資料 2 1 3

平成15年度内分泌攪乱化学物質に関する 野生生物蓄積状況調査結果について

平成 16 年 12 月

環境省総合環境政策局環境保健部環境安全課

1 調査概要

外因性内分泌攪乱化学物質(いわゆる環境ホルモン)による環境汚染は、科学的に 未解明な点が多く残されているものの、それが生物生存の基本的条件に関わるもので あり、世代を越えた深刻な影響をもたらすおそれのあることから、環境保全上の重要 課題である。

本調査は、野生生物における内分泌攪乱化学物質の体内蓄積量をモニタリングすることを目的として、昨年度に引き続き、野生生物体内の化学物質蓄積量調査を実施するとともに、参考としてバイオマーカー調査等も合わせて実施した。

2 調查方法

(1)調査対象生物種

沿岸から陸上にかけての各種環境に生息する種で、モニタリングのために、安定して試料採取できることなどを考慮し、下記の種を選定した。

カワウ(関東の個体)	10羽	試料:筋肉(有機スズ類は肝臓)
カワウ(琵琶湖の個体)	10羽	試料:筋肉(有機スズ類は肝臓)
ハシブトガラス(東京都の個体)	10羽	試料:筋肉(有機スズ類は肝臓)
スナメリ(座礁個体)	10頭	試料:脂肪(有機スズ類は肝臓)
ニホンザル(東京都近郊の個体)	10頭	試料:筋肉(有機スズ類は肝臓)
タヌキ(東京都の個体)	10頭	試料:筋肉(有機スズ類は肝臓)

(参考) バイオマーカー調査等

カワウ(関東および琵琶湖の個体) 各10羽 試料:血液、肝臓、甲状腺、生殖

器、その他主要臓器

ハシブトガラス(東京都の個体) 10羽 試料:血液、肝臓、甲状腺、生殖

器、その他主要臓器

(2)調査項目

昨年度調査項目にトキサフェンを加え、内分泌攪乱作用が疑われる化学物質32物質の体内蓄積量を分析測定した。ただし、採取試料の鮮度が悪いと予想されるスナメリについては、分解性の高いアルキルフェノール及びフタル酸類など13物質を除いた19物質を対象として分析測定を行った。

(参考)バイオマーカー調査等

- · 薬物代謝酵素活性(EROD、PROD、MROD、BROD の活性)
- ・ 血液中ホルモン濃度(性ホルモン、甲状腺ホルモン等)
- ・ 病理組織学的検査(生殖器、甲状腺等)

3 調査結果

調査した32物質のうち、調査対象全個体から定量下限値以上で検出されたものは、PCB類、ヘキサクロロベンゼンの2物質であり、他に検出下限値以上で全個体から検出されたものはヘキサクロロシクロヘキサン(-HCH)、trans-ノナクロル、ディルド

リン、ヘプタクロルエポキサイドで、これらは昨年度と同様の結果であった。一方、 昨年度調査では全個体から検出されたp,p'-DDEは、今年度はニホンザルで検出率が低 下した。

この他に、5種の対象動物全種から検出された物質は、ヘキサクロロシクロヘキサン (-HCH)、クロルデン(cis-クロルデン、trans-クロルデン)、オキシクロルデン、 DDE and DDD(p,p'-DDE)、マイレックス、トキサフェン(Parlar #26、#50)、オクタクロロスチレンであった。また、フタル酸ジ-2-エチルヘキシルはスナメリを除く測定を行った4種全種から検出された。

5種で測定した19物質のうちでは、トリフルラリン、ベンゾフェノン、4-ニトロトルエンが、すべての個体で定量下限以上で検出されなかった。一方、スナメリを除く4種で測定した13物質では、ペンタクロロフェノール、フタル酸ジ-2-エチルヘキシル、フタル酸ジ-n-ブチルの3物質の他は、すべての個体で定量下限以上では検出されなかった。

(参考)バイオマーカー等調査

バイオマーカー調査では、薬物代謝酵素活性値は昨年同様で、カワウでは EROD>MROD>BROD>PRODの順に活性が高かったが、ハシブトガラスではMROD>EROD>BROD PRODの順であった。病理組織学的検査で、カワウのメスで右卵管遺残、ハシブトガラスのメスで卵巣に精巣輸出管様遺残物が認められる個体があり、また甲状腺では、濾胞の大小不同、小型化などの変化が認められる個体があった。

4 考察

環境省の野生生物調査で今回、初めて分析した項目はトキサフェンの3異性体であったが、Parlar #26、#50については対象5種すべてから検出された。Parlar #62はカワウ、ハシブトガラス、スナメリ、ニホンザルの一部の個体で検出された。特にスナメリでは他種よりも顕著な蓄積が認められた。

生体内の蓄積が見られる化学物質の種類は昨年度と同様の傾向を示したが、カワウ、 スナメリで昨年度よりも高濃度の蓄積が認められる個体があった。

今年度は2地域のカワウを対象としたが、明瞭な地域差は認められなかった。関東ではトキサフェンの蓄積が多い個体があり、琵琶湖では1個体で高濃度の - ヘキサクロロシクロヘキサンの蓄積が認められた。

今回の調査結果を踏まえ、調査項目の検討を行い、今後も継続してモニタリングが必要と考えられる。

平成15年度 湿重量あたり化学分析結果 (総括表1)

(湿重量あたり濃度:ng/q-wet、トキサフェンはpg/q-wet)

																		湿里重の/	こり版図	. 11g/ g-11	Ct, I	1 7 7 <u>T</u>	ンはpg/!	3-WCL)
SPEED'S	18 No.	2	4	5		12		14		15	16	18	3			9		23	25	26	30		32	
					^ ‡5	tクロロシクロ へ キ	サン		クロル	デン類				DD	T類							7	キサフェ	ン
調査対象		ポリ塩化ビフェニール(PCB合計)	ላ‡ϑክ፴ላ゚ンゼン (HCB)	ベンタクロロフェノール (PCP)	- НОН	-HOH-	-HCH	cis-クロルデン	trans-クロルデン	オキシクロルデン	trans-ノナクロル	o,p'-DDT	p,p'-DDT	o,p'-DDE	p,p'-DDE	0,p'-DDD	p,p'-DDD	ディルドリン	ペプタクロル	ヘプタクロルエポキサイド	マイレックス	トキサフェン Parlar #26	トキサフェン Parlar #50	トキサフェン Parlar #62
カワウ 筋肉 n=20	平均值 最小值 中央值 快出率	1,200 3,500 150 1,000 20/20	7.1 14 2.7 6.2 20/20	2.6 9.6 0.5 1.3 20/20	0.85 11 0.09 0.31 20/20	92 1,700 0.89 6.2 20/20	0.08 0.4 tr 0.07 15/20	0.66 4.6 tr 0.14 18/20	0.06 0.55 ND 0.03 13/20	18 190 1.7 8.3 20/20	5.3 97 tr 0.21 19/20	0.01 0.16 ND ND 2/20	0.54 1.9 tr 0.26 19/20	0.09 0.47 tr 0.06 18/20	320 1,100 34 250 20/20	0.01 0.17 ND tr 3/20	0.69 2.7 0.11 0.48 20/20	6.7 53 0.65 2.2 20/20	- tr ND ND 0/20	2.6 27 0.32 1.0 20/20	0.57 2.7 0.10 0.39 20/20	340 1,100 29 240 20/20	55 240 ND 42 14/20	13 250 ND ND 1/20
ハシブト ガラス 筋肉 n=10	平最 最中的 人名 中位 电位 电位 电位 电位 电位 电位 电位 电位 电位率	60 130 16 50 10/10	1.2 1.8 0.81 1.1 10/10	- ND ND ND 0/10	0.05 0.13 tr 0.05 7/10	2.1 5.6 0.62 1.4 10/10	0.10 0.22 tr 0.10 9/10	- tr ND tr 0/10	- tr ND tr 0/10	8.6 19 2.7 6.4 10/10	3.1 5.6 1.0 3.1 10/10	- ND ND ND 0/10	0.16 0.40 tr 0.15 8/10	- tr ND ND 0/10	42 96 4.4 27 10/10	-	1.6 3.3 0.32 1.6 10/10	2.4 5.7 0.50 1.7 10/10	- ND ND ND 0/10	2.9 9.1 0.98 2.1 10/10	1.4 4.2 0.27 1.0 10/10	670 1,400 180 590 10/10	430 890 210 350 10/10	20 110 ND ND 3/10
スナメリ 脂肪 n=10	平均值 最小值 中央值 検出率	24,000 63,000 5,800 20,000 10/10	97 180 5.2 110 10/10		6.7 15 0.6 5.8 10/10	200 1,000 3.4 75 10/10	3.3 8.4 tr 2.8 9/10	100 180 15 100 10/10	5.4 17 1.3 4.2 10/10	290 930 8 160 10/10	1,300 4,100 100 760 10/10	280 1,100 0.4 73 10/10	500 1,500 0.5 290 10/10	88 280 10 60 10/10	5,200 18,000 240 2,400 10/10	85 190 5.2 69 10/10	710 1,600 45 550 10/10	270 630 13 180 10/10	0.9 3.3 tr 0.6 7/10	33 79 1.5 23 10/10	13 38 1.1 6.1 10/10	25,000 77,000 350 13,000 10/10	26,000 80,000 tr 14,000 9/10	2,500 9,400 ND ND 3/10
ニホンザ川 筋肉 n=10	平均値 最大値 中央値 検出率	0.23 0.45 0.096 0.21 10/10	0.085 0.20 0.029 0.080 10/10	- ND ND ND 0/10	0.002 0.02 ND tr 1/10	0.40 3.1 tr tr 5/10	- ND ND ND 0/10	- tr ND ND 0/10	- tr ND tr 0/10	- tr ND tr 0/10	0.11 0.20 tr 0.12 9/10	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	- tr ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	0.07 0.28 tr tr 4/10	- ND ND ND 0/10	0.052 0.27 tr 0.018 8/10	0.002 0.02 ND tr 1/10	0.48 4.8 ND tr 1/10	- tr ND ND 0/10	- ND ND ND 0/10
タヌキ 筋肉 n=10	平均値 最小値 中央値 検出率	8.7 49 1.4 8.7 10/10	0.11 0.19 0.016 0.12 10/10	- tr ND ND 0/10	0.01 0.03 tr tr 5/10	0.52 1.5 0.19 0.36 10/10	- ND ND ND 0/10	0.004 0.04 tr tr 1/10	0.006 0.04 ND tr 2/10	5.5 14 1.4 4.2 10/10	3.5 11 0.85 2.7 10/10	- ND ND ND 0/10	0.04 0.11 ND tr 5/10	- ND ND ND 0/10	0.20 0.46 tr 0.15 9/10	- ND ND ND 0/10	0.008 0.05 ND tr 2/10	0.44 0.67 0.18 0.47 10/10	- tr ND ND 0/10	0.81 2.3 0.16 0.61 10/10	0.06 0.23 0.02 0.05 10/10	21 84 3.5 12 10/10	22 100 tr 11 8/10	- ND ND ND 0/10

(注)平均値は定量下限未満を0として算出。 : 測定せず

平成15年度 湿重量あたり化学分析結果 (総括表2)

(湿重量あたり濃度:ng/g-wet)

SPEED'S	98 No.	33	34	35		36		37	38	39	40	41	42	44	45	46	47	48	63	64	65
					Ī	クルキルフェノール	,														
調查対象		゛゛゛ヹ゙゙゙゙゙゙ヹ゙゙゙゙゙゙゚ヹ゚ヹ゚゙゙゙゙゙゙゙゙゙゚゠゚゙゙゙゙゙゙゙゚ヹ゚゙゚ヹ゚	トリフェニルスズ	トリフルラリン	パーノエムパニノ	4 - t-オクチルフェノール	4・n・ペンチルフェノール	ピスフェノールA	フタル酸ジ-2-エチルヘキシル	フタル酸プチルベンジル	フタル酸ジ-n-ブチル	フタル酸ジシクロヘキシル	フタル酸ジエチル	2,4-ジクロロフェノール	アジ ピ ン酸ジ -2-エチルヘキシル	ベノエフェノン	4-ニトロトルエン	オクタクロロスチレン	フタル酸ジペンチル	フタル酸ジヘキシル	フタル酸ジプロピル
カワウ 筋肉 n=20	平均值 最大小位 中 快出 校出	- tr ND ND 0/20	4 24 ND 3 13/20	- ND ND ND 0/20	- ND ND ND 0/20	- tr ND ND 0/20	- ND ND ND 0/20	- ND ND ND 0/20	6 58 ND tr 3/20	- ND ND ND 0/20	0.7 13 ND ND 1/20	- ND ND ND 0/20	- ND ND ND 0/20	- ND ND ND 0/20	- ND ND ND 0/20	- ND ND ND 0/20	- ND ND ND 0/20	0.37 0.97 0.13 0.28 20/20	- ND ND ND 0/20	- ND ND ND 0/20	- ND ND ND 0/20
ハシブト ガラス 筋肉 n=10	平均值 最小值 中央出 検出率	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	- tr ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	15 63 tr tr 3/10	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	0.045 0.08 0.02 0.042 10/10	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10
スナメリ 脂肪 n=10	平均值 最小值 中央出 検出率	300 530 97 290 10/10	37 63 13 34 10/10	- tr ND ND 0/10												- ND ND ND 0/10	- ND ND ND 0/10	2.1 4.5 0.46 2.0 10/10			
筋肉 n=10	平均值 最小值 中央值 快出率	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	- tr ND ND 0/10	- tr ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	3 26 ND ND 1/10	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	- tr ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	- tr ND tr 0/10	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10
タヌキ 筋肉 n=10	平均值 最小值 中央出 検出率	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	- tr ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	160 620 ND 150 8/10	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10	0.012 0.029 0.006 0.009 10/10	- ND ND ND 0/10	- ND ND ND 0/10	- ND ND ND 0/10

(注)平均値は定量下限未満を0として算出。 * 有機スズ類の分析は肝臓を試料とした。 ! 測定せず

カワウ分析結果(その1)

(湿重量当たり濃度) (試料は筋肉)

SPE	D'9	8						2						
物質	名					ポリ塩化	ビフェニ	ニル類(I	PCBs))				
No.		年令	脂肪含量	垣化どフェニル	二塩化ピカニル	三塩化ビフェル	四塩化ピカゴル	五塩化ピカニル	六塩化ビフェニル	七塩化ピカゴ	八塩化ぴ乙二	九塩化どフェニル	十塩化ピカニル	PCB合言1**
		単位	%						ng/g-wet					
		下限		0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.0008	-
		下限		0.004	0.006	0.004	0.006	0.006	0.006	0.006	0.006	0.004	0.002	-
ブラ	ラン ′ のí	ク値 範囲				0 ~ 0.012*	0 ~ 0.047*	0~0.11*	0.0016 ~ 0.12*	0 ~ 0.058*	0 ~ 0.012*			
1	М	Α	3.6	ND	0.011	220	700	960	1,100	410	62	7.1	2.6	3,500
2	М	J	3.6	ND	ND	50	250	380	490	140	20	2.6	0.88	1,300
3	F	Α	2.9	tr(0.001)	0.006	20	78	170	250	64	9.7	1.5	0.63	590
4	F	Α	3.1		tr(0.005)	22	120	310	540	170	31	3.8	1.5	1,200
5	F	Α	4.0	ND	0.006	2.1	17	86	150	46	9.0	1.2	0.49	310
6	F	A	4.4	ND	0.007	40	210	370	460	110	18	2.6	1.1	1,200
7	F	A	5.1	ND	0.007	19	97	220	350	87	14	2.4	0.96	790
8	F	J	3.2 2.8	ND ND	tr(0.004) 0.006	3.7 31	17 230	36 690	1,200	20 470	3.8 55	0.84 8.5	0.33 4.0	160
10	F	J	3.0	ND ND	0.008	6.1	17	40	1,200	17	3.3	0.72	0.29	2,700 150
11	М	A	4.6	0.005	0.008	8.8	58	380	920	1,400	190	11	1.2	3,000
12	M	A	3.9	tr(0.003)	0.003	11	53	200	330	410	56	6.7	0.74	1.100
13	M	A	4.9	0.005	0.007	21	97	490	670	470	46	4.9	0.74	1,800
14	F	A	3.6	tr(0.003)	0.084	6.5	43	230	340	290	36	4.0	0.72	950
15	F	Α	3.1	0.005	0.015	6.8	50	280	370	190	24	3.2	0.64	920
16	F	Α	3.6	0.012	0.011	63	300	600	520	270	27	4.0	0.81	1,800
17	F	Α	4.7	tr(0.003)	0.007	2.7	14	94	120	60	6.8	0.84	0.21	300
18	F	Α	3.4	0.015	0.019	4.0	28	160	260	210	29	3.7	1.2	700
19	F	Α	3.8	0.039	0.071	8.2	65	410	560	330	41	6.3	1.7	1,400
20	F	Α	3.5	0.004	0.009	14	75	280	310	180	17	2.0	0.40	880

性別 M: オス F: メス *: ブランク値を差し引かずに測定値とした。 ** 定量下限未満は0として算出 年令 A: 成鳥 J: 幼鳥 No.1-10は関東、No.11-20は琵琶湖の個体 : 検出下限及び定量下限は設定無し

カワウ分析結果(その2)

(湿重量当たり濃度) (試料は筋肉)

