分析結果報告書〔3〕1/10

2. 模擬水質試料(農薬)

機関コード	
機関名	
電話番号	
国際的な認証等の取得	1 . ISO 9001∼9003 2 . ISO/IEC 17025
(複数回答可)	3. 品質マネジメントシステム(QMS)を構築している(上記1、2を取得していない)
分析担当者(前処理)	
氏名	
経験年数(年)	()年
実績	() 試料/年
(年間の分析試料数:試料/年)	
分析担当者 (機器測定)	
氏名	
経験年数(年)	()年
	() 試料/年
(年間の分析試料数:試料/)	
分析担当者以外の分析結果の確認	1. あり 2. なし

<農薬分析の経験等>

環境水・地下水・土壌の農薬成分	1. 分析したことがある	2. 分析したことがない	
水道水の農薬成分	1. 分析したことがある	2. 分析したことがない	
食品の農薬成分	1. 分析したことがある	2. 分析したことがない	

<分析結果:詳細項目>

分析項目		分析結果(μg/L)	注1) 注2)	注3) 注4)	
	1回目	2回目	3回目	4回目	5回目
イプロベンホス					
フェニトロチオン					

- 注1) 実施要領の希釈方法に従って、共通試料2を水で1000倍希釈して調製した分析用試料中の濃度(μg/L)を記入する。測定回数分の分析結果を記入する。JIS Z 8401によって数値を丸めて有効数字3桁で報告する。
- 注2)検出下限値以上であった場合、分析結果を有効数字3桁で記入する。
- 注3)検出下限値未満であった場合、NDと記入する。
- 注4)報告下限値未満であった場合でも分析結果が検出下限値以上であった場合には、NDとせずに測定された数値を記入する。

<分析用試料の作製>

希釈に使用した水	1. 蒸留水 2. イオン交換水 3. 超純水
	4. その他 ()
希釈方法	1. マイクロシリンジを使って配布試料2を試料容器に直接添加 2. 配布試料2を希釈した溶液を、全量ピペットを使って試料容器に添加 3. 適量の配布試料2を添加した溶液を、メスシリンダー等を使って試料容器に分取 4. その他()
分析用試料が含有する有機溶媒濃度	() %

<分析方法等>

分析開始月日		月	目			
分析終了月日		月	F			
保存日数(日) 注	È1)	() 日			
分析に要した日	前処理(日)	() 日			
数	機器分析(日)	() 日			
分析方法 注2)				出-ガスクロマトク		
				出-ガスクロマトク		
		3. 固相抽	出-高速液体ク	ロマトグラフ-タ	ンデム型質量分析	
		4 . 高速液	を体クロマトグ	ラフ-タンデム型質	質量分析法	
		5. その他	ī ()		
分取した共通試料 2	2の量 (mL)	() mL	·	·	·

- 注1) 分析用試料を調製してから前処理を開始するまでの保存日数を記入する。
- 注2) 質量分析法の内容、例えば SIM 法、マスクロマトグラム法、SRM 法は問わない。

分析結果報告書〔3〕2/10

<前処理>

抽出操作実施の有無	1. 実施した	2. 実施しなかっ	った	
試料量(平均値)(mL)	() mL			
試料からの抽出方法	1. 溶媒抽出	2. 固相抽出	3. その他()
溶媒抽出 塩化ナトリウム (%)	() %			
溶媒の種類	1. ジクロロメタン	2. その他()	
抽出回数 (回)	() 同			
溶媒量(mL)	抽出1回目()mL、2回目() mL、3回目() mL
試験試料容器の洗込回数(回)	()回			
固相抽出 固相の形状	1. カートリッジ	2. ディスク	3. その他()
充填剤の種類	1. スチレンジビニル	ベンゼンポリマー 2.	ジビニルベンゼンポリマー	
		チレンジビニルベンゼ	· · · ·	
		ジビニルベンゼンポリマ		
		カゲル 6. オクラ	チルシリカゲル	
	7. その他(
洗浄溶媒 注)			/ 4.メタノール 5.アセ	トニトリル
	6.水 7.その他(組み合わせ:)	
活性化(コンディショニング)溶			タノール 4. アセトニトリル	5. 水
媒注)	6. その他 (組み合わ	せ:) 2. 減圧(固相抽出装置使用)	
試料通液方法				
3 NJOL NZ NANA da			4. 加圧(固相抽出装置使用)	
試料通液速度	1. 約5 mL/分 2.	. 約 10 mL/分 3. 約	约 20 mL/分	
3.NEA.3.NIOL #5.00 a. N.4. v. v. v. v.	4. その他() mL/分		
試験試料容器の洗いこみ	1. 実施した	2. 美施しなかった	- st-+ Aut I	
洗いこみ溶媒	1. 精製水	2. 有機溶媒を添加した	これ製水	
洗いこみ回数	1. 1回	2. 2回	3. 3回以上	
試料通液した固相の洗浄	□ 1. 美施した	2. 実施しなかった	· 小士 牛川 【.	
洗浄溶媒の種類	1. 精聚水	2. 有機溶媒を添加した	こ有製水	
洗净溶媒量 	1. 約5 mL	2. 約10 mL 3.	約 20 mL 4. その他() mL
固相の脱水・乾燥		2. 実施しなかった		
脱水・乾燥方法			ールドを使って室内空気吸引)	10 lb ()
的小,苏姆·朗	3. 退心分離 + イール きと八離 () ハ 语	ールトを使つ(吸引し/ 生味即 ()	ながら窒素ガス通気 4.そ	<u>の知()</u>
脱水・乾燥時間	遠心分離()分通	双时间 ()	タノール 4. アセトニトリル	
溶出溶媒				
		난 : 		
溶出溶媒量注3) (mL) 溶出液の脱水	() mL	ムによる脱水 2.	スのbh ()	
			て り 他 ()	
 濃縮操作	3. 行わなかった 1. 年 - た	0	行わわか・	
		2.	11かなかつに	
定容量 (mL) クリーンアップ操作	() mL			
	1 字歩)を	9 実施1 わか	- t-	
実施の有無	1. 夫肔 しに	2. 実施しなかっ	ノに 5 つ マのMr (
クリーンアップ方法	1. フロリジルカラム	2. シリカゲルカ	カラム 3. その他()

