monitored	Geometric				Quantification	Detection 1	Frequency
o,p'-DDE	year	mean*	Median	Maximum	Minimum	[Detection]	Commla	Site
						[Bottotion]	Sample	Site
		mean				limit	Sample	
	2002	2.4	2.1	680	nd		113/114	38/38
			2.1 2.0	680 170		limit		
	2002	2.4			nd	limit 0.9 [0.3]	113/114	38/38
Surface Water	2002 2003	2.4 2.2	2.0	170	nd tr(0.42)	limit 0.9 [0.3] 0.8 [0.3]	113/114 36/36	38/38 36/36
Surface Water	2002 2003 2004	2.4 2.2 3	2.0	170 170	nd tr(0.42) tr(0.6)	limit 0.9 [0.3] 0.8 [0.3] 2 [0.5]	113/114 36/36 38/38	38/38 36/36 38/38
Surface Water (pg/L)	2002 2003 2004 2005	2.4 2.2 3 2.5	2.0 2 2.1	170 170 410	nd tr(0.42) tr(0.6) 0.4	limit 0.9 [0.3] 0.8 [0.3] 2 [0.5] 1.2 [0.4]	113/114 36/36 38/38 47/47	38/38 36/36 38/38 47/47
	2002 2003 2004 2005 2006	2.4 2.2 3 2.5 tr(1.6)	2.0 2 2.1 tr(1.4)	170 170 410 210	nd tr(0.42) tr(0.6) 0.4 nd	limit 0.9 [0.3] 0.8 [0.3] 2 [0.5] 1.2 [0.4] 2.6 [0.9]	113/114 36/36 38/38 47/47 28/48	38/38 36/36 38/38 47/47 28/48
	2002 2003 2004 2005 2006 2007	2.4 2.2 3 2.5 tr(1.6) tr(1.5)	2.0 2 2.1 tr(1.4) tr(1.1)	170 170 410 210 210	nd tr(0.42) tr(0.6) 0.4 nd	limit 0.9 [0.3] 0.8 [0.3] 2 [0.5] 1.2 [0.4] 2.6 [0.9] 2.3 [0.8]	113/114 36/36 38/38 47/47 28/48 29/48	38/38 36/36 38/38 47/47 28/48 29/48

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in surface water during FY2002~2010

	Monitored	Geometric				Quantification	Detection l	Frequency
o,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.6	6.0	110	nd	0.60 [0.20]	113/114	38/38
	2003	7.1	5.0	160	1.1	0.8 [0.3]	36/36	36/36
	2004	6	5	81	tr(0.7)	2 [0.5]	38/38	38/38
Surface Water	2005	5.2	5.4	51	tr(0.5)	1.2 [0.4]	47/47	47/47
	2006	2.5	3.3	39	nd	0.8 [0.3]	40/48	40/48
(pg/L)	2007	4.6	3.9	41	tr(0.3)	0.8 [0.3]	48/48	48/48
	2008	6.7	7.2	170	nd	0.8 [0.3]	47/48	47/48
	2009	4.4	3.8	41	0.44	0.22 [0.09]	49/49	49/49
	2010	4.6	3.8	170	tr(0.5)	0.6 [0.2]	49/49	49/49

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

< Sediment >

o,p'-DDT: The presence of the substance in sediment was monitored at 64 sites, and it was detected at all 64 valid sites adopting the detection limit of 0.4pg/g-dry, and the detection range was 1.4 \sim 13,000 pg/g-dry.

o,p'-DDE: The presence of the substance in sediment was monitored at 64 sites, and it was detected at all 64 valid sites adopting the detection limit of 0.5pg/g-dry, and the detection range was tr(0.7) \sim 25,000 pg/g-dry.

o,p'-DDD: The presence of the substance in sediment was monitored at 64 sites, and it was detected at all 64 valid sites adopting the detection limit of 0.4pg/g-dry, and the detection range was tr(0.8) \sim 6,900 pg/g-dry.

Stocktaking of the detection of o.p'-DDT, o.p'-DDE and o.p'-DDD in sediment during FY2002~2010

Stocktaking of the				**		Quantification	Detection 1	Frequency
o,p'-DDT	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	76	47	27,000	nd	6 [2]	183/189	62/63
	2003	50	43	3,200	nd	0.8 [0.3]	185/186	62/62
	2004	69	50	17,000	tr(1.1)	2 [0.6]	189/189	63/63
Cadimant	2005	58	46	160,000	0.8	0.8 [0.3]	189/189	63/63
Sediment	2006	57	52	18,000	tr(0.8)	1.2 [0.4]	192/192	64/64
(pg/g-dry)	2007	38	31	27,000	nd	1.8 [0.6]	186/192	63/64
	2008	51	40	140,000	tr(0.7)	1.5 [0.6]	192/192	64/64
	2009	44	30	100,000	nd	1.2 [0.5]	190/192	64/64
	2010	40	33	13,000	1.4	1.1 [0.4]	64/64	64/64
	Monitored	Geometric				Quantification	Detection 1	Frequency
o,p'-DDE	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	54	37	16,000	nd	3 [1]	188/189	63/63
	2003	48	39	24,000	tr(0.5)	0.6 [0.2]	186/186	62/62
	2004	40	34	28,000	nd	3 [0.8]	184/189	63/63
Sediment	2005	40	32	31,000	nd	2.6 [0.9]	181/189	62/63
(pg/g-dry)	2006	42	40	27,000	tr(0.4)	1.1 [0.4]	192/192	64/64
(pg/g-ury)	2007	37	41	25,000	nd	1.2 [0.4]	186/192	63/64
	2008	50	48	37,000	nd	1.4 [0.6]	186/192	63/64
		2.7	2.1	22 000	1	0 ([0 2]	101/102	CAICA
	2009	37	31	33,000	nd	0.6[0.2]	191/192	64/64

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in sediment during FY2002~2010

	Monitored	Geometric				Quantification	Detection I	Frequency
o,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	160	150	14,000	nd	6 [2]	184/189	62/63
	2003	160	130	8,800	tr(1.0)	2 [0.5]	186/186	62/62
	2004	140	120	16,000	tr(0.7)	2 [0.5]	189/189	63/63
Sediment	2005	130	110	32,000	tr(0.8)	1.0 [0.3]	189/189	63/63
	2006	120	110	13,000	tr(0.3)	0.5 [0.2]	192/192	64/64
(pg/g-dry)	2007	110	130	21,000	tr(0.5)	1.0 [0.4]	192/192	64/64
	2008	170	150	50,000	0.5	0.3 [0.1]	192/192	64/64
	2009	120	120	24,000	0.5	0.5 [0.2]	192/192	64/64
	2010	130	130	6,900	tr(0.8)	0.9 [0.4]	64/64	64/64

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Wildlife>

o,p'-DDT: The presence of the substance in bivalves was monitored in 7 areas, and it was detected at 6 of the 7 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $15\sim160$ pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $5\sim550$ pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was not detected at all 18 valid areas adopting the detection limit of 1pg/g-wet. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from bivalves and fish were identified as statistically significant.

o,p'-DDE: The presence of the substance in bivalves was monitored in 7 areas, and it was detected at 6 of the 7 valid areas adopting the detection limit of 0.6pg/g-wet, and the detection range was 7.8~160 pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 0.6pg/g-wet, and the detection range was tr(1.2)~2,800 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at 1 of the 2 valid areas adopting the detection limit of 0.6pg/g-wet, and none of the detected concentrations exceeded 3.7 pg/g-wet. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from bivalves and fish were identified as statistically significant. o,p'-DDD: The presence of the substance in bivalves was monitored in 7 areas, and it was detected at 6 of the 7

valid areas adopting the detection limit of 0.2pg/g-wet, and the detection range was $5.8\sim400$ pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 0.2pg/g-wet, and the detection range was $2.6\sim700$ pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 0.2pg/g-wet, and the detection range was $3.6\sim11$ pg/g-wet. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from bivalves was identified as statistically significant.

Stocktaking of the detection of o,p'-DDT in wildlife (bivalves, fish and birds) during FY2002~2010

	Monitored	Geometric	•			Quantification	Detection I	requency
o,p'-DDT	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	110	83	480	22	12 [4]	38/38	8/8
	2003	130	120	480	35	2.9 [0.97]	30/30	6/6
	2004	160	140	910	20	1.8 [0.61]	31/31	7/7
Bivalves	2005	98	57	440	29	2.6 [0.86]	31/31	7/7
	2006	92	79	380	24	3 [1]	31/31	7/7
(pg/g-wet)	2007	79	52	350	20	3 [1]	31/31	7/7
	2008	58	37	330	5	3 [1]	31/31	7/7
	2009	74	48	2,500	17	2.2 [0.8]	31/31	7/7
	2010	51	67	160	15	3 [1]	6/6	6/6
	2002	130	130	2,300	tr(6)	12 [4]	70/70	14/14
	2003	85	120	520	2.9	2.9 [0.97]	70/70	14/14
	2004	160	140	1,800	3.7	1.8 [0.61]	70/70	14/14
Fish	2005	100	110	1,500	5.8	2.6 [0.86]	80/80	16/16
(pg/g-wet)	2006	100	110	700	6	3 [1]	80/80	16/16
(pg/g-wet)	2007	69	90	430	3	3 [1]	80/80	16/16
	2008	72	92	720	3	3 [1]	85/85	17/17
	2009	61	73	470	2.4	2.2 [0.8]	90/90	18/18
	2010	58	71	550	5	3 [1]	18/18	18/18
	2002	12	tr(10)	58	nd	12 [4]	8/10	2/2
	2003	24	16	66	8.3	2.9 [0.97]	10/10	2/2
	2004	8.5	13	43	tr(0.87)	1.8 [0.61]	10/10	2/2
Birds	2005	11	14	24	3.4	2.6 [0.86]	10/10	2/2
	2006	14	10	120	3	3 [1]	10/10	2/2
(pg/g-wet)	2007	9	9	26	tr(2)	3 [1]	10/10	2/2
	2008	4	6	16	nd	3 [1]	8/10	2/2
	2009	6.3	7.6	12	tr(1.4)	2.2 [0.8]	10/10	2/2
	2010	nd		nd	nd	3 [1]	0/2	0/2

Stocktaking of the detection of o,p'-DDE in wildlife (bivalves, fish and birds) during FY2002~2010

	Monitored	Geometric				Quantification	Detection I	Frequency
o,p'-DDE	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	83	66	1,100	13	3.6 [1.2]	38/38	8/8
	2003	85	100	460	17	3.6 [1.2]	30/30	6/6
	2004	86	69	360	19	2.1 [0.69]	31/31	7/7
Divolves	2005	70	89	470	12	3.4 [1.1]	31/31	7/7
Bivalves	2006	62	81	340	12	3 [1]	31/31	7/7
(pg/g-wet)	2007	56	69	410	8.9	2.3 [0.9]	31/31	7/7
	2008	49	52	390	8	3 [1]	31/31	7/7
	2009	46	58	310	8	3 [1]	31/31	7/7
	2010	46	58	160	7.8	1.5 [0.6]	6/6	6/6
	2002	91	50	13,000	3.6	3.6 [1.2]	70/70	14/14
	2003	51	54	2,500	nd	3.6 [1.2]	67/70	14/14
	2004	76	48	5,800	tr(0.89)	2.1 [0.69]	70/70	14/14
E1.4.	2005	54	45	12,000	tr(1.4)	3.4 [1.1]	80/80	16/16
Fish	2006	56	43	4,800	tr(1)	3 [1]	80/80	16/16
(pg/g-wet)	2007	45	29	4,400	nd	2.3 [0.9]	79/80	16/16
	2008	50	37	13,000	tr(1)	3 [1]	85/85	17/17
	2009	46	33	4,300	tr(1)	3 [1]	90/90	18/18
	2010	47	37	2,800	tr(1.2)	1.5 [0.6]	18/18	18/18
	2002	28	26	49	20	3.6 [1.2]	10/10	2/2
	2003	tr(2.3)	tr(2.0)	4.2	nd	3.6 [1.2]	9/10	2/2
	2004	tr(1.0)	tr(1.1)	3.7	nd	2.1 [0.69]	5/10	1/2
D:1.	2005	tr(1.2)	tr(1.9)	tr(2.9)	nd	3.4 [1.1]	7/10	2/2
Birds	2006	tr(1)	tr(2)	3	tr(1)	3 [1]	10/10	2/2
(pg/g-wet)	2007	tr(1.0)	tr(1.4)	2.8	nd	2.3 [0.9]	6/10	2/2
	2008	tr(1)	nd	3	nd	3 [1]	5/10	1/2
	2009	nd	tr(1)	tr(2)	nd	3 [1]	6/10	2/2
	2010	tr(1.1)		3.7	nd	1.5 [0.6]	1/2	1/2

Stocktaking of the detection of o,p'-DDE in wildlife (bivalves, fish and birds) during FY2002~2010

	Monitored	Geometric				Quantification	Detection	Frequency
o,p'-DDD	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	120	190	2,900	tr(9)	12 [4]	38/38	8/8
	2003	200	220	1,900	6.5	6.0 [2.0]	30/30	6/6
	2004	220	130	2,800	6.0	5.7 [1.9]	31/31	7/7
Bivalves	2005	170	280	1,800	10	3.3 [1.1]	31/31	7/7
	2006	150	200	1,000	7	4 [1]	31/31	7/7
(pg/g-wet)	2007	150	200	1,200	6	3 [1]	31/31	7/7
	2008	130	140	1,100	5	4 [2]	31/31	7/7
	2009	95	51	1,000	5	3 [1]	31/31	7/7
	2010	57	50	400	5.8	0.6 [0.2]	6/6	6/6
	2002	95	90	1,100	nd	12 [4]	66/70	14/14
	2003	75	96	920	nd	6.0 [2.0]	66/70	14/14
	2004	120	96	1,700	nd	5.7 [1.9]	68/70	14/14
Fish	2005	83	81	1,400	nd	3.3 [1.1]	79/80	16/16
	2006	80	86	1,100	tr(1)	4 [1]	80/80	16/16
(pg/g-wet)	2007	66	62	1,300	nd	3 [1]	78/80	16/16
	2008	65	74	1,000	nd	4 [2]	80/85	16/17
	2009	63	64	760	nd	3 [1]	87/90	18/18
	2010	75	99	700	2.6	0.6 [0.2]	18/18	18/18
	2002	15	15	23	tr(8)	12 [4]	10/10	2/2
	2003	15	14	36	tr(5.0)	6.0 [2.0]	10/10	2/2
	2004	6.1	5.7	25	nd	5.7 [1.9]	9/10	2/2
Dirda	2005	7.3	7.5	9.7	4.7	3.3 [1.1]	10/10	2/2
Birds	2006	8	8	19	5	4 [1]	10/10	2/2
(pg/g-wet)	2007	7	7	10	5	3 [1]	10/10	2/2
	2008	4	tr(3)	14	tr(2)	4 [2]	10/10	2/2
	2009	6	5	13	3	3 [1]	10/10	2/2
	2010	6.3		11	3.6	0.6 [0.2]	2/2	2/2

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Air>

o,p'-DDT: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.05pg/m^3 , and the detection range was $0.19 \sim 26 \text{ pg/m}^3$. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.05pg/m^3 , and the detection range was $0.22 \sim 5.5 \text{ pg/m}^3$. As results of the inter-annual trend analysis from FY 2003 to FY 2010, reduction tendencies in specimens at the both season were identified as statistically significant.

o,p'-DDE: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.01pg/m^3 , and the detection range was $0.09 \sim 9.0 \text{ pg/m}^3$.

For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.01pg/m^3 , and the detection range was $0.08 \sim 2.3 \text{ pg/m}^3$. As results of the inter-annual trend analysis from FY 2003 to FY 2010, reduction tendencies in specimens at the both season were identified as statistically significant.

o,p'-DDD: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.01pg/m^3 , and the detection range was $0.04 \sim 1.8 \text{ pg/m}^3$. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.01pg/m^3 , and the detection range was $\text{tr}(0.02) \sim 0.48 \text{ pg/m}^3$. As results of the inter-annual trend analysis from FY 2003 to FY 2010, reduction tendency in specimens at the warm season was identified as statistically significant.

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in air during FY2002~2010 Quantification Detection Frequency Geometric o,p'-DDT Monitored year Median Maximum Minimum [Detection] Sample Site mean limit 2002 102/102 2.2 2.0 40 0.41 0.15 [0.05] 34/34 2003 Warm season 6.9 7.7 38 0.61 35/35 35/35 0.12 [0.040] 2003 Cold season 1.6 1.4 6.4 0.43 34/34 34/34 2004 Warm season 5.1 5.4 22 0.54 37/37 37/37 0.093 [0.031] 2004 Cold season 9.4 1.5 1.4 0.35 37/37 37/37 2005 Warm season 3.0 3.1 14 0.67 37/37 37/37 0.10 [0.034] 2005 Cold season 0.76 0.67 3.0 0.32 37/37 37/37 2006 Warm season 2.5 2.4 20 0.55 37/37 37/37 0.09 [0.03] Air 3.9 2006 Cold season 0.90 0.79 0.37 37/37 37/37 (pg/m^3) 2.9 2007 Warm season 19 2.6 0.24 36/36 36/36 0.03 [0.01] 2007 Cold season 0.77 0.63 3.4 0.31 36/36 36/36 2008 Warm season 2.3 2.1 18 0.33 37/37 37/37 0.03 [0.01] 2008 Cold season 0.80 0.62 6.5 0.32 37/37 37/37 2009 Warm season 2.3 2.2 14 0.33 37/37 37/37 0.019 [0.008] 2009 Cold season 0.80 0.71 3.7 0.20 37/37 37/37 2010 Warm season 2.2 1.9 0.19 37/37 26 37/37 0.14 [0.05] 2010 Cold season 0.81 0.69 5.5 0.22 37/37 37/37 Quantification Detection Frequency Geometric Median o,p'-DDE Monitored year Maximum Minimum [Detection] Site Sample mean limit 2002 0.60 0.56 8.5 0.11 0.03 [0.01] 102/102 34/34 2003 Warm season 7.5 1.4 1.5 0.17 35/35 35/35 0.020 [0.0068] 0.50 2003 Cold season 0.47 1.7 0.18 34/34 34/34 2004 Warm season 1.2 8.9 0.14 37/37 37/37 1.1 0.037 [0.012] 3.9 0.53 0.49 2004 Cold season 0.14 37/37 37/37 2005 Warm season 7.9 1.6 1.5 0.33 37/37 37/37 0.074 [0.024] 2005 Cold season 0.62 0.59 2.0 0.24 37/37 37/37 2006 Warm season 1.1 1.1 7.4 36/37 36/37 nd Air 0.09 [0.03] 2006 Cold season 0.65 0.56 0.19 37/37 37/37 2.6 (pg/m^3) 2007 Warm season 0.096 36/36 36/36 0.66 0.67 7 0.017 [0.007] 2007 Cold season 0.29 0.3 3.7 0.12 36/36 36/36 2008 Warm season 0.48 0.52 5.0 0.11 37/37 37/37 0.025 [0.009] 2008 Cold season 0.30 0.24 1.1 0.15 37/37 37/37 2009 Warm season 0.51 0.46 6.7 0.098 37/37 37/37 0.016 [0.006] 0.24 2009 Cold season 0.072 0.27 23 37/37 37/37 9.0 2010 Warm season 0.49 0.41 0.09 37/37 37/37 0.04 [0.01] 2010 Cold season 2.3 0.08 37/37 37/37 0.27 0.23 Quantification Detection Frequency Geometric o,p'-DDD Median Minimum Monitored year Maximum [Detection] Sample Site mean limit 2002 0.14 0.18 0.85 nd 0.021 [0.007] 97/102 33/34 2003 Warm season 0.37 0.42 1.3 0.059 35/35 35/35 0.042 [0.014] 0.42 34/34 34/34 2003 Cold season 0.15 0.140.062 2004 Warm season 0.31 0.33 tr(0.052)37/37 37/37 2.6 0.14 [0.048] tr(0.13) 2004 Cold season 0.14 0.86 35/37 35/37 nd 2005 Warm season 0.22 0.19 0.90 tr(0.07)37/37 37/37 0.10 [0.03] 35/37 35/37 2005 Cold season tr(0.07)tr(0.07)0.21 nd 2006 Warm season 0.28 0.28 1.4 tr(0.05)37/37 37/37 Air 0.10 [0.03] 2006 Cold season 0.12 0.11 0.79 34/37 34/37 nd (pg/m^3) 2007 Warm season 1.9 0.28 0.29 0.05 36/36 36/36 0.05 [0.02] 0.095 0.09 36/36 36/36 2007 Cold season 0.33 tr(0.03)2008 Warm season 0.19 0.16 1.6 37/37 37/37 0.05 0.04 [0.01] 0.10 0.09 0.26 0.04 37/37 37/37 2008 Cold season 2009 Warm season 0.20 0.19 0.90 0.04 37/37 37/37 0.03 [0.01] 2009 Cold season 0.08 0.080.28 tr(0.02)37/37 37/37 2010 Warm season 0.21 0.19 1.8 0.04 37/37 37/37 0.03 [0.01] 2010 Cold season 0.10 0.09 0.48 tr(0.02)37/37 37/37

[7] Chlordanes

· History and state of monitoring

Chlordanes were used as insecticides, but the registration of Chlordanes under the Agricultural Chemicals Regulation Law was expired in FY 1968. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 1986 because of its properties such as persistency, since it had been used as termitecides for wood products such as primary processed timber, plywood and house.

Although manufactured Chlordanes have complicated compositions, heptachlor, γ-chlordane, heptachlor epoxide, *cis*-chlordane, *trans*-chlordane, oxychlordane (as a chlordane metabolite), *cis*-nonachlor (not registrated as an Agricultural Chemical) and *trans*-nonachlor (not registrated as an Agricultural Chemical) were the original target chemicals in monitoring series. Since FY 1983, 5 of those 8 chemicals (*cis*-chlordane, *trans*-chlordane, oxychlordane, *cis*-nonachlor and *trans*-nonachlor) have been the target chemicals owning to their high detection frequency in the FY 1982 High-Precision Environmental Survey.

In previous monitoring series, Chlordanes had been monitored in wildlife (bivalves, fish and birds) during the period of FY 1978~2001 under the framework of "the Wildlife Monitoring." Under the framework of "the Surface Water/Sediment Monitoring", *cis*-chlordane, *trans*-chlordane, *cis*-nonachlor and *trans*-nonachlor in surface water and sediment have been the monitored during the period of FY 1986~1998 and FY 1986~2001, respectively.

Under the framework of the Environmental Monitoring, *cis*-chlordane, *trans*-chlordane, oxychlordane (as a chlordane metabolite), *cis*-nonachlor (not registrated as an Agricultural Chemical) and *trans*-nonachlor have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air since FY 2002.

