分析結果報告書〔2〕 1/4

1. 2 廃棄物 (ばいじん) 試料(溶出試験: 片価クロム)

機関コード	
機関名	
電話番号	
国際的な認証等の取得(複数回答可)	1. ISO 9001~9003 2. ISO/IEC 17025(が小25) 3. MLAP
	4. 環境省が実施するダイオキシン類の請負調査の受注資格
	5. (上記1~4を取得していないが)品質マネジメントシステム(QMS)を構築している
分析主担当者名	
分析主担当者の経験年数	()年
分析主担当者の実績	
(年間の分析試料数)	
分析(主)担当者以外の分析結果の確認	1. あり 2. なし

<重金属類分析の経験等>

廃棄物の重金属類成分	1. 分析したことがある	2. 分析したことがない
土壌中の重金属類成分	1. 分析したことがある	2. 分析したことがない
環境水、地下水等の重金属類成分	1. 分析したことがある	2. 分析したことがない

回数	分析結果 (mg/L) 注 1)	
	検出下限値以上 注2)	検出下限値未満での検出下限値 注3)
1回目		
2回目		
3回目		

- 注1) 一旦受領した結果については、訂正があっても受け付けませんので、記入間違いや単位間違い等に注意する。
- 注2) 検出下限値以上であった場合、分析結果を有効数字3桁で記入する。
- 注3)検出下限値未満であった場合、検出下限値を有効数字1桁で記入する。
- 1. 検液(溶出液)の作成

分析結果報告書〔1~4〕 (共通) (1.0 廃棄物(ばいじん)試料(溶出試験:検液(溶出液)の作成))に記入する。

2. 検定の方法(各項目の分析方法)

<分析開始日等>

分析開始月日	月	目	
分析終了月日	月	日	

<分析方法等>**分析方法については、必ず記入する。**

分析方法	1. フレーA原子吸光法2. 電気加熱原子吸光法3. ICP発光分光分析法4. ICP質量分析法5. ジフェニルカルバジド吸光光度法6. 流れ分析法7. その他()
使用した水	1. 蒸留水 2. イオン交換水 3. 超純水 4. その他()

< 六価クロムの分離操作(吸光光度法(流れ分析法を含む)以外の方法)>

試料(溶出液)量 注4)	() mL	
クロム(Ⅲ)の共沈除去方法	1. 硫酸アンモニウム鉄溶液、アンモニア水(1+4)を添加(微アルカリ性)	後煮沸し水酸化鉄と共沈させる
	2. 硫酸アルミニウム添加後、pH9で共沈させる	
	3. 分離操作を行わない	
	4. その他()
ろ過 実施の有無	1. 実施する 2. 実施しない	
沈殿の洗浄	1. 温硝酸アンモニウム溶液 2. その他()
試験溶液の定容量	() mL	
六価クロムの分離操作後の液性	1. 硝酸酸性 2. 塩酸酸性 3. 有機溶媒	4. その他 ()

注4) 分取とせず、全量で準備操作(前処理等) した場合には、記入しない。

<前処理等(吸光光度法(流れ分析法を含む)以外の方法)>

<u>< 削処埋寺(吸光光度伝(流れ</u>	分析法を召り	<u> む) 以外の方法) / </u>				
試料(試験溶液)量 注5)		() mL				
準備操作(前処理)	1	1. 塩酸酸性で煮沸	2.	硝酸酸性で煮沸	3.	塩酸による分解
	4	4. 硝酸による分解	5.	塩酸と硝酸による分解	6.	硝酸と過塩素酸による分解
	7	7. 硝酸と硫酸による分角	屛	8. その他()
	9	9. 前処理を行わない				
最終溶液(前処理後の溶液) σ	定容量	() mL				

注5)分取とせず、全量で準備操作(前処理等)した場合には、記入しない。

分析結果報告書〔2〕 2/4

		_
<溶媒抽出>		
266 146 1 11 11 . (256 146 1 1 1 1 1 66)	* *** ** * * * * * * * * * * * * * * *	

华偏操作(浴媒拙出等)	1. 浴媒抽出)
	3. 実施しない	
前処理後の溶液の分取量 注5)	() mL	
溶媒の種類	1.酢酸ブチル 2.MIBK 3.キシレン 4.DIBK 5.その他()
キレートの種類	1. DDTC 2. APDC 3. トリオクチルアミン 4. APDC+HMA-HMDC	
	5. その他()	
抽出回数		
溶媒の使用量	(
最終の定容量	() mL	
最終溶液 (試験溶液) の液性	1. 硝酸酸性 2. 塩酸酸性 3. 有機溶媒 4. その他()

注5)分取とせず、全量で準備操作(溶媒抽出等)した場合には、記入しない。

<原子吸光法>

試験溶液の希釈希釈倍率	() 注6)	
電気加熱法 注入量	() μ L	
注入の方法	1. 自動注入装置 2. 手打ち	
原子化の方法	1. 黒鉛炉 2. 耐熱金属炉 3. その他()
モデファイアーの添加	1. 添加しない 2. Pdを添加 3. Pd以外の添加()
原子吸光分析装置 バックグラウンド補正	1. 行わない 2. 連続スペクトル光源(重水素ランプ、タングステンランプ等)	
	3. ゼーマン分裂 4. 非共鳴近接線 5. SR補正(自己反転法)	
	6. その他()	
フレーム	1. アセチレンー空気通常炎 2. アセチレンー空気還元炎	
	3. アセチレンー一酸化二窒素 3. その他()
測定波長	()nm	