注)固相のコンディショニング工程を、洗浄とコンディショニング(活性化)に分けて記入する。

分析結果報告書〔3〕3/10

<GC/MS> (該当する場合に入力する)

GC メーカー	1. アジレント 2. サーモフィッシャー 3. 島津 4. パーキンエルマー
	5. バリアン 6. ブルカー 7. その他()
MS メーカー	1. アジレント 2. サーモフィッシャー 3. 島津 4. 日本電子
	5. パーキンエルマー 6. バリアン 7. その他()
装置型式	1. 二重収束 2. 四重極 3. イオントラップ
	4. タンデム四重極(MS/MS) 5. ToF (QToFを含む) 6. その他 ()
イオン化法	1. EI 2. NCI 3. その他()
イオン検出法	1. SIM法 2. マスクロマトグラム法 3. SRM(MRM) 4. その他()
カラム カラム名	(
内径 (mm)	() mm
長さ(m)	() m
膜厚 (μm)	() μm
昇温条件 注1)初期温度	温度()℃ 温度保持()分
1回目の昇温	速度() ℃/分 到達温度() ℃ 温度保持()分
2回目の昇温	速度() ℃/分 到達温度() ℃ 温度保持()分
3回目の昇温	速度() ℃/分 到達温度() ℃ 温度保持()分
4回目の昇温	速度() ℃/分 到達温度() ℃ 温度保持()分
(5回以上の昇温の場合)	
昇温回数	() 回
注入 注入量 (μL)	() μL
注入口温度(℃)	() °C
注入方式	1.スプリットレス 2.パルスド(高圧注入)スプリットレス 3.全量注入
	4. コールドオンカラム 5. 大量注入 6. その他 ()
キャリヤーガス 種類	1. 窒素 2. ヘリウム 3. 水素 4. その他()
制御モード	1.圧力一定モード 2. 流量又は線速度一定モード
流量(mL/分)注2)	()mL/分

- 注1)送付するクロマトグラム中にも詳細を記入する。
- 注2) 圧力一定モードを採用した場合は、オーブン初期温度での流量を記入する。

<GC> (該当する場合に入力する)

<gl> (数目りる場合に八八</gl>	<i>9 집)</i>				
GC メーカー	1. アジレント	2. サーモフィッシ	/ャー 3. 島津	4. パーキンエ	ルマー
	5. バリアン	6. ブルカー	7. その他()	
検出器種類	1. アルカリ熱イオン	ン化検出器(FTD)	2. 炎光光度型検出器	(FPD) (干渉フィルター:	nm)
	3. 電子捕獲型検出	器(ECD)	4. その他()	
カラム カラム名	()			
内径	() mn	n			
長さ	() m				
膜厚	() μm	1			
昇温条件 注1)初期温度	温度()℃ 温度保持	()分		
1回目の昇温	速度() ℃/分 到達温度	() ℃	温度保持()分
2回目の昇温	速度() ℃/分 到達温度	() ℃	温度保持(分
3回目の昇温	速度() ℃/分 到達温度	() ℃	温度保持(分
4回目の昇温	速度() ℃/分 到達温度	() ℃	温度保持()分
(5回以上の昇温の場合)	速度() ℃/分 到達温度	() ℃	温度保持(分
昇温回数	()回				
注入 注入量 (μL)	() μL				
注入口温度(℃)	() ℃				
注入方式	1. スプリットレス	2. パルスド	(高圧注入) スプリット	レス 3. 全量注入	
	4. コールドオンカ	ラム 5. 大量注入		6. その他()
キャリヤーガス 種類	1. 窒素	2. ヘリウム	3. 水素	4. その他()
制御モード	1. 圧力一定モード	2. 流量又	Z は線速度一定モード		
流量(mL/分)注2)	() mL/5;	}			
注入方式 キャリヤーガス 種類 制御モード	1. スプリットレス 4. コールドオンカ 1. 窒素 1. 圧力一定モード	ラム 5. 大量注入 2. ヘリウム 2. 流量又	3. 水素	6. その他()

- 注1) 送付するクロマトグラム中にも詳細を記入する。
- 注2) 圧力一定モードを採用した場合は、オーブン初期温度での流量を記入する。

分析結果報告書〔3〕4/10

<LC/MS (該当する場合に入力する)

(13 - 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				
LC メーカー			サーモフィッシャー 4. 島	:津
			日立 8. その他()
MS メーカー	·		サーモフィッシャー 4. 島	:津
			日立 8. その他()
装置型式	1. シングル四重極 2	2. タンデム四重極(MS	/MS) 3. イオントラップ	
	4. 飛行時間型 5.	四重極MS+飛行時間型	6. その他()
イオン化法	1.ESIポジティブ	2. ESIネガラ	ィブ 3. APCIポジティブ	
	1. ESIポジティブ 4. APCIネガティブ	5. その他()	
イオン検出法	1. SIM法 2. ~	マスクロマトグラム法	3. SRM(MRM)	
	4. その他 ()		= = ===================================	
分離カラム タイプ	1. 逆相 2. 順相	3 HILIC 4	イオン交換 5 その他 ()
基材	1. シリカゲル 2. ポリマ·			
名称				
メーカー名	()	0 4/17	、	
充填剤官能基			ンモニウム基 4. アミノ基	
1.77	4. その他()		
内径 (mm)	() mm			
長さ (mm)	() mm			
粒子径(μm)	() μm			
ガードカラム	1. 使用した 2. 使用しな	かった		
名称	(
内径(mm)	() mm			
長さ (mm)	() mm			
粒子径(μm)	() μm			
カラム温度(℃)	() °C			
移動相				
	1 小年春川 2 の 大江本	/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	πΑ / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
A液	1. 精製水 2. ギ酸			
) mM 5. 肾F	酸アンモニウム () mM	
_ _	6. その他 ()	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
B液	1. アセトニトリル 2.	メタノール 3. その	他()	
混合条件	1. アイソクラティック 2.	グラジェント		
混合比率	時間(min)	%B		
初期条件 注)	0 min	() %	
	() min	() %	
	`			
	() min	() %	
	() min	() %	
	() min	() %	
	() min	() %	
	() min	() %	
流速(mL/min)	() mL/min			
注入量(μL)	() μL			
•	•			

