付属資料 6 ExTEND2005 に基づく基盤的研究、野生生物の生物学的知見研究の実施状況

ExTEND2005 における区分	実施目的	代表研究者	課題名	17	18	19	20	21
				年	年	年	年	年
				度	度	度	度	度
(1)野生生物の観察	1. 野生生物に	須之部友基	1.1. 雌雄同体性魚類の性の可塑性と社会構造	野	野	_	_	_
(3)基盤的研究の推進	おける異常の		に関する研究					
①野生生物の基礎生物学的知	実態把握	由井正敏	1.2.魚食性猛禽類「ミサゴ」の生態とその食物	_	_	_	FS	FS
見の収集			連鎖に関する基礎的研究					
	2. 野生生物に	上田哲行	2.1.アカトンボ減少傾向の把握とその原因究	_	FS	FS	野	野
	おける異常を		明					
	もたらす原因	三枝誠行	2.2.底生甲殻類の成長や成熟に見られる異常	_	[—	[—	_	FS
	の解明		のスクリーニングと環境の影響評価に関する					
			研究					
		堀口敏宏	2.3. 東京湾における生態系かく乱の実態解明	_	FS	FS	野	—
			とその要因解析					
		高瀬 稔	2.4. 両生類の野外及び室内飼育における精巣	_	_	FS	FS	—
			卵の消長					
		山室真澄	2.5. 農薬がシャジクモ類減少の一因である可	_	FS		—	—
			能性に関するフィージビリティースタディー	<u> </u>	<u> </u>			
		白岩善博	2.6.シャジクモ類の衰退要因解明に向けた環	_	_	FS	FS	野
			境負荷化学物質の影響に関する生理・生態学					
			的研究					

野:野生生物の生物学的知見研究として実施、基:基盤的研究として実施、

ExTEND2005 における区分	実施目的	代表研究者	課題名	17	18	19	20	21
				年	年	年	年	年
				度	度	度	度	度
(1)野生生物の観察	3. 野生生物に	花里孝幸	3.1.沿岸域を中心とした湖沼生態系かく乱の	野	野	野	_	_
(3)基盤的研究の推進	おける異常を		実態とそのメカニズムの解明					
①野生生物の基礎生物学的知	もたらすメカ							
見の収集	ニズムの解明							
(2)環境中濃度の実態の把握	4. 環境中濃度	門上希和夫	4.1. 魚介類におけるダイオキシン類蓄積量の	野	_	_	_	_
及び暴露の測定	の実態把握及		比較					
	びばく露の測	田辺信介	4.2.POPs 及び候補物質による日韓沿岸及び	野	他	他	他	他
	定		近海の野生生物汚染の実態解明					
(3)基盤的研究の推進	5. 試験生物に	井口泰泉	5.1. ミジンコにおける内分泌かく乱作用メカ	基	他	他	他	他
②個体レベルのアプローチ及	悪影響をもた		ニズムの解析					
び③細胞・分子レベルのアプ	らすメカニズ	鑪迫典久	5. 2. 無脊椎動物幼若ホルモン受容体の探索と	_	FS	_	_	_
ローチ	ムの解明		作用機構の解明					
		古賀 実	5.3. 無脊椎動物(アミ類)における生殖・発生異	_	_	_	_	FS
			常とその発生メカニズム					
		長濱嘉孝	5.4.メダカの生殖内分泌系に及ぼす化学物質	基	基	基	基	基
			の内分泌かく乱作用の作用メカニズムに関す					
			る研究					
		徳元俊伸	5.5.ステロイド膜受容体を標的とした化学物	_	<u> </u>	FS	FS	_
			質の内分泌かく乱作用に関する研究					

ExTEND2005 における区分	実施目的	代表研究者	課題名	17	18	19	20	21
				年	年	年	年	年
				度	度	度	度	度
(3)基盤的研究の推進	5. 試験生物に	岩田久人	5.6. 野生生物のリスク評価を目指した核内受	_	FS	FS	基	基
②個体レベルのアプローチ及	悪影響をもた		容体リガンドの網羅的解析法の開発					
び③細胞・分子レベルのアプ	らすメカニズ	太田 茂	5.7. 胎仔期、新生仔期の代謝機能と内分泌か	FS	基	基	基	基
ローチ	ムの解明		く乱作用発現					
		鯉淵典之	5.8.核内ホルモン受容体による転写調節にお	FS	基	基	基	基
			ける環境化学物質の作用機構					
		中西 剛	5.9. 胎児期におけるエストロジェンシグナル	FS	基	基	基	基
			の gain of function とその性分化の可塑性					
		原 俊太郎	5.10.アラキドン酸代謝変動への影響からみ	<u> </u>	FS	_	_	_
			た環境化学物質の内分泌かく乱作用機構の解					
			析					
(3)基盤的研究の推進	6.新たな作用	原 俊太郎	6.1.精子に存在するホスホリパーゼA2活性	_	_	FS	FS	
②個体レベルのアプローチ及	メカニズムの		の阻害を介した環境化学物質の新たな内分泌					
び③細胞・分子レベルのアプ	把握		かく乱作用機構に関する研究					
ローチ		大迫誠一郎	6.2. 化学物質誘発性のエピジェネティック修	<u> </u>	<u> </u>	_	FS	FS
			飾による DOHaD モデルの検証					

