平成 23 年度 モニタリング調査結果

1.調査目的	127
2 . 調査対象物質	127
3 . 調査地点及び実施方法	138
(1)試料採取機関	138
(2)調査地点	139
(3)調査対象生物種	172
(4)試料の採取方法	172
(5)分析法	172
4. モニタリング調査としての継続性に関する考察	176
(1)調査対象物質及び媒体の推移	176
(2)調査地点の推移	183
(3)定量(検出)下限値の推移	192
(4)まとめ	202
5 . 調査結果の概要	204
[1] PCB 類 ······	220
[2] HCB(ヘキサクロロベンゼン)	
[3] アルドリン (参考) ····································	
[4] ディルドリン	
[5] エンドリン ···································	
[6] DDT 類(参考) ····································	
[7] クロルデン類	
[8] ヘプタクロル類	286
[8] ヘプタクロル類 ······ [9] トキサフェン類(参考) ····································	· 286 · 296
[8] ヘプタクロル類 ····································	· 286 · 296 · 302
[8] ヘプタクロル類 ····································	· 286 · 296 · 302 · 306
[8] ヘプタクロル類	286 296 302 306 321
[8] ヘプタクロル類	· 286 · 296 · 302 · 306 · 321 · 323
 [8] ヘプタクロル類 [9] トキサフェン類(参考) [10] マイレックス [11] HCH(ヘキサクロロシクロヘキサン)類 [12] クロルデコン [13] ヘキサブロモビフェニル類 [14] ポリブロモジフェニルエーテル類(臭素数が4から10までのもの) 	· 286 · 296 · 302 · 306 · 321 · 323 · 325
[8] ヘプタクロル類	· 286 · 296 · 302 · 306 · 321 · 323 · 325 · 332
[8] ヘプタクロル類	· 286 · 296 · 302 · 306 · 321 · 323 · 325 · 332
[8] ヘプタクロル類 (参考) [10] マイレックス [11] HCH (ヘキサクロロシクロヘキサン)類 [12] クロルデコン [13] ヘキサブロモビフェニル類 [14] ポリブロモジフェニルエーテル類 (臭素数が 4 から 10 までのもの) [15] ペルフルオロオクタンスルホン酸 (PFOS) [16] ペルフルオロオクタン酸 (PFOA) [17] ペンタクロロベンゼン	· 286 · 296 · 302 · 306 · 321 · 323 · 325 · 332 · 334 · 336
[8] ヘプタクロル類	· 286 · 296 · 302 · 306 · 321 · 323 · 325 · 332 · 334 · 336 · 339

-	126	-
---	-----	---

1.調査目的

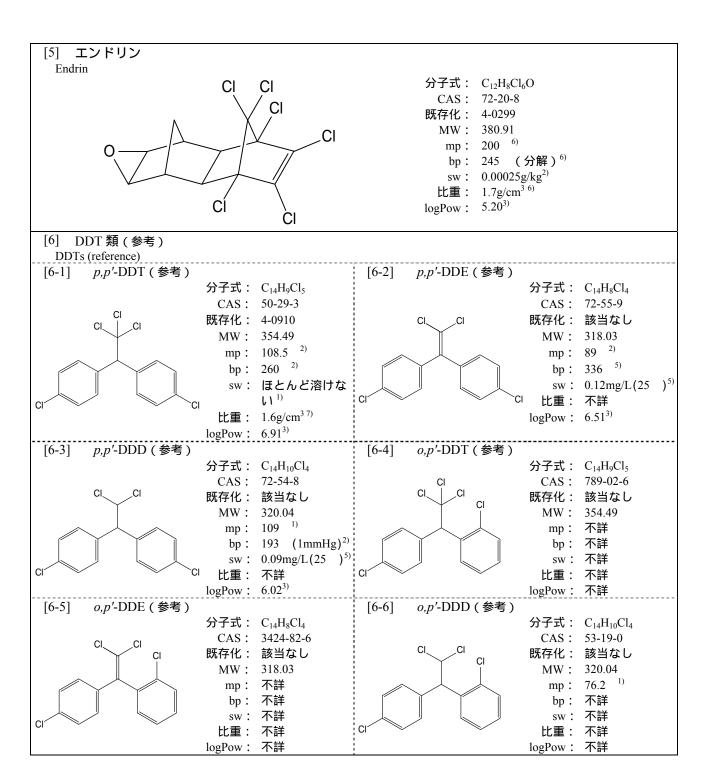
モニタリング調査は、「化学物質の審査及び製造等の規制に関する法律」(昭和48年法律第117号)(以下「化審法」という。)の特定化学物質等について、一般環境中の残留状況を監視することを目的とする。また、「残留性有機汚染物質に関するストックホルム条約」(以下「POPs条約」という。)に対応するため、条約対象物質等の一般環境中及び人体中における残留状況の経年変化を把握することを目的とする。

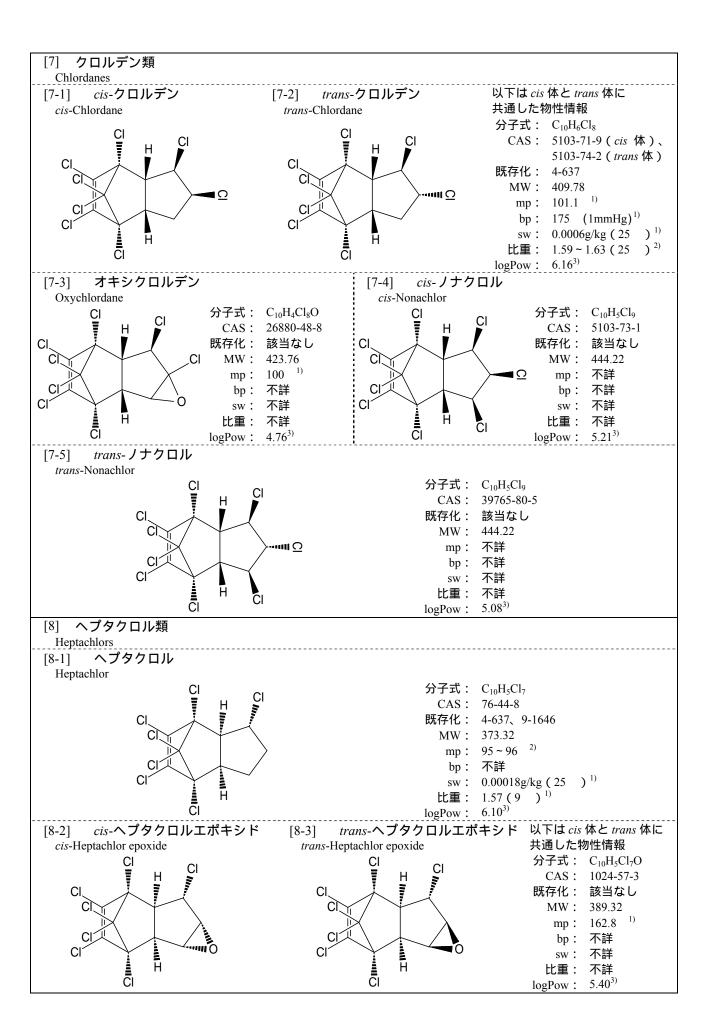
POPs (Persistent Organic Pollutants: 残留性有機汚染物質)

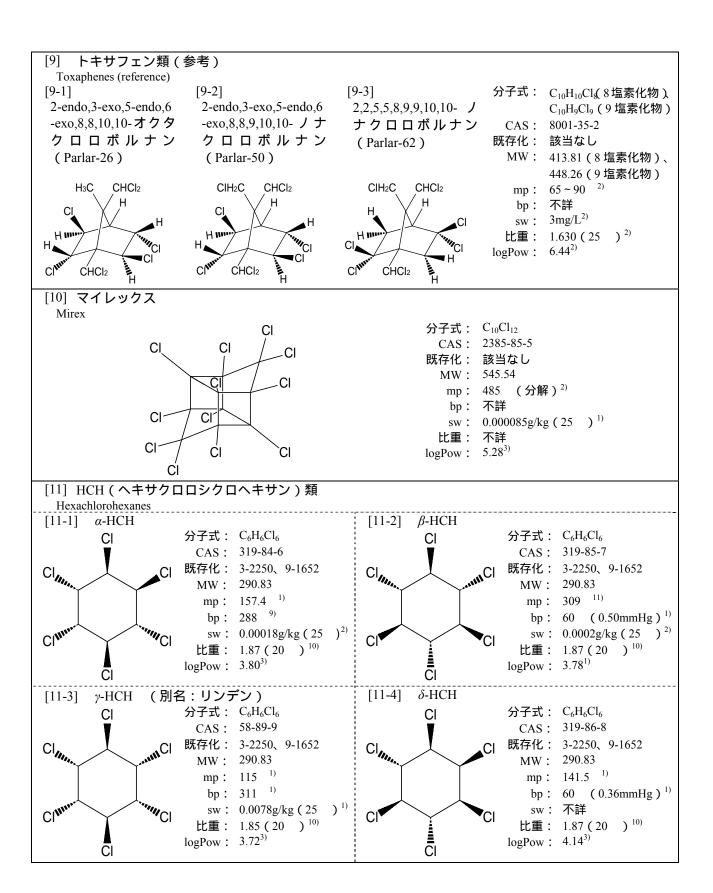
2.調査対象物質

平成23年度のモニタリング調査は、従前の POPs 条約対象物質のうち PCB 類、HCB(ヘキサクロロベンゼン)、ディルドリン、エンドリン、クロルデン類、ヘプタクロル類及びマイレックスの7物質(群) 並びに 平成21年5月に開催された同条約の第4回条約締約国会議(以下「COP4」という。)において新規に POPs 条 約対象物質として採択された HCH 類 、クロルデコン、ヘキサブロモビフェニル類、ポリブロモジフェニルエーテル類(臭素数が4から10までのもの) 、ペルフルオロオクタンスルホン酸(PFOS)及びペンタクロロベンゼンの6物質(群)及び平成23年4月に開催された同条約の第5回条約締約国会議(以下「COP5」という。)において新規に POPs 条約対象物質として採択されたエンドスルファン類を加えた14物質(群)に、ペルフルオロオクタン酸(PFOA)、1,2,5,6,9,10-ヘキサブロモシクロドデカン類及び化審法における優先評価化学物質である N,N-ジメチルホルムアミドの3物質(群)を加えた計17物質(群)を調査対象物質とした。調査対象物質と調査媒体との組合せは次のとおりである。

平成21年度までは、従前の POPs 条約対象物質のうちポリ塩化ジベンゾ-パラ-ジオキシン及びポリ塩化ジベンゾフランを除く10物質(群)について各物質とも毎年度の調査を行っていた。平成22年度以降の調査においては、調査頻度の見直し、一部の物質については数年おきの調査とすることとし、平成23年度の調査ではアルドリン、DDT 類及びトキサフェン類の3物質(群)の調査を行わなかった。なお、平成23年度に調査を行わなかった3物質(群)についても平成21年度又は平成22年度までの調査結果を参考として本書に掲載している。

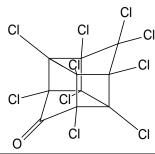

POPs 条約では、HCH 類のうち、 α -HCH、 β -HCH 及び γ -HCH (別名:リンデン)が COP4で POPs 条約対象物質とすることとされたが、本調査では δ -HCH も含めて HCH 類として調査を行った。 POPs 条約では、ポリブロモジフェニルエーテル類のうち、テトラブロモジフェニルエーテル類、 ペンタブロモジフェニルエーテル類、 ペキサブロモジフェニルエーテル類及びペプタブロモジフェニルエーテル類が COP4で POPs 条約対象物質とすることとされたが、本調査ではそれらを含む臭素数が4から10のものについてポリブロモジフェニルエーテル類として調査を行った。


調査 調査対象物質 水 質 を 物
[1-1] モノクロロビフェニル類 [1-2] ジクロロビフェニル類 [1-4] テトラクロロビフェニル類 [1-4-1] 3,3',4,4'-テトラクロロビフェニル(#77) [1-4-2] 3,4,4'-テトラクロロビフェニル(#81) [1-5-1] 2,3,3',4,4'-ベンタクロロビフェニル(#105) [1-5-2] 2,3,4,4'-5-ベンタクロロビフェニル(#114) [1-5-3] 2,3',4,4'-5-ベンタクロロビフェニル(#123) [1] [1-5-4] 2,3,4,4'-5-ベンタクロロビフェニル(#123) [1] [1-5-5] 3,3',4,4'-5-ベンタクロロビフェニル(#126) [1-6-1] 2,3,3',4,4'-5-ベンタクロロビフェニル(#157) [1-6-1] 2,3,3',4,4'-5,5'-ヘギサクロロビフェニル(#157) [1-6-2] 2,3',4,4'-5,5'-ヘギサクロロビフェニル(#167) [1-6-4] 3,3',4,4'-5,5'-ヘギサクロロビフェニル(#167) [1-7-1] 2,2',3,3',4,4'-5,5'-ヘブタクロロビフェニル(#180) [1-7-1] 2,2',3,3,4,4'-5,5'-ヘブタクロロビフェニル(#180) [1-7-2] 2,2',3,4,4'-5,5'-ヘブタクロロビフェニル(#180) [1-7-3] 2,3,3',4,4'-5,5'-ヘブタクロロビフェニル(#180) [1-7-1] 2,3,3',4,4'-5,5'-ヘブタクロロビフェニル(#180) [1-7-2] 2,3',3,4,4'-5,5'-ヘブタクロロビフェニル(#180) [1-7-3] 2,3,3',4,4'-5,5'-ヘブタクロロビフェニル(#180) [1-7-1] 2,5'-1,5'-1,5'-1,5'-1,5'-1,5'-1,5'-1,5'-1
[1-2] ジクロロピフェニル類
[1-3] トリクロロピフェニル類
[1-4-1] テトラクロロピフェニル類
[1-4-1] 3,3',4,4'-テトラクロロピフェニル (#77)
[1-4-2] 3,4,4',5-テトラクロロビフェニル(#81) [1-5] ベンタクロロビフェニル類 [1-5-1] 2,3,3',4-4'ペンタクロロビフェニル(#105) [1-5-2] 2,3,4,4'-ペンタクロロビフェニル(#118) [1-5-3] 2,3',4,4'-ペンタクロロビフェニル(#118) [1-5-3] 2,3',4,4'-5-ペンタクロロビフェニル(#123) [1] [1-5-5] 3,3',4,4',5-ペンタクロロビフェニル(#126) [1-6-1] 2,3,3',4,4',5-ペキサクロロビフェニル(#156) [1-6-1] 2,3,3',4,4',5-ペキサクロロビフェニル(#157) [1-6-2] 2,3',4,4',5'-ヘキサクロロビフェニル(#167) [1-6-3] 2,3',4,4',5,5'-ヘキサクロロビフェニル(#169) [1-7] ヘプタクロロビフェニル類 [1-7-1] 2,2',3,3',4,4',5,5'-ヘプタクロロビフェニル(#170) [1-7-2] 2,2',3,4,4',5,5'-ヘプタクロロビフェニル(#189) [1-8] オクタクロロビフェニル類 [1-9] ノナクロロビフェニル類 [1-9] ノナクロロビフェニル類 [1-9] リナクロロビフェニル類 [1-10] デカクロロビフェニル [2] HCB (ヘキサクロペンゼン) [3] アルドリン (参考) [4] ディルドリン [5] エンドリン DDT 類(参考) [6-1] pp-DDT (参考)
[1-5] ペンタクロロピフェニル類 [1-5-1] 2,3,3',4,4'-ペンタクロロピフェニル (#105) [1-5-2] 2,3,4,4'-5-ペンタクロロピフェニル (#114) [1-5-3] 2,3',4,4'-5-ペンタクロロピフェニル (#118) [1-5-4] 2',3,4,4',5-ペンタクロロピフェニル (#123) [1] [1-5-5] 3,3',4,4',5-ペンタクロロピフェニル (#126) [1-6] ヘキサクロロピフェニル類 [1-6-1] 2,3,3',4,4',5-ヘキサクロロピフェニル (#157) [1-6-2] 2,3,3',4,4',5'-ヘキサクロロピフェニル (#167) [1-6-3] 2,3',4,4',5,5'-ヘキサクロロピフェニル (#169) [1-7] ヘブタクロピフェニル類 [1-7-1] 2,2',3,3',4,4',5,5'-ヘブタクロロピフェニル (#180) [1-7-2] 2,2',3,4,4',5,5'-ヘブタクロロピフェニル (#189) [1-8] オクタクロロピフェニル類 [1-9] ノナクロロピフェニル類 [1-10] デカクロロピフェニル類 [1-10] デカクロロピフェニル[1-10] デカクロロペンゼン) [3] アルドリン(参考) [4] ディルドリン [5] エンドリン DDT 類(参考) [6-1] pp'-DDT (参考)
[1-5-1] 2,3,3',4,4'-ペンタクロロビフェニル (#105) [1-5-2] 2,3,4,4',5-ペンタクロロビフェニル (#114) [1-5-3] 2,3',4,4',5-ペンタクロロビフェニル (#118) [1-5-4] 2',3,4,4',5-ペンタクロロビフェニル (#123) [1] [1-5-5] 3,3',4,4',5-ペンタクロロビフェニル (#126) [1-6] ヘキサクロロビフェニル類 [1-6-1] 2,3,3',4,4',5-ヘキサクロロビフェニル (#157) [1-6-2] 2,3,3',4,4',5-ヘキサクロロビフェニル (#167) [1-6-3] 2,3',4,4',5,5'-ヘキサクロロビフェニル (#169) [1-7] ヘプタクロロビフェニル類 [1-7-1] 2,2',3,3',4,4',5,5'-ヘブタクロロビフェニル (#180) [1-7-2] 2,2',3,4,4',5,5'-ヘブタクロロビフェニル (#189) [1-8] オクタクロロビフェニル類 [1-9] ノナクロロビフェニル類 [1-9] ノナクロロビフェニル類 [1-9] イナクロロビフェニル [2] HCB (ヘキサクロロベンゼン) [3] アルドリン (参考) [4] ディルドリン [5] エンドリン DDT 類 (参考) [6-1] p,p'DDT (参考)
[1-5-2] 2,3,4,4',5-ペンタクロロビフェニル(#114) [1-5-3] 2,3',4,4'-5-ペンタクロロビフェニル(#123) [1-5-4] 2',3,4,4',5-ペンタクロロビフェニル(#126) [1-6-5] 3,3',4,4',5-ペンタクロロビフェニル(#126) [1-6-1] 2,3,3',4,4',5-ペキサクロロビフェニル(#157) [1-6-2] 2,3,3',4,4',5-ペキサクロロビフェニル(#157) [1-6-3] 2,3',4,4',5,5'-ペキサクロロビフェニル(#167) [1-6-4] 3,3',4,4',5,5'-ペキサクロロビフェニル(#169) [1-7] ペプタクロロビフェニル類 [1-7-1] 2,2',3,3',4,4',5,5'-ペプタクロロビフェニル(#180) [1-7-2] 2,2',3,4,4',5,5'-ペプタクロロビフェニル(#189) [1-7-3] 2,3,3',4,4',5,5'-ペプタクロロビフェニル(#189) [1-8] オクタクロロビフェニル類 [1-9] ノナクロロビフェニル類 [1-9] ノナクロロビフェニル類 [1-10] デカクロロビフェニル [2] HCB (ペキサクロペンゼン) [3] アルドリン (参考) [4] ディルドリン [5] エンドリン DDT 類 (参考) [6-1] p,p'-DDT (参考)
[1-5-3] 2,3',4,4'-5-ペンタクロロピフェニル(#118) [1-5-4] 2',3,4,4',5-ペンタクロロピフェニル(#123) [1] [1-5-5] 3,3',4,4',5-ペンタクロロピフェニル(#126) [1-6] へキサクロロピフェニル類 [1-6-1] 2,3,3',4,4',5-ヘキサクロロピフェニル(#157) [1-6-3] 2,3',4,4',5,5'-ヘキサクロロピフェニル(#167) [1-6-4] 3,3',4,4',5,5'-ヘキサクロロピフェニル(#169) [1-7] ヘブタクロロピフェニル類 [1-7-1] 2,2',3,3',4,4',5,5'-ヘプタクロロピフェニル(#180) [1-7-2] 2,2',3,4,4',5,5'-ヘプタクロロピフェニル(#180) [1-7-3] 2,3,3',4,4',5,5'-ヘプタクロロピフェニル(#189) [1-8] オクタクロロピフェニル類 [1-9] ノナクロロピフェニル類 [1-9] ノナクロロピフェニル類 [1-10] デカクロロピフェニル [2] HCB (ヘキサクロロベンゼン) [3] アルドリン(参考) [4] ディルドリン [5] エンドリン DDT 類(参考) [6-1] pp'-DDT (参考)
[1] [1-5-4] 2',3,4,4',5-ペンタクロロビフェニル(#123) [1] [1-5-5] 3,3',4,4',5-ペンタクロロビフェニル(#126) [1-6] ヘキサクロロビフェニル類 [1-6-1] 2,3,3',4,4',5-ヘキサクロロピフェニル(#157) [1-6-2] 2,3,3',4,4',5,5'-ヘキサクロロピフェニル(#167) [1-6-4] 3,3',4,4',5,5'-ヘキサクロロピフェニル(#169) [1-7] ヘプタクロロビフェニル類 [1-7-1] 2,2',3,3',4,4',5,5'-ヘプタクロロピフェニル(#170) [1-7-2] 2,2',3,4,4',5,5'-ヘプタクロロビフェニル(#180) [1-7-3] 2,3,3',4,4',5,5'-ヘプタクロロビフェニル(#189) [1-8] オクタクロロビフェニル類 [1-9] ノナクロロピフェニル類 [1-10] デカクロロピフェニル [2] HCB (ヘキサクロペンゼン) [3] アルドリン(参考) [4] ディルドリン [5] エンドリン DDT 類(参考) [6-1] pp'-DDT(参考)
[1-6] ヘキサクロロビフェニル類 [1-6-1] 2,3,3',4,4',5-ヘキサクロロビフェニル(#156) [1-6-2] 2,3,3',4,4',5-ヘキサクロロビフェニル(#167) [1-6-3] 2,3',4,4',5,5'-ヘキサクロロビフェニル(#169) [1-6-4] 3,3',4,4',5,5'-ヘキサクロロビフェニル(#169) [1-7] ヘプタクロロビフェニル類 [1-7-1] 2,2',3,3',4,4',5-ヘプタクロロピフェニル(#180) [1-7-2] 2,2',3,4,4',5,5'-ヘプタクロロビフェニル(#189) [1-8] オクタクロロビフェニル類 [1-9] ノナクロロビフェニル類 [1-9] ノナクロロビフェニル類 [1-10] デカクロロビフェニル [2] HCB (ヘキサクロロベンゼン) [3] アルドリン(参考) [4] ディルドリン [5] エンドリン DDT 類(参考) [6-1] pp'-DDT(参考)
[1-6-1] 2,3,3',4,4',5-ヘキサクロロビフェニル(#156) [1-6-2] 2,3,3',4,4',5'-ヘキサクロロビフェニル(#167) [1-6-3] 2,3',4,4',5,5'-ヘキサクロロビフェニル(#169) [1-6-4] 3,3',4,4',5,5'-ヘキサクロロビフェニル(#169) [1-7] ヘプタクロロピフェニル類 [1-7-1] 2,2',3,3',4,4',5-ヘプタクロロビフェニル(#170) [1-7-2] 2,2',3,4,4',5,5'-ヘプタクロロビフェニル(#180) [1-7-3] 2,3,3',4,4',5,5'-ヘプタクロロビフェニル(#189) [1-8] オクタクロロビフェニル類 [1-9] ノナクロロビフェニル類 [1-10] デカクロロビフェニル [2] HCB (ヘキサクロロベンゼン) [3] アルドリン(参考) [4] ディルドリン [5] エンドリン DDT 類 (参考) [6-1] pp'-DDT (参考)
[1-6-2] 2,3,3',4,4',5'-ヘキサクロロビフェニル(#157) [1-6-3] 2,3',4,4',5,5'-ヘキサクロロビフェニル(#167) [1-6-4] 3,3',4,4',5,5'-ヘキサクロロピフェニル(#169) [1-7] ヘブタクロロピフェニル類 [1-7-1] 2,2',3,3',4,4',5-ヘプタクロロビフェニル(#170) [1-7-2] 2,2',3,4,4',5,5'-ヘプタクロロビフェニル(#180) [1-7-3] 2,3,3',4,4',5,5'-ヘプタクロロビフェニル(#189) [1-8] オクタクロロビフェニル類 [1-9] ノナクロロビフェニル類 [1-10] デカクロロビフェニル [2] HCB(ヘキサクロベンゼン) [3] アルドリン(参考) [4] ディルドリン [5] エンドリン DDT 類(参考) [6-1] p,p'-DDT(参考)
[1-6-3] 2,3',4,4',5,5'-ヘキサクロロビフェニル(#167) [1-6-4] 3,3',4,4',5,5'-ヘキサクロロビフェニル(#169) [1-7] ヘプタクロロビフェニル類 [1-7-1] 2,2',3,3',4,4',5-ヘプタクロロビフェニル(#170) [1-7-2] 2,2',3,4,4',5,5'-ヘプタクロロビフェニル(#180) [1-7-3] 2,3,3',4,4',5,5'-ヘプタクロロビフェニル(#189) [1-8] オクタクロロビフェニル類 [1-9] ノナクロロビフェニル類 [1-10] デカクロロビフェニル [2] HCB (ヘキサクロロベンゼン) [3] アルドリン(参考) [4] ディルドリン [5] エンドリン DDT 類(参考) [6-1] p,p'DDT(参考)
[1-6-4] 3,3',4,4',5,5'-ヘキサクロロビフェニル(#169) [1-7] ヘプタクロロビフェニル類 [1-7-1] 2,2',3,3',4,4',5-ヘプタクロロビフェニル(#170) [1-7-2] 2,2',3,4,4',5,5'-ヘプタクロロビフェニル(#180) [1-7-3] 2,3,3',4,4',5,5'-ヘプタクロロビフェニル(#189) [1-8] オクタクロロビフェニル類 [1-9] ノナクロロビフェニル類 [1-10] デカクロロビフェニル [2] HCB(ヘキサクロロベンゼン) [3] アルドリン(参考) [4] ディルドリン [5] エンドリン DDT 類(参考) [6-1] p,p'-DDT(参考)
[1-7] ヘプタクロロビフェニル類 [1-7-1] 2,2',3,3',4,4',5-ヘプタクロロビフェニル(#170) [1-7-2] 2,2',3,4,4',5,5'-ヘプタクロロビフェニル(#180) [1-7-3] 2,3,3',4,4',5,5'-ヘプタクロロビフェニル(#189) [1-8] オクタクロロビフェニル類 [1-9] ノナクロロビフェニル類 [1-10] デカクロロビフェニル [2] HCB(ヘキサクロロベンゼン) [3] アルドリン(参考) [4] ディルドリン [5] エンドリン DDT 類(参考) [6-1] p,p'-DDT(参考)
[1-7-1] 2,2',3,3',4,4',5-ヘプタクロロビフェニル(#170) [1-7-2] 2,2',3,4,4',5,5'-ヘプタクロロビフェニル(#180) [1-7-3] 2,3,3',4,4',5,5'-ヘプタクロロビフェニル(#189) [1-8] オクタクロロビフェニル類 [1-9] ノナクロロビフェニル類 [1-10] デカクロロビフェニル [2] HCB(ヘキサクロロベンゼン) [3] アルドリン(参考) [4] ディルドリン [5] エンドリン DDT 類(参考) [6-1] p,p'-DDT(参考)
[1-7-2] 2,2',3,4,4',5,5'-ヘプタクロロビフェニル(#180) [1-7-3] 2,3,3',4,4',5,5'-ヘプタクロロビフェニル(#189) [1-8] オクタクロロビフェニル類 [1-9] ノナクロロビフェニル類 [1-10] デカクロロビフェニル [2] HCB(ヘキサクロロベンゼン) [3] アルドリン(参考) [4] ディルドリン [5] エンドリン DDT 類(参考) [6-1] pp'-DDT(参考)
[1-7-3] 2,3,3',4,4',5,5'-ヘプタクロロビフェニル(#189) [1-8] オクタクロロビフェニル類 [1-9] ノナクロロビフェニル類 [1-10] デカクロロビフェニル [2] HCB (ヘキサクロロベンゼン) [3] アルドリン(参考) [4] ディルドリン [5] エンドリン DDT 類(参考) [6-1] pp'-DDT (参考)
[1-8] オクタクロロビフェニル類 [1-9] ノナクロロビフェニル類 [1-10] デカクロロビフェニル [2] HCB (ヘキサクロロベンゼン) [3] アルドリン (参考) [4] ディルドリン [5] エンドリン DDT 類 (参考) [6-1] pp'-DDT (参考)
[1-9] ノナクロロビフェニル類 [1-10] デカクロロビフェニル [2] HCB (ヘキサクロロベンゼン) [3] アルドリン (参考) [4] ディルドリン [5] エンドリン DDT 類 (参考) [6-1] [6-1] pp'-DDT (参考)
[1-10] デカクロロビフェニル [2] HCB (ヘキサクロロベンゼン) [3] アルドリン (参考) [4] ディルドリン [5] エンドリン DDT 類 (参考) [6-1] [6-1] pp'-DDT (参考)
[3] アルドリン (参考) [4] ディルドリン [5] エンドリン DDT 類 (参考) [6-1] p,p'-DDT (参考)
[4] ディルドリン [5] エンドリン DDT 類 (参考) [6-1] p,p'-DDT (参考)
[5] エンドリン DDT 類 (参考) [6-1] pp'-DDT (参考)
DDT 類 (参考) [6-1] <i>p,p'</i> -DDT (参考)
[6-1] p,p'-DDT (参考)
[6-2] p,p'-DDE (参考)
[6] [6-3] p,p'-DDD (参考)
[6-4] o,p'-DDT (参考)
[6-5] <i>o,p'</i> -DDE (参考)
[6-6] o,p'-DDD (参考)
クロルデン類
[7-1] cis-クロルデン
[7] [7-2] trans-クロルデン
[/-3]
[7-4] <i>cis-</i> ノナクロル
ヘプタクロル類
[8-1] ヘプタクロル
[8] [8-2] <i>cis</i> -ヘプタクロルエポキシド
[8-3] trans-ヘプタクロルエポキシド
トキサフェン類 (参考)
[9] [9-1] 2-endo,3-exo,5-endo,6-exo,8,8,10,10-オクタクロロボルナン(Parlar-26)(参考)
ビュー [0.2] 2 ando 2 avo 5 ando 6 avo 9.00.10.10 十九ロロボルナン / Danilan 50 \ / 会老 \
[9-2] 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-ノナクロロボルナノ(Pariar-50)(参名)
[9-2] 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-ノナクロロボルナン(Parlar-50)(参考) [9-3] 2,2,5,5,8,9,9,10,10-ノナクロロボルナン(Parlar-62)(参考)
[9-2] 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-フナクロロボルナン (Parlar-50) (参考) [9-3] 2,2,5,5,8,9,9,10,10-ノナクロロボルナン (Parlar-62) (参考) [10] マイレックス
[9-2] 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-ノナクロロボルナン (Parlar-50) (参考) [9-3] 2,2,5,5,8,9,9,10,10-ノナクロロボルナン (Parlar-62) (参考) [10] マイレックス HCH (ヘキサクロロシクロヘキサン)類
[9-2] 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-ノナクロロボルナン (Parlar-50) (参考) [9-3] 2,2,5,5,8,9,9,10,10-ノナクロロボルナン (Parlar-62) (参考) [10] マイレックス HCH (ヘキサクロロシクロヘキサン)類 [11-1] α-HCH
[9-2] 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-ノナクロロボルナン (Parlar-50) (参考) [9-3] 2,2,5,5,8,9,9,10,10-ノナクロロボルナン (Parlar-62) (参考) [10] マイレックス HCH (ヘキサクロロシクロヘキサン)類
[9-2] 2-endo,3-exo,5-endo,6-exo,8,8,9,10,10-ノナクロロボルナン (Parlar-50) (参考) [9-3] 2,2,5,5,8,9,9,10,10-ノナクロロボルナン (Parlar-62) (参考) [10] マイレックス HCH (ヘキサクロロシクロヘキサン)類 [11-1] α-HCH [11] [11-2] β-HCH


物質				調査媒体			
調査 番号	調査対象物質	水質	底質	生 物	大気		
[13]	ヘキサブロモビフェニル類 [13-1] 2,2',4,4',5,5'-ヘキサブロモビフェニル(#153) [13-2] 2,2',4,4',5,6'-ヘキサブロモビフェニル(#154) [13-3] 2,2',4,4',6,6'-ヘキサブロモビフェニル(#155) [13-4] 2,3,3',4,4',5-ヘキサブロモビフェニル(#156) [13-5] 3,3',4,4',5,5'-ヘキサブロモビフェニル(#169)						
[14]	ポリブロモジフェニルエーテル類(臭素数が4から10までのもの) [14-1] テトラブロモジフェニルエーテル類 [14-1-1] 2,2',4,4'-テトラブロモジフェニルエーテル(#47) [14-2] ペンタブロモジフェニルエーテル類 [14-2-1] 2,2',4,4',5-ペンタブロモジフェニルエーテル(#99) [14-3] ヘキサブロモジフェニルエーテル類 [14-3-1] 2,2',4,4',5,5'-ヘキサブロモジフェニルエーテル(#153) [14-3-2] 2,2',4,4',5,6'-ヘキサブロモジフェニルエーテル(#154) [14-4] ヘプタブロモジフェニルエーテル類 [14-4-1] 2,2',3,3',4,5',6-ヘプタブロモジフェニルエーテル(#175) [14-4-2] 2,2',3,4,4',5',6-ヘプタブロモジフェニルエーテル(#183) [14-5] オクタブロモジフェニルエーテル類 [14-7] デカブロモジフェニルエーテル類						
[15]							
[16] [17]	ペルフルオロオクタン酸(PFOA) ペンタクロロベンゼン						
[18]	エンドスルファン類 $[18-1]$ α -エンドスルファン $[18-2]$ β -エンドスルファン						
[19]	$1,2,5,6,9,10$ -ヘキサブロモシクロドデカン類 $ [19-1] \alpha-1,2,5,6,9,10$ -ヘキサブロモシクロドデカン $ [19-2] \beta-1,2,5,6,9,10$ -ヘキサブロモシクロドデカン $ [19-3] \gamma-1,2,5,6,9,10$ -ヘキサブロモシクロドデカン $ [19-4] \delta-1,2,5,6,9,10$ -ヘキサブロモシクロドデカン $ [19-5] \varepsilon-1,2,5,6,9,10$ -ヘキサブロモシクロドデカン $ N,N-\vec{y}$						

モニタリング調査の調査対象物質の物理化学的性状は次のとおりである。 [1] PCB 類 Polychlorinated biphenyls 分子式: $C_{12}H_{(10-i)}Cl_i$ ($i = m+n = 1 \sim 10$) 27323-18-8(1塩化物)、22512-42-9 (2 塩化物)、25323-68-6(3 塩化 物)、26914-33-0(4塩化物)、 25429-29-2(5塩化物)、26601-64-9 (6 塩化物)、28655-71-2(7 塩化 物)、31472-83-0(8塩化物)、 53742-07-7 (9 塩化物)、5051-24-3 CI_n (10 塩化物) 既存化: 該当なし MW: 188.65 ~ 498.66 mp: 種類によって異なる。 $i = m+n = 1 \sim 10$ bp: 種類によって異なる。 sw: 種類によって異なる。 比重: 種類によって異なる。 logPow: 種類によって異なる。 [2] HCB (ヘキサクロロベンゼン) Hexachlorobenzene 分子式: C₆Cl₆ CI CI CAS: 118-74-1 既存化: 3-0076 MW: 284.78 mp: 230^{-1} CI CI bp: 325 ¹⁾ sw: 0.0000096g/kg (25) 比重: 2.044(23)1) logPow: 5.73^{3} CI アルドリン(参考) Aldrin (reference) 分子式: C₁₂H₈Cl₆ CI CI CAS: 309-00-2 CI 既存化: 4-0303 MW: 364.91 CI mp: 103.8^{-1} bp: $145 (0.27 \text{kPa})^{4}$ sw: 0.0002g/kg (25) 比重: 1.6g/cm^{3 5)} Cĺ $logPow : 6.50^{3}$ CI [4] ディルドリン Dieldrin 分子式: C₁₂H₈Cl₆O CI CI CAS: 60-57-1 既存化: 4-0299 MW: 380.91 CI mp: 178.8 1) bp: 330 ⁵⁾ sw : 0.00020g/kg (25) $^{2)}$ 比重: 1.75 (25)²⁾ $logPow: 5.40^{3)}$

(注)「CAS」とは CAS 登録番号を、「既存化」とは既存化学物質名簿における番号を、「MW」とは分子量を、「mp」 とは融点を、「bp」とは沸点を、「sw」とは水への溶解度を、「logPow」とは n-オクタノール / 水分配係数を それぞれ指す。



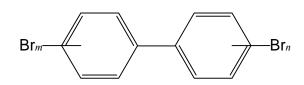
[12] クロルデコン

Chlordecone

分子式: C₁₀Cl₁₀O CAS: 143-50-0 既存化: 該当なし

先仔化: 該ヨなり MW: 490.64

mp: 350 (分解)²⁾


bp: 不詳

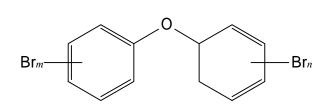
sw: 7.6mg/L (24)⁵⁾ 比重: 1.61 (25)¹⁾

 $logPow: 3.45^{12}$

[13] ヘキサブロモビフェニル類

Hexabromobiphenyls

既存化: 該当なし MW: 627.58


分子式: C₁₂H₄Br₆ CAS: 36355-01-8

mp: 種類によって異なる。 bp: 種類によって異なる。 sw: 種類によって異なる。 比重: 種類によって異なる。 logPow: 種類によって異なる。

m+n=6

[14] ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)

Polybromodiphenyl ethers ($Br_4 \sim Br_{10}$)

 $i = m + n = 4 \sim 10$

分子式: $C_{12}H_{(10-i)}Br_iO$ ($i=m+n=4\sim10$)

CAS: 40088-47-9(4 臭素化物) 32534-81-9 (5 臭素化物)、36483-60-0(6 臭素

化物)、68928-80-3(7臭素化物)、32536-52-0(8臭素化物),63936-56-1(9臭素化物)、1163-19-5(10臭素

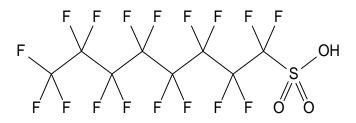
化物)

既存化: 3-61(4臭素化物)、3-2845(6臭素

化物)

MW: 485.79 ~ 959.17

mp: 種類によって異なる。 bp: 種類によって異なる。


sw: 種類によって異なる。

比重: 種類によって異なる。

logPow: 種類によって異なる。

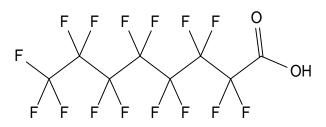
[15] ペルフルオロオクタンスルホン酸 (PFOS)

Perfluorooctane sulfonic acid (PFOS)

分子式: C₈HF₁₇O₃S CAS: 1763-23-1

既存化: 2-1595 MW: 500.13

mp: >400 (カリウム塩)¹³⁾


bp: 不詳

sw: 519mg/L (20 、カリウム塩) ¹³⁾

比重: 不詳 logPow: 不詳

[16] ペルフルオロオクタン酸 (PFOA)

Perfluorooctanoic acid (PFOA)

分子式: C₈HF₁₅O₂ CAS: 335-67-1

既存化: 2-1182、2-2659

成1子11. Z-1182、Z

MW: 414.07 mp: 54.3

bp: 192 1)

sw: 9.5g/L (20) ¹⁴⁾ 比重: 1.79g/cm^{3 15)}

logPow: 6.3^{15}

[17] ペンタクロロベンゼン Pentachlorobenzene 分子式: C₆HCl₅ CI CAS: 608-93-5 既存化: 3-76 CI MW: 250.34 mp: 84.2 1) bp: 279 ¹⁾ sw: 0.00050g/kg (25) 1) 比重: 1.8342g/cm³ (16)¹⁾ Cl CI $logPow: 5.17^{3)}$ CI [18] エンドスルファン類 Esendosulfans [18-1] α-エンドスルファン α -Esendosulfan 分子式: C₉H₆Cl₆O₃S CI CI CAS: 959-98-8 既存化: 該当なし 0-CI MW: 406.93 mp: 109.2 bp: 不詳 CI sw: 0.33mg/L (25) $^{16)}$ CI 比重: 不詳 logPow: 4.7 16) [18-2] β -エンドスルファン β -Esendosulfan 分子式: $C_9H_6Cl_6O_3S$ CI CI CAS: 33213-65-9 既存化: 該当なし CI MW: 406.93 mp: 213.3 CI bp: 不詳 sw : 0.32mg/L (25) $^{16)}$

比重: 不詳 logPow: 4.7 ¹⁶⁾

CI

ĊΙ

[19] 1,2,5,6,9,10-ヘキサブロモシクロドデカン類 1,2,5,6,9,10-Hexabromocyclododecanes [19-1] α -1,2,5,6,9,10- α + \forall \vec{J} D= \vec{J} [19-2] β -1,2,5,6,9,10- α + \forall \vec{J} \vec{U} $\vec{U$ α -1,2,5,6,9,10-Hexabromocyclododecane β -1,2,5,6,9,10-Hexabromocyclododecane 分子式: C₁₂H₁₈Br₆ 分子式: C₁₂H₁₈Br₆ CAS: 134237-51-7 CAS: 134237-50-6 既存化: 3-2254 既存化: 3-2254 MW: 641.70 MW: 641.70 mp: $179 \sim 181$ mp: $170 \sim 172$ Br▲ Br▲ bp: 不詳 bp: 不詳 sw : $48.8 \mu g/L^{17)}$ sw : $14.7\mu g/L^{17)}$ 比重: 不詳 比重: 不詳 logPow: 5.07 ¹⁷⁾ logPow: 5.12 17) [19-3] γ-1,2,5,6,9,10-ヘキサブロモシクロドデカン [19-4] δ -1,2,5,6,9,10- Δ + \forall \vec{J} \vec{U} $\vec{U$ γ-1,2,5,6,9,10-Hexabromocyclododecane δ -1,2,5,6,9,10-Hexabromocyclododecane 分子式: C₁₂H₁₈Br₆ 分子式: C₁₂H₁₈Br₆ CAS: 134237-52-8 CAS: 不詳 既存化: 3-2254 既存化: 3-2254 MW: 641.70 MW: 641.70 mp: $207 \sim 209$ mp: 不詳 Br_{III}, Br_{III}, bp: 不詳 bp: 不詳 sw : $~2.1 \mu g/L^{~17)}$ sw: 不詳 比重: 不詳 比重: 不詳 logPow: 5.47 ¹⁷⁾ logPow: 不詳 [19-5] ε -1,2,5,6,9,10-ヘキサブロモシクロドデカン ε -1,2,5,6,9,10-Hexabromocyclododecane 分子式: C₁₂H₁₈Br₆ CAS: 不詳 既存化: 3-2254 MW: 641.70 mp: 不詳 Br▲ bp: 不詳 sw: 不詳 比重: 不詳 logPow: 不詳 [20] N.N-ジメチルホルムアミド *N*,*N*-Dimethylformamide 分子式: C₃H₇NO CAS: 68-12-2 既存化: 2-680 73.09 MW: mp: -61 bp: 153 (760mmHg)²⁾ sw: 水と混和 2) 比重: 0.9445 (25/4)2) $logPow : -1.01^{3}$

参考文献

- 1) Haynes, CRC Handbook of Chemistry and Physics, 92nd Edition, CRC Press LLC (2011)
- 2) O'Neil, The Merck Index An Encyclopedia of Chemicals, Drugs, and Biologicals 14th Edition, Merck Co. Inc. (2006)
- 3) Hansch et al., Exploring QSAR Hydrophobic, Electronic and Steric Constants, American Chemical Society (1995)
- 4) IPCS, International Chemical Safety Cards, Aldrin, ICSC0774 (1998)
- 5) Howard et al., Handbook of Physical Properties of Organic Chemicals, CRC Press Inc. (1996)
- 6) IPCS, International Chemical Safety Cards, Endrin, ICSC1023 (2000)
- 7) IPCS, International Chemical Safety Cards, DDT, ICSC0034 (2004)
- 8) Biggar et al., Apparent solubility of organochlorine insecticides in water at various temperatures, Hilgardia, 42, 383-391 (1974)
- 9) IPCS, International Chemical Safety Cards, alpha-Hexachlorocyclohexane, ICSC0795 (1998)
- 10) ATSDR, Toxicological Profile for alpha-, beta-, gamma- and delta-Hexachlorocyclohexane (2005)
- 11) IPCS, International Chemical Safety Cards, beta-Hexachlorocyclohexane, ICSC0796 (1998)
- 12) IPCS, International Chemical Safety Cards, Chlordecone ICSC1432 (2003)
- 13) United Nations Environment Programme (UNEP), Risk profile on perfluorooctane sulfonate, Report of the Persistent Organic Pollutants Review Committee on the work of its second meeting (2006)
- 14) OECD, Perfluorooctanoic Acid & Ammonium Perfluorooctanoate, SIDS Initial Assessment Profile for 26th SIAM (2008)
- 15) IPCS, International Chemical Safety Cards, Perfkuorooctanoic acid, ICSC1613 (2005)
- 16) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on endosulfan, Report of the Persistent Organic Pollutants Review Committee on the work of its fifth meeting (2009)
- 17) UNEP, Stockholm Convention on Persistent Organic Pollutants, Risk profile on hexabromocyclododecane, Report of the Persistent Organic Pollutants Review Committee on the work of its sixth meeting (2010)

3.調査地点及び実施方法

モニタリング調査は、全国の都道府県及び政令指定都市に試料採取を委託し、民間分析機関において分析を実施した。

(1)試料採取機関

4 Paled 1 = 777 106 FIG. 4		調査媒体			
試料採取機関名	水質		生物	大気	
 地方独立行政法人北海道立総合研究機		, =NV 3-E		- \/\	
構環境・地質研究本部環境科学研究セ					
ンター					
札幌市衛生研究所					
青森県環境保健センター					
岩手県環境保健研究センター					
宮城県保健環境センター					
仙台市衛生研究所					
秋田県健康環境センター					
山形県環境科学研究センター					
福島県環境センター					
茨城県霞ケ浦環境科学センター					
栃木県保健環境センター					
群馬県衛生環境研究所					
埼玉県環境科学国際センター					
千葉県環境研究センター					
千葉市環境保健研究所					
東京都環境局環境改善部					
神奈川県環境科学センター					
横浜市環境科学研究所					
川崎市環境局環境対策部公害研究所					
新潟県保健環境科学研究所					
富山県環境科学センター					
石川県保健環境センター					
福井県衛生環境研究センター					
山梨県衛生環境研究所					
長野県環境保全研究所					
岐阜県保健環境研究所					
静岡県環境衛生科学研究所					
愛知県環境調査センター					
名古屋市環境局環境科学研究所					
三重県保健環境研究所		l	l		

<u>さ</u> よ小1+☆ DD +₩ BB を フ		調査	媒体	
試料採取機関名	水質	底質	生物	大気
滋賀県琵琶湖環境科学研究センター				
京都府保健環境研究所				
京都市衛生環境研究所				
大阪府環境農林水産総合研究所				
大阪市立環境科学研究所				
兵庫県農政環境部環境管理局水大気課				
神戸市環境局環境創造部環境評価共生				
推進室				
奈良県保健環境研究センター				
和歌山県環境衛生研究センター				
鳥取県衛生環境研究所				
島根県保健環境科学研究所				
岡山県環境保健センター				
広島県立総合技術研究所保健環境セン				
ター				
広島市衛生研究所				
山口県環境保健センター				
徳島県立保健製薬環境センター				
香川県環境保健研究センター				
愛媛県立衛生環境研究所				
高知県環境研究センター				
福岡県保健環境研究所				
北九州市環境局環境科学研究所				
福岡市保健環境研究所				
佐賀県環境センター				
長崎県環境部環境政策課				
熊本県保健環境科学研究所				
大分県生活環境部衛生環境研究センタ				
宮崎県衛生環境研究所				
鹿児島県環境保健センター				
沖縄県衛生環境研究所				

[|] 三重県保健環境研究所 (注1)名称は平成23年度末のものである。

⁽注 2) は、東日本大震災により地方公共団体が試料採取をできなかっため、民間分析機関が代行して実施したことを 意味する。

(2)調査地点

水質については表1-1、図1-1及び図1-2に、底質については表1-2、図1-3及び図1-4に、生物については表1-3、図1-5及び図1-6、大気については表1-4、図1-7及び図1-8に示した。その数量は以下のとおりである。

調査媒体	地方公共団体数	調査対象物質(群)数	調査地点(・生物種)数	調査地点ごとの検体数
水質	43	17	49	1
底質	48	17	64	1 又は3
生物(貝類)	4	16	4	1 又は3
生物(魚類)	16	16	18	1 又は3
生物(鳥類)	1	16	1	1 又は3
大気 (温暖期)	33	16	35	1又は3
大気 (寒冷期)	35	15	37	1
全媒体	59	17	119	

- (注1) :底質については各調査地点とも3試料/地点の採取を行い、[19] 1,2,5,6,9,10-ヘキサブロモシクロドデカン類及び[20] N,N-ジメチルホルムアミドについては3検体/地点の測定を行い、その他の物質については調査地点毎に3試料を等量ずつ混合して1検体/地点として測定した。
- (注2) :生物については原則として各調査地点とも3試料/地点の採取を行い、[19] 1,2,5,6,9,10-ヘキサブロモシクロドデカン類については3検体/地点の測定を行い、その他の物質については調査地点毎に3試料を等量ずつ混合して1検体/地点として測定した。
- (注3) : 東日本大震災により、水質及び底質においては[19] 1,2,5,6,9,10-ヘキサブロモシクロドデカン類及び[20] N,N-ジメチルホルムアミドについて2地点で、生物の貝類、魚類及び鳥類においては全調査対象物質(群)について81地点で、大気の温暖期においては全調査対象物質(群)について2地点で、それぞれ試料採取が行えなかった。
- (注4) : [20] N,N-ジメチルホルムアミドについては温暖期のみに3検体/地点の測定を行った。その他の物質は温暖期及び寒冷期に1検体/地点の測定を行った。

表1-1 平成23年度モニタリング調査地点一覧(水質)

	十反て一タリノソ神且地は一見(小貝)	+S.T. C.
地方公共団体	調査地点	採取日
北海道	十勝川すずらん大橋(帯広市)	平成 23 年 10 月 12 日
	石狩川河口石狩河口橋(石狩市)	平成 23 年 11 月 1 日
青森県	十三湖	平成 23 年 10 月 19 日
岩手県	豊沢川(花巻市)	平成 23 年 10 月 19 日
宮城県	仙台湾(松島湾)	平成 23 年 12 月 9 日
秋田県	八郎湖	平成 23 年 9 月 28 日
山形県	最上川河口(酒田市)	平成 23 年 11 月 2 日
福島県	小名浜港	平成 23 年 11 月 29 日
茨城県	利根川河口かもめ大橋(神栖市)	平成 23 年 11 月 16 日
栃木県	田川(宇都宮市)	平成 23 年 10 月 25 日
埼玉県	荒川秋ヶ瀬取水堰 (志木市)	平成 23 年 11 月 11 日
千葉市	花見川河口 (千葉市)	平成 23 年 11 月 18 日
東京都	荒川河口 (江東区)	平成 23 年 11 月 16 日
	隅田川河口(港区)	平成 23 年 11 月 16 日
横浜市	横浜港	平成 23 年 11 月 1 日
川崎市	川崎港京浜運河	平成 23 年 11 月 1 日
新潟県	信濃川下流 (新潟市)	平成 23 年 10 月 20 日
富山県	神通川河口萩浦橋(富山市)	平成 23 年 11 月 16 日
石川県	犀川河口(金沢市)	平成 23 年 9 月 26 日
福井県	笙の川三島橋(敦賀市)	平成 23 年 9 月 28 日
長野県	諏訪湖湖心	平成 23 年 10 月 20 日
静岡県	天竜川(磐田市)	平成 23 年 10 月 4 日
愛知県	名古屋港	平成 23 年 10 月 25 日
三重県	四日市港	平成 23 年 10 月 25 日
滋賀県	琵琶湖唐崎沖中央	平成 23 年 10 月 18 日
京都府	宮津港	平成 23 年 11 月 10 日
京都市	桂川宮前橋 (京都市)	平成 23 年 10 月 27 日
大阪府	大和川河口(堺市)	平成 23 年 12 月 10 日
大阪市	大阪港	平成 23 年 12 月 21 日
兵庫県	姫路沖	平成 23 年 10 月 6 日
神戸市	神戸港中央	平成 23 年 10 月 26 日
和歌山県	紀の川河口紀の川大橋(和歌山市)	平成 23 年 10 月 19 日
岡山県	水島沖	平成 23 年 10 月 18 日
広島県	呉港	平成 23 年 11 月 1 日
	広島湾	平成 23 年 11 月 1 日
山口県	徳山湾	平成23年9月6日
	宇部沖	平成 23 年 9 月 13 日
	萩沖	平成 23 年 10 月 28 日
徳島県	吉野川河口(徳島市)	平成 23 年 9 月 29 日
香川県	高松港	平成 23 年 10 月 11 日
高知県	四万十川河口(四万十市)	平成 23 年 11 月 7 日
北九州市	洞海湾	平成 23 年 10 月 27 日
佐賀県	伊万里湾	平成 23 年 10 月 12 日
長崎県	大村湾	平成 23 年 11 月 22 日
熊本県	緑川 (宇土市)	平成 23 年 11 月 25 日
宮崎県	大淀川河口(宮崎市)	平成 23 年 10 月 26 日
鹿児島県	天降川 (霧島市)	平成 23 年 10 月 19 日
	五反田川五反田橋(いちき串木野市)	平成 23 年 10 月 26 日
沖縄県	那覇港	平成 23 年 11 月 17 日
	•	•

図1-1 平成23年度モニタリング調査地点(水質)

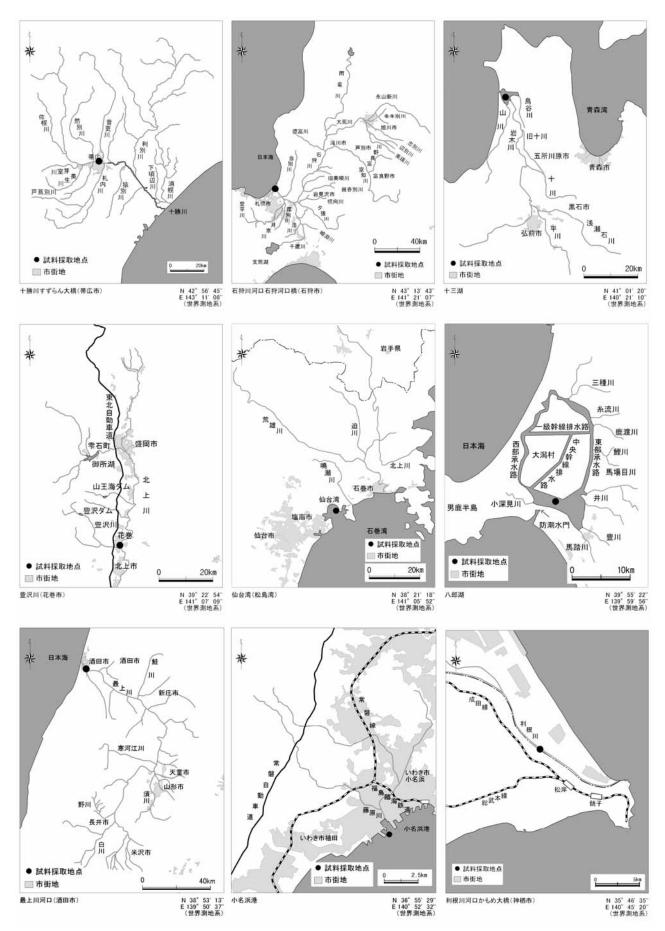


図 1-2(1/6) 平成 23 年度モニタリング調査地点(水質)詳細

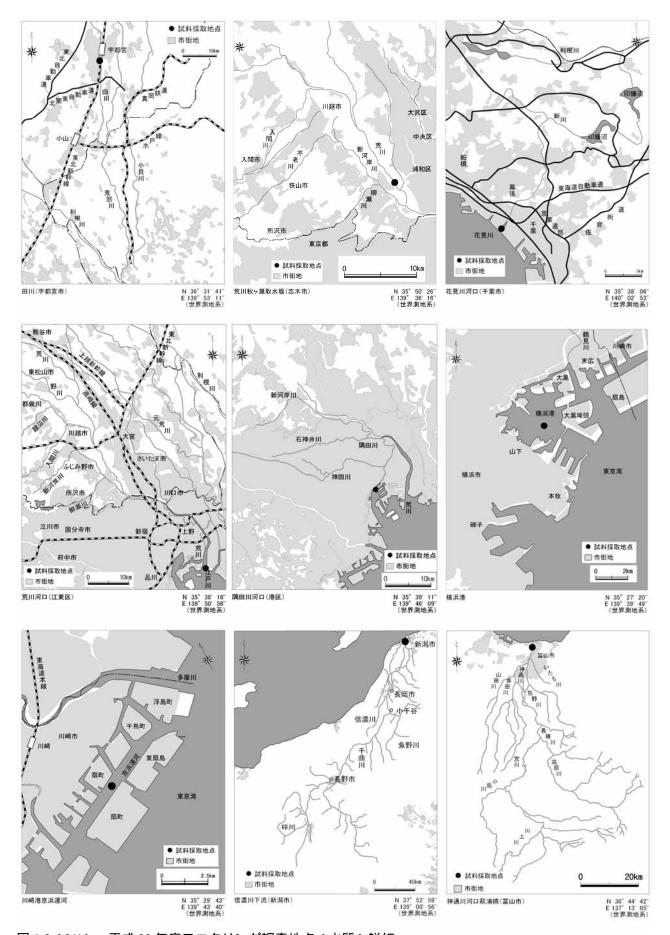


図 1-2 (2/6) 平成 23 年度モニタリング調査地点(水質)詳細

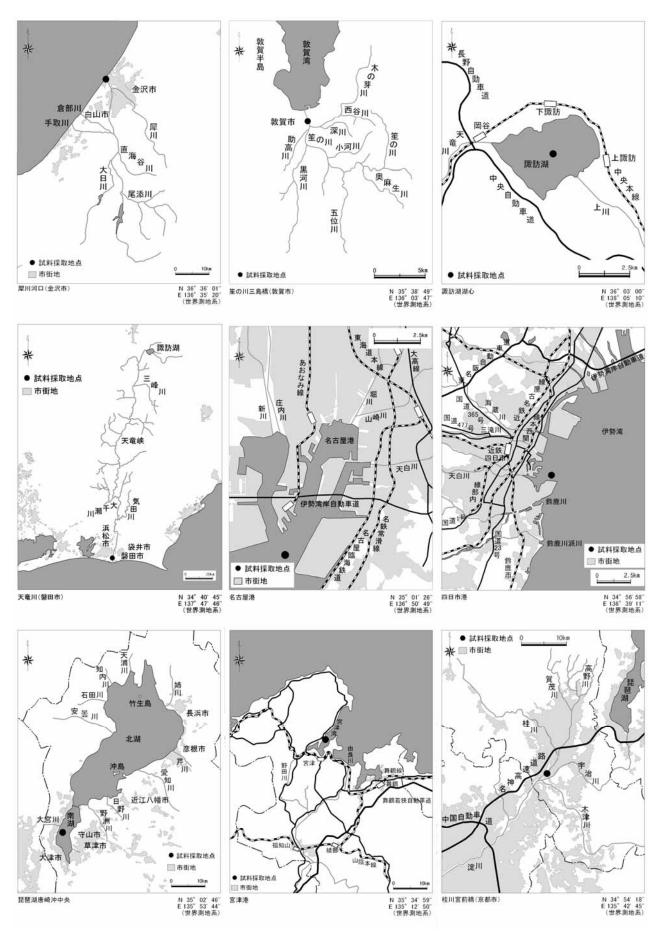


図 1-2 (3/6) 平成 23 年度モニタリング調査地点(水質)詳細

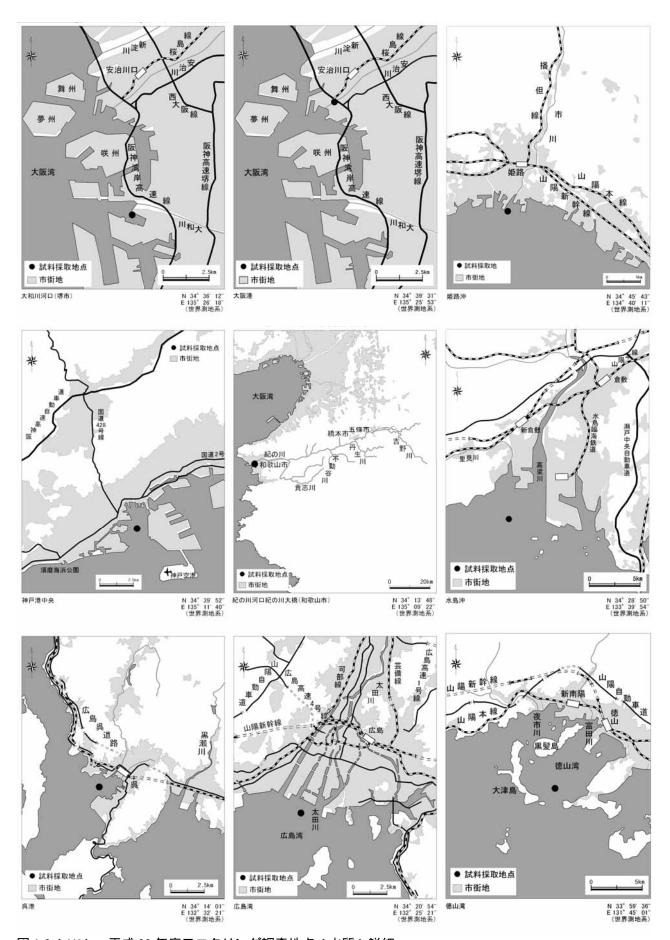


図 1-2 (4/6) 平成 23 年度モニタリング調査地点(水質)詳細

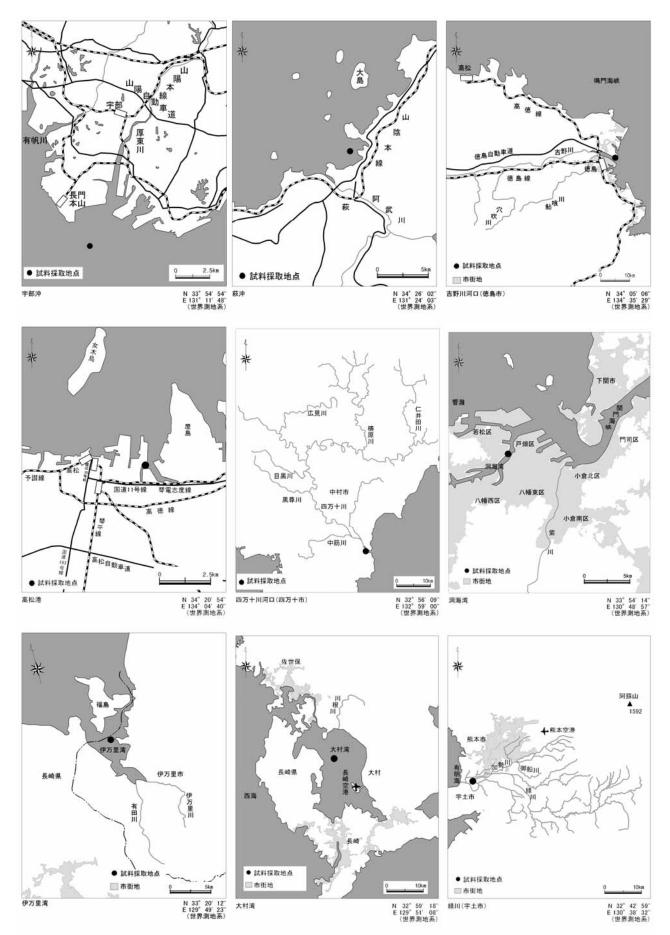
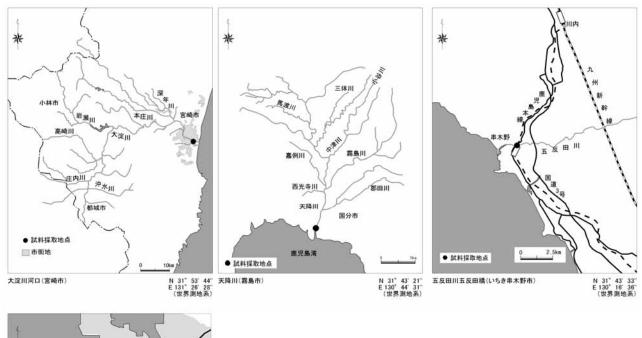



図 1-2 (5/6) 平成 23 年度モニタリング調査地点(水質)詳細

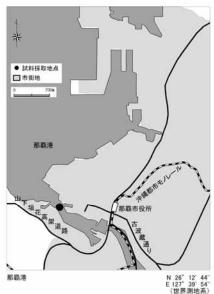


図 1-2(6/6) 平成 23 年度モニタリング調査地点(水質)詳細

表1-2 平成23年度モニタリング調査地点一覧(底質)

	F及モータリノク調直地点一覧(成員)	1.7
地方公共団体	調査地点	採取日
北海道	天塩川恩根内大橋 (美深町)	平成 23 年 10 月 24 日
	十勝川すずらん大橋(帯広市)	平成 23 年 10 月 12 日
	石狩川河口石狩河口橋(石狩市)	平成 23 年 11 月 1 日
	苫小牧港	平成 23 年 9 月 15 日
青森県	十三湖	平成 23 年 10 月 19 日
岩手県	豊沢川(花巻市)	平成 23 年 10 月 19 日
宮城県	仙台湾(松島湾)	平成 23 年 12 月 9 日
仙台市	広瀬川広瀬大橋(仙台市)	平成 23 年 11 月 9 日
秋田県	八郎湖	平成 23 年 9 月 28 日
山形県	最上川河口(酒田市)	平成 23 年 11 月 2 日
福島県	小名浜港	平成 23 年 11 月 29 日
茨城県	利根川河口かもめ大橋(神栖市)	平成 23 年 11 月 16 日
栃木県	田川(宇都宮市)	平成 23 年 10 月 25 日
千葉県	市原・姉崎海岸	平成 23 年 10 月 27 日
		平成 23 年 10 月 27 日
	花見川河口(千葉市)	
東京都	荒川河口(江東区)	平成 23 年 11 月 16 日
1#>	隅田川河口(港区)	平成 23 年 11 月 16 日
横浜市	横浜港	平成 23 年 11 月 1 日
川崎市	多摩川河口(川崎市)	平成 23 年 11 月 1 日
+<><-	川崎港京浜運河	平成 23 年 11 月 1 日
新潟県	信濃川下流(新潟市)	平成 23 年 10 月 20 日
富山県	神通川河口萩浦橋(富山市)	平成 23 年 11 月 16 日
石川県	犀川河口(金沢市)	平成 23 年 9 月 26 日
福井県	笙の川三島橋(敦賀市)	平成 23 年 9 月 28 日
山梨県	荒川千秋橋(甲府市)	平成 23 年 10 月 26 日
長野県	諏訪湖湖心	平成 23 年 10 月 20 日
静岡県	清水港	平成 23 年 10 月 12 日
	天竜川(磐田市)	平成 23 年 10 月 4 日
愛知県	衣浦港	平成 23 年 10 月 25 日
	名古屋港	平成 23 年 10 月 25 日
三重県	四日市港	平成 23 年 10 月 25 日
)\/ 	鳥羽港	平成 23 年 10 月 19 日
滋賀県	琵琶湖南比良沖中央	平成 23 年 10 月 18 日
1 1	琵琶湖唐崎沖中央	平成 23 年 10 月 18 日
京都府	宮津港	平成 23 年 11 月 10 日
京都市	桂川宮前橋(京都市)	平成 23 年 10 月 27 日
大阪府	大和川河口(堺市)	平成 23 年 12 月 10 日
大阪市	大阪港	平成 23 年 12 月 21 日
	大阪港外	平成 23 年 12 月 21 日
	淀川河口 (大阪市)	平成 23 年 12 月 21 日
	淀川 (大阪市)	平成 23 年 11 月 16 日
兵庫県		平成 23 年 10 月 6 日
神戸市	神戸港中央	平成 23 年 10 月 26 日
奈良県	大和川(王寺町)	平成 23 年 10 月 25 日
和歌山県	紀の川河口紀の川大橋(和歌山市)	平成 23 年 10 月 19 日
岡山県	水島沖	平成 23 年 10 月 18 日
広島県	呉港	平成 23 年 11 月 1 日
	広島湾	平成 23 年 11 月 1 日
山口県	徳山湾	平成23年9月6日
	宇部沖	平成 23 年 9 月 13 日
	萩沖	平成 23 年 10 月 28 日
徳島県	吉野川河口 (徳島市)	平成 23 年 9 月 29 日
香川県	高松港	平成 23 年 10 月 11 日
愛媛県	新居浜港	平成 23 年 11 月 21 日
高知県	四万十川河口(四万十市)	平成 23 年 11 月 7 日
北九州市	洞海湾	平成 23 年 10 月 27 日

地方公共団体	調査地点	採取日
福岡市	博多湾	平成 23 年 10 月 18 日
佐賀県	伊万里湾	平成 23 年 10 月 12 日
長崎県	大村湾	平成 23 年 11 月 22 日
大分県	大分川河口 (大分市)	平成 23 年 11 月 22 日
宮崎県	大淀川河口 (宮崎市)	平成 23 年 10 月 26 日
鹿児島県	天降川 (霧島市)	平成 23 年 10 月 19 日
	五反田川五反田橋(いちき串木野市)	平成 23 年 10 月 26 日
沖縄県	那覇港	平成 23 年 11 月 17 日

図1-3 平成23年度モニタリング調査地点(底質)

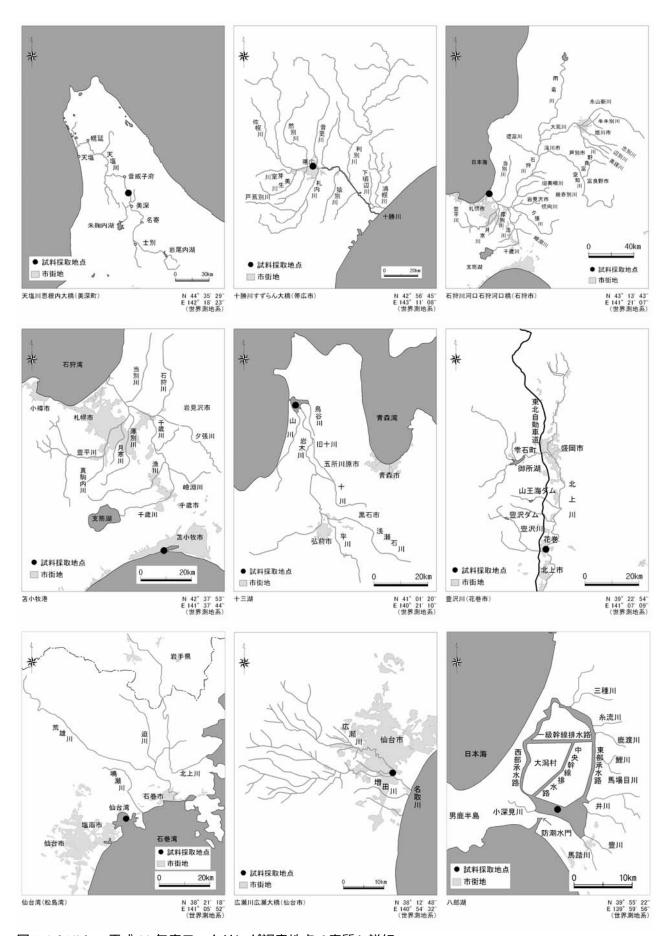


図 1-4(1/8) 平成 23 年度モニタリング調査地点(底質)詳細

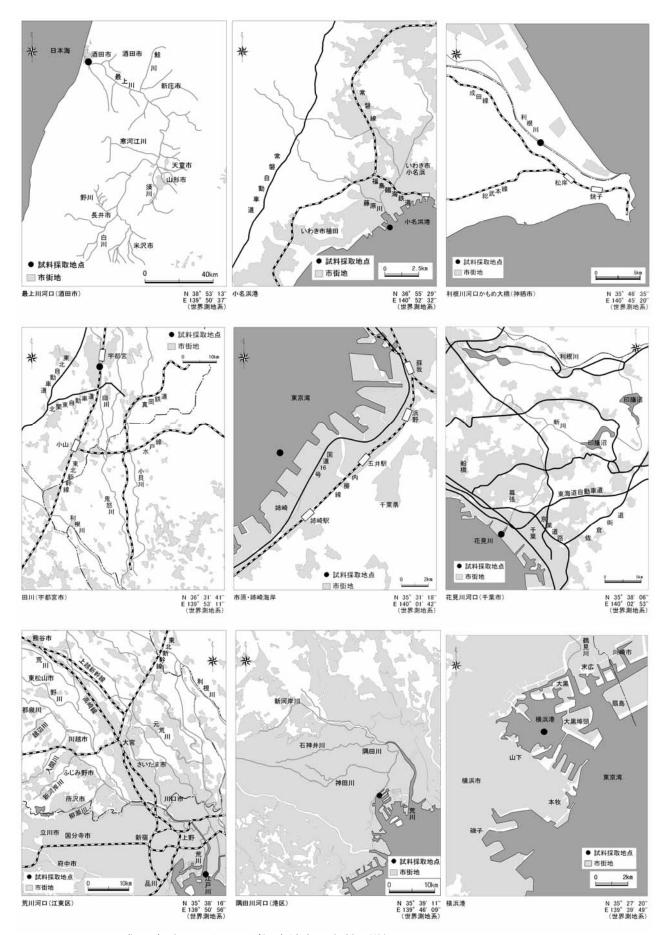


図 1-4(2/8) 平成 23 年度モニタリング調査地点(底質)詳細

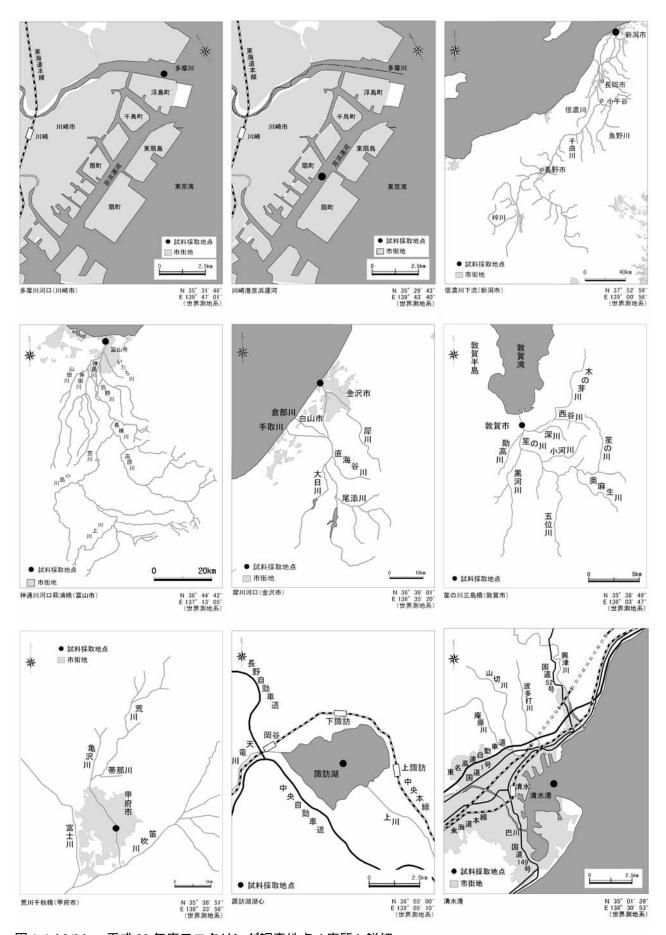


図 1-4 (3/8) 平成 23 年度モニタリング調査地点(底質)詳細

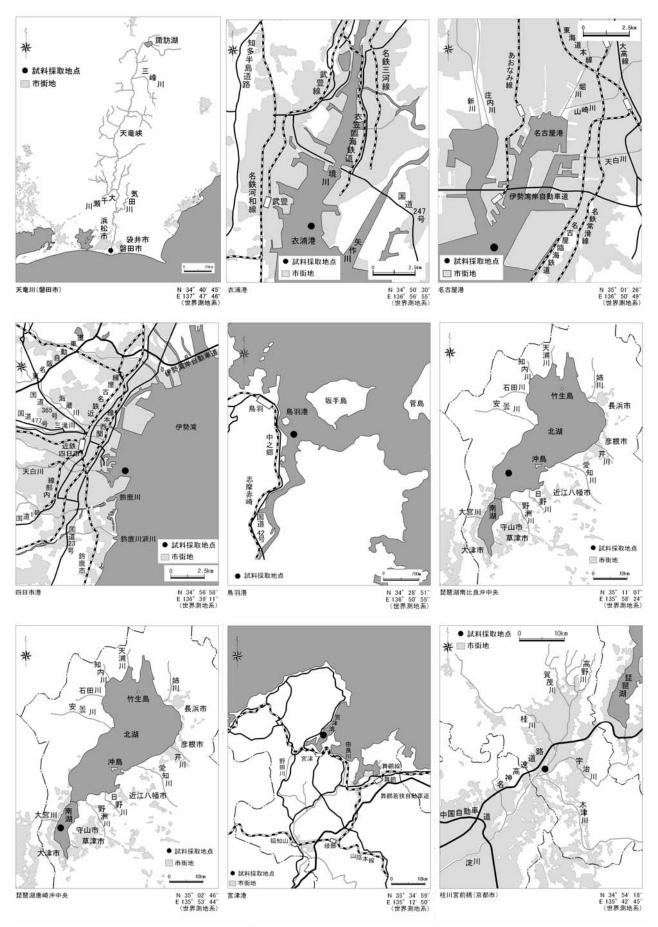


図 1-4 (4/8) 平成 23 年度モニタリング調査地点(底質)詳細

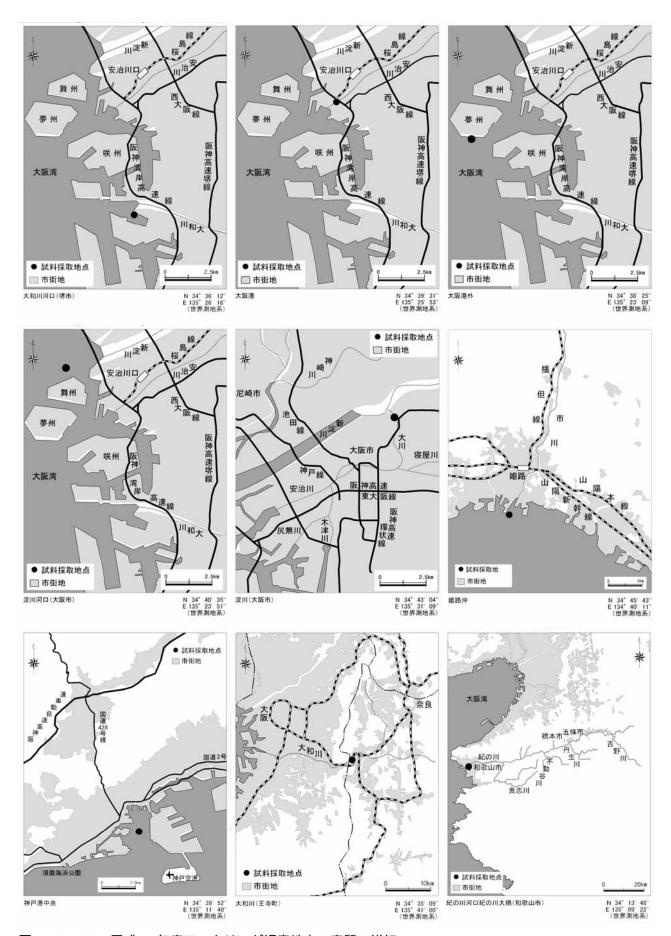


図 1-4 (5/8) 平成 23 年度モニタリング調査地点(底質)詳細

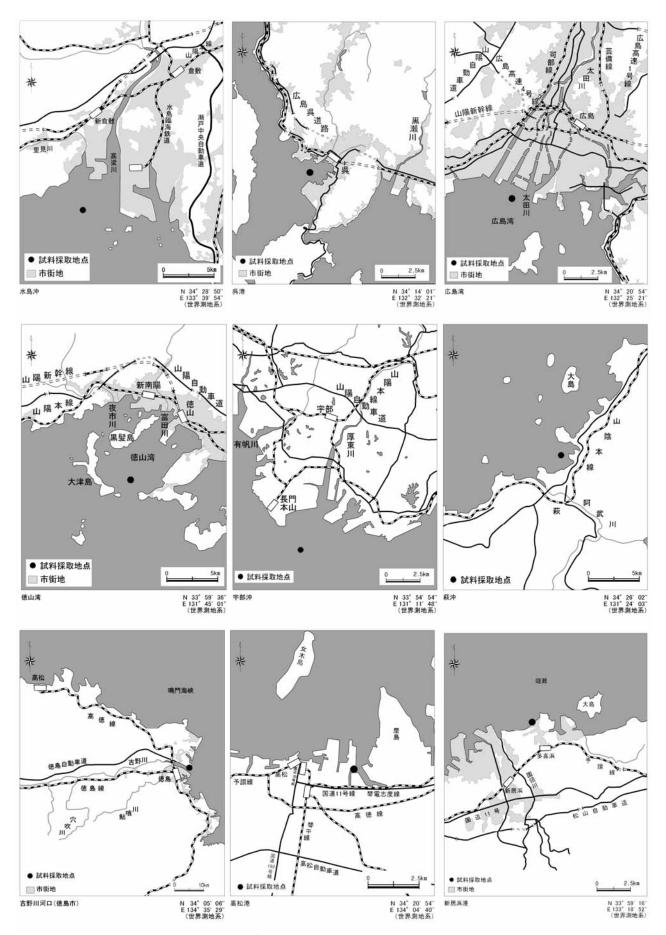


図 1-4(6/8) 平成 23 年度モニタリング調査地点(底質)詳細



図 1-4(7/8) 平成 23 年度モニタリング調査地点(底質)詳細

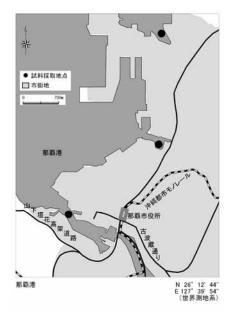


図 1-4(8/8) 平成 23 年度モニタリング調査地点(底質)詳細

表1-3 平成23年度モニタリング調査地点一覧(生物)

地方公共団体	調査地点	生物種	採取日
北海道	釧路沖	ウサギアイナメ	平成 23 年 10 月 4 日
	釧路沖	シロサケ	平成 23 年 11 月 1 日
	日本海沖(岩内沖)	アイナメ	平成 23 年 12 月 1 日
岩手県	盛岡市郊外	ムクドリ	平成 23 年 8 月 7 日
宮城県	仙台湾(松島湾)	アイナメ	平成 24 年 5 月 20 日
茨城県	三陸沖	サンマ	平成 23 年 11 月 29 日
東京都	東京湾	スズキ	平成 23 年 8 月 30 日
横浜市	横浜港	ムラサキイガイ	平成 23 年 11 月 7 日
川崎市	川崎港扇島沖	スズキ	平成 23 年 10 月 17 日
石川県	能登半島沿岸	ムラサキイガイ	平成 23 年 12 月 7 日
名古屋市	名古屋港	ボラ	平成 23 年 8 月 22 日
滋賀県	琵琶湖安曇川(高島市)	ウグイ	平成 23 年 4 月 11 日
大阪府	大阪湾	スズキ	平成 23 年 10 月 26 日
兵庫県	姫路沖	スズキ	平成 23 年 11 月
鳥取県	中海	スズキ	平成 23 年 10 月 5 日
島根県	島根半島沿岸七類湾	ムラサキイガイ	平成 23 年 9 月 13 日
広島市	広島湾	スズキ	平成 23 年 11 月 11 日
香川県	高松港	ボラ	平成 23 年 10 月 12 日
高知県	四万十川河口(四万十市)	スズキ	平成 23 年 11 月 7 日
北九州市	洞海湾	ムラサキイガイ	平成 23 年 6 月 24 日
大分県	大分川河口(大分市)	スズキ	平成 23 年 11 月 28 日
鹿児島県	薩摩半島西岸	スズキ	平成 23 年 11 月 18 日
沖縄県	中城湾	ミナミクロダイ	平成 23 年 12 月 26 日

⁽注) は採取日の詳細が不明であることを示す。

図1-5 平成23年度モニタリング調査地点(生物)

