曝露経路調査 参考資料1 フガシティーモデルについて

1. 概要

フガシティーモデルとは、大気、水、土壌、生物、懸濁質、底泥の環境の各 相における化学物質の分配を表すモデルである。化学物質の濃度が非常に低い 状態では、化学物質の分配は熱力学もしくは化学平衡論で表現される。ここで は極めて短時間に平衡状態が成立し、その平衡状態は熱力学的関係によって規 定される。このモデルの特徴は、予測モデルの構築にあたって、特に各相間の 化学物質の動きを表す指標として、化学物質が各相の外に出ようとする傾向を 表すフガシティーという変数を導入したことにある。また、化学物質の環境で の挙動を把握するのに適しており、必要とするパラメータも数も少ないのが特 徴である。

2. レベルの選定とモデルの詳細

フガシティーモデルは、難易度に応じて以下のレベルに分かれる。

主要曝露経路の推定には、化学物質が対象領域で定常状態と仮定して、レベル ルを適用した。

レベル	モデルの形式	特 徵
	平衡・定常・移流なし	
	平衡・定常・移流あり	分解、排出を考慮、移流を考慮している version
		と考慮していない version がある。
	非平衡・定常・移流あり	分解、排出、移流、拡散を考慮
	非平衡・非定常・移流あり	分解、排出、移流、拡散を考慮。

表 1 フガシティーモデルの各レベルの説明

ある相(i=a:大気、so:土壌、w:水、b:生物、ss:懸濁質、sd:底泥)における化学 物質の濃度(*C*)は、フガシティー(*f*)とフガシティー・キャパシティー(*Z*)によって 以下のように表すことができる。

$$C_i = f_i \cdot Z_i$$
 数式 1

各相のフガシティー・キャパシティーは、化学物質の物性値より求めることができる。また、*C*は化学物質の量(*A*)と容積(*V*)から以下のように表すことができる。

$$C_i = A_i / V_i$$
数式 2

よって、数式1と数式2より、*f*は以下のようになる。

$$f_i = A_i / (V_i \cdot Z_i)$$
数式 3

ここで、各相のフガシティーはすべて等しく、系全体のフガシティー(f_i)とも 等しい。

よって、

 $f_t = \sum A_i / \sum (V_i \cdot Z_i)$

& and the second sec

 A_i 、 V_i 、 Z_i (表 2) は、初期条件として与えられているため、 f_t を求めることができる。さらに、 f_t より数式 3 を用いて A_i を求めることができ、数式 2 より C_i を求めることができる。

$$f_t = \sum A_i / \sum (V_i \cdot Z_i)$$

数式 6

媒 体	$Z_i \mod/(\mathrm{m}^3 \cdot \mathrm{Pa})$
大気	$Z_a = 1/RT$
土壤	$Z_{so} = K_P \cdot \rho_{so} / H$
水	$Z_w = 1/H$
生物	$Z_b = K_B \cdot \rho_B / H$
懸濁質	$Z_{ss} = K_P \cdot \rho_{ss} / H$
底 質	$Z_{sd} = K_P \cdot \rho_{sd} / H$

表 2 フガシティー・キャパシティー(Z_i)

表 3 フガシティーモデルで使用するパラメータ

記号	パラメータ	単位
C_S	水溶解度	mol/m ³
Н	ヘンリー 則定数 (=P _S /C _S)	Pa• m ³ /mol
K_B	生物体への濃縮係数	
K _{OC}	有機炭素·水分配係数	
K_P	土壤吸着定数	
	$K_P = K_{OC} \cdot TOC$	
P_S	蒸気圧	Ра
R	気体定数 (=8.31)	Pa• m ³ /mol• K
Т	温度 (=298)	К
TOC	有機炭素比率	
В	生物体の密度	
sd	底泥の密度	
SO	土壌の密度	