CDE	ED'9	10		4		12			4	15	16	1	8		1	9	
物質		70		4	ヘキサクロ		ヘキサン		クロル		10	- '	U	IDDT≸		J	
No.		年令	脂肪含量	ハキサクロロベンゼ ン(HCB)	HOH-	HOH-	HOH-	cis-クロルデン	trans-クロルデン	オキシクロルデン 浴	trans-ノナクロル	o,p'-DDT	p,p'-DDT	o,p'-DDE	p,p'-DDE	0, p' - DDD	0,p'-DDD
		単位	%	_						ng/g	-wet		I	l	l		I
ŧ		下限	,,,	0.003	0.005	0.009	0.008	0.007	0.005	0.04	0.02	0.008	0.02	0.006	0.02	0.009	0.009
		下限		0.008	0.02	0.03	0.03	0.03	0.02	0.2	0.04	0.03	0.04	0.02	0.07	0.03	0.03
7	フノ	ク他 範囲		0.0015 ~ 0.0091*	0 ~ 0.0059*	0 ~ 0.019*	0 ~ 0.020*	0.0030 ~ 0.0085*	0.0034 ~ 0.0085*		0.0032 ~ 0.013*				0.0018 ~0.11*		0 ~ 0.0091*
1	М	Α	3.6	12	0.34	3.2	0.08	0.31	0.06	14	0.45	ND	1.2	0.47	490	tr(0.011)	0.52
2	М	J	3.6	7.3	0.17		tr(0.024)	0.14	0.02	9.1	0.24	ND	0.55	0.02	240		0.67
3	F	Α	2.9	6.1	0.39	10	0.14	0.33	0.05	16	0.45	ND	0.99	0.06		tr(0.016)	1.7
4	F	Α	3.1	3.6	0.14	1.4	0.07	4.6	0.55	9.2	97	0.16	0.85	0.06	240		1.4
5	F	Α	4.0	6.3	0.20		tr(0.028)	0.14	0.03	2.4	0.20	ND	0.48	0.03	230	ND	0.37
6	F	Α	4.4	12	0.28	5.5	0.40	2.3	0.08	17	2.4	0.04	1.9	0.44	270		2.7
7	F	Α	5.1	7.0	0.20	0.89	0.06	0.27	0.03	13		tr(0.0087)	1.2	0.05		tr(0.011)	0.87
8	F	J	3.2	11	0.17		tr(0.018)	0.27	0.06	3.2		tr(0.0082)		tr(0.016)		tr(0.012)	0.76
9	F۱	J	2.8	14	0.24	16	0.05	3.6	0.12	190		tr(0.023)	1.3	0.13			1.1
10	F:	J	3.0	5.0	0.09		tr(0.017)	0.10	0.03	3.5	0.16	ND		tr(0.0078)	35		0.16
11	М	Α	4.6	6.1	0.80	19	0.12		tr(0.016)	9.2	0.16	ND	0.25	0.08		tr(0.011)	0.51
12	M	A	3.9	3.7	0.33	6.8	0.06		tr(0.018)	4.8	0.13	ND	0.04	0.05	300		0.27
13	M	A	4.9	8.1	0.57	15	0.11	0.32	0.04	7.5		tr(0.0092)	0.17	0.08		tr(0.024)	0.45
14 15	F	A	3.6 3.1	2.7 5.4	0.31	4.3	0.07	0.25	0.05 ND	6.0	0.22	tr(0.0097)	0.15 tr(0.032)	0.06	360	tr(0.029)	0.46
16	F	A	3.1	6.2	0.30	12	tr(0.029) 0.08		tr(0.016)	6.8	0.06	ND ND	0.11	0.03	290		
17	F	A	4.7	4.5	0.43	4.0	0.08		tr(0.016)	1.7	0.09	ND ND	0.11	0.08	290 99		0.36
18	F	A	3.4	4.5	0.37	9.0	0.08		tr(0.010)	13	0.05	ND ND		0.03	330		0.23
19	F	A	3.8	12	11	1,700			tr(0.010)		tr(0.033)	ND ND	0.07	0.07	1,100		0.27
20	F	A	3.5	5.7	0.27	7.7	0.10	0.12	0.03	5.6	0.13	ND ND		0.07		tr(0.018)	0.49
20	Г	А	ა.ა	5.7	0.27	1.1	0.04	U.12	0.03	ე.ნ	0.13	טא	0.08	0.05	220	117(0.018)	0.30

カワウ分析結果(その3)

(湿重量当たり濃度) (試料は筋肉、有機スズのみ肝臓)

SPE	ED'9	8			23	25	26	30		3	32		48	35	46	47	33	34
物質	名														芳香族:	炭化水素	有機	スズ
No.		年令	脂肪含量(筋肉)	脂肪含量 (肝臓)	ディルドリン	人プタクロル	ヘプタクロルエポキ サイド	マイレックス	トキサフェン Parlar #26	トキサフェン Parlar #50	トキサフェン Parlar #62	トキサフェン 合計**	オクタクロロスチレ ン	トリフルラリン	ベンゾフェノン	4-ニトロトルエン	トリブチルスズ	トリフェニルスズ
L.		単位	%	%	0.000	ng/g		0.000		pg/g 7	g-wet		0.000	0.0	ng/g-		4 0	
	食出 全量				0.008	0.009	0.003	0.003	4 12	21	30 90		0.002	0.2	3	3	1~2 2~4	1~2 2~4
	ラン				0.0021 ~ 0.0056*		0~0.003*	0.01	12	21	30	-	0.000	0.5	,	,	2 7	2 4
1	М	Α	3.6	4.1	7.6	ND	1.9	0.91	240	160	ND	400	0.93	ND	ND	ND	ND	3
2	М	J	3.6	3.9	1.8	ND	1.1	0.28	95		ND	110	0.40	ND	ND	ND	ND	ND
3	F	Α	2.9	4.6	6.0	ND	2.5	0.50	320	52	ND	370	0.23	ND	ND	ND	ND	2
4	F	Α	3.1	3.6		tr(0.027)	1.9	0.73	310	74	ND	380	0.21	ND	ND	ND	ND	2
5	F	Α	4.0	44	0.82	ND	0.68	0.77	1,100	240	ND	1,300	0.23	ND	ND	ND	ND	ND
6	F	Α	4.4	5.2	14	ND	4.3	0.41	290	91	ND	390	0.85	ND	ND		tr(1.6)	8
7	F	A	5.1 3.2	4.6	4.7	ND	1.8	0.37	130 53	44	ND ND	170 63	0.27	ND	ND ND	ND	ND ND	tr(1.5)
9	F	J	2.8	3.9 5.0	1.2 53	ND ND	0.56 27	0.14 2.7	1.000	tr(10) 160	250	1.500	0.28	ND ND	ND ND	ND ND	ND ND	ND ND
10	F	J	3.0	4.2	1.6	ND ND	0.46	0.10		tr(7.1)	ND	37	0.30	ND ND	ND ND	ND ND	ND ND	ND ND
11	M	A	4.6	14	1.4	ND	0.80	0.10	600	40	ND	640	0.14	ND	ND	ND ND	ND	24
12	M	A	3.9	4.2	0.81	ND ND	0.81	0.33	130		ND	150	0.40	ND ND	ND ND	ND ND	ND ND	3
13	М	Α	4.9	4.2	1.7	ND	0.79	0.21	270	48	ND	320	0.97	ND	ND	ND	ND	8
14	F	Α	3.6	5.0	1.2	ND	0.40	0.34	230	44	ND	270	0.13	ND	ND	ND	ND	7
15	F	Α	3.1	4.1	1.0	ND	0.60	0.31	150	ND	ND	160	0.27	ND	ND	ND	ND	3
16	F	Α	3.6	4.0	4.4	ND	0.93	0.19	230		ND	250	0.28	ND	ND	ND	ND	3
17	F	Α	4.7	3.8	0.65	ND	0.32	0.44	250	22	ND	270	0.23	ND	ND	ND	ND	tr(1.4)
18	F	Α	3.4	4.4	3.3	ND	1.3	0.40	190	22	ND	210	0.16	ND	ND	ND	ND	3
19	F	A	3.8	3.2	16	ND	1.9	1.0	340	37	ND	380	0.39	ND		ND	ND	3
20	F	Α	3.5	18	2.6	ND	1.1	0.37	860	78	ND	940	0.30	ND	ND	ND	ND	6

性別 M:オス F:メス *:ブランク値を差し引かずに測定値とした。 ** 検出下限未満は0として算出 年令 A:成鳥 J:幼鳥 No.1-10は関東、No.11-20は琵琶湖の個体 -:検出下限及び定量下限は設定無し

カワウ分析結果(その4)

(湿重量当たり濃度) (試料は筋肉)

SPE	ED'S	98			36		5	44	37	38	40	39	42	41	63	64	65	45
物質	名			アルキ	ールフェノ	ノール	クロ	ロフェノ	ール			フ	タル酸エ	ステル類				
No.		年令	脂脂	パー/ェムパニ/	4 - t-オクチルフェ ノール	4-n-ペンチルフェ ノール	ペンタクロロフェ ノール(PCP)	2,4-ジクロロフェ ノール	ビスフェノールA	フタル酸ジ-2-エチ ルヘキシル	フタル酸ジ-n-ブチ ル	フタル酸 ブチルベン ジル	フタル酸ジエチル	フタル酸ジシクロヘ キシル	フタル酸ジペンチル	フタル酸ジヘキシル	フタル酸ジプロピル	アジ・ビ・ン酸ジ・-2-IチI/ハキ シル
L.,		単位	%								ng/g-wet							
		下限		9	0.1	0.4	0.1	0.2	0.6	5	3	1	1	1	0.7	1	0.7	5
		下限		30	0.3	2	0.3	0.4	2	20	9	3	3	3	3	3	3	20
7:		ク値 範囲		7.4~ 19**	0 ~ 0.12**				0~0.27**	1.9~ 13**	1.2~ 4.0**	0~0.53**	0~2.1**					0 ~ 0.66**
1	M	Α	3.6	ND	ND	ND	5.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2	M	J	3.6	ND	ND	ND	1.3	ND	ND	tr(15)	tr(5.0)	ND	ND	ND	ND	ND	ND	ND
3	F	Α	2.9	ND	ND	ND	9.6	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
4	F	Α	3.1	ND	ND	ND	6.1	ND	ND		tr(5.6)	ND	ND	ND	ND	ND	ND	ND
5	F	Α	4.0	ND	ND	ND	1.2	ND	ND	tr(7.7)	tr(4.2)	ND	ND	ND	ND	ND	ND	ND
6	F	Α	4.4	ND	ND	ND	8.1	ND	ND	24	ND	ND	ND	ND	ND	ND	ND	ND
7	F	Α	5.1	ND	ND	ND	1.1	ND		tr(5.3)	13		ND	ND	ND	ND	ND	ND
8	F	J	3.2	ND	ND	ND	1.4	ND	ND		tr(6.5)	ND	ND	ND	ND	ND	ND	ND
9	F	J	2.8	ND	ND	ND	3.7	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
10	F	J	3.0	ND	ND	ND	2.4	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
11	М	Α	4.6	ND	ND	ND	1.5	ND		tr(9.8)	ND		ND	ND	ND	ND	ND	ND
12	М	Α	3.9		tr(0.10)	ND	0.5	ND		tr(5.3)	ND	ND	ND	ND	ND	ND	ND	ND
13	М	Α	4.9	ND	ND	ND	1.0	ND		tr(15)	ND	ND	ND	ND	ND	ND	ND	ND
14	F	Α	3.6	ND	ND	ND	0.6	ND		tr(16)	ND	ND	ND	ND	ND	ND	ND	ND
15	F	Α	3.1	ND	ND	ND	0.5	ND	ND	36		ND	ND	ND	ND	ND	ND	ND
16	F	Α	3.6	ND	ND	ND	0.8	ND			tr(4.4)	ND	ND	ND	ND	ND	ND	ND
17	F	A	4.7	ND	ND	ND	0.6	ND		tr(8.7)	ND	ND	ND	ND	ND	ND	ND	ND
18	F	Α	3.4	ND	ND	ND	1.1	ND		tr(7.7)	ND	ND	ND	ND	ND	ND	ND	ND
19	F	Α	3.8	ND	ND	ND	4.1	ND		tr(15)	ND	ND	ND	ND	ND	ND	ND	ND
20	F	Α	3.5	ND	ND	ND	0.9	ND	ND	tr(9.9)	ND	ND	ND	ND	ND	ND	ND	ND

性別 M:オス F:メス **:ブランク値を差し引いて測定値とした。 年令 A:成鳥 J:幼鳥 No.1-10は関東、No.11-20は琵琶湖の個体

カワウ分析結果(その1)

(脂肪重量当たり濃度) (試料は筋肉)

SPE	ED'9	8						2						
物質	名					ポリ塩化	ビフェニ	ニル類(F	CBs))				
No.	性	年令	脂肪含量	塩化、フェコル	二塩化ピカニル	三塩化ピカニル	四塩化ピアニル	五塩化ピアニル	六塩化化71二1	七塩化ピアニル	八塩化、刀二ル	九塩化どフェニル	十塩化ピアニル	PCB合計**
		単位	%						ng/g-fat					
1	М	Α	3.6	ND	0.29	6,000	19,000	26,000	31,000	11,000	1,700	190	72	95,000
2	М	J	3.6	ND	ND	1,400	6,900	11,000	14,000	3,800	570	74	25	37,000
3	F	Α	2.9	t r	0.22	690	2,700	5,800	8,700	2,200	340	54	22	21,000
4	F	Α	3.1	ND	tr	690	3,900	9,800	17,000	5,300	970	200	47	38,000
5	F	Α	4.0	ND	0.14	52	430	2,100	3,700	1,200	220	31	12	7,700
6	F	Α	4.4	ND	0.15	900	4,800	8,400	11,000	2,500	420	59	24	28,000
7	F	Α	5.1	ND	0.13	370	1,900	4,300	6,900	1,700	270	47	19	15,000
8	F	J	3.2	ND	tr	110	520	1,100	2,500	630	120	26	10	5,000
9	F	J	2.8	ND	0.21	1,100	8,200	25,000	42,000		2,000	300	140	95,000
10	F	J	3.0	ND	0.26	200	550	1,300	2,100		110	24	9.4	4,900
11	М	Α	4.6	0.1	0.2	190	1,300	8,300	20,000		4,200	240	26	65,000
12	М	Α	3.9	tr	0.2	280	1,400	5,200		11,000	1,400	170	19	27,000
13	М	Α	4.9	0.1	0.2	430	2,000	10,000	14,000		940	99	20	37,000
14	F	Α	3.6	tr	2.4	180	1,200	6,600	9,600	8,300	990	110	20	27,000
15	F	Α	3.1	0.2	0.47	220	1,600	8,900	12,000	6,300	790	100	21	30,000
16	F	Α	3.6	0.34	0.31	1,800	8,200	17,000	15,000	7,600	750	110	23	50,000
17	F	Α	4.7	t r	0.2	58	290	2,000	2,500	1,300	140	18	4.5	6,300
18	F	A	3.4	0.43	0.56	120	820	4,800	7,700	6,300	850	110	35	21,000
19	F	A	3.8	1.0	1.9	220	1,700	11,000	15,000		1,100	160 57	45	38,000
20	Г	Α	3.5	0.1	0.3	390	2,200	8,100	8,900	5,200	500	5/	11	25,000

性別 M:オス F:メス 年令 A:成鳥 J:幼鳥 *: ブランク値を差し引かずに測定値とした。 No.1-10は関東、No.11-20は琵琶湖の個体 ** 定量下限未満は0として算出 - : 検出下限及び定量下限は設定無し

カワウ分析結果(その2)

(脂肪重量当たり濃度) (試料は筋肉)

ODE	-010	^	-			40				45	40	4.				•	
SPEE		8		4	. + 4 5 7	12	. +44.	1	4	15	16	18	3	DDT:		9	
物質	挡				ヘキザクレ	コロシクロ	ヘキザン	1	クロル	アノ狩				DDT	漢 貝		
No.	性	年令	脂肪含量	ヘキサクロロベンゼ ン(HCB)	-нсн	-нсн	-нсн	cis-クロルデン	trans-クロルデン	オキシクロルデン	trans-ノナクロル	O,p'-DDT	p,p'-DDT	o,p'-DDE	p,p'-DDE	O,p'-DDD	p,p'-DDD
	į	単位	%							ng/g	j-fat						
1	М	Α	3.6	340	9.3	87	2	8.5	2	380	12	ND	33	13	13,000	tr	14
2	М	J	3.6	210	4.7	39	tr	3.9	0.7	260	6.6	ND	15	0.7	6,700	ND	19
3	F	Α	2.9	210	14	350	4.8	11	2	550	16	ND	35	2	5,000	tr	60
4	F	Α	3.1	120	4.3	45	2	150	17	290	3,100	5.0	27	2	7,600	5.4	44
5	F	Α	4.0	160	4.9	38	tr	3.4	0.8	61	5.0	ND	12	0.7	5,700	ND	9.3
6	F	Α	4.4	280	6.5	130	9.2	52	2	390	54	0.8	43	10		2	61
7	F	Α	5.1	140	3.8	17	1	5.3	0.6	250	9.2	tr	23	0.9	2,700	tr	17
8	F	J	3.2	340	5.2	130	t r	8.4	2	99	14	tr	27	tr	1,000	tr	24
9	F	J	2.8	510	8.6	580	2	130	4.4	6,900	83	tr	46	4.7		1	40
10	F	J	3.0	160	3	60	tr	3.2	1	110	5.4	ND	8.4	tr	1,100	ND	5.1
11	М	Α	4.6	130	17	410	2.6	2.4	tr	200	3.5	ND	5.4	2	13,000	tr	11
12	М	Α	3.9	96	8.6	170	1	2.8	tr	120	3.3	ND	1	1	7,800	tr	6.9
13	М	Α	4.9	160	12	300	2.1	6.5	0.8	150	6.6	tr	3.4	2	5,000	tr	9.1
14	F	Α	3.6	74	8.7	120	2	7.0	1	170	6.2	tr	4.3	2	4,200	tr	13
15	F	Α	3.1	180	9.7	590	tr	tr	ND	220	2	ND	tr		12,000	ND	3.4
16	F	Α	3.6	170	12	340	2	3.1	tr	190	3	ND	3.1	2	8,000	ND	9.9
17	F	Α	4.7	96	7.8	85	1	0.9	tr	35	1	ND	2.6	0.6	2,100	ND	4.8
18	F	Α	3.4	120	13	270	2	2	tr	380	1	ND	2	2	9,800	ND	7.8
19	F	Α	3.8	320	290	45,000	2.7	tr	tr	420	tr	ND	4.7		29,000	ND	13
20	F	Α	3.5	160	7.9	220	1	3.6	0.9	160	3.7	ND	2	2	6,400	tr	11