- Monitoring results
- cis-Chlordane and trans-Chlordane

<Surface Water>

cis-chlordane: The presence of the substance in surface water was monitored at 49 sites, and it was detected at 47 of the 49 valid sites adopting the detection limit of 4pg/L, and none of the detected concentrations exceeded 170 pg/L. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from river areas, river mouth areas and sea areas were identified as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

trans-chlordane: The presence of the substance in surface water was monitored at 49 sites, and it was detected at 44 of the 49 valid sites adopting the detection limit of 4pg/L, and none of the detected concentrations exceeded 310 pg/L. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimen from sea areas was identified as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

Stocktaking of the detection of cis-chlordane and trans-chlordane in surface water FY2002~2010

	Monitored	Geometric				Quantification	Detection 1	Frequency
cis-chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	42	32	880	2.5	0.9 [0.3]	114/114	38/38
	2003	69	51	920	12	3 [0.9]	36/36	36/36
	2004	92	87	1,900	10	6 [2]	38/38	38/38
CC W.	2005	53	54	510	6	4 [1]	47/47	47/47
Surface Water	2006	31	26	440	5	5 [2]	48/48	48/48
(pg/L)	2007	23	22	680	nd	4 [2]	47/48	47/48
	2008	29	29	480	2.9	1.6 [0.6]	48/48	48/48
	2009	29	26	710	4.4	1.1 [0.4]	49/49	49/49
	2010	19	14	170	nd	11 [4]	47/49	47/49
	Manitanad	Caamatuia				Quantification	Detection 1	Frequency
trans-chlordane	Monitored	Geometric	Median	Maximum	Minimum	[Detection]	Sample	Site
	year	mean*				limit	Sumpre	5110
	2002	33	24	780	3.1	1.5 [0.5]	114/114	38/38
	2003	34	30	410	6	5 [2]	36/36	36/36
	2004	32	26	1,200	5	5 [2]	38/38	38/38
CC W.	2005	25	21	200	3	4 [1]	47/47	47/47
Surface Water	2006	24	16	330	tr(4)	7 [2]	48/48	48/48
(pg/L)	2007	16	20	580	nd	2.4 [0.8]	47/48	47/48
	2008	23	22	420	3	3 [1]	48/48	48/48
	2009	23	18	690	3.0	0.8 [0.3]	49/49	49/49
	2010	15	tr(11)	310	nd	13 [4]	44/49	44/49

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

cis-chlordane: The presence of the substance in sediment was monitored at 64 sites, and it was detected at all 64 valid sites adopting the detection limit of 2pg/g-dry, and the detection range was $tr(4) \sim 7,200 pg/g$ -dry. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from lake areas and sea areas were identified as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

trans-chlordane: The presence of the substance in sediment was monitored at 64 sites, and it was detected at all 64 valid sites adopting the detection limit of 4pg/g-dry, and the detection range was $tr(4) \sim 8,000 pg/g$ -dry. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from sea areas were identified as statistically significant

Stocktaking of the detection of cis-chlordane and trans-chlordane in sediment FY2002~2010

	Monitored	Geometric				Quantification	Detection l	Frequency
cis-chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	140	98	18,000	1.8	0.9 [0.3]	189/189	63/63
	2003	190	140	19,000	tr(3.6)	4 [2]	186/186	62/62
	2004	160	97	36,000	4	4 [2]	189/189	63/63
Sediment	2005	150	100	44,000	3.3	1.9 [0.64]	189/189	63/63
	2006	100	70	13,000	tr(0.9)	2.4 [0.8]	192/192	64/64
(pg/g-dry)	2007	82	55	7,500	nd	5 [2]	191/192	64/64
	2008	100	63	11,000	tr(2.3)	2.4 [0.9]	192/192	64/64
	2009	84	61	8,600	2.0	0.7 [0.3]	192/192	64/64
	2010	82	62	7,200	tr(4)	6 [2]	64/64	64/64

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

Stocktaking of the detection of cis-chlordane and trans-chlordane in sediment FY2002~2010

	Monitored	Geometric				Quantification	Detection I	Frequency
trans-chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	150	110	16,000	2.1	1.8 [0.6]	189/189	63/63
	2003	130	100	13,000	tr(2.4)	4 [2]	186/186	62/62
	2004	110	80	26,000	3	3 [0.9]	189/189	63/63
Cadimant	2005	110	81	32,000	3.4	2.3 [0.84]	189/189	63/63
Sediment	2006	110	76	12,000	2.2	1.1 [0.4]	192/192	64/64
(pg/g-dry)	2007	82	58	7,500	nd	2.2 [0.8]	191/192	64/64
	2008	110	66	10,000	2.4	2.0 [0.8]	192/192	64/64
	2009	91	68	8,300	2.1	1.7 [0.7]	192/192	64/64
	2010	95	69	8,000	tr(4)	11 [4]	64/64	64/64

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Wildlife>

cis-chlordane: The presence of the substance in bivalves was monitored in 7 areas, and it was detected at 6 of the 7 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was $67\sim15,000$ pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was $51\sim3,400$ pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was $4\sim180$ pg/g-wet. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from bivalves and fish were identified as statistically significant.

trans-chlordane: The presence of the substance in bivalves was monitored in 7 areas, and it was detected at 6 of the 7 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $31\sim5,500$ pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $9\sim1,100$ pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $tr(2)\sim10$ pg/g-wet. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from bivalves and fish were identified as statistically significant.

Stocktaking of the detection of cis-chlordane in wildlife (bivalves, fish and birds) FY2002~2010

cis-chlordane	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection]	Detection I Sample	Frequency Site
	2002	730	1.200	26,000	24	limit 2.4 [0.8]	38/38	8/8
	2002	1,100	1,200	14.000	110	3.9 [1.3]	30/30	6/6
	2004	1,300	1,600	14,000	91	18 [5.8]	31/31	7/7
	2005	1,000	960	13,000	78	12 [3.9]	31/31	7/7
Bivalves	2006	970	1,100	18,000	67	4 [1]	31/31	7/7
(pg/g-wet)	2007	870	590	19,000	59	5 [2]	31/31	7/7
	2008	750	560	11,000	85	5 [2]	31/31	7/7
	2009	1,200	1,100	16,000	83	4 [2]	31/31	7/7
	2010	1,600	2,300	15,000	67	4 [2]	6/6	6/6

Stocktaking of the detection of cis-chlordane in wildlife (bivalves, fish and birds) FY2002~2010

	Monitored	Geometric				Quantification	Detection 1	Frequency
cis-chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	610	550	6,900	57	2.4 [0.8]	70/70	14/14
	2003	510	400	4,400	43	3.9 [1.3]	70/70	14/14
	2004	620	490	9,800	68	18 [5.8]	70/70	14/14
Ei.d.	2005	520	600	8,000	42	12 [3.9]	80/80	16/16
Fish	2006	520	420	4,900	56	4 [1]	80/80	16/16
(pg/g-wet)	2007	430	360	5,200	30	5 [2]	80/80	16/16
	2008	430	340	3,500	36	5 [2]	85/85	17/17
	2009	430	450	3,200	41	4 [2]	90/90	18/18
	2010	450	630	3,400	51	4 [2]	18/18	18/18
	2002	67	180	450	10	2.4 [0.8]	10/10	2/2
	2003	47	120	370	6.8	3.9 [1.3]	10/10	2/2
	2004	39	110	240	tr(5.8)	18 [5.8]	10/10	2/2
Dinda	2005	53	120	340	tr(5.8)	12 [3.9]	10/10	2/2
Birds	2006	32	83	250	5	4[1]	10/10	2/2
(pg/g-wet)	2007	29	83	230	tr(4)	5 [2]	10/10	2/2
	2008	24	87	280	tr(3)	5 [2]	10/10	2/2
	2009	21	48	130	4	4 [2]	10/10	2/2
	2010	27		180	4	4 [2]	2/2	2/2

Stocktaking of the detection of trans-chlordane in wildlife (bivalves, fish and birds) FY2002~2010

	Monitored	Geometric				Quantification	Detection	Frequency
trans-chlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	390	840	2,300	33	2.4 [0.8]	38/38	8/8
	2003	550	840	2,800	69	7.2 [2.4]	30/30	6/6
	2004	560	770	2,800	53	48 [16]	31/31	7/7
Bivalves	2005	470	660	2,400	40	10 [3.5]	31/31	7/7
(pg/g-wet)	2006	470	580	2,800	41	4 [2]	31/31	7/7
(pg/g-wet)	2007	440	460	1,500	34	6 [2]	31/31	7/7
	2008	360	410	1,300	52	7 [3]	31/31	7/7
	2009	540	560	16,000	48	4 [1]	31/31	7/7
	2010	520	640	5,500	31	3 [1]	6/6	6/6
	2002	190	160	2,700	20	2.4 [0.8]	70/70	14/14
	2003	160	120	1,800	9.6	7.2 [2.4]	70/70	14/14
	2004	200	130	5,200	tr(17)	48 [16]	70/70	14/14
Fish	2005	160	180	3,100	tr(9.8)	10 [3.5]	76/80	16/16
(pg/g-wet)	2006	150	120	2,000	14	4 [2]	80/80	16/16
(pg/g-wet)	2007	130	100	2,100	8	6 [2]	80/80	16/16
	2008	120	71	1,300	14	7 [3]	85/85	17/17
	2009	130	140	1,300	10	4 [1]	90/90	18/18
	2010	120	170	1,100	9	3 [1]	18/18	18/18
	2002	14	14	26	8.9	2.4 [0.8]	10/10	2/2
	2003	11	12	27	tr(5.9)	7.2 [2.4]	10/10	2/2
	2004	nd	nd	tr(26)	nd	48 [16]	5/10	1/2
Birds	2005	11	12	30	tr(4.5)	10 [3.5]	10/10	2/2
(pg/g-wet)	2006	7	8	17	tr(3)	4 [2]	10/10	2/2
(pg/g-wet)	2007	7	8	19	tr(3)	6 [2]	10/10	2/2
	2008	tr(5)	9	27	nd	7 [3]	7/10	2/2
	2009	6	7	13	tr(3)	4 [1]	10/10	2/2
	2010	4		10	tr(2)	3 [1]	2/2	2/2

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Air>

cis-chlordane: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.3pg/m^3 , and the detection range was $2.2 \sim 700 \text{ pg/m}^3$. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.3pg/m^3 , and the detection range was $\text{tr}(0.8) \sim 130 \text{ pg/m}^3$. As results of the inter-annual trend analysis from FY 2003 to FY 2010, reduction tendency in specimens at the warm season was identified as statistically significant.

trans-chlordane: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.4pg/m^3 , and the detection range was $2.0 \sim 820 \text{ pg/m}^3$.

For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.4pg/m^3 , and the detection range was $\text{tr}(1.0) \sim 150 \text{ pg/m}^3$. As results of the inter-annual trend analysis from FY 2003 to FY 2010, reduction tendencies in specimens at the both season were identified as statistically significant.

Stocktaking of the d	letection of <i>cis</i> -	-chlordane and	<i>trans</i> -chlordane	in air d	luring F	FY2002~2010

cis-		Geometric				Quantification	Detection I	Frequency
chlordane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	31	40	670	0.86	0.60 [0.20]	102/102	34/34
	2003 Warm season	110	120	1,600	6.4	0.51 [0.17]	35/35	35/35
	2003 Cold season	30	38	220	2.5		34/34	34/34
-	2004 Warm season	92	160	1,000	2.3	0.57 [0.19]	37/37	37/37
, 2	2004 Cold season	29	49	290	1.2	0.57 [0.19]	37/37	37/37
2	2005 Warm season	92	120	1,000	3.4	0.16 [0.054]	37/37	37/37
_	2005 Cold season	16	19	260	1.4	0.10 [0.034]	37/37	37/37
	2006 Warm season	82	110	760	2.9	0.13 [0.04]	37/37	37/37
(pg/m^3)	2006 Cold season	19	19	280	2.0		37/37	37/37
-	2007 Warm season	90	120	1,100	3.3	0.10 [0.04]	36/36	36/36
	2007 Cold season	17	20	230	1.4		36/36	36/36
	2008 Warm season	75	120	790	1.9	0.14 [0.05]	37/37	37/37
	2008 Cold season	21	34	200	1.5		37/37	37/37
2	2009 Warm season	67	110	790	2.7	0.16 [0.06]	37/37	37/37
-	2009 Cold season	19	22	180	0.65		37/37	37/37
	2010 Warm season	68	100	700	1.8	0.17 [0.06]	37/37	37/37
	2010 Cold season	20	27	130	0.84		37/37	37/37
trans-		Geometric				Quantification	Detection l	Frequency
chlordane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
_	2002	36	48	820	0.62	0.60 [0.20]	102/102	34/34
3	2003 Warm season	130	150	2,000	6.5	0.86 [0.29]	35/35	35/35
,	2003 Cold season	37	44	290	2.5	0.80 [0.29]	34/34	34/34
	2004 Warm season	110	190	1,300	2.2	0.69 [0.23]	37/37	37/37
2	2004 Cold season	35	60	360	1.5	0.09 [0.23]	37/37	37/37
,	2005 Warm season	100	130	1,300	3.2	0.34 [0.14]	37/37	37/37
	2005 Cold season	19	23	310	1.9	0.34 [0.14]	37/37	37/37
	2006 Warm season	96	140	1,200	3.4	0.17 [0.06]	37/37	37/37
$(n\alpha/m^3)$	2006 Cold season	22	21	350	2.0		37/37	37/37
(pg/III)	2007 Warm season	100	140	1,300	3.8	0.12 [0.05]	36/36	36/36
-	2007 Cold season	20	24	300	1.5		36/36	36/36
					2.5			37/37
	2008 Warm season	87	130	990	2.5	0.17 [0.06]	37/37	
-	2008 Cold season	25	41	990 250	1.8	0.17 [0.06]	37/37	37/37
-	2008 Cold season 2009 Warm season	25 79	41 120		1.8 2.6		37/37 37/37	37/37 37/37
-	2008 Cold season	25 79 23	41 120 30	250 960 210	2.6 0.68	0.17 [0.06]	37/37 37/37 37/37	37/37 37/37 37/37
- - - -	2008 Cold season 2009 Warm season	25 79	41 120	250 960	1.8 2.6		37/37 37/37	37/37 37/37

Oxychlordane, cis-Nonachlor and trans-Nonachlor

<Surface Water>

Oxychlordane: The presence of the substance in surface water was monitored at 49 sites, and it was detected at 47 of the 49 valid sites adopting the detection limit of 0.3pg/L, and none of the detected concentrations exceeded 45 pg/L.

cis-Nonachlor: The presence of the substance in surface water was monitored at 49 sites, and it was detected at all 49 valid sites adopting the detection limit of 0.4 pg/L, and the detection range was $\text{tr}(0.9) \sim 40 \text{ pg/L}$.

trans-Nonachlor: The presence of the substance in surface water was monitored at 49 sites, and it was detected at 45 of the 49 valid sites adopting the detection limit of 3pg/L, and none of the detected concentrations exceeded 93 pg/L. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from sea areas were identified as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

Stocktaking of the detection of Oxychlordane, cis-Nonachlor and trans-Nonachlor in surface water during FY2002~2010

	Monitored	Geometric				Quantification	Detection 1	Frequency
Oxychlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.7	3.5	41	nd	1.2 [0.4]	96/114	35/38
	2003	3	2	39	tr(0.6)	2 [0.5]	36/36	36/36
	2004	3.2	2.9	47	tr(0.7)	2 [0.5]	38/38	38/38
Surface Water	2005	2.6	2.1	19	nd	1.1 [0.4]	46/47	46/47
(pg/L)	2006	tr(2.5)	tr(2.4)	18	nd	2.8 [0.9]	43/48	43/48
(pg/L)	2007	tr(2)	nd	41	nd	6 [2]	25/48	25/48
	2008	1.9	1.9	14	nd	1.9 [0.7]	40/48	40/48
	2009	2.0	1.9	19	nd	1.1 [0.4]	45/49	45/49
	2010	1.5	1.3	45	nd	0.7 [0.3]	47/49	47/49
	Monitored	Geometric				Quantification	Detection 1	Frequency
cis-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	7.9	6.7	250	0.23	1.8 [0.6]	114/114	38/38
	2003	8.0	7.0	130	1.3	0.3 [0.1]	36/36	36/36
C C W	2004	7.5	6.3	340	0.8	0.6 [0.2]	38/38	38/38
	2005	6.0	5.9	43	0.9	0.5 [0.2]	47/47	47/47
Surface Water	2006	6.6	5.6	83	1.0	0.8 [0.3]	48/48	48/48
(pg/L)	2007	5.9	6.1	210	nd	2.4 [0.8]	43/48	43/48
	2008	6.5	5.9	130	0.9	0.9 [0.3]	48/48	48/48
	2009	7.1	5.5	210	1.4	0.3 [0.1]	49/49	49/49
	2010	5.4	3.9	40	tr(0.9)	1.3 [0.4]	49/49	49/49
	Monitored	Geometric				Quantification	Detection 1	Frequenc
trans-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	30	24	780	1.8	1.2 [0.4]	114/114	38/38
	2003	26	20	450	4	2 [0.5]	36/36	36/36
	2004	25	19	1,100	tr(3)	4 [2]	38/38	38/38
CC W	2005	20	17	150	2.6	2.5 [0.84]	47/47	47/47
Surface Water	2006	21	16	310	3.2	3.0 [1.0]	48/48	48/48
(pg/L)	2007	17	17	540	tr(2)	5 [2]	48/48	48/48
	2008	18	17	340	1.9	1.6 [0.6]	48/48	48/48
	2009	20	17	530	2.7	1.0 [0.4]	49/49	49/49
	2010	12	11	93	nd	8 [3]	45/49	45/49

(Note) " * ":Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Oxychlordane: The presence of the substance in sediment was monitored at 64 sites, and it was detected at 56 of the 64 valid sites adopting the detection limit of 0.4pg/g-dry, and none of the detected concentrations exceeded 60 pg/g-dry.

cis-Nonachlor: The presence of the substance in sediment was monitored at 64 sites, and it was detected at all 64 valid sites adopting the detection limit of 0.3pg/g-dry, and the detection range was 2.3~3,600 pg/g-dry. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from sea areas were identified as statistically significant.

trans-Nonachlor: The presence of the substance in sediment was monitored at 64 sites, and it was detected at all 64 valid sites adopting the detection limit of 2pg/g-dry, and the detection range was $tr(3)\sim6,200$ pg/g-dry. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from sea areas were identified as statistically significant.

Stocktaking of the detection of Oxychlordane, *cis*-Nonachlor and *trans*-Nonachlor in sediment during

	Monitored	Geometric				Quantification	Detection 1	Frequency
Oxychlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.7	1.7	120	nd	1.5 [0.5]	153/189	59/63
	2003	2	2	85	nd	1 [0.4 <u>]</u>	158/186	57/62
	2004	tr(2.1)	tr(1.3)	140	nd	3 [0.8]	129/189	54/63
Sediment	2005	2.3	tr(1.9)	160	nd	2.0 [0.7]	133/189	51/63
(pg/g-dry)	2006	tr(2.5)	tr(1.7)	280	nd	2.9 [1.0]	141/192	54/64
(pg/g-ury)	2007	tr(2.1)	tr(1.5)	76	nd	2.5 [0.9]	117/192	46/64
	2008	tr(2)	tr(1)	340	nd	3 [1]	110/192	48/64
	2009	2	tr(1)	150	nd	2 [1]	97/192	45/64
	2010	1.7	1.2	60	nd	1.0 [0.4]	56/64	56/64
	Monitored	Geometric				Quantification	Detection 1	Frequency
cis-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	76	66	7,800	nd	2.1 [0.7]	188/189	63/63
	2003	66	50	6,500	nd	3 [0.9]	184/186	62/62
	2004	53	34	9,400	tr(0.8)	2 [0.6]	189/189	63/63
Sediment	2005	56	42	9,900	tr(1.1)	1.9 [0.64]	189/189	63/63
(pg/g-dry)	2006	58	48	5,800	tr(0.6)	1.2 [0.4]	192/192	64/64
(pg/g-ury)	2007	48	35	4,200	nd	1.6 [0.6]	191/192	64/64
	2008	57	42	5,100	1.1	0.6 [0.2]	192/192	64/64
	2009	53	38	4,700	1.4	1.0 [0.4]	192/192	64/64
	2010	53	45	3,600	2.3	0.9 [0.3]	64/64	64/64
	Monitored	Geometric				Quantification	Detection 1	Frequency
trans-Nonachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	130	83	13,000	3.1	1.5 [0.5]	189/189	63/63
	2003	110	78	11,000	2	2 [0.6]	186/186	62/62
	2004	94	63	23,000	3	2 [0.6]	189/189	63/63
Sediment	2005	99	72	24,000	2.4	1.5 [0.54]	189/189	63/63
(pg/g-dry)	2006	100	65	10,000	3.4	1.2 [0.4]	192/192	64/64
(pg/g-ury)	2007	78	55	8,400	tr(1.6)	1.7 [0.6]	192/192	64/64
	2008	91	53	8,400	tr(1.6)	2.2 [0.8]	192/192	64/64
	2009	85	58	7,800	2.0	0.9 [0.3]	192/192	64/64
	2010	80	65	6,200	tr(3)	6 [2]	64/64	64/64

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Wildlife>

Oxychlordane: The presence of the substance in bivalves was monitored in 7 areas, and it was detected at 6 of the 7 valid areas adopting the detection limit of 3pg/g-wet, and the detection range was $11\sim3,300$ pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 3pg/g-wet, and the detection range was $33\sim1,000$ pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 3pg/g-wet, and the detection range was $320\sim510$ pg/g-wet. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from bivalves and fish were identified as statistically significant.

cis-Nonachlor: The presence of the substance in bivalves was monitored in 7 areas, and it was detected at 6 of the 7 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $35\sim1,300$ pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $23\sim2,200$ pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $57\sim190$ pg/g-wet.

trans-Nonachlor: The presence of the substance in bivalves was monitored in 7 areas, and it was detected at 6 of the 7 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was $84\sim6,000$ pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was $110\sim4,700$ pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 2pg/g-wet, and the detection range was $290\sim880$ pg/g-wet. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from bivalves were identified as statistically significant.

Stocktaking of the detection of Oxychlordane in wildlife (bivalves, fish and birds) during FY2002~2010

	Monitored	Geometric				Quantification	Detection Sample 37/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 70/70 70/70 70/70 70/70 80/80 80/80 80/80 80/80 80/80 81/85 90/90 18/18 10/10 10/10 10/10 10/10 10/10 10/10 10/10	Frequency
Oxychlordane	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	71	83	5,600	nd	3.6 [1.2]	37/38	8/8
	2003	93	62	1,900	11	8.4 [2.8]	30/30	6/6
	2004	110	100	1,700	14	9.2 [3.1]	31/31	7/7
Bivalves	2005	99	79	1,400	12	9.3 [3.1]	31/31	7/7
(pg/g-wet)	2006	91	90	2,400	7	7 [3]	31/31	7/7
(pg/g-wet)	2007	70	43	2,200	8	6 [2]	31/31	7/7
	2008	64	55	1,100	7	7 [2]	31/31	7/7
	2009	100	89	820	10	4 [1]	31/31	7/7
	2010	240	390	3,300	11	8 [3]	6/6	6/6
	2002	170	140	3,900	16	3.6 [1.2]	70/70	14/14
	2003	150	160	820	30	8.4 [2.8]	70/70	14/14
	2004	160	140	1,500	25	9.2 [3.1]	70/70	14/14
Fish	2005	150	150	1,900	20	9.3 [3.1]	80/80	16/16
	2006	150	120	3,000	28	7 [3]	80/80	16/16
(pg/g-wet)	2007	120	100	1,900	17	6 [2]	80/80	16/16
	2008	130	130	2,200	15	7 [2]	85/85	17/17
	2009	120	99	2,400	23	4 [1]	90/90	18/18
	2010	120	140	1,000	33	8 [3]	18/18	18/18
	2002	640	630	890	470	3.6 [1.2]	10/10	2/2
	2003	760	700	1,300	610	8.4 [2.8]	10/10	2/2
	2004	460	450	730	320	9.2 [3.1]	10/10	2/2
Dinda	2005	610	660	860	390	9.3 [3.1]	10/10	2/2
Birds	2006	510	560	720	270	7 [3]	10/10	2/2
(pg/g-wet)	2007	440	400	740	290	6 [2]	10/10	2/2
	2008	560	530	960	290	7 [2]	10/10	2/2
	2009	300	290	540	190	4 [1]	10/10	2/2
	2010	400		510	320	8 [3]	2/2	2/2