3. ユニットワールド、物性パラメータ等の設定

このモデルでは、体積比と表面積比が実際に近い環境をユニットワールドと して設定し、その中での挙動を考える。Mackay ら1)のユニットワールドを参考 に、大気、水、土壌、生物、懸濁質、底泥の 6 つのコンパートメントからなる ユニットワールドを考えた。領域は、日本のほとんどすべての陸域とその周辺 の海域を含んだ範囲を対象とし(図 1)、各コンパートメントの環境条件は表 4 のように設定した(図 2)。

媒 体	面積	高さ	容 積 V	密度	有機炭素含有率
	(m ²)	(m)	(m ³)	(kg/m^3)	<i>TOC</i> (-)
大気	4.86×10^{11}	10^{3}	4.86×10^{14}	1.19	
土壤	3.63×10^{11}	3×10^{-2}	1.09×10^{10}	1500	0.02
水	1.23×10^{11}	10	1.23×10^{12}	1000	
生物			6.15×10^5	1000	
懸濁質			6.15×10^{6}	1500	0.04
底泥	1.23×10^{11}	3 × 10 ⁻²	3.69×10^{9}	1500	0.04

表 4 対象領域の大きさ、各コンパートメントの環境条件

4. 参考文献

¹⁾ Mackay, D. Multimedia Environmental Models: The Fugacity Approach. Lewis Publishers, Inc , Michigan. (1991)

曝露経路調査 参考資料2 水環境挙動モデル基本モデル

1.評価環境

河川や湖沼に設定した区間を水塊(単位水塊)が移動していくと考え、図 1に示した評価環境における対象物質の挙動をモデル化した。

水環境に排出された対象物質は、溶存態と懸濁物質に収着した懸濁態に分 配している。溶存態は水中での分解、揮発、底質粒子・懸濁物質への収着、 生物への濃縮が起こる。また、懸濁態は沈降により底質へ移行し、底質が水 流等により巻き上がり水中へ懸濁態として供給される。対象物質はこのよう な複雑な挙動を繰り返しているものと考えられる。

図 1 環境動態モデルで設定する評価環境

2. 基礎式

(1) 対象物質の輸送量

検証区間に流入する対象物質の量は、下式で示される。なお、支流から 流入する対象物質量は、検証区間入口にて本流の対象物質量と合算した。 また、各式で使用した記号等を表 1にまとめた。

$$M_{in} = Q_{in} c_{in} = Q_m c_m + Q_b c_b$$
 (式 1)
 M_{in} :流入する対象物質量(m³/s)
 Q_{in} :流入する水量(m³/s)
 c_{in} :流入する対象物質濃度(g/m³)
 Q_m :本流流入水量(m³/s)
 c_m :本流流入水量(m³/s)
 Q_b :支流流入水量(m³/s)
 c_b :支流流入水中の対象物質濃度(g/m³)

流出する対象物質量は下式で示される。

 $M_{out} = Q_{out} c_{out}$

(式 2)

- *M_{out}*:流出する対象物質量(m³/s)
- *Q*_{out} : 流出水量(m³/s)
- *c_{out}*:流出水中の対象物質濃度(g/m³)

(2) 各コンパートメントでの物質収支

単位水塊の中の水及び底質コンパートメントにおける物質収支は、それ ぞれ下式で示される。添え字の1は水中を、2は底質を示した。

$$\begin{split} \Delta M_1 &= -\Delta D_1 - \Delta V_1 - \Delta S_s + \Delta S_r + \Delta S_d - \Delta F \quad (\texttt{K}) \quad (\texttt{I} \quad \texttt{3}) \\ \Delta M_2 &= -\Delta D_2 + \Delta S_s - \Delta S_r - \Delta S_d \quad (\texttt{K}\texttt{G}) \quad (\texttt{I} \quad \texttt{4}) \end{split}$$

*M*₁:水中で増加する対象物質量(g/s)