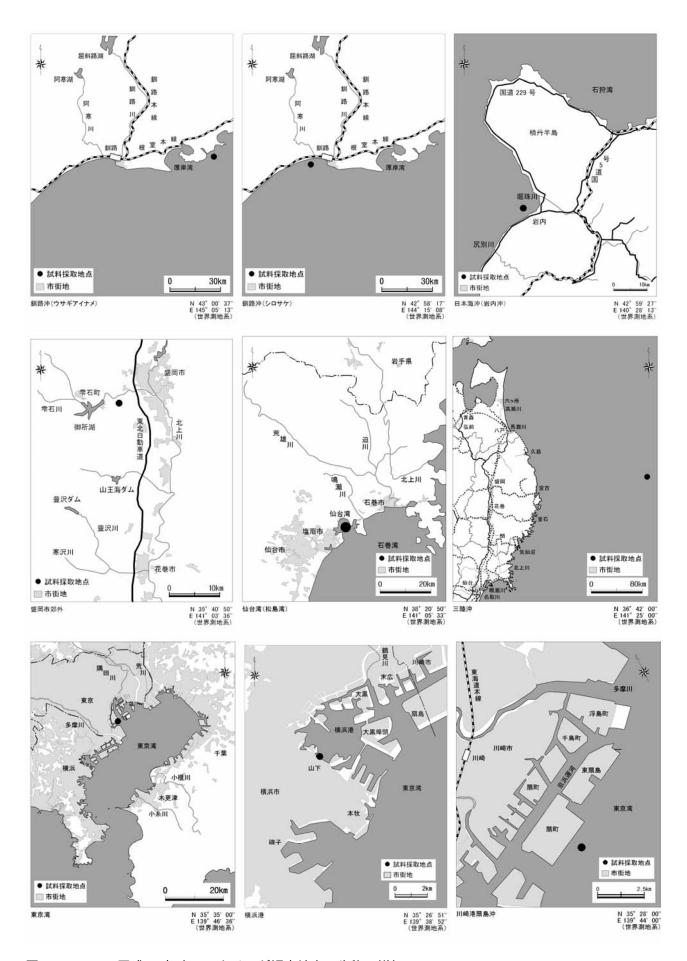


図 1-6(1/3) 平成 23 年度モニタリング調査地点(生物)詳細

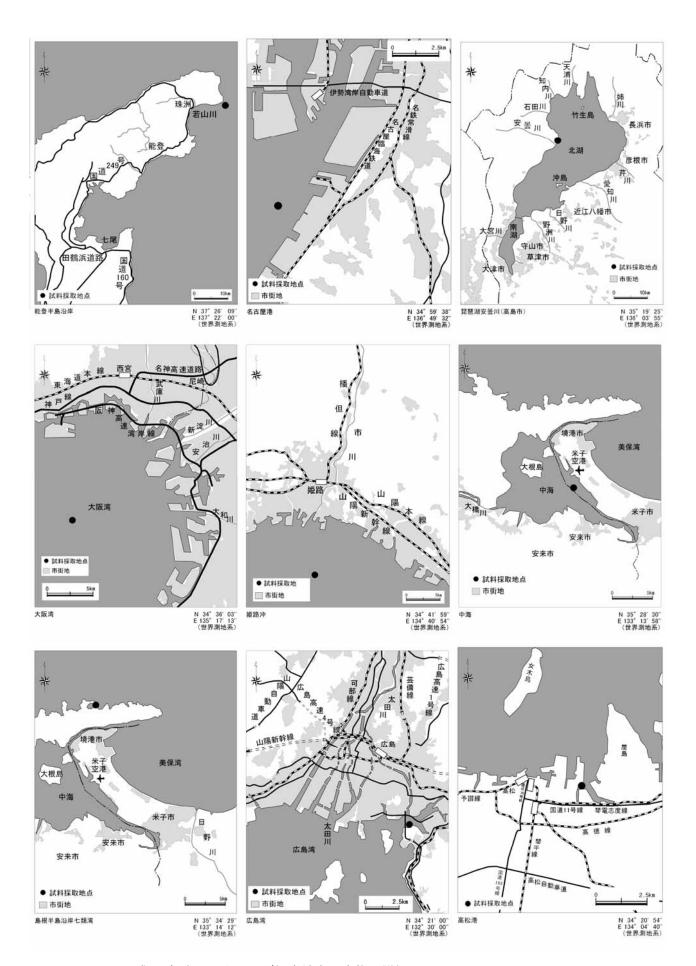


図 1-6(2/3) 平成 23年度モニタリング調査地点(生物)詳細

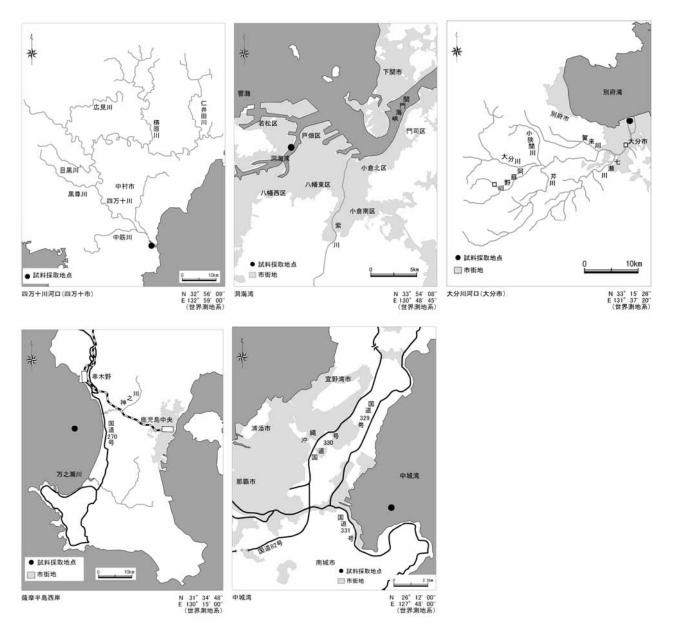


図 1-6(3/3) 平成 23年度モニタリング調査地点(生物)詳細

表1-4 平成23年度モニタリング調査地点一覧(大気)

地方 公共団体	X23年度モータリフグ調査型 調査地点	採取日(温暖期)	採取日(寒冷期)
北海道	 釧路総合振興局(釧路市)	平成 23 年 10 月 4 日 ~ 7 日	平成 23 年 12 月 13 日 ~ 20 日
札幌市	札幌芸術の森(札幌市)	平成 23 年 10 月 4 日 7 日 平成 23 年 9 月 27 日 ~ 30 日 、又は平 成 23 年 9 月 26 日 ~ 29 日	平成 23 年 12 月 13 日 ~ 20 日 平成 23 年 11 月 14 日 ~ 17 日
岩手県	網張スキー場(雫石町)		平成 23 年 11 月 15 日~18 日
宮城県	宮城県保健環境センター (仙台市)		平成 23 年 12 月 5 日 ~ 12 日
茨城県	茨城県霞ケ浦環境科学セン ター(土浦市)	平成 23 年 9 月 6 日 ~ 12 日 、又は平成 23 年 9 月 6 日 ~ 9 日	平成 23 年 12 月 1 日~8 日
群馬県	群馬県衛生環境研究所(前 橋市)	平成 23 年 9 月 27 日 ~ 10 月 4 日 、又 は平成 23 年 9 月 27 日 ~ 30 日	平成 23 年 12 月 6~13 日
千葉県	市原松崎一般環境大気測定 局(市原市)	平成 23 年 9 月 12 日 ~ 9 月 15 日	平成 23 年 11 月 28 日 ~ 12 月 1 日
東京都	東京都環境科学研究所(江東区)	平成 23 年 9 月 13 日 ~ 20 日 、又は平成 23 年 9 月 13 日 ~ 16 日	平成 23 年 10 月 25 日~11 月 1 日
	小笠原父島	平成 23 年 9 月 24 日~10 月 1 日 、又 は平成 23 年 9 月 13 日~16 日	平成 23 年 11 月 10 日~17 日
神奈川県	神奈川県環境科学センター (平塚市)	平成 23 年 9 月 5 日 ~ 8 日	平成 23 年 11 月 14 日~17 日
横浜市	横浜市環境科学研究所(横浜市)	平成23年9月9日~16日 、又は平成23年9月13日~16日	平成 23 年 11 月 11 日~18 日
新潟県	大山一般環境大気測定局 (新潟市)	平成 23 年 9 月 26 日 ~ 9 月 29 日	平成 23 年 12 月 19 日 ~ 22 日
富山県	砺波一般環境大気測定局 (砺波市)	平成 23 年 9 月 26 日 ~ 29 日	平成 23 年 12 月 5 日~8 日
石川県	石川県保健環境センター (金沢市)	平成23年9月6日~9日	平成 23 年 11 月 29 日~12 月 2 日
山梨県	山梨県衛生環境研究所(甲 府市)	平成 23 年 9 月 26 日 ~ 29 日	平成 23 年 11 月 28 日 ~ 12 月 1 日
長野県	長野県環境保全研究所(長野市)	平成 23 年 9 月 27 日 ~ 10 月 4 日 、又 は平成 23 年 9 月 27 日 ~ 30 日	平成 23 年 12 月 10 日~17 日
岐阜県	岐阜県保健環境研究所(各 務原市)	平成 23 年 9 月 12 日 ~ 15 日	平成 23 年 11 月 28 日 ~ 12 月 1 日
名古屋市	千種区平和公園(名古屋市)	平成 23 年 9 月 22 日 ~ 29 日 、又は平成 23 年 9 月 26 日 ~ 29 日	平成 23 年 12 月 5 日 ~ 12 日
三重県	三重県保健環境研究所(四 日市市)	平成 23 年 9 月 5 日 ~ 8 日	平成 23 年 12 月 12 日~15 日
京都府	京都府立城陽高等学校(城陽市)	平成 23 年 10 月 4 日 ~ 7 日	平成 23 年 12 月 12 日~15 日
大阪府	大阪府環境農林水産総合研 究所(大阪市)	平成 23 年 9 月 26 日 ~ 29 日	平成 23 年 12 月 12 日~15 日
兵庫県	兵庫県環境研究センター (神戸市)	平成 23 年 9 月 26 日 ~ 29 日	平成 23 年 12 月 6 日~9 日
神戸市	葺合一般環境大気測定局 (神戸市)	平成 23 年 9 月 26 日 ~ 30 日 、又は平成 23 年 9 月 26 日 ~ 29 日	平成 23 年 11 月 28 日 ~ 12 月 1 日
奈良県	天理一般環境大気測定局 (天理市)	平成23年9月6日~9日	平成 23 年 12 月 12 日~15 日
島根県	国設隠岐酸性雨測定所(隠 岐の島町)	平成 23 年 10 月 4 日~7 日 、又は平成 23 年 10 月 4 日~6日	平成 23 年 12 月 6 日 ~ 9 日
広島市	広島市立国泰寺中学校(広 島市)	平成 23 年 9 月 12 日 ~ 15 日	平成 23 年 11 月 14 日~17 日
山口県	山口県環境保健センター (山口市)	平成 23 年 9 月 6 日 ~ 13 日 、又は平成 23 年 9 月 6 日 ~ 9 日	平成 23 年 11 月 28 日 ~ 12 月 5 日
	萩市見島ふれあい交流セン ター(萩市)	平成 23 年 9 月 6 日 ~ 13 日 、又は平成 23 年 9 月 6 日 ~ 9 日	平成 23 年 11 月 28 日 ~ 12 月 5 日
徳島県	徳島県立保健製薬環境セン ター(徳島市)	平成 23 年 9 月 7 日 ~ 13 日 、又は平成 23 年 9 月 13 日 ~ 16 日	平成 23 年 11 月 28 日 ~ 12 月 1 日

地方 公共団体	調査地点	採取日(温暖期)	採取日(寒冷期)
香川県	香川県高松合同庁舎(高松市) (対照地点:香川県立総合水泳プール(高松市))	平成 23 年 9 月 28 日 ~ 10 月 5 日 、又 は平成 23 年 9 月 30 日 ~ 10 月 3 日	平成 23 年 11 月 16 日 ~ 23 日
愛媛県	愛媛県南予地方局(宇和島 市)	平成 23 年 9 月 5 日 ~ 9 日	平成 23 年 11 月 7 日 ~ 10 日
福岡県	大牟田市役所 (大牟田市)	平成 23 年 9 月 26 日 ~ 29 日	平成 23 年 11 月 28 日 ~ 12 月 1 日
佐賀県	佐賀県環境センター(佐賀 市)	平成 23 年 9 月 13 日 ~ 20 日 、又は平成 23 年 9 月 14 日 ~ 17 日	平成 23 年 11 月 15 日 ~ 22 日
熊本県	熊本県保健環境科学研究所 (宇土市)	平成 23 年 9 月 26 日 ~ 29 日	平成 23 年 11 月 14 日 ~ 17 日
宮崎県	宮崎県衛生環境研究所(宮 崎市)	平成23年9月6日~13日 、又は平成23年9月6日~9日	平成 23 年 11 月 15 日 ~ 22 日
鹿児島県	鹿児島県環境保健センター (鹿児島市)	平成 23 年 9 月 12 日 ~ 15 日	平成 23 年 12 月 5 日 ~ 8 日
沖縄県	辺戸岬 (国頭村)	平成 23 年 9 月 26 日 ~ 29 日	平成 23 年 12 月 19 日 ~ 12 月 22 日

⁽注) は [20] N,N-ジメチルホルムアミド以外の物質を採取したことを、 は [20] N,N-ジメチルホルムアミドを採取したことをそれぞれ意味する。

図1-7 平成23年度モニタリング調査地点(大気)

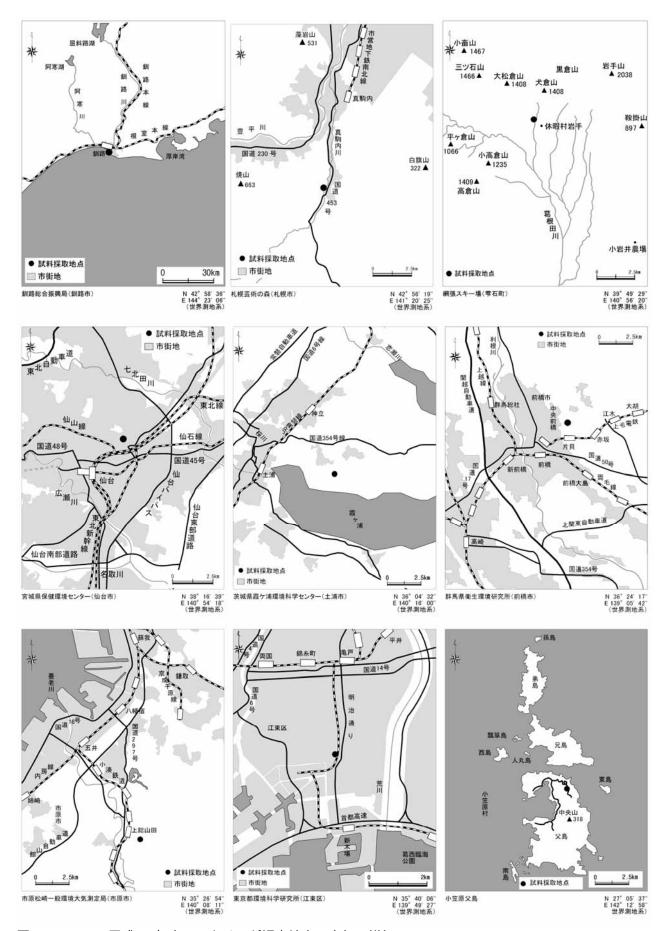


図 1-8 (1/5) 平成 23 年度モニタリング調査地点 (大気)詳細

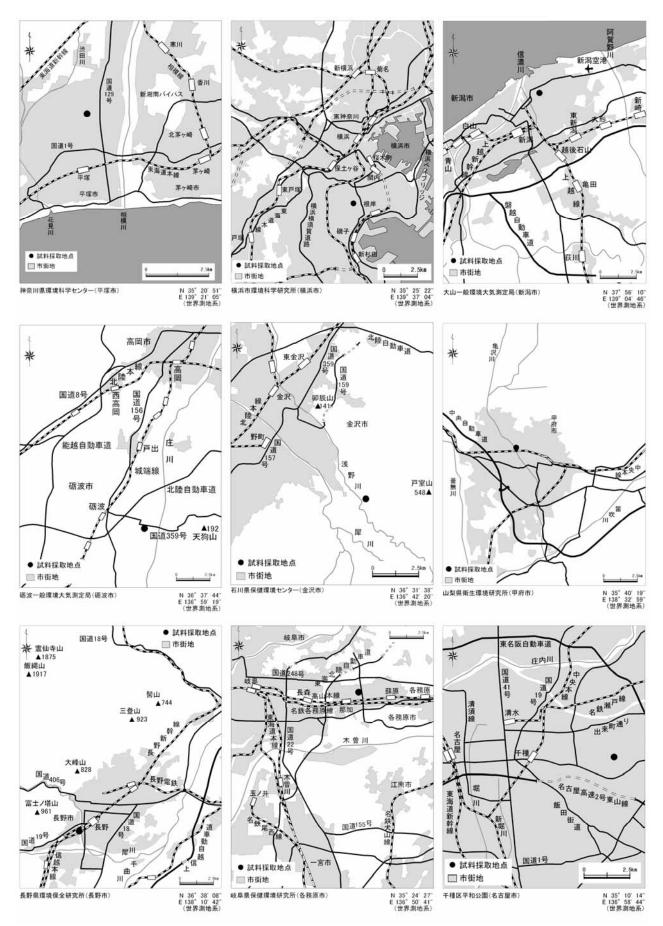


図 1-8 (2/5) 平成 23 年度モニタリング調査地点 (大気)詳細

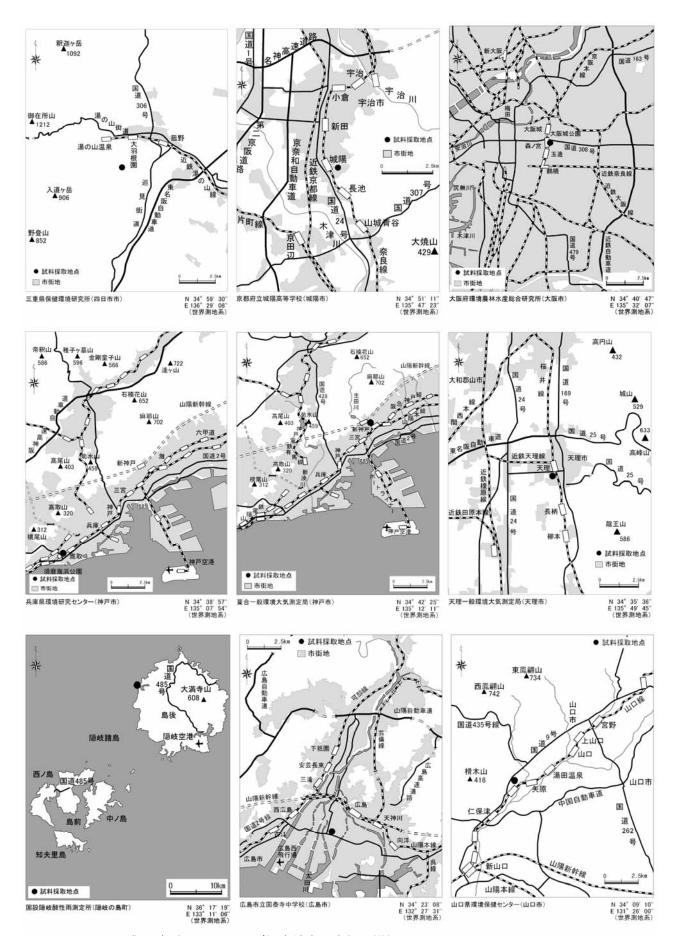


図 1-8 (3/5) 平成 23 年度モニタリング調査地点 (大気)詳細

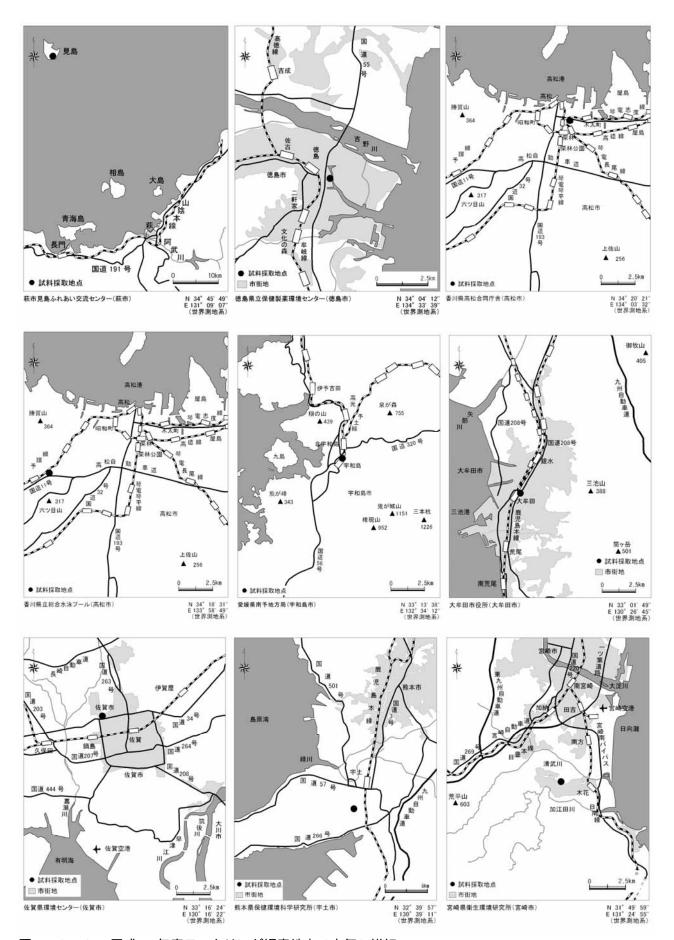


図 1-8 (4/5) 平成 23 年度モニタリング調査地点 (大気)詳細

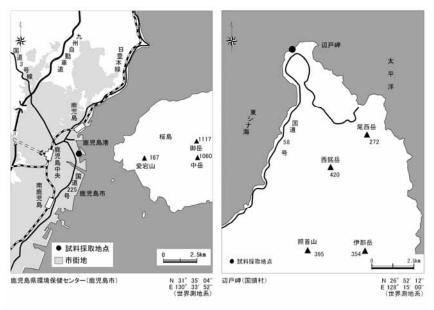


図 1-8 (5/5) 平成 23 年度モニタリング調査地点 (大気)詳細

(3)調査対象生物種

生物媒体において調査対象とする種は、指標としての有意性、実用性のほか、国際的な比較の可能性も考慮し、スズキ及びムラサキイガイを中心に貝類1種、魚類8種及び鳥類1種の計10種とした。

平成23年度において調査対象となった生物種の特性等を表2に示す。また、表3-1から表3-3には、分析に供した検体の概要をまとめた。

(4)試料の採取方法

試料の採取及び検体の調製方法については、「化学物質環境実態調査実施の手引き(平成 20 年度版)」(平成 21 年 3 月、環境省環境保健部環境安全課)に従うこととした。

(5)分析法

分析法の概要は、「6.モニタリング調査対象物質の分析法概要」を参照のこと。

表 2 調査対象生物種の特性等

衣 2	- 調査対象主物性の特別 生物種	<u>生物種の特性等</u>	調査地点	調査目的	備考
	ムラサキイガイ	熱帯を除き、世界的に分布する。	横浜港		残留レベル
貝					
	(Mytilus galloprovincialis)	内湾岩礁、橋脚等に付着する。	能登半島沿岸		の異なる 4
類			島根半島沿岸七類湾	態の把握	地点で調査
			洞海湾		を実施
	アイナメ	北海道から南日本、朝鮮半島、中国に分	日本海沖(岩内沖)	特定地域	
	(Hexagrammos otakii)	布する。	仙台湾(松島湾)	の残留実	
		5~50m の浅海域に生息する。		態の把握	
	ウサギアイナメ	北海道、日高以東の寒流域に生息する。	釧路沖	特定地域	
	(Hexagrammos	アイナメより大きく、生息海底にて、口		の残留実	
	lagocephalus)	に入る大きさの魚を食べる。		態の把握	
	サンマ	北部太平洋に広く分布する。	常磐沖	日本列島	
	(Cololabis saira)	日本列島周辺を回遊し、千島(秋)、北		周辺の残	
	,	九州(冬)に至る。		留実態の	
		化学物質濃縮性は中位といわれている。		把握	
	シロサケ	北太平洋、日本海、ベーリング海、オホ	釧路沖	地球的規	
	(Oncorhynchus keta)	ーツク海、アラスカ湾全体、北極海の一	- Mear I	模での残	
		部に分布する。		留実態の	
		日本では、太平洋側では利根川、日本海		把握	
		側では山口県以北の河川に遡上する。		101/至	
		化学物質濃縮性は中位といわれている。			
	スズキ	日本各地、朝鮮半島、中国の沿岸部に分	東京湾	特定抽描	残留レベル
魚	(Lateolabrax japonicus)	布する。			の異なる9
	(Lateotabrax japonicus)	がある。 成長の過程で、淡水域、汽水域に来遊す	大阪湾		地点で調査
類		成長の過程で、灰小域、八小域に未避りることがある。	人	感の行権	地点し調査
		ることがある。 化学物質濃縮性は高位といわれている。	中海		を美心
		化子物具振網性は同位といわれている。	中海 広島湾		
			広島湾 四万十川河口(四万		
			十市)		
			大分川河口(大分市)		
	_12 —		薩摩半島西岸	4+ 11- 1-+	
	ボラ	ほぼ全世界の熱帯・温帯に広く分布す	名古屋港	特定地域	
	(Mugil cephalus)	る。	高松港	の残留実	
		成長の過程で、淡水域、汽水域に来遊す		態の把握	
		ることがある。	_L _L \ _+	# 	
1	ミナミクロダイ	南西諸島に分布する。	中城湾	特定地域	
	(Acanthopagrus sivicolus)	サンゴ礁海域及び河川水の流入する湾		の残留実	
		内に生息する。		態の把握	
1	ウグイ	日本各地の淡水域に広く分布する。	琵琶湖安曇川(高島		
1	(Tribolodon hakonensis)	主として昆虫類を捕食する。	市)	の残留実	
				態の把握	
鳥	ムクドリ	極東域に広く分布、近種は世界的に分布	盛岡市郊外	北日本地	
74.0	(Sturnus cineraceus)	する。		域の残留	
類		虫類を主食とする。		実感の把	
犬只				握	
ь					

表3-1 平成23年度モニタリング調査(生物 貝類)検体の概要

100 1 1100 25 TIX C		/ / HJ	<u>. (</u>	1/3 /	XX / 1X 14.	1-70 -						
 生物種(調査地点)	検体	採取年月	性민	個体数		曼 (cm)			蓮(g)		水分	脂質分
工物性(响且地点)	番号	1本松十万	ותבו	四件奴	()内	は算術平	均值	()内	は算術平	均值	(%)	(%)
ムラサキイガイ	1	平成 23 年	混合	97	4.0 ~	6.2 (5.1)	8.1 ~	22.5 (13.0)	84.1	0.7
(横浜港)	2	11月	混合	127	3.6 ~	7.0 (4.7)	6.1 ~	26.0 (11.7)	82.7	1.1
((供/共/它)	3	11 月	混合	108	4.0 ~	6.1 (4.8)	7.7 ~	21.7 (12.6)	83.2	1.0
ムラサキイガイ	1	平成 23 年	不明	30	11.0 ~	15.1 (13.0)	200.6 ~	655.9 (306.0)	77.5	2.1
(能登半島沿岸)	2	12月	不明	70	10.0 ~	13.5 (11.8)	100.8 ~	273.0 (180.0)	77.4	2.1
(能显于南加芹)	3	12 万	不明	220	5.9 ~	8.0 (7.2)	30.1 ~	61.5 (45.9)	78.7	1.7
ムラサキイガイ	1	平成 23 年	不明	450	4.4 ~	10.6 (5.3)	27.0 ~	146.5 (38.8)	82.3	1.9
	2	9月	不明	450	3.8 ~	4.6 (4.2)	15.4 ~	30.7 (22.7)	82.0	1.6
(南似十岛加汗 6 規戌)	3	у Д	不明	400	2.8 ~	4.1 (3.7)	7.5 ~	20.7 (15.0)	83.4	1.4
ムラサキイガイ	1	平成 23 年	不明	178	4.8 ~	8.5 (6.6)	9.8 ~	57 (27)	80.0	2.4
(洞海湾)	1	6月	. 1 . 1-7	170	1.0	0.5 (5.0)	7.0	37 (21)	55.0	2.7

表 3-2 (1/2) 平成 23 年度モニタリング調査 (生物 魚類)検体の概要

- 大物種(調本地占)	検体 番号	採取年月		個体数	体	表(cm) 長(cm) は算術平			体重(;) 内は算術			水分 (%)	脂質分 (%)
	1	_ , , ,	混合	5	40 ~	46 (42)	740	~ 1.340	(1,016)	78.5	2.1
ウサギアイナメ	2	平成 23 年	混合	5	40 ~	47 (44)	840	~ 1,410	(1,110)	77.2	1.4
(釧路沖)	3	10月	混合	5	40 ~	43 (42)	890	~ 1,070	(970)	77.2	1.5
\.D# <i>\</i>	1	ᄑᄚᅆᄯ	雄	1		74			4,150			74.6	1.3
シロサケ	2	平成 23 年	雄	1		70			3,120			71.6	2.5
(釧路沖)	3	11月	雄	1		69			3,180			73.3	1.8
アイナメ	1	平成 23 年	混合	9	25 ~	45 (33)	160	~ 1,230	(477)	73.7	2.9
(日本海沖(岩内沖))	2	12月	混合	8	27 ~	41 (34)	210	~ 970	(514)	74.3	2.7
(日本海冲(石内が))	3	12 /7	混合	7	26 ~	46 (34)	300	~ 1,180	(604)	74.5	2.3
アイナメ	1	平成 24 年	不明	20	16.0 ~	18.5 (17.5)	72	~ 125	(103)	71.9	2.5
(仙台湾(松島湾))	2	5月	不明	20	18.8 ~	21.0 (19.8)	119	~ 180	(144)	72.5	2.5
	3		不明	12	21.5 ~	28.0 (24.2)	181	~ 453	(276)	74.2	2.5
サンマ	1	平成 23 年	不明	53	18 ~	25 (23)	36	~ 74	(58)	53.0	6.6
(三陸沖)	2	11月	不明	31	25 ~	28 (27)	90	~ 124	(106)	54.0	8.9
(-1271)	3	,	不明	23	28 ~	32 (29)	126	~ 172	(139)	53.0	15.0
スズキ	1	平成 23 年	混合	4	45.5 ~	54.9 (49.3)	1,577	~ 2,495	(1,821)	74.0	4.3
(東京湾)	2	8月	混合	5	43.7 ~	46.5 (1,337	~ 1,496	(1,433)	71.1	3.6
	3		混合	8	34.9 ~	43.6 (39.1)	668	~ 1,366	(1,006	<u>)</u>	73.6	2.0
スズキ	1	平成 23 年	雌	8	29.3 ~	38.1 (34.1)	362	~ 773	(567)	763	2.2
(川崎港扇島沖)	2	10月	雌雌	9	34.1 ~	37.9 (35.5)	532	~ 675	(599)	76.3	2.3
	3		不明	6	38.5 ~	42.2 (39.9)	715	~ 1,050	(806	<u>)</u>		
ボラ	1 2	平成 23 年	不明不明	5 5	34.6 ~ 36.0 ~	40.0 (37.9)	800 817	~ 1,131 ~ 1,170	(1,006))	72.7	2.5
(名古屋港)	3	8月	不明	5	35.5 ~	40.0 (40.0 (37.7) 38.6)	856	~ 1,170	(1,019)	12.1	2.3
ウグイ	1		雌	21	25.2 ~	29.3 (26.9)	203	~ 311	(247	<u>)</u>	75.9	3.0
(琵琶湖安曇川	2	平成 23 年	雄	25	22.1 ~	26.8 (24.3)	136	~ 243	(186)	75.2	3.6
(高島市))	3	4月	雌	20	24.2 ~	27.2 (26.0)	194	~ 268	(234)	76.2	2.8
	1	_ , , ,	不明	9	37.0 ~	42.0 (39.0)	709	~ 966	(791)	70.2	2.0
スズキ	2	平成 23 年	不明	11	35.0 ~	39.0 (36.9)	676	~ 804	(741	<u>,</u>	73.1	2.3
(大阪湾)	3	10月	不明	11	35.0 ~	39.5 (36.5)	619	~ 832	(724)		
¬ - ^+	1	TH 22 F	不明	4	46 ~	50 (48)	1,307	~ 1,767	(1,629)	76.4	3.9
スズキ	2	平成 23 年	不明	3	50 ~	52 (51)	1,737	~ 1,908	(1,803)	76.4	3.9
(姫路沖)	3	11月	不明	3	54 ~	65 (58)	2,054	~ 4,600	(2,935)	76.4	3.9
7 7"+	1	ᄑᄨᅆ	不明	12	38.5 ~	44.5 (42.4)	810	~ 1,050	(942)	78.7	1.4
スズキ	2	平成 23 年	不明	13	37.8 ~	43.0 (40.3)	705	~ 1,040	(829)	78.2	1.6
(中海)	3	10月	不明	16	32.8 ~	39.3 (35.6)	520	~ 790	(608)	77.9	2.2
スズキ	1	平成 23 年	雄	5	35 ~	36 (36)	654	~ 718	(686)	77.9	1.7
(広島湾)	2	11月	雌	10	32 ~	37 (35)	515	~ 758	(656)	77.9	1.3
(四南片)	3	11 /7	雌	10	34 ~	40 (38)	581	~ 838	(715)	78.1	1.1
ボラ	1	平成 23 年	不明	2	33.0 ~	74.8 (53.9)	327	~ 2,275	(1,301)	71.0	3.4
(高松港)	2	10月	不明	4	34.0 ~	59.7 (40.8)	338	~ 1,678	(695)	69.3	4.0
(1914/6)	3	10/3	不明	3	44.5 ~	54.1 (49.7)	1,480	~ 2,355	(1,850)	77.4	1.3

表 3-2 (2/2) 平成 23 年度モニタリング調査 (生物 魚類)検体の概要

生物種 (調査地点)	検体 番号	採取年月	性別	個体数		麦(cm) は算術平	均值	((重く) は算		均值		水分 (%)	脂質分 (%)
スズキ	1	平成 23 年	混合	12	15.9 ~	31.2 (23.2)	92	~	634	(273)	76.4	1.3
(四万十川河口	2	11月	混合	34	14.3 ~	27.0 (17.5)	56	~	416	(112)	76.7	1.0
(四万十市))	3	11 /7	混合	37	15.3 ~	19.0 (16.8)	75	~	116	(94)	77.0	1.0
スズキ	1	平成 23 年	不明	1		51.1				1,833				74.1	2.3
(大分川河口	2	11月	不明	1		47.9				1,715				75.3	4.9
(大分市))	3	11 円	不明	1		53.9				2,175				75.6	2.9
スズキ	1	平成 23 年	混合	4	36.0 ~	37.5 (36.9)	890	~	926	(901)	76.1	2.0
(薩摩半島西岸)	2	11月	混合	5	34.0 ~	36.5 (35.6)	737	~	887	(809)	74.9	2.1
(唯序十岛四月)	3	11 万	混合	6	31.0 ~	36.0 (32.8)	533	~	842	(642)	76.1	1.8
ミナミクロダイ	1	平成 23 年	雌	4	30.5 ~	32.0 (31.2)	876	~	911	(893)	78.0	1.8
(中城湾)	2	12月	雄	3	30.9 ~	33.8 (32.4)	853	~	1,161	(1,052)	78.0	2.1
(中拠/号)	3	14月	雌	3	30.9 ~	34.0 (32.4)	943	~	1,245	(1,112)	76.0	2.2

表 3-3 平成 23 年度モニタリング調査 (生物 鳥類)検体の概要

生物種(調査地点)	検体 番号	採取年月	性別	個体数	体 [()内	長(cm) は算術平	均值	体 ()内l	重(g) は算術平	均値	水分 (%)	脂質分 (%)
ムクドリ	1	平成 23 年	雄	70	11.2 ~	14.1 (13.1)	68.1 ~	96.8 (84.2)	70.6	2.8
(盛岡市郊外)	2	8月	雌	63	10.8 ~	14.0 (13.0)	61.9 ~	96.2 (83.8)	69.8	2.8
	3	٥٦	不明	47	12.0 ~	14.0 (12.9)	62.8 ~	94.2 (81.5)	69.7	2.9

4. モニタリング調査としての継続性に関する考察

昭和49年度に「化学物質環境実態調査」が実施されて以降、一般環境中に残留する化学物質の早期発見及びその濃度レベルの把握を目的として、種々の対象物質が選定され、調査が実施されてきており、平成23年度においては「初期環境調査」及び「詳細環境調査」として実施されている。こうした年度別の調査とは別に、一定の調査対象物質を経年的に追う継続的調査として、昭和53年度に開始した「生物モニタリング」をはじめ、「水質・底質モニタリング」、「指定化学物質等検討調査」、「非意図的生成化学物質汚染実態追跡調査」及び「指定化学物質等検討調査」等が実施され、平成14年度より「モニタリング調査」として実施されるに至った。こうした継続的調査の実施経過の概要は次のとおりである。

調査名称(注)	実施期間	媒体	調査対象物質
生物モニタリング	昭和53年度~	生物(貝類、魚類、	PCB類、HCB、アルドリン、ディルドリン、エン
	平成13年度	鳥類)	ドリン、DDT類、クロルデン類、HCH類等
水質・底質モニタリング	昭和61年度~	水質、底質	HCB、ディルドリン、DDT類、クロルデン類、
	平成13年度		HCH類等
非意図的生成化学物質	昭和60年度~	水質、底質、生物(魚	PCB類等
汚染実態追跡調査	平成13年度	類、貝類)、大気	
指定化学物質等検討調査	昭和63年度~	水質、底質等	トリブチルスズ化合物、トリフェニルスズ化合物
	平成13年度		等
モニタリング調査	平成14年度~	水質、底質、生物(貝	PCB類、HCB、アルドリン、ディルドリン、エン
		類、魚類、鳥類)、	ドリン、DDT類、クロルデン類、ヘプタクロル類、
		大気	トキサフェン類、マイレックス、HCH類等

(注)調査名称は実施期間中の代表的なものであり、年度によって異なる場合がある。

(1)調査対象物質及び媒体の推移

平成23年度モニタリング調査対象物質の継続的調査における年度別実施状況は表4のとおりである。

平成14年度から新規にモニタリングを開始したのは、全媒体のヘプタクロルのほか、水質・底質ではアル ドリン、エンドリン、o,p'-DDT、o,p'-DDE及びo,p'-DDD、大気ではHCB、アルドリン、ディルドリン、エン ドリン、p,p'-DDT、p,p'-DDE、p,p'-DDD、o,p'-DDT、o,p'-DDE、o,p'-DDD、cis-クロルデン、trans-クロルデン、 オキシクロルデン、cis-ノナクロル及びtrans-ノナクロルである。平成15年度からは、cis-ヘプタクロルエポキ シド、trans-ヘプタクロルエポキシド、トキサフェン類(3物質)、マイレックス、γ-HCH(別名:リンデン) 及び δ -HCHについても全媒体の調査を開始した。平成16年度には、その他の調査対象物質としてHBB(全媒 体)及びジオクチルスズ化合物(水質、底質及び生物)について調査を実施した。平成17年度には、その他 の調査対象物質としてBHT(底質、生物及び大気)並びにジベンゾチオフェン及び有機スズ化合物(水質、 底質及び生物)について調査を実施した。平成18年度は、その他の調査対象物質として2,4,6-トリ-tert-ブチル フェノール(生物及び大気)、2-クロロ-4-エチルアミノ-6-イソプロピルアミノ-1.3.5-トリアジン(別名:ア トラジン)、2,2,2-トリクロロ-1,1-ビス(4-クロロフェニル)エタノール(別名:ケルセン又はジコホル)、フ タル酸ジ-n-ブチル、ポリ塩化ナフタレン類、ジオクチルスズ化合物及びりん酸トリ-n-ブチル(生物)につい て調査を実施した。平成19年度には、その他の調査対象物質としてアクリルアミド、テトラブロモビスフェ ノールA、ヘキサクロロブタ-1,3-ジエン及びヘキサブロモベン(水質、底質及び生物)、トリクロロベンゼン 類及びテトラクロロベンゼン類(大気)並びにペンタクロロベンゼン(全媒体)について調査を実施した。 平成20年度には、その他の物質としてクロルデコン、ジオクチルスズ化合物、ジベンゾチオフェン、2,2,2-ト リクロロ-1,1-ビス(4-クロロフェニル)エタノール (別名 : ケルセン又はジコホル) 、フタル酸ジ*-n-*ブチル及び

りん酸トリ-n-ブチル(水質、底質及び生物)、ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)(生物)、2-クロロ-4-エチルアミノ-6-イソプロピルアミノ-1,3,5-トリアジン(別名:アトラジン)(水質及び底質)、N,N'-ジフェニル-p-フェニレンジアミン類(水質)並びに2,6-ジ-tert-ブチル-4-メチルフェノール(別名:BHT)、2,4,6-トリ-tert-ブチルフェノール及びポリ塩化ナフタレン類(全媒体)について調査を実施した。平成21年度には、その他の物質としてヘキサブロモビフェニル類、ペルフルオロオクタンスルホン酸(PFOS)及びペルフルオロオクタン酸(PFOA)(水質、底質及び生物)、ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)(水質、底質及び大気)並びにペンタクロロベンゼン及びテトラクロロベンゼン類(大気)について調査を実施した。

このような中、平成21年5月にCOP4が開催され、HCH類、クロルデコン、ヘキサブロモビフェニル類、ポリブロモジフェニルエーテル類、ペルフルオロオクタンスルホン酸(PFOS)及びペンタクロロベンゼンが新規にPOPs条約対象物質とすることが採択された。これを受けて調査頻度の見直しを行い、それらPOPs条約対象物質については毎年度の調査とすることとした一方で、平成14年度又は平成15年度から毎年度の調査が行われていた従前のPOPs条約対象物質であるPCB類、HCB、アルドリン、ディルドリン、エンドリン、DDT類、クロルデン類、ヘプタクロル類、トキサフェン類及びマイレックスのうち、アルドリン、ディルドリン、エンドリン、DDT類、トキサフェン類及びマイレックスについては、数年おきの調査とすることとした。

平成22年度は、従前のPOPs条約対象物質のうちPCB類、HCB(ヘキサクロロベンゼン)、DDT類、クロルデン類及びヘプタクロル類の5物質(群)並びに新規にPOPs条約対象物質として採択されたHCH類、クロルデコン、ヘキサブロモビフェニル類、ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)、ペルフルオロオクタンスルホン酸(PFOS)及びペンタクロロベンゼンの5物質(群)について全媒体の調査を実施したほか、その他の物質として、ペルフルオロオクタン酸(PFOA)(全媒体)、トリブチルスズ化合物及びトリフェニルスズ化合物(水質、底質及び生物)並びにN,N'-ジフェニル-p-フェニレンジアミン類(大気)について調査を実施した。

平成23年度は、従前のPOPs条約対象物質のうちPCB類、HCB(ヘキサクロロベンゼン)、ディルドリン、エンドリン、クロルデン類、ヘプタクロル類及びマイレックスの7物質(群)並びにCOP4で新規にPOPs条約対象物質として採択されたHCH類、クロルデコン、ヘキサブロモビフェニル類、ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)、ペルフルオロオクタンスルホン酸(PFOS)及びペンタクロロベンゼン並びに平成23年4月に開催されたCOP5で新規にPOPs条約対象物質とすることが採択されたエンドスルファン類の7物質(群)について全媒体の調査を実施したほか、その他の物質として、ペルフルオロオクタン酸(PFOA)(全媒体)、1,2,5,6,9,10-ヘキサブロモシクロドデカン類(水質、底質及び生物)及びN,N-ジメチルホルムアミド(水質、底質及び大気)について調査を実施した。

なお、HCH類の大気については、平成15年度から平成20年度に用いた大気試料採取装置の一部からHCH類が検出され、HCH類の測定に影響を及ぼすことが判明したが、個別のデータについて影響の有無を遡って判断することが困難であるため、この期間の全てのデータについて欠測扱いとすることとした。

表4 継続的調査の年度別調査物質・媒体一覧

物質	調査	昭和 3	平成
物質 調査 番号		49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	元 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
	水質		
	底質		
[1]	貝類		
[-]	魚類		
	鳥類		
	大気		

(注)PCB類の水質は昭和50年2月に環境基準が設定され、地方公共団体が常時監視を行っている。また底質については昭和50年2月に暫定除去基準が定められており、地方公共団体において測定されているが、ここでは触れない。なお、昭和49年の化審法施行以前の調査として、昭和47年度に水質、底質及び生物についての一斉調査を行っている。

物質 調査 番号	調査	昭和														平	成																					٦
番号	媒体	49 50	51	52	53	54	55	56	57	58	59	60	61	62	63	元	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22 2	3
	水質																																					
	底質																	_																		_		
	貝類												<u>.</u>					L				<u> </u>																
[2]	魚類																																					
	鳥類]
	大気																																					

物質 調査 番号	調査	昭和														平/	成																					
番号	媒体	49 50	51	52	53	54	55	56	57	58	59	60	61	62	63	元	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	水質 底質																																					
[3]	貝類 魚類		5																																			
	鳥類 大気																																					

物質 調査 番号	調査	昭和														平	戏																					
番号	媒体	49 5	0 51	52	53	54	55	56	57	58	59	60	61	62	63	元	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
[4]	水底貝魚鳥大	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																																				

物質 調査 番号	調査	昭	和														平	戓																					
番号	媒体	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	元	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
[5]	水底貝魚類																																						

(注1) :非意図的生成化学物質汚染実態追跡調査において実施したことを意味する。

(注2) :水質・底質モニタリング又は生物モニタリングにおいて実施したことを意味する。

(注3) : 指定化学物質等検討調査において実施したことを意味する。 (注4) : 継続的調査以外の調査において実施したことを意味する。

(注5) :モニタリング調査において実施したことを意味する。

[1] PCB 類、[2] HCB、[3] アルドリン(参考)、[4] ディルドリン、[5] エンドリン

物質	調査	昭利]														平	成																					
物質 調査 番号		49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	元	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	水質																																					ļ	
56.43	底質																																						
[6-1] [6-2]	貝類																																						
[6-3]	魚類																																						
[0 5]	鳥類																																						
	大気																																						
	水質																																						
F (43	底質															<u></u>																							
[6-4] [6-5]	貝類																																					ļ	
[6-6]	魚類								1							<u> </u>																							
[د د]	鳥類																																						
	大気																																						

物質 調査 番号	調査	昭	和														平																						
調且 番号		49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	元	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	水質																																						
[7-1]	底質																																						
[7-2]	貝類																																						
[7-4]	魚類																																				į	Ì	
[7-5]	鳥類																																						
	大気																																						
	水質																																						
	底質 貝類																																						
[7 2]	貝類																																						
[7-3]	魚類																																						
	鳥類																																						
	大気																																						

物質	調査	昭	和														平	成																					
物質 調査 番号	媒体	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	元	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	水質																																						
	底質																																						
FO 13	貝類																																						
[8-1]	貝類 魚類																																						
	鳥類			Ī																																			
	大気																																						
	水質																																						
	底質																																						
FO. 2 3	底質 貝類			ļ	1																																		
[8-2]	魚類																																						
	鳥類		Ì																																				
	大気				·																																		
	水質 底質		Ì																																				
50.03	貝類					-																																	
[8-3]	魚類			Ī	Î																																		
	鳥類		Ì	i	1																																		
	大気			5										'												Ţ													

物質	調査	昭和														平	成																					
物質 調査 番号	媒体	49 50	51	52	53	54	55	56	57	58	59	60	61	62	63	元	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	水質																																					
F0 47	底質																																					
[9-1]	貝類																																					
[9-2] [9-3]	魚類																																					
[7-5]	鳥類																																				Ì	
	大気																																					

(注)昭和58年度は総トキサフェン類

[6-1] p,p'-DDT (参考)、[6-2] p,p'-DDE (参考)、[6-3] p,p'-DDD (参考)、[6-4] o,p'-DDT (参考)、[6-5] o,p'-DDE (参考)、[6-6] o,p'-DDD (参考)、[7-1] cis-クロルデン、[7-2] trans-クロルデン、[7-3] trans-クロルデン、[7-4] cis-ノナクロル、[7-5] trans-ノナクロル、[8-1] ヘプタクロル、[8-2] cis-ヘプタクロルエポキシド、[8-3] trans-ヘプタクロルエポキシド、[9-1] trans-ヘプタクロルエポキシド、[9-2] trans-ヘプタクロルエポキシド、[9-3] trans-ヘプタクロルエポキシド、[9-3] trans-ヘプタクロルエポキシド、[9-1] trans-ヘプタクロルエポキシド、[9-3] trans-ヘプタクロルエポキシド、[9-1] trans-ヘプタクロルエポキシド、[9-1] trans-の(参考)、[9-3] trans-ヘプタクロルエポキシド、[9-1] trans-の(参考)、[9-2] trans-の(参考)、[9-3] trans-の(参考)、[9-3]

物質 調査 番号	調査	昭和														平	成																					
番号	媒体	49 50	51	52	53	54	55	56	57	58	59	60	61	62	63	元	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	水質																																					
	底質																																					
[10]	貝類																																					
[10]	魚類																																					
	鳥類																																					
	大気																																					

物質	調査	昭和															平	成																					
物質 調査 番号	媒体	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	元	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
[11-1] [11-2]	鳥類 大気		0.00																																-				
[11-3] [11-4]	水底貝魚類																																						

(注) : γ-体についてのみ調査を実施した。

: HCH 類の大気については、平成 15 年度から平成 20 年度に用いた大気試料採取装置の一部から HCH 類が検出され、HCH 類 の測定に影響を及ぼすことが判明したが、個別のデータについて影響の有無を遡って判断することが困難であるため、この 期間の全てのデータについて欠測扱いとすることとした。

物質 調査 番号	調査	昭和														平/	成																					
番号	媒体	49 5	51	52	53	54	55	56	57	58	59	60	61	62	63	元	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	水質																																					
	底質																																			ĺ		
5103	貝類																																					
[12]	魚類					П	П																													ì		
	鳥類				T	Т	T																															
	大気																																					

物質 調査 番号	調査	昭和														平	成																					
酮且 番号	媒体	49 50	51	52	53	54	55	56	57	58	59	60	61	62	63	元	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	水質																																					
	底質																																					
F1 27	貝類																																					
[13]	魚類																																			Ì		
	鳥類																																			Î		
	大気																																					

[10] マイレックス、[11-1] α -HCH、[11-2] β -HCH、[11-3] γ -HCH(別名:リンデン)、[11-4] δ -HCH 、[12] クロルデコン、[13] ヘキサ プロモビフェニル類

物質	調査	昭	和																		平	成																							
物質 調査 番号		49	50	5	1 5	52	53	54	1 5	55	56	57	5	8 5	9	60	6	1 6	2	63	元	2	2	3	4	5	6	7	8	3	9	10	11	12	13	3 14	1:	5 1	6 1	7	18	19	20	21	22 23
	水質												Ī																																
	底質		ĺ	Ī				Т	T				İ				Ì	î	ì			T	T				<u> </u>	-	Ì	Ť						T	Т	Ī		i					
[14-1]	貝類			Ī	Ī				Ť				T	T			Ī	1	Ì			Ī	T					1	T	Ť				T				Ī		1					
[14-4]	魚類			Ĭ	T			Г	Ī				Ì				Γ					Г	T					ĺ	Ì	Ť					Ī		Т	T			Ì				
	鳥類			Ī					T				Ī					1	Î				T					Ì										T							
	大気				Ī				Ī				Ī					Ì					Ī					Ī																	
	水質																																												
	底質]	Ĭ																										
[14-2]	貝類																																												
[14-2]	魚類																	ı					l						ļ	l						L	L								
	鳥類		Ĺ	Ĺ					Ĺ				Ĺ				L	Ĺ												Ĺ	_							Ĺ							
	大気																																												
	水質		L	ļ	_			L	_	_		<u>.</u>	ļ.,					_				Ļ		_			ļ		Ļ	1				<u> </u>	ļ	Ļ	L			_					
	底質		L	ļ				L	_	_			1				Ļ	Ţ	_			L		_	_			Ĺ		ļ	_			Ĺ			L	_		_					
[14-3]	貝類魚類		L	ļ	ļ.			Ĺ	_	_			_				L					Ļ					ļ				_			ļ			Ļ	_		_					
[1.5]	魚類		L	ļ					_	_			_				L	1				L					ļ	ļ		1	_			<u> </u>				_		_					
	鳥類		L	ļ				L	_	_	_						L	ļ	_					_				<u>. </u>		Ļ	_	_		<u></u>						_					
	大気			1	_		_				_	_					1	_					1			_		L	1				_		_	1	1	_							
	水質		L	ļ	ļ.			L	_	_			Ļ	_			L					Ļ					ļ	ļ	1	_	_			ļ	ļ	_	Ļ	_		_					
	底質		L	ļ				L	_	_	_	-					L	1						_	_	_		ļ		_	_	_		ļ				_		_					
[14-5]	貝類 魚類		L	-	-			L	+	_		-	-	-	-		L	+	-			ŀ	-	_			-	-	-	+	_				-	-	┡	-		-					
	魚類		H	-				-	_	-		-		+			Ł	-	-			-	-	_	_		ļ		-	-	_			-	-	-	-	-		_					
	鳥類		Ļ	ļ				L	-	_	_	ļ		_	_		Ļ	ł	_				-	_	_	_	ļ	<u>.</u>		4	_		_	ļ			_	+	-	_					
	大気				-	_			_	_			-	-	_				_				-								_								-	-	_				
	水質 底質		H	-				H	-	_		-		-			ŀ	-	-			ŀ		-				-	-	+	-	_		-	-	-	┡	-		-					
			-	-				-	+	-		-	-	÷	-		-	ł				-	÷	_			-	-	+	+	_		_	-	-	-	-	-	-	-	-				_
[14-6]	貝類 魚類		H	-	-			H	+	-		-	ł	+	-		-	-	-			H	-	-			ļ		+	÷	_			-	-	-	\vdash	+	+	_					
	鳥類		H	-	-			H	+	-		-	+	-	-		H	+	-			┝	-	-	_			-	-	÷	-	_		-	-	╬	┢	╬		╝					
	大気		H	-	-			H	÷	-		-	╁	÷	-		÷	÷	÷			H	÷	-				╁	+	÷	-		_	-	-	-	-	+	-	-	-				
	水質				-	-	_		1	-				-	-		1	i					-	-		_	_		-	-	_							-	-	-	-			_	
	<u>小貝</u> 底質		-	-	-			H	-	-		-	-	-			-	-	-			-	÷	-			ļ	-	-	+	-			-	-	-	-	+	-	_					
	貝類		-	-				-	÷			-	-	+			-	+	-			-	÷	_				-	ŀ	÷	-	_		-	-		-	-	-	-	-				-
[14-7]	点類 魚類		Ͱ	-	-		-	H	÷	-		-	+	+	-		╁	ł	ŀ			H	÷	-			ļ	1	÷	÷	-		-	-	-	-	\vdash	÷	÷	-					
	鳥類		H	ļ	÷			H	÷	-		-	ŀ	÷	-		H	÷	÷			ŀ	÷	-				ļ	÷	÷	-			<u> </u>	<u> </u>	+	\vdash	╬	-	-					
	大気			-	-	-		\vdash	-	-		_	l	+	-		_	1	-			ŀ	÷	-				-	+	+	-			-	-	-	\vdash	+	+	-				_	
	Λ×l							1	-			<u> </u>	1				<u> </u>				<u> </u>							1																	

物質	調査	昭和														平	成																					
物質 調査 番号	媒体	49 50	51	52	53	54	55	56	57	58	59	60	61	62	63	比	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	水質																																					
	底質																									ľ												
F1.53	貝類																																					
[15]	魚類																																					
	鳥類					Г														Ì					Ì	ľ												
	大気																																					

物質	調査	昭和														平	成																					
物質 調査 番号	媒体	49 50	51	52	53	54	55	56	57	58	59	60	61	62	63	元	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	水質																																					
	底質																																					
F1.63	貝類																																					
[16]	魚類																																					
	鳥類		Ī						Ī												Ĭ																	
	大気																																					

- [14-1] テトラブロモジフェニルエーテル類、[14-2] ペンタブロモジフェニルエーテル類、[14-3] ヘキサブロモジフェニルエーテル類、[14-4] ヘプタブロモジフェニルエーテル類、[14-5] オクタブロモジフェニルエーテル類、[14-6] ノナブロモジフェニルエーテル類、[14-7] デカブロモジフェニルエーテル、[15] ペルフルオロオクタンスルホン酸(PFOS)、[16] ペルフルオロオクタン酸(PFOA)

物質 調査 番号	調査	昭和														平	成																					
番号	媒体	49 50	51	52	53	54	55	56	57	58	59	60	61	62	63	元	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	水質																																					
	底質																																					
[17]	貝類																																					
[1/]	魚類																																					
	鳥類																																					
	大気																																					

	調査															平																						
酮且 番号	媒体	49 5	0 51	52	53	54	55	56	57	58	59	60	61	62	63	元	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	水質																																					
	底質																																					
[18-1]	貝類																																					
[18-2]	魚類																																					
	鳥類																																					
	大気																																					

(注)昭和57年度は総エンドスルファン類

物質	調査	昭和														平	成																					
物質 調査 番号	媒体	49 50	51	52	53	54	55	56	57	58	59	60	61	62	63	元	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	水質																																					
[19-1]	底質																										Ī						Š					
[19-2]	貝類																																					
[19-3]	魚類				Ī	П									Ī																							
[19-4]	鳥類		T	1																																		
[-> -]	大気																																					

(注)昭和62年度は総ヘキサプロモシクロドデカン類、平成15年度及び平成16年度は総1,2,5,6,9,10-ヘキサプロモシクロドデカン類

物質	調査	昭和	П														平	成																					
物質 調査 番号	媒体	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	元	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	水質																																						
	底質																																						
[20]	貝類																																						
[20]	魚類																																						
	鳥類																																						
	大気																																						

 $[17] \ ^{\prime} \nabla \mathcal{P} \mathcal{P} D \Box \nabla \mathcal{P} \dot{\mathcal{P}} \nabla \mathcal{P} \nabla \mathcal{P$

(2)調査地点の推移

化学物質環境実態調査における継続的調査の年度別調査地点の状況は表5-1から表5-4のとおりである。

・水質

平成14年度及び15年度は38地点、平成16年度は40地点、平成17年度は47地点、平成18年度から平成20年度は48地点、平成21年度及び平成22年度は49地点においての調査であった。

平成23年度は、平成21年度及び平成22年度と同一の49地点において調査を実施した。

平成13年度以前には、PCB類について、平成12年度に28地点で開始し、平成13年度には29地点において調査を実施していた。PCB類以外のものについては、昭和61年度に18地点で開始し、その後多少の増減を経た後、平成10年度には18地点において調査を実施していた(なお、平成11年度から平成13年度には調査を実施していない。)。

・底質

平成14年度は63地点、平成15年度は62地点、平成16年度及び17年度は63地点、平成18年度から平成22年度は64地点においての調査であった。

平成23年度は、平成18年度から平成22年度と同一の64地点において調査を実施した。

平成13年度以前には、PCB類について、平成8年度に36地点で開始し、平成13年度には39地点において調査を実施していた。PCB類以外のもの(有機スズ化合物を除く。)については、昭和61年度に18地点で開始し、その後多少の増減を経た後、平成13年度には20地点において調査を実施していた。

生物

平成14年度は北海道釧路沖のオオサガ、長崎県祝言島地先のスズキの調査が廃止され、川崎港のスズキ、横浜港のムラサキイガイ等が新規追加され23地点(うち1地点は2生物種を調査)、平成15年度は三浦半島のムラサキイガイ及び萩市見島のムラサキインコガイの2地点が外れ21地点、平成16年度には高松港のムラサキイガイが新規追加され、洞海湾のムラサキイガイがムラサキインコガイに変更され22地点、平成17年度は釧路沖のシロサケ及び姫路沖のスズキが新規追加され、高松港のムラサキイガイがイガイに、洞海湾のムラサキインコガイがムラサキイガイに変更され23地点(うち2地点は2生物種を調査)、平成18年及び平成19年度も平成17年度と同一23地点、平成20年度は大分川河口(大分市)のスズキが新規追加され24地点(うち2地点は2生物種を調査)、平成21年度は、名古屋港のボラが新規追加され、洞海湾のムラサキイガイがムラサキインコガイに変更され25地点(うち2地点は2生物種を調査)、平成22年度は、能登半島沿岸のムラサキインコガイに変更され25地点(うち2地点は2生物種を調査)、平成22年度は、能登半島沿岸のムラサキイガイが外れ、横浜港のムラサキイガイがミドリイガイに、洞海湾のムラサキインコガイがムラサキイガイに変更され24地点(うち2地点は2生物種を調査)においての調査であった。

平成23年度は、能登半島沿岸のムラサキイガイが再追加され、蕪島のウミネコ、山田湾のムラサキイガイ及びアイナメ並びに鳴門のイガイが外れ、サンマが常磐沖から三陸沖に変更され、仙台湾(松島湾)のスズキがアイナメに、横浜港のミドリイガイがムラサキイガイに、高松港のムラサキイガイがボラに変更され22地点(うち1地点は2生物種を調査)において調査を実施した。

平成13年度以前には、PCB類について、平成8年度、9年度、12年度及び13年度には貝類及び魚類で実施されている。PCB類以外のものについては、昭和53年度に8地点で開始し、その後経年的に増加し、平成13年度には23地点において調査を実施していた。

・大気

平成14年度は34地点、平成15年度は小笠原父島が追加され、釧路市立春採中学校(釧路市)が北海道渡島支庁庁舎(函館市)に変更され35地点、平成16年度は兵庫県環境研究センター(神戸市)及び鹿児島県環境保健センター(鹿児島市)が追加され、北海道渡島支庁庁舎(函館市)が上川保健福祉事務所(名寄市)に変更され37地点、平成17年度は上川保健福祉事務所(名寄市)が釧路市立春採中学校(釧路市)に変更され37地点、平成18年度には釧路市立春採中学校(釧路市)が北海道渡島支庁庁舎(函館市)に変更され37地点、平成19年度は北海道渡島支庁庁舎(函館市)が上川保健福祉事務所(名寄市)、茨城県環境監視センター(水戸市)が茨城県霞ケ浦環境科学センター(土浦市)に変更され、天理一般環境大気測定局(天理市)が廃止され36地点、平成20年度は上川保健福祉事務所(名寄市)が北海道釧路支庁(釧路市)に変更され、天理一般環境大気測定局(天理市)が再度追加され37地点においての調査であった。平成21年度は北海道釧路支庁(釧路市)が北海道渡島支庁庁舎(函館市)に変更され37地点においての調査であった。平成21年度は北海道釧路支庁(釧路市)が北海道渡島支庁庁舎(函館市)に変更され37地点においての調査であった。平成21年度は北海道

平成23年度は、北海道上川合同庁舎(旭川市)が釧路総合振興局(釧路市)に、萩市役所見島支所(萩市)が萩市見島ふれあい交流センター(萩市)に、徳島県保健環境センター(徳島市)が徳島県立保健製薬環境センター(徳島市)に変更され、37地点において調査が実施された。

平成13年度以前には、PCB類について平成12年度には17地点、平成13年度には15地点において調査を実施しているが、PCB類以外のものについては継続的調査が過去に実施されていない。

表5-1 継続的調査の年度別調査地点の一覧(水質)

	継続的調査の年度別調査地点の-	_		水																		
地方	調査地点	昭		(2	平		1	1 1	- /			0	10	11 1	12 12	114	1.5 1	(17	1 10	10 2	0 21	20 20
公共団体	十勝川すずらん大橋(帯広市)	61	62	63	兀	2	3	4) () /	8	9	10	11 1	12 13	14	15 1	6 1/	18	19 2	20 21	22 23
JI. V= \ **																						
北海道	石狩川河口石狩河口橋(石狩市)																					
	苫小牧港								_									_	_			
青森県	堤川河口(青森市) 十三湖					ļ			-			-		- i				_	-			
岩手県	· 李石川			ļ					1					7					1			
石于宗	豊沢川(花巻市)																					
宮城県	仙台湾(松島湾)																					
秋田県	八郎湖						匚		7									\perp	ļ			
山形県	最上川黒滝橋 最上川須川合流点	-		ļ		<u> </u>	_		-	_						-			<u> </u>			
ЩЛУХ	最上川河口(酒田市)													-								
福島県	阿武隈川			ļ					_													
	小名浜港 利根川河口かもめ大橋(神栖市)	_		ļ			_		-		-			-								
茨城県	利根川河口利根川大橋(波崎町)																					
七十月	霞ヶ浦	-				<u> </u>			4	_	-	<u> </u>		_			_	_	ļ	<u> </u>	_	
栃木県	田川(宇都宮市) 新河岸川	_		<u> </u>	ļ		_		_		1	-	1									
埼玉県	荒川秋ヶ瀬取水堰(志木市)																					
千葉県	市原・姉崎海岸					-			_							-	_					
千葉市	花見川河口(千葉市) 荒川河口(江東区)					-	_		_	-								_				
東京都	隅田川河口(港区)													1								
米水即				ļ																		
	東京湾中瀬 鶴見川河口	-				-	_		-	-	-	÷				-	_	-	-		-	
横浜市	横浜港	_		ļ		-	H		+	+	+	╁					+	+	-		+	
川崎市	多摩川河口																					
\ Med 1	川崎港京浜運河													İ								
	新潟東港	_				<u> </u>	L		_		_	_	<u> </u>					_	ļ			
新潟県	信濃川河口(新潟市)									_	_		L									
	信濃川下流(新潟市)																					
富山県	神通川河口萩浦橋(富山市)	_		ļ					_									_				
石川県	珠洲市沖 屋川河口(今沿市)	_	-	ļ										-			-				-	
福井県		-		ļ		-	_	H	-	-	-	\vdash				-	_	_	-			
山梨県	荒川(甲府市)	_		ļ			_		-										-			
	千曲川屋島橋 (須坂市)																					
長野県	諏訪湖湖心																					
静岡県	天竜川(磐田市)													Ī.,								
愛知県	名古屋港																					
		-																				
三重県	長良川河口(桑名市) 四日市港	-	-	-		-	_		-	-	+											
		-		l	ļ				_		-	-		l					<u> </u>			
滋賀県			-	I	-						-											
/44 只不		-		ļ	1	-				-						H		-	<u> </u>			
京都府	宮津港																					
	桂川渡月橋 (京都市)																					
京都市	桂川宮前橋(京都市)																					
大阪府	大和川河口 (堺市)																					
7 (198/11)	泉大津沖																					

地方	细木地上	昭	和		平	戓																				
公共団体	調査地点	61	62	63	元	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20 2	1 22	2 23
大阪市	大阪港																									
7 (172.15	大阪港外																									
	淀川河口	<u>. </u>	<u>.</u>	ļ								Ļ		Ļ		ļ									_	
	香住三田浜	_	L	<u></u>						<u></u>			_	L	L	<u> </u>	<u></u>		<u></u>	_					1	
兵庫県	姫路沖																									
神戸市	神戸港中央																									
和歌山県	紀の川河口紀の川大橋(和歌山市)																									
岡山県	水島沖																									
	太濃地島西沖																									
広島県	呉港																									
	広島湾																									
	徳山湾													Ì		İ										
山口県	宇部沖]												
	萩沖			ļ										L											<u> </u>	
徳島県	紀伊水道 吉野川河口(徳島市)		<u>.</u>							<u> </u>	<u> </u>	ļ		Ļ	Ļ	ļ	ļ	_	_					_	+	-
 香川県	高松港							H			ļ	-	_	-	l	-	-	-	_						1	
高知県	四万十川河口(四万十市)																									
福岡県								Т				1		1		1	Ī			П						1
	関門海峡											İ			İ	Ī								j	j	
北九州市	洞海湾																									
福岡市	博多湾																									
佐賀県	伊万里湾															1										
	大村湾																									
長崎県	長崎港																									
熊本県	緑川(宇土市)																									
宮崎県	大淀川河口 (宮崎市)																									
	天降川 (霧島市)	<u> </u>	ļ	ļ																						
鹿児島県	甲突川松方橋(鹿児島市)																								_	
	五反田川五反田橋(いちき串木野市)																									
沖縄県	中城湾	<u> </u>	<u>.</u>	ļ	ļ					<u> </u>					_	ļ	<u> </u>	_			Ш				ļ.	
	那覇港	<u>L</u> .		<u> </u>				<u> </u>	<u> </u>																	

- (注1) :非意図的生成化学物質汚染実態追跡調査において実施したことを意味する。
- (注2) :水質・底質モニタリングにおいて実施したことを意味する。
- (注3) :指定化学物質等検討調査において実施したことを意味する。
- (注4) :モニタリング調査において実施したことを意味する。
- (注5)「地方公共団体」は、試料採取を実施した地方公共団体の名称であり、複数年度実施している地点にあっては直近の年度に試料採取を実施した地方公共団体の名称を示した。
- (注6) ■は水質・底質モニタリング及びモニタリング調査を継続して実施している地点を意味する。

表5-2 継続的調査の年度別調査地点の一覧(底質)

表5-2 約	継続的調査の年度別調査地点の-			底																						
地方	調査地点	昭			平		_									,										
公共団体		61	62	63	元	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20 2	21 2	22 23
	天塩川恩根内大橋 (美深町) 十勝川すずらん大橋 (帯広市)																									
北海道	石狩川河口石狩河口橋(石狩市)																									
	苫小牧港																									
青森県	堤川河口(青森市)	_																		_						
	十三湖 零石川					-																				
岩手県	豊沢川(花巻市)																									
宮城県	仙台湾(松島湾)																									
仙台市秋田県	広瀬川広瀬大橋(仙台市) 八郎湖																						1		1	
秋田宗	八郎/吻 最上川黒滝橋		-																_	_					-	
山形県	最上川須川合流点 最上川河口(酒田市)																									
福島県	阿武隈川 小名浜港																									
	利根川河口かもめ大橋(神栖市)																							1	1	
茨城県	利根川河口利根川大橋(波崎町) 利根川布川栄橋(利根町)					<u></u>				<u> </u>	<u> </u>								_							
/ <u>/</u> //////////////////////////////////	電ヶ浦 電ヶ浦北浦																								-	
	霞ヶ浦西浦																									
栃木県	田川 (宇都宮市)					<u> </u>																			_	
埼玉県	新河岸川					<u> </u>	_	_	_	ļ				_					<u> </u>	<u> </u>				_	4	
千葉県	市原・姉崎海岸				ļ	ļ		L	_	ļ	<u> </u>								L	L		<u> </u>		4	4	-
千葉市	花見川河口(千葉市) 荒川河口(江東区)	<u> </u>				<u> </u>				<u> </u>	<u> </u>								<u></u>	_			_	+	+	_
東京都	隅田川河口(港区)				,																					
横浜市	東京湾中瀬 鶴見川河口																									
(快) (供) (供)	横浜港																									
川崎市	多摩川河口(川崎市) 川崎港京浜運河						_												_							
	川崎尼尔洪建門 新潟東港					-	_	_	_		-		_						<u> </u>	_	_		-	1	+	
新潟県	信濃川河口(新潟市)																									
	信濃川下流(新潟市)																									
富山県	神通川河口萩浦橋(富山市) 珠洲市沖																									
石川県	犀川河口(金沢市)																									
福井県	笙の川三島橋(敦賀市)									ļ															1	
山梨県	荒川千秋橋(甲府市) 千曲川屋敷橋(須坂市)																									
長野県	諏訪湖湖心																									
	木曽川三根橋(南木曽町)																									
静岡県	清水港 天竜川(磐田市)																									
愛知県	大浦港 名古屋港				,																					
	長良川河口(桑名市)																									
三重県	四日市港				ļ	<u> </u>					-												1	l		
	鳥羽港			ļ	<u> </u>			Н		ļ	ļ												Ť	Ť	İ	
	Wa 2310	1			1				_			ш					_				_			_		لــــــــــــــــــــــــــــــــــــــ

地方		昭	和		平	яΰ																				
公共団体	調査地点			63	元	2	3	4	5	6	7	T 8	T 9	110	11	12	13	14	15	16	17	18	19	20	21	22 23
	琵琶湖早崎港沖						Г			1	T	T	Τ	1						T				П	\exists	\dashv
	琵琶湖南比良沖中央]												
滋賀県	琵琶湖唐崎沖中央																									
	琵琶湖浜大津沖									†	┪	t	t	1	İ	†	İ	╫	Н	Н	\vdash	┪	†	Н	\dashv	\dashv
≐ #7#	宮津港						Ė	İ	İ	1	İ	Ť	Ť	İ	İ	İ	İ	İ		T	T	†	İ		一	
京都府	桂川渡月橋(京都市)																									
京都市	桂川宮前橋(京都市)																									
大阪府	大和川河口 (堺市)																									
	泉大津沖																									
1.00-1	大阪港																									
大阪市	大阪港外						<u> </u>			ļ	-	-	-	-		ļ	-	-	_	_		-		H	-	_
	淀川河口(大阪市)						_	_	_	ļ	-	-	-	╬	-	ļ	ļ	<u></u>	⊩	_	⊢	ļ	ļ	-	\dashv	-
	大川毛馬橋 (大阪市) 香住三田浜	-				<u> </u>	┝	L	├	 	 	+	╁	╁	-	ļ	ļ	 	├	├	╁	 	 	\vdash	\dashv	-
							<u> </u>	_	_	-	-	-	╁	+		ļ	-	-	┢	┢		-	-		-	_
兵庫県	姫路沖																									
神戸市	—————————————————————————————————————																					J				
奈良県	大和川(王寺町)	_								1				1		·	ļ	-					-			
和歌山県	紀の川河口紀の川大橋(和歌山市)						Г			İ	†	T	Ť	1	İ	İ	İ	T		T	T	† <u> </u>	†	П	寸	
鳥取県	中海																									
岡山県	水島沖																									
	太濃地島西沖															Ī						9				
	吳港							_					Ļ			ļ				L						
広島県	広島湾																									
	徳山湾															[\Box	
山口県	宇部沖						L		L	<u> </u>	<u> </u>	Ļ	Ļ	ļ_	L	ļ	ļ	<u> </u>	L	L		<u> </u>	ļ	Ш	_	
	萩沖	<u> </u>								-	-	-	-	-		ļ						-			_	_
徳島県	紀伊水道 吉野川河口(徳島市)						_			-	-	-	÷	-					-	-		-	-		-	_
香川県	高松港						_	_	_		-	-	-	-		ļ			-	H	-	-		-	-	
愛媛県	新居浜港							_			-					ļ		-					-		7	-
高知県	四万十川河口(四万十市)																									
福岡県	大牟田沖																									-
	関門海峡																									
北九州市	洞海湾																									
福岡市	博多湾																									
佐賀県	伊万里湾												I												_	
長崎県	大村湾	<u>. </u>						<u> </u>		1	<u> </u>	Ļ	Ļ	1	1	ļ	ļ	_		_	_	1	ļ	Ш	4	
及呵乐	長崎港																									
大分県	大分川河口 (大分市)																									
宮崎県	大淀川河口(宮崎市)																									
鹿児島県	天降川(霧島市) 甲突川松方橋(鹿児島市)														-											
庇兀局乐	五反田川五反田橋(いちき串木野市)																									
:山/田/日	中城湾			,																				П		
沖縄県	那覇港								H	ļ	ļ	T	Ť	t	İ	<u> </u>	ļ	1	H	Т	Η	<u> </u>	İ	H	1	1
(注1)	·非音网的生成化学物質污染宝能追跡:	- - -	<u> </u>	<u> </u>	. —		-	.		<u>.</u>	<u>.</u>	+ +	. 7		-											

- (注1) : 非意図的生成化学物質汚染実態追跡調査において実施したことを意味する。
- (注2) :水質・底質モニタリングにおいて実施したことを意味する。 (注3) :指定化学物質等検討調査において実施したことを意味する。 (注4) :モニタリング調査において実施したことを意味する。
- (注5)「地方公共団体」は、試料採取を実施した地方公共団体の名称であり、複数年度実施している地点にあっては直近の年度に試 料採取を実施した地方公共団体の名称を示した。
- (注6) □は水質・底質モニタリング及びモニタリング調査を継続して実施している地点を意味する。

表5-3 継続的調査の年度別調査地点の一覧(生物)

	継続的調査	の年度別			点0	<u> </u>	覧	(5	上物	1)																						
地方	調査地点	生物種	昭利				_					平瓦				_													_			
公共団体	明县也示		53 5	4 55	56	57 :	58 5	9 60	61	62 (53	元	2 3	3 4	4 5	6	7	8	9	10	11	12	13	14	15 1	6 1	7 1	8 19	20	21	22 2	:3
		(貝類)			"[
岩手県	山田湾 	ムラサキイ ガイ																														
神奈川県	三浦半島	ムラサキイ ガイ																														
		ムラサキイ ガイ																														
	横浜港	ミドリイガ イ																														
		ムラサキイ ガイ																														
愛知県	伊勢湾	ムラサキイ ガイ																														
島根県	島根半島沿 岸七類湾	ムラサキイ ガイ																														
山口県	見島	ムラサキイ ンコガイ																														
徳島県	紀伊水道	ムラサキイ ガイ																														
	鳴門	イガイ																														
香川県	高松港	ムラサキイ ガイ																														
自川宗	l句f4/B	イガイ											1																			
		ムラサキイ ガイ																														
北九州市	洞海湾	ムラサキイ ンコガイ																														
		(魚類)																					Ì				İ					
	根室沖	オオサガ ウサギアイ											-	-												I						
	釧路沖	ナメ		ļ												ļ	ļ	ļ										_			<u></u>	
北海道	-men/ I	オオサガ シロサケ																														
	石狩川河口	ウロック ウグイ																														
	日本海沖(岩内沖)	アイナメ)			-			-																
44	山田湾	アイナメ																														
岩手県		スズキ ウグイ			-	H	-	-			+	1	1	+	+	+	-	-			-	1	-	-	-	+	-	-		-		
	北上川	ウグイ ウグイ		-		H	-	+	H			+	+	+	+	╁	-				1	-	-	-		-	+	-		-	ł	
	仙台湾(松													1											Ī	<u></u>						
	島湾)	アイナメ		-				1			-+	Ť	Ť	Ť	Ť	Ť	1	1			1	Ť	Ť			1		1	Т	1	-	
	最上川黒滝 橋	フナ							-5																							
山形県	最上川須川 合流点	ウグイ																													Ī	
	日本海東北 沖	マダラ																														
福島県	阿武隈川	ウグイ																														
	常磐沖	サンマ																														
茨城県	三陸沖 利根川	サンマ フナ				H		-	-	H	+	-	-	-	-	-	-	-	_			-	-			1	-	-		_		
次 观宗	 霞ヶ浦北浦	フナ		-	-	H	-				-+	+	+	+	-	1	-	-			1	-				+	-		\vdash	H		
	霞ヶ浦西浦	フナ																														
<u>+</u>	東京湾	スズキ マコガレイ																														
東京都	荒川河口	スズキ		1									1		1											1					Ì	
	隅田川河口	ボラ																														
横浜市		スズキ		-			-		-			-	_	_	_	-	-	-			-	-	-				-	-				
川崎市	川崎港扇島	スズキ スズキ																														
松丁旧	沖			-	-	H		-				-	-	-		-				-	-	-	-	-	-	÷	-				-ŀ	
埼玉県	新河岸川	コイ				Ш																										

地方			昭和					平	лΫ.																\neg
公共団体		生物種	53 54 5	5 56 57	58 59	60 6	1 62 6.			3 4	4 5	6	7	8	9	10 1	1 12	13 1	14 15	16	17 1	8 19	20 2	21 2	2 23
新潟県	新潟東港	マゴチ																							
		コイ																							
福井県	笙の川	ウグイ																							
長野県	諏訪湖	フナ																							
岐阜県	木曽川	ウグイ																							
静岡県	清水港	スズキ																							
愛知県	名古屋港	ボラ								L	l										L				
三重県	四日市港	スズキ																							
	琵琶湖早崎 港沖	フナ																							
滋賀県	琵琶湖北湖	フナ																		Ĭ					
	琵琶湖安曇 川(高島市)	ウグイ																							
大阪府	大阪湾	スズキ																							
	大阪港外	スズキ													[<u>.</u>					
大阪市	淀川	オイカワ																							
	淀川河口	スズキ																							
兵庫県	西宮沖	スズキ																							
	姫路沖	スズキ																							
神戸市	神戸港	スズキ																							
和歌山県	紀の川河口	フナ																							
鳥取県	中海	スズキ																							
島根県	山陰沖	ブリ																							
岡山県	水島沖	ニベ																							
広島県	広島湾	ボラ																							
広島市	広島湾	スズキ																							
香川県	高松港	ボラ								ᆜ		L	<u> </u>												
高知県	四万十川河 口(四万十 市)	スズキ																							
北九州市		マダイ																							
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	長崎港	ボラ								+	$^{+}$	+	+	H		-		+	\dagger	$\dagger \dagger$	$^+$	\pm	1 1	-	-
長崎県	小値賀島又 は祝言島地 先																								
大分県	大分川河口	スズキ								Ť	i	Ť	İ					-	\dagger	Ħ	Ť	1		1	
鹿児島県	萨麻业自事	スズキ																							
宮崎県	大淀川	フナ																							
沖縄県	中城湾	ミナミクロ ダイ																							
		(鳥 類)										Ī													
青森県	蕪島(八戸 市)	ウミネコ																							
岩手県	盛岡市郊外	ムクドリ																							
東京都	東京湾	ウミネコ																							

- (注1) : 非意図的生成化学物質汚染実態追跡調査において実施したことを意味する。
- (注2) :生物モニタリングにおいて実施したことを意味する。
- (注3) :モニタリング調査において実施したことを意味する。
- (注4)「地方公共団体」は、試料採取を実施した地方公共団体の名称であり、複数年度実施している地点にあっては直近の年度に試料採取を実施した地方公共団体の名称を示した。
- (注5) █は生物モニタリング及びモニタリング調査を継続して実施している地点を意味する。

表5-4 継続的調査の年度別調査地点の一覧(大気)

地方	続的調宜の年度別調宜地点の一覧(大式) 	平成											
公共団体	調査地点	12	13	14	15	16	17	18	19	20	21	22	23
	上川保健福祉事務所(名寄市)												
	釧路市立春採中学校(釧路市)												
	釧路総合振興局(釧路市)												
北海道	北海道環境科学研究センター(札幌市)									å			
	北海道渡島支庁庁舎(函館市)							å					
	北海道上川合同庁舎(旭川市)												
札幌市	札幌芸術の森(札幌市)												
岩手県	網張スキー場(雫石町)												
	宮城県保健環境センター(仙台市)												
宮城県	国設仙台測定局(仙台市)												
	茨城県環境監視センター(水戸市)												
茨城県	茨城県霞ケ浦環境科学センター(土浦市)												
群馬県	群馬県衛生環境研究所(前橋市)												
千葉県	市原松崎一般環境大気測定局(市原市)												
1 **	東京都環境科学研究所(江東区)												
東京都	東京都立衛生研究所(調査当時)(新宿区)											-	
水水即	小笠原父島												
神奈川県	神奈川県環境科学センター(平塚市)												
横浜市	横浜市環境科学研究所(横浜市)												
新潟県	大山一般環境大気測定局(新潟市)												
富山県	-									ļ			
石川県	石川県保健環境センター(金沢市)												
	富士吉田合同庁舎(富士吉田市)												
山梨県	<u>国工日田日刊月日(国工日田刊)</u> 山梨県衛生環境研究所(甲府市)												
 長野県	長野県環境保全研究所(長野市)												
岐阜県	岐阜県保健環境研究所(各務原市)												
名古屋市	千種区平和公園(名古屋市)												
三重県	三重県保健環境研究所(四日市市)												
京都府	京都府立城陽高校(城陽市)												
大阪府	大阪府環境農林水産総合研究所(大阪市)												
兵庫県	兵庫県環境研究センター(神戸市)												
神戸市	葺合一般環境大気測定局(神戸市)							İ					
奈良県	天理一般環境大気測定局(天理市)											1	
島根県	国設隠岐酸性雨測定所(隠岐の島町)												
広島市	広島市立国泰寺中学校(広島市)												
72,120.15	山口県環境保健センター(山口市)												
山口県	萩市役所見島支所(萩市)												
H I I	萩市見島ふれあい交流センター(萩市)												
	徳島県保健環境センター(徳島市)												
徳島県	徳島県立保健製薬環境センター(徳島市)												
	香川県高松合同庁舎(高松市)												
香川県	(対照地点:香川県立総合水泳プール(高松市))												
愛媛県	愛媛県南予地方局(宇和島市)												
福岡県	大牟田市役所(大牟田市)												
北九州市	北九州観測所(北九州市)												
佐賀県	佐賀県環境センター(佐賀市)												-
127371	長崎県庁(長崎市)												-
長崎県	小ヶ倉支所測定局(長崎市)							 I					-
-1-1/1	北消防署測定局(長崎市)									İ			<u> </u>
熊本県													ļ
宮崎県	宮崎県衛生環境研究所(宮崎市)	-								į			
鹿児島県	鹿児島県環境保健センター(鹿児島市)									3			
沖縄県	辺戸岬(国頭村)										<u> </u>		<u> </u>
	20 mm(国頭1) 非音図的生成化学物質汚染宝能追跡調査において宝施	<u> </u>		- 	<u>. </u>								

