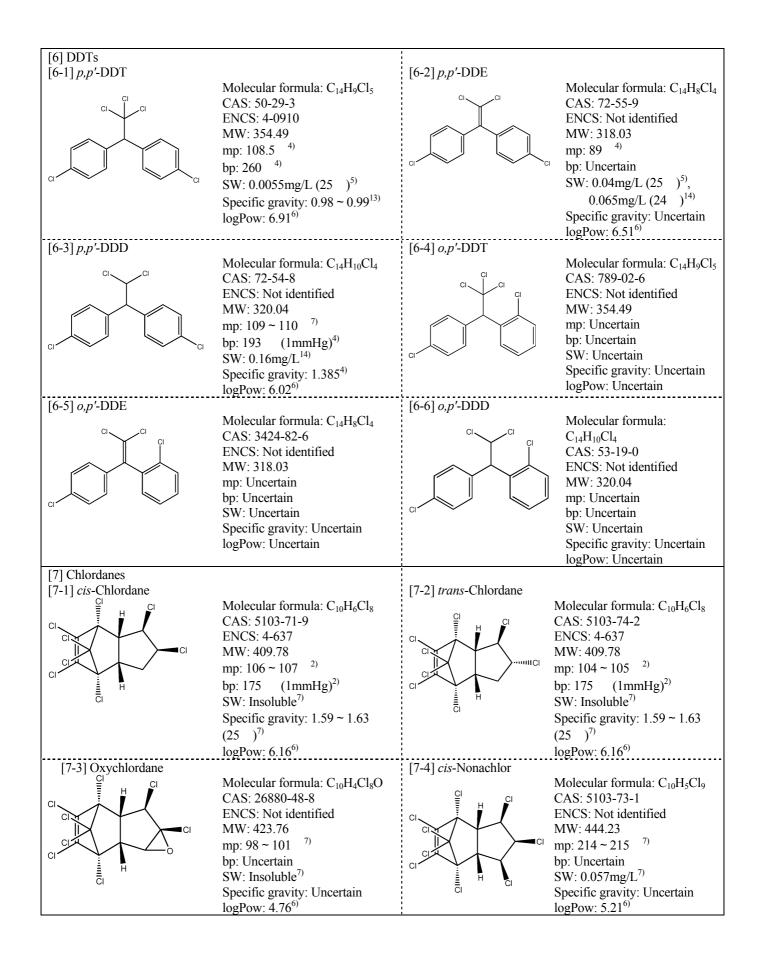
Chapter 4 Results of the Environmental Monitoring in FY 2005

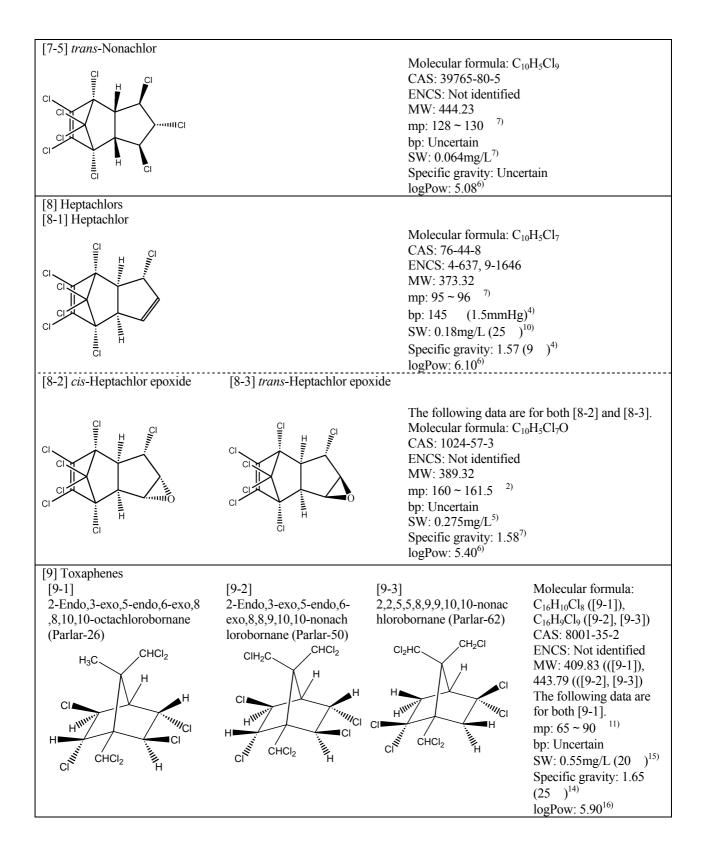
1. Purpose of the monitoring

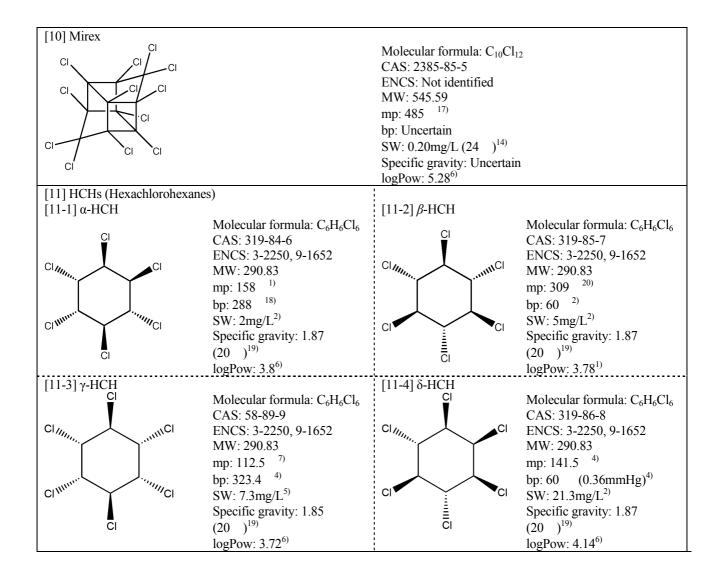
Environmental Monitoring is aimed at conducting an annual survey of the environmental persistence of target chemicals listed in the Stockholm Convention on Persistent Organic Pollutants (hereafter, the Stockholm Convention), and the possible candidate chemicals, and highly persistent chemicals among the Specified Chemical Substances and Monitored Chemical Substances under the Law Concerning the Examination and Regulation of Manufacture, etc. of Chemical Substances (Law No. 117 of 1973) (hereafter, the Chemical Substances Control Law), whose environmental standards are not yet established but whose change in persistence in the environment must be understood.

*POPs: persistent organic pollutants

2. Target chemicals


In the FY 2005 Environmental Monitoring, 10 chemicals (groups) included in the Stockholm Convention (except for polychlorinated-*p*-dioxin and polychlorinated dibenzofuran) (hereafter, POPs), 1 type of HCHs that is a possible candidate for inclusion in the Stockholm Convention, and 3 chemicals (groups), namely, 2,6-di-*tert*-butyl-4-methylphenol, dibenzothiophene, and organotin compounds, were designated as target chemicals. The combinations of target chemicals and the monitoring media are given below.


	Target chemicals		Monitore	ed media	
No	Name	Surface water	Sediment	Wildlife	Air
1	Polychlorinated biphenyls (PCBs) (mono ~ decachloninated congeners)				
2	Hexachlorobenzene				
3	Aldrin				
4	Dieldrin				
5	Endrin				
6	DDTs [6-1] <i>p,p</i> '-DDT, [6-2] <i>p,p</i> '-DDE, [6-3] <i>p,p</i> '-DDD, [6-4] <i>o,p</i> '-DDT, [6-5] <i>o,p</i> '-DDE, [6-6] <i>o,p</i> '-DDD				
7	Chlordanes [7-1] <i>cis</i> -Chlordane, [7-2] <i>trans</i> -Chlordane, [7-3] Oxychlordane, [7-4] <i>cis</i> -Nonachlor, [7-5] <i>trans</i> -Nonachlor				
8	Heptachlors [8-1] Heptachlor, [8-2] <i>cis</i> -Heptachlor epoxide, [8-3] <i>trans</i> -Heptachlor epoxide				
9	Toxaphenes [9-1] 2-Endo,3-exo,5-endo,6-exo,8,8,10,10-octachlorobornane (Parlar-26), [9-2] 2-Endo,3-exo,5-endo,6-exo,8,8,9,10,10-nonachlorobornane (Parlar-50), [9-3] 2,2,5,5,8,9,9,10,10-nonachlorobornane (Parlar-62)				
10	Mirex				
11	HCHs (Hexachlorohexanes) [11-1] α-HCH, [11-2], β-HCH, [11-3] γ-HCH, [11-4] δ-HCH				
12	2,6-Di-tert-butyl-4-methylphenol (BHT)				
13	Dibenzothiophene				
14	Organotin compounds [14-1] Monbutyltin compounds (MBTs), [14-2] Dibutyltin compounds (DBTs), [14-3] Tributyltin compounds (TBTs), [14-4] Monophenyltin compounds (MPTs), [14-5] Diphenyltin compounds (DPTs), [14-6] Triphenyltin compounds (TPTs)				


Chemical and physical properties of target chemicals of the Environmental Monitoring are as follows.

[1] Polychlorinated biphenyls (PCBs)	
	Molecular formula: $C_{12}H_{(10-i)}Cl_i$ ($i = m+n = 1 \sim 10$) CAS: 1336-36-3 ENCS: Not identified MW: 291.98 ~ 360.86 mp: 340 ~ 375 ⁻¹⁾ bp: Uncertain SW: Almost insoluble ²⁾ Specific gravity: 1.44 (30) ¹⁾
$i = m + n = 1 \sim 10$	logPow: $3.76 \sim 8.26 (25)^{3}$
[2] Hexachlorobenzene	
	Molecular formula: C_6Cl_6 CAS: 118-74-1 ENCS: 3-0076 MW: 284.78 mp: 231.8 ⁻⁴⁾ bp: 325 ⁻⁴⁾ SW: 0.0047mg/L (25 ⁻¹⁾⁵⁾ Specific gravity: 2.04 (23 ⁻¹⁾⁴⁾ logPow: 5.73 ⁶⁾
[3] Aldrin	
[4] Dieldrin	
	Molecular formula: $C_{12}H_8Cl_6O$ CAS: 60-57-1 ENCS: 4-0299 MW: 380.91 mp: 175.5 ⁴⁾ bp: Uncertain SW: 0.195mg/L (25 ¹⁾ Specific gravity: 1.75 ¹⁰⁾ logPow: 5.40 ⁶⁾
[5] Endrin	
	Molecular formula: $C_{12}H_8Cl_6O$ CAS: 72-20-8 ENCS: 4-0299 MW: 380.91 mp: 200 ¹¹⁾ bp: 245 (decomposition) ⁷⁾ SW: 0.25mg/L ¹⁰⁾ Specific gravity: 1.7 ¹²⁾ logPow: 5.20 ⁶⁾

(Abbreviations) CAS: CAS registry number, ENCS: registry number in the Existing and New Chemical Substances List, MW: molecular weight, mp: melting point, bp: boiling point, SW: solubility in water, logPow: *n*-octanol-water partition coefficient.

[12] 2,6-Di- <i>tert</i> -butyl-4-methylphenol (BHT) Molecular formula: $C_{15}H_{24}O$ CAS: 128-37-0 ENCS: 3-540, 9-1805 MW: 220.35 mp: 70 ⁻⁷⁾ bp: 265 ⁻⁷⁾ SW: 0.4mg/L (20) ¹⁴⁾ Specific gravity: 1.05 ⁷⁾ logPow: 5.63 ⁶⁾	
CAS: 128-37-0 ENCS: 3-540, 9-1805 MW: 220.35 mp: 70^{-7} bp: 265^{-7} SW: $0.4mg/L (20^{-14})$ Specific gravity: 1.05^{7} logPow: 5.63^{6}	
$\begin{array}{c} & \qquad $	
MW: 220.35 mp: 70 ⁻⁷⁾ bp: 265 ⁻⁷⁾ SW: 0.4mg/L (20 ⁻¹⁴⁾ Specific gravity: 1.05 ⁷⁾ logPow: 5.63 ⁶⁾	
$\begin{array}{c} & \text{mp: } 70^{-7)} \\ & \text{bp: } 265^{-7)} \\ & \text{SW: } 0.4 \text{mg/L} (20^{-})^{14)} \\ & \text{Specific gravity: } 1.05^{7)} \\ & \text{logPow: } 5.63^{6)} \end{array}$	
OH $bp: 265^{-7}$ SW: 0.4mg/L (20) ¹⁴⁾ Specific gravity: 1.05 ⁷⁾ logPow: 5.63 ⁶⁾	
SW: 0.4mg/L (20) ¹⁴⁾ Specific gravity: 1.05 ⁷⁾ logPow: 5.63 ⁶⁾	
SW: 0.4mg/L (20) ¹⁴⁾ Specific gravity: 1.05 ⁷⁾ logPow: 5.63 ⁶⁾	
Specific gravity: 1.05 ⁷⁾ logPow: 5.63 ⁶⁾	
logPow: 5.63 ⁶⁾	
Molecular formula: $C_{12}H_8S$	
CAS: 132-65-0	
ENCS: 5-3352	
MW: 184.26	
mp: 98.2 $^{4)}$	
bp: 332.5 ⁴)	
SW: 1.47mg/L (25) ²¹⁾	
Specific gravity: Uncertain	
logPow: 4.38 ⁶⁾	
[14] Organotin compounds	
[14-1] Monbutyltin compounds [14-2] Dibutyltin compounds	
Molecular formula: Not Molecular formula:	Not
C_4H_9 specified C_4H_9 specified C_4H_9 specified	
C_4H_9 $CAS: Not specified C_4H_9 CAS: Not specified CAS: Not sp$	b
ENCS: Not specified ENCS: Not specified	
MW: Not specified // MW: Not specified	
	*
X Y	
SW: Not specified X SW: Not specified SW: Not specified	
A Specific gravity: Not specified Specific gravity: Not	
logPow: Not specified logPow: Not specified	tied
[14-3] Tributyltin compounds [14-4] Monophenyltin compounds	
Molecular formula: Not Molecular formula:	Not
C ₄ H ₉ specified specified CAS: Not specified	
CAS: Not specified	t
ENCS: Not specified ENCS: Not specified	
Sn MW: Not specified MW: Not specified	
Net mark for the second s	
hr: Not specified	
C_4H_9 C	
	ot an applicat
Specific gravity: Not X Specific gravity: Not	
specified logPow: Not specif	nea
logPow: Not specified	
[14-5] Diphenyltin compounds [14-6] Triphenyltin compounds	
Molecular formula: Not Molecular formula:	Not
specified specified	
CAS: Not specified CAS: Not specified	b
ENCS: Not specified ENCS: Not specified	ed
MW: Not specified MW: Not specified	
$S_n \times m_p$: Not specified m_p : Not specified m_p : Not specified	
bp: Not specified	
SW: Not specified SW: Not specified	
	ot specified
Specific gravity: Not Specific gravity: Not	
specified logPow: Not specif	liea
logPow: Not specified	

References

- 1) Sax, Dangerous Properties of Industrial Materials Volumes 1-3 7th edition, Van Nostrand Reinhold (1989)
- 2) International Agency for Research on Cancer (IARC), IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man. World Health Organisation (1972)
- 3) U.S.EPA, Ambient Water Quality Criteria Document, Polychlorinated Biphenyls (1980)
- 4) Lide, CRC Handbook of Chemistry and Physics 81st edition, CRC Press LLC (2004-2005)
- Yalkowsky et al., Aquasol Database of Aqueous Solubility Version 5, College of Pharmacy, University of Arizona (1992)
- Hansch et al., Exploring QSAR Hydrophobic, Electronic, and Steric Constants, American Chemical Society (1995)
- O'Neil, The Merck Index An Encyclopedia of Chemicals, Drugs and Biologicals 13th Edition, Merck Co. Inc. (2001)
- 8) Hartley et al., The Agrochemical Handbook 2nd edition, The Royal Society of Chemistry (1987)
- 9) US Coast Guard, Department of Transportation, CHRIS Hazardous Chemical Data Volume II, US Government Printing Office (1984-1985)
- 10) Biggar et al., Apparent solubility of organochlorine insecticides in water at various temperatures, Hilgardia, 42, 383-391 (1974)
- 11) Lewis, Hawley's Condensed Chemical Dictionary 13rd edition, John Wiley & Sons (1997)
- 12) U.S.EPA, Ambient Water Quality Criteria Doc, Endrin (1980)
- Clayton et al., Patty's Industrial Hygiene and Toxicology Volumes 2A, 2B and 2C: Toxicology 3rd edition, John Wiley Sons (1981-1982)
- Verschueren, Handbook of Environmental Data of Organic Chemicals 2nd edition, Van Nostrand Reinhold Co. (1983)
- Murphy et al., Equilibration of polychlorinated biphenyls and toxaphene with air and water, Environmental Science and Technology, 21, 155-162 (1987)
- 16) Fisk et al., Octanol/water partition coefficients of toxaphene congeners determined by the "slow-stirring" method, Chemosphere, 39, 2549-2562 (1999)
- 17) Spencer, Guide to the Chemicals Used in Crop Protection 7th edition Publication 1093, Research Institute, Agriculture Canada, Information Canada (1982)
- 18) IPCS, International Chemical Safety Cards, alpha-Hexachlorocyclohexane ICSC No. 0795 (1998)
- 19) ATSDR, Toxicological Profile for alpha-, beta-, gamma- and delta-Hexachlorocyclohexane (2005)
- 20) Kirk-Othmer Encyclopedia of Chemical Technology 5th edition, John Wiley & Sons (2004)
- 21) Hassett et al., Sorption of benzidine by sediments and soils, Journal of Environmental Quality, 9, 184-186 (1980)

3. Monitored site and procedure

In the Environmental Monitoring (of surface water, sediment, and wildlife), the sampling of specimens was entrusted to prefectural governments and government-designated cities across Japan and the specimens sampled were analysed by private analytical laboratories.

(1) Organisations responsible for sampling

Local	Organisations regnonsible for sampling	Monitored media			
communities	Organisations responsible for sampling		Sediment	Wildlife	Ai
Hokkaido Hokkaido Institute of Environmental Sciences					
Sapporo City	Sapporo City Institute of Public Health				
Aomori Pref.	Aomori Prefectural Institute of Public Health and Environment				
Aomori Pref. Hachinohe Environmental Management Office, Aomori Prefectural Institute of Public Health and Environment					
Iwate Pref. Research Institute for Environmental Sciences and Public Health of Iwate Prefecture					
Miyagi Pref.	Miyagi Prefectural Institute of Public Health and Environment				
Sendai City	Sendai City Institute of Public Health				
Akita Pref.	Akita Research Center for Public Health and Environment				
Yamagata Pref.	Environmental Science Research Center of Yamagata Prefecture				
Fukushima Pref.	Fukushima Prefectural Institute of Environmental Research				
Ibaraki Pref.	Ibaraki Kasumigaura Environmental Science Center				
Tochigi Pref.	Tochigi Prefectural Institute of Public Health and Environmental Science				
Gunma Pref.	Gunma Prefectural Institute of Public Health and Environmental Sciences				
Chiba Pref.	Chiba Prefectural Environmental Research Center				
Chiba City	Chiba City Institute of Health and Environment				
Tokyo Met.	Tokyo Metropolitan Research Institute for Environmental Protection				
Kanagawa Pref.	Kanagawa Environmental Research Center				
Yokohama City	6 6				
Kawasaki City	Kawasaki Municipal Research Institute for Environmental Protection				
Niigata Pref.	Niigata Prefectural Institute of Public Health and Environmental Sciences				
Toyama Pref.	Toyama Prefectural Environmental Science Research Center				
Ishikawa Pref.	Ishikawa Prefectural Institute of Public Health and Environmental Science				
Fukui Pref.	Fukui Prefectural Institute of Public Health and Environmental Science				
Yamanashi Pref.	Yamanashi Institute for Public Health				
Nagano Pref.	Nagano Environmental Conservation Research Institute				
Gifu Pref.	Gifu Prefectural Research Institute for Health and Environmental Sciences				
Shizuoka Pref.	Shizuoka Institute of Environment and Hygiene				
Aichi Pref.	Aichi Environmental Research Center				
Nagoya City	Nagoya City Environmental Science Research Institute				
Mie Pref.	Mie Prefectural Science and Technology Promotion Center				
Shiga Pref.					
Kyoto Pref.	Kyoto Prefectural Institute of Public Health and Environment				
Kyoto City	Kyoto City Institute of Health and Environmental Sciences			1	
Osaka Pref.	Osaka Prefecture Environmental Pollution Control Center				
Osaka City	Osaka City Institute of Public Health and Environmental Sciences	1			<u> </u>
Hyogo Pref.	Hyogo Prefectural Institute of Public Health and Environmental Sciences				
Kobe City	Environmental Conservation and Guidance Division, Environment Bureau				

Local		Monitored media			
communities	Organisations responsible for sampling		Sediment	Wildlife	Air
Nara Pref. Nara Prefectural Institute for Hygiene and Environment					
Wakayama Pref. Wakayama Prefectural Research Center of Environment and Public Health					
Tottori Pref.	Tottori Prefectural Institute of Public Health and Environmental Science				
Shimane Pref.	Shimane Prefectural Institute of Public Health and Environmental Science				
Okayama Pref.	Okayama Prefectural Institute for Environmental Science and Public Health				
Hiroshima Pref.	Hiroshima Prefectural Institute of Public Health and Environment				
Hiroshima City	Hiroshima City Institute of Public Health				
Yamaguchi Pref.	Yamaguchi Prefectural Institute of Public Health and Environment				
Tokushima Pref.	Tokushima Prefectural Institute of Public Health and Environmental Sciences				
Kagawa Pref.	Kagawa Prefectural Research Institute for Environmental Sciences and Public Health				
Ehime Pref.	Ehime Prefectural Institute of Public Health and Environmental Science				
Kochi Pref.	Kochi Prefectural Environmental Research Center				
Fukuoka Pref.	Fukuoka Institute of Health and Environmental Science				
Kitakyushu City	Kitakyushu City Institute of Environmental Sciences				
Fukuoka City	Fukuoka City Institute for Hygiene and the Environment				
Saga Pref.	Saga Prefectural Environmental Research Center				
Kumamoto Pref.	Kumamoto Prefectural Institute of Public Health and Environmental Science				
Oita Pref. Environmental Preservation Division, Life and Environment Department					
Miyazaki Pref.	Miyazaki Prefectural Institute for Public Health and Environment				
Kagoshima Pref.	Kagoshima Prefectural Institute for Environmental Research and Public Health				
Okinawa Pref. Okinawa Prefectural Institute of Health and Environment					

(Note) Organisations responsible for sampling are described by their official names in FY 2005.

(2) Monitored sites (areas)

Monitored sites (areas) are shown in Figure 4-1-1 for surface water, Figure 4-1-2 for sediment, Figure 4-1-3 for wildlife, and Figure 4-1-4 for air. The breakdown is summarized as follows. The numbers of target chemicals (groups) were identical for each monitored medium in each monitored site (or area).

Monitored media	Numbers of local communities	Numbers of target chemicals (groups)	Numbers of monitored sites (or areas)	Numbers of samples at a monitored site (or area)
Surface water	42	21	48	1
Sediment	48	18	64	3
Wildlife (fish)	7	18	7	5
Wildlife (bivalves)	14	18	16	5
Wildlife (birds)	2	18	2	5
Air (warm season)	35	12	37	1
Air (cold season)	35	12	37	1

Local communities	Monitored sites	Sampling dates
Hokkaido	Suzuran-ohashi Bridge, Riv Tokachi (Obihiro City)	October 10, 2005
	Ishikarikakokyo Bridge, Mouth of Riv. Ishikari (Ishikari City)	October 14, 2005
Aomori Pref.	Lake Jusan	October 5, 2005
Iwate Pref.	Riv. Toyosawa (Hanamaki City)	October 19, 2005
Miyagi Pref.	Sendai Bay (Matsushima Bay)	October 6, 2005
Akita Pref.	Lake Hachiro	October 5, 2005
Yamagata Pref.	Mouth of Riv. Mogami (Sakata City)	October 6, 2005
Fukushima Pref.	Onahama Port	November 1, 2005
Ibaraki Pref.	Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City)	October 27, 2005
Tochigi Pref.	Riv. Tagawa (Utsunomiya City)	October 27, 2005
Chiba City	Mouth of Riv. Hanami (Chiba City)	October 28, 2005
Tokyo	Mouth of Riv. Arakawa (Koto Ward)	October 4, 2005
5	Mouth of Riv. Sumida (Minato Ward)	October 4, 2005
Yokohama City	Yokohama Port	October 25, 2005
Kawasaki City	Keihin Canal in Kawasaki Port	October 24, 2005
Niigata Pref.	Lower Riv. Shinano (Niigata City)	October 3, 2005
Toyama Pref.	Hagiura-bashi Bridge, Mouth of Riv. Jintsu (Toyama City)	November 15, 2005
Ishikawa Pref.	Mouth of Riv. Sai (Kanazawa City)	October 12, 2005
Fukui Pref.	Mishima-bashi Bridge, Riv. Shono (Tsuruga City)	October 14, 2005
Nagano Pref.	Lake Suwa (center)	October 12, 2005
Shizuoka Pref.	Riv. Tenryu (Iwata City)	November 24, 2005
Aichi Pref.	Nagoya Port	September 15, 2005
Mie Pref.	Yokkaichi Port	October 25, 2005
Shiga Pref.	Lake Biwa (center, offshore of Karasaki)	October 25, 2005
Kyoto Pref.	Miyazu Port	October 7, 2005
Kyoto City	Miyamae-bashi Bridge, Riv. Katsura (Kyoto City)	October 20, 2005
Osaka Pref.	Mouth of Riv. Yamato (Sakai City)	November 8, 2005
Osaka City	Osaka Port	November 30, 2005
Hyogo Pref.	Offshore of Himeji	October 19, 2005
Kobe City	Kobe Port (center)	November 15, 2005
Wakayama Pref.	Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)	October 25, 2005
Okayama Pref.	Offshore of Mizushima	October 26, 2005
Hiroshima Pref.	Kure Port	November 15, 2005
	Hiroshima Bay	November 15, 2005
Yamaguchi Pref.	Tokuyama Bay	October 24, 2005
8	Offshore of Ube	October 6, 2005
	Offshore of Hagi	October 14, 2005
Tokushima Pref.	Mouth of Riv. Yoshino (Tokushima City)	October 27, 2005
Kagawa Pref.	Takamatsu Port	October 3, 2005
Kochi Pref.	Mouth of Riv. Shimanto (Shimanto City)	October 31, 2005
Kitakyushu City	Dokai Bay	November 11, 2005
Saga Pref.	Imari Bay	November 1, 2005
Kumamoto Pref.	Riv. Midori (Uto City)	November 16, 2005
Miyazaki Pref.	Mouth of Riv. Oyodo (Miyazaki City)	November 15, 2005
Kagoshima Pref.	Riv. Amori (Hayato Town)	November 1, 2005
	Gotanda-bashi Bridge, Riv. Gotanda (Ichikikushikino City)	October 13, 2005
Okinawa Pref.	Naha Port	October 27, 2005

List of monitored sites (surface water) in the Environmental Monitoring in FY 2005

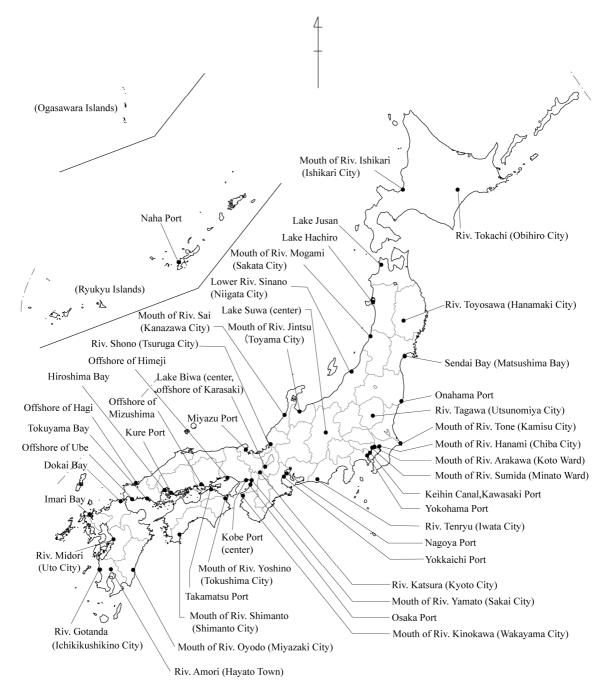


Figure 4-1-1 Monitored sites (surface water) in the Environmental Monitoring in FY 2005

Local	Monitored sites	Sampling dates
communities		1 0
Hokkaido	Onnenai-ohashi Bridge, Riv. Teshio (Bifuka Town)	October 17, 2005
	Suzuran-ohashi Bridge, Riv Tokachi (Obihiro City)	October 19, 2005
	Ishikarikakokyo Bridge, Mouth of Riv. Ishikari (Ishikari City)	October 14, 2005
	Tomakomai Port	September 28, 2005
Aomori Pref.	Lake Jusan	October 5, 2005
Iwate Pref.	Riv. Toyosawa (Hanamaki City)	October 19, 2005
Miyagi Pref.	Sendai Bay (Matsushima Bay)	October 6, 2005
Sendai City	Hirose-ohashi Bridge, Riv. Hirose (Sendai City)	November 16, 2005
Akita Pref.	Lake Hachiro	October 5, 2005
Yamagata Pref.	Mouth of Riv. Mogami (Sakata City)	October 6, 2005
Fukushima Pref.	Onahama Port	November 1, 2005
Ibaraki Pref.	Tonekamome-ohasi Bridge, Mouth of Riv. Tone (Kamisu City)	October 27, 2005
Tochigi Pref.	Riv. Tagawa (Utsunomiya City)	October 27, 2005
Chiba Pref.	Coast of Ichihara and Anegasaki	October 27, 2005
Chiba City	Mouth of Riv. Hanami (Chiba City)	October 28, 2005
Tokyo	Mouth of Riv. Arakawa (Koto Ward)	October 4, 2005
-	Mouth of Riv. Sumida (Minato Ward)	October 4, 2005
Yokohama City	Yokohama Port	October 25, 2005
Kawasaki City	Mouth of Riv. Tama (Kawasaki City)	October 25, 2005
5	Keihin Canal in Kawasaki Port	October 24, 2005
Niigata Pref.	Lower Riv. Shinano (Niigata City)	October 3, 2005
Toyama Pref.	Hagiura-bashi Bridge, Mouth of Riv. Jintsu (Toyama City)	November 15, 2005
Ishikawa Pref.	Mouth of Riv. Sai (Kanazawa City)	October 12, 2005
Fukui Pref.	Mishima-bashi Bridge, Riv. Shono (Tsuruga City)	October 14, 2005
Yamanashi Pref.	Senshu-bashi Bridge, Riv. Arakawa (Kofu City)	November 16, 2005
Nagano Pref.	Lake Suwa (center)	October 12, 2005
Shizuoka Pref.	Shimizu Port	November 15, 2005
Sinzuolia Pier.	Riv. Tenryu (Iwata City)	November 24, 2005
Aichi Pref.	Kinuura Port	September 15, 2005
	Nagoya Port	September 15, 2005
Mie Pref.	Yokkaichi Port	October 25, 2005
	Toba Port	November 15, 2005
Shiga Pref.	Lake Biwa (center, offshore of Minamihira)	October 25, 2005
Singu i ivi.	Lake Biwa (center, offshore of Karasaki)	October 25, 2005
Kyoto Pref.	Miyazu Port	October 7, 2005
Kyoto City	Riv. Katsura (Kyoto City)	October 20, 2005
Osaka Pref.	Mouth of Riv. Yamato (Sakai City)	November 8, 2005
Osaka City	Osaka Port	November 30, 2005
obulu City	Outside Osaka Port	January 18, 2006
	Mouth of Riv. Yodo (Osaka City)	January 18, 2006
	Riv. Yodo (Osaka City)	November 9, 2005
Hyogo Pref.	Offshore of Himeji	October 19, 2005
Kobe City	Kobe Port (center)	November 15, 2005
Nara Pref.	Riv. Yamato (Ooji Town)	October 31, 2005
Wakayama Pref.	Kinokawa-ohashi Bridge, Mouth of Riv. Kinokawa (Wakayama City)	October 25, 2005
Okayama Pref.	Offshore of Mizushima	October 26, 2005
Hiroshima Pref.	Kure Port	November 15, 2005
rinosiiiiia Fiel.	Hiroshima Bay	November 15, 2005
Yamaguchi Pref.	Tokuyama Bay	October 24, 2005
i amagucili rici.	Offshore of Ube	October 6, 2005
	Offshore of Hagi	October 0, 2005
Tokushima Pref.	Mouth of Riv. Yoshino (Tokushima City)	October 14, 2005 October 27, 2005
	Takamatsu Port	
Kagawa Pref.		October 3, 2005
Ehime Pref.	Niihama Port	October 26, 2005
Kochi Pref.	Mouth of Riv. Shimanto (Shimanto City)	October 31, 2005
Kitakyushu City	Dokai Bay Ualata Davi	November 11, 2005
Fukuoka City	Hakata Bay	October 27, 2005
Saga Pref.	Imari Bay	November 1, 2005
Oita Pref.	Mouth of Riv. Oita (Oita City)	December 9, 2005