Stocktaking of the detection of cis-Nonachlor in wildlife (bivalves, fish and birds) during FY2002~2010

cis-Nonac		Monitored	Caramataia				Quantification	Detection I	requency
	chlor	year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
		2002	170	300	870	8.6	1.2 [0.4]	38/38	8/8
		2003	290	260	1,800	48	4.8 [1.6]		6/6
		2004	320	380	1,800	43	3.4 [1.1]		7/7
Bivalv	00	2005	270	220	1,300	27	4.5 [1.5]	31/31	7/7
(pg/g-w		2006	270	180	1,500	31	3 [1]	31/31	7/7
(þg/g-w	(61)	2007	250	250	1,000	26	3 [1]	31/31	7/7
		2008	210	210	780	33	4 [1]	31/31	7/7
		2009	300	310	10,000	31	3 [1]	31/31	7/7
		2010	280	310	1,300	35	3 [1]	6/6	6/6
		2002	460	420	5,100	46	1.2 [0.4]	70/70	14/14
		2003	360	360	2,600	19	4.8 [1.6]	70/70	14/14
		2004	430	310	10,000	48	3.4 [1.1]	70/70	14/14
		2005	380	360	6,200	27	4.5 [1.5]		16/16
Fish		2006	370	330	3,300	33	3 [1]		16/16
(pg/g-w	et)	2007	320	280	3,700	16	3 [1]		16/16
		2007	350	300	3,200	46	4[1]		17/17
		2009	340	340	2,600	27	3 [1]		18/18
		2010	320	370	2,000	23	3 [1]		
									18/18
		2002	200	240	450	68	1.2 [0.4]		2/2
		2003	200	260	660	68	4.8 [1.6]		2/2
		2004	140	150	240	73	3.4 [1.1]		2/2
Birds	3	2005	160	180	370	86	4.5 [1.5]		2/2
(pg/g-w		2006	120	130	270	60	3 [1]		2/2
400	/	2007	130	140	300	42	3 [1]		2/2
		2008	140	150	410	37	4 [1]		2/2
		2009	81	85	160	44	3 [1]		2/2
		2010	100		190	57	3 [1]		2/2
		Monitored	Geometric				Quantification	Detection I	requency
trans-Nona	achlor	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
							limit		
		2002	450	1 100	1,800	21	2.4 [0.8]	38/38	8/8
				1,100					
		2003	800	700	3,800	140	3.6 [1.2]	30/30	6/6
		2003 2004	800 780	700 870	3,400	140 110	3.6 [1.2] 13 [4.2]	30/30 31/31	6/6 7/7
Rivaly	es	2003 2004 2005	800 780 700	700 870 650	3,400 3,400	140 110 72	3.6 [1.2] 13 [4.2] 6.2 [2.1]	30/30	6/6 7/7 7/7
Bivalv		2003 2004	800 780	700 870	3,400	140 110	3.6 [1.2] 13 [4.2]	30/30 31/31	6/6 7/7 7/7 7/7
Bivalv (pg/g-w		2003 2004 2005	800 780 700	700 870 650	3,400 3,400	140 110 72	3.6 [1.2] 13 [4.2] 6.2 [2.1]	30/30 31/31 31/31	6/6 7/7 7/7
		2003 2004 2005 2006	800 780 700 660	700 870 650 610	3,400 3,400 3,200	140 110 72 85	3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1]	30/30 31/31 31/31 31/31	6/6 7/7 7/7 7/7
		2003 2004 2005 2006 2007	800 780 700 660 640	700 870 650 610	3,400 3,400 3,200 2,400	140 110 72 85 71	3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2]	30/30 31/31 31/31 31/31 31/31	6/6 7/7 7/7 7/7 7/7
		2003 2004 2005 2006 2007 2008	800 780 700 660 640 510	700 870 650 610 610 510	3,400 3,400 3,200 2,400 2,000	140 110 72 85 71 94	3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3]	30/30 31/31 31/31 31/31 31/31 31/31	6/6 7/7 7/7 7/7 7/7 7/7
		2003 2004 2005 2006 2007 2008 2009 2010	800 780 700 660 640 510 780 790	700 870 650 610 610 510 680 870	3,400 3,400 3,200 2,400 2,000 33,000 6,000	140 110 72 85 71 94 79 84	3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2]	30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6	6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6
		2003 2004 2005 2006 2007 2008 2009 2010	800 780 700 660 640 510 780 790	700 870 650 610 610 510 680 870	3,400 3,400 3,200 2,400 2,000 33,000 6,000 8,300	140 110 72 85 71 94 79 84	3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8]	30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 70/70	6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6
		2003 2004 2005 2006 2007 2008 2009 2010 2002 2003	800 780 700 660 640 510 780 790 1,000 920	700 870 650 610 610 510 680 870 900 840	3,400 3,400 3,200 2,400 2,000 33,000 6,000 8,300 5,800	140 110 72 85 71 94 79 84 98	3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2]	30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 70/70 70/70	6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 14/14 14/14
(pg/g-w		2003 2004 2005 2006 2007 2008 2009 2010 2002 2003 2004	800 780 700 660 640 510 780 790 1,000 920 1,100	700 870 650 610 610 510 680 870 900 840 760	3,400 3,400 3,200 2,400 2,000 33,000 6,000 8,300 5,800 21,000	140 110 72 85 71 94 79 84 98 85 140	3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2]	30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 70/70 70/70 70/70	6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 14/14 14/14
(pg/g-w Fish		2003 2004 2005 2006 2007 2008 2009 2010 2002 2003 2004 2005	800 780 700 660 640 510 780 790 1,000 920 1,100 970	700 870 650 610 610 510 680 870 900 840 760 750	3,400 3,400 3,200 2,400 2,000 33,000 6,000 8,300 5,800 21,000 13,000	140 110 72 85 71 94 79 84 98 85 140	3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1]	30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 70/70 70/70 70/70 80/80	6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 14/14 14/14 14/14
(pg/g-w		2003 2004 2005 2006 2007 2008 2009 2010 2002 2003 2004 2005 2006	800 780 700 660 640 510 780 790 1,000 920 1,100 970 940	700 870 650 610 610 510 680 870 900 840 760 750 680	3,400 3,400 3,200 2,400 2,000 33,000 6,000 8,300 5,800 21,000 13,000 6,900	140 110 72 85 71 94 79 84 98 85 140 80 120	3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1]	30/30 31/31 31/31 31/31 31/31 31/31 6/6 70/70 70/70 70/70 80/80 80/80	6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 14/14 14/14 14/14 16/16 16/16
(pg/g-w Fish		2003 2004 2005 2006 2007 2008 2009 2010 2002 2003 2004 2005 2006 2007	800 780 700 660 640 510 780 790 1,000 920 1,100 970 940 800	700 870 650 610 610 510 680 870 900 840 760 750 680 680	3,400 3,400 3,200 2,400 2,000 33,000 6,000 8,300 5,800 21,000 13,000 6,900 7,900	140 110 72 85 71 94 79 84 98 85 140 80 120 71	3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3]	30/30 31/31 31/31 31/31 31/31 31/31 6/6 70/70 70/70 70/70 80/80 80/80 80/80	6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 14/14 14/14 14/14 16/16 16/16
(pg/g-w Fish		2003 2004 2005 2006 2007 2008 2009 2010 2002 2003 2004 2005 2006 2007 2008	800 780 700 660 640 510 780 790 1,000 920 1,100 970 940 800 860	700 870 650 610 610 510 680 870 900 840 760 750 680 680 750	3,400 3,400 3,200 2,400 2,000 33,000 6,000 8,300 5,800 21,000 13,000 6,900 7,900 6,900	140 110 72 85 71 94 79 84 98 85 140 80 120 71 87	3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2]	30/30 31/31 31/31 31/31 31/31 31/31 6/6 70/70 70/70 70/70 80/80 80/80 80/80 85/85	6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 14/14 14/14 14/14 16/16 16/16 16/16
(pg/g-w Fish		2003 2004 2005 2006 2007 2008 2009 2010 2002 2003 2004 2005 2006 2007 2008 2009	800 780 700 660 640 510 780 790 1,000 920 1,100 970 940 800 860 810	700 870 650 610 610 510 680 870 900 840 760 750 680 680 750 720	3,400 3,400 3,200 2,400 2,000 33,000 6,000 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400	140 110 72 85 71 94 79 84 98 85 140 80 120 71 87 68	3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1]	30/30 31/31 31/31 31/31 31/31 31/31 6/6 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90	6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 14/14 14/14 14/14 16/16 16/16 16/16 17/17
(pg/g-w Fish		2003 2004 2005 2006 2007 2008 2009 2010 2002 2003 2004 2005 2006 2007 2008 2009 2010	800 780 700 660 640 510 780 790 1,000 920 1,100 970 940 800 860 810 800	700 870 650 610 610 510 680 870 900 840 760 750 680 680 750 720	3,400 3,400 3,200 2,400 2,000 33,000 6,000 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700	140 110 72 85 71 94 79 84 98 85 140 80 120 71 87 68	3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2]	30/30 31/31 31/31 31/31 31/31 31/31 6/6 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18	6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 14/14 14/14 14/14 16/16 16/16 16/16 17/17 18/18
(pg/g-w Fish		2003 2004 2005 2006 2007 2008 2009 2010 2002 2003 2004 2005 2006 2007 2008 2009 2010 2002	800 780 700 660 640 510 780 790 1,000 920 1,100 970 940 800 860 810 890	700 870 650 610 610 510 680 870 900 840 760 750 680 680 750 720	3,400 3,400 3,200 2,400 2,000 33,000 6,000 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700 1,900	140 110 72 85 71 94 79 84 98 85 140 80 120 71 87 68 110 350	3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8]	30/30 31/31 31/31 31/31 31/31 31/31 6/6 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18	6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 14/14 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18
(pg/g-w Fish		2003 2004 2005 2006 2007 2008 2009 2010 2002 2003 2004 2005 2006 2007 2008 2009 2010 2002 2003	800 780 700 660 640 510 780 790 1,000 920 1,100 970 940 800 860 810 800 890 1,100	700 870 650 610 610 510 680 870 900 840 760 750 680 680 750 720 	3,400 3,400 3,200 2,400 2,000 33,000 6,000 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700 1,900 3,700	140 110 72 85 71 94 79 84 98 85 140 80 120 71 87 68 110 350 350	3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2]	30/30 31/31 31/31 31/31 31/31 31/31 6/6 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 10/10	6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 14/14 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18
(pg/g-w Fish		2003 2004 2005 2006 2007 2008 2009 2010 2002 2003 2004 2005 2006 2007 2008 2009 2010 2002 2003 2004	800 780 700 660 640 510 780 790 1,000 920 1,100 970 940 800 860 810 800 890 1,100 690	700 870 650 610 610 510 680 870 900 840 760 750 680 680 750 720 	3,400 3,400 3,200 2,400 2,000 33,000 6,000 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700 1,900 3,700 1,200	140 110 72 85 71 94 79 84 98 85 140 80 120 71 87 68 110 350 350 390	3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2]	30/30 31/31 31/31 31/31 31/31 31/31 6/6 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 10/10 10/10 10/10	6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 14/14 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18 2/2 2/2
(pg/g-w Fish (pg/g-w	vet)	2003 2004 2005 2006 2007 2008 2009 2010 2002 2003 2004 2005 2006 2007 2008 2009 2010 2002 2003 2004 2005	800 780 700 660 640 510 780 790 1,000 920 1,100 970 940 800 860 810 800 890 1,100 690 870	700 870 650 610 610 510 680 870 900 840 750 680 680 750 720 980 1,400 780 880	3,400 3,400 3,200 2,400 2,000 33,000 6,000 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700 1,900 3,700 1,200 2,000	140 110 72 85 71 94 79 84 98 85 140 80 120 71 87 68 110 350 350 390 440	3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1]	30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 10/10 10/10 10/10 10/10	6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 14/14 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18 2/2 2/2 2/2
(pg/g-w Fish (pg/g-w	vet)	2003 2004 2005 2006 2007 2008 2009 2010 2002 2003 2004 2005 2006 2007 2008 2009 2010 2002 2003 2004 2005 2004 2005 2006	800 780 700 660 640 510 780 790 1,000 920 1,100 970 940 800 860 810 800 890 1,100 690 870 650	700 870 650 610 610 510 680 870 900 840 750 680 680 750 720 980 1,400 780 880 620	3,400 3,400 3,400 3,200 2,400 2,000 33,000 6,000 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700 1,900 3,700 1,200 2,000 1,500	140 110 72 85 71 94 79 84 98 85 140 80 120 71 87 68 110 350 350 390 440 310	3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1]	30/30 31/31 31/31 31/31 31/31 31/31 6/6 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 10/10 10/10 10/10 10/10	6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 14/14 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18 2/2 2/2 2/2 2/2
(pg/g-w Fish (pg/g-w	vet)	2003 2004 2005 2006 2007 2008 2009 2010 2002 2003 2004 2005 2006 2007 2002 2003 2004 2005 2004 2005 2006 2007	800 780 700 660 640 510 780 790 1,000 920 1,100 970 940 800 860 810 890 1,100 690 870 650 590	700 870 650 610 610 510 680 870 900 840 750 680 680 750 720 980 1,400 780 880 620 680	3,400 3,400 3,400 3,200 2,400 2,000 33,000 6,000 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700 1,900 3,700 1,200 2,000 1,500 1,400	140 110 72 85 71 94 79 84 98 85 140 80 120 71 87 68 110 350 350 390 440 310 200	3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 7 [3] 6 [2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3]	30/30 31/31 31/31 31/31 31/31 31/31 6/6 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 10/10 10/10 10/10 10/10 10/10	6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18 2/2 2/2 2/2 2/2 2/2
(pg/g-w Fish (pg/g-w	vet)	2003 2004 2005 2006 2007 2008 2009 2010 2002 2003 2004 2005 2006 2007 2008 2009 2010 2002 2003 2004 2005 2006 2007 2008	800 780 700 660 640 510 780 790 1,000 920 1,100 970 940 800 860 810 890 1,100 690 870 650 590 740	700 870 650 610 610 510 680 870 900 840 750 680 680 750 720 980 1,400 780 880 620 680 850	3,400 3,400 3,400 3,200 2,400 2,000 33,000 6,000 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700 1,900 3,700 1,200 2,000 1,500 1,400 2,600	140 110 72 85 71 94 79 84 98 85 140 80 120 71 87 68 110 350 350 390 440 310 200 180	3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2]	30/30 31/31 31/31 31/31 31/31 31/31 31/31 6/6 70/70 70/70 70/70 80/80 80/80 80/80 85/85 90/90 18/18 10/10 10/10 10/10 10/10 10/10 10/10 10/10	6/6 7/7 7/7 7/7 7/7 7/7 7/7 6/6 14/14 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2
(pg/g-w Fish (pg/g-w	vet)	2003 2004 2005 2006 2007 2008 2009 2010 2002 2003 2004 2005 2006 2007 2002 2003 2004 2005 2004 2005 2006 2007	800 780 700 660 640 510 780 790 1,000 920 1,100 970 940 800 860 810 890 1,100 690 870 650 590	700 870 650 610 610 510 680 870 900 840 750 680 680 750 720 980 1,400 780 880 620 680	3,400 3,400 3,400 3,200 2,400 2,000 33,000 6,000 8,300 5,800 21,000 13,000 6,900 7,900 6,900 7,400 4,700 1,900 3,700 1,200 2,000 1,500 1,400	140 110 72 85 71 94 79 84 98 85 140 80 120 71 87 68 110 350 350 390 440 310 200	3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 4 [2] 2.4 [0.8] 3.6 [1.2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2] 3 [1] 7 [3] 6 [2] 13 [4.2] 6.2 [2.1] 3 [1] 7 [3]	38/38 30/30 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 31/31 6/6 70/70 70/70 80/80 80/80 85/85 90/90 18/18 10/10	6/6 7/7 7/7 7/7 7/7 7/7 7/7 7/7 6/6 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18 2/2 2/2 2/2 2/2 2/2

(Note) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Air>

Oxychlordane: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.01pg/m^3 , and the detection range was $0.44 \sim 6.2 \text{ pg/m}^3$. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.01pg/m^3 , and the detection range was $0.26 \sim 2.3 \text{ pg/m}^3$. As results of the inter-annual trend analysis from FY 2003 to FY 2010, reduction tendency in specimens at the warm season was identified as statistically significant.

cis-Nonachlor: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.04pg/m^3 , and the detection range was $0.23 \sim 68 \text{ pg/m}^3$. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.04pg/m^3 , and the detection range was $\text{tr}(0.06) \sim 13 \text{ pg/m}^3$. As results of the inter-annual trend analysis from FY 2003 to FY 2010, reduction tendency in specimens at the warm season was identified as statistically significant.

trans-Nonachlor: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.3pg/m^3 , and the detection range was $1.7 \sim 520 \text{ pg/m}^3$. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.3pg/m^3 , and the detection range was $\text{tr}(0.7) \sim 89 \text{ pg/m}^3$. As results of the inter-annual trend analysis from FY 2003 to FY 2010, reduction tendency in specimens at the warm season was identified as statistically significant.

Stocktaking of the detection of Oxychlordane, cis-Nonachlor and trans-Nonachlor in air during FY2002~2010

		Geometric				Quantification	Detection l	Frequency
Oxychlordane	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.96	0.98	8.3	nd	0.024 [0.008]	101/102	34/34
	2003 Warm season	2.5	2.7	12	0.41	0.045 [0.015]	35/35	35/35
	2003 Cold season	0.87	0.88	3.2	0.41	0.043 [0.013]	34/34	34/34
	2004 Warm season	1.9	2.0	7.8	0.41	0.13 [0.042]	37/37	37/37
	2004 Cold season	0.80	0.76	3.9	0.27	0.13 [0.042]	37/37	37/37
	2005 Warm season	1.9	2.0	8.8	0.65	0.16 [0.054]	37/37	37/37
	2005 Cold season	0.55	0.50	2.2	0.27	0.10 [0.034]	37/37	37/37
Air	2006 Warm season	1.8	1.9	5.7	0.47	0.23 [0.08]	37/37	37/37
(pg/m^3)	2006 Cold season	0.54	0.56	5.1	tr(0.13)	0.23 [0.08]	37/37	37/37
(pg/III)	2007 Warm season	1.9	1.8	8.6	0.56	0.05 [0.02]	36/36	36/36
	2007 Cold season	0.61	0.63	2.4	0.26	0.05 [0.02]	36/36	36/36
	2008 Warm season	1.7	1.7	7.1	0.50	0.04 [0.01]	37/37	37/37
	2008 Cold season	0.61	0.63	1.8	0.27	0.04 [0.01]	37/37	37/37
	2009 Warm season	1.7	1.8	6.5	0.38	0.04.[0.02]	37/37	37/37
	2009 Cold season	0.65	0.61	2.7	0.24	0.04 [0.02]	37/37	37/37
	2010 Warm season	1.5	1.5	6.2	0.44	1	37/37	37/37
	2010 Cold season	0.56	0.55	2.3	0.26	0.03 [0.01]	37/37	37/37

Stocktaking of the detection of Oxychlordane, cis-Nonachlor and trans-Nonachlor in air during FY2002~2010	Stocktaking of the o	detection of Oxychlordane.	. cis-Nonachlor and	d trans-Nonachlor in	air during FY2002~2010
---	----------------------	----------------------------	---------------------	----------------------	------------------------

		Geometric				Quantification	Detection I	requency
cis-Nonachlor	·	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	3.1	4.0	62	0.071	0.030 [0.010]	102/102	34/34
	2003 Warm season	12	15	220	0.81	0.026 [0.0088]	35/35	35/35
	2003 Cold season	2.7	3.5	23	0.18		34/34	34/34
	2004 Warm season	10	15	130	0.36	0.072 [0.024]	37/37	37/37
	2004 Cold season	2.7	4.4	28	0.087		37/37	37/37
	2005 Warm season	10	14	160	0.30	0.08 [0.03]	37/37	37/37
	2005 Cold season	1.6	1.6	34	0.08		37/37	37/37
Air	2006 Warm season	11	12	170	0.28	0.15 [0.05]	37/37	37/37
(pg/m^3)	2006 Cold season	2.4	2.0	41	tr(0.14)	0.13 [0.03]	37/37	37/37
(pg/III)	2007 Warm season	10	14	150	0.31	0.03 [0.01]	36/36	36/36
	2007 Cold season	1.6	1.7	22	0.09	0.03 [0.01]	36/36	36/36
	2008 Warm season	7.9	12	87	0.18	0.03 [0.01]	37/37	37/37
	2008 Cold season	2.0	2.7	19	0.16	0.03 [0.01]	37/37	37/37
	2009 Warm season	7.5	10	110	0.33	0.04 [0.02]	37/37	37/37
	2009 Cold season	1.9	2.1	18	0.07	0.04 [0.02]	37/37	37/37
	2010 Warm season	7.5	10	68	0.23	0.11 [0.04]	37/37	37/37
	2010 Cold season	1.8	2.1	13	tr(0.06)	0.11 [0.04]	37/37	37/37
trans-Nonachl	1	Geometric				Quantification	Detection I	requency
or	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	24	30	550	0.64	0.30 [0.10]	102/102	34/34
	2003 Warm season	87	100	1 200	7.1			
			100	1,200	5.1	0.25 [0.12]	35/35	35/35
	2003 Cold season	24	28	1,200	2.1	0.35 [0.12]		35/35 34/34
	2003 Cold season 2004 Warm season	24 72	28 120				35/35	
		24 72 23	28	180	2.1	0.35 [0.12]	35/35 34/34	34/34 37/37 37/37
	2004 Warm season 2004 Cold season 2005 Warm season	24 72 23 75	28 120 39 95	180 870 240 870	2.1 1.9 0.95 3.1	0.48 [0.16]	35/35 34/34 37/37 37/37 37/37	34/34 37/37 37/37 37/37
	2004 Warm season 2004 Cold season	24 72 23 75 13	28 120 39	180 870 240 870 210	2.1 1.9 0.95 3.1 1.2		35/35 34/34 37/37 37/37 37/37 37/37	34/34 37/37 37/37 37/37 37/37
Air	2004 Warm season 2004 Cold season 2005 Warm season	24 72 23 75	28 120 39 95	180 870 240 870	2.1 1.9 0.95 3.1	0.48 [0.16]	35/35 34/34 37/37 37/37 37/37 37/37 37/37	34/34 37/37 37/37 37/37 37/37 37/37
Air	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season	24 72 23 75 13	28 120 39 95 16	180 870 240 870 210	2.1 1.9 0.95 3.1 1.2	0.48 [0.16]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37	34/34 37/37 37/37 37/37 37/37 37/37 37/37
Air (pg/m³)	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season	24 72 23 75 13 68 16	28 120 39 95 16 91 15	180 870 240 870 210 800	2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5	0.48 [0.16] 0.13 [0.044] 0.10 [0.03]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36	34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36
	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season	24 72 23 75 13 68 16 72 13	28 120 39 95 16 91	180 870 240 870 210 800 240	2.1 1.9 0.95 3.1 1.2 3.0 1.4	0.48 [0.16]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36	34/34 37/37 37/37 37/37 37/37 37/37 37/37
	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season	24 72 23 75 13 68 16	28 120 39 95 16 91 15 96 15	180 870 240 870 210 800 240 940	2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5	0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36	34/34 37/37 37/37 37/37 37/37 37/37 37/37 36/36
	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season	24 72 23 75 13 68 16 72 13 59	28 120 39 95 16 91 15 96 15	180 870 240 870 210 800 240 940 190 650 170	2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5 1.1 1.5 1.3	0.48 [0.16] 0.13 [0.044] 0.10 [0.03]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36	34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37
	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season	24 72 23 75 13 68 16 72 13 59	28 120 39 95 16 91 15 96 15	180 870 240 870 210 800 240 940 190 650	2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5 1.1	0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03] 0.09 [0.03]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37	34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37
	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season	24 72 23 75 13 68 16 72 13 59 17 54	28 120 39 95 16 91 15 96 15 91 25 81 19	180 870 240 870 210 800 240 940 190 650 170	2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5 1.1 1.5 1.3	0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37	34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37
	2004 Warm season 2004 Cold season 2005 Warm season 2005 Cold season 2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season 2008 Cold season 2008 Cold season 2009 Warm season	24 72 23 75 13 68 16 72 13 59 17	28 120 39 95 16 91 15 96 15 91 25 81	180 870 240 870 210 800 240 940 190 650 170	2.1 1.9 0.95 3.1 1.2 3.0 1.4 2.5 1.1 1.5 1.3 2.2	0.48 [0.16] 0.13 [0.044] 0.10 [0.03] 0.09 [0.03] 0.09 [0.03]	35/35 34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37	34/34 37/37 37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37

[8] Heptachlors

· History and state of monitoring

Heptachlor and its metabolite, heptachlor epoxide, are a group of organochlorine insecticides applied for agricultural crops such as rice, wheat, barley, potato, sweet potato, tobacco, beans, cruciferous vegetables, alliaceous vegetables, cucurbitaceous vegetables, sugar beet and spinach. The substances were not registrated under the Agricultural Chemicals Regulation Law in FY 1975. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 1986, since it includes the technical chlordane used as a termitecide.

In previous monitoring series before FY 2001, heptachlor and heptachlor epoxide were measured in FY 1982 (in surface water, sediment and fish) and in FY 1986 (in air) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Heptachlor in water, sediment, and fish has been monitored since FY 2002, and *cis*-Heptachlor epoxide and *trans*-Heptachlor epoxide have also been monitored since FY 2003.

- Monitoring results
- o heptachlor, cis-heptachlor epoxide, and trans-heptachlor epoxide

<Surface Water>

heptachlor: The presence of the substance in surface water was monitored at 49 sites, and it was detected at 4 of the 49 valid sites adopting the detection limit of 0.7pg/L, and none of the detected concentrations exceeded 43 pg/L.

cis-heptachlor epoxide: The presence of the substance in surface water was monitored at 49 sites, and it was detected at all 49 valid sites adopting the detection limit of 0.2pg/L, and the detection range was $0.7\sim710$ pg/L. As results of the inter-annual trend analysis from FY 2003 to FY 2010, reduction tendencies in specimens from river mouth areas and sea areas were identified as statistically significant.

trans-heptachlor epoxide: The presence of the substance in surface water was monitored at 49 sites, and it was detected at 2 of the 49 valid sites adopting the detection limit of 0.5pg/L, and none of the detected concentrations exceeded 8.0 pg/L.