⁽注1) : 非意図的生成化学物質汚染実態追跡調査において実施したことを意味する。 (注2) : モニタリング調査において実施したことを意味する。

⁽注3)「地方公共団体」は、試料採取を実施した地方公共団体の名称であり、複数年度実施している地点にあっては直近の年度に試 料採取を実施した地方公共団体の名称を示した。

⁽注4)

□は非意図的生成化学物質汚染実態追跡調査及びモニタリング調査を継続して実施している地点を意味する。

(3)定量(検出)下限値の推移

平成13年度の検出下限値と平成14年度以降の検出下限値の比較一覧を表6-1から表6-4に、平成14年度以降の定量下限値の比較を表7-1から表7-2に示す。平成13年度の検出下限値は後述する「統一検出限界値」であり、平成14年度以降の検出下限値は、分析を担当した民間分析機関における検出下限値である。なお、平成14年度の水質及び底質は装置検出下限値(IDL)を、平成15年度以降の水質及び底質並びに平成14年度以降の生物及び大気は分析方法の検出下限値(MDL)をそれぞれ検出下限値として扱っている。

また、検出下限値の変化に対応した検出状況の変動については表8にまとめた。その際、地点の相違の影響を除外するため、継続して調査されている地点のみをみることとした。

表6-1から表6-4にあるとおり、検出下限値については、平成13年度までの値と比べ平成14年度以降の値が大きく改善している。

平成13年度まで実施されていた「生物モニタリング」においては、主として地方公共団体による分析によっていたため、分析機関間の装置の違い等を考慮してデータ処理を行う必要があり、調査に当たりあらかじめ同一の検出下限値(「統一検出限界値」と称していた。)を設定し、データ処理をしてきた。用いていた「統一検出限界値」は、開始当初のGC-ECDによる分析を勘案して設定されたものであり、GC/MSが主流となっている現在の分析法では十分に定量可能な値であり、より高感度の分析を行った地方公共団体からは「トレース値」として別報告を受ける状況が続いていた。平成14年度以降は分析機関が媒体ごとに一機関になったことに加え、高感度のGC/HRMSを用いた分析に移行しており、検出下限値は「統一検出限界値」に比べて一千分の一程度又はそれ以下となっている。

同じく平成13年度まで実施されていた「水質・底質モニタリング」においては、開始当初からGC/MSによる分析であり、水質は $0.01\ \mu\ g/L\ (=10,000pg/L\)$ 、底質は1ng/g-dry (=1,000pg/g-dry) を「統一検出下限値」として実施してきた。平成14年度以降は高感度のGC/HRMSを用いた分析に移行し、平成13年度に比べて、検出下限値は水質で一万分の一、底質で一千分の一程度に下がっている。

「非意図的生成化学物質汚染実態追跡調査」におけるPCB類の総量は、平成8年度及び9年度はGC/MSで測定されたが、平成12年度及び13年度は高感度のHRGC/HRMSにより測定された。このため、平成12年度及び13年度は平成8年度及び9年度の一万分の一程度の検出下限値となっている。平成14年度以降は平成12年度及び13年度と同等の検出下限値であった。なお、コプラナーPCBについては平成8年度よりHRGC/HRMS分析が行われていたため、平成14年度以降とほぼ同等の検出下限値であった。

モニタリング調査では測定値の推移を定量的に評価できることが重要であるため、平成14年度調査結果からは原則として次のとおり定量下限値を示すことで数値の信頼性を確保することとした。

- ・検出下限値の約3倍を定量下限値とする。
- ・検出頻度(検出数/検体数等)は検出下限値により判定する。
- ・幾何平均値の算出においては、検出下限値以上の測定値はそのまま用い、検出下限値未満の測定値は検出 下限値の1/2を用いる。
- ・幾何平均値、中央値等の表記に当たっては、その数値が検出下限値以上定量下限値未満の場合においては トレース値とし、検出下限値未満であった場合においては不検出とする。

表6-1 平成13年度の継続的調査と平成14年度以降のモニタリング調査における検出下限値の比較(水質)

表6- 物質	平成13年度の継続的調査と平成1	サナ皮り	タルキリン	<u>レーツ</u>	・ソング				וואין רו	ロソルじ	FX(小	良丿
物質 調査	調査対象物質					水	質(pg/I	_)				:
番号	いったいろいった。	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23
	DCD 岩	0.03	0.06	0.07	0.2	0.09	0.1	0.2	0.1	0.1	0.09	0.1
	PCB 類	~ 30	~ 0.3	~ 2	~ 4	~ 2	~ 0.7	~ 0.5	~ 0.6	~ 2	~ 8	~ 0.3
	HCB	10,000	0.2	2	8	5	5	3	1	0.2	4	2
	アルドリン (参考)		0.2	0.2	0.4	0.3	0.6	0.3	0.6	0.3		
[4]	ディルドリン	10,000	0.6	0.3	0.5	0.3	1	0.7	0.6	0.2		0.6
[5]	エンドリン		2	0.3	0.5	0.4	0.4	0.6	1	0.3		0.6
	DDT 類(参考)	10.000	0.2	0.0	2	1	0.6	0.6	0.5	0.06	0.0	
	[6-1] p,p'-DDT (参考) [6-2] p,p'-DDE (参考)	10,000 10,000	0.2 0.2	0.9 2	2 3	1 2	0.6 2	0.6 2	0.5 0.4	0.06 0.4	0.8 0.8	
[6]	[6-2] <i>p,p</i> -DDE (多号) [6-3] <i>p,p'</i> -DDD (参考)	10,000	0.2	0.5	0.8	0.6	0.5	0.6	0.4	0.4	0.08	
լսյ	[6-4] <i>o,p'</i> -DDT (参考)		0.08	0.3	2	1	0.3	0.8	0.2	0.2	0.08	
	[6-5] <i>o,p'</i> -DDE (参考)		0.3	0.3	0.5	0.4	0.9	0.8	0.3	0.00	0.09	
	[6-6] <i>o,p'</i> -DDD (参考)		0.20	0.3	0.5	0.4	0.3	0.3	0.3	0.09	0.2	
	クロルデン類											
	[7-1] cis-クロルデン	10,000	0.3	0.9	2	1	2	2	0.6	0.4	4	0.6
[7]	[7-2] trans-クロルデン	10,000	0.5	2	2	1	2	0.8	1	0.3	4	0.4
[7]	[7-3] オキシクロルデン		0.4	0.5	0.5	0.4	0.9	2	0.7	0.4	0.3	0.5
	[7-4] cis- ノナクロル	10,000	0.6	0.1	0.2	0.2	0.3	0.8	0.3	0.1	0.4	0.2
	[7-5] trans-ノナクロル	10,000	0.4	0.5	2	0.8	1.0	2	0.6	0.4	3	0.5
	ヘプタクロル類		0.5	0.5	2	1	2	0.0	0.0	0.3	0.7	0.5
[8]	[8-1]ヘプタクロル [8-2] <i>cis-</i> ヘプタクロルエポキシド		0.5	0.5	2	1	2	0.8	0.8 0.2	0.3 0.2	0.7	0.5
	[8-2] cts-ヘノダクロルエホキシト [8-3] trans-ヘプタクロルエポキシド			0.2 0.4	0.4 0.3	0.2 0.2	0.7 0.6	0.4 0.7	0.2	0.2	0.2 0.5	0.3
	トキサフェン類 (参考)			0.4	0.5	0.2	0.0	0.7	0.7	0.5	0.5	0.5
	[9-1] Parlar-26 (参考)			20	3	4	5	5	3	2		
[9]	[9-2] Parlar-50 (参考)			30	7	5	5	3	3	3		
	[9-3] Parlar-62 (参考)			90	30	30	20	30	20	20		
[10]	マイレックス			0.09	0.2	0.1	0.5	0.4	0.2	0.2		0.2
	HCH 類											
	[11-1] α-HCH	10,000	0.3	0.9	2	1	1	0.6	2	0.4	1	3
	[11-2] β-HCH	10,000	0.3	0.7	2	0.9	0.6	0.9	0.4	0.2	0.7	0.8
	[11-3] γ-HCH(別名:リンデン)			2	7	5	6	0.7	1	0.2	2	1
[12]	[11-4] δ-HCH クロルデコン			0.5	0.7	0.5	0.8	0.4	0.9	0.4	0.3	0.2
									0.03	0.19		
[13]	ヘキサブロモビフェニル類									~ 0.78	1	0.9
	ポリブロモジフェニルエーテル類(臭素数											
	が4から10までのもの)									_	_	
	[14-1] テトラブロモジフェニルエーテル類									3	3	2
	[14-2] ペンタブロモジフェニルエーテル類									4	1	1
	[14-3] ヘキサブロモジフェニルエーテル類 [14-4] ヘプタブロモジフェニルエーテル類									0.6 2	2 1	1 2
	[14-4] ベノタノロモシノエニルエーテル類 [14-5] オクタプロモジフェニルエーテル類									0.6	1	1
	[14-5] オグップロピンフェニルエーテル類									30	7	4
	[14-7] デカブロモジフェニルエーテル									200	100	20
[15]	ペルフルオロオクタンスルホン酸 (PFOS)									14	20	20
[16]	ペルフルオロオクタン酸 (PFOA)									23	20	20
[17]	ペンタクロロベンゼン							1,300			1	0.9
	エンドスルファン類					_						
	[18-1] α-エンドスルファン											50
	[18-2] β-エンドスルファン											9
	1,2,5,6,9,10-ヘキサブロモシクロドデカン類											
	[19-1] α-1,2,5,6,9,10-ヘキサブロモシクロド デカン											600
	「19-2] β-1,2,5,6,9,10-ヘキサプロモシクロド											
	デカン											500
[19]	[19-3] γ-1,2,5,6,9,10-ヘキサブロモシクロド										= = = = = = = = = = = = = = = = = = =	
[-/]	デカン											500
	[19-4] δ-1,2,5,6,9,10-ヘキサブロモシクロド											200
	デカン											300
	[19-5] ε-1,2,5,6,9,10-ヘキサブロモシクロド											300
50.03	デカン											
	N,N-ジメチルホルムアミド) 平成13年度の検出下限値は「統一検出限!	 T/± (5 [db 2 2			 h 66 YT XH					19,000
		日4.5 /	ロハロ米百人	八十十字	ᄥᄱᄱᄱ	ロスレ学ル	까까까 그도 하게.		n. =i+l 저도			

⁽注1)平成13年度の検出下限値は「統一検出限界値」(PCB類の「非意図的生成化学物質汚染実態追跡調査」はMDL)、平成14年度の検出下限値はIDL、平成15年度以降の検出下限値はMDLである。

⁽注2)「---」は比較対象なしを意味する。

⁽注3) 平成13年度水質のPCB類以外に係る値については平成10年度調査のもの(平成11年度から平成13年度は水質の継続的調査が行われなかったため)。

表6-2 平成13年度の継続的調査と平成14年度以降のモニタリング調査における検出下限値の比較(底質)

表6-2	- ドルリナタツ部が明明日の十八日	14年度以降のモニタリング調査における検出ト限値の比較(低質)										
物質 調査	調査対象物質	底質 (pg/g-dry)										
調旦 番号	神	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23
	DOD #7	0.03	0.07	0.2	0.06	0.1	0.05	0.08	0.05 ~	0.1	0.3	0.1
	PCB 類	~ 10	~ 0.5	~ 2	~ 0.6	~ 0.6	~ 0.2	~ 0.4	0.3	~ 0.4	~ 60	~ 1
	НСВ	1,000	0.3	2	3	1	1.0	2	0.8	0.7	1	3
	アルドリン (参考)		2	0.6	0.6	0.5	0.6	0.6	1	0.2		
	ディルドリン	1,000	1	2	0.9	1	1.0	0.9	0.5	0.3		2
	エンドリン DDT 類 (参考)		2	2	0.9	0.9	1	2	0.7	0.6		0.4
	DDI 類 (参考) [6-1] p,p'-DDT (参考)	1,000	2	0.4	0.5	0.3	0.5	0.5	0.5	0.4	0.9	
	[6-1] p,p'-DDI(参考) [6-2] p,p'-DDE(参考)	1,000	0.9	0.4	0.8	0.9	0.3	0.3	0.3	0.4	2	
	[6-3] <i>p,p'</i> -DDD(参考)	1,000	0.8	0.3	0.7	0.6	0.3	0.4	0.7	0.3	0.5	
[,]	[6-4] o,p'-DDT (参考)		2	0.3	0.6	0.3	0.4	0.6	0.6	0.5	0.4	
	[6-5] o,p'-DDE (参考)		1	0.2	0.8	0.9	0.4	0.4	0.6	0.2	0.5	
	[6-6] o,p'-DDD (参考)		2	0.5	0.5	0.3	0.2	0.4	0.1	0.2	0.4	
	クロルデン類	1 000	0.2	_	_	0.0	0.0	•	0.0	0.2	_	0.4
	[7-1] cis-クロルデン [7-2] trans-クロルデン	1,000 1,000	0.3 0.6	2 2	2 0.9	0.6 0.8	0.8 0.4	2 0.8	0.9 0.8	0.3 0.7	2 4	0.4 0.5
	[7-2] trans-クロルテン [7-3] オキシクロルデン	1,000	0.6	0.4	0.9	0.8	1.0	0.8	1	0.7	0.4	0.5
	[7-4] cis- ノナクロル	1,000	0.3	0.4	0.6	0.7	0.4	0.6	0.2	0.4	0.4	0.9
	[7-5] <i>trans</i> -ノナクロル	1,000	0.5	0.6	0.6	0.5	0.4	0.6	0.8	0.3	2	0.3
	ヘプタクロル類											
	[8-1]ヘプタクロル		0.6	1.0	0.9	0.8	0.6	0.7	1	0.4	0.4	0.7
	[8-2] cis-ヘプタクロルエポキシド			1	2	2	1.0	1	1	0.3	0.3	0.2
\vdash	[8-3] trans-ヘプタクロルエポキシド			3	2	2	2	4	0.7	0.6	1	0.9
	トキサフェン類(参考) [9-1] Parlar-26(参考)			20	20	30	4	2	5	4		
	[9-1] Pariar-26 (参考) [9-2] Parlar-50 (参考)			30 50	20 20	40	4 7	3 10	6	4 5		
	[9-3] Parlar-62 (参考)			2,000	400	700	60	70	40	30		
	マイレックス			0.4	0.5	0.3	0.2	0.3	0.3	0.4		0.4
	HCH 類											
	[11-1] α-HCH	1,000	0.4	0.5	0.6	0.6	2	0.6	0.6	0.4	0.8	0.6
	[11-2] β-HCH	1,000	0.3	0.7	0.8	0.9	0.4	0.3	0.3	0.5	0.8	1
	[11-3] γ-HCH(別名:リンデン)			0.4 0.7	0.5 0.5	0.7 0.3	0.7 0.6	0.4 2	0.4	0.2 0.5	0.7 0.5	1 0.5
	[11-4] δ-HCH クロルデコン			0.7	0.5	0.3	0.6		0.16		0.5	0.5
										0.042		
	ヘキサブロモビフェニル類									~ 0.14	0.6	1.4
	ポリプロモジフェニルエーテル類(臭素数											
	が4から10までのもの)									22	_	10
	[14-1] テトラブロモジフェニルエーテル類									23	2	10
	[14-2] ペンタブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェニルエーテル類									8 2	2 2	2 3
	[14-3] ヘイリノロモシフェニルエーテル類 [14-4] ヘプタブロモジフェニルエーテル類									4	2	3
	[14-5] オクタブロモジフェニルエーテル類									0.5	4	4
	[14-6] ノナブロモジフェニルエーテル類									4	9	9
	[14-7] デカブロモジフェニルエーテル									20	80	20
	ペルフルオロオクタンスルホン酸(PFOS)									3.7	2	2
	ペルフルオロオクタン酸 (PFOA)									3.3	5	2
	ペンタクロロベンゼンエンドスルファン類							33			0.3	2
	エンドスルファン類 [18-1] α-エンドスルファン											10
	$[18-1]\alpha$ - ± 2 β - ± 2											4
	1,2,5,6,9,10-ヘキサブロモシクロドデカン類											<u> </u>
	[19-1] α-1,2,5,6,9,10-ヘキサブロモシクロド											200
	デカン											280
	[19-2] β-1,2,5,6,9,10-ヘキサブロモシクロド								<u></u>			170
F1.03	デカン									-		1/0
[19]	[19-3] γ-1,2,5,6,9,10-ヘキサブロモシクロド デカン											260
	アカフ [19-4] δ-1,2,5,6,9,10-ヘキサプロモシクロド											
	[19-4] 0-1,2,3,0,9,10-11											250
	[19-5] ε-1,2,5,6,9,10-ヘキサブロモシクロド			İ					İ	İ		1 210
	デカン											210
	<i>N,N-</i> ジメチルホルムアミド								L			2,600
(注1	1)平成13年度の検出下限値は「統一検出限り	其値 . (PCR粗	の「非音		成化学数	加哲法边	宇能泊品	坑钿杏 .	I+MDI) TIE	世14年中

⁽注1)平成13年度の検出下限値は「統一検出限界値」(PCB類の「非意図的生成化学物質汚染実態追跡調査」はMDL)、平成14年度の検出下限値はIDL、平成15年度以降の検出下限値はMDLである。

⁽注2)「---」は比較対象なしを意味する。

表6-3 平成13年度の継続的調査と平成14年度以降のモニタリング調査における検出下限値の比較(生物)

表6-3	3 平成13年度の経統的調直と平成1	┧14年度以降のモニタリング調査における検出下限値の比較(生物) ────────────────────────────────────										
物質	ᆂᄍᅔᆚᄼᆇᇸᄳᇎ					生物	(pg/g-v	vet)				
調査 番号	調査対象物質	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23
田与		10,000	1111	1115	1110	1117	1110	1117	1120	1121	1122	1123
[1]	PCB 類	0.02	0.4	0.69	0.61	0.6	0.6	0.4	0.5	0.5	0.8	0.6
[1]		~ 0.5	~ 1	~ 3.7	~ 6.1	~ 4.9	0.0 ~ 2	~ 3	~ 2	~ 2	0.8 ~ 3	~ 22
[2]	НСВ	1,000	0.06	7.5	4.6	3.8	1	3	3	2	2	1
	アルドリン (参考)	1,000	1.4	0.84	1.3	1.2	2	2	2	0.8		
	ディルドリン	1,000	4	1.6	10	3	3	3	3	2		1
	エンドリン	1,000	6	1.6	4.2	5.5	4	3	3	3		2
	DDT 類 (参考)	-,,,,,,		-,,								
	[6-1] p,p'-DDT (参考)	1,000	1.4	3.5	1.1	1.7	2	2	2	1	1	
	[6-2] p,p'-DDE (参考)	1,000	0.8	1.9	2.7	2.8	0.7	1	1	1	1	
[6]	[6-3] p,p'-DDD (参考)	1,000	1.8	3.3	0.70	0.97	0.9	1	1	0.9	0.5	
	[6-4] o,p'-DDT (参考)	1,000	4	0.97	0.61	0.86	1	1	1	0.8	1	
	[6-5] o,p'-DDE (参考)	1,000	1.2	1.2	0.69	1.1	1	0.9	1	1	0.6	
	[6-6] o,p'-DDD (参考)	1,000	4	2.0	1.9	1.1	1	1	2	1	0.2	
	クロルデン類											
	[7-1] cis-クロルデン	1,000	0.8	1.3	5.8	3.9	1	2	2	2	2	1
[7]	[7-2] trans-クロルデン	1,000	0.8	2.4	16	3.5	2	2	3	1	1	1
	[7-3] オキシクロルデン	1,000	1.2	2.8	3.1	3.1	3	2	2	1	3	11
	[7-4] cis-ノナクロル	1,000	0.4	1.6	1.1	1.5	1	1	1	1	1	0.7
	[7-5] trans- ノナクロル	1,000	0.8	1.2	4.2	2.1	1	3	2	1	2	1
	ヘプタクロル類		1.4	2.2	1.4	2.0	2	2	_	2		1
[8]	[8-1]ヘプタクロル		1.4	2.2	1.4	2.0	2	2	2	2	1	1
	[8-2] <i>cis-</i> ヘプタクロルエポキシド [8-3] <i>trans-</i> ヘプタクロルエポキシド			2.3	3.3	1.2	1 5	1 5	2 4	1 3	0.9	0.8
-	[8-3] trans-ヘノダクロルエホキント トキサフェン類 (参考)			4.4	4.0	7.5	3	3	4	5	1	3
	トキリフェフ頬(参考) [9-1] Parlar-26(参考)			15	14	16	7	4	3	3		
[9]	[9-1] Pariar-20 (参考) [9-2] Parlar-50 (参考)			11	15	18	5	3	4	3		
	[9-3] Parlar-62 (参考)			40	33	34	30	30	30	20		
	マイレックス			0.81	0.82	0.99	1	1	1	0.8		0.8
	HCH 類			1	2.02		-	-	1			
[11]	[11-1] \alpha-HCH	1,000	1.4	0.61	4.3	3.6	1	2	2	2	1	1
	[11-2] β-HCH	1,000	4	3.3	2	0.75	1	3	2	2	1	1
	[11-3] γ-HCH (別名: リンデン)			1.1	10	2.8	2	3	3	3	1	1
	[11-4] δ-HCH			1.3	1.5	1.7	1	2	2	2	1	1
[12]	クロルデコン								2.2		2.3	0.2
[13]	ヘキサブロモビフェニル類									0.087	0.7	1
[13]								-	_	~ 0.13	~ 3	1
	ポリプロモジフェニルエーテル類(臭素数が4から10までのよの)											
	が 4 から 10 までのもの)								2.2		1.0	
	[14-1] テトラブロモジフェニルエーテル類 [14-2] ペンタブロモジフェニルエーテル類								2.2 5.9		16 6	6
	[14-2] ヘンタノロモシノエニルエーテル類 [14-3] ヘキサプロモジフェニルエーテル類								5.9		3	4
	[14-3] ヘイリノロモシフェニルエーナル類 [14-4] ヘプタブロモジフェニルエーテル類								6.7		10	4
	[14-5] オクタブロモジフェニルエーテル類								3.6		4	3
	[14-6] ノナブロモジフェニルエーテル類								13		10	9
	[14-7] デカブロモジフェニルエーテル								74		97	80
[15]	ペルフルオロオクタンスルホン酸 (PFOS)									7.4	9.6	4
[16]	ペルフルオロオクタン酸 (PFOA)									9.9	9.9	14
	ペンタクロロベンゼン							61			0.7	1
	エンドスルファン類											
	[18-1] α-エンドスルファン											20
	[18-2] <i>β</i> -エンドスルファン											4
	1,2,5,6,9,10-ヘキサブロモシクロドデカン類											
	[19-1] α-1,2,5,6,9,10-ヘキサブロモシクロド											70
	デカン											,,,
	[19-2] β-1,2,5,6,9,10-ヘキサブロモシクロド											40
F1 63	デカン			l				l	Į.	Į.	l	
[19]	[19-3] y-1,2,5,6,9,10-ヘキサブロモシクロド											80
	デカン									-		
	[19-4] <i>δ</i> -1,2,5,6,9,10-ヘキサブロモシクロド											60
	デカン											
	[19-5] ε-1,2,5,6,9,10-ヘキサブロモシクロド デカン											60
[20]	テカン N,N-ジメチルホルムアミド											
	N,N-システルホルムアミト) 平成13年度の検出下限値は「統一検出限!											

⁽注1)平成13年度の検出下限値は「統一検出限界値」(PCB類の「非意図的生成化学物質汚染実態追跡調査」はMDL)、平成14年度 以降の検出下限値はMDLである。

⁽注2)「---」は比較対象なしを意味する。

⁽注3) 平成13年度のPCB類(生物)については、「生物モニタリング」と「非意図的生成化学物質汚染実態追跡調査」の二つの調査が行われたため、上段に「生物モニタリング」の検出下限値を、下段に「非意図的生成化学物質汚染実態追跡調査」の検出下限値を記載した。

表6-4 平成13年度の継続的調査と平成14年度以降のモニタリング調査における検出下限値の比較(大気)

表6-4	「ルジー及びが近辺門丘して以上	ド放14年度以降のセ _ー ダリング調査における検出ト限値の比較(大気)										
物質 調査	調査対象物質	1				大気	₹ (pg/m	ı³)				-
番号		H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23
	DCD *5	0.0004	0.005		0.0081	0.005	0.009	0.005	0.01	0.006	0.01	0.008
	PCB 類	~ 5	~ 30	~ 1.1	~ 0.33		~ 0.06	~ 0.03	~ 0.1	~ 0.1	~ 0.9	~ 2.9
	HCB		0.3	0.78	0.37	0.03	0.07	0.03	0.08	0.2	0.7	0.75
[3]	アルドリン (参考)		0.020	0.0077	0.05	0.03	0.05	0.02	0.02	0.02		
	ディルドリン		0.20	0.70	0.11	0.20	0.1	0.07	0.09	0.02		0.14
	エンドリン		0.03	0.014	0.048	0.20	0.10	0.04	0.04	0.04		0.04
	DDT 類 (参考)	1	0.00	0.045	0.074	0.05	0.00	0.02	0.02	0.02	0.02	
	[6-1] p,p'-DDT (参考) [6-2] p,p'-DDE (参考)		0.08	0.046 0.13	0.074 0.039	0.05 0.03	0.06 0.03	0.03 0.02	0.03 0.02	0.03	0.03	
	[6-2] <i>p,p'</i> -DDE(参考) [6-3] <i>p,p'</i> -DDD(参考)		0.03	0.13	0.039	0.03	0.03	0.02	0.02	0.03	0.21	
	[6-3] <i>p,p</i> -DDD (参考) [6-4] <i>o,p'</i> -DDT (参考)		0.006	0.018	0.018	0.03	0.04	0.004	0.009	0.001	0.01	
	[6-5] <i>o,p'</i> -DDE(参考)		0.03	0.0068	0.012	0.03	0.03	0.007	0.01	0.006	0.03	
	[6-6] o,p'-DDD (参考)		0.007	0.014	0.048	0.03	0.03	0.02	0.01	0.01	0.01	
	クロルデン類		·									
	[7-1] cis-クロルデン		0.20	0.17	0.19	0.05	0.04	0.04	0.05	0.06	0.3	0.42
	[7-2] trans-クロルデン		0.20	0.29	0.23	0.1	0.06	0.05	0.06	0.05	0.4	0.53
	[7-3] オキシクロルデン		0.008	0.015	0.042	0.05	0.08	0.02	0.01	0.02	0.01	0.03
	[7-4] <i>cis</i> - ノナクロル		0.010	0.0088	0.024	0.03	0.05	0.01	0.01	0.02	0.04	0.051
	[7-5] <i>trans</i> - ノナクロル		0.10	0.12	0.16	0.04	0.03	0.03	0.03	0.03	0.3	0.35
	ヘプタクロル類 [8-1]ヘプタクロル	'	0.04	0.085	0.079	0.05	0.04	0.03	0.02	0.01	0.04	0.099
	[8-1]ヘノダクロル [8-2] <i>cis</i> -ヘプタクロルエポキシド		0.04	0.085	0.078 0.017	0.05 0.04	0.04 0.04	0.03	0.02 0.008	0.01 0.01	0.04	0.099
	[8-2] cts-ヘノダクロルエホキシト [8-3] trans-ヘプタクロルエポキシド			0.0048	0.017	0.04	0.04	0.01	0.008	0.01	0.01	0.01
	6-3 <i>trans-ハファ</i> クロルエホモンド トキサフェン類(参考)			V.033	0.2	0.03	V.1	0.00	0.00	5.05	5.00	. 0.03
	[9-1] Parlar-26 (参考)			0.066	0.066	0.1	0.6	0.2	0.08	0.09		
	[9-2] Parlar-50 (参考)			0.27	0.4	0.2	0.5	0.1	0.09	0.1		
	[9-3] Parlar-62 (参考)			0.52	0.81	0.4	3	0.6	0.6	0.6		
[10]	マイレックス			0.0028	0.017	0.03	0.04	0.01	0.01	0.006		0.01
	HCH 類		١									
	[11-1] α-HCH			0.24	0.11	0.02	0.03	0.04	0.04	0.05	0.47	0.83
	[11-2] β-HCH			0.063	0.041	0.04	0.06	0.02	0.01	0.03	0.09	0.13
	[11-3] γ-HCH (別名:リンデン)			0.19	0.076	0.04	0.03	0.04	0.03	0.02	0.12	0.52
	[11-4] δ-HCH クロルデコン			0.01	0.05	0.04	0.05	0.02	0.02	0.02	0.02	0.021
	クロルテコン ヘキサプロモビフェニル類										0.02	0.02
	ハキリノロモビフェニル類 ポリプロモジフェニルエーテル類(臭素数)	<u></u>									υ.1	. V.1
	が4から10までのもの)	1	1									
	[14-1] テトラブロモジフェニルエーテル類									0.04	0.05	0.07
	[14-2] ペンタブロモジフェニルエーテル類				ļ ļ					0.06	0.05	0.06
[14]	[14-3] ヘキサブロモジフェニルエーテル類			[[0.09	0.06	0.05
	[14-4] ヘプタブロモジフェニルエーテル類				أ					0.1	0.1	0.1
	[14-5] オクタブロモジフェニルエーテル類									0.1	0.06	0.08
	[14-6] ノナブロモジフェニルエーテル類									0.6	1.2	0.4
	[14-7] デカブロモジフェニルエーテル ペルフルオロオクタンフルホン酸 (PEOS)									5	9.1	4.0
	ペルフルオロオクタンスルホン酸 (PFOS) ペルフルオロオクタン酸 (PFOA)										0.1	0.2
	ベルフルオロオクタン酸(PFOA) ペンタクロロベンゼン							4.8		2.5	0.2	0.70
	エンドスルファン類		<u> </u>		 -		-	т.0		2.3	0.5	<u>. 0.70</u>
	エンドスルファフ 類 [18-1] α-エンドスルファン											4.0
	[18-2] β-エンドスルファン											0.39
	1,2,5,6,9,10-ヘキサブロモシクロドデカン類											
	[19-1] α-1,2,5,6,9,10-ヘキサブロモシクロド				1							Ĭ
	デカン											
	[19-2] β-1,2,5,6,9,10-ヘキサブロモシクロド				أ							
	デカン		1									
	[19-3] γ-1,2,5,6,9,10-ヘキサブロモシクロド											
	デカン	1	1	1	1		!	!	!		ļ.	1
	[19-4] δ-1,2,5,6,9,10-ヘキサブロモシクロド デカン											
	デカン [19-5] ε-1,2,5,6,9,10-ヘキサブロモシクロド	1	١ ,									
	デカン											
[20]	<i>N,N</i> -ジメチルホルムアミド											3,900
) 平成13年度の検出下限値は「統一検出限界	9.値. (DCD粘化	ひし非母	: W 1/4 /- C	北小兰州	11年许沙。	立能' 占 B	10000000000000000000000000000000000000			,,,,,,, 成14年度

⁽注1)平成13年度の検出下限値は「統一検出限界値」(PCB類の「非意図的生成化学物質汚染実態追跡調査」はMDL)、平成14年度 以降の検出下限値はMDLである。

⁽注2)「---」は比較対象なしを意味する。

表 7-1 平成 14 年度以降のモニタリング調査における定量下限値の比較 (水質)

物質	1 十成 14 千度以降の ヒニテラクラ	<u> </u>	. 05 17 0	~ <u>_</u>	TKIE	水質(
調査番号	調査対象物質	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23
		0.18	0.3	0.4	0.28	0.3	0.4	0.4	0.4	0.23	0.3
[1]	PCB 類	~ 0.9	~ 6	~ 10	~ 7	~ 2.0	~ 1.5	~ 1.4	~ 4	~ 24	~ 0.8
	HCB	0.6	5	30	15	16	8	3	0.5	13	5
[3]	アルドリン (参考) ディルドリン	0.6 1.8	0.6 0.7	2 2	0.9 1.0	1.7	1.0 2.1	1.4 1.5	0.7 0.6		1.6
[4] [5]	エンドリン	6.0	0.7	2	1.0	1.3	1.9	3	0.6		1.6
[2]	DDT 類 (参考)	0.0	0.7		1.1	1.5	1.2		0.7		1.0
	[6-1] p,p'-DDT (参考)	0.6	3	6	4	1.9	1.7	1.2	0.15	2.4	<u> </u>
	[6-2] p,p'-DDE (参考)	0.6	4	8	6	7	4	1.1	1.1	2.3	
[6]	[6-3] <i>p,p'</i> -DDD (参考) [6-4] <i>o,p'</i> -DDT (参考)	0.24 1.2	2 3	3 5	1.9 3	1.6 2.3	1.7 2.5	0.6 1.4	0.4 0.16	0.20 1.5	
	[6-5] <i>o,p'</i> -DDE(参考)	0.9	0.8	2	1.2	2.6	2.3	0.7	0.10	0.24	
	[6-6] <i>o,p'</i> -DDD (参考)	0.60	0.8	2	1.2	0.8	0.8	0.8	0.22	0.6	
	クロルデン類		•			_					
	[7-1] cis-クロルデン	0.9	3	6	4	5	4	1.6	1.1	11	1.4
[7]	[7-2] <i>trans</i> -クロルデン [7-3] オキシクロルデン	1.5 1.2	5 2	5 2	4 1.1	7 2.8	2.4 6	3 1.9	0.8 1.1	13 0.7	1.0
	[7-4] cis-ノナクロル	1.8	0.3	0.6	0.5	0.8	2.4	0.9	0.3	1.3	0.6
	[7-5] trans-ノナクロル	1.2	2	4	2.5	3.0	5	1.6	1.0	8	1.3
	ヘプタクロル類	1.5					~ .	2.1	0.0		
[8]	[8-1]ヘプタクロル [8-2] <i>cis-</i> ヘプタクロルエポキシド	1.5	2 0.7	5 2	3 0.7	5 2.0	2.4 1.3	2.1 0.6	0.8 0.5	2.2 0.4	1.3 0.7
	[8-2] crs-ヘノダクロルエホキシト [8-3] trans-ヘプタクロルエポキシド		2	0.9	0.7	1.8	2.0	1.9	0.3	1.3	0.7
	トキサフェン類(参考)			0.5	0.7	1.0	2.0	1.7	0.,	1.5	0.0
[9]	[9-1] Parlar-26 (参考)		40	9	10	16	20	8	5		
[2]	[9-2] Parlar-50 (参考)		70	20	20	16	9	7	7		
[10]	[9-3] Parlar-62 (参考) マイレックス		300 0.3	90	70	1.6	70 1.1	40 0.6	40 0.4		0.5
	HCH 類		0.5	0.4	0.4	1.0	1.1	0.0	0.4		0.5
	[11-1] α-HCH	0.9	3	6	4	3	1.9	4	1.2	4	7
[11]	[11-2] β-HCH	0.9	3	4	2.6	1.7	2.7	1.0	0.6	2.0	2.0
	[11-3] γ-HCH(別名:リンデン)		7	20	14	18	2.1	3	0.6	6	3
[12]	[11-4] δ-HCH クロルデコン		2	2	1.5	2.0	1.2	2.3 0.14	0.9	0.8	0.4
	<u>・ニハ・ニン</u> ヘキサブロモビフェニル類								0.51	3	2.2
[13]									~ 2.1	3	2.2
	ポリプロモジフェニルエーテル類(臭素数が 4 から 10 までのもの)										
	[14-1] テトラブロモジフェニルエーテル類								8	9	4
F1.43	[14-2] ペンタブロモジフェニルエーテル類								11	3	3
	[14-3] ヘキサブロモジフェニルエーテル類 [14-4] ヘプタブロモジフェニルエーテル類								1.4 4	4 3	3
	[14-5] オクタプロモジフェニルエーテル類								1.4	3	2
	[14-6] ノナブロモジフェニルエーテル類								91	21	10
[1/7]	[14-7] デカブロモジフェニルエーテル								600	300	60
	ペルフルオロオクタンスルホン酸 (PFOS) ペルフルオロオクタン酸 (PFOA)								37 59	50 60	50
	ペンタクロロベンゼン						3,300			4	2.4
	エンドスルファン類				,)
[18]	[18-1] α-エンドスルファン										120
	[18-2] β-エンドスルファン 1,2,5,6,9,10-ヘキサブロモシクロドデカン類										22
	「1,2,5,6,9,10-ヘキリプロモジグロトデカプ類 [19-1] α-1,2,5,6,9,10-ヘキサプロモシクロド										
	デカン										1,500
	[19-2] β-1,2,5,6,9,10-ヘキサブロモシクロド デカン										1,300
[19]	[19-3] γ-1,2,5,6,9,10-ヘキサブロモシクロド デカン										1,200
	「19-4] δ-1,2,5,6,9,10-ヘキサプロモシクロド デカン										790
	[19-5] ε-1,2,5,6,9,10-ヘキサプロモシクロド					<u></u>					740
[20]	デカン <i>N</i> , <i>N</i> -ジメチルホルムアミド										63,000
	N,N-ファアルホルムデミド 1) 平成14年度の定量下限値はIDLの3倍、平J					: 阳估(+):/()			 年度以降		

⁽注1) 平成14年度の定量下限値はIDLの3倍、平成15年度から平成17年度の定量下限値はMDLの3倍、平成18年度以降の定量下限値は MDL測定時に得られた標準偏差の10倍である。

⁽注2)「---」は比較対象なしを意味する。

表 7-2 平成 14 年度以降のモニタリング調査における定量下限値の比較(底質)

物質	2 十成14 千皮以降のヒニノリノノ					底質(pg					
調査	調査対象物質	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23
番号		0.21	0.4	0.2	0.16		0.3	0.13 ~	0.3	0.8	0.3
[1]	PCB 類	0.21 ~ 1.5	0.4 ~6	0.2 ~ 2	0.16 ~ 1.8	0.16 ~ 0.7	0.3 ~ 1.0	0.13 ~	0.3 ~ 0.9	0.8 ~ 180	0.3 ~ 3
[2]	НСВ	0.9	4	7	3	2.9	5	2.0	1.8	3	7
[3]	アルドリン (参考)	6	2	2	1.4	1.9	1.8	3	0.5		
	ディルドリン	3	4	3	3	2.9	2.7	1.2	0.8		5
[5]	エンドリン DDT 類 (参考)	6	5	3	2.6	4	5	1.9	1.6		1.1
	[6-1] <i>p,p'</i> -DDT (参考)	6	2	2	1.0	1.4	1.3	1.2	1.0	2.8	
	[6-2] p,p'-DDE (参考)	2.7	0.9	3	2.7	1.0	1.1	1.7	0.8	5	
[6]	[6-3] p,p'-DDD (参考)	2.4	0.9	2	1.7	0.7	1.0	1.0	0.4	1.4	
	[6-4] <i>o,p'</i> -DDT (参考)	6	0.8	2	0.8	1.2	1.8 1.2	1.5	1.2	1.1 1.2	
	[6-5] <i>o,p'</i> -DDE (参考) [6-6] <i>o,p'</i> -DDD (参考)	3	0.6	3 2	2.6 1.0	1.1 0.5	1.2	1.4	0.6	0.9	
	クロルデン類	0			1.0	0.5	1.0	0.5	0.3	0.7	
	[7-1] <i>cis-</i> クロルデン	0.9	4	4	1.9	2.4	5	2.4	0.7	6	1.1
[7]	[7-2] trans-クロルデン	1.8	4	3	2.3	1.1	2.2	2.0	1.7	11	1.3
[,]	[7-3] オキシクロルデン	1.5 2.1	1	3 2	2.0	2.9	2.5	3	1.0	1.0 0.9	2.2
	[7-4] <i>cis-</i> ノナクロル [7-5] <i>trans-</i> ノナクロル	1.5	3 2	2	1.9 1.5	1.2 1.2	1.6 1.7	0.6 2.2	0.9	6	1.1 0.8
	ヘプタクロル類	1.5	<u> </u>		1.5	1,2	1./		· · · · ·		0.0
[8]	[8-1]ヘプタクロル	1.8	3	3	2.5	1.9	3.0	4	1.1	1.1	1.8
[o]	[8-2] cis-ヘプタクロルエポキシド		3	6	7	3.0	3	2	0.7	0.8	0.6
	[8-3] <i>trans</i> -ヘプタクロルエポキシド トキサフェン類 (参考)		9	4	5	7	10	1.7	1.4	3	2.3
	トキリフェフ頬(参考) [9-1] Parlar-26(参考)		90	60	60	12	7	12	10		
	[9-2] Parlar-50 (参考)		200	60	90	24	30	17	12		
	[9-3] Parlar-62 (参考)		4,000	2,000	2,000	210	300	90	80		
[10]	マイレックス		2	2	0.9	0.6	0.9	0.7	1.0		0.9
	HCH 類 [11-1] α-HCH	1.2	2	2	1.7	5	1.8	1.6	1.1	2.0	1.5
[11]	[11-1] α-HCH [11-2] β-HCH	0.9	2	3	2.6	1.3	0.9	0.8	1.1	2.4	3
[11]	[11-3] γ-HCH (別名:リンデン)		2	2	2.0	2.1	1.2	0.9	0.6	2.0	3
	[11-4] δ-HCH		2	2	1.0	1.7	5	2	1.2	1.2	1.4
[12]	クロルデコン							0.42		0.4	0.40
[13]	ヘキサブロモビフェニル類								0.11 ~ 0.38	1.5	3.6
	ポリブロモジフェニルエーテル類 (臭素数が4から10までのもの)										
	[14-1] テトラブロモジフェニルエーテル類								69	6	30
	[14-2] ペンタブロモジフェニルエーテル類								24	5	5
	[14-3] ヘキサブロモジフェニルエーテル類								5	4	9
	[14-4] ヘプタブロモジフェニルエーテル類 [14-5] オクタブロモジフェニルエーテル類								9	4 10	7 10
	[14-5] オッププロピンプェニルエーテル類								9	24	23
	[14-7] デカブロモジフェニルエーテル								60	220	40
	ペルフルオロオクタンスルホン酸 (PFOS)								9.6	5	5
_	ペルフルオロオクタン酸 (PFOA)						9.6		8.3	12	5
[17]	ペンタクロロベンゼン エンドスルファン類						86			0.9	5
[18]	[18-1] α-エンドスルファン										30
3	[18-2] β-エンドスルファン										9
	1,2,5,6,9,10-ヘキサプロモシクロドデカン類										
	[19-1] α-1,2,5,6,9,10-ヘキサブロモシクロド デカン										280
	[19-2] β-1,2,5,6,9,10-ヘキサブロモシクロド デカン										170
[19]	[19-3] γ-1,2,5,6,9,10-ヘキサブロモシクロド デカン										260
	[19-4] δ-1,2,5,6,9,10-ヘキサプロモシクロド デカン										250
	[19-5] ε-1,2,5,6,9,10-ヘキサプロモシクロド デカン										210
	N,N-ジメチルホルムアミド										2,600
(注:	l)平成14年度の定量下限値はIDLの3倍、平成	式15年度	から可は	17年度4	ノ中昌工	旧估けれ	エの2位	च ⊏ 10	年度以降	の字具	[7日/古]十

⁽注1) 平成14年度の定量下限値はIDLの3倍、平成15年度から平成17年度の定量下限値はMDLの3倍、平成18年度以降の定量下限値は MDL測定時に得られた標準偏差の10倍である。

⁽注2)「---」は比較対象なしを意味する。

表 7-3 平成 14 年度以降のモニタリング調査における定量下限値の比較(生物)

物質	ラート版 14 千度以降の ピープラブブ					生物(pg					
調査	調査対象物質	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23
番号		1.2	2.1	2.1	1.8	1.7	1.1	1.3	1.2	2.0	1.5
[1]	PCB 類	~ 3	~ 11	~ 18	~ 15	~ 6	~ 8	~ 7	~ 6	~ 8	~ 66
[2]	HCB	0.18	23	14	11	3	7	7	4	5	4
[3]	アルドリン (参考)	4.2	2.5	4.0	3.5	4	5	5	2.1		
[4] [5]	ディルドリン エンドリン	12 18	4.8 4.8	31 12	9 17	7 11	9	9 8	7		3
[2]	DDT 類 (参考)	10	4.0	12	17	11	9	. 0	/		4
	[6-1] p,p'-DDT (参考)	4.2	11	3.2	5.1	6	5	5	3	3	
	[6-2] p,p'-DDE (参考)	2.4	5.7	8.2	8.5	1.9	3	3	4	3	
[6]	[6-3] p,p'-DDD (参考) [6-4] o,p'-DDT (参考)	5.4 12	9.9 2.9	2.2 1.8	2.9 2.6	2.4 3	3	3	2.4 2.2	1.3	
	[6-5] <i>o,p'</i> -DDE (参考)	3.6	3.6	2.1	3.4	3	2.3	3	3	1.5	
	[6-6] <i>o,p'</i> -DDD (参考)	12	6	5.7	3.3	4	3	4	3	0.6	
	クロルデン類						_	_			_
	[7-1] <i>cis-</i> クロルデン [7-2] <i>trans-</i> クロルデン	2.4 2.4	3.9 7.2	18 48	12 10	4 4	5 6	5 7	4	4	3 4
[7]	[7-2] かわらう ロルテン	3.6	8.4	9.2	9.3	7	6	7	4	8	3
	[7-4] <i>cis</i> -ノナクロル	1.2	4.8	3.4	4.5	3	3	4	3	3	1.8
	[7-5] trans-ノナクロル	2.4	3.6	13	6.2	3	7	6	3	4	3
	ヘプタクロル類 [8-1]ヘプタクロル	4.2	6.6	4.1	6.1	6	6	6	5	3	3
[8]	[8-1]ヘフタクロル [8-2] cis-ヘプタクロルエポキシド	4.2	6.9	4.1 9.9	3.5	4	4	6 5	3	3 2.4	2.0
	[8-3] <i>trans</i> -ヘプタクロルエポキシド		13	12	23	13	13	10	8	3	7
	トキサフェン類(参考)										
[9]	[9-1] Parlar-26 (参考) [9-2] Parlar-50 (参考)		45	42 46	47	18 14	10 9	9	7 8		
	[9-2] Parlar-30 (参考) [9-3] Parlar-62 (参考)		33 120	46 98	54 100	70	70	10 80	70		
[10]	マイレックス		2.4	2.5	3.0	3	3	4	2.1		1.9
	HCH 類										
F1 13	[11-1] α-HCH	4.2	1.8	13	11	3	7	6	5	3	3
[11]	[11-2] β-HCH [11-3] γ-HCH (別名:リンデン)	12	9.9 3.3	6.1 31	2.2 8.4	3 4	7 9	6	6 7	3	3
	[11-4] δ-HCH		3.9	4.6	5.1	3	4	6	5	3	3
[12]	クロルデコン							5.6		5.9	0.5
[13]	ヘキサブロモビフェニル類								0.26 ~ 0.38	1.9 ~ 8	3
	ポリプロモジフェニルエーテル類(臭素数										
	が 4 から 10 までのもの) [14-1] テトラブロモジフェニルエーテル類		,					5.9		43	16
	[14-2] ペンタブロモジフェニルエーテル類							16		14	15
[14]	[14-3] ヘキサブロモジフェニルエーテル類							14		8	10
	[14-4] ヘプタブロモジフェニルエーテル類							18		30	11
	[14-5] オクタブロモジフェニルエーテル類							9.6		11	7
	[14-6] ノナブロモジフェニルエーテル類 [14-7] デカブロモジフェニルエーテル							35 220		30 270	22 230
[15]	ペルフルオロオクタンスルホン酸 (PFOS)								19	25	10
[16]	ペルフルオロオクタン酸 (PFOA)								25	26	41
[17]	ペンタクロロベンゼン						180			1.9	4
[107	エンドスルファン類 [18-1] α-エンドスルファン										50
[10]	$[18-1]\alpha$ -エンドスルファン $[18-2]\beta$ -エンドスルファン										11
	1,2,5,6,9,10-ヘキサブロモシクロドデカン類										
	[19-1] α-1,2,5,6,9,10-ヘキサプロモシクロド デカン										170
	[19-2] β-1,2,5,6,9,10-ヘキサブロモシクロド										98
[19]	デカン [19-3] y-1,2,5,6,9,10-ヘキサプロモシクロド デカン										210
	[19-4] δ-1,2,5,6,9,10-ヘキサプロモシクロド										140
	デカン [19-5] ε-1,2,5,6,9,10-ヘキサプロモシクロド										
F207	デカン										140
	<i>N,N-</i> ジメチルホルムアミド) 平成14年度の定量下限値はIDLの3倍、その								l		

⁽注1)平成14年度の定量下限値はIDLの3倍、その他の定量下限値はMDLの約3倍である。 (注2)「---」は比較対象なしを意味する。

表 7-4 平成 14 年度以降のモニタリング調査における定量下限値の比較 (大気)

物質	4 一十成14 千皮以降のヒニノリンノ					大気()					
調査	調査対象物質	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23
番号		0.015	0.013	0.024	0.01	0.026	0.012	0.03	0.016	0.03	0.022
[1]	PCB 類	~ 90	~ 3.2	~ 0.99	~ 0.07	~ 0.18	~ 0.07	~ 0.3	~ 0.3	~ 2.6	~ 8.7
	НСВ	0.9	2.3	1.1	0.1	0.21	0.09	0.22	0.6	1.8	2.3
[3]	アルドリン (参考)	0.060	0.023	0.15	0.08	0.14	0.05	0.04	0.04		
[4] [5]	ディルドリン エンドリン	0.60	2.1 0.042	0.33	0.5	0.3	0.18	0.24	0.06		0.42
	DDT 類 (参考)	0.090	0.042	0.14	0.5	0.50	0.09	0.10	0.09		0.03
	[6-1] p,p'-DDT (参考)	0.24	0.14	0.22	0.16	0.17	0.03	0.07	0.07	0.10	
	[6-2] p,p'-DDE (参考)	0.09	0.40	0.12	0.1	0.10	0.04	0.04	0.08	0.62	
[6]	[6-3] p,p'-DDD (参考) [6-4] o,p'-DDT (参考)	0.018 0.15	0.054 0.12	0.053 0.093	0.16 0.10	0.13 0.09	0.011 0.03	0.025 0.03	0.03 0.019	0.02 0.14	
	[6-4] <i>o,p</i> -DDI(参号) [6-5] <i>o,p</i> -DDE(参考)	0.13	0.12	0.093	0.10	0.09	0.03	0.03	0.019	0.14	
	[6-6] <i>o,p'</i> -DDD (参考)	0.021	0.042	0.14	0.10	0.10	0.024	0.04	0.03	0.03	
	クロルデン類										
	[7-1] cis-クロルデン	0.60	0.51	0.57	0.16	0.13	0.1	0.14	0.16	0.9	1.3
[7]	[7-2] <i>trans-</i> クロルデン [7-3] オキシクロルデン	0.60 0.024	0.86 0.045	0.69 0.13	0.3 0.16	0.17 0.23	0.12 0.1	0.17 0.04	0.12 0.04	1.2 0.03	1.6 0.07
	[7-4] cis-ノナクロル	0.024	0.043	0.13	0.10	0.23	0.03	0.04	0.04	0.03	0.07
	[7-5] trans-ノナクロル	0.30	0.35	0.48	0.13	0.10	0.09	0.09	0.07	0.8	1.1
	ヘプタクロル類										
[8]	[8-1]ヘプタクロル [8-2] <i>cis</i> -ヘプタクロルエポキシド	0.12	0.25 0.015	0.23 0.052	0.16 0.12	0.11 0.11	0.03 0.03	0.06 0.022	0.04 0.03	0.11 0.02	0.30 0.04
	[8-2] cis-ヘノタクロルエポキシド [8-3] trans-ヘプタクロルエポキシド		0.015	0.052	0.12	0.11	0.03	0.022	0.03	0.02	0.04
	トキサフェン類(参考)		0.077	0.0	0.10	0.5	0.11	0.10	0.11	0.10	0.15
[9]	[9-1] Parlar-26 (参考)		0.20	0.2	0.3	1.8	0.6	0.22	0.23		
[7]	[9-2] Parlar-50 (参考)		0.81	1.2	0.6	1.6	0.3	0.25	0.3		
[10]	[9-3] Parlar-62 (参考) マイレックス		1.6 0.0084	0.05	0.10	0.13	0.03	0.03	1.6 0.015		0.04
[10]	HCH 類		0.0064	0.03	0.10	0.13	0.03	0.03	0.013		0.04
	[11-1] α-HCH		0.71	0.33	0.07	0.08	0.08	0.10	0.12	1.4	2.5
[11]	[11-2] β-HCH		0.19	0.12	0.12	0.17	0.06	0.04	0.09	0.27	0.39
	[11-3] γ-HCH (別名: リンデン)		0.57	0.23	0.13	0.08	0.05	0.07	0.06	0.35	1.6
	[11-4] δ-HCH クロルデコン		0.03	0.15	0.13	0.14	0.05	0.04	0.04	0.05	0.063
[13]	<u> </u>									0.04	0.04
[]	ポリブロモジフェニルエーテル類(臭素数										V.0
	が4から10までのもの)										
	[14-1] テトラブロモジフェニルエーテル類								0.11	0.12	0.18
E1 43	[14-2] ペンタブロモジフェニルエーテル類 [14-3] ヘキサブロモジフェニルエーテル類								0.16	0.12 0.16	0.16
[14]	[14-3] ヘイリノロモシフェニルエーナル類 [14-4] ヘプタブロモジフェニルエーテル類								0.22	0.16	0.14
	[14-5] オクタブロモジフェニルエーテル類								0.3	0.15	0.20
	[14-6] ノナブロモジフェニルエーテル類		ļ i						1.8	3.7	0.9
	[14-7] デカブロモジフェニルエーテル								16	27	12
	ペルフルオロオクタンスルホン酸 (PFOS)									0.4	0.5
	ペルフルオロオクタン酸(PFOA) ペンタクロロベンゼン						12		6.4	0.5 1.2	5.4
[1/]	エンドスルファン類						12		0.4	1.2	2.1
[18]	[18-1] α-エンドスルファン										12
	[18-2] <i>β</i> -エンドスルファン										1.2
	1,2,5,6,9,10-ヘキサブロモシクロドデカン類										
	[19-1] α-1,2,5,6,9,10-ヘキサブロモシクロド デカン										
	デカン [19-2] <i>β</i> -1,2,5,6,9,10-ヘキサプロモシクロド										
	デカン										
[19]	[19-3] γ-1,2,5,6,9,10-ヘキサブロモシクロド										
_	デカン										
	[19-4] <i>δ</i> -1,2,5,6,9,10-ヘキサブロモシクロド										
	デカン [19-5] ε-1,2,5,6,9,10-ヘキサブロモシクロド		Ī								Ī
	[19-3] ɛ-1,∠,3,6,9,10-ヘキリノロモシクロト デカン										
[20]	N,N-ジメチルホルムアミド										9,600
)平成14年度の定量下限値はIDLの3倍、そ	の他の宝	- 単て阳は	I+MDI	ひめつ位フ	3 to 2					

⁽注1)平成14年度の定量下限値はIDLの3倍、その他の定量下限値はMDLの約3倍である。 (注2)「---」は比較対象なしを意味する。

表8 平成13年度以前の継続的調査と平成14年度以降のモニタリング調査の継続調査地点における検出頻度 の比較

物質	調査対象物質						水質					
調査 番号	神	H10	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23
[1]	PCB 類	10/10	14/14	14/14	15/15	15/15	15/15	15/15	15/15	15/15	13/15	15/15
[2]	НСВ	0/15	14/14	14/14	15/15	15/15	15/15	15/15	15/15	15/15	12/15	15/15
[4]	ディルドリン	0/15	14/14	14/14	15/15	15/15	15/15	15/15	15/15	15/15		15/15
[6]	DDT 類(参考)											
	[6-1] p,p'-DDT (参考)	0/15	14/14	14/14	15/15	15/15	15/15	15/15	15/15	15/15	15/15	
	[6-2] p,p'-DDE (参考)	0/15	14/14	14/14	15/15	15/15	15/15	15/15	15/15	15/15	15/15	
	[6-3] p,p'-DDD (参考)	0/15	14/14	14/14	15/15	15/15	15/15	15/15	15/15	15/15	15/15	
[7]	クロルデン類											
	[7-1] cis-クロルデン	0/15	14/14	14/14	15/15	15/15	15/15	15/15	15/15	15/15	14/15	15/15
	[7-2] trans-クロルデン	0/15	14/14	14/14	15/15	15/15	15/15	15/15	15/15	15/15	13/15	15/15
	[7-4] cis-ノナクロル	0/15	14/14	14/14	15/15	15/15	15/15	15/15	15/15	15/15	15/15	15/15
	[7-5] trans-ノナクロル	0/15	14/14	14/14	15/15	15/15	15/15	15/15	15/15	15/15	13/15	15/15
[11]	HCH 類									_		
	[11-1] α-HCH	0/15	14/14	14/14	15/15	15/15	15/15	15/15	15/15	15/15	15/15	15/15
	[11-2] β-HCH	0/15	14/14	14/14	15/15	15/15	15/15	15/15	15/15	15/15	15/15	15/15

物質 調査	調査対象物質						底質					
酮且 番号	神里对象彻 莫	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23
[1]	PCB 類	24/24	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	15/17	17/17
[2]	HCB	3/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17
[4]	ディルドリン	1/17	17/17	17/17	17/17	17/17	17/17	16/17	17/17	17/17		17/17
[6]	DDT 類 (参考)											
	[6-1] p,p'-DDT (参考)	2/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	
	[6-2] p,p'-DDE (参考)	7/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	
	[6-3] p,p'-DDD (参考)	5/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	
[7]	クロルデン類											
	[7-1] cis-クロルデン	3/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17
	[7-2] trans-クロルデン	5/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17
	[7-4] cis-ノナクロル	3/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17
	[7-5] trans-ノナクロル	4/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17
[11]	HCH 類											
	[11-1] α-HCH	1/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17
	[11-2] <i>β</i> -HCH	3/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17	17/17

物質	四本社会地际						生物					
調査 番号	調査対象物質	H12	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23
[1]	PCB 類	3/3	16/16	16/16	16/16	17/17	17/17	17/17	17/17	17/17	16/16	12/12
[2]	НСВ	3/17	16/16	16/16	16/16	17/17	17/17	17/17	17/17	17/17	16/16	12/12
[4]	ディルドリン	4/17	16/16	16/16	16/16	17/17	17/17	17/17	17/17	17/17		12/12
[6]	DDT 類 (参考)											
	[6-1] p,p'-DDT (参考)	3/17	16/16	16/16	16/16	17/17	17/17	17/17	17/17	17/17	15/16	
	[6-2] p,p'-DDE (参考)	12/17	16/16	16/16	16/16	17/17	17/17	17/17	17/17	17/17	16/16	
	[6-3] p,p'-DDD (参考)	6/17	16/16	16/16	16/16	17/17	17/17	17/17	17/17	17/17	16/16	
	[6-4] o,p'-DDT (参考)	1/17	16/16	16/16	16/16	17/17	17/17	17/17	17/17	17/17	14/16	
	[6-5] o,p'-DDE (参考)	1/17	16/16	16/16	15/16	17/17	17/17	17/17	16/17	17/17	15/16	
	[6-6] o,p'-DDD (参考)	2/17	16/16	16/16	16/16	17/17	17/17	17/17	16/17	17/17	16/16	
[7]	クロルデン類											
	[7-1] cis-クロルデン	7/17	16/16	16/16	16/16	17/17	17/17	17/17	17/17	17/17	16/16	12/12
	[7-2] trans-クロルデン	5/17	16/16	16/16	15/16	17/17	17/17	17/17	17/17	17/17	16/16	12/12
	[7-3] オキシクロルデン	3/17	16/16	16/16	16/16	17/17	17/17	17/17	17/17	17/17	16/16	12/12
	[7-4] <i>cis-</i> ノナクロル	4/17	16/16	16/16	16/16	17/17	17/17	17/17	17/17	17/17	16/16	12/12
	[7-5] trans-ノナクロル	9/17	16/16	16/16	16/16	17/17	17/17	17/17	17/17	17/17	16/16	
[11]	HCH 類		_									
	[11-1] α-HCH	1/17	16/16	16/16	16/16	17/17	17/17	17/17	17/17	17/17	16/16	12/12
	[11-2] β-HCH	4/17	16/16	16/16	16/16	17/17	17/17	17/17	17/17	17/17	16/16	12/12

物質 調査	調査対象物質						大気					
番号	神	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22	H23
[1]	PCB 類	10/10	10/10	10/10	10/10	10/10	10/10	8/8	9/9	10/10	10/10	10/10

- (注1)「---」は平成13年度以前からの継続調査地点なし又は調査対象外であることを意味する。
- (注2)水質については、平成11年度から平成13年度に継続的調査が行われなかったため、平成10年度の値と比較することとした。
- (注3)生物については、平成13年度に継続調査地点の一つが調査されていないため、平成12年度調査の値と比較することとした。 (注4)平成13年度以前から調査が実施されており、比較可能な調査対象物質についてのみ記載した。
- (注5)継続調査地点における検出頻度の比較ができない調査対象物質については記載しなかった。
- (注6)継続地点とは、表5-1から表5-4に示した地点のうち調査実施状況の欄を──で強調した地点を意味する。

(4)まとめ

(1)~(3)の検討結果より、調査結果の評価を行うに当たっては以下の点を考慮する必要がある。

· PCB類

平成13年度以前に実施してきたPCB類の継続的調査としては、水質、底質及び大気については「非意図的生成化学物質汚染実態追跡調査」、生物(貝類、魚類及び鳥類)については「生物モニタリング」が該当する。これらの調査におけるPCB類の調査実績は、水質及び大気は平成12年度及び平成13年度の2年間、底質は平成8年度、平成9年度、平成12年度及び平成13年度の4年間、生物は昭和53年度から平成13年度までの24年間である。したがって、生物については経年推移を評価するのに十分な期間にわたっての調査が実施されているといえる。

PCB類の調査地点については、水質及び底質の平成14年度以降の調査地点は平成13年度以前の調査地点を一部引き継いでいるものの、少なくない地点が入れ替わっている。このため、これらの媒体では平成14年度以降と平成13年度以前の残留状況の傾向を経年的に評価する場合には考慮を要する。生物では平成13年度以前の調査地点・生物種の多くが平成14年度以降にも引き継がれたが、平成14年度に2地点・生物種(釧路沖のオオサガ及び祝言島地先のスズキ)減り、平成15年度に1地点・生物種(三浦半島のムラサキイガイ)減ったものの、平成17年度に1地点・生物種(釧路沖のシロサケ)の調査が、平成20年度にも1地点・生物種(大分川のスズキ)の調査がそれぞれ再開された。経年的に評価する場合には、この点に留意する必要がある。大気の平成14年度以降の調査地点は、水質及び底質と同様、平成13年度以前の調査地点を一部引き継いでいるものの、少なくない地点が入れ替わっている。このため、これらの媒体では平成14年度以降と平成13年度以前の残留状況の傾向を経年的に評価する場合には考慮を要する。また、大気では平成19年度の温暖期及び寒冷期並びに平成20年度の温暖期にそれぞれ3分の1程度の地点で欠測となっており、経年的に評価する場合には、この点に留意する必要がある。

PCB類の検出下限値については、水質、底質、生物(「生物モニタリング」に係るものを除く。)及び大気ともに平成13年度以前の値は、平成14年度以降の値とほぼ同等であるため経年的な評価に当たり支障はない。一方、「生物モニタリング」に係る検出下限値は、平成14年度以降の検出下限値に比べて到底及ぶレベルではなく、検出頻度や幾何平均値(検出下限値未満の値は検出下限値の1/2として計算)により残留状況の傾向を経年的に評価する場合には考慮を要する。また、検出下限値未満の検体が多いことから、中央値、70%値、80%値等で推移を見ることも困難である。

・PCB類以外のPOPs

平成13年度以前に実施してきた継続的調査としては、水質及び底質については、「水質・底質モニタリング」(平成11年度~平成13年度は「底質モニタリング」)、生物(貝類、魚類及び鳥類)については「生物モニタリング」が該当する。大気について継続的調査は実施していなかった。また、ヘプタクロル類については、全媒体において平成13年度以前に継続的調査を実施していない。なお、平成14年度以降においても、大気のHCH類は平成14年度の調査では対象外であった。

PCB類以外のPOPs及びHCH類における平成13年度以前の調査実績として、水質及び底質ではHCB、ディルドリン、p,p'-DDT、p,p'-DDE、p,p'-DDD、cis-クロルデン、trans-クロルデン、cis-ノナクロル、trans-ノナクロル、 α -HCH及び β -HCHについて昭和61年度から平成10年度までの13年間(底質は昭和61年度から平成

13年度までの16年間)モニタリングを実施した。オキシクロルデンについては昭和61年度及び昭和62年度の2年間のみ実施し、その他の物質(アルドリン、エンドリン、o,p'-DDT、o,p'-DDE、o,p'-DDD、 $^{\prime}$ -DDD \text{\text{\$\psi}-\text{\$

以上より、継続的調査を実施していない物質(ヘプタクロル等)及び媒体(大気等)については平成13年度以前からの経年的な残留状況の傾向を判断できないほか、オキシクロルデンの水質及び底質、アルドリン、 γ -HCH(別名:リンデン)及び δ -HCHの生物については、過去の調査実施から間隔が開いたため平成13年度以前からの経年的な残留状況の傾向を評価する場合には考慮を要する。

PCB類以外のPOPs及びHCH類の調査地点については、水質及び底質の平成14年度以降の調査地点は平成13年度以前にはなかったものが大幅に追加されている。このため、これらの媒体では平成14年度以降と平成13年度以前の残留状況の傾向を経年的に評価する場合には考慮を要する。生物ではPCB類と同様、平成13年度以前の調査地点・生物種の多くが平成14年度以降に引き継がれたが平成14年度以降、いくつかの調査地点・生物種に変更があり、経年的に評価する場合には、この点に留意する必要がある。大気ではPCB類と同様、HCBが平成19年度の温暖期及び寒冷期並びに平成20年度の温暖期にそれぞれ3分の1程度の地点で欠測となっており、経年的に評価する場合には、この点に留意する必要がある。

PCB類以外のPOPs及びHCH類の検出下限値については、平成14年度以降の値は平成13年度以前の値と比較して、水質では一万分の一程度に、底質及び生物では一千分の一程度に下がっている。これに伴い検出数が大幅に増えており、検出頻度や幾何平均値(検出下限値未満の値は検出下限値の1/2として計算)により残留状況の傾向を評価する場合には考慮を要する。生物についても、平成13年度以前は検出下限値未満の検体が多く、中央値、70%値、80%値等での推移を見ることも困難である。

モニタリング調査は長期にわたり実施されてきており、その間に調査地点、分析法、生物種等の変更が行われている。そのため、調査開始当初と最近の調査結果をそのまま比較可能な値として扱うことは困難であるが、共通の調査地点及び分析法が同一である期間ごとにみれば継続性をもって評価を行うことができると考えられる。

特に水質のHCB、ディルドリン、p,p'-DDT、p,p'-DDE、p,p'-DDD、cis-クロルデン、trans-クロルデン、t キシクロルデン、cis-ノナクロル、trans-ノナクロル、 α -HCH、 β -HCHについては、平成13年度以前に調査 実績はあるものの、検出下限値が高い (10,000 pg/L) ため検出頻度が低いことに留意が必要である。このため、平成13年度以前のこれらの物質に係る水質の調査結果については、経年変化図は省略することとした。

5.調査結果の概要

モニタリング調査の検出状況一覧を表9-1及び表9-2に、検出下限値一覧を表10に、幾何平均値の経年変化については図7として物質ごとに示した。

また、平成23年度の調査も平成14年度(物質・媒体により平成15年度)から継続的に調査を実施している 地点と概ね同一地点で実施しており、これまでに10年間又は9年間の調査結果の蓄積があることから、10年間 又は9年間を通じた経年的な傾向について統計的な分析を行った。経年分析の結果を表11に示した。

調査結果についての留意事項は以下のとおりである。

・水質

兵庫県においては、[1] PCB類から[11] HCH(ヘキサクロロシクロヘキサン)類、[13]ヘキサブロモビフェニル類、[14] ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)、[17] ペンタクロロベンゼン及びエンドスルファン類の水質で、50L及び250Lの大量採水方式による試料採取が実施されたが、本誌においては250L採水の結果のみ採用した。

・底質

各調査地点とも3試料/地点の採取を行い、[19] 1,2,5,6,9,10-ヘキサブロモシクロドデカン類及び[20] N,N-ジメチルホルムアミドについては3検体/地点の測定を行い、その他の物質については調査地点毎に3試料を等量ずつ混合して1検体/地点として測定した。

・生物

各調査地点とも原則として3試料/地点の採取を行い、[19] 1,2,5,6,9,10-ヘキサブロモシクロドデカン類については3検体/地点の測定を行い、その他の物質については調査地点毎に3試料を等量ずつ混合して1検体/地点として測定した。

・大気

各地点ともに、第1回目を温暖期(平成23年9月5日~平成23年10月7日)調査として、第2回目を寒冷期 (平成23年10月25日~平成23年12月22日)調査として実施した。

香川県では、「香川県高松合同庁舎」の対照地点として「香川県立総合水泳プール(高松市)」において試料採取が実施された。

経年分析の方法は以下の通りである。

平成14年度から(大気の全物質(群)及びその他媒体の一部物質(群)については平成15年度から)の 調査結果に、経年的な傾向が統計学的な有意差をもっているかどうかについて、図6-1に示す手順の分析及 びその分析結果に基づく評価を、以下に示す方法により行った。

なお、水質において、平成14年度は、1調査地点当たり3点で試料を採取し、それぞれを測定している。 一方で、平成15年度以降は、1調査地点当たり1点で採取した試料を測定している。このため、平成14年度 は、各調査地点とも、3検体の結果のうちで平成15年度以降も継続して試料の採取が行われている点におけ る1検体の測定結果のみ経年分析に用いることとした。 底質において、平成21年度以前は、1地点当たり3点で試料を採取し、それぞれを測定している。一方で、 平成22年度以降は、1地点当たり3点で採取した試料を、調査地点毎に等量ずつ混合して1検体/地点として測 定している。このため、平成21年度以前は、調査地点毎に3つの測定結果を算術平均することで得られる値 を経年分析に用いることとした。

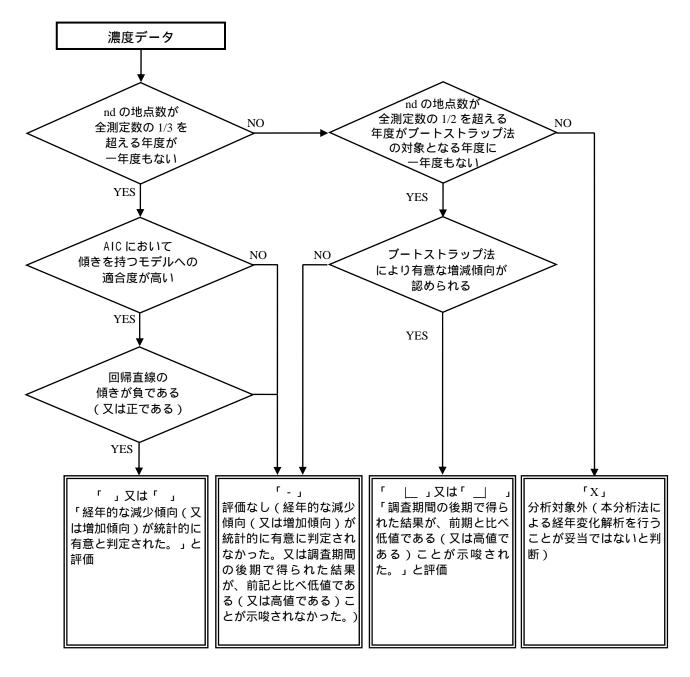
生物において、平成21年度以前は、原則として1地点当たり5試料を調整し、それぞれを測定している。 一方で、平成22年度は原則として1地点当たり5試料を、平成23年度は原則として1地点当たり3試料をそれ ぞれ調整し、調査地点毎に等量ずつ混合して1検体/地点として測定している。このため、平成21年度以前は、 測定地点毎に5つの測定結果を算術平均することで得られる値を経年分析に用いることとした。

また、生物のうち鳥類に関しては、平成22年度の調査から検体数がウミネコとムクドリそれぞれ5検体であったものからそれぞれ1検体のみとなり、ウミネコについては平成23年度の調査が行われなかったため、データ数が少ない中での変更が分析結果に影響を及ぼす恐れがあることから、経年分析の対象外とした。

継続的に調査を行っている地点(複数年度で欠測が生じていない地点)であり、かつ調査の最新年度である平成23年度に調査が行われている地点での調査結果において、いずれかの年度の調査結果に検出下限値未満(nd)が検体の1/3以上存在する場合では、濃度の最多頻度が検出下限値未満(nd)となる場合があることから、検出下限値未満(nd)が検体の1/3を超える年度がない調査結果について、経年分析を行うこととした。

経年分析は、年度と対数濃度との回帰直線(対数線形回帰モデル)を作成し、その回帰直線の傾きから増減傾向を判断することとした。回帰直線を作成する際には、測定結果の残差分布に従って各測定値の尤度の総積を最大とする方法(最尤法)を利用して直線を選択した。なお、残差分布に複数のピークが存在する場合、又は各地点の減少傾向と平成14年度(又は平成15年度)の濃度に関連性があると示唆された場合には、地点を高濃度群及び低濃度群の2群に分け経年分析を行い、全体の傾向と矛盾が生じないか別途検討した。また、地点毎の検体数が異なる場合には、地点毎のデータの重みが等価となるよう重み付けを行った。

さらに、回帰直線「経年変化のあるモデル」のAIC(赤池情報量規準) を求め、傾きを0とした回帰直線「経年変化のないモデル」のAICと比較し、モデルの適合度を評価した。


において適合と判断したものについて、 で得られた回帰直線の傾きが負である(又は正である)場合に、「減少傾向(又は増加傾向)が統計的に有意と判定された。」と評価し、表11においては「 」 (又は「 」)と表記した。

検出下限値未満(nd)が検体の1/3以上存在する調査結果においては、 で述べたとおり最尤法による回帰直線での経年変化の分析を行うことは適切ではないとされたため、ブートストラップ法を用いた平均値の差の検定 を適用した。検定は調査を実施した平成14年度から平成23年度までにおける前期3か年(平成14年度から平成16年度)と後期3か年(平成21年度から平成23年度)を対象とし、対象の各年度で検出下限値(nd)が1/2以上存在していない調査結果において、濃度に有意に差が生じているか検定を行うこととした。

ブートストラップ法を用いた平均値の差の検定を行い、危険率が5%未満のものについて差があると 判断し、かつ、その差が後期の濃度群より前期の濃度群が低値である(又は高値である)ことにより 生じている場合には、「調査期間の後期で得られた結果が、前期と比べて低値である(又は高値である)ことが示唆された。」と評価し、表11においては「 __ 」(又は「 __ 」 」)と表記した。

なお、 の判断において減少傾向(又は増加傾向)が統計的に有意と判定されない場合若しくは の判断において差があると判断されない場合には、表11において「 - 」と表記した。また、 で検出下限値 (nd)が検体の1/2以上存在する場合においては、本分析法により経年分析を行うことが妥当ではないと判断し、表11において「 X 」と表記した。

経年変化解析の詳細な解析手法はそれぞれ章末に参考資料として記載した。

(注)図中の ~ の番号は、前述した経年分析の方法の項目番号と対応する。

図 6-1 経年分析の手順及び分析結果に対する評価

表9-1 平成23年度モニタリング調査 検出状況一覧表(水質及び底質)

物質			pg/L)	底質 (pg/	g-dry)
調査 番号		範囲 (検出頻度)	平均值	範囲 (検出頻度)	平均值
[1]	PCB 類	16 ~ 2,100 (49/49)	150	24 ~ 950,000 (64/64)	6,300
[2]	НСВ	tr(3) ~ 140 (49/49)	13	11 ~ 35,000 (64/64)	150
[3]	アルドリン (参考)				
[4]	ディルドリン	2.1 ~ 300 (49/49)	33	2 ~ 2,200 (64/64)	47
[5]	エンドリン	nd ~ 71 (47/49)	3.8	nd ~ 1,100 (59/64)	8.8
	DDT類(参考)				
	[6-1] p,p'-DDT (参考)				
	[6-2] <i>p,p'</i> -DDE (参考)				
[6]	[6-3] <i>p,p'</i> -DDD (参考)				
	[6-4] <i>o,p'</i> -DDT (参考)				
	[6-5] o,p'-DDE (参考)				
	[6-6] o,p'-DDD (参考)				
	クロルデン類	11 ~ 1,600 (49/49)	59	6.6 ~ 15,000 (64/64)	260
	[7-1] <i>cis-</i> クロルデン	3.8 ~ 500 (49/49)	20	1.7 ~ 4,500 (64/64)	70
[7]	[7-2] trans-クロルデン	3.2 ~ 470 (49/49)	16	3.2 ~ 4,300 (64/64)	73
[7]	[7-3] オキシクロルデン	nd ~ 34 (44/49)	1.9	nd ~ 83 (36/64)	tr(1.6)
	[7-4] <i>cis-</i> ノナクロル	0.8 ~ 130 (49/49)	5.0	nd ~ 2,900 (63/64)	41
	[7-5] trans- ノナクロル	2.6 ~ 480 (49/49)	15	1.7 ~ 4,500 (64/64)	68
	ヘプタクロル類	nd ~ 180 (45/49)	5.8	nd ~ 180 (44/64)	tr(4.3)
	[8-1] ヘプタクロル	nd ~ 22 (6/49)	nd	nd ~ 48 (40/64)	tr(1.3)
[8]	[8-2] <i>cis</i> -ヘプタクロルエ ポキシド	0.7 ~ 160 (49/49)	5.8	nd ~ 160 (63/64)	2.8
	[8-3] <i>trans-</i> ヘプタクロル エポキシド	nd ~ 2.8 (3/49)	nd	nd ~ 2.4 (2/64)	nd
	トキサフェン類(参考)				
FO1	[9-1] Parlar-26 (参考)				
[9]	[9-2] Parlar-50 (参考)				
	[9-3] Parlar-62 (参考)				
[10]	マイレックス	nd ~ 0.8 (3/49)	nd	nd ~ 1,900 (42/64)	1.2
	HCH 類				
	[11-1] α-HCH	11 ~ 1,000 (49/49)	67	1.6 ~ 5,100 (64/64)	120
[11]	[11-2] <i>β</i> -HCH	28 ~ 840 (49/49)	130	3 ~ 14,000 (64/64)	180
	[11-3] γ-HCH (別名 : リンデ ン)	3 ~ 170 (49/49)	23	nd ~ 3,500 (62/64)	35
	[11-4] δ-HCH	0.7 ~ 300 (49/49)	8.6	nd ~ 5,000 (63/64)	37
(3÷	4、「亚杨传 计终点更换	 B値を意味する。nd(検出 ⁻	T阳位土洪 \ 1+144 工阳		

⁽注1)「平均値」は幾何平均値を意味する。nd(検出下限値未満)は検出下限値の1/2として算出した。 (注2) □は調査対象外であることを意味する。

物質		水質 (pg/L)	底質 (pg/	g-dry)
調査 番号		範囲 (検出頻度)	平均値	範囲 (検出頻度)	平均値
[12]	クロルデコン	nd ~ 0.7 (15/49)	nd	nd ~ 1.5 (9/64)	nd
	ヘキサブロモビフェニル 類	nd (0/49)	nd	nd ~ 6.3 (8/64)	nd
	ポリプロモジフェニルエ ーテル類(臭素数が 4 か ら 10 までのもの)	nd ~ 59,000 (47/49)	290	nd ~ 770,000 (63/64)	6,300
	[14-1] テトラプロモジフ ェニルエーテル類	nd ~ 180 (48/49)	11	nd ~ 2,600 (47/64)	32
	[14-2] ペンタブロモジフ ェニルエーテル類	nd ~ 180 (48/49)	5	nd ~ 4,700 (62/64)	24
	[14-3] ヘキサブロモジフ ェニルエーテル類	nd ~ 39 (21/49)	tr(1)	nd ~ 2,000 (52/64)	31
		nd ~ 14 (14/49)	nd	nd ~ 2,400 (55/64)	29
	[14-5] オクタブロモジフ ェニルエーテル類	nd ~ 98 (44/49)	4	nd ~ 36,000 (55/64)	57
	[14-6] ノナブロモジフェ 二ルエーテル類	nd ~ 920 (47/49)	33	nd ~ 70,000 (62/64)	710
	[14-7] デカプロモジフェ ニルエーテル	nd ~ 58,000 (45/49)	200	nd ~ 700,000 (62/64)	4,200
[15]	ペルフルオロオクタンス ルホン酸(PFOS)	$tr(20) \sim 10,000$ (49/49)	480	nd ~ 1,100 (63/64)	92
[16]	ペルフルオロオクタン酸	380 ~ 50,000 (49/49)	2,000	22 ~ 1,100 (64/64)	100
[17]	ペンタクロロベンゼン	2.6 ~ 170 (49/49)	11	3 ~ 4,500 (64/64)	95
	エンドスルファン類	nd ~ 450 (2/49)	nd	nd ~ 730 (32/64)	tr(18)
[18]	[18-1] α-エンドスルファ ン	nd ~ 180 (2/49)	nd	nd ~ 480 (35/64)	tr(13)
	[18-2] <i>β</i> -エンドスルファ ン	nd ~ 270 (8/49)	nd	nd ~ 240 (38/64)	tr(5)
	1,2,5,6,9,10-ヘキサブロ モシクロドデカン類	nd ~ 73,000 (4/47)	nd	nd ~ 600,000 (27/62)	1,700
	[19-1] α-1,2,5,6,9,10-ヘキ サブロモシクロドデカン	nd ~ 6,300 (4/47)	nd	nd ~ 24,000 (35/62)	430
[10]	[19-2] β-1,2,5,6,9,10-ヘキ サブロモシクロドデカン	nd ~ 1,300 (4/47)	nd	nd ~ 14,000 (21/62)	nd
[19]	[19-3] γ-1,2,5,6,9,10-ヘキ サブロモシクロドデカン	nd ~ 65,000 (5/47)	nd	nd ~ 570,000 (36/62)	670
	[19-4] δ-1,2,5,6,9,10-ヘキ サブロモシクロドデカン	nd (0/47)	nd	nd ~ 800 (6/62)	nd
	[19-5] ε-1,2,5,6,9,10-ヘキ サブロモシクロドデカン	nd (0/47)	nd	nd ~ tr(260) (1/62)	nd
[20]	N N-ジメチルホルムアミ	nd ~ 530,000 (37/47)	tr(27,000)	nd~15,000 (7/62)	nd

⁽注1)「平均値」は幾何平均値を意味する。nd(検出下限値未満)は検出下限値の1/2として算出した。 (注2)範囲は全ての検体における最小値から最大値の範囲で示し、検出頻度は全測定地点に対して検出した地点数で示したため、全 地点において検出されても範囲が nd~となる場合がある。 (注3) は調査対象外であることを意味する。

表 9-2 平成 23 年度モニタリング調査 検出状況一覧表 (生物及び大気)

