Definition of Rare Sugars

Monosaccharides and their derivatives that are rare in nature.

Relationship
between
rare sugars
and
abundantly
existing sugars

Abundantly existing sugars in nature

Enzymatic conversion allows to produce D-psicose from D-fructose by DTE (D-tagatose 3 epimerase), and D-allose from D-psicose by RHI (L-rhamnose isomerase). All hexoses comprise 6 carbons, 12 hydrogens and 6 oxygens with the identical molecular weight of 180.

Rare sugar : D-psicose

Effect of D-psicose and D-allose on ROS

Scavenging activity of oxygen-radicals was measured by the two different methods (ESR method and NBT reduction method). D-Allose and D-Psicose showed much higher activity than D-Fructose and D-Glucose.

Supplementation of D-psicose prevents DEHP-induced atrophy of rat testis

(*p<0.05, **p<0.01, ***p<0.001: vs DEHP group)

D-psicose effectively prevent DEHP-induced atrophy of rat testis.

Normal testis

DEHP + 1% D-psicose

DEHP

DEHP + 2% D-psicose

Effect of various monosaccharides on DEHP-induced atrophy of rat testis

D-psicose is the most potent monosaccharide inhibiting DEHP-induced atrophy of rat testis

D-psicose reduced ROS production in the testis induced by DEHP administration

(**p<0.01, ***p<0.001: vs DEHP group)

Genes significantly altered by DEHP exposure in rat testis

Gene Name	Description	Expression change
Oxidative Stres	S	
Txn	Thioredoxin mRNA (NM_053800)	
Gpx1	Glutathione peroxidase 1 (Gpx1) mRNA	
Gpx2	Glutathione peroxidase 2 (Gpx2) mRNA	
Glrx1	Glutaredoxin 1 (thioltransferase) (Glrx1) mRNA	
Sod1	Superoxide dismutase 1 (Sod1), mRNA	
Detoxification		
Gsta2	Glutathione-S-transferase, alpha type2 (Gst α 2)	
Steroidogene	sis	
Cyp17a1	cytochrome P450, family17, subfamily a, polypept	tide1
Hsd11β2	Hydroxysteroid 11-beta dehydrogenase 2, mRNA	
Signal transduc	ction	
S100a9	S100 calcium binding protein A9 (calgranulin B)	
Transcription fa	actors	

Activating transcription factor 3(Atf3), mRNA

Atf3

Changes in gene expression in rat testis after DEHP and Rare Sugar (D-psicose) treatment

Thioredoxin, Glutathione peroxidase 1: DEHP D-psicose

Glutathion S-transferase $\alpha 2$: DEHP D-psicose

Glutharedoxin, SOD : DEHP D-psicose

Cyp17a1 : DEHP D-psicose

Summary of the study

- 1. Oral administration of DEHP, when converted to MEHP, causes an increase of ROS production in testis.
- 2. ROS are mainly superoxide radicals and H2O2.
- 3. ROS production mainly occurs in germ cells not in Sertoli cells.
- 4. Oxidative stress causes apoptosis of germ cells.
- 5. Vitamins C & E or D-psicose, one of rare sugars, can be used for the prevention of DEHP-toxicity.
- 6. Several molecular markers such as oxidative stress related genes are applicable to evaluate the toxicity.

Future projects

DEHP

- 1) Lower doses, longer exposure
- 2) Optimize the prevention method Vitamins C & E Rare sugars

other rare sugars

3) Mechanism

What are the effective and responsible markers? Other possible mechanisms of the toxicity

Other EDCs

- 1) Oxidative stress could be more or less the common etiological factor for other EDCs.
- 2) Markers related to oxidative stress can be standardized.
- 3) Prevention has to be considered.

Collaborators

Kagawa University

- 1) Faculty of Medicine

 Department of Cell Physiology
 - F. Yamaguchi
 - Y. Watanabe
 - M. Muneto

Department of Hygiene and Public Health

- F. Jitsunari
- S. Suna

Department of Urology

- I. Takenaka
- M. Ishihara

Department of Anatomy

- Y. Takeuchi
- M. Itoh

Department of Pharmacology

M. Kimura

- 2) Rare Sugar Research Center
 - K. Izumori
 - N. Hatano

Osaka City University

Department of Biochemistry and Molecular Pathology

- M. Inoue
- E. Kasahara
- F. Sato