The 56th Annual meeting of Japanese Society of Pediatric Allergy and Clinical Immunology (JSPACI)

The Japan Environment Children's Study (JECS) International Symposium 3ed Nov 2019, Chiba

Environmental Factors related to the onset of allergic diseases examined in JECS

Yukihiro Ohya MD, PhD Director of Allergy Center, National Center for Child Health and Development

Japanese Society of Pediatric Allergy and Clinical Immunology COI Disclosure Presenter: Yukihiro Ohya

The author has no conflict of interest to disclose with respect to this presentation.

Background of The Japan Environment Children's Study (JECS)

Post industrial revolution epidemic of non communicable diseases represented by allergic diseases and developmental disorders.

Global health concern about the environmental risk to children.

Danish National Birth Cohort, 1996-

- Miami Declaration (1997) by G8 Environmental Minister Norwegian Mother and Child Cohort Study, 1999–
- G8 Environmental Ministers Meeting (Banff, 2002) US National Children's Study, Vanguard, 2005– (cancelled) JECS planning started, 2006

G8 Environmental Ministers Meeting (Syracusa, 2009) highlighted research on children's environmental health

JECS pilot, 2009– JECS, 2010– UK Life Study, 2015– (cancelled) Korean birth cohort study (Ko-CHENS), 2015–

G7 Environmental Ministers Meeting (Toyama, 2016)

Overview of the Japan Environment & Children's Study (JECS)

 Core Hypothesis: Exposure to ambient chemicals during the fatal stage and the early childhood adversely effects children's health
 Method: Birth cohort study

Sample Size: Main Study: 100,000 pairs of mothers and children

Sub-Cohort Study: 5,000 pairs of mothers and children

@Study Duration: 13 years (2011-2028) since recruitment (2011-2014)

Expected outcomes:

- Identification of environmental factors with impacts on children's health
- (2) Creation of sound environment for future generations
- (3) Establishment of a framework for children's study

Research organization

Location of regional centers

Recruited participants in each regional center

Road map for JECS

Sample collection

Exposures of interest

Chemicals from environment/occupation	Metals, POPs, pesticide, organofluorine compounds, aroma compounds, phthalate metabolites, phenols, others
Physical environment	Noise, heat, ionising radiation, housing condition, neighbourhood
Lifestyle	Stress, nutrition, daily rhythm, smoking and alcohol, infections, medications
Socio-economic status	Education, house-hold income, social bonding, community support
Genetics/-omics	Genomics, epigenetics, metabolomics,

Target compounds to be analyzed in bio-specimens

Group	Target compounds
Metals	Lead, cadmium, total mercury, methyl mercury, arsenics and its compounds including, arsenobetaine, metylarsonic acid, dimethylarsinic acid, trimethylarsine oxide, etc.
Inorganic substances	lodine, perchlorate, nitrate nitrogen, etc
Chlorinated POPs (Persistent organic pollutants)	Polychlorinated biphenysl (PCBs), hydroxylated polychlorinated biphenyl (OH-PCB), dioxins (PCDDs, PCDFs, Co-PCBs), pexachlorobenzene (HCB), pentachlorobennzene (PeCB), etc.
Pesticides (including pesticide-POPs)	Chlordanes, DDT and its metabolites (DDE, etc.), drin compounds for agriculture (dieldrin, etc.), heptachlor, hexachlorocyclohexaxne (HCH), mirex, chlordecone, toxaphene, organophophorus pesticide metabolites (DMP, DEP, DMTP, DETP, etc.), fenitrothion metabolite (methylnitrophenol), acephate metabolite (methamidophos), pyrethroid metabolites (PBA, DCCA, etc.), dithiocarbamate fungicide metabolites (ethylene thiourea, etc.), neonicotinoid metabolites, pentachlorophenol (PCP), atrazine, dymron, glyphosate, flutolanil, iprodione, flusulfamide, etc.
Brominated POPs	Polybromodiphenylethers (PBDEs), polybromobiphenyls (PBBs), hexabromocyclododecan (HBCD), etc.
Organofluorine compounds	Perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), etc.
Aroma compounds	Nitromusks, cyclic musks, etc.
Phthalate metabolites	Mono (2-ethylhexyl) phthalates, etc.
Phenols	Bisphenol A, Nonyphenols, Parabens, etc.
Others	Triclosan, benzophenone, N, N-diethyl-meta-toluamide (DEET), polyaromatic hydrocarbons (PAHs) and their metabolites (1-hydroxypyrene, 3-hydroxyphenanthrebe, etc.), cotinine, thiocyanate, dichlorobenzene, phytoestrogen, caffeine, pyridine, acrylamide, tributyl phosphate, tributoxyethl phosphate, 8-hydroxydeoxyguanosine (8-OHdG), etc.

Kawamoto T et.al. BMC Public Health 2014: 14:25

Cohorts consisting of JECS study

Main Study = 100,000

- Biological sample collection from mothers, children and fathers
- Questionnaire administration during pregnancy, at birth, 1 month, 6 month, and every 6 month after that until children reach 13 years of age
- Medical record, resident registry and school record transcription

Sub-Cohort Study = 5,000

- Home visit—Indoor and outdoor air quality, particulate matter, house dust, noise, dwelling inspection... at 1.5 and 3 years
- Psychological development test, physical examination, blood and urine collection at 2 years of age and every 2 years thereafter.