Stocktaking of the detection of heptachlor, *cis*-heptachlor epocide and *trans*-heptachlor epocide in surface water during FY2002~2010

	Monitored	Geometric				Quantification	Detection 1	Frequency
Heptachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(1.2)	tr(1.0)	25	nd	1.5 [0.5]	97/114	38/38
	2003	tr(1.8)	tr(1.6)	7	tr(1.0)	2 [0.5]	36/36	36/36
	2004	nd	nd	29	nd	5 [2]	9/38	9/38
Surface Water	2005	nd	tr(1)	54	nd	3 [1]	25/47	25/47
	2006	nd	nd	6	nd	5 [2]	5/48	5/48
(pg/L)	2007	nd	nd	5.2	nd	2.4 [0.8]	12/48	12/48
	2008	nd	nd	4.6	nd	2.1 [0.8]	19/48	19/48
	2009	tr(0.5)	nd	17	nd	0.8 [0.3]	20/49	20/49
	2010	nd	nd	43	nd	2.2 [0.7]	4/49	4/49
cis-Heptachlor	Monitored	Geometric				Quantification	Detection 1	Frequency
epoxide	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	9.8	11	170	1.2	0.7 [0.2]	36/36	36/36
	2004	10	10	77	2	2 [0.4]	38/38	38/38
	2005	7.1	6.6	59	1.0	0.7 [0.2]	47/47	47/47
Surface Water	2006	7.6	6.6	47	1.1	2.0 [0.7]	48/48	48/48
(pg/L)	2007	6.1	5.8	120	tr(0.9)	1.3 [0.4]	48/48	48/48
	2008	4.7	5.0	37	nd	0.6 [0.2]	46/48	46/48
	2009	5.5	4.2	72	0.8	0.5 [0.2]	49/49	49/49
	2010	5.9	3.9	710	0.7	0.4 [0.2]	49/49	49/49
trans-Heptachlor	Monitored	Geometric				Quantification	Detection 1	Frequency
epoxide	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	2	nd	2 [0.4]	4/36	4/36
	2004	nd	nd	nd	nd	0.9 [0.3]	0/38	0/38
	2005	nd	nd	nd	nd	0.7 [0.2]	0/47	0/47
Surface Water	2006	nd	nd	nd	nd	1.8 [0.6]	0/48	0/48
(pg/L)	2007	nd	nd	tr(0.9)	nd	2.0 [0.7]	2/48	2/48
	2008	nd	nd	nd	nd	1.9 [0.7]	0/48	0/48
	2009	nd	nd	nd	nd	0.7 [0.3]	0/49	0/49
	2010	nd	nd	8.0	nd	1.3 [0.5]	2/49	2/49

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

Heptachlor: The presence of the substance in sediment was monitored at 64 sites, and it was detected at 51 of the 64 valid sites adopting the detection limit of 0.4pg/g-dry, and none of the detected concentrations exceeded 35 pg/g-dry. As results of the inter-annual trend analysis from FY 2002 to FY 2010, the second-half period indicated lower concentration than the first-half period in specimens from river mouth areas as statistically significant.

cis-heptachlor epoxide: The presence of the substance in sediment was monitored at 64 sites, and it was detected at 62 of the 64 valid sites adopting the detection limit of 0.3pg/g-dry, and none of the detected concentrations exceeded 300 pg/g-dry. As results of the inter-annual trend analysis from FY 2003 to FY 2010, reduction tendencies in specimens from river mouth areas were identified as statistically significant. In addition, the second-half period also indicated lower concentration than the first-half period in specimens from overall areas as statistically significant.

trans-heptachlor epoxide: The presence of the substance in sediment was monitored at 64 sites, and it was detected at 1 of the 64 valid site adopting the detection limit of 1pg/g-dry, and none of the detected concentrations exceeded 4 pg/g-dry.

Stocktaking of the detection of heptachlor, *cis*-heptachlor epocide and *trans*-heptachlor epocide in sediment during FY2002~2010

2002 2010	Monitored	Geometric				Quantification	Detection 1	Frequenc
Heptachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	4.1	3.2	120	nd	1.8 [0.6]	167/189	60/63
	2003	tr(2.7)	tr(2.2)	160	nd	3 [1.0]	138/186	53/62
	2004	tr(2.8)	tr(2.3)	170	nd	3 [0.9]	134/189	53/63
Sediment	2005	3.1	2.8	200	nd	2.5 [0.8]	120/189	48/63
(pg/g-dry)	2006	5.2	3.9	230	nd	1.9 [0.6]	190/192	64/64
(pg/g-ury)	2007	tr(1.8)	tr(1.5)	110	nd	3.0 [0.7]	143/192	57/64
	2008	tr(1)	nd	85	nd	4 [1]	59/192	27/64
	2009	1.6	1.3	65	nd	1.1 [0.4]	144/192	59/64
	2010	1.2	tr(0.8)	35	nd	1.1 [0.4]	51/64	51/64
cis-Heptachlor	Monitored	Geometric				Quantification	Detection 1	Frequenc
epoxide	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	4	3	160	nd	3 [1]	153/186	55/62
	2004	tr(5)	tr(3)	230	nd	6 [2]	136/189	52/63
	2005	tr(4)	tr(3)	140	nd	7 [2]	119/189	49/63
Sediment	2006	4.0	3.2	210	nd	3.0 [1.0]	157/192	58/64
(pg/g-dry)	2007	3	tr(2)	270	nd	3 [1]	141/192	53/64
	2008	3	2	180	nd	2 [1]	130/192	51/64
	2009	2.7	1.9	290	nd	0.7 [0.3]	176/192	63/64
	2010	3.1	2.4	300	nd	0.8 [0.3]	62/64	62/64
trans-Heptachlor	Monitored	Geometric				Quantification	Detection 1	Frequenc
epoxide	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	9 [3]	0/186	0/62
	2004	nd	nd	tr(2.5)	nd	4 [2]	1/189	1/63
	2005	nd	nd	nd	nd	5 [2]	0/189	0/63
Sediment	2006	nd	nd	19	nd	7 [2]	2/192	2/64
(pg/g-dry)	2007	nd	nd	31	nd	10 [4]	2/192	2/64
	2008	nd	nd	nd	nd	1.7 [0.7]	0/192	0/64
	2009	nd	nd	nd	nd	1.4 [0.6]	0/192	0/64
	2010	nd	nd	4	nd	3 [1]	1/64	1/64

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Wildlife>

Heptachlor: The presence of the substance in bivalves was monitored in 7 areas, and it was detected at 5 of the 7 valid areas adopting the detection limit of 1pg/g-wet, and none of the detected concentrations exceeded 78 pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 12 of the 18 valid areas adopting the detection limit of 1pg/g-wet, and none of the detected concentrations exceeded 5 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at 1 of the 2 valid areas adopting the detection limit of 1pg/g-wet, and none of the detected concentrations exceeded tr(1) pg/g-wet.

cis-heptachlor epoxide: The presence of the substance in bivalves was monitored in 7 areas, and it was detected at 6 of the 7 valid areas adopting the detection limit of 0.9pg/g-wet, and the detection range was $9.0\sim1,800$ pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 0.9pg/g-wet, and the detection range was $5.0\sim230$ pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 0.9pg/g-wet, and the detection range was $240\sim360$ pg/g-wet.

trans-heptachlor epoxide: The presence of the substance in bivalves was monitored in 7 areas, and it was detected at 3 of the 7 valid areas adopting the detection limit of 1pg/g-wet, and none of the detected concentrations exceeded 24 pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was not detected at all 18 valid

areas adopting the detection limit of 1pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was not detected at all 18 valid areas adopting the detection limit of 1pg/g-wet.

Stocktaking of the detection of heptachlor in wildlife (bivalves, fish and birds) during FY2002~2010

	Monitored	Geometric				Quantification	Detection 1	Frequency
Heptachlor	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(3.5)	4.6	15	nd	4.2 [1.4]	28/38	6/8
	2003	tr(2.8)	tr(2.4)	14	nd	6.6 [2.2]	16/30	4/6
	2004	tr(3.4)	5.2	16	nd	4.1 [1.4]	23/31	6/7
Bivalves	2005	tr(2.9)	tr(2.9)	24	nd	6.1 [2.0]	18/31	6/7
(pg/g-wet)	2006	tr(4)	tr(4)	20	nd	6 [2]	23/31	6/7
(bg/g-wet)	2007	tr(3)	tr(3)	12	nd	6 [2]	20/31	6/7
	2008	tr(2)	nd	9	nd	6 [2]	13/31	5/7
	2009	tr(4)	nd	120	nd	5 [2]	14/31	4/7
	2010	3	tr(2)	78	nd	3 [1]	5/6	5/6
	2002	4.2	4.8	20	nd	4.2 [1.4]	57/70	12/14
	2003	nd	nd	11	nd	6.6 [2.2]	29/70	8/14
	2004	tr(2.3)	tr(2.1)	460	nd	4.1 [1.4]	50/70	11/14
Fish	2005	nd	nd	7.6	nd	6.1 [2.0]	32/80	8/16
(pg/g-wet)	2006	tr(2)	nd	8	nd	6 [2]	36/80	8/16
(pg/g-wei)	2007	tr(2)	nd	7	nd	6 [2]	28/80	6/16
	2008	nd	nd	9	nd	6 [2]	25/85	7/17
	2009	tr(2)	nd	8	nd	5 [2]	30/90	11/18
	2010	tr(2)	tr(2)	5	nd	3 [1]	12/18	12/18
	2002	tr(1.7)	tr(2.8)	5.2	nd	4.2 [1.4]	7/10	2/2
	2003	nd	nd	nd	nd	6.6 [2.2]	0/10	0/2
	2004	nd	nd	tr(1.5)	nd	4.1 [1.4]	1/10	1/2
Birds	2005	nd	nd	nd	nd	6.1 [2.0]	0/10	0/2
(pg/g-wet)	2006	nd	nd	nd	nd	6 [2]	0/10	0/2
(pg/g-wei)	2007	nd	nd	nd	nd	6 [2]	0/10	0/2
	2008	nd	nd	nd	nd	6 [2]	0/10	0/2
	2009	nd	nd	nd	nd	5 [2]	0/10	0/2
	2010	nd	nd	tr(1)	nd	3 [1]	1/2	1/2

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

Stocktaking of the detection of cis-heptachlor epocide in wildlife (bivalves, fish and birds) during FY2002~2010

cis-Heptachlor	Monitored	Geometric				Quantification	Detection l	Frequency
epoxide	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	44	29	880	9.7	6.9 [2.3]	30/30	6/6
	2004	64	34	840	tr(9.8)	9.9 [3.3]	31/31	7/7
	2005	49	20	590	7.4	3.5 [1.2]	31/31	7/7
Bivalves	2006	56	23	1,100	8	4[1]	31/31	7/7
(pg/g-wet)	2007	37	20	1,100	8	4[1]	31/31	7/7
	2008	37	19	510	8	5 [2]	31/31	7/7
	2009	59	33	380	10	3 [1]	31/31	7/7
	2010	170	260	1,800	9.0	2.4 [0.9]	6/6	6/6
	2003	43	43	320	7.0	6.9 [2.3]	70/70	14/14
	2004	51	49	620	tr(3.3)	9.9 [3.3]	70/70	14/14
	2005	41	45	390	4.9	3.5 [1.2]	80/80	16/16
Fish	2006	42	48	270	4	4[1]	80/80	16/16
(pg/g-wet)	2007	43	49	390	4	4[1]	80/80	16/16
	2008	39	46	350	tr(3)	5 [2]	85/85	17/17
	2009	41	50	310	4	3 [1]	90/90	18/18
	2010	39	49	230	5.0	2.4 [0.9]	18/18	18/18

Stocktaking of the detection of cis-heptachlor epocide in wildlife (bivalves, fish and birds) during FY2002~2010

	2003	540	510	770	370	6.9 [2.3]	10/10	2/2
	2004	270	270	350	190	9.9 [3.3]	10/10	2/2
	2005	370	340	690	250	3.5 [1.2]	10/10	2/2
Birds	2006	330	310	650	240	4[1]	10/10	2/2
(pg/g-wet)	2007	280	270	350	250	4[1]	10/10	2/2
	2008	370	370	560	180	5 [2]	10/10	2/2
	2009	220	210	390	160	3 [1]	10/10	2/2
	2010	290	300	360	240	2.4 [0.9]	2/2	2/2

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

Stocktaking of the detection of *trans*-heptachlor epoxide in wildlife (bivalves, fish and birds) during FY2002~2010

rans-Heptachlor	Monitored	Geometric				Quantification	Detection	Frequency
epoxide	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	48	nd	13 [4.4]	5/30	1/6
	2004	nd	nd	55	nd	12 [4.0]	9/31	2/7
	2005	nd	nd	37	nd	23 [7.5]	5/31	1/7
Bivalves	2006	nd	nd	45	nd	13 [5]	5/31	1/7
(pg/g-wet)	2007	nd	nd	61	nd	13 [5]	5/31	1/7
	2008	nd	nd	33	nd	10 [4]	5/31	1/7
	2009	tr(3)	nd	24	nd	8 [3]	13/31	3/7
	2010	3	tr(2)	24	nd	3 [1]	3/6	3/6
	2003	nd	nd	nd	nd	13 [4.4]	0/70	0/14
	2004	nd	nd	tr(10)	nd	12 [4.0]	2/70	2/14
	2005	nd	nd	nd	nd	23 [7.5]	0/80	0/16
Fish	2006	nd	nd	nd	nd	13 [5]	0/80	0/16
(pg/g-wet)	2007	nd	nd	nd	nd	13 [5]	0/80	0/16
	2008	nd	nd	nd	nd	10 [4]	0/85	0/17
	2009	nd	nd	nd	nd	8 [3]	0/90	0/18
	2010	nd	nd	nd	nd	3 [1]	0/18	0/18
	2003	nd	nd	nd	nd	13 [4.4]	0/10	0/2
	2004	nd	nd	nd	nd	12 [4.0]	0/10	0/2
	2005	nd	nd	nd	nd	23 [7.5]	0/10	0/2
Birds	2006	nd	nd	nd	nd	13 [5]	0/10	0/2
(pg/g-wet)	2007	nd	nd	nd	nd	13 [5]	0/10	0/2
	2008	nd	nd	nd	nd	10 [4]	0/10	0/2
	2009	nd	nd	nd	nd	8 [3]	0/10	0/2
	2010	nd	nd	nd	nd	3 [1]	0/2	0/2

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Air>

Heptachlor: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.04pg/m^3 , and the detection range was $0.69 \sim 160 \text{ pg/m}^3$. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.04pg/m^3 , and the detection range was $0.22 \sim 53 \text{ pg/m}^3$.

cis-heptachlor epoxide: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.01pg/m^3 , and the detection range was $0.38 \sim 10$ pg/m³. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.01pg/m^3 , and the detection range was $0.33 \sim 4.3 \text{ pg/m}^3$.

trans-heptachlor epoxide: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at 6 of the 37 valid sites adopting the detection limit of 0.06pg/m³, and none of the detected concentrations exceeded 0.16 pg/gm³. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was not detected at all 37 valid sites adopting the detection limit of 0.06pg/m³.

Stocktaking of the detection of heptachlor, *cis*-heptachlor epocide and *trans*-heptachlor epocide in air during FY2002~2010

		Geometric				Quantification	Detection l	Frequency
Heptachlor	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	11	14	220	0.20	0.12 [0.04]	102/102	34/34
	2003 Warm season	27	41	240	1.1	0.25 [0.085]	35/35	35/35
	2003 Cold season	10	16	65	0.39	0.25 [0.085]	34/34	34/34
	2004 Warm season	23	36	200	0.46	0.23 [0.078]	37/37	37/37
	2004 Cold season	11	18	100	0.53	0.23 [0.078]	37/37	37/37
	2005 Warm season	25	29	190	1.1	0.16 [0.054]	37/37	37/37
	2005 Cold season	6.5	7.9	61	0.52	0.16 [0.034]	37/37	37/37
Air	2006 Warm season	20	27	160	0.88	0.11 [0.04]	37/37	37/37
	2006 Cold season	6.8	7.2	56	0.32	0.11 [0.04]	37/37	37/37
(pg/m^3)	2007 Warm season	22	27	320	1.1	0.07.[0.02]	36/36	36/36
	2007 Cold season	6.3	8.0	74	0.42	0.07 [0.03]	36/36	36/36
	2008 Warm season	20	31	190	0.92	0.06.00.021	37/37	37/37
	2008 Cold season	7.5	12	60	0.51	0.06 [0.02]	37/37	37/37
	2009 Warm season	18	30	110	0.48	0.04.[0.01]	37/37	37/37
	2009 Cold season	6.3	7.8	48	0.15	0.04 [0.01]	37/37	37/37
	2010 Warm season	17	26	160	0.69	0.11.50.043	37/37	37/37
	2010 Cold season	7.2	9.5	53	0.22	0.11 [0.04]	37/37	37/37
cis-		Geometric				Quantification	Detection I	Frequenc
Heptachlor epoxide	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	3.5	3.5	28	0.45	0.015 [0.0049]	35/35	35/35
	2003 Warm season	1.3	1.3	6.6	0.49	0.015 [0.0048]	34/34	34/34
	2003 Cold season	2.8	2.9	9.7	0.65	0.052.[0.017]	37/37	37/37
	2004 Warm season	1.1	1.1	7.0	0.44	0.052 [0.017]	37/37	37/37
	2004 Cold season	1.5	1.7	11	tr(0.10)	0.12 [0.044]	37/37	37/37
	2005 Warm season	0.91	0.81	2.9	0.43	0.12 [0.044]	37/37	37/37
	2005 Cold season	1.7	2.0	6.7	0.13	0 11 [0 04]	37/37	37/37
Air	2006 Warm season	0.74	0.88	3.2	nd	0.11 [0.04]	36/37	36/37
(pg/m^3)	2006 Cold season	2.9	2.8	13	0.54	0.02.[0.01]	36/36	36/36
	2007 Warm season	0.93	0.82	3.0	0.41	0.03 [0.01]	36/36	36/36
	2007 Cold season	2.4	2.2	9.9	0.53	0.022.00.0001	37/37	37/37
	2008 Warm season	0.91	0.84	3.0	0.37	0.022 [0.008]	37/37	37/37
	2008 Cold season	2.5	2.6	16	0.37	0.02.50.013	37/37	37/37
2	2009 Warm season	1.0	0.91	3.8	0.42	0.03 [0.01]	37/37	37/37
	2009 Cold season	2.3	2.3	10	0.38	0.02 [0.01]	37/37	37/37

Stocktaking of the detection of heptachlor, *cis*-heptachlor epocide and *trans*-heptachlor epocide in air during FY2002~2010

trans-		Geometric				Quantification	Detection l	Frequency
Heptachlor epoxide	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	tr(0.036)	tr(0.038)	0.30	nd	0.099 [0.033]	18/35	18/35
	2003 Cold season	nd	nd	tr(0.094)	nd	0.099 [0.033]	3/34	3/34
	2004 Warm season	nd	nd	tr(0.38)	nd	0.6 [0.2]	4/37	4/37
	2004 Cold season	nd	nd	nd	nd	0.6 [0.2]	0/37	0/37
	2005 Warm season	tr(0.10)	tr(0.12)	1.2	nd	0.16.50.053	27/37	27/37
	2005 Cold season	nd	nd	0.32	nd	0.16 [0.05]	3/37	3/37
	2006 Warm season	nd	nd	0.7	nd	0.2 [0.1]	2/37	2/37
Air	2006 Cold season	nd	nd	tr(0.1)	nd	0.3 [0.1]	1/37	1/37
(pg/m^3)	2007 Warm season	nd	nd	0.16	nd	0.14 [0.06]	8/36	8/36
	2007 Cold season	nd	nd	tr(0.06)	nd	0.14 [0.06]	1/36	1/36
	2008 Warm season	nd	nd	0.17	nd	0.16.50.063	6/37	6/37
	2008 Cold season	nd	nd	nd	nd	0.16 [0.06]	0/37	0/37
	2009 Warm season	nd	nd	0.18	nd	0.14 [0.05]	10/37	10/37
	2009 Cold season	nd	nd	tr(0.06)	nd	0.14 [0.05]	1/37	1/37
	2010 Warm season	nd	nd	0.16	nd	0.16.50.063	6/37	6/37
	2003 Warm season	nd	nd	nd	nd	0.16 [0.06]	0/37	0/37

[9] Toxaphenes (reference)

· History and state of monitoring

Toxaphenes are a group of organochlorine insecticides. No domestic record of manufacture/import of the substances was reported since those were historically never registrated under the Agricultural Chemicals Regulation Law. The substances were designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 2002.

In previous monitoring series before FY 2001, the substance was measured in FY 1983 (in surface water and sediment) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Parlar-26, Parlar-50 and Parlar-62 have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air since FY 2003.

As of FY 2010, monitoring surveys are conducted bi-annually, that is every other year. No monitoring was conducted in 2010. For reference, the monitoring results up to FY 2009 are given below.

- Monitoring results until FY 2009
- o Parlar-26, Parlar-50, and Parlar-62

<Surface Water>

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in surface water during FY2002~2009

Monitored Geometric Median Maximum Minimum [Detection] Sample

	Monitored	Geometric				Quantification	Detection l	Frequency
Parlar-26	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	40 [20]	0/36	0/36
	2004	nd	nd	nd	nd	9 [3]	0/38	0/38
Surface Water	2005	nd	nd	nd	nd	10 [4]	0/47	0/47
	2006	nd	nd	nd	nd	16 [5]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	20 [5]	0/48	0/48
	2008	nd	nd	nd	nd	8 [3]	0/48	0/48
	2009	nd	nd	nd	nd	5 [2]	0/49	0/49
	Monitored	Geometric				Quantification	Detection l	Frequency
Parlar-50	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	70 [30]	0/36	0/36
	2004	nd	nd	nd	nd	20 [7]	0/38	0/38
Surface Water	2005	nd	nd	nd	nd	20 [5]	0/47	0/47
(pg/L)	2006	nd	nd	nd	nd	16 [5]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	9 [3]	0/48	0/48
	2008	nd	nd	nd	nd	7 [3]	0/48	0/48
	2009	nd	nd	nd	nd	7 [3]	0/49	0/49
	Monitored	Geometric				Quantification	Detection l	Frequency
Parlar-62	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	300 [90]	0/36	0/36
	2004	nd	nd	nd	nd	90 [30]	0/38	0/38
Surface Water	2005	nd	nd	nd	nd	70[30]	0/47	0/47
	2006	nd	nd	nd	nd	60 [20]	0/48	0/48
(pg/L)	2007	nd	nd	nd	nd	70 [30]	0/48	0/48
	2008	nd	nd	nd	nd	40 [20]	0/48	0/48
	2009	nd	nd	nd	nd	40 [20]	0/49	0/49

<Sediment>

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in sediment during FY2002~2009

	Monitored	Geometric			oum Minimum	Quantification	Detection I	Frequency
Parlar-26	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	90 [30]	0/186	0/62
	2004	nd	nd	nd	nd	60 [20]	0/189	0/63
Sediment	2005	nd	nd	nd	nd	60 [30]	0/189	0/63
	2006	nd	nd	nd	nd	12 [4]	0/192	0/64
(pg/g-dry)	2007	nd	nd	nd	nd	7 [3]	0/192	0/64
	2008	nd	nd	nd	nd	12 [5]	0/192	0/64
	2009	nd	nd	nd	nd	10 [4]	0/192	0/64
	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-50	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	200 [50]	0/186	0/62
	2004	nd	nd	nd	nd	60 [20]	0/189	0/63
Sediment	2005	nd	nd	nd	nd	90 [40]	0/189	0/63
(pg/g-dry)	2006	nd	nd	nd	nd	24 [7]	0/192	0/64
(pg/g-dry)	2007	nd	nd	nd	nd	30 [10]	0/192	0/64
	2008	nd	nd	nd	nd	17 [6]	0/192	0/64
	2009	nd	nd	nd	nd	12 [5]	0/192	0/64
	Monitored	Geometric				Quantification	Detection I	requency
Parlar-62	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	4,000 [2,000]	0/186	0/62
	2004	nd	nd	nd	nd	2,000 [400]	0/189	0/63
Sediment	2005	nd	nd	nd	nd	2,000 [700]	0/189	0/63
(pg/g-dry)	2006	nd	nd	nd	nd	210 [60]	0/192	0/64
(pg/g-ury)	2007	nd	nd	nd	nd	300 [70]	0/192	0/64
	2008	nd	nd	nd	nd	90 [40]	0/192	0/64
(3.1 1) ((4 22 1 1 1 1	2009	nd	nd	nd	nd	80 [30]	0/192	0/64

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~FY2009.