性別 M:オス F:メス 年令 A:成鳥 J:幼鳥 *:ブランク値を差し引かずに測定値とした。 No.1-10は関東、No.11-20は琵琶湖の個体

カワウ分析結果(その3)

(脂肪重量当たり濃度) (試料は筋肉、有機スズのみ肝臓)

SPE	ED'9	8			23	25	26	30		3	32		48	35	46	47	33	34
物質	名														芳香族	炭化水素	有機.	スズ
No.		年令	脂肪含量(筋肉)	脂肪含量(肝臓)	ディルドリン	人プタクロル	ヘプタクロルエポキ サイド	マイレックス	トキサフェン Parlar #26	トキサフェン Parlar #50	トキサフェン Parlar #62	トキサフェン 合計**	4 <i>797</i> 007 <i></i> 50	トリフルラリン	ベンゾフェノン	4-ニトロトルエン	トリブチルスズ	トリフェニルスズ
L.		単位	%	%								-fat						
1	М	Α	3.6	4.1	210	ND	51	25	6.5	4.4	ND		26	ND	ND	ND	ND	70
2	М	J	3.6	3.9	50	ND	32	7.8	2.7	t r	ND	3.0	11	ND	ND	ND	ND	ND
3	F	Α	2.9	4.6	210	ND	86	18	11	1.8	ND	13	8.0	ND	ND	ND	ND	50
4	F	Α	3.1	3.6	350	tr	60	23	10	2.4	ND	12	6.6	ND	ND	ND	ND	60
5	F	Α	4.0	44	20	ND	17	19	27	5.9	ND	33	5.7	ND	ND	ND	ND	ND
6	F	Α	4.4	5.2	310	ND	97	9.3	6.7	2.1	ND	8.8		ND	ND	ND	tr	200
7	F	Α	5.1	4.6	92 37	ND	35	7.1	2.5	0.85	ND	3.4	5.2	ND	ND	ND	ND	tr
8	F	J	3.2	3.9	37	ND	17	4.2	1.6	tr	ND	2.0	8.6	ND	ND	ND	ND	ND
9	F	J	2.8	5.0	1,900	ND	970	96	38	5.6	9.0	52	18	ND	ND	ND	ND	ND
10	F	J	3.0	4.2	51	ND	15	3.2	0.97	tr	ND	1.2	4.7	ND	ND	ND	ND	ND
11	М	Α	4.6	14	30	ND	17	22	13	0.86	ND	14	10	ND	ND	ND	ND	170
12	М	Α	3.9	4.2	21 35	ND	21	6.7	3.4	tr	ND	3.8	3.9	ND	ND	ND	ND	70
13	М	Α	4.9	4.2	35	ND	16	4.3	5.6	0.98	ND	6.5	20	ND	ND	ND	ND	200
14	F	Α	3.6	5.0	34	ND	11	9.5	6.4	1.2	ND	7.6	3.7	ND	ND	ND	ND	100
15	F	Α	3.1	4.1	33	ND	19	10	4.9	ND	ND	5.1	8.6	ND	ND	ND	ND	60
16	F	Α	3.6	4.0	120	ND	26	5.2	6.3	t r	ND	6.9	7.9	ND	ND	ND	ND	80
17	F	Α	4.7	3.8	14	ND	6.8	9.3	5.3	0.46	ND	5.8	4.9	ND	ND	ND	ND	tr
18	F	Α	3.4	4.4	96	ND	38	12	5.5	0.64	ND	6.1	4.8	ND	ND	ND	ND	80
19	F	Α	3.8	3.2	420	ND	51	26	9.0	0.98	ND	10	10	ND	tr	ND	ND	80
20	F	Α	3.5	18	76	ND	32	11	25	2.2	ND	27	8.8	ND	ND	ND	ND	30

性別 M:オス F:メス 年令 A:成鳥 J:幼鳥 *: ブランク値を差し引かずに測定値とした。 No.1-10は関東、No.11-20は琵琶湖の個体 ** 検出下限未満は0として算出 - : 検出下限及び定量下限は設定無し

カワウ分析結果(その4)

(脂肪重量当たり濃度) (試料は筋肉)

SPEE	D'98	3			36		5	44	37	38	40	39	42	41	63	64	65	45
物質	名			アルキ	・ルフェノ	/ール	クロ	ロフェノ	ール			7	7タル酸コ	こステル類	Į			
No.		年令	脂肪含量	バーノエフエノール	4 - t-オクチルフェ ノール	4-n-ペンチルフェ ノール	ペンタクロロフェ ノール(PCP)	2,4-ジクロロフェ ノール	ビスフェノールA	フタル酸ジ-2-エチ ルヘキシル	フタル酸ジ-n-ブチ ル	フタル酸プチルベン ジル	フタル酸ジエチル	フタル酸ジシクロヘ キシル	フタル酸ジペンチル	フタル酸ジヘキシル	フタル酸ジプロピル	アジ・ヒ° ン酸シ゛- 2-1チルペキ シル
	È	单位	%								ng/g-wet							
1	М	A	3.6	ND	ND	ND	160	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2	M	J	3.6	ND	ND	ND	36	ND	ND	tr	tr	ND	ND	ND	ND	ND	ND	ND ND
3	F	Α	2.9	ND	ND	ND	340	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4	F	Α	3.1	ND	ND	ND	190	ND	ND	ND	tr	ND	ND	ND	ND	ND	ND	ND
5	F	A	4.0	ND ND	ND	ND	29	ND ND	ND	tr	tr	ND ND	ND	ND	ND	ND	ND ND	ND ND
6	F	A	4.4 5.1	ND ND	ND ND	ND ND	180 20	ND ND	ND ND	540	ND 240	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
8	F	A	3.2	ND ND	ND ND	ND ND	42	ND ND	ND ND	1.800	240 t r	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
9	F	J	2.8	ND ND	ND ND	ND ND	130	ND ND	ND ND	1,800 ND	ND.	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
10	F	J	3.0	ND ND	ND ND	ND ND	78	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
11	M	A	4.6	ND	ND	ND ND	32	ND ND	ND ND	tr	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND
12	M	A	3.9	ND ND	t r	ND ND	10	ND ND	ND ND	tr	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
13	M	A	4.9	ND	ND	ND	20	ND ND	ND ND	tr	ND.	ND ND	ND ND	ND	ND	ND ND	ND ND	ND
14	F	A	3.6	ND	ND	ND	20	ND	ND	tr	ND	ND.	ND	ND	ND	ND.	ND	ND
15	F	A	3.1	ND	ND	ND	20	ND	ND	1,200	ND	ND.	ND	ND	ND	ND.	ND	ND ND ND
16	F	A	3.6	ND	ND	ND	20	ND	ND	t r	tr	ND	ND	ND	ND	ND	ND	ND
17	F	A	4.7	ND	ND	ND	10	ND	ND	tr	ND	ND	ND	ND	ND	ND	ND	ND ND ND
18	F	A	3.4	ND	ND	ND	32	ND	ND	tr	ND	ND	ND	ND	ND	ND	ND	ND
19	F	A	3.8	ND	ND	ND	110	ND	ND	tr	ND	ND	ND	ND	ND	ND	ND	ND
20	F	Α	3.5	ND	ND	ND	30	ND	ND	tr	ND	ND	ND	ND	ND	ND	ND	ND

性別 M:オス F:メス 年令 A:成鳥 J:幼鳥 **: ブランク値を差し引いて測定値とした。 No.1-10は関東、No.11-20は琵琶湖の個体

ハシブトガラス分析結果(その1)

(湿重量当たり濃度) (試料は筋肉)

SPE	ED'9	8						2						
物質	名					ポリ塩化	ビフェニ	ニル類(F	PCBs))				
No.	性	年令	脂肪含量	塩化プル	二塩化ピカゴル	三塩化ピカゴル	四塩化ピカニル	五塩化ピカゴル	六塩化ビルコ	七塩化ピカニル	八塩化ピアニル	九塩化ピアニル	十塩化ピカゴル	PCB合計**
		単位	%					n	g/g-wet	'			•	
	食出.	下限		0.002	0.003	0.002	0.002	0.003	0.003	0.003	0.003	0.002	0.001	-
Ī	E量	下限		0.006	0.009	0.006	0.009	0.009	0.009	0.009	0.009	0.006	0.003	-
ブラ		ク値 範囲				0 ~ 0.012*	0 ~ 0.047*	0~0.11*	0.0016~ 0.12*	0 ~ 0.058*	0 ~ 0.012*			
1	М	Α	3.9	ND	0.045	0.013	1.5	6.3	30	14	2.9	0.58	0.30	56
2	М	Α	2.9	ND	0.019	0.008	0.30	2.2	21	11	2.3	0.33	0.15	37
3	М	J	3.4	ND	0.012	0.014	0.43	1.9	8.7	3.7	0.69	0.11	0.045	16
4	М	J	1.7	ND	0.017	0.010	0.64	4.7	32	21	5.1	1.0	0.48	65
5	F	A	2.3	ND	0.015	0.018	0.54	3.4	24	13	2.9		0.17	44
6	F	A	1.9	ND	0.014	0.025	1.3	9.9	57	39	9.3	1.6	0.65	120
7	F	A	4.2	ND	0.030	0.007	0.32	4.5	28	20	4.4	0.39	0.15	58
8	F	A	2.5	ND	0.022	0.016	0.75	7.3	74	40	9.0	1.3	0.53	130
9	F	J	4.1	ND	0.043	0.025	1.7	5.1	17	5.8	1.0		0.11	31
10	F	J	1.8	ND	0.012	tr(0.004)	0.72	3.9	24	11	2.5	0.43	0.22	43

性別 M:オス F:メス 年令 A:成鳥 J:幼鳥

*:ブランク値を差し引かずに測定値とした。

** 定量下限未満は0として算出 - :検出下限及び定量下限は設定無し

ハシブトガラス分析結果(その2)

(湿重量当たり濃度) (試料は筋肉)

SPE		8		4		12		1	14	15	16	1	18		19	9	
物質	名				ヘキサクロ	ロロシクロ	1ヘキサン		クロルテ	ジ類				DDT?	類		
No.	性	年令	脂肪含量	ヘキサクロロベンゼ ン(HCB)	-нсн	- НСН	нон-	cis-クロルデン	trans-クロルデン	オキシクロルデン	trans-ノナクロル	o,p'-DDT	p,p'-DDT	o,p'-DDE	p,p'-DDE	0, p' -DDD	0, p', c
	į	単位	%							ng/g-w	/et						
柞	食出	下限		0.005 ~ 0.006	0.008 ~ 0.01	0.02	0.02	0.01 ~ 0.02	0.008 ~ 0.01	0.06~ 0.08	0.03 ~ 0.04	0.02	0.03~ 0.04	0.009 ~ 0.02	0.03 ~ 0.04	0.02	0.02
Ī	È量	下限		0.02	0.03 ~ 0.04	0.05 ~ 0.06	0.05 ~ 0.06	0.05 ~ 0.06	0.03 ~ 0.04	0.3~ 0.4	0.06~	0.05 ~ 0.06	0.06~ 0.08	0.03 ~ 0.04	0.1~ 0.2	0.05 ~ 0.06	0.05 ~ 0.06
ブラ		ク値 範囲		0.0015 ~ 0.0091*	0 ~ 0.0059*	0 ~ 0.019*	0 ~ 0.020*	0.0030 ~ 0.0085*	0.0034 ~ 0.0085*		0.0032 ~ 0.013*				0.0018 ~0.11*		0 ~ 0.0091*
1	М	Α	3.9	0.99	0.04	2.5	0.12	tr(0.037)	ND	7.6	5.1	ND	0.40	ND	35	ND	1.2
2	М	Α	2.9	0.81	0.04	0.62	0.09	tr(0.020)	ND	2.7	1.3	ND	0.07	ND	4.4	ND	0.32
3	М	J	3.4	0.99	0.09	5.6	0.10	tr(0.034)	tr(0.0084)	4.5	1.9	ND	0.19	ND	16	ND	1.2
4	М	J	1.7		tr(0.019)	1.3			tr(0.020)	18	5.0		tr(0.045)	ND	49	ND	1.5
5	F	Α	2.3		tr(0.038)	1.1	0.07	ND	ND	6.3	1.0	ND	0.23	ND	96	ND	1.7
6	F	Α	1.9	1.8	0.13	4.4			tr(0.011)	13		ND		tr(0.012)	95	ND	3.3
7	F	A	4.2	1.2	0.05	1.8			tr(0.013)	6.4	1.7	ND	0.17	ND	19	ND	1.9
8	F	A	2.5	1.5	0.05	1.5			tr(0.014)	19	3.6	ND		tr(0.012)	72	ND	2.5
9	F	J	4.1	0.92	0.09	1.2			tr(0.017)	4.6		ND	0.32	ND	19		1.0
10	F	J	1.8	1.2	tr(0.030)	1.1	tr(0.047)	tr(0.028)	tr(0.017)	4.1	2.7	ND	tr(0.057)	ND	16	ND	1.7

*:ブランク値を差し引かずに測定値とした。

ハシブトガラス分析結果(その3)

(湿重量当たり濃度) (試料は筋肉、有機スズのみ肝臓)

SPEE	ED'9	8			23	25	26	30		32			48	35	46	47	33	34
物質	名														芳香族》	炭化水素	有機	スズ
No.		年令	脂肪含量(筋肉)	脂肪含量(肝臓)	ビリルドリン	ペプタクロル	ヘプタクロルエポキ サイド	マイレックス	トキサフェン Parlar #26	トキサフェン Parlar #50	トキサフェン Varlar #62	トキサフェン 合計**	オクタクロロスチレン	くりきれていろ	ベイエレふベシ	ベエルイロイニ-4	<u> </u>	トリフェニルスズ
	į	単位	%	%		ng/g				pg/g-	wet				ng/g-	wet		
村	食出	下限			0.02	0.02	0.005 ~ 0.006	0.005 ~ 0.006	1	2	8	-	0.003 ~ 0.004	0.3~0.4	2	2	2	2
Ä	E量	下限			0.05 ~ 0.06	0.05~ 0.06	0.02	0.02	3	6	24	-	0.009 ~ 0.02	0.8~1	6	6	4	4
ブラ		ク値 範囲			0.0021 ~ 0.0056*		0~0.0023*											
1	М	Α	3.9	5.1	1.9	ND	2.3	0.94	620	610	110	1,300	0.05	ND	ND	ND	ND	ND
2	М	Α	2.9	4.9	0.50	ND	1.8	1.1	180	210	49	440	0.020	ND	ND		ND	ND
3	M	J	3.4	5.0	1.3	ND	0.98	0.30	390	250	ND		0.029		ND		ND	ND
4	М	J	1.7	4.3	1.4	ND	2.8	2.1	810	370	ND		0.044	ND	ND		ND	ND
5	F	Α	2.3	4.5	0.74	ND	1.7	1.0	560	320	50		0.03		ND		ND	ND
6	F	Α	1.9	3.5	5.4	ND	9.1	4.2	1,400	730	ND		0.080		ND		ND	ND
7	F	Α	4.2	9.4	5.7	ND	4.5	0.75	410	210			0.04		ND		ND	ND
8	F	Α	2.5	4.1	3.7	ND	3.6	2.1	1,400	890	ND		0.072	ND	ND		ND	ND
9	F	J	4.1	7.3	1.3	ND	1.2	0.27	240	210	ND		0.033		ND		ND	ND
10	F	J	1.8	5.1	1.9	ND	1.0	1.0	690	470	ND	1,200	0.05	ND	ND	ND	ND	ND

性別 M:オス F:メス 年令 A:成鳥 J:幼鳥

*:ブランク値を差し引かずに測定値とした。

** 検出下限未満は0として算出 - :検出下限及び定量下限は設定無し

ハシブトガラス分析結果(その4)

(湿重量当たり濃度) (試料は筋肉)