Adjunct Studies = participants recruited by each regional center

conducted by regional centers with extramural funding

Pilot Study = 400

to evaluate the feasibility, acceptability and cost of the proposed procedures and processes to be used in the Main Study

Outcome variables of allergy

Main Study = 100,000

- Doctor diagnosed patient reported allergic history collected from questionnaire during pregnancy.
- Blood serum total IgE and allergen specific IgE (Immuno CAP) in pregnant mother and her partner (father)
- ISAAC questionnaire,

Sub-Cohort Study = 5,000

- In addition to Main study outcomes
- Atopic dermatitis diagnosed by UK working party diagnostic criteria
- FeNO2, Spirogram at 8, 10, and 12 years of age.
- Total IgE and allergen specific IgE (DLC methods) at 2, 4, 6, 10, 12 yrs.
- Adjunct Studies = participants recruited by each regional center

conducted by regional centers with extramural funding

Pilot Study = 400

- FeNO2, Spirogram at 6, 8, 10, and 12 years of age.
- Total IgE and allergen specific IgE (DLC methods) at 2, 4, 6, 10, 12 yrs

Measured exposures and outcomes in the published works

Main study

- Questionnaire in pregnancy
- Parental blood metals (Cd, Pb, Hg, Se, Mn) in pregnancy
- Parental serum IgE (specific and total) in pregnancy
- Birth weight and length of off-springs

Adjunct study

- Maternal vit.D in pregnancy
- Desert dust exposed in Toyama, Kyoto, and Tottori regions

Pilot study

• Allergenic proteins contained in house dust collected from children's bed sheets

Publications related to allergic diseases

- Allergic profiles of mothers and fathers in the Japan Environment and Children's Study (JECS): a nationwide birth cohort study. Yamamoto-Hanada et al. World Allergy Organization Journal. 2017;10(1):24
- Having small-for-gestational-age infants was associated with maternal allergic features in the JECS birth cohort. Saito M et.al Allergy 2018 Sep;73(9):1908-1911
- Associations Between Metal Levels in Whole Blood and IgE Concentrations in Pregnant Women Based on Data From the Japan Environment and Children's Study. Tsuji M et.al. J Epidemiology 20180098
- Allergy and mental health among pregnant women in the Japan Environment and Children's Stud. Yamamoto-Hanada K et.al. JACI in Prac 2018;6:1421-1424
- Dietary intake of fish and ω -3 polyunsaturated fatty acids and physician-diagnosed allergy in Japanese population: The Japan Environment and Children's Study. Hamazaki K et.al. Nutrition 2019;61:194-201
- Effect of desert dust exposure on allergic symptoms. A natural experiment in Japan.
 Kanatani KT et.al. Ann Allergy Asthma Immunol 2016;116(425)39. DCT STUCK
- Association between vitamin D deficiency and allergic symptom in pregnant women. Kanatani KT et.al. Plos one 14(4) e0214797
- Egg antigen was more abundant than mite antigen in children's bedding: Findings of the pilot study of the Japan Environment and Children's Study (JECS). Kitazawa H et.al. Allergol Int 2019 68: 391-393.

Three quarters of pregnant women who joined JECS have allergic diathesis

73.9 % pregnant women were sensitized to any allergen. JCP showed the highest prevalence 55.6%. House dust mite was sensitized in 48% of them.

16

About half parents of participants have history of any allergic diseases

Maternal atopic dermatitis and higher total IgE were positively associated with Small for Gestational age (SGA) of off-springs

Yamamoto-Hanada K et.al. Allergy 2018;73(9):1908-1911.

Journal of Epidemiology

J Epidemiol 2019

Associations Between Metal Levels in Whole Blood and IgE Concentrations in Pregnant Women Based on Data From the Japan Environment and Children's Study

Mayumi Tsuji¹, Chihaya Koriyama², Yasuhiro Ishihara³, Megumi Yamamoto⁴, Kiwako Yamamoto-Hanada⁵, Kumiko Kanatani⁶, Yu Ait Bamai⁷, Kazunari Onishi⁸, Ayako Senju^{9,10}, Shunsuke Araki¹⁰, Eiji Shibata¹¹, Seiichi Morokuma¹², Masafumi Sanefuji¹², Hiroshi Kitazawa⁵, Mayako Saito⁵, Masakazu Umezawa¹³, Atsuto Onoda^{14,15}, Koichi Kusuhara^{9,10}, Rie Tanaka¹, Toshihiro Kawamoto¹, and the Japan Environment & Children's Study Group