- *D*₁ :水中で分解される対象物質量(g/s)
- *V₁*:水表面から揮発する対象物質量(g/s)
- S_s: : 懸濁物質の沈降によって底質へ移行する対象物質量(g/s)
- Sr : 底質の巻き上げによって水中へ移行する対象物質量 (g/s)
- S_d:間隙水の拡散によって水中へ移行する対象物質量(g/s)
- F : 漁獲によって取り除かれる対象物質量 (g/s)
- *M*₂: 底質で増加する対象物質量(g/s)
- *D*₂ : 底質で分解される対象物質量 (g/s)

なお、水及び底質コンパートメントはそれぞれ水と懸濁物質、間隙水と 底質粒子を含み、水中の懸濁物質に収着している懸濁態と水中へ溶存して いる溶存態、あるいは底質粒子に収着している収着態と間隙水へ溶存して いる溶存態に分配されている。各コンパートメントに存在する対象物質の 総濃度と以下の関係にある。

$$c = c_d + c_p$$
 (式 5)
 $c_d = F_d c$ (式 6)
 $c_p = F_p c$ (式 7)
 $F_d + F_p = 1$ (式 8)
 c :対象物質の総濃度 (g/m³)
 c_d :溶存態の対象物質濃度 (g/m³)
 c_p :懸濁態の対象物質濃度 (g/m³)
 F_d :溶存態分配率

F_p : 懸濁態分配率

したがって、各コンパートメントにおける分配率は下式で求められる1)。

$$F_{d1} = \frac{1}{1 + K_{d1} \cdot SS} \qquad (\vec{\mathbf{x}} \ 9)$$

 F_{d1}
 :水中の溶存態分配率

 K_{d1}
 :粒子・水分配係数(m³/g)

(底質)

(水)

$$F_{d2} = \frac{1}{\phi + K_{d2}(1 - \phi)\rho}$$
 (I)

*K*_dは、平衡条件下にある懸濁物質または底質と水との間の化学物質の 分配挙動を表わし、下式のように表わされる。

$$K_d = \frac{c_p}{c_d} \qquad (\vec{z}, 11)$$

その際、化学物質が収着している懸濁物質及び底質の質量は、その有機 炭素含有量に還元されることから、*K*_dは下式のように求めた²⁾。

$$K_d$$
 = $K_{oc} \times POC$ (式 12)
 K_{oc} : 有機炭素・水分配係数($m^{3/g}$)
 POC : 懸濁物質または底質の有機炭素の割合

(3) 対象物質の移動及び減少の過程

評価環境内では、コンパートメント間での対象物質の移動や減少がおこ るが、このモデルでは以下のような過程で考慮した。

ア 水中における分解

水中において分解される対象物質量は、下式で示される。なお、k₁は光 分解、加水分解、微生物等による生分解など環境中における分解をすべて 考慮した水中半減期より求めた。

$$D_1 = k_1 V_1 F d_1 c_1$$
 (式 13)
 k_1 :水中での対象物質の分解率 (/s)
 V_1 :単位水塊の容積 (m³)

$$k_1 = 1 - \exp\left(-\frac{0.693}{T_{1/2}}\right)$$
 (式 14)
 $T_{1/2}$: 水中半減期 (s)

イ 底質における分解

底質において分解される対象物質量は、下式で示される。k₂は式 14 に したがって底質中半減期より求めた。

$$D_2 = k_2 V_2 c_2$$
 (式 15)
 V_2 : 単位水塊の接する底質の容積(m³)
 k_2 : 底質での対象物質分解率(/s)
 c_2 : 底質の対象物質濃度(g/m³)

ウ 水中からの揮発による移動

水中から揮発によって大気へ移動する対象物質量は、下式で示される。

 $V_l = v_v A F d_1 c_1 \tag{\vec{x} 16}$

- *A* : 単位水塊の面積(=単位水塊が底質に接する面積)(m²)
- v_v :揮発速度(m/s)
- *c*₁ : 水中の対象物質濃度 (g/m³)