注)アイソクラティックで測定した場合は、初期条件のみを記入する。グラジェント条件はクロマトグラムにも記入する。

分析結果報告書〔3〕5/10

<定量用イオン質量数及び確認用イオン質量数>

項目	定量用イオン質量数(m/z)			確認月	イオン(1)質	量数(m/z)	確認用イオン(2)質量数(m/z)			
	マスクロマ	5141.1	1-1-7	マスクロマ	5141.1	<u> </u>	マスクロマ	511111	注)	
	トグラム法	前駆イオン	生成イオン	トグラム法	前駆イオン	生成イオン	トグラム法	前駆イオン	生成イオン	
	又はSIM法			又はSIM法			又はSIM法			
イプロベンホス										
フェニトロチオン										

注) MS/MSを用いた場合に記入する。

<標準液の作製:イプロベンホス>

標準原液							
調製方法	1.	混合標準液を購入		2. 単品標準液を購		3. 原体を購	入
メーカー名	1.	関東化学	2.	シグマアルドリッチ		3. ジーエル	ナイエンス
	4.	林純薬	5.	富士フイルム和光純薬	K		
	6.	その他()			
純度・規格 注)	()					
使用時の濃度保証	1.	保証期間内 2.	保証	E期間超過			
調製溶媒	1.	ヘキサン	2	. ジクロロメタン		3. アセトン	
	4.	メタノール	5	. アセトニトリル		6. その他()
調製・購入からの経過月(月)	()月					
検量線作成用標準液							
調製方法	1.	混合標準液を希釈	! 2	. 単品標準液を希釈	3. 単	品標準液を分取	・混合希釈
検量線作成用標準液に含まれる農薬	()種					
の種類数							
調製溶媒	1.	ヘキサン	2	ジクロロメタン		3. アセトン	
	4.	メタノール	5	. アセトニトリル		6. その他()
調製からの経過日 (日)							
注2)注3)	() 目					

- 注1) 分かる範囲で記入する。
- 注2)標準原液をそのまま使用した場合も選択する。
- 注3) 用時調製の場合は0を記入する。

<内標準液の作製:イプロベンホス>

内標準物質	1.	使用した 2.	使月	目しなかった			
内標準物質名	()	- -				
調製方法	1.	標準液を購入		2. 原体を購入			
メーカー名	1.	関東化学	2.	シグマアルドリッチ	3.	ジーエルサイエンス	
	4.	林純薬	5.	富士フイルム和光純薬	6.	その他()
純度・規格 注)	()				
濃度	() μg/ı	пL				
調製溶媒	1.	ヘキサン	- -	2. ジクロロメタン	3.	アセトン	
	4.	メタノール		5. アセトニトリル	6.	その他()
調製・購入からの経過日(日)	() []				
11 1 1 2 M m		•					

注)分かる範囲で記載する。

<サロゲート内標準液の作製:イプロベンホス>

2 1 1 1 2 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1								
サロゲート内標準物質	1.	使用した	2. 使月	用しなかった				
サロゲート内標準物質名	()						
調製方法	1.	標準液を購	入	2.	原体を購入			
メーカー名	1	. 関東化学	2.	シグマアルドリ	ッチ	3.	ジーエルサイ	エンス
	4	. 林純薬	5.	富士フイルム和	光純薬	6.	その他()
純度・規格 注)	()					
濃度	()	μg/mL					
調製溶媒	1	. ヘキサン		2. ジクロロメ	タン	3.	アセトン	
	4	. メタノール		5. アセトニト	リル	6.	その他()
調製・購入からの経過日(日)	()目					

注2)分かる範囲で記載する。

分析結果報告書〔3〕6/10

<標準液の作製:フェニトロチオン>

標準原液					
調製方法	1.	混合標準液を購入	2. 単品標準液を購力	3. 原体を購	入
メーカー名	1.	関東化学 2	2. シグマアルドリッチ	3. ジーエル	サイエンス
	4.	林純薬 :	5. 富士フイルム和光純薬		
	6.	その他()		
純度・規格 注)	()			
使用時の濃度保証	1.	保証期間内 2.6	R証期間超過		
調製溶媒	1.	ヘキサン	2. ジクロロメタン	3. アセトン	
	4.	メタノール	5. アセトニトリル	6. その他()
調製・購入からの経過月(月)	()月			
検量線作成用標準液					
調製方法	1.	混合標準液を希釈	2. 単品標準液を希釈 3	3. 単品標準液を分取	・混合希釈
検量線作成用標準液に含まれる農薬	()種			
の種類数					
調製溶媒	1.	ヘキサン	2. ジクロロメタン	3. アセトン	
	4.	メタノール	5. アセトニトリル	6. その他()
調製からの経過日 (日)					
注2)注3)	() 目			

- 注1) 分かる範囲で記入する。
- 注2) 標準原液をそのまま使用した場合も選択する。
- 注3) 用時調製の場合は0を記入する。

<内標準液の作製:フェニトロチオン>

NIG中ROTE表・ノエードロノオマノ			
内標準物質	1. 使用した 2.	使用しなかった	
内標準物質名	()		
調製方法	1. 標準液を購入	2. 原体を購入	
メーカー名	1. 関東化学	2. シグマアルドリッチ	3. ジーエルサイエンス
	4. 林純薬	5. 富士フイルム和光純薬	6. その他 ()
純度・規格 注)	()	
濃度	() μg/n	ıL	
調製溶媒	1. ヘキサン	2. ジクロロメタン	3. アセトン
	4. メタノール	5. アセトニトリル	6. その他()
調製・購入からの経過日(日)	() 目		