¹Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
 ²Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
 ³Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
 ⁴Department of Environment and Public Health, National Institute for Minamata Disease, Kumamoto, Japan
 ⁵Medical Support Center for Japan Environment and Children's Study, National Center for Child Health and Development, Tokyo, Japan
 ⁶Department of Public Health, Hokkaido University Graduate School of Medicine, Sciences, Hokkaido, Japan
 ⁸Center for Birth Cohort Studies, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Japan
 ⁹Japan Environment and Children's Study, UOEH Subunit Center, University of Occupational and Environmental Health, Fukuoka, Japan
 ¹⁰Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
 ¹⁰Department of Obstetrics and Gynecology, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
 ¹¹Department of Materials Science and Technology, Faculty of Industrial Sciences, Kyushu University, Fukuoka, Japan
 ¹²Research Center for Environmental and Developmental Medical Sciences, Kyushu University, Fukuoka, Japan
 ¹³Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Japan
 ¹⁴Division of Neonatology, Center for Material-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
 ¹⁵Postdoctoral Fellow of Japan Society for the Promotion of Science, Tokyo, Japan

Received May 14, 2018; accepted October 16, 2018; released online January 12, 2019

Results of multivariable analysis in the relationship between quartile concentration of Hg in pregnant women and allergen-specific IgEs

110 (00 /0)		^	nimal dander			٨					
Hg (ng/g)				HDN	/1			JCP			
Q1 (≤2.55	5)	1	1.00 (referent) 1.00 (referent)			1.00 (referent)					
Q2 (2.56-	-3.61)	0	.91 (0.82–1.00)	0.057	1.06	1.06 (0.96–1.18) 0.214		1	0.93 (0.83–1.05) 0.		38
Q3 (3.62-	-5.11)	0	.98 (0.89–1.08)	0.734	<mark>1.23</mark>	<mark>(1.12–1.36</mark>)	<0.00	01	<mark>0.88 (0.</mark>	.78–0.99) 0.0) <mark>31</mark>
Q4 (≥5.12))	0	.86 (0.78-0.95)	0 002	1 25	(1.22–1.49)	~0.00	11	0 81 (0	.72-0.92) 0.0	01
	-/	<u> </u>	.00 (0.70 0.55)	0.005	1.55	(1.22-1.49)	<u> </u>		0.01 (0.	.72 0.5270.0	
	1,948	1,663	0.91 (0.82–1.01) 0.063		2,018	1.17 (1.06–1.30)	0.002	2,912	699	0.88 (0.78-1.00)	
Q3 (169–181) Q4 (≥182)				3 1,593		1.17 (1.06–1.30)	0.002				0.046
Q3 (169–181) Q4 (≥182) Mn	1,948 2,025	1,663 1,761	0.91 (0.82–1.01) 0.063 0.94 (0.85–1.04) 0.233	1,593 1,619	2,018 2,167	1.17 (1.06–1.30) 1.26 (1.14–1.39)	0.002	2,912 3,033	699	0.88 (0.78–1.00) 0.95 (0.84–1.07)	0.046
Q3 (169–181) Q4 (≥182) Mn Q1 (≤12.4)	1,948	1,663	0.91 (0.82–1.01) 0.063	1,593 1,619 1,550	2,018	1.17 (1.06–1.30)	0.002 <0.001	2,912	699 753	0.88 (0.78-1.00)	0.046 0.414
Q3 (169–181) Q4 (≥182)	1,948 2,025 1,856	1,663 1,761 1,628	0.91 (0.82–1.01) 0.063 0.94 (0.85–1.04) 0.233 1.00 (referent)	1,593 1,619 1,550 1,666	2,018 2,167 1,934	1.17 (1.06–1.30) 1.26 (1.14–1.39) 1.00 (referent)	0.002 <0.001 0.494	2,912 3,033 2,711	699 753 773	0.88 (0.78–1.00) 0.95 (0.84–1.07) 1.00 (referent)	0.046 0.414 0.024

IgE, immunoglobulin E.

^aOdds ratios and corresponding 95% confidence intervals and *P* values were obtained using multivariable logistic regression analysis adjusted for age, BMI, allergic diseases (asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, food allergy, drug allergy), smoking during pregnancy, smoking habits of partner, alcohol consumption during pregnancy, owning pets, month of T1 blood sampling, and geographic region.

Allergy and mental health among pregnant women in the Japan Environment and Children's Study

Yamamoto-Hanada K et.al. JACI in Prac 2018;6:1421-1424

K-6* in pregnancy SF8(MCS*) SF8(PCS*)					
516(105)					
TIgE, sIgE in pregnancy past history of allergic diseases					
essler's K-6 Non-Specific Psychological Distress Scale mental component summary hysical component summary					
- ۲ Ie					

Depression of pregnant women was associated with higher titer of House Dust Mite, animal allergens mix, moth, any allergic diseases (Asthma, Eczema, rhino-conjunctivitis, Food allergy, Drug allergy and contact dermatitis)