衣 5	-2	-,,,,	H ^M 프			土物及ひ入家	·		+= /		
物質		貝類		生物(pg/g 魚類	g-wet)	 鳥類		第1回(温)	大気()	pg/m²) 第2回(寒)	公钳)
調査	調査対象物質	型 · · · · · · · · · · · · · · · · · · ·			1			第1四(温· 範囲	友 <i>别)</i> 	第 2 凹(巻) 範囲	マ州)
番号		(検出頻度)	平均値	(検出頻度)	平均值	(検出頻度)	平均値	戦四 (検出頻度)	平均値	(検出頻度)	平均值
[1]	PCB 類	820 ~ 65,000 (4/4)	,	900 ~ 250,000 (18/18)	14,000	5,400 (1/1)	5,400	32 ~ 660 (35/35)	150	tr(17) ~ 320 (37/37)	76
[2]	НСВ	4 ~ 920 (4/4)	45	34 ~ 1,500 (18/18)	260	460 (1/1)	460	$87 \sim 180$ (35/35)	120	75 ~ 160 (37/37)	96
[3]	アルドリン (参考)										
[4]	ディルドリン	16 ~ 3,800 (4/4)	390	17 ~ 1,100 (18/18)	270	770 (1/1)	770	0.80 ~ 230 (35/35)	12	0.52 ~ 96 (37/37)	4.3
[5]	エンドリン	tr(3) ~ 110 (4/4)	33	nd ~ 160 (16/18)	18	tr(3) (1/1)	tr(3)	nd ~ 5.1 (34/35)	0.46	nd ~ 1.8 (33/37)	0.16
	DDT 類 (参考) 						ļ				
	[6-1] <i>p,p'-</i> DDT (参考)						ļ				
	[6-2] <i>p,p'</i> -DDE(参考) 						ļ				
[6]	[6-3] <i>p,p'-</i> DDD(参考) 						ļ				
	[6-4] <i>o,p'</i> -DDT (参考)										
	[6-5] <i>o,p'</i> -DDE(参考) 										
	[6-6] <i>o,p'</i> -DDD(参考)										
	クロルデン類 	600 ~ 11,000 (4/4)	2,300	440 ~ 13,000 (18/18)	2,600	1,100 (1/1)	1,100	nd ~ 2,200 (34/35)	160	$tr(2.7) \sim 770$ (37/37)	63
	[7-1] <i>cis</i> -クロルデン	160 ~ 3,400 (4/4)	790	79 ~ 3,800 (18/18)	580	6 (1/1)	6	1.5 ~ 700 (35/35)	66	tr(0.88) ~ 240 (37/37)	20
[7]	[7-2] <i>trans</i> -クロルデン	150 ~ 2,900 (4/4)	490	20 ~ 1,300 (18/18)	180	5 (1/1)	5	tr(1.4) ~ 810 (35/35)	76	tr(0.70) ~ 290 (37/37)	24
[/]	[7-3]オキシクロルデン	8 ~ 260 (4/4)	68	33 ~ 2,300 (18/18)	140	590 (1/1)	590	$0.28 \sim 5.2$ (35/35)	1.5	0.21 ~ 2.6 (37/37)	0.61
	[7-4] <i>cis-</i> ノナクロル	77 ~ 1,300 (4/4)	250	45 ~ 2,900 (18/18)	440	76 (1/1)	76	0.24 ~ 89 (35/35)	7.4	nd ~ 28 (36/37)	1.9
	[7-5] <i>trans</i> - ノナクロル	200 ~ 3,000 (4/4)	640	190 ~ 5,000 (18/18)	1,100	400 (1/1)	400	1.2 ~ 550 (35/35)	53	tr(0.70) ~ 210 (37/37)	16
	ヘプタクロル類	tr(6.9) ~ 380 (4/4)	68	tr(5.2) ~ 550 (18/18)	53	410 (1/1)	410	1.0 ~ 120 (35/35)	18	0.65 ~ 58 (37/37)	7.6
	[8-1]ヘプタクロル	nd ~ 51 (3/4)	4	nd ~ 7 (13/18)	tr(1)	nd (0/1)	nd	0.73 ~ 110 (35/35)	16	tr(0.13) ~ 56 (37/37)	6.1
[8]	[8-2] <i>cis</i> -ヘプタクロルエ ポキシド	3.9 ~ 320 (4/4)	55	3.2 ~ 540 (18/18)	50	410 (1/1)	410	0.29 ~ 6.0 (35/35)	2.0	0.35 ~ 2.8 (37/37)	0.90
	[8-3] <i>trans-</i> ヘプタクロル エポキシド	$nd \sim tr(6)$ $(1/4)$	nd	nd (0/18)	nd	nd (0/1)	nd	$nd \sim 0.14$ (5/35)	nd	nd (0/37)	nd
	トキサフェン類(参考)	(=- 1)		(3. 20)				(2,22)		(2.21)	
[9]	[9-1]Parlar-26 (参考) [9-2]Parlar-50 (参考)										
[10]	[9-3]Parlar-62 (参考) マイレックス	5.2 ~ 44	10	tr(1.3) ~ 41	12	58	58	0.08 ~ 0.25	0.14	tr(0.03) ~ 0.11	0.07
[10]	HCH 類	(4/4)		(18/18)		(1/1)		(35/35)		(37/37)	
	нсн уд [11-1]α-НСН	13 ~ 1,200 (4/4)	64	$tr(2) \sim 690$ (18/18)	37	48 (1/1)	48	9.5 ~ 410 (35/35)	43	6.5 ~ 680 (37/37)	18
[11]	 [11-2]β-HCH	$39 \sim 2,000$ $(4/4)$	130	4 ~ 710 (18/18)	100	4,500 (1/1)	4,500	0.84 ~ 49 (35/35)	5.0	$tr(0.31) \sim 91$ (37/37)	1.7
[11]		$5 \sim 320$ (4/4)	26	$tr(1) \sim 160$ (18/18)	12	26 (1/1)	26	$(35/35)$ $2.7 \sim 98$ $(35/35)$	14	$tr(1.1) \sim 67$ (37/37)	5.1
	ン) [11-4]&HCH	tr(1) ~ 1,400	9	nd ~ 19	3	5	5	0.11 ~ 33	1.1	tr(0.050) ~ 26	0.35
(;)	「 1)「平均値」は幾何平均	(4/4) 気値を登吐す	. Z . n.d	(14/18)	注 / 1+14	(1/1)	アビ	(35/35) EHL #-	<u> </u>	(37/37)	l

⁽注1)「平均値」は幾何平均値を意味する。nd (検出下限値未満)は検出下限値の1/2として算出した。 (注2) ■は調査対象外であることを意味する。

4				生物 (pg/g	g-wet)				大気([og/m³)	
物質 調査	细木社会物质	貝類		魚類		鳥類		第1回(温)		第2回(寒	冷期)
商宣番号	調査対象物質	範囲 (検出頻度)	平均值	範囲 (検出頻度)	平均值	範囲 (検出頻度)	平均值	範囲 (検出頻度)	平均值	範囲 (検出頻度)	平均值
[12]	クロルデコン	nd (0/4)	nd	nd (0/18)	nd	nd (0/1)	nd	nd (0/35)	nd	nd (0/37)	nd
[13]	ヘキサブロモビフェニル 類	nd (0/4)	nd	nd ~ 3 (5/18)	nd	3 (1/1)	3	nd (0/35)	nd	nd (0/37)	nd
	ポリブロモジフェニルエ ーテル類(臭素数が 4 か ら 10 までのもの)	nd ~ 1,100 (3/4)	tr(260)	nd ~ 1,800 (15/18)	tr(280)	620 (1/1)	620	nd ~ 37 (31/35)	tr(11)	nd ~ 58 (29/37)	tr(11)
	[14-1] テトラブロモジフ ェニルエーテル類	26 ~ 490 (4/4)	96	tr(9) ~ 860 (18/18)	110	67 (1/1)	67	tr(0.11) ~ 9.3 (35/35)	0.80	nd ~ 7.0 (35/37)	0.36
	[14-2] ペンタブロモジフ ェニルエーテル類	tr(12) ~ 160 (4/4)	51	nd ~ 300 (17/18)	39	110 (1/1)	110	nd ~ 8.8 (31/35)	0.19	nd ~ 2.6 (31/37)	0.16
	[14-3] ヘキサブロモジフ ェニルエーテル類	20 ~ 81 (4/4)	38	nd ~ 430 (17/18)	53	96 (1/1)	96	nd ~ 1.2 (28/35)	tr(0.11)	nd ~ 1.7 (30/37)	0.16
	[14-4] ヘプタブロモジフ ェニルエーテル類	nd ~ 44 (3/4)	14	nd ~ 130 (13/18)	13	44 (1/1)	44	nd ~ 1.1 (20/35)	tr(0.1)	$nd \sim 2.3$ (25/37)	tr(0.2)
	[14-5] オクタブロモジフ ェニルエーテル類	nd ~ 29 (3/4)	7	nd ~ 150 (10/18)	tr(6)	66 (1/1)	66	nd ~ 1.9 (27/35)	0.24	nd ~ 7.0 (30/37)	0.35
	[14-6] ノナブロモジフェ ニルエーテル類	nd ~ 40 (3/4)	tr(12)	nd ~ tr(15) (5/18)	nd	62 (1/1)	62	nd ~ 3.9 (29/35)	tr(0.8)	nd ~ 14 (30/37)	1.1
	[14-7] デカブロモジフェ ニルエーテル	nd ~ 240 (1/4)	nd	nd ~ tr(90) (2/18)	nd	tr(170) (1/1)	tr(170)	nd ~ 30 (31/35)	tr(8.2)	nd ~ 44 (29/37)	tr(8.4)
[15]	ペルフルオロオクタンス ルホン酸(PFOS)	16 ~ 100 (4/4)	38	nd ~ 3,200 (16/18)	82	110 (1/1)	110	0.9 ~ 10 (35/35)	4.4	1.3 ~ 9.5 (37/37)	3.7
[16]	ペルフルオロオクタン酸 (PFOA)	$rac{1}{1} nd \sim tr(40)$ (3/4)	tr(19)	nd ~ 51 (7/18)	nd	nd (0/1)	nd	tr(3.5) ~ 240 (35/35)	20	nd ~ 97 (36/37)	12
[17]	ペンタクロロベンゼン	10 ~ 260 (4/4)	28	5 ~ 220 (18/18)	36	52 (1/1)	52	30 ~ 140 (35/35)	61	26 ~ 180 (37/37)	59
	エンドスルファン類 	nd ~ 380 (3/4)	73	nd ~ 180 (9/18)	nd	nd (0/1)	nd	tr(8.0) ~ 200 (35/35)	28	nd ~ 53 (34/37)	tr(10)
[18]	[18-1] α-エンドスルファ ン	nd ~ 330 (3/4)	62	nd ~ 140 (10/18)	tr(20)	nd (0/1)	nd	tr(7.8) ~ 190 (35/35)	26	nd ~ 45 (35/37)	tr(9.6)
	[18-2] <i>β</i> -エンドスルファ ン	$4 \sim 52$ (4/4)	16	nd ~ 37 (9/18)	nd	nd (0/1)	nd	nd ~ 11 (34/35)	2.1	nd ~ 8.3 (31/37)	tr(0.80)
	1,2,5,6,9,10-ヘキサブロ モシクロドデカン類	nd ~ 17,000 (3/4)	1,600	nd ~ 120,000 (13/17)	1,200	nd ~ 1,000 (1/1)	tr(440)				
	[19-1] α-1,2,5,6,9,10-ヘキ サブロモシクロドデカン	tr(86) ~ 13,000 (4/4)	1,100	nd ~ 69,000 (16/17)	770	$nd \sim 530$ (1/1)	200				
	[19-2] β-1,2,5,6,9,10-ヘキ サブロモシクロドデカン	$nd \sim 240$ (3/4)	tr(70)	nd ~ 760 (5/17)	nd	nd (0/1)	nd				
	[19-3] γ-1,2,5,6,9,10-ヘキ サブロモシクロドデカン	nd ~ 3,300 (4/4)	440	nd ~ 50,000 (10/17)	210	nd ~ 460 (1/1)	tr(180)				
	[19-4] δ-1,2,5,6,9,10-ヘキ サブロモシクロドデカン	nd (0/4)	nd	nd (0/17)	nd	nd (0/1)	nd				
	[19-5] ε-1,2,5,6,9,10-ヘキ サブロモシクロドデカン	nd (0/4)	nd	nd (0/17)	nd	nd (0/1)	nd				
[20]	N,N-ジメチルホルムアミ ド			 				16,000 ~ 490,000 (35/35)	92,000		

⁽注1)「平均値」は幾何平均値を意味する。nd(検出下限値未満)は検出下限値の1/2として算出した。

⁽注2)範囲は全ての検体における最小値から最大値の範囲で示し、検出頻度は全測定地点に対して検出した地点数で示したため、全 地点において検出されても範囲が nd~となる場合がある。 (注3) は調査対象外であることを意味する。

表10 平成23年度モニタリング調査 定量[検出]下限値一覧表

物質		ソノグ調査 定里し	大山」「松旭 吳代		
調査 番号	調査対象物質	水質(pg/L)	底質(pg/g-dry)	生物 (pg/g-wet)	大気 (pg/m³)
[1]	PCB 類	4.5 [1.7]	12 [4.5]	220 [74]	18 [5.9]
[2]	НСВ	5 [2]	7 [3]	4 [1]	2.3 [0.75]
[3]	アルドリン(参考)				
[4]	ディルドリン	1.6 [0.6]	5 [2]	3 [1]	0.42 [0.14]
[5]	エンドリン	1.6 [0.6]	1.1 [0.4]	4 [2]	0.09 [0.04]
	DDT 類(参考) 				
	[6-1] <i>p,p'</i> -DDT(参考)				
	[6-2] <i>p,p'</i> -DDE(参考)				
[6]	[6-3] <i>p,p'</i> -DDD(参考)				
	[6-4] <i>o,p'</i> -DDT(参考)				
	[6-5] <i>o,p'</i> -DDE(参考)				
	[6-6] <i>o,p'</i> -DDD (参考)				
	クロルデン類	5.6 [2.2]	6.5 [2.5]	15 [5]	3.9 [1.3]
	[7-1] <i>cis-</i> クロルデン	1.4 [0.6]	1.1 [0.4]	3 [1]	1.3 [0.42]
[7]	[7-2] trans-クロルデン	1.0 [0.4]	1.3 [0.5]	4 [1]	1.6 [0.53]
[,]	[7-3] オキシクロルデン	1.3 [0.5]	2.2 [0.9]	3 [1]	0.07 [0.03]
	[7-4] <i>cis-</i> ノナクロル	0.6 [0.2]	1.1 [0.4]	1.8 [0.7]	0.15 [0.051]
	[7-5] <i>trans-</i> ノナクロル	1.3 [0.5]	0.8 [0.3]	3 [1]	1.1 [0.35]
	ヘプタクロル類	1.1 [2.8]	4.7 [1.8]	12 [4.8]	0.47 [0.16]
	[8-1] ヘプタクロル	1.3 [0.5]	1.8 [0.7]	3 [1]	0.30 [0.099]
[8]	[8-2] <i>cis</i> -ヘプタクロルエ ポキシド	0.7 [0.3]	0.6 [0.2]	2.0 [0.8]	0.04 [0.01]
		0.8	2.3 [0.9]	7 [3]	0.13 [0.05]
	トキサフェン類(参考)		[0.5]	[5]	[0.03]
	[9-1] Parlar-26 (参考)				
[9]	[9-2] Parlar-50 (参考)				
	[9-3] Parlar-62 (参考)				
[10]	マイレックス	0.5 [0.2]	0.9 [0.4]	1.9 [0.8]	0.04 [0.01]
	HCH 類		1 5	2	25
	[11-1] α-HCH	7 [3]	1.5 [0.6]	3 [1]	2.5 [0.83]
[11]	[11-2] <i>β</i> -HCH	2.0 [0.8]	3 [1]	3 [1]	0.39 [0.13]
	[11-3] _/ -HCH (別名 : リンデ ン)	3 [1]	3 [1]	3 [1]	1.6 [0.52]
	[11-4] δ-HCH	0.4 [0.2]	1.4 [0.5]	3 [1]	0.063 [0.021]
(注			[0.5]	[1]	[0.021]

⁽注1)上段は定量下限値、下段は検出下限値。

⁽注2) は同族体又は該当物質ごとの定量[検出]下限値の合計とした。

⁽注3)生物の定量下限値及び検出下限値は、貝類、魚類及び鳥類で共通であった。

⁽注4) 姫路沖では水質の定量下限値及び検出下限値が表中の値と異なる。

⁽注5) ■は調査対象外であることを意味する。

物質 調査 番号	調査対象物質	水質 (pg/L)	底質(pg/g-dry)	生物 (pg/g-wet)	大気 (pg/m³)
	クロルデコン	0.20	0.40	0.5	0.04
		[0.05]	[0.20]	[0.2]	[0.02]
[13]	ハキップロセピフェール 新	2.2	3.6 [1.4]	3 [1]	0.3
	ポ ポリブロモジフェニルエ	[0.9]	[1.4]	[1]	[0.1]
	ーテル類(臭素数が4か)	88	100	300	13
	ら10までのもの)	[31]	[47]	[110]	[4.2]
	[14-1] テトラブロモジフ	4	30	16	0.18
	ェニルエーテル類	[2]	[10]	[6]	[0.07]
		3	5	15	0.16
	ェニルエーテル類	[1]	[2]	[6]	[0.06]
	[14-3] ヘキサブロモジフ	3	9	10	0.14
	ェニルエーテル類	[1]	[3]	[4]	[0.05]
	[14-4] ヘプタブロモジフ	6	7	11	0.3
	ェニルエーテル類	[2]	[3]	[4]	[0.1]
	[14-5] オクタブロモジフ	2	10	7	0.20
	ェニルエーテル類	[1]	[4]	[3]	[0.08]
	[14-6] ノナブロモジフェ	10	23	22	0.9
	ニルエーテル類	[4]	[9]	[9]	[0.4]
	[14-7] デカブロモジフェ	60	40	230	12
	ニルエーテル	[20]	[20]	[80]	[4.0]
[15]	ペルフルオロオクタンス	50	5	10	0.5
	ルホン酸 (PFOS)	[20]	[2]	[4]	[0.2]
[16]	ペルフルオロオクタン酸	50	5	41	5.4
	(PFOA)	[20]	[2] 5	[14]	[1.8]
[17]	ペンタクロロベンゼン	[0.9]	5 [2]	[1]	[0.70]
		140	39	61	13
	エンドスルファン類	[60]	[14]	[24]	[4.4]
-407	[18-1] α-エンドスルファ	120	30	50	12
[18]	ン	[50]	[10]	[20]	[4.0]
	[18-2] β-エンドスルファ	22	9	11	1.2
	ン	[9]	[4]	[4]	[0.39]
	1,2,5,6,9,10-ヘキサブロ	5,500	1,700	760	
	モシクロドデカン類	[2,200]	[1,200]	[310]	
	[19-1] α-1,2,5,6,9,10- \ ‡	1,500	420	170	
	サブロモシクロドデカン	[600]	[280]	[70]	
	[19-2] β-1,2,5,6,9,10- \ ‡	1,300	250	98	
[19]	サブロモシクロドデカン	[500]	[170]	[40]	
]	[19-3] γ-1,2,5,6,9,10- \ ‡	1,200	400	210	
	サブロモシクロドデカン	[500]	[260]	[80]	
	[19-4] δ-1,2,5,6,9,10- \ ‡	790	350	140	
	サブロモシクロドデカン	[300]	[250]	[60]	
	[19-5] ε-1,2,5,6,9,10-ヘキ	740	280	140	
-	サブロモシクロドデカン	[300] 63,000	[210] 3,200	[60]	9,600
[20]	<i>N,N-</i> ジメチルホルムアミ ド	63,000 [19,000]	3,200 [2,600]		9,600 [3,900]
	<u> </u>		[2,000]		[3,700]

⁽注1)上段は定量下限値、下段は検出下限値。 (注2) は同族体又は該当物質ごとの定量[検出]下限値の合計とした。 (注3)生物の定量下限値及び検出下限値は、貝類、魚類及び鳥類で共通であった。 (注4) □は調査対象外であることを意味する。

表 11-1 平成 14 年度から平成 23 年度における経年分析結果(水質)

物質	四本社会和原药	水質							
調査 番号	調査対象物質		河川域	湖沼域	河口域	海域			
[1]	PCB 類					-			
[2]	НСВ			-		L			
[3]	アルドリン (参考)								
[4]	ディルドリン	-	-	-	-	-			
[5]	エンドリン	-	-		-				
	DDT 類			į.					
	[6-1] <i>p,p'</i> -DDT								
	[6-2] <i>p,p'</i> -DDE								
[6]	[6-3] <i>p,p'</i> -DDD								
	[6-4] <i>o,p'</i> -DDT								
	[6-5] <i>o,p'</i> -DDE								
	[6-6] <i>o,p'</i> -DDD								
	クロルデン類								
	[7-1] cis-クロルデン			-	-				
	[7-2] trans-クロルデン	-	-	-	-	-			
[7]	[7-3] オキシクロルデン	X	_ *	X	-	X			
	[7-4] cis-ノナクロル	-	-	-	-	-			
	[7-5] trans-ノナクロル	-		-	-	_			
	ヘプタクロル類								
	[8-1] ヘプタクロル	X	X	X	X	X			
[8]	[8-2] <i>cis</i> -ヘプタクロルエポキシド	-	-	-	-	-			
	[8-3] <i>trans-</i> ヘプタクロルエポキシド	X	X	X	X	X			
	トキサフェン類(参考)			-		-			
	[9-1] Parlar-26 (参考)								
[9]	[9-2] Parlar-50 (参考)								
	[9-3] Parlar-62 (参考)								
[10]	マイレックス	X	X	X	X	X			
	HCH 類			¥					
	[11-1] α-HCH	-	-	-	-	-			
[11]	[11-2] <i>β</i> -HCH	-	-		-	-			
	[11-3] ^y -HCH (別名:リンデン)			-					
	[11-4] δ-HCH	_ *	_	_	X	X			

ではないと判断されたことを意味する。なお、「*」はプートストラップ法において調査期間前期と後期との差が確認されな いことを意味する。

⁽注3)河川域、湖沼域、河口域及び海域の分類は表12に示すとおりである。

⁽注4) □は平成23年度の調査を実施しておらず、経年分析を行っていない。

表 11-2 平成 14 年度から平成 23 年度における経年分析結果(底質)

物質		底質							
調査 番号	調査対象物質		河川域	湖沼域	河口域	 海域			
[1]	PCB 類	-	- *	-	-	-			
[2]	НСВ	-	-	-	-	-			
[3]	アルドリン (参考)								
[4]	ディルドリン	-	-	-	-	-			
[5]	エンドリン	-	_ *		-	-			
	DDT類								
	[6-1] <i>p,p'</i> -DDT								
	[6-2] <i>p,p'</i> -DDE								
[6]	[6-3] <i>p,p'</i> -DDD								
	[6-4] <i>o,p'</i> -DDT								
	[6-5] <i>o,p'</i> -DDE								
	[6-6] <i>o,p'</i> -DDD								
	クロルデン類								
	[7-1] cis-クロルデン		-						
	[7-2] trans-クロルデン		-	-	-				
[7]	[7-3] オキシクロルデン	- *	_ *	X	_ *	X			
	[7-4] <i>cis-</i> ノナクロル	-	-	-	-				
	[7-5] trans-ノナクロル		-	-					
	ヘプタクロル類				*				
	[8-1] ヘプタクロル	X	X	X	L	X			
[8]	[8-2] <i>cis</i> -ヘプタクロルエポキシド	L	_ *	-		X			
	[8-3] trans-ヘプタクロルエポキシド	X	X	X	X	X			
	トキサフェン類(参考)								
	[9-1] Parlar-26 (参考)								
[9]	[9-2] Parlar-50 (参考)								
	[9-3] Parlar-62 (参考)								
[10]	マイレックス	_ *	X		-	-			
	HCH 類								
	[11-1] α-HCH	-	-	-	-	-			
[11]	[11-2] β-HCH	-	-		-	-			
	[11-3] ⁻ HCH (別名: リンデン)	-	-	-	-	-			
	[11-4] δ-HCH	-	-	-	-	-			

ではないと判断されたことを意味する。なお、「*」はプートストラップ法において調査期間前期と後期との差が確認されな いことを意味する。

⁽注3)河川域、湖沼域、河口域及び海域の分類は表12に示すとおりである。

⁽注4) □は平成23年度の調査を実施しておらず、経年分析を行っていない。

表 11-3 平成 14 年度から平成 23 年度における経年分析結果(生物)

調査対象物質	貝類	魚類					
PCB 類	-	-					
НСВ	-	-					
アルドリン (参考)							
ディルドリン	-	-					
エンドリン	-	-					
DDT 類							
[6-1] <i>p,p'</i> -DDT							
[6-2] <i>p,p'</i> -DDE							
[6-3] <i>p,p'</i> -DDD							
[6-4] <i>o,p'</i> -DDT							
[6-5] <i>o,p'</i> -DDE							
[6-6] <i>o,p'</i> -DDD							
クロルデン類							
[7-1] cis-クロルデン	-	-					
[7-2] trans-クロルデン	-	-					
[7-3] オキシクロルデン	-	-					
[7-4] <i>cis-</i> ノナクロル	-	-					
[7-5] trans-ノナクロル	-	-					
ヘプタクロル類							
[8-1] ヘプタクロル	_ *	X					
[8-2] cis-ヘプタクロルエポキシド	-	-					
[8-3] trans-ヘプタクロルエポキシド	X	X					
トキサフェン類(参考)							
[9-1] Parlar-26 (参考)							
[9-2] Parlar-50 (参考)							
[9-3] Parlar-62 (参考)							
マイレックス	-	-					
HCH 類							
[11-1] α-HCH	-						
[11-2] β-HCH	-	-					
[11-3] ⁻ HCH (別名: リンデン)	-						
[11-4] δ-HCH	X	_ *					
	PCB 類 HCB アルドリン (参考) ディルドリン エンドリン DDT 類 [6-1] p,p'-DDT [6-2] p,p'-DDE [6-3] p,p'-DDD [6-4] o,p'-DDD [6-4] o,p'-DDD [6-6] o,p'-DDD フロルデン類 [7-1] cis-クロルデン [7-2] trans-クロルデン [7-3] オキシクロルデン [7-4] cis- ノナクロル ヘブタクロル類 [8-1] ヘプタクロルエポキシド [8-3] trans-ヘプタクロルエポキシド [8-3] trans-ヘプタクロルエポキシド トキサフェン類 (参考) [9-1] Parlar-26 (参考) [9-2] Parlar-62 (参考) マイレックス HCH 類 [11-1] α-HCH [11-2] β-HCH [11-3] γ-HCH (別名: リンデン) [11-4] δ-HCH	PCB類 - HCB - アルドリン (参考) ディルドリン - エンドリン - エンドリン - DDT類 (6-1) p.p'-DDT (6-2) p.p'-DDE (6-3) p.p'-DDD (6-4) o.p'-DDT (6-5) o.p'-DDD (7-1) ris-クロルデン - T-1 ris-クロルデン - T-1 ris-クロルデン (7-2) rrans-クロルデン (7-3) オキシクロルデン - T-1 ris-リカロル - アンチクロル類 (8-1) ベブタクロル - ** [8-3] rrans-ベブタクロルエボキシド (8-3) rrans-ベブタクロルエボキシド (8-3) rrans-ベブタクロルエボキシド (8-3) rrans-ベブタクロルエボキシド (8-3) rrans-ベブタクロルエボキシド (8-3) rrans-ベブタクロルエボキシド (8-3) rrans-ベブタクロルエボキシド (8-3) rrans-ベブタクロルエボキシド (8-3) rrans-ベブタクロルエボキシド (8-3) rrans-ベブタクロルエボキシド (8-3) rrans-ベブタクロルエボキシド (8-3) rrans-ベブタクロルエボキシド (8-3) rrans-ベブタクロルエボキシド (8-3) rrans-ベブタクロルエボキシド (8-3) rrans-ベブタクロルエボキシド (8-3) rrans-ベブタクロルエボキシド (8-3) rrans-ベブタクロルエボキシド (8-3) rrans-ベブタクロルエボキシド (8-3) rrans-ベブタクロルエボキシド (8-1) rrans-ベブタクロルエボキシド (8-1) rrans-ベブタクロルエボキシド (8-1) rrans-ベブタクロルエボキシド (8-1) rrans-ベブタクロルエボキシド (8-1) rrans-ベブタクロルエボキシド (8-1) rrans-ベブタクロルエボキシド (8-1) rrans-ベブタクロルエボキシド (8-1) rrans-グロルエボキシド (8-1) rrans-グロルエボキシド (8-1) rrans-グロルエボキシド (8-1) rrans-グロルエボキシド (8-1) rrans-グロルエボキシド (8-1) rrans-グロルエボキシド (8-1) rrans-グロルエボキシド (8-1) rrans-グロルエボキシド (8-1) rrans-グロルエボキシド (8-1) rrans-グロルエボキシド (8-1) rrans-グロルエボキシド (8-1) rrans-グロルエボキシド (8-1) rrans-グロルエボキシド (8-1) rrans-グロルエボキシド (8-1) rrans-グロルエボキシド (8-1) rrans-グロルエボキシド (8-1) rrans-グロルエボキシド (8-1) rrans-グロルエボキシド (8-1) rrans-グロル (8-					

⁽注1)AICでの増減傾向の判定では、一次モデルの事後確率において95%を閾値としている。

⁽注2)「」は経年的な減少傾向が統計的に有意と判定されたことを、「-」は経年的な減少傾向もしくは増加傾向が有意と判定されなかったことをそれぞれ意味する。また、「X」は「不検出値(nd)が 1/2 を超えて存在する年度がある」ために本分析法により経年分析を行うことが妥当ではないと判断されたことを意味する。なお、「*」はプートストラップ法において調査期間前期と後期との差が確認されないことを意味する。

⁽注3) は平成23年度の調査を実施しておらず、経年分析を行っていない。

⁽注4) は過去に生物(貝類)で観測された全ての濃度に比較して、大きく逸脱した濃度が一部地点で1ヶ年のみで観測されており、 その濃度が評価全体に与える影響が大きいと懸念されたため、その濃度を除外して解析を実施した結果である事を意味する。

表 11-4 平成 14 年度から平成 23 年度における経年分析結果 (大気)

物質	细木头各物质	大気						
調査 番号	調査対象物質	温暖期	寒冷期					
[1]	PCB 類	-	-					
[2]	НСВ	-	-					
[3]	アルドリン(参考)							
[4]	ディルドリン	-	-					
[5]	エンドリン	-	X					
	DDT 類							
	[6-1] <i>p,p'</i> -DDT							
	[6-2] <i>p,p'</i> -DDE							
[6]	[6-3] <i>p,p'</i> -DDD							
	[6-4] <i>o,p'</i> -DDT							
	[6-5] <i>o,p'</i> -DDE							
	[6-6] <i>o,p'</i> -DDD							
	クロルデン類							
	[7-1] cis-クロルデン		-					
	[7-2] trans-クロルデン		-					
[7]	[7-3] オキシクロルデン		-					
	[7-4] <i>cis-</i> ノナクロル		-					
	[7-5] trans-ノナクロル		-					
	ヘプタクロル類							
	[8-1] ヘプタクロル	-	-					
[8]	[8-2] cis-ヘプタクロルエポキシド	•	-					
	[8-3] trans-ヘプタクロルエポキシド	X	X					
	トキサフェン類(参考)							
	[9-1] Parlar-26 (参考)							
[9]	[9-2] Parlar-50 (参考)							
	[9-3] Parlar-62 (参考)							
[10]	マイレックス	-	-					

⁽注1) AIC での増減傾向の判定では、一次モデルの事後確率において 95%を閾値としている。

⁽注2)「」は経年的な減少傾向が統計的に有意と判定されたことを、「-」は経年的な減少傾向もしくは増加傾向が有意と判定されなかったことをそれぞれ意味する。また、「X」は「不検出値(nd)が 1/2 を超えて存在する年度がある」ために本分析法により経年分析を行うことが妥当ではないと判断されたことを意味する。

⁽注3) □は平成23年度の調査を実施しておらず、経年分析を行っていない。

表 12 平成 14 年度から平成 23 年度における経年分析の水域分類

分類	地方公共団体	調査地点	調査の	
			水質	底質
河川域	北海道	天塩川恩根内大橋(美深町) 大選川まずらん 大橋(黒広寺)		
		十勝川すずらん大橋(帯広市) 石狩川河口石狩河口橋(石狩市)	+	
	岩手県	1437月7月11日11日11日 (1437日) 豊沢川(花巻市)		
	<u>石于宗</u> 仙台市	壹次川(化登市) 広瀬川広瀬大橋(仙台市)		
	山形県	近瀬川四瀬八偏(四百印) 最上川河口(酒田市)		
	茨城県	敬工川内口(眉口巾) 利根川河口かもめ大橋(神栖市)		
	栃木県	田川(宇都宮市)		
	埼玉県	荒川秋ヶ瀬取水堰(志木市)		
	新潟県	信濃川下流(新潟市)		
	富山県	神通川河口萩浦橋(富山市)		
	福井県	笙の川三島橋(敦賀市)		
	山梨県	荒川千秋橋(甲府市)		
	静岡県	天竜川(磐田市)		
	京都市	桂川宮前橋(京都市)		
	大阪市	大阪港		
	× (12X-1-	淀川 (大阪市)		
	奈良県	大和川(王寺町)		
	和歌山県	紀の川河口紀の川大橋(和歌山市)		
	高知県	四万十川河口(四万十市)		
	熊本県	緑川(宇土市)		
	宮崎県	大淀川河口(宮崎市)		
	鹿児島県	天降川(霧島市)		
		五反田川五反田橋(いちき串木野市)		
湖沼域	青森県	十三湖		
	秋田県	八郎湖		
	長野県	諏訪湖湖心		
	滋賀県	琵琶湖南比良沖中央		
		琵琶湖唐崎沖中央		
河口域	北海道	苫小牧港		
	千葉市	花見川河口(千葉市)		
	東京都	荒川河口 (江東区)		
		隅田川河口(港区)		
	川崎市	多摩川河口(川崎市)		
	石川県	犀川河口(金沢市)		
	愛知県	衣浦港		
	三重県	鳥羽港		
	大阪府	大和川河口 (堺市)		
	大阪市	淀川河口 (大阪市)		
	徳島県	吉野川河口 (徳島市)		
	香川県	高松港		
	北九州市	洞海湾		
	大分県	大分川河口 (大分市)		
	沖縄県	那覇港		
海域	宮城県	仙台湾(松島湾)		
	福島県	小名浜港		
	千葉県	市原・姉崎海岸		
	横浜市	横浜港		
	川崎市	川崎港京浜運河		
	静岡県	清水港		
	愛知県	名古屋港		
	三重県	四日市港		
	京都府	宮津港		
	大阪市	大阪港外		
	兵庫県	姫路沖		
	神戸市	神戸港中央		
	岡山県	水島沖		
	広島県	呉港		
	l e e	広島湾		
	山口県	徳山湾		
		宇部沖		
		萩沖	I	
	愛媛県	新居浜港		
	福岡市	博多湾	1	
	#ID!!			
	佐賀県長崎県	伊万里湾 大村湾		_

(注)調査地点の名称として河口としている地点の一部は、調査地点の状況から河川域及び海域に分類した。

平成 23 年度調査においては、従前の POPs 条約対象物質 10 物質(群)のうちの 7 物質(群)及び HCH 類について平成 14 年度又は平成 15 年度から高感度の分析が行われ、ヘプタクロル類のヘプタクロルが生物のうち鳥類で、trans-ヘプタクロルエポキシドが生物のうち魚類及び鳥類でそれぞれ不検出であった以外は全て検出された。

また、クロルデコン、ヘキサブロモビフェニル類、ポリブロモジフェニルエーテル類(臭素数が 4 から 10 までのもの)、ペルフルオロオクタンスルホン酸(PFOS)、ペルフルオロオクタン酸(PFOA)、ペン タクロロベンゼン、エンドスルファン類及び 1,2,5,6,9,10-ヘキサブロモシクロドデカン類についても、高感度の分析が行われ、クロルデコンが生物及び大気で、ヘキサブロモビフェニル類が水質及び大気で、 δ -1,2,5,6,9,10-ヘキサブロモシクロドデカンが水質及び生物で不検出であった以外は全て検出された。

N,N-ジメチルホルムアミドについては、調査を実施した水質、底質及び大気で検出された。 物質(群)別の調査結果は、次のとおりである。

[1] PCB 類

調査の経緯及び実施状況

PCB (ポリ塩化ビフェニル)類は、絶縁油等に利用されていた。難分解性で、生物に蓄積しやすくかつ慢性毒性を有するため、昭和49年6月に化審法に基づく第一種特定化学物質に指定されている。

平成13年度までの継続的調査においては、「生物モニタリング」ⁱⁱ⁾で昭和53年度から平成13年度の全期間にわたって生物(貝類、魚類及び鳥類)について調査しており、「非意図的生成化学物質汚染実態追跡調査」ⁱⁱⁱ⁾で平成8年度及び平成9年度に底質及び生物(魚類)、平成12年度及び平成13年度に水質、底質、生物(魚類)及び大気の調査を実施している。

平成14年度以降のモニタリング調査では、水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を 毎年度実施している。

•調査結果

<水質>

水質については、49 地点を調査し、検出下限値 1.7pg/L において49 地点全てで検出され、検出濃度は16~2,100pg/L の範囲であった。平成14年度から平成23年度における経年分析の結果、河川域、湖沼域及び河口域の減少傾向が統計的に有意と判定された。また、水質全体としても減少傾向が統計的に有意と判定された。

○平成 14~23 年度における水質についての PCB 類 (総量) の検出状況

PCB 類(総量)	実施年度	幾何	中央値	最大値	最小值	定量[検出]	注出] 検出頻度	
FCD 類(秘里)	天旭千度	平均值※	十大旭	取八胆	取小恒	下限值※※	検体	地点
	H14	470	330	11,000	60	7.4 [2.5]	114/114	38/38
	H15	530	450	3,100	230	9.4 [2.5]	36/36	36/36
	H16	630	540	4,400	140	14 [5.0]	38/38	38/38
	H17	520	370	7,800	140	10 [3.2]	47/47	47/47
水質	H18	240	200	4,300	15	9 [3]	48/48	48/48
(pg/L)	H19	180	140	2,700	12	7.6 [2.9]	48/48	48/48
	H20	260	250	4,300	27	7.8 [3.0]	48/48	48/48
	H21	210	170	3,900	14	10 [4]	48/48	48/48
	H22	120	99	2,200	nd	73 [24]	41/49	41/49
	H23	150	130	2,100	16	4.5 [1.7]	49/49	49/49

⁽注1)※:平成14年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<底質>

底質については、64 地点を調査し、検出下限値 4.5pg/g-dry において 64 地点全てで検出され、検出濃度は $24\sim950,000pg/g$ -dry の範囲であった。

⁽注2) ※※: 定量[検出]下限値は、同族体ごとの定量[検出]下限値の合計とした。

○平成 14~23 年度における底質についての PCB 類 (総量) の検出状況

PCB 類(総量)	実施年度	幾何 平均値 ※	中央値	最大値	最小値	定量[検出]	検出	頻度
PCD 類(秘里)			中大恒	取八胆	取ЛШ	下限值※※		地点
	H14	11,000	11,000	630,000	39	10 [3.5]	189/189	63/63
	H15	9,400	9,500	5,600,000	39	10 [3.2]	186/186	62/62
	H16	8,400	7,600	1,300,000	38	7.9 [2.6]	189/189	63/63
	H17	8,600	7,100	690,000	42	6.3 [2.1]	189/189	63/63
底質	H18	8,800	6,600	690,000	36	4 [1]	192/192	64/64
(pg/g-dry)	H19	7,400	6,800	820,000	19	4.7 [1.5]	192/192	64/64
	H20	8,700	8,900	630,000	22	3.3 [1.2]	192/192	64/64
	H21	7,600	7,100	1,700,000	17	5.1 [2.1]	192/192	64/64
	H22	6,500	7,800	710,000	nd	660 [220]	56/64	56/64
	H23	6,300	7,400	950,000	24	12 [4.5]	64/64	64/64

⁽注1)※: 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何 平均値を求めた。

<生物>

生物のうち貝類については、4 地点を調査し、検出下限値 74pg/g-wet において 4 地点全てで検出され、 検出濃度は $820\sim65,000$ pg/g-wet の範囲であった。魚類については、18 地点を調査し、検出下限値 74pg/g-wet において 18 地点全てで検出され、検出濃度は $900\sim250,000$ pg/g-wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 74pg/g-wet において検出され、検出濃度は 5,400pg/g-wet であった。

〇平成 14~23 年度における生物(貝類、魚類及び鳥類)についての PCB 類(総量)の検出状況

DCD 粨(炒具)	字坛左连	幾何	由由居	具土樹	具 小 <i>估</i>	定量[検出]	検出	頻度
PCB 類(総量)	実施年度	平均值※	中央値	最大値	最小値	下限值※※	検体	地点
	H14	8,800	28,000	160,000	200	25 [8.4]	38/38	8/8
	H15	11,000	9,600	130,000	1,000	50 [17]	30/30	6/6
	H16	11,000	11,000	150,000	1,500	85 [29]	31/31	7/7
	H17	11,000	13,000	85,000	920	69 [23]	31/31	7/7
貝類	H18	8,500	8,600	77,000	690	42 [14]	31/31	7/7
(pg/g-wet)	H19	9,000	11,000	66,000	980	46 [18]	31/31	7/7
	H20	8,600	8,600	69,000	870	47 [17]	31/31	7/7
	H21	8,700	11,000	62,000	780	32 [11]	31/31	7/7
	H22	9,200	11,000	46,000	1,500	52 [20]	6/6	6/6
	H23	8,900	17,000	65,000	820	220 [74]	4/4	4/4
	H14	17,000	8,100	550,000	1,500	25 [8.4]	70/70	14/14
	H15	11,000	9,600	150,000	870	50 [17]	70/70	14/14
	H16	15,000	10,000	540,000	990	85 [29]	70/70	14/14
	H17	14,000	8,600	540,000	800	69 [23]	80/80	16/16
魚類	H18	13,000	9,000	310,000	990	42 [14]	80/80	16/16
(pg/g-wet)	H19	11,000	6,200	530,000	790	46 [18]	80/80	16/16
400	H20	12,000	9,100	330,000	1,200	47 [17]	85/85	17/17
	H21	12,000	12,000	290,000	840	32 [11]	90/90	18/18
	H22	13,000	10,000	260,000	880	52 [20]	18/18	18/18
	H23	14,000	12,000	250,000	900	220 [74]	18/18	18/18
	H14	12,000	14,000	22,000	4,800	25 [8.4]	10/10	2/2
	H15	19,000	22,000	42,000	6,800	50 [17]	10/10	2/2
	H16	9,000	9,400	13,000	5,900	85 [29]	10/10	2/2
	H17	10,000	9,700	19,000	5,600	69 [23]	10/10	2/2
鳥類	H18	12,000	9,800	48,000	5,600	42 [14]	10/10	2/2
(pg/g-wet)	H19	7,600	7,800	15,000	3,900	46 [18]	10/10	2/2
	H20	9,700	7,400	56,000	3,000	47 [17]	10/10	2/2
	H21	5,900	5,700	9,500	3,900	32 [11]	10/10	2/2
	H22	7,700		9,100	6,600	52 [20]	2/2	2/2
	H23			5,400	5,400	220 [74]	1/1	1/1
(注1) ツ. 亚出1/	4 F = 2 > 3	出 01 左座以	. A III E) =	しいし マ かんかい	正投 はたまみ	フの営化団は	5 H 2 . 8 . A III	. H m 616 /-

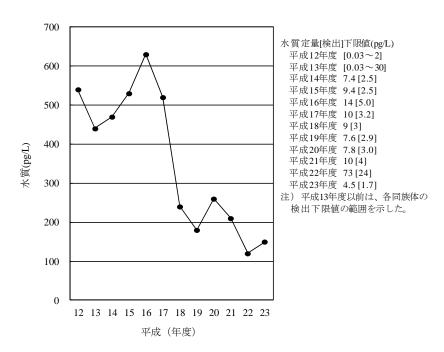
⁽注1)※: 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何 平均値を求めた。

⁽注2) ※※: 定量[検出]下限値は、同族体ごとの定量[検出]下限値の合計とした。

⁽注2) ※※:定量[検出]下限値は、同族体ごとの定量[検出]下限値の合計とした。

<大気>

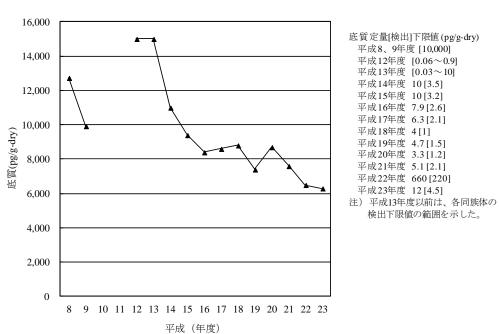
大気の温暖期については、35 地点を調査し、検出下限値 $5.9 pg/m^3$ において 35 地点全てで検出され、検出濃度は $32\sim660 pg/m^3$ の範囲であった。寒冷期については、37 地点を調査し、検出下限値 $5.9 pg/m^3$ において 37 地点全てで検出され、検出濃度は $tr(17)\sim320 pg/m^3$ の範囲であった。


○平成14~23年度における大気についてのPCB類(総量)の検出状況

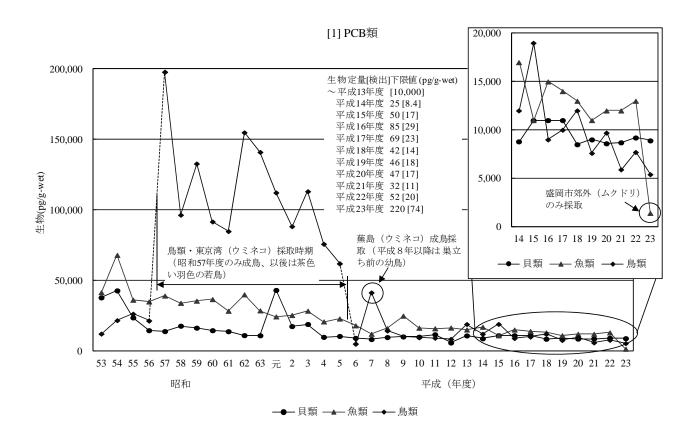
PCB 類(総量)	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出頻度	
PCD 類(秘里)	天旭 中及	平均値	中大恒	取八胆	取小胆	下限值※	検体	地点
	ЖЖН14	100	100	880	16	99 [33]	102/102	34/34
	H15 温暖期	260	340	2,600	36	6 6 [2 2]	35/35	35/35
	H15 寒冷期	110	120	630	17	6.6 [2.2]	34/34	34/34
	H16 温暖期	240	250	3,300	25	2.0.10.091	37/37	37/37
	H16寒冷期	130	130	1,500	20	2.9 [0.98]	37/37	37/37
	H17 温暖期	190	210	1,500	23	0.38 [0.14]	37/37	37/37
	H17寒冷期	66	64	380	20	0.38 [0.14]	37/37	37/37
	H18 温暖期	170	180	1,500	21	0.8 [0.3]	37/37	37/37
大気	H18 寒冷期	82	90	450	19	0.8 [0.3] 	37/37	37/37
(pg/m^3)	H19 温暖期	250	290	980	37	0.37 [0.13]	24/24	24/24
(pg/III)	H19寒冷期	72	76	230	25		22/22	22/22
	H20 温暖期	200	170	960	52	0.8 [0.3]	22/22	22/22
	H20 寒冷期	93	86	1,500	21	0.8 [0.3] 	36/36	36/36
	H21 温暖期	200	190	1,400	43	0.75 [0.26]	34/34	34/34
	H21 寒冷期	85	78	380	20	0.73 [0.20]	34/34	34/34
	H22 温暖期	160	150	970	36	7 2 [2 5]	35/35	35/35
	H22 寒冷期	84	86	630	19	7.3 [2.5]	35/35	35/35
	H23 温暖期	150	160	660	32	18 [5.9]	35/35	35/35
	H23 寒冷期	76	66	320	tr(17)	[]	37/37	37/37

⁽注1)※:定量[検出]下限値は、同族体ごとの定量[検出]下限値の合計とした。

⁽注2) ※※: 平成 14 年度の調査においては、特に低塩素化同族体の測定方法に技術的問題があったため、参考値として扱う。


[1] PCB類

- (注 1) PCB 類の水質については、継続的調査において平成 11 年度以前に調査が実施されていない。
- (注2) 平成14年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。


図 7-1-1 PCB 類の水質の経年変化(幾何平均値)

- (注1) PCB 類の底質については、継続的調査において平成7年度以前に調査が実施されていない。
- (注 2) 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を 求めた。

図 7-1-2 PCB 類の底質の経年変化(幾何平均値)

(注) 平成 21 年度以前は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-1-3 PCB 類の生物の経年変化 (幾何平均値)

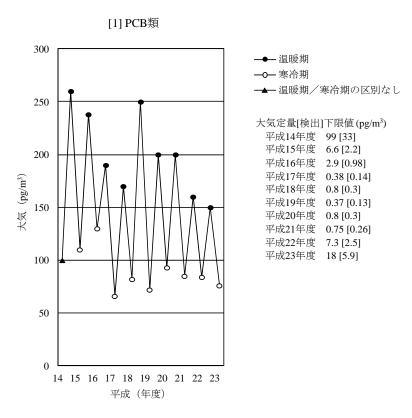


図 7-1-4 PCB 類の大気の経年変化(幾何平均値)

[2] HCB

・調査の経緯及び実施状況

HCB は、殺虫剤等原料に利用されていた。昭和 54 年 8 月に、化審法に基づく第一種特定化学物質に指定されている。

平成 13 年度までの継続的調査においては、「生物モニタリング」 ⁱⁱ⁾ で昭和 53 年度から平成 8 年度までの毎年度と平成 10 年度、平成 12 年度及び平成 13 年度に生物(貝類、魚類及び鳥類)について調査を実施し、「水質・底質モニタリング」 ⁱ⁾ で水質は昭和 61 年度から平成 10 年度まで、底質は昭和 61 年度から平成 13 年度の全期間にわたって調査を実施している。

平成14年度以降のモニタリング調査では、水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を 毎年度実施している。

•調査結果

<水質>

水質については、49 地点を調査し、検出下限値 2pg/L において49 地点全てで検出され、検出濃度はtr(3) ~140pg/L の範囲であった。平成14 年度から平成23 年度における経年分析の結果、河川域及び河口域の減少傾向が統計的に有意と判定され、海域の調査期間の後期で得られた結果が前期と比べ低値であることが示唆された。また、水質全体としても減少傾向が統計的に有意と判定された。

○平成 14~23 年度における水質についての HCB の検出状況

НСВ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
псь	天 旭十及	平均值※	中大恒	取八胆	取小胆	下限値	検体	地点
	H14	37	28	1,400	9.8	0.6 [0.2]	114/114	38/38
	H15	29	24	340	11	5 [2]	36/36	36/36
	H16	30	tr(29)	180	tr(11)	30 [8]	38/38	38/38
	H17	21	17	210	tr(6)	15 [5]	47/47	47/47
水質	H18	16	tr(12)	190	nd	16 [5]	46/48	46/48
(pg/L)	H19	17	14	190	tr(4)	8 [3]	48/48	48/48
	H20	16	13	480	4	3 [1]	48/48	48/48
	H21	15	17	180	2.4	0.5 [0.2]	49/49	49/49
	H22	tr(10)	tr(8)	120	nd	13 [4]	39/49	39/49
	H23	13	12	140	tr(3)	5 [2]	49/49	49/49

⁽注)※: 平成14年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<底質>

底質については、64 地点を調査し、検出下限値 3pg/g-dry において64 地点全てで検出され、検出濃度は 11~35,000pg/g-dry の範囲であった。

○平成 14~23 年度における底質についての HCB の検出状況

НСВ	実施年度	_年	中央値	最大値	最小値	定量[検出]	検出	頻度
псь	天旭十尺	平均值※	中大恒	取八胆	取小胆	下限値	検体	地点
	H14	240	200	19,000	7.6	0.9 [0.3]	189/189	63/63
	H15	160	120	42,000	5	4 [2]	186/186	62/62
	H16	140	100	25,000	tr(6)	7 [3]	189/189	63/63
	H17	170	130	22,000	13	3 [1]	189/189	63/63
底質	H18	180	120	19,000	10	2.9 [1.0]	192/192	64/64
(pg/g-dry)	H19	140	110	65,000	nd	5 [2]	191/192	64/64
	H20	160	97	29,000	4.4	2.0 [0.8]	192/192	64/64
	H21	150	120	34,000	nd	1.8 [0.7]	190/192	64/64
	H22	130	96	21,000	4	3 [1]	64/64	64/64
	H23	150	110	35,000	11	7 [3]	64/64	64/64

(注) ※: 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

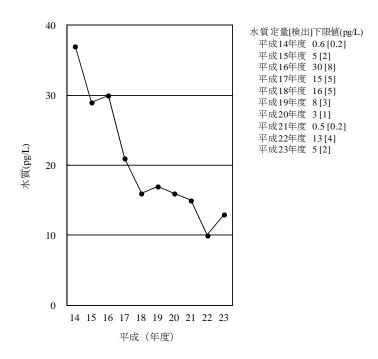
<生物>

生物のうち貝類については、4 地点を調査し、検出下限値 1pg/g-wet において 4 地点全てで検出され、検出濃度は $4\sim920pg/g$ -wet の範囲であった。魚類については、18 地点を調査し、検出下限値 1pg/g-wet において 18 地点全で検出され、検出濃度は $34\sim1,500pg/g$ -wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 1pg/g-wet において検出され、検出濃度は 460pg/g-wet であった。

○平成 14~23 年度における生物(貝類、魚類及び鳥類)についての HCB の検出状況

14,~23 午及(にわける生物	<u> </u>	は類及い局質			<u>ク快田状況</u> 定量[検出]		組座
HCB	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	ティスグラグ 地点
	H14	21	22	330	2.4	0.18 [0.06]	38/38	8/8
	H15	44	27	660	tr(21)	23 [7.5]	30/30	6/6
	H16	32	31	80	14	14 [4.6]	31/31	7/7
	H17	51	28	450	19	11 [3.8]	31/31	7/7
貝類	H18	46	28	340	11	3 [1]	31/31	7/7
(pg/g-wet)	H19	37	22	400	11	7 [3]	31/31	7/7
	H20	38	24	240	13	7 [3]	31/31	7/7
	H21	34	32	200	12	4 [2]	31/31	7/7
	H22	34	48	210	tr(4)	5 [2]	6/6	6/6
	H23	45	34	920	4	4 [1]	4/4	4/4
	H14	140	180	910	19	0.18 [0.06]	70/70	14/14
	H15	180	170	1,500	28	23 [7.5]	70/70	14/14
	H16	230	210	1,800	26	14 [4.6]	70/70	14/14
	H17	180	160	1,700	29	11 [3.8]	80/80	16/16
魚類	H18	180	220	1,400	25	3 [1]	80/80	16/16
(pg/g-wet)	H19	160	140	1,500	17	7 [3]	80/80	16/16
	H20	170	210	1,500	25	7 [3]	85/85	17/17
	H21	210	180	30,000	29	4 [2]	90/90	18/18
	H22	240	280	1,700	36	5 [2]	18/18	18/18
	H23	260	320	1,500	34	4 [1]	18/18	18/18
	H14	1,000	1,200	1,600	560	0.18 [0.06]	10/10	2/2
	H15	1,800	2,000	4,700	790	23 [7.5]	10/10	2/2
	H16	980	1,300	2,200	410	14 [4.6]	10/10	2/2
	H17	1,000	1,100	2,500	400	11 [3.8]	10/10	2/2
鳥類	H18	970	1,100	2,100	490	3 [1]	10/10	2/2
(pg/g-wet)	H19	960	1,100	2,000	420	7 [3]	10/10	2/2
	H20	880	1,100	2,500	240	7 [3]	10/10	2/2
	H21	850	910	1,500	400	4 [2]	10/10	2/2
	H22	970		1,900	500	5 [2]	2/2	2/2
	H23			460	460	4 [1]	1/1	1/1

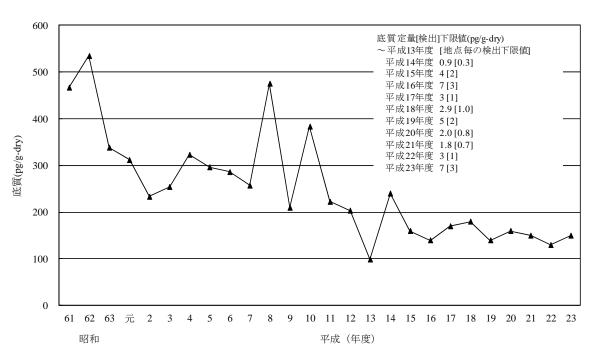
⁽注) ※: 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。


<大気>

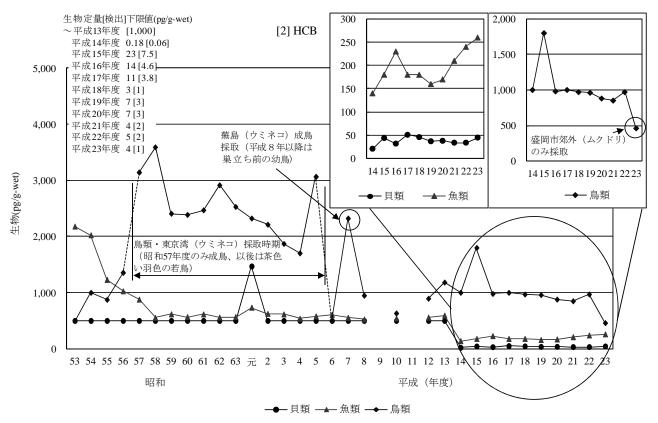
大気の温暖期については、35 地点を調査し、検出下限値 $0.75 pg/m^3$ において 35 地点全てで検出され、検出濃度は $87 \sim 180 pg/m^3$ の範囲であった。寒冷期については、37 地点を調査し、検出下限値 $0.75 pg/m^3$ において 37 地点全てで検出され、検出濃度は $75 \sim 160 pg/m^3$ の範囲であった。

○平成14~23年度における大気についての HCB の検出状況

		414 (B -1 \ 11 -	11. A.I	LT H
HCB	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出]		
						下限値	検出 検体 102/102 35/35 34/34 37/37 37/37 37/37 37/37 24/24 22/22 22/22 36/36 34/34 34/34 37/37 37/37 35/35	地点
	H14	99	93	3,000	57	0.9 [0.3]		34/34
	H15 温暖期	150	130	430	81	2.3 [0.78]	35/35	35/35
	H15 寒冷期	94	90	320	64	2.3 [0.76]	34/34	34/34
	H16 温暖期	130	130	430	47	1.1 [0.37]	37/37	37/37
	H16寒冷期	98	89	390	51	1.1 [0.37]	37/37	37/37
	H17 温暖期	88	90	250	27	0.14 [0.034]	37/37	37/37
	H17 寒冷期	77	68	180	44		37/37	37/37
	H18 温暖期	83	89	210	23	0.21 [0.07]	37/37	37/37
1. /=	H18 寒冷期	65	74	170	8.2		37/37	37/37
大気	H19 温暖期	110	100	230	72	0.09 [0.03]	24/24	24/24
(pg/m^3)	H19寒冷期	77	72	120	55		22/22	22/22
	H20 温暖期	120	110	260	78	0.22 [0.00]	22/22	22/22
	H20寒冷期	87	83	160	58	0.22 [0.08]	36/36	36/30
	H21 温暖期	110	110	210	78	0 6 10 21	34/34	34/34
	H21 寒冷期	87	87	150	59	0.6 [0.2]	34/34	34/34
	H22 温暖期	120	120	160	73	1.0.10.71	37/37	37/37
	H22 寒冷期	100	96	380	56	1.8 [0.7]	37/37	37/37
	H23 温暖期	120	110	180	87	2.2.[0.75]	35/35	35/35
	H23 寒冷期	96	96	160	75	2.3 [0.75]	37/37	37/3



(注) 平成14年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。


図 7-2-1 HCB の水質の経年変化(幾何平均値)

[2] HCB

(注) 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた

図 7-2-2 HCB の底質の経年変化(幾何平均値)

(注) 平成 21 年度以前は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-2-3 HCB の生物の経年変化(幾何平均値)

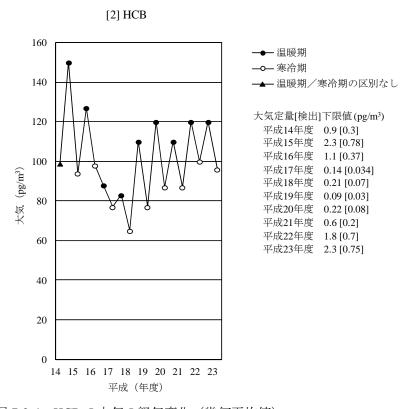


図 7-2-4 HCB の大気の経年変化(幾何平均値)

[3] アルドリン (参考)

調査の経緯及び実施状況

アルドリンは、日本では土壌害虫の駆除に使用されていたが、昭和46年以降実質的に使用は中止された。 農薬取締法に基づく登録は昭和50年に失効し、昭和56年10月には化審法に基づく第一種特定化学物質に 指定されている。

平成13年度までの継続的調査においては、「生物モニタリング」ⁱⁱ⁾で昭和53年度から平成元年度並びに平成3年度及び平成5年度にて生物(貝類、魚類及び鳥類)について調査している。

平成 14 年度以降のモニタリング調査においては、平成 14 年度から平成 21 年度の毎年度に水質、底質、 生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

平成 22 年度及び平成 23 年度は調査を実施していないため、参考として以下に、平成 21 年度までの調査 結果を示す。

・平成21年度までの調査結果

<水質>

○平成14~21年度における水質についてのアルドリンの検出状況

アルドリン	実施年度	幾何 平均値※	中央値	最大値	最小値	定量[検出]	検出頻度	
770190			十大旭	取八胆	取力们直	下限値	検体	地点
	H14	0.8	0.9	18	nd	0.6 [0.2]	93/114	37/38
	H15	0.9	0.9	3.8	nd	0.6 [0.2]	34/36	34/36
	H16	tr(1.5)	tr(1.8)	13	nd	2 [0.4]	33/38	33/38
水質	H17	tr(0.6)	tr(0.7)	5.7	nd	0.9 [0.3]	32/47	32/47
(pg/L)	H18	nd	nd	4.4	nd	1.7 [0.6]	18/48	18/48
	H19	tr(0.6)	tr(0.6)	9.5	nd	1.0 [0.3]	34/48	34/48
	H20	tr(0.8)	tr(0.7)	21	nd	1.4 [0.6]	26/48	26/48
	H21	0.7	0.9	22	nd	0.7 [0.3]	32/49	32/49

⁽注)※: 平成14年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<底質>

○平成14~21年度における底質についてのアルドリンの検出状況

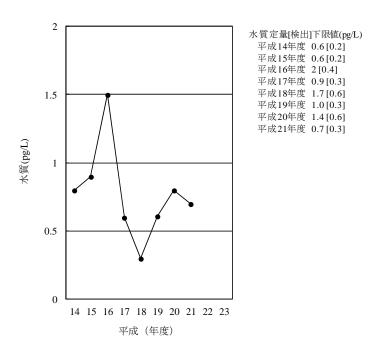
アルドリン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出頻	頁度
772192	天旭十尺	平均值※	中大恒	取八胆	取小胆	下限値	検体	地点
	H14	14	12	570	nd	6 [2]	149/189	56/63
	H15	19	18	1,000	nd	2 [0.6]	178/186	60/62
	H16	10	10	390	nd	2 [0.6]	170/189	62/63
底質	H17	8.4	7.1	500	nd	1.4 [0.5]	173/189	62/63
(pg/g-dry)	H18	10	9.3	330	nd	1.9 [0.6]	184/192	64/64
	H19	7.5	6.7	330	nd	1.8 [0.6]	172/192	60/64
	H20	6	6	370	nd	3 [1]	153/192	56/64
	H21	8.9	7.8	540	nd	0.5 [0.2]	180/192	64/64

⁽注) ※: 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>

○平成14~21年度における生物(貝類、魚類及び鳥類)についてのアルドリンの検出状況

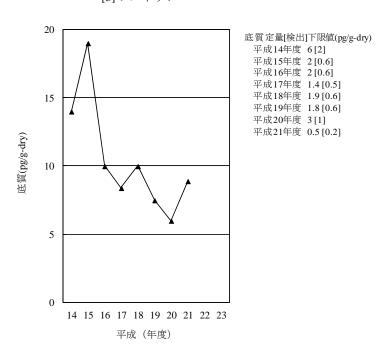
ア	ルドリン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
	ルトッン	天旭十尺	平均值※	中大恒	取八胆	取小胆	下限値	検体	地点
<u></u>		H14	tr(1.6)	nd	34	nd	4.2 [1.4]	12/38	4/8
		H15	tr(1.7)	tr(0.85)	51	nd	2.5 [0.84]	15/30	3/6
		H16	tr(2.5)	tr(1.6)	46	nd	4.0 [1.3]	16/31	4/7
	貝類	H17	tr(1.8)	nd	84	nd	3.5 [1.2]	11/31	3/7
(p	og/g-wet)	H18	tr(2)	nd	19	nd	4 [2]	11/31	3/7
		H19	tr(2)	nd	26	nd	5 [2]	5/31	2/7
		H20	tr(2)	nd	20	nd	5 [2]	5/31	3/7
		H21	tr(1.6)	tr(0.8)	89	nd	2.1 [0.8]	16/31	6/7
		H14	nd	nd	tr(2.0)	nd	4.2 [1.4]	1/70	1/14
		H15	nd	nd	tr(1.9)	nd	2.5 [0.84]	16/70	7/14
		H16	nd	nd	tr(2.4)	nd	4.0 [1.3]	5/70	2/14
	魚類	H17	nd	nd	6.4	nd	3.5 [1.2]	11/80	5/16
(p	og/g-wet)	H18	nd	nd	tr(2)	nd	4 [2]	2/80	2/16
		H19	nd	nd	tr(2)	nd	5 [2]	2/80	2/16
		H20	nd	nd	tr(2)	nd	5 [2]	1/85	1/17
		H21	nd	nd	3.1	nd	2.1 [0.8]	22/90	7/18
		H14	nd	nd	nd	nd	4.2 [1.4]	0/10	0/2
		H15	nd	nd	nd	nd	2.5 [0.84]	0/10	0/2
		H16	nd	nd	nd	nd	4.0 [1.3]	0/10	0/2
	鳥類	H17	nd	nd	nd	nd	3.5 [1.2]	0/10	0/2
(t	og/g-wet)	H18	nd	nd	nd	nd	4 [2]	0/10	0/2
		H19	nd	nd	nd	nd	5 [2]	0/10	0/2
		H20	nd	nd	nd	nd	5 [2]	0/10	0/2
		H21	nd	nd	nd	nd	2.1 [0.8]	0/10	0/2


⁽注) ※: 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<大気>

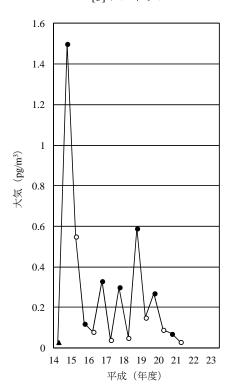
○平成14~21年度における大気についてのアルドリンの検出状況

アルドリン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出頻度	
ノルドリン	夫	平均値	平均値	取入但	取小胆	下限値	検体	地点
	H14	tr(0.030)	nd	3.2	nd	0.060 [0.020]	41/102	19/34
	H15 温暖期	1.5	1.9	28	nd	0.023 [0.0077]	34/35	34/35
	H15寒冷期	0.55	0.44	6.9	0.030	0.023 [0.0077]	34/34	34/34
	H16 温暖期	tr(0.12)	nd	14	nd	0.15 [0.05]	15/37	15/37
	H16寒冷期	tr(0.08)	nd	13	nd		14/37	14/37
	H17 温暖期	0.33	0.56	10	nd	0.08 [0.03]	29/37	29/37
I 🗁	H17寒冷期	tr(0.04)	nd	1.8	nd		9/37	9/37
大気	H18 温暖期	0.30	0.35	8.5	nd	0.14 [0.05]	31/37	31/37
(pg/m^3)	H18 寒冷期	tr(0.05)	nd	1.1	nd		16/37	16/37
	H19 温暖期	0.58	0.48	19	nd	0.05 [0.02]	35/36	35/36
	H19 寒冷期	0.14	0.15	2.1	nd		34/36	34/36
	H20 温暖期	0.27	0.30	9.4	tr(0.02)	0.04.00.021	25/25	25/25
	H20寒冷期	0.09	0.08	1.3	nd	0.04 [0.02]	22/25	22/25
	H21 温暖期	0.07	nd	10	nd	0.04 [0.02]	10/25	10/25
	H21 寒冷期	tr(0.03)	nd	1.8	nd		8/24	8/24


[3] アルドリン

(注) 平成14年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

図 7-3-1 アルドリンの水質の経年変化 (幾何平均値)


[3] アルドリン

(注) 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

図 7-3-2 アルドリンの底質の経年変化 (幾何平均値)

[3] アルドリン

── 温暖期

—o— 寒冷期

━━ 温暖期/寒冷期の区別なし

大気定量[検出]下限値(pg/m³)
平成14年度 0.060 [0.020]
平成15年度 0.023 [0.0077]
平成16年度 0.15 [0.05]
平成17年度 0.08 [0.03]
平成18年度 0.14 [0.05]
平成19年度 0.05 [0.02]
平成20年度 0.04 [0.02]
平成21年度 0.04 [0.02]

図 7-3-3 アルドリンの大気の経年変化 (幾何平均値)

[4] ディルドリン

・調査の経緯及び実施状況

ディルドリンの農薬としての使用は、昭和 30 年代がピークであったといわれ、昭和 46 年に農薬取締法に基づく土壌残留性農薬に指定され、昭和 50 年には同法に基づく登録が失効した。しかし、ディルドリンはその後もシロアリ防除剤として使われていた。昭和 56 年 10 月、化審法に基づく第一種特定化学物質に指定されている。

平成 13 年度までの継続的調査においては、「生物モニタリング」ⁱⁱ⁾ で昭和 53 年度から平成 8 年度までの毎年度と平成 10 年度、平成 12 年度及び平成 13 年度に生物(貝類、魚類及び鳥類)について調査を実施し、「水質・底質モニタリング」ⁱ⁾ で水質は昭和 61 年度から平成 10 年度まで、底質は昭和 61 年度から平成 13 年度の全期間にわたって調査を実施している。

平成 14 年度以降のモニタリング調査においては、平成 14 年度から平成 21 年度の毎年度及び平成 23 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

•調査結果

<水質>

水質については、49地点を調査し、検出下限値0.6pg/Lにおいて49地点全てで検出され、検出濃度は2.1 ~300pg/L の範囲であった。

○平成14~21年度及び平成23年度における水質についてのディルドリンの検出状況

ディルドリン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ノイルドリン	天旭中及	平均值※	中大恒	取八胆	取小胆	下限値	検体	地点
	H14	42	41	940	3.3	1.8 [0.6]	114/114	38/38
	H15	57	57	510	9.7	0.7 [0.3]	36/36	36/36
	H16	55	51	430	9	2 [0.5]	38/38	38/38
水質	H17	39	49	630	4.5	1.0 [0.34]	47/47	47/47
	H18	36	32	800	6	3 [1]	48/48	48/48
(pg/L)	H19	38	36	750	3.1	2.1 [0.7]	48/48	48/48
	H20	36	37	450	3.6	1.5 [0.6]	48/48	48/48
	H21	36	32	650	2.7	0.6 [0.2]	49/49	49/49
	H23	33	38	300	2.1	1.6 [0.6]	49/49	49/49

⁽注1)※: 平成14年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<底質>

底質については、64 地点を調査し、検出下限値 2pg/g-dry において 64 地点全てで検出され、検出濃度は $2\sim2,200pg/g$ -dry の範囲であった。

⁽注2) 平成22年度は調査を実施していない。

○平成 14~21 年度及び平成 23 年度における底質についてのディルドリンの検出状況

ディルドリン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ノイルドック	天旭中及	平均值※	中大旭	取八胆	取力加	下限値	検体	地点
	H14	70	51	2,300	4	3 [1]	189/189	63/63
	H15	66	56	9,100	nd	4 [2]	184/186	62/62
	H16	65	62	3,700	tr(1.9)	3 [0.9]	189/189	63/63
底質	H17	61	55	4,200	tr(2)	3 [1]	189/189	63/63
	H18	61	54	1,500	tr(1.7)	2.9 [1.0]	192/192	64/64
(pg/g-dry)	H19	49	40	2,700	tr(1.2)	2.7 [0.9]	192/192	64/64
	H20	48	43	2,900	tr(0.7)	1.2 [0.5]	192/192	64/64
	H21	51	47	3,000	1.1	0.8 [0.3]	192/192	64/64
	H23	47	44	2,200	2	5 [2]	64/64	64/64

⁽注 1) ※: 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>

生物については、生物のうち貝類については、4 地点を調査し、検出下限値 1pg/g-wet において 4 地点全てで検出され、検出濃度は $16\sim3,800$ pg/g-wet の範囲であった。魚類については、18 地点を調査し、検出下限値 1pg/g-wet において 18 地点全で検出され、検出濃度は $17\sim1,100$ pg/g-wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 1pg/g-wet において検出され、検出濃度は 770pg/g-wet であった。

○平成14~21年度及び平成23年度における生物(貝類、魚類及び鳥類)についてのディルドリンの検出状況

= bu.v	安长左帝	幾何	中 由 /古	目.上/法	目. 小. 店	定量[検出]	検出	頻度
ディルドリン	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	H14	440	390	190,000	tr(7)	12 [4]	38/38	8/8
	H15	440	160	78,000	46	4.8 [1.6]	30/30	6/6
	H16	630	270	69,000	42	31 [10]	31/31	7/7
貝類	H17	500	140	39,000	34	9.4 [3.4]	31/31	7/7
	H18	450	120	47,000	30	7 [3]	31/31	7/7
(pg/g-wet)	H19	380	110	77,000	37	9 [3]	31/31	7/7
	H20	430	150	24,000	47	9 [3]	31/31	7/7
	H21	490	230	28,000	48	7 [2]	31/31	7/7
	H23	390	690	3,800	16	3 [1]	4/4	4/4
	H14	290	270	2,400	46	12 [4]	70/70	14/14
	H15	220	200	1,000	29	4.8 [1.6]	70/70	14/14
	H16	250	230	2,800	tr(23)	31 [10]	70/70	14/14
魚類	H17	230	250	1,400	21	9.4 [3.4]	80/80	16/16
	H18	230	220	1,400	19	7 [3]	80/80	16/16
(pg/g-wet)	H19	250	210	1,900	23	9 [3]	80/80	16/16
	H20	240	240	1,300	15	9 [3]	85/85	17/17
	H21	240	190	1,400	29	7 [2]	90/90	18/18
	H23	270	340	1,100	17	3 [1]	18/18	18/18
	H14	1,100	1,100	1,700	820	12 [4]	10/10	2/2
	H15	1,300	1,400	2,200	790	4.8 [1.6]	10/10	2/2
	H16	600	610	960	370	31 [10]	10/10	2/2
鳥類	H17	830	740	1,800	500	9.4 [3.4]	10/10	2/2
	H18	700	690	1,300	440	7 [3]	10/10	2/2
(pg/g-wet)	H19	710	710	910	560	9 [3]	10/10	2/2
	H20	680	620	1,300	260	9 [3]	10/10	2/2
	H21	470	420	890	330	7 [2]	10/10	2/2
	H23			770	770	3 [1]	1/1	1/1

⁽注 1) ※: 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

⁽注2) 平成22年度は調査を実施していない。

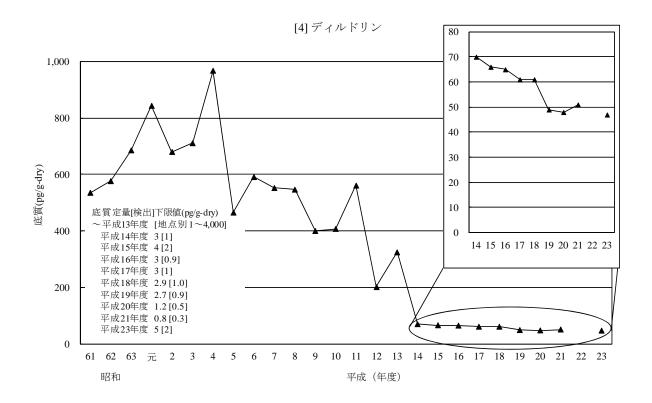
⁽注2) 平成22年度は調査を実施していない。

<大気>

大気の温暖期については、35 地点を調査し、検出下限値 $0.14pg/m^3$ において 35 地点全てで検出され、検出濃度は $0.80\sim230pg/m^3$ の範囲であった。寒冷期については、37 地点を調査し、検出下限値 $0.14pg/m^3$ において 37 地点全てで検出され、検出濃度は $0.52\sim96pg/m^3$ の範囲であった。

○平成 14~21 年度及び平成 23 年度における大気についてのディルドリンの検出状況

ディルドリン	実施年度	幾何		最大値	最小値	定量[検出]	検出	頻度
ティルドサン		平均値	中央値	取入恒	取小胆	下限値	検体	地点
	H14	5.6	5.4	110	0.73	0.60 [0.20]	102/102	34/34
	H15 温暖期	19	22	260	2.1	2.1 [0.70]	35/35	35/35
	H15 寒冷期	5.7	5.2	110	tr(0.82)	2.1 [0.70]	34/34	34/34
	H16 温暖期	17	22	280	1.1	0.22 [0.11]	37/37	37/37
	H16寒冷期	5.5	6.9	76	0.81	0.33 [0.11]	37/37	37/37
	H17 温暖期	14	12	200	1.5	0.54 [0.24]	37/37	37/37
	H17 寒冷期	3.9	3.6	50	0.88		37/37	37/37
1.6	H18 温暖期	15	14	290	1.5		37/37	37/37
大気	H18 寒冷期	4.5	4.2	250	0.7	0.3 [0.1]	37/37	37/37
(pg/m^3)	H19 温暖期	19	22	310	1.3	0.19 [0.07]	36/36	36/36
	H19 寒冷期	4.5	3.7	75	0.96	0.18 [0.07]	36/36	36/36
	H20 温暖期	14	16	220	1.6	0.24 [0.00]	37/37	37/37
	H20寒冷期	4.9	3.8	72	0.68	0.24 [0.09]	37/37	37/37
	H21 温暖期	13	13	150	0.91	0.06.10.021	37/37	37/37
	H21 寒冷期	4.5	4.0	80	0.52	0.06 [0.02]	37/37	37/37
	H23 温暖期	12	15	230	0.80	0.42 [0.14]	35/35	35/35
	H23 寒冷期	4.3	4.9	96	0.52	0.42 [0.14]	37/37	37/37


⁽注) 平成22年度は調査を実施していない。

[4] ディルドリン

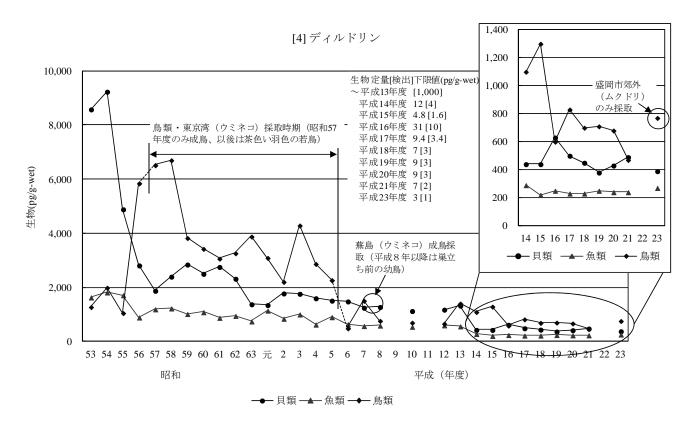

- (注1) 平成14年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 平成22年度は調査を実施していない。

図 7-4-1 ディルドリンの水質の経年変化(幾何平均値)

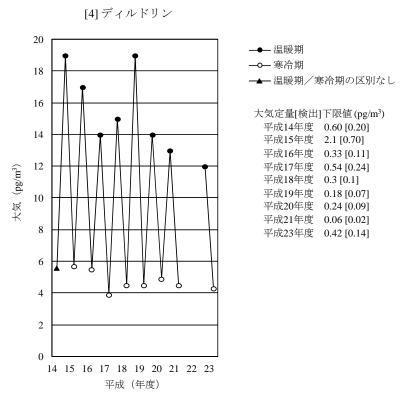

- (注1) 平成14年度から平成21年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を 求めた。
- (注2) 平成22年度は調査を実施していない。

図 7-4-2 ディルドリンの底質の経年変化(幾何平均値)

(注1) 平成21年度以前は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 (注2) 平成22年度は調査を実施していない。

図 7-4-3 ディルドリンの生物の経年変化(幾何平均値)

(注) 平成22年度は調査を実施していない。 図7-4-4 ディルドリンの大気の経年変化(幾何平均値)

[5] エンドリン

・調査の経緯及び実施状況

エンドリンは、殺虫剤、殺鼠剤として利用されたが、昭和 50 年に農薬取締法に基づく登録は失効し、 昭和 56 年 10 月に化審法に基づく第一種特定化学物質に指定されている。

平成13年度までの継続的調査においては、「生物モニタリング」ⁱⁱ⁾で昭和53年度から平成元年度並びに平成3年度及び平成5年度にて生物(貝類、魚類及び鳥類)について調査している。

平成 14 年度以降のモニタリング調査においては、平成 14 年度から平成 21 年度の毎年度及び平成 23 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

•調査結果

<水質>

水質については、49 地点を調査し、検出下限値 0.6pg/L において 49 地点中 47 地点で検出され、検出濃度は71pg/L までの範囲であった。平成 14 年度から平成 23 年度における経年分析の結果、湖沼域及び海域の減少傾向が統計的に有意と判定された。

○平成14~21年度及び平成23年度における水質についてのエンドリンの検出状況

エンドリン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
エントリン	天旭午及	平均值※	中大旭	取八胆	取力順	下限值	検体	地点
	H14	tr(4.8)	tr(5.5)	31	nd	6.0 [2.0]	101/114	36/38
	H15	5.7	6.0	78	0.7	0.7 [0.3]	36/36	36/36
	H16	7	7	100	tr(0.7)	2 [0.5]	38/38	38/38
水質	H17	4.0	4.5	120	nd	1.1 [0.4]	45/47	45/47
	H18	3.1	3.5	26	nd	1.3 [0.4]	44/48	44/48
(pg/L)	H19	3.5	3.4	25	nd	1.9 [0.6]	46/48	46/48
	H20	3	4	20	nd	3 [1]	45/48	45/48
	H21	2.0	2.3	67	nd	0.7 [0.3]	39/49	39/49
	H23	3.8	4.6	71	nd	1.6 [0.6]	47/49	47/49

⁽注1) ※: 平成14年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 (注2) 平成22年度は調査を実施していない。

<底質>

底質については、64 地点を調査し、検出下限値 0.4pg/g-dry において 64 地点中 59 地点で検出され、検出 濃度は 1,100pg/g-dry までの範囲であった。平成 14 年度から平成 23 年度における経年分析の結果、湖沼域の減少傾向が統計的に有意と判定された。

○平成 14~21 年度及び平成 23 年度における底質についてのエンドリンの検出状況

, , , , , , , , , , , , , , , , , , , ,	7 7 7 7 7	1 30. 1.17	- // (71 1102		
エンドリン	実施年度	幾何 平均値※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	H14	10	10	19,000	nd	6 [2]	141/189	54/63
	H15	12	11	29,000	nd	5 [2]	150/186	53/62
H16	H16	15	13	6,900	nd	3 [0.9]	182/189	63/63
底質	H17	12	11	19,000	nd	2.6 [0.9]	170/189	61/63
	H18	12	10	61,000	nd	4 [1]	178/192	63/64
(pg/g-dry)	H19	11	9	61,000	nd	5 [2]	151/192	55/64
	H20	11	11	38,000	nd	1.9 [0.7]	168/192	61/64
	H21	9.6	8.4	11,000	nd	1.6 [0.6]	168/192	63/64
	H23	8.8	14	1,100	nd	1.1 [0.4]	59/64	59/64

⁽注1) ※: 平成14年度から平成21年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

⁽注2) 平成22年度は調査を実施していない。

<生物>

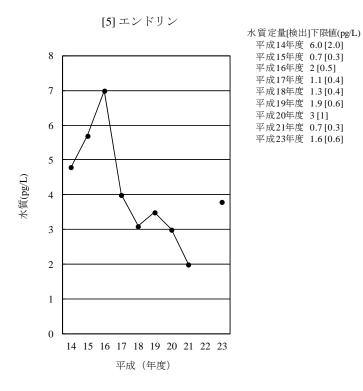
生物のうち貝類については、4 地点を調査し、検出下限値 2pg/g-wet において 4 地点全てで検出され、検出濃度は $tr(3)\sim110pg/g$ -wet の範囲であった。魚類については、18 地点を調査し、検出下限値 2pg/g-wet において 18 地点中 16 地点で検出され、検出濃度は 160pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 2pg/g-wet において検出され、検出濃度は tr(3)pg/g-wet であった。

○平成14~21年度及び平成23年度における生物(貝類、魚類及び鳥類)についてのエンドリンの検出状況

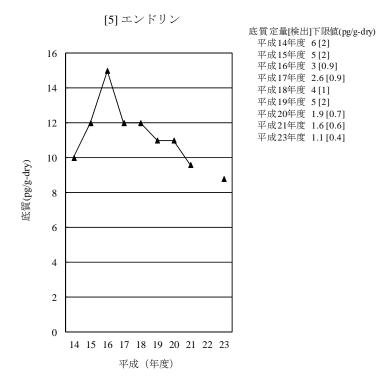
PX 14 21 IX	20 1 122 23	1 2 (0401)		THE MITTER		10 31 00	1 7 0 07	ж ш _и vv _u
エンドリン	宝坛年帝	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
エントリン	実施年度	平均值※	中犬旭	取入但	取小胆	下限値	検体	地点
	H14	42	27	12,000	nd	18 [6]	35/38	7/8
	H15	38	21	5,000	6.3	4.8 [1.6]	30/30	6/6
	H16	65	25	4,600	tr(5.7)	12 [4.2]	31/31	7/7
貝類	H17	39	19	2,100	nd	17 [5.5]	27/31	7/7
	H18	40	15	3,100	tr(5)	11 [4]	31/31	7/7
(pg/g-wet)	H19	28	12	3,000	tr(6)	9 [3]	31/31	7/7
	H20	30	10	1,500	tr(6)	8 [3]	31/31	7/7
	H21	38	19	1,400	tr(5)	7 [3]	31/31	7/7
	H23	33	62	110	tr(3)	4 [2]	4/4	4/4
	H14	20	24	180	nd	18 [6]	54/70	13/14
	H15	14	10	180	nd	4.8 [1.6]	67/70	14/14
	H16	18	24	220	nd	12 [4.2]	57/70	13/14
魚類	H17	19	tr(16)	2,100	nd	17 [5.5]	58/80	12/16
	H18	13	tr(10)	150	nd	11 [4]	66/80	16/16
(pg/g-wet)	H19	13	12	170	nd	9 [3]	69/80	15/16
	H20	11	10	200	nd	8 [3]	63/85	14/17
	H21	17	12	270	nd	7 [3]	86/90	18/18
	H23	18	19	160	nd	4 [2]	16/18	16/18
	H14	28	52	99	nd	18 [6]	7/10	2/2
	H15	22	30	96	5.4	4.8 [1.6]	10/10	2/2
	H16	tr(11)	25	62	nd	12 [4.2]	5/10	1/2
白籽	H17	18	28	64	nd	17 [5.5]	7/10	2/2
鳥類	H18	16	23	57	tr(4)	11 [4]	10/10	2/2
(pg/g-wet)	H19	17	28	55	nd	9 [3]	9/10	2/2
	H20	10	26	83	nd	8 [3]	5/10	1/2
	H21	11	17	43	tr(3)	7 [3]	10/10	2/2
	H23			tr(3)	tr(3)	4 [2]	1/1	1/1

