Definition of Rare Sugars Monosaccharides and their derivatives that are rare in nature. Relationship between rare sugars and abundantly existing sugars Abundantly existing sugars in nature Enzymatic conversion allows to produce D-psicose from D-fructose by DTE (D-tagatose 3 epimerase), and D-allose from D-psicose by RHI (L-rhamnose isomerase). All hexoses comprise 6 carbons, 12 hydrogens and 6 oxygens with the identical molecular weight of 180. # Rare sugar : D-psicose #### Effect of D-psicose and D-allose on ROS Scavenging activity of oxygen-radicals was measured by the two different methods (ESR method and NBT reduction method). D-Allose and D-Psicose showed much higher activity than D-Fructose and D-Glucose. # Supplementation of D-psicose prevents DEHP-induced atrophy of rat testis (*p<0.05, **p<0.01, ***p<0.001: vs DEHP group) D-psicose effectively prevent DEHP-induced atrophy of rat testis. **Normal testis** DEHP + 1% D-psicose **DEHP** DEHP + 2% D-psicose ## Effect of various monosaccharides on DEHP-induced atrophy of rat testis D-psicose is the most potent monosaccharide inhibiting DEHP-induced atrophy of rat testis # D-psicose reduced ROS production in the testis induced by DEHP administration (**p<0.01, ***p<0.001: vs DEHP group) ## Genes significantly altered by DEHP exposure in rat testis | Gene Name | Description | Expression change | |------------------|---|-------------------| | Oxidative Stres | S | | | Txn | Thioredoxin mRNA (NM_053800) | | | Gpx1 | Glutathione peroxidase 1 (Gpx1) mRNA | | | Gpx2 | Glutathione peroxidase 2 (Gpx2) mRNA | | | Glrx1 | Glutaredoxin 1 (thioltransferase) (Glrx1) mRNA | | | Sod1 | Superoxide dismutase 1 (Sod1), mRNA | | | Detoxification | | | | Gsta2 | Glutathione-S-transferase, alpha type2 (Gst α 2) | | | Steroidogene | sis | | | Cyp17a1 | cytochrome P450, family17, subfamily a, polypept | tide1 | | Hsd11β2 | Hydroxysteroid 11-beta dehydrogenase 2, mRNA | | | Signal transduc | ction | | | S100a9 | S100 calcium binding protein A9 (calgranulin B) | | | Transcription fa | actors | | Activating transcription factor 3(Atf3), mRNA Atf3 # Changes in gene expression in rat testis after DEHP and Rare Sugar (D-psicose) treatment Thioredoxin, Glutathione peroxidase 1: DEHP D-psicose Glutathion S-transferase $\alpha 2$: DEHP D-psicose Glutharedoxin, SOD : DEHP D-psicose Cyp17a1 : DEHP D-psicose ### Summary of the study - 1. Oral administration of DEHP, when converted to MEHP, causes an increase of ROS production in testis. - 2. ROS are mainly superoxide radicals and H2O2. - 3. ROS production mainly occurs in germ cells not in Sertoli cells. - 4. Oxidative stress causes apoptosis of germ cells. - 5. Vitamins C & E or D-psicose, one of rare sugars, can be used for the prevention of DEHP-toxicity. - 6. Several molecular markers such as oxidative stress related genes are applicable to evaluate the toxicity. ### **Future projects** ### DEHP - 1) Lower doses, longer exposure - 2) Optimize the prevention method Vitamins C & E Rare sugars other rare sugars 3) Mechanism What are the effective and responsible markers? Other possible mechanisms of the toxicity ### Other EDCs - 1) Oxidative stress could be more or less the common etiological factor for other EDCs. - 2) Markers related to oxidative stress can be standardized. - 3) Prevention has to be considered. ### **Collaborators** #### **Kagawa University** - 1) Faculty of Medicine Department of Cell Physiology - F. Yamaguchi - Y. Watanabe - M. Muneto Department of Hygiene and Public Health - F. Jitsunari - S. Suna Department of Urology - I. Takenaka - M. Ishihara Department of Anatomy - Y. Takeuchi - M. Itoh Department of Pharmacology M. Kimura - 2) Rare Sugar Research Center - K. Izumori - N. Hatano #### **Osaka City University** Department of Biochemistry and Molecular Pathology - M. Inoue - E. Kasahara - F. Sato