SPE	ED'9	8			36		5	44	37	38	40	39	42	41	63	64	65	45
物質	5名			アルコ	キルフェ	ノール	クロ	ロフェノ	ール				7タル酸コ	[ステル類	顉			
No.	性	年令	脂肪含量	/ニルフェノール	4 - t-オクチルフェ ノール	4-n-ペンチルフェ ノール	ペンタクロロフェ ノール(PCP)	2,4-ジクロロフェ ノール	ピスフェノールA	フタル酸ジ-2-エチ ルヘキシル	フタル酸ジ-n-ブチ ル	フタル酸プチルベン ジル	フタル酸ジエチル	フタル酸ジシクロヘ キシル	フタル酸ジペンチル	フタル酸ジヘキシル	フタル酸ジプロピル	アジ・ピ゜ン酸ジ゛-2-エチルヘキ シル
		単位	%							ng.	/g-wet							
		下限		20	0.2	0.6~0.8	0.2	0.3~0.4	0.9~2	7 ~ 10	5~6	2	2	2	1~2	2	1~2	7 ~ 10
		下限		50 ~ 60	$0.5 \sim 0.6$	3~4	0.5~0.6	0.6~0.8	3~4	30 ~ 40	20	5~6	5~6	5~6	5~6	5~6	5~6	30 ~ 40
ブ	ランの	ク値 範囲		7.4~ 19**	0 ~ 0.12**				0~0.27**	1.9~ 13**	1.2~ 4.0**	0 ~ 0.53**	0~2.1**					0 ~ 0.66**
1	М	Α	3.9	ND	ND	ND	ND	ND		tr(17)		ND	ND	ND	ND	ND	ND	ND
2	М	Α	2.9	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND
3	M	J	3.4	ND	ND	ND	ND	ND		tr(12)	ND	ND	ND	ND	ND	ND	ND	ND
4	М	J	1.7	tr(25)	ND	ND	ND	ND		tr(19)	ND	ND	ND	ND	ND	ND	ND	ND ND
5	F	Α	2.3	ND	ND	ND	ND	ND		tr(18)	ND	ND	ND	ND	ND	ND	ND	ND
6	F	Α	1.9	ND	ND	ND	ND	ND		tr(20)	ND	ND	ND	ND	ND	ND	ND	ND
7	F	A	4.2	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND
8	F	A	2.5	ND	ND	ND	ND	ND		tr(10)		ND	ND	ND	ND	ND	ND	ND
9	F	J	4.1	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND
10	F	J	1.8	ND	ND	ND	ND	ND	ND	tr(12)	ND	ND	ND	ND	ND	ND	ND	ND

性別 M:オス F:メス 年令 A:成鳥 J:幼鳥

**:ブランク値を差し引いて測定値とした。

ハシブトガラス分析結果(その1)

(脂肪重量当たり濃度) (試料は筋肉)

SPEI	ED'9	8						2						
物質	名					ポリ塩化	´ビフェニ	- ル類(F	CBs))				
No.	性	年令	脂肪含量	塩化どフェニル	二塩化ピカゴル	三塩化ピカゴル	四塩化ピフェル	五塩化ピフェル	六塩化ピカゴル	七塩化ピカゴル	八塩化7元小	九塩化ピアゴル	十塩化ピアニル	PCB合計**
	į	単位	%					n	g/g-fat		•	•	•	
1	М	٨	2 0	į										
	IVI	Α	3.9	ND	1.2	0.33	38	160	770	370	76	15	7.7	1,400
2	M	A	2.9	ND ND	1.2 0.65	0.33	38 10	160 77	770 710	370 380	76 79	15 11	7.7 5.3	1,400 1,300
3														
_	M M M		2.9 3.4 1.7	ND ND ND	0.65 0.34 1.0	0.26 0.40 0.61	10 13 38	77	710	380	79	11 3.3 60	5.3 1.3 28	1,300
3	M M M		2.9 3.4	ND ND ND	0.65 0.34	0.26 0.40	10 13 38 24	77 57	710 260	380 110	79 21	11 3.3 60 20	5.3 1.3 28 7.5	1,300 460 3,900 1,900
3 4 5 6	M M M F	A J J	2.9 3.4 1.7 2.3 1.9	ND ND ND ND	0.65 0.34 1.0 0.65 0.74	0.26 0.40 0.61	10 13 38 24 69	77 57 280 150 530	710 260 1,900 1,000 3,100	380 110 1,300 560 2,100	79 21 310	11 3.3 60 20 88	5.3 1.3 28 7.5 35	1,300 460 3,900 1,900 6,400
3 4 5 6 7	M M F F	A J J A	2.9 3.4 1.7 2.3 1.9 4.2	ND ND ND ND ND	0.65 0.34 1.0 0.65 0.74 0.71	0.26 0.40 0.61 0.78 1.4 0.17	10 13 38 24 69 7.8	77 57 280 150 530	710 260 1,900 1,000 3,100 680	380 110 1,300 560 2,100 470	79 21 310 120 500 110	11 3.3 60 20 88 9.3	5.3 1.3 28 7.5 35 3.5	1,300 460 3,900 1,900 6,400 1,400
3 4 5 6 7 8	M M M F F	A J J A	2.9 3.4 1.7 2.3 1.9 4.2 2.5	ND ND ND ND ND ND	0.65 0.34 1.0 0.65 0.74 0.71 0.88	0.26 0.40 0.61 0.78 1.4 0.17 0.63	10 13 38 24 69 7.8 30	77 57 280 150 530 110 290	710 260 1,900 1,000 3,100 680 2,900	380 110 1,300 560 2,100 470 1,600	79 21 310 120 500 110 360	11 3.3 60 20 88 9.3 53	5.3 1.3 28 7.5 35 3.5 21	1,300 460 3,900 1,900 6,400 1,400 5,300
3 4 5 6 7	M M F F	A J J A A	2.9 3.4 1.7 2.3 1.9 4.2	ND ND ND ND ND	0.65 0.34 1.0 0.65 0.74 0.71	0.26 0.40 0.61 0.78 1.4 0.17	10 13 38 24 69 7.8	77 57 280 150 530	710 260 1,900 1,000 3,100 680	380 110 1,300 560 2,100 470	79 21 310 120 500 110	11 3.3 60 20 88 9.3	5.3 1.3 28 7.5 35 3.5	1,300 460 3,900 1,900 6,400 1,400

性別 M:オス F:メス 年令 A:成鳥 J:幼鳥 *:ブランク値を差し引かずに測定値とした。

** 定量下限未満は0として算出 - : 検出下限及び定量下限は設定無し

ハシブトガラス分析結果(その2)

(脂肪重量当たり濃度) (試料は筋肉)

	ED'9	98		4		12		1	4	15	16	1	18		19	9	
物貿	名				ヘキサクロ	ロロシクロ	1ヘキサン		クロルテ	シ類				DDT?	類		
No.	性	年令	脂肪含量	ヘキサクロロベンゼ ン(HCB)	- нсн	- нсн	- нсн	cis-クロルデン	trans-クロルデン	オキシクロルデン	trans-ノナクロル	0,p'-DDT	p,p'-DDT	o,p'-DDE	p,p'-DDE	0,p'-DDD	000-'q,q
		単位	%														
		ᆂ	/0							ng/g-f	at						
1	М	A	3.9	26	1	64	3.1	tr	ND	ng/g-f 200		ND	10	ND	900	ND	31
2				26 28	1	64 21	3.1	tr tr	ND ND		130	ND ND	10 2.5	ND ND	900 150		31 11
2		Α	3.9		1 1 3					200	130 44					ND	35
_	M	A	3.9 2.9	28	1 3	21	3	tr	ND tr tr	200 93	130 44 56	ND	2.5 5.8 tr	ND ND ND	150	ND ND	35
3	M M M	A A J	3.9 2.9 3.4	28 29	1 3 t r	21 160	3 2.9	tr tr tr	ND t r	200 93 130	130 44 56 300	ND ND	2.5 5.8	ND ND ND	150 470 2,900	ND ND ND	31 11 35 90 72
3	M M M M F	A A J J	3.9 2.9 3.4 1.7	28 29 73 40 95	1 3 t r	21 160 76	3 2.9 4	tr tr tr	ND tr tr	200 93 130 1,000 270 720	130 44 56 300 43 300	ND ND ND ND	2.5 5.8 tr 10 6.8	ND ND ND ND	150 470 2,900 4,200 5,100	ND ND ND ND	35 90 72 180
3 4 5 6 7	M M M F F	A A J J	3.9 2.9 3.4 1.7 2.3 1.9 4.2	28 29 73 40 95 29	1 3 tr tr 7.0	21 160 76 46 240 43	3 2.9 4 3	tr tr tr ND	ND tr tr ND	200 93 130 1,000 270 720 150	130 44 56 300 43 300 40	ND ND ND ND ND	2.5 5.8 tr 10 6.8 4.0	ND ND ND ND	150 470 2,900 4,200 5,100 460	ND ND ND ND ND	35 90 72 180 44
3 4 5	M M M F F	A A J J A A	3.9 2.9 3.4 1.7 2.3 1.9	28 29 73 40 95 29 60	1 3 tr tr 7.0 1	21 160 76 46 240 43 60	3 2.9 4 3 12 2.4 4.0	tr tr tr ND tr	ND tr tr ND tr	200 93 130 1,000 270 720 150 740	130 44 56 300 43 300 40 140	ND ND ND ND ND ND	2.5 5.8 tr 10 6.8 4.0 4.4	ND ND ND ND tr ND	150 470 2,900 4,200 5,100	ND ND ND ND ND ND	35 90 72 180 44 100
3 4 5 6 7	M M M F F	A A J J A A	3.9 2.9 3.4 1.7 2.3 1.9 4.2	28 29 73 40 95 29	1 3 tr tr 7.0	21 160 76 46 240 43	3 2.9 4 3 12 2.4	tr tr tr ND tr	ND tr tr ND tr	200 93 130 1,000 270 720 150	130 44 56 300 43 300 40 140	ND ND ND ND ND	2.5 5.8 tr 10 6.8 4.0	ND ND ND ND tr	150 470 2,900 4,200 5,100 460	ND ND ND ND ND ND	35 90 72 180 44

性別 M:オス F:メス 年令 A:成鳥 J:幼鳥

*:ブランク値を差し引かずに測定値とした。

ハシブトガラス分析結果(その3)

(脂肪重量当たり濃度) (試料は筋肉、有機スズのみ肝臓)

SPE		98			23	25	26	30		32			48	35	46	47	33	34
物貿	名														芳香族》	比化水素	有機	スズ
No.	性	年令	脂肪含量(筋肉)	脂肪含量(肝臓)	ディルドリン	ペプタクロル	ヘプタクロルエボキ サイド	マイレックス	トキサフェン Parlar #26	トキサフェン Parlar #50	トキサフェン Parlar #62	トキサフェン 合計**	オクタクロロスチレン	トリフルラリン	ベイエとがべか	4-ニトロトルエン	トリブチルスズ	トリフェニルスズ
		単位	%	%							ng/g-f	at						
1	M	Α	3.9	5.1	49	ND	59	24	16	16	2.7	35	1	ND	ND	ND	ND	ND
2	M	Α	2.9	4.9	17	ND	61	38	6.3	7.2	1.7	15	0.70	ND	ND	ND	ND	ND
3	M	J	3.4	5.0	37	ND	29	8.9	12	7.5	ND	19	0.87	ND		ND	ND	ND
4	M	J	1.7	4.3	86	ND	170	130	48	22	ND	70	2.6	ND		ND	ND	ND
5	F	Α	2.3	4.5	32	ND	72	46	24	14	2.2	40	1	ND		ND	ND	ND
6	F	Α	1.9	3.5	290	ND	490	230	73	39	ND	110	4.3	ND	ND	ND	ND	ND
7	F	Α	4.2	9.4	140	ND	110	18	10	5.0	ND	15	0.9	ND	ND	ND	ND	ND
8	F	Α	2.5	4.1	150	ND	140	84	56	35	ND	91	2.9	ND	ND	ND	ND	ND
9	F	J	4.1	7.3	31	ND	29	6.6	5.9	5.1	ND	11	0.81	ND	ND	ND	ND	ND
10	F	J	1.8	5.1	100	ND	55	56	37	25	ND	63	3	DN	ND	ND	ND	ND

性別 M:オス F:メス 年令 A:成鳥 J:幼鳥 *:ブランク値を差し引かずに測定値とした。

** 検出下限未満は0として算出 - : 検出下限及び定量下限は設定無し

ハシブトガラス分析結果(その4)

(脂肪重量当たり濃度) (試料は筋肉)

SPEE	D'9	98			36		5	44	37	38	40	39	42	41	63	64	65	45
物質	名			アルコ	キルフェ.	ノール	クロ	ロフェノ	ール				タル酸コ	[ステル類	Į.			
No.	性	年令	脂肪含量	バーノエフェノール	4 - t-オクチルフェ ノール	4-n-ペンチルフェ ノール	ペンタクロロフェ ノール(PCP)	2,4-ジクロロフェ ノール	ピスフェノールA	フタル酸ジ-2-エチ ルヘキシル	フタル酸ジ-n-ブチ ル	フタル酸ブチルベン ジル	フタル酸ジエチル	フタル酸ジシクロヘ キシル	フタル酸ジペンチル	フタル酸ジヘキシル	フタル酸ジプロピル	アジ・ピ ン酸シ・-2-エチルヘキ シル
		単位	%							ng	/g-fat							
1	М	Α	3.9	ND	ND	ND	ND	ND	ND	tr	ND	ND	ND	ND	ND	ND	ND	ND
2	М	Α	2.9	ND	ND	ND	ND	ND	ND	2,200	ND	ND	ND	ND	ND	ND	ND	ND
3	М	J	3.4	ND	ND	ND	ND	ND	ND	tr	ND		ND	ND	ND	ND	ND	ND
4	М	J	1.7	tr	ND	ND	ND	ND	ND	tr	ND	ND	ND	ND	ND	ND	ND	ND
5	F	Α	2.3	ND	ND	ND	ND	ND	ND	tr	ND	ND	ND	ND	ND	ND	ND	ND
6	F	Α	1.9	ND	ND	ND	ND	ND	ND	tr	ND	ND	ND	ND	ND	ND	ND	ND
7	F	Α	4.2	ND	ND	ND	ND	ND	ND	1,000	ND	ND	ND	ND	ND	ND	ND	ND
8	F	Α	2.5	ND	ND	ND	ND	ND	ND	tr	ND	ND	ND	ND	ND	ND	ND	ND
9	F	J	4.1	ND	ND	ND	ND	ND	ND	1,000	ND	ND	ND	ND	ND	ND	ND	ND
10	F	J	1.8	ND	ND	ND	ND	ND	ND	tr	ND	ND	ND	ND	ND	ND	ND	ND

性別 M:オス F:メス 年令 A:成鳥 J:幼鳥 **:ブランク値を差し引いて測定値とした。

スナメリ分析結果(その1)

(湿重量当たり濃度) (試料は脂肪)

SPE	D'9	8						2						
物質	名					ポリ塩	化ビフュ	ニニル類	(PC	Bs)				
No.	性	年令 (オ)	脂肪含量	塩化パンコル	二塩化ピカゴル	三塩化ピカゴル	四塩化ピフェル	五塩化ピアゴル	六塩化ピカゴル	七塩化ピカゴル	八塩化7元小	九塩化ピアゴル	十塩化、フェル	PCB合計**
		単位	%			<u> </u>			ng/g-we	t				
	検出			0.02	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.03	0.02	-
	定量			0.09	0.1	0.09	0.1	0.1	0.1	0.1	0.1	0.09	0.05	-
ブ		/ク値)範囲				0 ~ 0.012*	0 ~ 0.047*	0 ~ 0.11*	0.0016 ~0.12*	0 ~ 0.058*	0 ~ 0.012*			
1	М	10	78	ND	3.3	100			26,000	17,000	2,500	110		63,000
2	М	6	75	ND	1.7	130			19,000	17,000	3,100	160		52,000
3	M	-	75	tr(0.06)	3.7	270	2,900		13,000	7,600	1,400	66		35,000
4	M	0	69	ND	3.4	100	900	1,800		950	80	8.7	2.4	
5	F	-	86	tr(0.02)	3.9	170	1,500	4,900		3,000	390	16		17,000
6	F	-	93	ND	6.2	250	2,500		10,000	3,900	540	18		26,000
7	U	9	78	tr(0.04)	3.4	140	750	1,300	1,700	1,500	820	75	18	
9	U	-	13	ND ND	0.9 1.1	130	960	2,400 5,000	1,900	870 5,700	220 960	29	16 11	
10	U	H	80 38	ND ND	2.7	68 110		3,100		1,900	320	54 20		22,000 10,000

性別 M:オス F:メス U:不明
-:測定せず *:プランク値を差し引かずに測定値とした。

** 定量下限未満は0として算出 - : 検出下限及び定量下限は設定無し

スナメリ分析結果(その2)

(湿重量当たり濃度) (試料は脂肪)

	ED'9	8		4		12		1	4	15	16	1	8			19	
物質	名				ヘキサク	ロロシクロ	Iヘキサン		クロル	デン類				DD	T類		
No.	性	年令 (才)	脂肪含量	(80H)ぐ みベシロロぐチキ〜	нон-	-нсн	нон-	′だれロク-siɔ	trans-クロルデン	オキシクロルデン	11□6+1-tans-	T00-'q,o	p,p'-DDT	o,p'-DDE	p,p'-DDE	0,p'-DDD	000-'q,q
		単位	%							ng/g·	-wet						
	検出	下限		0.03~	0.05 ~ 0.09	0.09~	0.08~	0.07 ~ 0.2	0.05 ~ 0.09	0.4~0.7	0.2~	0.08~	0.2~ 0.4	0.06~ 0.2	0.2~ 0.4	0.09 ~ 0.2	0.09 ~ 0.2
	定量	下限		0.08~	0.2~ 0.4	0.3~ 0.6	0.3~ 0.6	0.3~ 0.6	0.2~	2~4	0.4~ 0.7	0.3~ 0.6	0.4~ 0.7	0.2~ 0.4	0.7~2	0.3~ 0.6	0.3~ 0.6
ブ		′ク値)範囲		0.0015 ~ 0.0091*	0 ~ 0.0059*	0 ~ 0.019*	0 ~ 0.020*	0.0030 ~ 0.0085*	0.0034 ~ 0.0085*		0.0032 ~ 0.013*				0.0018 ~0.11*		0 ~ 0.0091*
1	M	10	78	140	5.4	1,000	2.2	66	2.3	930	4,100	890	850	280	18,000	190	1,600
2	M	6	75	140	3.7	450	1.9	58	2.1	720	4,000	1,100	1,500				
3	M	-	75	180	6.0	100	2.7	150	4.9	370		280	1,000		4,800		
4	M	0	69	68	7.7	71	3.8	71	3.5	72	260	14	90				
5	F	-	86	72	9.3	48	5.3	140	5.7	99	510		270		1,600		
6	F	-	93	160	15	140	8.4	180	5.9	320	1,000	94	300		3,200		
7	U	9	78	24	5.5	25	2.8	130	17	48	310	12	110				
8	U	-	13	5.2	0.6		tr(0.29)	15	1.3	8		0.4	0.5				
9 10	U	-	80 38	140 44	4.1 9.2	78 42	1.6 4.1	51 140	1.8 9.2	220 64	1,100 470	320 14	780 71		3,700 1,100		
10	U	-	აგ	44	9.2	42	4.1	140	9.2	04	4/0	14	/ 1	21	1,100	45	330