⁽注 1) ※: 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<大気>

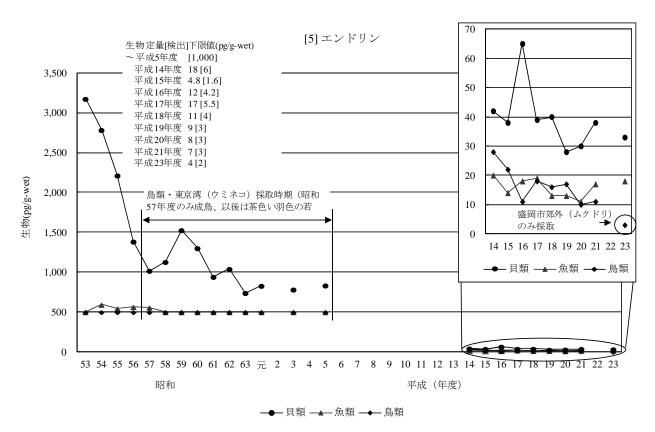

大気の温暖期については、35 地点を調査し、検出下限値 $0.04pg/m^3$ において 35 地点中 34 地点で検出され、検出濃度は $5.1pg/m^3$ までの範囲であった。寒冷期については、37 地点を調査し、検出下限値 $0.04pg/m^3$ において 37 地点中 33 地点で検出され、検出濃度は $1.8pg/m^3$ までの範囲であった。

⁽注2) 平成22年度は調査を実施していない。


○平成 14~21 年度及び平成 23 年度における大気についてのエンドリンの検出状況

エンドリン	字坛左庄	幾何	由由荷	具 土 /古	具 小店	定量[検出]	検出	頻度
エントリン	実施年度	平均値	中央値	最大値	最小値	下限値	検体	地点
	H14	0.22	0.28	2.5	nd	0.090 [0.030]	90/102	32/34
	H15 温暖期	0.74	0.95	6.2	0.081	0.042 [0.014]	35/35	35/35
	H15 寒冷期	0.23	0.20	2.1	0.042	0.042 [0.014]	34/34	34/34
	H16 温暖期	0.64	0.68	6.5	tr(0.054)	0.14 [0.048]	37/37	37/37
	H16寒冷期	0.23	0.26	1.9	nd	0.14 [0.046]	36/37	36/37
	H17 温暖期	tr(0.4)	tr(0.3)	2.9	nd	0.5 [0.2]	27/37	27/37
	H17寒冷期	nd	nd	0.7	nd	0.5 [0.2]	8/37	8/37
1.6	H18 温暖期	0.31	0.32	5.4	nd	0.20 [0.10]	32/37	32/37
大気	H18 寒冷期	nd	nd	5.0	nd	0.30 [0.10]	7/37	7/37
(pg/m^3)	H19 温暖期	0.69	0.73	6.3	tr(0.06)	0.00.00.041	36/36	36/36
	H19 寒冷期	0.16	0.13	1.5	nd	0.09 [0.04]	33/36	33/36
	H20 温暖期	0.53	0.68	4.6	tr(0.06)	0.10.00.041	37/37	37/37
	H20寒冷期	0.18	0.18	1.8	nd	0.10 [0.04]	35/37	35/37
	H21 温暖期	0.49	0.51	3.4	nd	0.00.10.041	36/37	36/37
	H21 寒冷期	0.17	0.15	1.8	nd	0.09 [0.04]	36/37	36/37
	H23 温暖期	0.46	0.62	5.1	nd	0.00.10.041	34/35	34/35
	H23 寒冷期	0.16	0.16	1.8	nd	0.09 [0.04]	33/37	33/37

⁽注) 平成22年度は調査を実施していない。



- (注1) 平成14年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。
- (注2) 平成22年度は調査を実施していない。
- 図 7-5-1 エンドリンの水質の経年変化 (幾何平均値)

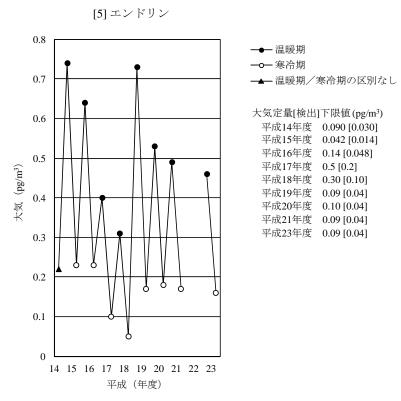

- (注 1) 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を 求めた。
- (注2) 平成22年度は調査を実施していない。

図 7-5-2 エンドリンの底質の経年変化(幾何平均値)

(注1) 平成21年度以前は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 (注2) 平成22年度は調査を実施していない。

図 7-5-3 エンドリンの生物の経年変化(幾何平均値)

(注2) 平成22年度は調査を実施していない。 図7-5-4 エンドリンの大気の経年変化(幾何平均値)

[6] DDT 類(参考)

調査の経緯及び実施状況

DDT 類は、ヘキサクロロシクロヘキサン (HCH) やドリン類とともに多用された殺虫剤である。昭和 46年に農薬取締法に基づく登録は失効し、昭和 56年 10月に化審法に基づく第一種特定化学物質に指定されている。DDT 類には芳香環に置換している塩素の位置によっていくつかの異性体があるが、継続的調査においては、殺虫剤の主な有効成分である p,p'-DDT に加えて o,p'-DDT を、また、DDT の環境中での分解産物である p,p'-DDE、o,p'-DDE、o,p'-DDD 及び o,p'-DDD も含めて昭和 53年度からモニタリング調査を実施している。

平成 13 年度以前の継続的調査において、p,p'-DDT、p,p'-DDE 及びp,p'-DDD は「生物モニタリング」 $^{\text{ii}}$ で昭和 53 年度から平成 13 年度の全期間にわたって生物(貝類、魚類及び鳥類)について調査を実施し、「水質・底質モニタリング」 $^{\text{ii}}$ で水質は昭和 61 年度から平成 10 年度まで、底質は昭和 61 年度から平成 13 年度の全期間にわたって調査を実施している。また、o,p'-DDT、o,p'-DDE 及びo,p'-DDD は「生物モニタリング」 $^{\text{ii}}$ で昭和 53 年度から平成 8 年度の毎年と平成 10 年度、平成 12 年度及び平成 13 年度に生物(貝類、魚類及び鳥類)について調査を実施している。

平成 14 年度以降のモニタリング調査においては、平成 14 年度から平成 22 年度の毎年度に p,p'-DDT、p,p'-DDE、p,p'-DDD、o,p'-DDE 及び o,p'-DDD についての水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

平成23年度は調査を実施していないため、参考として以下に平成22年度までの調査結果を示す。

- ・平成22年度までの調査結果
- $\bigcirc p,p'$ -DDT、p,p'-DDE 及びp,p'-DDD

<水質>

○平成 14~22 年度における水質についての p,p'-DDT、p,p'-DDE 及び p,p'-DDD の検出状況

p,p'-DDT	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
<i>p,p</i> -DD1	天旭 干及	平均值※	十大旭	取八胆	取力制度	下限値	検体	地点
	H14	13	11	440	0.25	0.6 [0.2]	114/114	38/38
	H15	14	12	740	tr(2.8)	3 [0.9]	36/36	36/36
	H16	15	14	310	nd	6 [2]	36/38	36/3
水質	H17	8	9	110	1	4 [1]	47/47	47/4
	H18	9.1	9.2	170	tr(1.6)	1.9 [0.6]	48/48	48/4
(pg/L)	H19	7.3	9.1	670	nd	1.7 [0.6]	46/48	46/4
	H20	11	11	1,200	nd	1.2 [0.5]	47/48	47/4
	H21	9.2	8.4	440	0.81	0.15 [0.06]	49/49	49/4
	H22	8.5	7.6	7,500	tr(1.0)	2.4 [0.8]	49/49	49/4
p,p'-DDE	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
р,р -DDL	大 旭十及	平均值※	17人但	双八胆	秋/1.川戸	下限値	検体	地点
	H14	25	26	760	1.3	0.6 [0.2]	114/114	38/3
	H15	26	22	380	5	4 [2]	36/36	36/3
	H16	36	34	680	tr(6)	8 [3]	38/38	38/3
水質	H17	26	24	410	4	6 [2]	47/47	47/4
	H18	24	24	170	tr(4)	7 [2]	48/48	48/4
(pg/L)	H19	22	23	440	tr(2)	4 [2]	48/48	48/4
	H20	27	28	350	2.5	1.1 [0.4]	48/48	48/4
	H21	23	23	240	3.4	1.1 [0.4]	49/49	49/4
	H22	14	12	1,600	2.4	2.3 [0.8]	49/49	49/4

n n' DDD	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
p,p'-DDD	天旭十尺	平均值※	中大恒	取八胆	取小胆	下限値	検体	地点
	H14	16	18	190	0.57	0.24 [0.08]	114/114	38/38
	H15	19	18	410	4	2 [0.5]	36/36	36/36
	H16	19	18	740	tr(2.4)	3 [0.8]	38/38	38/38
水質	H17	17	16	130	tr(1.8)	1.9 [0.64]	47/47	47/47
	H18	16	17	99	2.0	1.6 [0.5]	48/48	48/48
(pg/L)	H19	15	12	150	tr(1.5)	1.7 [0.6]	48/48	48/48
	H20	22	20	850	2.0	0.6 [0.2]	48/48	48/48
	H21	14	13	140	1.4	0.4 [0.2]	49/49	49/49
	H22	12	10	970	1.6	0.20 [0.08]	49/49	49/49

⁽注)※:平成14年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<底質>

○平成 14~22 年度における底質についての p,p'-DDT、p,p'-DDE 及び p,p'-DDD の検出状況

<u> </u>		幾何				定量[検出]	検出	頻度
p,p'-DDT	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	H14	380	240	97,000	tr(5)	6 [2]	189/189	63/63
	H15	290	220	55,000	3	2 [0.4]	186/186	62/62
	H16	460	230	98,000	7	2 [0.5]	189/189	63/63
底質	H17	360	230	1,700,000	5.1	1.0 [0.34]	189/189	63/63
	H18	310	240	130,000	4.5	1.4 [0.5]	192/192	64/64
(pg/g-dry)	H19	210	150	130,000	3	1.3 [0.5]	192/192	64/64
	H20	270	180	1,400,000	4.8	1.2 [0.5]	192/192	64/64
	H21	250	170	2,100,000	1.9	1.0 [0.4]	192/192	64/64
	H22	230	200	220,000	9.3	2.8 [0.9]	64/64	64/64
/ DDE	安妆左座	幾何	山山 / 古	目. 上. は	目、小は	定量[検出]	検出	頻度
p,p'-DDE	実施年度	平均值※	中央値	最大値	最小値	下限値	★ 体	地点
	H14	780	630	23,000	8.4	2.7 [0.9]	189/189	63/63
	H15	790	780	80,000	9.5	0.9 [0.3]	186/186	62/62
	H16	720	700	39,000	8	3 [0.8]	189/189	63/63
底質	H17	710	730	64,000	8.4	2.7 [0.94]	189/189	63/63
	H18	710	820	49,000	5.8	1.0 [0.3]	192/192	64/64
(pg/g-dry)	H19	670	900	61,000	3.2	1.1 [0.4]	192/192	64/64
	H20	920	940	96,000	9.0	1.7 [0.7]	192/192	64/64
	H21	700	660	50,000	6.7	0.8 [0.3]	192/192	64/64
	H22	680	790	40,000	11	5 [2]	64/64	64/64
/ DDD	実施年度	幾何	由由結	具.十./ds	具小店	定量[検出]	検出	頻度
p,p'-DDD	天旭 中及	平均值※	中央値	最大値	最小値	下限値	検体	地点
	H14	640	690	51,000	tr(2.2)	2.4 [0.8]	189/189	63/63
	H15	670	580	32,000	3.7	0.9 [0.3]	186/186	62/62
	H16	650	550	75,000	4	2 [0.7]	189/189	63/63
底質	H17	600	570	210,000	5.2	1.7 [0.64]	189/189	63/63
	H18	560	540	53,000	2.2	0.7 [0.2]	192/192	64/64
(pg/g-dry)	H19	520	550	80,000	3.5	1.0 [0.4]	192/192	64/64
	H20	740	660	300,000	2.8	1.0 [0.4]	192/192	64/64
	H21	540	560	300,000	3.9	0.4 [0.2]	192/192	64/64
	H22	510	510	78,000	4.4	1.4 [0.5]	64/64	64/64

⁽注) ※: 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

〇平成 14~22 年度における生物(貝類、魚類及び鳥類)についての p,p'-DDT、p,p'-DDE 及び p,p'-DDD の検出状況

DL .		幾何				定量[検出]	検出	婚産
p,p'-DDT	実施年度	爱何 平均值※	中央値	最大値	最小値	た里[快山] 下限値	検体	^{頻及} 地点
	1114		200	1 200	20			
	H14	200	200	1,200	38	4.2 [1.4]	38/38	8/8
	H15	290	290	1,800	49	11 [3.5]	30/30	6/6
	H16	360	340	2,600	48	3.2 [1.1]	31/31	7/7
貝類	H17	240	170	1,300	66	5.1 [1.7]	31/31	7/7
(pg/g-wet)	H18	250	220	1,100	56	6 [2]	31/31	7/7
(188)	H19	240	150	1,200	49	5 [2]	31/31	7/7
	H20	160	100	1,400	12	5 [2]	31/31	7/7
	H21	240	170	9,600	46	3 [1]	31/31	7/7
	H22	180	280	470	43	3 [1]	6/6	6/6
	H14	430	450	24,000	6.8	4.2 [1.4]	70/70	14/14
	H15	220	400	1,900	tr(3.7)	11 [3.5]	70/70	14/14
	H16	410	330	53,000	5.5	3.2 [1.1]	70/70	14/14
在 4石	H17	280	330	8,400	tr(3.8)	5.1 [1.7]	80/80	16/16
魚類	H18	300	340	3,000	tr(5)	6 [2]	80/80	16/16
(pg/g-wet)	H19	260	320	1,800	9	5 [2]	80/80	16/16
	H20	280	310	2,900	7	5 [2]	85/85	17/17
	H21	250	300	2,000	4	3 [1]	90/90	18/18
	H22	240	280	2,100	7	3 [1]	18/18	18/18
	H14	440	510	1,300	 76	4.2 [1.4]	10/10	2/2
	H15	610	620	1,400	180	11 [3.5]	10/10	2/2
	H16	340	320	700	160	3.2 [1.1]	10/10	2/2
鳥類	H17	430	550	900	180	5.1 [1.7]	10/10	2/2
	H18	580	490	1,800	110	6 [2]	10/10	2/2
(pg/g-wet)	H19	480	350		160		10/10	2/2
				1,900		5 [2]		
	H20	160	170	270	56	5 [2]	10/10	2/2
	H21	300	190	2,900	85	3 [1]	10/10	2/2
	H22	3		15	nd	3 [1]	1/2	1/2
p,p'-DDE	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
F · T		平均值※				下限値	検体	地点
	H14	1,000	1,700	6,000	140	2.4 [0.8]	38/38	8/8
	H15	1,200	1,000	6,500	190	5.7 [1.9]	30/30	6/6
	H16	1,300	1,400	8,400	220	8.2 [2.7]	31/31	7/7
貝類	H17	1,200	1,600	6,600	230	8.5 [2.8]	31/31	7/7
	H18	1,000	1,200	6,000	160	1.9 [0.7]	31/31	7/7
(pg/g-wet)	H19	1,100	1,200	5,600	180	3 [1]	31/31	7/7
	H20	900	1,100	5,800	120	3 [1]	31/31	7/7
	H21	940	1,100	6,400	150	4 [1]	31/31	7/7
	H22	1,100	1,300	6,300	230	3 [1]	6/6	6/6
	H14	2,900	2,200	98,000	510	2.4 [0.8]	70/70	14/1
	H15	2,000	2,200	12,000	180	5.7 [1.9]	70/70	14/1
			,	,				14/1
			2.100	52,000	390	8.2 [2.7]	/0//0	
	H16	3,000	2,100 2,400	52,000 73,000	390 230	8.2 [2.7] 8.5 [2.8]	70/70 80/80	
魚類	H16 H17	3,000 2,400	2,400	73,000	230	8.5 [2.8]	80/80	16/1
魚類 (pg/g-wet)	H16 H17 H18	3,000 2,400 2,200	2,400 2,600	73,000 28,000	230 280	8.5 [2.8] 1.9 [0.7]	80/80 80/80	16/1 16/1
	H16 H17 H18 H19	3,000 2,400 2,200 2,200	2,400 2,600 2,000	73,000 28,000 22,000	230 280 160	8.5 [2.8] 1.9 [0.7] 3 [1]	80/80 80/80 80/80	16/1 16/1 16/1
	H16 H17 H18 H19 H20	3,000 2,400 2,200 2,200 2,500	2,400 2,600 2,000 2,000	73,000 28,000 22,000 53,000	230 280 160 320	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1]	80/80 80/80 80/80 85/85	16/1 16/1 16/1 17/1
	H16 H17 H18 H19 H20 H21	3,000 2,400 2,200 2,200 2,500 2,300	2,400 2,600 2,000 2,000 2,100	73,000 28,000 22,000 53,000 20,000	230 280 160 320 260	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1]	80/80 80/80 80/80 85/85 90/90	16/1 16/1 16/1 17/1 18/1
	H16 H17 H18 H19 H20 H21	3,000 2,400 2,200 2,200 2,500 2,300 2,300	2,400 2,600 2,000 2,000 2,100 2,100	73,000 28,000 22,000 53,000 20,000 13,000	230 280 160 320 260 260	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1]	80/80 80/80 80/80 85/85 90/90 18/18	16/10 16/10 16/10 17/11 18/10 18/10
	H16 H17 H18 H19 H20 H21 H22	3,000 2,400 2,200 2,200 2,500 2,300 2,300 36,000	2,400 2,600 2,000 2,000 2,100 2,100 60,000	73,000 28,000 22,000 53,000 20,000 13,000	230 280 160 320 260 260 8,100	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1] 2.4 [0.8]	80/80 80/80 80/80 85/85 90/90 18/18 10/10	16/10 16/10 16/10 17/12 18/10 18/12 2/2
	H16 H17 H18 H19 H20 H21 H22 H14 H15	3,000 2,400 2,200 2,200 2,500 2,300 2,300 36,000 66,000	2,400 2,600 2,000 2,000 2,100 2,100 60,000 76,000	73,000 28,000 22,000 53,000 20,000 13,000 170,000 240,000	230 280 160 320 260 260 8,100 18,000	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1] 2.4 [0.8] 5.7 [1.9]	80/80 80/80 80/80 85/85 90/90 18/18 10/10 10/10	16/1 16/1 16/1 17/1 18/1 18/1 2/2 2/2
	H16 H17 H18 H19 H20 H21 H22 H14 H15 H16	3,000 2,400 2,200 2,200 2,500 2,300 2,300 36,000 66,000 34,000	2,400 2,600 2,000 2,000 2,100 2,100 60,000 76,000 65,000	73,000 28,000 22,000 53,000 20,000 13,000 170,000 240,000 200,000	230 280 160 320 260 260 8,100 18,000 6,800	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7]	80/80 80/80 80/80 85/85 90/90 18/18 10/10 10/10	16/1 16/1 16/1 17/1 18/1 18/1 2/2 2/2 2/2
(pg/g-wet)	H16 H17 H18 H19 H20 H21 H22 H14 H15 H16 H17	3,000 2,400 2,200 2,200 2,500 2,300 2,300 36,000 66,000 34,000 44,000	2,400 2,600 2,000 2,000 2,100 2,100 60,000 76,000 65,000 86,000	73,000 28,000 22,000 53,000 20,000 13,000 170,000 240,000 200,000 300,000	230 280 160 320 260 260 8,100 18,000 6,800 7,100	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8]	80/80 80/80 80/80 85/85 90/90 18/18 10/10 10/10 10/10	16/14 16/14 16/14 17/1 18/13 18/13 2/2 2/2 2/2 2/2
(pg/g-wet)	H16 H17 H18 H19 H20 H21 H22 H14 H15 H16	3,000 2,400 2,200 2,200 2,500 2,300 2,300 36,000 66,000 34,000	2,400 2,600 2,000 2,000 2,100 2,100 60,000 76,000 65,000	73,000 28,000 22,000 53,000 20,000 13,000 170,000 240,000 200,000 300,000 160,000	230 280 160 320 260 260 8,100 18,000 6,800 7,100 5,900	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7]	80/80 80/80 80/80 85/85 90/90 18/18 10/10 10/10	16/1 16/1 16/1 17/1 18/1 18/1 2/2 2/2 2/2 2/2 2/2
(pg/g-wet)	H16 H17 H18 H19 H20 H21 H22 H14 H15 H16 H17 H18	3,000 2,400 2,200 2,200 2,500 2,300 2,300 36,000 66,000 34,000 44,000 38,000 40,000	2,400 2,600 2,000 2,000 2,100 2,100 60,000 76,000 65,000 86,000	73,000 28,000 22,000 53,000 20,000 13,000 170,000 240,000 200,000 300,000	230 280 160 320 260 260 8,100 18,000 6,800 7,100	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8]	80/80 80/80 80/80 85/85 90/90 18/18 10/10 10/10 10/10	16/10 16/10 17/11 18/13 18/13 2/2 2/2 2/2 2/2 2/2 2/2 2/2
(pg/g-wet)	H16 H17 H18 H19 H20 H21 H22 H14 H15 H16 H17 H18 H19	3,000 2,400 2,200 2,200 2,500 2,300 2,300 36,000 66,000 34,000 44,000 38,000	2,400 2,600 2,000 2,000 2,100 2,100 60,000 76,000 65,000 86,000 57,000	73,000 28,000 22,000 53,000 20,000 13,000 170,000 240,000 200,000 300,000 160,000	230 280 160 320 260 260 8,100 18,000 6,800 7,100 5,900	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7]	80/80 80/80 80/80 85/85 90/90 18/18 10/10 10/10 10/10 10/10	16/10 16/10 17/11 18/13 18/13 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2
(pg/g-wet)	H16 H17 H18 H19 H20 H21 H22 H14 H15 H16 H17 H18	3,000 2,400 2,200 2,200 2,500 2,300 2,300 36,000 66,000 34,000 44,000 38,000 40,000	2,400 2,600 2,000 2,000 2,100 2,100 60,000 76,000 65,000 86,000 57,000 56,000	73,000 28,000 22,000 53,000 20,000 13,000 170,000 240,000 200,000 300,000 160,000 320,000	230 280 160 320 260 260 8,100 18,000 6,800 7,100 5,900 6,700	8.5 [2.8] 1.9 [0.7] 3 [1] 3 [1] 4 [1] 3 [1] 2.4 [0.8] 5.7 [1.9] 8.2 [2.7] 8.5 [2.8] 1.9 [0.7] 3 [1]	80/80 80/80 80/80 85/85 90/90 18/18 10/10 10/10 10/10 10/10 10/10 10/10	16/16 16/16 16/16 17/17 18/18 18/18 2/2 2/2 2/2 2/2 2/2 2/2 2/2

/ DDD	安长左帝	幾何	中市は	目. 上/法	目. J. 店	定量[検出]	検出	頻度
p,p'-DDD	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	H14	340	710	3,200	11	5.4 [1.8]	38/38	8/8
	H15	390	640	2,600	tr(7.5)	9.9 [3.3]	30/30	6/6
	H16	440	240	8,900	7.8	2.2 [0.70]	31/31	7/7
日和	H17	370	800	1,700	13	2.9 [0.97]	31/31	7/7
貝類	H18	300	480	1,400	7.3	2.4 [0.9]	31/31	7/7
(pg/g-wet)	H19	310	360	1,500	7	3 [1]	31/31	7/7
	H20	280	280	1,300	6	3 [1]	31/31	7/7
	H21	220	170	2,400	5.8	2.4 [0.9]	31/31	7/7
	H22	180	330	960	11	1.3 [0.5]	6/6	6/6
	H14	750	680	14,000	80	5.4 [1.8]	70/70	14/14
	H15	510	520	3,700	43	9.9 [3.3]	70/70	14/14
	H16	770	510	9,700	56	2.2 [0.70]	70/70	14/14
A ¥石	H17	510	650	6,700	29	2.9 [0.97]	80/80	16/16
魚類	H18	520	580	4,300	60	2.4 [0.9]	80/80	16/16
(pg/g-wet)	H19	470	490	4,100	36	3 [1]	80/80	16/16
	H20	460	440	4,100	33	3 [1]	85/85	17/17
	H21	440	460	2,500	57	2.4 [0.9]	90/90	18/18
	H22	560	610	2,900	57	1.3 [0.5]	18/18	18/18
	H14	580	740	3,900	140	5.4 [1.8]	10/10	2/2
	H15	640	860	3,900	110	9.9 [3.3]	10/10	2/2
	H16	330	520	1,400	52	2.2 [0.70]	10/10	2/2
白 松石	H17	310	540	1,400	45	2.9 [0.97]	10/10	2/2
鳥類	H18	410	740	1,800	55	2.4 [0.9]	10/10	2/2
(pg/g-wet)	H19	440	780	2,300	70	3 [1]	10/10	2/2
	H20	240	490	1,100	35	3 [1]	10/10	2/2
	H21	280	430	3,400	31	2.4 [0.9]	10/10	2/2
	H22	440		1,600	120	1.3 [0.5]	2/2	2/2

⁽注) ※: 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<大気>

〇平成 14~22 年度における大気についての p,p'-DDT、p,p'-DDE 及び p,p'-DDD の検出状況

		幾何	1 1			定量[検出]	検出	頻度
p,p'-DDT	実施年度	平均值	中央値	最大値	最小値	下限値	検体	地点
	H14	1.9	1.8	22	0.25	0.24 [0.08]	102/102	34/34
	H15 温暖期	5.8	6.6	24	0.75	0.14 [0.046]	35/35	35/35
	H15 寒冷期	1.7	1.6	11	0.31	0.14 [0.046]	34/34	34/34
	H16 温暖期	4.7	5.1	37	0.41	0.22 [0.074]	37/37	37/37
	H16寒冷期	1.8	1.7	13	0.29	0.22 [0.074]	37/37	37/37
	H17 温暖期	4.1	4.2	31	0.44	0.16 [0.054]	37/37	37/37
	H17 寒冷期	1.1	0.99	4.8	0.25	0.16 [0.054]	37/37	37/37
I 📂	H18 温暖期	4.2	3.8	51	0.35	0.17 [0.06]	37/37	37/37
大気	H18寒冷期	1.4	1.2	7.3	0.29	0.17 [0.06]	37/37	37/37
(pg/m^3)	H19 温暖期	4.9	5.2	30	0.6	0.07.10.021	36/36	36/36
	H19寒冷期	1.2	1.2	8.8	0.23	0.07 [0.03]	36/36	36/36
	H20 温暖期	3.6	3.0	27	0.76	0.07.10.021	37/37	37/37
	H20寒冷期	1.2	1.0	15	0.22	0.07 [0.03]	37/37	37/37
	H21 温暖期	3.6	3.6	28	0.44	0.07.10.021	37/37	37/37
	H21 寒冷期	1.1	1.0	8.0	0.20	0.07 [0.03]	37/37	37/37
	H22 温暖期	3.5	3.1	56	0.28	0.10.10.021	37/37	37/37
	H22寒冷期	1.3	0.89	16	0.30	0.10 [0.03]	37/37	37/37

/ DDE	中长左座	幾何	++ l=	日上は	日月は	定量[検出]	検出	頻度
p,p'-DDE	実施年度	平均值	中央値	最大値	最小値	下限値	検体	地点
	H14	2.8	2.7	28	0.56	0.09 [0.03]	102/102	34/34
	H15 温暖期	7.2	7.0	51	1.2	0.40 [0.13]	35/35	35/35
	H15 寒冷期	2.8	2.4	22	1.1		34/34	34/34
	H16 温暖期	6.1	6.3	95	0.62	0.12 [0.039]	37/37	37/37
	H16寒冷期	2.9	2.6	43	0.85		37/37	37/37
	H17 温暖期	5.0	5.7	42	1.2	0.14 [0.034]	37/37	37/37
	H17寒冷期	1.7	1.5	9.9	0.76		37/37	37/37
1. <i>=</i>	H18 温暖期	5.0	4.7	49	1.7	0.10 [0.03]	37/37	37/37
大気 (pg/m³)	H18寒冷期	1.9	1.7	9.5	0.52		37/37	37/37
(pg/III*)	H19 温暖期	6.4	6.1	120	0.54	0.04 [0.02]	36/36	36/36
	H19 寒冷期	2.1	1.9	39	0.73		36/36	36/36
	H20 温暖期	4.8	4.4	96	0.98	0.04 [0.02]	37/37	37/37
	H20 寒冷期	2.2	2.0	22	0.89		37/37	37/37
	H21 温暖期	4.9	4.8	130	0.87	0.08 [0.03]	37/37	37/37
	H21 寒冷期	2.1	1.9	100	0.60		37/37	37/37
	H22 温暖期	4.9	4.1	200	tr(0.41)	0.62 [0.21]	37/37	37/37
	H22 寒冷期	2.2	1.8	28	tr(0.47)		37/37	37/37
p,p'-DDD	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
р,р ВВВ	·	平均値			双 1 匝	下限値	検体	地点
	H14	0.12	0.13	0.76	nd	0.018 [0.006]	101/102	34/34
	H15 温暖期	0.30	0.35	1.4	0.063	0.054 [0.018]	35/35	35/35
	H15 寒冷期	0.13	0.14	0.52	tr(0.037)		34/34	34/34
	H16 温暖期	0.24	0.27	1.4	tr(0.036)	0.053 [0.018]	37/37	37/37
	H16寒冷期	0.12	0.12	0.91	tr(0.025)		37/37	37/37
	V 110							
	H17 温暖期	0.24	0.26	1.3	tr(0.07)	0.16 [0.05]	37/37	37/37
	H17寒冷期	tr(0.06)	tr(0.07)	1.3 0.29	tr(0.07)	0.16 [0.05]	37/37 28/37	37/37 28/37
大気	H17 寒冷期 H18 温暖期	tr(0.06)	tr(0.07)	1.3 0.29 1.3	tr(0.07) nd nd		37/37 28/37 36/37	37/37 28/37 36/37
大気 (pg/m³)	H17 寒冷期 H18 温暖期 H18 寒冷期	tr(0.06) 0.28 0.14	tr(0.07) 0.32 tr(0.12)	1.3 0.29 1.3 0.99	tr(0.07) nd nd nd	0.16 [0.05]	37/37 28/37 36/37 36/37	37/37 28/37 36/37 36/37
大気 (pg/m³)	H17 寒冷期 H18 温暖期 H18 寒冷期 H19 温暖期	tr(0.06) 0.28 0.14 0.26	tr(0.07) 0.32 tr(0.12) 0.27	1.3 0.29 1.3 0.99 1.4	tr(0.07) nd nd nd 0.046	0.13 [0.04]	37/37 28/37 36/37 36/37 36/36	37/37 28/37 36/37 36/37 36/36
	H17 寒冷期 H18 温暖期 H18 寒冷期 H19 温暖期 H19 寒冷期	tr(0.06) 0.28 0.14 0.26 0.093	tr(0.07) 0.32 tr(0.12) 0.27 0.087	1.3 0.29 1.3 0.99 1.4 0.5	tr(0.07) nd nd nd 0.046 0.026		37/37 28/37 36/37 36/37 36/36 36/36	37/37 28/37 36/37 36/37 36/36 36/36
	H17 寒冷期 H18 温暖期 H18 寒冷期 H19 温暖期 H19 寒冷期 H20 温暖期	tr(0.06) 0.28 0.14 0.26 0.093 0.17	tr(0.07) 0.32 tr(0.12) 0.27 0.087 0.17	1.3 0.29 1.3 0.99 1.4 0.5	tr(0.07) nd nd nd 0.046 0.026	0.13 [0.04]	37/37 28/37 36/37 36/37 36/36 36/36 37/37	37/37 28/37 36/37 36/37 36/36 36/36 37/37
	H17 寒冷期 H18 温暖期 H18 寒冷期 H19 温暖期 H19 寒冷期 H20 温暖期	tr(0.06) 0.28 0.14 0.26 0.093 0.17 0.091	tr(0.07) 0.32 tr(0.12) 0.27 0.087 0.17 0.081	1.3 0.29 1.3 0.99 1.4 0.5 1.1 0.31	tr(0.07) nd nd nd 0.046 0.026 0.037 0.036	0.13 [0.04]	37/37 28/37 36/37 36/37 36/36 36/36 37/37 37/37	37/37 28/37 36/37 36/37 36/36 36/36 37/37 37/37
	H17 寒冷期 H18 温暖期 H18 寒冷期 H19 温暖期 H19 寒冷期 H20 温暖期 H20 寒冷期 H21 温暖期	tr(0.06) 0.28 0.14 0.26 0.093 0.17 0.091 0.17	tr(0.07) 0.32 tr(0.12) 0.27 0.087 0.17 0.081 0.18	1.3 0.29 1.3 0.99 1.4 0.5 1.1 0.31	tr(0.07) nd nd nd 0.046 0.026 0.037 0.036 0.03	0.13 [0.04] 0.011 [0.004] 0.025 [0.009]	37/37 28/37 36/37 36/37 36/36 36/36 37/37 37/37	37/37 28/37 36/37 36/36 36/36 36/36 37/37 37/37
	H17 寒冷期 H18 温暖期 H18 寒冷期 H19 温暖期 H19 寒冷期 H20 温暖期 H20 寒冷期 H21 温暖期 H21 寒冷期	tr(0.06) 0.28 0.14 0.26 0.093 0.17 0.091 0.17 0.08	tr(0.07) 0.32 tr(0.12) 0.27 0.087 0.17 0.081 0.18 0.08	1.3 0.29 1.3 0.99 1.4 0.5 1.1 0.31 0.82 0.35	tr(0.07) nd nd nd 0.046 0.026 0.037 0.036 0.03 tr(0.02)	0.13 [0.04]	37/37 28/37 36/37 36/37 36/36 36/36 37/37 37/37 37/37	37/37 28/37 36/37 36/36 36/36 36/36 37/37 37/37 37/37
	H17 寒冷期 H18 温暖期 H18 寒冷期 H19 温暖期 H19 寒冷期 H20 温暖期 H20 寒冷期 H21 温暖期	tr(0.06) 0.28 0.14 0.26 0.093 0.17 0.091 0.17	tr(0.07) 0.32 tr(0.12) 0.27 0.087 0.17 0.081 0.18	1.3 0.29 1.3 0.99 1.4 0.5 1.1 0.31	tr(0.07) nd nd nd 0.046 0.026 0.037 0.036 0.03	0.13 [0.04] 0.011 [0.004] 0.025 [0.009]	37/37 28/37 36/37 36/37 36/36 36/36 37/37 37/37	37/37 28/37 36/37 36/36 36/36 36/36 37/37 37/37

○o,p'-DDT、o,p'-DDE 及びo,p'-DDD

<水質>

○平成 14~22 年度における水質についての o,p'-DDT、o,p'-DDE 及び o,p'-DDD の検出状況

791 1 301		•	· 'T	· - /I	>			
o,p'-DDT	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
<i>0,p</i> -DD1	天旭十反	平均值※	一人區	拟八胆	权/1、旧	下限値	検体	地点
	H14	5.4	4.6	77	0.19	1.2 [0.4]	114/114	38/38
	H15	6	5	100	tr(1.5)	3 [0.7]	36/36	36/36
	H16	tr(4.5)	5	85	nd	5 [2]	29/38	29/38
水質	H17	3	3	39	nd	3 [1]	42/47	42/47
	H18	2.8	2.4	52	0.51	2.3 [0.8]	48/48	48/48
(pg/L)	H19	tr(2.1)	tr(2.2)	86	nd	2.5 [0.8]	38/48	38/48
	H20	3.1	3.0	230	nd	1.4 [0.5]	44/48	44/48
	H21	2.4	2.4	100	0.43	0.16 [0.06]	49/49	49/49
	H22	1.5	tr(1.2)	700	nd	1.5 [0.5]	43/49	43/49

o m/ DDE	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
o,p'-DDE	天 旭十及	平均值※	中大恒	取八胆	取小胆	下限値	検体	地点
	H14	2.4	2.1	680	nd	0.9 [0.3]	113/114	38/38
	H15	2.2	2.0	170	tr(0.42)	0.8 [0.3]	36/36	36/36
	H16	3	2	170	tr(0.6)	2 [0.5]	38/38	38/38
水質	H17	2.5	2.1	410	0.4	1.2 [0.4]	47/47	47/47
	H18	tr(1.6)	tr(1.4)	210	nd	2.6 [0.9]	28/48	28/48
(pg/L)	H19	tr(1.5)	tr(1.1)	210	nd	2.3 [0.8]	29/48	29/48
	H20	1.5	1.8	260	nd	0.7 [0.3]	39/48	39/48
	H21	1.3	1.1	140	nd	0.22 [0.09]	47/49	47/49
	H22	0.97	0.65	180	tr(0.13)	0.24 [0.09]	49/49	49/49
/ DDD	字坛左庄	幾何	出出	具土体	具心病	定量[検出]	検出	頻度
o,p'-DDD	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	H14	5.6	6.0	110	nd	0.60 [0.20]	113/114	38/38
	H15	7.1	5.0	160	1.1	0.8 [0.3]	36/36	36/36
	H16	6	5	81	tr(0.7)	2 [0.5]	38/38	38/38
水質	H17	5.2	5.4	51	tr(0.5)	1.2 [0.4]	47/47	47/47
	H18	2.5	3.3	39	nd	0.8 [0.3]	40/48	40/48
(pg/L)	H19	4.6	3.9	41	tr(0.3)	0.8 [0.3]	48/48	48/48
	H20	6.7	7.2	170	nd	0.8 [0.3]	47/48	47/48
	H21	4.4	3.8	41	0.44	0.22 [0.09]	49/49	49/49
	H22	4.6	3.8	170	tr(0.5)	0.6 [0.2]	49/49	49/49

⁽注)※:平成14年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<底質>

〇平成 14~22 年度における底質についての o,p'-DDT、o,p'-DDE 及び o,p'-DDD の検出状況

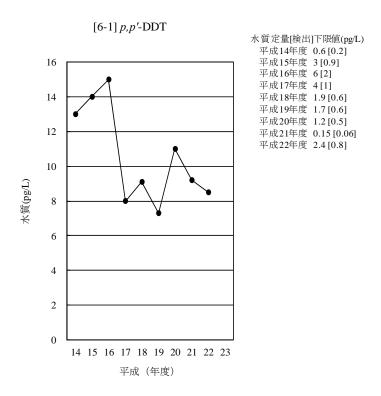
/ DDT	字坛左座	幾何			具小店	定量[検出]	検出	頻度
o,p'-DDT	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	H14	76	47	27,000	nd	6 [2]	183/189	62/63
	H15	50	43	3,200	nd	0.8 [0.3]	185/186	62/62
	H16	69	50	17,000	tr(1.1)	2 [0.6]	189/189	63/63
底質	H17	58	46	160,000	0.8	0.8 [0.3]	189/189	63/63
	H18	57	52	18,000	tr(0.8)	1.2 [0.4]	192/192	64/64
(pg/g-dry)	H19	38	31	27,000	nd	1.8 [0.6]	186/192	63/64
	H20	51	40	140,000	tr(0.7)	1.5 [0.6]	192/192	64/64
	H21	44	30	100,000	nd	1.2 [0.5]	190/192	64/64
	H22	40	33	13,000	1.4	1.1 [0.4]	64/64	64/64
/ DDE	安抚左连	幾何	中山体	目. 上 /古	重 最小値	定量[検出]	検出	頻度
o,p'-DDE	実施年度	平均值※	中央値	最大値	取小胆	下限値	検体	地点
	H14	54	37	16,000	nd	3 [1]	188/189	63/63
	H15	48	39	24,000	tr(0.5)	0.6 [0.2]	186/186	62/62
	H16	40	34	28,000	nd	3 [0.8]	184/189	63/63
底質	H17	40	32	31,000	nd	2.6 [0.9]	181/189	62/63
	H18	42	40	27,000	tr(0.4)	1.1 [0.4]	192/192	64/64
(pg/g-dry)	H19	37	41	25,000	nd	1.2 [0.4]	186/192	63/64
	H20	50	48	37,000	nd	1.4 [0.6]	186/192	63/64
	H21	37	31	33,000	nd	0.6 [0.2]	191/192	64/64
	H22	37	32	25,000	tr(0.7)	1.2 [0.5]	64/64	64/64
/ DDD	安抚左连	幾何	中山体	目. 上 /古	目. J. は	定量[検出]	検出	頻度
o,p'-DDD	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	H14	160	150	14,000	nd	6 [2]	184/189	62/63
	H15	160	130	8,800	tr(1.0)	2 [0.5]	186/186	62/62
	H16	140	120	16,000	tr(0.7)	2 [0.5]	189/189	63/63
底質	H17	130	110	32,000	tr(0.8)	1.0 [0.3]	189/189	63/63
	H18	120	110	13,000	tr(0.3)	0.5 [0.2]	192/192	64/64
(pg/g-dry)	H19	110	130	21,000	tr(0.5)	1.0 [0.4]	192/192	64/64
	H20	170	150	50,000	0.5	0.3 [0.1]	192/192	64/64
	H21	120	120	24,000	0.5	0.5 [0.2]	192/192	64/64
	H22	130	130	6,900	tr(0.8)	0.9 [0.4]	64/64	64/64

⁽注) ※: 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

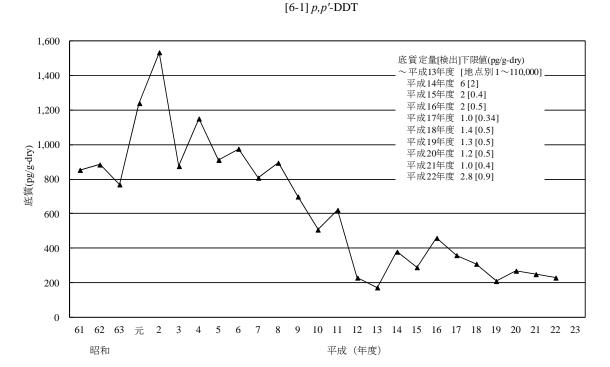
○平成 14~22 年度における生物(貝類、魚類及び鳥類)についての o,p'-DDT、o,p'-DDE 及び o,p'-DDD の検出状況

		414. (B -10 111-	1.1.1.1	der de
o,p'-DDT	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
·, _F		平均值※				下限値	検体	地点
	H14	110	83	480	22	12 [4]	38/38	8/8
	H15	130	120	480	35	2.9 [0.97]	30/30	6/6
	H16	160	140	910	20	1.8 [0.61]	31/31	7/7
日松	H17	98	57	440	29	2.6 [0.86]	31/31	7/7
貝類	H18	92	79	380	24	3 [1]	31/31	7/7
(pg/g-wet)	H19	79	52	350	20	3 [1]	31/31	7/7
	H20	58	37	330	5	3 [1]	31/31	7/7
	H21	74	48	2,500	17	2.2 [0.8]	31/31	7/7
	H22	51	67	160	15	3 [1]	6/6	6/6
	H14	130	130	2,300	tr(6)	12 [4]	70/70	14/14
	H15	85	120	520	2.9	2.9 [0.97]	70/70	14/14
	H16	160	140	1,800	3.7	1.8 [0.61]	70/70	14/14
	H17	100	110	1,500	5.8	2.6 [0.86]	80/80	16/16
魚類	H18	100	110	700	6	3 [1]	80/80	16/16
(pg/g-wet)		69						
	H19		90	430	3	3 [1]	80/80	16/16
	H20	72	92	720	3	3 [1]	85/85	17/17
	H21	61	73	470	2.4	2.2 [0.8]	90/90	18/18
	H22	58	71	550	5	3 [1]	18/18	18/18
	H14	12	tr(10)	58	nd	12 [4]	8/10	2/2
	H15	24	16	66	8.3	2.9 [0.97]	10/10	2/2
	H16	8.5	13	43	tr(0.87)	1.8 [0.61]	10/10	2/2
鳥類	H17	11	14	24	3.4	2.6 [0.86]	10/10	2/2
(pg/g-wet)	H18	14	10	120	3	3 [1]	10/10	2/2
	H19	9	9	26	tr(2)	3 [1]	10/10	2/2
	H20	4	6	16	nd	3 [1]	8/10	2/2
	H21	6.3	7.6	12	tr(1.4)	2.2 [0.8]	10/10	2/2
	H22	nd		nd	nd	3 [1]	0/2	0/2
		幾何				定量[検出]	検出	
o,p'-DDE	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	H14	83	66	1,100	13	3.6 [1.2]	38/38	8/8
	H15	85	100	460	17	3.6 [1.2]	30/30	6/6
	H16	86	69	360	19	2.1 [0.69]	31/31	7/7
	H17	70	89	470	12	3.4 [1.1]	31/31	7/7
貝類	H18	62	81	340	12		31/31	7/7
(pg/g-wet)						3 [1]		
	H19	56	69 52	410	8.9	2.3 [0.9]	31/31	7/7
	H20	49	52 50	390	8	3 [1]	31/31	7/7
	H21	46	58	310	8	3 [1]	31/31	7/7
	H22	46	58	160	7.8	1.5 [0.6]	6/6	6/6
	H14	91	50	13,000	7.8	3.6 [1.2]	70/70	14/14
	H14 H15	91 51	50 54	13,000 2,500	3.6 nd	3.6 [1.2] 3.6 [1.2]	70/70 67/70	14/14 14/14
	H14	91	50	13,000	3.6	3.6 [1.2]	70/70	14/14 14/14
<i>4.</i> ¥5	H14 H15	91 51	50 54	13,000 2,500	3.6 nd	3.6 [1.2] 3.6 [1.2]	70/70 67/70	14/14 14/14 14/14
魚類	H14 H15 H16 H17	91 51 76 54	50 54 48 45	13,000 2,500 5,800 12,000	3.6 nd tr(0.89) tr(1.4)	3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1]	70/70 67/70 70/70 80/80	14/14 14/14 14/14 16/16
魚類 (pg/g-wet)	H14 H15 H16 H17 H18	91 51 76 54 56	50 54 48 45 43	13,000 2,500 5,800 12,000 4,800	3.6 nd tr(0.89) tr(1.4) tr(1)	3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1]	70/70 67/70 70/70 80/80 80/80	14/14 14/14 14/14 16/16 16/16
	H14 H15 H16 H17 H18 H19	91 51 76 54 56 45	50 54 48 45 43 29	13,000 2,500 5,800 12,000 4,800 4,400	3.6 nd tr(0.89) tr(1.4) tr(1) nd	3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9]	70/70 67/70 70/70 80/80 80/80 79/80	14/14 14/14 14/14 16/16 16/16
	H14 H15 H16 H17 H18 H19	91 51 76 54 56 45 50	50 54 48 45 43 29 37	13,000 2,500 5,800 12,000 4,800 4,400 13,000	3.6 nd tr(0.89) tr(1.4) tr(1) nd tr(1)	3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1]	70/70 67/70 70/70 80/80 80/80 79/80 85/85	14/14 14/14 14/14 16/16 16/16 16/16 17/17
	H14 H15 H16 H17 H18 H19 H20 H21	91 51 76 54 56 45 50 46	50 54 48 45 43 29 37 33	13,000 2,500 5,800 12,000 4,800 4,400 13,000 4,300	3.6 nd tr(0.89) tr(1.4) tr(1) nd tr(1) tr(1)	3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 3 [1]	70/70 67/70 70/70 80/80 80/80 79/80 85/85 90/90	14/14 14/14 14/14 16/16 16/16 16/16 17/17 18/18
	H14 H15 H16 H17 H18 H19 H20 H21	91 51 76 54 56 45 50 46 47	50 54 48 45 43 29 37 33 37	13,000 2,500 5,800 12,000 4,800 4,400 13,000 4,300 2,800	3.6 nd tr(0.89) tr(1.4) tr(1) nd tr(1) tr(1)	3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 3 [1] 1.5 [0.6]	70/70 67/70 70/70 80/80 80/80 79/80 85/85 90/90 18/18	14/14 14/14 14/14 16/16 16/16 16/16 17/17 18/18
	H14 H15 H16 H17 H18 H19 H20 H21 H22	91 51 76 54 56 45 50 46 47 28	50 54 48 45 43 29 37 33 37 26	13,000 2,500 5,800 12,000 4,800 4,400 13,000 4,300 2,800	3.6 nd tr(0.89) tr(1.4) tr(1) nd tr(1) tr(1) tr(1.2)	3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 3 [1] 1.5 [0.6] 3.6 [1.2]	70/70 67/70 70/70 80/80 80/80 79/80 85/85 90/90 18/18	14/14 14/14 14/14 16/16 16/16 16/16 17/17 18/18 18/18
	H14 H15 H16 H17 H18 H19 H20 H21 H22 H14	91 51 76 54 56 45 50 46 47 28 tr(2.3)	50 54 48 45 43 29 37 33 37 26 tr(2.0)	13,000 2,500 5,800 12,000 4,800 4,400 13,000 4,300 2,800 49 4.2	3.6 nd tr(0.89) tr(1.4) tr(1) nd tr(1) tr(1) tr(1.2)	3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 3 [1] 1.5 [0.6] 3.6 [1.2] 3.6 [1.2]	70/70 67/70 70/70 80/80 80/80 79/80 85/85 90/90 18/18 10/10 9/10	14/14 14/14 14/14 16/16 16/16 17/17 18/18 18/18 2/2 2/2
	H14 H15 H16 H17 H18 H19 H20 H21 H22 H14 H15	91 51 76 54 56 45 50 46 47 28 tr(2.3) tr(1.0)	50 54 48 45 43 29 37 33 37 26 tr(2.0) tr(1.1)	13,000 2,500 5,800 12,000 4,800 4,400 13,000 4,300 2,800 49 4.2 3.7	3.6 nd tr(0.89) tr(1.4) tr(1) nd tr(1) tr(1) tr(1.2) 20 nd nd	3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 3 [1] 1.5 [0.6] 3.6 [1.2] 3.6 [1.2] 2.1 [0.69]	70/70 67/70 70/70 80/80 80/80 79/80 85/85 90/90 18/18 10/10 9/10 5/10	14/14 14/14 14/14 16/16 16/16 17/17 18/18 2/2 2/2 1/2
	H14 H15 H16 H17 H18 H19 H20 H21 H22 H14 H15 H16 H17	91 51 76 54 56 45 50 46 47 28 tr(2.3) tr(1.0)	50 54 48 45 43 29 37 33 37 26 tr(2.0) tr(1.1) tr(1.9)	13,000 2,500 5,800 12,000 4,800 4,400 13,000 4,300 2,800 49 4.2 3.7 tr(2.9)	3.6 nd tr(0.89) tr(1.4) tr(1) nd tr(1) tr(1) tr(1) 20 nd nd nd	3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 3 [1] 1.5 [0.6] 3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1]	70/70 67/70 70/70 80/80 80/80 79/80 85/85 90/90 18/18 10/10 9/10 5/10 7/10	14/14 14/14 14/14 16/16 16/16 17/17 18/18 2/2 2/2 1/2 2/2
(pg/g-wet)	H14 H15 H16 H17 H18 H19 H20 H21 H22 H14 H15 H16 H17	91 51 76 54 56 45 50 46 47 28 tr(2.3) tr(1.0) tr(1.2)	50 54 48 45 43 29 37 33 37 26 tr(2.0) tr(1.1) tr(1.9) tr(2)	13,000 2,500 5,800 12,000 4,800 4,400 13,000 4,300 2,800 49 4.2 3.7 tr(2.9)	3.6 nd tr(0.89) tr(1.4) tr(1) nd tr(1) tr(1) tr(1.2) 20 nd nd nd tr(1)	3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 3 [1] 1.5 [0.6] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1]	70/70 67/70 70/70 80/80 80/80 79/80 85/85 90/90 18/18 10/10 9/10 5/10 7/10 10/10	14/14 14/14 14/14 16/16 16/16 17/17 18/18 2/2 2/2 1/2 2/2 2/2
(pg/g-wet)	H14 H15 H16 H17 H18 H19 H20 H21 H22 H14 H15 H16 H17 H18	91 51 76 54 56 45 50 46 47 28 tr(2.3) tr(1.0) tr(1.2) tr(1) tr(1.0)	50 54 48 45 43 29 37 33 37 26 tr(2.0) tr(1.1) tr(1.9) tr(2) tr(1.4)	13,000 2,500 5,800 12,000 4,800 4,400 13,000 4,300 2,800 49 4.2 3.7 tr(2.9) 3 2.8	3.6 nd tr(0.89) tr(1.4) tr(1) nd tr(1) tr(1) tr(1.2) 20 nd nd nd tr(1) nd	3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 3 [1] 1.5 [0.6] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9]	70/70 67/70 70/70 80/80 80/80 79/80 85/85 90/90 18/18 10/10 9/10 5/10 7/10 10/10 6/10	14/14 14/14 14/14 16/16 16/16 17/17 18/18 2/2 2/2 1/2 2/2 2/2 2/2
(pg/g-wet)	H14 H15 H16 H17 H18 H19 H20 H21 H22 H14 H15 H16 H17 H18 H19 H20	91 51 76 54 56 45 50 46 47 28 tr(2.3) tr(1.0) tr(1.2) tr(1)	50 54 48 45 43 29 37 33 37 26 tr(2.0) tr(1.1) tr(1.9) tr(2) tr(1.4) nd	13,000 2,500 5,800 12,000 4,800 4,400 13,000 4,300 2,800 49 4.2 3.7 tr(2.9) 3 2.8 3	3.6 nd tr(0.89) tr(1.4) tr(1) nd tr(1) tr(1) tr(1.2) 20 nd nd nd tr(1) nd tr(1)	3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 3 [1] 1.5 [0.6] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1]	70/70 67/70 70/70 80/80 80/80 79/80 85/85 90/90 18/18 10/10 9/10 5/10 7/10 10/10 6/10 5/10	14/14 14/14 14/14 16/16 16/16 17/17 18/18 2/2 2/2 1/2 2/2 2/2 1/2
(pg/g-wet)	H14 H15 H16 H17 H18 H19 H20 H21 H22 H14 H15 H16 H17 H18	91 51 76 54 56 45 50 46 47 28 tr(2.3) tr(1.0) tr(1.2) tr(1) tr(1.0)	50 54 48 45 43 29 37 33 37 26 tr(2.0) tr(1.1) tr(1.9) tr(2) tr(1.4)	13,000 2,500 5,800 12,000 4,800 4,400 13,000 4,300 2,800 49 4.2 3.7 tr(2.9) 3 2.8	3.6 nd tr(0.89) tr(1.4) tr(1) nd tr(1) tr(1) tr(1.2) 20 nd nd nd tr(1) nd	3.6 [1.2] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9] 3 [1] 3 [1] 1.5 [0.6] 3.6 [1.2] 2.1 [0.69] 3.4 [1.1] 3 [1] 2.3 [0.9]	70/70 67/70 70/70 80/80 80/80 79/80 85/85 90/90 18/18 10/10 9/10 5/10 7/10 10/10 6/10	14/14 14/14 16/16 16/16 16/16 17/17 18/18 2/2 2/2 1/2 2/2 2/2 2/2

/ DDD	安长左帝	幾何	中市 法	目. 上./法	目.よ.は	定量[検出]	検出	頻度
o,p'-DDD	実施年度	平均值※	中央値	最大値	最小值	下限値	検体	地点
	H14	120	190	2,900	tr(9)	12 [4]	38/38	8/8
	H15	200	220	1,900	6.5	6.0 [2.0]	30/30	6/6
	H16	220	130	2,800	6.0	5.7 [1.9]	31/31	7/7
日和	H17	170	280	1,800	10	3.3 [1.1]	31/31	7/7
貝類	H18	150	200	1,000	7	4 [1]	31/31	7/7
(pg/g-wet)	H19	150	200	1,200	6	3 [1]	31/31	7/7
	H20	130	140	1,100	5	4 [2]	31/31	7/7
	H21	95	51	1,000	5	3 [1]	31/31	7/7
	H22	57	50	400	5.8	0.6 [0.2]	6/6	6/6
	H14	95	90	1,100	nd	12 [4]	66/70	14/14
	H15	75	96	920	nd	6.0 [2.0]	66/70	14/14
	H16	120	96	1,700	nd	5.7 [1.9]	68/70	14/14
魚類	H17	83	81	1,400	nd	3.3 [1.1]	79/80	16/16
	H18	80	86	1,100	tr(1)	4 [1]	80/80	16/16
(pg/g-wet)	H19	66	62	1,300	nd	3 [1]	78/80	16/16
	H20	65	74	1,000	nd	4 [2]	80/85	16/17
	H21	63	64	760	nd	3 [1]	87/90	18/18
	H22	75	99	700	2.6	0.6 [0.2]	18/18	18/18
	H14	15	15	23	tr(8)	12 [4]	10/10	2/2
	H15	15	14	36	tr(5.0)	6.0 [2.0]	10/10	2/2
	H16	6.1	5.7	25	nd	5.7 [1.9]	9/10	2/2
鳥類	H17	7.3	7.5	9.7	4.7	3.3 [1.1]	10/10	2/2
	H18	8	8	19	5	4 [1]	10/10	2/2
(pg/g-wet)	H19	7	7	10	5	3 [1]	10/10	2/2
	H20	4	tr(3)	14	tr(2)	4 [2]	10/10	2/2
	H21	6	5	13	3	3 [1]	10/10	2/2
	H22	6.3		11	3.6	0.6 [0.2]	2/2	2/2

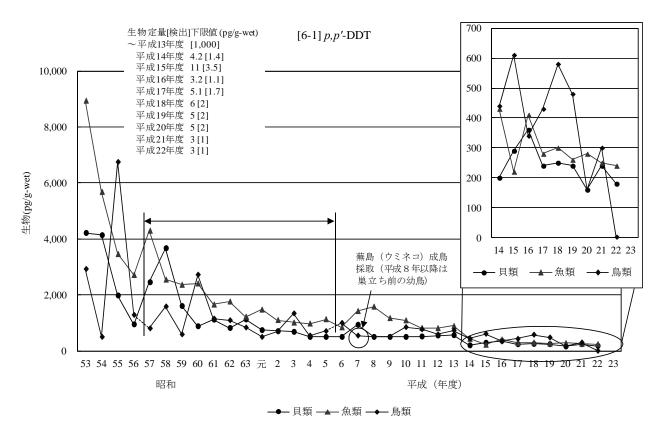

⁽注) ※: 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<大気>


○平成 14~22 年度における大気についての o,p'-DDT、o,p'-DDE 及び o,p'-DDD の検出状況

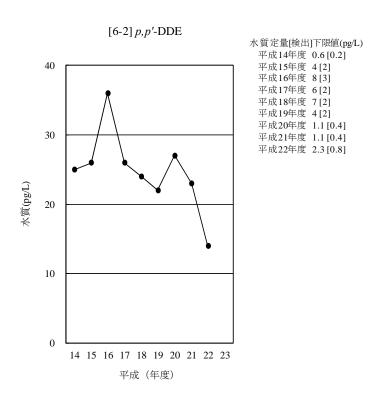
. , , -	, , , , , , , , , , , , , , , , , , , ,		-	'I	, - /r		D 41 1 0 1 0 -		
	o,p'-DDT	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
	0,p -DD1	天旭千皮	平均値	十人他	取八胆	取力响	下限値	検体	地点
		H14	2.2	2.0	40	0.41	0.15 [0.05]	102/102	34/34
		H15 温暖期	6.9	7.7	38	0.61	0.12 [0.040]	35/35	35/35
		H15 寒冷期	1.6	1.4	6.4	0.43	0.12 [0.040]	34/34	34/34
		H16 温暖期	5.1	5.4	22	0.54	0.093 [0.031]	37/37	37/37
		H16寒冷期	1.5	1.4	9.4	0.35	0.093 [0.031]	37/37	37/37
		H17 温暖期	3.0	3.1	14	0.67	0.10 [0.034]	37/37	37/37
		H17 寒冷期	0.76	0.67	3.0	0.32	0.10 [0.034]	37/37	37/37
	大気	H18 温暖期	2.5	2.4	20	0.55	0.09 [0.03]	37/37	37/37
	(pg/m^3)	H18寒冷期	0.90	0.79	3.9	0.37		37/37	37/37
	(pg/III [*])	H19 温暖期	2.9	2.6	19	0.24	0.03 [0.01]	36/36	36/36
		H19寒冷期	0.77	0.63	3.4	0.31	0.03 [0.01]	36/36	36/36
		H20 温暖期	2.3	2.1	18	0.33	0.02 [0.01]	37/37	37/37
		H20寒冷期	0.80	0.62	6.5	0.32	0.03 [0.01]	37/37	37/37
		H21 温暖期	2.3	2.2	14	0.33	0.010.10.0001	37/37	37/37
		H21 寒冷期	0.80	0.71	3.7	0.20	0.019 [0.008]	37/37	37/37
		H22 温暖期	2.2	1.9	26	0.19	0.14 [0.05]	37/37	37/37
		H22 寒冷期	0.81	0.69	5.5	0.22	0.14 [0.05]	37/37	37/37

/ DDE	安长左座	幾何	+ + <i>l</i> =	日上は	B . I . I . I . I	定量[検出]		頻度
o,p'-DDE	実施年度	平均值	中央値	最大値	最小値	下限値	検体	地点
	H14	0.60	0.56	8.5	0.11	0.03 [0.01]	102/102	34/34
	H15 温暖期	1.4	1.5	7.5	0.17	0.020 [0.0068]	35/35	35/35
	H15 寒冷期	0.50	0.47	1.7	0.18		34/34	34/34
	H16 温暖期	1.1	1.2	8.9	0.14	0.037 [0.012]	37/37	37/37
	H16寒冷期	0.53	0.49	3.9	0.14		37/37	37/37
	H17 温暖期	1.6	1.5	7.9	0.33	0.074 [0.024]	37/37	37/37
	H17 寒冷期	0.62	0.59	2.0	0.24		37/37	37/37
大気	H18 温暖期	1.1	1.1	7.4	nd	0.09 [0.03]	36/37	36/37
(pg/m^3)	H18 寒冷期	0.65	0.56	2.6	0.19		37/37	37/37
(P8/III)	H19 温暖期	0.66	0.67	7	0.096	0.017 [0.007]	36/36	36/36
	H19 寒冷期	0.3	0.29	3.7	0.12		36/36	36/36
	H20 温暖期	0.48	0.52	5.0	0.11	0.025 [0.009]	37/37	37/37
	H20寒冷期	0.30	0.24	1.1	0.15		37/37	37/37
	H21 温暖期	0.51	0.46	6.7	0.098	0.016 [0.006]	37/37	37/37
	H21 寒冷期	0.27	0.24	23	0.072		37/37	37/37
	H22 温暖期	0.49	0.41	9.0	0.09	0.04 [0.01]	37/37	37/37
	H22 寒冷期	0.27	0.23	2.3	0.08		37/37	37/37
o,p'-DDD	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
		平均値				下限値	検体	地点
	H14	0.14	0.18	0.85	nd_	0.021 [0.007]	97/102	33/34
	H15 温暖期	0.37	0.42	1.3	0.059	0.042 [0.014]	35/35	35/35
	H15 寒冷期	0.15	0.14	0.42	0.062		34/34	34/34
	H16 温暖期	0.31	0.33	2.6	tr(0.052)	0.14 [0.048]	37/37	37/37
	H16寒冷期	0.14	tr(0.13)	0.86	nd		35/37	35/37
	H17 温暖期	0.22	0.19	0.90	tr(0.07)	0.10 [0.03]	37/37	37/37
	H17 寒冷期	tr(0.07)	tr(0.07)	0.21	nd		35/37	35/37
大気	H18 温暖期	0.28	0.28	1.4	tr(0.05)	0.10 [0.03]	37/37	37/37
(pg/m^3)	H18 寒冷期	0.12	0.11	0.79	nd		34/37	34/37
(PS/111)	H19 温暖期	0.28	0.29	1.9	0.05	0.05 [0.02]	36/36	36/36
	H19寒冷期	0.095	0.09	0.33	tr(0.03)		36/36	36/36
	H20 温暖期	0.19	0.16	1.6	0.05	0.04 [0.01]	37/37	37/37
	H20 寒冷期	0.10	0.09	0.26	0.04		37/37	37/37
	H21 温暖期	0.20	0.19	0.90	0.04	0.03 [0.01]	37/37	37/37
	H21 寒冷期	0.08	0.08	0.28	tr(0.02)		37/37	37/37
	1100 知 110 411	0.21	0.10	1.0	0.04	л Л	37/37	37/37
	H22 温暖期	0.21	0.19	1.8	0.04	0.03 [0.01]	31/31	31/31



(注) 平成 14 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-6-1-1 *p,p'*-DDT の水質の経年変化(幾何平均値)

(注) 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。


図 7-6-1-2 p,p'-DDT の底質の経年変化(幾何平均値)

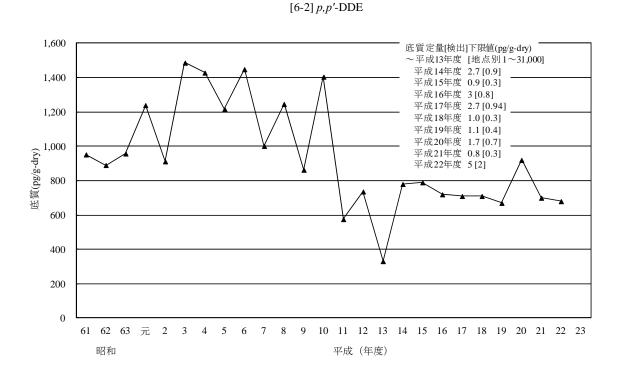
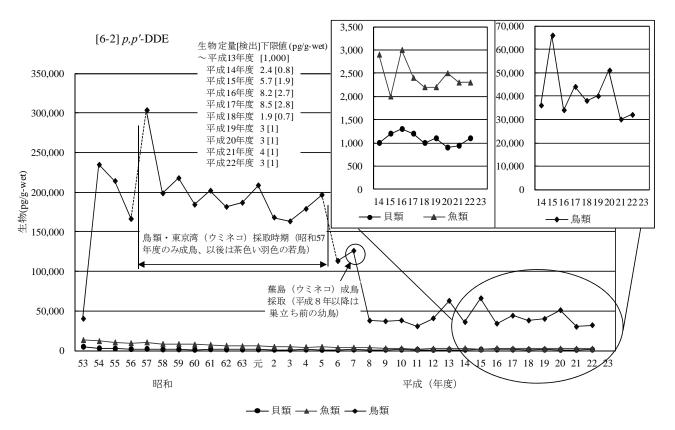

(注) 平成 21 年度以前は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-6-1-3 *p,p'*-DDT の生物の経年変化(幾何平均値)

図 7-6-1-4 p,p'-DDT の大気の経年変化(幾何平均値)



(注) 平成 14 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-6-2-1 *p,p'*-DDE の水質の経年変化(幾何平均値)

(注) 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求

図 7-6-2-2 p,p'-DDE の底質の経年変化(幾何平均値)

(注) 平成 21 年度以前は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-6-2-3 *p,p'*-DDE の生物の経年変化(幾何平均値)

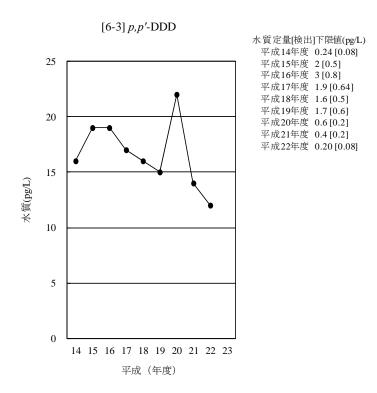
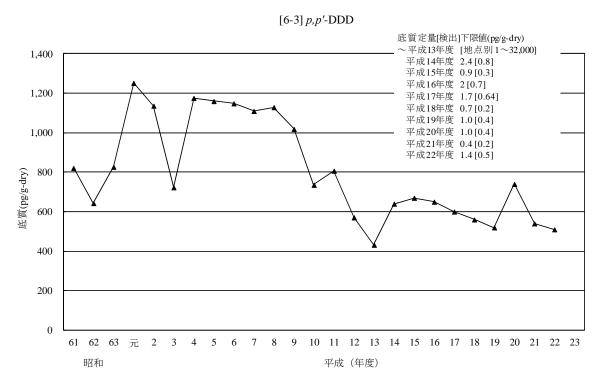
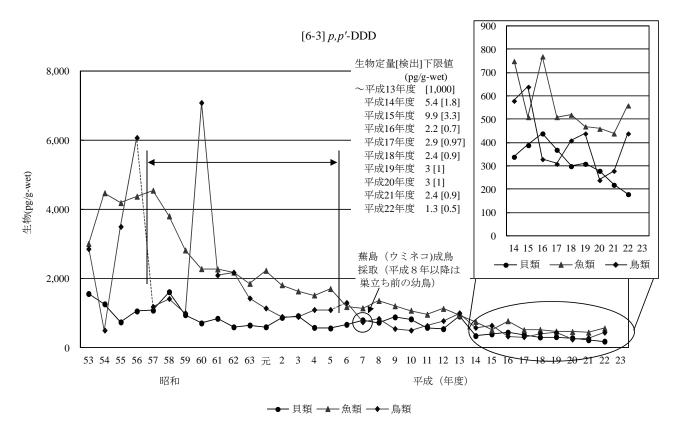




図 7-6-2-4 p,p'-DDE の大気の経年変化(幾何平均値)



(注) 平成 14 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-6-3-1 *p,p'*-DDD の水質の経年変化(幾何平均値)

(注) 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

図 7-6-3-2 p,p'-DDD の底質の経年変化(幾何平均値)

(注) 平成 21 年度以前は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-6-3-3 *p,p'-DDD* の生物の経年変化(幾何平均値)

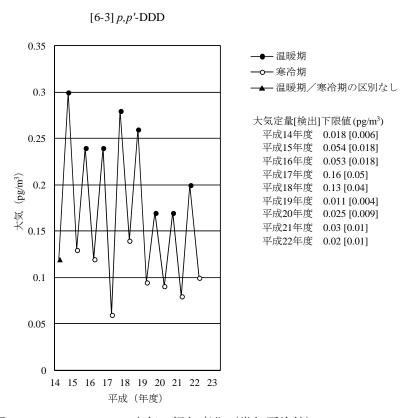
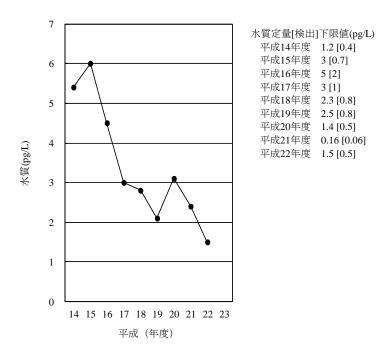
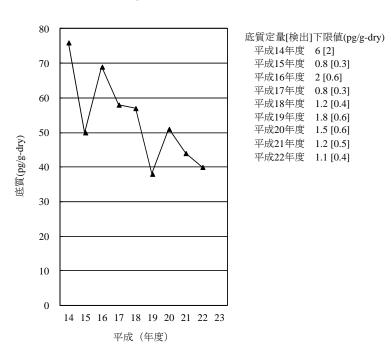
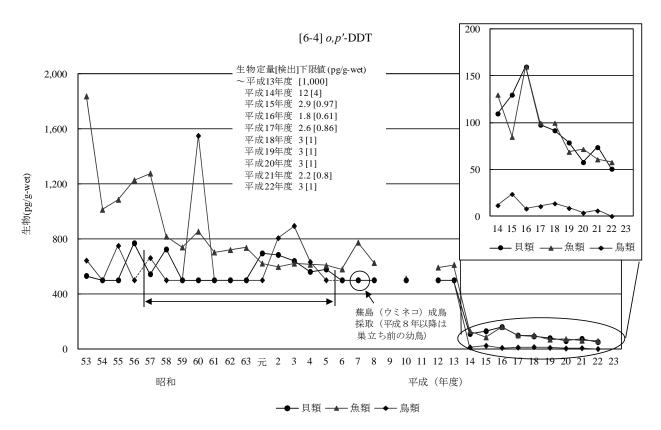



図 7-6-3-4 p,p'-DDD の大気の経年変化(幾何平均値)


[6-4] *o,p'*-DDT

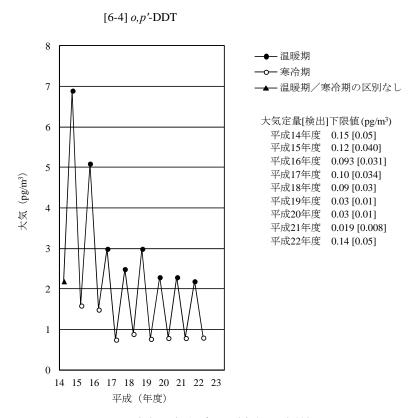
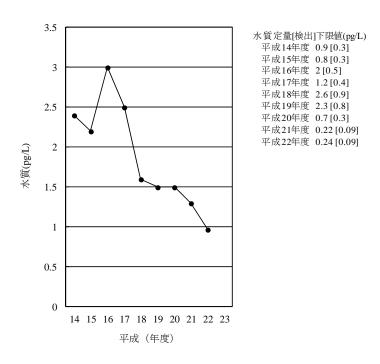
(注) 平成14年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

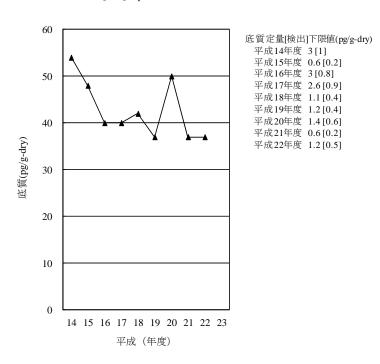

図 7-6-4-1 o,p'-DDT の水質の経年変化(幾何平均値)

- (注1) o,p'-DDT の底質については、継続的調査において平成13年度以前の調査が実施されていない。
- (注 2) 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を 求めた。

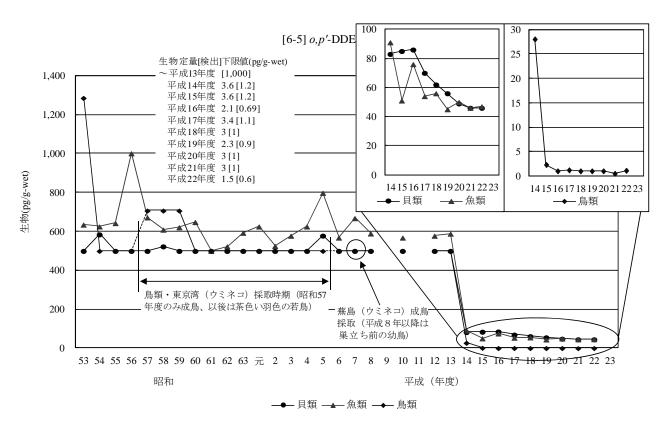
図 7-6-4-2 o,p'-DDT の底質の経年変化(幾何平均値)

(注) 平成 21 年度以前は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-6-4-3 *o,p'-DDT* の生物の経年変化(幾何平均値)


図 7-6-4-4 o,p'-DDT の大気の経年変化(幾何平均値)

[6-5] *o,p'*-DDE


(注) 平成 14 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-6-5-1 *o,p'*-DDE の水質の経年変化(幾何平均値)

- (注 1) o,p'-DDE の底質については、継続的調査において平成 13 年度以前の調査が実施されていない。
- (注 2) 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

図 7-6-5-2 o,p'-DDE の底質の経年変化 (幾何平均値)

(注) 平成 21 年度以前は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-6-5-3 *o,p'-DDE* の生物の経年変化(幾何平均値)

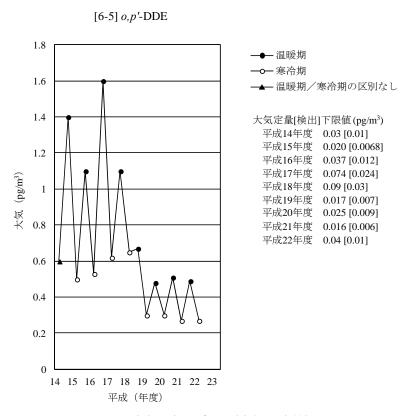
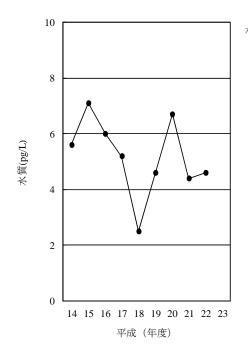
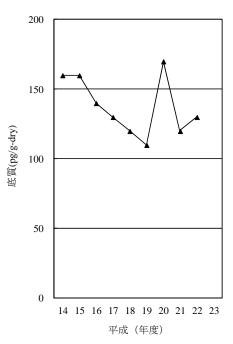



図 7-6-5-4 o,p'-DDE の大気の経年変化(幾何平均値)

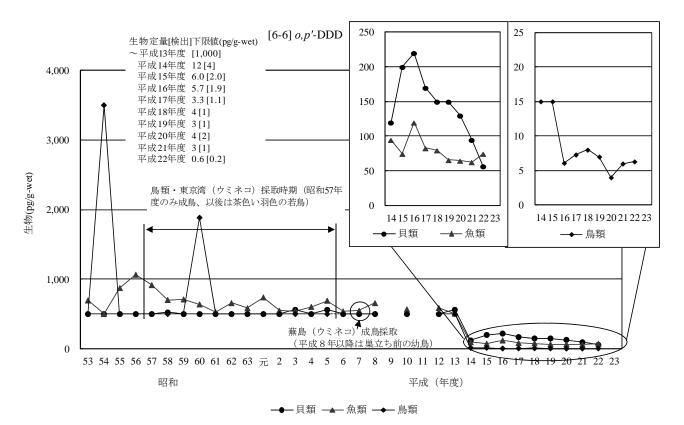
[6-6] *o,p'*-DDD



水質定量[検出]下限値(pg/L)
平成14年度 0.60 [0.20]
平成15年度 0.8 [0.3]
平成16年度 2 [0.5]
平成17年度 1.2 [0.4]
平成18年度 0.8 [0.3]
平成19年度 0.8 [0.3]
平成20年度 0.8 [0.3]
平成21年度 0.22 [0.09]
平成22年度 0.6 [0.2]

(注) 平成14年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

図 7-6-6-1 o,p'-DDD の水質の経年変化(幾何平均値)



底質定量[検出]下限値(pg/g-dry)
平成14年度 6 [2]
平成15年度 2 [0.5]
平成16年度 2 [0.5]
平成17年度 1.0 [0.3]
平成18年度 0.5 [0.2]
平成19年度 1.0 [0.4]
平成20年度 0.3 [0.1]
平成21年度 0.5 [0.2]
平成21年度 0.9 [0.4]

- (注 1) o,p'-DDD の底質については、継続的調査において平成 13 年度以前の調査が実施されていない。
- (注 2) 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

図 7-6-6-2 *o,p'*-DDD の底質の経年変化(幾何平均値)

(注) 平成 21 年度以前は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-6-6-3 *o,p'-DDD* の生物の経年変化(幾何平均値)

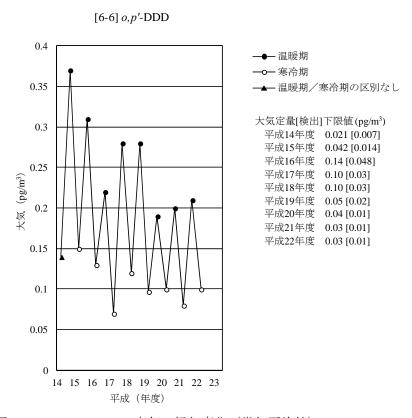


図 7-6-6-4 o,p'-DDD の大気の経年変化(幾何平均値)

[7] クロルデン類

調査の経緯及び実施状況

クロルデン類は、殺虫剤として利用されたが、昭和43年に農薬取締法に基づく登録が失効した。しかし、 クロルデン類はその後も木材加工時に用いられ、シロアリ防除のために家屋等にも使用されていた。昭和 61年9月に化審法に基づく第一種特定化学物質に指定された。

工業的に生産されたクロルデン類の組成は多岐にわたるが、継続的調査では、当初へプタクロル、 γ -クロルディーン、ヘプタクロルエポキシド、cis-クロルデン、trans-クロルデン、オキシクロルデン(クロルデン代謝物)、cis-ノナクロル(農薬として未登録)及び trans-ノナクロル(農薬として未登録)の8種類を調査対象物質とした。昭和58年度以降は、昭和57年度精密環境調査において特に検出頻度が高かった5物質(cis-クロルデン、trans-クロルデン trans-ク

平成 13 年度までの継続的調査において、「生物モニタリング」 ii で昭和 58 年度から平成 13 年度の全期間にわたって生物(貝類、魚類及び鳥類)について調査を実施している。また、「水質・底質モニタリング」 ii で cis-クロルデン、trans-クロルデン、cis-ノナクロル及び trans-ノナクロルについて、水質は昭和 61年度から平成 10年度まで、底質は昭和 61年度から平成 13年度の全期間にわたって調査を実施している。

平成 14 年度以降のモニタリング調査では、cis-クロルデン、trans-クロルデン、オキシクロルデン、cis-ノナクロル及びtrans-ノナクロルについての水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を毎年度実施している。

•調查結果

○cis-クロルデン及び trans-クロルデン

<水質>

cis-クロルデン:水質については、49 地点を調査し、検出下限値 0.6pg/L において 49 地点全てで検出され、検出濃度は 3.8~500pg/L の範囲であった。平成 14 年度から平成 23 年度における経年分析の結果、河川域及び海域の減少傾向が統計的に有意と判定された。また、水質全体としても減少傾向が統計的に有意と判定された。

trans-クロルデン: 水質については、49 地点を調査し、検出下限値 0.4pg/L において 49 地点全てで検出され、検出濃度は $3.2\sim470pg/L$ の範囲であった。

○平成 14~23 年度における水質についての cis-クロルデン及び trans-クロルデンの検出状況

cis-クロルデン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	検出頻度	
CIS-9 11/09 2	夫 旭千度	平均值※	中关他	取入但	取小胆	下限値	検体	地点	
	H14	42	32	880	2.5	0.9 [0.3]	114/114	38/38	
	H15	69	51	920	12	3 [0.9]	36/36	36/36	
	H16	92	87	1,900	10	6 [2]	38/38	38/38	
	H17	53	54	510	6	4 [1]	47/47	47/47	
水質	H18	31	26	440	5	5 [2]	48/48	48/48	
(pg/L)	H19	23	22	680	nd	4 [2]	47/48	47/48	
	H20	29	29	480	2.9	1.6 [0.6]	48/48	48/48	
	H21	29	26	710	4.4	1.1 [0.4]	49/49	49/49	
	H22	19	14	170	nd	11 [4]	47/49	47/49	
	H23	20	16	500	3.8	1.4 [0.6]	49/49	49/49	

trans-クロルデン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	H14	33	24	780	3.1	1.5 [0.5]	114/114	38/38
	H15	34	30	410	6	5 [2]	36/36	36/36
	H16	32	26	1,200	5	5 [2]	38/38	38/38
	H17	25	21	200	3	4 [1]	47/47	47/47
水質	H18	24	16	330	tr(4)	7 [2]	48/48	48/48
(pg/L)	H19	16	20	580	nd	2.4 [0.8]	47/48	47/48
	H20	23	22	420	3	3 [1]	48/48	48/48
	H21	23	18	690	3.0	0.8 [0.3]	49/49	49/49
	H22	15	tr(11)	310	nd	13 [4]	44/49	44/49
	H23	16	13	470	3.2	1.0 [0.4]	49/49	49/49

⁽注)※: 平成14年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<底質>

cis-クロルデン: 底質については、64 地点を調査し、検出下限値 0.4pg/g-dry において 64 地点全てで検出され、検出濃度は 1.7~4,500pg/g-dry の範囲であった。平成 14 年度から平成 23 年度における経年分析の結果、湖沼域、河口域及び海域の減少傾向が統計的に有意と判定された。また、底質全体としても減少傾向が統計的に有意と判定された。

trans-クロルデン: 底質については、64 地点を調査し、検出下限値 0.5pg/g-dry において 64 地点全てで検出され、検出濃度は 3.2~4,300pg/g-dry の範囲であった。平成 14 年度から平成 23 年度における経年分析の結果、海域の減少傾向が統計的に有意と判定された。また、底質全体としても減少傾向が統計的に有意と判定された。