注)分かる範囲で記載する。

<サロゲート内標準液の作製:フェニトロチオン>

	, . , , ,			
サロゲート内標準物質	1. 使用した 2.	使用しなかった		
サロゲート内標準物質名	()			
調製方法	1. 標準液を購入	2. 原体を購入		
メーカー名	1. 関東化学	2. シグマアルドリッチ	3. ジーエルサイエンス	
	4. 林純薬	5. 富士フイルム和光純薬	6. その他()	
純度・規格 注)	(
濃度	() μg/m	L		
調製溶媒	1. ヘキサン	2. ジクロロメタン	3. アセトン	
	4. メタノール	5. アセトニトリル	6. その他()	
調製・購入からの経過日(日)	() 目	·		

注)分かる範囲で記載する。

分析結果報告書〔3〕7/10

<検出下限値及び定量下限値>

イプロベンホス	装置検出下限値の算出	1. 実施した 2. 実施しなかった
	装置検出下限値 (μg/L)	() μg/L
	算出方法	1. S/N に基づく(標準液濃度 μg/L、採用した S/N=)
)	2. J標準液の繰り返し測定値の標準偏差 σ を用いた方法(標準液濃度
		μ g/L、繰り返し測定回数 回、 $IDL = t(n-1, 0.05) \times \sigma_{n-1} \times 2$ で計算、 3σ)
		3. 装置ブランク試料繰り返し測定値の標準偏差 σに基づく方法(繰り返し測
		定回数 回、 $IDL = t(n-1, 0.05) \times \sigma_{n-1} \times 2$ で計算、 3σ で計算)
		4. その他(
	装置検出下限値の試料換	
	算值 (μg/L) 注2)	() μg/L
	分析法検出下限値の算出	
	分析法検出下限値 (μg/L)	
	第出方法	1.MDL = t(n – 1, 0.05)× σ n-1×2で計算 (σの算出方法:(濃度:
	并 山万仏	μg/L), (繰り返し回数: 回))
		· ·
		2. 3σ法で計算 (σの算出方法:(濃度: μg/L), (繰り返し回
		数: 回)) 注1)
		3. その他()
	分析法定量下限値の算出	1. 実施した 2. 実施しなかった
	分析法定量下限值 (μg/L)	
	算出方法	1. 指針値(0.008 mg/L)の10分の1として運用
		2.「水質管理目標設定項目の検査方法(厚労省)」に記載されている定量下限
		値を引用
		3. JIS K 0128 (用水・排水中の農薬試験方法) に記載されている定量範囲の
		下限値を引用
		4. 10σ法で計算(σの算出方法: (濃度: μg/L)
		(繰り返し回数: 回) 注1)
		5. その他()
フェニトロチオン	装置検出下限値の算出	1. 実施した 2. 実施しなかった
	装置検出下限値 (μg/L)	() μg/L
	7.0	, rs=
	算出方法	1. S/N に基づく(標準液濃度 μg/L、採用した S/N=)
	[
	[1. S/N に基づく(標準液濃度 μg/L、採用した S/N=) 2. J標準液の繰り返し測定値の標準偏差 σ を用いた方法(標準液濃度
	[1. S/N に基づく (標準液濃度 μg/L、採用した S/N=) 2. J標準液の繰り返し測定値の標準偏差 σ を用いた方法 (標準液濃度 μg/L、繰り返し測定回数 回、IDL = t(n-1, 0.05)×σ _{n-1} ×2 で計算、3σ)
	[1. S/N に基づく (標準液濃度 μg/L、採用した S/N=) 2. J標準液の繰り返し測定値の標準偏差 σ を用いた方法 (標準液濃度 μg/L、繰り返し測定回数 回、IDL = t(n - 1, 0.05)×σ_{n-1}×2 で計算、3σ) 3. 装置ブランク試料繰り返し測定値の標準偏差 σ に基づく方法 (繰り返し測
	[S/N に基づく (標準液濃度 μg/L、採用した S/N=) J標準液の繰り返し測定値の標準偏差 σ を用いた方法 (標準液濃度 μg/L、繰り返し測定回数 回、IDL = t(n - 1, 0.05)×σ_{n-1}×2 で計算、3σ) 装置ブランク試料繰り返し測定値の標準偏差 σ に基づく方法 (繰り返し測定回数 回、IDL = t(n - 1, 0.05)×σ_{n-1}×2 で計算、3σ で計算)
	算出方法	 1. S/N に基づく (標準液濃度 μg/L、採用した S/N=) 2. J標準液の繰り返し測定値の標準偏差 σ を用いた方法 (標準液濃度 μg/L、繰り返し測定回数 回、IDL = t(n - 1, 0.05)×σ_{n-1}×2 で計算、3σ) 3. 装置ブランク試料繰り返し測定値の標準偏差 σ に基づく方法 (繰り返し測
	算出方法 第出方法 装置検出下限値の試料換	 S/Nに基づく (標準液濃度 μg/L、採用した S/N=) J標準液の繰り返し測定値の標準偏差 σ を用いた方法 (標準液濃度 μg/L、繰り返し測定回数 回、IDL = t(n-1,0.05)×σ_{n-1}×2 で計算、3σ) 装置ブランク試料繰り返し測定値の標準偏差 σ に基づく方法 (繰り返し測定回数 回、IDL = t(n-1,0.05)×σ_{n-1}×2 で計算、3σ で計算) その他 ()
	算出方法 第世検出下限値の試料換 算値 (μg/L) 注2)	 S/N に基づく (標準液濃度 μg/L、採用した S/N=) J標準液の繰り返し測定値の標準偏差 σ を用いた方法 (標準液濃度μg/L、繰り返し測定回数 回、IDL = t(n - 1, 0.05)×σ_{n-1}×2 で計算、3σ) 装置ブランク試料繰り返し測定値の標準偏差 σ に基づく方法 (繰り返し測定回数 回、IDL = t(n - 1, 0.05)×σ_{n-1}×2 で計算、3σ で計算) その他 ()
	算出方法 装置検出下限値の試料換 算値 (μg/L) 注2) 分析法検出下限値の算出	 S/Nに基づく (標準液濃度 μg/L、採用した S/N=) J標準液の繰り返し測定値の標準偏差 σ を用いた方法 (標準液濃度μg/L、繰り返し測定回数 回、IDL = t(n-1,0.05)×σn-1×2で計算、3σ) 装置ブランク試料繰り返し測定値の標準偏差 σ に基づく方法 (繰り返し測定回数 回、IDL = t(n-1,0.05)×σn-1×2で計算、3σで計算) その他 () μg/L 実施した 2. 実施しなかった
	算出方法 第世検出下限値の試料換 算値 (μg/L) 注2)	 S/Nに基づく (標準液濃度 μg/L、採用した S/N=) J標準液の繰り返し測定値の標準偏差 σ を用いた方法 (標準液濃度μg/L、繰り返し測定回数 回、IDL = t(n-1,0.05)×σn-1×2で計算、3σ) 装置ブランク試料繰り返し測定値の標準偏差 σ に基づく方法 (繰り返し測定回数 回、IDL = t(n-1,0.05)×σn-1×2で計算、3σで計算) その他 () μg/L 実施した 2. 実施しなかった μg/L
	算出方法 装置検出下限値の試料換 算値 (μg/L) 注2) 分析法検出下限値の算出	 S/Nに基づく(標準液濃度 μg/L、採用した S/N=) J標準液の繰り返し測定値の標準偏差 σ を用いた方法(標準液濃度 μg/L、繰り返し測定回数 回、IDL = t(n - 1, 0.05)×σ_{n-1}×2 で計算、3σ) 装置ブランク試料繰り返し測定値の標準偏差 σ に基づく方法(繰り返し測定回数 回、IDL = t(n - 1, 0.05)×σ_{n-1}×2 で計算、3σで計算) その他() μg/L 実施した 実施しなかった
	算出方法 装置検出下限値の試料換 算値 (μg/L) 注2) 分析法検出下限値の算出 分析法検出下限値 (μg/L)	 S/Nに基づく (標準液濃度 μg/L、採用した S/N=) J標準液の繰り返し測定値の標準偏差 σ を用いた方法 (標準液濃度μg/L、繰り返し測定回数 回、IDL = t(n-1,0.05)×σ_{n-1}×2 で計算、3σ) 装置ブランク試料繰り返し測定値の標準偏差 σ に基づく方法 (繰り返し測定回数 回、IDL = t(n-1,0.05)×σ_{n-1}×2 で計算、3σで計算) その他 () μg/L 実施した 2. 実施しなかった () μg/L MDL = t(n-1,0.05)×σ_{n-1}×2で計算 (σの算出方法: (濃度:
	算出方法 装置検出下限値の試料換 算値 (μg/L) 注2) 分析法検出下限値の算出 分析法検出下限値 (μg/L)	 S/Nに基づく (標準液濃度 μg/L、採用した S/N=) J標準液の繰り返し測定値の標準偏差 σ を用いた方法 (標準液濃度μg/L、繰り返し測定回数 回、IDL = t(n - 1, 0.05)×σ_{n-1}×2 で計算、3σ) 装置ブランク試料繰り返し測定値の標準偏差 σ に基づく方法 (繰り返し測定回数 回、IDL = t(n - 1, 0.05)×σ_{n-1}×2 で計算、3σ で計算) その他 () μg/L 実施した 2. 実施しなかった () μg/L MDL = t(n - 1, 0.05)×σ_{n-1}×2 で計算 (σの算出方法: (濃度:μg/L), (繰り返し回数: 回))
	算出方法 装置検出下限値の試料換 算値 (μg/L) 注2) 分析法検出下限値の算出 分析法検出下限値 (μg/L)	 S/Nに基づく(標準液濃度 μg/L、採用した S/N=) J標準液の繰り返し測定値の標準偏差 σ を用いた方法(標準液濃度μg/L、繰り返し測定回数 回、IDL = t(n-1,0.05)×σ_{n-1}×2 で計算、3σ) 装置ブランク試料繰り返し測定値の標準偏差 σ に基づく方法(繰り返し測定回数 回、IDL = t(n-1,0.05)×σ_{n-1}×2 で計算、3σ で計算) その他() () μg/L 実施した 2. 実施しなかった () μg/L MDL = t(n-1,0.05)×σ_{n-1}×2で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 3σ法で計算 (σの算出方法:(濃度:μg/L),(繰り返し回
	算出方法 装置検出下限値の試料換 算値 (μg/L) 注2) 分析法検出下限値の算出 分析法検出下限値 (μg/L)	 S/Nに基づく(標準液濃度 μg/L、採用した S/N=) J標準液の繰り返し測定値の標準偏差 σ を用いた方法(標準液濃度μg/L、繰り返し測定回数 回、IDL = t(n-1,0.05)×σn-1×2で計算、3σ) 装置ブランク試料繰り返し測定値の標準偏差 σ に基づく方法(繰り返し測定回数 回、IDL = t(n-1,0.05)×σn-1×2で計算、3σで計算) その他(() μg/L 実施した 2. 実施しなかった () μg/L MDL = t(n-1,0.05)×σn-1×2で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 3σ法で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 3σ法で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回))
	算出方法 装置検出下限値の試料換 算値 (μg/L) 注2) 分析法検出下限値の算出 分析法検出下限値 (μg/L) 算出方法	 S/Nに基づく(標準液濃度 μg/L、採用した S/N=) J標準液の繰り返し測定値の標準偏差 σ を用いた方法(標準液濃度μg/L、繰り返し測定回数 回、IDL = t(n-1,0.05)×σn-1×2で計算、3σ) 装置ブランク試料繰り返し測定値の標準偏差 σ に基づく方法(繰り返し測定回数 回、IDL = t(n-1,0.05)×σn-1×2で計算、3σで計算) その他() () μg/L 1. 実施した 2. 実施しなかった (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 2. 3σ法で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 3. その他()
	算出方法 装置検出下限値の試料換算値 (μg/L) 注2) 分析法検出下限値の算出 分析法検出下限値 (μg/L) 算出方法 分析法定量下限値の算出	 S/Nに基づく(標準液濃度 μg/L、採用した S/N=) J標準液の繰り返し測定値の標準偏差 σを用いた方法(標準液濃度μg/L、繰り返し測定回数 回、IDL = t(n-1,0.05)×σn-1×2で計算、3σ) 装置ブランク試料繰り返し測定値の標準偏差 σに基づく方法(繰り返し測定回数 回、IDL = t(n-1,0.05)×σn-1×2で計算、3σで計算) その他(μg/L 実施した 実施しなかった μg/L MDL = t(n-1,0.05)×σn-1×2で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 3σ法で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 3σ法で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 実施した 実施しなかった
	算出方法 装置検出下限値の試料換 算値 (μg/L) 注 2) 分析法検出下限値の算出 分析法検出下限値 (μg/L) 算出方法 分析法定量下限値の算出 分析法定量下限値の算出	 S/Nに基づく(標準液濃度 μg/L、採用した S/N=) J標準液の繰り返し測定値の標準偏差 σ を用いた方法(標準液濃度μg/L、繰り返し測定回数 回、IDL = t(n-1,0.05)×σ_{n-1}×2で計算、3σ) 装置ブランク試料繰り返し測定値の標準偏差 σ に基づく方法(繰り返し測定回数 回、IDL = t(n-1,0.05)×σ_{n-1}×2で計算、3σで計算) その他() () μg/L 1. 実施した 2. 実施しなかった () μg/L 1. MDL = t(n-1,0.05)× σ_{n-1}×2で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 3σ法で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 3σ法で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 2. 実施しなかった () μg/L
	算出方法 装置検出下限値の試料換算値 (μg/L) 注2) 分析法検出下限値の算出 分析法検出下限値 (μg/L) 算出方法 分析法定量下限値の算出	 S/Nに基づく(標準液濃度 μg/L、採用した S/N=) J標準液の繰り返し測定値の標準偏差 σ を用いた方法(標準液濃度μg/L、繰り返し測定回数 回、IDL = t(n-1,0.05)×σn-1×2で計算、3σ) 装置ブランク試料繰り返し測定値の標準偏差 σ に基づく方法(繰り返し測定回数 回、IDL = t(n-1,0.05)×σn-1×2で計算、3σで計算) その他(μg/L 実施した 2. 実施しなかった()μg/L MDL = t(n-1,0.05)×σn-1×2で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 3σ法で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 3σ法で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 2 変法で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 実施した 2. 実施しなかった()μg/L 指針値(0.008 mg/L)の10分の1として運用