<Wildlife>

Stocktaking of the detection of Parlar-26 in wildlife (bivalves, fish and birds) during FY2002~2009

	Monitored	Geometric				Quantification	Detection l	requency
Parlar-26	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	tr(39)	nd	45 [15]	11/30	3/6
	2004	nd	nd	tr(32)	nd	42 [14]	15/31	3/7
Bivalves	2005	nd	nd	tr(28)	nd	47 [16]	7/31	4/7
	2006	tr(9)	tr(12)	25	nd	18 [7]	21/31	5/7
(pg/g-wet)	2007	tr(7)	tr(8)	20	nd	10 [4]	26/31	6/7
	2008	tr(7)	tr(8)	22	nd	9 [3]	27/31	7/7
	2009	9	9	23	nd	7 [3]	27/31	7/7
	2003	tr(28)	tr(24)	810	nd	45 [15]	44/70	11/14
	2004	43	tr(41)	1,000	nd	42 [14]	54/70	13/14
Fig.	2005	tr(42)	53	900	nd	47 [16]	50/75	13/16
Fish	2006	41	44	880	nd	18 [7]	70/80	15/16
(pg/g-wet)	2007	24	32	690	nd	10 [4]	64/80	14/16
	2008	35	33	730	nd	9 [3]	79/85	17/17
	2009	25	20	690	nd	7 [3]	82/90	18/18
	2003	120	650	2,500	nd	45 [15]	5/10	1/2
	2004	70	340	810	nd	42 [14]	5/10	1/2
Dist.	2005	86	380	1,200	nd	47 [16]	5/10	1/2
Birds	2006	48	290	750	nd	18 [7]	5/10	1/2
(pg/g-wet)	2007	34	280	650	nd	10 [4]	5/10	1/2
	2008	38	320	1,200	nd	9 [3]	6/10	2/2
	2009	26	200	500	nd	7 [3]	6/10	2/2

Stocktaking of the detection of Parlar-50 in wildlife (bivalves, fish and birds) during FY2002~2009

	Monitored	Geometric				Quantification	Detection l	Frequency
Parlar-50	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
-						limit		
	2003	tr(12)	tr(12)	58	nd	33 [11]	17/30	4/6
	2004	tr(15)	nd	tr(45)	nd	46 [15]	15/31	3/7
Bivalves	2005	nd	nd	tr(38)	nd	54 [18]	9/31	4/7
(pg/g-wet)	2006	tr(10)	14	32	nd	14 [5]	24/31	6/7
(pg/g-wet)	2007	9	10	37	nd	9 [3]	27/31	7/7
	2008	tr(7)	tr(6)	23	nd	10 [4]	23/31	6/7
	2009	9	9	31	nd	8 [3]	27/31	7/7
	2003	35	34	1,100	nd	33 [11]	55/70	14/14
	2004	60	61	1,300	nd	46 [15]	59/70	14/14
Dist.	2005	tr(52)	66	1,400	nd	54 [18]	55/80	13/16
Fish	2006	56	52	1,300	nd	14 [5]	79/80	16/16
(pg/g-wet)	2007	35	41	1,100	nd	9 [3]	77/80	16/16
	2008	44	45	1,000	nd	10 [4]	77/85	17/17
	2009	30	23	910	nd	8 [3]	85/90	18/18
	2003	110	850	3,000	nd	33 [11]	5/10	1/2
	2004	83	440	1,000	nd	46 [15]	5/10	1/2
D: 1	2005	100	480	1,500	nd	54 [18]	5/10	1/2
Birds	2006	46	380	1,000	nd	14 [5]	5/10	1/2
(pg/g-wet)	2007	34	360	930	nd	9 [3]	5/10	1/2
	2008	49	410	1,600	nd	10 [4]	5/10	1/2
	2009	29	250	620	nd	8 [3]	5/10	1/2

⁽Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~FY2009.

Stocktaking of the detection of Parlar-62 in wildlife (bivalves, fish and birds) during FY2002~2009

	Monitored	Geometric				Quantification	Detection I	Frequency
Parlar-62	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	nd	nd	nd	nd	120 [40]	0/30	0/6
	2004	nd	nd	nd	nd	98 [33]	0/31	0/7
Bivalves	2005	nd	nd	nd	nd	100 [34]	0/31	0/7
	2006	nd	nd	nd	nd	70 [30]	0/31	0/7
(pg/g-wet)	2007	nd	nd	nd	nd	70 [30]	0/31	0/7
	2008	nd	nd	nd	nd	80 [30]	0/31	0/7
	2009	nd	nd	nd	nd	70 [20]	0/31	0/7
	2003	nd	nd	580	nd	120 [40]	9/70	3/14
	2004	nd	nd	870	nd	98 [33]	24/70	7/14
Fish	2005	nd	nd	830	nd	100 [34]	23/80	8/16
(pg/g-wet)	2006	tr(30)	nd	870	nd	70 [30]	28/80	10/16
(pg/g-wet)	2007	tr(30)	nd	530	nd	70 [30]	22/80	7/16
	2008	tr(30)	nd	590	nd	80 [30]	31/85	8/17
	2009	tr(20)	nd	660	nd	70 [20]	24/90	8/18
	2003	tr(96)	200	530	nd	120 [40]	5/10	1/2
	2004	tr(64)	110	280	nd	98 [33]	5/10	1/2
Birds	2005	tr(78)	130	460	nd	100 [34]	5/10	1/2
	2006	70	120	430	nd	70 [30]	5/10	1/2
(pg/g-wet)	2007	tr(60)	100	300	nd	70 [30]	5/10	1/2
	2008	tr(70)	130	360	nd	80 [30]	5/10	1/2
	2009	tr(40)	80	210	nd	70 [20]	5/10	1/2

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~FY2009.

Stocktaking of the detection of Parlar-26, Parlar-50 and Parlar-62 in air during FY2002~2009

Parlar-26	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection l Sample	Frequency Site
	2003 Warm season	0.31	0.31	0.77	tr(0.17)	0.20 [0.066]	35/35	35/35
	2003 Cold season	tr(0.17)	tr(0.17)	0.27	tr(0.091)	0.20 [0.066]	34/34	34/34
	2004 Warm season	0.27	0.26	0.46	tr(0.17)	0.20.00.000	37/37	37/37
	2004 Cold season	tr(0.15)	tr(0.15)	0.50	tr(0.094)	0.20 [0.066]	37/37	37/37
	2005 Warm season	nd	nd	nd	nd	0.2.[0.1]	0/37	0/37
	2005 Cold season	nd	nd	nd	nd	0.3 [0.1]	0/37	0/37
Air	2006 Warm season	nd	nd	nd	nd	1.0.00.63	0/37	0/37
(pg/m^3)	2006 Cold season	nd	nd	nd	nd	1.8 [0.6]	0/37	0/37
	2007 Warm season	nd	nd	tr(0.3)	nd	0.6.50.21	18/36	18/36
	2007 Cold season	nd	nd	nd	nd	0.6 [0.2]	0/36	0/36
	2008 Warm season	tr(0.21)	0.22	0.58	tr(0.12)	0.00.50.003	37/37	37/37
	2008 Cold season	tr(0.11)	tr(0.12)	tr(0.20)	nd	0.22 [0.08]	36/37	36/37
	2009 Warm season	tr(0.18)	tr(0.19)	0.26	tr(0.11)	0.00.50.007	37/37	37/37
	2009 Cold season	tr(0.12)	tr(0.13)	0.27	nd	0.23 [0.09]	33/37	33/37
			()			Quantification	Detection l	
Parlar-50	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	nd	nd	tr(0.37)	nd	0.01.[0.27]	2/35	2/35
	2003 Cold season	nd	nd	nd	nd	0.81 [0.27]	0/34	0/34
	2004 Warm season	nd	nd	nd	nd	1.0.10.41	0/37	0/37
	2004 Cold season	nd	nd	nd	nd	1.2 [0.4]	0/37	0/37
	2005 Warm season	nd	nd	nd	nd	0.650.03	0/37	0/37
	2005 Cold season	nd	nd	nd	nd	0.6 [0.2]	0/37	0/37
Air	2006 Warm season	nd	nd	nd	nd		0/37	0/37
(pg/m^3)	2006 Cold season	nd	nd	nd	nd	1.6 [0.5]	0/37	0/37
40 /	2007 Warm season	nd	tr(0.1)	tr(0.2)	nd	0.3 [0.1]	29/36	29/36
	2007 Cold season	nd	nd	nd	nd		0/36	0/36
	2008 Warm season	nd	nd	tr(0.19)	nd		15/37	15/37
	2008 Cold season	nd	nd	nd	nd	0.25 [0.09]	0/37	0/37
	2009 Warm season	nd	nd	tr(0.1)	nd		11/37	11/37
	2009 Cold season	nd	nd	tr(0.1)	nd	0.3 [0.1]	1/37	1/37
	2009 Cold Scason		nu .	11(0.1)	na	Quantification	Detection l	
Parlar-62	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection]	Sample	Site
	2003 Warm season	nd	nd	nd	nd	1 ([0 52]	0/35	0/35
	2003 Cold season	nd	nd	nd	nd	1.6 [0.52]	0/34	0/34
	2004 Warm season	nd	nd	nd	nd	2 4 50 013	0/37	0/37
	2004 Cold season	nd	nd	nd	nd	2.4 [0.81]	0/37	0/37
	2005 Warm season	nd	nd	nd	nd	1.2.50.43	0/37	0/37
					nd	1.2 [0.4]	0/37	0/37
	2005 Cold season	nd	nd	nd	IIU			
Air		nd nd	nd nd	nd nd	nd	0.553		0/37
	2005 Cold season 2006 Warm season 2006 Cold season	nd	nd	nd	nd	8 [3]	0/37	0/37 0/37
Air (pg/m³)	2006 Warm season 2006 Cold season	nd nd	nd nd	nd nd	nd nd		0/37 0/37	0/37
	2006 Warm season 2006 Cold season 2007 Warm season	nd nd nd	nd nd nd	nd nd nd	nd nd nd	8 [3]	0/37 0/37 0/36	0/37
	2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season	nd nd nd nd	nd nd nd nd	nd nd nd nd	nd nd nd nd	1.5 [0.6]	0/37 0/37 0/36 0/36	0/37 0/36 0/36
	2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season 2008 Warm season	nd nd nd nd nd	nd nd nd nd	nd nd nd nd nd	nd nd nd nd		0/37 0/37 0/36 0/36 0/37	0/37 0/36 0/36 0/37
	2006 Warm season 2006 Cold season 2007 Warm season 2007 Cold season	nd nd nd nd	nd nd nd nd	nd nd nd nd	nd nd nd nd	1.5 [0.6]	0/37 0/37 0/36 0/36	0/37 0/36 0/36

[10] Mirex (reference)

· History and state of monitoring

Mirex was developed as an organochlorine insecticide chemical in the United States, and it was also used as a flame retardant. No domestic record of manufacture/import of the substance was reported since it was historically never registrated under the Agricultural Chemicals Regulation Law. The substance was designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in September 2002.

Before FY 2001, the substance was measured in FY 1983 (in surface water and sediment) under the framework of "the Environmental Survey and Monitoring of Chemicals."

Under the framework of the Environmental Monitoring, Mirex has been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air since FY 2003.

As of FY 2010, monitoring surveys are conducted bi-annually, that is every other year. No monitoring was conducted in 2010. For reference, the monitoring results up to FY 2009 are given below.

Monitoring results until FY 2009

<Surface Water>

Stocktaking of the detection of mirex in surface water during FY2002~2009

	Monitored	Geometric	•		Quantification	Detection Frequen		
Mirex	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	tr(0.13)	tr(0.12)	0.8	nd	0.3 [0.09]	25/36	25/36
	2004	nd	nd	1.1	nd	0.4 [0.2]	18/38	18/38
Surface Water	2005	nd	nd	1.0	nd	0.4 [0.1]	14/47	14/47
	2006	nd	nd	0.07	nd	1.6 [0.5]	1/48	1/48
(pg/L)	2007	nd	nd	tr(0.5)	nd	1.1 [0.4]	2/48	2/48
	2008	nd	nd	0.7	nd	0.6 [0.2]	4/48	4/48
	2009	nd	nd	0.5	nd	0.4 [0.2]	8/49	8/49

<Sediment>

Stocktaking of the detection of mirex in sediment during FY2002~2009

	Monitored	Geometric				Quantification	Detection Frequency	
Mirex	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	2	tr(1.6)	1,500	nd	2 [0.4]	137/186	51/62
	2004	2	tr(1.6)	220	nd	2 [0.5]	153/189	55/63
C. dim. and	2005	1.8	1.2	5,300	nd	0.9 [0.3]	134/189	48/63
Sediment	2006	1.7	1.2	640	nd	0.6 [0.2]	156/192	57/64
(pg/g-dry)	2007	1.5	0.9	200	nd	0.9 [0.3]	147/192	55/64
	2008	1.4	1.1	820	nd	0.7 [0.3]	117/192	48/64
	2009	1.4	1.3	620	nd	1.0 [0.4]	126/192	49/64

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~FY2009.

<Wildlife>

Stocktaking of the detection of mirex in wildlife (bivalves, fish and birds) during FY2002~2009

·	Monitored	Geometric			·	Quantification	Detection I	requency
Mirex	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	4.9	4.2	19	tr(1.6)	2.4 [0.81]	30/30	6/6
	2004	4.4	4.3	12	tr(1.1)	2.5 [0.82]	31/31	7/7
Dissalassa	2005	5.4	5.2	20	tr(1.9)	3.0 [0.99]	31/31	7/7
Bivalves	2006	5	4	19	tr(2)	3 [1]	31/31	7/7
(pg/g-wet)	2007	5	4	18	tr(2)	3 [1]	31/31	7/7
	2008	4	tr(3)	18	tr(2)	4 [1]	31/31	7/7
	2009	5.9	5.2	21	tr(1.7)	2.1 [0.8]	31/31	7/7
	2003	8.3	9.0	25	tr(1.7)	2.4 [0.81]	70/70	14/14
	2004	13	11	180	3.8	2.5 [0.82]	70/70	14/14
Fish	2005	13	13	78	tr(1.0)	3.0 [0.99]	80/80	16/16
	2006	11	10	53	tr(2)	3 [1]	80/80	16/16
(pg/g-wet)	2007	9	11	36	tr(1)	3 [1]	80/80	16/16
	2008	11	13	48	tr(1)	4 [1]	85/85	17/17
	2009	8.6	9.6	37	tr(0.9)	2.1 [0.8]	90/90	18/18
	2003	120	150	450	31	2.4 [0.81]	10/10	2/2
	2004	61	64	110	33	2.5 [0.82]	10/10	2/2
Dinda	2005	77	66	180	41	3.0 [0.99]	10/10	2/2
Birds (pg/g yyet)	2006	77	70	280	39	3 [1]	10/10	2/2
(pg/g-wet)	2007	57	59	100	32	3 [1]	10/10	2/2
	2008	74	68	260	27	4 [1]	10/10	2/2
	2009	49	50	79	32	2.1 [0.8]	10/10	2/2

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2003~FY2009.

<Air>

Stocktaking of the detection of mirex in air during FY2002~2009

		Geometric				Quantification	Detection I	Frequency
Mirex	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	0.11	0.12	0.19	0.047	0.0084	35/35	35/35
	2003 Cold season	0.044	0.043	0.099	0.024	[0.0028]	34/34	34/34
	2004 Warm season	0.099	0.11	0.16	tr(0.042)	0.05 [0.017]	37/37	37/37
	2004 Cold season	tr(0.046)	tr(0.047)	0.23	tr(0.019)	0.05 [0.017]	37/37	37/37
	2005 Warm season	tr(0.09)	tr(0.09)	0.24	tr(0.05)	0.10 [0.03]	37/37	37/37
	2005 Cold season	tr(0.04)	tr(0.04)	tr(0.08)	nd	0.10 [0.03]	29/37	29/37
Air	2006 Warm season	tr(0.07)	tr(0.10)	0.22	nd	0.12 [0.04]	29/37	29/37
(pg/m^3)	2006 Cold season	tr(0.07)	tr(0.07)	2.1	nd	0.13 [0.04]	27/37	27/37
	2007 Warm season	0.11	0.11	0.28	0.04	0.02.00.013	36/36	36/36
	2007 Cold season	0.04	0.04	0.09	tr(0.02)	0.03 [0.01]	36/36	36/36
	2008 Warm season	0.09	0.09	0.25	0.03	0.02.00.013	37/37	37/37
	2008 Cold season	0.05	0.04	0.08	0.03	0.03 [0.01]	37/37	37/37
	2009 Warm season	0.12	0.13	0.48	0.049	0.015 [0.006]	37/37	37/37
	2009 Cold season	0.058	0.054	0.18	0.030	0.015 [0.006]	37/37	37/37

[11] HCHs

· History and state of monitoring

HCHs were used as plant protection products, pesticides, household insecticides, and termitecides, etc. Even after their registration under the Agricultural Chemicals Regulation Law was expired in FY 1971, they continue to be used as termitecides and wood preservatives. α -HCH, β -HCH, and γ -HCH (synonym:Lindane) were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009.

Among many HCH isomers, α -HCH, β -HCH, γ -HCH (synonym: Lindane) and δ -HCH have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air.

Before FY 2001, the substances were measured in FY 1974 (in surface water, sediment and fish) under the framework of "the Environmental Survey and Monitoring of Chemicals." α -HCH and β -HCH had been the target chemicals, and surface water and sediment had been the monitored media during the period of FY 1986 \sim 1998 and FY 1986 \sim 2001, respectively. Under the framework of the Wildlife Monitoring, the substances were monitored in wildlife (bivalves, fish and birds) during the period of FY 1978 \sim 1996 and in FY 1998, FY 2000 and FY 2001 (γ -HCH (synonym:Lindane) and δ -HCH had not been monitored since FY 1997 and FY 1993, respectively.)

Under the framework of the Environmental Monitoring, α -HCH and β -HCH have been monitored in surface water, sediment, and wildlife (bivalves, fish and birds) since FY 2002. α -HCH and β -HCH have also been monitored in air, and γ -HCH (synonym:Lindane) and δ -HCH have been monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air since FY 2003.

- Monitoring results
- ο α -HCH, β -HCH, γ -HCH (synonym:Lindane) and δ -HCH

<Surface Water>

 α -HCH: The presence of the substance in surface water was monitored at 49 sites, and it was detected at all 49 valid sites adopting the detection limit of 1pg/L, and the detection range was $14 \sim 1,400$ pg/L.

 β -HCH: The presence of the substance in surface water was monitored at 49 sites, and it was detected at all 49 valid sites adopting the detection limit of 0.7pg/L, and the detection range was 33 \sim 2,500 pg/L. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from lake areas were identified as statistically significant

 γ -HCH(synonym:Lindane): The presence of the substance in surface water was monitored at 49 sites, and it was detected at all 49 valid sites adopting the detection limit of 2pg/L, and the detection range was tr(5) \sim 190 pg/L. As results of the inter-annual trend analysis from FY 2003 to FY 2010, reduction tendencies in specimens from river areas, river mouth areas and sea areas were identified as statistically significant and reduction tendency in specimens from the overall areas was also identified as statistically significant.

 δ -HCH: The presence of the substance in surface water was monitored at 49 sites, and it was detected at all 49 valid sites adopting the detection limit of 0.3pg/L, and the detection range was 0.9 \sim 780 pg/L.

Stocktaking of the detection of α -HCH, β -HCH, γ -HCH (synonym: Lindane) and δ -HCH in surface water during FY2002~2010

α-НСН	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequen Site
	2002	86	76	6,500	1.9	0.9 [0.3]	114/114	38/38
	2003	120	120	970	13	3 [0.9]	36/36	36/36
	2004	150	145	5,700	13	6 [2]	38/38	38/38
	2005	90	81	660	16	4[1]	47/47	47/47
Surface Water	2006	110	90	2,100	25	3 [1]	48/48	48/48
(pg/L)	2007	76	73	720	13	1.9 [0.6]	48/48	48/48
	2008	78	75	1,100	9	4 [2]	48/48	48/4
	2009	74	73	560	14	1.2 [0.4]	49/49	49/4
	2010	94	75	1,400	14	4[1]	49/49	49/49
			7.5	1,100		Quantification	Detection 1	
β -HCH	Monitored		Median	Maximum	Minimum	[Detection]		
p men	year	mean*	Wiedian	TVI CALIFICATIO	141111111111111111	limit	Sample	Site
	2002	210	180	1,600	24	0.9 [0.3]	114/114	38/3
	2003	250	240	1,700	14	3 [0.7]	36/36	36/3
	2004	260	250	3,400	31	4 [2]	38/38	38/3
	2005	200	170	2,300	25	2.6 [0.9]	47/47	47/4
Surface Water	2006	200	160	2,000	42	1.7 [0.6]	48/48	48/4
(pg/L)	2007	170	150	1,300	18	2.7[0.9]	48/48	48/4
	2007	150	150	1,800	15	1.0 [0.4]	48/48	48/4
	2009	150	150	1,100	18	0.6 [0.2]	49/49	49/4
	2010	180	160	2,500	33	2.0 [0.7]	49/49	49/4
у-НСН	2010	100	100	2,500	33	Ouantification	Detection 1	
(synonym:	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		
Lindane)	year	mean*	Median	Iviaxiiiiuiii	Millimin	limit	Sample	Site
	2003	92	90	370	32	7 [2]	36/36	36/3
	2004	91	76	8,200	21	20 [7]	38/38	38/3
	2005	48	40	250	tr(8)	14 [5]	47/47	47/4
Surface Water	2006	44	43	460	tr(9)	18 [6]	48/48	48/4
(pg/L)	2007	34	32	290	5.2	2.1 [0.7]	48/48	48/4
46 /	2008	34	32	340	4	3 [1]	48/48	48/4
	2009	32	26	280	5.1	0.6 [0.2]	49/49	49/4
	2010	26	22	190	tr(5)	6 [2]	49/49	49/4
					11(0)	Quantification	Detection	
δ -HCH	Monitored	Geometric	Median	Maximum	Minimum	[Detection]	У	
<i>0</i> -псп	year	mean*	Median	Maxilliulli	Millilliulli	limit	Sample	Site
	2003	14	14	200	tr(1.1)	2 [0.5]	36/36	36/3
	2004	24	29	670	tr(1.4)	2 [0.7]	38/38	38/3
	2005	1.8	nd	62	nd	1.5 [0.5]	23/47	23/4
Surface Water	2006	24	18	1,000	2.2	2.0 [0.8]	48/48	48/4
(pg/L)	2007	11	9.7	720	tr(0.7)	1.2 [0.4]	48/48	48/4
(12, 2)	2007	11	10	1,900	tr(1.1)	2.3 [0.9]	48/48	48/4
	2009	10	11	450	tr(0.7)	0.9 [0.4]	49/49	49/4
	2007	10	1.1	750	u(0.7)	0.7 [0.7]	マン/マン	サン/サ

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2002.

<Sediment>

 α -HCH: The presence of the substance in sediment was monitored at 64 sites, and it was detected at all 64 valid sites adopting the detection limit of 0.8pg/g-dry, and the detection range was 3.1 \sim 3,700 pg/g-dry.

 β -HCH: The presence of the substance in sediment was monitored at 64 sites, and it was detected at all 64 valid sites adopting the detection limit of 0.8pg/g-dry, and the detection range was $11 \sim 8,200$ pg/g-dry. As results of the inter-annual trend analysis from FY 2002 to FY 2010, reduction tendencies in specimens from lake areas were identified as statistically significant

 γ -HCH(synonym:Lindane): The presence of the substance in sediment was monitored at 64 sites, and it was detected at all 64 valid sites adopting the detection limit of 0.7pg/g-dry, and the detection range was tr(1.5) \sim 2,300 pg/g-dry. As results of the inter-annual trend analysis from FY 2003 to FY 2010, reduction tendencies in specimens from lake areas were identified as statistically significant

 δ -HCH: The presence of the substance in sediment was monitored at 64 sites, and it was detected at all 64 valid sites adopting the detection limit of 0.5pg/g-dry, and the detection range was 1.3 \sim 3,800 pg/g-dry.

