4. モニタリング調査としての継続性に関する考察

2002年度より実施している「モニタリング調査」は、2001年度以前に実施していた「生物モニタリング」、 「水質・底質モニタリング」、「指定化学物質等検討調査」、「非意図的生成化学物質汚染実態追跡調査」 及び「指定化学物質等検討調査」等の調査を包括した新たな体系として調査を実施している。

ここでは2002年度以降に実施しているモニタリング調査について記述する。

(1) 調査対象物質及び媒体の推移

参考として示した物質(群)を含めて本書に掲載しているモニタリング調査対象物質の年度別実施状況は 表4のとおりである。

2002年度に、PCB類、HCB(ヘキサクロロベンゼン)、アルドリン、ディルドリン、エンドリン、DDT類、 クロルデン類及びヘプタクロルについて全媒体で、α-HCH及びβ-HCHについて水質、底質及び生物でそれぞ れ調査対象物質として調査を開始した。2003年度からは、*cis*-ヘプタクロルエポキシド、*trans*-ヘプタクロル エポキシド、トキサフェン類、マイレックス、γ-HCH(別名:リンデン)及びδ-HCHについて全媒体で、α-HCH 及びβ-HCHについて大気でそれぞれ調査対象物質に追加し、2009年度までこれらの物質について全媒体での 調査を継続した。

2004年度には、表3には示していないその他の調査対象物質としてHBB(全媒体)及びジオクチルスズ化合 物(水質、底質及び生物)について調査を実施した。2005年度には、表4には示していないその他の調査対象 物質としてBHT(底質、生物及び大気)並びにジベンゾチオフェン及び有機スズ化合物(水質、底質及び生 物)について調査を実施した。2006年度は、ポリ塩化ナフタレン類(生物)並びに表4には示していないその 他の調査対象物質として2,4,6-トリ-tert-ブチルフェノール(生物及び大気)、2-クロロ-4-エチルアミノ-6-イソ プロピルアミノ-1,3,5-トリアジン(別名:アトラジン)、2,2,2-トリクロロ-1,1-ビス(4-クロロフェニル)エタノ ール(別名:ケルセン又はジコホル)、フタル酸ジ-n-ブチル、ジオクチルスズ化合物及びりん酸トリ-n-ブチ ル(生物)について調査を実施した。2007年度には、ペンタクロロベンゼン(全媒体)及びヘキサクロロブ タ-1.3-ジエン(水質、底質及び生物)並びに表4には示していないその他の調査対象物質としてアクリルアミ ド、テトラブロモビスフェノールA及びヘキサブロモベンゼン(水質、底質及び生物)並びにトリクロロベ ンゼン類及びテトラクロロベンゼン類(大気)について調査を実施した。2008年度には、クロルデコン(水 質、底質及び生物)、ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)(生物)及びポリ塩 化ナフタレン類(全媒体)並びに表4には示していないその他の物質としてジオクチルスズ化合物、ジベンゾ チオフェン、2,2,2-トリクロロ-1,1-ビス(4-クロロフェニル)エタノール(別名:ケルセン又はジコホル)、フ タル酸ジ-n-ブチル及びりん酸トリ-n-ブチル(水質、底質及び生物)、2-クロロ-4-エチルアミノ-6-イソプロピ ルアミノ-1.3.5-トリアジン(別名:アトラジン)(水質及び底質)、N.N'-ジフェニル-p-フェニレンジアミン 類(水質)、2,6-ジ-tert-ブチル-4-メチルフェノール(別名:BHT)及び2,4,6-トリ-tert-ブチルフェノール(全 媒体)について調査を実施した。2009年度には、ヘキサブロモビフェニル類、ペルフルオロオクタンスルホ ン酸(PFOS)及びペルフルオロオクタン酸(PFOA)(水質、底質及び生物)、ポリブロモジフェニルエー テル類(臭素数が4から10までのもの)(水質、底質及び大気)並びにペンタクロロベンゼン(大気)並びに 表4には示していないその他の物質としてテトラクロロベンゼン類(大気)について調査を実施した。

このような中、2009年5月にCOP4が開催され、HCH類、クロルデコン、ヘキサブロモビフェニル類、ポリ

ブロモジフェニルエーテル類、ペルフルオロオクタンスルホン酸(PFOS)及びペンタクロロベンゼンが新規 にPOPs条約対象物質として採択された。これを受けて調査頻度の見直しを行い、それらPOPs条約対象物質に ついては毎年度の調査とすることとした一方で、2002年度又は2003年度から毎年度の調査が行われていた従 前のPOPs条約対象物質であるPCB類、HCB(ヘキサクロロベンゼン)、アルドリン、ディルドリン、エンド リン、DDT類、クロルデン類、ヘプタクロル類、トキサフェン類及びマイレックスのうち、アルドリン、デ ィルドリン、エンドリン、DDT類、トキサフェン類及びマイレックスについては、数年おきの調査とするこ ととした。

2010年度は、POPs条約の発効当初から指定される物質のうちPCB類、HCB(ヘキサクロロベンゼン)、DDT 類、クロルデン類及びヘプタクロル類の5物質(群)並びに新規にPOPs条約対象物質として採択されたHCH 類、クロルデコン、ヘキサブロモビフェニル類、ポリブロモジフェニルエーテル類(臭素数が4から10までの もの)、ペルフルオロオクタンスルホン酸(PFOS)及びペンタクロロベンゼンの6物質(群)について全媒 体の調査を実施したほか、ペルフルオロオクタン酸(PFOA)(全媒体)並びに表4には示していないその他 の物質としてトリブチルスズ化合物、トリフェニルスズ化合物(水質、底質及び生物)及び*N,N'-ジ*フェニル -*p*-フェニレンジアミン類(大気)について調査を実施した。

2011年度は、POPs条約対象物質のうちPCB類、HCB(ヘキサクロロベンゼン)、ディルドリン、エンドリン、クロルデン類、ヘプタクロル類、マイレックスの7物質(群)、HCH類、クロルデコン、ヘキサブロモビフェニル類、ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)、ペルフルオロオクタンスルホン酸(PFOS)及びペンタクロロベンゼン並びに2011年4月に開催されたCOP5で新規にPOPs条約対象物質として採択されたエンドスルファン類について全媒体の調査を実施したほか、ペルフルオロオクタン酸(PFOA)

(全媒体)及び1,2,5,6,9,10-ヘキサブロモシクロドデカン類(水質、底質及び生物)並びに表4には示していないその他の物質として*N,N*-ジメチルホルムアミド(水質、底質及び大気)について調査を実施した。

2012年度は、POPs条約対象物質のうちPCB類、HCB(ヘキサクロロベンゼン)、クロルデン類、HCH類、 ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)、ペルフルオロオクタンスルホン酸(PFOS)、 ペンタクロロベンゼン及びエンドスルファン類について全媒体で、ヘプタクロル類について生物及び大気で、 1,2,5,6,9,10-ヘキサブロモシクロドデカン類について底質、生物及び大気で調査を実施したほか、ペルフルオ ロオクタン酸(PFOA) (全媒体)及び表3には示していないその他の物質として2-(2H-1,2,3-ベンゾトリアゾ ール-2-イル)-4,6-ジ-tert-ブチルフェノール (水質、底質及び生物)について調査を実施した。

2013年度は、POPs条約対象物質のうちPCB類、HCB(ヘキサクロロベンゼン)、クロルデン類、HCH類及 びペンタクロロベンゼンについて全媒体で、DDT類及びヘプタクロル類について生物及び大気で、ペルフル オロオクタンスルホン酸(PFOS)について大気で調査を実施したほか、ペルフルオロオクタン酸(PFOA)

(大気)及びヘキサクロロブタ-1,3-ジエン(水質、底質及び生物)について調査を実施した。

2014年度は、従前のPOPs条約対象物質のうちPCB類、HCB(ヘキサクロロベンゼン)、HCH類、ポリブロ モジフェニルエーテル類(臭素数が4から10までのもの)、ペルフルオロオクタンスルホン酸(PFOS)及び ペンタクロロベンゼンについて全媒体で、アルドリン及びエンドスルファン類について生物及び大気で、デ ィルドリン、エンドリンについて水質、生物及び大気で、DDT類及びヘプタクロル類について水質及び底質 で、COP6で新規にPOPs条約対象物質として採択された1,2,5,6,9,10-ヘキサブロモシクロドデカン類について 水質、生物及び大気で調査を実施したほか、ペルフルオロオクタン酸(PFOA)(全媒体)及びポリ塩化ナフ タレン類(大気)について調査を実施した。

2015年度は、従前のPOPs条約対象物質のうちPCB類、HCB(ヘキサクロロベンゼン)、HCH類、ポリブロ モジフェニルエーテル類(臭素数が4から10までのもの)、ペルフルオロオクタンスルホン酸(PFOS)及び ペンタクロロベンゼンについて全媒体で、DDT類について大気で、ヘプタクロル類及びエンドスルファン類 について生物及び大気で、トキサフェン類について生物で、ヘキサブロモビフェニル類及び1,2,5,6,9,10-ヘキ サブロモシクロドデカン類について底質、生物及び大気で、COP7で新規にPOPs条約対象物質として採択され たポリ塩化ナフタレン類について生物で、ヘキサクロロブタ-1,3-ジエンについて大気で、ペンタクロロフェ ノールについて水質で調査を実施したほか、POPs条約対象物質とする必要性について検討されているペルフ ルオロオクタン酸(PFOA)について全媒体で調査を実施した。

2016年度は、従前のPOPs条約対象物質のうちPCB類、HCB(ヘキサクロロベンゼン)、HCH類、ポリブロ モジフェニルエーテル類(臭素数が4から10までのもの)及びペルフルオロオクタンスルホン酸(PFOS)に ついて全媒体で、クロルデン類、ヘプタクロル類及びペンタクロロフェノール並びにその塩及びエステル類 について生物及び大気で、ペンタクロロベンゼン、1,2,5,6,9,10-ヘキサブロモシクロドデカン類(α-1,2,5,6,9,10-ヘキサブロモシクロドデカン、β-1,2,5,6,9,10-ヘキサブロモシクロドデカン及びγ-1,2,5,6,9,10-ヘキサブロモシ クロドデカン)及びポリ塩化ナフタレン類について底質、生物及び大気で、エンドスルファン類及びヘキサ クロロブタ-1,3-ジエンについて大気で、COP8で新規にPOPs条約対象物質として採択された短鎖塩素化パラフ ィン類について生物及び大気で調査を実施したほか、POPs条約対象物質とする必要性について検討されてい るペルフルオロオクタン酸(PFOA)について全媒体で、ジコホルについて大気で調査を実施した。

2017年度は、POPs条約対象物質のうちPCB類、HCB(ヘキサクロロベンゼン)、HCH類、ポリブロモジフ エニルエーテル類(臭素数が4から10までのもの)、ペンタクロロベンゼン、ペンタクロロフェノール並びに その塩及びエステル類及び短鎖塩素化パラフィン類について全媒体で、クロルデン類及びヘプタクロル類に ついて水質及び底質で、ペルフルオロオクタンスルホン酸(PFOS)及び1,2,5,6,9,10-ヘキサブロモシクロドデ カン類(α-1,2,5,6,9,10-ヘキサブロモシクロドデカン、β-1,2,5,6,9,10-ヘキサブロモシクロドデカン及び γ-1,2,5,6,9,10-ヘキサブロモシクロドデカン)について生物及び大気で、ポリ塩化ナフタレン類について底質、 生物及び大気で、ヘキサクロロブタ-1,3-ジエンについて大気で調査を実施したほか、POPs条約対象物質とす る必要性について検討されているペルフルオロオクタン酸(PFOA)について生物及び大気で調査を実施した。

2018年度は、POPs条約対象物質のうちPCB類、HCB(ヘキサクロロベンゼン)、トキサフェン類、マイレ ックス、ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)、ペンタクロロベンゼン、ポリ塩 化ナフタレン類、ペンタクロロフェノールとその塩及びエステル類並びに短鎖塩素化パラフィン類について 全媒体で、アルドリン、ディルドリン及びエンドリンについて底質で、DDT類について生物及び大気で、ペ ルフルオロオクタンスルホン酸(PFOS)、ペルフルオロオクタン酸(PFOA)及びエンドスルファンについ て水質及び底質で、1,2,5,6,9,10-ヘキサブロモシクロドデカン類(α-1,2,5,6,9,10-ヘキサブロモシクロドデカン、 β-1,2,5,6,9,10-ヘキサブロモシクロドデカン及びγ-1,2,5,6,9,10-ヘキサブロモシクロドデカン)及びジコホルに ついて生物で、ヘキサクロロブタ-1,3-ジエンについて大気で調査を実施したほか、POPs条約対象物質とする 必要性について検討されているペルフルオロヘキサンスルホン酸(PFHxS)について水質及び底質で調査を 実施した。

2019年度は、POPs条約対象物質のうちPCB類、HCB(ヘキサクロロベンゼン)、HCH類、ポリブロモジフ

エニルエーテル類(臭素数が4から10までのもの)、ペルフルオロオクタンスルホン酸(PFOS)、ペルフル オロオクタン酸(PFOA)、ポリ塩化ナフタレン類、ペンタクロロベンゼン、ペンタクロロフェノールとその 塩及びエステル類、短鎖塩素化パラフィン類並びにジコホルについて全媒体で、1,2,5,6,9,10-ヘキサブロモシ クロドデカン類(α-1,2,5,6,9,10-ヘキサブロモシクロドデカン、β-1,2,5,6,9,10-ヘキサブロモシクロドデカン及 びγ-1,2,5,6,9,10-ヘキサブロモシクロドデカン)について生物及び大気で、ヘキサクロロブタ-1,3-ジエンにつ いて大気で調査を実施したほか、POPRC15においてPOPs条約対象物質への追加を条約締約国会議に勧告する ことが決定されたペルフルオロヘキサンスルホン酸(PFHxS)について水質及び底質で調査を実施した。

なお、HCH類の大気については、2003年度から2008年度に用いた大気試料採取装置の一部からHCH類が検 出され、HCH類の測定に影響を及ぼすことが判明したが、個別のデータについて影響の有無を遡って判断す ることが困難であるため、この期間の全てのデータについて欠測扱いとすることとした。

(2) 調査地点の推移

モニタリング調査の年度別調査地点の状況は表5-1から表5-4のとおりである。

1)水質

2002年度及び2003年度は38地点、2004年度は40地点、2005年度は47地点、2006年度から2008年度は48地 点、2009年度から2011年度は49地点、2012年度から2016年度は48地点、2017年度及び2018年度は47地点に おいての調査であった。

2019年度は、利根川利根大堰上流(千代田町)が追加され、48地点において調査を実施した。

2) 底質

2002年度は63地点、2003年度は62地点、2004年度及び17年度は63地点、2006年度から2011年度は64地点、 2012年度から2014年度は63地点、2015年度から2017年度は62地点、2018年度は61地点においての調査であった。

2019年度は、2018年度と同一の61地点において調査を実施した。

3) 生物

2002年度は23地点(うち1地点は2生物種を調査)、2003年度は三浦半島のムラサキイガイ及び萩市見島 のムラサキインコガイの2地点が外れ21地点、2004年度には高松港のムラサキイガイが新規追加され、洞海 湾のムラサキイガイがムラサキインコガイに変更され22地点、2005年度は釧路沖のシロサケ及び姫路沖の スズキが新規追加され、高松港のムラサキイガイがイガイに、洞海湾のムラサキインコガイがムラサキイ ガイに変更され23地点(うち2地点は2生物種を調査)、2006年度及び2007年度も2005年度と同一の23地点、 2008年度は大分川河口(大分市)のスズキが新規追加され24地点(うち2地点は2生物種を調査)、2009年

度は、名古屋港のボラが新規追加され、洞海湾のムラサキイガイがムラサキインコガイに変更され25地点

(うち2地点は2生物種を調査)、2010年度は、能登半島沿岸のムラサキイガイが外れ、横浜港のムラサキ イガイがミドリイガイに、洞海湾のムラサキインコガイがムラサキイガイに変更され24地点(うち2地点は 2生物種を調査)においての調査であった。2011年度は、能登半島沿岸のムラサキイガイが再追加され、蕪 島のウミネコ、山田湾のムラサキイガイ及びアイナメ並びに鳴門のイガイが外れ、サンマが常磐沖から三 陸沖に変更され、仙台湾(松島湾)のスズキがアイナメに、横浜港のミドリイガイがムラサキイガイに、 高松港のムラサキイガイがボラに変更され22地点(うち1地点は2生物種を調査)、2012年度は、蕪島のウ ミネコ並びに山田湾のムラサキイガイ及びアイナメが再追加され、サンマが三陸沖から常磐沖に再変更さ れ24地点(うち2地点は2生物種を調査)において調査を実施した。2013年度は、蕪島のウミネコ並びに盛 岡市郊外のムクドリの調査が廃止され、琵琶湖北湖竹生島及び天神川(倉吉市)のカワウが追加され、24 地点(うち2地点は2生物種を調査)において調査を実施した。2014年度は、サンマが常磐沖から三陸沖に 再変更され、島根半島沿岸七類湾並びに洞海湾のムラサキイガイの調査が廃止され、22地点(うち2地点は 2生物種を調査)において調査を実施した。2015年度は、サンマが三陸沖から小名浜沖に再変更され、琵琶 湖北湖竹生島沖のカワウの調査が外れ、21地点(うち2地点は2生物種を調査)において調査を実施した。 2016年度は、サンマが小名浜沖から常磐沖に再変更され、琵琶湖北湖竹生島沖のカワウが再追加され、22 地点(うち2地点は2生物種を調査)において調査を実施した。2017年度は、2016年度と同一の22地点(う ち2地点は2生物種を調査)において調査を実施した。2018年度は、日本海沖のアイナメが外れ、21地点(う ち2地点は2生物種を調査)において調査を実施した。2018年度は、日本海沖のアイナメが外れ、21地点(う

2019年度は、常磐沖のサンマがマサバに変更され、釧路沖のシロサケ、高松港のボラ及び琵琶湖竹生島のカワウが外れ、19地点(うち1地点は2生物種を調査)において調査を実施した。

なお、参考として笛吹川下曽根橋(甲府市)のカワウの卵についても2013年度から2017年度に調査を実施しており、2017年度には昆陽池(伊丹市)が追加され、2地点においてカワウの卵の調査を実施した。2018 年度及び2019年度も、2017年度と同一の2地点においてカワウの卵の調査を実施した。

4) 大気

2002年度は34地点、2003年度は小笠原父島が追加され、釧路市立春採中学校(釧路市)が北海道渡島支 庁庁舎(函館市)に変更され35地点、2004年度は兵庫県環境研究センター(神戸市)及び鹿児島県環境保 健センター(鹿児島市)が追加され、北海道渡島支庁庁舎(函館市)が上川保健福祉事務所(名寄市)に 変更され37地点、2005年度は上川保健福祉事務所(名寄市)が釧路市立春採中学校(釧路市)に変更され 37地点、2006年度には釧路市立春採中学校(釧路市)が北海道渡島支庁庁舎(函館市)に変更され37地点、 2007年度は北海道渡島支庁庁舎(函館市)が上川保健福祉事務所(名寄市)、茨城県環境監視センター(水 戸市)が茨城県霞ケ浦環境科学センター(土浦市)に変更され、天理一般環境大気測定局(天理市)が廃 止され36地点、2008年度は上川保健福祉事務所(名寄市)が北海道釧路支庁(釧路市)に変更され、天理 一般環境大気測定局(天理市)が再度追加され37地点においての調査であった。2009年度は北海道釧路支 庁(釧路市)が北海道渡島支庁庁舎(函館市)に変更され37地点においての調査であった。2010年度は、 北海道渡島支庁庁舎(函館市)が北海道上川合同庁舎(旭川市)に、富士吉田合同庁舎(富士吉田市)が 山梨県衛生環境研究所(甲府市)に変更され37地点においての調査であった。2011年度は、北海道上川総 合振興局(旭川市)が北海道釧路総合振興局(釧路市)に、萩市役所見島支所(萩市)が萩市見島ふれあ い交流センター(萩市)に、徳島県保健環境センター(徳島市)が徳島県立保健製薬環境センター(徳島 市)に変更され、37地点において調査が実施された。2012年度は、北海道釧路総合振興局(釧路市)が北 海道渡島総合振興局(函館市)に、宮城県保健環境センター(仙台市)が宮城県消防学校(仙台市)に、 葺合一般環境大気測定局(神戸市)が神戸市役所(神戸市)に変更され、京都府立城陽高等学校(城陽市) が外れ36地点において調査が実施された。2013年度は、北海道渡島総合振興局(函館市)が北海道上川総 合振興局(旭川市)に変更され36地点において調査が実施された。2014年度は、北海道上川総合振興局(旭 川市)が北海道釧路総合振興局(釧路市)に、宮城県消防学校(仙台市)が宮城県仙台土木事務所(仙台 市)に変更され36地点において調査が実施された。2015年度は、北海道釧路総合振興局(釧路市)が北海 道渡島総合振興局(函館市)に、宮城県仙台土木事務所(仙台市)が宮城県消防学校(仙台市)に、香川 県高松合同庁舎(高松市)が香川県立総合水泳プール(高松市)に変更され、横浜市環境科学研究所(横 浜市)が移転に伴い横浜市磯子区から横浜市神奈川区に位置が変更され、群馬県衛生環境研究所(前橋市) が廃止され、35地点において調査が実施された。2016年度は、北海道渡島総合振興局(函館市)が北海道 上川総合振興局(旭川市)に、網張スキー場(雫石市)が巣子一般環境大気測定局(滝沢市)に、宮城県 消防学校(仙台市)が宮城県保健環境センター(仙台市)に、地方独立行政法人大阪府立環境農林水産総 合研究所(大阪市)が大阪合同庁舎2号館別館(大阪市)に、萩市見島ふれあい交流センター(萩市)が萩 健康福祉センター(萩市)に変更され、山形県環境科学研究センター(村山市)が追加され、京都府立城 陽高等学校(城陽市)が再追加され、37地点において調査が実施された。2017年度は、北海道上川総合振 興局(旭川市)が北海道釧路総合振興局(釧路市)に、萩健康福祉センター(萩市)が山口県立萩美術館・ 浦上記念館(萩市)に変更され、37地点において調査が実施された。2018年度は、北海道釧路総合振興局 (釧路市)が北海道渡島総合振興局(函館市)に、山口県立萩美術館・浦上記念館(萩市)が萩健康福祉 センター(萩市)に要要支され、37地点において調査が実施された。