性別 M: オス F: メス U: 不明 *: ブランク値を差し引かずに測定値とした。 -: 測定せず

スナメリ分析結果(その3)

(湿重量当たり濃度) (試料は脂肪、有機スズのみ肝臓)

SPFI	ED'9	8			23	25	26	30		32)		48	35	46	47	33	34
物質					20		-0	- 50		- 52			.0	- 00		世 世 世 世 七 七 十 二	有機	
No.	性	年令 (オ)	脂肪含量(脂肪)	脂肪含量(肝臓)	イルドリン	110 <i>46£</i> >	ヘプタクロルエポキ サイド	とくでイナタ	トキサフェン Parlar #26	トキサフェン Parlar #50	トキサフェン Parlar #62	**情台 <キャラー・	オク <i>タ</i> クロロスチレ ン	くりそれてりょ	ベノエレグベン	4-ニトロトルエン	トリプチルスズ	トリフェニルスズ
		単位	%	%							ng/g·	-wet						
	検出	下限			0.08~	0.09~ 0.2	0.03 ~ 0.06	0.03~	0.015	0.030	0.12		0.02 ~ 0.04	2~4	10	20	1	1
	定量	下限			0.3~ 0.6	0.3~ 0.6	0.09~ 0.2	0.09 ~ 0.2	0.045	0.090	0.36	-	0.06 ~ 0.2	5~9	30	50	2	2
ブ	ラン の	'ク値 範囲			0.0021 ~ 0.0056*		0 ~ 0.0023*											
1	M	10	78	7.3	630	3.3	79	38	44	30	ND	74	1.2	tr(6.9)	ND	ND	520	58
2	M	6	75	6.8	450	2.1	56	36	77	80	9.4	170	2.3	ND	ND	ND	350	27
3	M	-	75	8.4	360	0.8	59	19	42	52	6.9	100	4.5		ND		360	58 27 40 44 25 19 63 58 20
4	M	0	69	29		tr(0.22)	11	1.1	3.3	4.4	ND	7.6	1.8		ND		97	44
5	F	-	86	6.3	140	0.5	20	7.6	14	16	ND	29	2.3	ND	ND		240	25
6	F	-	93	5.8	560	0.7	54	4.6	13	13	ND	26		tr(7.6)	ND		130	19
7	U	9	78	7.3		tr(0.48)	9.8	2.9	1.8	2.2	ND	3.9		tr(6.7)	ND		530	63
8	U	-	13	34		tr(0.14)	1.5	1.3		tr(0.076)	ND	0.43	0.46	ND	ND		330	58
9	U	-	80	5.8	210	0.9	26	20	49	53	8.4	110	2.0			tr(22)	230	20
10	U	-	38	5.6	130	0.4	16	2.8	6.4	5.7	ND	12	1.9	ND	ND	tr(23)	240	13

性別 M:オス F:メス U:不明-:測定せず

*:プランク値を差し引かずに測定値とした。 ** 検出下限未満は0として算出 -:検出下限及び定量下限は設定無し

スナメリ分析結果(その1)

(脂肪重量当たり濃度) (試料は脂肪)

SPE	ED'9	8						2						
物質	名					ポリ塩(化ビフェ	ロニル類	(PCI	Bs)				
No.	性	年令 (オ)	脂肪含量	塩化どフェニル	二塩化ピフニル	三塩化ピフェル	四塩化ビアニル	五塩化ピアゴル	六塩化ピアニル	七塩化ピアニル	八塩化7元小	九塩化ピアゴル	十塩化ピフェル	PCB合計**
		単位	%						ng/g-fa	t				
1	М	10	78	ND	4.2	130	3,900	18,000	33,000	22,000	3,200	140	23	80,000
2	М	6	75	ND	2.2	170	3 200	14,000	26 000	22 000	4,200	210	5	70,000
3	М					170	0,200	17,000	20,000	22,000	4,200	210		
	IVI	-	75	t r	4.9	360				10,000	1,900	88		45,000
4	М	0	75 69	t r ND	4.9 4.9				17,000				13 3.6	45,000 8,600
5	M F				4.9 4.5	360	3,800	12,000	17,000 3,000	10,000	1,900	88	13 3.6	45,000
5 6	М	0 - -	69 86 93	ND	4.9	360 150 200 270	3,800 1,300 1,700 2,700	12,000 2,700 5,700 9,200	17,000 3,000 7,800 11,000	10,000 1,400 3,500 4,200	1,900 120 460 580	88 13 19 20	13 3.6 2.7 2.8	45,000 8,600 20,000 28,000
5 6 7	M F	0	69 86 93 78	ND tr ND tr	4.9 4.5 6.6 4.4	360 150 200 270 180	3,800 1,300 1,700 2,700 960	12,000 2,700 5,700 9,200 1,600	17,000 3,000 7,800 11,000 2,100	10,000 1,400 3,500 4,200 2,000	1,900 120 460 580 1000	88 13 19 20 96	13 3.6 2.7 2.8 24	45,000 8,600 20,000 28,000 8,000
5 6 7 8	M F U U	0 - -	69 86 93 78 13	ND tr ND tr	4.9 4.5 6.6 4.4 7	360 150 200 270 180 980	3,800 1,300 1,700 2,700 960 7,300	12,000 2,700 5,700 9,200 1,600 18,000	17,000 3,000 7,800 11,000 2,100 14,000	10,000 1,400 3,500 4,200 2,000 6,700	1,900 120 460 580 1000 1700	88 13 19 20 96 220	13 3.6 2.7 2.8 24 120	45,000 8,600 20,000 28,000 8,000 49,000
5 6 7	M F	0 - - 9	69 86 93 78	ND tr ND tr	4.9 4.5 6.6 4.4	360 150 200 270 180	3,800 1,300 1,700 2,700 960 7,300 1,300	12,000 2,700 5,700 9,200 1,600 18,000 6,300	17,000 3,000 7,800 11,000 2,100	10,000 1,400 3,500 4,200 2,000	1,900 120 460 580 1000	88 13 19 20 96	13 3.6 2.7 2.8 24 120 14	45,000 8,600 20,000 28,000 8,000

性別 M:オス F:メス U:不明
-:測定せず *:プランク値を差し引かずに測定値とした。

** 定量下限未満は0として算出 - :検出下限及び定量下限は設定無し

スナメリ分析結果(その2)

(脂肪重量当たり濃度) (試料は脂肪)

SPEE		8		4		12		1		15	16	1	8			9	
物質	名				ヘキサク	ロロシクロ	ヘキサン		クロル	·デン類				DD	T類		
No.	性	年令 (オ)	脂肪含量	ヘキサクロロベンゼ ン(HCB)	-нсн	-нсн	-нсн	cis-クロルデン	trans-クロルデン	オキシクロルデン	trans-ノナクロル	0,p'-DDT	T00-'q,q	o,p'-DDE	p,p'-DDE	0,p'-DDD	d,p'-DDD
		単位	%			•		•	•	ng/g-	fat						
1	M	10	78	180	6.8	1,300	2.8	84	3.0	1200	5,300	1,100	1,100	350	23,000	240	2,000
2	M	6	75	190	4.9	590	2.6	77	2.7	960	5,300	1,400	2,000	300	24,000	250	2,100
3	M	-	75	240	7.9	140	3.6	200	6.5	490	2,100		1,300	130	6,400	150	1,700
4	M	0	69	99	11	100	5.6	100	5.1	100	380	20	130	15	700	21	
5	F	-	86	84	11	56	6.2	160	6.6	120	600	60	320	41	1,900	63	390
6	F	-	93	180	16	150	9.1	190	6.3	350	1,100	100	320	90	3,400	91	800
7	U	9	78	31	7.1	32	3.6	170	22	61	400	15	140	23	890	30	
8	U	-	13	39	5	26	tr	110	9.9	60	770	3	4	110	1,800	40	
9	U	-	80	180	5.2	98	2.1	64	2.2	280	1,400		980			160	
10	1.1		38	120	24	110	11	360	24	170	1.200	35	190	70	2,900	120	910

性別 M:オス F:メス U:不明 -:測定せず

*:ブランク値を差し引かずに測定値とした。

スナメリ分析結果(その3)

(脂肪重量当たり濃度) (試料は脂肪、有機スズのみ肝臓)

SPE		8			23	25	26	30		32	2		48	35	46	47	33	34
物質	名													芳香族	战化水素	有機	スズ	
No.	性	年令 (才)	脂肪含量(脂肪)	脂肪含量(肝臓)	ディルドリン	ヘプタクロル	ヘプタクロルエポキ サイド	マイレックス	トキサフェン Parlar #26	トキサフェン Parlar #50	トキサフェン Parlar #62	トキサフェン 合計**	オクタクロロスチレ ン	トリフルラリン	ベンゾフェノン	4-ニトロトルエン	トリブチルスズ	トリフェニルスズ
		単位	%	%							ng/g·	-fat						
1	М	10	78	7.3	800	4.2	100	49	56	38	ND	94	1.5	t r	ND	ND	7,100	790
2	М	6	75	6.8	600	2.9	74	48	102	107	12	221	3.0	ND	ND	ND	5,100	400
3	М	-	75	8.4	480	1	78	25	56	70	9.1	135	6.0	ND	ND	ND		
4	M	0	69	29	160	tr	15	1.6	4.8	6.4	ND	11	2.6	ND	ND	ND	330	
5	F	-	86	6.3	170	0.6	23	8.8	16	18	ND	34	2.7	ND	ND	tr		
6	F	-	93	5.8	610	0.8	59	4.9	14	14		28	2.6	tr	ND	tr	2,300	
7	U	9	78	7.3	93	tr	13	3.7	2.3	2.8	ND	5.0	2.3	tr	ND	tr	7,300	860
8	U	-	13	34	100	tr	12	10	2.7	tr	ND	3.3	3.5	ND	ND	ND	960	170
9	U	-	80	5.8	260	1	33	25	62	67	11	139	2.6	ND	ND	tr	3,900	340
10	U	-	38	5.6	330	1	43	7.3	17	15	ND	32	4.9	ND	ND	tr	4,300	230

 性別 M:オス F:メス U:不明
 *:ブランク値を差し引かずに測定値とした。** 検出下限未満は0として算出

 -:測定せず
 -:検出下限及び定量下限は設定無し

ニホンザル分析結果(その1)

(湿重量当たり濃度) (試料は筋肉)

SPE	ED'9	8						2						
物質	名					ポリ塩化	ムビフェニ	ル類(P	CBs)					
No.	性	年令 (才)	脂肪含量	塩化どフェニル	二塩化ビルゴ	三塩化どフェニル	四塩化ビルゴ	五塩化ピルゴ	六塩化ピフェコル	七塩化ピカゴ	八ヶ塩化ど、フェニル	九塩化どフェニル	十塩化ゲルゴ	PCB合計**
		単位	%					n	g/g-wet					
		下限		0.0005	0.0009	0.0008	0.0008	0.0009	0.0009	0.0009	0.0009	0.0007	0.0004	-
		上下限		0.002	0.003	0.002	0.003	0.003	0.003	0.003	0.003	0.002	0.001	-
		が題				0 ~ 0.012*	0~0.047*	0~0.11*	0.0016 ~ 0.12*	0 ~ 0.058*	0 ~ 0.012*			
1	М	10	1.5	tr(0.0019)	0.003	0.005	0.019	0.030	0.039	0.023	0.010	0.004	0.003	0.14
2	М	5	2.9		tr(0.0026)	0.011	0.028	0.039	0.050	0.025	0.012	0.004	0.002	0.18
3	М	4	2.0		tr(0.0022)	0.011	0.049	0.10	0.14	0.090	0.040		0.007	0.45
4	М	3	2.2		tr(0.0027)	0.007	0.025	0.053	0.079	0.044	0.018		0.004	0.24
5	М	2	2.1		tr(0.0029)	0.008	0.034	0.070	0.097	0.054	0.025	0.007	0.004	0.30
6	F	16	4.4		tr(0.0024)	0.007	0.014	0.020	0.034	0.010		tr(0.001)	0.002	0.096
7	F	5	4.0	0.007	0.004	0.008	0.019	0.024	0.052	0.033		tr(0.0016)	0.003	0.16
8	F	4	2.8	0.002	0.004	0.023	0.053	0.061	0.072	0.045	0.022	0.006	0.004	0.29
9	F	4	1.4		tr(0.0018)	0.005	0.018	0.026	0.030	0.019	0.008		0.003	0.11
10	F	2	4.0	0.004	tr(0.0028)	0.008	0.029	0.060	0.10	0.051	0.023	0.007	0.005	0.29

性別 M:オス F:メス

- *:ブランク値を差し引かずに測定値とした。
- ** 定量下限未満は0として算出 : 検出下限及び定量下限は設定無し

ニホンザル分析結果(その2)

(湿重量当たり濃度) (試料は筋肉)

SPE		100	,		4		12		- 1	4	15	16	1	0		19		
)		4	^ + 4 5		7 4 44 7 .	ı			10		ō	DDT		,	
物質	灵龙	5_				ヘキサク	ロロングレ	コヘキリン		クロル	アノ照				DDT			
No.	. †	生	年令 (才)	脂肪含量	ヘキサクロロベンゼ ン(HCB)	нэн-	нон-	нон-	イデルロク-sio	ビボロロタ-Snart	イキ ルロクミキャ	trans-ノナクロル	O,p'-DDT	p,p'-DDT	o,p'-DDE	p,p'-DDE	o,p'-DDD	p,p'-DDD
			単位	%							ng/g-w	et						
	検	出	下限		0.003	0.005	0.009	0.008	0.007	0.005	0.04	0.02	0.008	0.02	0.006	0.02	0.009	0.009
	定	量	下限		0.008	0.02	0.03	0.03	0.03	0.02	0.2	0.04	0.03	0.04	0.02	0.07	0.03	0.03
7	ブラ		ク値 範囲		0.0015 ~ 0.0091*	0 ~ 0.0059*	0 ~ 0.019*	0~0.020*	0.0030 ~ 0.0085*	0.0034 ~ 0.0085*		0.0032 ~ 0.013*				0.0018~ 0.11*		0 ~ 0.0091*
1		М	10	1.5	0.080	ND	0.04	ND	ND	ND	tr(0.043)	0.09	ND	ND	ND	ND	ND	ND
2		М	5	2.9	0.11	tr(0.0065)	tr(0.029)	ND	ND	tr(0.0076)	tr(0.052)	0.10		ND	ND	ND	ND	ND
3		М	4	2.0	0.10	tr(0.014)	3.1	ND	ND	tr(0.0066)	tr(0.14)	0.20		ND		tr(0.022)	ND	ND
4		М	3	2.2	0.087	ND	0.06			tr(0.0061)		0.14		ND	ND	ND	ND	ND ND
5		М	2	2.1		tr(0.0098)	0.76	ND	tr(0.0079)	tr(0.0081)		0.15		ND		tr(0.035)	ND	ND
6		F	16	4.4	0.044	tr(0.0095)	tr(0.024)	ND	tr(0.0072)	tr(0.0056)		0.04		ND	ND	ND	ND	ND
7	_	F	5	4.0		tr(0.019)	tr(0.018)	ND	tr(0.0083)			tr(0.039)	ND	ND	ND	ND	ND	ND
8		F	4	2.8	0.20	0.02	0.03		tr(0.0075)	tr(0.0070)		0.16		ND	ND	ND	ND	ND
9		F	4	1.4	0.029		tr(0.021)	ND		tr(0.0061)	ND	0.07	ND	ND	ND	ND	ND	ND
10		F	2	4.0	0.080	tr(0.0064)	tr(0.028)	ND	tr(0.0072)	tr(0.0070)	tr(0.071)	0.15	ND	ND	ND	tr(0.021)	ND	ND

性別 M:オス F:メス *:プランク値を差し引かずに測定値とした。

ニホンザル分析結果(その3)

(湿重量当たり濃度) (試料は筋肉、有機スズのみ肝臓)