ExTEND2005 における区分	実施目的	代表研究者	課題名	17	18	19	20	21
				年	年	年	年	年
				度	度	度	度	度
(3)基盤的研究の推進	7. 試験法	木下政人	7.1.遺伝子導入メダカを用いた内分泌かく乱物質	FS	基	基	_	_
④試験法開発に資する基盤的	開発に資		による生殖巣初期変化の把握と回復能力の検討					
研究	する基礎	長江真樹	イトヨによる化学物質の内分泌かく乱作用の評価	基	日	英共同	司研究	で
	的研究の		手法の研究			実施	包中	
	実施	中井 誠	7.2.メダカアンドロジェン受容体結合性試験の確	FS	_	[—	_	[—
			立					
		早川和一	7.3. 燃焼排ガスに含まれる多環芳香族炭化水素類	FS	基	基	_	_
			の内分泌かく乱作用の評価					
		柏木昭彦	両生類の甲状腺ホルモンに対するかく乱作用発現	基	両生	類の記	式験法	開発
			のメカニズムに関する研究			で実	施中	
		蔵崎正明	7.4.内分泌かく乱物質の生態影響試験法の開発	FS	_	[—	_	[—
	8. 試験結	田中嘉成	8.1.改良型ミジンコ繁殖毒性試験を用いた新たな		_		_	FS
	果の解釈		数理生態学的解析手法の検討					
	と評価の	濱口 哲	8.2.野生メダカの性分化異常に関わる基礎的情報	FS	野	野	野	野
	ための試		の収集と解析					
	験生物に	勝義直	魚類精巣卵の誘起機構解析	基	日	英共同	司研究	で
	関する知					実施	恒中	
	見の集積	青山博昭	8.3.哺乳類を用いた毒性実験の結果に影響を及ぼ	基	基	基	基	基
			す実験動物の遺伝的要因解析					

ExTEND2005 における区分	実施目的	代表研究者	課題名	17	18	19	20	21
				年	年	年	年	年
				度	度	度	度	度
	9. 試験対象	安住 薫	9.1.海産無脊椎動物ホヤを用いたトキシコジェ	_	_	_	FS	FS
	物質の選定		ノミクスの基盤研究					
	手法の開発、	有薗幸司	9.2.メダカの再生産に及ぼす化学物質及びその	_	—	_	FS	FS
	試験対象生		代謝物の影響とトキシコゲノミクスによる作用					
	物と他の生		機序の解明					
	物との種差	早川和一	9.3.多環芳香族炭化水素類の内分泌かく乱作用	_	—	_	FS	FS
	の検討		の構造活性相関に基づく魚鱗の化学物質スクリ					
			ーニング法に関する研究					
		井口泰泉	9.4. 魚類エストロゲン受容体を用いた種特異	_	_	_	他	他
			性・リガンド特異性の in vitro スクリーニング					
			系の開発					
		徳元俊伸	9.5. 構造活性相関に基づくステロイド膜受容体	_	<u> </u>	_	_	FS
			作用物質群の同定					

付属資料7 OECD において採択された試験法の概要

魚類を用いた試験法: 魚類21日間スクリーニング試験 OECDテストガイドライン230として採用

繁殖可能な性成熟した雌雄個体を用いて、性ホルモンに起因する性的な変 化を観察する。

メダカの場合 (Oryzias latipes)

ばく露の条件

·試験方法:流水式試験装置

・試験生物:ふ化後2~4ヶ月令の雌雄

·試験濃度: 3濃度+対照区

·試験期間:3週間

·試験魚数:雌雄10個体/試験濃度

繰返し数:2(雌雄各5個体/試験濃度)

·観察項目:

試験液のpH、DO、水温24±1℃ 試験濃度の実測 (1回/週)

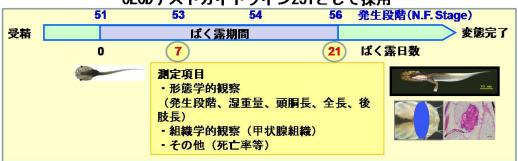
·給餌:アルテミアふ化幼生2回/日(飽食量)

測定・観察項目

・試料採取:ばく露終了(21日後)

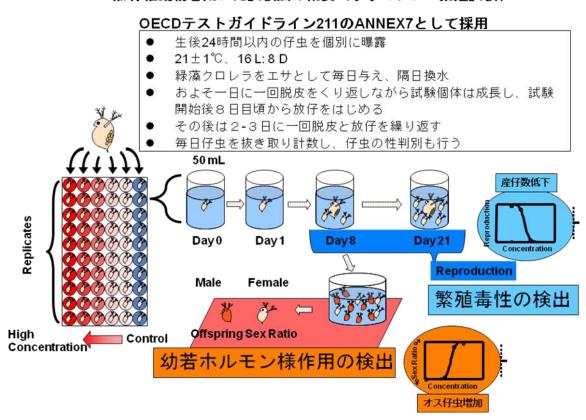
·測定項目:

-個体の生存及び症状


-二次性徴(乳頭状小突起など)

-肝臓中VTG(卵黄前駆たんぱく質)濃度の測定

・データ解析: 対象区との統計的な有意差を検定


両生類を用いた試験法(アフリカツメガエル変態アッセイ)

OECDテストガイドライン231として採用

試験動物	アフリカツメガエル(Xenopus laevis)
ばく露期間	発生段階51から21日間
使用個体数	20匹/4L/tank(但し7日目で5匹を測定のためサンプリング)

無脊椎動物を用いた試験法の概要(オオミジンコ繁殖試験)