K-6 (≥5) Any depression	None (reference)								
	log_IgE. nonspecific (continuous)	1.02	1.01	1.03	.0001	1.01	1.00	1.02	.051
	IgE (nonspecific) ≥170 UA/mL	1.05	1.01	1.09	.0112	1.05	0.98	1.05	.429
	IgE_sensitization to any specific allergen	1.02	0.98	1.05	.2901	1.01	0.97	1.05	.623
	IgE_Der p 1	1.06	1.03	1.10	<.0001	1.05	1.02	1.08	.001
	IgE_Japanese cedar	1.00	0.97	1.04	.7775	0.98	0.95	1.02	.279
	IgE_egg white	1.04	0.89	1.21	.6205	1.02	0.88	1.19	.796
	IgE_animal allergen mixes	1.08	1.04	1.12	.0001	1.05	1.01	1.09	.021
	IgE_moth	1.06	1.02	1.09	.0012	1.05	1.01	1.08	.009
	Any allergic diseases	1.23	1.19	1.27	<.0001	1.25	1.21	1.29	<.000
	Asthma	1.31	1.25	1.37	<.0001	1.28	1.22	1.34	<.000
	Allergic rhinitis	1.18	1.14	1.21	<.0001	1.20	1.17	1.24	<.000
	Eczema	1.18	1.14	1.23	<.0001	1.17	1.12	1.22	<.000
	Allergic conjunctivitis	1.28	1.22	1.35	<.0001	1.32	1.26	1.39	<.000
	Food allergy	1.35	1.26	1.44	<.0001	1.33	1.24	1.42	<.000
	Drug allergy	1.28	1.17	1.40	<.0001	1.35	1.23	1.48	<.000
	Contact dermatitis	1.45	1.31	1.61	<.0001	1.55	1.40	1.72	<.000

Severe depression of pregnant women was associated with higher titer of sIgE to Egg white, Asthma, Eczema, Allergic conjunctivitis, Food allergy and Contact dermatitis

		Univariate							
Outcome	Allergy features		Lower 95% Cl	Upper 95% C	<i>P</i> value	aOR	Lower 95% Cl	Upper 95% CI	<i>P</i> value
K-6 (≥13) Severe depression	None (reference)								
	log_IgE. nonspecific (continuous)	1.03	1.01	1.06	.0172	1.01	0.98	1.04	.4935
	IgE (nonspecific) ≥170 UA/mL	1.16	1.06	1.27	.0015	1.08	0.98	1.18	.1124
	IgE_sensitization to any specific allergen	0.96	0.88	1.05	.3217	0.94	0.86	1.03	.1855
	IgE_Der p 1	1.04	0.96	1.12	.3514	1.01	0.93	1.09	.8083
	IgE_Japanese cedar	0.93	0.86	1.01	.0892	0.90	0.83	0.98	.0134
	IgE_egg white	1.57	1.14	2.16	.0059	1.53	1.11	2.11	.0010
	IgE_animal allergen mixes	1.08	0.98	1.19	.1052	1.03	0.93	1.13	.6135
	IgE_moth	1.11	1.02	1.21	.0180	1.08	0.99	1.17	.1023
	Any allergic disease	1.20	1.11	1.30	<.0001	1.25	1.15	1.35	<.0001
	Asthma	1.57	1.41	1.75	<.0001	1.49	1.34	1.66	<.0001
	Allergic rhinitis	1.05	0.97	1.14	.2025	1.11	1.02	1.20	.0132
	Eczema	1.22	1.11	1.35	<.0001	1.22	1.10	1.35	.0002
	Allergic conjunctivitis	1.18	1.05	1.34	.0073	1.26	1.12	1.43	.0002
	Food allergy	1.44	1.23	1.69	<.0001	1.40	1.20	1.64	<.0001
	Drug allergy	1.38	1.11	1.71	.0032	1.54	1.24	1.91	<.0001
	Contact dermatitis	1.35	1.06	1.73	.0163	1.53	1.19	1.96	.0008

Yamamoto-Hanada K et.al. JACI inPrac 2018;6:1421-1424

Physical aspect of quality of life (SF8-PCS) in pregnant women with any allergic disease (asthma, eczema, allergic rhino-conjunctivitis, food allergy, drug allergy and contact dermatitis) was worse than those without allergic disease.

TABLE II. Univariate and multivariate linear regression results for allergic features associated with quality of life (SF-8) in pregnan women across Japan (n = 77,639)

			Jnivariate			Multivariate			
Outcome	Allergy features	Coefficient	Lower 95% Cl	Upper 95% Cl	P value	Coefficient	Lower 95% Cl	Upper 95% Cl	<i>P</i> valu
SF-8 (PCS)	None (reference)								
	log_IgE.nonspecific (continuous)	0.039	0.003	0.075	.0345	0.010	-0.026	0.046	.581
	IgE (nonspecific) ≥170 UA/mL	0.163	0.041	0.285	.0087	0.163	-0.062	0.181	.337
	IgE_sensitization to any specific allergen	-0.043	-0.16	0.074	.4721	-0.034	-0.151	0.083	.565
	IgE_Der p 1	-0.099	-0.202	0.004	.0607	-0.145	-0.247	-0.042	.005
	IgE_Japanese cedar	0.012	-0.092	0.115	.8232	0.024	-0.084	0.132	.666
	IgE_egg	0.174	-0.341	0.689	.5076	0.184	-0.327	0.695	.480
	IgE_animal allergen mixes	0.031	-0.096	0.158	.6333	-0.029	-0.157	0.098	.651
	IgE_moth	-0.051	-0.165	0.064	.3875	-0.089	-0.203	0.025	.126
	Any allergic disease	-0.904	-1.007	-0.801	<.0001	-0.840	-0.942	-0.738	<.000
	Asthma	-0.934	-1.100	-0.769	<.0001	-1.006	-1.170	-0.841	<.000
	Allergic rhinitis	-0.827	-0.934	-0.721	<.0001	-0.756	-0.863	-0.650	<.000
	Eczema	-0.606	-0.747	-0.465	<.0001	-0.587	-0.727	-0.447	<.000
	Allergic conjunctivitis	-1.105	-1.275	-0.934	<.0001	-1.025	-1.195	-0.855	<.000
	Food allergy	-1.19	-1.429	-0.952	<.0001	-1.187	-1.424	-0.949	<.000
	Drug allergy	-1.705	-2.025	-1.386	<.0001	-1.501	-1.819	-1.184	<.000
	Contact dermatitis	-1.501	-1.868	-1.133	<.0001	-1.353	-1.719	-0.988	<.000