Local communities	Monitored sites	Sampling dates
Miyazaki Pref.	Mouth of Riv. Oyodo (Miyazaki City)	November 15, 2005
Kagoshima Pref.	Riv. Amori (Hayato Town)	November 1, 2005
	Gotanda-bashi Bridge, Riv. Gotanda (Ichikikushikino City)	October 13, 2005
Okinawa Pref.	Naha Port	October 27, 2005

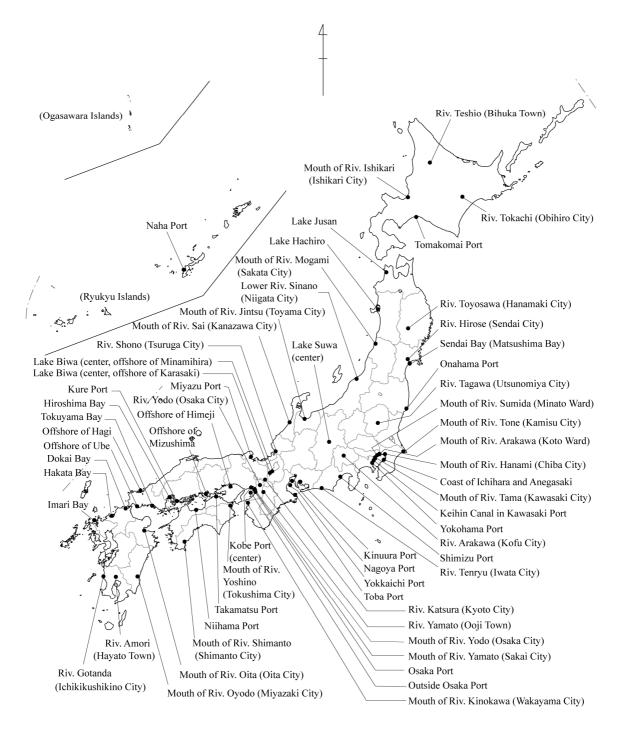


Figure 4-1-2 Monitored sites (sediment) in the Environmental Monitoring in FY 2005

List of monitored areas (wildlife) in the Environmental Monitoring in FY 20)05
---	-----

Local communities	Monitored sites	Sampling dates		Wildlife species
Hokkaido	Offshore of Kushiro	March, 9, 2006 November 18, 2005	Fish Fish	Rock greenling (<i>Hexagrammos otakki</i>) Chum salmon (<i>Oncorhynchus keta</i>)
	Offshore of Japan Sea (offshore of Iwanai)	January 30, 2006	Fish	Greenling (Hexagrammos lagocephalus)
Aomori Pref.	Kabu Is. (Hachinohe City)	July 7 ~ 13, 2005	Birds	Black-taild gull (<i>Larus crassirostris</i>)
Iwate Pref.	Yamada Bay	November 21, 2005 November 29, 2005	Bivalves	Blue mussel (Mytilus galloprovincialis)
			Fish	Greenling (<i>Hexagrammos lagocephalus</i>)
	Suburb of Morioka City	October 21, 2005	Birds	Gray starling (<i>Sturnus cineraceus</i>)
Miyagi Pref.	Sendai Bay (Matsushima Bay)	November 2, 2005	Fish	Sea bass (<i>Lateolabrax japonicus</i>)
Ibaraki Pref.	Offshore of Joban	October 25, 2005	Fish	Pacific saury (Cololabis saira)
Tokyo Met.	Tokyo Bay	September 12, 2005	Fish	Sea bass (<i>Lateolabrax japonicus</i>)
Yokohama City	Yokohama Port	November 30, 2005	Bivalves	Blue mussel (<i>Mytilus galloprovincialis</i>)
Kawasaki City	Offshore of Ogi Island in Kawasaki Port	October 3, 2005	Fish	Sea bass (Lateolabrax japonicus)
Ishikawa Pref.	Coast of Noto Peninsula	January 24, 2006	Bivalves	Blue mussel (<i>Mytilus galloprovincialis</i>)
Shiga Pref.	Lake Biwa, Riv. Azumi (Takashima City)	April 14, 2005	Fish	Dace (Tribolodon hakonensis)
Osaka Pref.	Osaka Bay	October 21, 2005	Fish	Sea bass (<i>Lateolabrax japonicus</i>)
Hyogo Pref.	Offshore of Himeji	December 12, 2005	Fish	Sea bass (<i>Lateolabrax japonicus</i>)
Tottori Pref.	Nakaumi	November 25, 2005	Fish	Sea bass (<i>Lateolabrax japonicus</i>)
Shimane Pref.	Shichirui Bay, Shimane Peninsula	October 3, 2005	Bivalves	Blue mussel (<i>Mytilus galloprovincialis</i>)
Hiroshima City	Hiroshima Bay	October 7, 2005 November 22, 2005 November 29, 2005	Fish	Sea bass (Lateolabrax japonicus)
Tokushima Pref.	Naruto	October 12, 2005	Bivalves	Hard-shelled mussel (<i>Mytilus coruscus</i>)
Kagawa Pref.	Takamatsu Port	October 31, 2005	Bivalves	Hard-shelled mussel (<i>Mytilus coruscus</i>)
Kochi Pref.	Mouth of Riv. Shimanto (Shimanto City)	November 20, 2005	Fish	Sea bass (<i>Lateolabrax japonicus</i>)
Kitakyushu City	Dokai Bay	July 12, 2005	Bivalves	Blue mussel (Mytilus galloprovincialis)
Kagoshima Pref.	West Coast of Satsuma Peninsula	October 18, 2005 December 15, 2005	Fish	Sea bass (Lateolabrax japonicus)
Okinawa Pref.	Nakagusuku Bay	January 16, 2006 January 17, 2006 January 21, 2006 January 24, 2006	Fish	Okinawa seabream (Acanthopagrus sivicolus)

Figure 4-1-3 Monitored areas (wildlife) in the Environmental Monitoring in FY 2005

Local communities	Monitored sites	Sampling dates	Sampling dates
		(Warm season)	(Cold season)
Hokkaido	Kushiro City Harutori Junior High School (Kushiro City)	September 13 ~ 16, 2005	December 6 ~ 9, 2005
Sapporo City	Sapporo Art Park (Sapporo City)	September 12 ~ 15, 2005	November 14 ~ 17, 2005
Iwate Pref.	Amihari Ski Area (Shizukuishi Town)	September 21 ~ October 6, 2005	November 2 ~ 10, 2005
Miyagi Pref.	Miyagi Prefectural Institute of Public Health and Environment (Sendai City)	September 8 ~ 15, 2005	December 8 ~ 15, 2005
Ibaraki Pref.	Ibaraki Prefecture Environmental Observation Center (Mito City)	September 28 ~ October 1, 2005	November 15 ~ 18, 2005
Gunma Pref.	Gunma Prefectural Institute of Public Health and Environmental Sciences (Maebashi City)	October 7 ~ 15, 2005	December 2 ~ 9, 2005
Chiba Pref.	Ichihara-Matsuzaki Air Quality Monitoring Station (Ichihara City)	September 19 ~ 22, 2005	November 14 ~ 17, 2005
Tokyo	Tokyo Metropolitan Research Institute for Environmental Protection (Koto Ward)	September 12 ~ October 3, 2005	November 14 ~ 25, 2005
	Chichijima Island	September 30 ~ October 7, 2005	December 3 ~ 10, 2005
Kanagawa Pref.	Kanagawa Environmental Research Center (Hiratsuka City)	September 12 ~ October 6, 2005	November 28 ~ December 15, 200
Yokohama City	Yokohama Environmental Science Research Institute (Yokohama City)	September 26 ~ October 3, 2005	December 12 ~ 19
Niigata Pref.	Oyamadai Koen Air Quality Monitoring Station (Niigata City)	September 26 ~ 29, 2005	November 28 ~ December 1, 2005
Toyama Pref.	Tonami Air Quality Monitoring Station (Tonami City)	October 11 ~ 14, 2005	November 29 ~ December 2, 2005
Ishikawa Pref.	Ishikawa Prefectural Institute of Public Health and Environmental Science (Kanazawa City)	October 3 ~ 14, 2005	November 7 ~ 17, 2005
Yamanashi Pref.	Fujiyoshida Joint Prefectural Government Building (Fujiyoshida City)	September 12 ~ 15, 2005	November 7 ~ 10, 2005
Nagano Pref.	Nagano Environmental Conservation Research Institute (Nagano City)	September 27 ~ October 4, 2005	December 6 ~ 13, 2005
Gifu Pref.	Gifu Prefectural Research Institute for Health and Environmental Sciences (Kakamigahara City)	September 28 ~ October 1, 2005	November 15 ~ 18, 2005
Nagoya City	Chikusa Ward Heiwa Park (Nagoya City)	September 27 ~ October 4, 2005	December 6 ~ 13, 2005
Mie Pref.	Mie Prefectural Science and Technology Promotion Center (Yokkaichi City)	September 12 ~ 15, 2005	December 6 ~ 9, 2005
Kyoto Pref.	Kyoto Prefecture Joyo Senior High School (Joyo City)	October 3 ~ 6, 2005	November 29 ~ December 2, 2005
Osaka Pref.	Osaka Prefecture Environmental Pollution Control Center (Osaka City)	October 3 ~ 7, 2005	December 6 ~ 9
Hyogo Pref.	Hyogo Prefectural Institute of Public Health and Environmental Sciences (Kobe City)	September 18 ~ 21, 2005	December 19 ~ 22, 2005
Kobe City	Fukiai Air Quality Monitoring Station (Kobe City)	September 13 ~ 16, 2005	December 13 ~ 16, 2005
Nara Pref.	Tenri Air Quality Monitoring Station (Tenri City)	September 26 ~ 29, 2005	November 28 ~ December 2, 2005
Shimane Pref.	Oki National Acid Rain Observatory (Okinoshima Town)	October 3 ~ 6, 2005	November 28 ~ December 1, 2005
Hiroshima City	Hiroshima City Kokutaiji Junior High School (Hiroshima	September 12 ~ 15, 2005	November 28 ~ December 1, 2005
5	City)	-	
Yamaguchi Pref.	Yamaguchi Prefectural Institute of Public Health and Environment (Yamaguchi City)	September 23 ~ 30, 2005	November 28 ~ December 1, 2005
	Hagi City Government Building, Mishima Branch (Hagi City)	September 22 ~ 29, 2005	November 28 ~ December 1, 2005
Tokushima Pref.	Tokushima Prefectural Institute of Public Health and Environmental Sciences (Tokushima City)	September 20 ~ 23, 2005	December 19 ~ 22, 2005
Kagawa Pref.	Takamatsu Joint Prefectural Government Building (Takamatsu City) Kagawa Prefectural Public Swimming Pool (Takamatsu City) as a reference site	September 12 ~ October 5, 2005	November 28 ~ December 7, 2005
Ehime Pref.	Ehime Prefecture Government Building, Uwajima Branch (Uwajima City)	October 3 ~ 6, 2005	November 14 ~ 17, 2005
Fukuoka Pref.	Omuta City Government Building (Omuta City)	October 3 ~ 6, 2005	November 28 ~ December 1, 2005
Saga Pref.	Saga Prefectural Environmental Research Center (Saga City)	September 30 ~ October 7, 2005	December , 200512 ~ 19, 2005
Kumamoto Pref.	Kumamoto Prefectural Institute of Public Health and Environmental Science (Udo City)	September 26 ~ 29, 2005	December , 20056 ~ 22, 2005
Miyazaki Pref.	Miyazaki Prefectural Institute for Public Health and Environment (Miyazaki City)	September 27 ~ October 4, 2005	December , 200512 ~ 26, 2005
Kagoshima Pref.	Kagoshima Prefectural Institute for Environmental	September 26 ~ October 6, 2005	November 15 ~ 18, 2005
Okinawa Draf	Research and Public Health (Kagoshima City)	Sontambor 27 - 20, 2005	January 16 ~ 19, 2006
Okinawa Pref.	Cape Hedo (Kunigami Village)	September 27 ~ 30, 2005	November 28 ~ December 1, 2005 December 12 ~ 15, 2005

List of monitored sites (a	ir)	in the Environmental Monitoring	g in	FY	2005
----------------------------	-----	---------------------------------	------	----	------

Figure 4-1-4 Monitored sites (air) in the Environmental Monitoring in FY 2005

(3) Target species

The species to be monitored among the wildlife media were selected considering the possibility of international comparison, as well as their significance and practicality as indicators: 3 bivalves (predominantly blue mussel), 7 fishes (predominantly sea bass), and 2 birds, namely, 12 species in total.

The properties of the species determined as targets in the FY 2005 monitoring are shown in Table 4-1. Moreover, Table 4-2 summarizes the outline of the samples used for analysis. Here, in the case of the black-tailed gull, prefledged juveniles (sacrificed) were used as samples.

(4) Sampling method of specimens

The sampling of specimens and the preparation of samples were carried out following the "Environmental Monitoring Instruction Manual" (No. 040309001, published on March 9th, 2004) by the Environment Health and Safety Division, Environmental Health Department, Ministry of the Environment of Japan (MOE).

Table 4-1	Properties	of target	species

		ties of target species	1	ſ	1
	Species	Properties	Monitored areas	Aim of monitoring	Notes
	Blue mussel	Distributed worldwide, excluding tropical	 Iwate Pref. Yamada Bay 	Follow-up of the	Monitored
	(Mytilus	zones	 Kanagawa Pref. Yokohama 	environmental fate	areas of 5
	galloprovincialis)	Adheres to rocks in inner bays and to bridge	Port	and persistency in	different
		piers; To understand the persistence level in	Ishikawa Pref. Coast of Noto	specific areas	levels of
		specific areas. 5 areas with different	Peninsula		persistency
ves		persistence levels of pollution were monitored	Shitirui Bay		
Bibalves			• Kitakyushu City, Dokai Bay		
Bi	Hard-shelled	Distributed in various areas of southern		Follow-up of the	
	mussel	Hokkaido and southward	Tokushima Pref. Naruto	environmental fate	
	(Mytilus coruscus)		• Kagawa Pref. Takamatsu Port	and persistency in	
	(Mynuus coruscus)	Adheres to rocks where the current is fast		specific areas	
		(1-10 m/s); To understand the persistence level		specific areas	
	a "	in specific areas		F 11 0.1	
	Greenling	Distributed from Hokkaido to southern	Hokkaido Offshore of Iwanai	Follow-up of the	
	(Hexagrammos	Japan, the Korean Peninsula, and China	 Iwate Pref.Yamada Bay 	environmental fate	
	lagocephalus)	Lives in shallow seas of 5-50 m depth from		and persistency in	
		sea level; To understand the persistence level		specific areas	
		in specific areas			
	Rock greenling	Lives in cold-current areas of Hidaka and	Hokkaido Offshore of Kushiro	Follow-up of the	
	(Hexagrammos	eastward (Hokkaido)		environmental fate	
	otakki)	Larger than the greenling and eats fish		and persistency in	
		smaller than its mouth size at the sea bottom; To		specific areas	
		understand the persistence level in specific areas			
	Pacific saury	Distributed widely in northern Pacific Ocean	Ibaraki Pref. Offshore of Joban	Follow-up of the	
	(Cololabis saira)	Migrates around Japanese Archipelago; in		environmental fate	
		Chishima in autumn and northern Kyushu in		and persistency	
		winter		around the Japanese	
		Bioaccumulation of chemicals is said to be		archipelago	
		moderate; To understand the persistence level			
		around the Japanese Archipelago			
	Chum salmon	Distributed in northern Pacific Ocean, Sea of	Hokkaido Offshore of Kushiro	Follow-up of the	
	(Oncorhynchus	Japan, Bering Sea, Sea of Okhotsk, the whole		environmental fate	
	(enteeninghentas keta)	of the Gulf of Alaska, and part of the Arctic		and persistency on a	
)	Ocean		global scale	
		Spawns in the Tone River (<i>Tonegawa</i>) on the		8	
		Pacific Ocean side and rivers north of			
		Yamaguchi Prefecture on the Sea of Japan side			
Fish		in the case of Japan			
щ		Bioaccumulation of chemicals is said to be			
		moderate; To understand the persistence level			
		on a global scale			
	Sea bass	Distributed around the shores of various areas	• Miyagi Pref.Matsushima Bay	Follow-up of the	Monitored
	(Lateolabrax	in Japan, the Korean Peninsula, and the coastal		environmental fate	areas of 9
	japonicus)	areas of China	Tokyo Met.Tokyo Bay	and persistency in	different
	juponicus)	Sometimes lives in a freshwater environment	• Kanagawa Pref.Kawasaki Port	specific areas	levels of
			• Osaka Pref.Osaka Bay	specific areas	persistency
		and brackish-water regions during its life cycle	•Hyogo Pref.Offshore of Himeji		persistency
		Bioaccumulation of chemicals is said to be	 Tottori Pref.Nakaumi 		
		high; To understand the persistence level in	• Hiroshima Pref. Hiroshima Bay		
		specific areas, 9 areas with different	• Kochi Pref.Mouth of Riv.		
		persistence levels of pollution were monitored.	Shimanto		
			• Kagoshima Pref.West Coast of		
			Satsuma Peninsula		
	Okinawa seabeam	Distributed around Nansei Shoto (Ryukyu	Okinawa Pref.Kanagusuku	Follow-up of the	
	(Acanthopagrus	Islands)	Bay	environmental fate	
	sivicolus)	Lives in coral reefs and in bays into which	Duy	and persistency in	
	,	rivers flow; To understand the persistence		specific areas	
		level in specific areas		r	
	Dace	Distributed widely in freshwater	Shiga Pref.Lake Biwa, Riv.	Follow-up of the	
	(Tribolodon	environments throughout Japan	Azumi (Takashima City)	environmental fate	
	(111001000n hakonensis)	Preys mainly on insects; To understand the	Azumi (Takasinina Ulty)	and persistency in	
1		The result of th	1	and persistency in	1
		persistence level in specific areas		specific areas	

	Species	Properties	Monitored areas	Aim of monitoring	Notes
Birds	Gray starling (Sturnus cineraceus)	Distributed widely in the Far East (Related species are distributed worldwide) Eats primarily insects; To understand the persistence level in northern Japan _o	Iwate Pref.Morioka City	Follow-up of the environmental fate and persistency in northern Japan	
Bi	Black-taild gull (<i>Larus</i> <i>crassirostris</i>)	Breeds mainly in the sea off Japan Breeds in groups at shore reefs and in grassy fields; To understand the persistence level in specific areas	• Aomori Pref. Kabu Is. (Hachinohe City)	Follow-up of the environmental fate and persistency in specific areas	

Table 4-2-1 Basic	uutu	of specifici	15 (01/01/05) III uic i	JII V.	nonnen		litoring	5 111	1120	05	1	
Bivalve species (Area)	No.	Sampling month	Sex	Number of animals			eight (g) verage)]		gth (cm verage)		Water content %	Lipid content %
	1		Uncertain	208	20.2	~	36.7	(31.1)	6.8	~	7.3	(7.0)	83.2	1.5
Blue mussel	2		Uncertain	169	28.6	~	51.8	(47.4)	7.3	~	7.7	(7.6)	81.9	1.6
Mytilus galloprovincialis	3	November,	Uncertain	130	36.2	~	59.9	(39.4)	7.8	~	8.2	(7.9)	80.6	1.8
(Yamada Bay)	4	2005	Uncertain	117	35.2	~	79.1	(55.8)	8.4	~	9.7	(8.9)	81.8	1.7
(Talilada Day)	5		Uncertain	260	15.4	~	36.5	(25.7)	6.0	~	6.7	(6.5)	83.5	1.6
	1		Uncertain	465	1.54	~	3.82	(2.8)	2.5	~	3.4	(2.9)	88.7	0.44
Blue mussel	2		Uncertain	483	1.75	~	4.94	(2.8)	2.6	~	3.6	(3.0)	89.0	0.43
Mytilus galloprovincialis	3	November,	Uncertain	490	1.79	~	3.84	(2.6)	2.6	~	3.5	(3.1)	89.5	0.49
(Yokohama Port)	4	2005	Uncertain	488	1.55	~	5.74	(2.6)	2.5	~	3.6	(3.0)	89.4	0.43
(Tokonania Tort)	5		Uncertain	484	1.43	~	5.70	(2.5)	2.5	~	4.1	(2.9)	87.2	0.44
	1		Uncertain	33	54.3	~	110.8	(76.5)	8.0	~	10.1	(9.2)	80.8	1.7
Blue mussel	2	т	Uncertain	59	23.0	~	46.7	(33.5)	6.5	~	7.7	(7.2)	81.2	1.6
Mytilus galloprovincialis	3	January, 2006	Uncertain	83	14.9	~	32.7	(23.7)	5.8	~	7.2	(6.6)	83.1	1.6
(Coast of Noto Peninsula)	4	2000	Uncertain	95	14.0	~	36.6	(22.9)	5.6	~	6.8	(6.2)	83.8	1.5
(Coust of Floto Fellinsulu)	5		Uncertain	168	9.5	~	22.1	(16.7)	5.2	~	6.3	(5.8)	83.1	1.6
	1		Uncertain	167	23.2	~	47.3	(34.9)	5.4	~	7.2	(6.3)	74.6	3.0
Blue mussel	2	0.4.1.	Uncertain	330	15.3	~	42.4	(26.0)	4.5	~	6.1	(5.5)	76.4	2.6
Mytilus galloprovincialis	3	October, 2005	Uncertain	550	6.8	~	12.7	(9.3)	3.3	~	4.1	(3.6)	78.6	2.4
(Shitirui Bay)	4	2005	Uncertain	1,020	4.3	~	10.2	(6.6)	2.8	~	3.5	(3.1)	78.3	2.0
(2	5		Uncertain	1,200	2.1	~	5.0	(3.7)	2.0	~	2.5	(2.1)	80.3	1.6
	1		Uncertain	24	314	~	539	(432)	14	~	17	(15)	78.4	1.1
Hard-shelled mussel	2	Ortohan	Uncertain	18	301	~	647	(497)	14	~	18.5	(16)	78.0	1.3
Mytilus coruscus	3	October, 2005	Uncertain	17	287	~	790	(488)	15	~	17.5	(16)	71.8	1.3
(Naruto)	4	2005	Uncertain	20	500	~	688	(572)	16	~	18.5	(18)	72.5	1.3
()	5		Uncertain	17	465	~	848	(637)	17	~	20	(18)	76.5	1.1
** 1 1 11 1 1	1		Uncertain	120	40.06	~	163.88	(77.4)	7.55	~	12.50	(9.6)	Uncertain	2.5
Hard-shelled mussel	2	Oatabar	Uncertain	120	43.69	~	108.03	(75.0)	8.52	~	10.82	(9.6)	Uncertain	2.0
Mytilus coruscus	3	October, 2005	Uncertain	130	34.99	~	137.47	(66.2)	7.66	~	11.67	(9.2)	Uncertain	2.2
(Takamatsu Port)	4	2005	Uncertain	125	32.22	~	111.73	(64.8)	8.57	~	10.80	(9.6)	Uncertain	2.0
,	5		Uncertain	128	30.40	~	119.82	(66.3)	6.94	~	10.26	(9.1)	Uncertain	2.1
Blue mussel <i>Mytilus galloprovincialis</i> (Dokai Bay)	1	July, 2005	Mixed	210	2.9	~	14.0	(8.4)	3.1	~	5.4	(4.5)	75.9	2.0

Table 4-2-1 Basic data of specimens (bivalves as wildlife) in the Environmental Monitoring in FY 2005

Fish species (Area)	No.	Sampling month	Sex	Number of animals	,	We	eight (g) verage)	incinal iv		Lei	ngth (cm verage)	.)	Water content	Lipid content %
	1		Male	4	707	~	1,073	(871.8)	31.4	~	37.0	(34.4)	80.1	1.0
Rock greenling	2		Male	4	826	~	993	(915.3)	32.8	~	35.8	(34.8)	79.7	0.7
Hexagrammos otakki	3	March, 2006	Female	4	811	~	1,105	(927.0)	34.8	~	36.3	(35.4)	78.9	1.9
(Offshore of Kushiro)	4	2000	Female	4	802	~	1,233	(985.5)	33.4	~	37.8	(35.7)	79.5	1.3
(0101010 01 11051110)	5		Female	5	667	~	998	(859.6)	32.1	~	35.3	(34.5)	79.4	1.5
	1		Male	4	465	~	1,432	(897)	26.8	~	38.7	(32.2)	78.8	0.9
Greenling	2	_	Female	8	191	~	449	(326)	23.2	~	25.8	(24.7)	77.9	1.3
Hexagrammos lagocephalus	3	January, 2006	Mixed	7	246	~	487	(417)	23.2	~	28.7	(27.1)	79.0	1.7
(Offshore of Iwanai)	4	2000	Mixed	6	309	~	853	(564)	25.1	~	33.5	(29.6)	79.1	1.5
(• • • • • • • • • • • • • • • • • • •	5		Mixed	5	473	~	776	(656)	26.8	~	33.2	(30.7)	79.4	1.0
C1 1	1		Male	1	5,750			(5,750)	70.8			(70.8)	74.1	1.9
Chum salmon Oncorhynchus keta	2	November,	Female	1	5,540			(5,540)	68.6			(68.6)	74.9	2.0
Oncornynchus keiu	3	2005	Female	1	5,060			(5,060)	70.6		(())	(70.6)	74.6	2.4
(Offshore of Kushiro)	4		Male	2	-		·	(3,910)	60.0		66.3	(63.2)	74.1	2.7
	5		Mixed	2			· ·	(3,935)	63.7		67.8	(65.8)	73.2	2.3
Greenling	1		Uncertain	5	552.2		671.4		34.8		38.0	(36.1)	75.8	4.3
Hexagrammos lagocephalus	2	November,	Uncertain	6	426.9		535.0		32.0		34.8	(33.7)	74.2	4.1
	3	2005	Uncertain	8	391.7			(420.2)	31.7		32.7	(32.2)	76.0	3.8
(Yamada Bay)	4		Uncertain	9	369.4		409.0		30.1		32.4	(31.0)	75.0	4.0
	5		Uncertain	10	286.2		350.3	(316.5)	27.6		30.0	(28.8)	76.7	3.9
C 1	1		Mixed	28	82.8	~	170	(132)	18.0		23.5	(20.9)	77.2	2.3
Sea bass Lateolabrax japonicus	2	November,	Mixed	23		~	212	(156)	19.5		26.0	(22.3)	77.8	2.1
Euconor an Juponicus	3	2005	Mixed	28	86.2		268	(160)	18.0		26.5	(22.3)	77.3	2.0
(Matsushima Bay)	4		Mixed	26	78.7	~	233	(161)	18.5		26.1	(22.9)	78.5	1.9
	5		Mixed	24	74.5	~	238	(163)	18.0		27.8	(22.7)	77.7	2.2
р. : С	1		Mixed	40	/ -	~	137	(127.4)	26	~	30	(28.2)	60.1	18.7
Pacific saury Cololabis saira	2	October,	Mixed	30		~	157	(148.8)	27	~	31	(28.8)	58.8	19.7
Cololubis sultu	3	2005	Mixed	30	158	~	176	(165.0)	28	~	31	(29.6)	58.6	19.2
(Offshore of Joban)	4		Mixed	20	180	~	203	(187.5)	29	~	33	(30.9)	57.0	26.0
	5		Mixed	40	110	~	200	(149.8)	26	~	33	(29.3)	59.2	20.0
~ .	1		Mixed	3	1,440	~	1,761	(1,560)	448	~	473	(459)	75.2	3.0
Sea bass	2	Contombor	Mixed	3			,	(1,438)	449	~	473	(458)	75.7	2.8
Lateolabrax japonicus	3	September, 2005	Mixed	3	1,410	~	1,490		444	~	448	(446)	74.4	2.8
(Tokyo Bay)	4	2005	Mixed	7	935	~	1,150	(1,063)	396	~	434	(415)	74.5	2.8
	5		Mixed	6	875	~	1,310	(1,080)	402	~	442	(420)	75.6	2.7
	1		Uncertain	3	1,220	~	1,710	(1,517)	43.0	~	49.5	(46.5)	76	2.7
Sea bass	2	Ostalian	Mixed	2	1,340	~	3,250	(2,295)	43.0	~	55.0	(49.0)	74	4.4
Lateolabrax japonicus	3	October, 2005	Female	2	1,420	~	3,100	(2,260)	46.5	~	58.5	(52.5)	77	2.1
(Kawasaki Port)	4	2005	Uncertain	3	1,180	~	1,380	(1,293)	41.0	~	46.0	(44.0)	76	2.5
· · · · ·	5		Uncertain	2	1,320	~	2,600	(1,960)	43.5	~	53.5	(48.5)	75	4.5
	1		Female	29	165	~	448	(243)	25.5	~	33.5	(28.3)	74.8	2.2
Dace Twike le deur le rhemennie	2	A	Male	27	138	~	267	(195)	23.4	~	29.2		76.4	2.7
Tribolodon hakonensis	3	April, 2005	Female	30	135	~	236	(197)	23.5	~	29.2	(26.8)	75.7	3.0
(Lake Biwa, Riv. Azumi)	4	2005	Male	28	117	~	259	(186)	22.2	~	29.7	(26.1)	74.8	3.7
	5		Female	28	182	~	564	(257)	26.2	~	35.6	(28.5)	75.6	3.0
	1		Uncertain	15	406.1	~	473.6	(431.8)	28.0	~	33.0	(30.1)	75.9	1.9
Sea bass	2		Uncertain	15	333.3	~	443.5	(387.8)	27.0	~	30.0	(28.7)	75.8	3.1
Lateolabrax japonicus	3	August, 2005	Uncertain	15	352.1	~	435.8	(387.1)	27.0	~	30.0	(28.5)	75.6	3.3
(Osaka Bay)	4	2005	Uncertain	10	324.2	~	434.2	(378.0)	26.0	~	30.0	(28.5)	76.0	2.8
(5		Uncertain	10	311.0	~	438.0	(362.7)	26.0	~	29.0	(27.2)	75.8	3.2

Table 4-2-2 Basic data of specimens (fish as wildlife) in the Environmental Monitoring in FY 2005

Fish species (Area)	No.	Sampling month	Sex	Number of animals			eight (g verage)			ngth (cm) average)	Water content %	Lipid content %
Sea bass	1		Female	1	2,700			(2,700)	72	(72)	4.0	3.9
Lateolabrax japonicus	2	December.	Female	1	2,300			(2,300)	65	(65)	4.5	3.5
	3	2005	Male	1	1,900			(1,900)	60	(60)	5.0	5.7
(Offshore of Himeji)	4		Female Female	1	1,400 1,150			(1,400) (1,150)	55 53	(55) (53)	4.5 5.2	4.7 6.3
	1		Mixed	14	400	~	580	(506)	32.0 ~	36.7 (34.5)	78.7	2.2
Sea bass	2		Mixed	13	340	~	393	(695)	34.0 ~	39.3 (37.0)	77.9	3.6
Lateolabrax japonicus	3	November,	Mixed	13	382	~	415	(772)	38.2 ~	41.5 (40.1)	79.4	2.5
	4	2005	Mixed	13	320	~	350	(490)	25.0 ~	33.7 (32.0)	77.9	2.5
(Nakaumi)	5		Mixed	13	340	~	383	(535)	23.0 ~	38.3 (35.5)	77.3	2.4
	1		Male	5	601	~	782	(685)	33.0 ~	39.0 (35.3)	76.1	1.8
Sea bass	2	October ~	Male	5	544	~	785	(653)	33.0 ~	38.5 (35.0)	76.5	1.0
Lateolabrax japonicus	3	November.	Male	4	915	~	1.250	(1,069)	39.0 ~	44.0 (41.2)	71.3	2.9
(Uinschinge Deer)	4	2005	Male	4	887		1,058	(956)	38.5 ~	42.0 (40.2)	72.8	3.1
(Hiroshima Bay)	5		Male	4	931		1,141	(1,042)	40.5 ~	43.0 (42.0)	71.0	3.0
	1		Mixed	13	173	~	530	(319)	21.3 ~	31.0 (25.6)	77.9	1.3
Sea bass	2		Mixed	13	119	~	694	(324)	18.4 ~	37.0 (25.6)	78.0	1.2
Lateolabrax japonicus	3	November,	Mixed	23	99	~	398	(176)	17.7 ~	28.0 (21.0)	77.4	1.2
$(\mathbf{M}_{1}, \mathbf{d}_{2}, \mathbf{C}\mathbf{D}_{1}^{T}, \mathbf{C}\mathbf{D}_{2}^{T})$	4	2005	Mixed	25	109	~	238	(147)	17.0 ~	23.6 (19.9)	77.7	1.0
(Mouth of Riv. Shimanto)	5		Mixed	23	110	~	238 514	(198)	17.7 ~	30.2 (21.5)	77.5	1.0
	1		Mixed	14	323.0		448.3	()	24.5 ~	28.6 (27.3)	73.9	1.2
Sea bass	2	Outstan	Mixed	11	411.6		659.5		28.8 ~	33.0 (30.9)	73.8	1.2
Lateolabrax japonicus	3	October ~ December.	Mixed	10	494.2		619.2		20.0 33.0 ~	33.9 (33.4)	73.6	1.5
(West Coast of Satsuma	4	2005	Male	10	582.6		744.2	· /	34.4 ~	35.8 (35.3)	73.2	1.5
Peninsula)	5		Male	8	617.6		790.3	· · · · ·	36.0 ~	39.5 (37.1)	73.7	2.1
	1		Female	3	1,380			(1,467)	35.6 ~	37.5 (36.5)	78.3	1.2
Okinawa seabeam	2		Female	3	1,580		1,360	(1,260)	32.5 ~	33.8 (33.1)	74.9	1.2
Acanthopagrus sivicolus	3	January,	Female	3	1,180		1,140	(1,093)	32.5 ~	33.7 (33.0)	74.9	1.2
	4	2006	Male	3	1,000		1,140	(1,0)	31.7 ~	34.5 (33.4)	75.6	1.5
(Kanagusuku Bay)	5		Male	3	1,000		1,340	(1,100)	32.0 ~	33.7 (32.8)	75.0	1.0
	5		Iviale	5	1,000	~	1,000	(1,000)	32.0 ~	55.7 (52.8)	/0.0	1.4

Table 4-2- Basic data of specimens (birds as wildlife) in the Environmental Monitoring in FY 2005

Bird species (Area)	No	Sampling month	Sex	Number of animals			ight (g) verage)				gth (cm verage	/	Water content %	Lipid content %
	1		Uncertain	35	259	~	492	(391)	24	~	36	(30)	73.0	4.7
Black-taild gull	2		Uncertain	35	243	~	547	(390)	23	~	35	(30)	73.5	4.4
Larus crassirostris	3	July, 2005	Uncertain	38	240	~	498	(404)	27	~	34	(31)	72.9	3.8
(Kabu Is. (Hachinohe City))	4		Uncertain	40	286	~	568	(427)	24	~	41	(30)	75.0	3.5
(5		Uncertain	41	306	~	571	(448)	24	~	38	(32)	74.8	3.5
	1		Male	30	74	~	114	(91)	12.0	~	13.7	(13.0)	71.4	3.4
Gray starling	2	0.11	Female	30	70	~	103	(88)	12.2	~	13.9	(13.1)	70.8	3.1
Sturnus cineraceus	3	October, 2005	Female	30	75	~	98	(88)	12.0	~	13.7	(12.9)	71.1	3.1
(Morioka City)	4	2005	Female	30	71	~	95	(86)	12.0	~	13.2	(12.7)	71.4	2.9
(5		Mixed	30	82	~	100	(86)	11.8	~	13.7	(12.8)	70.8	2.8

4. Summary of monitoring results

Lists of the detection ranges are shown in Table 4-8-1 and Table 4-8-3, and lists of the detection limits are shown in Table 4-8-2 and Table 4-8-4. Data were carefully handled on the basis of following points.