	算出方法 装置検出下限値の試料換 算値 (μg/L) 注 2) 分析法検出下限値の算出 分析法検出下限値 (μg/L) 算出方法 分析法定量下限値の算出 分析法定量下限値の算出	 S/N に基づく (標準液濃度 μg/L、採用した S/N=) J標準液の繰り返し測定値の標準偏差 σ を用いた方法 (標準液濃度μg/L、繰り返し測定回数 回、IDL = t(n-1,0.05)×σ_{n-1}×2 で計算、3σ) 装置ブランク試料繰り返し測定値の標準偏差 σ に基づく方法 (繰り返し測定回数 回、IDL = t(n-1,0.05)×σ_{n-1}×2 で計算、3σ で計算) その他 () μg/L 実施した 2. 実施しなかった () μg/L MDL = t(n-1,0.05)×σ_{n-1}×2で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 3σ法で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 3σ法で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 実施した 2. 実施しなかった () μg/L 指針値(0.008 mg/L)の10分の1として運用 「水質管理目標設定項目の検査方法 (厚労省)」に記載されている定量下限
	算出方法 装置検出下限値の試料換 算値 (μg/L) 注 2) 分析法検出下限値の算出 分析法検出下限値 (μg/L) 算出方法 分析法定量下限値の算出 分析法定量下限値の算出	 S/N に基づく (標準液濃度 μg/L、採用した S/N=) J標準液の繰り返し測定値の標準偏差 σを用いた方法 (標準液濃度μg/L、繰り返し測定回数 回、IDL = t(n-1,0.05)×σn-1×2で計算、3σ) 装置ブランク試料繰り返し測定値の標準偏差 σに基づく方法 (繰り返し測定回数 回、IDL = t(n-1,0.05)×σn-1×2で計算、3σで計算) その他 ()μg/L 実施した 2.実施しなかった ()μg/L MDL = t(n-1,0.05)×σn-1×2で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 3σ法で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 3σ法で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 実施した 2.実施しなかった ()μg/L 指針値(0.008 mg/L)の10分の1として運用 「水質管理目標設定項目の検査方法 (厚労省)」に記載されている定量下限値を引用
	算出方法 装置検出下限値の試料換 算値 (μg/L) 注 2) 分析法検出下限値の算出 分析法検出下限値 (μg/L) 算出方法 分析法定量下限値の算出 分析法定量下限値の算出	1. S/N に基づく (標準液濃度 μg/L、採用した S/N=) 2. J標準液の繰り返し測定値の標準偏差 σ を用いた方法 (標準液濃度 μg/L、繰り返し測定回数 回、IDL = t(n-1,0.05)×σn-1×2で計算、3σ) 3. 装置ブランク試料繰り返し測定値の標準偏差 σ に基づく方法 (繰り返し測定回数 回、IDL = t(n-1,0.05)×σn-1×2で計算、3σで計算) 4. その他 () () μg/L 1. 実施した 2. 実施しなかった () μg/L 1. MDL = t(n-1,0.05)×σn-1×2で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 2. 3σ法で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 3. その他 () 1. 実施した 2. 実施しなかった () μg/L 1. 指針値(0.008 mg/L)の10分の1として運用 2. 「水質管理目標設定項目の検査方法 (厚労省)」に記載されている定量下限値を引用 3. JIS K 0128 (用水・排水中の農薬試験方法) に記載されている定量範囲の
	算出方法 装置検出下限値の試料換 算値 (μg/L) 注 2) 分析法検出下限値の算出 分析法検出下限値 (μg/L) 算出方法 分析法定量下限値の算出 分析法定量下限値の算出	 S/N に基づく (標準液濃度 μg/L、採用した S/N=) J標準液の繰り返し測定値の標準偏差 σを用いた方法 (標準液濃度μg/L、繰り返し測定回数 回、IDL = t(n-1,0.05)×σn-1×2で計算、3σ) 装置ブランク試料繰り返し測定値の標準偏差 σに基づく方法 (繰り返し測定回数 回、IDL = t(n-1,0.05)×σn-1×2で計算、3σで計算) その他 ()μg/L 実施した 2.実施しなかった ()μg/L MDL = t(n-1,0.05)×σn-1×2で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 3σ法で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 3σ法で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 実施した 2.実施しなかった ()μg/L 指針値(0.008 mg/L)の10分の1として運用 「水質管理目標設定項目の検査方法 (厚労省)」に記載されている定量下限値を引用
	算出方法 装置検出下限値の試料換 算値 (μg/L) 注 2) 分析法検出下限値の算出 分析法検出下限値 (μg/L) 算出方法 分析法定量下限値の算出 分析法定量下限値の算出	1. S/N に基づく (標準液濃度 μg/L、採用した S/N=) 2. J標準液の繰り返し測定値の標準偏差 σ を用いた方法 (標準液濃度 μg/L、繰り返し測定回数 回、IDL = t(n-1,0.05)×σn-1×2で計算、3σ) 3. 装置ブランク試料繰り返し測定値の標準偏差 σ に基づく方法 (繰り返し測定回数 回、IDL = t(n-1,0.05)×σn-1×2で計算、3σで計算) 4. その他 () () μg/L 1. 実施した 2. 実施しなかった () μg/L 1. MDL = t(n-1,0.05)×σn-1×2で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 2. 3σ法で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 3. その他 () 1. 実施した 2. 実施しなかった () μg/L 1. 指針値(0.008 mg/L)の10分の1として運用 2. 「水質管理目標設定項目の検査方法 (厚労省)」に記載されている定量下限値を引用 3. JIS K 0128 (用水・排水中の農薬試験方法) に記載されている定量範囲の
	算出方法 装置検出下限値の試料換 算値 (μg/L) 注 2) 分析法検出下限値の算出 分析法検出下限値 (μg/L) 算出方法 分析法定量下限値の算出 分析法定量下限値の算出	1. S/Nに基づく(標準液濃度 μg/L、採用した S/N=) 2. J標準液の繰り返し測定値の標準偏差 σ を用いた方法(標準液濃度μg/L、繰り返し測定回数 回、IDL = t(n-1,0.05)×σ _{n-1} ×2で計算、3σ) 3. 装置ブランク試料繰り返し測定値の標準偏差 σ に基づく方法(繰り返し測定回数 回、IDL = t(n-1,0.05)×σ _{n-1} ×2で計算、3σで計算) 4. その他(()μg/L 1. 実施した 2. 実施しなかった ()μg/L 1. MDL = t(n-1,0.05)×σ _{n-1} ×2で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 2. 3σ法で計算 (σの算出方法:(濃度:μg/L),(繰り返し回数: 回)) 3. その他()