2019年度は、北海道渡島総合振興局(函館市)が北海道上川総合振興局(旭川市)に再変更され、神戸市役所(神戸市)が神戸市環境保健研究所(神戸市)に変更され、京都府立城陽高等学校(城陽市)が廃止され、36地点において調査が実施された。

(3) 定量(検出)下限値の推移

モニタリング調査における検出下限値を表6-1から表6-4に、定量下限値を表7-1から表7-4に示す。2002年度の水質及び底質は装置検出下限値(IDL)を、2003年度以降の水質及び底質並びに2002年度以降の生物及び大気は分析方法の検出下限値(MDL)をそれぞれ検出下限値として扱っている。

表6-1から表6-4にあるとおり、検出下限値については年度によって変動はあるものの、分析機関が媒体ごと に一機関になっていることに加え、高感度のGC/HRMS等を用いた分析を実施しており、継続的に高感度かつ ほぼ同等の検出下限値及び定量下限値で測定がされている。

モニタリング調査では測定値の推移を定量的に評価できることが重要であるため、2002年度調査結果から は原則として次のとおり定量下限値を示すことで数値の信頼性を確保することとした。

・検出下限値の約3倍を定量下限値とする。

・検出頻度(検出数/検体数等)は検出下限値により判定する。

- ・幾何平均値の算出においては、検出下限値以上の測定値はそのまま用い、検出下限値未満の測定値は検 出下限値の1/2を用いる。
- ・幾何平均値、中央値等の表記に当たっては、その数値が検出下限値以上定量下限値未満の場合において はトレース値とし、検出下限値未満であった場合においては不検出とする。

(4) まとめ

(1)~(3)の検討結果より、調査結果の評価を行うに当たっては以下の点を考慮する必要がある。

PCB類及びHCBについては全媒体で2002年度から2019年度調査まで継続的に実施している。その他の物質についても数年おきに実施し、現在まで継続的な調査を行っている。

また、調査地点のうち水質、底質及び大気並びに生物の貝類及び魚類に係る地点については、一部の地 点では地点が入れ替わってはいるものの、概ね継続的に調査を実施している。他方、鳥類に係る調査地点 については、2012年度まで鳥類でウミネコ及びムクドリを調査対象生物としていたものをカワウに入れ替 えている。これに伴い、従来調査を実施していた地点を変更して調査を実施しており2012年度までとの継 続性がない。

このため、鳥類について化学物質の残留状況を経年的に評価する場合には、2013年度以降とそれ以前と に継続性がないことに留意する必要がある。

PCB類及びHCBの大気では、2007年度の温暖期及び寒冷期並びに2008年度の温暖期に用いた大気試料採 取装置の一部からPCB類及びHCHが検出され、PCB類及びHCHの測定に影響を及ぼすことが判明したため、 それぞれ3分の1程度の地点で欠測としており、大気についてこれらの化学物質の残留状況を経年的に評価 する場合には、この点に留意する必要がある。

定量(検出)下限値については、水質、底質、生物及び大気ともに2002年度から2019年度調査までの値 はほぼ同等であり、高感度で測定が行われている。

以上より、モニタリング調査の対象物質については一部において留意が必要な点があるものの、概ね経 年的な評価が可能であると判断される。

表4 モニタリング調査の年度別実施状況

物質 調査	調査	年度				•	•		•			•			•	-		•	
番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
[1]	貝類																		
	魚類																		
·	鳥類																		
	大気																		
物質		年度																	
調査	調査 媒体		2002	2004	2005	2000	2007	2000	2000	2010	2011	2012	2012	2014	2015	2016	2017	2010	2010
番号		2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質 底質																		
	員類																		
[2]	魚類																		
	鳥類																		
	大気																		
物質	調査	年度																	
調査 番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
[3]	貝類																		
[3]	魚類																		
	鳥類		_																
	大気																		
物質		上中																	
調査	調査	年度			Ī	T	T	Ī	T			Ī			T	Ī	Ī	Ī	T
番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質		-															_	
	底質 貝類													-					
[4]	魚類																		
	鳥類																		•
	大気																		
					:	:	:	:	:			:			:	:	:	:	:
物質	調査	年度																	
調査 番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
·⊞·/J	水質																		
	底質																		
[5]	貝類																		
[5]	魚類																		
	鳥類																		
	大気																		
the for the first																			
物質調査	調査	年度			•	.	.	•	•			•			•	•	•	•	•
司司(古)	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
調査 番号																			
番号	水質				-														
番号 [6-1] [6-2]	水質 底質																		
番号 [6-1] [6-2] [6-3]	水質 底質 貝類																		
番号 [6-1] [6-2] [6-3] [6-4]	水質 底質 貝類 魚類																		
番号 [6-1] [6-2] [6-3]	水質 底質 貝類																	÷	

(注) ■:モニタリング調査において実施したことを意味する(以下同じ。)。

[1] PCB 類、[2] HCB、[3] アルドリン、[4] ディルドリン、[5] エンドリン、[6-1] *p,p*'-DDT、[6-2] *p,p*'-DDE、[6-3] *p,p*'-DDD、[6-4] *o,p*'-DDT、 [6-5] *o,p*'-DDE、[6-6] *o,p*'-DDD

物質																			
調査	調査	年度	1	т	7	7	т	т	T	T		т	1			T	T	T	T
番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
[7] 11	水質																		
[7-1] [7-2]	底質															_			
[7-3]	貝類																		
[7-4]	魚類 鳥類																1		
[7-5]	大気																		
I			_								_							<u> </u>	
物質	調査	年度																	
調査 番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
留万	水質	2002	2005	2004	2003	2000	2007	2000	2007	2010	2011	2012	2015	2014	2015	2010	2017	2010	2017
	底質																		
	貝類																		
[8-1]	魚類																		
	鳥類																•		•
	大気																		
_	水質																		ļ
	底質	 																	
[8-2]	貝類																		
[8-3]	魚類																		
	人义			-			-												
物質	锢木	年度																	
調査	調査 媒体		2002	2004	2005	2000	2007	2000	2000	2010	2011	2012	2012	2014	2015	2016	2017	2010	2010
番号		2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	<u>水質</u> 底質																		
[9-1]	 貝類																		
[9-2]	魚類																		
[9-3]	鳥類																		
	大気																		
物質調査	調査	年度		_	_	_	_	_	_			_	_			_			_
<u>调且</u> 番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
[10]	貝類																		
[10]	魚類																		
	鳥類																		
	大気																		
物質	⇒□★	年度																	
調査	調査 媒体		2002	2004	0005	0000	2007	2000	2000	0010	0011	2012	2012	2014	2015	2016	0017	2010	2010
番号		2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
[11-1]	 _ 貝類																		
[11-1] [11-2]	魚類																		
1	鳥類																		
	大気																		
	水質																		
	底質																		
[11-3]																		ļ	
1 F 4 4 1 1 1	魚類																	1	
[11-4]				÷	+	.+	÷	+	+	÷		+	÷			<u>+</u>	÷		+
[11-4]	魚類 鳥類 大気																		

(注) □: HCH 類の大気については、2003 年度から 2008 年度に用いた大気試料採取装置の一部から HCH 類が検出され、HCH 類の測定 に影響を及ぼすことが判明したが、個別のデータについて影響の有無を遡って判断することが困難であるため、この期間の全 てのデータについて欠測扱いとすることとした。

[7-1] *cis*-クロルデン(参考)、[7-2] *trans*-クロルデン(参考)、[7-3] オキシクロルデン(参考)、[7-4] *cis*-ノナクロル(参考)、[7-5] *trans*-ノナクロル(参考)、 [8-1]ヘプタクロル(参考)、[8-2] *cis*-ヘプタクロルエポキシド(参考)、[8-3] *trans*-ヘプタクロルエポキシド(参 考)、[9-1] Parlar-26、[9-2] Parlar-50、[9-3] Parlar-62、[10] マイレックス、[11-1] α-HCH、[11-2] β-HCH、[11-3] γ-HCH(別名:リンデン)、 [11-4] δ -HCH

物質 調査 番号	調査	年度																	
<u></u> 爾里	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
[10]	貝類																		
[12]	魚類																		
	鳥類																		
	大気		\triangle																

物質 調査号	PV-0 111	年度																	
<u></u> 啊且 番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質		Δ																
	底質		Δ																
[12]	貝類																		
[13]	魚類																		
	鳥類																		
	大気			Δ															

物質 調査	調査	年度			-					-		-	-	-	-	-	-	-	
<u></u> 啊且 番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質				\triangle														
	底質																		
[14-1]	貝類																		
[14-4]	魚類																		
[鳥類																		
	大気			Δ															
	水質				Δ														
Í	底質			Δ															
[14.0]	貝類																		
[14-2]	魚類																		
ľ	鳥類																		
	大気			Δ															
	水質				Δ														
ľ	底質		Δ																
F1 4 - 21	貝類																		
[14-3]	魚類		Δ										•						
ľ	鳥類																		
	大気			Δ															
	水質		Δ																
ľ	底質																		
51 4 51	貝類																		
[14-5]	魚類		Δ																
ľ	鳥類																		
İ	大気																		
	水質				Δ														
Í	底質																		
[14]	貝類																		
[14-6]	魚類																		
	鳥類																		
	大気																		
	水質	Δ			Δ														
	底質	Δ	Δ																
[14 7]	貝類																		
[14-7]	魚類	Δ	Δ																
	鳥類																		
	大気																		

(注) △:継続的調査以外の調査において実施したことを意味する(以下同じ。)。

[12] クロルデコン (参考) 、[13] ヘキサブロモビフェニル類 (参考) 、[14-1] テトラブロモジフェニルエーテル類、[14-2] ペンタブ ロモジフェニルエーテル類、[14-3] ヘキサブロモジフェニルエーテル類、[14-4] ヘプタブロモジフェニルエーテル類、[14-5] オクタブ ロモジフェニルエーテル類、[14-6] ノナブロモジフェニルエーテル類、[14-7] デカブロモジフェニルエーテル

物質 調査 番号	調査	年度																	
<u>調査</u> 番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質	\triangle			\triangle														
	底質		Δ		Δ														
[15]	貝類				Δ														
[15]	魚類		Δ		Δ														
	鳥類																		
	大気			Δ															

物質 調査 番号	調査	年度																	
<u></u> 一面且 番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質	\triangle			\triangle														
	底質		Δ		Δ														
[10]	貝類				Δ														
[16]	魚類		\triangle		\triangle														
	鳥類																		
	大気			\triangle															

物質 調査 番号	調査	年度																	
詞 重 番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
[17]	貝類																		
[17]	魚類																		
	鳥類																		
	大気																		

物質 調査号	調査	年度										-							
响且 番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
[18-1]	貝類																		
[18-1] [18-2]	魚類																		
	鳥類																		
	大気																		

物質 調査 番号	調査	年度																	
詞宜 番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質		\triangle																
	底質		\triangle																
[19-1]	貝類																		
[19-2] [19-3]	魚類			Δ															
[19-5]	鳥類																		
	大気																		
	水質		Δ																
	底質		\triangle																
[19-4]	貝類																		
[19-5]	魚類			Δ															
	鳥類																		
	大気																		

(注) 2003 年度及び 2004 年度は総 1,2,5,6,9,10-ヘキサブロモシクロドデカン類

[15] ペルフルオロオクタンスルホン酸 (PFOS)、[16] ペルフルオロオクタン酸 (PFOA)、[17] ペンタクロロベンゼン、[18-1] α-エン ドスルファン、[18-2] β-エンドスルファン、[19-1] α-1,2,5,6,9,10-ヘキサブロモシクロドデカン、[19-2] β-1,2,5,6,9,10-ヘキサブロモシクロ ドデカン、[19-3] γ-1,2,5,6,9,10-ヘキサブロモシクロドデカン、[19-4] δ-1,2,5,6,9,10-ヘキサブロモシクロドデカン (参考)、[19-5] ε-1,2,5,6,9,10-ヘキサブロモシクロドデカン (参考)

物質 調査号	調査	年度																	
<u></u> 一面且 番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
[20]	貝類																		
[20]	魚類	Δ																	
	鳥類																		
	大気	\triangle																	

物質 調査 番号	調査	年度																	
詞 重 番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
[21]	底質																		
[21]	貝類																		
	魚類																		
	鳥類 大気																		
	大気																		

物質 調査 番号	調査	年度																	
<u></u> 而且 番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質				\triangle														
	底質																		
[22, 1]	貝類																		
[22-1]	魚類																		
	鳥類																		
	大気																		
	水質																		
	底質																		
100.01	貝類																		
[22-2]	魚類																		
	鳥類																		
	大気																		

物質 調査 番号	調査	年度																	
<u></u> 而且 番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質			\triangle	\triangle														
[23-1]	底質			\triangle	\triangle														
[23-1] [23-2] [23-3] [23-4]	貝類				Δ														
[23-3]	魚類			Δ	Δ														
[23-4]	鳥類																		
	大気																		

(注) 2005年度の水質及び底質では[23-1] 塩素化デカン類は塩素数が5のもの、[23-2] 塩素化ウンデカン類、[23-3] 塩素化ドデカン類及び[23-1] 塩素化トリデカン類は塩素数が6のものを、貝類及び魚類では[23-1] 塩素化デカン類は塩素数が4から6までのもの、[23-2] 塩素化ウンデカン類、[23-3] 塩素化ドデカン類及び[23-4] 塩素化トリデカン類は塩素数が5から7までのものをそれぞれ対象とした。 2016年度以降の水質、底質並びに貝類、魚類及び鳥類では、塩素数が5から9までのものを対象とした 大気では、2016年度の[23-1] 塩素化デカン類は塩素数が4から6までのもの、[23-2] 塩素化ウンデカン類、[23-3] 塩素化ドデカン類 及び[23-4] 塩素化トリデカン類は塩素数が4から7までのものを対象とし、2017年度以降はいずれの物質についても塩素数が4から7 までのものを対象とした。

物質 調査 番号	調査	年度																	
<u></u> 啊且 番号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質			\triangle															
[24]	貝類																		
[24]	魚類																		
	鳥類																		
	大気																		

[20] ポリ塩化ナフタレン類、[21] ヘキサクロロブタ-1,3-ジエン、[22-1] ペンタクロロフェノール、[22-2] ペンタクロロアニソール、[23-1] 塩素化デカン類、[23-2] 塩素化ウンデカン類、[23-3] 塩素化ドデカン類、[23-4] 塩素化トリデカン類、[24] ジコホル

物質 調査 番号	調査	年度																	
祠 重 番 号	媒体	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
	水質																		
	底質																		
[25]	貝類																		
[25]	魚類																		
	鳥類																		
	大気																		

[25] ペルフルオロヘキサンスルホン酸 (PFHxS)

表5-1	モニタリ	リンク	「調査の年歴	复别調查地点	の一覧	(水質)
------	------	-----	--------	--------	-----	------

表5-1 ÷ 地方	モニタリンク調査の年度別調査:	·巴 点 年度		見		貝)													<u> </u>	\triangle
^{地力} 公共団体	調査地点	中 _侵 '02		' 04	' 05	'06 '	07	' 08	' 09	' 10	' 11	·12	'13	'14	'15	·16	'17	'18	·19	分 析
北海道	十勝川すずらん大橋(帯広市)					_				10		12	15	14	15		17	10	17	
1211772	石狩川河口石狩河口橋(石狩市)																			\diamond
青森県	十三湖																			
岩手県	豊沢川豊沢橋(花巻市)																			\diamond
宮城県	仙台湾(松島湾)																			\diamond
秋田県	八郎湖																			\diamond
山形県	最上川河口 (酒田市)																			\diamond
福島県	小名浜港																			\diamond
茨城県	利根川河口かもめ大橋(神栖市)																			\diamond
	利根川河口利根川大橋(波崎町)																			
栃木県	田川給分地区頭首工(宇都宮市)																			
群馬県	利根川利根大堰上流(千代田町)																			
埼玉県	荒川秋ヶ瀬取水堰(志木市)																			
千葉市	花見川河口(千葉市)																			\diamond
東京都	荒川河口 (江東区)																			
	隅田川河口 (港区)																			\diamond
横浜市	横浜港																			\diamond
川崎市	川崎港京浜運河																			\diamond
新潟県	信濃川下流 (新潟市)																			
富山県	神通川河口萩浦橋(富山市)																			\diamond
石川県	犀川河口 (金沢市)																			\diamond
福井県	笙の川三島橋(敦賀市)																			
長野県	諏訪湖湖心																			\diamond
静岡県	天竜川掛塚橋(磐田市)																			\diamond
愛知県	名古屋港																			\diamond
三重県	四日市港																			\diamond
滋賀県	琵琶湖唐崎沖中央																			\diamond
京都府	宮津港																			\diamond
京都市	桂川宮前橋(京都市)																			\diamond
大阪府	大和川河口(堺市)																			\diamond
大阪市	大阪港																			\diamond
兵庫県	姫路沖					_														\diamond
神戸市	神戸港中央								_		<u> </u>									\diamond
和歌山県	紀の川河口紀の川大橋(和歌山市)					_	_		_		_									
岡山県	水島沖					=	$\equiv +$		_	-									-	
広島県	呉港						— +		_	-	-									\diamond
	広島湾	_	_	_					_		-									
山口県	徳山湾								-	-	-									\diamond
	宇部沖	_	_	_		_	_		-	-										
法自旧	萩沖					=	=+				-									\land
徳島県	吉野川河口(徳島市)					=														\land
香川県 高知県	高松港 四万十川河口(四万十市)																			\diamond
^{商丸県} 北九州市	四万十川河口(四万十市) 洞海湾					·····	_													
佐賀県						·····	·····													\diamond
長崎県	大村湾	-		_																
	- <u>八</u> 州為 緑川平木橋(宇土市)						_													\diamond
宮崎県	大淀川河口(宮崎市)																			\diamond
鹿児島県	天降川(霧島市)	-					······													
ルビノレロガギ	五反田川五反田橋(いちき串木野市)					·····	······													\diamond
沖縄県	- 五次山川五次山橋(いらさ甲不野川) 那覇港																			\diamond
						-	-	-	-	-	-	-		-	_		_			\sim

(注2) 「地方公共団体」は、試料採取を実施した地方公共団体の名称であり、複数年度実施している地点にあっては直近の年度に試料採取を実施した地方公共団体の名称を示した。

(注3)「分析」の列に◇を付した調査地点は、統計学的な手法を用いた経年分析を実施した地点であることを意味する。また、分析 対象とする地点とは、2018 年度に調査が実施されている地点であり、かつ、それぞれの調査対象物質の調査を開始してから 2018 年度までの期間内において2か年以上測定されていない地点を除いたものを分析対象地点とした。