SPE		8			23	25	26	30		32	2		48	35	46	47	33	34
物質	名														芳香族炭	化水素	有機	スズ
No.	性	年令 (オ)	脂肪含量(筋肉)	脂肪含量(肝臓)	ディルドリン	ペプタクロル	ヘブタクロルエポキ サイド	マイレックス	トキサフェン Parlar #26	トキサフェン Parlar #50	トキサフェン Parlar #62	トキサフェン 合計**	47 <i>9</i> 700777	くりそれてりょ	ベノエレグベン	4-ニトロトルエン	トリブチルスズ	トリフェニルスズ
									pg/g	-wet				ng/g-	wet			
		扩限			0.008	0.009	0.003	0.003	1	2	8	-	0.002	0.2	1	1	1	1
L	定量	下限			0.03	0.03	0.009	0.01	3	6	24	-	0.006	0.5	3	3	2	2
J		/ク値)範囲			0.0021 ~ 0.0056*		0~0.0023*											
1	M	10	1.5	5.0	tr(0.021)	ND	0.016	tr(0.0047)	ND	ND	ND	ND	tr(0.0026)	ND	ND	ND	ND	ND
2	М	5	2.9	4.7	tr(0.026)	ND		tr(0.0055)	tr(1.8)	ND	ND		tr(0.0027)	ND	ND	ND	ND	ND
3	М	4	2.0	5.8	0.16	ND	0.059		tr(2.7)	ND	ND		tr(0.0022)	ND	ND	ND	ND	ND
4	М	3	2.2	4.2	0.19	ND			tr(1.8)	ND	ND		tr(0.0025)	ND	ND	ND	ND	ND
5	М	2	2.1	4.4	0.28	ND		tr(0.0059)	tr(1.9)	ND	ND		tr(0.0029)	ND	ND	ND	ND	ND
6	F	16	4.4	7.6	tr(0.020)		tr(0.0069)	ND	tr(1.4)	ND	ND	1.4	ND	ND	ND	ND	ND	
7	F	5	4.0	7.6	tr(0.023)	ND	0.012	ND	ND	ND	ND	ND		ND	ND	ND	ND	
8	F	4	2.8	4.8	0.03	ND		tr(0.0064)	tr(2.3)	ND	ND		tr(0.0042)	ND	ND	ND	ND	ND
9	F	4	1.4	4.9	tr(0.010)		tr(0.0081)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10	F	2	4.0	9.5	tr(0.027)	ND	0.017	tr(0.0088)	4.8	tr(4.9)	ND	9.6	tr(0.0035)	ND	ND	ND	ND	ND

- 性別 M:オス F:メス *:プランク値を差し引かずに測定値とした。
- ** 検出下限未満は0として算出 : 検出下限及び定量下限は設定無し

ニホンザル分析結果(その4)

(湿重量当たり濃度) (試料は筋肉)

SPFI	D'9	8			36		5	44	37	38	40	39	42	41	63	64	65	45
物質				アルキ	アンフェノ	ール			ール ール	- 00			タル酸エス			<u> </u>	- 00	
No.	性	年令 (オ)	脂肪含量	ノニルフェノール	4 - t-オクチルフェ ノール	4-n-ペンチルフェ ノール	ペンタクロロフェ ノール(PCP)	2,4-ジクロロフェ ノール	ビスフェノールA	フタル酸ジ-2-エチ ルヘキシル	フタル酸ジ -n- ブチ ル	フタル酸ブチルベン ジル	フタル酸ジエチル	フタル酸ジシクロヘ キシル	フタル酸ジペンチル	フタル酸ジヘキシル	フタル酸ジプロピル	アジ ピ ン酸ジ -2-エチルヘキ シル
		単位	%		•					ng/	g-wet				•	•		
	検出			9	0.1	0.4	0.1	0.2	0.6	5	3	1	1	1	0.7	1	0.7	5
		下限		30	0.3	2	0.3	0.4	2	20	9	3	3	3	3	3	3	20
ブ		ク値 範囲		7.4~19**	0~0.12**				0~0.27**	1.9~ 13**	1.2~ 4.0**	0 ~ 0.53**	0~2.1**					0 ~ 0.66**
1	М	10	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND ND
2	M	5	2.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3	M	4	2.0	ND	ND	ND	ND	ND	ND	tr(19)	ND	ND	ND	ND	ND	ND	ND	ND
4	M	3	2.2	ND	ND	ND	ND	ND	ND	26	ND	ND	ND	ND	ND	ND	ND	ND
5	M	2	2.1	ND	ND	ND	ND	tr(0.21)	ND	tr(19)	ND	ND	ND	ND	ND	ND	ND	ND ND ND
6	F	16	4.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
7	F	5	4.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND ND
8	F	4	2.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
9	F	4	1.4		,	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10	F	2	4.0	tr(9.8)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

性別 M:オス F:メス **:プランク値を差し引いて測定値とした。

ニホンザル分析結果(その1)

(脂肪重量当たり濃度) (試料は筋肉)

SPE	ED'9	8						2						
物質	名					ポリ塩化	ムビフェニ	ル類(P	CBs)					
No.	性	年令 (オ)	脂肪含量	塩化ピアニル	二塩化ビル	三塩化ピアゴル	四塩化ビルゴ	五塩化ピアニル	六塩化ビブゴ	七塩化ピア二	八塩化ピアニル	九塩化ビルゴ	十塩化、フェコル	PCB合計**
		単位	%					n	g/g-fat					
1	М	<u>単位</u> 10	1.5	tr	0.2	0.4	1.3	2.0	g/g-fat 2.6	1.5	0.69	0.2	0.2	9.0
1 2	M			tr 0.3	0.2 tr	0.4	1.3			1.5 0.85	0.69	0.2	0.2	9.0 6.1
1 2 3		10	1.5					2.0	2.6					
3	M M M	10 5 4 3	1.5 2.9 2.0 2.2	0.3 0.2 0.09	tr	0.38 0.54 0.3	0.95 2.5 1.2	2.0 1.3 5.3 2.4	2.6 1.7	0.85 4.5 2.0	0.42 2.0 0.83	0.1	0.08 0.3 0.2	6.1 23 11
3 4 5	M M M	10 5 4 3 2	1.5 2.9 2.0 2.2 2.1	0.3 0.2 0.09 0.2	t r t r	0.38 0.54 0.3 0.4	0.95 2.5 1.2 1.6	2.0 1.3 5.3 2.4 3.3	2.6 1.7 7.3 3.6 4.6	0.85 4.5 2.0 2.6	0.42 2.0 0.83 1.2	0.1 0.58	0.08 0.3 0.2 0.2	6.1 23 11 14
3 4 5 6	M M M M	10 5 4 3 2 16	1.5 2.9 2.0 2.2 2.1 4.4	0.3 0.2 0.09 0.2 0.1	tr tr tr tr	0.38 0.54 0.3 0.4 0.2	0.95 2.5 1.2 1.6 0.31	2.0 1.3 5.3 2.4 3.3 0.45	2.6 1.7 7.3 3.6 4.6 0.77	0.85 4.5 2.0 2.6 0.21	0.42 2.0 0.83 1.2 0.08	0.1 0.58 0.3	0.08 0.3 0.2 0.2 0.03	6.1 23 11 14 2.1
3 4 5 6 7	M M M M F	10 5 4 3 2 16 5	1.5 2.9 2.0 2.2 2.1 4.4 4.0	0.3 0.2 0.09 0.2 0.1	tr tr tr tr 0.1	0.38 0.54 0.3 0.4 0.2 0.2	0.95 2.5 1.2 1.6 0.31 0.46	2.0 1.3 5.3 2.4 3.3 0.45 0.60	2.6 1.7 7.3 3.6 4.6 0.77 1.3	0.85 4.5 2.0 2.6 0.21 0.84	0.42 2.0 0.83 1.2 0.08 0.20	0.1 0.58 0.3 0.3 tr	0.08 0.3 0.2 0.2 0.03 0.06	6.1 23 11 14 2.1 3.9
3 4 5 6 7 8	M M M M F	10 5 4 3 2 16 5 4	1.5 2.9 2.0 2.2 2.1 4.4 4.0 2.8	0.3 0.2 0.09 0.2 0.1 0.2 0.08	tr tr tr tr 0.1	0.38 0.54 0.3 0.4 0.2 0.2	0.95 2.5 1.2 1.6 0.31 0.46 1.9	2.0 1.3 5.3 2.4 3.3 0.45 0.60 2.2	2.6 1.7 7.3 3.6 4.6 0.77 1.3 2.6	0.85 4.5 2.0 2.6 0.21 0.84 1.6	0.42 2.0 0.83 1.2 0.08 0.20 0.79	0.1 0.58 0.3 0.3 tr tr 0.2	0.08 0.3 0.2 0.2 0.03 0.06 0.1	6.1 23 11 14 2.1 3.9
3 4 5 6 7	M M M M F F	10 5 4 3 2 16 5	1.5 2.9 2.0 2.2 2.1 4.4 4.0	0.3 0.2 0.09 0.2 0.1	tr tr tr tr 0.1	0.38 0.54 0.3 0.4 0.2 0.2	0.95 2.5 1.2 1.6 0.31 0.46 1.9 1.3	2.0 1.3 5.3 2.4 3.3 0.45 0.60	2.6 1.7 7.3 3.6 4.6 0.77 1.3	0.85 4.5 2.0 2.6 0.21 0.84 1.6	0.42 2.0 0.83 1.2 0.08 0.20	0.1 0.58 0.3 0.3 tr	0.08 0.3 0.2 0.2 0.03 0.06	6.1 23 11 14 2.1 3.9

性別 M:オス F:メス

- *:ブランク値を差し引かずに測定値とした。
- ** 定量下限未満は0として算出 - : 検出下限及び定量下限は設定無し

ニホンザル分析結果(その2)

(脂肪重量当たり濃度) (試料は筋肉)

SPE	ED'9	8		4		12		1.	4	15	16	1	8		19)	
物質	名				ヘキサクロ	コロシクロ	ヘキサン		クロル	デン類				DDT∌	領		
No.	性	年令 (オ)	脂肪含量	へキサクロロベンゼ ン(HCB)	нон-	нон-			trans-クロルデン	オキシクロルデン	trans-ノナクロル	0,p'-DDT	p,p'-DDT	o,p'-DDE	p,p'-DDE	o,p'-DDD	p,p'-DDD
		単位	%							ng/g-fa	at						
1	M	10	1.5	5.3	ND	2	ND	ND	ND	tr	6	ND	ND	ND	ND	ND	ND
2	M	5	2.9	3.6	tr	tr	ND	ND	tr	tr	3.3	ND	ND	ND	ND	ND	ND
3	M	4	2.0	5.2	tr	160	ND	ND	tr	tr	10	ND	ND	ND	tr	ND	ND
4	M	3	2.2	4.0	ND	3	ND	ND	tr	tr	6.6	ND	ND	ND	ND	ND	ND
5	M	2	2.1	3.1	tr	36	ND	tr	tr	tr	7.1	ND	ND	ND	t r	ND	ND
										5	0	NID.	-10	7	ND	MD	5
6	F	16	4.4	0.99	t r	tr	ND	tr	tr	ND	0.9	ND	ND	ND	ND	ND	ND
6 7	F	16 5	4.4	0.99 1.5		tr tr	ND	tr tr	tr tr	ND ND	0.9 tr	ND	ND	ND	ND	ND	ND
	F	_			tr 0.8		ND ND	tr tr		ND tr	tr 5.8	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
7	F	5	4.0	1.5	tr	tr	ND	tr	tr	ND	t r	ND	ND	ND	ND	ND	ND

性別 M:オス F:メス

*:ブランク値を差し引かずに測定値とした。

ニホンザル分析結果(その3)

(脂肪重量当たり濃度) (試料は筋肉、有機スズのみ肝臓)

SPE		8			23	25	26	30		3:	2		48	35	46	47	33	34
物貿	名														芳香族炭	化水素	有機	スズ
No.	性	年令 (オ)	脂肪含量(筋肉)	脂肪含量(肝臓)	ディルドリン	ヘプタクロル	ヘプタクロルエポキ サイド	マイレックス	トキサフェン Parlar #26	トキサフェン Parlar #50	トキサフェン Parlar #62	トキサフェン 合計**	オクタクロロスチレ ン	トリフルラリン	ベンゾフェノン	4-ニトロトルエン	トリブチルスズ	トリフェニルスズ
		単位	%	%							ng/g-fa	at						
1	М	10	1.5	5.0	tr	ND	1.1	tr	ND	ND	ND	ND	tr	ND	ND	ND	ND	
2	M	5	2.9	4.7	tr	ND	0.65	tr	tr	ND	ND	0.10	tr	ND	ND	ND		ND
3	M	4	2.0	5.8	8.3	ND	3.0	0.8	tr	ND	ND	0.22	tr	ND	ND	ND		ND
4	M	3	2.2	4.2	8.9	ND	4.3	tr	tr	ND	ND	0.13	tr	ND	ND	ND		
5	M	2	2.1	4.4	13	ND	13	tr	tr	ND	ND	0.15		ND	ND	ND	ND	
6	F	16	4.4	7.6	tr	ND	tr	ND	tr	ND	ND	0.051	ND	ND	ND	ND		
7	F	5	4.0	7.6	tr	ND	0.31	ND	ND	ND	ND	ND	ND	ND	ND	ND		
8	F	4	2.8	4.8	1	ND	1.1	tr	tr	ND	ND	0.15		ND	ND	ND		
9	F	4	1.4	4.9	tr	ND	tr	tr	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10	F	2	4.0	9.5	tr	ND	0.42	tr	0.12	tr	DN	0.24	tr	ND	ND	ND	ND	ND

性別 M:オス F:メス

- *:ブランク値を差し引かずに測定値とした。
- ** 検出下限未満は0として算出 :検出下限及び定量下限は設定無し

ニホンザル分析結果(その4)

(脂肪重量当たり濃度) (試料は筋肉)

SPE	D'9	8			36		5	44	37	38	40	39	42	41	63	64	65	45
物質	名			アルキ	・ルフェノ	ール	クロ	ロフェノ	ール			フ?	タル酸エス	ステル類				
No.	世	年令 (オ)	脂肪含量	/ニルフェノール	4 - t-オクチルフェ ノール	4-n-ペンチルフェ ノール	ペンタクロロフェ ノール(PCP)	2,4-ジクロロフェ ノール	ピスフェノールA	フタル酸ジ -2-エチ ルヘキシル	フタル酸ジ -n- ブチ ル	フタル酸ブチルベン ジル	フタル酸ジエチル	フタル酸ジシクロヘ キシル	フタル酸ジペンチル	フタル酸ジヘキシル	フタル酸ジプロピル	アジ ピ ン酸ジ -2-エチルヘキ シル
		単位	%							ng/	g-fat				•			
1	M	10	1.5	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	
2	M	5	2.9	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	
3	M	4	2.0	ND	ND	ND	ND	ND	ND	tr	ND	ND	ND	ND	ND	ND	ND	
4	M	3	2.2	ND	ND	ND	ND	ND	ND	1,200	ND	ND	ND	ND	ND	ND	ND	
5	M	2	2.1	ND	ND	ND	ND	tr	ND	tr	ND	ND	ND	ND	ND	ND	ND	
6	F	16	4.4	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	
7	F	5	4.0	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	
8	F	4	2.8	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	
9	F	4	1.4	ND	tr	ND	ND	tr	ND		ND	ND	ND	ND	ND	ND	ND	
10	F	2	4.0	tr	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

性別 M:オス F:メス

**:ブランク値を差し引いて測定値とした。

タヌキ分析結果(その1)

(湿重量当たり濃度) (試料は筋肉)

SPE	ED'9	8						2						
物質	名					ポリ塩化	´ビフェ	ニル類(P C B s)				
No.	性	年令 (オ)	脂肪含量	塩化ピフェニル	二塩化ゲル	三塩化ピカニル	四塩化ピアニル	五塩化、フェニル	六塩化、フェニル	七塩化ピアニル	八塩化ピアニル	九塩化ピアニル	十塩化ピアニル	PCB合計 *
	•	単位	%				'	nç	g/g-wet		'			
	検出	l下限		0.0005	0.0009	0.0008	0.0008	0.0009	0.0009	0.0009	0.0009	0.0007	0.0004	-
		下限		0.002	0.003	0.002	0.003	0.003	0.003	0.003	0.003	0.002	0.001	-
ブ		/ク値)範囲				0 ~ 0.012*	0 ~ 0.047*	0~0.11*	0.0016 ~ 0.12*	0 ~ 0.058*	0 ~ 0.012*			
1	M	6	4.1	ND	0.024	0.045	0.19	1.5	5.1	4.2	1.3	0.41	0.33	13
2	M	1	4.7	ND	0.005	0.021	0.12	0.63	1.9	0.77	0.15	0.037	0.024	3.7
3	M	1	3.9		tr(0.0029)	0.019	0.11	0.56	1.9	0.92	0.23	0.051	0.037	3.8
4	M	0.5	5.3	ND	0.012	0.003	0.084	0.38	0.84	0.28	0.055	0.013	0.012	1.7
5	M	0.5	6.0	ND	0.013	0.015	0.075	0.39	0.90	0.41	0.12		0.035	2.0
6	F	2	5.7	ND	0.006	0.038	0.90	14	20	12	1.9	0.33	0.23	49
7	F	2	1.4	ND	0.060	0.002	0.052	0.85	3.5		0.73	0.16	0.12	7.7
8	F	1	6.8	ND	0.004	0.029	0.091	0.35	0.81	0.41	0.13	0.038	0.030	1.9
9	F	1	6.9	ND	0.006	0.012	0.058	0.24	0.60	0.30	0.092	0.026	0.019	1.4
10	F	0.5	6.8	ND	0.007	0.019	0.13	0.43	1.1	0.64	0.22	0.065	0.051	2.7

性別 M:オス F:メス

- *:ブランク値を差し引かずに測定値とした。 ** 定量下限未満は0として算出 :検出下限及び定量下限は設定無し

タヌキ分析結果(その2)

(湿重量当たり濃度) (試料は筋肉)