• In general

The data were described as "nd" in cases where the measured concentrations did not exceed the detection limit (=MDL), whereas the data were described as "tr()" in cases where the measured concentrations exceeded the detection limit but did not exceed the quantification limit (=MQL). Geometric means were calculated by quantifying "nd" as half the value of the corresponding detection limit.

· For surface water

In Hyogo Pref., 50L and 250L water samples were collected with a high volume sampling system, and only the data of the 250L sample were used. In Kitakyushu City, water was sampled three times and the resultant mixture was treated as one sample.

• For air

In each monitored site, the first sampling was the monitoring in the warm season (September 18, 2005 ~ October 15, 2005) and the second was that in the cold season (November 2, 2005 ~ January 19, 2006).

In Kagawa Pref., monitoring was carried out at not only the Takamatsu Joint Prefectural Government Building but also at the location of the Kagawa Prefectural Public Swimming Pool (Takamatsu City) as a reference site.

Table 4-8-1 List of the detection ranges	the Environmental Monitoring in FY	2005 (Part 1: POPs and HCHs)

Ta	ble 4-8-1 List of			anges in the	Env	ironmental	Mon				's and	HCHs)	A : (- (3)	
		Surface w		Sediment				Wildlife (pg	g/g-dry			First	Air (p	g/m ⁻) Secon	d
No	Target chemicals	(pg/L))	(pg/g-dry))	Bivalve	s	Fish		Birds		(Warm sea	ison)	(Cold sea	
	-	Range (Frequency)	Av.	Range (Frequency)	Av.	Range (Frequency)	Av.	Range (Frequency)	Av.	Range (Frequency)	Av.	Range (Frequency)	Av.	Range (Frequency)	Av.
1	Polychlorinated biphenyls (PCBs)	140 ~ 7,800 (47/47)	520	42~690,000 (63/63)	7,500	920 ~ 85,000 (7/7)	8,200	800 ~ 540,000 (16/16)	13,000	5,600 ~ 19,000 (2/2)	10,000	23 ~ 1,500 (37/37)	190	20 ~ 380 (37/37)	66
2	НСВ	6~210 (47/47)	21	13~22,000 (63/63)	160	19~450 (7/7)	38	29~1,700 (16/16)	170	400 ~ 2,500 (2/2)	980	27~250 (37/37)	88	44 ~ 180 (37/37)	77
3	Aldrin		tr(0.6)	nd ~ 500 (62/63)	7.5	nd ~ 84 (3/7)	nd	nd ~ 6.4 (5/16)	nd	nd (0/2)	nd	nd ~ 10 (29/37)	0.33	nd ~ 1.8 (9/37)	tr(0.04
4	Dieldrin	4.5 ~ 630 (47/47)	39	$tr(2) \sim 4,200$ (63/63)	56	34 ~ 39,000 (7/7)	320	21~1,400 (16/16)	220	500 ~ 1,800 (2/2)	810	1.5 ~ 200 (37/37)	14	0.88 ~ 50 (37/37)	3.9
5	Endrin	nd ~ 120 (45/47)	4.0	nd ~ 19,000 (61/63)	10	nd ~ 2,100 (7/7)	30	nd ~ 2,100 (12/16)	tr(16)	nd ~ 64 (2/2)	tr(16)	nd ~ 2.9 (27/37)	tr(0.4)	nd ~ 0.7 (8/37)	nd
6	DDTs	(10/17)		(01,00)		(///)		(12,10)		(=,=)		(21131)		(0/37)	
6-1	<i>p,p'</i> -DDT	1 ~ 110 (47/47)	8	5.1 ~ 1,700,000 (63/63)	280	66 ~ 1,300 (7/7)	180	tr(3.8) ~ 8,400 (16/16)	250	180~900 (2/2)	410	0.44 ~ 31 (37/37)	4.1	0.25 ~ 4.8 (37/37)	1.1
6-2	<i>p,p'</i> -DDE	4~410 (47/47)	26	8.4 ~ 64,000 (63/63)	630	230~6,600 (7/7)	1,100	230~73,000 (16/16)	2,200	7,100 ~ 300,000	44,000	1.2~42 (37/37)	5.0	0.76~9.9 (37/37)	1.7
6-3	<i>p,p'</i> -DDD	$tr(1.8) \sim 130$ (47/47)	17	5.2 ~ 210,000 (63/63)	520	13~1,700 (7/7)	300	29~6,700 (16/16)	470	45~1,400 (2/2)	300	tr(0.07) ~ 1.3 (37/37)	0.24	nd ~ 0.29 (28/37)	tr(0.06
6-4	o,p'-DDT	nd ~ 39 (42/47)	3	0.8 ~ 160,000 (63/63)	47	29~440 (7/7)	75	5.8 ~ 1,500 (16/16)	94	(2/2) 3.4 ~ 24 (2/2)	11	0.67 ~ 14 (37/37)	3.0	0.32 ~ 3.0 (37/37)	0.76
6-5	<i>o,p'</i> -DDE	$0.4 \sim 410$ (47/47)	2.5	nd ~ 31,000 (62/63)	35	12~470 (7/7)	66	tr(1.4) ~ 12,000 (16/16)	50	nd ~ tr(2.9) (2/2)	tr(1.4)		1.6	0.24 ~ 2.0 (37/37)	0.62
6-6	o,p'-DDD	tr(0.5) ~ 51 (47/47)	5.2	$tr(0.8) \sim 32,000$ (63/63)	110	10~1,800 (7/7)	140	nd ~ 1,400 (16/16)	77	4.7 ~ 9.7 (2/2)	7.1	tr(0.07) ~ 0.90 (37/37)	0.22	nd ~ 0.21 (35/37)	tr(0.07)
7	Chlordanes			(()						((
7-1	cis-Chlordane	6~510 (47/47)	53	3.3 ~ 44,000 (63/63)	140	78 ~ 13,000 (7/7)	820	42~8,000 (16/16)	490	tr(5.8) ~ 340 (2/2)	49	3.4 ~ 1,000 (37/37)	92	1.4 ~ 260 (37/37)	16
7-2	trans-Chlordane	3 ~ 200 (47/47)	25	3.4 ~ 32,000 (63/63)	98	40~2,400 (7/7)	370	tr(9.8) ~ 3,100 (16/16)	150	tr(4.5) ~ 30 (2/2)	10	3.2 ~ 1,300 (37/37)	100	1.9 ~ 310 (37/37)	19
7-3	Oxychlordane	nd ~ 19 (46/47)	2.6	nd ~ 160 (51/63)	2.1	12~1,400 (7/7)	81	20~1,900 (16/16)	140	390 ~ 860 (2/2)	600	0.65 ~ 8.8 (37/37)	1.9	0.27 ~ 2.2 (37/37)	0.55
7-4	cis-Nonachlor	0.9~43 (47/47)	6.0	tr(1.1)~9,900 (63/63)	50	27 ~ 1,300 (7/7)	220	27~6,200 (16/16)	360	86~370 (2/2)	160	0.30 ~ 160 (37/37)	10	0.08 ~ 34 (37/37)	1.6
7-5	trans-Nonachlor	2.6 ~ 150 (47/47)	20	2.4 ~ 24,000 (63/63)	89	72 ~ 3,400 (7/7)	570	80~13,000 (16/16)	910	440~2,000 (2/2)	850	3.1 ~ 870 (37/37)	75	1.2~210 (37/37)	13
8	Heptachlors			<u>``</u>											
8-1	Heptachlor	nd ~ 54 (25/47)	nd	nd ~ 200 (48/63)	2.5	nd ~ 24 (6/7)	tr(2.3)	nd ~ 7.6 (8/16)	nd	nd (0/2)	nd	1.1 ~ 190 (37/37)	25	0.52~61 (37/37)	6.5
8-2	<i>cis</i> -Heptachlor epoxide	1.0 ~ 59 (47/47)	7.1	nd ~ 140 (49/63)	tr(4)	7.4 ~ 590 (7/7)	36	4.9 ~ 390 (16/16)	39	250~690 (2/2)	360	tr(0.10) ~ 11 (37/37)	1.5	0.43 ~ 2.9 (37/37)	0.91
8-3	trans-Heptachlor epoxide	nd (0/47)	nd	nd (0/63)	nd	nd ~ 37 (2/7)	nd	nd (0/16)	nd	nd (0/2)	nd	nd ~ 1.2 (27/37)	tr(0.10)	nd ~ 0.32 (3/37)	nd
9	Toxaphenes														
9-1	Parlar-26	nd (0/47)	nd	nd (0/63)	nd	nd ~ tr(28) (4/7)	nd	nd ~ 900 (13/16)	tr(39)	nd ~ 1,200 (1/2)	85	nd (0/37)	nd	nd (0/37)	nd
9-2	Parlar-50	nd (0/47)	nd	nd (0/63)	nd	nd ~ tr(38) (4/7)	nd	nd ~ 1,400 (13/16)	tr(50)	nd ~ 1,500 (1/2)	100	nd (0/37)	nd	nd (0/37)	nd
9-3	Parlar-62	nd (0/47)	nd	nd (0/63)	nd	nd (0/7)	nd	nd ~ 830 (8/16)	nd	nd ~ 460 (1/2)	tr(77)	nd (0/37)	nd	nd (0/37)	nd
10	Mirex	nd ~ 1.0 (14/47)	nd	nd ~ 5,300 (48/63)	1.5	tr(1.9) ~ 20 (7/7)	5.7	tr(1.0) ~ 78 (16/16)	12	41 ~ 180 (2/2)	76	tr(0.05) ~ 0.24 (37/37)	tr(0.09)	nd ~ tr(0.08) (29/37)	tr(0.04
11	HCHs										1		1		
11-1	α-НСН	16~660 (47/47)	90	3.4 ~ 7,000 (63/63)		tr(7.1) ~ 1,100 (7/7)		nd ~ 1,000 (16/16)	41	67 ~ 85 (2/2)	76	22 ~ 2,000 (37/37)	110	9.6~630 (37/37)	35
11-2	β -HCH	25 ~ 2,300 (47/47)	200	3.9 ~ 13,000 (63/63)	180	(7/7)	56	6.7 ~ 1,300 (16/16)	88	930 ~ 6,000 (2/2)	2,500	0.67 ~ 52 (37/37)	4.9	0.24 ~ 16 (37/37)	1.1
11-3	ү-НСН	tr(8) ~ 250 (47/47)	48	tr(1.8) ~ 6,400 (63/63)	44	tr(5.7) ~ 370 (7/7)	15	nd ~ 230 (16/16)	17	9.6~32 (2/2)	18	5.9 ~ 650 (37/37)	34	2.1 ~ 110 (37/37)	9.3
	δ-НСН	nd ~ 62 (23/47)	1.8	nd ~ 6,200 (63/63)	46	(6/7)	tr(2.5)	(12/16)	tr(3.2)	(2/2)	16	0.29 ~ 35 (37/37)	1.7	nd ~ 11 (36/37)	0.38
AL 4	1) "Ay" indicates th			1 1 1 11		1/1 1	.1	1	. 1	1 10 4 1 (2.1 1	1 1 1			

(Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

(Note 2) "Range" is based on the number of samples and "Frequency" is based on the number of sites or areas. Therefore "range" can be shown as "nd ~ " even if a target chemical is detected in all sites (or areas).

No Target chemicals Surface water (pg/L) Sediment (pg/g-dry) Wildlife (pg/g-dry) 1 Polychlorinated biphenyls (PCBs) 10 6.3 69 2 HCB 15 3 11 3 Aldrin 0.9 1.4 3.5 3 Aldrin 0.9 1.4 3.5 4 Dieldrin 1.0 3 9.4 5 Endrin 1.1 2.6 17 6 DDTs - - - 61 p,p' -DDT 4 1.0 5.1 62 p,p' -DDT 4 1.0 5.1 63 p,p' -DDT 4 1.0 5.1 64 o,p' -DDT 1.7 2.9 - 63 p,p' -DDE 6 2.7 8.5 64 o,p' -DDT 1.1 1.3 1.0 63 p,p' -DDD 1.0 1.7 2.9 64 o,p' -DDD 1.2 <th>Air (pg/m³) 0.38 [0.14] 0.14 0.034] 0.08 [0.03] 0.54 [0.24] 0.5 [0.2] 0.16 [0.054] 0.16 [0.054] 0.14 [0.034] 0.16 [0.05] 0.10 [0.034] 0.10 [0.024] 0.074 [0.024] 0.10</th>	Air (pg/m ³) 0.38 [0.14] 0.14 0.034] 0.08 [0.03] 0.54 [0.24] 0.5 [0.2] 0.16 [0.054] 0.16 [0.054] 0.14 [0.034] 0.16 [0.05] 0.10 [0.034] 0.10 [0.024] 0.074 [0.024] 0.10
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	[0.14] 0.14 [0.034] 0.08 [0.03] 0.54 [0.24] 0.5 [0.2] 0.16 [0.054] 0.14 [0.034] 0.16 [0.05] 0.10 [0.034] 0.10 [0.034] 0.074 [0.024]
2 HCB 15 3 11 3 Aldrin 0.9 1.4 3.5 4 Dieldrin 1.0 3 9.4 5 Endrin [0.3] [0.5] [1.2] 6 DDTs 1.1 2.6 17 6-1 $p_{.p}^{.p}$ DDT 4 1.0 5.1 6-1 $p_{.p}^{.p}$ DDT 4 1.0 1.7 6-2 $p_{.p}^{.p}$ DDE 6 2.7 8.5 6-3 $p_{.p}^{.p}$ DDD 1.9 1.7 2.9 6-4 $o_{.p}^{.p}$ DDT 1.1 [0.64] [0.7] 6-5 $o_{.p}^{.p}$ DDE 1.2 2.6 3.4 6-5 $o_{.p}^{.p}$ DDD 1.2 1.0 3.3 6-6 $o_{.p}^{.p}$ DDD 1.2 1.0 3.3 6-6 $o_{.p}^{.p}$ DDD 1.2 1.0 3.3 6-6 $o_{.p}^{.p}$ DDD [0.4] [0.9] [1.1] 6-6 $o_{.p}^{.p}$ DDD [0.4] [0.3] [1.1] 7 Chlordanes	0.14 [0.034] 0.08 [0.03] 0.54 [0.24] 0.5 [0.2] 0.16 [0.054] 0.14 [0.034] 0.16 [0.05] 0.10 [0.034] 0.074 [0.024]
5 $ 1 $ $ 38 $ 3 Aldrin 0.9 1.4 3.5 4 0.9 1.4 3.5 4 0.63 $[0.5]$ $[1.2]$ 4 $0.eldrin$ $[0.34]$ $[1]$ $[3.4]$ 5 Endrin $[0.4]$ $[0.9]$ $[5.5]$ 6 DDTs 4 1.0 5.1 $6-1$ $p.p'DDT$ 4 1.0 5.1 $6-2$ $p.p'DDE$ 6 2.7 8.5 $6-3$ $p.p'DDD$ 1.9 1.7 2.9 $6-3$ $p.p'DDD$ 1.9 1.7 2.9 $6-4$ $o.p'DDT$ 3 0.8 2.6 $6-4$ $o.p'DDE$ 1.2 2.6 3.4 $6-5$ $o.p'DDE$ 1.2 1.0 3.3 $6-6$ $o.p'DDD$ $[0.4]$ $[0.3]$ $[1.1]$ 7 Chordanes 1.9 1.2 <	0.08 [0.03] 0.54 [0.24] 0.5 [0.2] 0.16 [0.054] 0.14 [0.034] 0.16 [0.05] 0.10 [0.034] 0.10 [0.034] 0.074 [0.024]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	[0.03] 0.54 [0.24] 0.5 [0.2] 0.16 [0.054] 0.14 [0.034] 0.16 [0.05] 0.10 [0.034] 0.074 [0.024]
Image: boot of the second s	0.54 [0.24] 0.5 [0.2] 0.16 [0.054] 0.14 [0.034] 0.16 [0.05] 0.10 [0.034] 0.10 [0.034] 0.074 [0.024]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[0.24] 0.5 [0.2] 0.16 [0.054] 0.14 [0.034] 0.16 [0.05] 0.10 [0.034] 0.074 [0.024]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5 [0.2] 0.16 [0.054] 0.14 [0.034] 0.16 [0.05] 0.10 [0.034] 0.074 [0.024]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[0.2] 0.16 [0.054] 0.14 [0.034] 0.16 [0.05] 0.10 [0.034] 0.074 [0.024]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[0.054] 0.14 [0.034] 0.16 [0.05] 0.10 [0.034] 0.074 [0.024]
6-1 p,p -DD1 [1] $[0.34]$ $[1.7]$ 6-2 p,p' -DDE 6 2.7 8.5 [2] $[0.94]$ $[2.8]$ [2.8] 6-3 p,p' -DDD 1.9 1.7 2.9 $6-3$ p,p' -DDD $[0.64]$ $[0.64]$ $[0.97]$ 6-4 o,p' -DDT 3 0.8 2.6 $6-5$ o,p' -DDE $[1.2]$ 2.6 3.4 $6-5$ o,p' -DDE $[0.4]$ $[0.9]$ $[1.1]$ $6-6$ o,p' -DDD 1.2 1.0 3.3 $6-6$ o,p' -DDD 1.2 1.0 3.3 $7-1$ cis -Chlordane 4 1.9 12 $7-2$ $trans$ -Chlordan 4 2.3 10 $7-2$ $trans$ -Chlordan 4 2.3 10	[0.054] 0.14 [0.034] 0.16 [0.05] 0.10 [0.034] 0.074 [0.024]
$6-2$ $p,p'\text{DDE}$ 6 2.7 8.5 $6-3$ $p,p'\text{DDD}$ 1.9 1.7 2.9 $6-3$ $p,p'\text{DDD}$ 1.9 1.7 2.9 $6-4$ $o,p'\text{DDT}$ 3 0.8 2.6 $6-5$ $o,p'\text{DDE}$ 1.2 2.6 3.4 $6-5$ $o,p'\text{DDE}$ 1.2 2.6 3.4 $6-6$ $o,p'\text{DDE}$ 1.2 2.6 3.4 $6-6$ $o,p'\text{DDD}$ 1.2 1.0 3.3 7^{-1} Chlordanes 1.2 1.0 3.3 7^{-1} cis -Chlordane 4 1.9 12 $7-2$ trans-Chlordan 4 2.3 10	0.14 [0.034] 0.16 [0.05] 0.10 [0.034] 0.074 [0.024]
6-2 p,p -DDE [2] [0.94] [2.8] 6-3 p,p' -DDD 1.9 1.7 2.9 6-4 o,p' -DDT 3 0.8 2.6 6-5 o,p' -DDE 1.2 2.6 3.4 6-5 o,p' -DDE 1.2 2.6 3.4 6-6 o,p' -DDD 1.2 1.0 3.3 6-6 o,p' -DDD 1.2 1.0 3.3 7 Chlordanes 7 1.1 [0.64] [0.3] 7-1 cis-Chlordane 4 1.9 12 1.0 7-2 trans-Chlordan 4 2.3 10 1.3	[0.034] 0.16 [0.05] 0.10 [0.034] 0.074 [0.024]
(-3) $p,p'DDD$ (1.9) (1.7) (2.8) (-3) $p,p'DDD$ (1.9) (1.7) (2.9) (-4) $o,p'DDT$ (0.64) (0.97) (-4) $o,p'DDT$ (1.1) (0.3) (-5) $o,p'DDE$ (1.2) (2.6) (-5) $o,p'DDE$ (1.2) (2.6) (-5) $o,p'DDE$ (1.2) (2.6) (-6) $o,p'DDD$ (1.2) (2.6) (-6) $o,p'DDD$ (1.2) (1.0) (-6) $o,p'DDD$ (1.2) (1.0) (-6) (0.4) (0.3) (1.1) 7 Chlordanes (-1) (-1) $7-1$ cis -Chlordane 4 1.9 (12) (-2) $trans$ -Chlordan 4 2.3 (10) (-2) $trans$ -Chlordan 4 2.3 (10)	0.16 [0.05] 0.10 [0.034] 0.074 [0.024]
6-3 p,p -DDD $[0.64]$ $[0.64]$ $[0.97]$ 6-4 o,p' -DDT 3 0.8 2.6 6-4 o,p' -DDT $[1]$ $[0.3]$ $[0.86]$ 6-5 o,p' -DDE 1.2 2.6 3.4 6-5 o,p' -DDE $[0.4]$ $[0.9]$ $[1.1]$ 6-6 o,p' -DDD 1.2 1.0 3.3 $[0.4]$ $[0.3]$ $[1.1]$ $[1.1]$ 7 Chlordanes $[0.4]$ $[0.3]$ $[1.1]$ 7-1 <i>cis</i> -Chlordane 4 1.9 12 $7-2$ <i>trans</i> -Chlordan 4 2.3 10 $7-2$ $trans$ -Chlordan 4 2.3 10	[0.05] 0.10 [0.034] 0.074 [0.024]
$6-4$ $o.p'DDT$ 3 0.8 2.6 $6-4$ $o.p'DDT$ 3 0.8 2.6 $6-5$ $o.p'DDE$ 1.2 2.6 3.4 $6-6$ $o.p'DDD$ 1.2 2.6 3.4 $6-6$ $o.p'DDD$ 1.2 1.0 3.3 7 Chlordanes $[0.4]$ $[0.3]$ $[1.1]$ 7 Chlordanes 1.2 1.0 3.3 7^{-1} <i>cis</i> -Chlordane 4 1.9 12 $7-2$ <i>trans</i> -Chlordan 4 2.3 10 $7-2$ $[1]$ $[0.84]$ $[3.5]$ $[3.5]$	0.10 [0.034] 0.074 [0.024]
6-4 δ, p -DD1 [1] [0.3] [0.86] 6-5 o, p' DDE 1.2 2.6 3.4 6-6 o, p' DDD 1.2 1.0 3.3 6-6 o, p' DDD 1.2 1.0 3.3 7 Chlordanes [0.4] [0.3] [1.1] 7-1 cis-Chlordane 4 1.9 12 [1] [0.64] [3.9] 12 7-2 trans-Chlordan 4 2.3 10 6 [1] [0.84] [3.5] 10	[0.034] 0.074 [0.024]
(1) (0.3) (0.86) $6-5$ $o.p'DDE$ 1.2 2.6 3.4 (0.4) $[0.9]$ $[1.1]$ $[0.6]$ $[1.1]$ $6-6$ $o.p'DDD$ 1.2 1.0 3.3 $[0.4]$ $[0.3]$ $[1.1]$ $[0.4]$ $[0.3]$ 7 Chlordanes $[1.1]$ $[0.64]$ $[1.1]$ $7-1$ <i>cis</i> -Chlordane $[1]$ $[0.64]$ $[3.9]$ $7-2$ <i>trans</i> -Chlordan 4 2.3 10 $(1]$ $[0.84]$ $[3.5]$ $[3.5]$	0.074 [0.024]
6-5 $o.p$ -DDE $[0.4]$ $[0.9]$ $[1.1]$ 6-6 $o.p'$ -DDD 1.2 1.0 3.3 $[0.4]$ $[0.3]$ $[1.1]$ $[1.1]$ 7 Chlordanes $[1.1]$ $[1.1]$ 7-1 cis-Chlordane 4 1.9 $[1.2]$ $7-2$ trans-Chlordan 4 2.3 10 e $[1]$ $[0.84]$ $[3.5]$ $[3.5]$	[0.024]
$6-6$ δ, p -DDD $[0.4]$ $[0.3]$ $[1.1]$ 7 Chlordanes 12 12 7-1 cis-Chlordane 4 1.9 12 $[1]$ $[0.64]$ $[3.9]$ 10 7-2 trans-Chlordan 4 2.3 10 $[1]$ $[0.84]$ $[3.5]$ 10	0.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[0.03]
7-1 cis-Chlordane 4 1.9 12 [1] [0.64] [3.9] [3.9] 7-2 trans-Chlordan 4 2.3 10 e [1] [0.84] [3.5] [3.5]	[0.03]
7-1 cis-chlordane [1] [0.64] [3.9] $7-2$ trans-Chlordan 4 2.3 10 e [1] [0.84] [3.5]	0.16
7-2 trans-Chlordan 4 2.3 10 [1] [0.84] [3.5] [3.5]	[0.054]
⁷⁻² e [1] [0.84] [3.5]	0.34
	[0.14]
7.2 Omultaday 1.1 2.0 9.3	0.16
7-3 Oxychlordane $\begin{bmatrix} 1.1 & 2.0 & 9.5 \\ 0.4 & 0.7 \end{bmatrix}$ [3.1]	[0.054]
0.5 1.0 4.5	0.08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[0.03]
tugung Namaghl 2.5 1.5 6.2	0.13
7-5 $\begin{bmatrix} urans-Nonachi & 2.5 & 1.5 \\ or & [0.84] & [0.54] & [2.1] \end{bmatrix}$	[0.044]
8 Heptachlors	t
	0.16
8-1 Heptachlor $\begin{bmatrix} 5 & 2.5 & 0.1 \\ [1] & [0.8] & [2.0] \end{bmatrix}$	[0.054]
aig Hontachlar 0.7 7 2.5	0.12
$\begin{array}{c c} 8-2 \\ epoxide \\ \hline 0.2 \\ \hline 1.2 \\ \hline \end{array}$	[0.044]
8-3 trans-Heptachlor 0.7 5 23	0.16
⁶⁻⁵ epoxide [0.2] [2] [7.5]	[0.05]
9 Toxaphenes (
9-1 Parlar-26 10 60 47	0.3
	[0.1]
9-2 Parlar-50 20 90 54	0.6
	[0.2]
9-3 Parlar-62 70 2,000 100	1.2
	[0.4]
10 Mirex 0.4 0.9 3.0 [0.1] [0.3] [0.99]	0.10 [0.03]
	[0.05]
11 HCHs 11	
11- a HCH 4 1.7 11	0.074
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.074 [0.024]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.074 [0.024] 0.12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.074 [0.024] 0.12 [0.044]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.074 [0.024] 0.12 [0.044] 0.13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.074 [0.024] 0.12 [0.044]

Table 4-8-2 List of the quantification [detection] limits in the Environmental Monitoring in FY 2005 (Part 1: POPs and HCHs)

(Note 1) Each quantification limit is shown above the corresponding [detection limit].

(Note 2) The quantification [detection] limit of polychlorinated biphenyls (PCBs) is the sum value for each congener ($Cl_1 \sim Cl_{10}$).

(Note 3) The same quantification [detection] limit was employed for bivalves, fish and birds as wildlife for each target chemical.

(Note 4) The quantification [detection] limit for surface water offshore of Himeji was different from the value shown in the table.

	enemieuis except i v			/				Wildlife (ng	ø/ø-we	t)			Air (r	(g/m^3)	
No.	Target chemicals	Surface v (ng/L		Sedimer (ng/g-dr		Bivalv		Fish		Birds		First (Warm season)		Second (Cold season)	
		Range (Frequency)	Av.	Range (Frequency)	Av.	Range (Frequency)	Av.	Range (Frequency)	Av.	Range (Frequency)	Av.	Range (Frequency)	Av.	Range (Frequency)	Av.
12	BHT			nd ~ 27 (23/63)	nd	nd ~ 11 (7/7)	tr(2.1)	nd ~ 16 (15/16)	2.8	nd ~ tr(1.9) (2/2)	tr(0.92)	nd ~ 3,800 (33/37)	13	nd ~ 210 (29/37)	6.3
13	Dibenzothiophene	nd (0/47)	nd	nd ~ 230 (61/63)	3.1	nd ~ 3.2 (4/7)	nd	nd ~ 0.8 (7/16)	nd	nd (0/2)	nd				
14	Organotin compounds														
14-1	MBTs	nd ~ 1.9 (11/45)	nd	nd ~ 150 (54/63)	3.9	nd ~ 65 (7/7)	7.2	nd ~ 8.5 (11/16)	nd	nd ~ tr(3.7) (1/2)	nd				
14-2	DBTs	nd ~ 170 (19/44)	tr(1.5)	nd ~ 750 (56/63)	5.8	tr(2.3) ~ 24 (7/7)	11	nd ~ 14 (13/16)	tr(1.1)	nd ~ tr(2.3) (1/2)	nd				
14-3	TBTs	nd ~ 0.76 (2/47)	nd	nd ~ 590 (51/63)	2.1	tr(1.5) ~ 25 (7/7)	6.7	nd ~ 130 (11/16)	3.1	nd (0/2)	nd				
14-4	MPTs	nd (0/47)	nd	nd ~ 280 (42/63)	0.47	nd (0/7)	nd	nd (0/16)	nd	nd (0/2)	nd				
14-5	DPTs	nd (0/47)	nd	nd ~ 74 (39/63)	0.079	nd (0/7)	nd	nd (0/16)	nd	nd (0/2)	nd				
14-6	TPTs	nd ~ 0.19 (2/47)	nd	nd ~ 420 (39/63)	0.17	tr(0.6) ~ 15 (7/7)	2.2	nd ~ 34 (16/16)	4.1	nd ~ tr(0.5) (1/2)	nd				

Table 4-8-3 List of the quantification [detection] limits in the Environmental Monitoring in FY 2005 (Part 2: Target chemicals except POPs and HCHs)

(Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) to be half the value of the detection limit.

(Note 2) "Range" is based on the number of samples and "Frequency" is based on the number of sites or areas. Therefore "range" can be shown as "nd ~" even if a target chemical is detected in all sites (or areas).

(Note 3) means the medium was not monitored.

Table 4-8-4 List of the detection ranges in the Environmental Monitoring in FY 2005 (Part 2: Target chemicals except POPs and HCHs)

No.	Target chemicals	Surface water (ng/L)	Sediment (ng/g-dry)	Wildlife (ng/g-wet)	Air (ng/m ³)
12	BHT		1.3 [0.60]	2.3 [0.78]	8.7 [2.9]
13	Dibenzothiophene	4.0 [2.0]	0.50 [0.20]	0.3 [0.1]	
14	Organotin compounds				
14-1	MBTs	0.80 [0.30]	0.70 [0.30]	4.5 [1.5]	
14-2	DBTs	3.0 [1.0]	0.80 [0.30]	3.0 [1.0]	
14-3	TBTs	0.30	0.20 [0.080]	3.0 [1.0]	
14-4	MPTs	0.50	0.30 [0.10]	3.0 [1.0]	
14-5	DPTs	0.22 [0.080]	0.050 [0.020]	1.5 [0.50]	
14-6	TPTs	0.13 [0.050]	0.070 [0.030]	1.5 [0.5]	

(Note 1) Each quantification limit is shown above the corresponding [detection limit].