表5-2 ~	モニタ	リンク	"調査の年度別調査地点の一覧	(底質)
--------	-----	-----	----------------	------

衣5-2 -4 地方	ニニタリング調査の年度別調査国	年度	-	元	()EX	領)														分
地方 公共団体	調査地点	·····	' 03	' 04	' 05	' 06	' 07	' 08	' 09	'10	' 11	·12	·13	'14	<u>'15</u>	'16	·17	'18	'19	
北海道	天塩川恩根内大橋(美深町)																17	10	17	
10177	天塩川恩根内大橋上流カヌー乗り場	_	_		_	_			—		-		—					-	1	
	(美深町)																			
	十勝川すずらん大橋(帯広市)																			
	石狩川河口石狩河口橋(石狩市)																			\diamond
	苫小牧港																			\diamond
青森県	十三湖												_				_		-	· · · · · · · · · · · · · · · · · · ·
岩手県	豊沢川豊沢橋(花巻市)																			\diamond
宮城県	仙台湾(松島湾)																			\diamond
仙台市	広瀬川広瀬大橋(仙台市)																			\diamond
秋田県	八郎湖										Ē									\diamond
山形県	最上川河口(酒田市)																			\diamond
福島県	小名浜港																			\diamond
茨城県	利根川河口かもめ大橋(神栖市)	_																		\diamond
	利根川河口利根川大橋(波崎町)										_		_						<u> </u>	· · · · · · · · · · · · · · · · · · ·
栃木県	田川給分地区頭首工(宇都宮市)																			\diamond
千葉県	市原・姉崎海岸																			\diamond
千葉市	花見川河口(千葉市)																			\diamond
東京都	荒川河口(江東区)																			\diamond
2	隅田川河口(港区)																			\diamond
横浜市	横浜港																			\diamond
川崎市	多摩川河口(川崎市)																			\diamond
	川崎港京浜運河																			\diamond
新潟県	信濃川下流 (新潟市)																			\diamond
富山県	神通川河口萩浦橋(富山市)																			\diamond
石川県	犀川河口 (金沢市)																			\diamond
福井県	笙の川三島橋(敦賀市)																			\diamond
山梨県	荒川千秋橋(甲府市)																			\diamond
長野県	諏訪湖湖心																			\diamond
静岡県	清水港																			\diamond
	天竜川掛塚橋(磐田市)																			\diamond
愛知県	衣浦港																			\diamond
	名古屋港																			\diamond
三重県	四日市港																			\diamond
	鳥羽港																			\diamond
滋賀県	琵琶湖早崎港沖										1							1		
	琵琶湖南比良沖中央																			\diamond
	琵琶湖唐崎沖中央																			\diamond
京都府	宮津港																			\diamond
京都市	桂川宮前橋(京都市)																			\diamond
大阪府	大和川河口(堺市)																			\diamond
大阪市	大阪港																			\diamond
	大阪港外																			\diamond
	淀川河口 (大阪市)																			\diamond
	淀川(大阪市)																			\diamond
兵庫県	姫路沖																			\diamond
神戸市	神戸港中央																			\diamond
奈良県	大和川(王寺町)																			\diamond
和歌山県	紀の川河口紀の川大橋(和歌山市)																			\diamond
岡山県	水島沖																			\diamond
広島県	呉港																			\diamond
	広島湾																			\diamond
山口県	徳山湾																			\diamond
	宇部沖																			\diamond
	萩沖																			\diamond
徳島県	吉野川河口 (徳島市)																			\diamond
香川県	高松港																			\diamond
愛媛県	新居浜港																			\diamond
高知県	四万十川河口(四万十市)																			\diamond
北九州市	洞海湾																			\diamond
福岡市	博多湾																			\diamond
佐賀県	伊万里湾															· _				\diamond

地方	調査地点	年度	F																	分
公共団体	神重地尽	' 02	' 03	' 04	' 05	' 06	' 07	' 08	' 09	'10	'11	'12	'13	'14	'15	'16	'17	'18	' 19	析
長崎県	大村湾																			
大分県	大分川河口(大分市)																			\diamond
宮崎県	大淀川河口(宮崎市)																			\diamond
鹿児島県	天降川(霧島市)																			\diamond
	五反田川五反田橋(いちき串木野市)																			\diamond
沖縄県	那覇港																			\diamond

(注 2) 「地方公共団体」は、試料採取を実施した地方公共団体の名称であり、複数年度実施している地点にあっては直近の年度に試料採取を実施した地方公共団体の名称を示した。

(注3)「分析」の列に◇を付した調査地点は、統計学的な手法を用いた経年分析を実施した地点であることを意味する。また、分析 対象とする地点とは、2019 年度に調査が実施されている地点であり、かつ、それぞれの調査対象物質の調査を開始してから 2019 年度までの期間内において2か年以上測定されていない地点を除いたものを分析対象地点とした。

表5-3 モニタリング調査の年度別調査地点の一覧(生物)

地方	調査地点	生物種	年月	~																	分
公共団体	调 宜地尽		' 02	' 03	' 04	' 05	' 06	' 07	' 08	' 09	'10	' 11	'12	'13	'14	' 15	'16	• ' 17	'18	'19	析
		(貝類)														ļ					
岩手県	山田湾	ムラサキイガイ										ļ									\diamond
神奈川県	三浦半島	ムラサキイガイ										ļ				_					
横浜市	横浜港	ムラサキイガイ																			\sim
		ミドリイガイ																			\sim
石川県	能登半島沿岸	ムラサキイガイ																			\diamond
島根県	島根半島沿岸七類湾	ムラサキイガイ																			
山口県	見島	ムラサキインコガイ																			
	鳴門	イガイ																			
香川県	高松港	ムラサキイガイ																			
		イガイ																			
北九州市	洞海湾	ムラサキイガイ															1	1			
		ムラサキインコガイ																			
		(魚類)																			
北海道	釧路沖	ウサギアイナメ																			\diamond
		シロサケ																			
	日本海沖(岩内沖)	アイナメ																			
岩手県	山田湾	アイナメ																			\diamond
宮城県	仙台湾(松島湾)	スズキ										1	1			1	1	1			~
		アイナメ																			\diamond
茨城県	常磐沖	サンマ														1					
		マサバ											1			1	1	1			
	三陸沖	サンマ											1			1	1	1			
	小名浜沖	サンマ															1	1			
東京都	東京湾	スズキ																			\diamond
川崎市	川崎港扇島沖	スズキ																			\diamond
名古屋市	名古屋港	ボラ																			
	琵琶湖安曇川(高島市)	ウグイ																			\diamond
大阪府	大阪湾	スズキ																			\diamond
兵庫県	姫路沖	スズキ																			
鳥取県	中海	スズキ																			\diamond
広島市	広島湾	スズキ																			\diamond
香川県	高松港	ボラ																			
高知県	四万十川河口 (四万十市)	スズキ																			\diamond
	大分川河口	スズキ	1																		1
	薩摩半島西岸	スズキ																			\diamond
沖縄県	中城湾	ミナミクロダイ																			\diamond
		(鳥類)																			
l l			1 —	_	_		-					t			İ	1	1	1	t	·	1
青森県	蕪島 (八戸市)	ウミネコ			. 🔳 :								÷ 💻		1	1				1	
	蕪島(八戸市) 盛岡市郊外	ウミネコ ムクドリ														1	-				
岩手県		· · ·											+								

(注 2) 「地方公共団体」は、試料採取を実施した地方公共団体の名称であり、複数年度実施している地点にあっては直近の年度に試 料採取を実施した地方公共団体の名称を示した。

(注3)「分析」の列に◇を付した調査地点は、統計学的な手法を用いた経年分析を実施した地点であることを意味する。また、分析 対象とする地点とは、2019年度に調査が実施されている地点であり、かつ、それぞれの調査対象物質の調査を開始してから 2019年度までの期間内において2か年以上測定されていない地点を除いたものを分析対象地点とした。

表5-4	モニタリ	レンク	う調査の年度別調査地点の一覧	(大気)
------	------	-----	----------------	------

	モニタリング調査の年度別調査地点の	1		大タ	त्)															
地方 公共団体	調査地点	年月 '02		' 04	<u>'05</u>	'06	' 07	' 08	' 09	'10	'11	'12	'13	'14	'15	'16	'17	'18	'19	_ 分 _ 析
北海道	上川保健福祉事務所(名寄市)																			
	釧路市立春採中学校(釧路市)																			
	北海道釧路総合振興局(釧路市)																			
	北海道渡島総合振興局(函館市)																ļ			
	北海道上川総合振興局(旭川市)																			
	札幌芸術の森(札幌市)																			\diamond
岩手県	網張スキー場(雫石町)															ļ	<u> </u>			
山下山	第一般環境大気測定局(滝沢市)		_	_	_	_	_	_	_	_	_					_	_	-	.	
宮城県	宮城県保健環境センター(仙台市)																-			
	国設仙台測定局(仙台市)											_	_		_		. 			
	宮城県消防学校(仙台市)													_			-			
山形県	宮城県仙台土木事務所(仙台市) 山形県環境科学研究センター(村山市)															-				
	山形県環境科学研究センター(村山川) 茨城県環境監視センター(水戸市)															-	-			
八城帝	茨城県霞ケ浦環境科学センター(土浦市)	_	-	-	-	-				_	-		_			-	-			
群馬県									-						-	-	-	-		
	市原松崎一般環境大気測定局(市原市)																			\diamond
東京都	東京都環境科学研究所(江東区)																			\diamond
ALL ALL ALL	東京都立衛生研究所(調査当時)(新宿区)			-	_			-		_		-	_	-		-	-	-		
	小笠原父島(小笠原村)																			\Diamond
神奈川県	神奈川県環境科学センター(平塚市)																			\diamond
	旧横浜市環境科学研究所(横浜市)															1	1			
	横浜市環境科学研究所(横浜市)		•	•							•	•		•						
新潟県	大山一般環境大気測定局(新潟市)																			\diamond
富山県	砺波一般環境大気測定局(砺波市)																			\diamond
石川県	石川県保健環境センター(金沢市)																			\diamond
山梨県	富士吉田合同庁舎(富士吉田市)																			
	山梨県衛生環境研究所(甲府市)																			
	長野県環境保全研究所(長野市)																			\diamond
	岐阜県保健環境研究所(各務原市)																			\diamond
	千種区平和公園(名古屋市)																			\diamond
三重県	三重県保健環境研究所(四日市市)																			\diamond
京都府	京都府立城陽高等学校(城陽市)																			
大阪府	地方独立行政法人大阪府立環境農林水産総合																			
	研究所(大阪市)			-	-						-	-				_	-	_	_	
亡中旧	大阪合同庁舎2号館別館(大阪市)			_	_	_	_	_	_	_	_	_	_	_	_		-			
兵庫県 神戸市	兵庫県環境研究センター(神戸市) 葺合一般環境大気測定局(神戸市)																-			
竹山	一 <u>百一一般</u> 现 见 久 风 彻 定 向 (种 户 印) 神 戸 市 役 所 (神 戸 市)	_	-	-	-	-	-	-	-	-	-					_				
	神戸市環境保健研究所(神戸市)			•	-						-				-	-	-			
奈良県	天理一般環境大気測定局(天理市)																			\diamond
	国設隠岐酸性雨測定所(隠岐の島町)																			\diamond
	広島市立国泰寺中学校(広島市)																			\diamond
	山口県環境保健センター(山口市)	Ē										+ —					ī			\diamond
	萩市役所見島支所(萩市)		÷								-	-	_	-	_	-	1-	—		×
	萩市見島ふれあい交流センター(萩市)		_	-		_	_			_						•	1			
	萩健康福祉センター(萩市)			1													1			
	山口県立萩美術館・浦上記念館(萩市)	1	1	1	•	•	•				1	1	•	1	•	1		 		
徳島県	徳島県保健環境センター(徳島市)											1		•	•	1	1	1		
	徳島県立保健製薬環境センター(徳島市)																			1
香川県	香川県高松合同庁舎 (高松市)														[I	[Ι
	香川県立総合水泳プール (高松市)																			
	愛媛県南予地方局(宇和島市)																			\diamond
	大牟田市役所(大牟田市)																			\diamond
	佐賀県環境センター(佐賀市)																			\diamond
	熊本県保健環境科学研究所(宇土市)																			\diamond
	宮崎県衛生環境研究所 (宮崎市)																			\diamond
鹿児島県	鹿児島県環境保健センター(鹿児島市)																			\diamond
	辺戸岬(国頭村)	_														÷				

(注 2) 「地方公共団体」は、試料採取を実施した地方公共団体の名称であり、複数年度実施している地点にあっては直近の年度に試料採取を実施した地方公共団体の名称を示した。

(注3)「分析」の列に◇を付した調査地点は、統計学的な手法を用いた経年分析を実施した地点であることを意味する。また、分析 対象とする地点とは、2019 年度に調査が実施されている地点であり、かつ、それぞれの調査対象物質の調査を開始してから 2019 年度までの期間内において2か年以上測定されていない地点を除いたものを分析対象地点とした。

表6-1 モニタリング調査における検出下限値の比較(水質)

物質 調査 番号 調査対象物質 ····································	·15				
番号 '02 '03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 [1] 総PCB※ 2.5 2.5 5.0 3.2 3 2.9 3.0 4 24 1.7 15 8 2.9 [2] HCB 0.2 2 8 5 5 3 1 0.2 4 2 0.7 2 0.4 [3] アルドリン(参考) 0.2 0.2 0.4 0.3 0.6 0.3 0.6 0.3 [4] ディルドリン(参考) 0.6 0.3 0.5 0.4 0.4 0.6 1 0.3 0.6 0.2 [5] エンドリン(参考) 2.0 0.3 0.5 0.4 0.4 0.6 1 0.3 0.6 0.2 [5] エンドリン(参考) 2.0 0.3 0.5 0.4 0.4 0.6 1 0.3 0.6 <	÷15				
Image: Constraint of the state of the		'16	'17	' 18	' 19
[2] HCB 0.2 2 8 5 5 3 1 0.2 4 2 0.7 2 0.4 [3] アルドリン (参考) 0.2 0.2 0.4 0.3 0.6 0.3 0.6 0.3 0.4 [4] ディルドリン (参考) 0.6 0.3 0.5 0.34 1 0.7 0.6 0.2 0.6 0.2 [5] エンドリン (参考) 2.0 0.3 0.5 0.4 0.4 0.6 1 0.3 0.6 0.2 [5] エンドリン (参考) 2.0 0.3 0.5 0.4 0.4 0.6 1 0.3 0.6 0.2 DDT類 (参考) 0.2 0.2			-		
[3] アルドリン (参考) 0.2 0.2 0.4 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3 0.2 [4] ディルドリン (参考) 2.0 0.3 0.5 0.4 1 0.7 0.6 0.2 0.6 0.2 [5] エンドリン (参考) 2.0 0.3 0.5 0.4 0.4 0.6 1 0.3 0.6 0.2 DDT類 (参考) 0.2 0.2		2.8	5.5	5	4.7
[4] ディルドリン(参考) 0.6 0.3 0.5 0.34 1 0.7 0.6 0.2 0.6 0.2 [5] エンドリン(参考) 2.0 0.3 0.5 0.4 0.4 0.6 1 0.3 0.6 0.2 DDT類(参考) 0		0.3	0.8	0.6	3
[5] エンドリン(参考) 2.0 0.3 0.5 0.4 0.4 0.6 1 0.3 0.6 DDT類(参考) 0.3 0.5 0.4 0.4 0.6 1 0.3 0.2					
DDT類 (参考)					
[6-1] <i>p</i> , <i>p</i> '-DDT(参考) 0.2 0.9 2 1 0.6 0.6 0.5 0.06 0.8 0.1					
[6-2] <i>p,p</i> '-DDE(参考) 0.2 2 3 2 2 2 0.4 0.4 0.8 0.2					
[6] [6-3] <i>p,p</i> '-DDD (参考) 0.08 0.5 0.8 0.64 0.5 0.6 0.2 0.2 0.08 0.4					
[6-4] o,p'-DDT (参考) 0.4 0.7 2 1 0.8 0.8 0.5 0.06 0.5 0.2					
[6-5] <i>o,p</i> '-DDE (参考) 0.3 0.3 0.5 0.4 0.9 0.8 0.3 0.09 0.09 0.1					
$\begin{bmatrix} 6-6 \end{bmatrix} o, p' - DDD (\% \#) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$					
<u></u>					
[7-1] <i>cis</i> -クロルデン (参考) 0.3 0.9 2 1 2 2 0.6 0.4 4 0.6 0.6 0.9			1		
$\begin{bmatrix} 7-1 \end{bmatrix} cs^{-5} \square D D D D C \begin{bmatrix} 3-7 \\ 0 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.5 $			1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1		
$\begin{bmatrix} 7 \\ * \end{bmatrix} \begin{bmatrix} 7-3 \\ * \end{bmatrix} \overset{3}{\tau} \overset{3}{\tau} \overset{3}{\tau} \overset{5}{\tau} \overset{5}{\tau} \overset{6}{\tau} \overset{6}{\tau} & 0.4 \\ 0.5 \\ 0.4 \\ 0.5 \\ 0.4 \\ 0.9 \\ 2 \\ 0.7 \\ 0.4 \\ 0.4 \\ 0.3 \\ 0.5 \\ 0.4 \\ 0.4 \\ 0.4 \\ \\ 0.4 \\ 0.4 \\ 0.4 \\ \\ 0.4 \\ 0.5 \\ 0.4 $			2		
(3, 1) $(3, 2)$ $(3, 2)$ $(3, 3)$ $(3, 2)$ $(3, 2)$ $(3, 3)$ $($			0.5		
[7-4] cis-ノナクロル (参考) 0.6 0.1 0.2 0.2 0.3 0.8 0.3 0.1 0.4 0.2 0.3 0.3 (251) (金融) (金融) (金融) (金融) (金融) (金融) (金融) (金融			0.6		
$\begin{bmatrix} 7-5 \end{bmatrix} trans- / + / \nu (\$) \\ = 0.4 0.5 2 0.84 1.0 2 0.6 0.4 3 0.5 0.6 0.6 $			1		
考) 0.4 0.5 2 0.64 1.0 2 0.6 0.4 5 0.5 0.0 0.0 1.1 ヘプタクロル類(参考)					
[8-1] ヘプタクロル (参考) 0.5 0.5 2 1 2 0.8 0.3 0.7 0.5 0.2			1		
$\begin{bmatrix} 8 \end{bmatrix} \begin{bmatrix} 8-2 \end{bmatrix} cis - \sqrt{2}\beta \beta \Box \mu \Xi \pi^{2} \\ (5 \pm 5) \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.4 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.7 \\ 0.4 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.3 \\ -1 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.2 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0$			0.6		
キント(参考)					
$\begin{bmatrix} [8-3] trans-\sqrt{\mathcal{J}}\beta\mathcal{J} \Box \mathcal{V} I \end{bmatrix} 0.4 0.3 0.2 0.6 0.7 0.7 0.3 0.5 0.3 0.3$			0.9		
ポキシド (参考) 0.4 0.3 0.2 0.0 0.7 0.7 0.5 0.5 0.5 0.5					
トキサフェン類 (参考)					
[9] [9-1] Parlar-26 (参考) 20 3 4 5 5 3 2 [9] [10 2] Parlar-26 (参考) 20 3 4 5 5 3 2				2	
[9-2] Partar-50 (参考) 30 / 5 5 3 3 3				2	
[9-3] Parlar-62 (参考) 90 30 30 20 30 20				20	
[10] マイレックス 0.09 0.2 0.1 0.5 0.4 0.2 0.2 02				0.3	
НСН類					-
$\begin{bmatrix} 11-1 \end{bmatrix} \alpha - \text{HCH} \qquad 0.3 0.9 2 1 1 0.6 2 0.4 1 3 0.5 2 1.5$		0.4	0.4		2
$\begin{bmatrix} 111 \\ 11-2 \end{bmatrix} \beta \text{-HCH} = \begin{bmatrix} 0.3 & 0.7 & 2 & 0.9 & 0.6 & 0.9 & 0.4 & 0.2 & 0.7 & 0.8 & 0.5 & 2 & 0.4 \\ 11-2 \end{bmatrix} \beta \text{-HCH} = \begin{bmatrix} 0.3 & 0.7 & 2 & 0.9 & 0.6 & 0.9 & 0.4 & 0.2 & 0.7 & 0.8 & 0.5 & 2 & 0.4 & 0.0 & 0.4 & 0.4 & 0.0 & 0.4 & 0.4 & 0.0 & 0.4 & 0.4 & 0.0 & 0.4 & 0.4 & 0.0 & 0.4 & 0.4 & 0.0 & 0.4 $		0.4	0.7		1
[11-3] <i>γ</i> -HCH 彻焰: リンデン) 2 7 5 6 0.7 1 0.2 2 1 0.4 0.8 0.4		0.3	0.5		2
[11-4] & HCH 0.5 0.7 0.5 0.8 0.4 0.9 0.4 0.3 0.2 0.4 0.4 0.2 [12] クロルデコン(参考) 0.05 0.05 0.05 0.04 0.05		0.3	0.4		0.4
[13] ヘキサブロモビフェニル類 2.2 1 0.9					
(おう) (参考) 2.2 1 0.5 ポリブロモジフェニルエー 1 1 1 1					
テル類(臭素数が4から10					
までのもの)	1.2	2	3	5	4
までのもの) [14-1] テトラブロモジフェ 3 3 2 1 3					
までのもの) [14-1] テトラブロモジフェ ニルエーテル類 3 3 2 1 3	2.1	0.9	1	3	2
までのもの) [14-1] テトラブロモジフェ 3 3 2 1 3 [14-2] ペンタブロモジフェ 3 3 2 1 3					
までのもの) [14-1] テトラブロモジフェ 3 3 2 1 3 [14-2] ペンタブロモジフェ 4 1 1 1 1 2					1
までのもの) [14-1] テトラブロモジフェ 3 3 2 1 3 [14-2] ペンタブロモジフェ 3 3 2 1 3 [14-2] ペンタブロモジフェ 4 1 1 1 1 2 [14-3] ヘキサブロモジフェ	0.6	0.8	3	1	1
までのもの) [14-1] テトラブロモジフェ 3 3 2 1 3 [14-2] ペンタブロモジフェ 3 3 2 1 3 [14-2] ペンタブロモジフェ 4 1 1 1 2 [14] 1.4.3] ヘキサブロモジフェ 0.6 2 1 1 1	0.6	0.8	3	1	1
$\begin{bmatrix} 14 - 1 \\ 7 \\ - 1 \\ -$	0.6	0.8 3	3 5	1 3	1 2
までのもの) [14-1] テトラブロモジフェ ニルエーテル類 3 3 2 1 3 [14-2] ペンタブロモジフェ ニルエーテル類 3 3 2 1 3 [14-2] ペンタブロモジフェ ニルエーテル類 4 1 1 1 2 [14-3] ヘキサブロモジフェ ニルエーテル類 0.6 2 1 1 1 [14-4] ヘプタブロモジフェ ニルエーテル類 2 1 2 1 3					
までのもの) [14-1] テトラブロモジフェ ニルエーテル類 3 3 2 1 3 [14-2] ペンタブロモジフェ ニルエーテル類 3 3 2 1 3 [14] [14-3] ヘキサブロモジフェ ニルエーテル類 4 1 1 1 2 [14] [14-3] ヘキサブロモジフェ ニルエーテル類 0.6 2 1 1 1 [14-5] オクタブロモジフェ ニルエーテル類 2 1 2 1 3	0.8				
までのもの) [14-1] テトラブロモジフェ ニルエーテル類33213[14-2] ペンタブロモジフェ ニルエーテル類33213[14-3] ヘキサブロモジフェ ニルエーテル類41112[14-3] ヘキサブロモジフェ ニルエーテル類41112[14-4] ヘプタブロモジフェ ニルエーテル類21213[14-5] オクタブロモジフェ ニルエーテル類0.61120.6	0.8	3	5	3	2
までのもの) [14-1] テトラブロモジフェ 3 3 2 1 3 [14-1] テトラブロモジフェ 3 3 2 1 3 [14-2] ペンタブロモジフェ 4 1 1 1 2 [14-3] ヘキサブロモジフェ 4 1 1 1 2 [14-3] ヘキサブロモジフェ 0.6 2 1 1 1 [14-4] ヘプタブロモジフェ 0.6 2 1 1 3 [14-5] オクタブロモジフェ 0.6 1 1 2 0.6 [14-6] ノナブロモジフェニ 0.6 1	0.8	3	5	3	2
までのもの) [14-1] テトラブロモジフェ ニルエーテル類33213[14-2] ペンタブロモジフェ ニルエーテル類33213[14-3] ヘキサブロモジフェ ニルエーテル類41112[14-3] ヘキサブロモジフェ ニルエーテル類0.62111[14-4] ヘプタブロモジフェ ニルエーテル類0.61123[14-6] ノナブロモジフェニ ルエーテル類3074132	0.8 0.6	3 0.3	5 1	3	2 1
$\begin{bmatrix} 4 \cdot 0 + 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	0.8 0.6	3 0.3	5 1	3	2 1
$\begin{bmatrix} 14 \cdot 1 & -7 & -7 & -7 & -7 & -7 & -7 & -7 & $	0.8 0.6 2	3 0.3 1	5 1 3	3 1 2	2 1 3
$\begin{bmatrix} 4 \cdot 0 + 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	0.8 0.6 2	3 0.3 1	5 1 3	3 1 2	2 1 3
$\begin{bmatrix} 4 \cdot 0 + 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$	0.8 0.6 2 7	3 0.3 1 6	5 1 3 8	3 1 2 4	2 1 3 6
$\begin{bmatrix} 14\cdot1] \\ \neg F \\ \neg J \\ \neg T \\ \neg F \\ \neg J \\ \neg T \\ \neg F \\ \neg J \\ \neg F \\ \neg T \\ \neg F \\ \neg T \\ \neg F \\ \neg T \\ \neg F \\ \neg T \\ \neg F \\ \neg T \\ \neg F \\ \neg T \\ \neg F \\ \neg T \\ \neg F \\ $	0.8 0.6 2 7	3 0.3 1 6	5 1 3 8	3 1 2 4	2 1 3 6
$\begin{bmatrix} 14.1 & -7 & -7 & -7 & -7 & -7 & -7 & -7 & -$	0.8 0.6 2 7 11	3 0.3 1 6 20	5 1 3 8	3 1 2 4 30	2 1 3 6 30