	ED'9	8		4		12		1	4	15	16		18			9	
物質	[名				ヘキサクロ	ロシクロケ	ヘキサン		クロルテ	ン類				DE	T類		
No.	性	年令 (才)	脂肪含量	くキサクロロベンゼ ン(HCB)	нэн-	нон-	-нСн	くデルロク-sio	trans-クロルデン	オキシクロルデン	ルロセナノナクロル	o,p'-DDT	тОО-'q,q	o,p'-DDE	p,p'-DDE	o,p'-DDD	0,p'-'0,p
		単位	%							ng/g-	wet						
		扩限		0.003	0.005	0.009	0.008	0.007	0.005	0.04	0.02	0.008	0.02	0.006	0.02	0.009	0.009
	定量	上限		0.008	0.02	0.03	0.03	0.03	0.02	0.2	0.04	0.03	0.04	0.02	0.07	0.03	0.03
_ =		ノク値)範囲		0.0015 ~ 0.0091*	0 ~ 0.0059*	0 ~ 0.019*	0 ~ 0.020*	0.0030 ~ 0.0085*	0.0034 ~ 0.0085*		0.0032 ~ 0.013*				0.0018~ 0.11*		0 ~ 0.0091*
1	M	6	4.1	0.19	0.02	0.96	ND	tr(0.021)	tr(0.0095)	8.5	3.1	ND	tr(0.038)	ND	0.27	ND	tr(0.010)
2	М	1	4.7	0.12	0.03	0.41	ND	tr(0.020)	tr(0.013)	3.7	4.8	ND	0.11	ND	0.42	ND	0.03
3	М	1	3.9	0.15	0.03	0.57	ND	tr(0.026)	0.02	4.0	5.5	ND	0.11	ND	0.46	ND	0.05
4	М	0.5	5.3	0.13	0.03	0.22	ND	tr(0.011)	tr(0.0098)	1.4	1.1	ND	0.08	ND	0.15	ND	tr(0.014)
5	М	0.5	6.0	0.090	0.02	1.5		tr(0.010)	tr(0.0071)	2.1	1.2	ND	0.05	ND	0.15	ND	
6	F	2	5.7	0.10	tr(0.013)	0.46		tr(0.023)	tr(0.014)	14	4.0	ND	ND		tr(0.051)	ND	
7	F	2	1.4	0.016	tr(0.0052)	0.25	ND	0.04	0.04	8.4	11	ND	ND	ND	0.10	ND	
8	F	1	6.8	0.11	tr(0.015)	0.31	ND	tr(0.0082)	ND	2.8	0.85	ND	ND	ND	0.08	ND	
9	F	1	6.9	0.097	tr(0.012)	0.30	ND	tr(0.017)	tr(0.010)	4.3	1.4	ND	ND	ND	0.08	ND	ND
10	F	0.5	6.8	0.12	tr(0.010)	0.19	ND	tr(0.013)	tr(0.0098)	5.4	2.3	ND	0.06	ND	0.27	ND	tr(0.0099)

性別 M:オス F:メス

*:ブランク値を差し引かずに測定値とした。

タヌキ分析結果(その3)

(湿重量当たり濃度) (試料は筋肉、有機スズのみ肝臓)

SPE		8			23	25	26	30		32			48	35	46	47	33	34
物貿	名														芳香族炭	化水素	有機	スズ
No.	性	年令 (オ)	脂肪含量(筋肉)	脂肪含量(肝臓)	ディルドリン	ペプタクロル	ヘプタクロルエポキ サイド	マイレックス	トキサフェン Parlar #26	トキサフェン Parlar #50	トキサフェン Parlar #62	** [#] 岩台 イエムサキイ	7+700 <i>0464</i> 7	トリフルラリン	ベノエレグベシ	4-ニトロトルエン	トリブチルスズ	トリフェニルスズ
	単位 %					ng/g-	-wet			pg/g-	wet				ng/g	-wet		
	検出				0.008	0.009	0.003	0.003	1	2	8	-	0.002	0.2	1	1	1	1
	定量	上下限			0.03	0.03	0.009	0.01	3	6	24	-	0.006	0.5	3	3	2	2
ブ		/ク値)範囲			0.0021 ~ 0.0056*		0 ~ 0.0023*											
1	M	6	4.1	4.5	0.60	ND	0.62	0.06	14	11	ND		0.021	ND	ND	ND	ND	ND
2	M	1	4.7	3.2	0.63	ND	0.45	0.03	37	40	ND		0.009	ND	ND	ND	ND	ND
3	M	1	3.9	5.7	0.67	ND	2.3	0.07	84	100	ND		0.016	ND	ND	ND	ND	ND
4	M	0.5	5.3	4.7	0.18	ND	0.16		26	26	ND		0.007	ND	ND	ND	ND	ND
5	M	0.5	6.0	4.3	0.20	ND	0.21	0.04	15		ND		0.008	ND	ND	ND	ND	ND
6	F	2	5.7	3.2	0.59	ND	1.0			tr(4.9)	ND		0.029	ND	ND	ND	ND	ND
7	F	2	1.4	3.8		tr(0.022)	0.77	0.23		tr(3.1)	ND		0.011	ND	ND	ND	ND	ND
8	F	1	6.8	4.2	0.27	ND	0.33	0.02	7.7	7.5	ND	15	0.006	ND	ND	ND	ND	ND
9	F	1	6.9	4.5	0.22	ND	0.60	0.02	9.4	7.3	ND		0.008	ND	ND	ND	ND	ND
10	F	0.5	6.8	5.1	0.64	ND	1.7	0.05	10	11	ND	21	0.008	ND	ND	ND	ND	ND

性別 M:オス F:メス

- *:ブランク値を差し引かずに測定値とした。
- ** 検出下限未満は0として算出 : 検出下限及び定量下限は設定無し

タヌキ分析結果(その4)

(湿重量当たり濃度) (試料は筋肉)

98 年 年 (才)	脂肪含量	アル・	36 キルフェ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	・ルフェ ー ル	Н	Н Р	37 7 − JV ≪	38 H	40 H	39	フタル酸:	エステル	- 63 グ類	64	65 1/	45 #
年令 (才)	∜ 1	н / н	チルフ ル	717		-		+	Ŧ	V	_	<	٦/	7	JL	#
	H	7=15	4 - t-オク ノー	4-n-ペンチ ノール	(d0d)れー <i>て</i> とロロ <i>ななて</i> シ	2,4-ジクロロ: パーノ	ルーノェムと え	フタル酸ジ-2-エ ルヘキシル	フタル酸ジ -n-プ ル	フタル酸プチルベ ジル	フタル酸ジエチル	フタル酸ジシクロ キシル	フタル酸ジペンチ	フタル酸ジヘキシ	フタル酸ジプロピル	アジ・ピ゜ン酸ジ゛-2-エチルヘキ シル
単位	%							ng	/g-wet							
出下限		9	0.1	0.4	0.1	0.2	0.6	5	3	1	1	1	0.7	1	0.7	5
		30	0.3	2	0.3	0.4	2	20	9	3	3	3	3	3	3	20
ンク値 の範囲		7.4~ 19**	0~0.12**				0~0.27**	1.9~ 13**	1.2~ 4.0**	0 ~ 0.53**	0~2.1**					0 ~ 0.66**
1 6	4.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1 1	4.7	ND		ND			ND						ND	ND		ND
1 1																ND
																ND
					. (. ,			, ,								ND
																ND
																ND
																ND
																ND ND
量・ノ	出下限 量下限 ンク値 の範囲	単位 % 出下限 上下限 フク値 の範囲 6 4.1 1 4.7 1 3.9 0.5 5.3 0.5 6.0 2 5.7 2 1.4 1 6.8 1 6.9	単位 % 上下限 9 上下限 30 クク値 7.4~19** 6 4.1 ND 1 4.7 ND 1 3.9 ND 0.5 5.3 ND 0.5 6.0 ND 2 5.7 ND 2 1.4 ND 1 6.8 ND 1 6.9 ND	単位 % 世位 % 世下限 9 0.1 量下限 30 0.3 フク値 7.4~ 19** 0~0.12**	単位 % 世下限 9 0.1 0.4 貴下限 30 0.3 2 フク値 7.4~ 19** 0~0.12** 6 4.1 ND ND ND ND 1 1 4.7 ND	単位 % 単位 % 世下限 9 0.1 0.4 0.1 量下限 30 0.3 2 0.3 フク値 7.4~ 0~0.12** 19** 0~0.12** 6 4.1 ND	単位 % 単位 % 上下限 9 0.1 0.4 0.1 0.2 上下限 30 0.3 2 0.3 0.4 クク値 7.4~ 19** 0~0.12**	単位 % 単位 % 上下限 9 0.1 0.4 0.1 0.2 0.6 上下限 30 0.3 2 0.3 0.4 2 フク値 7.4~ 19** 0~0.12** 0~0.27** 1 4.7 ND	単位 % 単位 % 上下限 9 0.1 0.4 0.1 0.2 0.6 5 上下限 30 0.3 2 0.3 0.4 2 20 フク値 7.4~ 19** 0~0.12** 0~0.2** 1.9~ 13*** 6 4.1 ND	単位 %	単位 % ng/g-wet 上下限 9 0.1 0.4 0.1 0.2 0.6 5 3 1 上下限 30 0.3 2 0.3 0.4 2 20 9 3 クク値 7.4~ 19** 0~0.12** 0~0.53** 4.0** 4.0** 0.53** 4.0** 0.53** 4.0** 0.53** 0.50 ND	単位 % 単位 %	単位 % 単位 % U下限 9 0.1 0.4 0.1 0.2 0.6 5 3 1 1 1 1 E下限 30 0.3 2 0.3 0.4 2 20 9 3 3 3 3 3 2 グ値囲 7.4 0-0.12** 0-0.12** 0-0.27** 1.9** 4.0** 0.53** 0-2.1** 6 4.1 ND	単位 % 正下限 9 0.1 0.4 0.1 0.2 0.6 5 3 1 1 1 1 0.7 一下限 9 0.1 0.4 0.1 0.2 20 9 3 3 3 3 3 3 2 7 1 1 1 1 0.7 一下限 9 0.1 0.4 0.1 0.2 0.6 5 3 1 1 1 1 0.7 一下限 9 0.1 0.4 0.1 0.2 0.6 5 0 9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	単位 % 中位	単位 %

性別 M:オス F:メス **:プランク値を差し引いて測定値とした。

タヌキ分析結果(その1)

(脂肪重量当たり濃度) (試料は筋肉)

SPE	ED'9	8						2						
物質	名					ポリ塩化	ビフェ	ニル類(P C B s)				
No.	性	年令 (オ)	脂肪含量	塩化ぴアゴル	二塩化、フェニル	三塩化ピカニル	四塩化ピフェニル	五塩化ビル	六塩化、フェニル	七塩化ピカニル	八塩化ピフェニル	九塩化ピアニル	十塩化ピフェニル	PCB合計**
		単位	%					nį	g/g-fat					
1	M	6	4.1	ND	0.58	1.1	4.6	37	130	100	32	10	8.0	320
2	M	1	4.7	ND	0.1	0.45	2.6	13	40	16	3.2	0.79	0.52	77
3	M	1	3.9	ND	tr	0.47	2.8	14	49	23	5.8	1.3	0.93	98
4	M	0.5	5.3	ND	0.22	0.05	1.6	7.1	16	5.3	1.0	0.25	0.23	32
5	M	0.5	6.0	ND	0.22	0.25	1.2	6.5	15	6.7	2.0	0.65	0.58	33
6	F	2	5.7	ND	0.1	0.66	16	240	350	200	33	5.7	4.0	850
7	F	2	1.4	ND	4.2	0.2	3.7	60	250	160	51	11	8.3	540
8	F	1	6.8	ND	0.05	0.43	1.3	5.1	12	6.0	1.9	0.56	0.45	28
9	F	1	6.9	ND	0.09	0.18	0.84	3.5	8.7	4.4	1.3	0.38	0.28	20
10	F	0.5	6.8	ND	0.1	0.28	1.9	6.4	17	9.5	3.3	0.97	0.76	40

性別 M:オス F:メス

- *:ブランク値を差し引かずに測定値とした。
- ** 定量下限未満は0として算出 :検出下限及び定量下限は設定無し

タヌキ分析結果(その2)

(脂肪重量当たり濃度) (試料は筋肉)

					12 14 15												
SPE	ED'9	8		4		12		1		15	16	1	8			9	
物質	名				ヘキサクロ	ロシクロク	ヽ キサン		クロルテ	ン類			•	DD	T類		
No.	性	年令 (オ)	脂肪含量	くキサクロロベンゼ ン(HCB)	-нсн	- НСН	- НСН	cis-クロルデン	trans-クロルデン	オキシクロルデン	trans-ノナクロル	0,p'-DDT	p,p'-DDT	o,p'-DDE	p,p'-DDE	0,p'-DDD	0,p'-'DDD
		単位	%			•				/	f a t	•	•	•		•	
1										ng/g-	ıaı						
	M	6	4.1	4.6	0.6	23	ND	t r	t r	ng/g- 210	76	ND	tr	ND	6.7	ND	tr
2	M	6	4.1	4.6 2.5	0.6	23 8.6	ND ND	t r t r	t r t r			ND ND	tr 2.2	ND ND	6.7 9.0	ND ND	t r 0.6
3		6 1 1								210	76						
	М	6 1 1 0.5	4.7	2.5	0.6	8.6	ND	tr	t r	210 79	76 100	ND	2.2	ND ND ND	9.0	ND	
3	М	1	4.7 3.9	2.5 3.7	0.6 0.8 0.6	8.6 14	ND ND	tr tr	t r 0.6	210 79 100	76 100 140	ND ND	2.2	ND ND	9.0	ND ND	0.6 1 tr
3	M M M	1 1 0.5	4.7 3.9 5.3	2.5 3.7 2.5	0.6 0.8 0.6	8.6 14 4.2	ND ND ND	tr tr tr	tr 0.6 tr	210 79 100 27	76 100 140 22	ND ND ND	2.2 2.8 1 0.8 ND	ND ND ND	9.0 12 2.9 2.4 tr	ND ND ND	0.6 1 tr
3 4 5	M M M F	1 1 0.5 0.5	4.7 3.9 5.3 6.0 5.7 1.4	2.5 3.7 2.5 1.5 1.8 1.1	0.6 0.8 0.6 0.4	8.6 14 4.2 25 8.1 18	ND ND ND ND ND	tr tr tr	tr 0.6 tr tr tr	210 79 100 27 35 240 590	76 100 140 22 20 70 800	ND ND ND ND ND	2.2 2.8 1 0.8 ND	ND ND ND ND ND	9.0 12 2.9 2.4	ND ND ND ND ND	0.6 1 tr tr ND tr
3 4 5	M M M F F	1 1 0.5 0.5	4.7 3.9 5.3 6.0 5.7	2.5 3.7 2.5 1.5 1.8	0.6 0.8 0.6 0.4 tr	8.6 14 4.2 25 8.1	ND ND ND ND ND ND	tr tr tr	tr 0.6 tr tr	210 79 100 27 35 240	76 100 140 22 20 70	ND ND ND ND ND ND	2.2 2.8 1 0.8 ND ND	ND ND ND ND ND ND	9.0 12 2.9 2.4 tr	ND ND ND ND ND ND	0.6 1 tr tr ND tr
3 4 5 6 7	M M M F	1 1 0.5 0.5 2 2	4.7 3.9 5.3 6.0 5.7 1.4	2.5 3.7 2.5 1.5 1.8 1.1	0.6 0.8 0.6 0.4 tr	8.6 14 4.2 25 8.1 18	ND ND ND ND ND	tr tr tr tr tr	tr 0.6 tr tr tr	210 79 100 27 35 240 590	76 100 140 22 20 70 800	ND ND ND ND ND	2.2 2.8 1 0.8 ND	ND ND ND ND ND	9.0 12 2.9 2.4 tr 6.7	ND ND ND ND ND	0.6 1 tr tr ND tr

性別 M:オス F:メス

*:ブランク値を差し引かずに測定値とした。

タヌキ分析結果(その3)

(脂肪重量当たり濃度) (試料は筋肉、有機スズのみ肝臓)

SPE	ED'9	18			23	23 25 26 30 32							48	35	46	47	33	34
物質	名														芳香族炭	化水素	有機ス	くズ
No.	性	年令 (オ)	脂肪含量(筋肉)	脂肪含量(肝臓)	ディルドリン	ヘプタクロル	ヘプタクロルエポキ サイド	マイレックス	トキサフェン Parlar #26	トキサフェン Parlar #50	トキサフェン Parlar #62	トキサフェン 合計**	オクタクロロスチレン	トリフルラリン	ベンゾフェノン	4-ニトロトルエン	トリブチルスズ	トリフェニルスズ
		単位	%	%							ng/g-	fat						
1	М	6	4.1	4.5	15	ND	15	1	0.33	0.26	ND	0.59	0.52	ND	ND	ND	ND	ND
2	М	1	4.7	3.2	13	ND	9.6	0.7	0.78	0.85	ND	1.6	0.2	ND	ND	ND	ND	ND
3	М	1	3.9	5.7	17	ND	57	2	2.1	2.5	ND	4.7	0.40	ND	ND	ND	ND	ND
4	М	0.5	5.3	4.7	3.4	ND	3.0	0.4	0.48	0.50	ND	0.98	0.1	ND	ND	ND	ND	ND
5	М	0.5	6.0	4.3	3.4	ND	3.4	0.7	0.25	0.26	ND	0.51	0.1	ND	ND	ND	ND	ND
6	F	2	5.7	3.2	10	ND	18	1	0.13	tr	ND	0.21	0.51	ND	ND	ND	ND	ND
7	F	2	1.4	3.8	25	t r	54	16	0.25	tr	ND	0.47	0.81	ND	ND	ND	ND	ND
8	F	1	6.8	4.2	3.9	ND	4.9	0.3	0.11	0.11	ND	0.22	0.09	ND	ND	ND	ND	ND
9	F	1	6.9	4.5	3.3	ND	8.8	0.3	0.14	0.11	ND	0.24	0.1	ND	ND	ND	ND	ND
10	F	0.5	6.8	5.1	9.4	DN	25	0.8	0.14	0.17	ND	0.31	0.1	DN	ND	ND	ND	ND