○平成 14~23 年度における底質についての cis-クロルデン及び trans-クロルデンの検出状況

cis-クロルデン	実施年度	幾何 平均值※	中央値	最大値	最小値	定量[検出]	演出] 検出頻度	
						下限值	検体	地点
	H14	140	98	18,000	1.8	0.9 [0.3]	189/189	63/63
	H15	190	140	19,000	tr(3.6)	4 [2]	186/186	62/62
	H16	160	97	36,000	4	4 [2]	189/189	63/63
	H17	150	100	44,000	3.3	1.9 [0.64]	189/189	63/63
底質	H18	100	70	13,000	tr(0.9)	2.4 [0.8]	192/192	64/64
(pg/g-dry)	H19	82	55	7,500	nd	5 [2]	191/192	64/64
	H20	100	63	11,000	tr(2.3)	2.4 [0.9]	192/192	64/64
	H21	84	61	8,600	2.0	0.7 [0.3]	192/192	64/64
	H22	82	62	7,200	tr(4)	6 [2]	64/64	64/64
	H23	70	58	4,500	1.7	1.1 [0.4]	64/64	64/64
trans-クロルデン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出頻度	
trans-9 4707 2	天旭千茂	平均值※				下限値	検体	地点
	H14	150	110	16,000	2.1	1.8 [0.6]	189/189	63/63
	H15	130	100	13,000	tr(2.4)	4 [2]	186/186	62/62
	H16	110	80	26,000	3	3 [0.9]	189/189	63/63
	H17	110	81	32,000	3.4	2.3 [0.84]	189/189	63/63
底質	H18	110	76	12,000	2.2	1.1 [0.4]	192/192	64/64
(pg/g-dry)	H19	82	58	7,500	nd	2.2 [0.8]	191/192	64/64
	H20	110	66	10,000	2.4	2.0 [0.8]	192/192	64/64
	H21	91	68	8,300	2.1	1.7 [0.7]	192/192	64/64
	H22	95	69	8,000	tr(4)	11 [4]	64/64	64/64
	H23	73	64	4,300	3.2	1.3 [0.5]	64/64	64/64

⁽注) ※: 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>

cis-クロルデン: 生物のうち貝類については、4地点を調査し、検出下限値 1pg/g-wet において4地点全てで検出され、検出濃度は $160\sim3,400pg/g$ -wet の範囲であった。魚類については、18 地点を調査し、検出下

限値 1pg/g-wet において 18 地点全てで検出され、検出濃度は $79\sim3,800pg/g$ -wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 1pg/g-wet において検出され、検出濃度は 6pg/g-wet であった。

trans-クロルデン: 生物のうち貝類については、4地点を調査し、検出下限値 1pg/g-wet において4地点全てで検出され、検出濃度は $150\sim2,900pg/g$ -wet の範囲であった。魚類については、18 地点を調査し、検出下限値 1pg/g-wet において 18 地点全でで検出され、検出濃度は $20\sim1,300pg/g$ -wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 1pg/g-wet において検出され、検出濃度は 5pg/g-wet であった。

〇平成 $14\sim23$ 年度における生物(貝類、魚類及び鳥類)についての cis-クロルデン及び trans-クロルデンの検出状況

cis-クロルデン	実施年度	幾何		最大値	最小値	定量[検出]	定量[検出] 検出	
		平均值※				下限値	検体	地点
	H14	730	1,200	26,000	24	2.4 [0.8]	38/38	8/8
	H15	1,100	1,400	14,000	110	3.9 [1.3]	30/30	6/6
	H16	1,300	1,600	14,000	91	18 [5.8]	31/31	7/7
	H17	1,000	960	13,000	78	12 [3.9]	31/31	7/7
貝類	H18	970	1,100	18,000	67	4 [1]	31/31	7/7
(pg/g-wet)	H19	870	590	19,000	59	5 [2]	31/31	7/7
	H20	750	560	11,000	85	5 [2]	31/31	7/7
	H21	1,200	1,100	16,000	83	4 [2]	31/31	7/7
	H22	1,600	2,300	15,000	67	4 [2]	6/6	6/6
	H23	790	880	3,400	160	3 [1]	4/4	4/4
	H14	610	550	6,900	57	2.4 [0.8]	70/70	14/14
	H15	510	400	4,400	43	3.9 [1.3]	70/70	14/14
	H16	620	490	9,800	68	18 [5.8]	70/70	14/14
	H17	520	600	8,000	42	12 [3.9]	80/80	16/16
魚類	H18	520	420	4,900	56	4 [1]	80/80	16/16
(pg/g-wet)	H19	430	360	5,200	30	5 [2]	80/80	16/16
	H20	430	340	3,500	36	5 [2]	85/85	17/17
	H21	430	450	3,200	41	4 [2]	90/90	18/18
	H22	450	630	3,400	51	4 [2]	18/18	18/18
	H23	580	660	3,800	79	3 [1]	18/18	18/18
	H14	67	180	450	10	2.4 [0.8]	10/10	2/2
	H15	47	120	370	6.8	3.9 [1.3]	10/10	2/2
	H16	39	110	240	tr(5.8)	18 [5.8]	10/10	2/2
	H17	53	120	340	tr(5.8)	12 [3.9]	10/10	2/2
鳥類	H18	32	83	250	5	4 [1]	10/10	2/2
(pg/g-wet)	H19	29	83	230	tr(4)	5 [2]	10/10	2/2
	H20	24	87	280	tr(3)	5 [2]	10/10	2/2
	H21	21	48	130	4	4 [2]	10/10	2/2
	H22	27		180	4	4 [2]	2/2	2/2
	H23			6	6	3 [1]	1/1	1/1

trans-クロルデン	実施年度	幾何 平均値※	中央値	最大値	最小値	定量[検出]	検出	検出頻度	
						下限値	検体	地点	
	H14	390	840	2,300	33	2.4 [0.8]	38/38	8/8	
	H15	550	840	2,800	69	7.2 [2.4]	30/30	6/6	
	H16	560	770	2,800	53	48 [16]	31/31	7/7	
	H17	470	660	2,400	40	10 [3.5]	31/31	7/7	
貝類	H18	470	580	2,800	41	4 [2]	31/31	7/7	
(pg/g-wet)	H19	440	460	1,500	34	6 [2]	31/31	7/7	
	H20	360	410	1,300	52	7 [3]	31/31	7/7	
	H21	540	560	16,000	48	4 [1]	31/31	7/7	
	H22	520	640	5,500	31	3 [1]	6/6	6/6	
	H23	490	470	2,900	150	4 [1]	4/4	4/4	
	H14	190	160	2,700	20	2.4 [0.8]	70/70	14/14	
	H15	160	120	1,800	9.6	7.2 [2.4]	70/70	14/14	
	H16	200	130	5,200	tr(17)	48 [16]	70/70	14/14	
	H17	160	180	3,100	tr(9.8)	10 [3.5]	76/80	16/16	
魚類	H18	150	120	2,000	14	4 [2]	80/80	16/16	
(pg/g-wet)	H19	130	100	2,100	8	6 [2]	80/80	16/16	
	H20	120	71	1,300	14	7 [3]	85/85	17/17	
	H21	130	140	1,300	10	4 [1]	90/90	18/18	
	H22	120	170	1,100	9	3 [1]	18/18	18/18	
	H23	180	240	1,300	20	4 [1]	18/18	18/18	
	H14	14	14	26	8.9	2.4 [0.8]	10/10	2/2	
	H15	11	12	27	tr(5.9)	7.2 [2.4]	10/10	2/2	
	H16	nd	nd	tr(26)	nd	48 [16]	5/10	1/2	
	H17	11	12	30	tr(4.5)	10 [3.5]	10/10	2/2	
鳥類	H18	7	8	17	tr(3)	4 [2]	10/10	2/2	
(pg/g-wet)	H19	7	8	19	tr(3)	6 [2]	10/10	2/2	
	H20	tr(5)	9	27	nd	7 [3]	7/10	2/2	
	H21	6	7	13	tr(3)	4 [1]	10/10	2/2	
	H22	4		10	tr(2)	3 [1]	2/2	2/2	
	H23			5	5	4 [1]	1/1	1/1	

(注) ※: 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<大気>

cis-クロルデン: 大気の温暖期については、35地点を調査し、検出下限値 $0.42pg/m^3$ において35地点全てで検出され、検出濃度は $1.5\sim700pg/m^3$ の範囲であった。寒冷期については、37地点を調査し、検出下限値 $0.42pg/m^3$ において37地点全てで検出され、検出濃度は $tr(0.88)\sim240pg/m^3$ の範囲であった。平成15年度から平成23年度における経年分析の結果、温暖期の減少傾向が統計的に有意と判定された。

trans-クロルデン: 大気の温暖期については、35地点を調査し、検出下限値 $0.53pg/m^3$ において35地点全てで検出され、検出濃度は $tr(1.4)\sim810pg/m^3$ の範囲であった。寒冷期については、37地点を調査し、検出下限値 $0.53pg/m^3$ において37地点全てで検出され、検出濃度は $tr(0.70)\sim290pg/m^3$ の範囲であった。平成15年度から平成23年度における経年分析の結果、温暖期の減少傾向が統計的に有意と判定された。

○平成 14~23 年度における大気についての cis-クロルデン及び trans-クロルデンの検出状況

cis-クロルデン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	須度
Cls-9 LIVI 2		平均値	中大恒		取小胆	下限値	検体	地点
	H14	31	40	670	0.86	0.60 [0.20]	102/102	34/34
	H15 温暖期	110	120	1,600	6.4	0.51 [0.17]	35/35	35/35
	H15 寒冷期	30	38	220	2.5		34/34	34/34
	H16 温暖期	92	160	1,000	2.3	0.57 [0.19]	37/37	37/37
	H16寒冷期	29	49	290	1.2		37/37	37/37
	H17 温暖期	92	120	1,000	3.4	0.16 [0.054]	37/37	37/37
	H17 寒冷期	16	19	260	1.4		37/37	37/37
	H18 温暖期	82	110	760	2.9	0.13 [0.04]	37/37	37/37
+ <i>=</i>	H18 寒冷期	19	19	280	2.0		37/37	37/37
大気 (pg/m³)	H19 温暖期	90	120	1,100	3.3	0.10 [0.04]	36/36	36/36
(pg/m²)	H19 寒冷期	17	20	230	1.4	0.10 [0.04]	36/36	36/36
	H20 温暖期	75	120	790	1.9	0.14 [0.05]	37/37	37/37
	H20 寒冷期	21	34	200	1.5	0.14 [0.05]	37/37	37/37
	H21 温暖期	67	110	790	2.7	0.16 [0.06]	37/37	37/37
	H21 寒冷期	19	22	180	0.65	0.10 [0.00] 	37/37	37/37
	H22 温暖期	68	100	700	1.8	0.17 [0.06]	37/37	37/37
	H22 寒冷期	20	27	130	0.84	0.17 [0.00]	37/37	37/37
	H23 温暖期	66	95	700	1.5	1.3 [0.42]	35/35	35/35
	H23寒冷期	20	31	240	tr(0.88)	1.5 [0.42]	37/37	37/37
trans-クロルデン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	須度
truns-> = > > >		平均値				下限値	検体	地点
	<u>H14</u>	36	48	820	0.62	0.60 [0.20]	102/102	34/34
	H15 温暖期	130	150	2,000	6.5	0.86 [0.29]	35/35	35/35
	H15 寒冷期	37	44	290	2.5		34/34	34/34
	H16 温暖期	110	190	1,300	2.2	0.69 [0.23]	37/37	37/37
	H16寒冷期	35	60	360	1 -	0.07 [0.23]	27/27	37/37
					1.5		37/37	
	H17温暖期	100	130	1,300	3.2	0 34 [0 14]	37/37	37/37
	H17寒冷期	100 19	130 23		3.2 1.9	0.34 [0.14]		
		100	130	1,300	3.2		37/37	37/37
+ <i>/=</i>	H17 寒冷期 H18 温暖期 H18 寒冷期	100 19	130 23	1,300 310	3.2 1.9	0.34 [0.14]	37/37 37/37	37/37 37/37
大気 (ng/m³)	H17 寒冷期 H18 温暖期 H18 寒冷期 H19 温暖期	100 19 96	130 23 140 21 140	1,300 310 1,200	3.2 1.9 3.4	0.17 [0.06]	37/37 37/37 37/37 37/37 36/36	37/37 37/37 37/37 36/36
大気 (pg/m³)	H17寒冷期 H18温暖期 H18寒冷期 H19温暖期 H19寒冷期	100 19 96 22	130 23 140 21	1,300 310 1,200 350	3.2 1.9 3.4 2.0 3.8 1.5		37/37 37/37 37/37 37/37	37/37 37/37 37/37 36/36
	H17寒冷期 H18温暖期 H18寒冷期 H19温暖期 H19寒冷期 H20温暖期	100 19 96 22 100	130 23 140 21 140	1,300 310 1,200 350 1,300	3.2 1.9 3.4 2.0 3.8	0.17 [0.06]	37/37 37/37 37/37 37/37 36/36	37/37 37/37 37/37 36/36 36/36 37/37
	H17 寒冷期 H18 温暖期 H18 寒冷期 H19 温暖期 H19 寒冷期 H20 温暖期 H20 寒冷期	100 19 96 22 100 20	130 23 140 21 140 24	1,300 310 1,200 350 1,300 300	3.2 1.9 3.4 2.0 3.8 1.5	0.17 [0.06]	37/37 37/37 37/37 37/37 36/36 36/36	37/37 37/37 37/37 36/36 36/36 37/37
	H17 寒冷期 H18 温暖期 H18 寒冷期 H19 温暖期 H20 温暖期 H20 寒冷期 H21 温暖期	100 19 96 22 100 20 87	130 23 140 21 140 24 130	1,300 310 1,200 350 1,300 300 990 250 960	3.2 1.9 3.4 2.0 3.8 1.5 2.5	0.17 [0.06]	37/37 37/37 37/37 37/37 36/36 36/36 37/37	37/37 37/37 37/37 36/36 36/36 37/37 37/37
	H17 寒冷期 H18 温暖期 H18 寒冷期 H19 温暖期 H19 寒冷期 H20 温暖期 H20 寒冷期 H21 温暖期	100 19 96 22 100 20 87 25	130 23 140 21 140 24 130 41	1,300 310 1,200 350 1,300 300 990 250	3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8	0.17 [0.06]	37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37	37/37 37/37 37/37 36/36 36/36 37/37 37/37
	H17 寒冷期 H18 温暖期 H18 寒冷期 H19 温暖期 H20 温暖期 H20 寒冷期 H21 温暖期	100 19 96 22 100 20 87 25	130 23 140 21 140 24 130 41 120	1,300 310 1,200 350 1,300 300 990 250 960	3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6	0.17 [0.06] 0.12 [0.05] 0.17 [0.06] 0.12 [0.05]	37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37	37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37
	H17 寒冷期 H18 温暖期 H18 寒冷期 H19 温暖期 H19 寒冷期 H20 温暖期 H20 寒冷期 H21 温暖期	100 19 96 22 100 20 87 25 79 23	130 23 140 21 140 24 130 41 120 30	1,300 310 1,200 350 1,300 300 990 250 960 210	3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68	0.17 [0.06]	37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37	37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37
	H17 寒冷期 H18 温暖期 H18 寒冷期 H19 温暖期 H20 温暖期 H20 寒冷期 H21 温暖期 H21 寒冷期	100 19 96 22 100 20 87 25 79 23	130 23 140 21 140 24 130 41 120 30 120	1,300 310 1,200 350 1,300 300 990 250 960 210 820	3.2 1.9 3.4 2.0 3.8 1.5 2.5 1.8 2.6 0.68 2.0	0.17 [0.06] 0.12 [0.05] 0.17 [0.06] 0.12 [0.05]	37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37 36/36 36/36 37/37 37/37 37/37 37/37 37/37 35/35

○オキシクロルデン、cis-ノナクロル及び trans-ノナクロル

<水質>

オキシクロルデン: 水質については、49 地点を調査し、検出下限値 0.5 pg/L において 49 地点中 44 地点で検出され、検出濃度は 34 pg/L までの範囲であった。

cis-ノナクロル:水質については、49 地点を調査し、検出下限値 0.2pg/L において 49 地点全てで検出され、検出濃度は $0.8\sim130pg/L$ の範囲であった。

trans-ノナクロル: 水質については、49 地点を調査し、検出下限値 0.5pg/L において 49 地点全てで検出され、検出濃度は 2.6~480pg/L の範囲であった。平成 14 年度から平成 23 年度における経年分析の結果、河川域の減少傾向が統計的に有意と判定された。

〇平成 $14\sim23$ 年度における水質についてのオキシクロルデン、cis-ノナクロル及び trans-ノナクロルの検出状況

オキシクロルデン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
イイングロルノン	天 旭 十 及	平均值※	中大旭	取八胆	取力们但	下限値	検体	地点
	H14	2.7	3.5	41	nd	1.2 [0.4]	96/114	35/38
	H15	3	2	39	tr(0.6)	2 [0.5]	36/36	36/30
	H16	3.2	2.9	47	tr(0.7)	2 [0.5]	38/38	38/3
	H17	2.6	2.1	19	nd	1.1 [0.4]	46/47	46/4
水質	H18	tr(2.5)	tr(2.4)	18	nd	2.8 [0.9]	43/48	43/4
(pg/L)	H19	tr(2)	nd	41	nd	6 [2]	25/48	25/4
	H20	1.9	1.9	14	nd	1.9 [0.7]	40/48	40/4
	H21	2.0	1.9	19	nd	1.1 [0.4]	45/49	45/4
	H22	1.5	1.3	45	nd	0.7 [0.3]	47/49	47/4
	H23	1.9	1.8	34	nd	1.3 [0.5]	44/49	44/4
	** **	幾何	++ / -	日上伝	目 1 /士	定量[検出]	検出	頻度
cis-ノナクロル	実施年度	平均值※	中央値	最大値	最小值	下限値	検体	地点
	H14	7.9	6.7	250	0.23	1.8 [0.6]	114/114	38/3
	H15	8.0	7.0	130	1.3	0.3 [0.1]	36/36	36/3
	H16	7.5	6.3	340	0.8	0.6 [0.2]	38/38	38/3
	H17	6.0	5.9	43	0.9	0.5 [0.2]	47/47	47/4
水質	H18	6.6	5.6	83	1.0	0.8 [0.3]	48/48	48/4
(pg/L)	H19	5.9	6.1	210	nd	2.4 [0.8]	43/48	43/4
	H20	6.5	5.9	130	0.9	0.9 [0.3]	48/48	48/4
	H21	7.1	5.5	210	1.4	0.3 [0.1]	49/49	49/4
	H22	5.4	3.9	40	tr(0.9)	1.3 [0.4]	49/49	49/4
	H23	5.0	4.3	130	0.8	0.6 [0.2]	49/49	49/4
) 	中长左连	幾何	中市	目. 上. (古	目、小 /击	定量[検出]	検出	頻度
rans-ノナクロル	実施年度	平均值※	中央値	最大値	最小值	下限値	検体	地点
	H14	30	24	780	1.8	1.2 [0.4]	114/114	38/3
	H15	26	20	450	4	2 [0.5]	36/36	36/3
	H16	25	19	1,100	tr(3)	4 [2]	38/38	38/3
	H17	20	17	150	2.6	2.5 [0.84]	47/47	47/4
水質	H18	21	16	310	3.2	3.0 [1.0]	48/48	48/4
(pg/L)	H19	17	17	540	tr(2)	5 [2]	48/48	48/4
	H20	18	17	340	1.9	1.6 [0.6]	48/48	48/4
	H21	20	17	530	2.7	1.0 [0.4]	49/49	49/4
	H22	12	11	93	nd	8 [3]	45/49	45/4
	H23	15	12	480	2.6	1.3 [0.5]	49/49	49/4

⁽注)※:平成14年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<底質>

オキシクロルデン: 底質については、64 地点を調査し、検出下限値 0.9pg/g-dry において 64 地点中 36 地点で検出され、検出濃度は 83pg/g-dry までの範囲であった。

cis-ノナクロル: 底質については、64 地点を調査し、検出下限値 0.4pg/g-dry において 64 地点中 63 地点

で検出され、検出濃度は 2,900pg/g-dry までの範囲であった。平成 14 年度から平成 23 年度における経年分析の結果、海域の減少傾向が統計的に有意と判定された。

trans-ノナクロル: 底質については、64 地点を調査し、検出下限値 0.3pg/g-dry において 64 地点全てで検出され、検出濃度は 1.7~4,500pg/g-dry の範囲であった。平成 14 年度から平成 23 年度における経年分析の結果、河口域及び海域の減少傾向が統計的に有意と判定された。また、底質全体としても減少傾向が統計的に有意と判定された。

〇平成 14~23 年度における底質についてのオキシクロルデン、cis-ノナクロル及び trans-ノナクロルの検出状況

オキシクロルデン	実施年度	幾何	中央値	最大値	具小店	定量[検出]	検出	頻度
オインクロルテン	夫旭十尺	平均值※	中犬旭	取入胆	最小値	下限値	検体	地点
	H14	2.7	1.7	120	nd	1.5 [0.5]	153/189	59/63
	H15	2	2	85	nd	1 [0.4 <u>]</u>	158/186	57/62
	H16	tr(2.1)	tr(1.3)	140	nd	3 [0.8]	129/189	54/63
	H17	2.3	tr(1.9)	160	nd	2.0 [0.7]	133/189	51/63
底質	H18	tr(2.5)	tr(1.7)	280	nd	2.9 [1.0]	141/192	54/64
(pg/g-dry)	H19	tr(2.1)	tr(1.5)	76	nd	2.5 [0.9]	117/192	46/64
	H20	tr(2)	tr(1)	340	nd	3 [1]	110/192	48/64
	H21	2	tr(1)	150	nd	2 [1]	97/192	45/64
	H22	1.7	1.2	60	nd	1.0 [0.4]	56/64	56/64
	H23	tr(1.6)	tr(1.2)	83	nd	2.2 [0.9]	36/64	36/64
		幾何	+++	E 1./±	日1仕	定量[検出]	検出	頻度
cis-ノナクロル	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	H14	76	66	7,800	nd	2.1 [0.7]	188/189	63/63
	H15	66	50	6,500	nd	3 [0.9]	184/186	62/62
	H16	53	34	9,400	tr(0.8)	2 [0.6]	189/189	63/63
	H17	56	42	9,900	tr(1.1)	1.9 [0.64]	189/189	63/63
底質	H18	58	48	5,800	tr(0.6)	1.2 [0.4]	192/192	64/64
(pg/g-dry)	H19	48	35	4,200	nd	1.6 [0.6]	191/192	64/64
	H20	57	42	5,100	1.1	0.6 [0.2]	192/192	64/64
	H21	53	38	4,700	1.4	1.0 [0.4]	192/192	64/64
	H22	53	45	3,600	2.3	0.9 [0.3]	64/64	64/64
	H23	41	38	2,900	nd	1.1 [0.4]	63/64	63/64
,) 	安华左南	幾何	中市体	目. 上 /古	目、小 は	定量[検出]	検出	頻度
trans-ノナクロル	実施年度	平均值※	中央値	最大値	最小値	下限値	★ 体	地点
	H14	130	83	13,000	3.1	1.5 [0.5]	189/189	63/63
	H15	110	78	11,000	2	2 [0.6]	186/186	62/62
	H16	94	63	23,000	3	2 [0.6]	189/189	63/63
	H17	99	72	24,000	2.4	1.5 [0.54]	189/189	63/63
底質	H18	100	65	10,000	3.4	1.2 [0.4]	192/192	64/64
(pg/g-dry)	H19	78	55	8,400	tr(1.6)	1.7 [0.6]	192/192	64/64
	H20	91	53	8,400	tr(1.6)	2.2 [0.8]	192/192	64/64
	H21	85	58	7,800	2.0	0.9 [0.3]	192/192	64/64
	H22	80	65	6,200	tr(3)	6 [2]	64/64	64/64
	H23	68	52	4,500	1.7	0.8 [0.3]	64/64	64/64

⁽注) ※: 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>

オキシクロルデン: 生物のうち貝類については、4 地点を調査し、検出下限値 1pg/g-wet において 4 地点全てで検出され、検出濃度は $8\sim260$ pg/g-wet の範囲であった。魚類については、18 地点を調査し、検出下限値 1pg/g-wet において 18 地点全てで検出され、検出濃度は $33\sim2,300$ pg/g-wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 1pg/g-wet において検出され、検出濃度は 590pg/g-wet であった。

cis-ノナクロル: 生物のうち貝類については、4地点を調査し、検出下限値 0.7pg/g-wet において 4地点全てで検出され、検出濃度は $77\sim1,300pg/g$ -wet の範囲であった。魚類については、18地点を調査し、検出下

限値 0.7pg/g-wet において 18 地点全てで検出され、検出濃度は 45~2,900pg/g-wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 0.7pg/g-wet において検出され、検出濃度は 76pg/g-wet であった。 *trans-ノナクロル*: 生物のうち貝類については、4 地点を調査し、検出下限値 1pg/g-wet において 4 地点全てで検出され、検出濃度は 200~3,000pg/g-wet の範囲であった。魚類については、18 地点を調査し、検出下限値 1pg/g-wet において 18 地点全てで検出され、検出濃度は 190~5,000pg/g-wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 1pg/g-wet において検出され、検出濃度は 400pg/g-wet であった。

〇平成 $14\sim23$ 年度における生物(貝類、魚類及び鳥類)についてのオキシクロルデン、cis-ノナクロル及び trans-ノナクロルの検出状況

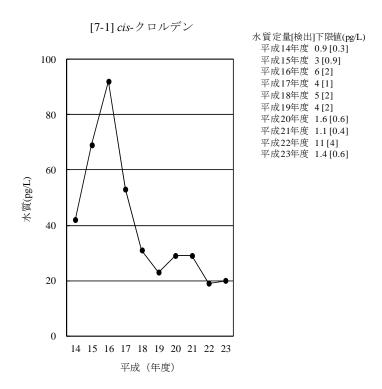
ナナンクロルゴン	安长左南	幾何	中山体	目. 上. 店	目. J. 居	定量[検出]	検出	頻度
オキシクロルデン	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	H14	71	83	5,600	nd	3.6 [1.2]	37/38	8/8
	H15	93	62	1,900	11	8.4 [2.8]	30/30	6/6
	H16	110	100	1,700	14	9.2 [3.1]	31/31	7/7
	H17	99	79	1,400	12	9.3 [3.1]	31/31	7/7
貝類	H18	91	90	2,400	7	7 [3]	31/31	7/7
(pg/g-wet)	H19	70	43	2,200	8	6 [2]	31/31	7/7
	H20	64	55	1,100	7	7 [2]	31/31	7/7
	H21	100	89	820	10	4 [1]	31/31	7/7
	H22	240	390	3,300	11	8 [3]	6/6	6/6
	H23	68	100	260	8	3 [1]	4/4	4/4
	H14	170	140	3,900	16	3.6 [1.2]	70/70	14/14
	H15	150	160	820	30	8.4 [2.8]	70/70	14/14
	H16	160	140	1,500	25	9.2 [3.1]	70/70	14/14
	H17	150	150	1,900	20	9.3 [3.1]	80/80	16/16
魚類	H18	150	120	3,000	28	7 [3]	80/80	16/16
(pg/g-wet)	H19	120	100	1,900	17	6 [2]	80/80	16/16
	H20	130	130	2,200	15	7 [2]	85/85	17/17
	H21	120	99	2,400	23	4 [1]	90/90	18/18
	H22	120	140	1,000	33	8 [3]	18/18	18/18
	H23	140	130	2,300	33	3 [1]	18/18	18/18
	H14	640	630	890	470	3.6 [1.2]	10/10	2/2
	H15	760	700	1,300	610	8.4 [2.8]	10/10	2/2
	H16	460	450	730	320	9.2 [3.1]	10/10	2/2
	H17	610	660	860	390	9.3 [3.1]	10/10	2/2
鳥類	H18	510	560	720	270	7 [3]	10/10	2/2
(pg/g-wet)	H19	440	400	740	290	6 [2]	10/10	2/2
	H20	560	530	960	290	7 [2]	10/10	2/2
	H21	300	290	540	190	4 [1]	10/10	2/2
	H22	400		510	320	8 [3]	2/2	2/2
	H23			590	590	3 [1]	1/1	1/1

cis-ノナクロル	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
		平均值※				下限値	検体	地点
	H14	170	300	870	8.6	1.2 [0.4]	38/38	8/8
	H15	290	260	1,800	48	4.8 [1.6]	30/30	6/6
	H16	320	380	1,800	43	3.4 [1.1]	31/31	7/7
	H17	270	220	1,300	27	4.5 [1.5]	31/31	7/7
貝類	H18	270	180	1,500	31	3 [1]	31/31	7/7
(pg/g-wet)	H19	250	250	1,000	26	3 [1]	31/31	7/7
(pg/g-wet)	H20	210	210	780	33	4 [1]	31/31	7/7
	H21	300	310	10,000	31			7/7
						3 [1]	31/31	
	H22	280	310	1,300	35	3 [1]	6/6	6/6
	H23	250	280	1,300	77	1.8 [0.7]	4/4	4/4
	H14	460	420	5,100	46	1.2 [0.4]	70/70	14/14
	H15	360	360	2,600	19	4.8 [1.6]	70/70	14/14
	H16	430	310	10,000	48	3.4 [1.1]	70/70	14/14
	H17	380	360	6,200	27	4.5 [1.5]	80/80	16/16
魚類	H18	370	330	3,300	33	3 [1]	80/80	16/16
(pg/g-wet)	H19	320	280	3,700	16	3 [1]	80/80	16/16
(188	H20	350	300	3,200	46	4[1]	85/85	17/17
	H21	340	340	2,600	27	3 [1]	90/90	18/18
	H22	320	370	2,200	23	3 [1]	18/18	18/18
	H23	440	450	2,900	45	1.8 [0.7]	18/18	18/18
	H14	200	240	450	68	1.2 [0.4]	10/10	2/2
	H15	200	260	660	68	4.8 [1.6]	10/10	2/2
	H16	140	150	240	73	3.4 [1.1]	10/10	2/2
	H17	160	180	370	86	4.5 [1.5]	10/10	2/2
鳥類	H18	120	130	270	60	3 [1]	10/10	2/2
(pg/g-wet)	H19	130	140	300	42	3 [1]	10/10	2/2
	H20	140	150	410	37	4 [1]	10/10	2/2
	H21	81	85	160	44	3 [1]	10/10	2/2
	H22	100		190	57	3 [1]	2/2	2/2
	H23			76	76	1.8 [0.7]	1/1	1/1
	1123			70	70			
trans-ノナクロル	実施年度	幾何 平均値 ※	中央値	最大値	最小値	定量[検出] 下限値	検体	ティスグラッグ 現点 かいかん かいかん かいかん かいかん かいかん かいかん かいかん かいか
	H14	450	1,100	1,800	21	2.4 [0.8]	38/38	8/8
	H15	800	700	3,800	140	3.6 [1.2]	30/30	6/6
	H16	780	870	3,400	110	13 [4.2]	31/31	7/7
		700	650					7/7
	H17			3,400	72	6.2 [2.1]	31/31	
貝類	H18	660	610	3,200	85	3 [1]	31/31	7/7
(pg/g-wet)	H19	640	610	2,400	71	7 [3]	31/31	7/7
	H20	510	510	2,000	94	6 [2]	31/31	7/7
	H21	780	680	33,000	79	3 [1]	31/31	7/7
	H22	790	870	6,000	84	4 [2]	6/6	6/6
	H23	640	680	3,000	200	3 [1]	4/4	4/4
	H14	1,000	900	8,300	98	2.4 [0.8]	70/70	14/14
	H15	920	840	5,800	85	3.6 [1.2]	70/70	14/14
	H16	1,100	760	21,000	140	13 [4.2]	70/70	14/14
	H17	970	750 750		80	6.2 [2.1]		
在 ¥石				13,000			80/80	16/16
魚類	H18	940	680	6,900	120	3 [1]	80/80	16/10
(pg/g-wet)	H19	800	680	7,900	71	7 [3]	80/80	16/16
	H20	860	750	6,900	87	6 [2]	85/85	17/17
	H21	810	720	7,400	68	3 [1]	90/90	18/18
	H22	800	1,000	4,700	110	4 [2]	18/18	18/18
	H23	1,100	1,000	5,000	190	3 [1]	18/18	18/18
	H23		980	1,900	350	2.4 [0.8]	10/10	2/2
		890	200	-,				2/2
	H14	890 1.100		3 700	うつい	7.011/1	1()/1()	
	H14 H15	1,100	1,400	3,700 1,200	350 390	3.6 [1.2] 13 [4.2]	10/10 10/10	
	H14 H15 H16	1,100 690	1,400 780	1,200	390	13 [4.2]	10/10	2/2
는 Vcc-	H14 H15 H16 H17	1,100 690 870	1,400 780 880	1,200 2,000	390 440	13 [4.2] 6.2 [2.1]	10/10 10/10	2/2 2/2
鳥類	H14 H15 H16 H17 H18	1,100 690 870 650	1,400 780 880 620	1,200 2,000 1,500	390 440 310	13 [4.2] 6.2 [2.1] 3 [1]	10/10 10/10 10/10	2/2 2/2 2/2
鳥類 (pg/g-wet)	H14 H15 H16 H17 H18 H19	1,100 690 870 650 590	1,400 780 880 620 680	1,200 2,000 1,500 1,400	390 440 310 200	13 [4.2] 6.2 [2.1] 3 [1] 7 [3]	10/10 10/10 10/10 10/10	2/2 2/2 2/2 2/2
	H14 H15 H16 H17 H18 H19	1,100 690 870 650 590 740	1,400 780 880 620 680 850	1,200 2,000 1,500 1,400 2,600	390 440 310 200 180	13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2]	10/10 10/10 10/10 10/10 10/10	2/2 2/2 2/2 2/2 2/2
	H14 H15 H16 H17 H18 H19 H20 H21	1,100 690 870 650 590 740 400	1,400 780 880 620 680	1,200 2,000 1,500 1,400 2,600 730	390 440 310 200 180 220	13 [4.2] 6.2 [2.1] 3 [1] 7 [3]	10/10 10/10 10/10 10/10 10/10 10/10	2/2 2/2 2/2 2/2
	H14 H15 H16 H17 H18 H19	1,100 690 870 650 590 740	1,400 780 880 620 680 850	1,200 2,000 1,500 1,400 2,600	390 440 310 200 180	13 [4.2] 6.2 [2.1] 3 [1] 7 [3] 6 [2]	10/10 10/10 10/10 10/10 10/10	2/2 2/2 2/2 2/2 2/2

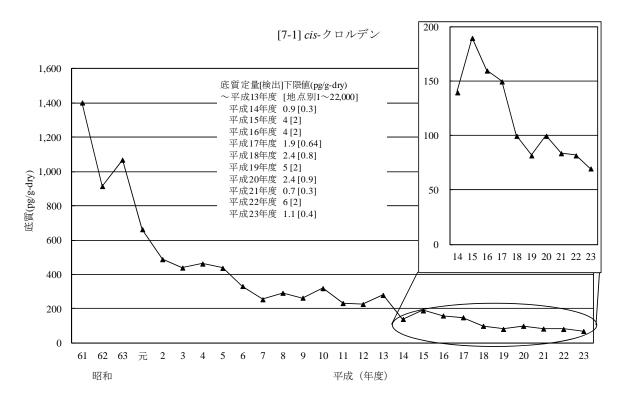
⁽注) ※: 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<大気>

オキシクロルデン: 大気の温暖期については、35 地点を調査し、検出下限値 $0.03 pg/m^3$ において 35 地点全てで検出され、検出濃度は $0.28 \sim 5.2 pg/m^3$ の範囲であった。寒冷期については、37 地点を調査し、検出下限値 $0.03 pg/m^3$ において 37 地点全てで検出され、検出濃度は $0.21 \sim 2.6 pg/m^3$ の範囲であった。平成 15 年度から平成 23 年度における経年分析の結果、温暖期の減少傾向が統計的に有意と判定された。

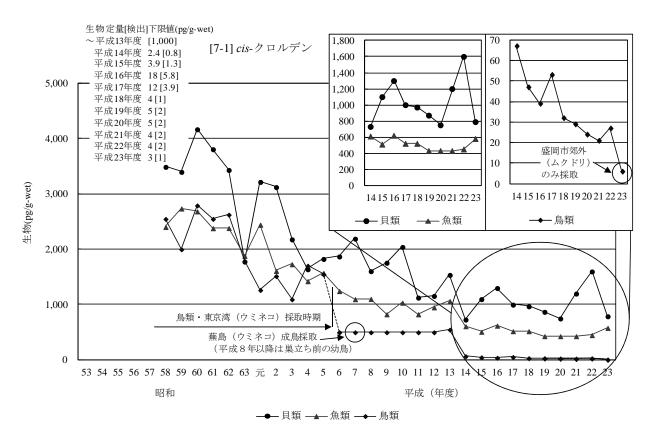

cis-ノナクロル: 大気の温暖期については、35 地点を調査し、検出下限値 0.051pg/m³ において 35 地点全てで検出され、検出濃度は 0.24~89pg/m³ の範囲であった。寒冷期については、37 地点を調査し、検出下限値 0.051pg/m³ において 37 地点中 36 地点で検出され、検出濃度は 28pg/m³ までの範囲であった。平成 15 年度から平成 23 年度における経年分析の結果、温暖期の減少傾向が統計的に有意と判定された。

trans-ノナクロル: 大気の温暖期については、35地点を調査し、検出下限値 $0.35pg/m^3$ において35地点全てで検出され、検出濃度は $1.2\sim550pg/m^3$ の範囲であった。寒冷期については、37地点を調査し、検出下限値 $0.35pg/m^3$ において 37地点全てで検出され、検出濃度は $tr(0.70)\sim210pg/m^3$ の範囲であった。平成 15年度から平成 23年度における経年分析の結果、温暖期の減少傾向が統計的に有意と判定された。


○平成 14~23 年度における大気についてのオキシクロルデン、cis-ノナクロル及び trans-ノナクロルの検出状況

<u>'</u> オキシクロルデン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	H14	0.96	0.98	8.3	nd	0.024 [0.008]	101/102	34/34
	H15 温暖期	2.5	2.7	12	0.41		35/35	35/35
	H15 寒冷期	0.87	0.88	3.2	0.41	0.045 [0.015]	34/34	34/34
	H16 温暖期	1.9	2.0	7.8	0.41	0.12.50.0421	37/37	37/37
	H16寒冷期	0.80	0.76	3.9	0.27	0.13 [0.042]	37/37	37/37
	H17 温暖期	1.9	2.0	8.8	0.65	0.16.10.05.41	37/37	37/37
	H17 寒冷期	0.55	0.50	2.2	0.27	0.16 [0.054]	37/37	37/37
	H18 温暖期	1.8	1.9	5.7	0.47	0.22 [0.09]	37/37	37/37
+/=	H18 寒冷期	0.54	0.56	5.1	tr(0.13)	0.23 [0.08]	37/37	37/37
大気	H19 温暖期	1.9	1.8	8.6	0.56	0.05 [0.02]	36/36	36/36
(pg/m^3)	H19 寒冷期	0.61	0.63	2.4	0.26	0.03 [0.02]	36/36	36/36
	H20 温暖期	1.7	1.7	7.1	0.50	0.04.[0.01]	37/37	37/37
	H20寒冷期	0.61	0.63	1.8	0.27	0.04 [0.01]	37/37	37/37
	H21 温暖期	1.7	1.8	6.5	0.38	0.04 [0.02]	37/37	37/37
	H21 寒冷期	0.65	0.61	2.7	0.24	0.04 [0.02]	37/37	37/37
	H22 温暖期	1.5	1.5	6.2	0.44	0.02 [0.01]	37/37	37/37
	H22 寒冷期	0.56	0.55	2.3	0.26	0.03 [0.01]	37/37	37/37
	H23 温暖期	1.5	1.5	5.2	0.28	0.07.[0.02]	35/35	35/35
	H23 寒冷期	0.61	0.57	2.6	0.21	0.07 [0.03]	37/37	37/37
cis-ノナクロル	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 <u>検体</u>	頻度 地点
	H14	3.1	4.0	62	0.071	0.030 [0.010]	102/102	34/34
	H15 温暖期	12	15	220	0.81	0.026 [0.0088]	35/35	35/35
	H15 寒冷期	2.7	3.5	23	0.18		34/34	34/34
	H16 温暖期	10	15	130	0.36	0.072 [0.024]	37/37	37/37
	H16寒冷期	2.7	4.4	28	0.087		37/37	37/37
	H17 温暖期	10	14	160	0.30	0.08 [0.03]	37/37	37/37
	H17寒冷期	1.6	1.6	34	0.08		37/37	37/37
	H18 温暖期	11	12	170	0.28	0.15 [0.05]	37/37	37/37
士信	H18 寒冷期	2.4	2.0	41	tr(0.14)	0.13 [0.03]	37/37	37/37
	1110 (((1)79)						36/36	36/36
	H19 温暖期	10	14	150	0.31	0.03 [0.01]		20121
大気 (pg/m³)	H19 温暖期 H19 寒冷期		14 1.7	150 22	0.31	0.03 [0.01]	36/36	36/30
	H19 温暖期 H19 寒冷期 H20 温暖期	10 1.6 7.9	1.7 12					
	H19 温暖期 H19 寒冷期 H20 温暖期 H20 寒冷期	10 1.6	1.7	22	0.09	0.03 [0.01] 0.03 [0.01]	36/36	37/37
	H19 温暖期 H19 寒冷期 H20 温暖期	10 1.6 7.9	1.7 12	22 87	0.09	0.03 [0.01]	<u>36/36</u> <u>37/37</u>	37/37 37/37
	H19 温暖期 H19 寒冷期 H20 温暖期 H20 寒冷期 H21 温暖期 H21 寒冷期	10 1.6 7.9 2.0	1.7 12 2.7	22 87 19	0.09 0.18 0.16		36/36 37/37 37/37	37/37 37/37 37/37
	H19 温暖期 H19 寒冷期 H20 温暖期 H20 寒冷期 H21 温暖期	10 1.6 7.9 2.0 7.5	1.7 12 2.7 10	22 87 19 110	0.09 0.18 0.16 0.33	0.03 [0.01]	36/36 37/37 37/37 37/37	37/37 37/37 37/37 37/37
	H19 温暖期 H19 寒冷期 H20 温暖期 H20 寒冷期 H21 温暖期 H21 寒冷期	10 1.6 7.9 2.0 7.5 1.9	1.7 12 2.7 10 2.1	22 87 19 110 18	0.09 0.18 0.16 0.33 0.07	0.03 [0.01]	36/36 37/37 37/37 37/37 37/37	37/37 37/37 37/37 37/37 37/37
	H19温暖期 H19寒冷期 H20温暖期 H20寒冷期 H21温暖期 H21寒冷期 H21寒冷期	10 1.6 7.9 2.0 7.5 1.9 7.5	1.7 12 2.7 10 2.1	22 87 19 110 18 68	0.09 0.18 0.16 0.33 0.07 0.23	0.03 [0.01]	36/36 37/37 37/37 37/37 37/37 37/37	36/36 37/37 37/37 37/37 37/37 37/37 35/35

,) 	安长左帝	幾何	中市 法	目. 上. 店	目. J. 店	定量[検出]	検出	頻度
trans-ノナクロル	実施年度	平均值	中央値	最大値	最小値	下限値	検体	地点
	H14	24	30	550	0.64	0.30 [0.10]	102/102	34/34
	H15 温暖期	87	100	1,200	5.1	0.35 [0.12]	35/35	35/35
	H15 寒冷期	24	28	180	2.1	0.33 [0.12]	34/34	34/34
	H16温暖期	72	120	870	1.9	0.49 [0.16]	37/37	37/37
	H16寒冷期	23	39	240	0.95	0.48 [0.16]	37/37	37/37
	H17 温暖期	75	95	870	3.1	0.12 [0.044]	37/37	37/37
	H17 寒冷期	13	16	210	1.2	0.13 [0.044]	37/37	37/37
	H18 温暖期	68	91	800	3.0	0.10 [0.02]	37/37	37/37
1. 🗲	H18 寒冷期	16	15	240	1.4		37/37	37/37
大気	H19 温暖期	72	96	940	2.5	0.00 [0.02]	36/36	36/36
(pg/m^3)	H19 寒冷期	13	15	190	1.1	0.09 [0.03]	36/36	36/36
	H20 温暖期	59	91	650	1.5	0.00 [0.02]	37/37	37/37
	H20寒冷期	17	25	170	1.3	0.09 [0.03]	37/37	37/37
	H21 温暖期	54	81	630	2.2	0.07 [0.02]	37/37	37/37
	H21 寒冷期	16	19	140	0.75	0.07 [0.03]	37/37	37/37
	H22 温暖期	52	78	520	1.7	0.9.10.21	37/37	37/37
	H22 寒冷期	15	17	89	tr(0.7)	0.8 [0.3]	37/37	37/37
	H23 温暖期	53	72	550	1.2	1 1 [0 25]	35/35	35/35
	H23 寒冷期	16	24	210	tr(0.70)	1.1 [0.35]	37/37	37/37



(注) 平成 14 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-7-1-1 *cis-*クロルデンの水質の経年変化(幾何平均値)

(注)平成14年度から平成21年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

図 7-7-1-2 cis-クロルデンの底質の経年変化(幾何平均値)

(注) 平成 21 年度以前は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-7-1-3 *cis-*クロルデンの生物の経年変化 (幾何平均値)

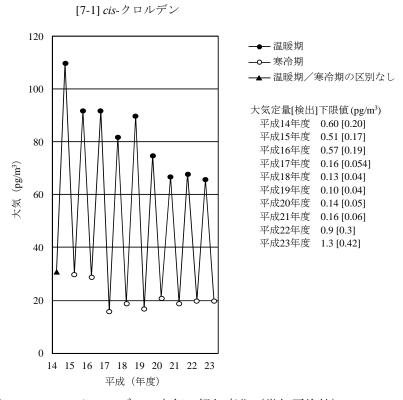
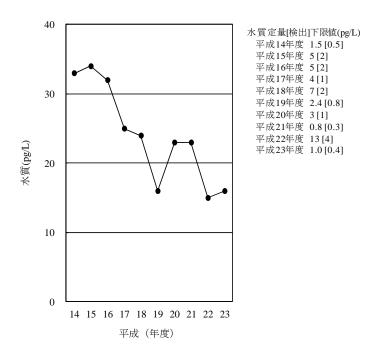
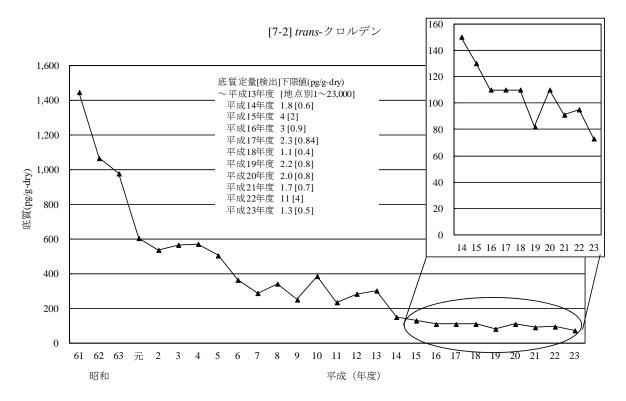
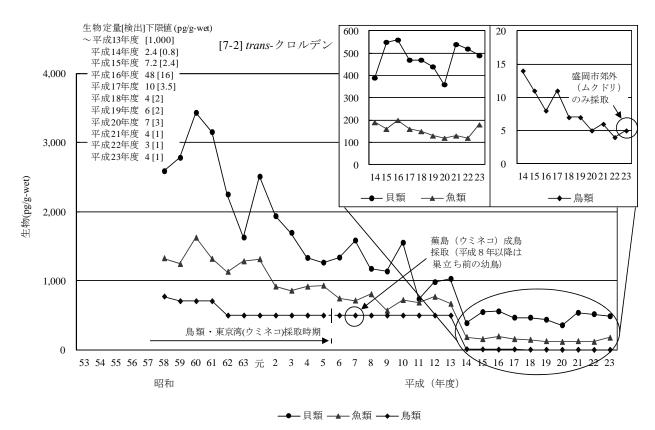




図 7-7-1-4 cis-クロルデンの大気の経年変化(幾何平均値)

[7-2] trans-クロルデン



(注) 平成 14 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-7-2-1 *trans-*クロルデンの水質の経年変化 (幾何平均値)

(注) 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

図 7-7-2-2 trans-クロルデンの底質の経年変化(幾何平均値)

(注) 平成 21 年度以前は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-7-2-3 *trans-*クロルデンの生物の経年変化(幾何平均値)

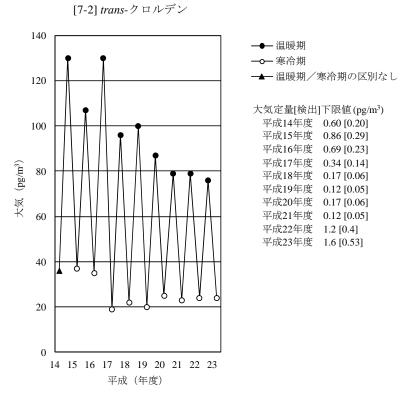
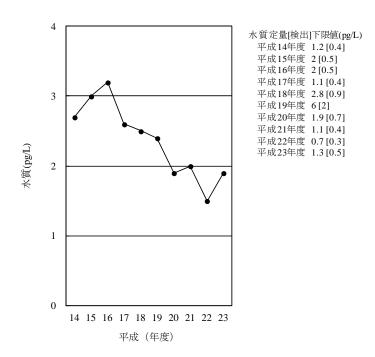
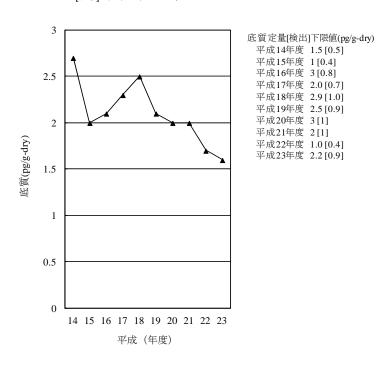



図 7-7-2-4 trans-クロルデンの大気の経年変化(幾何平均値)


[7-3] オキシクロルデン

(注) 平成14年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。


図 7-7-3-1 オキシクロルデンの水質の経年変化(幾何平均値)

[7-3] オキシクロルデン

- (注1) オキシクロルデンの底質については、継続的調査において平成13年度以前の調査が実施されていない。
- (注 2) 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を 求めた。

図 7-7-3-2 オキシクロルデンの底質の経年変化 (幾何平均値)

(注) 平成 21 年度以前は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-7-3-3 オキシクロルデンの生物の経年変化(幾何平均値)

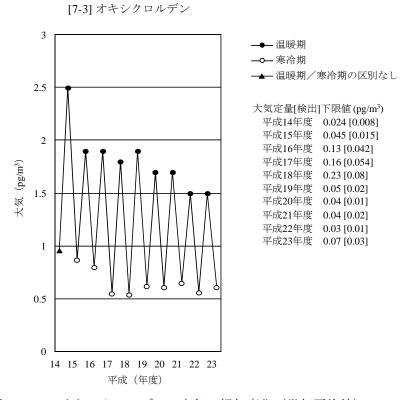
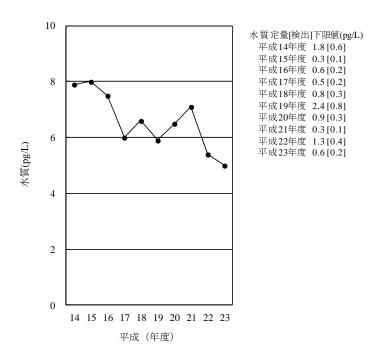
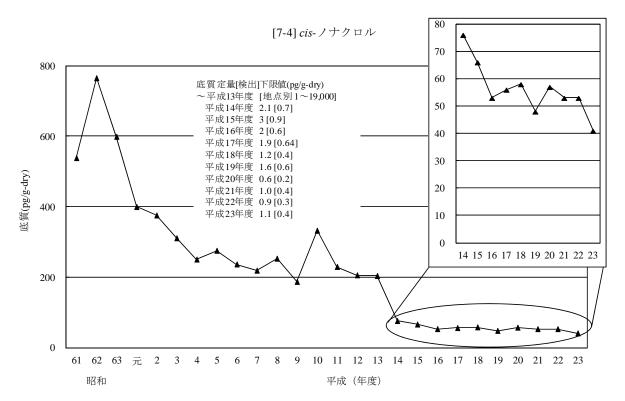
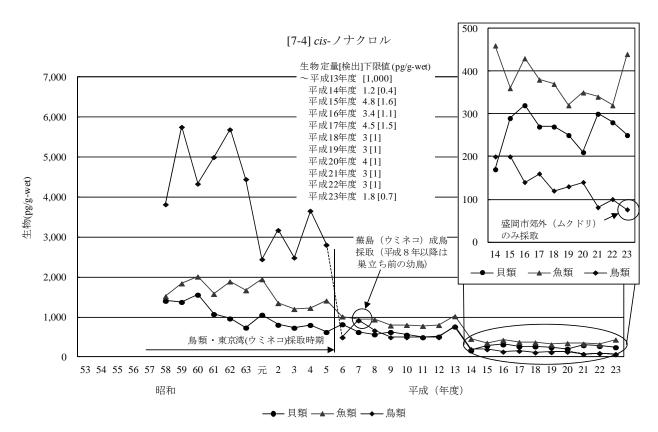




図 7-7-3-4 オキシクロルデンの大気の経年変化(幾何平均値)

[7-4] cis-ノナクロル



(注) 平成 14 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-7-4-1 *cis-*ノナクロルの水質の経年変化(幾何平均値)

(注)平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

図 7-7-4-2 cis-ノナクロルの底質の経年変化(幾何平均値)

(注) 平成 21 年度以前は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-7-4-3 *cis-*ノナクロルの生物の経年変化 (幾何平均値)

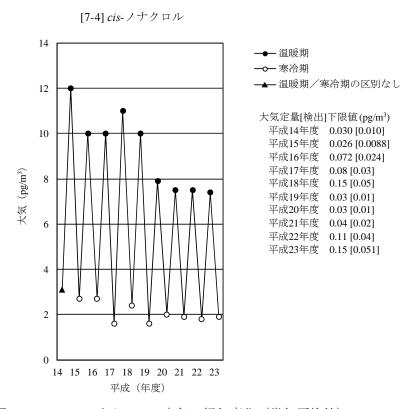
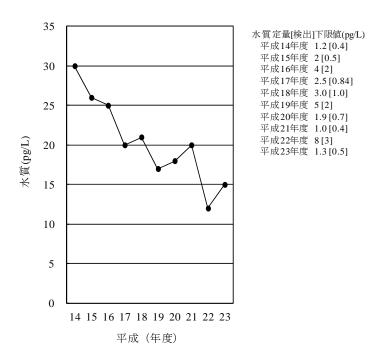
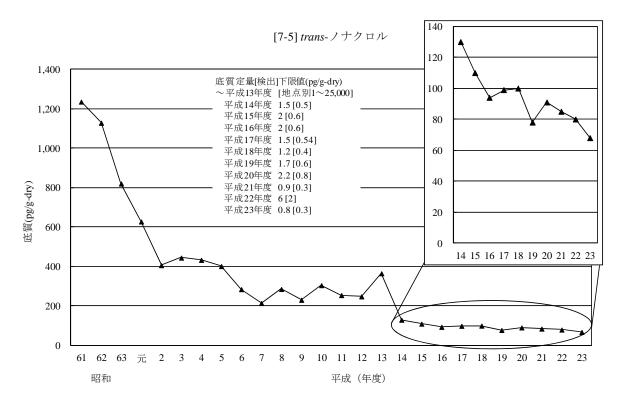
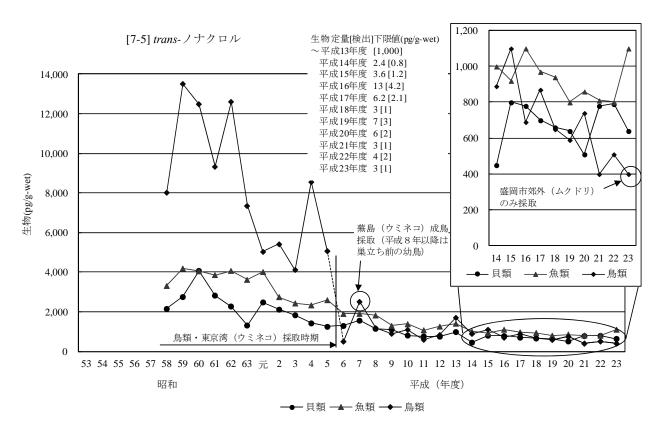




図 7-7-4-4 cis-ノナクロルの大気の経年変化(幾何平均値)

[7-5] trans-ノナクロル



(注) 平成 14 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-7-5-1 *trans-*ノナクロルの水質の経年変化 (幾何平均値)

(注) 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

図 7-7-5-2 trans-ノナクロルの底質の経年変化(幾何平均値)

(注) 平成 21 年度以前は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-7-5-3 *trans-*ノナクロルの生物の経年変化(幾何平均値)

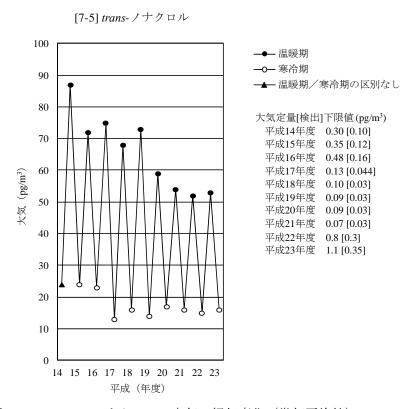


図 7-7-5-4 trans-ノナクロルの大気の経年変化(幾何平均値)

[8] ヘプタクロル類

調査の経緯及び実施状況

ヘプタクロル及びその代謝物へプタクロルエポキシドは、有機塩素系殺虫剤の一種である。稲、麦類、じゃがいも、さつまいも、たばこ、豆類、あぶらな科野菜、ネギ類、ウリ類、てんさい、ほうれん草等の殺虫剤として使用された。農薬取締法に基づく登録は昭和50年に失効した。工業用クロルデン(シロアリ防除剤)にも含まれており、昭和61年9月、化審法に基づく第一種特定化学物質に指定されている。

平成13年度までの調査として「化学物質環境調査」^{iv)}では、ヘプタクロル及びヘプタクロルエポキシドについて昭和57年度に水質、底質及び魚類を、昭和61年度に大気を調査している。

平成14年度以降のモニタリング調査では、水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を、 ペプタクロルについては平成14年度から、*cis*-ペプタクロルエポキシド及び*trans*-ペプタクロルエポキシド については平成15年度からそれぞれ毎年度実施している。

•調査結果

○ヘプタクロル、cis-ヘプタクロルエポキシド及び trans-ヘプタクロルエポキシド

<水質>

ヘプタクロル:水質については、49 地点を調査し、検出下限値 0.5 pg/L において 49 地点中 6 地点で検出され、検出濃度は 22 pg/L までの範囲であった。

cis-ヘプタクロルエポキシド:水質については、49 地点を調査し、検出下限値 0.3pg/L において 49 地点全てで検出され、検出濃度は $0.7\sim160pg/L$ の範囲であった。

trans-ヘプタクロルエポキシド: 水質については、49 地点を調査し、検出下限値 0.3pg/L において 49 地点中 3 地点で検出され、検出濃度は 2.8pg/L までの範囲であった。

○平成 14~23 年度における水質についてのヘプタクロル、cis-ヘプタクロルエポキシド及び trans-ヘプタクロルエポキシドの検出状況

ヘプタクロル	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
マンタクロル	夫旭十度	平均值※	中犬但	取入胆	取小胆	下限値	検体	地点
	H14	tr(1.2)	tr(1.0)	25	nd	1.5 [0.5]	97/114	38/38
	H15	tr(1.8)	tr(1.6)	7	tr(1.0)	2 [0.5]	36/36	36/36
	H16	nd	nd	29	nd	5 [2]	9/38	9/38
	H17	nd	tr(1)	54	nd	3 [1]	25/47	25/47
水質	H18	nd	nd	6	nd	5 [2]	5/48	5/48
(pg/L)	H19	nd	nd	5.2	nd	2.4 [0.8]	12/48	12/48
	H20	nd	nd	4.6	nd	2.1 [0.8]	19/48	19/48
	H21	tr(0.5)	nd	17	nd	0.8 [0.3]	20/49	20/49
	H22	nd	nd	43	nd	2.2 [0.7]	4/49	4/49
	H23	nd	nd	22	nd	1.3 [0.5]	6/49	6/49
cis-ヘプタクロルエ	実施	幾何	由由	11. 上店	目. J. 居	定量[検出]	検出	頻度
ポキシド	年度	平均值	中央値	最大値	最小值	下限値	検体	地点
	H15	9.8	11	170	1.2	0.7 [0.2]	36/36	36/36
	H16	10	10	77	2	2 [0.4]	38/38	38/38
	H17	7.1	6.6	59	1.0	0.7 [0.2]	47/47	47/47
→レ 庁庁	H18	7.6	6.6	47	1.1	2.0 [0.7]	48/48	48/48
水質	H19	6.1	5.8	120	tr(0.9)	1.3 [0.4]	48/48	48/48
(pg/L)	H20	4.7	5.0	37	nd	0.6 [0.2]	46/48	46/48
	H21	5.5	4.2	72	0.8	0.5 [0.2]	49/49	49/49
	H22	5.9	3.9	710	0.7	0.4 [0.2]	49/49	49/49
	H23	5.8	5.8	160	0.7	0.7 [0.3]	49/49	49/49

trans-ヘプタクロル	実施	幾何	中央値	最大値 最小値 工程(株)		検出	頻度	
エポキシド	年度	平均値	中关他	取入但	取小胆	下限値	検体	地点
	H15	nd	nd	2	nd	2 [0.4]	4/36	4/36
	H16	nd	nd	nd	nd	0.9 [0.3]	0/38	0/38
H1	H17	nd	nd	nd	nd	0.7 [0.2]	0/47	0/47
水質	H18	nd	nd	nd	nd	1.8 [0.6]	0/48	0/48
	H19	nd	nd	tr(0.9)	nd	2.0 [0.7]	2/48	2/48
(pg/L)	H20	nd	nd	nd	nd	1.9 [0.7]	0/48	0/48
	H21	nd	nd	nd	nd	0.7 [0.3]	0/49	0/49
	H22	nd	nd	8.0	nd	1.3 [0.5]	2/49	2/49
	H23	nd	nd	2.8	nd	0.8 [0.3]	3/49	3/49

(注)※: 平成14年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<底質>

~プタクロル: 底質については、64 地点を調査し、検出下限値 0.7pg/g-dry において 64 地点中 40 地点で 検出され、検出濃度は 48pg/g-dry までの範囲であった。平成 14 年度から平成 23 年度における経年分析の 結果、河口域の調査期間の後期で得られた結果が前期と比べ低値であることが示唆された。

cis-ヘプタクロルエポキシド: 底質については、64 地点を調査し、検出下限値 0.2pg/g-dry において 64 地点中 63 地点で検出され、検出濃度は 160pg/g-dry までの範囲であった。平成 15 年度から平成 23 年度における経年分析の結果、河口域の減少傾向が統計的に有意と判定された。また、底質全体としても調査期間の後期で得られた結果が前期と比べ低値であることが示唆された。

trans- $^{\circ}$ クロルエポキシド: 底質については、64 地点を調査し、検出下限値 0.9pg/g-dry において 64 地点中 2 地点で検出され、検出濃度は 2.4pg/g-dry までの範囲であった。

○平成 14~23 年度における底質についてのヘプタクロル、cis-ヘプタクロルエポキシド及び trans-ヘプタクロルエポキシドの給出状況

ロルエホヤントの位	<u> </u>							
ヘプタクロル	実施年度	幾何 平均値※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	地点
	H14	4.1	3.2	120	nd	1.8 [0.6]	167/189	60/63
	H15	tr(2.7)	tr(2.2)	160	nd	3 [1.0]	138/186	53/62
	H16	tr(2.8)	tr(2.3)	170	nd	3 [0.9]	134/189	53/63
	H17	3.1	2.8	200	nd	2.5 [0.8]	120/189	48/63
底質	H18	5.2	3.9	230	nd	1.9 [0.6]	190/192	64/64
(pg/g-dry)	H19	tr(1.8)	tr(1.5)	110	nd	3.0 [0.7]	143/192	57/64
	H20	tr(1)	nd	85	nd	4 [1]	59/192	27/64
	H21	1.6	1.3	65	nd	1.1 [0.4]	144/192	59/64
	H22	1.2	tr(0.8)	35	nd	1.1 [0.4]	51/64	51/64
	H23	tr(1.3)	tr(1.2)	48	nd	1.8 [0.7]	40/64	40/64
cis-ヘプタクロルエ	実施	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ポキシド	年度	平均值※	中大恒	取八胆	取小恒	下限值	検体	地点
	H15	4	3	160	nd	3 [1]	153/186	55/62
	H16	tr(5)	tr(3)	230	nd	6 [2]	136/189	52/63
	H17	tr(4)	tr(3)	140	nd	7 [2]	119/189	49/63
底質	H18	4.0	3.2	210	nd	3.0 [1.0]	157/192	58/64
	H19	3	tr(2)	270	nd	3 [1]	141/192	53/64
(pg/g-dry)	H20	3	2	180	nd	2 [1]	130/192	51/64
	H21	2.7	1.9	290	nd	0.7 [0.3]	176/192	63/64
	H22	3.1	2.4	300	nd	0.8 [0.3]	62/64	62/64
	H23	2.8	2.5	160	nd	0.6 [0.2]	63/64	63/64
trans-ヘプタクロル エポキシド	実施 年度	幾何 平均値※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	H15	nd	nd	nd	nd	9 [3]	0/186	0/62
	H16	nd	nd	tr(2.5)	nd	4 [2]	1/189	1/63
	H17	nd	nd	nd	nd	5 [2]	0/189	0/63
ula ISIS	H18	nd	nd	19	nd	7 [2]	2/192	2/64
底質	H19	nd	nd	31	nd	10 [4]	2/192	2/64
(pg/g-dry)	H20	nd	nd	nd	nd	1.7 [0.7]	0/192	0/64
	H21	nd	nd	nd	nd	1.4 [0.6]	0/192	0/64
	H22	nd	nd	4	nd	3 [1]	1/64	1/64
	H23	nd	nd	2.4	nd	2.3 [0.9]	2/64	2/64
(33) 34/ = 5 5	- 1	114	114	2.T		2.5 [0.7]		- 414 /

(注)※: 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>

へプタクロル: 生物のうち貝類については、4 地点を調査し、検出下限値 1pg/g-wet において 4 地点中 3 地点で検出され、検出濃度は 51pg/g-wet までの範囲であった。魚類については、18 地点を調査し、検出下限値 1pg/g-wet において 18 地点中 13 地点で検出され、検出濃度は 7pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 1pg/g-wet において検出されなかった。

cis-ヘプタクロルエポキシド:生物のうち貝類については、4地点を調査し、検出下限値 0.8pg/g-wet において 4 地点全てで検出され、検出濃度は $3.9\sim320pg/g$ -wet の範囲であった。魚類については、18 地点を調査し、検出下限値 0.8pg/g-wet において 18 地点全てで検出され、検出濃度は $3.2\sim540pg/g$ -wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 0.8pg/g-wet において検出され、検出濃度は 410pg/g-wet であった。

trans-ヘプタクロルエポキシド: 生物のうち貝類については、4 地点を調査し、検出下限値 3pg/g-wet において 4 地点中 1 地点で検出され、検出濃度は tr(6)pg/g-wet までの範囲であった。魚類については、18 地点を調査し、検出下限値 3pg/g-wet において 18 地点全てで検出されなかった。鳥類については、1 地点を調査し、検出下限値 3pg/g-wet において検出されなかった。

○平成 14~23 年度における生物(貝類、魚類及び鳥類)についてのヘプタクロル、cis-ヘプタクロルエポキシド及び trans-ヘプタクロルエポキシドの検出状況

ヘプタクロル	安长左帝	幾何	中市は	目. 上.店	目. J. 店	定量[検出]	検出	頻度
ペノタクロル	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	H14	tr(3.5)	4.6	15	nd	4.2 [1.4]	28/38	6/8
	H15	tr(2.8)	tr(2.4)	14	nd	6.6 [2.2]	16/30	4/6
	H16	tr(3.4)	5.2	16	nd	4.1 [1.4]	23/31	6/7
	H17	tr(2.9)	tr(2.9)	24	nd	6.1 [2.0]	18/31	6/7
貝類	H18	tr(4)	tr(4)	20	nd	6 [2]	23/31	6/7
(pg/g-wet)	H19	tr(3)	tr(3)	12	nd	6 [2]	20/31	6/7
	H20	tr(2)	nd	9	nd	6 [2]	13/31	5/7
	H21	tr(4)	nd	120	nd	5 [2]	14/31	4/7
	H22	3	tr(2)	78	nd	3 [1]	5/6	5/6
	H23	4	4	51	nd	3 [1]	3/4	3/4
	H14	4.2	4.8	20	nd	4.2 [1.4]	57/70	12/14
	H15	nd	nd	11	nd	6.6 [2.2]	29/70	8/14
	H16	tr(2.3)	tr(2.1)	460	nd	4.1 [1.4]	50/70	11/14
	H17	nd	nd	7.6	nd	6.1 [2.0]	32/80	8/16
魚類	H18	tr(2)	nd	8	nd	6 [2]	36/80	8/16
(pg/g-wet)	H19	tr(2)	nd	7	nd	6 [2]	28/80	6/16
	H20	nd	nd	9	nd	6 [2]	25/85	7/17
	H21	tr(2)	nd	8	nd	5 [2]	30/90	11/18
	H22	tr(2)	tr(2)	5	nd	3 [1]	12/18	12/18
	H23	tr(1)	tr(1)	7	nd	3 [1]	13/18	13/18
	H14	tr(1.7)	tr(2.8)	5.2	nd	4.2 [1.4]	7/10	2/2
	H15	nd	nd	nd	nd	6.6 [2.2]	0/10	0/2
	H16	nd	nd	tr(1.5)	nd	4.1 [1.4]	1/10	1/2
	H17	nd	nd	nd	nd	6.1 [2.0]	0/10	0/2
鳥類	H18	nd	nd	nd	nd	6 [2]	0/10	0/2
(pg/g-wet)	H19	nd	nd	nd	nd	6 [2]	0/10	0/2
	H20	nd	nd	nd	nd	6 [2]	0/10	0/2
	H21	nd	nd	nd	nd	5 [2]	0/10	0/2
	H22	nd		tr(1)	nd	3 [1]	1/2	1/2
	H23			nd	nd	3 [1]	0/1	0/1

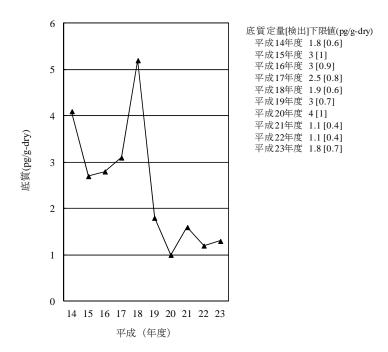
cis-ヘプタクロルエ	宝坛左连	幾何	由市店	見 十 <i>店</i>	具 小 <i>陆</i>	定量[検出]	検出	頻度
ポキシド	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	H15	44	29	880	9.7	6.9 [2.3]	30/30	6/6
	H16	64	34	840	tr(9.8)	9.9 [3.3]	31/31	7/7
	H17	49	20	590	7.4	3.5 [1.2]	31/31	7/7
口本	H18	56	23	1,100	8	4 [1]	31/31	7/7
貝類	H19	37	20	1,100	8	4 [1]	31/31	7/7
(pg/g-wet)	H20	37	19	510	8	5 [2]	31/31	7/7
	H21	59	33	380	10	3 [1]	31/31	7/7
	H22	170	260	1,800	9.0	2.4 [0.9]	6/6	6/6
	H23	55	110	320	3.9	2.0 [0.8]	4/4	4/4
	H15	43	43	320	7.0	6.9 [2.3]	70/70	14/14
	H16	51	49	620	tr(3.3)	9.9 [3.3]	70/70	14/14
	H17	41	45	390	4.9	3.5 [1.2]	80/80	16/16
左 來云	H18	42	48	270	4	4 [1]	80/80	16/16
魚類	H19	43	49	390	4	4 [1]	80/80	16/16
(pg/g-wet)	H20	39	46	350	tr(3)	5 [2]	85/85	17/17
	H21	41	50	310	4	3 [1]	90/90	18/18
	H22	39	49	230	5.0	2.4 [0.9]	18/18	18/18
	H23	50	62	540	3.2	2.0 [0.8]	18/18	18/18
	H15	540	510	770	370	6.9 [2.3]	10/10	2/2
	H16	270	270	350	190	9.9 [3.3]	10/10	2/2
	H17	370	340	690	250	3.5 [1.2]	10/10	2/2
± 1/2*	H18	330	310	650	240	4[1]	10/10	2/2
鳥類	H19	280	270	350	250	4 [1]	10/10	2/2
(pg/g-wet)	H20	370	370	560	180	5 [2]	10/10	2/2
	H21	220	210	390	160	3 [1]	10/10	2/2
	H22	290		360	240	2.4 [0.9]	2/2	2/2
	H23			410	410	2.0 [0.8]	1/1	1/1
trans-ヘプタクロル		幾何				定量[検出]	検出	
エポキシド	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	H15	nd	nd	48	nd	13 [4.4]	5/30	1/6
	H16	nd	nd	55	nd	12 [4.0]	9/31	2/7
	H17	nd	nd	37	nd	23 [7.5]	5/31	1/7
e de	H18	nd	nd	45	nd	13 [5]	5/31	1/7
貝類	H19	nd	nd	61	nd	13 [5]	5/31	1/7
(pg/g-wet)	H20	nd	nd	33	nd	10 [4]	5/31	1/7
	H21	tr(3)	nd	24	nd	8 [3]	13/31	3/7
	H22	3	tr(2)	24	nd	3 [1]	3/6	3/6
	H23	nd	nd	tr(6)	nd	7 [3]	1/4	1/4
	H15	nd	nd	nd	nd	13 [4.4]	0/70	0/14
	H16	nd	nd	tr(10)	nd	12 [4.0]	2/70	2/14
	H17	nd	nd	nd	nd	23 [7.5]	0/80	0/16
	H18	nd	nd	nd	nd	13 [5]	0/80	0/16
魚類	H19	nd	nd	nd	nd	13 [5]	0/80	0/16
(pg/g-wet)	H20	nd	nd	nd	nd	10 [4]	0/85	0/17
	H21	nd	nd	nd	nd	8 [3]	0/90	0/17
	H22	nd	nd	nd	nd	3 [1]	0/18	0/18
	1144	IIG	IIu			7 [3]	0/18	0/18
			nd	nd			0/10	
	H23	nd	nd	nd nd	nd nd			$\Omega/2$
	H23 H15	nd nd	nd	nd	nd	13 [4.4]	0/10	0/2
	H23 H15 H16	nd nd nd	nd nd	nd nd	nd nd	13 [4.4] 12 [4.0]	0/10 0/10	0/2
	H23 H15 H16 H17	nd nd nd nd	nd nd nd	nd nd nd	nd nd nd	13 [4.4] 12 [4.0] 23 [7.5]	0/10 0/10 0/10 0/10	0/2 0/2
鳥類	H23 H15 H16 H17 H18	nd nd nd nd nd	nd nd nd nd	nd nd nd nd	nd nd nd nd	13 [4.4] 12 [4.0] 23 [7.5] 13 [5]	0/10 0/10 0/10 0/10 0/10	0/2 0/2 0/2
鳥類 (pg/g-wet)	H23 H15 H16 H17 H18 H19	nd nd nd nd nd	nd nd nd nd nd	nd nd nd nd nd	nd nd nd nd nd	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5]	0/10 0/10 0/10 0/10 0/10 0/10	0/2 0/2 0/2 0/2
	H23 H15 H16 H17 H18 H19 H20	nd nd nd nd nd nd nd	nd nd nd nd nd nd	nd nd nd nd nd	nd nd nd nd nd nd	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4]	0/10 0/10 0/10 0/10 0/10 0/10	0/2 0/2 0/2 0/2 0/2
	H23 H15 H16 H17 H18 H19 H20 H21	nd nd nd nd nd nd nd nd nd	nd nd nd nd nd nd	nd nd nd nd nd nd	nd nd nd nd nd nd	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4] 8 [3]	0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10	0/2 0/2 0/2 0/2 0/2 0/2
	H23 H15 H16 H17 H18 H19 H20	nd nd nd nd nd nd nd	nd nd nd nd nd nd	nd nd nd nd nd	nd nd nd nd nd nd	13 [4.4] 12 [4.0] 23 [7.5] 13 [5] 13 [5] 10 [4]	0/10 0/10 0/10 0/10 0/10 0/10	0/2 0/2 0/2 0/2 0/2

⁽注) ※: 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<大気>

~プタクロル:大気の温暖期については、35 地点を調査し、検出下限値 $0.099 pg/m^3$ において 35 地点全てで検出され、検出濃度は $0.73 \sim 110 pg/m^3$ の範囲であった。寒冷期については、37 地点を調査し、検出下限値 $0.099 pg/m^3$ において 37 地点全てで検出され、検出濃度は $tr(0.13) \sim 56 pg/m^3$ の範囲であった。

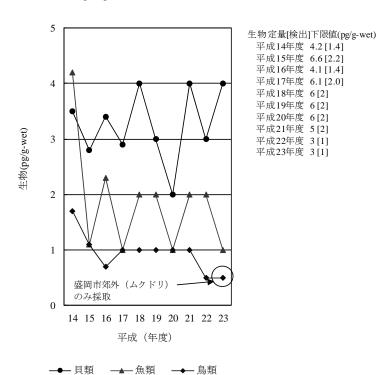
cis-ヘプタクロルエポキシド:大気の温暖期については、35 地点を調査し、検出下限値 $0.01 pg/m^3$ において 35 地点全てで検出され、検出濃度は $0.29 \sim 6.0 pg/m^3$ の範囲であった。寒冷期については、37 地点を調査し、検出下限値 $0.01 pg/m^3$ において 37 地点全てで検出され、検出濃度は $0.35 \sim 2.8 pg/m^3$ の範囲であった。


trans-ヘプタクロルエポキシド: 大気の温暖期については、35 地点を調査し、検出下限値 $0.05pg/m^3$ において 35 地点中 5 地点で検出され、検出濃度は $0.14pg/m^3$ までの範囲であった。寒冷期については、37 地点を調査し、検出下限値 $0.05pg/m^3$ において 37 地点全てで検出されなかった。

○平成 14~23 年度における大気についてのヘプタクロル、cis-ヘプタクロルエポキシド及び trans-ヘプタクロルエポキシドの検出状況

· - 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		幾何	由由 体	目上は	目. 1 <i>日</i>	 定量[検出]	検出	頻度
ヘプタクロル	実施年度	平均值	中央値	最大値	最小值	下限値	人	地点
	H14	11	14	220	0.20	0.12 [0.04]	102/102	34/34
	H15 温暖期	27	41	240	1.1	0.25 [0.085]	35/35	35/35
	H15 寒冷期	10	16	65	0.39		34/34	34/34
	H16 温暖期	23	36	200	0.46	0.23 [0.078]	37/37	37/37
	H16寒冷期	11	18	100	0.53		37/37	37/37
	H17 温暖期	25	29	190	1.1	0.16 [0.054]	37/37	37/3
	H17寒冷期	6.5	7.9	61	0.52	0.10 [0.034]	37/37	37/3
	H18温暖期	20	27	160	0.88	0.11 [0.04]	37/37	37/3
ı <i>🗠</i>	H18 寒冷期	6.8	7.2	56	0.32	0.11 [0.04]	37/37	37/3
大気	H19 温暖期	22	27	320	1.1	0.07.10.021	36/36	36/3
(pg/m^3)	H19寒冷期	6.3	8.0	74	0.42	0.07 [0.03]	36/36	36/3
	H20 温暖期	20	31	190	0.92	0.06.10.021	37/37	37/3
	H20寒冷期	7.5	12	60	0.51	0.06 [0.02]	37/37	37/3
	H21 温暖期	18	30	110	0.48	0.04.50.013	37/37	37/3
	H21 寒冷期	6.3	7.8	48	0.15	0.04 [0.01]	37/37	37/3
	H22 温暖期	17	26	160	0.69	0.11.50.043	37/37	37/3
	H22 寒冷期	7.2	9.5	53	0.22	0.11 [0.04]	37/37	37/3
	H23 温暖期	16	25	110	0.73	0.20.50.0003	35/35	35/3
	H23 寒冷期	6.1	10	56	tr(0.13)	0.30 [0.099]	37/37	37/3
-ヘプタクロルエ	実施年度	幾何	中中居	目. 上. 店	目. J. /法	定量[検出] 下限値	検出	頻度
キシド	夫 胞 牛 及	平均値	中央値	最大値	最小値		検体	地点
	H15 温暖期	3.5	3.5	28	0.45	0.015 [0.0048]	35/35	35/3
	H15 寒冷期	1.3	1.3	6.6	0.49	0.013 [0.0048]	34/34	34/3
	H16 温暖期	2.8	2.9	9.7	0.65	0.052 [0.017]	37/37	37/3
	H16寒冷期	1.1	1.1	7.0	0.44	0.052 [0.017]	37/37	37/3
	H17 温暖期	1.5	1.7	11	tr(0.10)	0.10.00443	37/37	37/3
	H17 寒冷期	0.91	0.81	2.9	0.43	0.12 [0.044]	37/37	37/3
	H18 温暖期	1.7	2.0	6.7	0.13	0.11.50.047	37/37	37/3
	H18寒冷期	0.74	0.88	3.2	nd	0.11 [0.04]	36/37	36/3
大気	H19 温暖期	2.9	2.8	13	0.54	0.02.00.013	36/36	36/3
大気		0.93	0.82	3.0	0.41	0.03 [0.01]	36/36	36/3
(pg/m^3)	H19 寒冷期	0.73	0.02					37/3
	H19 寒行期 H20 温暖期	2.4	2.2	9.9	0.53	0.000 10.0003	37/37	31/3
				9.9 3.0	0.53 0.37	0.022 [0.008]	37/37 37/37	
	H20 温暖期	2.4	2.2					37/3
	H20 温暖期 H20 寒冷期 H21 温暖期	2.4 0.91	2.2 0.84	3.0	0.37	0.022 [0.008]	37/37 37/37	37/3 37/3
	H20 温暖期 H20 寒冷期 H21 温暖期 H21 寒冷期	2.4 0.91 2.5 1.0	2.2 0.84 2.6	3.0	0.37 0.37 0.42	0.03 [0.01]	37/37	37/3 37/3 37/3
	H20 温暖期 H20 寒冷期 H21 温暖期 H21 寒冷期 H22 温暖期	2.4 0.91 2.5 1.0 2.3	2.2 0.84 2.6 0.91 2.3	3.0 16 3.8 10	0.37 0.37 0.42 0.38		37/37 37/37 37/37 37/37	37/3 37/3 37/3 37/3
	H20 温暖期 H20 寒冷期 H21 温暖期 H21 寒冷期	2.4 0.91 2.5 1.0	2.2 0.84 2.6 0.91	3.0 16 3.8	0.37 0.37 0.42	0.03 [0.01]	37/37 37/37 37/37	37/3' 37/3' 37/3' 37/3' 37/3' 35/3.

trans-ヘプタクロル	実施年度	幾何	山山街	具 上 <i>估</i>	具小店	定量[検出]	検出	頻度
エポキシド	美 胞平度	平均值	中央値	最大値	最小値	下限値	検体	地点
	H15 温暖期	tr(0.036)	tr(0.038)	0.30	nd	0.099 [0.033]	18/35	18/35
	H15 寒冷期	nd	nd	tr(0.094)	nd	0.099 [0.033]	3/34	3/34
	H16 温暖期	nd	nd	tr(0.38)	nd	0.6 [0.2]	4/37	4/37
	H16寒冷期	nd	nd	nd	nd	0.6 [0.2]	0/37	0/37
	H17 温暖期	tr(0.10)	tr(0.12)	1.2	nd	0.16 [0.05]	27/37	27/37
	H17寒冷期	nd	nd	0.32	nd	0.16 [0.05]	3/37	3/37
	H18 温暖期	nd	nd	0.7	nd	0.3 [0.1]	2/37	2/37
	H18寒冷期	nd	nd	tr(0.1)	nd	0.5 [0.1]	1/37	1/37
大気	H19 温暖期	nd	nd	0.16	nd	0.14 [0.06]	8/36	8/36
(pg/m^3)	H19寒冷期	nd	nd	tr(0.06)	nd		1/36	1/36
	H20 温暖期	nd	nd	0.17	nd	0.16 [0.06]	6/37	6/37
	H20寒冷期	nd	nd	nd	nd	0.16 [0.06]	0/37	0/37
	H21 温暖期	nd	nd	0.18	nd	0.14.50.051	10/37	10/37
	H21 寒冷期	nd	nd	tr(0.06)	nd	0.14 [0.05]	1/37	1/37
	H22 温暖期	nd	nd	0.16	nd	0.16.50.061	6/37	6/37
	H22寒冷期	nd	nd	nd	nd	0.16 [0.06]	0/37	0/37
	H23 温暖期	nd	nd	0.14	nd		5/35	5/35
	H23寒冷期	nd	nd	nd	nd	0.13 [0.05]	0/37	0/37