- 注1) ここで σ は特定濃度の対象物質を繰り返し測定し、得られた標準偏差をさす。 注2) 装置検出下限値に試料の前処理における濃縮率を乗じた値を記入する。

分析結果報告書〔3〕8/10

<検量線の作成>

1. 絶対検量	線法 2	. 標準添加法	3. 内標準法	
4. サロゲー	ト内標準法	5. その他()	
()			
() ng			
()			
()			
() ng/mL			
() %			
()			
() 点			
最低() ~	最高() μg/L	
()			
()			
1. 直線(重	みづけなし)	2. 直線(重みづん	ナあり、重みづけ	方法 ())
3. 2次曲線	1		T	T
1回目	2回目	3回目	4回目	5回目
()			
	4. サロゲー (((((((((((((((((((4. サロゲート内標準法 () ng () ng ()) ng/mL () % ()) 点 最低() ~ ()) 1. 直線(重みづけなし) 3. 2次曲線	4. サロゲート内標準法 5. その他(() ng () ng () () () () () () () 点 最低() ~ 最高(() () () () 1. 直線(重みづけなし) 2. 直線(重みづけなし) 3. 2次曲線	4. サロゲート内標準法 5. その他() () ng () ng () () ng/mL () % () ()

- 注1) 指示値にはピーク高さ、面積値、cps 等の応答値もしくはレスポンスを入力する。
- 注2) 該当する場合に記入する。
- 注3) 試料指示値: Rs、 内標準物質指示値: Ris、サロゲート内標準指示値: Rsurrogate、ブランク試料の指示値: Rblank、供試試料量 Vsample (mL)、最終検液量: Vfinal (mL)、一次検量線の傾き: a1、検量線の切片: b1、二次検量線の二次係数: a2、一次係数: b2、切片: c2 の記号を使用する。

フェニトロチオン(詳細項目)	
定量方法	1. 絶対検量線法 2. 標準添加法 3. 内標準法 4. サロゲート内標準法 5. その他 ()
	()
内標準物質の添加量(ng)	() ng
サロゲート内標準法	
内標準物質の種類	()
内標準物質の添加量(ng)	() ng
回収率(%)	() %
検量線 作成点数	()点
作成範囲	最低 () ~ 最高 () μg/L
最低濃度指示値(平均) 注)	()
最高濃度指示値(平均) 注)	()
検量線の種類	1. 直線(重みづけなし) 2. 直線(重みづけあり、重みづけ方法())
	3. 2次曲線
指示値 注1)	1回目 2回目 3回目 4回目 5回目
試料の指示値	
内標準の指示値 注2)	
サロゲート内標準の指示値 注2)	
空試験の指示値(平均)	()
濃度計算に用いた式 注3)	

- 注1) 指示値にはピーク高さ、面積値、cps 等の応答値もしくはレスポンスを入力する。
- 注2) 該当する場合に記入する。
- 注3) 試料指示値: Rs、 内標準物質指示値: Ris、サロゲート内標準指示値: Rsurrogate、ブランク試料の指示値: Rblank、供試試料量 Vsample (mL)、最終検液量: Vfinal (mL)、一次検量線の傾き: a1、検量線の切片: b1、二次検量線の二次係数: a2、一次係数: b2、切片: c2 の記号を使用する。