(Note 2) The same quantification [detection] limit was employed for bivalves, fish and birds as wildlife for each target chemical.

(Note 3) means the medium was not monitored.

(1) The Environmental Monitoring (POPs and HCHs)

The high-sensitivity analysis of POPs and HCHs was conducted in FY 2005, following the monitoring in FY 2002, 2003 and 2004. Except for cases of undetected *trans*-heptachlor epoxide and toxaphenes in surface water, *trans*-heptachlor epoxide and toxaphenes in sediment, toxaphenes (Parlar-62) in wildlife (bivalves), *trans*-heptachlor epoxide in wildlife (fish), aldrin, heptachlors, and *trans*-heptachlor epoxide in wildlife (birds), and toxaphenes in air, all chemicals were detected.

The monitoring results for each chemical (group) are described below.

[1] PCBs

Monitoring results

The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 3.2 pg/L, and the detection range was $140 \sim 7,800$ pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 2.1 pg/g-dry, and the detection range was $42 \sim 690,000$ pg/g-dry.

Stocktaking of the detection of PCBs (total amount) in suraface water and sediment

	Monitored year	Geometric				Quantification	Detection f	frequency
PCBs (total amount)	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	460	330	11,000	60	7.4 [2.5]	114/114	38/38
Surface water	2003	530	450	3,100	230	9.4 [2.5]	36/36	36/36
(pg/L)	2004	630	540	4,400	140	14 [5.0]	38/38	38/38
	2005	520	370	7,800	140	10 [3.2]	47/47	47/47
	2002	9,200	11,000	630,000	39	10 [3.5]	189/189	63/63
Sediment	2003	8,200	9,500	5,600,000	39	10 [3.2]	186/186	62/62
(pg/g-dry)	2004	7,300	7,600	1,300,000	38	7.9 [2.6]	189/189	63/63
	2005	7,500	7,100	690,000	42	6.3 [2.1]	189/189	63/63

(Note) indicates the sum value of the Quantification [Detection] limits of each congener, and therefore the detention range that did not exceed this value can be shown instead of "nd".

The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 23 pg/g-wet, and the detection range was $920 \sim 85,000$ pg/g-wet. For fish, the substance was monitored in 16 areas and detected in all 16 valid areas adopting the detection limit of 23 pg/g-wet, and the detection range was $800 \sim 540,000$ pg/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 23 pg/g-wet, and the detection range was $5,600 \sim 19,000$ pg/g-wet. From the beginning of the monitoring, a trend of long-term decrease was observed in bivalves and fish, respectively.

0			/	· · · · · · · · · · · · · · · · · · ·	,	, 0		
PCBs (total amount)	Monitored year (FY)	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection f Sample	requency Area
	2002	10,000	28,000	160,000	200	25 [8.4]	38/38	8/8
Bivalves	2003	11,000	9,600	130,000	1,000	50 [17]	30/30	6/6
(pg/g-wet)	2004	7,700	11,000	150,000	1,500	85 [29]	31/31	7/7
	2005	8,200	13,000	85,000	920	69 [23]	31/31	7/7
Fish	2002	14,000	8,100	550,000	1,500	25 [8.4]	70/70	14/14
	2003	11,000	9,600	150,000	870	50 [17]	70/70	14/14
(pg/g-wet)	2004	15,000	10,000	540,000	990	85 [29]	70/70	14/14
	2005	13,000	8,600	540,000	800	69 [23]	80/80	16/16
	2002	11,000	14,000	22,000	4,800	25 [8.4]	10/10	2/2
Birds (pg/g-wet)	2003	18,000	22,000	42,000	6,800	50 [17]	10/10	2/2
	2004	8,900	9,400	13,000	5,900	85 [29]	10/10	2/2
	2005	10,000	9,700	19,000	5,600	69 [23]	10/10	2/2

Stocktaking of the detection of PCBs (total amount) in wildlife (bivalves, fish and birds) during FY 2002 ~ 2005)

(Note) indicates the sum value of the Quantification [Detection] limits of each congener, and therefore the detention range that did not exceed this value can be shown instead of "nd".

The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.14 pg/m³, and the detection range was $23 \sim 1,500$ pg/m³. For air in the cold season, the substance was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.14 pg/m³, and the detection range was $20 \sim 380$ pg/m³. The detected concentrations in FY 2005 were significantly lower than those in FY 2002, 2003 and 2004. All the values in the warm season were higher than corresponding values in the cold season.

Stocktaking of the detection of PCBs (total amount) in air during FY 2002 ~ 2005

	Monitored year	Geometric				Quantification	Detection f	requency
PCBs (total amount)	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	100	100	880	16	99 [33]	102/102	34/34
	2003 Warm season	260	340	2,600	36	6.6 [2.2]	34/34	34/34
	2003 Cold season	110	120	630	17	0.0 [2.2]	34/34	34/34
Air (pg/m ³)	2004 Warm season	240	250	3,300	25	2.9 [0.98]	37/37	37/37
	2004 Cold season	130	130	1,500	20	2.9 [0.98]	37/37	37/37
	2005 Warm season	190	210	1,500	23	0.38 [0.14]	37/37	37/37
	2005 Cold season	66	64	380	20	0.38 [0.14]	37/37	37/37

(Note) indicates the sum value of the Quantification [Detection] limits of each congener, and therefore the detention range that did not exceed this value can be shown instead of "nd".

[2] Hexachlorobenzene

• Monitoring results

The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 5 pg/L, and the detection range was $tr(6) \sim 210$ pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 1 pg/g-dry, and the detection range was 13 ~ 22,000 pg/g-dry.

U						0		
	Monitored year	Geometric				Quantification	Detection f	requency
Hexachlorobenzene	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample 114/114 36/36 38/38 47/47 189/189 186/186 189/189	Site
	2002	36	28	1,400	9.8	0.6 [0.2]	114/114	38/38
Surface water	2003	29	24	340	11	5 [2]	36/36	36/36
(pg/L)	2004	30	tr(29)	180	tr(11)	30 [8]	38/38	38/38
	2005	21	17	210	6	15 [5]	47/47	47/47
	2002	210	200	19,000	7.6	0.9 [0.3]	189/189	63/63
Sediment	2003	140	120	42,000	5	4 [2]	186/186	62/62
(pg/g-dry)	2004	130	100	25,000	tr(6)	7 [3]	189/189	63/63
	2005	160	130	22,000	13	3 [1]	189/189	63/63

Stocktaking of the detection of hexachlorobenzene in suraface water and sediment during FY 2002 ~ 2005

The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 3.8 pg/g-wet, and the detection range was $19 \sim 450 \text{ pg/g-wet}$. For fish, the substance was monitored in 16 areas and detected in all 16 valid areas adopting the detection limit of 3.8 pg/g-wet, and the detection range was $29 \sim 1,700 \text{ pg/g-wet}$. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 3.8 pg/g-wet, and the detection range was $400 \sim 2,500 \text{ pg/g-wet}$. From the beginning of the monitoring, a trend of long-term decrease was observed in fish.

Stocktaking of the detection of hexachlorobenzene in wildlife (bivalves, fish and birds) during FY 2002 ~ 2005

	Monitored year	Geometric				Quantification	Detection f	requency
Hexachlorobenzene	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Detection Sample 38/38 30/30 31/31 31/31 70/70 70/70 70/70 80/80 10/10	Area
	2002	23	22	330	2.4	0.18 [0.06]	38/38	8/8
Bivalves	2003	44	27	660	tr(21)	23 [7.5]	30/30	6/6
(pg/g-wet)	2004	30	31	80	14	14 [4.6]	31/31	7/7
	2005	38	28	450	19	11 [3.8]	31/31	7/7
	2002	140	180	910	19	0.18 [0.06]	70/70	14/14
Fish	2003	170	170	1,500	28	23 [7.5]	70/70	14/14
(pg/g-wet)	2004	220	210	1,800	26	14 [4.6]	70/70	14/14
	2005	170	160	1,700	29	11 [3.8]	80/80	16/16
	2002	1,000	1,200	1,600	560	0.18 [0.06]	10/10	2/2
Birds	2003	1,700	2,000	4,700	790	23 [7.5]	10/10	2/2
(pg/g-wet)	2004	970	1,300	2,200	410	14 [4.6]	10/10	2/2
	2005	980	1,100	2,500	400	11 [3.8]	10/10	2/2

The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.03 pg/m³, and the detection range was $27 \sim 250$ pg/m³. The detected concentrations in FY 2005 were significantly lower than those in FY 2003, and 2004. For air in the cold season, the substance was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.03 pg/m³, and the detection range was $44 \sim 180$ pg/m³. The detected concentrations in FY 2005 were significantly lower than those in FY 2005 are significantly lower than those in FY 2002, 2003 and 2004. All the values in the warm season were higher than corresponding values in the cold season.

Stocktaking of the detection of hexachlorobenzene in air during FY 2002 ~ 2005

	Monitored year	Geometric				Quantification	Detection	frequency
Hexachlorobenzene	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	99	93	3,000	57	0.9 [0.3]	102/102	34/34
	2003 Warm season	150	130	430	81	2.3 [0.78]	35/35	35/35
Air	2003 Cold season	94	90	320	64	2.3 [0.78]	34/34	34/34
	2004 Warm season	130	130	430	47	1.1 [0.37]	37/37	37/37
(pg/m ²)	2004 Cold season	98	89	390	51	1.1 [0.37]	37/37	37/37
	2005 Warm season	88	90	250	27	0 14 [0 024]	37/37	37/37
	2005 Cold season	77	68	180	44	0.14 [0.034]	37/37	37/37

[3] Aldrin

Monitoring results

The presence of the substance in surface water was monitored at 47 sites, and it was detected at 32 of the 47valid 47 sites adopting the detection limit of 0.3 pg/L, and all the detected concentrations did not exceed 5.7 pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at 62 of the 63 valid sites adopting the detection limit of 0.5 pg/g-dry, and all the detected concentrations did not exceed 500 pg/g-dry.

	Monitored year	Geometric				Quantification	Detection	frequency
Aldrin	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.69	0.90	18	nd	0.6 [0.2]	93/114	37/38
Surface water	2003	0.9	0.9	3.8	nd	0.6 [0.2]	34/36	34/36
(pg/L)	2004	tr(1.5)	tr(1.8)	13	nd	2 [0.4]	33/38	33/38
	2005	tr(0.6)	tr(0.7)	5.7	nd	0.9 [0.3]	32/47	32/47
	2002	12	12	570	nd	6 [2]	149/189	56/63
Sediment	2003	17	18	1,000	nd	2 [0.6]	178/186	60/62
(pg/g-dry)	2004	9	10	390	nd	2 [0.6]	170/189	62/63
	2005	7.5	7.1	500	nd	1.4 [0.5]	173/189	62/63

Stocktaking of the detection of aldrin in suraface water and sediment during FY 2002 ~ 2005

The presence of the substance in bivalves was monitored in 7 areas, and it was detected in 3 of the 7 valid areas adopting the detection limit of 1.2 pg/g-wet, and all the detected concentrations did not exceed 84 pg/g-wet. For fish, the substance was monitored in 16 areas and detected in 5 of the 16 valid areas adopting the detection limit of 1.2 pg/g-wet, and all the detected concentrations did not exceed 6.4 pg/g-wet. For birds, the substance was monitored in 2 areas and not detected in all 2 valid areas adopting the detection limit of 1.2 pg/g-wet, and the detection range was 5,600 ~ 19,000 pg/g-wet.

	Monitored	Geometric				Quantificatio	Detection	frequency
Aldrin	year (FY)	mean	Median	Maximum	Minimum	n [Detection] limit	Sample	Area
	2002	tr(1.7)	nd	tr(34)	nd	4.2 [1.4]	12/38	4/8
Bivalves	2003	tr(1.6)	tr(0.85)	51	nd	2.5 [0.84]	15/30	3/6
(pg/g-wet)	2004	tr(1.7)	tr(1.6)	46	nd	4 [1.3]	16/31	4/7
	2005	nd	nd	84	nd	3.5 [1.2]	11/31	3/7
	2002	nd	nd	tr(2.0)	nd	4.2 [1.4]	1/70	1/14
Fish	2003	nd	nd	tr(1.9)	nd	2.5 [0.84]	16/70	7/14
(pg/g-wet)	2004	nd	nd	tr(2.4)	nd	4 [1.3]	5/70	2/14
	2005	nd	nd	6.4	nd	3.5 [1.2]	11/80	5/16
	2002	nd	nd	nd	nd	4.2 [1.4]	0/10	0/2
Birds	2003	nd	nd	nd	nd	2.5 [0.84]	0/10	0/2
(pg/g-wet)	2004	nd	nd	nd	nd	4 [1.3]	0/10	0/2
	2005	nd	nd	nd	nd	3.5 [1.2]	0/10	0/2

Stocktaking of the detection of aldrin in wildlife (bivalves, fish and birds) during FY 2002 ~ 2005 $^{-)}$

The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at 29 of the 37 valid areas adopting the detection limit of 0.03 pg/m³, and all the detected concentrations did not exceed 10 pg/m³. The detected concentrations in FY 2004 and 2005 were significantly lower than those in FY 2003. For air in the cold season, the substance was monitored at 37 sites, and it was detected at 9 of the 37 valid areas adopting the detection limit of 0.03 pg/m³, and all the detected concentrations in FY 2004 and 2005 were significantly lower than those in FY 2003. For air in the cold season, the substance that the detected concentrations did not exceed 1.8 pg/m³. The detected concentrations in FY 2004 and 2005 were significantly lower than those in FY 2004. All the values in the warm season were higher than corresponding values in the cold season.

	Monitored year	Geometric			NC -	Quantification	Detection	frequency
Aldrin	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	tr(0.030)	nd	3.2	nd	0.060 [0.020]	41/102	19/34
	2003 Warm season	1.5	1.9	28	nd	0.023 [0.0077]	34/35	34/35
Air	2003 Cold season	0.55	0.44	6.9	0.030	0.023 [0.0077]	34/34	34/34
(pg/m^3)	2004 Warm season	tr(0.13)	nd	14	nd	0.15 [0.05]	15/35	15/35
(pg/m)	2004 Cold season	tr(0.09)	nd	13	nd	0.13 [0.03]	14/37	14/37
	2005 Warm season	0.33	0.56	10	nd	0.08 [0.03]	29/37	29/37
	2005 Cold season	tr(0.04)	nd	1.8	nd	0.08 [0.05]	9/37	9/37

Stocktaking of the detection of aldrin in air during FY 2002 ~ 2005

[4] Dieldrin

Monitoring results

The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 0.34 pg/L, and the detection range was $4.5 \sim 630$ pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 1 pg/g-dry, and the detection range was tr(2) ~ 4,200 pg/g-dry.

Stocktaking of the detection of dieldrin in suraface water and sediment during FY 2002 ~ 2005

	Monitored year	Geometric				Quantification	Detection f	requency
Dieldrin	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	41	41	940	3.3	1.8 [0.6]	114/114	38/38
Surface water	2003	57	57	510	9.7	0.7 [0.3]	36/36	36/36
(pg/L)	2004	55	51	430	9	2 [0.5]	38/38	38/38
	2005	39	49	630	4.5	1.0 [0.34]	47/47	47/47
	2002	63	51	2,300	4	3 [1]	189/189	63/63
Sediment	2003	59	56	9,100	nd	4 [2]	184/186	62/62
(pg/g-dry)	2004	58	62	3,700	tr(1.9)	3 [0.9]	189/189	63/63
	2005	56	55	4,200	tr(2)	3 [1]	189/189	63/63

The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 3.4 pg/g-wet, and the detection range was $34 \sim 39,000 \text{ pg/g-wet}$. For fish, the substance was monitored in 16 areas and detected in all 16 valid areas adopting the detection limit of 3.4 pg/g-wet, and the detection range was $21 \sim 1,400 \text{ pg/g-wet}$. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 3.4 pg/g-wet, and the detection limit of 3.4 pg/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 3.4 pg/g-wet, and the detection range was $500 \sim 1,800 \text{ pg/g-wet}$. From the beginning of the monitoring, a trend of long-term decrease was observed in bivalves and fish, respectively.

Stocktaking of the detection of dieldrin in wildlife (bivalves, fish and birds) during FY 2002 ~ 2005 $^{-)}$

e						e		
Dieldrin	Monitored year (FY)	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection f Sample	Trequency Area
	2002	490	390	190,000	tr(7)	12 [4]	38/38	8/8
Bivalves	2003	410	160	78,000	46	4.8 [1.6]	30/30	6/6
(pg/g-wet)	2004	510	270	69,000	42	31 [10]	31/31	7/7
	2005	320	140	39,000	34	9.4 [3.4]	31/31	7/7
	2002	280	270	2,400	46	12 [4]	70/70	14/14
Fish	2003	210	200	1,000	29	4.8 [1.6]	70/70	14/14
(pg/g-wet)	2004	240	230	2,800	tr(23)	31 [10]	70/70	14/14
	2005	220	250	1,400	21	9.4 [3.4]	80/80	16/16
	2002	1,200	1,100	1,700	820	12 [4]	10/10	2/2
Birds	2003	1,300	1,400	2,200	790	4.8 [1.6]	10/10	2/2
(pg/g-wet)	2004	590	610	960	370	31 [10]	10/10	2/2
	2005	810	740	1,800	500	9.4 [3.4]	10/10	2/2

The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.24 pg/m³, and the detection range was $1.5 \sim 200$ pg/m³. For air in the cold season, the substance was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.24 pg/m³, and the detection range was 0.9 ~ 50 pg/m³. All the values in the warm season were higher than corresponding values in the cold season.

<u> </u>								
	Monitored year	Geometric				Quantification	Detection f	frequency
Dieldrin	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.6	5.4	110	0.73	0.60 [0.20]	102/102	34/34
	2003 Warm season	19	22	260	2.1	2 1 [0 70]	34/34	34/34
Air	2003 Cold season	5.7	5.2	110	tr(0.82)	2.1 [0.70]	34/34	34/34
(pg/m^3)	2004 Warm season	17	22	280	1.1	0.33 [0.11]	37/37	37/37
(pg/m)	2004 Cold season	5.5	6.9	76	0.81	0.33 [0.11]	37/37	37/37
	2005 Warm season	14	12	200	1.5	0.54 [0.24]	37/37	37/37
	2005 Cold season	3.9	3.6	50	0.88	0.34 [0.24]	37/37	37/37

Stocktaking of the detection of dieldrin in air during FY 2002 ~ 2005

[5] Endrin

• Monitoring results

The presence of the substance in surface water was monitored at 47 sites, and it was detected at 45 of the 47valid sites adopting the detection limit of 0.4 pg/L, and all the detected concentrations did not exceed 120 pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at 61 of the 63 valid sites adopting the detection limit of 0.9 pg/g-dry, and all the detected concentrations did not exceed 19,000 pg/g-dry.

-					0			
Endrin	Monitored year (FY)	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection f Sample	requency Site
	2002	4.7	5.5	31	nd	6.0 [2.0]	101/114	36/38
Surface water	2003	5.7	6.0	78	0.7	0.7 [0.3]	36/36	36/36
(pg/L)	2004	7	7	100	tr(0.7)	2 [0.5]	38/38	38/38
	2005	4.0	4.5	120	nd	1.1 [0.4]	45/47	45/47
	2002	9	10	19,000	nd	6[2]	141/189	54/63
Sediment	2003	11	11	29,000	nd	5 [2]	150/186	53/62
(pg/g-dry)	2004	13	13	6,900	nd	3 [0.9]	182/189	63/63
	2005	10	11	19,000	nd	2.6 [0.9]	170/189	61/63

Stocktaking of the detection of endrin in suraface water and sediment during FY 2002 ~ 2005

The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 5.5 pg/g-wet, and all the detected concentrations did not exceed 2,100 pg/g-wet. For fish, the substance was monitored in 16 areas and detected in 12 of the 16 valid areas adopting the detection limit of 5.5 pg/g-wet, and all the detected concentrations did not exceed 2,100 pg/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 5.5 pg/g-wet, and all the detected concentrations did not exceed 2,100 pg/g-wet.

	Monitored year	Geometric			Minimum	Quantification	Detection frequency	
Endrin	(FY)	mean	Median	Maximum		[Detection] limit	Sample	Area
	2002	44	27	12,000	nd	18 [6]	35/38	7/8
Bivalves	2003	36	21	5,000	6.3	4.8 [1.6]	30/30	6/6
(pg/g-wet)	2004	54	25	4,600	tr(5.7)	12 [4.2]	31/31	7/7
	2005	30	19	2,100	nd	17 [5.5]	27/31	7/7
	2002	19	24	180	nd	18 [6]	54/70	13/14
Fish	2003	14	10	180	nd	4.8 [1.6]	67/70	14/14
(pg/g-wet)	2004	18	24	220	nd	12 [4.2]	57/70	13/14
	2005	tr(16)	tr(16)	2,100	nd	17 [5.5]	58/80	12/16
	2002	22	52	99	nd	18 [6]	7/10	2/2
Birds	2003	21	30	96	5.4	4.8 [1.6]	10/10	2/2
(pg/g-wet)	2004	tr(11)	25	62	nd	12 [4.2]	5/10	1/2
	2005	tr(16)	28	64	nd	17 [5.5]	7/10	2/2

Stocktaking of the detection of endrin in wildlife (bivalves, fish and birds) during FY $2002 \sim 2005^{-1}$

The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at 27 of the 37 valid areas adopting the detection limit of 0.2 pg/m³, and all the detected concentrations did not exceed 2.9 pg/m³. The detected concentrations in FY 2005 were significantly lower than those in FY 2003. For air in the cold season, the substance was monitored at 37 sites, and it was detected at 8 of the 37 valid areas adopting the detection limit of 0.2 pg/m³, and all the detected concentrations did not exceed 0.7 pg/m³. The detected concentrations in FY 2005 were significantly lower than those in FY 2002 and 2003. All the values in the warm season were higher than corresponding values in the cold season.

Stocktaking of the detection of endrin in air during FY 2002 ~ 2005

Endrin	Monitored year (FY)	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection f Sample	frequency Site
	2002	0.22	0.28	2.5	nd	0.090 [0.030]	90/102	32/34
	2003 Warm season	0.74	0.95	6.2	0.081	0.042 [0.014]	35/35	35/35
Air	2003 Cold season	0.23	0.20	2.1	0.042		34/34	34/34
	2004 Warm season	0.61	0.68	6.5	tr(0.054)	0.14 [0.048]	37/37	37/37
(pg/m ³)	2004 Cold season	0.23	0.26	1.9	nd	0.14 [0.048]	36/37	36/37
	2005 Warm season	tr(0.4)	tr(0.3)	2.9	nd	0.5 [0.2]	27/37	27/37
	2005 Cold season	nd	nd	0.7	nd	0.5 [0.2]	8/37	8/37

[6] DDTs

• Monitoring results

p,*p*'-DDT, *p*,*p*'-DDE and *p*,*p*'-DDD

p,p'-DDT: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 1 pg/L, and the detection range was 1 ~ 110 pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.34 pg/g-dry, and the detection range was 5.1 ~ 1,700,000 pg/g-dry.

p,p'-DDE: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 2 pg/L, and the detection range was $4 \sim 410$ pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.94 pg/g-dry, and the detection range was $8.4 \sim 64,000$ pg/g-dry.

p,p'-DDD: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 0.64 pg/L, and the detection range was $tr(1.8) \sim 130$ pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.64 pg/g-dry, and the detection range was $5.2 \sim 210,000$ pg/g-dry.

	Monitored year	Geometric				Quantification	Detection f	requency
<i>p,p'</i> -DDT	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	12	11	440	tr(0.25)	0.6 [0.2]	114/114	38/38
Surface water	2003	14	12	740	tr(2.8)	3 [0.9]	36/36	36/36
(pg/L)	2004	15	14	310	nd	6 [2]	36/38	36/38
	2005	8	9	110	1	4 [1]	47/47	47/47
	2002	270	240	97,000	tr(5)	6 [2]	189/189	63/63
Sediment	2003	240	220	55,000	3	2 [0.4]	186/186	62/62
(pg/g-dry)	2004	330	230	98,000	7	2 [0.5]	189/189	63/63
	2005	280	230	1,700,000	5.1	1.0 [0.34]	189/189	63/63
	Monitored year	Geometric				Quantification	Detection f	requency
<i>p,p'</i> -DDE	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	24	26	760	1.3	0.6 [0.2]	114/114	38/38
Surface water	2003	26	22	380	5	4 [2]	36/36	36/36
(pg/L)	2004	36	34	680	tr(6)	8 [3]	38/38	38/38
	2005	26	24	410	4	6 [2]	47/47	47/47
	2002	660	630	23,000	8.4	2.7 [0.9]	189/189	63/63
Sediment	2003	710	780	80,000	9.5	0.9 [0.3]	186/186	62/62
(pg/g-dry)	2004	630	700	39,000	8	3 [0.8]	189/189	63/63
	2005	630	730	64,000	8.4	2.7 [0.94]	189/189	63/63
	Monitored year	Geometric				Quantification	Detection f	requenc
<i>p,p'</i> -DDD	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	15	18	190	0.57	0.24 [0.08]	114/114	38/38
Surface water	2003	19	18	410	4	2 [0.5]	36/36	36/36
(pg/L)	2004	19	18	740	tr(2.4)	3 [0.8]	38/38	38/38
	2005	17	16	130	tr(1.8)	1.9 [0.64]	47/47	47/47
	2002	540	690	51,000	tr(2.2)	2.4 [0.8]	189/189	63/63
Sediment	2003	590	580	32,000	3.7	0.9 [0.3]	186/186	62/62
(pg/g-dry)	2004	550	550	75,000	4	2 [0.7]	189/189	63/63
	2005	520	570	210,000	5.2	1.7 [0.64]	189/189	63/63

Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in suraface water and sediment during FY 2002 ~ 2005

p,p'-DDT: The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 1.7 pg/g-wet, and the detection range was $66 \sim 1,300$ pg/g-wet. For fish, the substance was monitored in 16 areas and detected in all 16 valid areas adopting the detection limit of 1.7 pg/g-wet, and the detection range was tr(3.8) ~ 8,400 pg/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 1.7 pg/g-wet, and the detection range was 180 ~ 900 pg/g-wet. From the beginning of the monitoring, a trend of long-term decrease was observed in bivalves and fish, respectively.

p,p'-DDE: The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 2.8 pg/g-wet, and the detection range was $230 \sim 6,600$ pg/g-wet. For fish, the substance was monitored in 16 areas and detected in all 16 valid areas adopting the detection limit of 2.8 pg/g-wet, and the detection range was $230 \sim 73,000$ pg/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 2.8 pg/g-wet, and the detection range was 73,000 pg/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 2.8 pg/g-wet, and the detection range was $7,100 \sim 300,000$ pg/g-wet.

p,p'-DDD: The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 0.97 pg/g-wet, and the detection range was $13 \sim 1,700$ pg/g-wet. For fish, the substance was monitored in 16 areas and detected in all 16 valid areas adopting the detection limit of 0.97 pg/g-wet, and the detection range was $29 \sim 6,700$ pg/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 0.97 pg/g-wet, and the detection range was $45 \sim 1,400$ pg/g-wet. From the beginning of the monitoring, a trend of long-term decrease was observed in fish.

Stocktaking of the detection of <i>p</i> , <i>p</i> '-DDT, <i>p</i> , <i>p</i> '-DDE and <i>p</i> , <i>p</i> '-DDD in wildlife (bivalves, fish and birds) during FY 2002 ~	-
2005)	

	Monitored year	Geometric				Quantification	Detection f	frequency
<i>p,p'</i> -DDT	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Area
	2002	200	200	1,200	38	4.2 [1.4]	38/38	8/8
Bivalves	2003	290	290	1,800	49	11 [3.5]	30/30	6/6
(pg/g-wet)	2004	280	340	2,600	48	3.2 [1.1]	31/31	7/7
	2005	180	170	1,300	66	5.1 [1.7]	31/31	7/7
	2002	330	450	24,000	6.8	4.2 [1.4]	70/70	14/14
Fish	2003	210	400	1,900	tr(3.7)	11 [3.5]	70/70	14/14
(pg/g-wet)	2004	310	330	53,000	5.5	3.2 [1.1]	70/70	14/14
	2005	250	330	8,400	tr(3.8)	5.1 [1.7]	80/80	16/16
	2002	380	510	1,300	76	4.2 [1.4]	10/10	2/2
Birds	2003	540	620	1,400	180	11 [3.5]	10/10	2/2
(pg/g-wet)	2004	330	320	700	160	3.2 [1.1]	10/10	2/2
	2005	410	550	900	180	5.1 [1.7]	10/10	2/2
	Monitored year	Geometric				Quantification	Detection f	requency
<i>p,p'</i> -DDE	(FY)	mean	Median	Maximum	Minimum	[Detection]	Sample	Area
	()					limit	-	
	2002	1,100	1,700	6,000	140	2.4 [0.8]	38/38	8/8
Bivalves	2003	1,100	1,000	6,500	190	5.7 [1.9]	30/30	6/6
(pg/g-wet)	2004	1,000	1,400	8,400	220	8.2 [2.7]	31/31	7/7
	2005	1,100	1,600	6,600	230	8.5 [2.8]	31/31	7/7
	2002	2,500	2,200	98,000	510	2.4 [0.8]	70/70	14/14
Fish	2003	2,000	2,200	12,000	180	5.7 [1.9]	70/70	14/14
(pg/g-wet)	2004	2,500	2,100	52,000	390	8.2 [2.7]	70/70	14/14
	2005	2,200	2,400	73,000	230	8.5 [2.8]	80/80	16/16
	2002	36,000	60,000	170,000	8,100	2.4 [0.8]	10/10	2/2
Birds	2003	63,000	76,000	240,000	18,000	5.7 [1.9]	10/10	2/2
(pg/g-wet)	2004	34,000	35,000	200,000	6,800	8.2 [2.7]	10/10	2/2
	2005	44,000	86,000	300,000	7,100	8.5 [2.8]	10/10	2/2
	Monitored year	Geometric				Quantification	Detection f	frequency
<i>p,p'</i> -DDD	(FY)	mean	Median	Maximum	Minimum	[Detection]	Sample	Area
	~ /		=10	2 200		limit	-	
D' 1	2002	340	710	3,200	11	5.4 [1.8]	38/38	8/8
Bivalves	2003	380	640	2,600	tr(7.5)	9.9 [3.3]	30/30	6/6
(pg/g-wet)	2004	300	240	8,900	7.8	2.2 [0.7]	31/31	7/7
	2005	300	800	1,700	13	2.9 [0.97]	31/31	7/7
F 1	2002	610	680	14,000	80	5.4 [1.8]	70/70	14/14
Fish	2003	500	520	3,700	43	9.9 [3.3]	70/70	14/14
(pg/g-wet)	2004	640 470	510	9,700	56	2.2 [0.7]	70/70	14/14
	2005	470	650	6,700	29	2.9 [0.97]	80/80	16/16
D: 1	2002	560	740	3,900	140	5.4 [1.8]	10/10	2/2
Birds	2003	590	860	3,900	110	9.9 [3.3]	10/10	2/2
(pg/g-wet)	2004	310	520	1,400	52	2.2 [0.7]	10/10	2/2
	2005	300	540	1,400	45	2.9 [0.97]	10/10	2/2

p,p'-DDT: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.054 pg/m³, and the detection range was $0.44 \sim 31 \text{ pg/m}^3$. For air in the cold season, the substance was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.054 pg/m³, and the detection range was $0.25 \sim 4.8 \text{ pg/m}^3$. The detected concentrations in FY 2005 were significantly lower than those in FY 2002. All the values in the warm season were higher than corresponding values in the cold season.

p,p'-DDE: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.034 pg/m³, and the detection range was $1.2 \sim 42$ pg/m³. For air in the cold season, the substance was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.034 pg/m³, and the detection range was $0.76 \sim 9.9$ pg/m³. The detected concentrations in FY 2005 were significantly lower than those in FY 2002, 2003 and 2004. All the values in the warm season were higher than corresponding values in the cold season.

p,p'-DDD: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.05 pg/m³, and the detection range was tr(0.07) ~ 1.3 pg/m³. For air in the cold season, the substance was monitored at 37 sites, and it was detected at 28 of the 37 valid areas adopting the detection limit of 0.05 pg/m³,

and all the detected concentrations did not exceed 0.29 pg/m^3 . The detected concentrations in FY 2005 were significantly lower than those in FY 2002, 2003 and 2004. All the values in the warm season were higher than corresponding values in the cold season.