物質	那本社在地质								7.		(pg/L)								
調査 番号	調査対象物質	' 02	' 03	' 04	' 05	' 06	' 07	' 08	' 09	'10	' 11	'12	'13	'14	'15	'16	'17	'18	' 19
	エンドスルファン類(参考)																		
[18]	[18-1] α-エンドスルファン (参考)										50	10						40	
	[18-2] β-エンドスルファン (参考)										9	9						10	
	1,2,5,6,9,10-ヘキサブロモ シクロドデカン類(参考)																		
	[19-1] α-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)										600			600					
[19]	[19-2] β-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)										500			200					
[19]	[19-3] <i>γ</i> -1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)										500			300					
	[19-4] <i>&</i> -1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)										300			200					
	[19-5] <i>ɛ</i> -1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)										300			200					
[20]	総ポリ塩化ナフタレン※							30										12	7.5
[21]	ヘキサクロロブタ-1,3-ジエ ン (参考)						340						37						
	ペンタクロロフェノール並 びにその塩及びエステル類 [22-1] ペンタクロロフェノ																		
[22]	- <i>1</i> V														85		10	9	20
	[22-2] ペンタクロロアニソ ール																5	6	10
	短鎖塩素化パラフィン類																1 100	400	200
[22]	[23-1] 塩素化デカン類																1,100		200
[25]	[23-2] 塩素化ウンデカン類 [23-3] 塩素化ドデカン類																500	800 1.000	500 400
	[23-3] 塩素化トアガン類 [23-4] 塩素化トリデカン類																,	1,000 1,500	
[24]	[23-4] 塩素化下リアルン類 ジコホル																1,200	1,500	<u> </u>
	シュホル ペルフルオロヘキサンスル							10											0
[25] (注 1)	ホン酸 (PFHxS)																	50	30

表6-2 モニタリング調査における検出下限値の比較(底質)

物質			0.17							質(ng	g/g-dry	<i>,</i>)							
調査	調査対象物質	600	600	60.4	605	60.6	607	(00	r			.	(10	414	415		417	410	410
番号	• •	` 02	' 03	' 04	' 05	' 06	' 07	' 08	' 09	' 10	' 11	'12	' 13	'14	'15	'16	'17	'18	'19
[1]	総PCB※	3.5	3.2	2.6	2.1	1	1.5	1.2	2.1	220	4.5	18	13	21	22	18	5.0	55	3.3
[2]	HCB アルドリン(参考)	0.3	2	3	1 0.5	1.0	2	0.8	0.7	1	3	1	1.8	2	1	1	1	0.5	0.4
[3]	ブルドリン(参考) ディルドリン(参考)	2	0.6 2	0.6 0.9	0.5	0.6	0.6	1 0.5	0.2		2							0.6	
[4] [5]	エンドリン (参考)	2	2	0.9	0.9	1.0	2	0.3	0.5		0.4							0.0	
[5]	DDT類(参考)	2	2	0.7	0.7	1	2	0.7	0.0		0.4							0.7	
	[6-1] <i>p,p'-</i> DDT(参考)	2	0.4	0.5	0.34	0.5	0.5	0.5	0.4	0.9				0.2					
	[6-2] <i>p,p'</i> -DDE(参考)	0.9	0.3	0.8	0.94	0.3	0.4	0.7	0.3	2				0.6					
[6]	[6-3] p,p'-DDD(参考)	0.8	0.3	0.7	0.64	0.2	0.4	0.4	0.2	0.5				1.4					
	[6-4] <i>o,p'-</i> DDT(参考)	2	0.3	0.6	0.3	0.4	0.6	0.6	0.5	0.4				0.2					
	[6-5] o,p'-DDE(参考)	1	0.2	0.8	0.9	0.4	0.4	0.6	0.2	0.5				0.3					
	[6-6] o,p'-DDD(参考)	2	0.5	0.5	0.3	0.2	0.4	0.1	0.2	0.4				0.5					
	クロルデン類(参考)																		
	[7-1] cis-クロルデン (参考)	0.3	2	2	0.64	0.8	2	0.9	0.3	2	0.4	1.0	0.8				1.6		
	[7-2] trans-クロルデン 参考	0.6	2	0.9	0.8	0.4	0.8	0.8	0.7	4	0.5	1.3	0.7				1		
[7]	[7-3] オキシクロルデン(参	0.5	0.4	0.8	0.7	1.0	0.9	1	1	0.4	0.9	0.7	0.5				1		
	考)																		
	[7-4] cis-ノナクロル (参考)	0.7	0.9	0.6	0.64	0.4	0.6	0.2	0.4	0.3	0.4	1	0.3				0.7		
	[7-5] trans-ノナクロル 参考 ヘプタクロル類 (参考)	0.5	0.6	0.6	0.54	0.4	0.6	0.8	0.3	2	0.3	0.8	0.4				2		
	(参考) [8-1] ヘプタクロル (参考)	0.6	1.0	0.9	0.8	0.6	0.7	1	0.4	0.4	0.7			0.5			0.3		
	[8-2] cis-ヘプタクロルエポ	0.0	1.0	0.9	0.8	0.0	0.7	1	0.4	0.4	0.7			0.5			0.5		
[8]	キシド (参考)		1	2	2	1.0	1	1	0.3	0.3	0.2			0.2			0.5		
	[8-3] trans-ヘプタクロルエ																		
	ポキシド (参考)		3	2	2	2	4	0.7	0.6	1	0.9			0.3			0.8		
	トキサフェン類(参考)																		
101	[9-1] Parlar-26(参考)		30	20	30	4	3	5	4									3	
[9]	[9-2] Parlar-50(参考)		50	20	40	7	10	6	5									3	
	[9-3] Parlar-62(参考)		2,000	400	700	60	70	40	30									20	
[10]	マイレックス (参考)		0.4	0.5	0.3	0.2	0.3	0.3	0.4		0.4							0.3	
	HCH類																		
F1 1 1	[11-1] α-HCH	0.4	0.5	0.6	0.6	2	0.6	0.6	0.4	0.8	0.6	0.5	0.5	0.8	0.3	0.3	0.2		0.4
[11]	[11-2]β-HCH [11-3]γ-HCH 例名:リンデン)	0.3	0.7 0.4	0.8 0.5	0.9 0.7	0.4 0.7	0.3 0.4	0.3 0.4	0.5 0.2	0.8 0.7	1 1	0.6 0.4	0.1 0.2	0.3 0.9	0.3 0.2	0.3	0.6 0.4		0.5 0.4
	[11-3] γ-HCH (MAL) (11-4] δ-HCH		0.4	0.5	0.7	0.7	2	1	0.2	0.7	0.5	0.4	0.2	0.9	0.2	0.3	0.4		0.4
[12]	クロルデコン (参考)							0.16		0.2	0.20								
	ヘキサブロモビフェニル類								0.40	0.6					0.0				
[13]	(参考)								0.40	0.6	1.4				0.3				
	ポリブロモジフェニルエー																		
	テル類(臭素数が4から10																		
	までのもの)																		
	[14-1] テトラブロモジフェ								23	2	10	1		9	7	11	4	6	2
	ニルエーテル類 [14-2] ペンタブロモジフェ																		
	[14-2] ペンタフロモンフェ ニルエーテル類								8	2	2	0.9		2	6	4	4	2	1
	ールエーナル _短 [14-3] ヘキサブロモジフェ																		
[14]	[14-5] ハイックロビンクエ ニルエーテル類								2	2	3	1		2	1	3	2	1	2
[14]	[14-4] ヘプタブロモジフェ																		
	ニルエーテル類								4	2	3	2		6	1	2	6	5	3
	[14-5] オクタブロモジフェ								0.5	4	4	~		4	10	_	~	0.5	1
	ニルエーテル類								0.5	4	4	6		4	16	2	2	0.5	1
1	[14-6] ノナブロモジフェニ								4	9	9	11		20	8	9	5	2	2
1	ルエーテル類								4	7	7	11		20	0	7	5	2	2
1	[14-7] デカブロモジフェニ								20	80	20	89		80	20	41	10	14	2
<u> </u>	ルエーテル																		_
[15]	ペルフルオロオクタンスル ナ、 融(PEOG)								3.7	2	2	4		2	1	2		3	4
	ホン酸 (PFOS)																		
[16]	ペルフルオロオクタン酸 (PFOA)								3.3	5	2	2		5	1	4		4	2
[17]	ペンタクロロベンゼン						33			0.3	2	0.8	0.7	0.8	0.5	0.6	0.5	0.3	0.4
	· · / / · · · · · · · · · · · · · · · ·	1					55			0.5		0.0	0.7	0.0	0.5	0.0	0.5	0.5	0.4

物質									底	質(p	g/g-dry	y)							
調査 番号	調査対象物質	' 02	' 03	' 04	' 05	' 06	' 07	' 08	' 09	'10	'11	'12	'13	'14	'15	'16	'17	'18	'19
[18]	エンドスルファン類(参考) [18-1] α-エンドスルファン (参考) [18-2] β-エンドスルファン										10	5						2	
[19]	(参考) 1,2,5,6,9,10-ヘキサブロモ シクロドデカン類(参考) [19-1] α-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考) [19-2] β-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考) [19-3] γ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)								 		280 170 260	70 60 60			60 60 42	60 50 60			
[20]	 [19-4] ふ1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考) [19-5] ょ1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考) 総ポリ塩化ナフタレン※ 										250 210	100 60			70 51				
[20]	総ホリ塩化リノタレン※ ヘキサクロロブタ-1.3-ジェ							30								20	9.1	3.2	2.7
[21]	ン (参考)						8.5						3.8						
[22]	ペンタクロロフェノール並 びにその塩及びエステル類 [22-1] ペンタクロロフェノ ール [22-2] ペンタクロロアニソ ール																2 2	6 9	2 0.8
	[23-3] 塩素化ドデカン類 [23-4] 塩素化トリデカン類		 				 	 	 	 	 	 	 			 	4,000 4,000	2,000 5,000 2,000 3,000	1,000 1,000
[24]	ジコホル							63											2
[25] (注 1)	ペルフルオロヘキサンスル ホン酸 (PFHxS)																	5	5

表6-3 モニタリング調査における検出下限値の比較(生物)

	5 ビニノフシノ 調査に		U IX	. [22]	1 A IE			1%											
物質			_		_				生物	吻(pg	g/g-we	t)		_	_	_		_	_
調査	調査対象物質	' 02	' 03	' 04	' 05	' 06	' 07	' 08	' 09	' 10	' 11	'12	·13	'14	' 15	'16	'17	'18	·19
番号		_		-			07	00	07	10								10	17
[1]	総 PCB※	8.4	17	29	23	14	18	17	11	20	74	11	14	31	17	20	23	21	11
[2]	HCB	0.06	7.5	4.6	3.8	1	3	3	2	2	1	2.8	10	3	6.5	2.7	1.3	1.1	1
[3]	アルドリン (参考)	1.4	0.84	1.3	1.2	2	2	2	0.8					0.7					
[4]	ディルドリン (参考)	4	1.6	10	3.4	3	3	3	2		1			1					
[5]	エンドリン (参考)	6	1.6	4.2	5.5	4	3	3	3		2			1					
[5]	DDT 類(参考)	0	1.0	7.2	5.5	-	5	5	5		- 2			1					
										_									
	[6-1] p,p'-DDT(参考)	1.4	3.5	1.1	1.7	2	2	2	1	1			1.1					1	
	[6-2] p,p'-DDE(参考)	0.8	1.9	2.7	2.8	0.7	1	1	1	1			1.4					1	
[6]	[6-3] p,p'-DDD(参考)	1.8	3.3	0.70	0.97	0.9	1	1	0.9	0.5			0.7					0.6	
	[6-4] <i>o,p'-</i> DDT(参考)	4	0.97	0.61	0.86	1	1	1	0.8	1			1					0.9	
	[6-5] <i>o,p'-</i> DDE(参考)	1.2	1.2	0.69	1.1	1	0.9	1	1	0.6			1					1	
	[6-6] <i>o,p'</i> -DDD(参考)	4	2.0			1	1	2	1				0.7					0.9	
		4	2.0	1.9	1.1	1	1	2	1	0.2			0.7					0.9	
	クロルデン類(参考)																		
	[7-1] cis-クロルデン (参考)	0.8	1.3	5.8	3.9	1	2	2	2	2	1	2	4			1			
	[7-2] trans-クロルデン(参	0.0	2.4	10	25	2	~	2	1	1	1	2	5.0						
	考)	0.8	2.4	16	3.5	2	2	3	1	1	1	2	5.2			2			
[7]	[7-3]オキシクロルデン(参																		
1.1.1	(7) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	1.2	2.8	3.1	3.1	3	2	2	1	3	1	1	1			1			
1	⁽⁷⁾ [7-4] cis-ノナクロル (参考)	0.4	16	11	15	1	1	1	1	1	07	1	0.7			0.6			
1		0.4	1.6	1.1	1.5	1	1	1	1	1	0.7	1	0.7			0.6			
1	[7-5] trans-ノナクロル(参	0.8	1.2	4.2	2.1	1	3	2	1	2	1	1	3.4			1			
	考)					-	-	_	-	_	-	-							
1	ヘプタクロル類 (参考)																		
	[8-1] ヘプタクロル(参考)	1.4	2.2	1.4	2.0	2	2	2	2	1	1	1	1		1.0	0.9			
	[8-2] cis-ヘプタクロルエポ																		
[8]	キシド (参考)		2.3	3.3	1.2	1	1	2	1	0.9	0.8	0.6	0.8		0.8	0.7			
	[8-3] trans-ヘプタクロルエ																		
			4.4	4.0	7.5	5	5	4	3	1	3	3	3		3	3			
	ポキシド (参考)																		
	トキサフェン類(参考)																		
101	[9-1] Parlar-26(参考)		15	14	16	7	4	3	3						9			8	
[9]	[9-2] Parlar-50(参考)		11	15	18	5	3	4	3						10			6	
	[9-3] Parlar-62(参考)		40	33	34	30	30	30	20						60			40	
[10]	マイレックス (参考)		0.81	0.82	0.99	1	1	1	0.8		0.8							0.5	
[10]	HCH 類		0.01	0.62	0.99	1	1	1	0.8		0.0							0.5	
			0.41					•											
	[11-1] α-HCH	1.4	0.61	4.3	3.6	1	2	2	2	1	1	1.2	1	1	1.0	1	1		2
[11]	[11-2] <i>β</i> -HCH	4	3.3	2.0	0.75	1	3	2	2	1	1	0.8	0.8	0.9	1.0	1	1		1
	[11-3] y-HCH (別名:リンデン)		1.1	10	2.8	2	3	3	3	1	1	0.9	0.9	0.8	1.6	1	1		1
	[11-4] δ-HCH		1.3	1.5	1.7	1	2	2	2	1	1	1	1	1	0.8	1	0.9		2
[12]	クロルデコン (参考)							2.2		2.3	0.2								
	ヘキサブロモビフェニル類														_				
[13]	(参考)								0.43	10	1				5				
	ポリブロモジフェニルエー																		
	テル類(臭素数が4から10	1																	
1																			
1	オでのたの																		
	までのもの)																		
	[14-1] テトラブロモジフェ							2.2		16	6	7		6	6	5	6	5	7
	[14-1] テトラブロモジフェ ニルエーテル類							2.2		16	6	7		6	6	5	6	5	7
	[14-1] テトラブロモジフェ																		
	[14-1] テトラブロモジフェ ニルエーテル類							2.2 5.9		16 6	6	7 6		6 5	6 5	5	6 5	5	7
	[14-1] テトラブロモジフェ ニルエーテル類 [14-2] ペンタブロモジフェ ニルエーテル類							5.9		6	6	6		5	5	4	5	4	4
[14]	 [14-1] テトラブロモジフェ ニルエーテル類 [14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ 																		
[14]	 [14-1] テトラブロモジフェ ニルエーテル類 [14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 							5.9		6	6	6		5	5	4	5	4	4
[14]	 [14-1] テトラブロモジフェ ニルエーテル類 [14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ 							5.9		6	6	6		5	5	4	5	4	4
[14]	 [14-1] テトラブロモジフェ ニルエーテル類 [14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 							5.9 5.0		6 3	6 4	6 4		5	5 5	4	5 7	4	4
[14]	 [14-1] テトラブロモジフェ ニルエーテル類 [14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ 							5.95.06.7		6 3	6 4 4	6 4 5		5	5 5 5	4	5 7	4 8 6	4
[14]	 [14-1] テトラブロモジフェ ニルエーテル類 [14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ ニルエーテル類 							5.9 5.0		6 3 10	6 4	6 4		5 4 5	5 5	4 8 5	5 7 8	4	4 8 9
[14]	 [14-1] テトラブロモジフェ ニルエーテル類 [14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ 	 					 	5.95.06.73.6		6 3 10 4	6 4 4 3	6 4 5 3		5 4 5 4	5 5 5 5	4 8 5 6	5 7 8 8	4 8 6 6	4 8 9 7
[14]	 [14-1] テトラブロモジフェ ニルエーテル類 [14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ ニルエーテル類 							5.95.06.7		6 3 10	6 4 4	6 4 5		5 4 5	5 5 5	4 8 5	5 7 8	4 8 6	4 8 9
[14]	 [14-1] テトラブロモジフェ ニルエーテル類 [14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ ニルエーテル類 [14-6] ノナプロモジフェニ ルエーテル類 	 					 	5.95.06.73.613		6 3 10 4 10	6 4 4 3 9	6 4 5 3 9		5 4 5 4 10	5 5 5 5 9	4 8 5 6 14	5 7 8 8 8 20	4 8 6 6 20	4 8 9 7 20
[14]	 [14-1] テトラブロモジフェ ニルエーテル類 [14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ ニルエーテル類 [14-6] ノナブロモジフェニ ルエーテル類 [14-7] デカブロモジフェニ 						 	5.95.06.73.6		6 3 10 4	6 4 4 3	6 4 5 3		5 4 5 4	5 5 5 5	4 8 5 6	5 7 8 8	4 8 6 6	4 8 9 7
[14]	 [14-1] テトラブロモジフェ ニルエーテル類 [14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ ニルエーテル類 [14-6] ノナブロモジフェニ ルエーテル類 [14-7] デカブロモジフェニ ルエーテル 	 	 	 	 	 	 	5.95.06.73.613	 	6 3 10 4 10	6 4 4 3 9	6 4 5 3 9	 	5 4 5 4 10	5 5 5 5 9	4 8 5 6 14	5 7 8 8 8 20	4 8 6 6 20	4 8 9 7 20
[14]	 [14-1] テトラブロモジフェ ニルエーテル類 [14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ ニルエーテル類 [14-6] ノナブロモジフェニ ルエーテル類 [14-7] デカブロモジフェニ ルエーテル ペルフルオロオクタンスル 	 	 	 	 	 	 	5.95.06.73.613	 	6 3 10 4 10	6 4 4 3 9	6 4 5 3 9	 	5 4 5 4 10	5 5 5 5 9	4 8 5 6 14	5 7 8 8 8 20	4 8 6 6 20	4 8 9 7 20
	 [14-1] テトラブロモジフェ ニルエーテル類 [14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェニ ルエーテル類 [14-6] ノナブロモジフェニ ルエーテル類 [14-7] デカブロモジフェニ ルエーテル ペルフルオロオクタンスル ホン酸 (PFOS) 	 	 	 	 	 	 	 5.9 5.0 6.7 3.6 13 74 	 	6 3 10 4 10 97	6 4 3 9 80	6 4 5 3 9 50	 	5 4 5 4 10 60	5 5 5 9 70	4 8 5 6 14 100	5 7 8 8 20 80	4 8 6 6 20 80	4 8 9 7 20 70
[15]	 [14-1] テトラブロモジフェ ニルエーテル類 [14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ ニルエーテル類 [14-6] ノナブロモジフェニ ルエーテル類 [14-7] デカブロモジフェニ ルエーテル ペルフルオロオクタンスル 	 	 	 	 	 	 	 5.9 5.0 6.7 3.6 13 74 	 7.4	6 3 10 4 10 97 9.6	6 4 3 9 80 4	6 4 5 3 9 50 3	 	5 4 5 4 10 60 2	5 5 5 9 70 2	4 8 5 6 14 100 3	5 7 8 8 20 80 4	4 8 6 20 80 	4 8 9 7 20 70 2
	 [14-1] テトラブロモジフェ ニルエーテル類 [14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ ニルエーテル類 [14-6] ノナブロモジフェニ ルエーテル類 [14-7] デカブロモジフェニ ルエーテル ペルフルオロオクタンスル ホン酸 (PFOS) ペルフルオロオクタン酸 (PFOA) 	 	 	 	 	 	 	 5.9 5.0 6.7 3.6 13 74 	 	6 3 10 4 10 97	6 4 3 9 80	6 4 5 3 9 50	 	5 4 5 4 10 60	5 5 5 9 70	4 8 5 6 14 100	5 7 8 8 20 80	4 8 6 6 20 80	4 8 9 7 20 70
[15]	 [14-1] テトラブロモジフェ ニルエーテル類 [14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ ニルエーテル類 [14-6] ノナブロモジフェニ ルエーテル類 [14-7] デカブロモジフェニ ルエーテル ペルフルオロオクタンスル ホン酸 (PFOS) ペルフルオロオクタン酸 	 	 	 	 	 	 	 5.9 5.0 6.7 3.6 13 74 	 7.4	6 3 10 4 10 97 9.6	6 4 3 9 80 4	6 4 5 3 9 50 3	 	5 4 5 4 10 60 2	5 5 5 9 70 2	4 8 5 6 14 100 3	5 7 8 8 20 80 4	4 8 6 20 80 	4 8 9 7 20 70 2