性別 M:オス F:メス

- *:ブランク値を差し引かずに測定値とした。
- ** 検出下限未満は0として算出 : 検出下限及び定量下限は設定無し

タヌキ分析結果(その4)

(脂肪重量当たり濃度) (試料は筋肉)

SPE	D'9	8			36		5	44	37	38	40	39	42	41	63	64	65	45
物質		-		アル=	キルフェ	ノール	クロ	ロフェノ	ール				フタル酸					
No.	性	年令 (オ)	脂肪含量	ノニルフェノール	4 - t-オクチルフェ ノール	4-n-ペンチルフェ ノール	ペンタクロロフェ ノール(PCP)	2,4-ジクロロフェ ノール	ピスフェノールA	フタル酸ジ-2-エチ ルヘキシル	フタル酸ジ -n-ブチ ル	フタル酸ブチルベン ジル	フタル酸ジエチル	フタル酸ジシクロヘ キシル	フタル酸ジペンチル	フタル酸ジヘキシル	フタル酸ジプロピル	アジピン酸ジ -2-エチルヘキ シル
		単位	%							ng	g/g-fat							
1	M	6	4.1	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	
2	M	1	4.7	ND	ND	ND	ND	ND	ND	4,900	ND		ND	ND	ND	ND	ND	ND
3	M	1	3.9	ND	ND	ND	ND	ND	ND	4,000	ND	ND	ND	ND	ND	ND	ND	ND
4	M	0.5	5.3	ND	ND	ND	ND	ND	ND	12,000	ND	ND	ND	ND	ND	ND	ND	ND
5	М	0.5	6.0	ND	ND	ND	tr	ND	ND	tr	ND	ND	ND	ND	ND	ND	ND	ND
6	F	2	5.7	ND	ND	ND	ND	ND	ND	3,100	ND	ND	ND	ND	ND	ND	ND	
7	F	2	1.4	ND	tr	ND	ND	ND	ND	2,100	ND	ND	ND	ND	ND	ND	ND	ND
8	F	1	6.8	ND	ND	ND	ND	ND	ND	2,700	ND	ND	ND	ND	ND	ND	ND	
9	F	1	6.9	ND	ND	ND	ND	ND	ND	1,900	ND	ND	ND	ND	ND	ND	ND	ND
10	F	0.5	6.8	ND	tr	ND	tr	ND	ND	580	ND	ND	ND	ND	ND	ND	ND	ND

性別 M:オス F:メス

**:ブランク値を差し引いて測定値とした。

カワウ バイオマーカー調査結果(その1)

薬物代謝酵素活性

			タンパク含				
			ダンハク 召	MROD	EROD	PROD	BROD
	性	年	(mg/ml	1	pmol/min/n	a protoin	1
番号	別	· 令	microsome)	(Pillo I / III I I I / II	g protein	,
1	M	Α	9.0	440	930	11	130
2	M	J	12	45	120	2.3	12
3	F	Α	10	120	270	5.5	61
4	F	Α	10	160	300	7.6	28
5	F	Α	8.2	160	320	6.9	53
6	F	Α	10	210	500	8.7	66
7	F	Α	13	120	270	5.1	33
8	F	J	15	140	270	4.9	33
9	F	J	13	74	190	4.1	30
10	F	J	9.1	150	300	5.7	37
4	∑均:	± SD	11 ± 2.1	160 ± 110	350 ± 230	6.2 ± 2.5	49 ± 34
11	M	Α	10	210	440	8.6	100
12	M	Α	6.4	150	310	7.9	36
13	M	Α	8.0	95	240	5.8	60
14	F	Α	12	50	110	2.4	20
15	F	Α	11	130	310	5.1	51
16	F	Α	11	120	310	5.7	80
17	F	Α	10	30	71	2.4	6.7
18	F	Α	16	210	600	6.1	160
19	F	Α	11	200	420	6.4	55
20	F	Α	10	130	290	6.2	78
4	∑均:	± SD	11 ± 2.4	130 ± 63	310 ± 160	5.7 ± 2.0	65 ± 43

血中ホルモン濃度

	性	年	T3	FT3	T4	FT4	Test	E2	P4
番号	別	令	ng/ml	pg/ml	ng/ml	pg/ml	pg/ml	pg/ml	ng/ml
1	M	Α	1.0	0.8	5.3	14	32.2	1.5	0.37
2	M	J	0.6	2.2	6.6	9	11.8	<0.05	0.22
3	F	Α	0.8	2.7	8.0	12	39.2	4.0	1.01
4	F	Α	1.1	2.3	9.6	8	38.7	6.6	7.04
5	F	Α	1.2	3.6	9.0	15	13.6	<0.05	0.28
6	F	Α	0.9	2.7	7.8	15	46.9	17.6	2.39
7	F	Α	1.1	3.1	7.8	13	67.5	NA	0.24
8	F	J	0.6	3.2	9.3	15	13.7	15.3	0.46
9	F	J	0.3	3.9	3.1	17	19.3	NA	0.53
10	F	J	0.9	1.7	12.5	10	8.9	6.4	1.81
11	M	Α	NA	NA	NA	NA	NA	NA	NA
12	M	Α	1.8	1.6	6.5	15	66.6	4.3	1.09
13	M	Α	1.8	2.6	6.7	17	NA	NA	NA
14	F	Α	0.8	2.7	4.6	15	90.4	28.2	0.35
15	F	Α	0.4	1.8	<0.05	11	900.1	320.2	0.54
16	F	Α	0.8	1.7	2.1	13	1,485.2	NA	1.21
17	F	Α	0.5	1.6	0.3	12	NA	NA	NA
18	F	Α	0.7	0.9	1.0	11	19.0	<0.05	0.76
19	F	Α	NA	NA	NA	NA	NA	NA	NA
20	F	Α	1.9	4.3	4.7	12	11.0	29.0	0.23
							NA = 1	試料不足で	測定できず

カワウ バイオマーカー調査結果(その2)

病理組織学的所見

-	м	左		ı	T	T	I	I	T	1
留号	性別	令	甲状腺	心臓	肺	腎臓	脾臓	胃	肝臓	生殖器
1	М	Α	一部濾胞小型 化、うっ血	著変なし	強いうっ血、 水腫	うっ血、間質 一部の出血	うっ血	固有層に軽度 の寄生虫性炎 症	単核球浸潤	精細管にセルトリ細胞と未分 化精粗細胞あり.ときに精母 細胞も認める.
2	М		濾胞小型傾向	著変なし	うっ血、水 腫、気管支内	うっ血、間質 の単核球浸潤	うっ血	固有層に寄生 虫性肉芽腫	単核球浸潤	精細管にセルトリ細胞と未分 化精粗細胞あり.
	F		濾胞小型化傾 向	著変なし	うっ血、水 腫、気管支 炎、寄生虫?	試料なし	著変なし	固有層に単核 球浸潤軽度	血管周囲軽度 単核球浸潤、 胆管増生	小卵胞多数.後は原始卵胞.
4			うっ血、軽度 の濾胞小型化	著変なし	強いうっ血、 気管支内出血	うっ血、間質 一部の出血	うっ血	固有層に単核 球浸潤	単核球浸潤	小~中卵胞多数 .
5	F	Α	濾胞小型化一 部密在	心筋線維の軽 度萎縮	うっ血、水 腫、気管支炎	試料なし	うっ血	固有層に軽度 の単核球浸潤	血管周囲軽度 単核球浸潤、 胆管増生	小卵胞多数.後は原始卵胞.
6	F	Α	試料なし	著変なし	強いうっ血	間質の単核球 浸潤	著変なし	固有層に単核 球浸潤	肝細胞空胞変性、軽度の単 核球浸潤	小~中卵胞多数 .
7	F	Α	濾胞小型化密 在中等度	著変なし	うっ血、水腫	尿管一部石灰 化、うっ血、 尿管周囲炎	著変なし	固有層に寄生 虫性肉芽腫、 炎症強い	血管周囲軽度 の単核球浸潤	小~中卵胞多数 .
	F		濾胞小型化密 在中等度	著変なし	軽度うっ血、 気管支炎、気 管支内の出血	間質の単核球 浸潤	著変なし	固有層から筋 層に単核球浸 潤	単核球浸潤	小卵胞多数.後は原始卵胞.
9	F	J	濾胞小型化密 在中等度	著変なし	うっ血、気管 支炎	間質の単核球 浸潤	著変なし	固有層に寄生 虫性肉芽腫	血管周囲の単 核球浸潤軽度	小~中卵胞多数.後は原始卵 胞.
10	F	٦	濾胞小型化密 在中等度	うっ血、軽度 水腫性	強いうっ血	うっ血、間質 一部単核球浸 潤	著変なし	固有層に寄生 虫性肉芽腫、 炎症性応答強	単核球浸潤	小卵胞多数.後は原始卵胞.
11	М	Α	濾胞小型化	著変なし	うっ血	軽度うっ血	試料なし	固有層から筋 層に寄生虫性 肉芽腫	一部に単核球 浸潤軽度	間質にメラニン色素,炎症細胞あり.大型の核あり.分裂 異常で大型の核あり.精子 (+)
12	М	A	濾胞小型化密 在中等度	著変なし	うっ血、微小 化膿巣	著変なし	うっ血	試料なし	著変なし	精子(+).間質に一次テニン 色素あり、間質に一部炎症細胞あり、リン・抗原を高い、関係装置が表示を 達している・、大阪原をるを にいる・、大阪原をある・、 にいる・、大阪原を はいる・、大阪の はいる はいる はいる はいる はいる はいる はいる はいる はいる はいる
13	М	Α	濾胞やや小型 化	著変なし	強いうっ血	うっ血	著変なし	固有層から筋 層に寄生虫性 肉芽腫	肝細胞空胞変 性	精子(+),間質にメラニン 色素あり.異常なし
			濾胞小型化密 在高度	著変なし	強いうっ血	間質の単核球 浸潤	被膜付近融 解、著変なし	固有層に単核 球浸潤、出血	著変なし	腐敗進行していたが,異常なし.
			濾胞小型化密 在中等度	著変なし	うっ血、気管支炎	尿管周囲炎?	試料なし	固有層から筋 層に寄生虫性 肉芽腫	一部に単核球浸潤軽度	卵巣異常なし、右卵管遺残有 り、粘液変性を起している・ クロアカには線虫の卵と成虫 の断面が確認できるが、生体 反応が起こっていないのでカ ワウを本来の宿主とする寄生 虫であろう・
16	F	Α	濾胞小型化密 在高度	著変なし	強いうっ血	著変なし	うっ血	潰瘍、筋層に 寄生虫性肉芽 腫	試料なし	異常なし.肉眼所見で短い右 卵管遺残あり.組織標本な し.
17	F	Α	濾胞小型化一 部密在	著変なし	強いうっ血、 単核球浸潤巣 あり	著変なし	うっ血	血管周囲単核 球浸潤	一部に単核球 浸潤軽度	卵巣異常なし.右卵管遺残有 り,組織学的には異常なし.
			在高度	著変なし	支炎	著変なし	著変なし	層と血管周囲 にリンパ球浸 潤	一部に単核球 浸潤軽度	卵巣異常なし、右卵管遺残有 り、左卵管に比べてもヒダ中 心部に繊維化が進む、上皮細 胞の細胞質に顆粒とおよび上 皮細胞自体の空胞化,核の濃 縮がみられる。
			濾胞小型化密 在中等度	試料なし	試料なし	著変なし	試料なし	固有層に寄生 虫性肉芽腫	著変なし	一部リンパ球浸潤,その他異常なし.
20	F	Α	濾胞小型化密 在中等度	著変なし	強いうっ血、 水腫	うっ血、尿管 周囲炎?	うっ血	固有層から筋 層に寄生虫性 肉芽腫、潰瘍	著変なし	異常なし

ハシブトガラス バイオマーカー調査結果(その1)

薬物代謝酵素活性

			タンパク含 量	MROD	EROD	PROD	BROD
番号	性別	年令	(mg/ml microsome)	(pmol/min/m	ng protein)
1	M	Α	13	320	110	2.9	6.3
2	M	Α	10	490	140	1.9	3.0
3	M	J	14	210	100	3.0	6.7
4	M	J	13	340	170	7.0	7.6
5	F	Α	16	300	95	2.6	2.5
6	F	Α	9.4	270	150	6.0	11
7	F	Α	14	280	100	2.5	4.1
8	F	Α	11	210	92	4.4	4.0
9	F	J	12	220	130	5.3	7.4
10	F	7	11	250	100	4.9	9.9
7	∑均:	± SD	12 ± 2.0	290 ± 84	120 ± 27	4.1±1.7	6.3 ± 2.9

血中ホルモン濃度

	性	年	T3	FT3	T4	FT4	Test	E2	P4
番号	別	令	ng/ml	pg/ml	ng/ml	pg/ml	pg/ml	pg/ml	ng/ml
1	M	Α	0.6	4.5	10.1	4.2	5.1	<0.05	1.67
2	M	Α	0.8	5.3	7.5	<0.5	9.4	<0.05	6.35
3	M	J	0.7	1.6	9.3	5.3	12.5	<0.05	0.97
4	M	J	0.0	5.2	6.7	0.6	6.9	<0.05	1.12
5	F	Α	0.8	5.8	15.6	2.0	4.7	<0.05	2.00
6	F	Α	0.2	1.8	13.2	1.4	4.8	<0.05	3.05
7	F	Α	0.6	5.8	12.4	1.6	14.1	<0.05	0.14
8	F	Α	0.1	2.0	11.5	<0.5	5.3	<0.05	5.60
9	F	J	0.7	0.7	10.0	1.9	8.5	<0.05	0.03
10	F	J	0.1	3.6	12.4	2.9	1.6	<0.05	1.13

生殖器病理所見

	性	年	
番号	別	令	組織所見
1	M	Α	精細管内にセルトリ細胞と未分化精粗細胞あり。
2	M	Α	精細管内にセルトリ細胞と未分化精粗細胞あり。
3	M	J	精細管内にセルトリ細胞と未分化精粗細胞あり。リンパ球の集族像も認める。 る。
4	M	J	精細管内にセルトリ細胞と未分化精粗細胞あり。ただし精細管内に空胞を認める。
5	F	Α	小~中卵胞多数。あとは原始卵胞。
6	F	Α	小~中卵胞多数。あとは原始卵胞。
7	F	Α	小~中卵胞多数。あとは原始卵胞。
8	F	Α	小卵胞多数。あとは原始卵胞。
9	F	J	原始卵胞多数
10	F	.1	小卵胞多数、あとは原始卵胞、辺縁部には精単様構造あり、

ハシブトガラス バイオマーカー調査結果(その2)

病理組織学的所見

		番号	1	2	3	4	5	6	7	8	9	10
臓器	; 所見	性別	M	M	М	М	F	F	F	F	F	F
		年齢	Α	Α	J	J	Α	Α	Α	Α	J	J
肺	炭粉沈着		+	++	+	+	+	+	+	+	-	-
	リンパ装置の球ア		-	-	+	-	-	-	-	-	+	-
膵臓	チモーゲン顆粒の	減少	+	-		++		++		+	-	++
腺胃	寄生虫		-	+++	-	-	-	-	-	-	-	
	リンパ濾胞増生		-	-	-	-	-	-	-	-	-	-
	寄生虫性肉芽腫性	炎	-	++	-	-	-	-	-	-	-	-
筋胃	角質層の炎症・変	性	-	-	-	+	+	+	-	-	-	-
	寄生虫		-	-	-	-	-	-	-	-	-	-
	炎症性細胞浸潤(角		+	-	-	+	-	-	-	-	-	-
	寄生虫性肉芽腫性		-	-	-	-	-	-	-	-	-	-
十二指腸	コクシジウム寄生		+++	+++	++	+	+++	++	+	+	+++	++
	その他寄生虫		-	+	+	-	-	+	-	+	++	+
	リンパ濾胞増生		-	+	+	-	+	-	-	-	-	-
	偽好酸球		++	+	-	+	+	-	-	-	-	-
回腸	リンパ濾胞増生		-	+	-	-	++	-	-	-	-	-
	リンパ濾胞炎		-	-	+	-	-	-	-	-	+	-
	偽好酸球		+	++	+	-	-	-	-	+	-	+
	寄生虫		+++	+++	+	-	+++	-	-	-	-	-
盲腸	リンパ濾胞炎		-	-	+	+	-	+	-	+	+	+
脾臓	リンパ濾胞増生		-	-	+	-	-	-	+	-	+	-
DT 044	リンパ濾胞萎縮		-	-	-	+	-	-	-	-	-	+
肝臓	空胞変性			-	-	-	-	-	-	-	-	-
E7 0++	リンパ濾胞増生			-	-	-	-	-	-	-	-	-
腎臓	リンパ濾胞増生		-	-	+	-	-	-	-	-	+	-
甲状腺	濾胞の大小不同		-	++	-	-	++	-	-	-	-	-
	濾胞囊胞状過形成 骨形成		-	-	-	-	+	-	-	-	-	-
	1 5 1 1 1 1 1 1		-	-	-	-	+	-	-	-	-	-
	濾胞上皮肥大 C細胞増加		-	-	-	-		-	-	-	-	-
	 減胞上皮の褐色色	丰油羊	-	-	-	-	-	-	-	-	-	-
	遮肥上皮の梅巴巴 コロイドへの褐色		-	++	-	-	++	+	+	+	-	-
	コロイドへの椅巴 コロイドへの石灰	+	++	-	+	+++	++	+	-	-	-	
	コロイトへの石灰 リンパ球浸潤	-	+	-	-	+	-	-	-	-	+	
生 惠			-	-	+	+	-	-	-	-	-	т
気嚢	気嚢炎			- 1	+	-		-	+	+	+	-