なお、水中における対象物質の分解率 k_1 を、揮発による減少も考慮された水中半減期から求めた場合は、 $V_I = 0$ とした。

エ 懸濁物質の沈降及び底質の巻き上げによる移動

懸濁物質に収着した化学物質は、沈降によって水中から底質へ移行する と考えられる。また、水流による底質の巻き上げにより、底質から水中へ の移行も考えられる。河川と手賀沼では水理条件が大きく異なるため、そ れぞれのプロセスを考慮した。

なお、底質コンパートメントにおける物質収支では、仮に底質層の厚み を 2cm として試算すると、 S_s 、 S_r は底質中分解量 D_2 に対してはる かに小さいことから、 $S_s = 0$ 、 $S_r = 0$ とした。 (ア)河川

今回調査対象とした河川は、水深が浅く、水流が複雑であることか ら、沈降速度と巻き上げ速度を記述することは困難であった。そのた め、沈降量の割合は、流入した懸濁物質量と流出する懸濁物質量の比 によって式 17 に従うものと仮定して求めた。

これは、懸濁物質量の流入量及び流出量が同じ場合(*SS_{out}/SS_{in}=1*) 流入した懸濁物質の半量は沈降して、流出する懸濁物質の半量は底質 より巻き上がったと仮定したものである。この仮定に従うと、検証区 間に流出する懸濁物質量が流入量より多い場合には、底質からの巻き 上げ量が大きく沈降量が少なくなる、逆に流出する懸濁物質量が少な い場合には沈降量が大きくなる(図 2)。

この仮定から、懸濁態沈降量及び巻き上げ量は下式を用いた。

$$\Delta S_s = \frac{S}{t} V_1 F_{p1} c_1 \tag{\vec{x} 17}$$

$$\Delta S_r = \frac{SS_{out} - (1 - S)SS_{in}}{t} \cdot \frac{c_2}{\rho} \qquad (\ensuremath{\mathbb{T}} \ensurem$$

$$S = \exp\left(-0.693 \frac{SS_{out}}{SS_{in}}\right) \qquad (\vec{z} \cdot 19)$$

$$SS_{in} = SS_{cin} \cdot V_{in} \tag{\vec{t} 20}$$

$$SS_{out} = SS_{cout} \cdot V_{out}$$
 (I) (I)

- S : 懸濁物質の沈降比率
- *SS_{in}* :区間入口の単位水塊に含まれる懸濁物質量(g)
- SS_{out} :区間出口の単位水塊に含まれる懸濁物質量(g)
- SS_{cin}:区間入口の単位水塊の懸濁物質濃度(g/m³)
- SS_{cout}:区間出口の単位水塊の懸濁物質濃度(g/m³)
- *V_{in}*:区間入口の単位水塊の容積(m³)
- *V_{out}*:区間出口の単位水塊の容積(m³)
- *t* : 単位水塊の区間における滞留時間(s)

図 2 懸濁物質の沈降比率

(イ) 手賀沼

手賀沼については、文献より底質の堆積速度がわかっていることか ら、これを懸濁物質の沈降と底質の巻上げを含んだ収支であると考え、 懸濁物質の沈降量 *SS*_a に換算し、これが単位水塊内で沈降していくと 考えた。したがって、懸濁態沈降量及び巻き上げ量は下式のように表 わされる。

$$\Delta S_s - \Delta S_r = F_{p1} c_1 V_1 \cdot \frac{SS_a \cdot A}{SS_{in}} \qquad (\vec{\mathtt{rt}} \, 22)$$

 SS_a :文献値より求めた懸濁物質の沈降量 ($g/m^2/s$)

オ 水 - 底質間の移動

水-底質間では、水中と間隙水中の溶存態濃度の差を推進力とした対象 物質の移動が起こる。これは、両方向に向かうことのできる可逆的な過程 である。なお、水及び懸濁物質、間隙水及び底質粒子の間では収着平衡が 成立しているものとする。((2)各コンパートメントでの物質収支 参照)。