物質 調査									生物	物(pg	g/g-we	t)							
祠宜 番号		' 02	' 03	' 04	' 05	' 06	'07	' 08	' 09	'10	'11	'12	'13	'14	'15	'16	'17	'18	'19
[18]	エンドスルファン類(参考) [18-1] α-エンドスルファン (参考)										20	24		20	38				
	[18-2] β-エンドスルファン (参考)										4	5		6	11				
	1,2,5,6,9,10-ヘキサブロモ シクロドデカン類																		
	[19-1] α-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン										70	20		10	10	9	9	9	9
[10]	[19-2] β-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン										40	10		10	10	8	9	8	9
[19]	[19-3] ン-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン										80	10		10	10	9	9	8	9
	[19-4] <i>&</i> -1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)										60	20		10	10				
	[19-5] & -1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)										60	20		10	10				
[20]	総ポリ塩化ナフタレン※						11	10							18	19	12	12	15
[21]	ヘキサクロロブタ-1,3-ジエ ン (参考)						12						3.7						
	ペンタクロロフェノール並 びにその塩及びエステル類																		
[22]	[22-1] ペンタクロロフェノ ール															21	12	10	4
	[22-2] ペンタクロロアニソ ール															1	1	2	1
	短鎖塩素化パラフィン類 [23-1] 塩素化デカン類															500	200	400	300
[23]																1.000	300	700	200
[]	[23-3] 塩素化ドデカン類															700	300	600	500
	[23-4] 塩素化トリデカン類															400	200	500	200
[24]	ジコホル					36		48										10	10
[25]	ペルフルオロヘキサンスル ホン酸(PFHxS)(参考)																		

表6-4 モニタリング調査における検出下限値の比較(大気)