Stocktaking of the detection of α -HCH, β -HCH, γ -HCH (synonym: Lindane) and δ -HCH in sediment during FY2002~2010

	Manitarad	Geometric				Quantification	Detection	Frequency
α-НСН	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	150	170	8,200	2.0	1.2 [0.4]	189/189	63/63
	2003	160	170	9,500	2	2 [0.5]	186/186	62/62
	2004	160	180	5,700	tr(1.5)	2 [0.6]	189/189	63/63
a 11	2005	140	160	7,000	3.4	1.7 [0.6]	189/189	63/63
Sediment	2006	140	160	4,300	tr(2)	5 [2]	192/192	64/64
(pg/g-dry)	2007	140	150	12,000	tr(1.3)	1.8 [0.6]	192/192	64/64
	2008	140	190	5,200	nd	1.6 [0.6]	191/192	64/64
	2009	120	120	6,300	nd	1.1 [0.4]	191/192	64/64
	2010	140	140	3,700	3.1	2.0 [0.8]	64/64	64/64
				2,		Quantification	Detection	
β -HCH	Monitored		Median	Maximum	Minimum	[Detection]	Sample	Site
, -	year	mean*				limit	Sample	Site
	2002	230	230	11,000	3.9	0.9 [0.3]	189/189	63/63
	2003	250	220	39,000	5	2 [0.7]	186/186	62/62
	2004	240	230	53,000	4	3 [0.8]	189/189	63/63
	2005	200	220	13,000	3.9	2.6 [0.9]	189/189	63/63
Sediment	2006	190	210	21,000	2.3	1.3 [0.4]	192/192	64/64
(pg/g-dry)	2007	200	190	59,000	1.6	0.9 [0.3]	192/192	64/64
	2008	190	200	8,900	2.8	0.8 [0.3]	192/192	64/64
	2009	180	170	10,000	2.4	1.3 [0.5]	192/192	64/64
	2010	230	210	8,200	11	2.4 [0.8]	64/64	64/64
γ-НСН	2010	250	210	0,200	- 11	Ouantification	Detection	
(synonym:	Monitored	Geometric	Median	Maximum	Minimum	[Detection]		
Lindane)	year	mean*	Median	Maximum	William	limit	Sample	Site
Lilidane)	2003	51	47	4,000	tr(1.4)	2 [0.4]	186/186	62/62
	2003	53	48	4,000			189/189	63/63
	2004	33 49		6,400	tr(0.8)	2 [0.5]		63/63
C - 4: 4			46		tr(1.8)	2.0 [0.7]	189/189	
Sediment	2006	48	49	3,500	tr(1.4)	2.1 [0.7]	192/192	64/64
(pg/g-dry)	2007	42	41	5,200	tr(0.6)	1.2 [0.4]	192/192	64/64
	2008	40	43	2,200	tr(0.7)	0.9 [0.4]	192/192	64/64
	2009	38	43	3,800	nd	0.6 [0.2]	191/192	64/64
	2010	35	30	2,300	tr(1.5)	2.0 [0.7]	64/64	64/64
CHOIL	Monitored	Geometric	3.6.11			Quantification	Detection	
δ -HCH	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
				- 100		limit	100/106	(1//0
	2003	42	46	5,400	nd	2 [0.7]	180/186	61/62
	2004	55	55	5,500	tr(0.5)	2 [0.5]	189/189	63/63
~	2005	52	63	6,200	nd	1.0 [0.3]	188/189	63/63
Sediment	2006	45	47	6,000	nd	1.7 [0.6]	189/192	64/64
(pg/g-dry)	2007	26	28	5,400	nd	5 [2]	165/192	60/64
	2008	41	53	3,300	nd	2 [1]	186/192	64/64
	2009	36	37	5,000	nd	1.2 [0.5]	190/192	64/64
	2010	39	40	3,800	1.3	1.2 [0.5]		

(Note) " *" :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 \sim FY2009.

<Wildlife>

 α -HCH: The presence of the substance in bivalves was monitored in 7 areas, and it was detected at 6 of the 7 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was 13 \sim 730 pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was tr(1) \sim 250 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was 160 \sim 430 pg/g-wet.

β-HCH: The presence of the substance in bivalves was monitored in 7 areas, and it was detected at 6 of the 7 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was 27 \sim 1,500 pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was 5 \sim 760 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was 910 \sim 2,800 pg/g-wet.

 γ -HCH(synonym:Lindane): The presence of the substance in bivalves was monitored in 7 areas, and it was detected at 6 of the 7 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $5\sim150$ pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was tr(1) ~56 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $4\sim23$ pg/g-wet. As results of the inter-annual trend analysis from FY 2003 to FY 2010, reduction tendencies in specimens from bivalves and fish were identified as statistically significant.

 δ -HCH: The presence of the substance in bivalves was monitored in 7 areas, and it was detected at 5 of the 7 valid areas adopting the detection limit of 1pg/g-wet, and none of the detected concentrations exceeded 870 pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 13 of the 18 valid areas adopting the detection limit of 1pg/g-wet, and none of the detected concentrations exceeded 36 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 1pg/g-wet, and the detection range was $11 \sim 13$ pg/g-wet.

Stocktaking of the detection of α -HCH in wildlife (bivalves, fish and birds) during FY2002~2010

	Monitored	ored Geometric	M. E	Manimum		Quantification	Detection I	requency
α-НСН	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	67	64	1,100	12	4.2 [1.4]	38/38	8/8
	2003	45	30	610	9.9	1.8 [0.61]	30/30	6/6
	2004	56	25	1,800	tr(12)	13 [4.3]	31/31	7/7
Dissalassa	2005	38	25	1,100	tr(7.1)	11 [3.6]	31/31	7/7
Bivalves	2006	30	21	390	6	3 [1]	31/31	7/7
(pg/g-wet)	2007	31	17	1,400	8	7 [2]	31/31	7/7
	2008	26	16	380	7	6 [2]	31/31	7/7
	2009	45	21	2,200	9	5 [2]	31/31	7/7
	2010	35	20	730	13	3 [1]	6/6	6/6

Stocktaking of the detection of α -HCH in wildlife (bivalves, fish and birds) during FY2002~2010

	2002	57	56	590	tr(1.9)	4.2 [1.4]	70/70	14/14
	2003	43	58	590	2.6	1.8 [0.61]	70/70	14/14
	2004	57	55	2,900	nd	13 [4.3]	63/70	14/14
E: 1	2005	42	43	1,000	nd	11 [3.6]	75/80	16/16
Fish	2006	44	53	360	tr(2)	3 [1]	80/80	16/16
(pg/g-wet)	2007	39	40	730	tr(2)	7 [2]	80/80	16/16
	2008	36	47	410	nd	6 [2]	84/85	17/17
	2009	39	32	830	tr(2)	5 [2]	90/90	18/18
	2010	27	39	250	tr(1)	3 [1]	18/18	18/18
	2002	170	130	360	93	4.2 [1.4]	10/10	2/2
	2003	73	74	230	30	1.8 [0.61]	10/10	2/2
	2004	190	80	1,600	58	13 [4.3]	10/10	2/2
D: 1	2005	76	77	85	67	11 [3.6]	10/10	2/2
Birds	2006	76	75	100	55	3 [1]	10/10	2/2
(pg/g-wet)	2007	75	59	210	43	7 [2]	10/10	2/2
	2008	48	48	61	32	6 [2]	10/10	2/2
	2009	43	42	56	34	5 [2]	10/10	2/2
	2010	260		430	160	3 [1]	2/2	2/2

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

Stocktaking of the detection of β -HCH in wildlife (bivalves, fish and birds) during FY2002~2010

	Monitored	Geometric				Quantification	Detection 1	Frequency
β-НСН	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	88	62	1,700	32	12 [4]	38/38	8/8
	2003	78	50	1,100	23	9.9 [3.3]	30/30	6/6
	2004	100	74	1,800	22	6.1 [2.0]	31/31	7/7
Bivalves	2005	85	56	2,000	20	2.2 [0.75]	31/31	7/7
	2006	81	70	880	11	3 [1]	31/31	7/7
(pg/g-wet)	2007	79	56	1,800	21	7 [3]	31/31	7/7
	2008	73	51	1,100	23	6 [2]	31/31	7/7
	2009	83	55	1,600	27	6 [2]	31/31	7/7
	2010	89	56	1,500	27	3 [1]	6/6	6/6
	2002	110	120	1,800	tr(5)	12 [4]	70/70	14/14
r: l	2003	81	96	1,100	tr(3.5)	9.9 [3.3]	70/70	14/14
	2004	110	140	1,100	tr(3.9)	6.1 [2.0]	70/70	14/14
	2005	95	110	1,300	6.7	2.2 [0.75]	80/80	16/16
Fish	2006	89	110	1,100	4	3 [1]	80/80	16/16
(pg/g-wet)	2007	110	120	810	7	7 [3]	80/80	16/16
	2008	94	150	750	tr(4)	6 [2]	85/85	17/17
	2009	98	130	970	tr(5)	6 [2]	90/90	18/18
	2010	81	110	760	5	3 [1]	18/18	18/18
	2002	3,000	3,000	7,300	1,600	12 [4]	10/10	2/2
	2003	3,400	3,900	5,900	1,800	9.9 [3.3]	10/10	2/2
	2004	2,300	2,100	4,800	1,100	6.1 [2.0]	10/10	2/2
Dind.	2005	2,500	2,800	6,000	930	2.2 [0.75]	10/10	2/2
Birds	2006	2,100	2,400	4,200	1,100	3 [1]	10/10	2/2
(pg/g-wet)	2007	2,000	1,900	3,200	1,400	7 [3]	10/10	2/2
	2008	2,400	2,000	5,600	1,300	6 [2]	10/10	2/2
	2009	1,600	1,400	4,200	870	6 [2]	10/10	2/2
	2010	1,600		2,800	910	3 [1]	2/2	2/2

⁽Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

Stocktaking of the detection of γ -HCH (synonym: Lindane) in wildlife (bivalves, fish and birds) during FY2002~2010

у-НСН	Monitored	Geometric				Quantification	Detection 1	Frequency
(synonym:Lindane)	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	19	18	130	5.2	3.3 [1.1]	30/30	6/6
	2004	tr(24)	tr(16)	230	nd	31 [10]	28/31	7/7
	2005	23	13	370	tr(5.7)	8.4 [2.8]	31/31	7/7
Bivalves	2006	18	12	140	7	4 [2]	31/31	7/7
(pg/g-wet)	2007	16	10	450	tr(4)	9 [3]	31/31	7/7
	2008	12	10	98	tr(3)	9 [3]	31/31	7/7
	2009	14	12	89	tr(3)	7 [3]	31/31	7/7
	2010	14	9	150	5	3 [1]	6/6	6/6
	2003	16	22	130	tr(1.7)	3.3 [1.1]	70/70	14/14
	2004	tr(28)	tr(24)	660	nd	31 [10]	55/70	11/14
	2005	17	17	230	nd	8.4 [2.8]	78/80	16/16
Fish	2006	19	22	97	tr(2)	4 [2]	80/80	16/16
(pg/g-wet)	2007	15	15	190	nd	9 [3]	71/80	15/16
	2008	13	16	96	nd	9 [3]	70/85	15/17
	2009	14	12	180	nd	7 [3]	81/90	17/18
	2010	9	13	56	tr(1)	3 [1]	18/18	18/18
	2003	14	19	40	3.7	3.3 [1.1]	10/10	2/2
	2004	64	tr(21)	1,200	tr(11)	31 [10]	10/10	2/2
	2005	18	20	32	9.6	8.4 [2.8]	10/10	2/2
Birds	2006	16	17	29	8	4 [2]	10/10	2/2
(pg/g-wet)	2007	21	14	140	tr(8)	9 [3]	10/10	2/2
	2008	12	14	19	tr(5)	9 [3]	10/10	2/2
	2009	11	11	21	tr(6)	7 [3]	10/10	2/2
	2010	10		23	4	3 [1]	2/2	2/2

(Note) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

	Monitored	Geometric				Quantification	Detection I	requency
δ -HCH	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003	7.4	tr(2.6)	1,300	nd	3.9 [1.3]	29/30	6/6
	2004	6.3	tr(2.1)	1,500	nd	4.6 [1.5]	25/31	6/7
	2005	5.4	tr(2.1)	1,600	nd	5.1 [1.7]	23/31	6/7
Bivalves	2006	6	tr(2)	890	tr(1)	3 [1]	31/31	7/7
(pg/g-wet)	2007	4	nd	750	nd	4 [2]	12/31	4/7
	2008	tr(3)	nd	610	nd	6 [2]	7/31	3/7
	2009	tr(4)	nd	700	nd	5 [2]	14/31	4/7
	2010	4	tr(2)	870	nd	3 [1]	5/6	5/6
	2003	tr(3.6)	4.0	16	nd	3.9 [1.3]	59/70	13/14
	2004	tr(4.2)	tr(3.5)	270	nd	4.6 [1.5]	54/70	11/14
	2005	tr(3.2)	tr(3.1)	32	nd	5.1 [1.7]	55/80	12/16
Fish	2006	4	3	35	nd	3 [1]	72/80	16/16
(pg/g-wet)	2007	tr(3)	tr(2)	31	nd	4 [2]	42/80	10/16
	2008	tr(4)	tr(3)	77	nd	6 [2]	54/85	12/17
	2009	tr(3)	tr(3)	18	nd	5 [2]	57/90	13/18
	2010	tr(2)	tr(2)	36	nd	3 [1]	13/18	13/18
	2003	19	18	31	12	3.9 [1.3]	10/10	2/2
	2004	30	14	260	6.4	4.6 [1.5]	10/10	2/2
	2005	16	15	30	10	5.1 [1.7]	10/10	2/2
Birds	2006	13	12	21	9	3 [1]	10/10	2/2
(pg/g-wet)	2007	12	10	22	4	4 [2]	10/10	2/2
/	2008	9	8	31	tr(3)	6 [2]	10/10	2/2
	2009	5	6	9	tr(3)	5 [2]	10/10	2/2
	2010	12		13	11	3 [1]	2/2	2/2

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived during FY2002 ~FY2009.

<Air>

 α -HCH: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.47pg/m^3 , and the detection range was $14 \sim 280 \text{ pg/m}^3$. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.47pg/m^3 , and the detection range was $6.8 \sim 410 \text{ pg/m}^3$.

 β -HCH: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.09pg/m^3 , and the detection range was $0.89 \sim 34 \text{ pg/m}^3$. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.09pg/m^3 , and the detection range was $\text{tr}(0.26) \sim 29 \text{ pg/m}^3$.

 γ -HCH(synonym: Lindane): The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.12pg/m^3 , and the detection range was $2.3 \sim 66$ pg/m³. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.12pg/m^3 , and the detection range was $1.1 \sim 60 \text{ pg/m}^3$.

 δ -HCH: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.02pg/m^3 , and the detection range was $0.11 \sim 25 \text{ pg/m}^3$. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.02pg/m^3 , and the detection range was $0.05 \sim 22 \text{ pg/m}^3$.

In addition, it was found that there were some problems in collection of HCHs because of some parts of the air sampler that was used between FY2003 and FY2008 were contaminated by HCHs and affected monitored concentration. Therefore all samples in the air were recognized as undetectable in calculation of data for that period.

Stocktaking of the detection of α -HCH, β -HCH, γ -HCH (synonym: Lindane) and δ -HCH in air during FY2009~2010

	a UCU Manitared year		Median		m Minimum	Quantification	Detection	Frequency
α-НСН	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	58	58	340	19	0.12 [0.05]	37/37	37/37
Air	2009 Cold season	21	18	400	7.8	0.12 [0.05]	37/37	37/37
(pg/m^3)	2010 Warm season	46	51	280	14	1.4 [0.47]	37/37	37/37
	2010 Cold season	19	16	410	6.8	1.4 [0.47]	37/37	37/37
		Geometric				Quantification	Detection	Frequency
β-НСН	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	5.6	5.6	28	0.96	0.00.00.031	37/37	37/37
Air	2009 Cold season	1.8	1.8	24	0.31	0.09 [0.03]	37/37	37/37
(pg/m^3)	2010 Warm season	5.6	6.2	34	0.89	0.27 [0.09]	37/37	37/37
	2010 Cold season	1.7	1.7	29	tr(0.26)	0.27 [0.09]	37/37	37/37
у-НСН		Geometric				Quantification	Detection	Frequency
, -		Caamatria				Quantification	Detection	requency
(synonym Lindane)	1: Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
(synonym	n: Monitored year 2009 Warm season		Median 19	Maximum 65	Minimum 2.9	[Detection] limit		
(synonym		mean				[Detection]	Sample	Site
(synonym Lindane)	2009 Warm season	mean 17	19	65	2.9	[Detection] limit 0.06 [0.02]	Sample 37/37	Site 37/37
(synonym Lindane)	2009 Warm season 2009 Cold season	mean 17 5.6	19 4.6	65 55	2.9 1.5	[Detection] limit	37/37 37/37 37/37 37/37 37/37	Site 37/37 37/37 37/37 37/37
(synonym Lindane)	2009 Warm season 2009 Cold season 2010 Warm season	mean 17 5.6 14 4.8	19 4.6 16 4.4	65 55 66	2.9 1.5 2.3	[Detection] limit 0.06 [0.02]	Sample 37/37 37/37 37/37	Site 37/37 37/37 37/37 37/37
(synonym Lindane)	2009 Warm season 2009 Cold season 2010 Warm season	mean 17 5.6 14	19 4.6 16	65 55 66	2.9 1.5 2.3	[Detection] limit 0.06 [0.02] 0.35 [0.12]	37/37 37/37 37/37 37/37 37/37	Site 37/37 37/37 37/37 37/37
(synonym Lindane) Air (pg/m³)	2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season	mean 17 5.6 14 4.8 Geometric	19 4.6 16 4.4	65 55 66 60	2.9 1.5 2.3 1.1	[Detection] limit 0.06 [0.02] 0.35 [0.12] Quantification [Detection] limit	37/37 37/37 37/37 37/37 Detection	Site 37/37 37/37 37/37 37/37 Frequency
(synonym Lindane) Air (pg/m³)	2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season Monitored year	mean 17 5.6 14 4.8 Geometric mean	19 4.6 16 4.4 Median	65 55 66 60 Maximum	2.9 1.5 2.3 1.1 Minimum	[Detection] limit 0.06 [0.02] 0.35 [0.12] Quantification [Detection]	37/37 37/37 37/37 37/37 Detection Sample	Site 37/37 37/37 37/37 37/37 Frequency Site
Air (pg/m³) δ-HCH	2009 Warm season 2009 Cold season 2010 Warm season 2010 Cold season Monitored year 2009 Warm season	mean 17 5.6 14 4.8 Geometric mean 1.3	19 4.6 16 4.4 Median	65 55 66 60 Maximum	2.9 1.5 2.3 1.1 Minimum 0.09	[Detection] limit 0.06 [0.02] 0.35 [0.12] Quantification [Detection] limit	Sample 37/37 37/37 37/37 37/37 Detection Sample 37/37	Site 37/37 37/37 37/37 37/37 Frequency Site 37/37

[12] Chlordecone

· History and state of monitoring

Chlordecone is a group of organochlorine insecticides. No domestic record of manufacture/import of the substance was reported since it was historically never registrated under the Agricultural Chemicals Regulation Law. Chlordecone was adopted as a target chemical at the Fourth Meeting of the Conference of Parties (COP4) on Stockholm convention on Persistent Organic Pollutants in May 2009.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY 2008.

Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 49 sites, and it was detected at 13 of the 49 valid sites adopting the detection limit of 0.04pg/L, and none of the detected concentrations exceeded 1.6 pg/L.

Stocktaking of the detection of Chlordecone in surface water during FY2008, 2010

	Monitored	Geometric				Quantification	Detection Frequency	
Chlordecone	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2008	nd	nd	0.76	nd	0.14 [0.05]	13/46	13/46
(pg/L)	2010	tr(0.04)	nd	1.6	nd	0.09 [0.04]	13/49	13/49

<Sediment>

The presence of the substance in sediment was monitored at 64 sites, and it was detected at 9 of the 64 valid sites adopting the detection limit of 0.2pg/g-dry, and none of the detected concentrations exceeded 2.8 pg/g-dry.

Stocktaking of the detection of Chlordecone in sediment during FY2008, 2010

	Monitored	Geometric				Quantification	Detection I	Frequency
Chlordecone	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2008	nd	nd	5.8	nd	0.42 [0.16]	23/129	10/49
(pg/g-dry)	2010	nd	nd	2.8	nd	0.4 [0.2]	9/64	9/64

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

<Wildlife>

The presence of the substance in bivalves was monitored in 7 areas, and it was not detected at all 7 valid areas adopting the detection limit of 2.3pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was not detected at all 18 valid areas adopting the detection limit of 2.3pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was not detected at all 18 valid areas adopting the detection limit of 2.3pg/g-wet.

Stocktaking of the detection of Chlordecone in wildlife during FY2008, 2010

	Monitored	ed Geometric	M . 4	Massimus		Quantification	Detection 1	Frequency
Chlordecone	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
 Bivalves	2008	nd	nd	nd	nd	5.6 [2.2]	0/31	0/7
(pg/g-wet)	2010	nd	nd	nd	nd	5.9 [2.3]	0/6	0/6
Fish	2008	nd	nd	nd	nd	5.6 [2.2]	0/85	0/17
(pg/g-wet)	2010	nd	nd	nd	nd	5.9 [2.3]	0/18	0/18
Birds	2008	nd	nd	nd	nd	5.6 [2.2]	0/10	0/2
(pg/g-wet)	2010	nd		nd	nd	5.9 [2.3]	0/2	0/2

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

<Air>

The presence of the substance in air in the warm season was monitored at 37 sites, and it was not detected at all 37 valid sites adopting the detection limit of 0.02pg/m^3 . For air in the cold season, the presence of the substance was monitored at 37 sites, and it was not detected at all 37 valid sites adopting the detection limit of 0.02pg/m^3 .

Stocktaking of the detection of Chlordecone in air during FY2008, 2010

Chlordecon	e Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
Air	2010 Warm season	nd	nd	nd	nd	- 0.04 [0.02]	0/37	0/37
(pg/m^3)	2010 Cold season	nd	nd	nd	nd	0.04 [0.02]	0/37	0/37

[13] Hexabromobiphenyls

· History and state of monitoring

Hexabromobiphenyls have been used as flame retardants for plastics products. Hexabromobiphenyls were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY 2009.

Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 49 sites, and it was not detected at all 49 valid sites adopting the detection limit of 1pg/L.

Stocktaking of the detection of Hexabromobiphenyls in surface water during FY2009~2010

	Monitored	onitored Geometric		C		Quantification	Detection I	Frequency
Hexabromobiphenyls	vear	mean	Median	Maximum	Minimum	[Detection]	Sample	Site
	ycai	mean				Limit*		
Surface Water	2009	nd	nd	nd	nd	5.7 [2.2]	0/49	0/49
(pg/L)	2010	nd	nd	nd	nd	3 [1]	0/49	0/49
			1.01 1 5					

⁽Note) " * " indicates the sum value of the Quantification [Detection] limits of each congener in FY2009.

<Sediment>

The presence of the substance in sediment was monitored at 64 sites, and it was detected at 10 of the 64 valid sites adopting the detection limit of 0.6pg/g-dry, and none of the detected concentrations exceeded 18 pg/g-dry.

Stocktaking of the detection of Hexabromobiphenyls in sediment during FY2009~2010

Hexabromobiphenyls	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] Limit**	Sample Sample	Site Site
Sediment	2009	nd	nd	12	nd	1.1 [0.40]	45/190	21/64
(pg/g-dry)	2010	nd	nd	18	nd	1.5 [0.6]	10/64	10/64

⁽Note 1) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

<Wildlife>

The presence of the substance in bivalves was monitored in 7 areas, and it was not detected at all 7 valid areas adopting the detection limit of **10pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was not detected at all 18 valid areas adopting the detection limit of **10pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was not detected at all 18 valid areas adopting the detection limit of **10pg/g-wet.

⁽Note 2) " ** " indicates the sum value of the Quantification [Detection] limits of each congener in FY2009.

Stocktaking of the detection of Hexabromobiphenyls in wildlife (bivalves, fish and birds) during FY2009~2010

Hexabromobiphenyls	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] Limit**	Detection l Sample	Frequency Site
Bivalves	2009	nd	nd	tr(0.53)	nd	1.3 [0.43]	1/31	1/7
(pg/g-wet)	2010	nd	nd	nd	nd	24 [10]	0/6	0/6
Fish	2009	tr(0.49)	tr(0.43)	6.0	nd	1.3 [0.43]	46/90	12/18
(pg/g-wet)	2010	nd	nd	nd	nd	24 [10]	0/18	0/18
Birds	2009	1.6	1.6	2.1	tr(1.2)	1.3 [0.43]	10/10	2/2
(pg/g-wet)	2010	nd		nd	nd	24 [10]	0/2	0/2

⁽Note 1) " * " :Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

<Air>

The presence of the substance in air in the warm season was monitored at 37 sites, and it was not detected at all 37 valid sites adopting the detection limit of 0.1pg/m^3 . For air in the cold season, the presence of the substance was monitored at 37 sites, and it was not detected at all 37 valid sites adopting the detection limit of 0.1pg/m^3 .