" "' DDT	Monitored year	Geometric	Median	Maximum	Minimum	Quantification	Detection	requency
<i>p,p'</i> -DDT	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	1.9	1.8	22	0.25	0.24 [0.08]	102/102	34/34
	2003 Warm season	5.8	6.6	24	0.75	0.14 [0.046]	35/35	35/35
Air	2003 Cold season	1.7	1.6	11	0.31	0.14 [0.040]	34/34	34/34
(pg/m^3)	2004 Warm season	4.7	5.1	37	0.41	0.22 [0.074]	37/37	37/37
(pg/m)	2004 Cold season	1.8	1.7	13	0.29	0.22 [0.074]	37/37	37/37
	2005 Warm season	4.1	4.2	31	0.44	0.16 [0.054]	37/37	37/37
	2005 Cold season	1.1	0.99	4.8	0.25	0.10 [0.034]	37/37	37/37
<i>p,p'</i> -DDE	Monitored year	Geometric	Median	Maximum	Minimum	Quantification	Detection f	requency
<i>p,p</i> - DDE	(FY)	mean	wiculaii	Iviaxiiluili	winningin	[Detection] limit	Sample	Site
	2002	2.8	2.7	28	0.56	0.09 [0.03]	102/102	34/34
	2003 Warm season	7.2	7.0	51	1.2	0.40 [0.13]	35/35	35/35
Air	2003 Cold season	2.8	2.4	22	1.1	0.40 [0.13]	34/34	34/34
(pg/m^3)	2004 Warm season	6.1	6.3	95	0.62	0.12 [0.039]	37/37	37/37
(pg/m)	2004 Cold season	2.9	2.6	43	0.85	0.12 [0.039]	37/37	37/37
	2005 Warm season	5.0	5.7	42	1.2	0.14 [0.034]	37/37	37/37
	2005 Cold season	1.7	1.5	9.9	0.76	0.14 [0.034]	37/37	37/37
<i>p,p'</i> -DDD	Monitored year	Geometric	Median	Maximum	Minimum	Quantification	Detection f	requency
р,р -ооо	(FY)	mean	Weulan	Iviaxiiliuili	Wiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	[Detection] limit	Sample	Site
	2002	0.12	0.13	0.76	nd	0.018 [0.006]	101/102	34/34
	2003 Warm season	0.30	0.35	1.4	0.063	0.054 [0.018]	35/35	35/35
Air	2003 Cold season	0.13	0.14	0.52	tr(0.037)	0.034 [0.018]	34/34	34/34
(pg/m^3)	2004 Warm season	0.24	0.27	1.4	tr(0.036)	0.053 [0.018]	37/37	37/37
(pg/m)	2004 Cold season	0.12	0.12	0.91	tr(0.025)	0.033 [0.018]	37/37	37/37
	2005 Warm season	0.24	0.26	1.3	tr(0.07)	0 16 [0 05]	37/37	37/37
	2005 Cold season	tr(0.06)	tr(0.07)	0.29	nd	0.16 [0.05]	28/37	28/37

Stocktaking of the detection of p,p'-DDT, p,p'-DDE and p,p'-DDD in air during FY 2002 ~ 2005

• Monitoring results

o,*p*'-DDT, *o*,*p*'-DDE and *o*,*p*'-DDD

o,p'-DDT: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 42 of the 47 valid sites adopting the detection limit of 1 pg/L, and all the detected concentrations did not exceed 39 pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.3 pg/g-dry, and the detection range was 0.8 ~ 160,000 pg/g-dry.

o,p'-DDE: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 0.4 pg/L, and the detection range was 0.4 ~ 410 pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at 62 of the 63 valid sites adopting the detection limit of 0.9 pg/g-dry, and all the detected concentrations did not exceed 31,000 pg/g-dry.

o,p'-DDD: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 0.4 pg/L, and the detection range was $tr(0.5) \sim 51$ pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.3 pg/g-dry, and the detection range was $tr(0.8) \sim 32,000$ pg/g-dry.

0	4	1		1			0	
	Monitored year	Geometric	N 4 11			Quantification	Detection f	requency
<i>o,p'</i> -DDT	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.1	4.6	77	0.19	1.2 [0.4]	114/114	38/38
Surface water	2003	6	5	100	tr(1.5)	3 [0.7]	36/36	36/36
(pg/L)	2004	4.5	5	85	nd	5 [2]	29/38	29/38
	2005	3	3	39	nd	3 [1]	42/47	42/47
	2002	58	47	27,000	nd	6[2]	183/189	62/63
Sediment	2003	43	43	3,200	nd	0.8[0.3]	185/186	62/62
(pg/g-dry)	2004	52	50	17,000	tr(1.1)	2 [0.6]	189/189	63/63
	2005	47	46	160,000	0.8	0.8 [0.3]	189/189	63/63
	Monitored year	Geometric				Quantification	Detection f	requenc
o,p'-DDE	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.3	2.1	680	nd	0.9 [0.3]	113/114	38/38
Surface water	2003	2.2	2.0	170	tr(0.42)	0.8 [0.3]	36/36	36/30
(pg/L)	2004	3	2	170	tr(0.6)	2 [0.5]	38/38	38/38
	2005	2.5	2.1	410	0.4	1.2 [0.4]	47/47	47/47
	2002	46	37	16,000	nd	3[1]	188/189	63/63
Sediment	2003	43	39	24,000	tr(0.5)	0.6[0.2]	186/186	62/62
(pg/g-dry)	2004	35	34	28,000	nd	3 [0.8]	184/189	63/63
	2005	35	32	31,000	nd	2.6 [0.9]	181/189	62/63
	Monitored year	Geometric				Quantification	Detection f	requenc
o,p'-DDD	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	5.5	6.0	110	nd	0.6[0.2]	113/114	38/38
Surface water	2003	7.1	5.0	160	1.1	0.8[0.3]	36/36	36/30
(pg/L)	2004	6	5	81	tr(0.7)	2 [0.5]	38/38	38/38
	2005	5.2	5.4	51	tr(0.5)	1.2 [0.4]	47/47	47/47
	2002	140	150	14,000	nd	6 [2]	184/189	62/63
Sediment	2003	140	130	8,800	tr(1.0)	2 [0.5]	186/186	62/62
(pg/g-dry)	2004	120	120	16,000	tr(0.7)	2 [0.5]	189/189	63/63
	2005	110	110	32,000	tr(0.8)	1.0 [0.3]	189/189	63/63

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in suraface water and sediment during FY 2002 ~ 2005

o,p'-DDT: The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 0.86 pg/g-wet, and the detection range was $29 \sim 440$ pg/g-wet. For fish, the substance was monitored in 16 areas and detected in all 16 valid areas adopting the detection limit of 0.86 pg/g-wet, and the detection range was $5.8 \sim 1,500$ pg/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 0.86 pg/g-wet, and the detection limit of 0.86 pg/g-wet.

o,p'-DDE: The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 1.1 pg/g-wet, and the detection range was $12 \sim 470$ pg/g-wet. For fish, the substance was monitored in 16 areas and detected in all 16 valid areas adopting the detection limit of 1.1 pg/g-wet, and the detection range was tr(1.4) ~ 12,000 pg/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 1.1 pg/g-wet, and all the detected concentrations did not exceed tr(2.9) pg/g-wet.

o,p'-DDD: The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 1.1 pg/g-wet, and the detection range was $10 \sim 1,800$ pg/g-wet. For fish, the substance was monitored in 16 areas and detected in all 16 valid areas adopting the detection limit of 1.1 pg/g-wet, and all the detected concentrations did not exceed 1,400 pg/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 1.1 pg/g-wet, and the detection range was $4.7 \sim 9.7$ pg/g-wet.

Stocktaking of the detection of o,p'-DDT, o,p'-DDE and o,p'-DDD in wildlife (bivalves, fish and birds) during FY 2002 ~ 2005⁻⁾

<i>o,p'</i> -DDT	Monitored year	Geometric	Median	Maximum	Minimum	Quantification	Detection f	frequency
<i>o,p</i> -DD1	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Area
	2002	100	83	480	22	12 [4]	38/38	8/8
Bivalves	2003	130	120	480	35	2.9 [0.97]	30/30	6/6
(pg/g-wet)	2004	130	140	910	20	1.8 [0.61]	31/31	7/7
	2005	75	57	440	29	2.6 [0.86]	31/31	7/7
	2002	110	130	2,300	tr(6)	12 [4]	70/70	14/14
Fish	2003	80	120	520	2.9	2.9 [0.97]	70/70	14/14
(pg/g-wet)	2004	130	140	1,800	3.7	1.8 [0.61]	70/70	14/14
	2005	94	110	1,500	5.8	2.6 [0.86]	80/80	16/16
	2002	tr(10)	tr(10)	58	nd	12 [4]	8/10	2/2
Birds	2003	18	16	66	8.3	2.9 [0.97]	10/10	2/2
(pg/g-wet)	2004	7.7	13	43	tr(0.9)	1.8 [0.61]	10/10	2/2
	2005	11	14	24	3.4	2.6 [0.86]	10/10	2/2
	Monitored year	Geometric				Quantification	Detection f	frequency
<i>o,p'</i> -DDE	(FY)	mean	Median	Maximum	Minimum	[Detection]	Sample	Area
	~ /					limit		
	2002	88	66	1,100	13	3.6 [1.2]	38/38	8/8
Bivalves	2003	84	100	460	17	3.6 [1.2]	30/30	6/6
(pg/g-wet)	2004	70	69	360	19	2.1 [0.69]	31/31	7/7
	2005	66	89	470	12	3.4 [1.1]	31/31	7/7
	2002	77	50	13,000	3.6	3.6 [1.2]	70/70	14/14
Fish	2003	48	54	2,500	nd	3.6 [1.2]	67/70	14/14
(pg/g-wet)	2004	68	48	5,800	tr(0.9)	2.1 [0.69]	70/70	14/14
	2005	50	45	12,000	tr(1.4)	3.4 [1.1]	80/80	16/16
	2002	28	26	49	20	3.6 [1.2]	10/10	2/2
Birds	2003	tr(2.0)	tr(2.0)	4.2	nd	3.6 [1.2]	9/10	2/2
(pg/g-wet)	2004	tr(1.0)	tr(1.1)	3.7	nd	2.1 [0.69]	5/10	1/2
	2005	tr(1.4)	tr(1.9)	tr(2.9)	nd	3.4 [1.1]	7/10	2/2
	Monitored year	Geometric				Quantification	Detection f	requency
o,p'-DDD	(FY)	mean	Median	Maximum	Minimum	[Detection]	Sample	Area
						limit		
	2002	130	190	2,900	tr(9)	12 [4]	38/38	8/8
Bivalves	2003	200	220	1,900	6.5	6.0 [2.0]	30/30	6/6
(pg/g-wet)	2004	160	130	2,800	6.0	5.7 [1.9]	31/31	7/7
	2005	140	280	1,800	10	3.3 [1.1]	31/31	7/7
	2002	83	90	1,100	nd	12 [4]	70/70	14/14
Fish	2003	73	96	920	nd	6.0 [2.0]	66/70	14/14
(pg/g-wet)	2004	100	96	1,700	nd	5.7 [1.9]	68/70	14/14
	2005	77	81	1,400	nd	3.3 [1.1]	79/80	16/16
	2002	15	15	23	tr(8)	12 [4]	10/10	2/2
Birds	2003	14	14	36	tr(5.0)	6.0 [2.0]	10/10	2/2
(pg/g-wet)	2004	tr(5.6)	5.7	25	nd	5.7 [1.9]	9/10	2/2
	2005	7.1	7.5	9.7	4.7	3.3 [1.1]	10/10	2/2

o,p'-DDT: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.034 pg/m³, and the detection range was $0.67 \sim 14 \text{ pg/m}^3$. The detected concentrations in FY 2005 were significantly lower than those in FY 2003 and 2004. For air in the cold season, the substance was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.034 pg/m³, and the detection range was $0.32 \sim 3.0 \text{ pg/m}^3$. The detected concentrations in FY 2005 were significantly lower than those in FY 2005 were significantly lower than those in FY 2005 are significantly lower than those in FY 2005 and 2004. All the values in the warm season were higher than corresponding values in the cold season.

o,p'-DDE: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.024 pg/m³, and the detection range was $0.33 \sim 7.9$ pg/m³. For air in the cold season, the substance was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.024 pg/m³, and the detection range was $0.24 \sim 2.0$ pg/m³. All the values in the warm season were higher than corresponding values in the cold season.

o,p'-DDD: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37

valid areas adopting the detection limit of 0.03 pg/m³, and the detection range was $tr(0.07) \sim 0.90$ pg/m³. The detected concentrations in FY 2005 were significantly lower than those in FY 2003. For air in the cold season, the substance was monitored at 37 sites, and it was detected at 35 of 37 valid areas adopting the detection limit of 0.03 pg/m³, and all the detected concentrations did not exceed 0.21 pg/m³. The detected concentrations in FY 2005 were significantly lower than those in FY 2002, 2003 and 2004. All the values in the warm season were higher than corresponding values in the cold season.

	Monitored year	Geometric				Quantification	Detection f	frequency
<i>o,p'</i> -DDT	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.2	2.0	40	0.41	0.15 [0.05]	102/102	34/34
	2003 Warm season	6.9	7.7	38	0.61	0.12 [0.040]	35/35	35/35
Air	2003 Cold season	1.6	1.4	6.4	0.43	0.12 [0.040]	34/34	34/34
(pg/m^3)	2004 Warm season	5.1	5.4	22	0.54	0.093 [0.031]	37/37	37/37
(pg/m)	2004 Cold season	1.5	1.4	9.4	0.35	0.095 [0.051]	37/37	37/37
	2005 Warm season	3.0	3.1	14	0.67	0 10 [0 024]	37/37	37/37
	2005 Cold season	0.76	0.67	3.0	0.32	0.10 [0.034]	37/37	37/37
	Monitored year	Geometric				Quantification	Detection f	frequency
<i>o,p'</i> - DDE	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.60	0.56	8.5	0.11	0.03 [0.01]	102/102	34/34
	2003 Warm season	1.4	1.5	7.5	0.17	0.020 [0.0068]	35/35	35/35
Air	2003 Cold season	0.50	0.47	1.7	0.18	0.020 [0.0008]	34/34	34/34
(pg/m^3)	2004 Warm season	1.1	1.2	8.9	0.14	0.027 [0.012]	37/37	37/37
(pg/m)	2004 Cold season	0.53	0.49	3.9	0.14	0.037 [0.012]	37/37	37/37
	2005 Warm season	1.6	1.5	7.9	0.33	0 074 [0 024]	37/37	37/37
	2005 Cold season	0.62	0.59	2.0	0.24	0.074 [0.024]	37/37	37/37
	Monitored year	Geometric				Quantification	Detection f	frequency
<i>o,p'</i> -DDD	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.14	0.18	0.85	nd	0.021 [0.006]	97/102	33/34
	2003 Warm season	0.37	0.42	1.3	0.059	0.042 [0.014]	35/35	35/35
Air	2003 Cold season	0.15	0.14	0.42	0.062	0.042 [0.014]	34/34	34/34
(pg/m^3)	2004 Warm season	0.31	0.33	2.6	tr(0.052)	0.14 [0.048]	37/37	37/37
(hR/III.)	2004 Cold season	0.14	tr(0.13)	0.86	nd	0.14 [0.048]	35/37	35/37
	2005 Warm season	0.22	0.19	0.90	tr(0.07)	0 10 [0 02]	37/37	37/37
	2005 Cold season	tr(0.07)	tr(0.07)	0.21	nd	0.10 [0.03]	35/37	35/37

Stocktaking of the detection of o,p'-I	DDT. o.p'-DDE and o.p'-DDD	in air during FY 2002 \sim 2005

[7] Chlordanes

• Monitoring results

cis-Chlordane and trans-Chlordane

cis-Chlordane: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 1 pg/L, and the detection range was $6 \sim 510$ pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.64 pg/g-dry, and the detection range was $3.3 \sim 44,000$ pg/g-dry.

trans-Chlordane: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 1 pg/L, and the detection range was $3 \sim 200$ pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.84 pg/g-dry, and the detection range was $3.4 \sim 32,000$ pg/g-dry.

•							e	
cis-Chlordane	Monitored year (FY)	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection f Sample	requency Site
	2002	41	32	880	2.5	0.9 [0.3]	114/114	38/38
Surface water	2003	69	51	920	12	3 [0.9]	36/36	36/36
(pg/L)	2004	92	87	1900	10	6 [2]	38/38	38/38
	2005	53	54	510	6	4 [1]	47/47	47/47
	2002	120	98	18,000	1.8	0.9 [0.3]	189/189	63/63
Sediment	2003	170	140	19,000	tr(3.6)	4 [2]	186/186	62/62
(pg/g-dry)	2004	140	97	36,000	4	4 [2]	189/189	63/63
	2005	140	100	44,000	3.3	1.9 [0.64]	189/189	63/63
	Monitored year	Geometric				Quantification	Detection f	requency
trans-Chlordane	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	32	24	780	3.1	1.5 [0.5]	114/114	38/38
Surface water	2003	34	30	410	6	5 [2]	36/36	36/36
(pg/L)	2004	32	26	1,200	5	5 [2]	38/38	38/38
	2005	25	21	200	3	4 [1]	47/47	47/47
	2002	130	110	16,000	2.1	1.8 [0.6]	189/189	63/63
Sediment	2003	120	100	13,000	tr(2.4)	4 [2]	186/186	62/62
(pg/g-dry)	2004	95	80	26,000	3	3 [0.9]	189/189	63/63
	2005	98	81	32,000	3.4	2.3 [0.84]	189/189	63/63

Stocktaking of the detection of cis-chlordane and trans-chlordane in suraface water and sediment during FY 2002 ~ 2005

cis-Chlordane: The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 3.9 pg/g-wet, and the detection range was $78 \sim 13,000 \text{ pg/g-wet}$. For fish, the substance was monitored in 16 areas and detected in all 16 valid areas adopting the detection limit of 3.9 pg/g-wet, and the detection range was $42 \sim 8,000 \text{ pg/g-wet}$. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 3.9 pg/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 3.9 pg/g-wet. For birds, the substance was tr(5.8) $\sim 340 \text{ pg/g-wet}$. From the beginning of the monitoring, a trend of long-term decrease was observed in bivalves and fish, respectively.

trans-Chlordane: The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 3.5 pg/g-wet, and the detection range was $40 \sim 2,400$ pg/g-wet. For fish, the substance was monitored in 16 areas and detected in all 16 valid areas adopting the detection limit of 3.5 pg/g-wet, and the detection range was tr(9.8) ~ 3,100 pg/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 3.5 pg/g-wet, and the detection range was tr(4.5) ~ 30 pg/g-wet. From the beginning of the monitoring, a trend of long-term decrease was observed in bivalves and fish, respectively.

	Monitored year	Geometric				Quantification	Detection f	requency
cis-Chlordane	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Area
	2002	810	1,200	26,000	24	2.4 [0.8]	38/38	8/8
Bivalves	2003	1,100	1,400	14,000	110	3.9 [1.3]	30/30	6/6
(pg/g-wet)	2004	1,200	1,600	14,000	91	18 [5.8]	31/31	7/7
	2005	820	960	13,000	78	12 [3.9]	31/31	7/7
	2002	580	550	6,900	57	2.4 [0.8]	70/70	14/14
Fish	2003	490	400	4,400	43	3.9 [1.3]	70/70	14/14
(pg/g-wet)	2004	580	490	9,800	68	18 [5.8]	70/70	14/14
	2005	490	600	8,000	42	12 [3.9]	80/80	16/16
	2002	67	180	450	10	2.4 [0.8]	10/10	2/2
Birds	2003	47	120	370	6.8	3.9 [1.3]	10/10	2/2
(pg/g-wet)	2004	39	110	240	tr(5.8)	18 [5.8]	10/10	2/2
	2005	49	120	340	tr(5.8)	12 [3.9]	10/10	2/2
	Monitored year	Geometric				Quantification	Detection f	requency
trans-Chlordane	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Area
	2002	420	840	2,300	33	2.4 [0.8]	38/38	8/8
Bivalves	2003	550	940					6/6
	2005	550	840	2,800	69	7.2 [2.4]	30/30	0/0
(pg/g-wet)	2003	510	840 770	2,800 2,800	69 53	7.2 [2.4] 48 [16]	30/30 31/31	7/7
(pg/g-wet)				,				
(pg/g-wet)	2004	510	770	2,800	53	48 [16]	31/31	7/7
(pg/g-wet) Fish	2004 2005	510 370	770 660	2,800 2,400	53 40	48 [16] 10 [3.5]	31/31 31/31	7/7 7/7
	2004 2005 2002	510 370 180	770 660 160	2,800 2,400 2,700	53 40 20	48 [16] 10 [3.5] 2.4 [0.8]	31/31 31/31 70/70	7/7 7/7 14/14
Fish	2004 2005 2002 2003	510 370 180 150	770 660 160 120	2,800 2,400 2,700 1,800	53 40 20 9.6	48 [16] 10 [3.5] 2.4 [0.8] 7.2 [2.4]	31/31 31/31 70/70 70/70	7/7 7/7 14/14 14/14
Fish	2004 2005 2002 2003 2004	510 370 180 150 190	770 660 160 120 130	2,800 2,400 2,700 1,800 5,200	53 40 20 9.6 tr(17)	48 [16] 10 [3.5] 2.4 [0.8] 7.2 [2.4] 48 [16]	31/31 31/31 70/70 70/70 70/70	7/7 7/7 14/14 14/14 14/14
Fish	2004 2005 2002 2003 2004 2005	510 370 180 150 190 150	770 660 160 120 130 180	2,800 2,400 2,700 1,800 5,200 3,100	53 40 20 9.6 tr(17) tr(9.8)	48 [16] 10 [3.5] 2.4 [0.8] 7.2 [2.4] 48 [16] 10 [3.5]	31/31 31/31 70/70 70/70 70/70 76/80	7/7 7/7 14/14 14/14 14/14 14/14 16/16
Fish (pg/g-wet)	2004 2005 2002 2003 2004 2005 2002	510 370 180 150 190 150 14	770 660 160 120 130 180 14	2,800 2,400 2,700 1,800 5,200 3,100 26	53 40 20 9.6 tr(17) tr(9.8) 8.9	48 [16] 10 [3.5] 2.4 [0.8] 7.2 [2.4] 48 [16] 10 [3.5] 2.4 [0.8]	31/31 31/31 70/70 70/70 70/70 70/70 76/80 10/10	7/7 7/7 14/14 14/14 14/14 16/16 2/2

Stocktaking of the detection of *cis*-chlordane and *trans*-chlordane in wildlife (bivalves, fish and birds) during FY 2002 ~ 2005^{$^{\circ}$}

cis-Chlordane: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.054 pg/m³, and the detection range was $3.4 \sim 1,000$ pg/m³. For air in the cold season, the substance was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.054 pg/m³, and the detection areas adopting the detection limit of 0.054 pg/m³. The detected at all 37 valid areas adopting the detection limit of 0.054 pg/m³. The detected concentrations in FY 2005 were lower than those in FY 2002 and 2003. All the values in the warm season were higher than corresponding values in the cold season.

trans-Chlordane: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.14 pg/m^3 , and the detection range was $3.2 \sim 1,300 \text{ pg/m}^3$. For air in the cold season, the substance was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.14 pg/m^3 , and the detection range was $1.9 \sim 310 \text{ pg/m}^3$. All the values in the warm season were higher than corresponding values in the cold season.

	Monitored year	Geometric				Quantification	Detection f	frequency
cis-Chlordane	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	31	40	670	0.86	0.60 [0.20]	102/102	34/34
	2003 Warm season	110	120	1,600	6.4	0.51 [0.17]	35/35	35/35
Air	2003 Cold season	30	38	220	2.5	0.51 [0.17]	34/34	34/34
(pg/m^3)	2004 Warm season	92	160	1,000	2.3	0.57 [0.19]	37/37	37/37
(pg/m)	2004 Cold season	29	49	290	1.2	0.37 [0.19]	37/37	37/37
	2005 Warm season	92	120	1,000	3.4	0.16 [0.054]	37/37	37/37
	2005 Cold season	16	19	260	1.4	0.10[0.034]	37/37	37/37
	Monitored year	Geometric				Quantification	Detection f	frequenc
trans-Chlordane	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	36	48	820	0.62	0.60 [0.20]	102/102	34/34
	2003 Warm season	130	150	2,000	6.5	0.86 [0.29]	35/35	35/35
A :	2003 Cold season	37	44	290	2.5	0.80 [0.29]	34/34	34/34
Air (pg/m ³)	2004 Warm season	110	190	1,300	2.2	0.69 [0.23]	37/37	37/31
(pg/m)	2004 Cold season	35	60	360	1.5	0.09 [0.23]	37/37	37/3
	2005 Warm season	100	130	1,300	3.2	0.24 [0.14]	37/37	37/3
	2005 Cold season	19	23	310	1.9	0.34 [0.14]	37/37	37/3'

Stocktaking of the detection of cis-chlordane and trans-chlordane in air during FY 2002 ~ 2005

• Monitoring results

Oxychlordane, cis-Nonachlor and trans-Nonachlor

Oxychlordane: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 46 of the 47 valid sites adopting the detection limit of 0.4 pg/L, and all the detected concentrations did not exceed 19 pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at 51 of the 63 valid sites adopting the detection limit of 0.7 pg/g-dry, and all the detected concentrations did not exceed 160 pg/g-dry.

cis-Nonachlor: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 0.2 pg/L, and the detection range was $0.9 \sim 43$ pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.64 pg/g-dry, and the detection range was tr(1.1) ~ 9,900 pg/g-dry.

trans-Nonachlor: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 0.84 pg/L, and the detection range was $2.6 \sim 150$ pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.54 pg/g-dry, and the detection range was $2.4 \sim 24,000$ pg/g-dry.

	Monitored year	~ ·				Quantification	Detection f	requency
Oxychlordane	(FY)	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	2.4	3.5	41	nd	1.2 [0.4]	96/114	35/38
Surface water	2003	3	2	39	tr(0.6)	2 [0.5]	36/36	36/36
(pg/L)	2004	3.2	2.9	47	tr(0.7)	2 [0.5]	38/38	38/38
	2005	2.6	2.1	19	nd	1.1 [0.4]	46/47	46/47
	2002	2.2	1.7	120	nd	1.5 [0.5]	153/189	59/63
Sediment	2003	2	2	85	nd	1 [0.4]	158/186	57/62
(pg/g-dry)	2004	tr(2.0)	tr(1.3)	140	nd	3 [0.8]	129/189	54/63
	2005	2.1	tr(1.9)	160	nd	2.0 [0.7]	133/189	51/63
	Monitored year					Quantification	Detection f	requency
cis-Nonachlor	(FY)	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	7.6	6.7	250	0.23	1.8 [0.6]	114/114	38/38
Surface water	2003	8.0	7.0	130	1.3	0.3 [0.1]	36/36	36/36
(pg/L)	2004	7.5	6.3	340	0.8	0.6 [0.2]	38/38	38/38
	2005	6.0	5.9	43	0.9	0.5 [0.2]	47/47	47/47
	2002	66	65	7,800	nd	2.1 [0.7]	188/189	63/63
Sediment	2003	59	50	6,500	nd	3 [0.9]	184/186	62/62
(pg/g-dry)	2004	46	34	9,400	tr(0.8)	2 [0.6]	189/189	63/63
	2005	50	42	9,900	tr(1.1)	1.9 [0.64]	189/189	63/63
trans-Nonachlo	Monitored year					Quantification	Detection f	requency
r	(FY)	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	29	24	780	1.8	1.2 [0.4]	114/114	38/38
Surface water	2003	26	20	450	4	2 [0.5]	36/36	36/36
(pg/L)	2004	25	19	8,100	tr(3)	4[2]	38/38	38/38
	2005	20	17	150	2.6	2.5 [0.84]	47/47	47/47
	2002	120	83	13,000	3.1	1.5 [0.5]	189/189	63/63
Sediment	2003	100	78	11,000	2	2 [0.6]	186/186	62/62
(pg/g-dry)	2004	83	63	23,000	3	2 [0.6]	189/189	63/63
	2005	89	72	24,000	2.4	1.5 [0.54]	189/189	63/63

Stocktaking of the detection of oxychlordane, *cis*-nonachlor and *trans*-nonachlor in suraface water and sediment during FY 2002 ~ 2005

Oxychlordane: The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 3.1 pg/g-wet, and the detection range was $12 \sim 1,400$ pg/g-wet. For fish, the substance was monitored in 16 areas and detected in all 16 valid areas adopting the detection limit of 3.1 pg/g-wet, and the detection range was $20 \sim 1,900$ pg/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 3.1 pg/g-wet, and the detection limit of 3.1 pg/g-wet.

cis-Nonachlor: The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 1.5 pg/g-wet, and the detection range was $27 \sim 1,300$ pg/g-wet. For fish, the substance was monitored in 16 areas and detected in all 16 valid areas adopting the detection limit of 1.5 pg/g-wet, and the detection range was $27 \sim 6,200$ pg/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 1.5 pg/g-wet, and the detection limit of 1.5 pg/g-wet.

trans-Nonachlor: The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 2.1 pg/g-wet, and the detection range was $72 \sim 3,400$ pg/g-wet. For fish, the substance was monitored in 16 areas and detected in all 16 valid areas adopting the detection limit of 2.1 pg/g-wet, and the detection range was $80 \sim 13,000$ pg/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 2.1 pg/g-wet, and the detection range was $440 \sim 2,000$ pg/g-wet.

From the beginning of the monitoring of each of those three substances, a trend of long-term decrease was observed in fish.

Stocktaking of the detection of oxychlordane, *cis*-nonachlor and *trans*-nonachlor in wildlife (bivalves, fish and birds) during FY 2002 ~ 2005^{-1}

0.11.1	Monitored year	Geometric				Quantification	Detection f	requency
Oxychlordane	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Area
	2002	76	83	5,600	nd	3.6 [1.2]	37/38	8/8
Bivalves	2003	90	62	1,900	11	8.4 [2.8]	30/30	6/6
(pg/g-wet)	2004	110	100	1,700	14	9.2 [3.1]	31/31	7/7
	2005	81	79	1,400	12	9.3 [3.1]	31/31	7/7
	2002	160	140	3,900	16	3.6 [1.2]	70/70	14/14
Fish	2003	140	160	820	30	8.4 [2.8]	70/70	14/14
(pg/g-wet)	2004	150	140	1,500	25	9.2 [3.1]	70/70	14/14
	2005	140	150	1,900	20	9.3 [3.1]	80/80	16/16
	2002	640	630	890	470	3.6 [1.2]	10/10	2/2
Birds	2003	750	700	1,300	610	8.4 [2.8]	10/10	2/2
(pg/g-wet)	2004	460	450	730	320	9.2 [3.1]	10/10	2/2
	2005	600	660	860	390	9.3 [3.1]	10/10	2/2
	Monitored year	Geometric				Quantification	Detection f	requency
cis-Nonachlor	(FY)	mean	Median	Maximum	Minimum	[Detection]	Sample	Area
	. ,					limit		
	2002	190	300	870	8.6	1.2 [0.4]	38/38	8/8
Bivalves	2003	290	260	1,800	48	4.8 [1.6]	30/30	6/6
(pg/g-wet)	2004	280	380	1,800	43	3.4 [1.1]	31/31	7/7
	2005	220	220	1,300	27	4.5 [1.5]	31/31	7/7
	2002	420	420	5,100	46	1.2 [0.4]	70/70	14/14
Fish	2003	350	360	2,600	19	4.8 [1.6]	70/70	14/14
(pg/g-wet)	2004	410	310	10,000	48	3.4 [1.1]	70/70	14/14
	2005	360	360	6,200	27	4.5 [1.5]	80/80	16/16
	2002	200	240	450	68	1.2 [0.4]	10/10	2/2
Birds	2003	200	260	660	68	4.8 [1.6]	10/10	2/2
(pg/g-wet)	2004	130	150	240	73	3.4 [1.1]	10/10	2/2
	2005	160	180	370	86	4.5 [1.5]	10/10	2/2
	Monitored year	Geometric				Quantification	Detection f	requenc
trans-Nonachlor	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Area
	2002	510	1,100	1,800	21	2.4 [0.8]	38/38	8/8
Bivalves	2003	780	700	3,800	140	3.6 [1.2]	30/30	6/6
(pg/g-wet)	2004	710	870	3,400	110	13 [4.2]	31/31	7/7
	2005	570	650	3,400	72	6.2 [2.1]	31/31	7/7
	2002	970	900	8,300	98	2.4 [0.8]	70/70	14/14
Fish	2003	880	840	5,800	85	3.6 [1.2]	70/70	14/14
(pg/g-wet)	2004	1,000	760	21,000	140	13 [4.2]	70/70	14/14
	2005	910	750	13,000	80	6.2 [2.1]	80/80	16/16
	2002	880	980	1,900	350	2.4 [0.8]	10/10	2/2
Birds	2003	1,100	1,400	3,700	350	3.6 [1.2]	10/10	2/2
(pg/g-wet)	2004	680	780	1,200	390	13 [4.2]	10/10	2/2
	2005	850	880	2,000	440	6.2 [2.1]	10/10	2/2

Oxychlordane: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.054 pg/m³, and the detection range was $0.65 \sim 8.8$ pg/m³. For air in the cold season, the substance was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.054 pg/m³, and the detection range was $0.27 \sim 2.2$ pg/m³. The detected concentrations in FY 2005 were significantly lower than those in FY 2002, 2003 and 2004. All the values in the warm season were higher than corresponding values in the cold season.

cis-Nonachlor: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.03 pg/m³, and the detection range was $0.30 \sim 160$ pg/m³. For air in the cold season, the substance was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.03 pg/m³, and the detection range was 0.00 \sim 34 pg/m³. The detected concentrations in FY 2005 were significantly lower than those in FY 2002. All the values in the warm season were higher than corresponding values in the cold season.

trans-Nonachlor: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.044 pg/m³, and the detection range was $3.1 \sim 870$ pg/m³. For air in the cold season, the substance was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.044

 pg/m^3 , and the detection range was $1.2 \sim 210 pg/m^3$. The detected concentrations in FY 2005 were significantly lower than those in FY 2002, 2003 and 2004. All the values in the warm season were higher than corresponding values in the cold season.