Yamamoto-Hanada K et.al. JACI inPrac 2018;6:1421-1424

Mental aspect of quality of life (SF8-MCS) in pregnant women with any allergic disease (asthma, eczema, allergic rhinoconjunctivitis, food allergy, drug allergy and contact dermatitis) was also worse than those without.

SF-8 (MCS)	None (reference)								
	log_IgE. nonspecific (continuous)	-0.046	-0.082	-0.010	.0115	-0.022	-0.058	0.014	.2290
	IgE (nonspecific) ≥170 UA/mL	-0.113	-0.233	0.008	.0664	-0.113	-0.159	0.081	.5252
	IgE_sensitization to any specific allergen	-0.021	-0.137	0.095	.7242	0.007	-0.109	0.123	.9085
	IgE_Der p 1	-0.125	-0.227	-0.023	.0160	-0.091	-0.192	0.011	.0799
	IgE_Japanese cedar	-0.038	-0.140	0.064	.4690	0.004	-0.103	0.111	.9380
	IgE_egg	-0.32	-0.828	0.189	.2177	-0.253	-0.758	0.252	.3265
	IgE_animal allergen mixes	-0.113	-0.239	0.012	.0772	-0.027	-0.153	0.099	.6764
	IgE_moth	-0.066	-0.179	0.047	.2521	-0.029	-0.142	0.084	.6161
	Any allergic disease	-0.514	-0.615	-0.412	<.0001	-0.56	-0.661	-0.459	<.0001
	Asthma	-0.574	-0.738	-0.410	<.0001	-0.513	-0.676	-0.350	<.0001
	Allergic rhinitis	-0.424	-0.529	-0.318	<.0001	-0.489	-0.594	-0.383	<.0001
	Eczema	-0.385	-0.524	-0.246	<.0001	-0.375	-0.514	-0.237	<.0001
	Allergic conjunctivitis	-0.599	-0.768	-0.430	<.0001	-0.676	-0.844	-0.508	<.0001
	Food allergy	-0.576	-0.811	-0.340	<.0001	-0.527	-0.761	-0.292	<.0001
	Drug allergy	-0.676	-0.992	-0.360	<.0001	-0.799	-1.113	-0.484	<.0001
	Contact dermatitis	-0.783	-1.146	-0.420	<.0001	-0.933	-1.294	-0.572	<.0001

Adjustors for multivariate analysis: maternal age, place of residence, marital status, having another child, history of abnormal pregnancy, current smoking status, employment status, and maternal education level. Statistically significant results shown in bold font.

Yamamoto-Hanada K et.al. JACI inPrac 2018;6:1421-1424

Dietary intake of fish and ω -3 polyunsaturated fatty acids and physician-diagnosed allergy in Japanese population: The Japan Environment and Children's Study

Kei Hamazaki M.D., Ph.D.^{a,b,*}, Akiko Tsuchida M.Sc.^{a,b}, Ayako Takamori Ph.D.^{1,b}, Tomomi Tanaka M.D., Ph.D.^{b.c}, Mika Ito M.D., Ph.D.^d, Hidekuni Inadera M.D., Ph.D.^{a,b}, Japan Environment and Children's Study (JECS) Group

^a Department of Public Health, Faculty of Medicine, University of Toyama, Toyama, Japan

^b Toyama Regional Center for JECS, University of Toyama, Toyama, Japan
 ^c Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama, Japan
 ^d Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan

Hamazaki K et.al. Nutrition 2019:61:194-201

Fish and $\omega\text{-}3$ PUFA intake were associated with increased risk for some allergic diseases except asthma

Any of four allergies

Fish intake (Median g		20.3	31.7	45.9	76.0	
n	15 741	15 561	15 918	15 689	15 712	
Cases	7409	7612	7969	7975	7889	
OR	1.00	1.08 (1.031.13)	1.13 (1.081.18)	1.16 (1.111.22)	1.13 (1.081.19)	< 0.0001
aOR	1.00	1.05 (1.001.10)	1.08 (1.041.13)	1.11 (1.061.16)	1.07 (1.021.12)	0.0007
ω3PUFA	0.91	1.37	1.75	2.21	3.13	
(Median g	g/d)					
n	15694	15734	15637	15867	15689	
Cases	7428	7744	7819	8025	7837	
OR	1.00	1.08 (1.031.13)	1.11 (1.061.16)	1.14 (1.091.19)	1.11 (1.061.16)	<0.0001
aOR	1.00	1.04 (1.001.09)	1.06 (1.011.11)	1.07 (1.021.13)	1.03 (0.971.09)	0.11