[8-1] ヘプタクロル

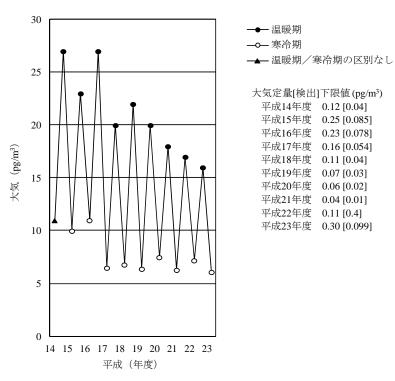
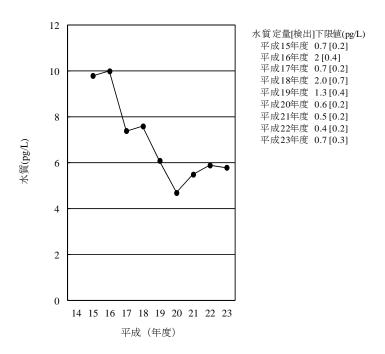
(注) 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

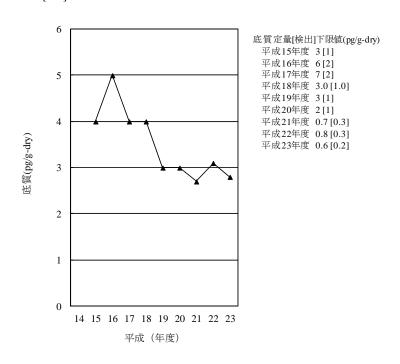
図 7-8-1-1 ヘプタクロルの底質の経年変化 (幾何平均値)

[8-1] ヘプタクロル

(注) 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

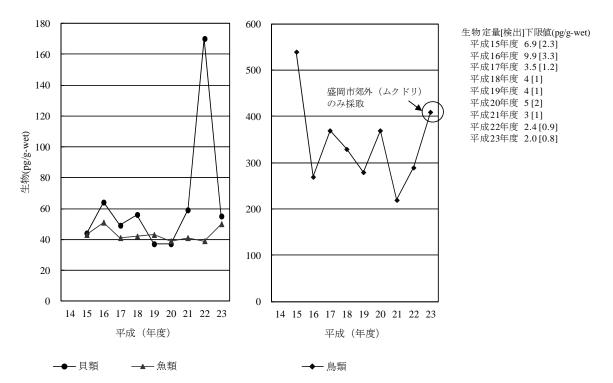
図 7-8-1-2 ヘプタクロルの生物の経年変化(幾何平均値)


図 7-8-1-3 ヘプタクロルの大気の経年変化 (幾何平均値)

[8-2] cis-ヘプタクロルエポキシド

(注) cis-ヘプタクロルエポキシドの水質については、継続的調査において平成14年度に調査が実施されていない。 図 7-8-2-1 cis-ヘプタクロルエポキシドの水質の経年変化(幾何平均値)


[8-2] cis-ヘプタクロルエポキシド

(注) 平成 15 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

図 7-8-2-2 cis-ヘプタクロルエポキシドの底質の経年変化(幾何平均値)

[8-2] cis-ヘプタクロルエポキシド

- (注 1) cis-ヘプタクロルエポキシドの生物については、継続的調査において平成 14 年度に調査が実施されていない。
- (注 2) 平成 15 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を 求めた。
- 図 7-8-2-3 cis-ヘプタクロルエポキシドの生物の経年変化(幾何平均値)

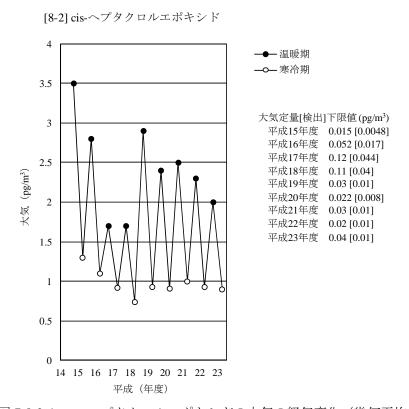


図 7-8-2-4 cis-ヘプタクロルエポキシドの大気の経年変化(幾何平均値)

[9] トキサフェン類(参考)

調査の経緯及び実施状況

トキサフェン類は、有機塩素系殺虫剤の一種である。日本では農薬登録されたことはなく、国内での製造・輸入実績はない。平成14年9月に化審法に基づく第一種特定化学物質に指定されている。

平成13年度までの調査としては、「化学物質環境調査」^{iv)}で、昭和58年度に水質及び底質を調査している。

平成 14 年度以降のモニタリング調査においては、平成 14 年度から平成 21 年度の毎年度に水質、底質、 生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

平成 22 年度及び平成 23 年度は調査を実施していないため、参考として以下に、平成 21 年度までの調査 結果を示す。

- ・平成 21 年度までの調査結果
- ○Parlar-26、Parlar-50 及び Parlar-62

<水質>

○平成 15~21 年度における水質についての Parlar-26、Parlar-50 及び Parlar-62 の検出状況

平成 15~21 年度	における水質	についての	Parlar-26	Parlar-50	及び Parlar-	-62 の検出状況		
D. 1. 26	安长左南	幾何	中市 (本	目. 上. 店	目.北.居	定量[検出]	検出	頻度
Parlar-26	実施年度	平均值	中央値	最大値	最小値	下限値	検体	地点
	H15	nd	nd	nd	nd	40 [20]	0/36	0/36
	H16	nd	nd	nd	nd	9 [3]	0/38	0/38
水質	H17	nd	nd	nd	nd	10 [4]	0/47	0/47
	H18	nd	nd	nd	nd	16 [5]	0/48	0/48
(pg/L)	H19	nd	nd	nd	nd	20 [5]	0/48	0/48
	H20	nd	nd	nd	nd	8 [3]	0/48	0/48
	H21	nd	nd	nd	nd	5 [2]	0/49	0/49
Dorlar 50	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
Parlar-50	天旭十尺	平均値	中大恒	取八胆	取力们直	下限値	検体	地点
	H15	nd	nd	nd	nd	70 [30]	0/36	0/36
	H16	nd	nd	nd	nd	20 [7]	0/38	0/38
→ たんだん	H17	nd	nd	nd	nd	20 [5]	0/47	0/47
水質	H18	nd	nd	nd	nd	16 [5]	0/48	0/48
(pg/L)	H19	nd	nd	nd	nd	9 [3]	0/48	0/48
	H20	nd	nd	nd	nd	7 [3]	0/48	0/48
	H21	nd	nd	nd	nd	7 [3]	0/49	0/49
D1 (2	字坛左庄	幾何	中山街	具上店	具心质	定量[検出]	検出	頻度
Parlar-62	実施年度	平均値	中央値	最大値	最小值	下限値	検体	地点
	H15	nd	nd	nd	nd	300 [90]	0/36	0/36
	H16	nd	nd	nd	nd	90 [30]	0/38	0/38
→ たんだん	H17	nd	nd	nd	nd	70[30]	0/47	0/47
水質	H18	nd	nd	nd	nd	60 [20]	0/48	0/48
(pg/L)	H19	nd	nd	nd	nd	70 [30]	0/48	0/48
	H20	nd	nd	nd	nd	40 [20]	0/48	0/48
	H21	nd	nd	nd	nd	40 [20]	0/49	0/49

<底質>

○平成 15~21 年度における底質についての Parlar-26、Parlar-50 及び Parlar-62 の検出状況

D1 26	安长左帝	幾何	中 中 / 古	目. 上. 広	目. J. /法	定量[検出]	検出	頻度
Parlar-26	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	H15	nd	nd	nd	nd	90 [30]	0/186	0/62
	H16	nd	nd	nd	nd	60 [20]	0/189	0/63
底質	H17	nd	nd	nd	nd	60 [30]	0/189	0/63
	H18	nd	nd	nd	nd	12 [4]	0/192	0/64
(pg/g-dry)	H19	nd	nd	nd	nd	7 [3]	0/192	0/64
	H20	nd	nd	nd	nd	12 [5]	0/192	0/64
	H21	nd	nd	nd	nd	10 [4]	0/192	0/64
D1 50	字坛左座	幾何	由由	具土荷	具小店	定量[検出]	検出	頻度
Parlar-50	実施年度	平均值※	中央値	最大値	最小值	下限値	検体	地点
	H15	nd	nd	nd	nd	200 [50]	0/186	0/62
	H16	nd	nd	nd	nd	60 [20]	0/189	0/63
底質	H17	nd	nd	nd	nd	90 [40]	0/189	0/63
	H18	nd	nd	nd	nd	24 [7]	0/192	0/64
(pg/g-dry)	H19	nd	nd	nd	nd	30 [10]	0/192	0/64
	H20	nd	nd	nd	nd	17 [6]	0/192	0/64
	H21	nd	nd	nd	nd	12 [5]	0/192	0/64
D1 (2	字坛左座	幾何	由由	具土荷	具小店	定量[検出]	検出	頻度
Parlar-62	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	H15	nd	nd	nd	nd	4,000 [2,000]	0/186	0/62
	H16	nd	nd	nd	nd	2,000 [400]	0/189	0/63
底質	H17	nd	nd	nd	nd	2,000 [700]	0/189	0/63
	H18	nd	nd	nd	nd	210 [60]	0/192	0/64
(pg/g-dry)	H19	nd	nd	nd	nd	300 [70]	0/192	0/64
	H20	nd	nd	nd	nd	90 [40]	0/192	0/64
	H21	nd	nd	nd	nd	80 [30]	0/192	0/64

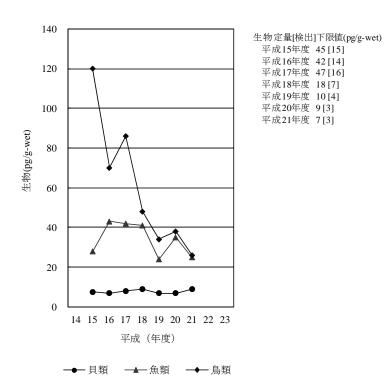
⁽注) ※: 平成 15 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>

○平成 15~21 年度における生物 (貝類、魚類及び鳥類) についての Parlar-26、Parlar-50 及び Parlar-62 の検出状況

D1 26	字坛左庄	幾何	中央値	最大値	最小値	定量[検出]	検出頻度	
Parlar-26	実施年度	平均值※	中犬旭	取入但	取小胆	下限値	検体	地点
	H15	nd	nd	tr(39)	nd	45 [15]	11/30	3/6
	H16	nd	nd	tr(32)	nd	42 [14]	15/31	3/7
貝類	H17	nd	nd	tr(28)	nd	47 [16]	7/31	4/7
	H18	tr(9)	tr(12)	25	nd	18 [7]	21/31	5/7
(pg/g-wet)	H19	tr(7)	tr(8)	20	nd	10 [4]	26/31	6/7
	H20	tr(7)	tr(8)	22	nd	9 [3]	27/31	7/7
	H21	9	9	23	nd	7 [3]	27/31	7/7
	H15	tr(28)	tr(24)	810	nd	45 [15]	44/70	11/14
	H16	43	tr(41)	1,000	nd	42 [14]	54/70	13/14
魚類	H17	tr(42)	53	900	nd	47 [16]	50/75	13/16
	H18	41	44	880	nd	18 [7]	70/80	15/16
(pg/g-wet)	H19	24	32	690	nd	10 [4]	64/80	14/16
	H20	35	33	730	nd	9 [3]	79/85	17/17
	H21	25	20	690	nd	7 [3]	82/90	18/18
	H15	120	650	2,500	nd	45 [15]	5/10	1/2
	H16	70	340	810	nd	42 [14]	5/10	1/2
鳥類	H17	86	380	1,200	nd	47 [16]	5/10	1/2
	H18	48	290	750	nd	18 [7]	5/10	1/2
(pg/g-wet)	H19	34	280	650	nd	10 [4]	5/10	1/2
	H20	38	320	1,200	nd	9 [3]	6/10	2/2
	H21	26	200	500	nd	7 [3]	6/10	2/2

D 1 50		幾何	+++	目 1. <i>I</i> ±	B 1 /±	定量[検出]	検出	頻度
Parlar-50	実施年度	平均值※	中央値	最大値	最小值	下限値	検体	地点
	H15	tr(12)	tr(12)	58	nd	33 [11]	17/30	4/6
	H16	tr(15)	nd	tr(45)	nd	46 [15]	15/31	3/7
口松云	H17	nd	nd	tr(38)	nd	54 [18]	9/31	4/7
貝類	H18	tr(10)	14	32	nd	14 [5]	24/31	6/7
(pg/g-wet)	H19	9	10	37	nd	9 [3]	27/31	7/7
	H20	tr(7)	tr(6)	23	nd	10 [4]	23/31	6/7
	H21	9	9	31	nd	8 [3]	27/31	7/7
	H15	35	34	1,100	nd	33 [11]	55/70	14/14
	H16	60	61	1,300	nd	46 [15]	59/70	14/14
A NEE	H17	tr(52)	66	1,400	nd	54 [18]	55/80	13/16
魚類	H18	56	52	1,300	nd	14 [5]	79/80	16/16
(pg/g-wet)	H19	35	41	1,100	nd	9 [3]	77/80	16/16
	H20	44	45	1,000	nd	10 [4]	77/85	17/17
	H21	30	23	910	nd	8 [3]	85/90	18/18
	H15	110	850	3,000	nd	33 [11]	5/10	1/2
	H16	83	440	1,000	nd	46 [15]	5/10	1/2
A V	H17	100	480	1,500	nd	54 [18]	5/10	1/2
鳥類	H18	46	380	1,000	nd	14 [5]	5/10	1/2
(pg/g-wet)	H19	34	360	930	nd	9 [3]	5/10	1/2
	H20	49	410	1,600	nd	10 [4]	5/10	1/2
	H21	29	250	620	nd	8 [3]	5/10	1/2
		幾何		B 1 /4		定量[検出]	検出	頻度
Parlar-62	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	H15	nd	nd	nd	nd	120 [40]	0/30	0/6
	H16	nd	nd	nd	nd	98 [33]	0/31	0/7
貝類	H17	nd	nd	nd	nd	100 [34]	0/31	0/7
	H18	nd	nd	nd	nd	70 [30]	0/31	0/7
(pg/g-wet)	H19	nd	nd	nd	nd	70 [30]	0/31	0/7
	H20	nd	nd	nd	nd	80 [30]	0/31	0/7
	H21	nd	nd	nd	nd	70 [20]	0/31	0/7
	H15	nd	nd	580	nd	120 [40]	9/70	3/14
	H16	nd	nd	870	nd	98 [33]	24/70	7/14
魚類	H17	nd	nd	830	nd	100 [34]	23/80	8/16
	H18	tr(30)	nd	870	nd	70 [30]	28/80	10/16
(pg/g-wet)	H19	tr(30)	nd	530	nd	70 [30]	22/80	7/16
	H20	tr(30)	nd	590	nd	80 [30]	31/85	8/17
	H21	tr(20)	nd	660	nd	70 [20]	24/90	8/18
	H15	tr(96)	200	530	nd	120 [40]	5/10	1/2
	H16	tr(64)	110	280	nd	98 [33]	5/10	1/2
卢 水芒	H17	tr(78)	130	460	nd	100 [34]	5/10	1/2
鳥類	H18	70	120	430	nd	70 [30]	5/10	1/2
(pg/g-wet)	H19	tr(60)	100	300	nd	70 [30]	5/10	1/2
	H20	tr(70)	130	360	nd	80 [30]	5/10	1/2
	H21	tr(40)	80	210	nd	70 [20]	5/10	1/2
(注) ※: 平成 15	年度から平成			ける算術平均		その算術平均値		


⁽注)※: 平成 15 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<大気>

○平成 15~21 年度における大気についての Parlar-26、Parlar-50 及び Parlar-62 の検出状況

	(にわける人X) 安先左帝	幾何				定量[検出]	検出	頻度
Parlar-26	実施年度	平均值	中央値	最大値	最小値	下限値	検体	地点
	H15 温暖期	0.31	0.31	0.77	tr(0.17)	0.20.50.0661	35/35	35/3
	H15 寒冷期	tr(0.17)	tr(0.17)	0.27	tr(0.091)	0.20 [0.066]	34/34	34/3
	H16 温暖期	0.27	0.26	0.46	tr(0.17)	0.00.00.00	37/37	37/3
	H16寒冷期	tr(0.15)	tr(0.15)	0.50	tr(0.094)	0.20 [0.066]	37/37	37/3
	H17 温暖期	nd	nd	nd	nd	0.0.50.43	0/37	0/3
	H17寒冷期	nd	nd	nd	nd	0.3 [0.1]	0/37	0/3
大気	H18 温暖期	nd	nd	nd	nd		0/37	0/3
(pg/m^3)	H18 寒冷期	nd	nd	nd	nd	1.8 [0.6]	0/37	0/3
(18)	H19 温暖期	nd	nd	tr(0.3)	nd		18/36	18/3
	H19寒冷期	nd	nd	nd	nd	0.6 [0.2]	0/36	0/3
	H20 温暖期	tr(0.21)	0.22	0.58	tr(0.12)		37/37	37/3
	H20 寒冷期	tr(0.11)	tr(0.12)	tr(0.20)	nd	0.22 [0.08]	36/37	36/3
	H21 温暖期	tr(0.18)	tr(0.19)	0.26	tr(0.11)		37/37	37/3
	H21 寒冷期	tr(0.12)	tr(0.13)	0.27	nd	0.23 [0.09]	33/37	33/3
	H21 冬印朔		u(0.13)	0.27	IIu	☆具r於山1	33/37 —	
Parlar-50	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検体 検体	姨及 地点
	H15 温暖期	nd	nd	tr(0.37)	nd		2/35	2/3
	H15 寒冷期	nd	nd	nd	nd	0.81 [0.27]	0/34	0/3
	H16 温暖期	nd	nd	nd	nd		0/37	0/3
	H16寒冷期	nd	nd	nd	nd	1.2 [0.4]	0/37	0/3
	H17 温暖期	nd	nd	nd	nd		0/37	0/3
	H17 寒冷期	nd	nd	nd	nd	0.6 [0.2]	0/37	0/3
大気	H18 温暖期	nd	nd	nd	nd		0/37	0/3
(pg/m^3)	H18寒冷期	nd	nd	nd	nd	1.6 [0.5]	0/37	0/3
(pg/III)	H19 温暖期	nd	tr(0.1)	tr(0.2)	nd		29/36	29/3
	H19寒冷期	nd	nd	nd	nd	0.3 [0.1]	0/36	0/3
	H20 温暖期	nd	nd	tr(0.19)	nd		15/37	15/3
	H20 無吸翔					0.25 [0.09]	0/37	0/3
		nd 	nd	nd	nd l			
	H21 温暖期	nd	nd	tr(0.1)	nd	0.3 [0.1]	11/37	11/3
	H21 寒冷期	nd	nd	tr(0.1)	nd		1/37	1/3
Parlar-62	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
		平均値				下限値		地点
	H15 温暖期	nd	nd	nd	nd	1.6 [0.52]	0/35	0/3
	H15 寒冷期	nd	nd	nd	nd		0/34	0/3
	H16温暖期	nd	nd	nd	nd	2.4 [0.81]	0/37	0/3
	H16寒冷期	nd	nd	nd	nd		0/37	0/3
	H17 温暖期	nd	nd	nd	nd	1.2 [0.4]	0/37	0/3
	H17寒冷期	nd	nd	nd	nd		0/37	0/3
大気	H18 温暖期	nd	nd	nd	nd	8 [3]	0/37	0/3
(pg/m^3)	H18 寒冷期	nd	nd	nd	nd		0/37	0/3
	H19 温暖期	nd	nd	nd	nd	1.5 [0.6]	0/36	0/3
	H19 寒冷期	nd	nd	nd	nd	1.5 [0.0]	0/36	0/3
	H20 温暖期	nd	nd	nd	nd	1 6 [0 6]	0/37	0/3
	H20 寒冷期	nd	nd	nd	nd	1.6 [0.6]	0/37	0/3
	H21 温暖期	nd	nd	nd	nd	1.6 [0.6]	0/37	0/3

[9-1] Parlar-26

(注) 平成 15 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

図 7-9-1-1 トキサフェン Parlar-26 の生物の経年変化(幾何平均値)

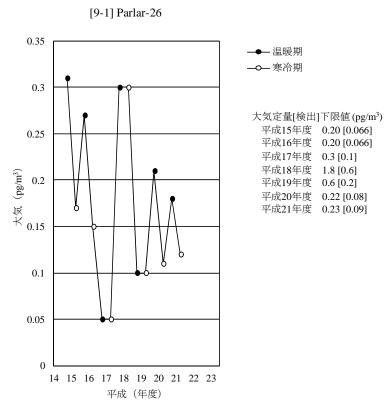
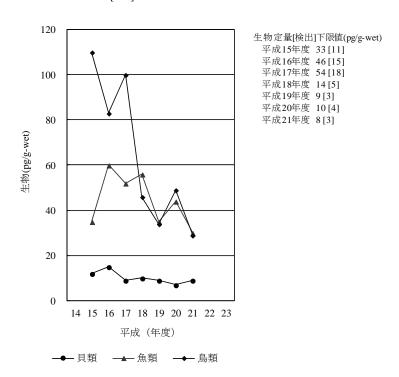
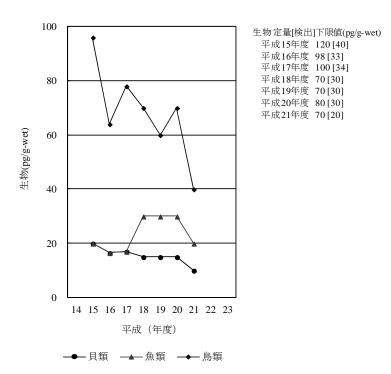



図 7-9-1-2 トキサフェン Parlar-26 の大気の経年変化(幾何平均値)


[9-2] Parlar-50

(注) 平成 15 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

図 7-9-2 トキサフェン Parlar-50 の生物の経年変化(幾何平均値)

[9-3] Parlar-62

(注) 平成 15 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

図 7-9-3 トキサフェン Parlar-62 の生物の経年変化(幾何平均値)

[10] マイレックス

調査の経緯及び実施状況

マイレックスは、米国で開発された有機塩素系殺虫剤で、海外では難燃剤としても使用されている。日本では農薬登録されたことはなく、国内での製造・輸入実績はない。平成14年9月に化審法に基づく第一種特定化学物質に指定されている。

平成13年度までの調査としては、「化学物質環境調査」^{iv)}で、昭和58年度に水質及び底質を調査している。

平成 14 年度以降のモニタリング調査においては、平成 14 年度から平成 21 年度の毎年度及び平成 23 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

•調査結果

<水質>

水質については、49 地点を調査し、検出下限値 0.2pg/L において 49 地点中 3 地点で検出され、検出濃度は 0.8pg/L までの範囲であった。

○平成 15~21 年度及び平成 23 年度における水質についてのマイレックスの検出状況

<u> </u>	177 10 21 1 20	1 /5/1 =0	1/2(1-1/1)	D/1.2(1 = -			- 171		
	マイレックス	実施年度	施年度 幾何	中央値	最大値	最小値	定量[検出]	検出	
	(10))	天旭十尺	平均值	十八世	双八胆	政/17恒	下限値	検体	地点
		H15	tr(0.13)	tr(0.12)	0.8	nd	0.3 [0.09]	25/36	25/36
		H16	nd	nd	1.1	nd	0.4 [0.2]	18/38	18/38
		H17	nd	nd	1.0	nd	0.4 [0.1]	14/47	14/47
	水質	H18	nd	nd	0.07	nd	1.6 [0.5]	1/48	1/48
	(pg/L)	H19	nd	nd	tr(0.5)	nd	1.1 [0.4]	2/48	2/48
		H20	nd	nd	0.7	nd	0.6 [0.2]	4/48	4/48
		H21	nd	nd	0.5	nd	0.4 [0.2]	8/49	8/49
		H23	nd	nd	0.8	nd	0.5 [0.2]	3/49	3/49

⁽注) 平成22年度は調査を実施していない。

<底質>

底質については、64 地点を調査し、検出下限値 0.4pg/g-dry において 64 地点中 42 地点で検出され、検出 濃度は 1,900pg/g-dry までの範囲であった。平成 15 年度から平成 23 年度における経年分析の結果、湖沼域の減少傾向が統計的に有意と判定された。

○平成 15~21 年度及び平成 23 年度における底質についてのマイレックスの検出状況

マイレックス	実施年度	幾何 平均値 ※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	H15	2	tr(1.6)	1,500	nd	2 [0.4]	137/186	51/62
	H16	2	tr(1.6)	220	nd	2 [0.5]	153/189	55/63
	H17	1.8	1.2	5,300	nd	0.9 [0.3]	134/189	48/63
底質	H18	1.7	1.2	640	nd	0.6 [0.2]	156/192	57/64
(pg/g-dry)	H19	1.5	0.9	200	nd	0.9 [0.3]	147/192	55/64
	H20	1.4	1.1	820	nd	0.7 [0.3]	117/192	48/64
	H21	1.4	1.3	620	nd	1.0 [0.4]	126/192	49/64
	H23	1.2	0.9	1,900	nd	0.9 [0.4]	42/64	42/64

⁽注1) ※: 平成15年度から平成21年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

⁽注2) 平成22年度は調査を実施していない。

<生物>

生物については、生物のうち貝類については、4 地点を調査し、検出下限値 0.8pg/g-wet において 4 地点全てで検出され、検出濃度は $5.2\sim44pg/g$ -wet の範囲であった。魚類については、18 地点を調査し、検出下限値 0.8pg/g-wet において 18 地点全てで検出され、検出濃度は $tr(1.3)\sim41pg/g$ -wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 0.8pg/g-wet において検出され、検出濃度は 58pg/g-wet であった。

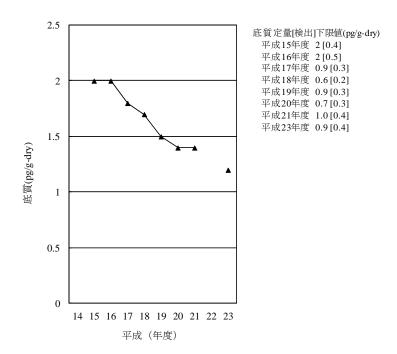
○平成15~21年度及び平成23年度における生物(貝類、魚類及び鳥類)についてのマイレックスの検出状況

- 7/1:15 21 及及		幾何				定量[検出]	検出	頻度
マイレックス	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	H15	4.9	4.2	19	tr(1.6)	2.4 [0.81]	30/30	6/6
	H16	4.4	4.3	12	tr(1.1)	2.5 [0.82]	31/31	7/7
	H17	5.4	5.2	20	tr(1.9)	3.0 [0.99]	31/31	7/7
貝類	H18	5	4	19	tr(2)	3 [1]	31/31	7/7
(pg/g-wet)	H19	5	4	18	tr(2)	3 [1]	31/31	7/7
	H20	4	tr(3)	18	tr(2)	4 [1]	31/31	7/7
	H21	5.9	5.2	21	tr(1.7)	2.1 [0.8]	31/31	7/7
	H23	10	7.1	44	5.2	1.9 [0.8]	4/4	4/4
	H15	8.3	9.0	25	tr(1.7)	2.4 [0.81]	70/70	14/14
	H16	13	11	180	3.8	2.5 [0.82]	70/70	14/14
	H17	13	13	78	tr(1.0)	3.0 [0.99]	80/80	16/16
魚類	H18	11	10	53	tr(2)	3 [1]	80/80	16/16
(pg/g-wet)	H19	9	11	36	tr(1)	3 [1]	80/80	16/16
	H20	11	13	48	tr(1)	4 [1]	85/85	17/17
	H21	8.6	9.6	37	tr(0.9)	2.1 [0.8]	90/90	18/18
	H23	12	15	41	tr(1.3)	1.9 [0.8]	18/18	18/18
	H15	120	150	450	31	2.4 [0.81]	10/10	2/2
	H16	61	64	110	33	2.5 [0.82]	10/10	2/2
	H17	77	66	180	41	3.0 [0.99]	10/10	2/2
鳥類	H18	77	70	280	39	3 [1]	10/10	2/2
(pg/g-wet)	H19	57	59	100	32	3 [1]	10/10	2/2
	H20	74	68	260	27	4 [1]	10/10	2/2
	H21	49	50	79	32	2.1 [0.8]	10/10	2/2
	H23			58	58	1.9 [0.8]	1/1	1/1

⁽注1) ※: 平成15年度から平成21年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<大気>

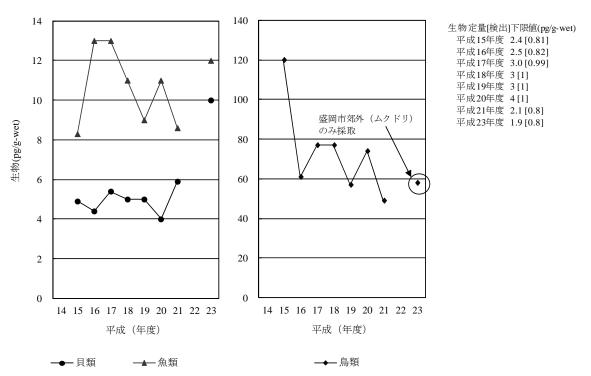
大気の温暖期については、35 地点を調査し、検出下限値 $0.01 pg/m^3$ において 35 地点全てで検出され、検出濃度は $0.08 \sim 0.25 pg/m^3$ の範囲であった。寒冷期については、37 地点を調査し、検出下限値 $0.01 pg/m^3$ において 37 地点全てで検出され、検出濃度は $tr(0.03) \sim 0.11 pg/m^3$ の範囲であった。


○平成15~23年度における大気についてのマイレックスの検出状況

マイレックス	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
マイレックス	夫 旭 中 及	平均值	中天恒	取入胆	取小胆	下限値	検体	地点
	H15 温暖期	0.11	0.12	0.19	0.047	0.0084	35/35	35/35
	H15 寒冷期	0.044	0.043	0.099	0.024	[0.0028]	34/34	34/34
	H16 温暖期	0.099	0.11	0.16	tr(0.042)	0.05 [0.017]	37/37	37/37
	H16寒冷期	tr(0.046)	tr(0.047)	0.23	tr(0.019)	0.03 [0.017]	37/37	37/37
	H17 温暖期	tr(0.09)	tr(0.09)	0.24	tr(0.05)	0.10 [0.03]	37/37	37/37
	H17 寒冷期	tr(0.04)	tr(0.04)	tr(0.08)	nd	0.10 [0.03]	29/37	29/37
	H18 温暖期	tr(0.07)	tr(0.10)	0.22	nd	0.13 [0.04]	29/37	29/37
大気	H18 寒冷期	tr(0.07)	tr(0.07)	2.1	nd		27/37	27/37
(pg/m^3)	H19 温暖期	0.11	0.11	0.28	0.04	0.03 [0.01]	36/36	36/36
	H19 寒冷期	0.04	0.04	0.09	tr(0.02)	0.03 [0.01]	36/36	36/36
	H20 温暖期	0.09	0.09	0.25	0.03	0.03 [0.01]	37/37	37/37
	H20 寒冷期	0.05	0.04	0.08	0.03	0.03 [0.01]	37/37	37/37
	H21 温暖期	0.12	0.13	0.48	0.049	0.015 [0.006]	37/37	37/37
	H21 寒冷期	0.058	0.054	0.18	0.030	0.013 [0.000]	37/37	37/37
	H23 温暖期	0.14	0.13	0.25	0.08	0.04 [0.01]	35/35	35/35
	H23 寒冷期	0.07	0.07	0.11	tr(0.03)	0.04 [0.01]	37/37	37/37
(注) 亚出 22 年度)	+ 調木も字体1	TIN FALL						

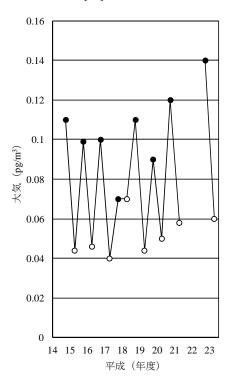
⁽注) 平成22年度は調査を実施していない。

⁽注2) 平成22年度は調査を実施していない。


[10] マイレックス

- (注 1) 平成 15 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を 求めた。
- (注2) 平成22年度は調査を実施していない。

図 7-10-1 マイレックスの底質の経年変化(幾何平均値)


[10] マイレックス

- (注1) 平成15年度から平成21年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を 求めた。
- (注2) 平成22年度は調査を実施していない。

図 7-10-2 マイレックスの生物の経年変化 (幾何平均値)

[10] マイレックス

— 温暖期

—o— 寒冷期

大気定量[検出]下限値 (pg/m³)
平成15年度 0.0084 [0.0028]
平成16年度 0.05 [0.017]
平成17年度 0.10 [0.03]
平成18年度 0.13 [0.04]
平成19年度 0.03 [0.01]
平成20年度 0.03 [0.01]
平成21年度 0.015 [0.006]
平成23年度 0.04 [0.01]

(注) 平成22年度は調査を実施していない。 図7-10-3 マイレックスの大気の経年変化(幾何平均値)

[11] HCH 類

調査の経緯及び実施状況

HCH 類は、農薬、殺虫剤及びシロアリ駆除剤等として使用された。昭和 46 年に農薬取締法に基づく登録が失効したが、その後もシロアリ駆除剤や木材処理剤として使われていた。平成 21 年 5 月に開催された POPs 条約の第 4 回条約締約国会議(COP4)において、HCH 類のうち α -HCH、 β -HCH 及び γ -HCH(別名:リンデン)について条約対象物質とすることが採択され、平成 22 年 4 月に化審法に基づく第一種特定化学物質に指定されている。

HCH 類には多くの異性体が存在するが、継続的調査においては α -体、 β -体、 γ -体及び δ -体の 4 種の異性体を調査対象物質として水質、底質、生物(貝類、魚類及び鳥類)並びに大気についてモニタリング調査を実施している。

平成 13 年度までの調査として「化学物質環境調査」 iv)では、昭和 49 年度に水質、底質及び魚類について調査している。 α -体及び β -体については「水質・底質モニタリング」 i)で水質は昭和 61 年度から平成 10 年度まで、底質は昭和 61 年度から平成 13 年度の全期間にわたって調査している。「生物モニタリング」 ii)では、昭和 53 年度から平成 8 年度までの毎年と平成 10 年度、平成 12 年度及び平成 13 年度に生物(貝類、魚類及び鳥類)について調査している(γ -体は平成 9 年度以降、 δ -体は平成 5 年度以降未実施)。

平成 14 年度以降のモニタリング調査では、 α -体及び β -体の水質、底質及び生物(貝類、魚類及び鳥類)については平成 14 年度から、 α -体及び β -体の大気並びに γ -体及び δ -体の水質、底質、生物(貝類、魚類及び鳥類)及び大気については平成 15 年度からそれぞれ毎年度実施している。

•調査結果

 $\bigcirc \alpha$ -HCH、 β -HCH、 γ -HCH(別名:リンデン)及び δ -HCH

<水質>

 α -HCH: 水質については、49 地点を調査し、検出下限値 3pg/L において 49 地点全てで検出され、検出濃度は $11\sim1000$ pg/L の範囲であった。

β-HCH: 水質については、49 地点を調査し、検出下限値 0.8pg/L において 49 地点全てで検出され、検出 濃度は 28~840pg/L の範囲であった。平成 14 年度から平成 23 年度における経年分析の結果、湖沼域の減 少傾向が統計的に有意と判定された。

γ-HCH (別名: リンデン): 水質 (pg/L) 水質については、49地点を調査し、検出下限値1pg/Lにおいて49地点全てで検出され、検出濃度は3~170pg/Lの範囲であった。平成15年度から平成23年度における経年分析の結果、河川域、河口域及び海域の減少傾向が統計的に有意と判定された。また、水質全体としても減少傾向が統計的に有意と判定された。

 δ -HCH: 水質については、49 地点を調査し、検出下限値 0.2pg/L において 49 地点全てで検出され、検出 濃度は $0.7\sim300pg/L$ の範囲であった。

〇平成 14~23 年度における水質についての α -HCH、 β -HCH、 γ -HCH 及び δ -HCH の検出状況

Paper
H15
H16
H16
H17 90 81 660 16 4 [1] 47/47
大質 H18
Part
H20
H21 74 73 560 14 1.2 [0.4] 49/49 49/49 H22 94 75 1,400 14 4 [1] 49/49 49/49 49/49 H23 67 60 1,000 11 7 [3] 49/49 49/49 49/49
H22 94 75 1,400 14 4 [1] 49/49
β-HCH 実施年度 幾何 平均値※ 中央値 平均値※ 最大値 中央値 中央値 最小値 最大値 定量[検出] 下限値 日 検出頻度 検体 機出頻度 検体 H14 210 180 1,600 24 0.9 [0.3] 114/114 38/38 H15 250 240 1,700 14 3 [0.7] 36/36 36/36 H16 260 250 3,400 31 4 [2] 38/38 38/38 H17 200 170 2,300 25 2.6 [0.9] 47/47 47/47 水質 H18 200 160 2,000 42 1.7 [0.6] 48/48 48/48 (pg/L) H19 170 150 1,300 18 2.7[0.9] 48/48 48/48 H20 150 150 1,800 15 1.0 [0.4] 48/48 48/48 H21 150 150 1,100 18 0.6 [0.2] 49/49 49/49 H22 180 160 2,500 33 2.0 [0.7] 49/49
β-HCH 実施年度 幾何 平均値※ 中央値 平均値※ 最大値 1,600 最小値 24 定量[検出] 下限値 0,9 [0.3] 検出頻度 検体 検出頻度 検体 機出頻度 検体 機出頻度 検体 機出頻度 検体 地点 H14 210 180 1,600 24 0.9 [0.3] 114/114 38/38 H15 250 240 1,700 14 3 [0.7] 36/36 36/36 H16 260 250 3,400 31 4 [2] 38/38 38/38 H17 200 170 2,300 25 2.6 [0.9] 47/47 47/47 水質 H18 200 160 2,000 42 1.7 [0.6] 48/48 48/48 (pg/L) H19 170 150 1,300 18 2.7[0.9] 48/48 48/48 H20 150 150 1,800 15 1.0 [0.4] 48/48 48/48 H21 150 150 1,100 18 0.6 [0.2] 49/49 49/49 H22 180 160
P-HCH 実施年度 平均値※ 中央値 最大値 最大値 下限値 検体 地点
H15 250 240 1,700 14 3 [0.7] 36/36 36/36 H16 260 250 3,400 31 4 [2] 38/38 38/38 H17 200 170 2,300 25 2.6 [0.9] 47/47
H16 260 250 3,400 31 4 [2] 38/38 38/38 H17 200 170 2,300 25 2.6 [0.9] 47/47
大質 H17 200 170 2,300 25 2.6 [0.9] 47/47 47
水質 H18 200 160 2,000 42 1.7 [0.6] 48/48 48/48 (pg/L) H19 170 150 1,300 18 2.7[0.9] 48/48 48/48 H20 150 150 1,800 15 1.0 [0.4] 48/48 48/48 H21 150 150 1,100 18 0.6 [0.2] 49/49 49/49 H22 180 160 2,500 33 2.0 [0.7] 49/49 49/49 H23 130 120 840 28 2.0 [0.8] 49/49 49/49 γ-HCH 実施年度 幾何 中央値 最大値 最大値 最大値 最大値 最大値 最大値
(pg/L) H19 170 150 1,300 18 2.7[0.9] 48/48 48/48 H20 150 150 1,800 15 1.0 [0.4] 48/48 48/48 H21 150 150 1,100 18 0.6 [0.2] 49/49 49/49 H22 180 160 2,500 33 2.0 [0.7] 49/49 49/49 H23 130 120 840 28 2.0 [0.8] 49/49 49/49 ア-HCH 実施年度 幾何 中央値 最大値 最小値 定量[検出] 検出頻度
H20 150 150 1,800 15 1.0 [0.4] 48/48 48/48 H21 150 150 1,100 18 0.6 [0.2] 49/49 49/49 H22 180 160 2,500 33 2.0 [0.7] 49/49 49/49 H23 130 120 840 28 2.0 [0.8] 49/49 49/49 γ-HCH 実施年度 幾何 中央値 最大値 最小値 定量[検出] 検出頻度
H21 150 150 1,100 18 0.6 [0.2] 49/49 49/49 H22 180 160 2,500 33 2.0 [0.7] 49/49 49/49 H23 130 120 840 28 2.0 [0.8] 49/49 49/49 γ-HCH 実施年度 幾何 中央値 最大値 最大値 最小値 定量[検出] 検出頻度
H22 180 160 2,500 33 2.0 [0.7] 49/49 49/49 H23 130 120 840 28 2.0 [0.8] 49/49 49/49 γ-HCH 実施年度 幾何 中央値 最大値 最小値 定量[検出] 検出頻度
H23 130 120 840 28 2.0 [0.8] 49/49 49/49 γ-HCH 実施年度 幾何 中央値 最大値 最小値 定量[検出] 検出頻度
γ-HCH 実施年度 幾何 中央値 最大値 最小値 定量[検出] 検出頻度
,
(別タ・リンデン) 大旭十度 正抗は 十大胆 取八胆 取八胆 下四は 松井 山上
· · · · · · · · · · · · · · · · · · ·
H15 92 90 370 32 7 [2] 36/36 36/36
H16 91 76 8,200 21 20 [7] 38/38 38/38
H17 48 40 250 tr(8) 14 [5] 47/47 47/47
水質 H18 44 43 460 tr(9) 18 [6] 48/48 48/48
H19 34 32 290 5.2 2.1 [0.7] 48/48 48/48
(pg/L) H20 34 32 340 4 3 [1] 48/48 48/48
H21 32 26 280 5.1 0.6 [0.2] 49/49 49/49
H22 26 22 190 tr(5) 6 [2] 49/49 49/49
H23 23 20 170 3 3 [1] 49/49 49/49
δ-HCH 実施年度 選択は 中央値 最大値 最小値 工程は おけた
平均恒 下限恒 横体 地点
H15 14 14 200 tr(1.1) 2 [0.5] 36/36 36/36
H16 24 29 670 tr(1.4) 2 [0.7] 38/38 38/38
H17 1.8 nd 62 nd 1.5 [0.5] 23/47 23/47
水質 H18 24 18 1,000 2.2 2.0 [0.8] 48/48 48/48
(res/L) H19 11 9.7 /20 $tr(0.7)$ 1.2 [0.4] 48/48 48/48
(pg/L) H20 11 10 1,900 tr(1.1) 2.3 [0.9] 48/48 48/48
H21 10 11 450 tr(0.7) 0.9 [0.4] 49/49 49/49
H22 16 17 780 0.9 0.8 [0.3] 49/49 49/49
H23 8.6 8.9 300 0.7 0.4 [0.2] 49/49 49/49

(注)※: 平成14年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<底質>

 α -HCH: 底質については、64 地点を調査し、検出下限値 0.6pg/g-dry において 64 地点全てで検出され、 検出濃度は $1.6\sim5,100pg/g$ -dry の範囲であった。

 β -HCH: 底質については、64 地点を調査し、検出下限値 1pg/g-dry において 64 地点全てで検出され、検出濃度は 3~14,000pg/g-dry の範囲であった。

 γ -HCH (別名: リンデン) : 底質については、64 地点を調査し、検出下限値 1pg/g-dry において 64 地点中 62 地点で検出され、検出濃度は 3,500pg/g-dry までの範囲であった。

 δ -HCH: 底質については、64 地点を調査し、検出下限値 0.5pg/g-dry において 64 地点中 63 地点で検出さ

れ、検出濃度は 5,000pg/g-dry までの範囲であった。

〇平成 14~23 年度における底質についての α -HCH、 β -HCH、 γ -HCH 及び δ -HCH の検出状況

	おいる広島	幾何				定量[検出]	検出	頻度
α-НСН	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	H14	150	170	8,200	2.0	1.2 [0.4]	189/189	63/63
	H15	160	170	9,500	2	2 [0.5]	186/186	62/62
	H16	160	180	5,700	tr(1.5)	2 [0.6]	189/189	63/63
	H17	140	160	7,000	3.4	1.7 [0.6]	189/189	63/63
底質	H18	140	160	4,300	tr(2)	5 [2]	192/192	64/64
(pg/g-dry)	H19	140	150	12,000	tr(1.3)	1.8 [0.6]	192/192	64/64
	H20	140	190	5,200	nd	1.6 [0.6]	191/192	64/64
	H21	120	120	6,300	nd	1.1 [0.4]	191/192	64/64
	H22	140	140	3,700	3.1	2.0 [0.8]	64/64	64/64
	H23	120	140	5,100	1.6	1.5 [0.6]	64/64	64/64
β -HCH	実施年度	幾何 平均値 ※	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	H14	230	230	11,000	3.9	0.9 [0.3]	189/189	63/63
	H15	250 250	220	39,000	5.9	0.9 [0.3] 2 [0.7]	186/186	62/62
	H16	240	230	53,000	4	3 [0.8]	189/189	63/63
	H17	200	220	13,000	3.9	2.6 [0.9]	189/189	63/63
底質	H18	190	210	21,000	2.3	1.3 [0.4]	192/192	64/64
広員 (pg/g-dry)	H19	200	190	59,000	1.6	0.9 [0.3]	192/192	64/64
(pg/g-ury)	H20	190	200	8,900	2.8	0.8 [0.3]	192/192	64/64
	H21	180	170	10,000	2.4	1.3 [0.5]	192/192	64/64
	H22	230	210	8,200	2.4	2.4 [0.8]	64/64	64/64
	H23	180	210	14,000	3	3 [1]	64/64	64/64
γ-НСН	п23		210	14,000	3			
y-nch (別名:リンデン)	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	H15	51	47	4,000	tr(1.4)	2 [0.4]	186/186	62/62
	H16	53	48	4,100	tr(0.8)	2 [0.5]	189/189	63/63
	H17	49	46	6,400	tr(1.8)	2.0 [0.7]	189/189	63/63
底質	H18	48	49	3,500	tr(1.4)	2.1 [0.7]	192/192	64/64
	H19	42	41	5,200	tr(0.6)	1.2 [0.4]	192/192	64/64
(pg/g-dry)	H20	40	43	2,200	tr(0.7)	0.9 [0.4]	192/192	64/64
	H21	38	43	3,800	nd	0.6 [0.2]	191/192	64/64
	H22	35	30	2,300	tr(1.5)	2.0 [0.7]	64/64	64/64
	H23	35	42	3,500	nd	3 [1]	62/64	62/64
S HOH	安长左南	幾何	山山	11. 上店	目、小 /击	定量[検出]	検出	頻度
δ-НСН	実施年度	平均值※	中央値	最大値	最小値	下限値	人	地点
	H15	42	46	5,400	nd	2 [0.7]	180/186	61/62
	H16	55	55	5,500	tr(0.5)	2 [0.5]	189/189	63/63
	H17	52	63	6,200	nd	1.0 [0.3]	188/189	63/63
底質	H18	45	47	6,000	nd	1.7 [0.6]	189/192	64/64
(pg/g-dry)	H19	26	28	5,400	nd	5 [2]	165/192	60/64
(P6/5-ury)	H20	41	53	3,300	nd	2 [1]	186/192	64/64
	H21	36	37	5,000	nd	1.2 [0.5]	190/192	64/64
	H22	39	40	3,800	1.3	1.2 [0.5]	64/64	64/64
	H23	37	47	5,000	nd	1.4 [0.5]	63/64	63/64

⁽注) ※: 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>

 α -HCH: 生物のうち貝類については、4 地点を調査し、検出下限値 1pg/g-wet において 4 地点全てで検出され、検出濃度は $13\sim1,200$ pg/g-wet の範囲であった。魚類については、18 地点を調査し、検出下限値 1pg/g-wet において 18 地点全てで検出され、検出濃度は $tr(2)\sim690$ pg/g-wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 1pg/g-wet において検出され、検出濃度は 48pg/g-wet であった。平成 14 年から平成 23 年度における経年分析の結果、魚類の減少傾向が統計的に有意と判定された。

β-HCH: 生物のうち貝類については、4 地点を調査し、検出下限値 1pg/g-wet において 4 地点全てで検出

され、検出濃度は $39\sim2,000$ pg/g-wet の範囲であった。魚類については、18 地点を調査し、検出下限値 1pg/g-wet において 18 地点全てで検出され、検出濃度は $4\sim710$ pg/g-wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 1pg/g-wet において検出され、検出濃度は 4,500pg/g-wet であった。

 γ -HCH(別名:リンデン):生物のうち貝類については、4 地点を調査し、検出下限値 1pg/g-wet において 4 地点全てで検出され、検出濃度は $5\sim320$ pg/g-wet の範囲であった。魚類については、18 地点を調査し、検出下限値 1pg/g-wet において 18 地点全てで検出され、検出濃度は $tr(1)\sim160$ pg/g-wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 1pg/g-wet において検出され、検出濃度は 26pg/g-wet であった。平成 15 年から平成 23 年度における経年分析の結果、魚類の減少傾向が統計的に有意と判定された。

 δ -HCH: 生物のうち貝類については、4 地点を調査し、検出下限値 1pg/g-wet において 4 地点全てで検出され、検出濃度は $tr(1)\sim1,400$ pg/g-wet の範囲であった。魚類については、18 地点を調査し、検出下限値 1pg/g-wet において 18 地点中 14 地点で検出され、検出濃度は 19pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 1pg/g-wet において検出され、検出濃度は 5pg/g-wet であった。

〇平成 14~23 年度における生物(貝類、魚類及び鳥類)についての α -HCH、 β -HCH、 γ -HCH 及び δ -HCH の 検出状況

a HCH	実施年度	幾何	由由結			定量[検出]	検出	頻度
α-НСН	夫旭午及	平均值※	中央値	最大値	最小値	下限值	検体	地点
	H14	67	64	1,100	12	4.2 [1.4]	38/38	8/8
	H15	45	30	610	9.9	1.8 [0.61]	30/30	6/6
	H16	56	25	1,800	tr(12)	13 [4.3]	31/31	7/7
	H17	38	25	1,100	tr(7.1)	11 [3.6]	31/31	7/7
貝類	H18	30	21	390	6	3 [1]	31/31	7/7
(pg/g-wet)	H19	31	17	1,400	8	7 [2]	31/31	7/7
	H20	26	16	380	7	6 [2]	31/31	7/7
	H21	45	21	2,200	9	5 [2]	31/31	7/7
	H22	35	20	730	13	3 [1]	6/6	6/6
	H23	64	33	1,200	13	3 [1]	4/4	4/4
	H14	57	56	590	tr(1.9)	4.2 [1.4]	70/70	14/14
	H15	43	58	590	2.6	1.8 [0.61]	70/70	14/14
	H16	57	55	2,900	nd	13 [4.3]	63/70	14/14
	H17	42	43	1,000	nd	11 [3.6]	75/80	16/16
魚類	H18	44	53	360	tr(2)	3 [1]	80/80	16/16
(pg/g-wet)	H19	39	40	730	tr(2)	7 [2]	80/80	16/16
	H20	36	47	410	nd	6 [2]	84/85	17/17
	H21	39	32	830	tr(2)	5 [2]	90/90	18/18
	H22	27	39	250	tr(1)	3 [1]	18/18	18/18
	H23	37	54	690	tr(2)	3 [1]	18/18	18/18
	H14	170	130	360	93	4.2 [1.4]	10/10	2/2
	H15	73	74	230	30	1.8 [0.61]	10/10	2/2
	H16	190	80	1,600	58	13 [4.3]	10/10	2/2
	H17	76	77	85	67	11 [3.6]	10/10	2/2
鳥類	H18	76	75	100	55	3 [1]	10/10	2/2
(pg/g-wet)	H19	75	59	210	43	7 [2]	10/10	2/2
	H20	48	48	61	32	6 [2]	10/10	2/2
	H21	43	42	56	34	5 [2]	10/10	2/2
	H22	260		430	160	3 [1]	2/2	2/2
	H23			48	48	3 [1]	1/1	1/1

0.11011		幾何	+++	B 1./±	B 1 /±	定量[検出]	検出	頻度
β -HCH	実施年度	平均值※	中央値	最大値	最小值	下限値	検体	地点
	H14	88	62	1,700	32	12 [4]	38/38	8/8
	H15	78	50	1,100	23	9.9 [3.3]	30/30	6/6
	H16	100	74	1,800	22	6.1 [2.0]	31/31	7/7
	H17	85	56	2,000	20	2.2 [0.75]	31/31	7/7
貝類	H18	81	70	880	11	3 [1]	31/31	7/7
(pg/g-wet)	H19	79	56	1,800	21	7 [3]	31/31	7/7
(pg/g-wet)	H20	73	51	1,100	23	6 [2]	31/31	7/7
	H21	83	55	1,600	27	6 [2]	31/31	7/7
	H22	89	56	1,500	27	3 [1]	6/6	6/6
	H23	130	68	2,000	39	3 [1]	4/4	4/4
	H14	110	120	1,800	tr(5)	12 [4]	70/70	14/14
	H15	81	96	1,100	tr(3.5)	9.9 [3.3]	70/70	14/14
	H16	110	140	1,100	tr(3.9)	6.1 [2.0]	70/70	14/14
	H17	95	110	1,300	6.7	2.2 [0.75]	80/80	16/16
魚類	H18	89	110	1,100	4	3 [1]	80/80	16/16
	H19	110	120	810	7	7 [3]	80/80	16/16
(pg/g-wet)	H20	94	150					
				750	tr(4)	6 [2]	85/85	17/17
	H21	98	130	970	tr(5)	6 [2]	90/90	18/18
	H22	81	110 140	760	5 4	3 [1]	18/18	18/18
	H23	100		710		3 [1]	18/18	18/18
	H14	3,000	3,000	7,300	1,600	12 [4]	10/10	2/2
	H15	3,400	3,900	5,900	1,800	9.9 [3.3]	10/10	2/2
	H16	2,300	2,100	4,800	1,100	6.1 [2.0]	10/10	2/2
± √c	H17	2,500	2,800	6,000	930	2.2 [0.75]	10/10	2/2
鳥類	H18	2,100	2,400	4,200	1,100	3 [1]	10/10	2/2
(pg/g-wet)	H19	2,000	1,900	3,200	1,400	7 [3]	10/10	2/2
	H20	2,400	2,000	5,600	1,300	6 [2]	10/10	2/2
	H21	1,600	1,400	4,200	870	6 [2]	10/10	2/2
	H22	1,600		2,800	910	3 [1]	2/2	2/2
	H23			4,500	4,500	3 [1]	1/1	1/1
γ-НСН	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
(別名:リンデン)		平均值※				下限値	検体	地点
	H15	19	18	130	5.2	3.3 [1.1]	30/30	6/6
	H16	tr(24)	tr(16)	230	nd	31 [10]	28/31	7/7
	H17	23	13	370	tr(5.7)	8.4 [2.8]	31/31	7/7
貝類	H18	18	12	140	7	4 [2]	31/31	7/7
只規 (pg/g-wet)		10	12		/	. [~]	31/31	
([) 0 / 0 - WPI I	H19	16	10	450	tr(4)	9 [3]	31/31	7/7
(P8/8 WCL)	H19 H20					9 [3]		7/7 7/7
(18/8 HOL)		16	10 10	450	tr(4) tr(3)	9 [3] 9 [3]	31/31	
(58,9 mon)	H20	16 12	10	450 98	tr(4)	9 [3] 9 [3] 7 [3]	31/31 31/31	7/7
(18.8 mcc)	H20 H21	16 12 14	10 10 12	450 98 89	tr(4) tr(3) tr(3)	9 [3] 9 [3]	31/31 31/31 31/31	7/7 7/7
(KR, R. men)	H20 H21 H22	16 12 14 14	10 10 12 9	450 98 89 150	tr(4) tr(3) tr(3)	9 [3] 9 [3] 7 [3] 3 [1]	31/31 31/31 31/31 6/6	7/7 7/7 6/6
(KR, R. men)	H20 H21 H22 H23 H15	16 12 14 14 26	10 10 12 9 17 22	450 98 89 150 320 130	tr(4) tr(3) tr(3) 5 5 tr(1.7)	9 [3] 9 [3] 7 [3] 3 [1] 3 [1]	31/31 31/31 31/31 6/6 4/4 70/70	7/7 7/7 6/6 4/4 14/14
(KR, R. men)	H20 H21 H22 H23 H15 H16	16 12 14 14 26 16 tr(28)	10 10 12 9 17 22 tr(24)	450 98 89 150 320 130 660	tr(4) tr(3) tr(3) 5 5 tr(1.7) nd	9 [3] 9 [3] 7 [3] 3 [1] 33 [1] 33 [1.1] 31 [10]	31/31 31/31 31/31 6/6 4/4 70/70 55/70	7/7 7/7 6/6 4/4 14/14 11/14
	H20 H21 H22 H23 H15 H16 H17	16 12 14 14 26 16 tr(28)	10 10 12 9 17 22 tr(24)	450 98 89 150 320 130 660 230	tr(4) tr(3) tr(3) 5 5 tr(1.7) nd nd	9 [3] 9 [3] 7 [3] 3 [1] 3.3 [1.1] 3.1 [10] 8.4 [2.8]	31/31 31/31 31/31 6/6 4/4 70/70 55/70 78/80	7/7 7/7 6/6 4/4 14/14 11/14 16/16
魚類	H20 H21 H22 H23 H15 H16 H17 H18	16 12 14 14 26 16 tr(28) 17 19	10 10 12 9 17 22 tr(24) 17 22	450 98 89 150 320 130 660 230 97	tr(4) tr(3) tr(3) 5 5 tr(1.7) nd nd tr(2)	9 [3] 9 [3] 7 [3] 3 [1] 3.3 [1.1] 3.1 [10] 8.4 [2.8] 4 [2]	31/31 31/31 31/31 6/6 4/4 70/70 55/70 78/80 80/80	7/7 7/7 6/6 4/4 14/14 11/14 16/16 16/16
	H20 H21 H22 H23 H15 H16 H17 H18 H19	16 12 14 14 26 16 tr(28) 17 19 15	10 10 12 9 17 22 tr(24) 17 22 15	450 98 89 150 320 130 660 230 97 190	tr(4) tr(3) tr(3) 5 5 tr(1.7) nd nd tr(2) nd	9 [3] 9 [3] 7 [3] 3 [1] 3.3 [1.1] 3.1 [10] 8.4 [2.8] 4 [2] 9 [3]	31/31 31/31 31/31 6/6 4/4 70/70 55/70 78/80 80/80 71/80	7/7 7/7 6/6 4/4 14/14 11/14 16/16 16/16 15/16
	H20 H21 H22 H23 H15 H16 H17 H18 H19	16 12 14 14 26 16 tr(28) 17 19 15 13	10 10 12 9 17 22 tr(24) 17 22 15 16	450 98 89 150 320 130 660 230 97 190 96	tr(4) tr(3) tr(3) 5 5 tr(1.7) nd nd tr(2) nd nd	9 [3] 9 [3] 7 [3] 3 [1] 3.3 [1.1] 3.1 [10] 8.4 [2.8] 4 [2] 9 [3] 9 [3]	31/31 31/31 31/31 6/6 4/4 70/70 55/70 78/80 80/80 71/80 70/85	7/7 7/7 6/6 4/4 14/14 11/14 16/16 16/16 15/16
	H20 H21 H22 H23 H15 H16 H17 H18 H19 H20 H21	16 12 14 14 26 16 tr(28) 17 19 15 13 14	10 10 12 9 17 22 tr(24) 17 22 15 16 12	450 98 89 150 320 130 660 230 97 190 96 180	tr(4) tr(3) tr(3) 5 5 tr(1.7) nd nd tr(2) nd nd nd	9 [3] 9 [3] 7 [3] 3 [1] 3.3 [1.1] 3.1 [10] 8.4 [2.8] 4 [2] 9 [3] 9 [3] 7 [3]	31/31 31/31 31/31 6/6 4/4 70/70 55/70 78/80 80/80 71/80 70/85 81/90	7/7 7/7 6/6 4/4 14/14 11/14 16/16 16/16 15/16 15/17 17/18
	H20 H21 H22 H23 H15 H16 H17 H18 H19 H20 H21 H22	16 12 14 14 26 16 tr(28) 17 19 15 13 14 9	10 10 12 9 17 22 tr(24) 17 22 15 16 12 13	450 98 89 150 320 130 660 230 97 190 96 180 56	tr(4) tr(3) tr(3) 5 5 tr(1.7) nd nd tr(2) nd nd tr(1)	9 [3] 9 [3] 7 [3] 3 [1] 3.3 [1.1] 3.1 [10] 8.4 [2.8] 4 [2] 9 [3] 9 [3] 7 [3] 3 [1]	31/31 31/31 31/31 6/6 4/4 70/70 55/70 78/80 80/80 71/80 70/85 81/90 18/18	7/7 7/7 6/6 4/4 14/14 11/14 16/16 16/16 15/16 15/17 17/18 18/18
	H20 H21 H22 H23 H15 H16 H17 H18 H19 H20 H21 H22	16 12 14 14 26 16 tr(28) 17 19 15 13 14 9 12	10 10 12 9 17 22 tr(24) 17 22 15 16 12 13 15	450 98 89 150 320 130 660 230 97 190 96 180 56 160	tr(4) tr(3) tr(3) 5 5 tr(1.7) nd nd tr(2) nd nd tr(1) tr(1)	9 [3] 9 [3] 7 [3] 3 [1] 3.3 [1.1] 3.1 [10] 8.4 [2.8] 4 [2] 9 [3] 9 [3] 7 [3] 3 [1] 3 [1]	31/31 31/31 31/31 6/6 4/4 70/70 55/70 78/80 80/80 71/80 70/85 81/90 18/18 18/18	7/7 7/7 6/6 4/4 14/14 11/14 16/16 16/16 15/16 15/17 17/18 18/18
	H20 H21 H22 H23 H15 H16 H17 H18 H19 H20 H21 H22 H23	16 12 14 14 26 16 tr(28) 17 19 15 13 14 9 12	10 10 12 9 17 22 tr(24) 17 22 15 16 12 13 15	450 98 89 150 320 130 660 230 97 190 96 180 56 160 40	tr(4) tr(3) tr(3) 5 5 tr(1.7) nd nd tr(2) nd nd tr(1) tr(1) 3.7	9 [3] 9 [3] 7 [3] 3 [1] 3.3 [1.1] 3.1 [10] 8.4 [2.8] 4 [2] 9 [3] 9 [3] 7 [3] 3 [1] 3 [1] 3.3 [1.1]	31/31 31/31 31/31 6/6 4/4 70/70 55/70 78/80 80/80 71/80 70/85 81/90 18/18 18/18	7/7 7/7 6/6 4/4 14/14 11/14 16/16 16/16 15/16 15/17 17/18 18/18 18/18
	H20 H21 H22 H23 H15 H16 H17 H18 H19 H20 H21 H22 H23 H15 H16	16 12 14 14 26 16 tr(28) 17 19 15 13 14 9 12 14 64	10 10 12 9 17 22 tr(24) 17 22 15 16 12 13 15	450 98 89 150 320 130 660 230 97 190 96 180 56 160 40 1,200	tr(4) tr(3) tr(3) 5 5 tr(1.7) nd nd tr(2) nd nd tr(1) tr(1) 3.7 tr(11)	9 [3] 9 [3] 7 [3] 3 [1] 3 [1] 3.3 [1.1] 31 [10] 8.4 [2.8] 4 [2] 9 [3] 9 [3] 7 [3] 3 [1] 3 [1] 3.3 [1.1] 31 [10]	31/31 31/31 31/31 6/6 4/4 70/70 55/70 78/80 80/80 71/80 70/85 81/90 18/18 18/18 10/10 10/10	7/7 7/7 6/6 4/4 14/14 11/14 16/16 16/16 15/16 15/17 17/18 18/18 18/18 2/2 2/2
魚類 (pg/g-wet)	H20 H21 H22 H23 H15 H16 H17 H18 H19 H20 H21 H22 H23 H15 H16 H17	16 12 14 14 26 16 tr(28) 17 19 15 13 14 9 12 14 64 18	10 10 12 9 17 22 tr(24) 17 22 15 16 12 13 15 19 tr(21) 20	450 98 89 150 320 130 660 230 97 190 96 180 56 160 40 1,200 32	tr(4) tr(3) tr(3) 5 5 tr(1.7) nd nd tr(2) nd nd tr(1) tr(1) 3.7 tr(11) 9.6	9 [3] 9 [3] 7 [3] 3 [1] 3 [1] 3.3 [1.1] 31 [10] 8.4 [2.8] 4 [2] 9 [3] 9 [3] 7 [3] 3 [1] 3 [1] 3.3 [1.1] 3.1 [10] 8.4 [2.8]	31/31 31/31 31/31 6/6 4/4 70/70 55/70 78/80 80/80 71/80 70/85 81/90 18/18 18/18 10/10 10/10	7/7 7/7 6/6 4/4 14/14 11/14 16/16 16/16 15/16 15/17 17/18 18/18 18/18 2/2 2/2 2/2
魚類 (pg/g-wet)	H20 H21 H22 H23 H15 H16 H17 H18 H19 H20 H21 H22 H23 H15 H16 H17 H18	16 12 14 14 26 16 tr(28) 17 19 15 13 14 9 12 14 64 18 16	10 10 12 9 17 22 tr(24) 17 22 15 16 12 13 15 19 tr(21) 20 17	450 98 89 150 320 130 660 230 97 190 96 180 56 160 40 1,200 32 29	tr(4) tr(3) tr(3) 5 5 tr(1.7) nd nd tr(2) nd nd tr(1) tr(1) 3.7 tr(11) 9.6 8	9 [3] 9 [3] 7 [3] 3 [1] 3 [1] 3.3 [1.1] 3.1 [10] 8.4 [2.8] 4 [2] 9 [3] 9 [3] 7 [3] 3 [1] 3 [1] 3.3 [1.1] 3.1 [10] 8.4 [2.8] 4 [2]	31/31 31/31 31/31 6/6 4/4 70/70 55/70 78/80 80/80 71/80 70/85 81/90 18/18 10/10 10/10 10/10	7/7 7/7 6/6 4/4 14/14 11/14 16/16 16/16 15/16 15/17 17/18 18/18 18/18 2/2 2/2 2/2 2/2
魚類 (pg/g-wet)	H20 H21 H22 H23 H15 H16 H17 H18 H19 H20 H21 H22 H23 H15 H16 H17 H18	16 12 14 14 26 16 tr(28) 17 19 15 13 14 9 12 14 64 18 16 21	10 10 12 9 17 22 tr(24) 17 22 15 16 12 13 15 19 tr(21) 20 17 14	450 98 89 150 320 130 660 230 97 190 96 180 56 160 40 1,200 32 29 140	tr(4) tr(3) tr(3) 5 5 tr(1.7) nd nd tr(2) nd nd tr(1) tr(1) 3.7 tr(11) 9.6 8 tr(8)	9 [3] 9 [3] 7 [3] 3 [1] 3 [1] 3.3 [1.1] 3.1 [10] 8.4 [2.8] 4 [2] 9 [3] 9 [3] 7 [3] 3 [1] 3 [1] 3.3 [1.1] 3.1 [10] 8.4 [2.8] 4 [2] 9 [3]	31/31 31/31 31/31 6/6 4/4 70/70 55/70 78/80 80/80 71/80 70/85 81/90 18/18 10/10 10/10 10/10	7/7 7/7 6/6 4/4 14/14 11/14 16/16 16/16 15/16 15/17 17/18 18/18 18/18 2/2 2/2 2/2 2/2 2/2 2/2
魚類 (pg/g-wet)	H20 H21 H22 H23 H15 H16 H17 H18 H19 H20 H21 H22 H23 H15 H16 H17 H18 H19 H20	16 12 14 14 26 16 tr(28) 17 19 15 13 14 9 12 14 64 18 16 21 12	10 10 10 12 9 17 22 tr(24) 17 22 15 16 12 13 15 19 tr(21) 20 17 14 14	450 98 89 150 320 130 660 230 97 190 96 180 56 160 40 1,200 32 29 140 19	tr(4) tr(3) tr(3) 5 5 tr(1.7) nd nd tr(2) nd nd tr(1) tr(1) 9.6 8 tr(8) tr(5)	9 [3] 9 [3] 7 [3] 3 [1] 3 [1] 3.3 [1.1] 3.1 [10] 8.4 [2.8] 4 [2] 9 [3] 9 [3] 7 [3] 3 [1] 3 [1] 3.3 [1.1] 3.1 [10] 8.4 [2.8] 4 [2] 9 [3] 9 [3]	31/31 31/31 31/31 6/6 4/4 70/70 55/70 78/80 80/80 71/80 70/85 81/90 18/18 10/10 10/10 10/10 10/10	7/7 7/7 6/6 4/4 14/14 11/14 16/16 15/16 15/17 17/18 18/18 18/18 2/2 2/2 2/2 2/2 2/2 2/2
魚類 (pg/g-wet)	H20 H21 H22 H23 H15 H16 H17 H18 H19 H20 H21 H22 H23 H15 H16 H17 H18 H19 H20 H21	16 12 14 14 26 16 tr(28) 17 19 15 13 14 9 12 14 64 18 16 21 12 11	10 10 12 9 17 22 tr(24) 17 22 15 16 12 13 15 19 tr(21) 20 17 14 14 11	450 98 89 150 320 130 660 230 97 190 96 180 56 160 40 1,200 32 29 140 19 21	tr(4) tr(3) tr(3) 5 5 tr(1.7) nd nd tr(2) nd nd tr(1) tr(1) 3.7 tr(11) 9.6 8 tr(8) tr(5) tr(6)	9 [3] 9 [3] 7 [3] 3 [1] 3 [1] 3.3 [1.1] 3.1 [10] 8.4 [2.8] 4 [2] 9 [3] 9 [3] 7 [3] 3 [1] 3.3 [1.1] 3.1 [10] 8.4 [2.8] 4 [2] 9 [3] 7 [3] 7 [3] 9 [3] 7 [3]	31/31 31/31 31/31 6/6 4/4 70/70 55/70 78/80 80/80 71/80 70/85 81/90 18/18 10/10 10/10 10/10 10/10 10/10	7/7 7/7 6/6 4/4 14/14 11/14 16/16 15/16 15/17 17/18 18/18 2/2 2/2 2/2 2/2 2/2 2/2 2/2 2/2
魚類 (pg/g-wet)	H20 H21 H22 H23 H15 H16 H17 H18 H19 H20 H21 H22 H23 H15 H16 H17 H18 H19 H20	16 12 14 14 26 16 tr(28) 17 19 15 13 14 9 12 14 64 18 16 21 12	10 10 10 12 9 17 22 tr(24) 17 22 15 16 12 13 15 19 tr(21) 20 17 14 14	450 98 89 150 320 130 660 230 97 190 96 180 56 160 40 1,200 32 29 140 19	tr(4) tr(3) tr(3) 5 5 tr(1.7) nd nd tr(2) nd nd tr(1) tr(1) 9.6 8 tr(8) tr(5)	9 [3] 9 [3] 7 [3] 3 [1] 3 [1] 3.3 [1.1] 3.1 [10] 8.4 [2.8] 4 [2] 9 [3] 9 [3] 7 [3] 3 [1] 3 [1] 3.3 [1.1] 3.1 [10] 8.4 [2.8] 4 [2] 9 [3] 9 [3]	31/31 31/31 31/31 6/6 4/4 70/70 55/70 78/80 80/80 71/80 70/85 81/90 18/18 10/10 10/10 10/10 10/10	7/7 7/7 6/6 4/4 14/14 11/14 16/16 15/16 15/17 17/18 18/18 18/18 2/2 2/2 2/2 2/2 2/2 2/2

\$ HCH	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
δ -HCH	夫旭十尺	平均值※	中犬但	取入胆	取小胆	下限值	検体	地点
	H15	7.4	tr(2.6)	1,300	nd	3.9 [1.3]	29/30	6/6
	H16	6.3	tr(2.1)	1,500	nd	4.6 [1.5]	25/31	6/7
	H17	5.4	tr(2.1)	1,600	nd	5.1 [1.7]	23/31	6/7
貝類	H18	6	tr(2)	890	tr(1)	3 [1]	31/31	7/7
	H19	4	nd	750	nd	4 [2]	12/31	4/7
(pg/g-wet)	H20	tr(3)	nd	610	nd	6 [2]	7/31	3/7
	H21	tr(4)	nd	700	nd	5 [2]	14/31	4/7
	H22	4	tr(2)	870	nd	3 [1]	5/6	5/6
	H23	9	tr(2)	1,400	tr(1)	3 [1]	4/4	4/4
	H15	tr(3.6)	4.0	16	nd	3.9 [1.3]	59/70	13/14
	H16	tr(4.2)	tr(3.5)	270	nd	4.6 [1.5]	54/70	11/14
	H17	tr(3.2)	tr(3.1)	32	nd	5.1 [1.7]	55/80	12/16
魚類	H18	4	3	35	nd	3 [1]	72/80	16/16
	H19	tr(3)	tr(2)	31	nd	4 [2]	42/80	10/16
(pg/g-wet)	H20	tr(4)	tr(3)	77	nd	6 [2]	54/85	12/17
	H21	tr(3)	tr(3)	18	nd	5 [2]	57/90	13/18
	H22	tr(2)	tr(2)	36	nd	3 [1]	13/18	13/18
	H23	3	4	19	nd	3 [1]	14/18	14/18
	H15	19	18	31	12	3.9 [1.3]	10/10	2/2
	H16	30	14	260	6.4	4.6 [1.5]	10/10	2/2
	H17	16	15	30	10	5.1 [1.7]	10/10	2/2
鳥類	H18	13	12	21	9	3 [1]	10/10	2/2
	H19	12	10	22	4	4 [2]	10/10	2/2
(pg/g-wet)	H20	9	8	31	tr(3)	6 [2]	10/10	2/2
	H21	5	6	9	tr(3)	5 [2]	10/10	2/2
	H22	12		13	11	3 [1]	2/2	2/2
	H23			5	5	3 [1]	1/1	1/1

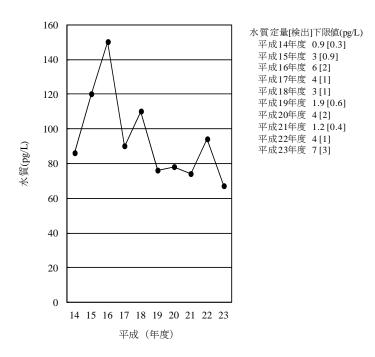
(注) ※: 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<大気>

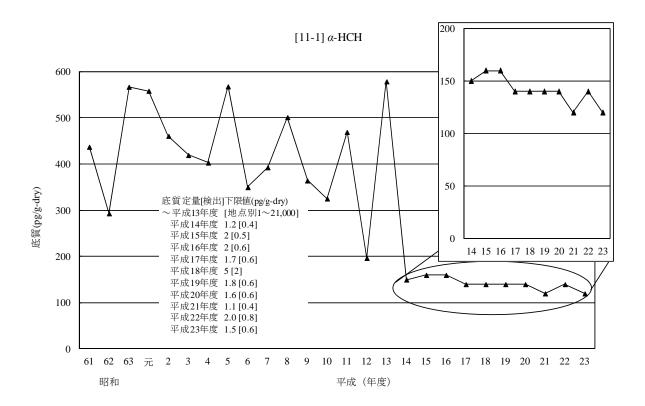
 α -HCH: 大気の温暖期については、35 地点を調査し、検出下限値 0.83pg/m³ において 35 地点全てで検出され、検出濃度は $9.5\sim410$ pg/m³ の範囲であった。寒冷期については、37 地点を調査し、検出下限値 0.83pg/m³ において 37 地点全てで検出され、検出濃度は $6.5\sim680$ pg/m³ の範囲であった。

 β -HCH: 大気の温暖期については、35 地点を調査し、検出下限値 0.13pg/m³ において 35 地点全てで検出され、検出濃度は $0.84\sim49$ pg/m³ の範囲であった。寒冷期については、37 地点を調査し、検出下限値 0.13pg/m³ において 37 地点全てで検出され、検出濃度は $tr(0.31)\sim91$ pg/m³ の範囲であった。

 γ -HCH (別名: リンデン): 大気の温暖期については、35 地点を調査し、検出下限値 $0.52 pg/m^3$ において 35 地点全てで検出され、検出濃度は $2.7 \sim 98 pg/m^3$ の範囲であった。寒冷期については、37 地点を調査し、検出下限値 $0.52 pg/m^3$ において 37 地点全てで検出され、検出濃度は $tr(1.1) \sim 67 pg/m^3$ の範囲であった。

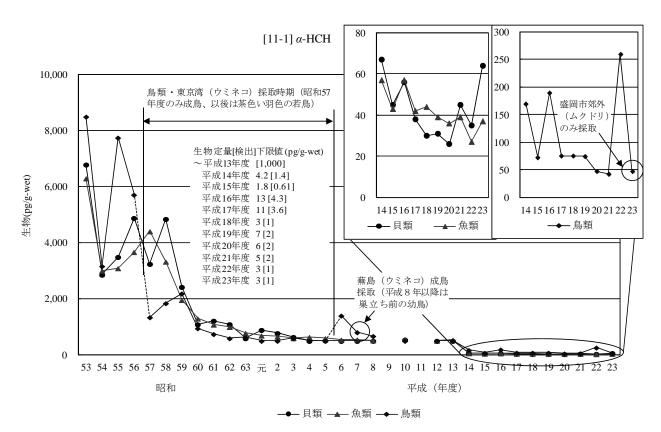

 δ -HCH: 大気の温暖期については、35地点を調査し、検出下限値0.021pg/m³において35地点全てで検出され、検出濃度は $0.11\sim33$ pg/m³の範囲であった。寒冷期については、37 地点を調査し、検出下限値0.021pg/m³において37地点全てで検出され、検出濃度は $tr(0.050)\sim26$ pg/m³の範囲であった。

なお、HCH 類の大気については、平成 15 年度から平成 20 年度に用いた大気試料採取装置の一部から HCH 類が検出され、HCH 類の測定に影響を及ぼすことが判明したが、個別のデータについて影響の有無を遡って判断することが困難であるため、この期間の全てのデータについて欠測扱いとすることとした。


○平成 21~23 年度における大気についての α -HCH、 β -HCH、 γ -HCH 及び δ -HCH の検出状況

1/2/21 25 1/2/19	-4017 07171	() ()	> w mem,	o mem, m		Hen 少灰田·八		
α-НСН	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
и-псп	天旭十尺	平均值	十大胆	取八胆	取小恒	下限値	検体	地点
	H21 温暖期	58	58	340	19	0.12 [0.05]	37/37	37/37
	H21 寒冷期	21	18	400	7.8	0.12 [0.05]	37/37	37/37
大気	H22 温暖期	46	51	280	14	1 4 [0 47]	37/37	37/37
(pg/m^3)	H22寒冷期	19	16	410	6.8	1.4 [0.47]	37/37	37/37
	H23 温暖期	43	44	410	9.5	2.5.10.921	35/35	35/35
	H23 寒冷期	18	15	680	6.5	2.5 [0.83]	37/37	37/37
β-НСН	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	
<i>p</i> -nen		平均値	一人區	双八匹	双/17恒	下限値	検体	地点
	H21 温暖期	5.6	5.6	28	0.96	0.09 [0.03]	37/37	37/37
	H21 寒冷期	1.8	1.8	24	0.31	0.09 [0.03]	37/37	37/37
大気	H22 温暖期	5.6	6.2	34	0.89	0.27 [0.09]	37/37	37/37
(pg/m^3)	H22 寒冷期	1.7	1.7	29	tr(0.26)	0.27 [0.09]	37/37	37/37
	H23 温暖期	5.0	5.2	49	0.84	0.20 [0.12]	35/35	35/35
	H23 寒冷期	1.7	1.7	91	tr(0.31)	0.39 [0.13]	37/37	37/37
γ-НСН	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
(別名:リンデン)	天旭十尺	平均值	中大胆	取八胆	取小胆	下限値	検体	地点
	H21 温暖期	17	19	65	2.9	0.00.10.001	37/37	37/37
	H21 寒冷期	5.6	4.6	55	1.5	0.06 [0.02]	37/37	37/37
大気	H22 温暖期	14	16	66	2.3	0.25 [0.12]	37/37	37/37
(pg/m^3)	H22 寒冷期	4.8	4.4	60	1.1	0.35 [0.12]	37/37	37/37
	H23 温暖期	14	17	98	2.7	1.6 [0.52]	35/35	35/35
	H23 寒冷期	5.1	4.8	67	tr(1.1)	1.0 [0.32]	37/37	37/37
δ-НСН	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
0-пСп	天旭十尺	平均値	中大胆	取八胆	取小胆	下限値	検体	地点
	1101 N 100 HI	1.2	1.3	21	0.09		37/37	37/37
	H21 温暖期	1.3	1.5		0.07	$\alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha \alpha $		
	H21 温暖期 H21 寒冷期	0.36	0.33	20	0.04	0.04 [0.02]	37/37	37/37
大気							37/37 37/37	37/37 37/37
大気 (pg/m³)	H21 寒冷期	0.36	0.33	20	0.04	0.04 [0.02]		
	H21 寒冷期 H22 温暖期	0.36	0.33	20 25	0.04	0.05 [0.02]	37/37	37/37
	H21 寒冷期 H22 温暖期 H22 寒冷期	0.36 1.4 0.38	0.33 1.3 0.35	20 25 22	0.04 0.11 0.05		37/37 37/37	37/37 37/37

[11-1] α-HCH



(注) 平成 14 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-11-1-1 α -HCH の水質の経年変化(幾何平均値)

(注) 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

図 7-11-1-2 α-HCH の底質の経年変化 (幾何平均値)

(注) 平成 21 年度以前は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-11-1-3 α-HCH の生物の経年変化 (幾何平均値)

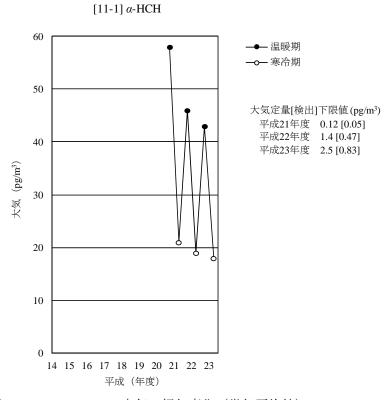
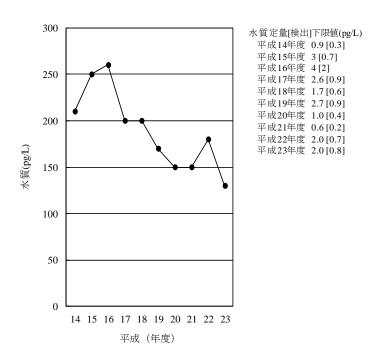
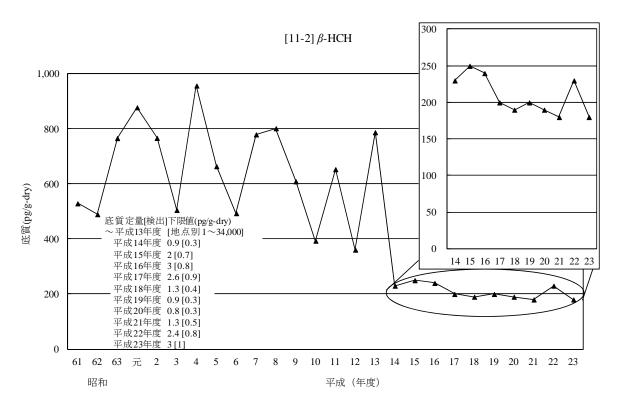
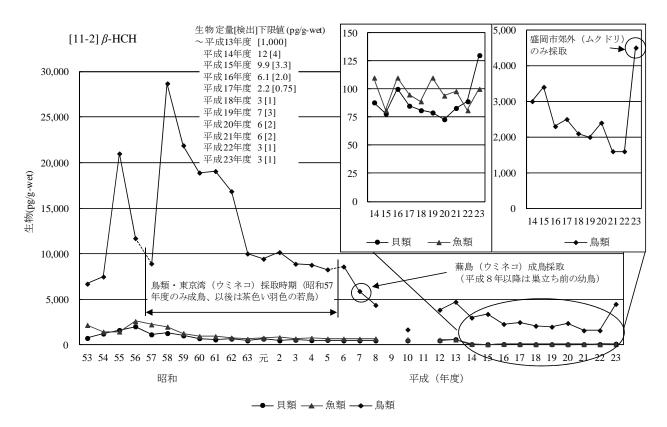




図 7-11-1-4 α-HCH の大気の経年変化(幾何平均値)

[11-2] β -HCH

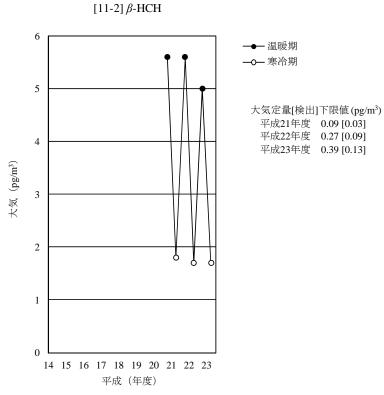
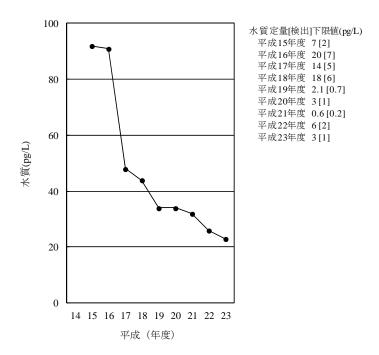