	Monitored year	Geometric				Quantification	Detection f	requency
Oxychlordane	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	0.96	0.98	8.3	nd	0.024 [0.008]	101/102	34/34
	2003 Warm season	2.5	2.7	12	0.41	0.045 [0.015]	35/35	35/35
Air	2003 Cold season	0.87	0.88	3.2	0.41	0.045 [0.015]	34/34	34/34
(pg/m^3)	2004 Warm season	1.9	2.0	7.8	0.41	0.13 [0.042]	37/37	37/37
(pg/m)	2004 Cold season	0.79	0.76	3.9	0.27	0.13 [0.042]	37/37	37/37
	2005 Warm season	1.9	2.0	8.8	0.65	0.16 [0.054]	37/37	37/37
	2005 Cold season	0.55	0.50	2.2	0.27	0.16 [0.054]	37/37	37/37
	Maniford	Compatible				Quantification	Detection f	requenc
cis-Nonachlor	Monitored year (FY)	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	3.1	4.0	62	0.071	0.030 [0.010]	102/102	34/3
	2003 Warm season	12	15	220	0.81	0.026 10.00881	35/35	35/3
A *	2003 Cold season	2.7	3.5	23	0.18		34/34	34/3-
Air $(m \alpha / m^3)$	2004 Warm season	10	15	130	0.36	0.072 [0.024]	37/37	37/3
(pg/m^3)	2004 Cold season	2.7	4.4	28	0.087	0.072 [0.024]	37/37	37/3
	2005 Warm season	10	14	160	0.30	0.00.001	37/37	37/3
	2005 Cold season	1.6	1.6	34	0.08	0.08 [0.03]	37/37	37/3
	Monitored year	Caamatria				Quantification	Detection f	requent
trans-Nonachlor	Monitored year (FY)	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	24	30	550	0.64	0.30 [0.10]	102/102	34/3
	2003 Warm season	87	100	1,200	5.1		35/35	35/3
Air	2003 Cold season	24	28	180	2.1	0.35 [0.12]	34/34	34/3
	2004 Warm season	72	120	870	1.9	0.49 [0.16]	37/37	37/3
(pg/m^3)	2004 Cold season	23	39	240	0.95	0.48 [0.16]	37/37	37/3
	2005 Warm season	75	95	870	3.1	0.12[0.044]	37/37	37/3
	2005 Cold season	13	16	210	1.2	0.13 [0.044]	37/37	37/3

Stocktaking of the detection of oxychlordane, cis-nonachlor and trans-nonachlor in air during FY 2002 ~ 2005

[8] Heptachlors

• Monitoring results

Heptachlor

The presence of the substance in surface water was monitored at 47 sites, and it was detected at 25 of the 47 valid sites adopting the detection limit of 1 pg/L, and all the detected concentrations did not exceed 54 pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at 48 of the 63 valid sites adopting the detection limit of 0.8 pg/g-dry, and all the detected concentrations did not exceed 200 pg/g-dry.

The presence of the substance in bivalves was monitored in 7 areas, and it was detected in 6 of the 7 valid areas adopting the detection limit of 2.0 pg/g-wet, and all the detected concentrations did not exceed 24 pg/g-wet. For fish, the substance was monitored in 16 areas and detected in 8 of the 16 valid areas adopting the detection limit of 2.0 pg/g-wet, and all the detected concentrations did not exceed 7.6 pg/g-wet. For birds, the substance was monitored in 2 areas and not detected in all 2 valid areas adopting the detection limit of 2.0 pg/g-wet.

The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.054 pg/m³, and the detection range was $1.1 \sim 190$ pg/m³. For air in the cold season, the substance was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.054 pg/m³, and the detection range was 0.52 ~ 61 pg/m³. All the values in the warm season were higher than corresponding values in the cold season.

	Monitored year	Geometric				Quantification	Detection	frequency
Heptachlor	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site or Area
	2002	tr(1.1)	1.0	25	nd	1.5 [0.5]	97/114	38/38
Surface water	2003	tr(1.8)	tr(1.6)	7	tr(1.0)	2 [0.5]	36/36	36/36
(pg/L)	2004	nd	nd	29	nd	5 [2]	9/38	9/38
	2005	nd	tr(1)	54	nd	3 [1]	25/47	25/47
	2002	3.5	3.2	120	nd	1.8 [0.6]	167/189	60/63
Sediment	2003	tr(2.4)	tr(2.2)	160	nd	3 [1]	138/186	53/62
(pg/g-dry)	2004	tr(2.5)	tr(2.3)	170	nd	3 [0.9]	134/189	53/63
	2005	2.5	2.8	200	nd	2.5 [0.8]	120/189	48/63
	2002	3.6	4.6	15	nd	4.2 [1.4]	28/38	6/8
Bivalves	2003	tr(2.8)	tr(2.4)	14	nd	6.6 [2.2]	16/30	4/6
(pg/g-wet)	2004	tr (3.5)	5.2	16	nd	4.1 [1.4]	23/31	6/7
	2005	tr(2.3)	tr(2.9)	24	nd	6.1 [2.0]	18/31	6/7
	2002	4.0	4.8	20	nd	4.2 [1.4]	57/70	12/14
Fish	2003	nd	nd	11	nd	6.6 [2.2]	29/70	8/14
(pg/g-wet)	2004	tr(1.9)	tr(2.1)	460	nd	4.1 [1.4]	50/70	11/14
	2005	nd	nd	7.6	nd	6.1 [2.0]	32/80	8/16
	2002	tr(2.1)	tr(2.8)	5.2	nd	4.2 [1.4]	7/10	2/2
Birds	2003	nd	nd	nd	nd	6.6 [2.2]	0/10	0/2
(pg/g-wet)	2004	nd	nd	tr(1.5)	nd	4.1 [1.4]	1/10	1/2
	2005	nd	nd	nd	nd	6.1 [2.0]	0/10	0/2
	2002	11	14	220	0.20	0.12 [0.04]	102/102	34/34
	2003 Warm season	27	41	240	1.1	0.25 [0.085]	35/35	35/35
A :	2003 Cold season	10	16	65	0.39	0.23 [0.083]	34/34	34/34
Air (ng/m^3)	2004 Warm season	22	36	200	0.46	0.22 [0.079]	37/37	37/37
(pg/m^3)	2004 Cold season	11	18	100	0.53	0.23 [0.078]	37/37	37/37
	2005 Warm season	25	29	190	1.1	0.16.00.05.41	37/37	37/37
	2005 Cold season	6.5	7.9	61	0.52	0.16 [0.054]	37/37	37/37

Stocktaking of the detection of heptachlor in surface water, sediment, wildlife (bivalves, fish and birds) and air during FY $2002 \sim 2005 ^{-1}$

Monitoring results

cis-Heptachlor epoxide

The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 0.2 pg/L, and the detection range was $1.0 \sim 59$ pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at 49 of the 63 valid sites adopting the detection limit of 2 pg/g-dry, and all the detected concentrations did not exceed 140 pg/g-dry.

The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 1.2 pg/g-wet, and the detection range was $7.4 \sim 590$ pg/g-wet. For fish, the substance was monitored in 16 areas and detected in all 16 valid areas adopting the detection limit of 1.2 pg/g-wet, and the detection range was $4.9 \sim 390$ pg/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 1.2 pg/g-wet, and the detection limit of 1.2 pg/g-wet.

The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.044 pg/m³, and the detection range was $tr(0.10) \sim 11$ pg/m³. For air in the cold season, the substance was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.044 pg/m³, and the detection range was 0.43 ~ 2.9 pg/m³. The detected concentrations in FY 2005 were significantly lower than those in FY 2003. All the values in the warm season were higher than corresponding values in the cold season.

cis-Heptachlor	Monitored year	Geometric				Quantification	Detection	frequency
epoxide	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site o Area
Surface water	2003	9.8	11	170	1.2	0.7 [0.2]	36/36	36/36
	2004	10	10	77	2	2 [0.4]	38/38	38/38
(pg/L)	2005	7.1	6.6	59	1.0	0.7 [0.2]	47/47	47/47
Sediment	2003	4	3	160	nd	3 [1]	153/186	55/62
	2004	tr(4)	tr(3.0)	230	nd	6 [2]	136/189	52/63
(pg/g-dry)	2005	tr(4)	tr(3)	140	nd	7 [2]	119/189	49/63
Disalara	2003	42	29	880	9.7	6.9 [2.3]	30/30	6/6
Bivalves	2004	57	34	840	tr(9.8)	9.9 [3.3]	31/31	7/7
(pg/g-wet)	2005	36	20	590	7.4	3.5 [1.2]	31/31	7/7
Fish	2003	42	43	320	7.0	6.9 [2.3]	70/70	14/14
	2004	46	49	620	tr(3.3)	9.9 [3.3]	70/70	14/14
(pg/g-wet)	2005	39	45	390	4.9	3.5 [1.2]	80/80	16/16
Birds	2003	520	510	770	370	6.9 [2.3]	10/10	2/2
	2004	270	270	350	190	9.9 [3.3]	10/10	2/2
(pg/g-wet)	2005	360	340	690	250	3.5 [1.2]	10/10	2/2
	2003 Warm season	3.5	3.5	28	0.45	0.015 [0.0048]	35/35	35/35
	2003 Cold season	1.3	1.3	6.6	0.49	0.013 [0.0048]	34/34	34/34
Air	2004 Warm season	2.7	2.9	9.7	0.65	0.052 [0.017]	37/37	37/3
(pg/m^3)	2004 Cold season	1.1	1.1	7.0	0.44	0.052 [0.017]	37/37	37/3
	2005 Warm season	1.5	1.7	11	tr(0.10)	0.12 [0.044]	37/37	37/3
	2005 Cold season	0.91	0.81	2.9	0.43	0.12 [0.044]	37/37	37/3′

Stocktaking of the detection of *cis*-heptachlor epoxide in surface water, sediment, wildlife (bivalves, fish and birds) and air during FY 2003 ~ 2005 $^{-1}$

Monitoring results

trans-Heptachlor epoxide

The presence of the substance in surface water was monitored at 47 sites, and it was not detected at all 47 valid sites adopting the detection limit of 0.2 pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was not detected at all 63 valid sites adopting the detection limit of 2 pg/g-dry.

The presence of the substance in bivalves was monitored in 7 areas, and it was detected in 2 of the 7 valid areas adopting the detection limit of 7.5 pg/g-wet, and all the detected concentrations did not exceed 37 pg/g-wet. For fish, the substance was monitored in 16 areas and not detected in all 16 valid areas adopting the detection limit of 7.5 pg/g-wet. For birds, the substance was monitored in 2 areas and not detected in all 2 valid areas adopting the detection limit of 7.5 pg/g-wet.

The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at 27 of the 37 valid areas adopting the detection limit of 0.05 pg/m³, and all the detected concentrations did not exceed 1.2 pg/m³. For air in the cold season, the substance was monitored at 37 sites, and it was detected at 3 of the 37 valid areas adopting the detection limit of 0.05 pg/m^3 , and all the detected of 0.32 pg/m^3 .

trans-Heptachlor	Monitored year	Geometric				Quantification	Detection	frequency
epoxide	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface water	2003	nd	nd	2	nd	2 [0.4]	4/36	4/36
	2004	nd	nd	nd	nd	0.9 [0.3]	0/38	0/38
(pg/L)	2005	nd	nd	nd	nd	0.7 [0.2]	0/47	0/47
Sediment	2003	nd	nd	nd	nd	9[3]	0/186	0/62
(pg/g-dry)	2004	nd	nd	tr(2.5)	nd	4 [2]	1/189	1/63
(pg/g-ury)	2005	nd	nd	nd	nd	5 [2]	0/189	0/63
Bivalves	2003	nd	nd	48	nd	13 [4.4]	5/30	1/6
	2004	tr(4.0)	nd	55	nd	12 [4.0]	9/31	2/7
(pg/g-wet)	2005	nd	nd	37	nd	23 [7.5]	5/31	2/7
Fish	2003	nd	nd	nd	nd	13 [4.4]	0/70	0/14
(pg/g-wet)	2004	nd	nd	tr(10)	nd	12 [4.0]	2/70	2/14
(pg/g-wet)	2005	nd	nd	nd	nd	23 [7.5]	0/80	0/16
Birds	2003	nd	nd	nd	nd	13 [4.4]	0/10	0/2
(pg/g-wet)	2004	nd	nd	nd	nd	12 [4.0]	0/10	0/2
(pg/g-wei)	2005	nd	nd	nd	nd	23 [7.5]	0/10	0/2
	2003 Warm season	tr(0.036)	tr(0.038)	0.30	nd	0.099 [0.003]	18/35	18/3
_	2003 Cold season	nd	nd	tr(0.094)	nd	0.099 [0.003]	3/34	3/34
Air	2004 Warm season	nd	nd	tr(0.38)	nd	0.6 [0.2]	4/37	4/37
(pg/m^3)	2004 Cold season	nd	nd	nd	nd	0.0 [0.2]	0/37	0/37
-	2005 Warm season	tr(0.10)	tr(0.12)	1.2	nd	0.16 [0.05]	27/37	27/3
	2005 Cold season	nd	nd	0.32	nd	0.10[0.03]	3/37	3/37

Stocktaking of the detection of *trans*-heptachlor epoxide in surface water, sediment, wildlife (bivalves, fish and birds) and air during FY 2003 ~ 2005 $^{-}$

[9] Toxaphenes

• Monitoring results

Parlar-26: The presence of the substance in surface water was monitored at 47 sites, and it was not detected at all 47 valid sites adopting the detection limit of 4 pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was not detected at all 63 valid sites adopting the detection limit of 30 pg/g-dry.

Parlar-50: The presence of the substance in surface water was monitored at 47 sites, and it was not detected at all 47 valid sites adopting the detection limit of 5 pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was not detected at all 63 valid sites adopting the detection limit of 40 pg/g-dry.

Parlar-62: The presence of the substance in surface water was monitored at 47 sites, and it was not detected at all 47 valid sites adopting the detection limit of 30 pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was not detected at all 63 valid sites adopting the detection limit of 700 pg/g-dry.

0	1	1	1				0	
	Monitored year	Geometric				Quantification	Detection	frequency
Parlar-26	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface water	2003	nd	nd	nd	nd	40 [20]	0/36	0/36
	2004	nd	nd	nd	nd	9 [3]	0/38	0/38
(pg/L)	2005	nd	nd	nd	nd	10 [4]	0/47	0/47
Sediment	2003	nd	nd	nd	nd	90 [30]	0/186	0/62
	2004	nd	nd	nd	nd	60 [20]	0/189	0/63
(pg/g-dry)	2005	nd	nd	nd	nd	60 [30]	0/189	0/63
	Monitored year	Geometric				Quantification	Detection	frequency
Parlar-50	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface water	2003	nd	nd	nd	nd	70 [30]	0/36	0/36
	2004	nd	nd	nd	nd	20 [7]	0/38	0/38
(pg/L)	2005	nd	nd	nd	nd	20 [5]	0/47	0/47
C - 1:	2003	nd	nd	nd	nd	200 [50]	0/186	0/62
Sediment	2004	nd	nd	nd	nd	60 [20]	0/189	0/63
(pg/g-dry)	2005	nd	nd	nd	nd	90 [40]	0/189	0/63
	Monitored year	Geometric				Quantification	Detection	frequency
Parlar-62	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface water	2003	nd	nd	nd	nd	300 [90]	0/36	0/36
	2004	nd	nd	nd	nd	90 [30]	0/38	0/38
(pg/L)	2005	nd	nd	nd	nd	70[30]	0/47	0/47
Sediment	2003	nd	nd	nd	nd	4,000 [2,000]	0/186	0/62
	2004	nd	nd	nd	nd	2,000 [400]	0/189	0/63
(pg/g-dry)	2005	nd	nd	nd	nd	2,000 [700]	0/189	0/63

Stocktaking of the detection of parlar-26, parlar-50 and parlar-62 in surface water and sediment during FY 2003 ~ 2005

Parlar-26: The presence of the substance in bivalves was monitored in 7 areas, and it was detected in 4 of the 7 valid areas adopting the detection limit of 16 pg/g-wet, and all the detected concentrations did not exceed tr(28) pg/g-wet. For fish, the substance was monitored in 16 areas and detected in 13 of the 16 valid areas adopting the detection limit of 16 pg/g-wet, and all the detected concentrations did not exceed 900 pg/g-wet. For birds, the substance was monitored in 2 areas and detected in 1 of the 2 valid areas adopting the detection limit of 16 pg/g-wet. The substance was detected in all samples in 1 area of Kabu Is. (black-tailed Gull), while it was not detected in all samples in 1 area of a suburb of Morioka (gray starling).

Parlar-50: The presence of the substance in bivalves was monitored in 7 areas, and it was detected in 4 of the 7 valid areas adopting the detection limit of 18 pg/g-wet, and all the detected concentrations did not exceed tr(38) pg/g-wet. For fish, the substance was monitored in 16 areas and detected in 13 of the 16 valid areas adopting the detection limit of 18 pg/g-wet, and all the detected concentrations did not exceed 1,400 pg/g-wet. For birds, the substance was monitored in 2 areas and detected in 1 of the 2 valid areas adopting the detection limit of 18 pg/g-wet. The substance was detected in all samples in 1 area of Kabu Is. (black-tailed Gull), while it was not detected in all samples in 1 area of a suburb of Morioka (gray starling).

Parlar-62: The presence of the substance in bivalves was monitored in 7 areas, and it was not detected in all 7 valid areas adopting the detection limit of 34 pg/g-wet. For fish, the substance was monitored in 16 areas and detected in 8 of the 16 valid areas adopting the detection limit of 34 pg/g-wet, and all the detected concentrations did not exceed 830 pg/g-wet. For birds, the substance was monitored in 2 areas and detected in 1 of the 2 valid areas adopting the detection limit of 34 pg/g-wet, and all the detected concentrations did not exceed 830 pg/g-wet, and all the detected concentrations did not exceed 460 pg/g-wet. The substance was detected in all samples in 1 area of Kabu Is. (black-tailed Gull), while it was not detected in all samples in 1 area of a suburb of Morioka (gray starling).

	Monitored year	Geometric				Quantification	Detection	frequency
Parlar-26	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Area
Bivalves	2003	nd	nd	tr(39)	nd	45 [15]	11/30	3/6
(pg/g-wet)	2004	nd	nd	tr(32)	nd	42 [14]	15/31	3/7
(pg/g-wet)	2005	nd	nd	tr(28)	nd	47 [16]	7/31	4/7
Fish	2003	tr(29)	tr(24)	810	nd	45 [15]	44/70	11/14
(pg/g-wet)	2004	tr(40)	tr(41)	1,000	nd	42 [14]	54/70	13/14
(pg/g-wei)	2005	tr(39)	53	900	nd	47 [16]	50/75	13/16
Birds	2003	110	650	2,500	nd	45 [15]	5/10	1/2
(pg/g-wet)	2004	71	340	810	nd	42 [14]	5/10	1/2
(pg/g-wet)	2005	85	380	1,200	nd	47 [16]	5/10	1/2
	Monitored year	Geometric				Quantification	Detection	frequency
Parlar-50	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Area
Bivalves	2003	tr(13)	tr(12)	58	nd	33 [11]	17/30	4/6
(pg/g-wet)	2004	tr(16)	nd	tr(45)	nd	46 [15]	15/31	3/7
(pg/g-wet)	2005	nd	nd	tr(38)	nd	54 [18]	9/31	4/7
Fish	2003	34	34	1,100	nd	33 [11]	55/70	14/14
	2004	54	61	1,300	nd	46 [15]	59/70	14/14
(pg/g-wet)	2005	tr(50)	66	1,400	nd	54 [18]	55/80	13/16
Birds	2003	110	850	3,000	nd	33 [11]	5/10	1/2
	2004	83	440	1,000	nd	46 [15]	5/10	1/2
(pg/g-wet)	2005	100	480	1,500	nd	54 [18]	5/10	1/2
	Monitored year	Geometric				Quantification	Detection	frequency
Parlar-62	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Area
Bivalves	2003	nd	nd	nd	nd	120 [40]	0/30	0/6
	2004	nd	nd	nd	nd	98 [33]	0/31	0/7
(pg/g-wet)	2005	nd	nd	nd	nd	100 [34]	0/31	0/7
Eich	2003	nd	nd	580	nd	120 [40]	9/70	3/14
Fish	2004	nd	nd	870	nd	98 [33]	24/70	7/14
(pg/g-wet)	2005	nd	nd	830	nd	100 [34]	23/80	8/16
D:1-	2003	tr(96)	200	530	nd	120 [40]	5/10	1/2
Birds	2004	tr(64)	110	280	nd	98 [33]	5/10	1/2
(pg/g-wet)	2005	tr(77)	130	460	nd	100 [34]	5/10	1/2

Stocktaking of detection of parlar-26, parlar-50 and parlar-62 in wildlife (bivalves, fish, birds) in FY 2003 ~ 2005

Parlar-26: The presence of the substance in air in the warm season was monitored at 37 sites, and it was not detected in all 37 valid areas adopting the detection limit of 0.1 pg/m^3 . The detected concentrations in FY 2005 (nd) were significantly lower than those in FY 2003 and 2004. For air in the cold season, the substance was monitored at 37 sites, and it was not detected in all 37 valid areas adopting the detection limit of 0.1 pg/m^3 . All the values in the warm season were higher than corresponding values in the cold season.

Parlar-50: The presence of the substance in air in the warm season was monitored at 37 sites, and it was not detected at all 37 valid areas adopting the detection limit of 0.2 pg/m^3 . For air in the cold season, the substance was monitored at 37 sites, and it was not detected at all 37 valid areas adopting the detection limit of 0.2 pg/m^3 .

Parlar-62: The presence of the substance in air in the warm season was monitored at 37 sites, and it was not detected at all 37 valid areas adopting the detection limit of 0.4 pg/m^3 . For air in the cold season, the substance was monitored at 37 sites, and it was not detected at all 37 valid areas adopting the detection limit of 0.4 pg/m^3 .

	Monitored year	Geometric				Quantification	Detection	frequency
Parlar-26	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Sample
	2003 Warm season	0.31	0.31	0.77	tr(0.17)	0.20 [0.066]	35/35	35/35
	2003 Cold season	tr(0.17)	tr(0.17)	0.27	tr(0.091)	0.20 [0.000]	34/34	34/34
Air	2004 Warm season	0.27	0.26	0.46	tr(0.17)	0.20 [0.066]	37/37	37/37
(pg/m^3)	2004 Cold season	tr(0.15)	tr(0.15)	0.50	tr(0.094)	0.20 [0.000]	37/37	37/37
	2005 Warm season	nd	nd	nd	nd	0.3 [0.1]	0/37	0/37
	2005 Cold season	nd	nd	nd	nd	0.3 [0.1]	0/37	0/37
	Monitored year	Geometric				Quantification	Detection	frequency
Parlar-50	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Sample
	2003 Warm season	nd	nd	tr(0.37)	nd	0.81 [0.27]	2/35	2/35
	2003 Cold season	nd	nd	nd	nd	0.81 [0.27]	0/34	0/34
Air	2004 Warm season	nd	nd	nd	nd	1.2 [0.4]	0/37	0/37
(pg/m^3)	2004 Cold season	nd	nd	nd	nd	1.2 [0.4]	0/37	0/37
	2005 Warm season	nd	nd	nd	nd	0 6 [0 2]	0/37	0/37
	2005 Cold season	nd	nd	nd	nd	0.6 [0.2]	0/37	0/37
	Monitored year	Geometric				Quantification	Detection	frequency
Parlar-62	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Sample
	2003 Warm season	nd	nd	nd	nd	1 6 [0 52]	0/35	0/35
	2003 Cold season	nd	nd	nd	nd	1.6 [0.52]	0/34	0/34
Air	2004 Warm season	nd	nd	nd	nd	2 4 [0 81]	0/37	0/37
(pg/m^3)	2004 Cold season	nd	nd	nd	nd	2.4 [0.81]	0/37	0/37
	2005 Warm season	nd	nd	nd	nd	1 2 [0 4]	0/37	0/37
	2005 Cold season	nd	nd	nd	nd	1.2 [0.4]	0/37	0/37

Stocktaking of the detection of parlar-26, parlar-50 and parlar-62 in air during FY 2003 ~ 2005

[10] Mirex

Monitoring results

The presence of the substance in surface water was monitored at 47 sites, and it was detected at 14 of the 47 valid sites adopting the detection limit of 0.1 pg/L, and all the detected concentrations did not exceed 1.0 pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at 48 of the 63 valid sites adopting the detection limit of 0.3 pg/g-dry, and all the detected concentrations did not exceed 5,300 pg/g-dry.

The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 0.99 pg/g-wet, and the detection range was $tr(1.9) \sim 20$ pg/g-wet. For fish, the substance was monitored in 16 areas and detected in all 16 valid areas adopting the detection limit of 0.99 pg/g-wet, and the detection range was $tr(1.0) \sim 78$ pg/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 0.99 pg/g-wet, and the detection limit of 0.99 pg/g-wet.

The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.03 pg/m³, and the detection range was tr(0.05) ~ 0.24 pg/m³. For air in the cold season, the substance was monitored at 37 sites, and it was detected at 29 of the 37 valid areas adopting the detection limit of 0.03 pg/m³, and all the detected concentrations did not exceed tr(0.08) pg/m³. All the values in the warm season were higher than corresponding values in the cold season.

	Monitored year	Geometric				Quantification	Detection	frequenc
Mirex	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface water	2003	tr(0.13)	tr(0.12)	0.88	nd	0.3 [0.009]	25/36	25/36
	2004	nd	nd	1.1	nd	0.4 [0.2]	18/38	18/38
(pg/L)	2005	nd	nd	1.0	nd	0.4 [0.1]	14/47	14/47
Sediment	2003	tr(1.8)	tr(1.6)	1,500	nd	2 [0.4]	137/186	51/62
(pg/g-dry)	2004	2.1	tr(1.6)	220	nd	2 [0.5]	153/189	55/63
(pg/g-ury)	2005	1.5	1.2	5,300	nd	0.9 [0.3]	134/189	48/63
Bivalves	2003	4.8	4.2	19	tr(1.1)	2.4 [0.81]	30/30	6/6
(pg/g-wet)	2004	4.5	4.3	12	tr(1.1)	2.5 [0.82]	31/31	7/7
(pg/g-wei)	2005	5.7	5.2	20	tr(1.9)	3.0 [0.99]	31/31	7/7
Fish	2003	7.9	9.0	25	tr(1.7)	2.4 [0.81]	70/70	14/14
	2004	11	11	180	3.8	2.5 [0.82]	70/70	14/14
(pg/g-wet)	2005	12	13	78	tr(1.0)	3.0 [0.99]	80/80	16/16
Birds	2003	110	150	450	31	2.4 [0.81]	10/10	2/2
	2004	61	64	110	33	2.5 [0.82]	10/10	2/2
(pg/g-wet)	2005	76	66	180	41	3.0 [0.99]	10/10	2/2
	2003 Warm season	0.11	0.12	0.19	0.047	0.0084	35/35	35/35
	2003 Cold season	0.044	0.043	0.099	tr(0.091)	[0.0028]	34/34	34/34
Air	2004 Warm season	0.099	0.11	0.16	tr(0.042)	0.05	37/37	37/37
(pg/m^3)	2004 Cold season	tr(0.046)	tr(0.047)	0.23	tr(0.019)	[0.017]	37/37	37/37
	2005 Warm season	tr(0.09)	tr(0.09)	0.24	tr(0.05)	0.10	37/37	37/37
	2005 Cold season	tr(0.04)	tr(0.04)	tr(0.08)	nd	[0.03]	29/37	29/3

Stocktaking of the detection of mirex in surface water, sediment, wildlife (bivalves, fish and birds) and air during FY 2003 $\sim 2005^{-1}$

[11] HCHs

• Monitoring results

 α -HCH: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 1 pg/L, and the detection range was 16 ~ 660 pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.6 pg/g-dry, and the detection range was 3.4 ~ 7,000 pg/g-dry.

 β -HCH: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 0.9 pg/L, and the detection range was 25 ~ 2,300 pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.9 pg/g-dry, and the detection range was 3.9 ~ 13,000 pg/g-dry.

 γ -HCH: The presence of the substance in surface water was monitored at 47 sites, and it was detected at all 47 valid sites adopting the detection limit of 5 pg/L, and the detection range was tr(8) ~ 250 pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.7 pg/g-dry, and the detection range was tr(1.8) ~ 6,400 pg/g-dry.

 δ -HCH: The presence of the substance in surface water was monitored at 47 sites, and it was detected at 23 of the 47 valid sites adopting the detection limit of 0.5 pg/L, and all the detected concentrations did not exceed 62 pg/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at all 63 valid sites adopting the detection limit of 0.3 pg/g-dry, and all the detected concentrations did not exceed 6,200 pg/g-dry.

	Monitored year	Geometric				Quantification	Detection	frequency
α-НСН	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	84	76	6,500	1.9	0.9 [0.3]	114/114	38/38
Surface water	2003	120	120	970	13	3 [0.9]	36/36	36/36
(pg/L)	2004	150	145	5,700	13	6 [2]	38/38	38/38
	2005	90	81	660	16	4 [1]	47/47	47/47
	2002	130	170	8,200	2.0	1.2 [0.4]	189/189	63/63
Sediment	2003	140	170	9,500	2	2 [0.5]	186/186	62/62
(pg/g-dry)	2004	140	180	5,700	tr(1.5)	2 [0.6]	189/189	63/63
	2005	120	160	7,000	3.4	1.7 [0.6]	189/189	63/63
	Monitored year	Geometric				Quantification	Detection	frequency
β -HCH	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2002	210	180	1,600	24	0.9 [0.3]	114/114	38/38
Surface water	2003	250	240	1,700	14	3 [0.7]	36/36	36/36
(pg/L)	2004	260	250	3,400	31	4 [2]	38/38	38/38
	2005	200	170	2,300	25	2.6 [0.9]	47/47	47/47
	2002	200	230	11,000	3.9	0.9 [0.3]	189/189	63/63
Sediment	2003	220	220	39,000	5	2 [0.7]	186/186	62/62
(pg/g-dry)	2004	220	230	53,000	4	3 [0.8]	189/189	63/63
	2005	180	220	13,000	3.9	2.6 [0.9]	189/189	63/63
	Monitored year	Geometric				Quantification	Detection	frequency
ү-НСН	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
а. с	2003	92	90	370	32	7 [2]	36/36	36/36
Surface water	2004	91	76	8,200	21	20 [7]	38/38	38/38
(pg/L)	2005	48	40	250	tr(8)	14 [5]	47/47	47/47
	2003	45	47	4,000	tr(1.4)	2 [0.4]	186/186	62/62
Sediment	2004	46	48	4,100	tr(0.8)	2 [0.5]	189/189	63/63
(pg/g-dry)	2005	44	46	6,400	tr(1.8)	2.0 [0.7]	189/189	63/63
	Manitanalaaan	Compatib				Quantification	Detection	frequency
δ-НСН	Monitored year (FY)	Geometric mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface water	2003	14	14	200	tr(1.1)	2 [0.5]	36/36	36/36
	2004	24	29	670	tr(1.4)	2 [0.7]	38/38	38/38
(pg/L)	2005	1.8	nd	62	nd	1.5 [0.5]	23/47	23/47
C - 1:	2003	37	46	5,400	nd	2 [0.7]	180/186	61/62
Sediment	2004	48	55	5,500	tr(0.5)	2 [0.5]	189/189	63/63
(pg/g-dry)	2005	46	63	6,200	nd	1.0 [0.3]	188/189	63/63

Stocktaking of the detection of α -HCH, β -HCH, γ -HCH and δ -HCH in suraface water and sediment during FY 2002 ~ 2005

 α -HCH: The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 3.6 pg/g-wet, and the detection range was tr(7.1) ~ 1,100 pg/g-wet. For fish, the substance was monitored in 16 areas and detected in all 16 valid areas adopting the detection limit of 3.6 pg/g-wet, all the detected concentrations did not exceed 1,000 pg/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 3.6 pg/g-wet, and the detection range was 67 ~ 85 pg/g-wet. From the beginning of the monitoring, a trend of long-term decrease was observed in bivalves and fish, respectively.