注6) 希釈しない場合には、希釈倍率を「1」とする。

< ICP発光分光分析法>

試験溶液の希釈希釈倍率	(注6)
ICP発光分光分析装置 発光部	1. 横方向 2. 軸方向
(光観測方式)	3. その他()
分光部	1. ツェルニ・ターナー型 (シークエンシャル形)
	2. パッシェン・ルンゲ型(同時測定形) 3. エシェル型(同時測定形)
	4. その他 ()
検出部	1.光電子増倍管(フォトマル) 2.半導体検出器
	3. その他 ()
バックグラウンド補正	1. 行う 2. 行わない
超音波ネブライザーの使用	1. 使用しない 2. 使用する
測定時間	()秒
測定波長	()nm

注6) 希釈しない場合には、希釈倍率を「1」とする。

分析結果報告書〔2〕 3/4

_	TCP	==	\blacksquare	<i>*</i> \	1.1	· 1/1-	~
	17.0	7171	-	\sim	· Th	- VI	_

試験溶液の希釈希釈倍率	() 注6)
ICP質量分析計 メーカー・型式	1. アジレント (11. 7500シリーズ 12. 7700シリーズ
	13.8800シリーズ 14.その他())
	2. サーモサイエンティフィック (21. iCAP Q 22. その他 ())
	3. 島津 (31. ICPM-8500シリーズ 32. その他 ())
	4. セイコー (41. SPQ8000シリーズ 42. SPQ9000シリーズ
	43. その他())
	5. パーキンエルマー (51. NexION 300シリーズ 52. その他 ())
	6. 日立(61. SPQ9700シリーズ 62. その他())
	7. その他:メーカー (型式 ()
スペクトル干渉の低減又は補正	
質量分析計	1. 四重極 2. 二重収束 3. その他()
コリジョン・リアクションセル	1. 行わない 2. 行う
	「2.行う」場合の使用ガスの種類
	1. ヘリウム 2. 水素 3. メタン 4. アンモニア 5. キセノン
	6. その他 ()
	「2.行う」場合の使用ガスの流量()mL/分
水素化物発生	1. 行わない 2. 行う
補正式による補正	1. 行わない 2. 行う(その方法の概要:)
	補正前の指示値() 補正後の指示値() 注7)
その他	1. 行わない 2. 行う()
超音波ネブライザーの使用	1. 使用しない 2. 使用する
積分時間 (質量数毎)	() 秒
質量数	

注6) 希釈しない場合には、希釈倍率を「1」とする。

<吸光光度法>

- 次元元文1公/	
試料(溶出液)の分取量	() mL
pH調製	1. 水酸化ナトリウム溶液 (40 g/L) の添加 2. 硫酸 (1+35) の添加
	3. その他(
発色 硫酸(1+9)添加	1.2.5 mL 2.その他 () mL
ジフェニルカルバジド溶液添加	1.1 mL 2. その他 () mL
冷却 温度	1.15℃ 2.その他()℃
時間	1.5分 2.その他()分
定容量	1.50 mL 2.その他()mL
対照液調製の有無	1. 調製する 2. 調製しない
調製方法	1. 試料を中和後、硫酸(1+9)、エタノールを加え煮沸し、冷却後、検液と同様に発色
	2. その他())
妨害成分の対処方法	()
吸収セルの光路長	1.10 mm 2.50 mm 3.その他()
測定波長	() nm

<流れ分析法>

〜流れ分析法>	
測定方法	1. JIS K 0170-7の6.3.2 (ジフュニルカルバジド発色(3流路)-フローインジェクション分析 (FIA) 法)
	2. JIS K 0170-7の6.3.3 (ジフェニルカルバジド発色(2流路)-フローインジェクション分析(FIA) 法)
	3. JIS K 0170-7の6.3.4 (ジフェニルカルバジド発色-連続流れ分析 (CFA) 法)
	4. その他()
測定装置 メーカー	
型式	
繰り返し性の確認 注7)	繰返し回数()回
	繰返し性 (CV) () %

注7)検量線の中間濃度の標準液を用いて繰り返し測定して繰返し性(相対標準偏差、CV%)を求めている場合に記入する。

分析結果報告書〔2〕 4/4

<検量線の作成等>

定量方法方法		1. 絶対検量線法 2. 標準添加法 3. 内標準法
内標準法:	: 内標準物質の種類	1. イットリウム(Y) 2. インジウム(In) 3. イッテルビウム(Yb) 4. タリウム(Tl) 5. ビスマス(Bi)
		6. ベリリウム(Be) 7. ロジウム(Rh) 8. レニウム(Re) 9. テルル(Te) 1 0. ガリウム(Ga)
		11. ゲルマニウム(Ge) 12. スカンジウム(Sc) 13. コバルト(Co) 14. その他()
検量線	作成点数	
	作成範囲	最小()~最大() 注8)
		作成範囲の単位:1. μg 2. mg/L 3. その他()
	最高濃度の指示値	
試料の指示値		1回目(注9)
		2回目()
		3回目()
空試験の指示値	直	() 注10)
検出下限値		()mg/L 注11)

- 注8) 分析装置で測定する溶液中の量 (μg) 又は濃度 (mg/L) 等を記入する。
- 注9)標準添加法では「添加のない試料」の値を示す。
- 注10)標準添加法では記入しない。
- 注11) 試料中の濃度 (mg/L) を示す。

分析実施にあたっての留意した点及び 問題と感じた点	
計算式	