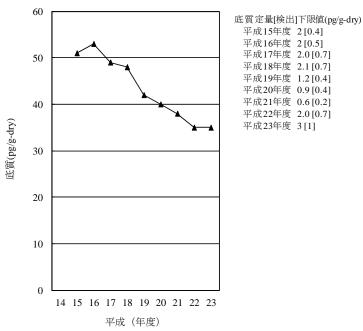
(注) 平成 14 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-11-2-1 β -HCH の水質の経年変化(幾何平均値)

(注) 平成 14 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

図 7-11-2-2 β-HCH の底質の経年変化(幾何平均値)

(注) 平成 21 年度以前は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-11-2-3 β-HCH の生物の経年変化 (幾何平均値)


図 7-11-2-4 β-HCH の大気の経年変化 (幾何平均値)

[11-3] γ-HCH (別名: リンデン)


(注) 平成 14 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-11-3-1 y-HCH (別名:リンデン) の水質の経年変化 (幾何平均値)

[11-3] γ-HCH (別名:リンデン)

- (注 1) γ -HCH (別名: リンデン) の底質については、継続的調査において平成 14 年度以前に調査が実施されていない。
- (注 2) 平成 15 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

図 7-11-3-2 y-HCH (別名:リンデン)の底質の経年変化(幾何平均値)

(注) 平成 21 年度以前は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-11-3-3 γ-HCH (別名: リンデン) の生物の経年変化 (幾何平均値)

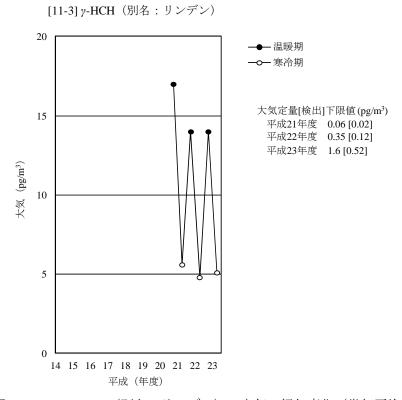
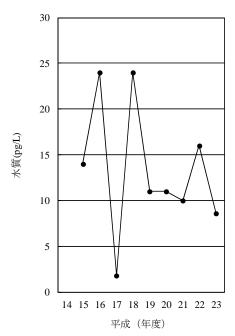
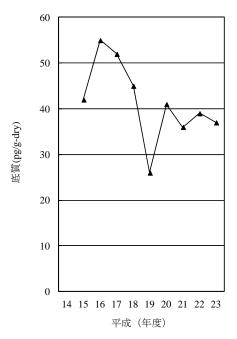



図 7-11-3-4 γ-HCH (別名: リンデン) の大気の経年変化 (幾何平均値)

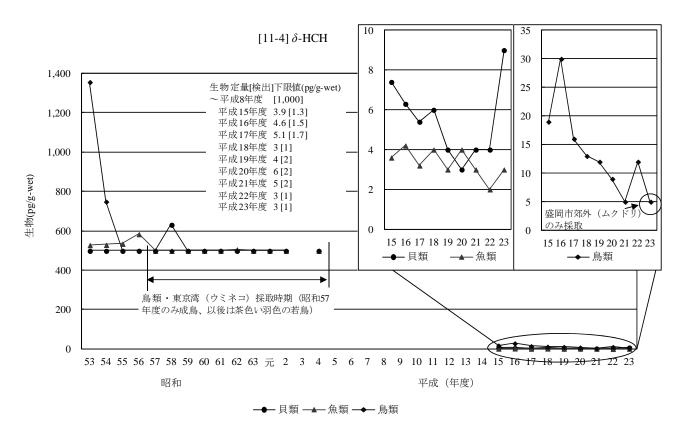
[11-4] δ -HCH



水質定量[検出]下限値(pg/L) 平成15年度 2 [0.5] 平成16年度 2 [0.7] 平成17年度 1.5 [0.5] 平成18年度 2.0 [0.8] 平成19年度 1.2 [0.4] 平成20年度 2.3 [0.9] 平成21年度 0.9 [0.4] 平成22年度 0.8 [0.3] 平成23年度 0.4 [0.2]

(注) 平成14年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

図 7-11-4-1 δ-HCH の水質の経年変化(幾何平均値)


[11-4] δ -HCH

底質定量[検出]下限値(pg/g-dry)
平成15年度 2 [0.7]
平成16年度 2 [0.5]
平成17年度 1.0 [0.3]
平成18年度 1.7 [0.6]
平成19年度 5 [2]
平成20年度 2 [1]
平成21年度 1.2 [0.5]
平成23年度 1.2 [0.5]
平成23年度 1.4 [0.5]

- (注 1) δ-HCH の底質については、継続的調査において平成 14 年度以前に調査が実施されていない。
- (注 2) 平成 15 年度から平成 21 年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を 求めた。

図 7-11-4-2 δ-HCH の底質の経年変化(幾何平均値)

(注) 平成 21 年度以前は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 図 7-11-4-3 δ -HCH の生物の経年変化(幾何平均値)

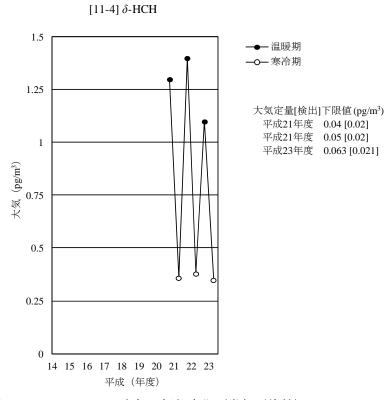


図 7-11-4-3 δ-HCH の大気の経年変化(幾何平均値)

[12] クロルデコン

調査の経緯及び実施状況

クロルデコンは、有機塩素系殺虫剤の一種である。日本では農薬登録されたことはなく、国内での製造・輸入実績はない。平成 21 年 5 月に開催された POPs 条約の第 4 回条約締約国会議 (COP4) において、条約対象物質とすることが採択された。

モニタリング調査では、平成 20 年度に水質、底質及び生物(貝類、魚類及び鳥類)の調査を、平成 22 年度及び平成 23 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

•調査結果

<水質>

水質については、49 地点を調査し、検出下限値 0.05pg/L において 49 地点中 15 地点で検出され、検出濃度は 0.7pg/L までの範囲であった。

○平成20年度及び平成22~23年度における水質についてのクロルデコンの検出状況

クロルデコン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
クロルノコン	天旭十尺	平均値	中大恒	取八胆	取小胆	下限値	検体	地点
水質	H20	nd	nd	0.76	nd	0.14 [0.05]	13/46	13/46
	H22	tr(0.04)	nd	1.6	nd	0.09 [0.04]	13/49	13/49
(pg/L)	H23	nd	nd	0.70	nd	0.20 [0.05]	15/49	15/49

<底質>

底質については、64 地点を調査し、検出下限値 0.20pg/g-dry において 64 地点中 9 地点で検出され、検出 濃度は 1.5pg/g-dry までの範囲であった。

○平成20年度及び平成22~23年度における底質についてのクロルデコンの検出状況

クロルデコン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
クロルノコン	天旭十段	平均值※	中大恒	取八胆	取力順	下限値	検体	地点
	H20	nd	nd	5.8	nd	0.42 [0.16]	23/129	10/49
底質	H22	nd	nd	2.8	nd	0.4 [0.2]	9/64	9/64
(pg/g-dry)	H23	nd	nd	1.5	nd	0.40 [0.20]	9/64	9/64

⁽注)※:平成20年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>

生物のうち貝類については、4 地点を調査し、検出下限値 0.2pg/g-wet において 4 地点全てで検出されなかった。 魚類については、18 地点を調査し、検出下限値 0.2pg/g-wet において 18 地点全てで検出されなかった。 鳥類については、1 地点を調査し、検出下限値 0.2pg/g-wet において検出されなかった。

○平成20年度及び平成22~23年度における生物(貝類、魚類及び鳥類)についてのクロルデコンの検出状況

クロルデコン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
	关旭中及	平均值※	中大旭	取八胆	取小胆	下限値	検体	地点
貝類	H20	nd	nd	nd	nd	5.6 [2.2]	0/31	0/7
	H22	nd	nd	nd	nd	5.9 [2.3]	0/6	0/6
(pg/g-wet)	H23	nd	nd	nd	nd	0.5 [0.2]	0/4	0/4
魚類	H20	nd	nd	nd	nd	5.6 [2.2]	0/85	0/17
	H22	nd	nd	nd	nd	5.9 [2.3]	0/18	0/18
(pg/g-wet)	H23	nd	nd	nd	nd	0.5 [0.2]	0/18	0/18
鳥類	H20	nd	nd	nd	nd	5.6 [2.2]	0/10	0/2
	H22	nd		nd	nd	5.9 [2.3]	0/2	0/2
(pg/g-wet)	H23			nd	nd	0.5 [0.2]	0/1	0/1

⁽注)※: 平成20年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<大気>

大気の温暖期については、35 地点を調査し、検出下限値 $0.02 pg/m^3$ において 35 地点全てで検出されなかった。寒冷期については、37 地点を調査し、検出下限値 $0.02 pg/m^3$ において 37 地点全てで検出されなかった。

○平成22~23年度における大気についてのクロルデコンの検出状況

クロルデコン	実施年度	幾何	由由結	最大値	最小値	定量[検出]	検出	頻度
<u> </u>	夫旭千良	平均値	中央値	取入旭	取小胆	下限値	人	地点
	H22 温暖期	nd	nd	nd	nd	0.04 [0.02]	0/37	0/37
大気	H22寒冷期	nd	nd	nd	nd	0.04 [0.02]	0/37	0/37
(pg/m^3)	H23 温暖期	nd	nd	nd	nd	0.04.00.021	0/35	0/35
	H23 寒冷期	nd	nd	nd	nd	0.04 [0.02]	0/37	0/37

[13] ヘキサブロモビフェニル類

調査の経緯及び実施状況

へキサブロモビフェニル類は、プラスチックス製品等の難燃剤として利用されていた。平成21年5月に 開催されたPOPs条約の第4回条約締約国会議(COP4)において条約対象物質とすることが採択され、平 成22年4月に化審法に基づく第一種特定化学物質に指定されている。

モニタリング調査では、平成 21 年度に水質、底質及び生物(貝類、魚類及び鳥類)の調査を、平成 22 年度及び平成 23 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

•調査結果

<水質>

水質については、49 地点を調査し、検出下限値 0.9pg/L において 49 地点全てで検出されなかった。

○平成21~23年度における水質についてのヘキサブロモビフェニル類の検出状況

ヘキサブロモ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ビフェニル類	天旭十尺	平均値	中大恒	取八胆	取小胆	下限值※	検体	地点
水質	H21	nd	nd	nd	nd	5.7 [2.2]	0/49	0/49
	H22	nd	nd	nd	nd	3 [1]	0/49	0/49
(pg/L)	H23	nd	nd	nd	nd	2.2 [0.9]	0/49	0/49

⁽注)※: 平成21年度の定量[検出]下限値は、該当物質ごとの定量[検出]下限値の合計とした。

<底質>

底質については、64 地点を調査し、検出下限値 1.4pg/g-dry において 64 地点中 8 地点で検出され、検出 濃度は 6.3pg/g-dry までの範囲であった。

○平成21~23年度における底質についてのヘキサブロモビフェニル類の検出状況

ヘキサブロモ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ビフェニル類	天旭中及	平均值※	中大旭	取八胆	取小胆	下限值※※	検体	地点
 底質	H21	nd	nd	12	nd	1.1 [0.40]	45/190	21/64
	H22	nd	nd	18	nd	1.5 [0.6]	10/64	10/64
(pg/g-dry)	H23	nd	nd	6.3	nd	3.6 [1.4]	8/64	8/64

⁽注1)※: 平成21年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 (注2)※※: 平成21年度の定量[検出]下限値は、該当物質ごとの定量[検出]下限値の合計とした。

<生物>

生物のうち貝類については、4 地点を調査し、検出下限値 1pg/g-wet において 4 地点全てで検出されなかった。 魚類については、18 地点を調査し、検出下限値 1pg/g-wet において 18 地点中 5 地点で検出され、検出濃度は 3pg/g-wet までの範囲であった。 鳥類については、1 地点を調査し、検出下限値 1pg/g-wet において検出され、検出濃度は 3pg/g-wet であった。

○平成 21~23 年度における生物(貝類、魚類及び鳥類)についてのヘキサブロモビフェニル類の検出状況

ヘキサブロモ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ビフェニル類	夫 旭午及	平均值※	中犬旭	取入但	取小胆	下限值※※	 検体	地点
貝類	H21	nd	nd	tr(0.53)	nd	1.3 [0.43]	1/31	1/7
	H22	nd	nd	nd	nd	24 [10]	0/6	0/6
(pg/g-wet)	H23	nd	nd	nd	nd	3 [1]	0/4	0/4
魚類	H21	tr(0.49)	tr(0.43)	6.0	nd	1.3 [0.43]	46/90	12/18
	H22	nd	nd	nd	nd	24 [10]	0/18	0/18
(pg/g-wet)	H23	nd	nd	3	nd	3 [1]	5/18	5/18
鳥類	H21	1.6	1.6	2.1	tr(1.2)	1.3 [0.43]	10/10	2/2
	H22	nd		nd	nd	24 [10]	0/2	0/2
(pg/g-wet)	H23			3	3	3 [1]	1/1	1/1

(注1) ※: 平成21年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。 (注2) ※※: 定量[検出]下限値は、該当物質ごとの定量[検出]下限値の合計とした。

<大気>

大気の温暖期については、35 地点を調査し、検出下限値 $0.1 pg/m^3$ において 35 地点全てで検出されなかった。寒冷期については、37 地点を調査し、検出下限値 $0.1 pg/m^3$ において 37 地点全てで検出されなかった。

○平成22~23年度における大気についてのヘキサブロモビフェニル類の検出状況

-	. , ,					// //			
	ヘキサブロモ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出頻度	
	ビフェニル類	夫	平均値	中犬旭	取入他	取小胆	下限値	人	地点
		H22 温暖期	nd	nd	nd	nd	0.2 [0.1]	0/37	0/37
	大気	H22 寒冷期	nd	nd	nd	nd	0.3 [0.1]	0/37	0/37
	(pg/m^3)	H23 温暖期	nd	nd	nd	nd	0.3 [0.1]	0/35	0/35
		H23寒冷期	nd	nd	nd	nd	0.5 [0.1]	0/37	0/37

[14] ポリブロモジフェニルエーテル類(臭素数が4から10までのもの)

調査の経緯及び実施状況

ポリブロモジフェニルエーテル類は、プラスチックス製品等の難燃剤として利用されていた。平成21年5月に開催された POPs 条約の第4回条約締約国会議 (COP4) において、ポリブロモジフェニルエーテル類のうちテトラブロモジフェニルエーテル類、ペンタブロモジフェニルエーテル類、ヘキサブロモジフェニルエーテル類及びヘプタブロモジフェニルエーテル類について条約対象物質とすることが採択され、平成22年4月に化審法に基づく第一種特定化学物質に指定されている。

モニタリング調査では、平成 20 年度に生物(貝類、魚類及び鳥類)の調査を、平成 21 年度に水質、底質及び大気の調査を、平成 22 年度及び平成 23 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

•調査結果

○テトラブロモジフェニルエーテル類、ペンタブロモジフェニルエーテル類、ヘキサブロモジフェニルエーテル類、ヘプタブロモジフェニルエーテル類、オクタブロモジフェニルエーテル類、ノナブロモジフェニルエーテル類及びデカブロモジフェニルエーテル

<水質>

テトラブロモジフェニルエーテル類:水質については、49地点を調査し、検出下限値2pg/Lにおいて49地点中48地点で検出され、検出濃度は180pg/Lまでの範囲であった。

ペンタブロモジフェニルエーテル類:水質については、49 地点を調査し、検出下限値 1pg/L において 49 地点中 48 地点で検出され、検出濃度は 180pg/L までの範囲であった。

ヘキサブロモジフェニルエーテル類:水質については、49地点を調査し、検出下限値 1pg/L において 49地点中 21地点で検出され、検出濃度は 39pg/L までの範囲であった。

ヘプタブロモジフェニルエーテル類:水質については、49地点を調査し、検出下限値2pg/Lにおいて49地点中14地点で検出され、検出濃度は14pg/Lまでの範囲であった。

オクタブロモジフェニルエーテル類:水質については、49 地点を調査し、検出下限値 1pg/L において 49 地点中 44 地点で検出され、検出濃度は 98pg/L までの範囲であった。

ノナブロモジフェニルエーテル類:水質については、49 地点を調査し、検出下限値 4pg/L において 49 地点中 47 地点で検出され、検出濃度は 920pg/L までの範囲であった。

デカブロモジフェニルエーテル: 水質については、49 地点を調査し、検出下限値 20pg/L において 49 地 点中 45 地点で検出され、検出濃度は 58,000pg/L までの範囲であった。

○平成 21~23 年度における水質についてのポリブロモジフェニルエーテル類(臭素数が 4 から 10 までのもの)の検出状況

テトラブロモジフェ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ニルエーテル類	天旭十度	平均值	匀值 下人區	取八胆	取小胆	下限値	検体	地点
水質	H21	17	16	160	nd	8 [3]	44/49	44/49
	H22	nd	nd	390	nd	9 [3]	17/49	17/49
(pg/L)	H23	11	10	180	nd	4 [2]	48/49	48/49
ペンタブロモジフェ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ニルエーテル類	天旭十尺	平均值	中大恒	取八胆	取小胆	下限値	検体	地点
水質	H21	11	12	87	nd	11 [4]	43/49	43/49
	H22	tr(1)	tr(1)	130	nd	3 [1]	25/49	25/49
(pg/L)	H23	5	4	180	nd	3 [1]	48/49	48/49

ヘキサブロモジフェ	字坛左庄	幾何	由市 ໄ古	具 土 / 広	具小店	定量[検出]	検出	頻度
ニルエーテル類	実施年度	平均値	中央値	最大値	最小値	下限値	検体	地点
水質	H21	tr(0.9)	tr(0.7)	18	nd	1.4 [0.6]	26/49	26/49
	H22	nd	nd	51	nd	4 [2]	16/49	16/49
(pg/L)	H23	tr(1)	nd	39	nd	3 [1]	21/49	21/49
ヘプタブロモジフェ	字坛左庄	幾何	由由結	具土店	具小店	定量[検出]	検出	頻度
ニルエーテル類	実施年度	平均値	中央値	最大値	最小值	下限値	検体	
水質	H21	nd	nd	40	nd	4 [2]	9/49	9/49
	H22	nd	nd	14	nd	3 [1]	17/49	17/49
(pg/L)	H23	nd	nd	14	nd	6 [2]	14/49	14/49
オクタブロモジフェ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ニルエーテル類	天旭十及	平均値	中大恒	取八胆	取小胆	下限値	人	地点
水質	H21	3.0	3.9	56	nd	1.4 [0.6]	37/49	37/49
	H22	tr(2)	tr(2)	69	nd	3 [1]	40/49	40/49
(pg/L)	H23	4	3	98	nd	2 [1]	44/49	44/49
ノナブロモジフェニ	実施年度	幾何	由由結	具土店	具小店	定量[検出]	検出	頻度
ルエーテル類	夫旭十皮	平均値	中央値	最大値	最小值	下限値	検体	地点
水質	H21	tr(46)	tr(38)	500	nd	91 [30]	32/49	32/49
	H22	tr(17)	tr(13)	620	nd	21 [7]	39/49	39/49
(pg/L)	H23	33	24	920	nd	10 [4]	47/49	47/49
デカブロモジフェニ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ルエーテル	天旭十戊	平均値	中犬旭	取八胆	取小胆	下限値	検体	地点
水質	H21	tr(310)	tr(220)	3,400	nd	600 [200]	26/49	26/49
	H22	tr(250)	tr(200)	13,000	nd	300 [100]	31/49	31/49
(pg/L)	H23	200	140	58,000	nd	60 [20]	45/49	45/49

<底質>

テトラブロモジフェニルエーテル類: 底質については、64 地点を調査し、検出下限値 10pg/g-dry において64 地点中47 地点で検出され、検出濃度は2,600pg/g-dry までの範囲であった。

ペンタブロモジフェニルエーテル類:底質については、64 地点を調査し、検出下限値 2pg/g-dry において64 地点中62 地点で検出され、検出濃度は4,700pg/g-dry までの範囲であった。

ヘキサブロモジフェニルエーテル類: 底質については、64 地点を調査し、検出下限値 3pg/g-dry において64 地点中52 地点で検出され、検出濃度は2,000pg/g-dry までの範囲であった。

ヘプタブロモジフェニルエーテル類: 底質については、64 地点を調査し、検出下限値 3pg/g-dry において64 地点中55 地点で検出され、検出濃度は2,400pg/g-dry までの範囲であった。

オクタブロモジフェニルエーテル類: 底質については、64 地点を調査し、検出下限値 4pg/g-dry において64 地点中55 地点で検出され、検出濃度は36,000pg/g-dry までの範囲であった。

ノナブロモジフェニルエーテル類: 底質については、64 地点を調査し、検出下限値 9pg/g-dry において 64 地点中 62 地点で検出され、検出濃度は70,000pg/g-dry までの範囲であった。

デカブロモジフェニルエーテル: 底質については、64 地点を調査し、検出下限値 20pg/g-dry において 64 地点中 62 地点で検出され、検出濃度は 700,000pg/g-dry までの範囲であった。

○平成 21~23 年度における底質についてのポリブロモジフェニルエーテル類(臭素数が 4 から 10 までのもの)の検出状況

テトラブロモジフェ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ニルエーテル類	天旭千茂	平均值※	十人但	取八胆		下限値	検体	地点
底質	H21	tr(60)	tr(44)	1,400	nd	69 [23]	131/192	51/64
	H22	35	38	910	nd	6 [2]	57/64	57/64
(pg/g-dry)	H23	32	30	2,600	nd	30 [10]	47/64	47/64

ペンタブロモジフェ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ニルエーテル類	天旭午及	平均值※	中大恒	取八胆	取小胆	下限値	検体	地点
底質	H21	36	24	1,700	nd	24 [8]	146/192	57/64
	H22	26	23	740	nd	5 [2]	58/64	58/64
(pg/g-dry)	H23	24	18	4,700	nd	5 [2]	62/64	62/64
ヘキサブロモジフェ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ニルエーテル類	天旭午及	平均值※	中大恒	取八胆	取小恒	下限値	検体	地点
底質	H21	21	21	2,600	nd	5 [2]	139/192	53/64
(pg/g-dry)	H22	23	23	770	nd	4 [2]	57/64	57/64
(pg/g-ury)	H23	31	42	2,000	nd	9 [3]	52/64	52/64
ヘプタブロモジフェ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ニルエーテル類	天旭午及	平均值※	中大恒	取八胆	取小胆	下限値	人	地点
底質	H21	30	25	16,000	nd	9 [4]	125/192	51/64
	H22	28	18	930	nd	4 [2]	58/64	58/64
(pg/g-dry)	H23	29	32	2,400	nd	7 [3]	55/64	55/64
オクタブロモジフェ	実施年度	幾何	中央値	具 七 / 広	具心病	定量[検出]	検出	頻度
ニルエーテル類	夫	平均值※	中天旭	最大値	最小値	下限値	検体	地点
 底質	H21	210	96	110,000	nd	1.2 [0.5]	182/192	63/64
7	H22	71	76	1,800	nd	10 [4]	60/64	60/64
(pg/g-dry)	H23	57	64	36,000	nd	10 [4]	55/64	55/64
ノナブロモジフェニ	安华左帝	幾何	中山体	目. 上. 店	目、小 /击	定量[検出]	検出	頻度
ルエーテル類	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
 底質	H21	1,100	710	230,000	nd	9 [4]	181/192	64/64
7	H22	360	430	26,000	nd	24 [9]	60/64	60/64
(pg/g-dry)	H23	710	630	70,000	nd	23 [9]	62/64	62/64
デカブロモジフェニ	安华左南	幾何	中山居	目. 上 /走	目. 八. /走	定量[検出]	検出	頻度
ルエーテル	実施年度	平均值※	中央値	最大値	最小值	下限値	検体	地点
 底質	H21	6,000	4,800	880,000	tr(30)	60 [20]	192/192	64/64
	H22	5,100	4,200	700,000	nd	220 [80]	60/64	60/64
(pg/g-dry)	H23	4,200	4,700	700,000	nd	40 [20]	62/64	62/64

(注)※: 平成21年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>

テトラブロモジフェニルエーテル類:生物のうち貝類については、4 地点を調査し、検出下限値 6pg/g-wet において 4 地点全てで検出され、検出濃度は $26\sim490pg/g$ -wet の範囲であった。魚類については、18 地点を調査し、検出下限値 6pg/g-wet において 18 地点全てで検出され、検出濃度は $tr(9)\sim860pg/g$ -wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 6pg/g-wet において検出され、検出濃度は 67pg/g-wet であった。

ペンタブロモジフェニルエーテル類:生物のうち貝類については、4 地点を調査し、検出下限値 6pg/g-wet において 4 地点全てで検出され、検出濃度は $tr(12)\sim160pg/g$ -wet の範囲であった。魚類については、18 地点を調査し、検出下限値 6pg/g-wet において 18 地点中 17 地点で検出され、検出濃度は 300pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 6pg/g-wet において検出され、検出濃度は 110pg/g-wet であった。

ヘキサブロモジフェニルエーテル類:生物のうち貝類については、4 地点を調査し、検出下限値 4pg/g-wet において 4 地点全で検出され、検出濃度は $20\sim81pg/g$ -wet の範囲であった。魚類については、18 地点を調査し、検出下限値 4pg/g-wet において 18 地点中 17 地点で検出され、検出濃度は 430pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 4pg/g-wet において検出され、検出濃度は 96pg/g-wet であった。

ヘプタブロモジフェニルエーテル類:生物のうち貝類については、4 地点を調査し、検出下限値 4pg/g-wet において 4 地点中 3 地点で検出され、検出濃度は 44pg/g-wet までの範囲であった。魚類について

は、18 地点を調査し、検出下限値 4pg/g-wet において 18 地点中 13 地点で検出され、検出濃度は 130pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 4pg/g-wet において検出され、検出濃度は 44pg/g-wet であった。

オクタブロモジフェニルエーテル類:生物のうち貝類については、4 地点を調査し、検出下限値 3pg/g-wet において 4 地点中 3 地点で検出され、検出濃度は 29pg/g-wet までの範囲であった。魚類については、18 地点を調査し、検出下限値 3pg/g-wet において 18 地点中 10 地点で検出され、検出濃度は 150pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 3pg/g-wet において検出され、検出濃度は 66pg/g-wet であった。

ノナブロモジフェニルエーテル類:生物のうち貝類については、4 地点を調査し、検出下限値 9pg/g-wet において 4 地点中 3 地点で検出され、検出濃度は 40pg/g-wet までの範囲であった。魚類については、18 地点を調査し、検出下限値 9pg/g-wet において 18 地点中 5 地点で検出され、検出濃度は tr(15)pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 9pg/g-wet において検出され、検出濃度は 62pg/g-wet であった。

デカブロモジフェニルエーテル: 生物のうち貝類については、4 地点を調査し、検出下限値 80pg/g-wet において 4 地点中 1 地点で検出され、検出濃度は 240pg/g-wet までの範囲であった。魚類については、18 地点を調査し、検出下限値 80pg/g-wet において 18 地点中 2 地点で検出され、検出濃度は tr(90)pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 80pg/g-wet において検出され、検出濃度は tr(170)pg/g-wet であった。

○平成 20 年度及び平成 22~23 年度における生物(貝類、魚類及び鳥類)についてのポリブロモジフェニルエーテル類(臭素数が 4 から 10 までのもの)の検出状況

テトラブロモジフェ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ニルエーテル類	天旭千度	平均值※	中犬但	取八胆	取小胆	下限値	人	地点
貝類	H20	73	61	380	20	5.9 [2.2]	31/31	7/7
	H22	59	73	310	nd	43 [16]	5/6	5/6
(pg/g-wet)	H23	96	120	490	26	16 [6]	4/4	4/4
魚類	H20	120	110	1,300	9.8	5.9 [2.2]	85/85	17/17
	H22	160	170	740	tr(16)	43 [16]	18/18	18/18
(pg/g-wet)	H23	110	110	860	tr(9)	16 [6]	18/18	18/18
鳥類	H20	170	190	1,200	32	5.9 [2.2]	10/10	2/2
	H22	140		270	72	43 [16]	2/2	2/2
(pg/g-wet)	H23			67	67	16 [6]	1/1	1/1
ペンタブロモジフェ	安华左帝	幾何	中市	目. 土/法	目1. /击	定量[検出]	検出	頻度
ニルエーテル類	実施年度	平均值※	中央値	最大値	最小值	下限値	 検体	地点
日本	H20	32	27	94	tr(11)	16 [5.9]	31/31	7/7
貝類	H22	32	37	98	tr(9)	14 [6]	6/6	6/6
(pg/g-wet)	H23	51	60	160	tr(12)	15 [6]	4/4	4/4
在 海	H20	30	37	280	nd	16 [5.9]	72/85	16/17
魚類	H22	51	54	200	nd	14 [6]	16/18	16/18
(pg/g-wet)	H23	39	39	300	nd	15 [6]	17/18	17/18
白 松	H20	150	130	440	52	16 [5.9]	10/10	2/2
鳥類	H22	150		200	120	14 [6]	2/2	2/2
(pg/g-wet)	H23			110	110	15 [6]	1/1	1/1

ヘキサブロモジフェ		幾何		B 1 715	п. и.	定量[検出]	検出	頻度
ニルエーテル類	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
	H20	19	16	82	tr(5.3)	14 [5.0]	31/31	7/7
貝類	H22	8	16	26	` ′		4/6	4/6
(pg/g-wet)					nd 20	8 [3]		
	H23	38	41	81	20	10 [4]	4/4	4/4
魚類	H20	46	51	310	nd	14 [5.0]	83/85	17/17
(pg/g-wet)	H22	39	47	400	nd	8 [3]	16/18	16/18
(P5/5 WCC)	H23	53	50	430	nd	10 [4]	17/18	17/18
鳥類	H20	140	120	380	62	14 [5.0]	10/10	2/2
(pg/g-wet)	H22	110		140	86	8 [3]	2/2	2/2
	H23			96	96	10 [4]	1/1	1/1
ヘプタブロモジフェ		幾何		B 1 /+	B 1 /	定量[検出]	検出	頻度
ニルエーテル類	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
7 7 7 798	H20	tr(8.5)	tr(7.6)	35	nd	18 [6.7]	20/31	7/7
貝類	H22						1/6	1/6
(pg/g-wet)		nd	nd	tr(10)	nd	30 [10]		
	H23	14	26	44	nd	11 [4]	3/4	3/4
魚類	H20	tr(11)	tr(8.1)	77	nd	18 [6.7]	44/85	10/17
(pg/g-wet)	H22	nd	nd	40	nd	30 [10]	4/18	4/18
(P5/5 wet)	H23	13	21	130	nd	11 [4]	13/18	13/18
鳥類	H20	35	35	53	19	18 [6.7]	10/10	2/2
	H22	tr(19)		70	nd	30 [10]	1/2	1/2
(pg/g-wet)	H23			44	44	11 [4]	1/1	1/1
オクタブロモジフェ		幾何		B 1 715	п . //.	定量[検出]	検出	頻度
ニルエーテル類	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
7,77,59	H20	nd	nd	10	nd	9.6 [3.6]	15/31	6/7
貝類					nd			
(pg/g-wet)	H22	nd	nd	tr(10)	nd	11 [4]	2/6	2/6
	H23	7	9	29	nd	7 [3]	3/4	3/4
魚類	H20	tr(5.7)	nd	73	nd	9.6 [3.6]	35/85	7/17
(pg/g-wet)	H22	tr(6)	nd	100	nd	11 [4]	8/18	8/18
(P5/5 wet)	H23	tr(6)	tr(7)	150	nd	7 [3]	10/18	10/18
鳥類	H20	42	41	64	30	9.6 [3.6]	10/10	2/2
	H22	41		65	26	11 [4]	2/2	2/2
(pg/g-wet)	H23			66	66	7 [3]	1/1	1/1
ノナブロモジフェニ		幾何	B 1 4		定量[検出]	検出	頻度
ルエーテル類	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
7 / 7 / 7	H20		nd	tr(23)	nd		5/31	1/7
貝類		nd				35 [13]		
(pg/g-wet)	H22	tr(16)	tr(15)	60	nd	30 [10]	5/6	5/6
	H23	tr(12)	tr(11)	40	nd	22 [9]	3/4	3/4
魚類	H20	nd	nd	tr(15)	nd	35 [13]	2/85	2/17
(pg/g-wet)	H22	nd	nd	40	nd	30 [10]	3/18	3/18
(P6/6=WCl)	H23	nd	nd	tr(15)	nd	22 [9]	5/18	5/18
鳥類	H20	tr(21)	tr(20)	tr(33)	nd	35 [13]	9/10	2/2
	H22	32		50	tr(20)	30 [10]	2/2	2/2
(pg/g-wet)	H23			62	62	22 [9]	1/1	1/1
デカブロモジフェニ		幾何				定量[検出]	検出	頻度
ルエーテル	実施年度	平均值※	中央値	最大値	最小値	下限値	検体	地点
/ /*	HJU		d	tr(170)	d			
貝類	H20	nd d	nd	tr(170)	nd	220 [74]	8/31	3/7
(pg/g-wet)	H22	nd	nd	tr(190)	nd	270 [97]	2/6	2/6
466	H23	nd	nd	240	nd	230 [80]	1/4	1/4
魚類	H20	nd	nd	230	nd	220 [74]	5/76	4/16
	H22	nd	nd	tr(150)	nd	270 [97]	2/18	2/18
(pg/g-wet)	H23	nd	nd	tr(90)	nd	230 [80]	2/18	2/18
白. 絽	H20	nd	nd	tr(110)	nd	220 [74]	4/10	1/2
鳥類	H22	nd		nd	nd	270 [97]	0/2	0/2
(pg/g-wet)	H23			tr(170)	tr(170)	230 [80]	1/1	1/1
(注) ※: 平成 20 年						いら全地点の幾何		

(注)※:平成20年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<大気>

テトラブロモジフェニルエーテル類:大気の温暖期については、35 地点を調査し、検出下限値 $0.07 pg/m^3$ において 35 地点全てで検出され、検出濃度は $tr(0.11) \sim 9.3 pg/m^3$ の範囲であった。寒冷期については、37 地点を調査し、検出下限値 $0.07 pg/m^3$ において 37 地点で検出され、検出濃度は $7.0 pg/m^3$

までの範囲であった。

ペンタブロモジフェニルエーテル類:大気の温暖期については、35 地点を調査し、検出下限値 $0.06 pg/m^3$ において 35 地点中 31 地点で検出され、検出濃度は $8.8 pg/m^3$ までの範囲であった。寒冷期については、37 地点を調査し、検出下限値 $0.06 pg/m^3$ において 37 地点中 31 地点で検出され、検出濃度は $2.6 pg/m^3$ までの範囲であった。

ヘキサブロモジフェニルエーテル類:大気の温暖期については、35 地点を調査し、検出下限値 $0.05 pg/m^3$ において 35 地点中 28 地点で検出され、検出濃度は $1.2 pg/m^3$ までの範囲であった。寒冷期については、37 地点を調査し、検出下限値 $0.05 pg/m^3$ において 37 地点中 30 地点で検出され、検出濃度は $1.7 pg/m^3$ までの範囲であった。

ヘプタブロモジフェニルエーテル類: 大気の温暖期については、35 地点を調査し、検出下限値 $0.1 pg/m^3$ において 35 地点中 20 地点で検出され、検出濃度は $1.1 pg/m^3$ までの範囲であった。寒冷期については、37 地点を調査し、検出下限値 $0.1 pg/m^3$ において 37 地点中 25 地点で検出され、検出濃度は $2.3 pg/m^3$ までの範囲であった。

オクタブロモジフェニルエーテル類:大気の温暖期については、35 地点を調査し、検出下限値 $0.08 pg/m^3$ において 35 地点中 27 地点で検出され、検出濃度は $1.9 pg/m^3$ までの範囲であった。寒冷期については、37 地点を調査し、検出下限値 $0.08 pg/m^3$ において 37 地点中 30 地点で検出され、検出濃度は $7.0 pg/m^3$ までの範囲であった。

ノナブロモジフェニルエーテル類:大気の温暖期については、35 地点を調査し、検出下限値 $0.4 pg/m^3$ において 35 地点中 29 地点で検出され、検出濃度は $3.9 pg/m^3$ までの範囲であった。寒冷期については、37 地点を調査し、検出下限値 $0.4 pg/m^3$ において 37 地点中 30 地点で検出され、検出濃度は $14 pg/m^3$ までの範囲であった。

デカブロモジフェニルエーテル: 大気の温暖期については、35 地点を調査し、検出下限値 $4.0 pg/m^3$ において 35 地点中 31 地点で検出され、検出濃度は $30 pg/m^3$ までの範囲であった。寒冷期については、37 地点を調査し、検出下限値 $4.0 pg/m^3$ において 37 地点中 29 地点で検出され、検出濃度は $44 pg/m^3$ までの範囲であった。

○平成 21~23 年度における大気についてのポリブロモジフェニルエーテル類(臭素数が 4 から 10 までのもの)の検出状況

* / / * / 100 110 100 100								
テトラブロモジフ	ェ 実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ニルエーテル類		平均値	中犬旭	取八胆	取小胆	下限值	検体	地点
	H21 温暖期	0.89	0.80	18	0.11	0.11 [0.04]	37/37	37/37
	H21 寒冷期	0.40	0.37	7.1	tr(0.04)	0.11 [0.04]	37/37	37/37
大気	H22 温暖期	0.79	0.57	50	0.15	0.12 [0.05]	37/37	37/37
(pg/m^3)	H22 寒冷期	0.40	0.35	25	tr(0.09)	0.12 [0.05]	37/37	37/37
	H23 温暖期	0.80	0.72	9.3	tr(0.11)	0.18 [0.07]	35/35	35/35
	H23寒冷期	0.36	0.34	7.0	nd	0.18 [0.07]	35/37	35/37
ペンタブロモジフ	ェ 実施年度	幾何		是七個	七信 - 是小信	定量[検出]	検出	頻度
ニルエーテル類	天旭十及	平均値		下限值	検体	地点		
	H21 温暖期	0.20	0.19	18	nd	0.16 [0.06]	33/37	33/37
	H21 寒冷期	0.19	0.16	10	nd	0.16 [0.06]	29/37	29/37
大気	H22 温暖期	0.20	0.17	45	nd	0.12 [0.05]	35/37	35/37
(pg/m^3)	H22 寒冷期	0.20	0.22	28	nd	0.12 [0.05]	34/37	34/37
	H23 温暖期	0.19	0.17	8.8	nd	0.16 [0.06]	31/35	31/35
	H23寒冷期	0.16	tr(0.14)	2.6	nd		31/37	31/37

ヘキサブロモジフェ	<u> </u>	幾何				 定量[検出]		 頻度
ニルエーテル類	実施年度	平均値	中央値	最大値	最小値	下限値	検体	地点
	H21 温暖期	tr(0.11)	tr(0.11)	2.0	nd	0.22 [0.00]	19/37	19/37
	H21 寒冷期	tr(0.20)	0.22	27	nd	0.22 [0.09]	24/37	24/37
大気	H22 温暖期	tr(0.14)	tr(0.13)	4.9	nd	0.16.50.063	29/37	29/37
(pg/m^3)	H22 寒冷期	0.24	0.27	5.4	nd	0.16 [0.06]	31/37	31/37
	H23 温暖期	tr(0.11)	tr(0.10)	1.2	nd	0.1450.051	28/35	28/35
	H23 寒冷期	0.16	0.18	1.7	nd	0.14 [0.05]	30/37	30/37
ヘプタブロモジフェ		幾何	+++	目 1. <i>I</i> +	B 1 /±	定量[検出]	検出	頻度
ニルエーテル類	実施年度	平均值	中央値	最大値	最小値	下限値	検体	地点
	H21 温暖期	tr(0.1)	nd	1.7	nd	0.2 [0.1]	17/37	17/37
	H21 寒冷期	tr(0.2)	0.3	20	nd	0.3 [0.1]	25/37	25/37
大気	H22 温暖期	tr(0.2)	tr(0.1)	1.4	nd	0.2 [0.1]	24/37	24/37
(pg/m^3)	H22寒冷期	0.3	0.4	11	nd	0.3 [0.1]	28/37	28/37
	H23 温暖期	tr(0.1)	tr(0.1)	1.1	nd	0.2 [0.1]	20/35	20/35
	H23 寒冷期	tr(0.2)	tr(0.2)	2.3	nd	0.3 [0.1]	25/37	25/37
オクタブロモジフェ	C 安长左座	幾何	中中体	目. 上/法	目.北居	定量[検出]	検出	頻度
ニルエーテル類	実施年度	平均値	中央値	最大値	最小值	下限値	検体	地点
	H21 温暖期	tr(0.2)	0.3	1.6	nd	0.3 [0.1]	23/37	23/37
	H21 寒冷期	0.3	0.4	7.1	nd	0.3 [0.1]	26/37	26/37
大気	H22 温暖期	0.25	0.30	2.3	nd	0.15 [0.06]	30/37	30/37
(pg/m^3)	H22寒冷期	0.40	0.52	6.9	nd	0.13 [0.06]	32/37	32/37
	H23 温暖期	0.24	0.31	1.9	nd	0.20.10.001	27/35	27/35
	H23 寒冷期	0.35	0.44	7.0	nd	0.20 [0.08]	30/37	30/37
ノナブロモジフェニ	- 実施年度	幾何	中央値	最大値	是小估	定量[検出]	検出	頻度
ルエーテル類	天旭十及	平均値	中大恒	取八胆	最小値	下限值	検体	地点
	H21 温暖期	tr(0.7)	tr(0.7)	3.0	nd	1.8 [0.6]	22/37	22/37
	H21 寒冷期	tr(1.0)	tr(0.8)	3.9	nd	1.8 [0.0]	27/37	27/37
大気	H22 温暖期	nd	nd	24	nd	2.7.[1.2]	12/37	12/37
(pg/m^3)	H22寒冷期	tr(1.2)	tr(1.3)	7.1	nd	3.7 [1.2]	22/37	22/37
	H23 温暖期	tr(0.8)	0.9	3.9	nd	0.0.10.41	29/35	29/35
	H23 寒冷期	1.1	1.1	14	nd	0.9 [0.4]	30/37	30/37
デカブロモジフェニ	- 実施年度	幾何	中央値	具 土 / 古	具示症	定量[検出]	検出	頻度
ルエーテル	夫肔午及	平均値	中犬他	最大値	最小值	下限値	検体	地点
/ /*	H21 温暖期	tr(7)	tr(9)	31	nd	16 [5]	28/37	28/37
	H21 寒冷期	tr(10)	tr(11)	45	nd	16 [5]	29/37	29/37
大気	H22 温暖期	nd	nd	290	nd	 -	10/37	10/37
(pg/m^3)	H22 寒冷期	tr(11)	tr(12)	88	nd	27 [9.1]	21/37	21/37
	H23 温暖期	tr(8.2)	tr(9.0)	30	nd	nd 12 [4.0]	31/35	31/35
	H23 寒冷期	tr(8.4)	tr(9.0)	44	nd		29/37	29/37
	<u> </u>	· · · · · ·						

[15] ペルフルオロオクタンスルホン酸 (PFOS)

調査の経緯及び実施状況

ペルフルオロオクタンスルホン酸 (PFOS) は、撥水撥油剤及び界面活性剤等として利用されている。平成 21 年 5 月に開催された POPs 条約の第 4 回条約締約国会議 (COP4) において、条約対象物質とすることが採択され、平成 22 年 4 月に化審法に基づく第一種特定化学物質に指定されている。

モニタリング調査では、平成 21 年度に水質、底質及び生物(貝類、魚類及び鳥類)の調査を、平成 22 年度及び平成 23 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

なお、ペルフルオロオクタンスルホン酸 (PFOS) の調査は、直鎖のオクチル基を有する *n*-ペルフルオロオクタンスルホン酸を分析対象としている。

•調査結果

<水質>

水質については、49 地点を調査し、検出下限値 20pg/L において 49 地点全てで検出され、検出濃度は $tr(20)\sim 10,000pg/L$ の範囲であった。

○平成 21~23 年度における水質についてのペルフルオロオクタンスルホン酸 (PFOS) の検出状況

ペルフルオロオ クタンスルホン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出頻度	
酸 (PFOS)	天旭十尺	平均值	中大胆	取八胆	取小胆	下限値	検体	地点
 水質	H21	730	580	14,000	tr(26)	37 [14]	49/49	49/49
	H22	490	380	230,000	tr(37)	50 [20]	49/49	49/49
(pg/L)	H23	480	360	10,000	tr(20)	50 [20]	49/49	49/49

<底質>

底質については、64 地点を調査し、検出下限値 2pg/g-dry において 64 地点中 63 地点で検出され、検出濃度は 1,100pg/g-dry までの範囲であった。

○平成 21~23 年度における底質についてのペルフルオロオクタンスルホン酸 (PFOS) の検出状況

ペルフルオロオ クタンスルホン	実施年度	幾何	最大値	最小値	定量[検出]	検出	頻度	
ックノスルホン酸 (PFOS)	夫爬牛皮	平均值※	中天但	取八胆	取小胆	下限値	検体	地点
产所	H21	78	97	1,900	nd	9.6 [3.7]	180/190	64/64
底質	H22	82	100	1,700	tr(3)	5 [2]	64/64	64/64
(pg/g-dry)	H23	92	110	1,100	nd	5 [2]	63/64	63/64

⁽注)※:平成21年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>

生物のうち貝類については、4 地点を調査し、検出下限値 4pg/g-wet において 4 地点全てで検出され、検出濃度は $16\sim100$ pg/g-wet の範囲であった。魚類については、18 地点を調査し、検出下限値 4pg/g-wet において 18 地点中 16 地点で検出され、検出濃度は 3,200pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 4pg/g-wet において検出され、検出濃度は 110pg/g-wet であった。

○平成 21~23 年度における生物 (貝類、魚類及び鳥類) についてのペルフルオロオクタンスルホン酸 (PFOS) の検出状況

ペルフルオロオ クタンスルホン	実施年度	幾何	中中 体	日上店	目. J. は	定量[検出]	検出	頻度
グタンスルホン酸 (PFOS)	夫肔午及	平均值※	中央値	最大値	最小値	下限値	検体	地点
 貝類	H21	24	28	640	nd	19 [7.4]	17/31	5/7
	H22	72	85	680	nd	25 [9.6]	5/6	5/6
(pg/g-wet)	H23	38	44	100	16	10 [4]	4/4	4/4
魚類	H21	220	230	15,000	nd	19 [7.4]	83/90	17/18
	H22	390	480	15,000	nd	25 [9.6]	17/18	17/18
(pg/g-wet)	H23	82	95	3,200	nd	10 [4]	16/18	16/18
白紹	H21	300	360	890	37	19 [7.4]	10/10	2/2
鳥類 (pg/g-wet)	H22	1,300		3,000	580	25 [9.6]	2/2	2/2
	H23			110	110	10 [4]	1/1	1/1

⁽注)※:平成21年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<大気>

大気の温暖期については、35 地点を調査し、検出下限値 $0.2 pg/m^3$ において 35 地点全てで検出され、検出濃度は $0.9 \sim 10 pg/m^3$ の範囲であった。寒冷期については、37 地点を調査し、検出下限値 $0.2 pg/m^3$ において 37 地点全てで検出され、検出濃度は $1.3 \sim 9.5 pg/m^3$ の範囲であった。

○平成 22~23 年度における大気についてのペルフルオロオクタンスルホン酸 (PFOS) の検出状況

ペルフルオロオ クタンスルホン		幾何	中央値	最大値 最小値 定量[検出]		定量[検出]	検出頻度	
ックランベルホン 酸 (PFOS)	夫	平均値	中天他	取八胆	取小胆	下限値	検体	地点
	H22 温暖期	5.2	5.9	14	1.6	0.4 [0.1]	37/37	37/37
大気	H22 寒冷期	4.7	4.4	15	1.4	0.4 [0.1]	37/37	37/37
(pg/m^3)	H23 温暖期	4.4	4.2	10	0.9	0.5.10.21	35/35	35/35
	H23 寒冷期	3.7	3.8	9.5	1.3	0.5 [0.2]	37/37	37/37

[16] ペルフルオロオクタン酸 (PFOA)

・調査の経緯及び実施状況

ペルフルオロオクタン酸 (PFOA) は、ペルフルオロオクタンスルホン酸 (PFOS) と同様、撥水撥油剤 及び界面活性剤等として利用されている。

化学物質環境実態調査の初期環境調査又は暴露量調査においては平成14年度、平成15年度、平成16年度及び平成17年度に調査を実施し、ペルフルオロオクタンスルホン酸(PFOS)と同程度かそれ以上の濃度で検出されており、モニタリング調査においてペルフルオロオクタンスルホン酸(PFOS)の調査に併せ調査を実施することとした。

モニタリング調査では、平成 21 年度に水質、底質及び生物(貝類、魚類及び鳥類)の調査を、平成 22 年度及び平成 23 年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を実施している。

なお、ペルフルオロオクタン酸 (PFOA) の調査は、直鎖のオクチル基を有する n-ペルフルオロオクタン酸を分析対象としている。ただし、水質では、ヘプチル基が分鎖状の異性体が含まれる可能性を否定できていない。

•調査結果

<水質>

水質については、49 地点を調査し、検出下限値 20pg/L において49 地点全てで検出され、検出濃度は380 $\sim 50,000pg/L$ の範囲であった。

○平成 21~23 年度における水質についてのペルフルオロオクタン酸 (PFOA) の検出状況

ペルフルオロオ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
クタン酸(PFOA)	天旭十尺	平均値	中大恒	取八胆	取小胆	下限値	検体	地点
 水質	H21	1,600	1,300	31,000	250	59 [23]	49/49	49/49
	H22	2,700	2,400	23,000	190	60 [20]	49/49	49/49
(pg/L)	H23	2,000	1,700	50,000	380	50 [20]	49/49	49/49

<底質>

底質については、64 地点を調査し、検出下限値 2pg/g-dry において 64 地点全てで検出され、検出濃度は $22\sim1,100pg/g$ -dry の範囲であった。

○平成 21~23 年度における底質についてのペルフルオロオクタン酸 (PFOA) の検出状況

ペルフルオロオ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
クタン酸(PFOA)	夫旭十戊	平均值※	中犬他	取入但	取小胆	下限值	検体	地点
 底質	H21	27	24	500	nd	8.3 [3.3]	182/190	64/64
	H22	28	33	180	nd	12 [5]	62/64	62/64
(pg/g-dry)	H23	100	93	1,100	22	5 [2]	64/64	64/64

(注)※:平成21年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>

生物のうち貝類については、4 地点を調査し、検出下限値 14pg/g-wet において 4 地点中 3 地点で検出され、検出濃度は tr(40)pg/g-wet までの範囲であった。魚類については、18 地点を調査し、検出下限値 14pg/g-wet において 18 地点中 7 地点で検出され、検出濃度は 51pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 14pg/g-wet において検出されなかった。

○平成 21~23 年度における生物(貝類、魚類及び鳥類)についてのペルフルオロオクタン酸(PFOA)の検出状況

ペルフルオロオ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
クタン酸(PFOA)	天旭十尺	平均值※	中大恒	取八胆	取小胆	下限値	検体	地点
貝類 (pg/g-wet)	H21	tr(20)	tr(21)	94	nd	25 [9.9]	27/31	7/7
	H22	28	33	76	nd	26 [9.9]	5/6	5/6
	H23	tr(19)	tr(22)	tr(40)	nd	41 [14]	3/4	3/4
魚類	H21	tr(23)	tr(19)	490	nd	25 [9.9]	74/90	17/18
	H22	tr(13)	tr(11)	95	nd	26 [9.9]	13/18	13/18
(pg/g-wet)	H23	nd	nd	51	nd	41 [14]	7/18	7/18
白.紿	H21	32	29	58	tr(16)	25 [9.9]	10/10	2/2
鳥類 (pg/g-wet)	H22	38		48	30	26 [9.9]	2/2	2/2
	H23			nd	nd	41 [14]	0/1	0/1

(注)※:平成21年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<大気>

大気の温暖期については、35 地点を調査し、検出下限値 $1.8pg/m^3$ において 35 地点全てで検出され、検出濃度は $tr(3.5)\sim 240pg/m^3$ の範囲であった。寒冷期については、37 地点を調査し、検出下限値 $1.8pg/m^3$ において 37 地点中 36 地点で検出され、検出濃度は $97pg/m^3$ までの範囲であった。

○平成22~23年度における大気についてのペルフルオロオクタン酸(PFOA)の検出状況

ペルフルオロオ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出頻度	
クタン酸(PFOA)	天旭十尺	平均値	中大旭	取八胆	取力们但	定量[検出] 下限値 0.5 [0.2] 5.4 [1.8]	検体	地点
	H22 温暖期	25	26	210	4.0	0.5 [0.2]	37/37	37/37
(pg/m^3)	H22寒冷期	14	14	130	2.4	0.3 [0.2]	37/37	37/37
	H23 温暖期	20	18	240	tr(3.5)	<i>E A</i> F1 O1	35/35	35/35
	H23寒冷期	12	11	97	nd	5.4 [1.8]	36/37	36/37

[17] ペンタクロロベンゼン

調査の経緯及び実施状況

ペンタクロロベンゼンは、難燃剤としての用途がある。また、農薬としての用途があるが、日本では農薬登録されたことはない。農薬製造時の副生成物質でもある他、燃焼に伴い非意図的にも生成する。平成 21 年 5 月に開催された POPs 条約の第 4 回条約締約国会議 (COP4) において、条約対象物質とすることが採択され、平成 22 年 4 月に化審法に基づく第一種特定化学物質に指定されている。

モニタリング調査では、平成19年度、平成22年度及び平成23年度に水質、底質、生物(貝類、魚類及び鳥類)及び大気の調査を、平成21年度に大気の調査を実施している。

•調査結果

<水質>

水質については、49地点を調査し、検出下限値0.9pg/Lにおいて49地点全てで検出され、検出濃度は2.6 ~ 170 pg/L の範囲であった。

○平成19年度及び平成22~23年度における水質についてのペンタクロロベンゼンの検出状況

ペンタクロロ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ベンゼン	夫旭十尺	平均値	中关旭	取入胆	取小胆	下限値	検体	地点
水質	H19	nd	nd	nd	nd	3,300 [1,300]	0/48	0/48
	H22	8	5	100	tr(1)	4 [1]	49/49	49/49
(pg/L)	H23	11	11	170	2.6	2.4 [0.9]	49/49	49/49

<底質>

底質については、64 地点を調査し、検出下限値 2pg/g-dry において 64 地点全てで検出され、検出濃度は $3\sim4,500pg/g$ -dry の範囲であった。

○平成19年度及び平成22~23年度における底質についてのペンタクロロベンゼンの検出状況

					2 , , ,			
ペンタクロロ	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ベンゼン	天旭十尺	平均值※	中大恒	取八胆	取小胆	下限値	検体	地点
	H19	tr(46)	nd	2,400	nd	86 [33]	79/19	35/64
	H22	90	95	4,200	1.0	0.9 [0.3]	64/64	64/64
(pg/g-dry)	H23	95	76	4,500	3	5 [2]	64/64	64/64

⁽注)※: 平成19年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<生物>

生物のうち貝類については、4 地点を調査し、検出下限値 1pg/g-wet において 4 地点全てで検出され、検出濃度は $10\sim260$ pg/g-wet の範囲であった。魚類については、18 地点を調査し、検出下限値 1pg/g-wet において 18 地点全てで検出され、検出濃度は $5\sim220$ pg/g-wet の範囲であった。鳥類については、1 地点を調査し、検出下限値 1pg/g-wet において検出され、検出濃度は 52pg/g-wet であった。

○平成 19 年度及び平成 22~23 年度における生物(貝類、魚類及び鳥類)についてのペンタクロロベンゼンの検出状況

ペンタクロロベンゼン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ベンゼン	天旭中及	平均值※	中大恒	取八胆	取小胆	下限値	検体	地点
貝類	H19	nd	nd	tr(150)	nd	180 [61]	1/31	1/7
	H22	18	16	110	5.9	1.9 [0.7]	6/6	6/6
(pg/g-wet)	H23	28	16	260	10	4 [1]	4/4	4/4
魚類	H19	nd	nd	480	nd	180 [61]	36/80	10/16
	H22	42	37	230	5.6	1.9 [0.7]	18/18	18/18
(pg/g-wet)	H23	36	37	220	5	4 [1]	18/18	18/18
鳥類	H19	tr(140)	tr(140)	210	tr(89)	180 [61]	10/10	2/2
	H22	91		170	49	1.9 [0.7]	2/2	2/2
(pg/g-wet)	H23			52	52	4 [1]	1/1	1/1

⁽注)※:平成19年度は、各地点における算術平均値を求め、その算術平均値から全地点の幾何平均値を求めた。

<大気>

大気の温暖期については、35 地点を調査し、検出下限値 $0.70 \, \mathrm{pg/m^3}$ において 35 地点全てで検出され、検出濃度は $30 \sim 140 \, \mathrm{pg/m^3}$ の範囲であった。 寒冷期については、37 地点を調査し、検出下限値 $0.70 \, \mathrm{pg/m^3}$ において 37 地点全てで検出され、検出濃度は $26 \sim 180 \, \mathrm{pg/m^3}$ の範囲であった。

○平成19年度及び平成21~23年度における大気についてのペンタクロロベンゼンの検出状況

ペンタクロロ ベンゼン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
	H19 温暖期	85	83	310	18	12 [4 9]	78/78	26/26
	H19寒冷期	60	55	220	27	·	75/75	25/25
	H21 温暖期	63	64	210	20	(4 [2 5]	111/111	37/37
大気	H21 寒冷期	25	22	120	tr(5.0)	6.4 [2.5]	111/111	37/37
(pg/m^3)	H22 温暖期	68	73	140	36	1 2 [0 5]	37/37	37/37
	H22寒冷期	70	69	180	37	1.2 [0.5]	37/37	37/37
	H23 温暖期	61	60	140	30	2.1.50.701	35/35	35/35
	H23 寒冷期	59	57	180	26	2.1 [0.70]	37/37	37/37

[17] ペンタクロロベンゼン

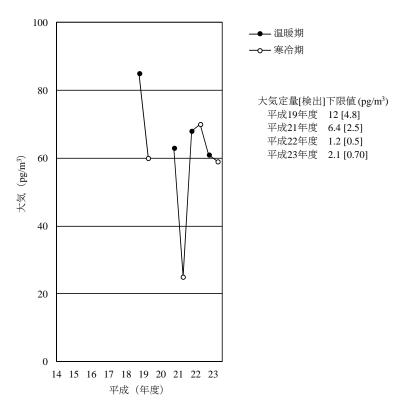


図 7-17-4 ペンタクロロベンゼンの大気の経年変化(幾何平均値)

[18] エンドスルファン類

調査の経緯及び実施状況

エンドスルファン類は、有機塩素系殺虫剤の一種である。平成23年4月に開催されたPOPs条約の第5回条約締約国会議(COP5)において、条約対象物質とすることが採択された。

継続的調査としては平成 23 年度が初めての調査であり、「化学物質環境調査」^{iv)} においては昭和 57 年度に水質及び底質の調査を、平成 4 年度に大気の調査を実施している。

•調査結果

 $\bigcirc \alpha$ -エンドスルファン及び β -エンドスルファン

<水質>

 α -エンドスルファン: 水質については、49 地点を調査し、検出下限値 50pg/L において 49 地点中 2 地点で検出され、検出濃度は 180pg/L までの範囲であった。

 β -エンドスルファン: 水質については、49 地点を調査し、検出下限値 9pg/L において 49 地点中 8 地点で 検出され、検出濃度は 270pg/L までの範囲であった。

○平成 23 年度における水質についての α-エンドスルファン及び β-エンドスルファンの検出状況

α-エンドスルファン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
水質 (pg/L)	H23	nd	nd	180	nd	120 [50]	2/49	2/49
β-エンドスルファン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
水質 (pg/L)	H23	nd	nd	270	nd	22 [9]	8/49	8/49

<底質>

 α -エンドスルファン: 底質については、底質については、64 地点を調査し、検出下限値 10pg/g-dry において 64 地点中 35 地点で検出され、検出濃度は 480pg/g-dry までの範囲であった。

 β -エンドスルファン: 底質については、底質については、64 地点を調査し、検出下限値 4pg/g-dry において 64 地点中 38 地点で検出され、検出濃度は 240pg/g-dry までの範囲であった。

〇平成 23 年度における底質についての α -エンドスルファン及び β -エンドスルファンの検出状況

α-エンドスルファン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
底質 (pg/g-dry)	H23	tr(13)	tr(11)	480	nd	30 [10]	35/64	35/64
β-エンドスルファン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
底質 (pg/g-dry)	H23	tr(5)	tr(4)	240	nd	9 [4]	38/64	38/64

<生物>

 α -エンドスルファン: 生物のうち貝類については、4 地点を調査し、検出下限値 20pg/g-wet において 4 地点中 3 地点で検出され、検出濃度は 330pg/g-wet までの範囲であった。魚類については、18 地点を調査し、検出下限値 20pg/g-wet において 18 地点中 10 地点で検出され、検出濃度は 140pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 20pg/g-wet において検出されなかった。

 β -エンドスルファン: 生物のうち貝類については、4 地点を調査し、検出下限値 4pg/g-wet において 4 地点全てで検出され、検出濃度は $4\sim52$ pg/g-wet の範囲であった。魚類については、18 地点を調査し、検出下限値 4pg/g-wet において 18 地点中 9 地点で検出され、検出濃度は 37pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 4pg/g-wet において検出されなかった。

〇平成 23 年度における生物 (貝類、魚類及び鳥類) についての α -エンドスルファン及び β -エンドスルファン の検出状況

α-エンドスルファン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
貝類 (pg/g-wet)	H23	62	120	330	nd	50 [20]	3/4	3/4
魚類 (pg/g-wet)	H23	tr(20)	tr(20)	140	nd	50 [20]	10/18	10/18
鳥類 (pg/g-wet)	H23			nd	nd	50 [20]	0/1	0/1
<i>β</i> -エンドスルファン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
貝類 (pg/g-wet)	H23	16	26	52	4	11 [4]	4/4	4/4
魚類 (pg/g-wet)	H23	nd	nd	37	nd	11 [4]	9/18	9/18
鳥類 (pg/g-wet)	H23			nd	nd	11 [4]	0/1	0/1

<大気>

 α -エンドスルファン: 大気の温暖期については、35 地点を調査し、検出下限値 $4.0 pg/m^3$ において 35 地点全てで検出され、検出濃度は $tr(7.8)\sim 190 pg/m^3$ の範囲であった。寒冷期については、37 地点を調査し、検出下限値 $4.0 pg/m^3$ において 37 地点中 35 地点で検出され、検出濃度は $45 pg/m^3$ までの範囲であった。

 β -エンドスルファン: 大気の温暖期については、35 地点を調査し、検出下限値 $0.39 pg/m^3$ において 35 地点中 34 地点で検出され、検出濃度は $11 pg/m^3$ までの範囲であった。寒冷期については、37 地点を調査し、検出下限値 $0.39 pg/m^3$ において 37 地点中 31 地点で検出され、検出濃度は $8.3 pg/m^3$ までの範囲であった。

〇平成 23 年度における大気についての α -エンドスルファン及び β -エンドスルファンの検出状況

	実施年度	幾何中央値	由电荷	最大値	最小値	定量[検出]	検出頻度	
<u>α-</u>	天旭千及	平均值	十大旭	取八胆	取小胆	下限値	検体 35/35 35/37	地点
大気	H23 温暖期	26	24	190	tr(7.8)	12 [4 0]	35/35	35/35
(pg/m^3)	H23 寒冷期	tr(9.6)	tr(9.8)	45	nd	12 [4.0]	35/37	35/37
β -エンドスルファン	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
p-42 (A)V/ / /	天旭十尺	平均值	中大胆	取八胆	取小胆	下限値	検体 35/35 35/37 検出頻 検体 34/35	地点
大気	H23 温暖期	2.1	1.8	11	nd	1.2 [0.20]	34/35	34/35
(pg/m^3)	H23 寒冷期	tr(0.80)	tr(0.90)	8.3	nd	1.2 [0.39]	31/37	31/37

[19] 1,2,5,6,9,10-ヘキサブロモシクロドデカン類

・調査の経緯及び実施状況

1,2,5,6,9,10-ヘキサブロモシクロドデカン類は、樹脂用及び繊維用の難燃剤として利用されている。平成23年10月に開催されたPOPs条約の第7回残留性有機汚染物質検討委員会(POPRC7)において、条約対象物質とするよう締約国会議に勧告することが決定された。

継続的調査としては平成23年度が初めての調査であり、化学物質環境実態調査の初期環境調査においては平成15年度に水質及び底質の調査を、平成16年度に生物(魚類)の調査を実施している。

•調査結果

 \bigcirc α-1,2,5,6,9,10-ヘキサブロモシクロドデカン、 β -1,2,5,6,9,10-ヘキサブロモシクロドデカン、 γ -1,2,5,6,9,10-ヘキサブロモシクロドデカン、 δ -1,2,5,6,9,10-ヘキサブロモシクロドデカン及び ϵ -1,2,5,6,9,10-ヘキサブロモシクロドデカン

<水質>

 α -1,2,5,6,9,10-ヘキサブロモシクロドデカン: 水質については、47 地点を調査し、検出下限値 600pg/L において 47 地点中 4 地点で検出され、検出濃度は 6,300pg/L までの範囲であった。

 β -1,2,5,6,9,10-ヘキサブロモシクロドデカン:水質については、47 地点を調査し、検出下限値 500pg/L において 47 地点中 4 地点で検出され、検出濃度は 1,300pg/L までの範囲であった。

 γ -1,2,5,6,9,10-ヘキサブロモシクロドデカン: 水質については、47 地点を調査し、検出下限値 500pg/L において 47 地点中 5 地点で検出され、検出濃度は 65,000pg/L までの範囲であった。

 δ -1,2,5,6,9,10-ヘキサブロモシクロドデカン: 水質については、47 地点を調査し、検出下限値 300pg/L において 47 地点全てで検出されなかった。

 ε -1,2,5,6,9,10-ヘキサブロモシクロドデカン: 水質については、47 地点を調査し、検出下限値 300pg/L において 47 地点全てで検出されなかった。

○平成23年度における水質についての1,2,5,6,9,10-ヘキサブロモシクロドデカン類の検出状況

α-1,2,5,6,9,10-ヘキサブ	宝施任度		定量[検出]	検出	頻度				
ロモシクロドデカン	天旭午及	平均値	中大旭	取八胆	取小胆	下限値	検体	地点	
水質 (pg/L)	H23	nd	nd	6,300	nd	1,500 [600]	4/47	4/47	
β-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点	
水質 (pg/L)	H23	nd	nd	1,300	nd	1,300 [500]	4/47	4/47	
γ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	検出頻度 検体 地点	
水質 (pg/L)	H23	nd	nd	65,000	nd	1,200 [500]	5/47	5/47	
δ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点	
水質 (pg/L)	H23	nd	nd	nd	nd	790 [300]	0/47	0/47	
ε-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	検出頻度 検体 地点	
水質 (pg/L)	H23	nd	nd	nd	nd	740 [300]	0/47	0/47	

<底質>

 α -1,2,5,6,9,10-ヘキサブロモシクロドデカン: 底質については、62 地点を調査し、検出下限値 280pg/g-dry において 62 地点中 35 地点で検出され、検出濃度は 24,000pg/g-dry までの範囲であった。

 β -1,2,5,6,9,10-ヘキサブロモシクロドデカン: 底質については、62 地点を調査し、検出下限値 170pg/g-dry において 62 地点中 21 地点で検出され、検出濃度は 14,000pg/g-dry までの範囲であった。

 γ -1,2,5,6,9,10-ヘキサブロモシクロドデカン: 底質については、62 地点を調査し、検出下限値 260pg/g-dry において 62 地点中 36 地点で検出され、検出濃度は 570,000pg/g-dry までの範囲であった。

 δ -1,2,5,6,9,10-ヘキサブロモシクロドデカン: 底質については、62 地点を調査し、検出下限値 250pg/g-dry において 62 地点中 6 地点で検出され、検出濃度は 800pg/g-dry までの範囲であった。

 ε -1,2,5,6,9,10-ヘキサブロモシクロドデカン: 底質については、62 地点を調査し、検出下限値 210pg/g-dry において 62 地点中 1 地点で検出され、検出濃度は tr(260)pg/g-dry までの範囲であった。

○平成23年度における底質についての1,2,5,6,9,10-ヘキサブロモシクロドデカン類の検出状況

	- / /	- ,	,,,,,,,,				v + v =	
α-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出: 検体	頻度 地点
底質 (pg/g-dry)	H23	430	nd	24,000	nd	420 [280]	78/186	35/62
β-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
底質 (pg/g-dry)	H23	nd	nd	14,000	nd	250 [170]	48/186	21/62
γ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出: 検体	頻度 地点
底質 (pg/g-dry)	H23	670	nd	570,000	nd	400 [260]	89/186	36/62
δ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
底質 (pg/g-dry)	H23	nd	nd	800	nd	350 [250]	11/186	6/62
ε-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
底質 (pg/g-dry)	H23	nd	nd	tr(260)	nd	280 [210]	2/186	1/62

<生物>

 α -1,2,5,6,9,10-ヘキサブロモシクロドデカン: 生物のうち貝類については、4 地点を調査し、検出下限値 70pg/g-wet において 4 地点全てで検出され、検出濃度は $tr(86)\sim13,000$ pg/g-wet の範囲であった。魚類については、18 地点を調査し、検出下限値 70pg/g-wet において 18 地点中 16 地点で検出され、検出濃度は 69,000pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 70pg/g-wet において検出され、検出濃度は 530pg/g-wet までの範囲であった。

 β -1,2,5,6,9,10-ヘキサブロモシクロドデカン: 生物のうち貝類については、4 地点を調査し、検出下限値 40pg/g-wet において 4 地点中 3 地点で検出され、検出濃度は 240pg/g-wet までの範囲であった。魚類については、18 地点を調査し、検出下限値 40pg/g-wet において 18 地点中 5 地点で検出され、検出濃度は 760pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 40pg/g-wet において検出されなかった。

γ-1,2.5,6,9,10-ヘキサブロモシクロドデカン:生物のうち貝類については、4 地点を調査し、検出下限値

80pg/g-wet において 4 地点全てで検出され、検出濃度は 3,300pg/g-wet までの範囲であった。魚類については、18 地点を調査し、検出下限値 80pg/g-wet において 18 地点中 10 地点で検出され、検出濃度は 50,000pg/g-wet までの範囲であった。鳥類については、1 地点を調査し、検出下限値 80pg/g-wet において検出され、検出濃度は 460pg/g-wet までの範囲であった。

 δ -1,2,5,6,9,10-ヘキサブロモシクロドデカン: 生物のうち貝類については、4 地点を調査し、検出下限値 60pg/g-wet において 4 地点全てで検出されなかった。魚類については、18 地点を調査し、検出下限値 60pg/g-wet において 18 地点全てで検出されなかった。鳥類については、1 地点を調査し、検出下限値 60pg/g-wet において検出されなかった。

 ε -1,2,5,6,9,10-ヘキサブロモシクロドデカン: 生物のうち貝類については、4 地点を調査し、検出下限値 60pg/g-wet において 4 地点全てで検出されなかった。魚類については、18 地点を調査し、検出下限値 60pg/g-wet において 18 地点全てで検出されなかった。鳥類については、1 地点を調査し、検出下限値 60pg/g-wet において検出されなかった。

○平成 23 年度における生物(貝類、魚類及び鳥類)についての 1,2,5,6,9,10-ヘキサブロモシクロドデカン類の検出状況

ソ快山仏仇								
α-1,2,5,6,9,10-ヘキサブ	実施年度	幾何	中央値	最大値	具示荷	定量[検出]	検出	頻度
ロモシクロドデカン	夫旭十尺	平均値	中犬他	取入他	最小値	下限値	検体	地点
貝類 (pg/g-wet)	H23	1,100	1,200	13,000	tr(86)	170 [70]	10/10	4/4
魚類 (pg/g-wet)	H23	770	850	69,000	nd	170 [70]	41/51	16/17
鳥類 (pg/g-wet)	H23	200	nd	530	nd	170 [70]	1/3	1/1
<i>8</i> -1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
貝類 (pg/g-wet)	H23	tr(70)	tr(85)	240	nd	98 [40]	7/10	3/4
魚類 (pg/g-wet)	H23	nd	nd	760	nd	98 [40]	11/51	5/17
鳥類 (pg/g-wet)	H23	nd	nd	nd	nd	98 [40]	0/3	0/1
y-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
貝類 (pg/g-wet)	H23	440	470	3,300	nd	210 [80]	8/10	4/4
魚類 (pg/g-wet)	H23	210	tr(90)	50,000	nd	210 [80]	26/51	10/17
鳥類 (pg/g-wet)	H23	tr(180)	nd	460	nd	210 [80]	1/3	1/1
δ-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
貝類 (pg/g-wet)	H23	nd	nd	nd	nd	140 [60]	0/10	0/4
魚類 (pg/g-wet)	H23	nd	nd	nd	nd	140 [60]	0/51	0/17
鳥類 (pg/g-wet)	H23	nd	nd	nd	nd	140 [60]	0/3	0/1
e-1,2,5,6,9,10-ヘキサブ ロモシクロドデカン	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
貝類 (pg/g-wet)	H23	nd	nd	nd	nd	140 [60]	0/10	0/4
魚類 (pg/g-wet)	H23	nd	nd	nd	nd	140 [60]	0/51	0/17
 鳥類	H23	nd	nd	nd	nd	140 [60]	0/3	0/1

[20] N.N-ジメチルホルムアミド

調査の経緯及び実施状況

N,N-ジメチルホルムアミドは、合成皮革及び合成繊維等の製造時に溶剤として利用される他、触媒やガス吸収剤等として利用されている。平成23年4月に化審法の優先評価化学物質に指定され、環境中の存在状況を把握することが重要であるとされた。

継続的調査としては平成23年度が初めての調査であり、「化学物質環境調査」^{iv)}及び化学物質環境実態調査の詳細環境調査においては昭和53年度、平成3年度、平成10年度及び平成17年度に水質の調査を、昭和53年度、平成3年度、平成10年度及び平成18年度に底質の調査を、平成3年度、平成9年度及び平成17年度に大気の調査を実施している。

•調査結果

<水質>

水質については、47 地点を調査し、検出下限値 19,000pg/L において 47 地点中 37 地点で検出され、検出 濃度は 530,000pg/L までの範囲であった。

○平成 23 年度における水質についての N,N-ジメチルホルムアミドの検出状況

N,N-ジメチル	実施年度	幾何	中央値	最大値	最小値	定量[検出]	検出	頻度
ホルムアミド	天旭十段	平均值	中大個	取八胆	取小胆	下限値	検体	地点
水質 (pg/L)	H23	tr(27,000)	tr(24,000)	530,000	nd	63,000 [19,000]	37/47	37/47

<底質>

底質については、62 地点を調査し、検出下限値 2,600pg/g-dry において 62 地点中 7 地点で検出され、検出濃度は 15,000pg/g-dry までの範囲であった。

○平成23年度における底質についてのN.N-ジメチルホルムアミドの検出状況

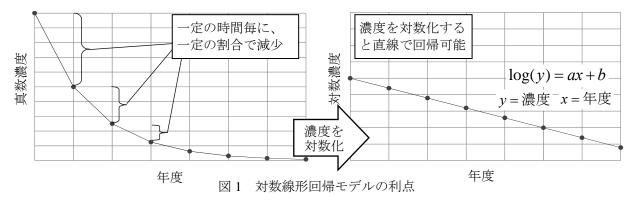
N,N-ジメチル ホルムアミド	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
底質 (pg/g-dry)	H23	nd	nd	15,000	nd	3,200 [2,600]	17/186	7/62

<大気>

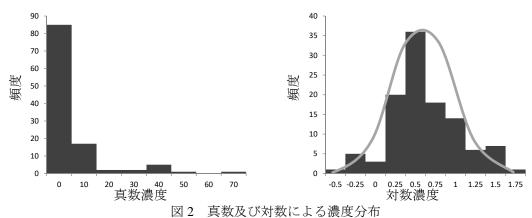
大気については、35 地点を調査し、検出下限値 3,900pg/m³ において 35 地点全てで検出され、検出濃度は $16,000\sim490,000$ pg/m³ の範囲であった。

〇平成23年度における大気についてのN,N-ジメチルホルムアミドの検出状況

<i>N,N-</i> ジメチル ホルムアミド	実施年度	幾何 平均値	中央値	最大値	最小値	定量[検出] 下限値	検出 検体	頻度 地点
大気 (pg/m³)	H23	92,000	91,000	490,000	16,000	9,600 [3,900]	105/105	35/35


●参考文献(全物質共通)

- i) 環境省環境保健部環境安全課、「化学物質と環境」水質・底質モニタリング調査 (http://www.env.go.jp/chemi/kurohon/)
- ii) 環境省環境保健部環境安全課、「化学物質と環境」生物モニタリング調査 (http://www.env.go.jp/chemi/kurohon/)
- iii) 環境省環境保健部環境安全課、「化学物質と環境」非意図的生成化学物質汚染実態追跡調査 (http://www.env.go.jp/chemi/kurohon/)
- iv) 環境省環境保健部環境安全課、「化学物質と環境」化学物質環境調査 (http://www.env.go.jp/chemi/kurohon/)

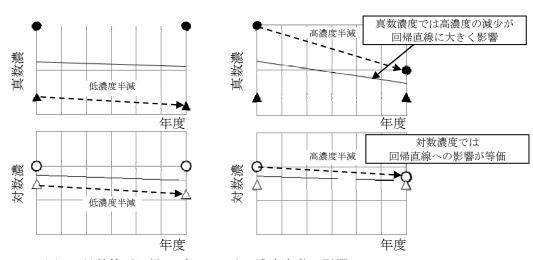

●参考資料

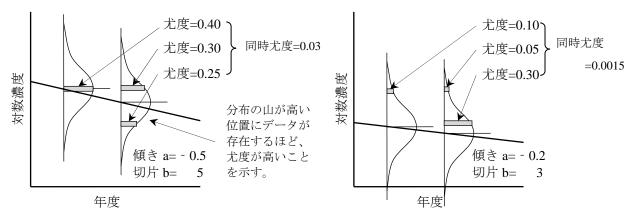
・対数線形回帰モデル

環境中に残留している化学物質の濃度減少は、1次反応(濃度の高低によらず、ある一定の期間において一定の割合で減少する反応)を仮定し、図1に示すように濃度の対数と時間との関係は線形で回帰できるため、対数線形回帰モデルを利用することとした。

環境中の濃度分布では、図2に示すとおり、対数正規分布で近似することが出来る。

更に、図3に示すとおり、真数において作成する線形回帰の傾きは時間に対して一定の割合で濃度が減少する場合、より高濃度のデータ変動の影響を受けやすい。しかし、対数濃度では高濃度と低濃度でデータの変動の影響は等価となるため、全体の傾向を一つの傾きで評価できる。

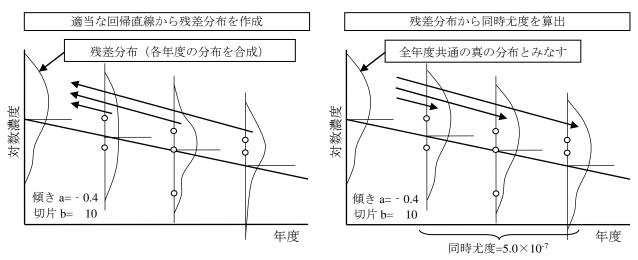



図3 対数線形回帰モデルにおける濃度変動の影響

きいゆうほう最尤法

経年変化解析を行うために直線回帰を行う場合には、最小二乗法による回帰直線がよく利用される手法であるが、前提条件として残差分布が正規分布である必要がある。しかし、最尤法を用いて回帰直線を算出する手法では残差分布に制限がなく、正規分布以外のデータについても直線回帰を行うことができる。

最尤法とは「最も。元もらしい」パラメータを探索する方法である。回帰直線を算出する場合には傾きa及び切片bの2つのパラメータに対して様々な値を代入し、その結果として算出された回帰直線が「最も尤もらしいとき」のパラメータを最も適した回帰直線とすることとした。


この「最も尤もらしいとき」とは、図4に示すように、回帰直線を算出した際に各データの尤度が最も高くなる事とし、データが複数ある場合には各データの尤度を全て掛け算した値(同時尤度)が最も高くなることとした。また、各データの尤度は、母集団の確率密度分布において、その分布のどの位置にデータが存在するかによって求めることができる。

より同時尤度が高い左図の回帰直線がより適しており、最も尤もらしい回帰直線は、a=-0.5,b=5であると判断する。

図4 最尤法による最適な回帰直線の決定方法

各解析データはそれぞれで特徴的な分布を持っている場合が多く、経年変化解析には図5に示すように、回 帰直線からの残差で表した各年度の残差分布を作成し、その後足し合わせた各年度共通の残差分布を用いて 解析することとした。

例において、適当な回帰直線 a= -0.4, b= 10 による同時尤度は 5.0×10⁻⁷ である。 同様に様々な回帰直線で同時尤度を算出し、最も平均尤度の大きい回帰直線を最適な回帰直線とした。

図5 最尤法に用いる残差分布の算出と最適な回帰直線の決定方法

· AIC (赤池情報量規準)

AIC(赤池情報量規準)とは、有効なモデルの選択基準の代表的な指標である。

回帰モデルではパラメータを増やすほどデータに対する誤差は小さくなるが、複雑となるため必ずしも良いモデルになるとは限らない。AICはパラメータ数が大きくなるとペナルティを課す性質を持つことから、パラメータ数を考慮してより良いモデルを把握できる指標である。また、モデルの母集団の分布に制限もない。これらの理由からAICを用いて最適なモデルを選択することとした。以下にAICの算出式を示す。

$AIC = -2 \times$ 最大対数尤度 + 2×モデルのパラメータ数

最尤法を用いて求めた回帰直線は、図6に示すように年度をパラメータとする 1 次式である。この対数線形 回帰モデルから計算される AIC_1 と、回帰直線の傾きが偶然の変動によるもので全体を代表する一定値から変動しないと考える0次式(傾き0における対数線形回帰直線モデル)から計算される AIC_0 を比較し、どちらがより適切なモデルであるか判断した。通常、AICの値の小さいモデルが適切と判断するが、AICの差が少ない場合にも安全性を見込んで適切に判断できるよう、ベイズの定理を利用して事後確率の考え方を導入した。

$$p_1 = \exp\{-0.5AIC_1\}/(\exp\{-0.5AIC_0\} + \exp\{-0.5AIC_1\})$$
 (p_1 : 1 次のモデルの事後確率、 AIC_1 : 1 次式における AIC、 AIC_0 : 0 次式における AIC)

1次モデルのAIC事後確率 p_1 は 0 から 1 の値をとり、1 に近い値ほど 1 次式に近い事を示す。1 次式のAIC 事後確率 p_1 が 0.950以上の場合には安全性を見込んだ上で、経年変化において傾きを持つことが適切と判断した。また、0.950のしきい値は危険率5%の考え方を参考に設定することとした。

図 6 AIC を利用した傾きの有無の判断方法

・ブートストラップ法による平均値の差の検定

一般的に用いられる t 検定による平均値の差の検定は、前提として正規性が得られている 2 つのデータ群間を比較する場合に用いる手法である。しかし、ブートストラップ法による平均値の差の検定では、ランダムサンプリングによる繰り返し抽出によって漸近正規性を持たせることが可能なため、平均値を比較する 2 群の各データがどのような分布であっても平均値の差の検定を行うことが可能となる。

具体的には図7に示すように、前期3か年(A群)と後期3か年(B群)において有意に濃度差があるか確認するために、平均値の差の検定を実施した。2つの標本に対し、それぞれ無作為に抽出した際の平均値を求め、それを繰り返すことにより得られる平均値の分布はt分布であるが、自由度が極めて大きいことからそれぞれ正規分布とみなすことが出来ることを利用し、標本間で差があるか検定する方法である。

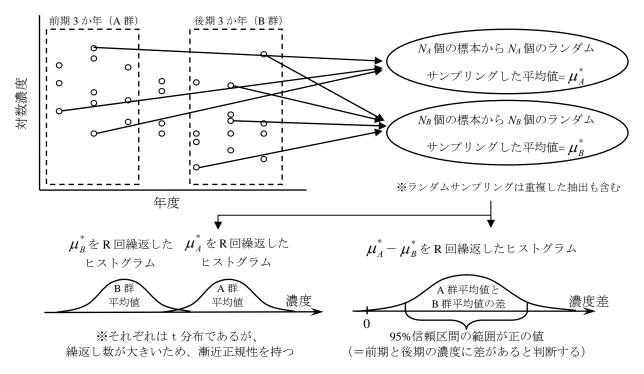


図7 ブートストラップ法による平均値の差の検定手法

繰り返し抽出して算出した平均値の差の分布において、95%信頼区間が正(負)の範囲にある場合、前期3 か年と比較して後期3か年は有意に低(高)値であると判断した。