分析結果報告書〔3〕9/10

<分析結果:参照項目>

N N MAR - S M X H										
項目		分析結果(μg/L) 注1)注2)注3)注4)								
	1回目	2回目	3回目	4回目	5回目					
シマジン										
イソプロチオラン										
フェノブカルブ										
アセタミプリド										
グリホサート										
クロチアニジン										
ジノテフラン										
フィプロニル										
>>										

- 注1) 測定回数分の分析結果を記入する。
- 注2)検出下限値以上であった場合、分析結果を有効数字3桁で記入する。
- 注3)検出下限値未満であった場合、NDと記入する。
- 注4)報告下限値未満であった場合でも分析結果が検出下限値以上であった場合には、NDとせずに測定された数値を記入する。

<分析の種類等:参照項目>

項目	分析方法	用いたシステム
シマジン	1. 固相抽出液体クロマトグラフ-タンデム型質量分析法	1. GC/MS (四重極) 2. GC/MS/MS (タンデム四重
	2. 固相抽出-ガスクロマトグラフ質量分析法	極) 3. GC/TofMS または GC/Q-TofMS (ハイブリッ
	3. 溶媒抽出又は固相抽出によるガスクロマトグラフ法	ド) 4. LC/MS/MS (タンデム四重極) 5. LC/Q-
	4. 液体クロマトグラフ-質量分析法	TofMS (ハイブリッド) 6. その他 ()
	5. その他())	
イソプロチオラン	1. 固相抽出・液体クロマトグラフ-タンデム型質量分析法	1. GC/MS(四重極) 2. GC/MS/MS(タンデム四重
	2. 固相抽出-ガスクロマトグラフ質量分析法	極) 3. GC/TofMS または GC/Q-TofMS(ハイブリッ
	3. 溶媒抽出又は固相抽出によるガスクロマトグラフ法	ド) 4. LC/MS/MS(タンデム四重極) 5. LC/Q-
	4. 液体クロマトグラフ-質量分析法	TofMS(ハイブリッド) 6. その他()
	5. その他 ()	(m.c.)
フェノブカルブ	1. 固相抽出一ガスクロマトグラフ質量分析法	1. GC/MS (四重極) 2. GC/MS/MS (タンデム四重
	2. 溶媒抽出又は固相抽出によるガスクロマトグ ラフ法	極) 3. GC/TofMS または GC/Q-TofMS (ハイブリッ
	3. 液体クロマトグラフ-質量分析法	ド) 4. LC/MS/MS (タンデム四重極) 5. LC/Q-
	4. その他 ()	TofMS (ハイブリッド) 6. その他 ()
アセタミプリド	1. 固相抽出・液体クロマトグラフ・タンデム型質量分析法	1. GC/MS (四重極) 2. GC/MS/MS (タンデム四重
, , , , , , , , , , , , , , , , , , , ,	2. 液体クロマトグラフ-質量分析法	極) 3. GC/TofMS または GC/Q-TofMS (ハイブリッ
	3. その他()	ド) 4. LC/MS/MS (タンデム四重極) 5. LC/Q-
	,	TofMS (ハイブリッド) 6. その他 ()
グリホサート	1. 誘導体化-固相抽出-液体クロマトグラフ-質量分析法	1. GC/MS (四重極) 2. GC/MS/MS (タンデム四重
	2. その他()	極) 3. GC/TofMS または GC/Q-TofMS(ハイブリッ
		ド) 4. LC/MS/MS(タンデム四重極) 5. LC/Q-
		TofMS (ハイブリッド) 6. その他 ()
クロチアニジン	1. 固相抽出液体クロマトグラフ-タンデム型質量分析法	1. GC/MS (四重極) 2. GC/MS/MS (タンデム四重
	2. 液体クロマトグラフ-質量分析法	極) 3. GC/TofMS または GC/Q-TofMS(ハイブリッ
	3. その他(ド) 4. LC/MS/MS(タンデム四重極) 5. LC/Q-
		TofMS(ハイブリッド) 6. その他()
ジノテフラン	1. 紫外分光光度型検出器付高速液体クロマトグ	1. GC/MS(四重極) 2. GC/MS/MS(タンデム四重
	ラフ法	極) 3. GC/TofMS または GC/Q-TofMS (ハイブリッ
	2. 固相抽出-液体クロマトグラフ質量分析法	ド) 4. LC/MS/MS (タンデム四重極) 5. LC/Q-
	3. 液体クロマトグラフ-質量分析法	TofMS(ハイブリッド) 6. その他()
7,71	4. その他()) 1. 田田神山 ガスカロマ (グラフ所具八七汁	1 00046 (四壬烷) 0 00046046 (カング) 四壬
フィプロニル	1. 固相抽出-ガスクロマトグラフ質量分析法 2. 固相抽出-液体クロマトグラフ質量分析	1. GC/MS (四重極) 2. GC/MS/MS (タンデム四重 #5) 2. GC/T GMS さなは GC/O T GMS () ノブリッ
	2. 回相抽口一枚件クロマトクラフ質重分析 3. 液体クロマトグラフ-質量分析法	極) 3. GC/TofMS または GC/Q-TofMS (ハイブリッ
	3. 松本クロマドクラン-真重が生伝 4. その他()	ド) 4. LC/MS/MS (タンデム四重極) 5. LC/Q-TofMS (ハイブリッド) 6. その他 (
	4. CV/IE(/	TofMS(ハイブリッド) 6. その他()

分析結果報告書〔3〕10/10

<定量用イオン質量数及び確認用イオン質量数>

項目	定量用イオン質量数(m/z)			確認用イオン(1)質量数(m/z)			確認用イオン(2)質量数(m/z)		
	マスクロマ	SRM	,	マスクロマ		注)	マスクロマ	SRM	注)
	トグラム法	11:0:01 1 > 4 4	生成イオン	トグラム法	11:1:0]	生成イオン	トグラム法	前駆イオン	生成イオン
	又はSIM法			又はSIM法			又はSIM法		
シマジン									
イソプロチオラン									
フェノブカルブ									
アセタミプリド									
グリホサート									
クロチアニジン									
ジノテフラン									
フィプロニル									

注) N	AS/MS	を用り	ヽた場合	に記入	、す	る。