Stocktaking of the detection of Hexabromobiphenyls in wildlife (bivalves, fish and birds) in FY2010

Hexabromo biphenyls	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] Limit	Detection I Sample	Frequency Site
Air	2010 Warm season	nd	nd	nd	nd	0.2 [0.1]	0/37	0/37
(pg/m^3)	2010 Cold season	nd	nd	nd	nd	- 0.3 [0.1]	0/37	0/37

⁽Note 2) "** "indicates the sum value of the Quantification [Detection] limits of each congener in FY2009.

[14] Polybromodiphenyl ethers (Br4~Br10)

· History and state of monitoring

Polybrominated diphenyl ethers have been used as flame retardants for plastics products. Tetrabromodiphenyl ethers, Pentabromodiphenyl ethers, Hexabromodiphenyl ethers, and Heptabromodiphenyl ethers were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009.

Under the framework of the Environmental Monitoring, the substance was monitored in wildlife (bivalves, fish and birds) in FY 2008, and in surface water, sediment and wildlife (bivalves, fish and birds) in FY 2009.

- · Monitoring results
- Tetrabromodiphenyl ethers, Pentabromodiphenyl ethers, Hexabromodiphenyl ethers, Heptabromodiphenyl ethers,
 Octabromodiphenyl ethers, Nonabromodiphenyl ethers and Decabromodiphenyl ether

<Surface Water>

Tetrabromodiphenyl ethers: The presence of the substance in surface water was monitored at 49 sites, and it was detected at 17 of the 49 valid sites adopting the detection limit of 3pg/L, and none of the detected concentrations exceeded 390 pg/L.

Pentabromodiphenyl ethers: The presence of the substance in surface water was monitored at 49 sites, and it was detected at 25 of the 49 valid sites adopting the detection limit of 1pg/L, and none of the detected concentrations exceeded 130 pg/L.

Hexabromodiphenyl ethers: The presence of the substance in surface water was monitored at 49 sites, and it was detected at 16 of the 49 valid sites adopting the detection limit of 2pg/L, and none of the detected concentrations exceeded 51 pg/L.

Heptabromodiphenyl ethers: The presence of the substance in surface water was monitored at 49 sites, and it was detected at 17 of the 49 valid sites adopting the detection limit of 1pg/L, and none of the detected concentrations exceeded 14 pg/L.

Octabromodiphenyl ethers: The presence of the substance in surface water was monitored at 49 sites, and it was detected at 40 of the 49 valid sites adopting the detection limit of 1pg/L, and none of the detected concentrations exceeded 69 pg/L.

Nonabromodiphenyl ethers: The presence of the substance in surface water was monitored at 49 sites, and it was detected at 39 of the 49 valid sites adopting the detection limit of 7pg/L, and none of the detected concentrations exceeded 620 pg/L.

Decabromodiphenyl ether: The presence of the substance in surface water was monitored at 49 sites, and it was detected at 31 of the 49 valid sites adopting the detection limit of 100pg/L, and none of the detected concentrations exceeded 13,000 pg/L.

Stocktaking of the detection of Polybromodiphenyl ethers (Br4~Br10) in surface water during FY2009~2010

Tetrabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2009	17	16	160	nd	8 [3]	44/49	44/49
(pg/L)	2010	nd	nd	390	nd	9 [3]	17/49	17/49
Pentabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2009	11	12	87	nd	11 [4]	43/49	43/49
(pg/L)	2010	tr(1)	tr(1)	130	nd	3 [1]	25/49	25/49
Hexabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2009	tr(0.9)	tr(0.7)	18	nd	1.4 [0.6]	26/49	26/49
(pg/L)	2010	nd	nd	51	nd	4 [2]	16/49	16/49
Heptabromodiphenyl	Monitored	Geometric				Quantification	Detection Freq	Frequency
ethers	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2009	nd	nd	40	nd	4 [2]	9/49	9/49
(pg/L)	2010	nd	nd	14	nd	3 [1]	17/49	17/49
Octabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2009	3.0	3.9	56	nd	1.4 [0.6]	37/49	37/49
(pg/L)	2010	tr(2)	tr(2)	69	nd	3 [1]	40/49	40/49
Nonabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2009	tr(46)	tr(38)	500	nd	91 [30]	32/49	32/49
(pg/L)	2010	tr(17)	tr(13)	620	nd	21 [7]	39/49	39/49
Decabromodiphenyl	Monitored	Geometric			<u> </u>	Quantification	Detection	Frequency
ether	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2009	tr(310)	tr(220)	3,400	nd	600 [200]	26/49	26/49
(pg/L)	2010	tr(250)	tr(200)	13,000	nd	300 [100]	31/49	31/49

<Sediment>

Tetrabromodiphenyl ethers: The presence of the substance in sediment was monitored at 64 sites, and it was detected at 57 of the 64 valid sites adopting the detection limit of 2pg/g-dry, and none of the detected concentrations exceeded 910 pg/g-dry.

Pentabromodiphenyl ethers: The presence of the substance in sediment was monitored at 64 sites, and it was detected at 58 of the 64 valid sites adopting the detection limit of 2pg/g-dry, and none of the detected concentrations exceeded 740 pg/g-dry.

Hexabromodiphenyl ethers: The presence of the substance in sediment was monitored at 64 sites, and it was detected at 57 of the 64 valid sites adopting the detection limit of 2pg/g-dry, and none of the detected concentrations exceeded 770 pg/g-dry.

Heptabromodiphenyl ethers: The presence of the substance in sediment was monitored at 64 sites, and it was detected at 58 of the 64 valid sites adopting the detection limit of 2pg/g-dry, and none of the detected concentrations exceeded 930 pg/g-dry.

Octabromodiphenyl ethers: The presence of the substance in sediment was monitored at 64 sites, and it was detected at 60 of the 64 valid sites adopting the detection limit of 4pg/g-dry, and none of the detected concentrations exceeded 1,800 pg/g-dry.

Nonabromodiphenyl ethers: The presence of the substance in sediment was monitored at 64 sites, and it was detected at 60 of the 64 valid sites adopting the detection limit of 9pg/g-dry, and none of the detected concentrations

exceeded 26,000 pg/g-dry.

Decabromodiphenyl ether: The presence of the substance in sediment was monitored at 64 sites, and it was detected at 60 of the 64 valid sites adopting the detection limit of 80pg/g-dry, and none of the detected concentrations exceeded 700,000 pg/g-dry.

Stocktaking of the detection of Polybromodiphenyl ethers (Br4~Br10) in sediment during FY2009~2010

Tetrabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ethers:	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2009	tr(60)	tr(44)	1,400	nd	69 [23]	131/192	51/64
(pg/g-dry)	2010	35	38	910	nd	6 [2]	57/64	57/64
Pentabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2009	36	24	1,700	nd	24 [8]	146/192	57/64
(pg/g-dry)	2010	26	23	740	nd	5 [2]	58/64	58/64
Hexabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2009	21	21	2,600	nd	5 [2]	139/192	53/64
(pg/g-dry)	2010	23	23	770	nd	4 [2]	57/64	57/64
Heptabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2009	30	25	16,000	nd	9 [4]	125/192	51/64
(pg/g-dry)	2010	28	18	930	nd	4 [2]	58/64	58/64
Octabromodiphenyl	Monitored	Geometric				Quantification	Detection 1	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2009	210	96	110,000	nd	1.2 [0.5]	182/192	63/64
(pg/g-dry)	2010	71	76	1,800	nd	10 [4]	60/64	60/64
Nonabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2009	1,100	710	230,000	nd	9 [4]	181/192	64/64
(pg/g-dry)	2010	360	430	26,000	nd	24 [9]	60/64	60/64
Decabromodiphenyl	Monitored	Geometric				Quantification	Detection	Frequency
ether	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2009	6,000	4,800	880,000	tr(30)	60 [20]	192/192	64/64
(pg/g-dry)	2010	5,100	4,200	700,000	nd	220 [80]	60/64	60/64

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

<Wildlife>

Tetrabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 6 areas, and it was detected at 5 of the 6 valid areas adopting the detection limit of 16pg/g-wet, and none of the detected concentrations exceeded 310 pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 16pg/g-wet, and the detection range was $tr(16) \sim 740$ pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 16pg/g-wet, and the detection range was $72 \sim 270$ pg/g-wet.

Pentabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 6 areas, and it was detected at 6 of the valid areas adopting the detection limit of 6pg/g-wet, and the detection range was $tr(9) \sim 98$ pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 16 of the 18 valid areas adopting the detection limit of 6pg/g-wet, and none of the detected concentrations exceeded 200 pg/g-wet. For

birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 6pg/g-wet, and the detection range was $120\sim200$ pg/g-wet.

Hexabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 6 areas, and it was detected at 4 of the 6 valid areas adopting the detection limit of 3pg/g-wet, and none of the detected concentrations exceeded 26 pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 16 of the 18 valid areas adopting the detection limit of 3pg/g-wet, and none of the detected concentrations exceeded 400 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 3pg/g-wet, and the detection range was 86~140 pg/g-wet.

Heptabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 6 areas, and it was detected at 1 of the 6 valid areas adopting the detection limit of 10pg/g-wet, and none of the detected concentrations exceeded tr(10) pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 4 of the 18 valid areas adopting the detection limit of 10pg/g-wet, and none of the detected concentrations exceeded 40 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at 1 of the 2 valid areas adopting the detection limit of 10pg/g-wet, and none of the detected concentrations exceeded 70 pg/g-wet.

Octabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 6 areas, and it was detected at 2 of the 6 valid areas adopting the detection limit of 4pg/g-wet, and none of the detected concentrations exceeded tr(10) pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 8 of the 18 valid areas adopting the detection limit of 4pg/g-wet, and none of the detected concentrations exceeded 100 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 4pg/g-wet, and the detection range was $26\sim65$ pg/g-wet.

Nonabromodiphenyl ethers: The presence of the substance in bivalves was monitored in 6 areas, and it was detected at 5 of the 6 valid areas adopting the detection limit of 10pg/g-wet, and none of the detected concentrations exceeded 60 pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 3 of the 18 valid areas adopting the detection limit of 10pg/g-wet, and none of the detected concentrations exceeded 40 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 10pg/g-wet, and the detection range was $tr(20) \sim 50 pg/g$ -wet.

Decabromodiphenyl ether: The presence of the substance in bivalves was monitored in 6 areas, and it was detected at 2 of the 6 valid areas adopting the detection limit of 97pg/g-wet, and none of the detected concentrations exceeded tr(190) pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 2 of the 18 valid areas adopting the detection limit of 97pg/g-wet, and none of the detected concentrations exceeded tr(150) pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was not detected at all 18 valid areas adopting the detection limit of 97pg/g-wet.

Stocktaking of the detection of Polybromodiphenyl ethers (Br4~Br10) in wildlife during FY2009~2010

Tetrabromodiphenyl ethers	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
Bivalves	2008	73	61	380	20	5.9 [2.2]	31/31	7/7
(pg/g-wet)	2010	59	73	310	nd	43 [16]	5/6	5/6
Fish	2008	120	110	1,300	9.8	5.9 [2.2]	85/85	17/17
(pg/g-wet)	2010	160	170	740	tr(16)	43 [16]	18/18	18/18
Birds	2008	170	190	1,200	32	5.9 [2.2]	10/10	2/2
(pg/g-wet)	2010	140		270	72	43 [16]	2/2	2/2
Pentabromodiphenyl	Monitored	Geometric				Quantification	Detection I	Frequency
ethers	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Bivalves	2008	32	27	94	tr(11)	16 [5.9]	31/31	7/7
(pg/g-wet)	2010	32	37	98	tr(9)	14 [6]	6/6	6/6
Fish	2008	30	37	280	nd	16 [5.9]	72/85	16/17
(pg/g-wet)	2010	51	54	200	nd	14 [6]	16/18	16/18
Birds	2008	150	130	440	52	16 [5.9]	10/10	2/2
(pg/g-wet)	2010	150		200	120	14 [6]	2/2	2/2
Hexabromodiphenyl ethers	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection]	Detection I Sample	Frequency Site
-						limit		
Bivalves	2008	19	16	82	tr(5.3)	14 [5.0]	31/31	7/7
(pg/g-wet)	2010	8	16	26	nd	8 [3]	4/6	4/6
Fish	2008	46	51	310	nd	14 [5.0]	83/85	17/17
(pg/g-wet)	2010	39	47	400	nd	8 [3]	16/18	16/18
Birds	2008	140	120	380	62	14 [5.0]	10/10	2/2
(pg/g-wet)	2010	110		140	86	8 [3]	2/2	2/2
Heptabromodiphenyl ethers	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I Sample	Frequency Site
Bivalves	2008	tr(8.5)	tr(7.6)	35	nd	18 [6.7]	20/31	7/7
(pg/g-wet)	2010	nd	nd	tr(10)	nd	30 [10]	1/6	1/6
Fish	2008	tr(11)	tr(8.1)	77	nd	18 [6.7]	44/85	10/17
(pg/g-wet)	2010	nd	nd	40	nd	30 [10]	4/18	4/18
Birds	2008	35	35	53	19	18 [6.7]	10/10	2/2
(pg/g-wet)	2010	tr(19)		70	nd	30 [10]	1/2	1/2
		` '				Quantification	Detection I	
Octabromodiphenyl ethers	Monitored year	Geometric mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Bivalves	2008	nd	nd	10	nd	9.6 [3.6]	15/31	6/7
(pg/g-wet)	2010	nd	nd	tr(10)	nd	11 [4]	2/6	2/6
Fish	2008	tr(5.7)	nd	73	nd	9.6 [3.6]	35/85	7/17
(pg/g-wet)	2010	tr(6)	nd	100	nd	11 [4]	8/18	8/18
Birds	2008	42	41	64	30	9.6 [3.6]	10/10	2/2
(pg/g-wet)	2010	41		65	26	11 [4]	2/2	2/2
(188)	2010	'.		05	20			_
Nonabromodiphenyl ethers	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection]	Detection I Sample	requency Site
Nonabromodiphenyl ethers	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] limit	Sample	Site
Nonabromodiphenyl ethers Bivalves	Monitored year 2008	Geometric mean*	Median nd	Maximum tr(23)	Minimum	Quantification [Detection] limit 35 [13]	Sample 5/31	Site
Nonabromodiphenyl ethers Bivalves (pg/g-wet)	Monitored year 2008 2010	Geometric mean* nd tr(16)	Median nd tr(15)	Maximum tr(23) 60	Minimum nd nd	Quantification [Detection] limit 35 [13] 30 [10]	5/31 5/6	Site 1/7 5/6
Nonabromodiphenyl ethers Bivalves (pg/g-wet) Fish	Monitored year 2008 2010 2008	Geometric mean* nd tr(16) nd	Median nd tr(15) nd	Maximum tr(23) 60 tr(15)	Minimum nd nd nd	Quantification [Detection] limit 35 [13] 30 [10] 35 [13]	Sample 5/31 5/6 2/85	Site 1/7 5/6 2/17
Nonabromodiphenyl ethers Bivalves (pg/g-wet) Fish (pg/g-wet)	Monitored year 2008 2010 2008 2010	Geometric mean* nd tr(16) nd nd	Median nd tr(15) nd nd	Maximum tr(23) 60 tr(15) 40	Minimum nd nd nd nd	Quantification [Detection] limit 35 [13] 30 [10] 35 [13] 30 [10]	Sample 5/31 5/6 2/85 3/18	Site 1/7 5/6 2/17 3/18
Nonabromodiphenyl ethers Bivalves (pg/g-wet) Fish (pg/g-wet) Birds	Monitored year 2008 2010 2008 2010 2008	Geometric mean* nd tr(16) nd nd tr(21)	Median nd tr(15) nd	Maximum tr(23) 60 tr(15) 40 tr(33)	Minimum nd nd nd nd nd nd	Quantification [Detection] limit 35 [13] 30 [10] 35 [13] 30 [10] 35 [13]	5/31 5/6 2/85 3/18 9/10	Site 1/7 5/6 2/17 3/18 2/2
Nonabromodiphenyl ethers Bivalves (pg/g-wet) Fish (pg/g-wet)	Monitored year 2008 2010 2008 2010	Geometric mean* nd tr(16) nd nd	Median nd tr(15) nd nd	Maximum tr(23) 60 tr(15) 40	Minimum nd nd nd nd	Quantification [Detection] limit 35 [13] 30 [10] 35 [13] 30 [10] 35 [13] 30 [10]	5/31 5/6 2/85 3/18 9/10 2/2	Site 1/7 5/6 2/17 3/18 2/2 2/2
Nonabromodiphenyl ethers Bivalves (pg/g-wet) Fish (pg/g-wet) Birds	Monitored year 2008 2010 2008 2010 2008	Geometric mean* nd tr(16) nd nd tr(21)	Median nd tr(15) nd nd	Maximum tr(23) 60 tr(15) 40 tr(33)	Minimum nd nd nd nd nd nd	Quantification [Detection] limit 35 [13] 30 [10] 35 [13] 30 [10] 35 [13] 30 [10] Quantification [Detection]	5/31 5/6 2/85 3/18 9/10	Site 1/7 5/6 2/17 3/18 2/2 2/2
Nonabromodiphenyl ethers Bivalves (pg/g-wet) Fish (pg/g-wet) Birds (pg/g-wet) Decabromodiphenyl ether	Monitored year 2008 2010 2008 2010 2008 2010 Monitored	Geometric mean* nd tr(16) nd nd tr(21) 32 Geometric	Median nd tr(15) nd nd tr(20)	tr(23) 60 tr(15) 40 tr(33) 50 Maximum	Minimum nd nd nd nd rd nd rd (20)	Quantification [Detection] limit 35 [13] 30 [10] 35 [13] 30 [10] 35 [13] 30 [10] Quantification [Detection] limit	Sample	Site 1/7 5/6 2/17 3/18 2/2 2/2 Frequency
Nonabromodiphenyl ethers Bivalves (pg/g-wet) Fish (pg/g-wet) Birds (pg/g-wet) Decabromodiphenyl ether Bivalves	Monitored year 2008 2010 2008 2010 2008 2010 Monitored year 2008	Geometric mean* nd tr(16) nd nd tr(21) 32 Geometric mean* nd	Median nd tr(15) nd nd tr(20) Median	tr(23) 60 tr(15) 40 tr(33) 50 Maximum	Minimum nd nd nd nd tr(20) Minimum	Quantification [Detection] limit 35 [13] 30 [10] 35 [13] 30 [10] 35 [13] 30 [10] Quantification [Detection] limit 220 [74]	Sample 5/31 5/6 2/85 3/18 9/10 2/2 Detection I Sample 8/31	Site 1/7 5/6 2/17 3/18 2/2 2/2 Frequency Site 3/7
Nonabromodiphenyl ethers Bivalves (pg/g-wet) Fish (pg/g-wet) Birds (pg/g-wet) Decabromodiphenyl ether Bivalves (pg/g-wet)	Monitored year 2008 2010 2008 2010 2008 2010 Monitored year 2008 2010	Geometric mean* nd tr(16) nd nd tr(21) 32 Geometric mean* nd nd	Median nd tr(15) nd nd tr(20) Median nd nd	tr(23) 60 tr(15) 40 tr(33) 50 Maximum tr(170) tr(190)	Minimum nd nd nd nd tr(20) Minimum nd nd	Quantification [Detection] limit 35 [13] 30 [10] 35 [13] 30 [10] 35 [13] 30 [10] Quantification [Detection] limit 220 [74] 270 [97]	Sample 5/31 5/6 2/85 3/18 9/10 2/2 Detection I Sample 8/31 2/6	Site 1/7 5/6 2/17 3/18 2/2 2/2 Frequency Site 3/7 2/6
Nonabromodiphenyl ethers Bivalves (pg/g-wet) Fish (pg/g-wet) Birds (pg/g-wet) Decabromodiphenyl ether Bivalves (pg/g-wet) Fish	Monitored year 2008 2010 2008 2010 2008 2010 Monitored year 2008 2010 2008	Geometric mean* nd tr(16) nd nd tr(21) 32 Geometric mean* nd	Median nd tr(15) nd nd tr(20) Median nd nd	tr(23) 60 tr(15) 40 tr(33) 50 Maximum tr(170) tr(190) 230	Minimum nd nd nd nd tr(20) Minimum	Quantification [Detection] limit 35 [13] 30 [10] 35 [13] 30 [10] 35 [13] 30 [10] Quantification [Detection] limit 220 [74] 270 [97] 220 [74]	Sample 5/31 5/6 2/85 3/18 9/10 2/2 Detection I Sample 8/31 2/6 5/76	Site 1/7 5/6 2/17 3/18 2/2 2/2 Frequency Site 3/7 2/6 4/16
Nonabromodiphenyl ethers Bivalves (pg/g-wet) Fish (pg/g-wet) Birds (pg/g-wet) Decabromodiphenyl ether Bivalves (pg/g-wet)	Monitored year 2008 2010 2008 2010 2008 2010 Monitored year 2008 2010	Geometric mean* nd tr(16) nd nd tr(21) 32 Geometric mean* nd nd	Median nd tr(15) nd nd tr(20) Median nd nd	tr(23) 60 tr(15) 40 tr(33) 50 Maximum tr(170) tr(190)	Minimum nd nd nd nd tr(20) Minimum nd nd nd	Quantification [Detection] limit 35 [13] 30 [10] 35 [13] 30 [10] 35 [13] 30 [10] Quantification [Detection] limit 220 [74] 270 [97]	Sample 5/31 5/6 2/85 3/18 9/10 2/2 Detection I Sample 8/31 2/6	Site 1/7 5/6 2/17 3/18 2/2 2/2 Frequency Site 3/7 2/6

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2008.

<Air>

Tetrabromodiphenyl ethers: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.05pg/m^3 , and the detection range was $0.15 \sim 50 \text{ pg/m}^3$.

For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.05pg/m^3 , and the detection range was $\text{tr}(0.09) \sim 25 \text{ pg/m}^3$.

Pentabromodiphenyl ethers: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at 35 of the 37 valid sites adopting the detection limit of 0.05pg/m³, and none of the detected concentrations exceeded 45 pg/gm³. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at 34 of the 37 valid sites adopting the detection limit of 0.05pg/m³, and none of the detected concentrations exceeded 28 pg/gm³.

Hexabromodiphenyl ethers: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at 29 of the 37 valid sites adopting the detection limit of 0.06pg/m³, and none of the detected concentrations exceeded 4.9 pg/gm³. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at 31 of the 37 valid sites adopting the detection limit of 0.06pg/m³, and none of the detected concentrations exceeded 5.4 pg/gm³.

Heptabromodiphenyl ethers: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at 24 of the 37 valid sites adopting the detection limit of $0.1 \,\mathrm{pg/m^3}$, and none of the detected concentrations exceeded 1.4 $\,\mathrm{pg/gm^3}$. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at 28 of the 37 valid sites adopting the detection limit of $0.1 \,\mathrm{pg/m^3}$, and none of the detected concentrations exceeded 11 $\,\mathrm{pg/gm^3}$.

Octabromodiphenyl ethers: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at 30 of the 37 valid sites adopting the detection limit of 0.06pg/m³, and none of the detected concentrations exceeded 2.3 pg/gm³. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at 32 of the 37 valid sites adopting the detection limit of 0.06pg/m³, and none of the detected concentrations exceeded 6.9 pg/gm³.

Nonabromodiphenyl ethers: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at 12 of the 37 valid sites adopting the detection limit of 1.2pg/m³, and none of the detected concentrations exceeded 24 pg/gm³. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at 22 of the 37 valid sites adopting the detection limit of 1.2pg/m³, and none of the detected concentrations exceeded 7.1 pg/gm³.

Decabromodiphenyl ether: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at 10 of the 37 valid sites adopting the detection limit of 9.1pg/m³, and none of the detected concentrations exceeded 290 pg/gm³. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at 21 of the 37 valid sites adopting the detection limit of 9.1pg/m³, and none of the detected concentrations exceeded 88 pg/gm³.