Hamazaki K et.al. Nutrition 2019:61:194-201

		violiters				
			Quintile for fish inta	ke		
Fish intake	1 (low)	2	3	4	5 (high)	Ptrend
Median intake of fish*, g/d	7.3	20.3	31.7	45.9	76.0	
All participants, n	15 741	15 561	15 918	15 689	15 712	
Any of four allergies						
Cases, n	7409	7612	7969	7975	7889	
Crude odds ratio	1.00	1.08 (1.03-1.13)	1.13 (1.08-1.18)	1.16 (1.11-1.22)	1.13 (1.08-1.19)	<0.0001
Adjusted odds ratio [†]	1.00	1.05 (1.00-1.10)	1.08 (1.04–1.13)	1.11 (1.06-1.16)	1.07 (1.02–1.12)	0.0007
Asthma			4.070	1710	1000	
Cases, n Crude odds ratio	1767 1.00	1611 0.91 (0.85-0.98)	1678 0.93 (0.87-1.00)	1746	1800 1.02 (0.95-1.10)	0.12
Adjusted odds ratio	1.00	,		0.99 (0.92-1.06)		0.12
Allergic rhinitis or pollinosis	1.00	0.94 (0.87-1.01)	0.97 (0.90-1.04)	1.03 (0.96-1.11)	1.05 (0.97-1.13)	0.03
Allergic minitus or politinosis	5401	5561	5905	5915	5891	
		1.06 (1.02-1.12)	1.13 (1.08-1.18)	1.16 (1.11-1.21)	1.15 (1.10-1.20)	<0.0001
Allergic rhinitis	1.00	1.02 (0.98-1.07)	1.06 (1.01-1.11)	1.08 (1.03-1.13)	1.06 (1.01-1.11)	0.005
Allergic conjunctivitis		1.02 (0.50-1.07)	1.00(1.01-1.11)	1.00 (1.05-1.15)	1.00(1.01-1.11)	0.005
Cases n	1442	1547	1653	1653	1700	
		1.09 (1.01-1.18)	1.15 (1.07-1.24)	1.17 (1.08-1.26)	1.20 (1.12-1.29)	<0.0001
Allergic conjur	nctivitis	1.06(0.98 - 1.14)	1.09 (1.01-1.18)	1.10 (1.02-1.19)	1.14 (1.06-1.24)	0.0008
/ mergie conjui						
Cases, n	2439	2505	2537	2579	2546	
Crude odds ratio	1.00	1.05 (0.98-1.11)	1.03 (0.97-1.10)	1.07 (1.01-1.14)	1.05(0.99 - 1.12)	0.06
Adjusted odds ratio	1.00	1.05 (0.99-1.12)	1.05 (0.98-1.11)	1.09 (1.02-1.16)	1.07 (1.00-1.14)	0.02
			Quintile for ω-3 PUFA	intake		
ω3PUFA intak	e 1(low)	2	3	4	5 (high)	Ptrend
Median intake of ω-3 PUF*, g/d	0.91	1.37	1.75	2.21	3.13	
All participants, n	15 694	15 734	15 637	15 867	15 689	
Any of four allergies	15 054	15754	15 057	15 007	15 005	
Cases. n	7428	7744	7819	8025	7837	
Crude odds ratio	1.00	1.08 (1.03-1.13)	1.11 (1.06-1.16)	1.14 (1.09-1.19)	1.11 (1.06-1.16)	<0.0001
Adjusted odds ratio	1.00	1.04 (1.00-1.09)	1.06 (1.01 - 1.11)	1.07 (1.02-1.13)	1.03 (0.97-1.09)	0.11
Asthma	1.00	1.01(1.00 1.00)		1.07 (1.02 1.10)	1.05 (0.57 1.05)	0.11
Cases, n	1797	1661	1645	1743	1756	
Crude odds ratio	1.00	0.91 (0.85-0.98)	0.91 (0.85-0.98)	0.95 (0.89-1.02)	0.97 (0.91-1.05)	0.9
Adjusted odds ratio	1.00	0.94(0.87 - 1.01)	0.93 (0.86-1.00)	0.97 (0.90-1.04)	0.95 (0.87-1.04)	0.4
Allergic rhinitis or pollinosis					. ,	
Cases, n	5371	5668	5806	5988	5840	
Crude odds ratio	1.00	1.08 (1.03-1.13)	1.14 (1.08-1.19)	1.16 (1.11-1.22)	1.14 (1.09-1.19)	<0.0001
Allorgia rhiniti	1.00	1.04 (0.99-1.09)	1.07 (1.02-1.12)	1.08 (1.03-1.14)	1.04 (0.98-1.10)	0.04
Allergic rhiniti	S					
Cases, n	1455	1573	1650	1704	1614	
		1.09 (1.01-1.17)	1.15 (1.07-1.24)	1.18 (1.09-1.27)	1.12 (1.04-1.21)	0.0003
Allergic conju	nctivitis	1.05 (0.98-1.14)	1.11 (1.02-1.20)	1.13 (1.04-1.22)	1.09 (0.99-1.20)	0.02
, mergie conju						
Cases, ii	2400	2499	2572	2554	2513	
Crude odds ratio	1.00	1.01 (0.95-1.07)	1.06 (0.99-1.12)	1.03 (0.97-1.09)	1.02 (0.96-1.09)	0.4
Adjusted odds ratio	1.00	1.01 (0.95-1.08)	1.05(0.99 - 1.12)	1.03 (0.96-1.10)	1.03 (0.95-1.11)	0,4