衣6-4	+ モニタリング調査に	.401)	215						0										
物質									大	、気(pg/m ³)								
調査	調査対象物質			[Г.,				I	Ī									
番号		` 02	' 03	' 04	' 05	' 06	' 07	' 08	' 09	'10	' 11	'12	' 13	' 14	' 15	'16	'17	'18	' 19
[1]	総 PCB※	33	2.2	0.98	0.14	0.3	0.13	0.3	0.26	2.5	5.9	8.5	6.5	1.4	2.0	2.7	2.3	0.8	0.8
[2]	НСВ	0.3	0.78	0.37	0.034	0.07	0.03	0.08	0.2	0.7	0.75	1.4	1.3	0.5	0.2	0.3	0.2	0.2	0.06
[3]	アルドリン (参考)		0.0077	1	-	0.05	0.02		0.02					4					
	ディルドリン (参考)		-	-	-														
[4]			0.70	-	0.24	0.1	0.07	0.09	0.02		0.14			0.11					
[5]	エンドリン (参考)	0.030	0.014	0.048	0.2	0.10	0.04	0.04	0.04		0.04			0.07					
	DDT 類(参考)																		
	[6-1] <i>p,p'-</i> DDT(参考)	0.08	0.046	0.074	0.054	0.06	0.03	0.03	0.03	0.03			0.04		0.05			0.01	
	[6-2] <i>p,p'</i> -DDE(参考)	0.03	0.13	0.039	0.034	0.03	0.02	0.02	0.03	0.21			0.03		0.04			0.01	
[6]	[6-3] p,p'-DDD(参考)				0.05					0.01			0.007		0.11			0.03	
[0]	[6-4] <i>o,p'</i> -DDT(参考)				0.034														
	-		•	•									0.018		0.04			0.01	
	[6-5] o,p'-DDE(参考)		1	1	0.024								0.009		0.06			0.02	
	[6-6] <i>o,p'-</i> DDD(参考)	0.007	0.014	0.048	0.03	0.03	0.02	0.01	0.01	0.01			0.02		0.07			0.03	
	クロルデン類(参考)																		
	[7-1] cis-クロルデン(参考)	0.20	0.17	0.19	0.054	0.04	0.04	0.05	0.06	0.3	0.42	0.51	0.2			0.3			
	[7-2] trans-クロルデン(参考)	0.20		1	0.14			0.06		0.4	0.53	0.7	0.3			0.3			
[7]		0.20	0.29	0.25	0.14	0.00	0.05	0.00	0.05	0.4	0.55	0.7	0.5			0.5			
[7]	[7-3]オキシクロルデン(参	0.008	0.015	0.042	0.054	0.08	0.02	0.01	0.02	0.01	0.03	0.03	0.01			0.06			
	考)																		
	[7-4] cis-ノナクロル(参考)		1		0.03		0.01	0.01	0.02	0.04	0.051	0.05	0.02			0.05			
	[7-5] trans-ノナクロル(参考)	0.10	0.12	0.16	0.044	0.03	0.03	0.03	0.03	0.3	0.35	0.41	0.2			0.2			
	ヘプタクロル類 (参考)																		
	[8-1] ヘプタクロル (参考)	0.04	0.085	0.078	0.054	0.04	0.03	0.02	0.01	0.04	0.099	0.14	0.05		0.06	0.08			
	[8-2] <i>cis</i> -ヘプタクロルエポ	0.04	0.005	0.070	0.054	0.04	0.05	0.02	0.01	0.04	0.077	0.14	0.05		0.00	0.00			
[8]			0.0048	0.017	0.044	0.04	0.01	0.008	0.01	0.01	0.01	0.02	0.01		0.2	0.05			
	キシド (参考)																		
	[8-3] trans-ヘプタクロルエ		0.033	0.2	0.05	0.1	0.06	0.06	0.05	0.06	0.05	0.05	0.05		0.01	0.1			
	ポキシド (参考)		0.055	0.2	0.05	0.1	0.00	0.00	0.05	0.00	0.05	0.05	0.05		0.01	0.1			
	トキサフェン類(参考)																		
	[9-1] Parlar-26(参考)		0.066	0.066	0.1	0.6	0.2	0.08	0.09									0.2	
[9]	[9-2] Parlar-50(参考)		0.27	0.4	0.2	0.5	0.1	0.09	0.1									0.2	
	[9-3] Parlar-62(参考)		0.52	0.81	0.4	3	0.6	0.6	0.6									0.2	
[10]	[9-3] Parlar-62(参考) マイレックス(参考)			0.81	0.4			0.6											
[10]	[9-3] Parlar-62(参考)		0.52	0.81	0.4	3	0.6	0.6	0.6									0.2	
[10]	[9-3] Parlar-62(参考) マイレックス(参考)		0.52	0.81	0.4	3	0.6	0.6	0.6 0.006									0.2	
	[9-3] Parlar-62(参考) マイレックス(参考) HCH 類		0.52 0.0028	0.81 0.017	0.4 0.03	3 0.04	0.6 0.01	0.6 0.01	0.6 0.006 0.05	 0.47	0.01	0.7	 1.7		 0.06			0.2	
	[9-3] Parlar-62(参考) マイレックス(参考) HCH 類 [11-1] α-HCH		0.52 0.0028 	0.81 0.017 	0.4 0.03 	3 0.04	0.6 0.01	0.6 0.01	0.6 0.006 0.05 0.03	 0.47 0.09	 0.01 0.83	0.7 0.12	 1.7	 0.06 0.08	 0.06 0.08	 0.07	 0.03	0.2 0.01	 0.05
	 [9-3] Parlar-62(参考) マイレックス(参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH 例络: リンデン) 	 	0.52 0.0028 	0.81 0.017 	0.4 0.03 	3 0.04 	0.6 0.01	0.6 0.01	0.6 0.006 0.05 0.03 0.02	 0.47 0.09 0.12	 0.01 0.83 0.13 0.52	0.7 0.12 0.32	 1.7 0.07 0.7	 0.06 0.08 0.06	 0.06 0.08 0.06	 0.07 0.1 0.07	 0.03 0.04 0.04	0.2 0.01	 0.05 0.02 0.05
[11]	[9-3] Parlar-62(参考) マイレックス(参考) HCH 類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH 例名:リンデン) [11-4] δ-HCH	 	0.52 0.0028 	0.81 0.017 	0.4 0.03 	3 0.04 	0.6 0.01	0.6 0.01	0.6 0.006 0.05 0.03 0.02 0.02	 0.47 0.09 0.12 0.02	 0.01 0.83 0.13 0.52 0.021	0.7 0.12 0.32 0.03	 1.7 0.07 0.7 0.03	0.06 0.08 0.06 0.06	 0.06 0.08 0.06 0.05	 0.07 0.1 0.07 0.08	 0.03 0.04 0.04 0.03	0.2 0.01	 0.05 0.02 0.05 0.02
	 [9-3] Parlar-62(参考) マイレックス(参考) HCH類 [11-1] <i>a</i>-HCH [11-2] β-HCH [11-3] γ-HCH 例名: リンデン) [11-4] δ-HCH クロルデコン(参考) 	 	0.52 0.0028 	0.81 0.017 	0.4 0.03 	3 0.04 	0.6 0.01 	0.6 0.01 	0.6 0.006 0.05 0.03 0.02	 0.47 0.09 0.12 0.02	 0.01 0.83 0.13 0.52	0.7 0.12 0.32	 1.7 0.07 0.7	 0.06 0.08 0.06	 0.06 0.08 0.06	 0.07 0.1 0.07	 0.03 0.04 0.04	0.2 0.01 	 0.05 0.02 0.05
[11]	 [9-3] Parlar-62(参考) マイレックス(参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH 例名: リンデン) [11-4] δ-HCH クロルデコン(参考) ヘキサブロモビフェニル類 	 	0.52 0.0028 	0.81 0.017 	0.4 0.03 	3 0.04 	0.6 0.01	0.6 0.01	0.6 0.006 0.05 0.03 0.02 0.02	 0.47 0.09 0.12 0.02	 0.01 0.83 0.13 0.52 0.021	0.7 0.12 0.32 0.03	 1.7 0.07 0.7 0.03	0.06 0.08 0.06 0.06	 0.06 0.08 0.06 0.05	 0.07 0.1 0.07 0.08	 0.03 0.04 0.04 0.03	0.2 0.01	 0.05 0.02 0.05 0.02
[11]	 [9-3] Parlar-62(参考) マイレックス(参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH 例名: リンデン) [11-4] δ-HCH クロルデコン(参考) ヘキサブロモビフェニル類(参考) 	 	0.52 0.0028 	0.81	0.4 0.03 	3 0.04 	0.6 0.01 	0.6 0.01 	0.6 0.006 0.05 0.03 0.02 0.02 	 0.47 0.09 0.12 0.02 0.02	0.01 0.83 0.13 0.52 0.021 0.02	0.7 0.12 0.32 0.03 	 1.7 0.07 0.7 0.03 	0.06 0.08 0.06 0.06 	 0.06 0.08 0.06 0.05 	 0.07 0.1 0.07 0.08 	 0.03 0.04 0.04 0.03 	0.2 0.01	 0.05 0.02 0.05 0.02
[11]	 [9-3] Parlar-62(参考) マイレックス(参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH (別名: リンデン) [11-4] δ-HCH クロルデコン(参考) ヘキサブロモビフェニル類(参考) ポリプロモジフェニルエー 	 	0.52 0.0028 	0.81	0.4 0.03 	3 0.04 	0.6 0.01 	0.6 0.01 	0.6 0.006 0.03 0.02 0.02 	 0.47 0.09 0.12 0.02 0.02	0.01 0.83 0.13 0.52 0.021 0.02	0.7 0.12 0.32 0.03 	 1.7 0.07 0.7 0.03 	0.06 0.08 0.06 0.06 	 0.06 0.08 0.06 0.05 	 0.07 0.1 0.07 0.08 	 0.03 0.04 0.04 0.03 	0.2 0.01	 0.05 0.02 0.05 0.02
[11]	[9-3] Parlar-62 (参考) マイレックス (参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH 例名: リンデン) [11-4] δ-HCH クロルデコン (参考) ヘキサブロモビフェニル類 (参考) ポリプロモジフェニルエー テル類 (臭素数が 4 から 10	 	0.52 0.0028 	0.81	0.4 0.03 	3 0.04 	0.6 0.01 	0.6 0.01 	0.6 0.006 0.03 0.02 0.02 	 0.47 0.09 0.12 0.02 0.02	0.01 0.83 0.13 0.52 0.021 0.02	0.7 0.12 0.32 0.03 	 1.7 0.07 0.7 0.03 	0.06 0.08 0.06 0.06 	 0.06 0.08 0.06 0.05 	 0.07 0.1 0.07 0.08 	 0.03 0.04 0.04 0.03 	0.2 0.01	 0.05 0.02 0.05 0.02
[11]	 [9-3] Parlar-62(参考) マイレックス(参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH 例烙:リンデン) [11-4] δ-HCH クロルデコン(参考) ヘキサブロモビフェニル類(参考) ポリブロモジフェニルエー テル類(臭素数が4から10 までのもの) 	 	0.52 0.0028 	0.81	0.4 0.03 	3 0.04 	0.6 0.01 	0.6 0.01 	0.6 0.006 0.03 0.02 0.02 	 0.47 0.09 0.12 0.02 0.02	0.01 0.83 0.13 0.52 0.021 0.02	0.7 0.12 0.32 0.03 	 1.7 0.07 0.7 0.03 	0.06 0.08 0.06 0.06 	 0.06 0.08 0.06 0.05 	 0.07 0.1 0.07 0.08 	 0.03 0.04 0.04 0.03 	0.2 0.01	 0.05 0.02 0.05 0.02
[11]	[9-3] Parlar-62 (参考) マイレックス (参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH 例名: リンデン) [11-4] δ-HCH クロルデコン (参考) ヘキサブロモビフェニル類 (参考) ポリプロモジフェニルエー テル類 (臭素数が 4 から 10	 	0.52 0.0028 	0.81	0.4 0.03 	3 0.04 	0.6 0.01	0.6 0.01	0.6 0.006 0.03 0.02 0.02 	 0.47 0.09 0.12 0.02 0.02 0.1	 0.01 0.83 0.13 0.52 0.021 0.02 0.1	0.7 0.12 0.32 0.03 	 1.7 0.07 0.7 0.03 	0.06 0.08 0.06 0.06 	0.06 0.08 0.06 0.05 0.02	0.07 0.1 0.07 0.08 	 0.03 0.04 0.04 0.03 	0.2 0.01	 0.05 0.02 0.05 0.02
[11]	 [9-3] Parlar-62(参考) マイレックス(参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH 例烙:リンデン) [11-4] δ-HCH クロルデコン(参考) ヘキサブロモビフェニル類(参考) ポリブロモジフェニルエー テル類(臭素数が4から10 までのもの) 	 	0.52 0.0028 	0.81	0.4 0.03 	3 0.04 	0.6 0.01 	0.6 0.01 	0.6 0.006 0.03 0.02 0.02 	 0.47 0.09 0.12 0.02 0.02 0.1	0.01 0.83 0.13 0.52 0.021 0.02	0.7 0.12 0.32 0.03 	 1.7 0.07 0.7 0.03 	0.06 0.08 0.06 0.06 	 0.06 0.08 0.06 0.05 	0.07 0.1 0.07 0.08 	 0.03 0.04 0.04 0.03 	0.2 0.01	 0.05 0.02 0.05 0.02
[11]	[9-3] Parlar-62(参考) マイレックス(参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH 例烙:リンデン) [11-4] δ-HCH クロルデコン(参考) ヘキサブロモビフェニル類 (参考) ポリプロモジフェニルエー テル類(臭素数が4から10 までのもの) [14-1] テトラブロモジフェ ニルエーテル類	 	0.52 0.0028 	0.81	0.4 0.03 	3 0.04 	0.6 0.01	0.6 0.01	0.6 0.006 0.03 0.02 0.02 	 0.47 0.09 0.12 0.02 0.02 0.1	0.01 0.83 0.13 0.52 0.021 0.02 0.1	0.7 0.12 0.32 0.03 0.1	 1.7 0.07 0.7 0.03 	 0.06 0.08 0.06 0.06 	 0.06 0.08 0.06 0.05 0.02 0.1	 0.07 0.1 0.07 0.08 0.2	 0.03 0.04 0.04 0.03 0.05	0.2 0.01 0.02	 0.05 0.02 0.05 0.02 0.01
[11]	 [9-3] Parlar-62(参考) マイレックス(参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH 例烙: リンデン) [11-4] δ-HCH クロルデコン(参考) ヘキサブロモビフェニル類(参考) ポリブロモジフェニルエー テル類(臭素数が4から10までのもの) [14-1] テトラブロモジフェニルエー ニルエーテル類 [14-2] ペンタブロモジフェ 	 	0.52 0.0028 	0.81	0.4 0.03 	3 0.04 	0.6 0.01	0.6 0.01	0.6 0.006 0.03 0.02 0.02 	 0.47 0.09 0.12 0.02 0.02 0.1	 0.01 0.83 0.13 0.52 0.021 0.02 0.1	0.7 0.12 0.32 0.03 0.1	 1.7 0.07 0.7 0.03 	0.06 0.08 0.06 0.06 	0.06 0.08 0.06 0.05 0.02	0.07 0.1 0.07 0.08 	 0.03 0.04 0.04 0.03 0.05	0.2 0.01	 0.05 0.02 0.05 0.02 0.01
[11]	 [9-3] Parlar-62(参考) マイレックス(参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH 例络: リンデン) [11-4] δ-HCH クロルデコン(参考) ヘキサブロモビフェニル類(参考) ポリブロモジフェニルエーテル類(臭素数が4から10までのもの) [14-1] テトラブロモジフェニルエーテル類 [14-2] ペンタブロモジフェニルエーテル類 [14-2] ペンタブロモジフェニルエーテル類 	 	0.52 0.0028	0.81 0.017	0.4 0.03	3 0.04 	0.6 0.01	0.6 0.01	0.6 0.006 0.03 0.02 0.02 	 0.47 0.09 0.12 0.02 0.02 0.1	0.01 0.83 0.13 0.52 0.021 0.02 0.1	0.7 0.12 0.32 0.03 0.1	 1.7 0.07 0.7 0.03 	 0.06 0.08 0.06 0.06 	 0.06 0.08 0.06 0.05 0.02 0.1	 0.07 0.1 0.07 0.08 0.2	 0.03 0.04 0.04 0.03 0.05	0.2 0.01 0.02	 0.05 0.02 0.05 0.02 0.01
[11] [12] [13]	 [9-3] Parlar-62(参考) マイレックス(参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH 例恪: リンデン) [11-4] δ-HCH クロルデコン(参考) ヘキサブロモビフェニル類(参考) ポリブロモジフェニルエーテル類(臭素数が4から10までのもの) [14-1] テトラブロモジフェニルエーテル類 [14-2] ペンタブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェ 	 	0.52 0.0028	0.81 0.017	0.4 0.03	3 0.04 	0.6 0.01	0.6 0.01	0.6 0.006 0.03 0.02 0.02 	 0.47 0.09 0.12 0.02 0.12 0.02 0.11	0.01 0.83 0.13 0.52 0.021 0.02 0.1	0.7 0.12 0.32 0.03 0.1	 1.7 0.07 0.7 0.03 	 0.06 0.08 0.06 0.06 	 0.06 0.08 0.06 0.05 0.02 0.1	 0.07 0.1 0.07 0.08 0.2	 0.03 0.04 0.04 0.03 0.05	0.2 0.01 0.02	 0.05 0.02 0.05 0.02 0.01 0.05
[11]	 [9-3] Parlar-62(参考) マイレックス(参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH 例恪: リンデン) [11-4] δ-HCH クロルデコン(参考) ヘキサブロモビフェニル類(参考) ポリブロモジフェニルエーテル類(臭素数が4から10までのもの) [14-1] テトラブロモジフェニルエーテル類 [14-2] ペンタブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェニルエーテル類 	 	0.52 0.0028 	0.81 0.017 	0.4 0.03 	3 0.04	0.6 0.01 	0.6 0.01 	0.6 0.006 0.05 0.03 0.02 0.02 0.04 0.04	 0.47 0.09 0.12 0.02 0.12 0.02 0.11 0.05 0.05	0.01 0.83 0.13 0.52 0.021 0.021 0.02 0.1 0.07 0.06	0.7 0.12 0.32 0.03 0.1 0.1	 1.7 0.07 0.7 0.03 	 0.06 0.08 0.06 0.09 0.09	 0.06 0.08 0.06 0.05 0.02 0.1 0.1 0.2	 0.07 0.1 0.07 0.08 0.2 0.2	 0.03 0.04 0.04 0.03 0.05 0.04	0.2 0.01 0.02 0.08	 0.05 0.02 0.05 0.02 0.01 0.05
[11] [12] [13]	 [9-3] Parlar-62(参考) マイレックス(参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH 例恪: リンデン) [11-4] δ-HCH クロルデコン(参考) ヘキサブロモビフェニル類(参考) ポリブロモジフェニルエーテル類(臭素数が4から10までのもの) [14-1] テトラブロモジフェニルエーテル類 [14-2] ペンタブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェニルエーテル類 [14-4] ヘプタブロモジフェ 	 	0.52 0.0028 	0.81 0.017 	0.4 0.03 	3 0.04	0.6 0.01 	0.6 0.01 	0.6 0.006 0.05 0.02 0.02 0.04 0.04 0.06	 0.47 0.09 0.12 0.02 0.12 0.02 0.11 0.05 0.05 0.05	0.01 0.83 0.13 0.52 0.021 0.02 0.1 0.07 0.06 0.05	0.7 0.12 0.32 0.03 0.1 0.1	 1.7 0.07 0.7 0.03 	 0.06 0.08 0.06 0.06 0.09 0.09 0.1	0.06 0.08 0.06 0.05 0.02 0.02 0.1 0.2 0.4	 0.07 0.1 0.07 0.08 0.2 0.2 0.2 0.2	 0.03 0.04 0.04 0.03 0.03 0.05 0.04 0.1	0.2 0.01 0.02 0.08 0.06	 0.05 0.02 0.05 0.02 0.01 0.05 0.05
[11] [12] [13]	 [9-3] Parlar-62(参考) マイレックス(参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH 例恪: リンデン) [11-4] δ-HCH クロルデコン(参考) ヘキサブロモビフェニル類(参考) ポリブロモジフェニルエーテル類(臭素数が4から10までのもの) [14-1] テトラブロモジフェニルエーテル類 [14-2] ペンタブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェニルエーテル類 [14-4] ヘプタブロモジフェニルエーテル類 [14-4] ヘプタブロモジフェニルエーテル類 	 	0.52 0.0028 	0.81 0.017 	0.4 0.03 	<u>3</u> 0.04 	0.6 0.01 	0.6 0.01 	0.6 0.006 0.05 0.03 0.02 0.02 0.04 0.04	 0.47 0.09 0.12 0.02 0.12 0.02 0.11 0.05 0.05	0.01 0.83 0.13 0.52 0.021 0.021 0.02 0.1 0.07 0.06	0.7 0.12 0.32 0.03 0.1 0.1	 1.7 0.07 0.7 0.03 	 0.06 0.08 0.06 0.09 0.09	 0.06 0.08 0.06 0.05 0.02 0.1 0.1 0.2	 0.07 0.1 0.07 0.08 0.2 0.2	 0.03 0.04 0.04 0.03 0.05 0.04	0.2 0.01 0.02 0.08	 0.05 0.02 0.05 0.02 0.01 0.05 0.05
[11] [12] [13]	 [9-3] Parlar-62(参考) マイレックス(参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH 例恪: リンデン) [11-4] δ-HCH クロルデコン(参考) ヘキサブロモビフェニル類(参考) ポリブロモジフェニルエーテル類(臭素数が4から10までのもの) [14-1] テトラブロモジフェニルエーテル類 [14-2] ペンタブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェニルエーテル類 [14-4] ヘプタブロモジフェ 	 	0.52 0.0028 	0.81 0.017 	0.4 0.03 	<u>3</u> 0.04 	0.6 0.01	0.6 0.01	0.6 0.006 0.05 0.02 0.02 0.04 0.04 0.06 0.09 0.1	 0.47 0.09 0.12 0.02 0.12 0.02 0.1 0.05 0.05 0.06 0.1	0.01 0.83 0.13 0.52 0.021 0.02 0.1 0.07 0.06 0.05 0.1	0.7 0.12 0.32 0.03 0.1 0.1 0.06 0.1 0.2	 1.7 0.07 0.7 0.03 	 0.06 0.08 0.06 0.06 0.09 0.09 0.1 0.2	0.06 0.08 0.06 0.05 0.02 0.02 0.1 0.2 0.4 0.4	 0.07 0.1 0.07 0.08 0.2 0.2 0.2 0.2 0.2 0.4	 0.03 0.04 0.04 0.03 0.05 0.05 0.04 0.1 0.2	0.2 0.01 0.02 0.08 0.06 0.08	 0.05 0.02 0.05 0.02 0.01 0.05 0.05 0.1
[11] [12] [13]	 [9-3] Parlar-62(参考) マイレックス(参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH 例恪: リンデン) [11-4] δ-HCH クロルデコン(参考) ヘキサブロモビフェニル類(参考) ポリブロモジフェニルエーテル類(臭素数が4から10までのもの) [14-1] テトラブロモジフェニルエーテル類 [14-2] ペンタブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェニルエーテル類 [14-4] ヘプタブロモジフェニルエーテル類 [14-4] ヘプタブロモジフェニルエーテル類 	 	0.52 0.0028 	0.81 0.017 	0.4 0.03 	<u>3</u> 0.04 	0.6 0.01 	0.6 0.01 	0.6 0.006 0.05 0.02 0.02 0.04 0.04 0.06	 0.47 0.09 0.12 0.02 0.12 0.02 0.1 0.05 0.05 0.06 0.1	0.01 0.83 0.13 0.52 0.021 0.02 0.1 0.07 0.06 0.05	0.7 0.12 0.32 0.03 0.1 0.1	 1.7 0.07 0.7 0.03 	 0.06 0.08 0.06 0.06 0.09 0.09 0.1	0.06 0.08 0.06 0.05 0.02 0.02 0.1 0.2 0.4	 0.07 0.1 0.07 0.08 0.2 0.2 0.2 0.2	 0.03 0.04 0.04 0.03 0.03 0.05 0.04 0.1	0.2 0.01 0.02 0.08 0.06	 0.05 0.02 0.05 0.02 0.01 0.05 0.05
[11] [12] [13]	 [9-3] Parlar-62(参考) マイレックス(参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH (別塔: リンデン) [11-4] δ-HCH クロルデコン(参考) ヘキサブロモビフェニル類(参考) ポリブロモジフェニルエーテル類(臭素数が4から10までのもの) [14-1] テトラブロモジフェニルエーテル類 [14-2] ペンタブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェニルエーテル類 [14-4] ヘプタブロモジフェニルエーテル類 [14-5] オクタブロモジフェニルエーテル類 [14-5] オクタブロモジフェニルエーテル類 	 	0.52 0.0028 	0.81 0.017 	0.4 0.03 	<u>3</u> 0.04 	0.6 0.01	0.6 0.01	0.6 0.006 0.05 0.02 0.02 0.04 0.04 0.06 0.09 0.1	 0.47 0.09 0.12 0.02 0.12 0.02 0.1 0.05 0.05 0.06 0.1	0.01 0.83 0.13 0.52 0.021 0.02 0.1 0.07 0.06 0.05 0.1	0.7 0.12 0.32 0.03 0.1 0.1 0.06 0.1 0.2	 1.7 0.07 0.7 0.03 	 0.06 0.08 0.06 0.06 0.09 0.09 0.1 0.2	0.06 0.08 0.06 0.05 0.02 0.02 0.1 0.2 0.4 0.4	0.07 0.1 0.07 0.08 0.2 0.2 0.2 0.2 0.2	 0.03 0.04 0.04 0.03 0.05 0.05 0.04 0.1 0.2	0.2 0.01 0.02 0.08 0.06 0.08	 0.05 0.02 0.05 0.02 0.01 0.05 0.05 0.1
[11] [12] [13]	 [9-3] Parlar-62(参考) マイレックス(参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH (別塔: リンデン) [11-4] δ-HCH クロルデコン(参考) ヘキサブロモビフェニル類(参考) ポリブロモジフェニルエーテル類(臭素数が4から10までのもの) [14-1] テトラブロモジフェニルエーテル類 [14-2] ペンタブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェニルエーテル類 [14-4] ヘプタブロモジフェニルエーテル類 [14-5] オクタブロモジフェニルエーテル類 [14-6] ノナブロモジフェニ 	 	0.52 0.0028 	0.81 0.017 	0.4 0.03 	<u>3</u> 0.04 	0.6 0.01	0.6 0.01	0.6 0.006 0.05 0.02 0.02 0.04 0.04 0.06 0.09 0.1	 0.47 0.09 0.12 0.02 0.12 0.02 0.1 0.05 0.05 0.06 0.1	0.01 0.83 0.13 0.52 0.021 0.02 0.1 0.07 0.06 0.05 0.1	0.7 0.12 0.32 0.03 0.1 0.1 0.06 0.1 0.2	 1.7 0.07 0.7 0.03 	 0.06 0.08 0.06 0.06 0.09 0.09 0.1 0.2	0.06 0.08 0.06 0.05 0.02 0.02 0.1 0.2 0.4 0.4	0.07 0.1 0.07 0.08 0.2 0.2 0.2 0.2 0.2	 0.03 0.04 0.04 0.03 0.05 0.05 0.04 0.1 0.2	0.2 0.01 0.02 0.08 0.06 0.08	 0.05 0.02 0.05 0.02 0.01 0.05 0.05 0.1
[11] [12] [13]	 [9-3] Parlar-62(参考) マイレックス(参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH (別塔: リンデン) [11-4] δ-HCH クロルデコン(参考) ヘキサブロモビフェニル類 (参考) ポリブロモジフェニルエーテル類(臭素数が4から10までのもの) [14-1] テトラブロモジフェニルエーテル類 [14-2] ペンタブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェニルエーテル類 [14-4] ヘプタブロモジフェニルエーテル類 [14-5] オクタブロモジフェニルエーテル類 [14-6] ノナブロモジフェニルエーテル類 	 	0.52 0.0028 	0.81 0.017 	0.4 0.03 	3 0.04 	0.6 0.01	0.6 0.01	0.6 0.006 0.05 0.02 0.02 0.04 0.06 0.09 0.1	 0.47 0.09 0.12 0.02 0.12 0.02 0.1 0.05 0.05 0.05 0.06 0.1 0.06	0.01 0.83 0.13 0.52 0.021 0.02 0.1 0.07 0.06 0.05 0.11	0.7 0.12 0.32 0.03 0.1 0.06 0.1 0.2 0.1	 1.7 0.07 0.7 0.03 	 0.06 0.08 0.06 0.06 0.09 0.09 0.1 0.2 0.1	 0.06 0.08 0.06 0.05 0.02 0.1 0.2 0.4 0.4 0.4	 0.07 0.1 0.07 0.08 0.2 0.2 0.2 0.2 0.4 0.2	 0.03 0.04 0.04 0.03 0.05 0.05 0.04 0.1 0.2 0.07	0.2 0.01 0.02 0.08 0.06 0.08 0.04	 0.05 0.02 0.05 0.02 0.01 0.05 0.05 0.1 0.1
[11] [12] [13]	 [9-3] Parlar-62 (参考) マイレックス (参考) HCH 類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH (別塔: リンデン) [11-4] δ-HCH クロルデコン (参考) ペキサブロモビフェニル類 (参考) ポリブロモジフェニルエーテル類 (見素数が4から10までのもの) [14-1] テトラブロモジフェニルエーテル類 [14-2] ペンタブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェニルエーテル類 [14-4] ヘプタブロモジフェニルエーテル類 [14-5] オクタブロモジフェニルエーテル類 [14-6] ノナブロモジフェニルエーテル類 [14-7] デカブロモジフェニ 	 	0.52 0.0028 	0.81 0.017 	0.4 0.03 	3 0.04 	0.6 0.01	0.6 0.01	0.6 0.006 0.05 0.02 0.02 0.04 0.06 0.09 0.1	 0.47 0.09 0.12 0.02 0.12 0.02 0.1 0.05 0.05 0.05 0.06 0.1 0.06	0.01 0.83 0.13 0.021 0.02 0.1 0.07 0.06 0.05 0.1 0.05 0.1	0.7 0.12 0.32 0.03 0.1 0.06 0.1 0.2 0.1	 1.7 0.07 0.7 0.03 	 0.06 0.08 0.06 0.06 0.09 0.09 0.1 0.2 0.1	 0.06 0.08 0.05 0.02 0.1 0.2 0.4 0.4 0.4 0.4 1.1	 0.07 0.1 0.07 0.08 0.2 0.2 0.2 0.2 0.4 0.2	 0.03 0.04 0.04 0.03 0.05 0.05 0.04 0.1 0.2 0.07 0.2	0.2 0.01 0.02 0.08 0.06 0.08 0.04 0.2	 0.05 0.02 0.05 0.02 0.01 0.05 0.05 0.1 0.1 0.1
[11] [12] [13]	 [9-3] Parlar-62 (参考) マイレックス (参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH (別塔: リンデン) [11-4] δ-HCH クロルデコン (参考) ペキサブロモビフェニル類 (参考) ポリブロモジフェニルエーテル類 [14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ ニルエーテル類 [14-6] ノナブロモジフェニ ルエーテル類 [14-7] デカブロモジフェニ ルエーテル 		0.52 0.0028 	0.81 0.017 	0.4 0.03 	3 0.04 	0.6 0.01	0.6 0.01	0.6 0.006 0.05 0.02 0.02 0.04 0.04 0.06 0.09 0.1 0.1 0.6	 0.47 0.09 0.12 0.02 0.12 0.02 0.1 0.05 0.05 0.05 0.06 0.1 0.06 1.2	0.01 0.83 0.13 0.52 0.021 0.02 0.1 0.07 0.06 0.05 0.11	0.7 0.12 0.32 0.03 0.1 0.06 0.1 0.2 0.1 0.2 0.1	 1.7 0.07 0.7 0.03 -	 0.06 0.08 0.06 0.06 0.09 0.09 0.1 0.2 0.1 1	 0.06 0.08 0.06 0.05 0.02 0.1 0.2 0.4 0.4 0.4	 0.07 0.1 0.07 0.08 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.5	 0.03 0.04 0.04 0.03 0.05 0.05 0.04 0.1 0.2 0.07	0.2 0.01 0.02 0.08 0.06 0.08 0.04	 0.05 0.02 0.05 0.02 0.01 0.05 0.05 0.1 0.1
[11] [12] [13] [14]	 [9-3] Parlar-62 (参考) マイレックス (参考) HCH 類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH (別塔: リンデン) [11-4] δ-HCH クロルデコン (参考) ペキサブロモビフェニル類 (参考) ポリブロモジフェニルエーテル類 [14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-3] ヘクタブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ ニルエーテル類 [14-6] ノナブロモジフェニ ルエーテル類 [14-7] デカブロモジフェニ 		0.52 0.0028 	0.81 0.017 	0.4 0.03 	3 0.04 	0.6 0.01	0.6 0.01	0.6 0.006 0.05 0.02 0.02 0.02 0.04 0.06 0.09 0.1 0.1 0.6 5	 0.47 0.09 0.12 0.02 0.12 0.02 0.12 0.02 0.1 0.05 0.05 0.06 0.1 0.06 1.2 9.1	0.01 0.83 0.13 0.021 0.02 0.11 0.007 0.06 0.05 0.11 0.05 0.12	0.7 0.12 0.32 0.03 0.1 0.06 0.1 0.2 0.1 0.2 0.1 0.4 5	 1.7 0.07 0.7 0.03 	 0.06 0.08 0.06 0.06 0.09 0.09 0.1 0.2 0.1 1 1 3	 0.06 0.08 0.05 0.02 0.1 0.2 0.4 0.4 0.4 0.4 1.1 0.7	 0.07 0.1 0.07 0.08 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.5 1	 0.03 0.04 0.04 0.03 0.05 0.05 0.04 0.1 0.2 0.07 0.2 0.8	0.2 0.01 0.02 0.08 0.06 0.08 0.04 0.2 0.8	 0.05 0.02 0.05 0.02 0.01 0.05 0.05 0.1 0.1 0.1 0.1
[11] [12] [13]	 [9-3] Parlar-62 (参考) マイレックス (参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH (別塔: リンデン) [11-4] δ-HCH クロルデコン (参考) ペキサブロモビフェニル類 (参考) ポリブロモジフェニルエーテル類 [14-2] ペンタブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-3] ヘキサブロモジフェ ニルエーテル類 [14-4] ヘプタブロモジフェ ニルエーテル類 [14-5] オクタブロモジフェ ニルエーテル類 [14-6] ノナブロモジフェニ ルエーテル類 [14-7] デカブロモジフェニ ルエーテル 		0.52 0.0028 	0.81 0.017 	0.4 0.03 	3 0.04 	0.6 0.01	0.6 0.01	0.6 0.006 0.05 0.02 0.02 0.04 0.04 0.06 0.09 0.1 0.1 0.6	 0.47 0.09 0.12 0.02 0.12 0.02 0.1 0.05 0.05 0.05 0.06 0.1 0.06 1.2	0.01 0.83 0.13 0.021 0.02 0.1 0.07 0.06 0.05 0.1 0.05 0.1	0.7 0.12 0.32 0.03 0.1 0.06 0.1 0.2 0.1 0.2 0.1	 1.7 0.07 0.7 0.03 -	 0.06 0.08 0.06 0.06 0.09 0.09 0.1 0.2 0.1 1 1 3	 0.06 0.08 0.05 0.02 0.1 0.2 0.4 0.4 0.4 0.4 1.1	 0.07 0.1 0.07 0.08 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.5	 0.03 0.04 0.04 0.03 0.05 0.05 0.04 0.1 0.2 0.07 0.2	0.2 0.01 0.02 0.08 0.06 0.08 0.04 0.2	 0.05 0.02 0.05 0.02 0.01 0.05 0.05 0.1 0.1 0.1
[11] [12] [13] [14]	[9-3] Parlar-62 (参考)マイレックス (参考)HCH 類[11-1] α -HCH[11-2] β -HCH (別名: リンデン)[11-3] γ -HCH (別名: リンデン)[11-4] δ -HCH β -ルンデコン (参考) \wedge キサブロモビフェニル類(参考)ポリブロモジフェニルエーデル類 (臭素数が4から10までのもの)[14-1] テトラブロモジフェ $= \lambda - \pi - \pi \lambda$ 類[14-2] ペンタブロモジフェ $= \lambda - \pi - \pi \lambda$ 類[14-3] ヘキサブロモジフェ $= \lambda - \pi - \pi \lambda$ 類[14-4] ヘプタブロモジフェ $= \lambda - \pi - \pi \lambda$ 類[14-5] オクタブロモジフェ $= \lambda - \pi - \pi \lambda$ 類[14-6] ノナブロモジフェニ $\mu - \pi - \pi \lambda$ 類[14-7] デカプロモジフェニ $\mu - \pi - \pi \lambda$ $\sim - \pi \lambda - \pi \lambda$		0.52 0.0028 	0.81 0.017 	0.4 0.03 	3 0.04 	0.6 0.01	0.6 0.01	0.6 0.006 0.05 0.02 0.02 0.02 0.04 0.06 0.09 0.1 0.1 0.6 5	 0.47 0.09 0.12 0.02 0.12 0.02 0.12 0.02 0.1 0.05 0.05 0.05 0.06 0.1 0.06 1.2 9.1 0.1	0.01 0.83 0.13 0.021 0.02 0.1 0.07 0.06 0.05 0.1 0.05 0.1 0.06 0.05 0.1 0.05 0.1 0.06 0.05 0.1 0.08 0.4 4.0 0.2	0.7 0.12 0.32 0.03 0.1 0.06 0.1 0.2 0.1 0.2 0.1 0.4 5 0.2	 1.7 0.07 0.7 0.1	 0.06 0.08 0.06 0.06 0.09 0.09 0.09 0.1 0.2 0.1 1 3 0.06	 0.06 0.08 0.05 0.02 0.1 0.2 0.4 0.4 0.4 0.4 1.1 0.7 0.06	 0.07 0.1 0.07 0.08 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	 0.03 0.04 0.03 0.05 0.04 0.1 0.2 0.07 0.2 0.8 0.1	0.2 0.01 0.02 0.08 0.06 0.08 0.04 0.2 0.8 	 0.05 0.02 0.05 0.02 0.01 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.3
[11] [12] [13] [14]	 [9-3] Parlar-62 (参考) マイレックス (参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH (別塔: リンデン) [11-4] δ-HCH (参考) ポリプロモジフェニル類 (参考) ポリプロモジフェニルズー テル類(臭素数が4から10までのもの) [14-1] テトラブロモジフェニル ニルエーテル類 [14-2] ペンタブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェニルエーテル類 [14-4] ヘプタブロモジフェニルエーテル類 [14-5] オクタブロモジフェニルエーテル類 [14-6] ノナブロモジフェニニルエーテル類 [14-7] デカブロモジフェニニルエーテル ペルフルオロオクタンスルホン酸 (PFOS) ペルフルオロオクタン酸 		0.52 0.0028 	0.81 0.017 	0.4 0.03 	3 0.04 	0.6 0.01	0.6 0.01	0.6 0.006 0.05 0.02 0.02 0.02 0.04 0.06 0.09 0.1 0.1 0.6 5	 0.47 0.09 0.12 0.02 0.12 0.02 0.12 0.02 0.1 0.05 0.05 0.06 0.1 0.06 1.2 9.1	0.01 0.83 0.13 0.021 0.02 0.11 0.007 0.06 0.05 0.11 0.05 0.12	0.7 0.12 0.32 0.03 0.1 0.06 0.1 0.2 0.1 0.2 0.1 0.4 5	 1.7 0.07 0.7 0.03 	 0.06 0.08 0.06 0.06 0.09 0.09 0.1 0.2 0.1 1 1 3	 0.06 0.08 0.05 0.02 0.1 0.2 0.4 0.4 0.4 0.4 1.1 0.7	 0.07 0.1 0.07 0.08 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.5 1	 0.03 0.04 0.04 0.03 0.05 0.05 0.04 0.1 0.2 0.07 0.2 0.8	0.2 0.01 0.02 0.08 0.06 0.08 0.04 0.2 0.8	 0.05 0.02 0.05 0.02 0.01 0.05 0.05 0.1 0.1 0.1 0.1
[11] [12] [13] [14]	 [9-3] Parlar-62 (参考) マイレックス (参考) HCH類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH (別塔: リンデン) [11-4] δ-HCH (参考) ポリプロモジフェニル類 (参考) ポリプロモジフェニルズー テル類(臭素数が4から10までのもの) [14-1] テトラブロモジフェニル ニルエーテル類 [14-2] ペンタブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェニルエーテル類 [14-4] ヘプタブロモジフェニルエーテル類 [14-5] オクタブロモジフェニルエーテル類 [14-6] ノナブロモジフェニニルエーテル類 [14-7] デカブロモジフェニニルエーテル ペルフルオロオクタンスルホン酸 (PFOS) 		0.52 0.0028 -	0.81 0.017 -	0.4 0.03 -	3 0.04 -	0.6 0.01	0.6 0.01	0.6 0.006 0.05 0.02 0.02 0.04 0.06 0.09 0.1 0.1 0.6 5 	 0.47 0.09 0.12 0.02 0.12 0.02 0.12 0.02 0.1 0.05 0.05 0.05 0.06 0.1 0.06 1.2 9.1 0.1	0.01 0.83 0.13 0.021 0.02 0.1 0.07 0.06 0.05 0.1 0.05 0.1 0.06 0.05 0.1 0.05 0.1 0.06 0.05 0.1 0.08 0.4 4.0 0.2	0.7 0.32 0.03 0.1 0.06 0.1 0.06 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.2	 1.7 0.07 0.7 0.1	 0.06 0.08 0.06 0.06 0.09 0.09 0.09 0.1 0.2 0.1 1 3 0.06	 0.06 0.08 0.05 0.02 0.1 0.2 0.4 0.4 0.4 0.4 1.1 0.7 0.06	 0.07 0.1 0.07 0.08 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	 0.03 0.04 0.03 0.05 0.04 0.1 0.2 0.07 0.2 0.8 0.1	0.2 0.01 0.02 0.08 0.06 0.08 0.06 0.08 0.04 0.2 0.8 0.2 0.8	 0.05 0.02 0.05 0.02 0.01 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.3