 β -HCH: The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 0.75 pg/g-wet, and the detection range was 20 ~ 2,000 pg/g-wet. For fish, the substance was monitored in 16 areas and detected in all 16 valid areas adopting the detection limit of 0.75 pg/g-wet, and the detection range was 6.7 ~ 1,300 pg/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 0.75 pg/g-wet, and the detection range was 930 ~ 6,000 pg/g-wet. From the beginning of the monitoring, a trend of long-term decrease was observed in bivalves and fish, respectively.

 γ -HCH: The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 2.8 pg/g-wet, and the detection range was tr(5.7) ~ 370 pg/g-wet. For fish, the substance was monitored in 16 areas and detected in all 16 valid areas adopting the detection limit of 2.8 pg/g-wet, and all the detected concentrations did not exceed 230 pg/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas

adopting the detection limit of 2.8 pg/g-wet, and the detection range was $9.6 \sim 32$ pg/g-wet. From the beginning of the monitoring, a trend of long-term decrease was observed in fish.

 δ -HCH: The presence of the substance in bivalves was monitored in 7 areas, and it was detected in 6 of the 7 valid areas adopting the detection limit of 1.7 pg/g-wet, and all the detected concentrations did not exceed 1,600 pg/g-wet. For fish, the substance was monitored in 16 areas and detected in 12 of the 16 valid areas adopting the detection limit of 1.7 pg/g-wet, and all the detected concentrations did not exceed 32pg/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 1.7 pg/g-wet, and the detection range was 10 ~ 30 pg/g-wet.

Stocktaking of the detection of α -HCH, β -HCH, γ -HCH and δ -HCH in wildlife (bivalves, fish and birds) during FY 2002 ~ 2005⁻⁾

α-НСН	Monitored year	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection	frequenc
и-псп	(FY)	mean				limit	Sample	Area
	2002	65	64	1,100	12	4.2 [1.4]	38/38	8/8
Bivalves	2003	45	30	610	9.9	1.8 [0.61]	30/30	6/6
(pg/g-wet)	2004	35	25	1,800	tr(12)	13 [4.3]	31/31	7/7
	2005	24	25	1,100	tr(7.1)	11 [3.6]	31/31	7/7
	2002	51	56	6,500	tr(1.9)	4.2 [1.4]	70/70	14/14
Fish	2003	41	58	590	2.6	1.8 [0.61]	70/70	14/14
(pg/g-wet)	2004	57	55	2,900	nd	13 [4.3]	63/70	14/14
	2005	41	43	1,000	nd	11 [3.6]	75/75	16/1
	2002	160	130	360	93	4.2 [1.4]	10/10	2/2
Birds	2003	70	74	230	30	1.8 [0.61]	10/10	2/2
(pg/g-wet)	2004	120	80	1,600	58	13 [4.3]	10/10	2/2
	2005	76	77	85	67	11 [3.6]	10/10	2/2
	Monitored year	Geometric				Quantification	Detection	frequend
β -HCH	(FY)	mean	Median	Maximum	Minimum	[Detection]	Sample	Area
						limit		
	2002	89	62	1,700	32	12 [4]	38/38	8/8
Bivalves	2003	77	50	1,100	23	9.9 [3.3]	30/30	6/6
(pg/g-wet)	2004	69	74	1,800	22	6.1 [2.0]	31/31	7/7
	2005	56	56	2,000	20	2.2 [0.75]	31/31	7/7
	2002	99	120	1,800	tr(5)	12 [4]	70/70	14/1
Fish	2003	78	96	1,100	tr(3.5)	9.9 [3.3]	70/70	14/1
(pg/g-wet)	2004	100	140	1,100	tr(3.9)	6.1 [2.0]	70/70	14/1
	2005	88	110	1,300	6.7	2.2 [0.75]	80/80	16/1
	2002	3,000	3,000	7,300	1,600	12 [4]	10/10	2/2
Birds	2003	3,400	3,900	5,900	1,800	9.9 [3.3]	10/10	2/2
(pg/g-wet)	2004	2,200	2,100	4,800	1,100	6.1 [2.0]	10/10	2/2
	2005	2,500	2,800	6,000	930	2.2 [0.75]	10/10	2/2
	Monitored year	Geometric				Quantification	Detection	frequen
ү-НСН	(FY)	mean	Median	Maximum	Minimum	[Detection]		-
	(1.1)	mean				limit	Sample	Area
			10	130	5.2	3.3 [1.1]	30/30	6/6
Disculation	2003	19	18					
Bivalves	2003 2004			230	nd	31 [10]	28/31	7/7
Bivalves (pg/g-wet)		19 tr(19) 15	18 tr(16) 13			31 [10] 8.4 [2.8]	28/31 31/31	7/7 7/7
(pg/g-wet)	2004 2005	tr(19)	tr(16)	230	nd tr(5.7)	8.4 [2.8]		7/7
(pg/g-wet) Fish	2004 2005 2003	tr(19) 15 16	tr(16) 13 22	230 370	nd		31/31	7/7 14/1
(pg/g-wet)	2004 2005 2003 2004	tr(19) 15 16 tr(27)	tr(16) 13	230 370 130 660	nd tr(5.7) tr(1.7) nd	8.4 [2.8] 3.3 [1.1] 31 [10]	<u>31/31</u> 70/70 55/70	7/7 14/1 11/1
(pg/g-wet) Fish (pg/g-wet)	2004 2005 2003	tr(19) 15 16	tr(16) 13 22 tr(24)	230 370 130	nd tr(5.7) tr(1.7)	8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8]	<u>31/31</u> 70/70	7/7 14/1 11/1 16/1
(pg/g-wet) Fish (pg/g-wet) Birds	2004 2005 2003 2004 2005 2003	tr(19) 15 16 tr(27) 17 14	tr(16) 13 22 tr(24) 17 19	230 370 130 660 230 40	nd tr(5.7) tr(1.7) nd nd 3.7	8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] 3.3 [1.1]	31/31 70/70 55/70 78/80 10/10	7/7 14/1 11/1 16/1 2/2
(pg/g-wet) Fish (pg/g-wet)	2004 2005 2003 2004 2005 2003 2004	tr(19) 15 16 tr(27) 17 14 34	tr(16) 13 22 tr(24) 17 19 tr(21)	230 370 130 660 230 40 1,200	nd tr(5.7) tr(1.7) nd 3.7 tr(11)	8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] 3.3 [1.1] 31 [10]	31/31 70/70 55/70 78/80 10/10 10/10	7/7 14/1 11/1 16/1 2/2 2/2
(pg/g-wet) Fish (pg/g-wet) Birds	2004 2005 2003 2004 2005 2003 2004 2005	tr(19) 15 16 tr(27) 17 14 34 18	tr(16) 13 22 tr(24) 17 19	230 370 130 660 230 40	nd tr(5.7) tr(1.7) nd nd 3.7	8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8]	31/31 70/70 55/70 78/80 10/10 10/10 10/10	14/14 11/14 16/14 2/2 2/2 2/2 2/2
(pg/g-wet) Fish (pg/g-wet) Birds (pg/g-wet)	2004 2005 2003 2004 2005 2003 2004 2005 Monitored year	tr(19) 15 16 tr(27) 17 14 34 18 Geometric	tr(16) 13 22 tr(24) 17 19 tr(21)	230 370 130 660 230 40 1,200	nd tr(5.7) tr(1.7) nd 3.7 tr(11)	8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] Quantification	31/31 70/70 55/70 78/80 10/10 10/10 10/10 Detection	7/7 14/1 11/1 16/1 2/2 2/2 2/2 frequent
(pg/g-wet) Fish (pg/g-wet) Birds	2004 2005 2003 2004 2005 2003 2004 2005	tr(19) 15 16 tr(27) 17 14 34 18	tr(16) 13 22 tr(24) 17 19 tr(21) 20	230 370 130 660 230 40 1,200 32	nd tr(5.7) tr(1.7) nd nd 3.7 tr(11) 9.6	8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8]	31/31 70/70 55/70 78/80 10/10 10/10 10/10	7/7 14/1- 11/1- 16/1 2/2 2/2 2/2 2/2 frequence
(pg/g-wet) Fish (pg/g-wet) Birds (pg/g-wet) δ-HCH	2004 2005 2003 2004 2005 2003 2004 2005 Monitored year	tr(19) 15 16 tr(27) 17 14 34 18 Geometric	tr(16) 13 22 tr(24) 17 19 tr(21) 20 Median	230 370 130 660 230 40 1,200 32	nd tr(5.7) tr(1.7) nd nd 3.7 tr(11) 9.6	8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] Quantification [Detection] limit	31/31 70/70 55/70 78/80 10/10 10/10 10/10 Detection	7/7 14/1- 11/1- 16/1 2/2 2/2 2/2 2/2 frequence
(pg/g-wet) Fish (pg/g-wet) Birds (pg/g-wet) δ-HCH Bivalves	2004 2005 2003 2004 2005 2003 2004 2005 Monitored year (FY) 2003	tr(19) 15 16 tr(27) 17 14 34 18 Geometric mean 7.2	tr(16) 13 22 tr(24) 17 19 tr(21) 20 Median tr(2.6)	230 370 130 660 230 40 1,200 32 Maximum 1,300	nd tr(5.7) tr(1.7) nd nd 3.7 tr(11) 9.6 Minimum nd	8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] Quantification [Detection] limit 3.9 [1.3]	31/31 70/70 55/70 78/80 10/10 10/10 10/10 Detection f Sample 29/30	7/7 14/1 11/1 16/1 2/2 2/2 2/2 frequence Area 6/6
(pg/g-wet) Fish (pg/g-wet) Birds (pg/g-wet) δ-HCH	2004 2005 2003 2004 2005 2003 2004 2005 Monitored year (FY) 2003 2004	tr(19) 15 16 tr(27) 17 14 34 18 Geometric mean 7.2 tr(3.0)	tr(16) 13 22 tr(24) 17 19 tr(21) 20 Median tr(2.6) tr(2.1)	230 370 130 660 230 40 1,200 32 Maximum 1,300 1,500	nd tr(5.7) tr(1.7) nd nd 3.7 tr(11) 9.6 Minimum nd nd	8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] Quantification [Detection] limit 3.9 [1.3] 4.6 [1.5]	31/31 70/70 55/70 78/80 10/10 10/10 10/10 Detection f Sample 29/30 25/31	7/7 14/1 11/1 2/2 2/2 2/2 frequence Area 6/6 6/7
(pg/g-wet) Fish (pg/g-wet) Birds (pg/g-wet) δ-HCH Bivalves (pg/g-wet)	2004 2005 2003 2004 2005 2003 2004 2005 Monitored year (FY) 2003 2004 2005	tr(19) 15 16 tr(27) 17 14 34 18 Geometric mean 7.2 tr(3.0) tr(2.5)	tr(16) 13 22 tr(24) 17 19 tr(21) 20 Median tr(2.6) tr(2.1) tr(2.1)	230 370 130 660 230 40 1,200 32 Maximum 1,300 1,500 1,600	nd tr(5.7) tr(1.7) nd nd 3.7 tr(11) 9.6 Minimum nd nd nd	8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] Quantification [Detection] limit 3.9 [1.3] 4.6 [1.5] 5.1 [1.7]	31/31 70/70 55/70 78/80 10/10 10/10 10/10 Detection 1 Sample 29/30 25/31 23/31	7/7 14/1 11/1 2/2 2/2 2/2 frequen Area 6/6 6/7 6/7
(pg/g-wet) Fish (pg/g-wet) Birds (pg/g-wet) δ-HCH Bivalves (pg/g-wet) Fish	2004 2005 2003 2004 2005 2003 2004 2005 Monitored year (FY) 2003 2004 2005 2004 2005 2003	tr(19) 15 16 tr(27) 17 14 34 18 Geometric mean 7.2 tr(3.0) tr(2.5) tr(3.5)	$\begin{array}{r} tr(16) \\ 13 \\ 22 \\ tr(24) \\ 17 \\ 19 \\ tr(21) \\ 20 \\ \hline \\ Median \\ \hline \\ tr(2.6) \\ tr(2.1) \\ tr(2.1) \\ tr(2.1) \\ 4.0 \\ \end{array}$	230 370 130 660 230 40 1,200 32 Maximum 1,300 1,500 1,600 16	nd tr(5.7) tr(1.7) nd nd 3.7 tr(11) 9.6 Minimum nd nd nd nd	8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] Quantification [Detection] limit 3.9 [1.3] 4.6 [1.5] 5.1 [1.7] 3.9 [1.3]	31/31 70/70 55/70 78/80 10/10 10/10 10/10 Detection f Sample 29/30 25/31 23/31 59/70	7/7 14/14 11/14 16/10 2/2 2/2 2/2 2/2 frequence Area 6/6 6/7 6/7 13/14
(pg/g-wet) Fish (pg/g-wet) Birds (pg/g-wet) δ-HCH Bivalves (pg/g-wet)	2004 2005 2003 2004 2005 2003 2004 2005 Monitored year (FY) 2003 2004 2005 2003 2004 2005	tr(19) 15 16 tr(27) 17 14 34 18 Geometric mean 7.2 tr(3.0) tr(2.5) tr(3.5) tr(4.1)	tr(16) 13 22 tr(24) 17 19 tr(21) 20 Median tr(2.6) tr(2.1) tr(2.1) tr(2.1) 4.0 tr(3.5)	230 370 130 660 230 40 1,200 32 Maximum 1,300 1,500 1,600 16 270	nd tr(5.7) rt(1.7) nd nd 3.7 tr(11) 9.6 Minimum nd nd nd nd nd nd	8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] Quantification [Detection] limit 3.9 [1.3] 4.6 [1.5] 5.1 [1.7] 3.9 [1.3] 4.6 [1.5]	31/31 70/70 55/70 78/80 10/10 10/10 10/10 Detection f Sample 29/30 25/31 23/31 59/70 54/70	7/7 14/14 11/14 16/19 2/2 2/2 2/2 2/2 frequend Area 6/6 6/7 6/7 13/14 11/14
(pg/g-wet) Fish (pg/g-wet) Birds (pg/g-wet) δ-HCH Bivalves (pg/g-wet) Fish (pg/g-wet)	2004 2005 2003 2004 2005 2003 2004 2005 Monitored year (FY) 2003 2004 2005 2003 2004 2005	tr(19) 15 16 tr(27) 17 14 34 18 Geometric mean 7.2 tr(3.0) tr(2.5) tr(3.5) tr(4.1) tr(3.2)	tr(16) 13 22 tr(24) 17 19 tr(21) 20 Median tr(2.6) tr(2.1) tr(2.1) tr(2.1) 4.0 tr(3.5) tr(3.1)	230 370 130 660 230 40 1,200 32 Maximum 1,300 1,500 1,600 16 270 32	nd tr(5.7) nd nd 3.7 tr(11) 9.6 Minimum nd nd nd nd nd nd nd nd	8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] Quantification [Detection] limit 3.9 [1.3] 4.6 [1.5] 5.1 [1.7] 3.9 [1.3] 4.6 [1.5] 5.1 [1.7]	31/31 70/70 55/70 78/80 10/10 10/10 10/10 Detection Sample 29/30 25/31 23/31 59/70 54/70 55/80	7/7 14/14 11/14 16/10 2/2 2/2 2/2 2/2 frequence Area 6/6 6/7 6/7 13/14 11/14
(pg/g-wet) Fish (pg/g-wet) Birds (pg/g-wet) δ-HCH Bivalves (pg/g-wet) Fish	2004 2005 2003 2004 2005 2003 2004 2005 Monitored year (FY) 2003 2004 2005 2003 2004 2005	tr(19) 15 16 tr(27) 17 14 34 18 Geometric mean 7.2 tr(3.0) tr(2.5) tr(3.5) tr(4.1)	tr(16) 13 22 tr(24) 17 19 tr(21) 20 Median tr(2.6) tr(2.1) tr(2.1) tr(2.1) 4.0 tr(3.5)	230 370 130 660 230 40 1,200 32 Maximum 1,300 1,500 1,600 16 270	nd tr(5.7) rt(1.7) nd nd 3.7 tr(11) 9.6 Minimum nd nd nd nd nd nd	8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] 3.3 [1.1] 31 [10] 8.4 [2.8] Quantification [Detection] limit 3.9 [1.3] 4.6 [1.5] 5.1 [1.7] 3.9 [1.3] 4.6 [1.5]	31/31 70/70 55/70 78/80 10/10 10/10 10/10 Detection f Sample 29/30 25/31 23/31 59/70 54/70	7/7 14/14 11/14 16/10 2/2 2/2 2/2 2/2 frequence Area 6/6 6/7

 α -HCH: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.024 pg/m³, and the detection range was 22 ~ 2,000 pg/m³. For air in the cold season, the substance was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.024 pg/m³, and the detection range was 9.6 ~ 630 pg/m³. The detected concentrations in FY 2005 were significantly lower than those in FY 2004. All the values in the warm season were higher than corresponding values in the cold season.

 β -HCH: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.044 pg/m³, and the detection range was 0.67 ~ 52 pg/m³. The detected concentrations in FY 2005 were significantly lower than those in FY 2003. For air in the cold season, the substance was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.044 pg/m³, and the detection range was 0.24 ~ 16 pg/m³. The detected concentrations in FY 2005 were significantly lower than those in FY 2005 were significantly lower than those in FY 2005 and 2004. All the values in the warm season were higher than corresponding values in the cold season.

 γ -HCH: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.044 pg/m³, and the detection range was 5.9 ~ 650 pg/m³. The detected concentrations in FY 2005 were significantly lower than those in FY 2003 and 2004. For air in the cold season, the substance was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.044 pg/m³, and the detection range was 2.1 ~ 110 pg/m³. The detected concentrations in FY 2005 were significantly lower than those in FY 2004. All the values in the warm season were higher than corresponding values in the cold season.

 δ -HCH: The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at all 37 valid areas adopting the detection limit of 0.04 pg/m³, and the detection range was 0.29 ~ 35 pg/m³. The detected concentrations in FY 2004 and 2005 were lower than those in FY 2003. For air in the cold season, the substance was monitored at 37 sites, and it was detected at 36 of all 37 valid areas adopting the detection limit of 0.04 pg/m³, and all the detected concentrations did not exceed 11 pg/m³. The detected concentrations in FY 2005 were significantly lower than those in FY 2003 and 2004. All the values in the warm season were higher than corresponding values in the cold season.

	Monitored year	Geometric				Quantification	Detection	frequency
α-НСН	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	210	120	5,000	38	0.71 [0.24]	35/35	35/35
	2003 Cold season	49	35	1,400	13	0.71 [0.24]	34/34	34/34
Air	2004 Warm season	160	130	3,200	24	0.33 [0.11]	37/37	37/37
(pg/m^3)	2004 Cold season	68	52	680	11	0.55 [0.11]	37/37	37/37
	2005 Warm season	110	78	2,000	22	0.074 [0.024]	37/37	37/37
	2005 Cold season	35	22	630	9.6	0.074 [0.024]	37/37	37/37
	Monitored year	Geometric				Quantification	Detection	frequenc
β-НСН	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	9.6	11	97	1.1	0.19 [0.063]	35/35	35/35
	2003 Cold season	2.1	1.6	57	0.52	0.19 [0.063]	34/34	34/34
Air	2004 Warm season	6.6	7.7	110	0.53	0.12 [0.041]	37/37	37/37
(pg/m^3)	2004 Cold season	2.6	2.6	78	0.32	0.12 [0.041]	37/37	37/37
	2005 Warm season	4.9	5.7	52	0.67	017100441	37/37	37/37
	2005 Cold season	1.1	1.1	16	0.24	0.12 [0.044]	37/37	37/37
	Monitored year	Geometric				Quantification	Detection frequ	frequenc
ү-НСН	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	63	44	2,200	8.8	0.57 [0.10]	35/35	35/35
	2003 Cold season	14	12	330	3.1	0.57 [0.19]	34/34	34/34
Air	2004 Warm season	46	43	860	4.5	0.22 [0.07(]	37/37	37/37
(pg/m^3)	2004 Cold season	19	16	230	2.6	0.23 [0.076]	37/37	37/37
	2005 Warm season	34	24	650	5.9	0 12 [0 044]	37/37	37/37
	2005 Cold season	9.3	6.6	110	2.1	0.13 [0.044]	37/37	37/37
	Monitored year	Geometric				Quantification	Detection	frequenc
δ-НСН	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
	2003 Warm season	5.1	4.2	120	0.48	0.03 [0.01]	35/35	35/35
	2003 Cold season	0.97	0.76	47	0.11	0.03 [0.01]	34/34	34/34
Air	2004 Warm season	2.2	2.5	93	0.15	0.15 [0.05]	37/37	37/37
(pg/m^3)	2004 Cold season	0.76	0.77	18	tr(0.07)	0.15 [0.05]	37/37	37/37
	2005 Warm season	1.7	1.7	35	0.29		37/37	37/37
	2005 Wallin Season	1./	1./	55	0.2/		51151	01101

Stocktaking of the detection of α -HCH, β -HCH, γ -HCH and δ -HCH in air during FY 2003 ~ 2005

(2) The Environmental Monitoring (excluding POPs and HCHs)

Except for cases of undetected dibenzothiophene, MPTs and DPTs in surface water, MPTs and DPTs in wildlife (bivalves MPTs and DPTs in wildlife (fish), and dibenzothiophene, TBTs, MPTs and DPTs in wildlife (birds), all chemicals were detected.

The monitoring results for each chemical (group) are described below.

[12] 2,6-di-tert-butyl-4-methylphenol (BHT)

Monitoring results

The presence of the substance in sediment was monitored at 63 sites, and it was detected at 23 of the 63 valid sites adopting the detection limit of 0.60 ng/g-dry, and all the detected concentrations did not exceed 27 ng/g-dry.

The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 0.78 ng/g-wet, and all the detected concentrations did not exceed 11 ng/g-wet. For fish, the substance was monitored in 16 areas and detected in 15 of the 16 valid areas adopting the detection limit of 0.78 ng/g-wet, and all the detected concentrations did not exceed 16 ng/g-wet. For birds, the substance was monitored in 2 areas and detected in all 2 valid areas adopting the detection limit of 0.78 ng/g-wet, all the detected concentrations did not exceed tr(1.9) ng/g-wet.

The presence of the substance in air in the warm season was monitored at 37 sites, and it was detected at 33 of the 37 valid areas adopting the detection limit of 2.9 ng/m^3 , and all the detected concentrations did not exceed $3,800 \text{ ng/m}^3$. For air in the

cold season, the substance was monitored at 37 sites, and it was detected at 29 of the 37 valid areas adopting the detection limit of 2.9 ng/m^3 , and all the detected concentrations did not exceed 210 ng/m^3 .

Stocktaking of detection of 2,6-di-*tert*-butyl-4-methylphenol (BHT) in sediment, wildlife (bivalves, fish, birds) and air in FY 2005

BHT	Monitored year (FY)	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection Sample	frequency Site or Area
Sediment (ng/g-dry)	2005	nd	nd	27	nd	1.3 [0.60]	46/189	23/63
Bivalves (ng/g-wet)	2005	tr(2.1)	tr(2.0)	11	nd	2.3 [0.78]	29/31	7/7
Fish (ng/g-wet)	2005	2.8	3.2	16	nd	2.3 [0.78]	70/80	15/16
Birds (ng/g-wet)	2005	tr(0.92)	tr(1.0)	tr(1.9)	nd	2.3 [0.78]	7/10	2/2
Air (ng/m ³)	2005 Warm season 2005 Cold season	13 6.3	14 6.2	3,800 210	nd nd	8.7 [2.9]	84/111 76/112	33/37 29/37

[13] Dibenzothiophene

Monitoring results

The presence of the substance in surface water was monitored at 47 sites, and it was not detected at all 47 valid sites adopting the detection limit of 2.0ng/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at 61 of the 63 valid sites adopting the detection limit of 0.20 ng/g-dry, and all the detected concentrations did not exceed 230 ng/g-dry.

The presence of the substance in bivalves was monitored in 7 areas, and it was detected in 4 of the 7 valid areas adopting the detection limit of 0.1 ng/g-wet, and all the detected concentrations did not exceed 3.2 ng/g-wet. For fish, the substance was monitored in 16 areas and detected in 7 of the 16 valid areas adopting the detection limit of 0.1 ng/g-wet, and all the detected concentrations did not exceed 0.8 ng/g-wet. For birds, the substance was monitored in 2 areas and not detected in all 2 valid areas adopting the detection limit of 0.1 ng/g-wet.

Dibenzothiophene	Monitored year	Geometric	Median	Maximum	Minimum	Quantification [Detection]	Detection	frequency Site or
Dioenzounophene	(FY)	mean	Wiedun	maximum	Willingth	limit	Sample	Area
Surface water (ng/L)	2005	nd	nd	nd	nd	4.0 [2.0]	0/47	0/47
Sediment (ng/g-dry)	2005	3.1	4.1	230	nd	0.50 [0.20]	173/189	61/63
Bivalves (ng/g-wet)	2005	nd	nd	3.2	nd	0.3 [0.1]	9/31	4/7
Fish (ng/g-wet)	2005	nd	nd	0.8	nd	0.3 [0.1]	27/80	7/16
Birds (ng/g-wet)	2005	nd	nd	nd	nd	0.3 [0.1]	0/10	0/2

Stocktaking of detection of dibenzothiophene in surface water, sediment, and wildlife (bivalves, fish, birds) in FY 2005

[14] Organotin compounds

Monitoring results

Monbutyltin compounds (MBTs) : The presence of the substance in surface water was monitored at 47 sites, and it was detected at 11 of the 45 valid sites adopting the detection limit of 0.30 ng/L, and all the detected concentrations did not exceed 1.9 ng/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at 54 of the 63 valid sites adopting the detection limit of 0.30 ng/g-dry, and all the detected concentrations did not exceed 150 ng/g-dry.

The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 1.5 ng/g-wet, and all the detected concentrations did not exceed 65 ng/g-wet. For fish, the substance was monitored in 16 areas and detected in 11 of the 16 valid areas adopting the detection limit of 1.5 ng/g-wet, and all the detected concentrations did not exceed 8.5 ng/g-wet. For birds, the substance was monitored in 2 areas and detected in 1 of the 2 valid areas adopting the detection limit of 1.5 ng/g-wet.

Stocktaking of detection of monobutyltin compounds (MBTs) in surface water, sediment, and wildlife (bivalves, fish, birds) in FY 2005

MBTs	Monitored year (FY)	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection Sample	frequency Site or Area
Surface water (ng/L)	2005	nd	nd	1.9	nd	0.80 [0.30]	11/45	11/45
Sediment (ng/g-dry)	2005	3.9	5.2	150	nd	0.70 [0.30]	155/189	54/63
Bivalves (ng/g-wet)	2005	7.2	6.8	65	nd	4.5 [1.5]	29/31	7/7
Fish (ng/g-wet)	2005	nd	nd	8.5	nd	4.5 [1.5]	22/80	11/16
Birds (ng/g-wet)	2005	nd	nd	tr(3.7)	nd	4.5 [1.5]	1/10	1/2

Dibutyltin compounds (DBTs) : The presence of the substance in surface water was monitored at 47 sites, and it was detected at 19 of the 44 valid sites adopting the detection limit of 1.0 ng/L, and all the detected concentrations did not exceed 170 ng/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at 56 of the 63 valid sites adopting the detection limit of 0.30 ng/g-dry, and all the detected concentrations did not exceed 750 ng/g-dry.

The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 1.0 ng/g-wet, and the detection range was $tr(2.3) \sim 24$ ng/g-wet. For fish, the substance was monitored in 16 areas and detected in 13 of the 16 valid areas adopting the detection limit of 1.0 ng/g-wet, and all the detected concentrations did not exceed 14 ng/g-wet. For birds, the substance was monitored in 2 areas and detected in 1 of the 2 valid areas adopting the detection limit of 1.0 ng/g-wet.

Stocktaking of detection of dibutyltin compounds (DBTs) in surface water, sediment, and wildlife (bivalves, fish, birds) during FY 2003 ~ 2005 $^{,)}$

DBTs	Monitored year (FY)	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection Sample	frequency Site or Area
Surface water (ng/L)	2005	tr(1.5)	nd	170	nd	3.0 [1.0]	19/44	19/44
Sediment	2003	5.5	6.3	640	nd	1.2 [0.4]	152/186	57/62
(ng/g-dry)	2005	5.8	7.3	750	nd	0.80 [0.30]	157/189	56/63
Bivalves	2003	14	14	53	tr(2)	3 [1]	30/30	6/6
(ng/g-wet)	2005	11	15	24	tr(2.3)	3.0 [1.0]	31/31	7/7
Fish	2003	tr(1)	tr(1)	7	nd	3 [1]	39/70	12/14
(ng/g-wet)	2005	tr(1.1)	tr(1.1)	14	nd	3.0 [1.0]	43/81	13/16
Birds	2003	nd	nd	tr(3)	nd	3 [1]	4/10	1/2
(ng/g-wet)	2005	nd	nd	tr(2.3)	nd	3.0 [1.0]	1/10	1/2

Tributyltin compounds (TBTs) : The presence of the substance in surface water was monitored at 47 sites, and it was detected at 2 of the 47 valid sites adopting the detection limit of 0.10 ng/L, and all the detected concentrations did not exceed 0.76 ng/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at 51 of the 63 valid sites adopting the detection limit of 0.080 ng/g-dry, and all the detected concentrations did not exceed 590 ng/g-dry. From the beginning of the monitoring, a trend of long-term decrease was observed in surface water.

The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 1.0 ng/g-wet, and the detection range was $tr(1.5) \sim 25$ ng/g-wet. For fish, the substance was monitored in 16 areas and detected in 11 of the 16 valid areas adopting the detection limit of 1.0 ng/g-wet, and all the detected concentrations did not exceed 130 ng/g-wet. For birds, the substance was monitored in 2 areas and not detected in all 2 valid areas adopting the detection limit of 1.0 ng/g-wet. For birds, the substance was monitored in 2 areas and not detected in all 2 valid areas adopting the detection limit of 1.0 ng/g-wet. For birds, the substance was monitored in 2 areas and not detected in all 2 valid areas adopting the detection limit of 1.0 ng/g-wet. From the beginning of the monitoring, a trend of long-term decrease was observed in bivalves and fish, respectively.

Stocktaking of detection of tributyltin compounds (TBTs) in surface water, sediment, and wildlife (bivalves, fish, birds) during FY 2002 ~ 2005 $^{-,-)}$

	Monitored year	Geometric				Quantification	Detection	frequency
TBTs	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site or Area
Surface water (ng/ L)	2005	nd	nd	0.76	nd	0.30 [0.10]	2/47	2/47
Sediment	2002	4.9	4.0	390	nd	3.6 [1.2]	126/189	48/63
	2003	3.0	4.4	450	nd	1.2 [0.4]	127/186	46/62
(ng/g-dry)	2005	2.1	4.5	590	nd	0.20 [0.080]	143/189	51/63
Bivalves	2002	12	12	57	tr(2)	3 [1]	38/38	8/8
(ng/g-wet)	2003	10	12	25	tr(2)	3 [1]	30/30	6/6
(lig/g-wet)	2005	6.7	7.0	25	tr(1.5)	3.0 [1.0]	31/31	7/7
Fish	2002	6	6	500	nd	3 [1]	55/70	13/14
(ng/g-wet)	2003	7	6	72	nd	3 [1]	63/70	13/14
(lig/g-wet)	2005	3.1	4.2	130	nd	3.0 [1.0]	49/80	11/16
Birds	2002	nd	nd	nd	nd	3 [1]	0/10	0/2
	2003	nd	nd	tr(1)	nd	3 [1]	1/10	1/2
(ng/g-wet)	2005	nd	nd	nd	nd	3.0 [1.0]	0/10	0/2

Monophenyltin compounds (MPTs) : The presence of the substance in surface water was monitored at 47 sites, and it was not detected at all 47 valid sites adopting the detection limit of 0.20 ng/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at 42 of the 63 valid sites adopting the detection limit of 0.10 ng/g-dry, and all the detected concentrations did not exceed 280 ng/g-dry.

The presence of the substance in bivalves was monitored in 7 areas, and it was not detected in all 7 valid areas adopting the detection limit of 1.0 ng/g-wet. For fish, the substance was monitored in 16 areas and not detected in all 16 valid areas adopting the detection limit of 1.0 ng/g-wet. For birds, the substance was monitored in 2 areas and not detected in all 2 valid areas adopting the detection limit of 1.0 ng/g-wet.