Stocktaking of the detection of Polybromodiphenyl ethers (Br4~Br10) in air during FY2009~2010

Stocktaking	g of the detection of	Polybromodi	phenyl eth	ers (Br4 \sim Br	10) in air di	uring FY2009~2	010	
Tetrabromo		Carmatria				Quantification	Detection	Frequency
diphenyl ethers:	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	0.89	0.80	18	0.11	0.11.50.043	37/37	37/37
Air	2009 Cold season	0.40	0.37	7.1	tr(0.04)	0.11 [0.04]	37/37	37/37
(pg/m^3)	2010 Warm season	0.79	0.57	50	0.15	0.12.50.051	37/37	37/37
40 /	2010 Cold season	0.40	0.35	25	tr(0.09)	0.12 [0.05]	37/37	37/37
Pentabromo					7	Quantification	Detection	
diphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	0.20	0.19	18	nd	0.16 [0.06]	33/37	33/37
Air	2009 Cold season	0.19	0.16	10	nd	0.16 [0.06]	29/37	29/37
(pg/m^3)	2010 Warm season	0.20	0.17	45	nd	0.12 [0.05]	35/37	35/37
	2010 Cold season	0.20	0.22	28	nd	0.12 [0.05]	34/37	34/37
Hexabromo		C				Quantification	Detection	Frequency
diphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	tr(0.11)	tr(0.11)	2.0	nd	0.22 [0.00]	19/37	19/37
Air	2009 Cold season	tr(0.20)	0.22	27	nd	0.22 [0.09]	24/37	24/37
(pg/m^3)	2010 Warm season	tr(0.14)	tr(0.13)	4.9	nd	0.16.50.063	29/37	29/37
40 /	2010 Cold season	0.24	0.27	5.4	nd	0.16 [0.06]	31/37	31/37
Heptabromo						Quantification	Detection	
diphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	tr(0.1)	nd	1.7	nd	0.2.50.13	17/37	17/37
Air	2009 Cold season	tr(0.2)	0.3	20	nd	0.3 [0.1]	25/37	25/37
(pg/m^3)	2010 Warm season	tr(0.2)	tr(0.1)	1.4	nd	0.0.50.43	24/37	24/37
40 /	2010 Cold season	0.3	0.4	11	nd	0.3 [0.1]	28/37	28/37
Octabromo						Quantification	Detection	
diphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	tr(0.2)	0.3	1.6	nd	0.2 [0.1]	23/37	23/37
Air	2009 Cold season	0.3	0.4	7.1	nd	0.3 [0.1]	26/37	26/37
(pg/m^3)	2010 Warm season	0.25	0.30	2.3	nd	0.15 [0.06]	30/37	30/37
	2010 Cold season	0.40	0.52	6.9	nd	0.15 [0.06]	32/37	32/37
Nonabromo		Carmatria				Quantification	Detection	Frequency
diphenyl ethers	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2009 Warm season	tr(0.7)	tr(0.7)	3.0	nd		22/37	22/37
Air	2009 Cold season	tr(1.0)	tr(0.8)	3.9	nd	1.8 [0.6]	27/37	27/37
(pg/m^3)	2010 Warm season	nd	nd	24	nd	2.7.51.23	12/37	12/37
40 /	2010 Cold season	tr(1.2)	tr(1.3)	7.1	nd	3.7 [1.2]	22/37	22/37
Decabromo						Quantification	Detection	
diphenyl ether	Monitored year	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
<u> </u>	2009 Warm season	tr(7)	tr(9)	31	nd	16 [5]	28/37	28/37
Air	2009 Cold season	tr(10)	tr(11)	45	nd	16 [5]	29/37	29/37
(pg/m^3)	2010 Warm season	nd	nd	290	nd	27 [0 1]	10/37	10/37
	2010 Cold season	tr(11)	tr(12)	88	nd	27 [9.1]	21/37	21/37

[15] Perfluorooctane sulfonic acid (PFOS)

· History and state of monitoring

Perfluorooctane sulfonic acids (PFOS) have been used as water repellent agent, oil repellent agent and surface acting agent. Perfluorooctane sulfonic acids (PFOS) were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment and wildlife (bivalves, fish and birds) in FY 2009.

The survey of the Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) only monitored linear octyl Perfluorooctane sulfonic acid (PFOS) and linear octyl Perfluorooctanoic acid (PFOA).

Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 49 sites, and it was detected at all 49 valid sites adopting the detection limit of 20pg/L, and the detection range was $tr(37) \sim 230,000 pg/L$.

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in surface water during FY2009~2010

Perfluorooctane	Monitored	Geometric	3.6.1			Quantification	Detection 1	Frequency
sulfonic acid (PFOS)	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2009	730	580	14,000	tr(26)	37 [14]	49/49	49/49
(pg/L)	2010	490	380	230,000	tr(37)	50 [20]	49/49	49/49

<Sediment>

The presence of the substance in sediment was monitored at 64 sites, and it was detected at all 64 valid sites adopting the detection limit of 2pg/g-dry, and the detection range was $tr(3) \sim 1,700 pg/g$ -dry.

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in sediment during FY2009~2010

Perfluorooctane	Monitored	Geometric	3.6 T		3.61.1	Quantification	Detection I	Frequency
sulfonic acid (PFOS)	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2009	78	97	1,900	nd	9.6 [3.7]	180/190	64/64
(pg/g-dry)	2010	82	100	1,700	tr(3)	5 [2]	64/64	64/64

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

<Wildlife>

The presence of the substance in bivalves was monitored in 6 areas, and it was detected at 5 of the 6 valid areas adopting the detection limit of 9.6pg/g-wet, and none of the detected concentrations exceeded 680 pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 17 of the 18 valid areas adopting the detection limit of 9.6pg/g-wet, and none of the detected concentrations exceeded 15,000 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 9.6pg/g-wet, and the detection range was 580~3,000 pg/g-wet.

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in wildlife during FY2009~2010

Perfluorooctane	Monitored	Geometric	3.6.11		3.61.1	Quantification	Detection l	Frequency
sulfonic acid (PFOS)	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Bivalves	2009	24	28	640	nd	19 [7.4]	17/31	5/7
(pg/g-wet)	2010	72	85	680	nd	25 [9.6]	5/6	5/6
Fish	2009	220	230	15,000	nd	19 [7.4]	83/90	17/18
(pg/g-wet)	2010	390	480	15,000	nd	25 [9.6]	17/18	17/18
Birds	2009	300	360	890	37	19 [7.4]	10/10	2/2
(pg/g-wet)	2010	1,300		3,000	580	25 [9.6]	2/2	2/2

⁽Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

<Air>

The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.1pg/m^3 , and the detection range was $1.6 \sim 14 \text{ pg/m}^3$. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.1pg/m^3 , and the detection range was $1.4 \sim 15 \text{ pg/m}^3$.

Stocktaking of the detection of Perfluorooctane sulfonic acid (PFOS) in wildlife in FY2010

Perfluorooct ane sulfonic acid (PFOS)	Monitored year	Geometric mean*	Median	Maximum	Minimum	Quantification [Detection] limit	Detection I	Frequency Site
Air	2010 Warm season	5.2	5.9	14	1.6	- 0.4.[0.1]	37/37	37/37
(pg/m^3)	2010 Cold season	4.7	4.4	15	1.4	- 0.4 [0.1]	37/37	37/37

[16] Perfluorooctanoic acid (PFOA)

· History and state of monitoring

Perfluorooctanoic acids (PFOA) have been used as water repellent agent, oil repellent agent and surface acting agent. Perfluorooctanoic acids (PFOA) were adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009.

The substances were measured in surface water, sediment and wildlife in FY 2002, 2003, 2004, 2005 under the framework of "the Environmental Survey and Monitoring of Chemicals".

The survey of the Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) only monitored linear octyl Perfluorooctane sulfonic acid (PFOS) and linear octyl Perfluorooctanoic acid (PFOA). However, it remains possible that the survey in wildlife monitored branched-chain Perfluorooctanoic acid (PFOS) and branched-chain Perfluorooctanoic acid (PFOA).

Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 49 sites, and it was detected at all 49 valid sites adopting the detection limit of 20pg/L, and the detection range was $190\sim23,000 pg/L$.

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in surface water during FY2009~2010

Perfluorooctanoic	Monitored	Geometric				Quantification	Detection 1	Frequency
acid(PFOA)	vear	mean	Median	Maximum	Minimum	[Detection]	Sample	Site
acid(110A)	ycai	incan				limit		
Surface Water	2009	1,600	1,300	31,000	250	59 [23]	49/49	49/49
(pg/L)	2010	2,700	2,400	23,000	190	60 [20]	49/49	49/49

<Sediment>

The presence of the substance in sediment was monitored at 64 sites, and it was detected at 62 of the 64 valid sites adopting the detection limit of 5pg/g-dry, and none of the detected concentrations exceeded 180 pg/g-dry.

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in sediment during FY2009~2010

Perfluorooctanoic	Monitored	Geometric			Quantification	Detection I	Frequency	
acid(PFOA)	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2009	27	24	500	nd	8.3 [3.3]	182/190	64/64
(pg/g-dry)	2010	28	33	180	nd	12 [5]	62/64	62/64

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

<Wildlife>

The presence of the substance in bivalves was monitored in 6 areas, and it was detected at 5 of the 6 valid areas adopting the detection limit of 9.9 pg/g-wet, and none of the detected concentrations exceeded 76 pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 13 of the 18 valid areas adopting the detection limit of 9.9 pg/g-wet, and none of the detected concentrations exceeded 95 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 9.9 pg/g-wet, and the detection range was $30 \sim 48 \text{ pg/g-wet}$.

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in wildlife (bivalves, fish and birds) during $FY2009\sim2010$

Perfluorooctanoic	Monitored	Geometric				Quantification	Detection l	Frequency
acid(PFOA)	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Bivalves	2009	tr(20)	tr(21)	94	nd	25 [9.9]	27/31	7/7
(pg/g-wet)	2010	28	33	76	nd	26 [9.9]	5/6	5/6
Fish	2009	tr(23)	tr(19)	490	nd	25 [9.9]	74/90	17/18
(pg/g-wet)	2010	tr(13)	tr(11)	95	nd	26 [9.9]	13/18	13/18
Birds	2009	32	29	58	tr(16)	25 [9.9]	10/10	2/2
(pg/g-wet)	2010	38		48	30	26 [9.9]	2/2	2/2

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2009.

<Air>

The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.2pg/m^3 , and the detection range was $4.0 \sim 210 \text{ pg/m}^3$. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.2pg/m^3 , and the detection range was $2.4 \sim 130 \text{ pg/m}^3$.

Stocktaking of the detection of Perfluorooctanoic acid (PFOA) in air during FY2009~2010

Perfluorooct anoic acid (PFOA)	Monitored year	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection Sample	Frequency Site
Air	2010 Warm season	25	26	210	4.0	0.5.[0.2]	37/37	37/37
(pg/m^3)	2010 Cold season	14	14	130	2.4	- 0.5 [0.2]	37/37	37/37

[17] Pentachlorobenzene

· History and state of monitoring

Pentachlorobenzene have been used as flame retardants and pesticide. It was historically never registered under the Agricultural Chemicals Regulation Law. The pentachlorobenzene is produced as a by-product when agricultural chemicals are produced. In addition, it is generated unintentionally at the time of combustion. Pentachlorobenzene was adopted as target chemicals at the COP4 of the Stockholm convention on Persistent Organic Pollutants in May 2009 and designated as a Class I Specified Chemical Substance under the Chemical Substances Control Law in April 2010.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water, sediment, wildlife (bivalves, fish and birds) and air in FY 2007, and air in FY 2009.

Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 49 sites, and it was detected at all 49 valid sites adopting the detection limit of 1pg/L, and the detection range was $tr(1) \sim 100 \text{ pg/L}$.

Stocktaking of the detection of Pentachlorobenzene in air in FY2007 and FY2010

Penta chloro	Monitored	Geometric				Quantification	Detection 1	Frequency
benzene	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2007	nd	nd	nd	nd	3,300 [1,300]	0/48	0/48
(pg/L)	2010	8	5	100	tr(1)	4 [1]	49/49	49/49

<Sediment>

The presence of the substance in sediment was monitored at 64 sites, and it was detected at all 64 valid sites adopting the detection limit of 0.3 pg/g-dry, and the detection range was $1.0 \sim 4,200 \text{ pg/g-dry}$.

Stocktaking of the detection of Pentachlorobenzene in air in FY2007 and FY2010

Penta chloro	Monitored	Geometric				Quantification	Detection 1	Frequency
benzene	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Sediment	2007	tr(46)	nd	2,400	nd	86 [33]	79/19	35/64
(pg/g-dry)	2010	90	95	4,200	1.0	0.9 [0.3]	64/64	64/64

(Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2007.

<Wildlife>

The presence of the substance in bivalves was monitored in 6 areas, and it was detected at 6 of the 6 valid areas adopting the detection limit of 0.7pg/g-wet, and the detection range was $5.9 \sim 110$ pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 0.7pg/g-wet, and the detection range was $5.6 \sim 230$ pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was detected at all 2 valid areas adopting the detection limit of 0.7pg/g-wet, and the detection range was $49 \sim 170$ pg/g-wet.

Stocktaking of the detection of Pentachlorobenzene in air in FY2007 and FY2010

Penta chloro	Monitored	Geometric				Quantification	Detection l	Frequency
benzene	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Bivalves	2007	nd	nd	tr(150)	nd	180 [61]	1/31	1/7
(pg/g-wet)	2010	18	16	110	5.9	1.9 [0.7]	6/6	6/6
Fish	2007	nd	nd	480	nd	180 [61]	36/80	10/16
(pg/g-wet)	2010	42	37	230	5.6	1.9 [0.7]	18/18	18/18
Birds	2007	tr(140)	tr(140)	210	tr(89)	180 [61]	10/10	2/2
(pg/g-wet)	2010	91		170	49	1.9 [0.7]	2/2	2/2

⁽Note) "*": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived in FY2007.

<Air>

The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.5pg/m^3 , and the detection range was $36 \sim 140 \text{ pg/m}^3$. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was detected at all 37 valid sites adopting the detection limit of 0.5pg/m^3 , and the detection range was $37 \sim 180 \text{ pg/m}^3$.

Stocktaking of the detection of Pentachlorobenzene in air in FY2007, FY2009 and FY2010

Penta		Geometric				Quantification	Detection Frequency	
chloro benzene	Monitored year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
OCHZCHC	2008 Warm season	85	83	310	10	IIIIIt	78/78	26/26
		83	0.3		18	12 [4.8]		
	2008 Cold season	60	55	220	27	12 [1.0]	75/75	25/25
Air	2009 Warm season	63	64	210	20	6.4 [2.5]	111/111	37/37
(pg/m^3)	2009 Cold season	25	22	120	tr(5.0)		111/111	37/37
	2010 Warm season	68	73	140	36	1 2 [0 5]	37/37	37/37
	2010 Cold season	70	69	180	37	1.2 [0.5]	37/37	37/37

[18] N,N-Diphenyl-p-phenylenediamine

· History and state of monitoring

N,N-Diphenyl-p-phenylenediamine has been used as rubber antioxidant and raw materials of *N*,*N*-Ditolyl-*p*-phenylenediamine, styrene-butadiene rubber. N,N-Dixylyl-p-phenylenediamine, and N,N-Tolyl-p-phenylenediamine were designated as a Class I Specified Chemical Substance under the Chemical Control September 2002. Although Law in *N,N*-Ditolyl-*p*-phenylenediamine N,N-Dixylyl-p-phenylenediamine have not been manufactured, imported and used in Japan, it is stated that it is important to survey the existing condition in the environment due to its high enrichment.

Under the framework of the Environmental Monitoring, the substance was monitored in surface water in FY 2008.

- · Monitoring results
- N,N-Diphenyl-p-phenylenediamine, N,N-Ditolyl-p-phenylenediamine, and N,N-Dixylyl-p-phenylenediamine

<Air>

N,N-Diphenyl-*p*-phenylenediamine: The presence of the substance in air in the warm season was monitored at 37 sites, and it was not detected at all 37 valid sites adopting the detection limit of 0.34pg/m³. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was not detected at all 37 valid sites adopting the detection limit of 0.34pg/m³.

N,N-Ditolyl-*p*-phenylenediamine: The presence of the substance in air in the warm season was monitored at 37 sites, and it was not detected at all 37 valid sites adopting the detection limit of 0.51pg/m³. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was not detected at all 37 valid sites adopting the detection limit of 0.51pg/m³.

N,*N*-Dixylyl-*p*-phenylenediamine: The presence of the substance in air in the warm season was monitored at 37 sites, and it was not detected at all 37 valid sites adopting the detection limit of 0.34pg/m³. For air in the cold season, the presence of the substance was monitored at 37 sites, and it was not detected at all 37 valid sites adopting the detection limit of 0.34pg/m³.

Stocktaking of the detection of N,N-Diphenyl-p-phenylenediamine in air in FY2010.

<i>N,N</i> -Diphenyl- <i>p</i> -ph	Monitored	Geometric					Detection Frequency	
enylenediamine	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Air (pg/m³)	2010	nd	nd	nd	nd	1.4 [0.34]	0/114	0/37
<i>N,N</i> -Diphenyl- <i>p</i> -ph	Monitored	Geometric				Quantification	Detection I	requency
enylenediamine	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Air (pg/m³)	2010	nd	nd	nd	nd	1.5 [0.51]	0/114	0/37
<i>N,N</i> -Diphenyl- <i>p</i> -ph	Monitored	Geometric				Quantification	Detection I	requency
enylenediamine	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Air (pg/m³)	2010	nd	nd	nd	nd	1.4 [0.34]	0/114	0/37

[19] Tributyltin compounds

· History and state of monitoring

Tributyltin compounds have been applied as antifouling barrier coating for ship bottoms and on fishing nets. However as of FY 1988, 13 Tributyltin compounds became designated chemical substances under the Law Concerning the Examination and Regulation of Manufacture of Chemical Substances (today's Class II Specified Chemical Substances).

In the monitoring surveys since FY 2002, sediment and wildlife surveys were implemented in FYs 2002 and 2003. Surface water, sediment and wildlife surveys were conducted in FY 2005.

Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 49 sites, and it was detected at 12 of the 49 valid sites adopting the detection limit of 100pg/L, and none of the detected concentrations exceeded 1,600 pg/L.

Stocktaking of the detection of Tributyltin compounds in surface water during FY2005 and FY2010

Tributyltin	Monitored	Conitored Coometrie	Geometric		Quantification	Detection Frequency		
compounds	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2005	nd	nd	760	nd	300 [100]	2/47	2/47
(pg/L)	2010	nd	nd	1,600	nd	200 [100]	12/49	12/49

<Sediment>

The presence of the substance in sediment was monitored at 64 sites, and it was detected at 53 of the 64 valid sites adopting the detection limit of 80pg/g-dry, and none of the detected concentrations exceeded 1,300,000 pg/g-dry.

Stocktaking of the detection of Tributyltin compounds in sediment during FY2002~2003, FY2005 and FY2010

Tributyltin	Monitored	Geometric				Quantification	Detection I	Frequency
compounds	year	mean*	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5,200	4,000	390,000	nd	3,600 [1,200]	126/189	48/63
Sediment	2003	3,300	4,400	450,000	nd	1,200 [400]	127/186	46/62
(pg/g-dry)	2005	2,300	4,500	590,000	nd	200 [80]	143/189	52/63
	2010	2,500	3,400	1,300,000	nd	160 [80]	148/192	53/64

<Wildlife>

The presence of the substance in bivalves was monitored in 6 areas, and it was detected at 6 of the 6 valid areas adopting the detection limit of 160pg/g-wet, and the detection range was 1,600 \sim 30,000 pg/g-wet. For fish, the presence of the substance was monitored in 18 areas, and it was detected at 17 of the 18 valid areas adopting the detection limit of 160pg/g-wet, and none of the detected concentrations exceeded 23,000 pg/g-wet. For birds, the presence of the substance was monitored in 2 areas, and it was not detected at all 18 valid areas adopting the detection limit of 160pg/g-wet.

Stocktaking of the detection of Tributyltin compounds in wildlife during FY2002~2003, FY2005 and FY2010

Tributyltin	Monitored	Geometric				Quantification	Detection I	requency
compounds	year	mean*	Median	Maximum	Minimum	[Detection]	Sample	Site
						limit		
	2002	12,000	12,000	57,000	tr(2,000)	3,000 [1,000]	38/38	8/8
Bivalves	2003	10,000	12,000	25,000	tr(2,000)	3,000 [1,000]	30/30	6/6
(pg/g-wet)	2005	6,400	7,00	25,000	tr(1,500)	3,000 [1,000]	31/31	7/7
	2010	6,400	6,000	30,000	1,600	420 [160]	16/16	6/6
	2002	8,000	6,000	500,000	nd	3,000 [1,000]	55/70	13/14
Fish	2003	8,000	6,000	72,000	nd	3,000 [1,000]	63/70	13/14
(pg/g-wet)	2005	3,300	4,200	130,000	nd	3,000 [1,000]	49/80	11/16
	2010	1,100	760	23,000	nd	420 [160]	49/54	17/18
	2002	nd	nd	nd	nd	3,000 [1,000]	0/10	0/2
Birds	2003	nd	nd	tr(1,000)	nd	3,000 [1,000]	1/10	1/2
(pg/g-wet)	2005	nd	nd	nd	nd	3,000 [1,000]	0/10	0/2
	2010	nd	nd	nd	nd	420 [160]	0/6	0/2

⁽Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived.

[20] Triphenyltin compounds

· History and state of monitoring

Like Tributyltin compounds, Triphenyltin compounds have also been applied as antifouling coats to ship bottoms and fishing nets. In FY 1988, seven triphenyltin compounds became designated chemical substances under Law the Concerning the Examination and Regulation of Manufacture of Chemical Substances (today's Class II Specified Chemical Substances).

In the monitoring surveys since FY 2002, sediment and wildlife surveys were conducted in FYs 2002 and 2003. Surface water, sediment and wildlife surveys were conducted in FY 2005.

Monitoring results

<Surface Water>

The presence of the substance in surface water was monitored at 49 sites, and it was detected at 4 of the 49 valid sites adopting the detection limit of 50pg/L, and none of the detected concentrations exceeded 250 pg/L.

Stocktaking of the detection of Triphenyltin compounds in surface water during FY2005 and FY2010

Triphenyltin	Monitored	Geometric	Jaometric			Quantification	Detection Frequency	
compounds	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface Water	2005	nd	nd	190	nd	130 [50]	2/47	2/47
(pg/L)	2010	nd	nd	250	nd	120 [50]	4/49	4/49

<Sediment>

The presence of the substance in sediment was monitored at 64 sites, and it was detected at 42 of the 64 valid sites adopting the detection limit of 30pg/g-dry, and none of the detected concentrations exceeded 210,000 pg/g-dry.

Stocktaking of the detection of Triphenyltin compounds in sediment during FY2002~2003, FY2005 and FY2010

Triphenyltin	Monitored	Geometric				Quantification	Detection I	Frequency
compounds	year	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(720)	nd	490	nd	1,600 [550]	76/189	30/63
Sediment	2003	300	tr(160)	540	nd	280 [90]	96/186	37/62
(pg/g-dry)	2005	210	120	420	nd	70 [30]	104/189	39/63
	2010	290	190	210,000	nd	70 [30]	106/192	42/64

(Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived.

<Wildlife>

The presence of the substance in bivalves was monitored in 7 areas, and it was detected at 6 of the 7 valid areas adopting the detection limit of 110 pg/g-wet, and the detection range was $490 \sim 6,500 \text{ pg/g-wet}$. For fish, the presence of the substance was monitored in 18 areas, and it was detected at all 18 valid areas adopting the detection limit of 110 pg/g-wet, and the detection range was $\text{tr}(140) \sim 14,000 \text{ pg/g-wet}$. For birds, the presence of the substance was monitored in 2 areas, and it was detected at 1 of the 2 valid areas adopting the detection limit of 110 pg/g-wet, and none of the detected concentrations exceeded tr(120) pg/g-wet.

Stocktaking of the detection of Triphenyltin compounds in wildlife during FY2002~2003, FY2005 and FY2010

Triphenyltin	Monitored Geometric					Quantification	Detection 1	Frequency
compounds		mean	Median	Maximum	Minimum	[Detection]	Sample	Site
Compounds	year	ilicali				limit		
	2002	2,300	4,500	25,000	nd	1,500 [500]	31/38	7/8
Bivalves	2003	3,000	3,600	27,000	nd	1,500 [500]	26/30	6/6
(pg/g-wet)	2005	2,900	2,900	15,000	tr(600)	1,500 [500]	31/31	7/7
	2010	1,700	1,500	6,500	490	270 [110]	16/16	6/6
	2002	8,500	7,900	520,000	nd	1,500 [500]	69/70	14/14
Fish	2003	5,600	5,400	30,000	nd	1,500 [500]	68/70	14/14
(pg/g-wet)	2005	4,200	4,900	34,000	nd	1,500 [500]	76/80	16/16
	2010	2,300	3,100	14,000	tr(140)	270 [110]	54/54	18/18
	2002	nd	nd	nd	nd	1,500 [500]	0/10	0/2
Birds	2003	nd	nd	nd	nd	1,500 [500]	0/10	0/2
(pg/g-wet)	2005	nd	nd	tr(500)	nd	1,500 [500]	1/10	1/2
	2010	nd	nd	tr(120)	nd	270 [110]	1/6	1/2

⁽Note) " * ": Arithmetic mean value was calculated for each point, from which the geometric mean value for all points was derived.