物質 調査	調査対象物質								大	、気(pg/m ³)								
 一面至 番号	神 直入豕物貝	' 02	' 03	' 04	' 05	' 06	' 07	' 08	' 09	'10	' 11	'12	'13	'14	'15	'16	' 17	'18	'19
[18]	エンドスルファン類(参考) [18-1] α-エンドスルファン (参考)										4.0	5.3		0.3	0.3	0.3			
	[18-2] β-エンドスルファン (参考)										0.39	0.4		0.4	0.2	0.3			
	1,2,5,6,9,10-ヘキサブロモ シクロドデカン類																		
	[19-1] α-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン											0.2		0.4	0.3	0.1	0.1		0.1
[10]	[19-2] β-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン											0.1		0.3	0.3	0.1	0.1		0.08
[19]	[19-3] ン-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン											0.1		0.4	0.3	0.1	0.1		0.2
	[19-4] <i>&</i> -1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)											0.2		0.6	0.6				
	[19-5] <i>ɛ</i> -1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)											0.2		0.3	0.3				
[20]	総ポリ塩化ナフタレン※							1.3						1.0		0.28	0.24	0.2	0.2
[21]	ヘキサクロロブタ-1,3-ジエ ン														11	20	20	10	20
	ペンタクロロフェノール並 びにその塩及びエステル類																		
[22]	[22-1] ペンタクロロフェノ ール															0.2	0.2	0.2	0.2
	[22-2] ペンタクロロアニソ ール															0.4	0.5	0.4	0.1
	短鎖塩素化パラフィン類 [23-1] 塩素化デカン類															110	50	60	100
[22]																	50		100
[23]	[23-2] 塩素化リンケガン類 [23-3] 塩素化ドデカン類															240 170	60 30	40 40	100 90
	[23-4] 塩素化トリデカン類															170	30 40	40 70	90 80
[24]																0.2			0.2
	ペルフルオロヘキサンスル																		
[25] (注1)	ホン酸 (PFHxS) (参考) 「」 は比較対象なしを意	 n+ 7																	

表 7-1 モニタリング調査における定量下限値の比較(水質)

<u>秋</u> 7- 物質	1 ビニテリング 詞直に							(/1、5		水質(ng/L)								
調査	調査対象物質	<u>'02</u>	·03	' 04	' 05	' 06	' 07	' 08	·09	·10	·11	'12	<u>'13</u>	' 14	<u>'15</u>	'16	' 17	'18	' 19
番号 [1]	総 PCB※	7.4	9.4	14	10	9	7.6	7.8	10	73	4.5	44	25	8.2	21	8.4	16	14	12
[2]	HCB	0.6	5	30	15	16	8	3	0.5	13	5	2.2	7	0.2	1.8	0.9	2.1	1.5	8
[3]	アルドリン (参考)	0.6	0.6	2	0.9	1.7	1.0	1.4	0.7										
[4]	ディルドリン (参考)	1.8	0.7	2	1.0	3	2.1	1.5	0.6		1.6			0.5					
[5]	エンドリン (参考)	6.0	0.7	2	1.1	1.3	1.9	3	0.7		1.6			0.5					
	DDT 類(参考)	0.6		_		1.0													
	[6-1] <i>p,p'-</i> DDT(参考) [6-2] <i>p,p'-</i> DDE(参考)	0.6	3	6	4	1.9 7	1.7	1.2	0.15	2.4				0.4					
[6]	[6-2] <i>p,p</i> -DDE(参考) [6-3] <i>p,p</i> -DDD(参考)	0.6 0.24	4 2	8 3	6 1.9	/ 1.6	4 1.7	1.1 0.6	1.1 0.4	2.3 0.20				0.5 1.0					
[0]	[6-4] <i>o,p'</i> -DDT(参考)	1.2	3	5	1.9 3	2.3	2.5	0.0 1.4	0.4	1.5				0.4					
	[6-5] <i>o,p'</i> -DDE(参考)	0.9	0.8	2	1.2	2.6	2.3	0.7	0.22	0.24				0.4					
	[6-6] <i>o,p'-</i> DDD(参考)	0.60	0.8	2	1.2	0.8	0.8	0.8	0.22	0.6				0.20					
	クロルデン類(参考)																		
	[7-1] cis-クロルデン (参考)	0.9	3	6	4	5	4	1.6	1.1	11	1.4	1.6	2.7				2		
	[7-2] trans-クロルデン(参	1.5	5	5	4	7	2.4	3	0.8	13	1.0	2.5	3				3		
[7]	考) [7-3] オキシクロルデン(参																		
[7]	[7-5] スインクロルアン (参考)	1.2	2	2	1.1	2.8	6	1.9	1.1	0.7	1.3	0.9	0.9				4		
	「7-4] cis-ノナクロル(参考)	1.8	0.3	0.6	0.5	0.8	2.4	0.9	0.3	1.3	0.6	0.8	0.8				1.5		
	[7-5] trans-ノナクロル (参																		
	考)	1.2	2	4	2.5	3.0	5	1.6	1.0	8	1.3	1.5	1.5				3		
	ヘプタクロル類 (参考)		-														-		
	[8-1] ヘプタクロル (参考)	1.5	2	5	3	5	2.4	2.1	0.8	2.2	1.3			0.5			3		
[8]	[8-2] <i>cis</i> -ヘプタクロルエポ キシド (参考)		0.7	2	0.7	2.0	1.3	0.6	0.5	0.4	0.7			0.5			1.6		
	- シト (参与) [8-3] trans-ヘプタクロルエ																		
	ポキシド (参考)		2	0.9	0.7	1.8	2.0	1.9	0.7	1.3	0.8			0.8			2.3		
	トキサフェン類(参考)																		
[9]	[9-1] Parlar-26(参考)		40	9	10	16	20	8	5									4	
[2]	[9-2] Parlar-50(参考)		70	20	20	16	9	7	7									6	
54.03	[9-3] Parlar-62(参考)		300	90	70	60	70	40	40									40	
[10]	マイレックス (参考) HCH 類		0.3	0.4	0.4	1.6	1.1	0.6	0.4		0.5							0.7	
	III-1] α-HCH	0.9	3	6	4	3	1.9	4	1.2	4	7	1.4	7	4.5	1.2	1.1	0.9		4
[11]	[11-2] β-HCH	0.9	3	4	2.6	1.7	2.7	1.0	0.6	2.0	2.0	1.4	, 7	1.0	1.2	1.2	1.8		3
	[11-3] y-HCH (別名:リンデン)		7	20	14	18	2.1	3	0.6	6	3	1.3	2.7	1.2	0.9	0.8	1.4		4
	[11-4] δ-HCH		2	2	1.5	2.0	1.2	2.3	0.9	0.8	0.4	1.1	1.1	0.4	0.3	0.8	1.0		1.0
[12]	クロルデコン(参考) ヘキサブロモビフェニル類							0.14		0.09	0.20								
[13]	(参考)								5.7	3	2.2								
	(参与) ポリブロモジフェニルエー																		
	テル類(臭素数が4から10																		
	までのもの)																		
	[14-1] テトラブロモジフェ								8	9	4	4		8	3.6	5	9	13	11
	ニルエーテル類 [14-2] ペンタブロモジフェ								-	-				-		-	-	-	
	[14-2] ハンタフロセンフェ ニルエーテル類								11	3	3	2		4	6.3	2.4	3	9	6
	[14-3] ヘキサブロモジフェ																_		~
[14]	ニルエーテル類								1.4	4	3	3		4	1.5	2.1	7	3	2
	[14-4] ヘプタブロモジフェ								4	3	6	4		8	2.0	7	14	8	4
	ニルエーテル類									5					2.0	,	T	Ŭ	·
	[14-5] オクタブロモジフェ ニルエーテル類								1.4	3	2	4		1.6	1.5	0.8	2	3	3
	ールエーノル _類 [14-6] ノナブロモジフェニ																		
	ルエーテル類)								91	21	10	40		6	6	4	7	6	8
	[14-7] デカブロモジフェニ								600	200	60	660		22	10	1.4	24	11	14
	ルエーテル								600	300	60	660		22	18	14	24	11	14
[15]	ペルフルオロオクタンスル								37	50	50	31		50	29	50		70	80
	ホン酸 (PFOS) ペルフルオロオクタン酸																		
[16]	(PFOA)								59	60	50	170		50	56	50		70	90
[17]	ペンタクロロベンゼン						3,300			4	2.4	3	4	0.8	1.5		1.4	1.3	6
		•																	

物質	那大山在此所								7	と質 ((pg/L)								
調査 番号	調査対象物質	' 02	' 03	' 04	' 05	' 06	' 07	' 08	' 09	'10	'11	' 12	'13	'14	' 15	'16	'17	'18	' 19
[18]	エンドスルファン類(参考) [18-1] a-エンドスルファン (参考) [18-2] β-エンドスルファン										120	27						120	
	(参考)										22	24						30	
	1,2,5,6,9,10-ヘキサブロモ シクロドデカン類(参考) [19-1] α-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)										1,500			1,500					
[10]	[19-2] β-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)										1,300			500					
[19]	[19-3] ン-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)										1,200			700					
	[19-4] &1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)										790			600					
	[19-5] &-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)										740			400					
[20]	総ポリ塩化ナフタレン※							85										35	24
[21]	ヘキサクロロブタ-1,3-ジエ ン (参考)						870						94						
[22]	ペンタクロロフェノール並 びにその塩及びエステル類 [22-1] ペンタクロロフェノ ール [22-2] ペンタクロロアニソ ール														260		30 14	24 16	60 30
	短鎖塩素化パラフィン類 [23-1] 塩素化デカン類 [23-2] 塩素化ウンデカン類 [23-3] 塩素化ドデカン類 [23-4] 塩素化トリデカン類		 		 	 	 	 	 	 	 	 	 	 	 		3,300 1,500 3,300 3,600	2,000 3,000	1,400 1,000
[24]	ジコホル							25											13
[25]	ペルフルオロヘキサンスル ホン酸 (PFHxS) 2002 年度の完長下限値は ID																	120	60

(注1) 2002 年度の定量下限値は IDL の 3 倍、2003 年度から 2005 年度の定量下限値は MDL の 3 倍、2006 年度以降の定量下限値は MDL 測定時に得られた標準偏差の10倍である。
 (注 2「---」は比較対象なしを意味する。
 (注 3)※:定量下限値は、同族体ごとの検出下限値の合計とした。

表 7-2 モニタリング調査における定量下限値の比較(底質)

教質				ı						匠 /	2/1 1	.)							
調査	調査対象物質		I	I	I					質(pg	g∕g-dry	() [I	I					
番号		' 02	' 03	' 04	' 05	' 06	' 07	' 08	' 09	' 10	' 11	'12	'13	' 14	' 15	' 16	' 17	'18	' 19
[1]	総 PCB※	10	10	7.9	6.3	4	4.7	3.3	5.1	660	12	51	44	61	62	53	14	170	8.5
[2]	HCB	0.9	4	7	3	2.9	5	2.0	1.8	3	7	3	5.3	6	3	3	3	1.3	0.9
[3]	アルドリン (参考)	6	2	2	1.4	1.9	1.8	3	0.5									1.6	
[4]	ディルドリン (参考)	3	4	3	3	2.9	2.7	1.2	0.8		5							1.6	
[5]	エンドリン (参考)	6	5	3	2.6	4	5	1.9	1.6		1.1							2.4	
	DDT 類(参考)		_	_															
	[6-1] <i>p,p'</i> -DDT(参考)	6	2	2	1.0	1.4	1.3	1.2	1.0	2.8				0.4					
	[6-2] <i>p,p'</i> -DDE(参考)	2.7	0.9	3	2.7	1.0	1.1	1.7	0.8	5				1.8					
[6]	[6-3] <i>p,p'</i> -DDD(参考)	2.4	0.9	2	1.7	0.7	1.0	1.0	0.4	1.4				4.2					
	[6-4] <i>o,p'-</i> DDT(参考) [6-5] <i>o,p'-</i> DDE(参考)	6	0.8	2	0.8	1.2	1.8	1.5	1.2	1.1				0.4					
	[6-6] <i>o,p'</i> -DDDE(参考)	3 6	0.6 2	3 2	2.6 1.0	1.1 0.5	1.2 1.0	1.4 0.3	0.6 0.5	1.2 0.9				0.8 1.2					
	[0-0] 0, p-DDD (参考) クロルデン類 (参考)	0	2	2	1.0	0.5	1.0	0.5	0.5	0.9				1.2					
	「7-1] cis-クロルデン (参考)	0.9	4	4	1.9	2.4	5	2.4	0.7	6	1.1	2.9	2.0				4.8		
	[7-2] trans-クロルデン(参				1.7	2.4	5	2.7	0.7	0	1.1	2.7	2.0				4.0		
	考)	1.8	4	3	2.3	1.1	2.2	2.0	1.7	11	1.3	4.0	1.8				4		
[7]	[7-3] オキシクロルデン(参			_		• •			-										
	考)	1.5	1	3	2.0	2.9	2.5	3	2	1.0	2.2	1.7	1.3				3		
	[7-4] cis-ノナクロル (参考)	2.1	3	2	1.9	1.2	1.6	0.6	1.0	0.9	1.1	3	0.7				1.7		
	[7-5] trans-ノナクロル(参	1.5	2	2	1.5	1.2	1.7	2.2	0.9	6	0.8	2.4	1.2				6		
	考)	1.5	2	2	1.5	1.2	1.7	2.2	0.9	0	0.8	2.4	1.2				0		
	ヘプタクロル類(参考)																		
	[8-1] ヘプタクロル (参考)	1.8	3	3	2.5	1.9	3.0	4	1.1	1.1	1.8			1.5			0.9		
[8]	[8-2] <i>cis</i> -ヘプタクロルエポ		3	6	7	3.0	3	2	0.7	0.8	0.6			0.5			1.2		
	キシド (参考)																		
	[8-3] <i>trans</i> -ヘプタクロルエ ポキシド(参考)		9	4	5	7	10	1.7	1.4	3	2.3			0.7			2.0		
	トキサフェン類(参考)																		
	[9-1] Parlar-26(参考)		90	60	60	12	7	12	10									8	
[9]	[9-2] Parlar-50(参考)		200	60	90	24	, 30	17	10									8	
	[9-3] Parlar-62(参考)				2,000		300	90	80									50	
[10]	マイレックス (参考)		2	2	0.9	0.6	0.9	0.7	1.0		0.9							0.8	
	HCH 類																		
	[11-1] α-HCH	1.2	2	2	1.7	5	1.8	1.6	1.1	2.0	1.5	1.6	1.5	2.4	0.7	0.9	0.5		1.1
[11]	[11-2] β-HCH	0.9	2	3	2.6	1.3	0.9	0.8	1.3	2.4	3	1.5	0.4	0.9	0.8	0.9	1.5		1.2
	[11-3] y-HCH (別名:リンデン)		2	2	2.0	2.1	1.2	0.9	0.6	2.0	3	1.3	0.6	2.7	0.5	0.8	1.0		1.0
5103	[11-4] δ-HCH		2	2	1.0	1.7	5	2	1.2	1.2	1.4	0.8	0.3	0.4	0.5	0.5	0.6		0.5
[12]	クロルデコン (参考) ヘキサブロモビフェニル類							0.42		0.4	0.40								
[13]	(参考)								1.1	1.5	3.6				0.8				
	(参考) ポリブロモジフェニルエー																		
	テル類(臭素数が4から10																		
	までのもの)																		
	[14-1] テトラブロモジフェ								60	-	20	~		27	- 1		0	10	~
	ニルエーテル類								69	6	30	2		27	21	33	9	18	5
	[14-2] ペンタブロモジフェ								24	5	5	24		6	10	10	9	4	3
	ニルエーテル類								24	5	5	2.4		6	18	12	9	4	3
	[14-3] ヘキサブロモジフェ								5	4	9	3		5	3	8	6	3	4
[14]		-	_	_		-	-	_	2	-	,	5	-		2	0	0	5	7
	[14-4] ヘプタブロモジフェ								9	4	7	4		16	3	6	15	14	6
	ニルエーテル類																		
	[14-5] オクタブロモジフェ ニルエーテル類								1.2	10	10	19		12	48	6	5	1.2	3
	ニルエーテル _類 [14-6] ノナブロモジフェニ																		
	[14-6] ノリノロモンノェー ルエーテル類								9	24	23	34		60	24	27	15	5	5
	ルエーノル _短 [14-7] デカブロモジフェニ																		
	ルエーテル								60	220	40	270		240	40	120	30	42	4
	ペルフルオロオクタンスル								6	_	_	-				_		_	
[15]	ホン酸 (PFOS)								9.6	5	5	9		5	3	5		7	9
[10]	ペルフルオロオクタン酸	1							0.2	10	~	4		11	2			0	Ę
[16]	(PFOA)								8.3	12	5	4		11	3	9		9	5
[17]	ペンタクロロベンゼン						86			0.9	5	2.5	2.1	2.4	1.5	1.8	1.5	0.9	0.9