Mothers

Hamazaki K et.al. Nutrition 2019:61:194-201

Fathers

			Quintile for fish inta	ike		
Fish intake	1 (low)	2	3	4	5 (high)	Ptrend
Median intake of fish*, g/d	4.7	20.7	35.5	53	90	
All participants, n	8481	8654	8582	8552	8562	
Any of four allergies						
Cases, n	3397	3651	3702	3676	3571	0.02
Crude odds ratio	1.00	1.09 (1.03-1.16)	1.14 (1.07-1.21)	1.13 (1.06-1.20)	1.07 (1.01-1.14)	0.02
Adjusted odds ratio [†] Asthma	1.00	1.07 (1.00–1.14)	1.10 (1.03-1.17)	1.09 (1.03-1.16)	1.05 (0.99-1.13)	0.08
Cases, n	914	977	919	915	942	
Crude odds ratio	1.00	1.05(0.96 - 1.16)	0.99 (0.90-1.09)	0.99 (0.90-1.09)	1.02 (0.93-1.13)	0.89
Adjusted odds ratio	1.00	1.07 (0.97-1.17)	1.02 (0.92-1.12)	1.02 (0.92-1.12)	1.04 (0.94-1.15)	0.79
Allergic rhinitis or pollinosis						
Allorgio reinitio	2412	2671	2765	2714	2578	
Allergic rhinitis	1.00	1.12 (1.05-1.20)	1.20 (1.12-1.28)	1.17 (1.10-1.25)	1.08 (1.01-1.16)	0.008
	1.00	1.08 (1.01-1.16)	1.13 (1.06-1.21)	1.11 (1.03-1.18)	1.05 (0.98-1.12)	0.14
Allergic conjunctivitis						
Cases, n	353	361	420	373	368	
Crude odds ratio	1.00	1.00 (0.86-1.16)	1.18 (1.03-1.37)	1.05 (0.90-1.22)	1.03 (0.89-1.20)	0.51
Adjusted odds ratio	1.00	0.97 (0.84-1.13)	1.13 (0.98-1.31)	1.00 (0.86-1.17)	1.01 (0.86-1.18)	0.80
Atopic dermatitis	886	993	985	1,008	994	
Atopic dermatitis	1.00	1.11 (1.01–1.22)	1.11 (1.01–1.22)	1.15 (1.04–1.26)	1.13 (1.02–1.24)	0.02
Alopic dermatitis	1.00	1.11 (1.01–1.23)	1.12(1.02 - 1.24)	1.16 (1.05-1.27)	1.15 (1.02–1.24)	0.006
	1.00		Quintile for ω-3 PUFA		1.10(1.01-1.20)	0.000
ω3PUFA intake	1(low)	2	3	4	5 (high)	Prend
	0.89	1.40	1.83	2.36	3.48	ticitu
Median intake of ω-3 PUFA*, g/d All subjects, n	8541	8557	8578	8554	3.48	
Any of four allergies	0.041	8337	8378	0004	8001	
Cases. n	3342	3638	3670	3719	3628	
Crude odds ratio	1.00	1.15 (1.08-1.22)	1.16 (1.09-1.24)	1.20 (1.13-1.27)	1.13 (1.07-1.21)	<0.0001
Adjusted odds ratio	1.00	1.12 (1.05-1.19)	1.13 (1.06-1.21)	1.18 (1.10-1.25)	1.14 (1.06-1.23)	<0.0001
Asthma						
Cases, n	896	942	923	925	981	
Crude odds ratio	1.00	1.06(0.96 - 1.16)	1.03(0.93 - 1.13)	1.03(0.94 - 1.14)	1.10(1.00-1.21)	0.12
Adjusted odds ratio	1.00	1.06 (0.96-1.17)	1.03 (0.94-1.14)	1.04 (0.94-1.15)	1.09(0.97 - 1.22)	0.26
Allergic rhinitis or pollinosis						
All a wait a what with the	6134	5917	5858	5813	5969	
Allergic rhinitis	1.00	1.14 (1.06-1.21)	1.18 (1.11-1.26)	1.20 (1.13-1.28)	1.12 (1.05-1.20)	0.0001
	1.00	1.10 (1.03-1.18)	1.15 (1.07-1.23)	1.18 (1.10-1.26)	1.14 (1.06-1.24)	0.0001
Allergic conjunctivitis						
Cases, n	332	374	385	407	377	
Crude odds ratio	1.00	1.13 (0.97-1.31)	1.16 (1.00-1.35)	1.24 (1.07-1.43)	1.13 (0.97-1.32)	0.049
Adjusted odds ratio	1.00	1.10 (0.94-1.28)	1.12 (0.96–1.31)	1.21 (1.03–1.41)	1.14 (0.95–1.36)	0.07
Atopic dermatitis	0.45	001	1.010	1.004	007	
Atopic dormatit	845 1.00	981	1,019	1,034	987	0.0005
Atopic dermatit	IS 1.00 1.00	1.18 (1.07-1.30)	1.23 (1.11-1.35)	1.25 (1.14–1.38)	1.18 (1.07-1.30)	0.0005
	11.00	1.17 (1.06-1.29)	1.21(1.10 - 1.34)	1.24(1.12 - 1.38)	1.18(1.05 - 1.32)	0.002