> $S_d = v_d A (F_{d2}c_2 - F_{d1}c_1)$ (式 23) $v_d : ixt table A (E_{d2}c_2 - F_{d1}c_1)$

 v_d は、下式で求められる³⁾。

v_d (m/yr)= 69.35 Ø M^{-2/3} M :対象物質の分子量
(式 24)

なお、底質コンパートメントにおける物質収支では、仮に底質層の厚さ を 2cm として試算すると、 S_d は底質中分解量 D_2 に対してはるかに小 さいことから、 $S_d = 0$ とした。

カ 生物への濃縮と漁獲による移動

水中の化学物質は生物へ取り込まれ、その性状により生物中に濃縮され る。漁獲が行われる場合は、対象物質の系外への移動が起こる。漁獲の対 象は魚類のみであると仮定すると、漁獲によって系外へ移動する対象物質 は下式のように表わされる。なお、魚類と水の間では対象物質濃度の平衡 が成立しているものとする。

$$\Delta F = BCF \frac{C_f}{\rho_f} c_1 \qquad (\vec{\mathbf{x}} \ 25)$$

BCF : 生物濃縮係数 *C_f* : 漁獲量 (g/s) *ρ_f* : 魚の比重 (g/m³) キ 前駆物質からの生成

ノニルフェノールについては,その前駆物質の一つであるノニルフェ ノールエトキシレート(NPnEO)の分解による生成が起こると考えた。

底質コンパートメントにおけるノニルフェノールの物質収支は,前駆 物質の分解による生成を考慮すると下式で示される。

 $\Delta M_2 = -\Delta D_2 + \Delta O_2 + \Delta S_s - \Delta S_r - \Delta S_d \qquad (\textbf{\textbf{K}} \textbf{\textbf{\emptyset}}) \qquad (\textbf{\textbf{\vec{x}}} \ 26)$

M₂ : 底質で増加する対象物質量 (g/s)

- D₂ : 底質で分解される対象物質量 (g/s)
- O₂:NP1EOの分解によって増加するノニルフェノールの量(g/s)
- S_s: 影濁物質の沈降によって底質へ移行する対象物質量(g/s)
- Sr : 底質の巻き上げによって水中へ移行する対象物質量(g/s)
- S_d:間隙水の拡散によって水中へ移行する対象物質量(g/s)

底泥中の NPnEO(n=1~17)の分解は,それぞれが同時に分解するためエ トキシレートユニット数ごとに分解後の物質量を求めた(式 27)。最終段 階で NP1EO が分解してノニルフェノールとなると考え,NP1EO の分解 量をノニルフェノールの増加量 *O*₂とした(式 28)。*k*_{nEO2}は,エトキシレー トユニット数による分解速度の違いを考慮して設定した。

 $M_{nEO2} = -k_{nEO2} \cdot V_2 \cdot c_{nEO2} + k_{n+1EO2} \cdot V_2 \cdot c_{n+1EO2} \quad (\vec{x} \ 27)$ $O_2 = k_{1EO2} \cdot V_2 \cdot c_{1EO2} \quad (\vec{x} \ 28)$

 M_{nEO_2} : NPnEO(n=1 ~ 17)の物質量 (g/s) V_2 : 単位水塊の接する底質の容積 (m^3)

k_{nEO2} :底質での NPnEO(n=1~17)の分解率 (/s)

c_{nEO2} : 底質の NPnEO(n=1~17)の濃度 (g/m³)