物質									底	質(pg	g/g-dry	y)							
調査 番号	調査対象物質	' 02	' 03	' 04	' 05	' 06	' 07	' 08	' 09	'10	' 11	'12	'13	'14	' 15	'16	'17	'18	' 19
	エンドスルファン類(参考)																		
[18]	[18-1] α-エンドスルファン (参考)										30	13						5	
	[18-2] β-エンドスルファン (参考)										9	13						5	
	1,2,5,6,9,10-ヘキサブロモ																		
	シクロドデカン類(参考) [19-1] a-1,2,5,6,9,10-ヘキサブ										420	180			150	130			
	ロモシクロドデカン(参考) [19-2] <i>B</i> -1,2,5,6,9,10-ヘキサブ																		
[10]	ロモシクロドデカン (参考)										150	150			150	130			
[19]	[19-3] γ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)										400	160			110	150			
	[19-4] δ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)										350	300			180				
	[19-5] <i>ɛ</i> -1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)										280	150			130				
[20]	総ポリ塩化ナフタレン※							84								59	27	8.5	7.3
[21]	ヘキサクロロブタ-1,3-ジエ ン (参考)						22						9.9						
	ペンタクロロフェノール並 びにその塩及びエステル類																		
[22]	[22-1] ペンタクロロフェノ ール																4	18	6
	[22-2] ペンタクロロアニソ ール																5	27	2.1
	短鎖塩素化パラフィン類																		
	[23-1] 塩素化デカン類																10,000	6,000	2,000
[23]	[23-2] 塩素化ウンデカン類															i	10,000	· · ·	i '
	[23-3] 塩素化ドデカン類																11,000		
	[23-4] 塩素化トリデカン類																12,000	9,000	,
[24]								160											4
[25]	ペルフルオロヘキサンスル ホン酸 (PFHxS)																	11	13

(注1) 2002 年度の定量下限値は IDL の 3 倍、2003 年度から 2005 年度の定量下限値は MDL の 3 倍、2006 年度以降の定量下限値は MDL 測定時に得られた標準偏差の10倍である。
 (注 2 「---」は比較対象なしを意味する。
 (注 3) ※: 定量下限値は、同族体ごとの検出下限値の合計とした。

表 7-3 モニタリング調査における定量下限値の比較(生物)

衣 /- 物質		生物 (pg/g-wet)																	
調査	調査対象物質	·02	<u>'03</u>	' 04	<u>'05</u>	' 06	' 07	' 08	·09	·10	'11	·12	'13	'14	' 15	'16	'17	' 18	' 19
番号	総 PCB※	25	50	04 85	69	42	46	47	32	-	220	34	-	95	52	60		-	33
[1]	HCB	0.18	23	83 14	11	42	40	47	52 4	52 5	4	8.4	44 31	93 10	20	8.1	68 3.9	63 3.3	3
[3]	アルドリン (参考)	4.2	2.5	4.0	3.5	4	5	5	2.1					1.8					
[4]	ディルドリン (参考)	12	4.8	31	9.4	7	9	9	7		3			3					
[5]	エンドリン (参考)	18	4.8	12	17	11	9	8	7		4			3					
	DDT 類(参考)																		
	[6-1] p,p'-DDT(参考)	4.2	11	3.2	5.1	6	5	5	3	3			3.3					3	
[6]	[6-2] <i>p,p'</i> -DDE(参考)	2.4	5.7	8.2	8.5	1.9	3	3	4	3			4.3					3	
[6]	[6-3] <i>p,p'-</i> DDD(参考) [6-4] <i>o,p'-</i> DDT(参考)	5.4 12	9.9 2.9	2.2 1.8	2.9 2.6	2.4 3	3 3	3	2.4 2.2	1.3 3			1.9 3					1.4 2.7	
	[6-5] <i>o,p'</i> -DDE(参考)	3.6	2.9 3.6	2.1	2.0 3.4	3	2.3	3	3	1.5			4					2.7 3	
	[6-6] <i>o,p'</i> -DDD(参考)	12	6.0	5.7	3.3	4	3	4	3	0.6			1.8					2.4	
	クロルデン類 (参考)																		
	[7-1] cis-クロルデン (参考)	2.4	3.9	18	12	4	5	5	4	4	3	5	13			3			
	[7-2] trans-クロルデン(参考)	2.4	7.2	48	10	4	6	7	4	3	4	7	16			6			
[7]	[7-3]オキシクロルデン(参 考)	3.6	8.4	9.2	9.3	7	6	7	4	8	3	3	3			3			
	考) [7-4] cis-ノナクロル (参考)	1.2	4.8	3.4	4.5	3	3	4	3	3	1.8	2	2.2			1.4			
	[7-5] <i>trans</i> -ノナクロル(参 考)	2.4	3.6	13	6.2	3	7	6	3	4	3	4	10			3			
	ヘプタクロル類(参考) [8-1] ヘプタクロル(参考)	4.2	6.6	4.1	6.1	6	6	6	5	3	3	4	3		3.0	2.4			
[8]	[8-2] cis-ヘプタクロルエポ		6.9	9.9	3.5	4	4	5	3	2.4	2.0	1.5	2.1		2.1	1.9			
[.]	キシド(参考) [8-3] <i>trans</i> -ヘプタクロルエ		13	12	23	13	13	10	8	3	7	8	7		7	9			
	ポキシド (参考) トキサフェン類 (参考)		15	12	23	15	15	10	0	3	/	0	/		/	9			
501	[9-1] Parlar-26(参考)		45	42	47	18	10	9	7						23			21	
[9]	[9-2] Parlar-50(参考)		33	46	54	14	9	10	8						30			16	
	[9-3] Parlar-62(参考)		120	98	100	70	70	80	70						150			100	
[10]	マイレックス (参考)		2.4	2.5	3.0	3	3	4	2.1		1.9							1.4	
	HCH 類	10	1.0	10		2	-	-	~		2	0.7	2		2.0		2		
[11]	[11-1] α-HCH [11-2] β-HCH	4.2 12	1.8 9.9	13 6.1	11 2.2	3 3	7 7	6 6	5 6	3	3 3	3.7 2.0	3 2.2	3 2.4	3.0 3.0	3	3 3		4 3
[11]	[11-3] y-HCH (別名:リンデン)		3.3	31	8.4	4	9	9	7	3	3	2.3	2.4	2.4	4.8	3	3		4
	[11-4] δ-HCH		3.9	4.6	5.1	3	4	6	5	3	3	3	3	3	2.1	3	2.3		4
[12]	クロルデコン (参考)							5.6		5.9	0.5								
[13]	ヘキサブロモビフェニル類 (参考)								1.3	24	3				14				
	ポリブロモジフェニルエー																		
	テル類 (臭素数が4から10 までのもの)																		
	[14-1] テトラブロモジフェ ニルエーテル類							5.9		43	16	19		15	15	13	16	14	18
	[14-2] ペンタブロモジフェ ニルエーテル類							16		14	15	18		12	13	9	12	11	10
	[14-3] ヘキサブロモジフェ							14		8	10	10		10	12	21	17	21	21
[14]	ニルエーテル類 [14-4] ヘプタブロモジフェ							18		30	10	10		10	12	13	22	15	24
	ニルエーテル類 [14-5] オクタブロモジフェ															_			
	ニルエーテル類 [14-6] ノナブロモジフェニ							9.6		11	7	8		11	14	16	20	16	17
	ルエーテル類							35		30	22	24		30	23	36	50	40	50
	[14-7] デカブロモジフェニ ルエーテル							220		270	230	120		170	170	300	210	240	190
[15]	ペルフルオロオクタンスル ホン酸(PFOS)								19	25	10	7		5	4	9	12		6
[16]	ペルフルオロオクタン酸 (PFOA)								25	26	41	38		10	10	4	12		3
[17]	ペンタクロロベンゼン						180			1.9	4	8.1	78	9.3	12	15	4	15	3

物質 調査	調査対象物質								生物	勿(pg	g/g-we	t)							
祠宜 番号		' 02	' 03	' 04	' 05	'06	' 07	' 08	' 09	'10	' 11	'12	'13	'14	' 15	'16	'17	'18	'19
[18]	エンドスルファン類(参考) [18-1] α-エンドスルファン (参考) [18-2] β-エンドスルファン (参考)										50 11	71 14		60 19	120 32				
[19]	 (参考) 1,2,5,6,9,10-ヘキサブロモシクロドデカン類 [19-1] α-1,2,5,6,9,10-ヘキサブロモシクロドデカン [19-2] β-1,2,5,6,9,10-ヘキサブロモシクロドデカン [19-3] γ-1,2,5,6,9,10-ヘキサブロモシクロドデカン [19-4] δ-1,2,5,6,9,10-ヘキサブロモシクロドデカン (あ考) [19-5] ε-1,2,5,6,9,10-ヘキサブロモシクロドデカン (参考) 	 	 	 	 	 	 	 	 	 	170 98 210 140 140	50 40 30 50 40	 	30 30 30 30 30	30 30 30 30 30 30	22 21 24 	24 23 24 	23 22 21 	24 24 22
[20]	総ポリ塩化ナフタレン※						27	26							54	57	33	36	40
[21]	ヘキサクロロブタ-1,3-ジエ ン (参考)						36						9.4						
[22]	ペンタクロロフェノール並 びにその塩及びエステル類 [22-1] ペンタクロロフェノ ール [22-2] ペンタクロロアニソ ール															63 3	36 4	30 6	10 3
	短鎖塩素化パラフィン類 [23-1] 塩素化デカン類 [23-2] 塩素化ウンデカン類 [23-3] 塩素化ドデカン類 [23-4] 塩素化トリデカン類 ジュホル	 	 	 	 	 92	 	 120	 	 	 	 	 	 		1,300 3,000 2,100 1,100	800 900	,	500 1,200
[25]	ペルフルオロヘキサンスル ホン酸 (PFHxS) (参考)																		

(注 1) 2002 年度の定量下限値は IDL の 3 倍、2003 年度から 2005 年度の定量下限値は MDL の 3 倍、2006 年度以降の定量下限値は MDL (注1)2002 年後の定量 「限値は1DL の3 倍、2003 年後から 2003 年後
 測定時に得られた標準偏差の 10 倍である。
 (注2「---」は比較対象なしを意味する。
 (注3)※:定量下限値は、同族体ごとの検出下限値の合計とした。

表 7-4 モニタリング調査における定量下限値の比較(大気)

衣 /-	4 モークリンク調査に		N G'I	こ里	배 꼬막	ヨッノレ	山牧												
物質									大	、気(pg/m ³)								
調査	調査対象物質		T	r	T		i	T		Ī	Ī		T	T	T	r	T	ſ	ſ
番号		` 02	·03	' 04	' 05	' 06	' 07	' 08	' 09	'10	' 11	'12	'13	' 14	' 15	'16	'17	'18	' 19
[1]	総 PCB※	99	6.6	2.9	0.38	0.8	0.37	0.8	0.75	7.3	18	26	20	4.1	5.9	7.8	7.0	2.4	2.1
[2]	НСВ	0.9	2.3	1.1	0.14		0.09	0.22	0.6	1.8	2.3	4.3	3.8	1.4	0.5	0.8	0.5	0.4	0.14
[3]	アルドリン (参考)		0.023		_	_		0.04	0.04					12					
[4]	ディルドリン (参考)	0.60	2.1	0.33	0.54	0.3	-	0.24	0.06		0.42			0.34					
	エンドリン (参考)		+		-						0.42			-					
[5]		0.090	0.042	0.14	0.5	0.30	0.09	0.10	0.09		0.09			0.20					
	DDT 類(参考)																		
	[6-1] p,p'-DDT(参考)	0.24	0.14	0.22	0.16	0.17	0.03	0.07	0.07	0.10			0.11		0.15			0.03	
	[6-2] p,p'-DDE(参考)	0.09	0.40	0.12	0.14	0.10	0.04	0.04	0.08	0.62			0.10		0.12			0.03	
[6]	[6-3] p,p'-DDD(参考)	0.018	0.054	0.053	0.16	0.13	0.011	0.025	0.03	0.02			0.018		0.33			0.07	
	[6-4] <i>o,p'-</i> DDT(参考)	0.15	0.12	0.093	0.10	0.09	0.03	0.03	0.019	0.14			0.054		0.12			0.03	
	[6-5] <i>o,p'</i> -DDE(参考)	0.03	0.020	0.037	0.074	0.09	0.017	0.025	0.016	0.04			0.023		0.18			0.05	
	[6-6] <i>o,p'-</i> DDD(参考)	0.021	0.042	0.14	0.10	0.10	0.05	0.04	0.03	0.03			0.05		0.20			0.07	
	クロルデン類 (参考)	0.021	0.0.2	0.1.1	0.10	0.10	0.00	0.0.	0.00	0.00			0.00		0.20			0.07	
	[7-1] cis-クロルデン (参考)	0.60	0.51	0.57	0.16	0.12	0.1	0.14	0.16	0.9	1.3	1.5	0.7			0.9			
	[7-1] trans-クロルデン (参考)	0.00	0.51	0.57	0.10	0.15	0.1	0.14	0.10	0.9	1.5	1.5	0.7			0.9			
		0.60	0.86	0.69	0.3	0.17	0.12	0.17	0.12	1.2	1.6	2.1	0.8			1.0			
	考)																		
[7]	[7-3]オキシクロルデン(参	0.024	0.045	0.13	0.16	0.23	0.05	0.04	0.04	0.03	0.07	0.08	0.03			0.16			
	考)										0.07	0.00	0.02			0.10			
	[7-4] cis-ノナクロル (参考)	0.030	0.026	0.072	0.08	0.15	0.03	0.03	0.04	0.11	0.15	0.12	0.07			0.14			
	[7-5] trans-ノナクロル(参	0.20	0.25	0.40	0.13	0.10	0.00	0.00	0.07	0.0	1 1	1.2	0.5			07			
	考)	0.30	0.35	0.48	0.13	0.10	0.09	0.09	0.07	0.8	1.1	1.2	0.5			0.7			
	ヘプタクロル類 (参考)	1																	
	[8-1] ヘプタクロル(参考)	0.12	0.25	0.23	0.16	0.11	0.07	0.06	0.04	0.11	0.30	0.41	0.16		0.19	0.22			
	[8-2] <i>cis</i> -ヘプタクロルエポ														0.17	0.22			
[8]	キシド (参考)		0.015	0.052	0.12	0.11	0.03	0.022	0.03	0.02	0.04	0.05	0.03		0.5	0.12			
	[8-3] trans-ヘプタクロルエ																		
			0.099	0.6	0.16	0.3	0.14	0.16	0.14	0.16	0.13	0.12	0.12		0.03	0.3			
	ポキシド (参考)																		
	トキサフェン類(参考)																		
[9]	[9-1] Parlar-26(参考)		0.20	0.20	0.3	1.8	0.6	0.22	0.23									0.4	
[2]	[9-2] Parlar-50(参考)		0.81	1.2	0.6	1.6	0.3	0.25	0.3									0.5	
	[9-3] Parlar-62(参考)		1.6	2.4	1.2	8	1.5	1.6	1.6									0.4	
[10]	マイレックス (参考)		0.0084	0.05	0.10	0.13	0.03	0.03	0.015		0.04							0.03	
	HCH 類																		
	[11-1] α-HCH								0.12	1.4	2.5	2.1	5.2	0.19	0.17	0.17	0.08		0.12
[11]										0.27		0.36		0.24			0.11		0.06
[11]	[11-3] y-HCH (別名:リンデン)									0.35	1.6	0.95		0.17					0.12
	[11-4] <i>δ</i> -HCH								0.00		0.063		0.08				0.08		0.04
[12]	<u>[11-4]</u> の-nCh クロルデコン(参考)									0.03		0.07	0.08	0.19		0.20			
[12]	<u>クロルノコン(参考)</u> ヘキサブロモビフェニル類									0.04	0.04								
[13]										0.3	0.3				0.06				
\vdash	(参考)																		
	ポリブロモジフェニルエー																		
	テル類(臭素数が4から10																		
	までのもの)																		
	[14-1] テトラブロモジフェ								0.11	0.12	0.18	0.2		0.28	0.4	0.4	0.15	0.05	0.04
	ニルエーテル類								0.11	0.12	0.18	0.5		0.28	0.4	0.4	0.15	0.05	0.04
	[14-2] ペンタブロモジフェ																		
	ニルエーテル類								0.16	0.12	0.16	0.14		0.28	0.6	0.4	0.10	0.20	0.12
	[14-3] ヘキサブロモジフェ																		
[14]	ニルエーテル類								0.22	0.16	0.14	0.3		0.4	1.1	0.6	0.3	0.17	0.13
[14]	[14-4] ヘプタブロモジフェ																		
									0.3	0.3	0.3	0.5		0.7	1.3	1.1	0.4	0.20	0.3
	ニルエーテル類																		
	[14-5] オクタブロモジフェ								0.3	0.15	0.20	0.3		0.4	1.1	0.6	0.21	0.11	0.3
	ニルエーテル類								5.5			5.5				5.0			
	[14-6] ノナブロモジフェニ								1.8	3.7	0.9	1.2		4	3.2	1.4	0.6	0.4	0.3
	ルエーテル類								1.8	5.1	0.9	1.2		4	3.2	1.4	0.0	0.4	0.5
	[14-7] デカブロモジフェニ													_		_			
	ルエーテル								16	27	12	16		9	2.2	3	2.4	2.0	0.3
	ペルフルオロオクタンスル																		
[15]	ホン酸 (PFOS)									0.4	0.5	0.5	0.3	0.17	0.19	0.6	0.3		0.8
[16]	ペルフルオロオクタン酸									0.5	5.4	0.7	1.8	0.4	4.2	1.3	3.3		0.8
	(PFOA)	 																-	
1 [17]	ペンタクロロベンゼン						12		6.4	1.2	2.1	1.8	1.7	0.9	0.6	0.5	0.3	0.22	0.09
[17]																			

物質 調査	調査対象物質	大気 (pg/m ³)																	
祠宜 番号		' 02	' 03	' 04	' 05	' 06	'07	' 08	' 09	'10	' 11	'12	'13	'14	'15	'16	'17	'18	'19
	エンドスルファン類(参考)																		
[18]	[18-1] α-エンドスルファン (参考)										12	16		0.8	1.0	0.8			
	[18-2] β-エンドスルファン (参考)										1.2	1.2		1.2	0.5	0.8			
	1,2,5,6,9,10-ヘキサブロモ シクロドデカン類																		
	[19-1] α-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン											0.6		1.2	0.9	0.3	0.3		0.3
	[19-2] β-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン											0.3		1.0	0.8	0.3	0.3		0.21
[19]	[19-3] <i>ン</i> -1,2,5,6,9,10-ヘキサブ ロモシクロドデカン											0.3		1.3	0.8	0.3	0.3		0.4
	[19-4] <i>&</i> -1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)											0.4		1.8	1.9				
	[19-5] <i>ɛ</i> -1,2,5,6,9,10-ヘキサブ ロモシクロドデカン(参考)											0.6		0.9	0.9				
[20]	総ポリ塩化ナフタレン※							4.0						2.8		0.79	0.67	0.5	0.6
[21]	ヘキサクロロブタ-1,3-ジエ ン														29	60	60	30	50
	ペンタクロロフェノール並 びにその塩及びエステル類																		
[22]	[22-1] ペンタクロロフェノ ール															0.5	0.6	0.5	0.6
	[22-2] ペンタクロロアニソ ール															1.0	1.2	1.1	0.3
	短鎖塩素化パラフィン類																		
	[23-1] 塩素化デカン類															290	140	150	400
[23]	[23-2] 塩素化ウンデカン類															610	190	110	300
	[23-3] 塩素化ドデカン類															430	100	110	260
10.12	[23-4] 塩素化トリデカン類															320	120	180	250
[24]	ジコホル ペルフルオロヘキサンスル															0.5			0.4
[25]	ヘルワルオロヘキサジスル ホン酸 (PFHxS) (参考)																		

(注1) 2002 年度の定量下限値は IDL の 3 倍、2003 年度から 2005 年度の定量下限値は MDL の 3 倍、2006 年度以降の定量下限値は MDL (注 1) 2002 牛後の定量 下限値は IDL の 5 倍、2005 牛後がら 2005 牛/ 測定時に得られた標準偏差の 10 倍である。
 (注 2 「---」は比較対象なしを意味する。
 (注 3) ※:定量下限値は、同族体ごとの検出下限値の合計とした。