Hamazaki K et.al. Nutrition 2019:61:194-201

Ann Allergy Asthma Immunol 116 (2016) 425-430

Time course of daily dust level in kilometers (upper) and pollen counts in cubic meters (lower) during the study period (shaded).

For dust levels, blue indicates Kyoto (Higashi-Osaka); red, Toyama; and green, Tottori (Matsue). For pollen counts, blue indicates Kyoto (Kyoto City area); purple, Kyoto (Nagahama area); green, Kyoto (Kizugawa area); red, Toyama; and orange, Tottori.

Kanatani KT et.al. Ann Allergy Asthma Immunol 2016:116:425-30

Pregnant women had an increased risk of allergic symptoms on high desert-dust days. The increased OR was mostly driven by those who showed positive IgE to Japanese cedar pollen when pollen simultaneously dispersed No clear risk increase was observed in the absence of pollen or for participants with negative IgE to Japanese cedar pollen. The risk elevation was observed from low levels of desert dust in a dose-dependent manner even on control days.

RESEARCH ARTICLE

Association between vitamin D deficiency and allergic symptom in pregnant women

Kumiko T. Kanatanio^{1,2*}, Yuichi Adachi³, Kei Hamazaki⁴, Kazunari Onishi⁵, Tohshin Go², Kyoko Hirabayashio², Motonobu Watanabe⁶, Keiko Sato^{2,7}, Youichi Kurozawa⁵, Hidekuni Inadera⁴, Hiroshi Oyama⁸, Takeo Nakayama¹, for the Japan Environment and Children's Study Group¹

 Department of Health Informatics, Kyoto University School of Public Health, Kyoto, Japan, 2 Kyoto Unit Centre for Japan Environment and Children's Study, Graduate School of Medicine, Kyoto University, Kyoto, Japan, 3 Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama, Japan, 4 Department of Public Health, University of Toyama, Toyama, Japan, 5 Department of Public Health, Tottori University, Yonago, Tottori, Japan, 6 Doshisha University Center for Baby Science, Kizugawa, Kyoto, Japan, 7 Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, Japan, 8 Department of Clinical Information Engineering, Health Services Sciences, School of Public Health, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan

¶ Membership of the Japan Environment and Children's Study Group is provided in the Acknowledgments. * <u>kanatanik@mac.com</u>

Kanatani KT, et al. PLoS ONE 2019:14(4): e0214797.

Serum concentration of vitamin D varies throughout the year

Fig 3. Serum 25(OH)D levels in relation to sampled months. Serum 25(OH)D was less than 20ng/mL in 1,233 of 1,745 samples (70.7%). There was a clear seasonal change with a peak at the end of summer and a trough in early spring. The median level of serum 25(OH)D in each season was 15, 14, 19, and 20 ng/mL in winter (Dec-Feb), spring (Mar-May), summer (Jul-Aug) and autumn (Sep-Nov).

Kanatani KT, et al. PLoS ONE 2019:14(4): e0214797.

Serum 25(OH)D was less than 20ng/mL in 1,233 of 1,745 samples (70.7%). The adjusted odds ratio (aOR) for occurrence of any allergic symptom in deficient cases compared with non-deficient cases was 1.33 (95% CI: 1.07–1.64, p = 0.01). Further, vitamin D deficiency significantly enhanced the risk increase at desert dust events and at pollen exposure (p-values for interaction<0.1).

		95% C		I	P value
Vitamin D deficiency ^a	1.33	1.07	-	1.64	.009
IgE to cedar pollen (per class increase)	1.28	1.21	-	1.35	< .001
IgE to house dust mite (per class increase)		1.03	-	1.18	.008

Table 2. Odds ratio (OR) and its 95% Confidence Interval (95%CI) for allergic symptom development.

Vit.D deficiency increased the risk of allergic symptom when exposed to desert dust events and IgE positive to JCP and HDM was also risk factors.

Kanatani KT, et al. PLoS ONE 2019:14(4): e0214797.

Egg protein was detected from house dust collected From bed sheets in all participants' houses

Wilcoxon rank-sum test * p < 0.001

Kitazawa H et.al. Allergology International 2019

Summary

- The primary aim of JECS is to examine environmental influence on children's health
- Half of pregnant mothers have history of allergic diseases and ¾ of mothers have been sensitized with any allergens
- Hg influences allergen sensitization in different manner due to the kinds of allergens.
- Adjunct studies revealed the influence of desert dust on allergy and a pilot study showed house dust of all participants' house contained egg proteins.
- Important exposure variables including environmental chemicals that might influence the onset of allergic diseases are to be analyzed

Acknowledgement