表1(1) モデルに使用した記号一覧

記号	意味(単位)
Α	単位水塊の面積(=単位水塊が底質に接する面積)(m ²)
BCF	生物濃縮係数
с	対象物質の総濃度(g/m ³)
c_1	水中の対象物質濃度(g/m ³)
c_2	底質の対象物質濃度(g/m ³)
c_d	溶存態の対象物質濃度(g/m ³)
c_p	懸濁態の対象物質濃度 (g/m ³)
c_{nEO2}	底質のNPnEO(n=1~17)の濃度(g/m ³)
C_f	漁獲量(g/s)
F_d	溶存態分配率
F_{d1}	水中の溶存態分配率
F_{d2}	間隙水中の溶存態分配率
F_p	懸濁態分配率
k_1	水中での対象物質分解率(s ⁻¹)
k_2	底質での対象物質分解率(s ⁻¹)
$k_{\rm nEO2}$	底質でのNPnEO(n=1~17)の分解率 (s ⁻¹)
K_d	粒子・水分配係数(m ³ /g)
K_{d1}	粒子・水分配係数(m ³ /g)
K_{d2}	底質・水分配係数(m ³ /g)
Koc	有機炭素·水分配係数
М	対象物質の分子量
M_{in}	流入する対象物質量(g/s)
Mout	流入する対象物質量(g/s)
РОС	懸濁物質の有機炭素の割合
Q_b	支流流入水量(m ³ /s)
Q_{in}	流入する水量(m ³ /s)
Q_m	本流流入水量(m ³ /s)
Q_{out}	流出水量(m ³ /s)

表 1(2) モデルに使用した記号一覧

記号	意味(単位)
S	懸濁物質の沈降比率
SS _a	文献値より求めた懸濁物質の沈降量(g/m²/s)
SS	流入する懸濁物質濃度(g/m ³)
SS _{cin}	区間入口の単位水塊の懸濁物質濃度(g/m ³)
SS _{cout}	区間出口の単位水塊の懸濁物質濃度(g/m ³)
SS _{in}	区間入口の単位水塊に含まれる懸濁物質量(g)
SSout	区間出口の単位水塊に含まれる懸濁物質量(g)
t	区間における単位水塊の滞留時間(s)
T _{1/2}	半減期(s)
V_1	単位水塊の容積(m ³)
V_2	単位水塊の接する底質の容積 (m³)
V_{in}	区間入口の単位水塊の容積(m ³)
Vout	区間出口の単位水塊の容積(m ³)
v_a	堆積速度(m/s)
Vd	拡散混合速度(m/s)
<i>v</i> _r	底質の巻き上げ速度 (m/s)
Vs	懸濁物質の沈降速度(m/s)
v_{v}	揮発速度(m/s)
W	底質水分率
D_1	水中で分解される対象物質量(g/s)
D_2	底質で分解される対象物質量 (g/s)
F	漁獲により取り除かれる対象物質量 (g/s)
M_1	水中で増加する対象物質量(g/s)
M_2	底質で増加する対象物質量(g/s)
Mn _{EO2}	NPnEO(n=1~17)の物質量(g/s)
O_2	NP1EOの分解によって増加するノニルフェノールの量 (g/s)
S_d	間隙水の拡散によって水中へ移行する対象物質量 (g/s)
S_r	巻き上げによって水中へ移行する対象物質量 (g/s)
S_s	懸濁物質の沈降によって底質へ移行する対象物質量 (g/s)
V_1	水表面から揮発する対象物質量(g/s)
ϕ	間隙率
ρ	底質密度(g/m ³)
ρ_{f}	魚の比重 (g/m ³)

3.参考文献

- ¹ Elzerman, A.W. & J.T. Coates (1987) in: "Sources and fate of aquatic pollutants", p.264-317, Eds.: Hites, R.A., S.J. Eisenreich; American Chemical Society, Washington, D.C.
- ² Karickhoff, S.W., D.S. Brown & T.A. Scott (1979) Sorption of hydrophobic pollutants on natural sediments. Water Res. 13, 241-248.
- ³ Di Toro, D.M., O'Connor, D.J., Thomann, R.V., and St. John, J.P.: Analysis of Fate of Chemicals in Receiving Water Phase 1. Chemical Manufact. Assoc. Washington, D.C. Prepared by Hydro Qual Inc., Mahwah, NJ. (1981)