Stocktaking of detection of monophenyltin compounds (MPTs) in surface water, sediment, and wildlife (bivalves, fish, birds) during FY 2003 ~ 2005 $^{-,-)}$

MPTs	Monitored year (FY)	Geometric mean	Median	Maximum	Minimum	Quantification [Detection] limit	Detection Sample	frequency Site or Area
Surface water (ng/ L)	2005	nd	nd	nd	nd	0.50 [0.20]	0/47	0/47
Sediment	2003	tr(1.9)	nd	1,000	nd	2.4 [0.8]	86/186	35/62
(ng/g-dry)	2005	0.47	0.33	280	nd	0.30 [0.10]	110/189	42/63
Bivalves	2003	nd	nd	nd	nd	15 [5]	0/30	0/6
(ng/g-wet)	2005	nd	nd	nd	nd	3.0 [1.0]	0/31	0/7
Fish	2003	nd	nd	nd	nd	15 [5]	0/70	0/14
(ng/g-wet)	2005	nd	nd	nd	nd	3.0 [1.0]	0/80	0/16
Birds	2003	nd	nd	nd	nd	15 [5]	0/10	0/2
(ng/g-wet)	2005	nd	nd	nd	nd	3.0 [1.0]	0/10	0/2

Diphenyltin compounds (DPTs) : The presence of the substance in surface water was monitored at 47 sites, and it was not detected at all 47 valid sites adopting the detection limit of 0.080 ng/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at 39 of the 63 valid sites adopting the detection limit of 0.020 ng/g-dry, and all the detected concentrations did not exceed 74 ng/g-dry.

The presence of the substance in bivalves was monitored in 7 areas, and it was not detected in all 7 valid areas adopting the detection limit of 0.50 ng/g-wet. For fish, the substance was monitored in 16 areas and not detected in all 16 valid areas adopting the detection limit of 0.50 ng/g-wet. For birds, the substance was monitored in 2 areas and not detected in all 2 valid areas adopting the detection limit of 0.50 ng/g-wet.

Stocktaking of detection diphenyltin compounds (DPTs) in surface water, sediment, and wildlife (bivalves, fish, birds) during FY 2003 \sim 2005 $^{,)}$

	Monitored year	Geometric		Maximum		Quantification	Detection	frequency
DPTs	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface water (ng/ L)	2005	nd	nd	nd	nd	0.22 [0.080]	0/47	0/47
Sediment	2003	tr(0.14)	tr(0.10)	120	nd	0.16[0.06]	100/186	38/62
(ng/g-dry)	2005	0.079	0.035	74	nd	0.050 [0.020]	97/189	39/63
Bivalves	2003	nd	nd	1.6	nd	1.5 [0.5]	3/30	2/6
(ng/g-wet)	2005	nd	nd	nd	nd	1.5 [0.50]	0/31	0/7
Fish	2003	nd	nd	tr(1.3)	nd	1.5 [0.5]	3/70	2/14
(ng/g-wet)	2005	nd	nd	nd	nd	1.5 [0.50]	0/80	0/16
Birds	2003	nd	nd	nd	nd	1.5 [0.5]	0/10	0/2
(ng/g-wet)	2005	nd	nd	nd	nd	1.5 [0.50]	0/10	0/2

Triphenyltin compounds (TPTs) : The presence of the substance in surface water was monitored at 47 sites, and it was detected at 2 of the 47 valid sites adopting the detection limit of 0.05 ng/L, and all the detected concentrations did not exceed 0.19 ng/L. The presence of the substance in sediment was monitored at 63 sites, and it was detected at 39 of the 63 valid sites adopting the detection limit of 0.03 ng/g-dry, and all the detected concentrations did not exceed 420 ng/g-dry. From the beginning of the monitoring, a trend of long-term decrease was observed in surface water.

The presence of the substance in bivalves was monitored in 7 areas, and it was detected in all 7 valid areas adopting the detection limit of 0.5 ng/g-wet, and the detection range was $tr(0.6) \sim 15$ ng/g-wet. For fish, the substance was monitored in 16 areas and detected in all 16 valid areas adopting the detection limit of 0.5 ng/g-wet, and all the detected concentrations did not exceed 34 ng/g-wet. For birds, the substance was monitored in 2 areas and detected in 1 of the 2 valid areas adopting the detection limit of 0.5 ng/g-wet, and all the detected concentrations did not exceed tr(0.5) ng/g-wet. For birds, the substance was monitored in 2 areas and detected in 1 of the 2 valid areas adopting the detection limit of 0.5 ng/g-wet. From the beginning of the monitoring, a trend of long-term decrease was observed in bivalves and fish, respectively.

Stocktaking of detection of triphenyltin compounds (TPTs) in surface water, sediment, and wildlife (bivalves, fish, birds) during FY 2002 \sim 2005 ,

	Monitored year	Geometric				Quantification	Detection	frequency
TPTs	(FY)	mean	Median	Maximum	Minimum	[Detection] limit	Sample	Site
Surface water (ng/L)	2005	nd	nd	0.19	nd	0.13 [0.050]	2/47	2/47
Sediment	2002	tr(0.69)	nd	490	nd	1.6 [0.55]	76/189	30/63
	2003	tr(0.27)	tr(0.16)	540	nd	0.28 [0.09]	96/186	37/62
(ng/g-dry)	2005	0.17	0.12	420	nd	0.070 [0.030]	104/189	39/63
Bivalves	2002	2.7	4.5	25	nd	1.5 [0.5]	31/38	7/8
	2003	2.8	3.6	27	nd	1.5 [0.5]	26/30	6/6
(ng/g-wet)	2005	2.2	2.9	15	tr(0.6)	1.5 [0.50]	31/31	7/7
Fish	2002	6.4	7.9	520	nd	1.5 [0.5]	69/70	14/14
	2003	5.3	5.4	30	nd	1.5 [0.5]	68/70	14/14
(ng/g-wet)	2005	4.1	4.9	34	nd	1.5 [0.50]	76/80	16/16
Birds	2002	nd	nd	nd	nd	1.5 [0.5]	0/10	0/2
	2003	nd	nd	nd	nd	1.5 [0.5]	0/10	0/2
(ng/g-wet)	2005	nd	nd	tr(0.5)	nd	1.5 [0.50]	1/10	1/2

It was noted that some analytical problems remained for the accurate and precise quantification (and detection) of organotin compounds (particularly MBTs, DBTs, MPTs and DPTs) in sediment and wildlife.

(3) Analysis of preserved specimens

The results of the analysis of preserved specimens are shown in Tables 4-9-1 to 4-9-3. The specimens that had been stored for over 10 years as preserved specimens were again analysed by the high-sensitivity analytical method that was introduced in FY 2002. As a result, following the monitoring in FY 2002, it was confirmed that the characteristics of the relative proportions of some compounds that are confirmed in sea bass from Osaka Bay already existed 10 years or more ago, further expanding the basic database for the evaluation of the effectiveness of the Stockholm Convention.

Г	Target Chemicals	FY								Detecti	on limit
No	Name	1993	1994	1995	1997	1998	1999	2000	2001	in FY 2004	in FY 2005
1	PCBs	460,000	340,000	120,000	310,000	190,000	200,000	100,000	400,000	0.61 ~ 6.1	0.6 ~ 4.9
2	Hexachlorobenzene	1,400	1,400	770	750	840	890	440	500	4.6	3.8
3	Aldrin	tr(3.4)	1.4	nd	1.9	2.2	2.6	nd	nd	1.3	1.2
4	Dieldrin	4,100	2,100	1,300	2,200	1,500	1,300	630	800	10	3
5	Endrin	220	100	93	140	130	110	640	40	4.2	5.5
6	DDTs										
6-1	<i>p,p'</i> -DDT	1,800	1,400	670	1,500	1,000	720	700	2,400	1.1	1.7
6-2	<i>p,p'</i> -DDE	48,000	24,000	9,100	28,000	15,000	18,000	8,300	30,000	2.7	2.8
6-3	<i>p,p'</i> -DDD	7,700	6,400	2,400	4,800	3,200	2,700	2,000	6,400	0.7	0.97
6-4	o,p'-DDT	360	360	110	240	160	130	170	610	0.61	0.86
6-5	o,p'-DDE	12,000	4,000	790	4,200	1,500	4,000	940	3,400	0.69	1.1
6-6	o,p'-DDD	1,700	1,700	350	820	490	570	440	1,400	1.9	1.1
7	Chlordanes										
7-1	cis-Chlordane	9,200	8,800	5,000	6,700	5,000	3,600	2,200	5,900	5.8	3.9
7-2	trans-Chlordane	3,900	3,000	1,500	2,200	1,700	1,300	640	1,600	16	3.5
7-3	Oxychlordane	920	890	630	730	630	580	270	740	3.1	3.1
7-4	cis-Nonachlor	4,600	5,000	2,500	3,800	3,100	2,000	1,500	5,500	1.1	1.5
7-5	trans-Nonachlor	11,000	11,000	5,600	8,200	6,400	4,200	3,100	11,000	4.2	2.1
8	Heptachlors										
8-1	Heptachlor	24	9.4	6.7	6.8	5.6	5.5	2.1	3.2	1.4	2.0
8-2	<i>cis</i> -Heptachlor epoxide	460	270	170	250	260	170	92	89	3.3	1.2
8-3	trans-Heptachlor epoxide	tr (12)	5	nd	nd	nd	nd	nd	nd	4	7.5
9	Toxaphenes										
9-1	Parlar-26	49	-	-	-	-	-	-	-	14	16
9-2	Parlar-50	85	-	-	-	-	-	-	-	15	18
9-3	Parlar-62	nd	-	-	-	-	-	-	-	33	34
10	Mirex	31	-	-	-	-	-	-	-	0.82	0.99
11	HCHs										
11-1	α-HCH	280	220	170	200	260	99	64	66	4.3	3.6
11-2	β -HCH	360	310	180	370	330	170	130	150	2	0.75
11-3	ү-НСН	200	84	59	0,11	85	43	32	28	10	2.8
11-4	δ-НСН	36	14	7.2	27	26	12	6.0	7.2	1.5	1.7

Table 4-9-1 Results of high-sensitivity analysis of preserved specimens (Sea bass in Tokyo Bay)

Unit: pg/g-wet

(Note 1) indicates the analytical data measured in FY 2004.

(Note 2) " - " means not measured.

											Uni	
	Target Chemicals					FY						on limit
No	Name	1993	1994	1995	1996	1997	1998	1999	2000	2001	in FY 2004	in FY 2005
1	PCBs	680,000	340,000	490,000	490,000	330,000	670,000	660,000	270,000	150,000	0.61 ~ 6.1	0.6 ~ 4.9
2	Hexachlorobenzene	1 200	1 000	(00	740	400	1 200	770	200	2(0	4.6	3.8
		1,300	1,000	690	740	490	1,200	770	390	260		
3	Aldrin	4.7	1.5	tr (1.7)	5.9	tr (1.9)	3.8	tr (2.6)	tr (1.8)	nd	1.3	1.2
4	Dieldrin	4,700	1,700	2,800	8,000	1,400	2,100	2,500	1,200	1,500	10	3
5	Endrin	200	62	150	170	110	110	160	74	37	4.2	5.5
6	DDTs											
6-1	<i>p,p'</i> -DDT	2,000	1,500	37,000	5,400	1,600	3,800	1,300	1,200	1,300	1.1	1.7
6-2	<i>p,p'</i> -DDE	17,000	13,000	15,000	19,000	9,600	17,000	15,000	11,000	6,100	2.7	2.8
6-3	<i>p,p'</i> -DDD	6,900	5,300	9,500	8,200	3,000	7,000	4,200	3,400	2,100	0.7	0.97
6-4	o,p'-DDT	570	390	11,000	1,800	410	1,100	350	350	360	0.61	0.86
6-5	<i>o,p'</i> -DDE	700	380	450	690	360	620	480	360	320	0.69	1.1
6-6	o,p'-DDD	2,500	1,900	3,000	2,500	880	3,000	1,500	850	870	1.9	1.1
7	Chlordanes											
7-1	cis-Chlordane	16,000	8,500	8,400	19,000	3,900	8,100	8,000	5,200	4,000	5.8	3.9
7-2	trans-Chlordane	6,800	300	3,800	7,500	1,600	3,300	3,400	2,000	1,700	16	3.5
7-3	Oxychlordane	1,500	1,400	650	1,700	660	1,100	840	630	400	3.1	3.1
7-4	cis-Nonachlor	7,000	4,400	3,800	7,400	2,400	5100	4,500	3,200	1,900	1.1	1.5
7-5	trans-Nonachlor	21,000	12,000	9,900	19,000	5,300	11,000	11,000	7,800	5,000	4.2	2.1
8	Heptachlors	,	,	- ,	- ,	-)	,	,		- ,		
8-1	Heptachlor	44	8.9	29	50	8.8	11	20	tr (5.6)	5.2	1.4	2.0
8-2	cis-Heptachlor epxide	380	160	290	360	150	230	310	130	79	3.3	1.2
8-3	trans-Heptachlor epxide	nd	nd	nd	nd	nd	nd	nd	nd	nd	4	7.5
9	Toxaphenes	nu	na	na	iiu	nu	iid	iid	nu	ind		
9-1	Parlar-26	tr(44)	_	tr (19)	tr (27)	tr (22)	tr (18)	tr (21)	tr (21)	_	14	16
9-2	Parlar-50	59	_	tr (24)	tr (29)	tr (21)	tr (23)	tr (30)	tr (23)	-	15	18
9-3	Parlar-62	nd.		nd	nd	nd	nd	nd	nd (23)		33	34
10	Mirex	10	-	17	56	28	110	76	14	-	0.82	0.99
10	HCHs	10	-	1/	50	20	110	70	14	-	0.02	0.77
11 11-1	α-НСН	660	140	310	360	550	480	450	130	86	4.3	3.6
11-1	<u>β-нсн</u>										4.3	0.75
11-2	,	3,000	930	3,000	1,800	2,100	2,900	2,200	780	390	10	2.8
	γ-HCH	290	46	100	120	150	120	140	53	31		
11-4	δ-HCH	110	18	62	61	64	86	99	24	11	1.5	1.7

Table 4-9-2 Results of high-sensitivity analysis of preserved specimens (Sea bass in Osaka Bay)

Unit: pg/g-wet

(Note 1) indicates the analytical data measured in FY 2004. (Note 2) " - " means not measured.

	Target Chemicals		FY		Detecti	on limit
No	Name	1993	1994	1995	in FY 2004	in FY 2005
1	PCBs	190,000	18,000	9,500	0.61 ~ 6.1	0.6 ~ 4.9
2	Hexachlorobenzene	43	36	34	4.6	3.8
3	Aldrin	23	28	16	1.3	1.2
4	Dieldrin	30,000	140,000	110,000	10	3
5	Endrin	3,900	18,000	11,000	4.2	5.5
6	DDTs					
6-1	<i>p,p'</i> -DDT	200	94	170	1.1	1.7
6-2	<i>p,p'</i> -DDE	1,600	1,700	960	2.7	2.8
6-3	<i>p,p'</i> -DDD	45	23	22	0.7	0.97
6-4	o,p'-DDT	100	66	68	0.61	0.86
6-5	o,p'-DDE	150	120	110	0.69	1.1
6-6	o,p'-DDD	51	30	20	1.9	1.1
7	Chlordanes					
7-1	cis-Chlordane	30,000	37.000	30,000	5.8	3.9
7-2	trans-Chlordane	9,100	10,000	6,000	16	3.5
7-3	Oxychlordane	4,900	7,100	6,200	3.1	3.1
7-4	cis-Nonachlor	1,000	970	530	1.1	1.5
7-5	trans-Nonachlor	6,100	6,500	3,900	4.2	2.1
8	Heptachlors					
8-1	Heptachlor	41	42	22	1.4	2.0
8-2	cis-Heptachlor epxide	4,300	6,500	4,300	3.3	1.2
8-3	trans-Heptachlor epxide	56	110	100	4	7.5
9	Toxaphenes					
9-1	Parlar-26	-	tr(21)	tr (25)	14	16
9-2	Parlar-50	-	nd	tr (19)	15	18
9-3	Parlar-62	-	nd	nd	33	34
10	Mirex	-	4.1	3.4	0.82	0.99
11	HCHs					
11-1	α-НСН	1,200	830	470	4.3	3.6
11-2	β -HCH	270	130	180	2	0.75
11-3	γ-НСН	540	400	210	10	2.8
11-4	δ-НСН	16	9.7	13	1.5	1.7

Table 4-9-3 High-sensitivity analytical results of preserved specimens (Hard-shelled mussel in Naruto) Unit: pg/g-wet

(Note 1) indicates the analytical data measured in FY 2004. (Note 2) " - " means not measured.

(4) The Environmental Monitoring (humans, trial)

The results of the Environmental Monitoring (humans, trial) are shown in Tables 4-10-1 and 4-10-2. From specimens of maternal blood, umbilical cord blood, and breast milk (23-42 years old) sampled between FY 2001 and 2003 in the monitoring research conducted by a medical organisation in the Tohoku District, 50, 70, and 70 samples were obtained, respectively. From the specimens of breast milk (24-44 years old) sampled between FY 2004 and 2005 in the monitoring research conducted by a medical organisation in Kanto-Koshinetsu District, 25 samples were obtained. These samples were provided without revealing any personal information. The concentrations of POPs and other chemicals were experimentally measured, and results similar to the concentration levels reported domestically and abroad were obtained.

Table	4-10-1 List of the detection rang Target Chemicals	ges in The En			humans, trial)		$\frac{04 \sim 2005 \text{ (Part 1)}}{\text{blood (pg/g-wet)}}$		weight)) od (pg/g-wet)
	l arget Chemicais	Tohok	Breast milk u District		hinetsu District		u District		od (pg/g-wet)
	N.		amples		Samples		amples		amples
No	Name	Range	Av. (Quantification limit)	Range	Av. (Quantification limit)	Range	Av. (Quantification limit)	Range	Av. (Quantificatio limit)
1	PCBs	960 ~ 21,000	4,100 (12)	1,600 ~ 17,000	4,400 (12)	34 ~ 580	120 (2.0)	160 ~ 1,100	520 (3.1)
2	Hexachlorobenzene	170 ~ 2,300	660 (3.7)	160 ~ 1,300	540 (3.7)	18 ~ 120	49 (0.61)	39 ~ 260	98 (0.91)
3	Aldrin	nd	nd (3.2)	nd	nd (3.2)	nd	nd (0.42)	nd \sim tr(0.14)	nd (0.17)
1	Dieldrin	47 ~ 800	180 (5.8)	53 ~ 330	130 (5.8)	3.9 ~ 24	9.7 (0.76)	9.8 ~ 72	(0.17) 24 (0.36)
5	Endrin	nd ~ 27	nd (14)	nd	nd (14)	nd	nd (1.8)	nd	nd (0.33)
6	DDTs								
6-1	<i>p</i> , <i>p</i> '-DDT	51 ~ 1,100	310 (8.3)	$^{120}_{\sim}$ 1,800	320 (8.3)	1.8 ~ 31	7.2 (1.4)	7.4 ~ 65	28 (2.1)
6-2	<i>p,p'</i> -DDT	1,100 ~ 18,000	5,100 (3.3)	1,200 ~ 14,000	5,300 (3.3)	41 ~ 1,600	180 (0.56)	120 ~ 1,800	560 (0.83)
6-3	<i>p,p'</i> -DDT	3.5 ~ 350	12 (3.4)	4.4 ~ 42	14 (3.4)	nd ~ 1.8	tr(0.35) (0.57)	tr(0.43) ~ 3.1	1.6 (0.85)
6-4	o,p'-DDT	12 ~ 210	50 (4.1)	21 ~ 170	50 (4.1)	tr(0.48) ~ 4.8	1.3 (0.69)	1.4 ~ 14	4.7 (1.0)
6-5	o,p'-DDT	4.5 ~ 49	16 (3.0)	6.4 ~ 35	14 (3.0)	$\frac{1.0}{100}$ tr(0.28) ~ 3.1	0.71 (0.50)	1.0 ~ 4.2	2.4 (0.74)
6-6	o,p'-DDT	nd ~ 12	tr(2.2) (3.1)	nd ~ 4.5	tr(2.3) (3.1)	\sim 3.1 nd \sim tr(0.29)	nd (0.52)	~ 4.2 nd $\sim tr(0.67)$	tr(0.26) (0.78)
7	Chlordanes		, <i>,</i> ,						
7-1	cis-Chlordane	6.7 ~ 140	21 (3.4)	9.3 ~ 49	20 (3.4)	0.58 ~ 2.8	1.3 (0.45)	1.7 ~ 16	4.4 (0.14)
7-2	trans-Chlordane	4.0 ~ 49	7.7 (3.1)	4.0 ~ 19	6.5 (3.1)	0.54 ~ 1.6	0.95 (0.41)	$^{0.93}_{\sim}$ 2.8	1.3 (0.13)
7-3	Oxychlordane	110 ~ 2,600	450 (8.7)	93 ~ 1,500	460 (8.7)	3.5 ~ 47	14 (1.1)	11 ~ 150	38 (0.26)
7-4	cis-Nonachlor	28 ~ 570	130 (2.6)	43 ~ 450	140 (2.6)	0.78 ~ 11	2.7 (0.34)	3.3 ~ 42	11 (0.25)
7-5	trans-Nonachlor	200 ~ 5,400	890 (3.2)	250 ~ 2,600	950 (3.2)	4.8 ~ 77	20 (0.42)	25 ~ 430	83 (0.17)
8	Heptachlors	nd	nd	nd	nd	nd	nd	nd	nd
8-1	Heptachlor	~ 31	(6.9) 190	~ tr(3.2)	(6.9) 160	~ tr(0.61) 2.2	(1.2)	5.0	(1.7)
8-2	cis-Heptachlor epoxide	~ 2,100	(2.0) nd	~ 680 nd	(2.0) nd	~ 30 nd	(0.27) nd	~ 81 nd	(0.20) nd
8-3	trans-Heptachlor epoxide Toxaphenes	na	(5.6)	na	(5.6)		(0.73)		(0.47)
9-1	Parlar-26	18 ~ 400	79 (2.9)	21 ~ 160	60 (2.0)	0.75	2.0	2.0 ~ 16	6.7
9-2	Parlar-50	32	130	35	(2.9) 100	~ 6.7 0.76	(0.49) 2.6 (0.52)	3.4	(0.35)
9-3	Parlar-62	~ 700 nd	(3.1) tr(9.5)	~ 300 nd	(3.1) tr(8.9)	~ 9.2 nd	(0.52) nd	~ 27 nd	(0.39) nd
9-4	Parlar-40	~ 52 nd	(22) tr(0.91)	~ 32 nd	(22) nd	nd	(3.6) nd	~ tr(2.1) nd	(2.7) tr(0.16)
		~ 4.6	(2.2)	~ 4.4	(2.2) 6.9	~ tr(0.23) nd	(0.36) tr(0.16)	~ 0.46 tr(0.23)	(0.27)
9-5	Parlar-41	~ 43 tr(1.3)	(2.4)	~ 19 tr(2.7)	(2.4)	~ 0.71 nd	(0.40) tr(0.22)	~ 1.5 tr(0.16)	(0.30) 0.54
9-6	Parlar-44	~ 47 7.9	(4.1)	~ 19	(4.1) 40	~ 0.85 tr(0.32)	(0.68)	~ 1.4	(0.39)
10	Mirex HCHs	~ 86	(3.2)	~ 150	(3.2)	~ 7.1	(0.54)	~ 18	(0.81)
11-1	α-HCH	tr(3.4) ~ 65	12	tr(4.3)	10	tr(0.33)	0.92	tr(0.84)	1.6
11-2	<i>β</i> -нсн	320	(4.6) 1,800	~ 84	(4.6) 1,700	~ 6.0	(0.77)	~ 4.2 34	(1.2) 190 (0.25)
11-3	у-НСН	~ 7,400 tr(1.7)	(3.4)	~ 6,900 3.9	(3.4)	~ 400 tr(0.41)	(0.57) 1.2	~ 1,300 tr(0.76)	(0.85) 1.9
11-4	б-нсн	~ 120 nd	(3.5) nd	~ 160 nd	(3.5) tr(1.4)	~ 15 nd	(0.59) nd	~ 17 nd	(0.88) nd
11-4	Dioxins(TEQ)	~ 7.6	(3.9)	~ 35	(3.9)	~ tr(0.44)	(0.66)	~ tr(0.34)	(0.99)
	PCDDs+PCDFs	0.047 ~ 1.9	0.37 (0.000007 ~0.06)	0.66 ~ 1.5	0.43 (0.000007 ~0.06)	0.00089 ~ 0.16	0.0068 (0.0000011 ~ 0.010)	0.023 ~ 0.17	0.058 (0.0000017 ~ 0.00
	Coplanar PCBs	0.066 ~ 1.5	0.27 (0.0000020 ~ 0.004)	0.093 ~ 0.84	0.25 (0.0000020 ~ 0.004)	0.0021 ~ 0.036	0.0085 (0.0000004 ~ 0.0007)	0.0098 ~ 0.080	0.032 (0.0000004 ~0.0002
	Dioxins (Total)	0.14 ~ 3.3	0.65 (0.000020 ~0.06)	0.16 ~ 2.3	0.70 (0.0000020 ~ 0.06)	0.0031 ~ 0.17	0.017 (0.0000004 ~ 0.010)	0.036 ~ 0.21	0.091 (0.0000004 ~0.00

Table 4-10-1 List of the detection ranges in The Environmental Monitoring (humans, trial) during FY 2004 ~ 2005 (Part 1: based on wet weight)

(Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) as half the value of the detection limit.

(Note 2) Detection limits were based on "Standard manual for dioxin analysis in human blood" (December 12, 2000, Ministry of Health and Welfare, Japan). (Note 3) Specimens sampled during the period of FY 2001 ~ 2005 were measured between FY 2004 and FY 2005.

	Target Chemicals		Breast mill		8(ial) during FY 2 Umbilical cord			od (pg/g-fat)
		Tohok	u District		ninetsu District	Tohoku			District
			amples		amples	70 Sai			mples
No	Name	Range	Av. (Quantification limit)	Range	Av. (Quantification limit)	Range	Av. (Quantification limit)	Range	Av. (Quantification limit)
1	PCBs	31,000 ~ 280,000	100,000 (290)	42,000 ~ 320,000	100,000 (290)	12,000 ~ 130,000	42,000 (620)	20,000 ~ 160,000	76,000 (460)
2	Hexachlorobenzene	6,900 ~ 37,000	17,000 (87)	5,800 ~ 27,000	13,000 (87)	6,400 ~ 40,000	17,000 (180)	5,600 ~ 40,000	14,000 (140)
3	Aldrin	nd	nd (75)	nd	nd (75)	nd	nd (120)	nd ~ 25	nd (25)
4	Dieldrin	2,100 ~ 17,000	4,400 (140)	1,600 ~ 8,000	3,100 (140)	1,400 ~ 14,000	3,400 (230)	1,400 ~ 9,800	3,500 (54)
5	Endrin	nd ~ 490	nd (330)	nd	nd (330)	nd	nd (540)	nd	nd (49)
6 6-1	DDTs <i>p,p'-</i> DDT	2,300 ~ 19,000	7,900 (200)	4,100 ~ 36,000	7,400 (200)	560 ~ 7,300	2,500 (420)	1,100 ~ 10,000	4,200 (310)
6-2	<i>p,p'</i> -DDT	32,000 ~ 330,000	130,000 (79)	48,000 ~ 400,000	130,000 (79)	12,000 ~ 390,000	62,000 (170)	17,000 ~ 270,000	82,000 (130)
6-3	<i>p,p'</i> -DDT	$100 \sim 15,000$	310 (81)	150 ~ 1,100	330 (81)	nd ~ 590	tr(120) (170)	$\frac{270,000}{\text{tr}(63)}$ ~ 430	240 (130)
6-4	o,p'-DDT	550 ~ 4,200	1,200 (98)	570 ~ 3,700	1,200 (98)	$tr(190) \sim 1,400$	450 (210)	200 ~ 2,100	680 (150)
6-5	o,p'-DDT	180 ~ 940	400 (71)	200 ~ 610	330 (71)	tr(85) ~ 600	250 (150)	170 ~ 730	350 (110)
6-6	o,p'-DDT	nd ~ 510	tr(55) (74)	tr(31) ~ 130	tr(56) (74)	nd ~ tr(100)	nd (160)	nd ~ tr(100)	nd (120)
7	Chlordanes	200	530	230	470	210	440	220	650
7-1	<i>cis</i> -Chlordane	~ 3,100	(81) 190	~ 770	(81) 150	~ 1,500 120	(130) 330	~ 2,100	(20) 200
7-2	trans-Chlordane	~ 1,400 2,700	(74) 11,000	~ 270 3,500	(74) 11,000	~ 770	(120) 4,700	~ 490 1,500	(20) (20) 5,500
7-3	Oxychlordane	~ 47,000 860	(210) 3,300	~ 26,000 1,700	(210) 3,300	~ 18,000 280	(340)	~ 17,000 470	(39) 1,700
7-4	cis-Nonachlor	~ 11,000 6,600	(62) 23,000	~ 9,000 9,200	(62) 22,000	~ 2,800 1,700	(100) 6,900	~ 4,900 3,600	(37) 12,000
7-5 3	<i>trans</i> -Nonachlor Heptachlors	~ 100,000	(76)	~ 58,000	(76)	~ 26,000	(130)	~ 52,000	(26)
8-1	Heptachlor	nd ~ 370	nd (170)	nd ~ tr(85)	nd (170)	nd ~ tr(170)	nd (350)	nd	nd (260)
8-2	cis-Heptachlor epoxide	1,800 ~ 24,000	4,800 (48)	1,700 ~ 9,800	3,800 (48)	670 ~ 13,000	2,500 (81)	730 ~ 13,000	2,800 (30)
8-3	trans-Heptachlor epoxide	nd	nd (130)	nd	nd (130)	nd	nd (220)	nd	nd (71)
) 9-1	Toxaphenes Parlar-26	760 ~ 7,000	2,000 (69)	790 ~ 3,500	1,400 (69)	230 ~ 3,000	680 (160)	300 ~ 2,500	980 (100)
9-2	Parlar-50	1,300 ~ 12,000	3,300 (73)	1,300 ~ 6,100	2,400 (73)	280 ~ 4,100	910 (180)	480 ~ 4,200	1,500 (110)
9-3	Parlar-62	nd ~ 820	tr(240) (500)	nd ~ 660	tr(240) (500)	nd ~ tr(510)	nd (1,300)	nd ~ tr(360)	nd (790)
9-4	Parlar-40	nd ~ 97	tr(22) (50)	nd ~ 82	nd (50)	$nd \sim tr(73)$	nd (130)	nd $\sim tr(69)$	nd (79)
9-5	Parlar-41	tr(24) ~ 560	230 (55)	82 ~ 370	160 (55)	nd ~ 240	tr(58) (140)	tr(37) ~ 220	100 (87)
9-6	Parlar-44	tr(58) ~ 640	230 (96)	r(86) ~ 410	160 (96)	nd ~ 380	tr(72) (200)	nd ~ 200	tr(77) (110)
10	Mirex	$170 \\ \sim 1,900$	740 (77)	350 ~ 2,600	930 (77)	tr(110) ~ 1,400	440 (160)	280 ~ 2,900	1,100 (120)
11	HCHs	1,900	310	tr(78)	230	tr(120)	320	tr(120)	230
11-1	α-HCH	~ 1,600 12,000	(110) 46,000	~ 1,300 6,300	(110) 40,000	$\sim 1,900$ 4,900	(230) 26,000	~ 580 4,700	(170) 27.000
11-2	β-нСн	$\sim 210,000$ tr(52)	(81) 270	~ 160,000 95	(81) 310	$\sim 90,000$ tr(150)	(170) 410	$\sim 200,000$ tr(99)	(130) 270
11-3	γ-НСН	$\sim 2,300$	(84) nd	~ 3,300 nd	(84) nd	~ 5,100 nd	(180) nd	~ 2,200 nd	(130) nd
11-4	δ-HCH Dioxins (TEQ)	~ 310	(94)	~ 820	(94)	\sim tr(140)	(200)	110	(150)
	PCDDs+PCDFs	0.35 ~ 25	8.5 (0.00016 ~2.0)	1.8 ~ 28	9.4 (0.00016 ~2.0)	0.26 ~ 56	2.6 (0.0004 ~3)	2.8 ~ 26	8.5 (0.00025
	Coplanar PCBs	2.1 ~ 21	6.8 (0.00005 ~0.10)	2.5 ~ 16	(0.00005) $\sim 0.10)$	0.74 ~ 7.3	$ \begin{array}{r} 2.9 \\ (0.00010 \\ \sim 0.20) \end{array} $	1.4 ~ 11	$\sim 1.$ 4.7 (0.00006 ~ 0.0
	Dioxins (Total)	2.5 ~ 45	16 (0.00005 ~ 2.0)	4.3 ~ 44	16 (0.00005 ~ 2.0)	1.1	$ \begin{array}{c} 6.2 \\ (0.00010 \\ $	4.8 ~ 33	13 (0.00006 ~1.

(Note 1) "Av." indicates the geometric mean calculated by assuming nd (below the detection limit) as half the value of the detection limit.

(Note 2) Detection limits were based on "Standard manual for dioxin analysis in human blood" (December 12, 2000, Ministry of Health and Welfare, Japan). (Note 3) Specimens sampled during the period of FY 2001 ~ 2005 were measured between FY 2004 and FY 2005.